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Prologue

Timed CSP is an extension of Communicating Sequential Processes
which includes timing information. It can be used to model time-
dependent properties of concurrent systems. An algebraic notation is
employed in the definition of processes, capturing the behaviour of a
system in a clear and intuitive manner. A uniform hierarchy of se-
mantic models for this notation is presented in [Re88]. Each senantic
model identifies a process with a set of possible behaviours: by reason-
ing about these sets, we may establish properties of the corresponding
processes.

This monograph contains two papers on Timed CSP. The frst of
these introdnces the language of Timed CSP, aimed at those familiar
with Hoare's book on CSP, [H85). The second presents a complete
proof system for reasoning about the most useful class of Timed CSP
specifications: behavioural specifications on timed failures. Together,
these two papers provide a foundation for the specification and design
of real-time concurrent systems using Timed CSP.
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An Introduction To Timed CSP
Jim Dawvies and Steve Schneider

Oxford Uriversity Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OX1 3QD

Abstract. This paper is an introduction to the language of Timed CSP. The
syntax is presented and explained through several examples of timed interaction.
The subsequent chapters show how the syntax may be used to represent aspects
of time-critical behaviour. The use of the semantic models in spedfication is
demoanstrated. The paper ends with a brief discussion of future research directions.

1 Introduction

This paper is intended as an intreduction to Timed CSP for those already familiar
with Tony Hoare’s book Communicating Sequential Processes, [H83). Because of
this, we may assume that onr readers are aware of the advantages of wsing such a
notation te reason about the properties of concnrrent systems. There is a need for
a similar treatment of real-time communicating processes, where correctness may
depend upon subtle timing considerations; applications include communication
protocols and operating systems.

A number of timed models have been postulated for Hoare’s Communicating
Sequential Processes, notably in [J82|, [Z86], and [BG87). However, ile hierarchy



of compatible models for Timed CSP, presented by Reed and Roscoe in [RR86],
[RR87], and [Re88| has the following advantages:

¢ the models are compatible with the exdsting nntimed models of CSP.

¢ infinite hiding and infinite alphabet transformations are possible.

deadlock and divergence may be distinguished.

s divergence may be distinguished from the possibility of divergence.

the models are arranged in a hierarchy, permitting timewise refinement of
specifications,

In this paper, we introduce the models of the hierarchy, and show how they can be
used in the specification and design of concurrent systems. We begin by introduc-
ing the syntax of Timed CSP, together with some examples of its application. We
show how to model aspects of timed interaction: timeouts and interrupts. Timed
CSP descriptions of two protocols are given as examples. We present the semantic
models, and illustrate their use in the specification and verification of Timed CSP
processes. Finally, we discuss the enhancements that are being made to the theory
of Timed CSP.

2 Timed CSP: Syntax

2.1 Assumptions

We make a small number of assumptions about timing in a distributed system:

o thereis a non-zero lower bound, §, on the length of the time interval between
any two events in the history of a sequential process.

» thereis no lower bound on the time interval between two independent actions,
such as those performed by two processes running asynchronously in parallel.

¢ the times at which events occur in the system relate to a conceptual global
clock: time passes at the same rate in each process.

¢ hidden events occur as soon as they become available.

For further details, and a more mathematical treatment, see [Re88].



2.2 Processes

The process algebra TCSP is essentially that of untimed CSP, with the addition
of a delay operator WAIT:

P = L1|STOP|SKIP| WAITt|a— P|
POP|PAP|P|P|P,l,P|PIIP|
PiP|P\NA|fTHP)|f(P)|uX ¢ F(X)

Although the semantic treatment of the operators is quite different, theintuition
behind their use remains the same. In many cases, the new semantics eflect this
intuition more closely: the introduction of time information allows us to draw
new distinctions. The notien of process alphabet introduced in [H85] has been
discarded; synchronisation of events is achieved by means of an alphibeticised
parallel operator.

Basic Operators

L The divergent process L can perform no observable ictions.
However, internal activity may continue indefinitely; itis hive-
locked, like an infinite loop.

STOoP The deadlock process STOP cannot perform any extemal ac-
tions; neither can i1t make any internal progress.

SKIP This construct models the successful termination of a process,
signalled by the occurrence of the special event v; this is the
only event that this process may engage in.

WAIT ¢ The delay operator, WAIT ¢, models the delayed suicessful
termination of a process, introducing a delay of time ! before
the special event v becomes available. The processes WAIT 0
and SKIP are equivalent.

Prefixing

a— P The process & — P represents a process which is initialy pre-
pared to engage in event a. A short delay (&) folbws the
accurrence of event 4, and the process then behaves as P. The
delay introduced by the prefix operator models the mnimum
time required for a sequential process to recover from partici-
pation in an event. Longer recovery times can be modelled by
explicit use of the WAIT operator.

3



Choice
PngQ

rPagq

Paratlelism
Pylly @

rle

PlllQ

The notion of nondeterministic choice remains unchanged with
the introduction of time. The process P M @ represenis an
internal choice between P and @: the environment cannot
interfere. The indexed version of the operator may be used to
model infinite nondeterministic choice.

The notion of deterministic choice is also unchanged from the
untimed models. The process P O @ represents an external
choice between the two processes. Control is passed to the
first process to perform an external action: the choice is made
with the co-operation of the environment.

The alphabeticised parallel operator provides for synchronisa-
tion in Timed CSP. In the parallel combination P |, @,
process P may perform only those events drawn from the set
X. Similarly, process @ is restricted to events from the set
Y. The two processes must synchronise on events from the
intersection X N Y.

The simple parallel operator is a special case of the alphabeti-
cised operator: when the set arguments are omitted, they are
taken to be the universal set of events X. In the parallel com-
bination P || @, the two processes must synchronise on all
events.

The interleaved parallel combination of two TCSP processes
performs as the two components acting independently: there
is no synchronisation between them.

Sequential Composition

P;Q

The sequential composition operator s used to transfer control
from one process to another. In the process P;(@, the transfer is
effected once P signals successful termination, modelled by the
occurrence of the special event v. The sequential composition
operator hides this event from the environment, with the result
that the event occurs as soon as possible.



Abstraction

P\A

Renaming

f(P), f71(P)

Recursion

g X e F(X)

The hiding operator allows ns to abstract from internal detail,
hiding certain evenis from the environment of a process. This
has the effect of forcing these events to occur as soon as they
become available: the events are no longer observable, but the
delays are retained. In ordinary CSP, the set of event: to be
bidden must be finite; in Timed CSP, this restriction nolonger
applies. The new models suppert infinite hiding.

The notion of process relabelling is unchanged in the timed
version of CSP. The process f(P) is obtained by applying the
alphabet transformation f to the events in the description of
process P. The second form of process relabelling, f~'{P),
allows ns to consider all of the possible processes which behave
in a fashion similar to P.

Recursion in Timed CSP introduces a delay of time 4, siular
to that of the prefix operator, as illustrated by this equivalence:

uX e F(X) = F(WAITS; X « F(X))

2.3 Alphabets

In BHoare’s treatment of CSP, [H85], each process P is associated with a unique
set of events aP, the process alphabet. If P appears in a parallel combination of

processes, events from o P require the co-operation of P. In the approach to CSP
used by Roscoe and Reed in [Ro82] and [Re88| the need for process alphabets is
removed by the introduction of an alphabeticised parallel operator.

This operator is parametrised by two sets of events. In the parallel combination

process P may perform only those events in set A, process ¢ may perform only
those events in set B, and the two processes mnst co-operate on events diawn {rom

Ps@

the intersection of 4 and B.



Using Hoare’s approach, we may restrict the behaviour of a process P by placing
it in parallel with the process STOP, parametrised by a suitable alphabet. For
example, the process STOP(,y || P behaves as P, with all occurrences of event
a blocked. Without alphabets, we use the set of all events, &, to construct an
equivalent process using the alphabeticised parallel operator:

STOP (,4llz P

It is still necessary to identify the set of possible actions of a process — we use
o{P) to denote the set of all events in which process P may participate.

2.4 Algebra

A number of properties of untimed CSP processes are no longer true in Timed CSP.
It is perhaps insiructive to examine these, and the reasons for their disappearance:

. P|| STOP # STOP HP#L

P may still make internal progress: the right-hand side is a stable process, but
the left-hand side need not be. Internal activity is not prevented by the need to
synchronise with the stable process STOP.

. {(a— P)\az P\a

Even though the a event occurs instantaneously, it is followed by a delay of §, which
is still recorded. Thus we now have the equivalence {a — P)\e = WAIT §;{P\ a)
. pX o F{X)# FluX » F(X))

Any recursion takes time § to unfold; this delay is present before each recursive

call. The correct equivalenceis u X o F(X)= F(WAIT6;u X o F(X)).

. (a- PRI - Q)E a = (Pt —Q))
0
b= ((a = P)||Q)

We have frue parallelism, not time-slice parallelism, so the left-hand process may
engage in the two events ¢ and & within an interval of time which is arbitrarily
small. The right-hand side, however, describes a sequential process: after perform-
ing the first event, time & must elapse before 1t can perform another.



. PN(QOR)£(PNQO(PNR)

This law fails because we now have more information about the history of i process.
We can do refusal testing: we have a record of the events refused by : process
throughout its history. I event a is oflered only by process (2, the krowlhdge that
event a is refused by the left-hard side resolves the nondeterministic choice. On
the right-hand side, only one of the choices is resolved: R is still a possibility.

Many of the identities established in [H85] are retained. ..
POSTOP = P

Pi(Q;R) = (P;Q):R
STOP|IlQ = @
SKIP;Q = @
(6= P);Q = a—(P;Q) fafv

...and the introduction of time brings more:

WAIT t,; WAIT 4 = WAIT (b + &)
WAIT 4, || WAIT ¢, WAIT maz{t,, &}
(WAITt ||| WAIT 4); P = WAIT min{t;, b} ; P

|

2.5 Example

Consider the process VM defined below:
VM = coin — rattle > WAIT(d - §) ; drink — VM

This is intended to tepresent a simple vending machine. Following the imertion of
a coin, a rattling sound may be heard as the coin drops. A drink is then offered
by the machine; this offer 3s made no earlier than time d after the ratile. If the
drink 15 accepted, the machine returns to its initial state.

We are considering timed behaviour, and there is a minimum delayof time 4
between parlicipation in events. To ensure that the drink becomes avaihble after
the specified interval, the delay is represenied by a WAIT of time d — £

However, the observation of the rattling sound should not be necessary for the
correct behaviour of the machine, so we abstract {rom the event, using the hiding
operator to conceal it from the environment.

VM \ ratlle = coin — WAIT d; drink — (VM \ rattle)

Notice that the hidden event rettle occurs as soon as possible.
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3 Timed Interaction

3.1 A Simple Timeout

One important aspect of time-critical behaviour is the ttmeout: a change of state
in which control is passed from one process to another, if the first performs no
external actions in a given period of time. We can represent this behaviour in
Timed CSP using the deterministic choice operator, the sequential composition
operator, and a suitable delay. Consider the TCSP process given by

(PO WAITt); Q

where P and @ are also TCSP processes. If P performs no external actions by
time ¢, then the special event v is made available by the delay construct. The
presence of the sequential composition operator forces this event to occur as soon
as it becomes available, removing the external choice and passing control to process
@): events from P are no longer available. If P performs an external action befare
time ¢, then the choice is resolved in favour of P, and the WAJIT ¢ process is no
longer present.

3.2 Example

As an illystration of the use of Timed CSP, we will consider a simple representation
of a sensilive vending machine and its user. The sensitive nature of the machine
lies 1n its response to a kick: if it is kicked while the coin is still dropping, it may
refuse to dispense a drink. In untimed CSP, the machine may be described as
follows:

drink — SVM

SVM = coin— |D
kick — (STOP N drink — SVM)

As we are unable to observe the coin’s progress inside the machine, we cannot de-
termine the effect of a kick event between the insertion of a coin and the attempted
removal of a drink. If the machine is confronted with a user such as USE, where

USE = coin — kick — drink — USE

then this sequence of events may lead to deadlock:

STOP
USE | SVM = coin — kick— | N
drink — (USE || SVM)



Timed CSP allows us to include more information in our description. In the
case of the vending machine, the time at which it is kicked affects the outcome
of the kick eventi; if we allow time for the coin to drop, a kick will do no harm.
Consider the description of a time-sensitive vending machine givea by:

kick — STOP drink — TSVM
TSVM = coin— |D 10
WaAlT1 kick — drink — TSVM

Providing that the user does not kick the machine within a second of inserting the
coin, a drink will become available. If we have a user whose patience extends to
three seconds,

TUSE = coin — WAIT 3; kick — drink — TUSE
then we can gnarantee a satisfactory outcome.

TUSE | TSVM = coin — WAIT 3 ; kick — drink — (TUSE || TSVM)

Including tirning information in our description has the effect of resolving the
nondeterminism. The outcome of a kick is dependent upon when tbe kick occurs;
any untimed description must include an element of nondeterminism. The timed
process TSVM is a timewise refirement of the untimed process SVM,

3.3 A Timeout Operator

The timeout construct presented above is adequate for most purposes, but it has
one undesirable property. In the TCSP process

(PDWAITY; Q

control is passed to process @ if P performs no external events befare time ¢,
However, the same thing will happen if P terminates successfully; the sequential
composition operator prevents P from signalling successful termination to the
envitonment.

We now define a timeout operator for Timed CSP, using the syntaclic equiva-
lence:

PLQ = (PO(WAITt:b— Q)\b

where & & o(PYUo(Q). I P performs no external events before time ¢, the evert
b removes control; as a hidden event, it occurs as soom as possible (at iime £)

9



and resolves the choice against P. The process then behaves as @ \ b, which is
equivalent to @ by our choice of b.

If P engages in an external action before the timeont occurs, then the process
continues to behave as P \ b, which is equivalent to P. If this process should ter-
minate successfully, then the special event v will be observed by the environment.

This operator will be a useful TCSP process constructor. As a guide to its
application, consider the following identities:
(PEQ)""R = PE(QER)
(PNQ)sR = (PeR)N(Q5 R)
(POQ)c R = (PER)O(Qb R)
((a.—vP)E;Q)\X = WAIT6;(P\X) (e€X,t=>0)

4 Protocols

One area of study involving the analysis of timed concurrent behaviour is the
design and verification of communication protocols: distbuted algomthms for
facilitating the transfer of information. We can use the notation of Timed CSP to
produce clear, concise descriptions of these protocols.

4.1 The Alternating Bit Protocol

We present a timewise refinement of the alternating bit protocol presented in
[PS88]. This protocol consists of a sending process $ and a receiving process R,
and operates over a medium represented by wires M1 and M2:

in

The sending process operates in the following fashion: a message isinpnt along
channel 1, tagged with a bit value, and output along channel lrn. Consecutive
messages ate tagged with alternating bits, The process awaits a confirmation bit
on channel re; this should match the bit value of the last transmission. If no
such bit arrives within a specified time, the process times out and retransmits the

10



message with the same bit value. This behaviour is captured by the following
TCSP process:

S = 5
Sy
Sz.ﬁ

inlz — imlz.b — S,vr,
{rc?a — (if 2 = b then §,_, else 5.4)) & Im!z.b — 5,4

1

I

The receiving process complements this behaviour: a message received along the
channel rm is stripped of its bit value, which is transmitted on chamnel lc as
an acknowledgement bit. If the bit value matches the bit value of the previous
message, the message is discarded. Otkerwise, the message is output on channel
out. A TCSP representation might be:

R
Ry

I}

R,
rm7z.c — (if ¢ = & then lclc — R, else outlz — lcle = R,)

1}

We then have a formal description of the protocol in Timed CSP. This permuts
a rigorous analysis of its behavionr and a clear description of the interface with
the environment. If we obtain a similar description of the communicationmedinm,
then we may use Timed CSP to verify that the protocol will function correctly.
For example, we may describe the wires M1 and M2 using TCSP.

A suitable representation for M1 and M2 is given by the TCSP process below:
RW, = []|RW..
k=D

RWs, = in?z — outlz — RW,
RW&_H'“ =z in?zr — RWE‘"

This process snccessfully transmits at least L of the inputs with whichit is pre-
sented; it can never discard n consecutive inputs. We can use this to model a
communication medium in which the probability of losing n consecutive messages
is negligible. If we relabel the channels, we can obtain TCSP represertations of
wires M1 and M2

4.2 Local Area Network Protocol
Local Area Networks can be used to connect systems that need to commmnicate

over fairly short distances: up to a few kilometres apart. In most cases, data is
broadecast across a transmission medium, perceived by all stations or nodes. One

1



protocol designed for use in this situation is the Ethernet protocol introduced in
[MB786).

This protocol operates by accepting a packet of data and attempting to trans-
mit it across the broadcast medium. The medium is monitored throughout the
transmission, which is halted in the case of interference. This procedure is called
collision detection. I a collision occurs, the transmitter waits for a random amount
of time before trying again, If the same message is interrupted too many times,
then an error is reported.

In this section, we are not concerned with the mechanism of transmission. We
wish to describe the service provided by an ethernet-like protocol to each node
of a network. In the ISO seven-layer model, see [T81], this corresponds to the
interface between the datalink layer and the network layer. The datalink layer is
the parallel combination of the datalink components of all of the network nodes;
at each of these the interface consists of three chanuels: in, con and out.

NETWORK

DATALINK

At node i, messages are transmitted to the datalink along channel i.in. The
datalink then processes the message, and attempts to transmit the contents to
the other nodes on the network. In our representation, the outcome of such an
attempt is nondeterministic. If the message m is successfully transmitted then
the network layer is notified using channel :.con. If not, then a failure is reported
using the same channel.

The factors influencing the success or failure of an attempt cannot be deter-
mined from the network layer, but knowledge of the datalink structure allows us to
include timing information in our description. For example, if the time taken for
the datalink to pass a message m to the transmission medium is £, a successful
transmission cannot be reported within time ¢, of an input,

In ethernet-like protocoals, if the transmission is interrupted, the datalink backs
off for a random period, then begins again without informing the network layer,
abandoning the current message only after 15 consecutive attempts have failed;
only then is the failure reported. If the backoff time is restricted to the interval
[tmin > Lmas], then the failure report for a message m may become available at any
time between 154mnin and 15(tm + tmer). Because of this, if the transmission of a
message m is to succeed, it must succeed by time 15ty + tmaz)-

12



We can capture this timing information in Timed CSP. If we choose N to
represent the set of node identifiers, and let &, be the time taken for a signal to
travel from node ¢ to node j, we may represent the service provided by the datalink
layer as follows:

DATALINK = ||| NODE,
ieN
NODE;, = iin?m - (SUCCESS, » N FAILURE;)
SUCCESS;m = (WAITIs); ||| WAIT &, ; j.out!m — STOP
1EN
<
¢ .i.conlauccess = NODE,
FAILURE; = (WAIT If); i.con!failure - NODE;
where
WAIT ] = [| WAIT
tef
IS = [t‘mvls(tﬂl + tmus)]
IF' = []S‘min’ 15(tm + tmns)]

Note that the arrival of a report on the channel con is preceded by a nondeter-
ministic delay. This is modelled by a nondeterministic choice over an interval of
time.

5 Simple Interrupts

An inferrupt is a signal that interrupts the execution of a process. Subsequent
hehaviour may be determined by an interrupt handler: a process that identifies
the nature of the interrupt signal and acts accordingly. In some cases, an inter-
rupted process may resume execulion at the point of interruption; the process
state is stored for the duration of the interrupt. In others, the existing process is
terminated, to be replaced by another or simply restarted.

It is possible to model the first class of interrupts in Timed C3P; we simply
suspend all internal activity present in the interrupted process. This requires a
new semantic definition, outside the scope of an introduction to the motation of
Timed CSP.

13



In this section we will address the second class of interrupts, the simple inter-
rupts. These can be used to model any situation in which the internal state of
the interrupted process P need not be preserved; any external actions of P before
the interrupt can be recorded and acted upon during and after the interrupt has
occurred.

5.1 A First Approach

Consider the TCSP process
{P|||a — SKIP); @

where ¢ ¢ o(P). This behaves as process P until the first occurrence of event
a. This signals the successful termination of the first construct, passing control
to process (}. Event a acts as an interrupt event to process P. We can use this
construction to model simple interrupts.

The fact that the behaviour following an interrupt is the same as that following
successful termination of P need not concern ns. In many cases, process P will
never terminate successfully. If we require that P should be able to signal successful
termination, or that there should be a choice of interrupt events, we can use the
TCSP interrupt operator presented later in this section.

Further, we can dispense with the interrupt event altogether, automatically
removing control from process P at a particular time. In the process

{P|l| WAIT t); Q@

the first construct will terminate at time ¢, transferring control to process (7.

5.2 Example

We consider a simple pinball machine. To play, the user must insert a coin, and
press the start button. At the end of the game, the machine returns to its initial
state. To add interest, the user may cause an interrupt during play by tilting the
machine; this results in the immediate termination of play:

PINBALL = coin — start — (PLAY ||| it — SKIP); PINBALL

The user's interaction with the machine is not limited to the above three events.
During the game, two flippers are provided; the action of these is described by the
processes below:
LEFTFLIP = Iefi — WAIT (d —28); LEFTFLIFP
RIGHTFLIP right —+ WAIT (d — 28); RIGHTFLIP

Iir

14



Observe that occuamrences of the event left, representing the triggering of the left
flipper are restricted; there is a minimum delay d between any two occurrences. A
similar restriction is placed upon the event right. However, each flipper should be
independent of the other; there are no bounds on the interval between consecutive
left and right events.

We make no other observations during the game, which may end at any time
after the short interval required for the ball to enter play. This is modelled using
an infinite nondeterministic choice:

PLAY = (LEFTFLIP|||RIGHTFLIP}||| [| WAITt
1E[3,00}

Finally, we may cause an interrupt at a higher level. For example, the user
may inadvertently cut off the power to the machine; if this happens, no further
interaction is possible. This may be represented with another simple interrupt
construct:

MACHINE = (PINBALL||| unplug — SKIP)}; STOP

5.3 A Simple Interrupt Operator

If the same T'CSP process may be interrupted by more than one event, or if we
wish to allow successful termination, the simple interrupt construct is not suitable.
Instead, we may use the TCSP operator defined by the syntactic equivalence below.
In this expression, I denates the set of possible interrupt events, and ¥; denotes
the set {b, | : € I}, the set of hidden synchronisation events.

Pi,a — SKIP a — SKIP
11 ;| o
i:I — SKIP b by = Qi)

sllros,ugep \bru{a}

a — a — SKIP ]

[y

PV Qi)

0
i:f = b — SKIP

where the following alphabet conditions hold:

INne(Py=90
(6 U{a}) N (a(P)UUicr a(Q(i)) = @

15



The synchronisation events should be chosen to make them independent of the
processes, and P should not be able to interfere with its own interrupt signals.
To see that this is a satisfactory definition of the interrupt operator, consider the
possible behaviours of the process:

o if process P has not terminated successfully, and no interrupts have oc-
curred, then any of the interrupt events i are available to the environment.
The synchronisation event e is hidden from the environment, but may not
occur; although it is available in the lower half of the paralle! combination,
it remains blocked (by P) in the upper half.

» if an interrupt i occurs, then the corresponding synchronisation event &
15 enabled. This event is hidden from the environment, and will occur as
soon as it becomes available in both halves of the parallel combination. At
the same time, P has been interrupted, and control in the upper half has
been passed to a deterministic choice between a and a set of synchronisation
events. However, ¢ has occurred, so the lower half is willing to participate
only in the event 4,. As all of these events have been hidden, b; occurs
immediately, and control passes to (i), the correct interrupt handler.

e if P terminates successfully, the hidden event a is enabled, and occurs at
once. In the upper half, control again passes to the deterministic choice, but
this time only the event g is being offered by the lower half, which must have
synchronised uporn the first a. Thus a second hidden a occurs, and the entire
construct terminates successfully.

5.4 Example

To illustrate the use of this operator, we return to our pinball machine. The latest
model PINBALL;, has a unpleasant feature: if a coin is inserted while a game
is being played, the machine abandons the current game and is prepared to start
a new ooe. We now have two interrupt events during play: tilt and coin. The
behavicur following an interrupt depends upon the nature of the interrupt event:

PINBALL; = coin —+ GAME
GAME start — (PLAY E’} HANDLE(:i)); PINBALL,

b

where the set I contains only the events fdt and coin, and the interrupt handler
is defined as follows:

SKIP
GCAME

Hr

HANDLE(tit)
HANDLE(coin)

1
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5.5 A Timed Interrupt Operator

We can define a timed interrupt operator for Timed CSP. This has the effect of
translerring control from one process to another, after a predetermined period of
time. Unlike the construct presented in section 5.1, this operator permits the first
process o signal successful termination.

|

P;ao— SKIP

1]
WAIT t; b — SKIP

)

a — SKIP

Il
b—Q

|

c“{a,b} \ {a, 8}

a —a — SKIP

a0

b — b — SKIP
where {4,8} N (o(P)U o(Q}) = . Note that a delay of 2§ is introduced when

control is passed by this operator: the second process starts execution at time
t + 26. This is reflected in the following identity:

Pi(QiR)

(P1

i

y & RrR =

4 +izt26

We can extend the definition of the interrupt operator to allow interrupts over
an interval, occurring nondeterministically:

1]

/(P;a—.SKIP
Il

WAIT T; b — SKIP

E“{n,b}

e — a — SKIP
O
\ b — b — SKIP

)

g — SKIP

Il
b—@Q

|

\ {a,b}

where {g,8} N (c(P)Uc(Q)) =B and T represents a finite interval of time. The
construct WAIT T is as defined at the end of section 4.2:

WAIT T =

1ET

17

[ warr:



6 Timed CSP: Semantics

Timed CSP has been given a variety of semantic models. These can be used to
produce formal descriptions of process behaviour. In each model, a timed CSP
process 1s identified with a set of possible behaviours. A typical element of a
semantic set is a tuple, whose elements represent different aspects of a possible
behaviour,

The untimed models consider the traces, refusals and stabilities of a process;
these are dosely related to the traces, refusals and divergences of untimed CSP. The
timed models address the timed equivalents of these components: timed traces,
timed refusals, and timed stabilities. As the untimed models are not the subject
of this paper, we will omit the prefix timed where no ambiguity will arise.

6.1 Traces

A timed trace of a Timed CSP process is a finite sequence of observable events in
the history of that process, each labelled with the time at which it occurs. The
events are presented in chronological order. In the simpler models of timed CSP
— those without timed refusal information — we must identify the times at which
events first become available, in order to reach a satisfactory definition of hiding.
We do this by placing a hat upon an event whenever it occurs at the first moment
of availability.

As an example, consider the trace set of the process

P = WAIT1;(a — b — STOP)

((0.5,2),(1,5)) is not a trace of P: the first event cannot take
place before time 1.
{(1,e),(2,b)} is a traceof P
{(1,8),(2,b)) isatraceof P

{(1.5,a),(2,5)) is not a trace of P: the hat on a is incorrect, as
the event first becomes available at time 1.

{(2,a), (2 +56, 5)) 15 a trace of P.
((2,8))  is not a trace of P: the first event must be an a.

{(1.5,8),(1,8)} is not a trace of P: the sequence of times in any
trace must be non-decreasing.

18



6.2 Refusals

Timed refusals represent the times at which events may be refused during the
observation of a given trace; they are not simple extensions of untimed refusal sets.
A timed refusal is finite union of refusal tokens: a refusal token is the product of a
finite half-open interval of time with a set of events. A typical element of a refusal
set is thus a {#ime,event) pair. The restrictions on the composition of a refusal set
allow us to consider only those observations made in a finite period of time. As
in the case of untimed CSP, (trace,refusal) pairs are termed failures. We present
two different explanations of refusals:

Timed refusals are refusals

We may interpret a timed refusal as the set of (time,event) pairs refused in a
possible history of the process. In the failure (s, R), we consider the refusal set N
to be the set of (time,cvent) pairs that the process may refuse to engage in given
that it performus the trace s. In the case of our example process P:

{{(1,2)),([0,1 + &) x {3})) isaiailure of P: event a may take place al time 1,
and in this case, event b may be refused up until
time 1+ 46
{({(1,a)},(]0,2) x {a})) is a failure of P: if event a occurs as soon as it
becomes available, then it is refused up until that
time and from that time onwards.
{{(2,a)),{[0,2) x {a})) is not a failnre of P, as event a must be available
{from time 1 nntil such time as it occors.
{{(1,a)},{[0,00) x {a})) is not a failure of any process: the alleged refusal
describes infinite behaviour.

Note that there is no reason why a pair (¢, @) should not be present in both the
trace s and the refusal set X, In the second failure abave, the process refuses @ up
until time 1. Having engaged in the event at time 1, it refuses any further offers
of the same event. This apparent contradiction is not present in the alternative
exposition given below, which also permits an intuitive explanation of the hiding
operator.

Timed refusals are forcing sets
Alternatively, we may view timed CSP processes as entities upon which the global

environment may experiment. In addition to simply observing events, this envi-
ronment may force events over finite intervals of time: if the process is prepared to
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perform an event when the environment forces it, it must occur instantaneously.
Events that are not forced may still occur, if available.

A timed refusal may be viewed as the history of such an experiment; a timed
trace is a possible result. The presence of a pair (¢, 8) in a refusal set corresponds
to the act of forcing event a at time ¢. In the light of this interpretation, we
reconsider the failure set of process P:

({1, a)},([0,1+ &) x {b}) s a failure of P: if event b is forced over the in-
terval [0,1 4 ), an event ¢ may be observed at
time 1.
({(1,8)}),{[0,2) x {a}}) is a failure of P: if event a is forced over the
interval [0, 2), it must occur as soon as it becomes
available (at time 1).
{{{2,¢)),([0,2) x {a})) is not a failure of P: ¢ should have occurred at

time 1.
{{(2,a)),B) is a failure of P: if ¢ is not forced, it may occur
at any time at which it is available.

The advantages of this intuition are

¢ the interpretation of the empty refusal set, always possible for any trace, is
more easily understood.

¢ hiding a set of events A corresponds to forcing them upon a process.

o the sequential composition operator works by forcing any available occur-
rence of the special event v.

It should be observed that the global environment is merely an intuitive device;
we cannot model it as a TCSP process — such a process may permit or prevent
the occurrence of events, but cannot force their occurrence.

6.3 Stability

In addition to the traces and refusals of a process, which record the response and
reaction to external stimuli, we are also interested in the internal activity of a
process. We wish to know whether or not the process is making internal progress,
whether the process has stabilised. Once a process has stahilised, there can be
no further changes of state without an external action occurring. The concept of
stability is dnal to that of divergence, discussed in earlier models of CSP.
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Intuitively, we may imagne a red light on the back of a process that is ex-
tinguished once all internal activity has ceased. The stability component of a
behaviour is the earhest time by which the Light is guaranteed to be off. In the
failures-stability model for Timed CSP, a typical behaviour of a process is rep-
resented by a triple (s, a,R): the stability value o is the earliest time by which
the process must have stabilised, given that it exhibits the external behaviour
described by trace ¢ and refusal .

Choosing o to represent the earhest time of guaranteed stability means that
every (trace,refusal) pair of a given process is associated with a unique stability
value. Similarly, in the timed stability model, where behaviours are (trace,stnbility)
pairs, each trace is assaciated with a unique stability value.

6.4 Models

The semantic models for CSP and Timed CSP presented in [Re88] form a hierarchy,
ordered according to the information contained in a typical element of a semantic
set. All of the models are based upon metric spaces, and projection mappings
have been defined, allowing the various aspects of a process's behaviour to be
considered separately. In the diagram below, these mappings are represented by
arrows connecting the various madels.

TMrs

Mes

AN

Mg Mg

NS

Mz

TMy T™;

TMr
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As we move up the hierarchy, further aspects of process behaviour are revealed.
The lower models in the hierarchy, My, Mp, Mg and Mp; have no timed informa-
tion at all; they are the traces, {ailures and stability models of untimed CSP. The
lowest timed model, TM7, identifies only the timed traces of a process. Higher
models identify fatlures and stabilities, allowing us address both external response
and internal activity.

In [Re88), a semantic function is defined for each model. The complexity of the
semantics 1eflects the arnount of information required for a successful treatment of
timed concurrency. As an example, we present the semantic clanse for the prefix
operator in the timed failures model:

Frla=P] = {({),0)|aga(N)}
U
[t a5+ (t+8)), ) [t20Aaga(R ) A
(s,R=(t+6)) € Fr[P]}

where Fr is the semantic function from TCSP to TMF.

A behaviour of @ — P may arise in one of two ways. I event a has not yet
occurred, then it must be available at all times, hence 2 must not be in o(R), the
set of all events in 1efusal set ®. If a has occurred, at time ¢, and is recorded as the
first event of the trace, then it must have been available before time t. The process
may not participate in any event during an interval of length 4, hence any event
may be refused. The subsequent behaviour of the process must be a behaviour of
P, translated through time ¢ + 4.

The notation employed above will be defined formally in section 7.2.

7 Specification

In this section, we show how the requirements placed upon a system may be
translated into Timed CSP specifications. As the semantic sets represent sets
of possible behaviours, we can write each specification as a predicate upon the
semantics of a process.

‘We have seen how the syntax of Timed CSP can be used to produce formal
descriptions of time-critical systems. These descriptions can be used to suggest
an implementation, or as an algorithmic representation of an existing system at
a suitable level of abstraction. Further, we can determine whether or not such a
description meets our {ormalised requirements.
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7.1 Behavioural Specifications

We consider a behavioural specification to be a predicale on a typical behaviour
of a process. If this predicate holds of all possible behaviours of a process, we say
that the process satisfies the specfication. Tlis permits us to define a relation
between TCSP processes and behavioural specifications: the satisfaction operator
sat for a process P and a specification 5{s,¥):

Psat S(s,R) = ¥(s,R) € Fr[P] o 5(s,R)

The form of a behavioural specification identifies the model employed. In the
above example, the parameters s and ¥ indicate that the timed failures model,
TMp, is being used. This extends the definition made in [H85]. In [Ref8], Reed
defines specifications as predicates on the entire semantic set of a process. We
define predicates on a typical element of that set. Reed’s specifications permit
a more detailed analysis of the process semantics; ours are more suited to the
capture of general requirements upon a process.

For every behavioural specification S, we can define a corresponding Reed
specification Hs as follows:

Rg(P) = P sat 5(s,®)

However, not every Reed specification has a corresponding behavioural specifica-
tion. For example, the predicate

({(1,0),(2,8)).8) € Fr[P]

cannot be written as a behavioural specification. It states that {{(1, a),(2, &)}, 8)
is a possible behaviour of £, and to decide upon its truth wc need to examine the
whole of the semantic set.

We are interested in the correctness of processes. Behavioural spedfications
reflect this: they insist that every possible behaviour is acceptable. To slate that
a process may participate in a certain event at a certain time, or refuse a certain
event at another, without further information, 1s of little use. We are interested
in what can be guaranteed about a process behaviour.

7.2 Notation

To capture our requirements as predicates, we define a number of operators on
timed traces and timed refusals. A more extensive list of semantic operators is
given as an appendix to this paper.
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Timed traces are sequences of (time,event) pairs. We write s, ™5, to represent
the concalenation of traces s; and s;, and #s to represent the length of 5. Asin
[H85], we define the relation in as follows:

sins = Juven s "v=y3

This relation holds whenever the first trace is a contignous subsequence of the
second.

The Jast operator is defined on non-empty timed traces, returning the last event
in a trace:

lest(s™{(t,e))) = a

while the end operator is defined for all traces:
end({}) = 0
end(s™{(t,a)) = ¢

The definition of the restriction operator includes the clauses for hatted events in
a trace. These are present only in the lower models of the hierarchy; timed refusal
information makes them unnecessary.

Ora =
(((a))"s) 1A = ({t,a)) (s A) fa€ A
({(t,2))"9) TA = 314 otherwise
(((t,a))"s) 1A = ((t,a) (st 4) fac A
{{(t,a)" )TA = slA otherwise

This operator restricts the trace to events drawn from a given set A.

We define two operators on timed refusals. The first restricts the refusal set to
events that may be refused after a specified time:

R{t = RA([t,00) x T)

where § denotes the set of all events. The second operator yields the set of events
mentioned in the refusal set ¥.
o(R) = {acX|Jte(ta)c R}

If an event is not in o(R), then it is not refused during the behaviour (s, R}.
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To illustrate the use of these operators, we define:
(&, 8) = ({(1,8),(3,¢)},[0,3) x {a,b})

and observe that:

last(s) = «¢
end(s) = 3
SHab) = {(1,a)
o®) = (o0}
Ri12 = [2,3) x {a, b}

7.3 Example
Recall the definition made in section 2, of a simple vending machine:
VM = coin — rattle - WAIT(d — ) ; drink - VM

This process satisfies the following behavioural specifications:

Si{s) = (&, mitle), (tz, drink))ins =, 2 4 +d
S(s, ) = last{s) = ratte = drink  o(R 1 {end(s) + 4))
Si(s,0) = last(s) = coin = g = end{s) + 4

These capture the following requirements:

¢ a donk is not available until time d has elapsed, following the occumence of
rattle.

¢ when a raitle is heard, then a drink will be available after a further time d.

» at a time & after the insertion of a coin, the machine has stabilised: all
internal activity has ceased.

That the process meets these specifications could be verified with reference to the
semantics, With imore complex process descriptions, this is impractical. Fortu-
nately, there is an alternative. We can derive a number of inference rules transform-
ing a behavicural specification on a TCSP process to behavioural specifications on
its components. Indeed, a complete proof system for timed fajlures specifications
is given in [DS89].
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7.4 Proof

A proof of correctness of a Timed CSP process is a verification that it meets a
given specification. For example, we might wish to prove that the simple vending
machine VM meets the first of the above specifications. We can wnte this proof
requirement using the sat relation:

VM sat S5(s, &)

and establish the truth of this assertion by demonstrating that the predicate
8,(s,R) bolds for a typical element of the semantic set Fr[ VM].

A more complex requirement can be placed upon the paraliel combination of
the time-sensitive vending machine and its user:

TUSE || TSVM  sat last(s) = kick = drink € o(} 1 (end(s) + 8))

This captures the requirement that the user cannot break the machine by kicking
it; a drink will always become available. Recalling the definitions of the component

processes
kick — STOP drink — TSVM
TSVM = coin — |0O o
WAIT 1 kick — drink — TSVM

TUSE = coin — WAIT 3 ; kick — drink — TUSE

we can see that this is gnaranteed by the combination of the user’s restraint and
the invulnerability of the machine after a certain time interval. More formally, we
can show that:

TSVM sat lasi{s) = kick A end(s | coin) + 2 < end(s)
=> drink & o(R | (end(s) + §))
TUSE sat last(s) = kick = (end(s | coin) + 2 £ end(s)
A drink € a(R1 (end(3) + 8)))

and use the following inference rule (from [D589]) to establish that the required
result holds:

Py sat T\(s, )
P; sat Ty(s,R)
Ti{s, R} A To{s,R2) = S(s, R U L)

P] ” P2 sat S(S,R)
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To establish that a parallel combination meets a given specification §, it is sufficient
to find two specifications, one for each component, that yield § for a combivation
of behaviours. More precisely, a typical failure of Py || P, must satisfy:

¢ any trace of P, || P, is a trace of each component.

» any refusal set of P, || P, will be the union of two refusal sets: one from each
of the component processes.

The parallel combination refuses to participate in an event ¢ whenever ather or
both of its components refuses e.

Similar rules exist to verify that the simpler, sequential processes TUSE and
TSVM satisfy the two specifications given above. Using these rules, we can estab-
lish any property of a process that can be captured as a behavioural specification.

8 Discussion

This paper was intended as a brief introduction to Timed CSP. The ideas and
notation presented in the previous sections provide the foundation for a uniform
theory of timed concurrency. As it stands, Timed CSP is a powerful tool for
capturing requirements in a clear and concise fashion, and communicating these
requirements to others. Additions being made to the theory, including a com-
plete proof system for behavioural specifications, will simplify the analysis and
verification of processes; software tools can be developed to assist in this.

The additions being made to the theory include:

Instability sets: In [BI89], Blamey develops an alternative treatment of process
stability, associating each failure with a set of instabilities, rather than a single
stability value. Usiug this approach, we may obtaiu a basis for a complele proof
system for all models of Timed CSP.

Event times: The § delay, present at each prefix, can be replaced by a function,
associating a different delay with each event. This yields a more intuitive treatment
of sequential processes, and permits event refinemeut.

Titne-slice parallelism: The parallel operators given in this paper can be used
to describe true parallelism. However, we may wish to model multiprocessing
behaviour, in which the execution of a process may be suspended. A new semantic
definition is required, and has already been formulated in [D§9].

Timewise refinement: We can nse the structure of the hierarchy to refine pro-
cesses and specifications, adding the timing information of a higher model.
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A number of other directions are also being pursued; these include the addition
of probabilistic models to the heirarchy, the development of software tools, and a
methodology for process design and implementation.
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A Notation for Specification

We define a number of operators on timed traces, timed failures and timed refusals.
These will be useful in formulating definitions and specifications of Timed CSP
Pprocesses.

Al Timed Traces

Timed traces are sequences of (time,event) pairs. We write 5,35 to 1epresent the
concatenation of iraces s, and s, and #s to represent the length of 5. As in [H85],
we define the relation in as follows:

gins; = du,veu"s5,"v=24
This relation holds whenever the first trace is a contiguous subsequence of the

second.

First and Last

The first and last operators are defined upon non-empty traces, returning the first
and last events in a trace, respectively:

first({(t,0))"s) =
last(s™(t,0))) = a

and the begin and end operators are defined for all traces:

begin((})
begin({(t, a))"s)
end((})
end(s7{(¢, a))

[/}

Ih

o0
t
0
t

b

The values chosen for the empty trace are the most convenient for the subsequent
mathematics.
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During, Before and After

We define the during, before, and after operators on timed traces. The first returns
the subsequence of the trace with times drawn from set [. The others retern the
parts of the trace before and after the specified time.

11 (
({(t,a))"s) T 1 {(t,a) (s 1 1) iftel
(sT 1 otherwise

st sT10,¢
s1¢t 2 st1{t.o)

1Y

If»

where [ is a set of time values. In the case that [ = {¢} for some time ¢, we may
omit the set brackets. The before operator, [, is also used to denote the restriction
of a trace to events drawn from a given set. If the second argument of the operator
15 a set, then:

ra =1
(Lo ) 14 = ((La)(s14) Haca
= 51 A otherwise
(L) s) 14 = ((La)~(s14) ifaca
= at A otherwise

Stripping

If timed refusals are not being considered, the events in a timed trace may be
labelled with hats; the operator hstrip strips the hats from a timed trace:

hstrip(()) = ()
hstrip({(t,a)}"s) {1, 2)) " hstrip(s)
hstrip({(t, &))" s) {(t, a)) "~ hstrip(s)

i

2

b

whereas the operator tstrip strips the timing information from a trace:

tstrip((}) (
tstrip{{(¢, a))"8) = (e} tsirip(s)

i

We use thstrip to denote the composition of these two functions.
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Alphabet

We define an operator & on traces, which yields the set of events present in the
trace:

o(s) = {aeX|3te{(t a))in hstrip(s)}
Wote that we discard the ‘hat’ information when considering which events are

present in a {race.

Shifting and Counting

We define a temporal shift operator:
0=t =0
({(t,a))"s) = ¢ {(h—t,a))"(s=t) it =t
({(t;,e))"s) - ¢ s=t otherwise

and a count operator, | , which returns the number of occurrences of events from
a given sel:

I

b

3l A = #{st A)

In the case that A = {a} for some event g, we omit the brackets.

Hiding, Equivalence and Parallel Combination

The following functions are used in conjumction with the corresponding TCSP
operators. We defiue a simple hiding operator on traces, with the effect of removing
hidden events:

s\A = sf(Z-4)
and an equivalence relation = on traces as follows: u = v if and only if uis a
permutation of v. As both are timed traces, only events occurring at the same
time may be interchanged.

Finally, we define two parallel operators on traces, corresponding to the effect
of parallel composition in Timed CSP:

{slsX=uAs[Y=vAs[{XUVY)=5]}
{s|¥tesTt={ult) (vT1)}

[

tylypo

ullle

iy
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Examples

As an example, consider the timed trace s, where

= ((1.e),(2,3),(2,a).(3,¢))

we observe that:

lasi(s) = «¢
begin(s) = 1
s1(2,3) = ((2,8).(2,4)}
st2 = {(1,a),(2,8),(2,4))
st{a}1l = ((2, ﬂ))
o(s) = {a,b,¢}
hstrip(s) = {(1,2),(2,}),(2, a),(3,¢))
tstrip(s) = (a,d,8,c)
thatrip(s) = (a,b,a, c)
sle =
522 = ((0 b},{0,8),(1, )}

s\e = ((2,6).(3,¢))
To illustrate the use of the parallel operators, we make the following definitions:

(1, 2),(2,b), (2, )
((1,d),(2,8).(2,¢))
{(2,6),(3, c}}
{a,d.¢}

¢, d}

(T | PR |

o g e e

and observe that:
u‘X”Y ro= {((1,6),(1,(1].(2,6),(2,C)),((l,d),(l,a),(z,b),{z,c))}
wyflyw = 4@

aflw = {{(,a

A2 Timed Refusals

A number of the above operators have a similar action when applied to timed
refusal seis. If we make the definition

IM) = {t|Faelt,e) e}
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then we can define begin and end on refusals:

fN=10

begin(R) = oo

begin{R) = f(I(R)) otherwise
end(R) = 0 ifR=0
end(R) = sup(/(R}) otherwise

Before, After and During

The before, after, and during operators can be defined on refusals:

Rit = RA(0,)xE) (o
Rit = RN([t,00) x L)
RT[t,e) 2 RA([4,4) xE)

Recalling that & denotes the set of all events, we see that these restrict a refusal
set to events that may be refused before, duning, and after the specified times.

Restriction and Hiding

We overload the | symbol to denole sel restriction:
RIA = RN ((0,00) x 4)

with hiding defined in the obvious way:

R\A = Rf(Z-4)

Shifting
We define a temporal shift operator on refusals:

R=t = {( -ta)|(h,a) cRAEH 2t}

Alphabet
We define an alphabet operator a:

o) = {acL|Jte(ta)ch}
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Examples
To illustrate the use of these operators, we make the definition:
R = ([0,2) x {a,b}) U ([L,5) x {c,d})

and observe that:

IM) = [0,5)
begin(R) = 0
end(R), = 3
NT3 = (10,2) % {a8)) UI[1,3) x {c,d})
13 = {3,5) x {e,d}
s®) = {a,b,c,d}
Rlae = [0,2) x {a)

R=2 = [0,3) x {c, d}

A.3 Failures

For convemence, we extend some of the above definitions to individual failures:
timed (trace,refusal) pairs:

begin(s,R) = min{begin(s), begin(R}}
end(s, R} = maz{end(s), end(N)}
(R)TI = (sTI,RTD
sR)IMt = (stt,R[1)
(5, R)1t = (s1t,R18)
(s, R} = ofs)Uo{it)
(s R)=t = (5=t NR=1)
(s, R} A = (st AR} A)
(s 0\4 = (s\ 4R\ 4)
A4 Processes

We extend the alphabet operator to TCSP processes:
o(P) = Ulo(s) | s € traces(P)}

and observe that this differs from the alphabet concept used in earlier versions of
CSP.
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Factorizing Proofs in Timed CSP!
Jim Davies and Steve Schneider

Oxdord University Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OX1 3QD

Abstract. A simple notion of specification is introduced, and a complete set
of inference rules given, for reasoning about real-time processes. The notation
of Timed Communicating Sequential Processes is employed, and the strongest
possible specification of a process is discussed. A proof of correctness of a simple
protocol is given to illustrate the method of verfication.

1 Introduction

Timed CSP is an extension of Communicating Sequential Processes [H85] which
includes timing information. It can be used to model time-dependent properties
of concurent systems. An algebraic notation is employed in the definition of
processes, capturing the behaviour of a system in a clear and intuitive manner. A
uniform hierarchy of semantic maodels for this notation is presented in [Re88]. Each
semantic model identifies a process with a set of possible behaviours: by reasoning
about these sets, we may establish properties of the corresponding processes.

! The material presented in this paper will appear in the proceedings of the Fifth Conference
on the Mathematical Foundations of Programming Semantics (1989): Springer-Verlag LNCS.
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In untimed CSP we have a number of algebraic laws that preserve thesemantics
of a process. These laws allow us to rewrite a process definition to facilitate such
reasoning; if necessary, we may eliminate the abstraction and parallel operators.
This is not possible in Timed CSP. The semantics of the timed models are neces-
sarily complicated, but we may use the semantic equations to derive a number of
useful laws relating processes to predicates on behaviour.

These laws are central to the application of Timed CSP to the design and
analysis of complex systems. We can capture the requirements of the specification
using the notation of the semantic model, and formalise our intended solution in
the process algebra. This solution allows us to move towards an implementation,
should this be our aim. In any case, we are obliged to show that our proposed
solution meets our requirements; we must venfy it.

We consider a verification of a Timed CSP process to be a demonsiration that
all its possible behaviours meet a proposed specification, expressed as a predicate
on a typical element of its semantics. In this case, we say that the process satisfies
the specification. A specification in TMpg, the most expressive model, can often
be wrtten as a conjunction of constraints in the simpler models; the process can
then be shown to satisfy each of these independently.

Even within the simpler models, TMr, TM; and TMy, the construction of
such a proof directly from the semantics may be difficult and laborious. If we are
to reason about complex time-critical distribnted systems, we require a method of
translating a proof obligation on a process into proof obligations on its syntactic
subcomponents. This method will employ a number of rules grounded in the
semantic mappings introduced in [RR86], [RR87] and [ReB8).

In this paper, we present the notion of behavioural specifications: correctness
conditions on the possible behaviours of a process. We then give a complete set
of inference rules for translating such a specification on a compound process into
reguirements upon its subprocesses. The soundness of each rule can beestablished
from the semantic equations for the relevant aperators; example proofs are included
as an appendix. To illustrate the use of these rules we present a verification of a
simple stop-and-wait protocol in the Timed Failures model, TMp.

2 Notation

In this section, we present the notation of Timed CSP, the process algebra and the
semantic models, as defined in [Re88]. We then explain our concept of specification
and introduce the additional notation required for this paper.
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2.1 Timed CSP

Timed CSP is a simple extension of CSP [H85]. The process algebra, TCSP, is
given in Backus-Naur form below:

P u= L1|STOP|SKIP| WAITt}a — P|
POPIPOP|P|PIP,P|PIIP|
PiPIP\NA|fHP)IS(P) | nX o F(X)

These operators are given interpretations in a hierarchy of semantic models, as
detailed in [Re88). These models allow ns to write process spedfications: a pred-
icate on the semantics of a process corresponds to a requirement on iis possible
behaviours.

The semantic model TMy consists of sets of pairs (s, R) salislying the seven
healthiness conditions given in [Re88], We refer to a pair {s, R} as a timed failure.
The semantic function Fy is defined on elements of TCSP, mapping them to
failure sets in TMy.

The first component of a timed failure represents a possible timed trace of the
process: a sequence of timed observable events. The second component, R, rep-
resents a finite union of refusal tokens, each refusal token being the product of a
half-open finite time interval and a subset of the set of all events, . This compo-
nent denctes the (#ime, event) pairs that may be refused if the process performs
the traces.

2.2  Specification

We consider a specification to be a predicate on a typical behaviour of a process: an
arbitrary element of its semantics. I{ this predicate holds of all possible behaviours
of a process, we say that the process satisfies the specification. We define the
satisfaction operator sat for a process P and a specification §(s, R}:

P sat S(s,®) = V(s,R) € .7-'T|[P]] * 5(s,N)

From this definition. we can establish a number of simple inferen ce rules:

P sat S{s,R) P sat S(s,})
P sat T(s,®) S{s, R) = T(s,R)
P sat true P sat S(s,®) A T(s, 1) P sat T(s,R)

Using the sat operator, we can capture any requirement that corresponds to a
condition npon all of the possible behaviours of a process. The resulting predicate
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upon the TCSP process we call a behavioural specification. Tu [Re88], Reed defines
specifications as predicates on the semantic set of a process, we define predicates
on a typical element of that set. Behavioural specifications form a subsel of Reed’s
specifications.

Reed’s specifications permit a more detailed analysis of the process tepresenta-
tion; ours are more suited to the capture of general requirements upon a process.

For example, the predicate
((L.a},(2,5)},0) € Fr[P]

cannot he written as a behavioural specification. It states that ({(1, a}, (2, 5)}, @)
is a possible behaviour of P, and to decide upon its truth we need to examine the
whole of the semantic set.

We are interested in the correctness of processes. Behavioural specifications
reflect this: they insist that every possible behaviour is acceptable. To state that
a process may participate in a certain event at a certain time, or refuse a certain
event at another, without further information, is of little use. We are interested
in what can be guaranteed zbout a process behaviour.

2.3 Notation

For convenience, we define a number of operators on timed failures, timed traces
and timed refusals 2. We define two functions on traces:

last(s™((t,a)}) = @
tstrip((})) = ()
tstrip{{(t,a))"s) = (o) istrip{s)

The first returns the last event in the trace, the second merely stnps the time
information from the trace.

We define the before, afier, and during operators on refusals:

Rt = RN(0,8) x %)
Rtt = RnN([t,00) x T)
Rl h) 2 RN((t,t) x T)

Recalling that I denotes the set of all events, we see that these restrict a refusal
set to events that may be refused before, during, and after the specfied times.

3From now on, we will omit the prefix ‘timed’ as all subsequent specifications will be drawn
from TMp
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We define a subtraction operator on traces and refusals, translating through
time:

-t =19

L et it <t
(((h,a))7s) = ¢ { {( —t,8))"(s = t) otherwise
Rt

{{ty —t,a) | (l,e) e RAYL =t}

I

3

We define an operator o on traces and refusals, yielding the set of events that
occur in each. For convenience, we extend the definition of o to cover failures and
processes; in the latter case, the result is the set of events in which the process
may partidpate. Observe that this operator differs from the alphebet concept used
in earlier versions of CSP.

a(s) = {aeZ|Jte{(ta)) in s}

a(R) = faecT|Tte(ta)ec R}
afs,®) = afs}Ua(R)

a(P) = | Ha(s)| s € traces(P)}

Similarly, we extend the definition of end in [Re88]:
end(s,R} = maz{end(s), end(R)}

Finally, for use with the hiding operator, we define a predicate on failures, indexed
by a set of events A:

A = ([0,end(s,R)) x A)CR

This predicate holds exactly when the failure (s, R} is activaled on set A.

3 Abstraction and Concurrency

As an introduction to our method of verifying processes, we consider two operators
central to the language of Timed CSP: the hiding and parallel operators.

3.1 Hiding

In applying Timed CSP to complex systems, we use the mding operator to abstract
away from internal behaviour. To prove our description correct, we may need to
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reason about this behaviour. Hiding a set of events A from the environment
of a process P xestricts the sct of possible behaviours to those in which P is
forced to perform events from A as soon as they become available: the A-activated
behaviours.

The events in A are no longer observable from the environment, and we may
not mention them in reasoning about P\ A. Instead, we identify the A-activated
behaviours of the process, establishing results that may involve events from A.
These results may then be used to derive a specification that is independent of
events from A. This specification is then satisfied by P\ A.

In the untimed version of CSP, we can use algebraic laws to eliminate the
hiding operator from a process description: these Jaws preserve the equivalent sct
of behavicurs. It would be possible to derive similar laws for Timed CSP, but
their complexily would render them unusable: consider the identity below, which
corresponds to the simplest non-trivial case of hiding over deterministic choice.

Il

(¢ — STOP O b — SKIP}\ {a} = ((SKIPOb —» SKIP); SKIP) ||t — SKIP

Our approach offers a simple, systematic solution to the problem of hiding.

We defined the ~ operator in the previous section: 4 holds precisely when (s, R)
is an A-activated failure. The following inference rule illustrates the relationship
between the failures of P and those of P\ A:

P sat (A(s,R) A a(R') C A} = S(s\ A, R — R")
P\ A sat S(s,R)

This follows from the semantic equation for the hiding operator given in [Re88|,
and transforms a proof obligation ou P\ A into one on P.

3.2 Parallelism

Timed CSP has three parallel operators: alphabeticised parallel, synchronised par-
allel and interleaving. The latter operators can be viewed as particular instances
of the first. In this paper, we will illustrate the use of the most general form of
parallel operator.

The alphabeticised parallel operator places a restriction on the events commu-
nicable by each argument: in the parallel combination P ., @, process P may
perform only those events in set X. Similarly, () is restricted to thosein Y. The
two processes must co-operate on events common to both sets.
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As in the case of hiding, it would be impractical to eliminate alphabeticised
parallelism using algebraic laws. As an illustration, consider the identity below,
which holds for untimed CSP.

s+ Pl =@ = a—= (P} - Q)0b—{(a > PYI|Q)

This is no longer true for Timed CSP processes because of the delay & introduced
by the prfix operator. This can anse whenever a process contains a form of
parallelism which is not completely synchronised.

This means that, except for the simple case of completely synchronised paral-
lelism, we cannot transform a process in a semantics-preserving fashion and alter
the degree of parallelism present. However, our inability to do this need not detract
from the applicability of the formalism; time-critical systems with communication
delays have a minimum degree of parallelism. We can derive rules to allow us to
establish properties of such sysiems.

As an introduction Lo the operator, consider the special case that is synchro-

nised parallelism. The following inference rule can be derived for this operator:

P, sat 5(s,R)
P; sat 32(31 NJ
SI(S'IRI) A SZ(SvNZ) = S(s'.!Nl U R?)

P || Pp sat S(s,R)

To establish that a parallel combination meets a given specification §, it is sufficient
to find two specifications, one for each component, that vield S for a combination
of behaviours. More precisely, a typical faslure of P, || P; must satisfy:

® any trace of P; || P; is a trace of each component.

e any refusal set of P, || P; will be the union of two refusal sets: one from each
of the component processes.

The parallel combination refuses to participate in an event ¢ whenever either or
both of its components refuses ¢.

The rule for the alphabeticised parallel operator is necessarily more compli-
cated:

P, sat 5 (s,R)

P, sat 5(s,R)

{a(a, ) CX Aa(s,R) C Y Aafa) CE-(XUY) A S5i(s, %)
A Sz(&'z, Rg) A 8 £ L3 X”Y Sg) = S(Sg,Nl UN') U Ng)

Py ylly P2 sat S(s,R)
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As before, we must find two specifications, one for each component, that yield S
for a combination of behaviours. This time, a failure of the parallel combination
must satisfy:

e any trace of Py ;|| P, must be the parallel combination of a trace from each
component.

e any refusal set of Py I y P2 must be the union of three refusal sets: one from
each component, and an arbitrary refusal set whose alphabet lies outside
XuyY.

Recall that the parallel operator on traces produces a set of traces: sequences of
events drawn from X U Y, whose restriction to the sets X and Y produces the
first and second arguments of the operator, respectively.

These conditions lead to the third antecedent of the rule, which allows us to
transform a predicate on the failures of a parallel combination into requirements on
the corresponding failures of the compenent processes. Together with the hiding
rule, this is sufficient to treat the example of the next section.

4 A Simple Protocol

A protocol is a distributed algorithm for facilitating the communication of messages
between processes. CSP is particularly suitable for the specification of protocols;
the enhancements introduced in Timed CSP allow us to address the timing consid-
erations that are often necessary for the correctness of the protocol. Using Timed
CSP, we can describe and analyse processes that include timeouts, inferrupits and
time-critical synchronisation.

In this section, we consider the specification of a simple ‘stop-and-wait’ proto-
col, similar to the one described in [PS88]. This consisis of two pracesses, P and
(), communicating actoss two wires: W, and W,. Together, they control the flow
of data between two external processes. This may be represented pictorially as
follows:

o {7

in P Q oul
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fn general, protocols allow for unreliable channels, by duplicating data or re-
quiring acknowledgements: such behavionr is easily modelled in Timed CSP. How-
ever, our purpose is to Ulustrate the use of the inference rules; we need not concern
ourselves with these complications. Qur protocol addresses only dataflow consid-
erations, and we assume that the wires W) and W, are relicble: for every input,
there is a corresponding output.

4.1 Specifications

There are many requirements that we could place upon the protocol, but we will
consider just one: that if a message is input, then outpul is ready within two
seconds. Formally, we wish our protocol PROT to meet the following timed failures
specification:

SPEC(s,R) = last{s) =1in = out € a(R | (end(s) + 2))
We give conditions on the components of the protocol, and verify that they are
sufficient to ensure that the protocol exhibits this behaviour.

The sending process P should meet the following specification: it should per-
form the three events in,[m,rc in steict rotation; after performing an event, it
should be prepared to perform the next within a certain time; initially, it shounld
be ready to receive an input. We capture these requirements in the timed failures
specification SPECE:

SPECp(s,®) = tstrip{s) € (in,Im, re)" A
leat(s)=in = Ibn ¢ a(R 1 (end(s) + 28)) A
last{s) = Im = rc & a(R ] (end(s) + 28)) A
last{s) =rc = in & a(®] {end(s) + 28)) A
s={) = in & a{R)
After accepting and transmitting a message, the sending process must await confir-
mation ftom the receiving process before accepting another. The receiving process
will send a confirmation signal once the previous message has been output. Ini-
tially, the system is empty. Hence we wish the receiving process @ to satisfy
SPECq,:
SPECq(s,R) = tstrip(s) € (rm, out, lc)" A
last(s) = rm = out & a(R | (end{s) + 28)) A
last(s) = out = Ic ¢ a(® 1 (end(s) + 26)) A
lest(s) = le = rm & a(® 1 (end(s) + 28)) A
s={) = mdal®)

44



The wires W, and W; have a propagation delay of 1 second, and will not be
required to tramsmit more than one message at a time, However, each must be
ready to accept another input almost imrmediately after output. They satisfy the
specifications SPECw, and SPECw, respectively, where

SPECw,(s,%) = tstrip(s) € {lm,rm)" A
last(s) = Im = rm & a(R1 (end(s) + 1)) A
last{s) = rm => Im & a(N ] (end(s) + 26)) A
s={=ImgaR)

SPECw,(s,R) = tstrip(s) € {le,rc)" A
last{s) = le = re g (R 1 {end(s) + 1)) A
last(s) = re = Ic @ a(R 1 (end(s) +28)) A
s={) = lc g alR)
The protocol is a combination of the sending process, the receiving process, ang the

wires. We combine these in TCSP by way of the alphabeticised parallel operator,
and hide the internal detail. i we define the seis

X = {inIm,rc}
Y =2 {out,rm,le}
C = (l,r}

M = {lm,rm}

A = MuC

then the protocol may be defined:
PROT = ((Pxlly @) xurlmue (W ulle #2))\ A

4.2 Verification

Having formalised our requirements, we can now use the inference rules given
in section 3 to demonstrate that the protocol PROT will meet the specification
SPEC. We wish to establish that:

PROT sat SPEC(s,X)

The definition of PROT involves the hiding operator at the outermost level, so we
must first apply the hiding rule. This reduces the proof requirement te:

(Pxlly @ xovllwue (Wi ylls Wa) sat  of®') CAA([0, end(s, })) x A) C R
= SPEC(s\ A,R — X'}
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This is a proof requirement on a parallel combination, so we apply the rule for the
parallel operator. We have tben to find specifications S and 5, such that:

P xHr Q sat  Si(s,N)

Wi ylle W2 sat  Si(s.R)

als, ) C(XUY)Aa(sR)C(MUC)

e CE—(YUYUMUCQ)

Si(s, 1) A Sols2, R2) A s € 91 yuyllyoe 2 p => SPEC(s3 \ 4,8 — X)
R=R UR UNy

a(R) C A A ([0, end{s3, })) x 4) TR

Before we continue, we note that the specification SPEC is independent of the
hidden sel of events A, for consider the definition:

SPEC = last{s)=in = out & a(R 1 (end(s) + 2))
Formally, we can show that
SPEC(s,R[ (L - A)) = SPEC(s,R)

This concurs with our intuition: the correctness of the protocol may be dependeunt
upon hidden interactions, but our formal description of the service provided (the
specification SPEC) sbould abstract away from internal detail.

Taking this in conjunction with the alphabet conditions upon the failure sets,
we may reduce the third proof obligation to

a8, B C{XUY)Aa(s,N)C(MUO)
aRs) C T~ (X U Y)

Si(81, R A Sas2,R2) A sz € 51 yiyllyoe 52
([0, end{sa, B UMy UR3)) x AYC My UR,

= SPEC(s3\ A, %)

To identify 5, we apply the parallel rule once again. We are then required to find
S4 and §s such that:
P sat  54(s,R)

@ sat Ss(s, N}

afs, Ry CX Ae(ss, ) C Y

alRg) CE—{(XUY) => Si{ss, Rq U W5 U Rg)
S84, Rg) A S5(55,Ns) A 36 € 34 X”y S5
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We already have specifications for the components P and §. Substituling these
for $; and S;, and using the alphabet conditions upon the traces and refusals, we
can reduce this proof obligation to:

SPECe(s | X,R [ X)
SPEC(s [ Y\ R[Y) » = S5i(s,R)
al(s) C(XUY)

This yields a suitable instantiation for 5;: the antecedent of the above expression.
In a similar fashion, we arrive at the following instantiation for S;:

SPECw, (st MR T M)A
SPECw,(s | C,® | C) A
a(s) C (MU C)

Onr proof requirement can then be written as follaws:

als, M) C(XUY)AalsR) C (MUC)

al3) CE—(XUY)

SPECp(s I X, % | X) A SPECg(s; I YR 1 Y)
SPECw(s3 | MW, | M) A SPECw,(s; | C. ¥ | C)
([0, end(sa, B URZUR3)) x A)C R UR;

5 € 81 yuyllaue %

= SPEC(s:\ A, ;)

The alphabet conditions in S, and 5; are subsumed in the first two conditions
above.

We have reduced the proof obligation to a predicate on traces and refusal sets:
the verification may be completed using simple properties of sets and sequences:
assuming the conjuncts in the above antecedent, we are trying to establish that

last(s; \ A) = in = out & (R, | (end(5 \ A) + 2))

From SPECp, SPECy, SPECw,, SPECw,, and the properties of sequences, we
can deduce that
83 € (in, Im, rm, out, le, re)*

We then proceed by case analysis on the identity of the last event in s;, given that
last(s3 \ A) = in, there are three possibihities.
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Case: last{sy) = in

By SPECp, Im & a((® } X)1 (end(a | X) + 28)

In this case end(s) = end(s | X}

and we know that imgY

Hence Iin @ a1 | (end(s;) + 28))

Similarly. as 83 € 91 yorllmoe 3

SPECw, implies that n & a(f; | (end(ss) + 26))

Hence Im & af(¥, URs URa} 1 (end(s3) + 26))
However, ([0, end(s, ¥ UR; URy)) x A) C (R UR URS)
and me A

So end(f; UNy URa) < end(ay) + 26

But § €1, so (R UR; UR) T (end(s) +2)) = {}

We condnde that out € a((R; UN;UR3} T end(a\ A+ 2))

Case: last(sa) = Im

We establish thal end(s;) € end(s; \ 4) + 26: that the Im event occurred within
time 28 of the Jast input.

Assume otherwise: end(s3) > end(s3\ A) + 26

If we let t be the time (emd(s \ A) + end{sy) + 26)/2

Then we know that last(sy [ 1) = in

By the previous case Im & o({(¥, UR; URS) [ t)] (end{s | ) +28))
From our assumptions ([0, end (s, R UR; UR3)) x A) TR UK,

And end(sy [ t) + 26 = end(s \ A) + 26 < ¢

Hence Imeal{(MURURD )] (end(s [ t) +28))

Forcing a contradiction.

We can show, with a similar acgument to the first case, in which the event ™m
replaces Im, that end(R; UNzUR;) € end(s) + 1. From above, end(s) € end(s\
A} + 26: the result follows.

Case: logt(s;) = rm

By asimilar argument, we can establish that the event rm must occur no later
than 1 +24 after the Iast input. We then appeal to the specification of ¢, and the
result follows immediately. O
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The treatment of hiding in Timed CSP is central to the construction of the
above proof; the hidder evenis Im and rm must occur as scon as possible. Qur
method of proof allowed us to include these events in our reasoning, by eliminating
the hiding operator from our proof obligation.

4.3 Other Requirements

Only at the final stage of the proof did we identify the protocol requirement SPEC.
To establish that another property holds of the above protocol, it would not be
necessary to perform the whole proof again. We bave characterised the behaviour
of the protocol in terms of the known properties of its components. To prove that
the protocol satisfies an arbitrary specification S, we have only to show that the
following predicate is true:

a(s, RIC (XU Y)Aals, ) CS(MUC)

a(fy)) CE—(XUY)

SPECr(s1 } X% | X)ASPECy(si | YR, 1 Y)
SPECw, (52 | M, %2 | M) A SPECwy (5 | C,3%: | C)
R=RUR UR3 A 53 €3 yorllaoe &2

a(®) C A A ([0, end(s3, R)) x 4) TR

= S(ss\ AR — W)

For a particular specification S, we will be able to discard most of the conditions
in the antecedent: the residual proof requirement is often easy to discharge.

5 Recursion and Delay

The inference rules presented in section 3 were sufficient for the example proof
above. If we wish to provide implementations for the components mentioned in
the previous section, we will require other TCSP operators; to venfy these imple-
mentations, we will require other inference rules.

5.1 Prefixing

The simplest T"CSP process is deadlock, or STOP. It cannot engage in any event,
so0 any trace must be empty. It may refuse any event at any time, so there are no
restrictions upon refusal set R:

STOP sat (s={})
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This process will be useful in showing that certain specifications are satisfiable:
that thereis a process that will satisfy them.

More igleresting processes will be able to perform events: for these, we will
require the prefiz operator. In Timed CS8P, this operator intioduces a delay, cor-
responding to the time taken Lo recover from participation:

FPsat T(s,R)

s={)Aay¢all) }

v = 5(s,R)
s=({t,a)}y " AadaRT)AT{' = (t+68),R=(t4+6))

{s — P) sat 5(s,R)

Any behaviour of the process ¢ — P must involve the non-refusal of event a until
it has been performed. If event a occurs at time ¢, the subsequent behaviour will
be that of process P, but starting at time t + § instead of time 0. If process P
meets the specification T'(s,R), then these subsequent behaviours will be described
by the predicate T{s" = (¢ + &), N = {¢ 4 §)).

5.2 Recursion

Almost any application of TCSP will involve repetitive behaviour: to model this,
we can use the recursion operator . If F is a function defined on TCSP processes,
we define the function:

Gz © TMy— TM:
Cp(X) = FrWAIT§, F(X)]
The process 4 X @ F(X) behaves as the fixed point of C; in the model TMp:
pX e F(X) = F(WAIT§; p X ¢ F(X))

The recursion induction theorem introduced by Roscoe in [Ro82], developed by
Reed in (Re88), provides the basis for an inference rule for recursively-defined
Processes:

VX :TCS5P e X sat 5(s,R) = F(WAIT 6 ;X) sat S(s,R)
3P : TCSP o P sat 5(s,R)

pX o F(X) sat 5(s,R)

The topological result from which this rule is derived requires that the predicate
“sat 8{s,R)” be both continuous and satisfiable on TCSP processes. It 1s a
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consequence of the definition of the sat operator that all such predicates are
continuons; this leaves the rule with ouly one side condition: included as the
second antecedent above. We also require that % is a contraction mapping on
TMp, and that the specification §(&,®) is preserved by each recursive cali. The
first of these follows from the continuity of all basic TCSP operators, the second
becomes the first antecedent of the rule.

It is possible that the specification 5(s, }) may only be satisfiable by a recursive
process. In this case, the side condition cannot be established without a separate
indnctive proof. By extending the contraction mapping that corresponds to F, we
can produce a rule that does not have this problem:

VX e X sat S(s,X) = F(WAIT§; X) sat S(s.)
pX o F(X) sat S(s, &)

This follows from the same topological result as the previons rule, given a simple
extension to the semantic function Fr, as detailed in appendix B. We have elim-
inated the second antecedent. The first antecedent is stronger: we may no longer
assume that the semantics of X satisfies the axioms of TMr: we have lost the
implicit assumption that X is a TCSP process.

The set of inference rules in this paper is independent of the axioms of the
model TMp, so each rule may be applied to arbitrary sets of failures: they can
therefore be nsed to establish the new antecedent. Further, the fact that all of our
specifications are behavioural means that this rule is no weaker than the recursion
rule in TMp.

5.3 Delay

Finally, we will need to reason about the behavionrs of processes involving delays.
We may derive a simple rule from the inference rules for the sequential composition
and delay operators:

P sat T'(s,N)
s=(} Aend(N) < t
v = 5(s,N)
begin(s) 2 t A T(s =, R~ ¢)

WAIT t ; P sat 5(s,R)

The inclusion of arbitrary refnsals R beforetime ¢ reflects the fact that WAFT ¢, P
may refuse any event before time 1.
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Whenever we apply the recursion rule, we will be left with a proof obligation
on WAJIT§; X. given that X satisfies a certain specification. In this case, an
alternative form of the above rule will be more useful:

P sat 5(s,R)

WAIT ¢t P sat s={}Aend(R) <1
v
begin{s) 2 t A S(s = t,R = {)

No event may occur before time ¢, and the subsequent behaviours are simply the
failures of process P translated through time ?.

We have now presented zll the rules required to verify a simple implementation
of the protocol specified in section 4.

6 Implementing the Protocol

In section4 we used Timed CSP to establish the correctness of a simple protocol:
this resull was dependent upon the correct behaviour of each component of the
protocol. We now propose TCSP implementations of the components, and use the
inference rules given in section 5 to demonstrate that they meet the appropriate
specifications.

6.1 Implementation

The protecol consists of two components, transmitter P and receiver (J, commu-
nicating across two wires Wy and W,. The transmitter process should accept an
input on channel iz, and be prepared to transmit it along W, via chanvel Im.
After this transmission has occurred, P waits for a confirmation event from wire
W2, on channel r¢, before repeating this behavionr. Qur iutuition suggests the
following as an implementation:

P =2 pyXein—alm-or—- X

We have yet to establish that this implements our requirements: that it meets the
formal specification SPECp.

A similar set of conditions applies to the receiviug process . It should be
prepared to receive a signal from wire W), on channel rm, before offering output
on chamel ouf. It should then send a confirmation signal along wire Wa, on
channel lc, before returning to its initial state. Qur proposed solution:

Q@ = pYerm sout -l =Y
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Again, we will have to verify that this is an implementation of the specification
SPEC,.

We could also model wires W, and W; in the TCSP process algebra. Consider
wire Wi: the propagation delay, the delay between input on channel lm and avail-
ability of output on channel mn, should be no more than one second. There will
be a very small (Q(8)) recovery time after output has occurred. In the context of
[S88], it behaves as a stable oue-place timed buffer:

I}

W,
Wz

pXeolm— WAIT(1-68);rm - X
pYeole - WAIT(1-6);7c— ¥

1

Note that the explicit delay between the occurrence of Im aund the availability of
rm is shortened by § to allow for the delay introduced by the prefix operator: the
time taken to recover from performing au event. Although we would not wish to
implement wires in this fashion, the TCSP description could be used to produce
a software simulation of their behaviour.

6.2 Verification

We wish to show that the transmitting process P meets the specification placed
upon it:

pXeoin—=lm—or— X sat SPECp(s,R)

This is a recursive process; the second recursion rule requires us to find a specifi-
cation S(s,R) such that:

X sat S(s,R) = in—lm—rc— (WAITS; X) sat §(s,R)
S(s,®) = SPECp{s,R)

Our strategy for finding such a specification would be to consider 5 to be SPECH A
5', strengthening S watil the conjunction, which must still be satisfiable, is pre-
served by the recursive call. In this example, the specification SPECp is strong
enough to be preserved by the recursion, and no other conditions are required. We
mstantiate S with SPECp. We have then to show that:

X sat SPECe(s,) = in —lm — re— (WAIT §; X) sat SPECp(s,R)
Assume that X sat SPECp(s,%t). We wish to establish-that:

n—olm—ore— (WAITE, X) sat SPECp(s, )
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Applying the prefix rule three times transforms this proof obligation to the follow-
ing requirement: we must find a specification U/(s,R) such that:
WAIT §;X sat U(s. R)

s={} Ain & a(R) A
v

s=({f,m) s Ainda(R)A

S (4 +6)= (A Im g all = (4 +6))
v

2 +8) = (s m) " Almga(R=(4+8) ) A Y =5 SPECp(s,R)

sff;(tg+§)=()/‘\mga(u;(t1+tﬂ+26))
v

5" = (b + 6) = ({6, o))" A

Tcﬁa(“*(f1+&;+26)rt3)"\
U(s"™ = (ti + b+ 13 + 36), R = (4 + f5 + t5 + 36))

With a suitable choice of 7y, 73, 75, this can be transformed to:

WAIT §; X sat U(s,R)

s={) Ain g e(®) 3
.\9/= {(nn}) Acga(R ) Almga®1n+8)
R

Arcg aR1 7 +6) = SPECp(s,N)
v

s = {(n,in),(re, Im), (m, re)) " u A in g a(R | 1)
Alm g aRT[n+6,m)
Ared aRT[r+6,13))
AU(u={r+ 86,8 =(n+4))

Applying the second form of the delay rule, we can instautiate U as follows:
U(s,®) = SPECp(3s = §R = &) A begin(s) = &
Having discharged the first proof obligation, the proof can be completed with a

simple case analysis on trace s. This becomes clear when we recall the form of
specification SPECp:
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SPECr = tstrip{s) < (in,Im,rc)" A
last(s) = in = Im & a(R 1 (end(s) + 26)} A
last(s) = Im = rc € a(R 1 (end(s) + 26)) A
last{s) = re = in & a(R 1 (end[s) + 28)) A
s={) = in ¢ a(R)

The only non-trivial case corresponds to s = {(m, in), {72, Im), {73, r¢)})"u. Here
we require two arguments, one for each of the cases: v = (}, v # (). Fxpanding
the spedfication SPECr makes the solution obvious.

This completes the verification of our transmitter process P. Tt will not be nec-
essary to perform a similar proof for the receiver @; we can exploit the symmetry
present in onr descriptions.

6.3 Renaming

The operator f 1n TCSP allows ns to relabel the events performed by a process.
In the case of injective functions, this allows us to re-use a process description.
By tenaming events, we can transform processes while retaining their structure.
The relationships between different events are maintained: given that a particular
result holds for all the behaviours of a process, we can infer a corresponding result
about the behaviours of the image of that process under such a transformation:

P sat 5,(s,R)
51 (s, R) = 5(f(s),f(R))
f(P) sat S(s 1)

For example, we can use the result of the previous section to establish that
@ sat SPEC,, by defining injective function f such that:

© fim) = o
fllm) = out
fire) = I

We then observe that:
SPECp(s,R) = SPECy(f(s), f()}
Q = f(P)
The inference rule allows us to conclude that:

Q@ sat SPECq(s,R)
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Which completes our verification of the protocol.

This method of re-using implementation/specification pairs helps to eliminate
redundani verifications: by observing and exploiting symmetry, we can re-use
Process components and their specifications.

7 Completing the Picture

The laws presented above, together with the others in the appendix, are complete
with respect to the semantics: any specification provable from the semantics is
provable using these laws. This becomes clear when we consider the strongest
specification of a process.

7.1 Strongest Specifications

The identification of a process with the strongest specification that it can sat-
isfy has been discussed before. 1t provides an alternative method for eliminating
the process algebra from our proof obligations. The inference rules presented in
this paper are more flexible in this: our spedfication may reflect oaly one of the
propertiss of the system. Using our intuition, we need consider only the relevant
properties of each component: those necessary to establish that the systemn meets
the specfication. As an example, consider the law:

Py sat S;(s,¥)
P; sat 5(s,R)
518, R1) A Sp(8,8g) = S(s, B URy)

Py || P; sat 5(s,R)

For P, | P, to meet specification §, we require that P; and P, meet specifica-
tions 5, and S; respectively. These need only be strong enough to fulfil the third
antecedent of the rule.

If we lack this intuition, we can use the strongest specifications of P; and
P3 as irstantiations for ) and &;. If suitable instantiations exist, they can be
no stronger than these: any property of a process is a logical consequence of its
strongest specification. We write SS][PB to denote the strongest specification of
process P. For example, the strongest specification of deadlock is given by:

SS[STOP](s,®) = s={)

This isall we can possibly know about the behaviours of STOP, we can draw no
conclusions about the refusal set: STOP may refuse any event at any time.
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For a componnd process, the strongest specification is defined in terms of the
strongest specifications of its proper syntactic subcomponents:

SSfa— Pl(s,8) = s=(}rnaga(})

v

s, te (s = {(ta) ) AagaRlt)A
SS[P}(s", R = (t + 8))

These definitions are equivalent to the semantic egnations for the model TMp.
The equivalence

S8[P](s,®) = (s,R) € F7{P]

can be established by structural induction upon process P.

Strongest specifications may he used to reduce the proof requirement on a
compound process to a predicate on traces and refusals, similar to the one at the
end of 4.2. The inference rules giveu in this paper may provide a mmch simpler
predicate; we can discard unnecessary information. But strongest spedfications
provide a more mechanicel method; there are no choices to be made, even in the
case of recursion.

SS[pX o F(X)](s,8) = Aienlend(s,R) < i = SS[F/(STOP)](5,R))
where F(X) = WAIT §; F(X)

We consider the recursive process u X o F{X) to be the limit of the finite ap-
proximations F*(STOP). A given behaviour of the recursive process must he a
behaviour of all the finite approximations involving a sufficient number of recur-
sious. If the behavionr in question is described by the failure {s,R), then all of
the approximations F*(STOP), where i > end(s,R)/8, must also exhibit that
behaviour.

Hence the strongest specification of pX e F(X) can be written as the con-
junction of the strongest spedfications of its finite approxdmations, grarded by
an applicability condition end(s,R) < 6i. We are spared the task of finding a
sufficient specification that will be preserved by each recunrsive call.

Strongest spedfications provide a complete description of the possible be-
haviours of a process. To decide whether a component is adequate for use in
a given situation, we can use the inference rules in this paper to confirm that it
meets the requirements. If a component is to be re-used m different systems, then
14 should be supplied with its strongest specfication. The comprehensive nature
of strongest specifications also allows us to demonstrate that the inference rules
presented iu this paper are complete with respect to the semantics.
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7.2 Completeness

The inference rules presented in this paper are easily seen to be sound; example
proofs are presented in appendix B. If we can use the rules to show that process P
satisfies 2 specification 5(s,R) then predicate S(s, ®) must hold for all behaviours
of P: it must be true of all the elements of the set of failures corresponding to P
in the semantic model TMy.

These rules also form a complete set. If a predicate S(s,®) holds for all be-
haviours of P, then we can use the rules to establish that P sat 5(3,R}). We can
demonstrate this by showing that the rules preserve strongest specifications: they
yield the strongest specification of a compound process in terms of the strongest
specifications of its components. For example, consider the case of the parallel
operator.

Suppose that the parallel combination P, | P, meets the specification 5(s, R).
In our proof, we would employ the following inference rule:

P, sat 5,{s, W)
P; sat 5(s,®)
Sl (S,Nl) A S:(S,Ng) = 5(31 N]_ J Nz)

P, || P; sat S{5,}N)

This requires that we exhibit specifications §, and S; for which the three an-
tecedents of the rule hold. The first two antecedents insist that these are no
stronger than the corresponding strongest spedfications, so if the third is also to
hold, it must hold with the following instantiation:

SS[P)(s, %) ASS[P](s,R3) = S(s,% U Ry)

However, as $(3,N) is true of all behaviours of Py || Py, it can be no stronger than
the strongest speafication of that process, i.e.

SS[P (| P(s,R) = S5(s,R)
But the strongest specification is given by:
SS[P || P} (s, 8) = IV, R, « SS[P](s,R) ASS[P] (s, R) AR = RLUR,

So theinference rule is sufficient to establish that Py || P; sat S({s,®). The sameis
true for the other operators, and we have shown that the equivalences that define
our strongest specifications are no weaker than the semantic equations: we lose
no information. Hence our inference rules form a complete set with respect to the
semantics.
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8 Stability

In this paper, we have been working within the Timed Failures model of TCSP,
TMp. Timed CSP identifies a further aspect of a process’s behaviour: the stability
value corresponding to each (trace, refusal} pair. In [Re88), this is defined io be the
earliest time at which it can be gnaranteed that the process can make no further
internal progress. This notion has been refined by Blamey in [BI89). Here, he
associates with each {trace refusal) pair an “instability” set rather than astability
value: the set of times ai which the process might not be stable.

One advantage of this approach is that it allows us to exiend the work in this
paper to models which include stability. Using instability sets, we can express the
behaviour of a compound process in terms of the behaviours of its components.
This is not possible in the original stability models, TMs and TMgs: to see why,
consider the processes defined below.

P = a— STOP
P, e — WAIT1;8TOP

I

The stabilities associated with this process are given by:

SrlP] = {0 u{({(ta),t+8) |t =0}
Sr[p] = (.0} uill(te)),t+1+8) |t >0}

M

Now consider the behaviours of the process P, ||| P;, given the semantic equation
for the interleaving operator:

St |[P1 i P;E = SUP{(s, maz{a;,az}) |
s, 01) € ST HPlﬂ,(Sz,az) €St [Pgﬂ e s € Tmerge(s), 5)}

The compound process can engage in a single o event, from each of ils components,
and give nise to a stability value that cannot be inferred from the properties of a
typical behaviour of either process acting independently. The trace {(0,2)) has a
stability value of 1+4: this can only be deduced by considering all of the stability
values associated with that trace.

However, if we identify instability sets rather than stability values, no such
difficulties anse. The properties of a typical mstability set of a compound process
behaviour can be deduced from the properties of arbitrary behaviours of the com-
ponent processes. As with the timed failures model, we can restrict our attention
to a typical element of the semantics. We can thus formulate a set of inference rules
for reasoning about specifications involving stability conditions. As an example,
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we can derive the following ruie for the nondeterministic choice operator:

P, sat Sy(s,v, 1)
P, sat S{s,7,R)
{Sl(.?,‘;r,R) v Sﬁ(sa‘hR)) = S(S,‘)V,N)

PN P, sat S(s,v,R)

In the above specifications + represents an arbitrary instability value, and the sat
operator is extended in the obvious way. The rule illustrates that an instability
value of P, N P; must be an instability value for one of the components Py, P;.
The converse is also true; this is not the case in TMpgs, in which an arbitrary
behaviout requires more information. Similar results are obtained for the other
TCSP operators.

9 Conclusions

In this paper, we have shown how we can factor out the complexity inherent in
reasoning about timed distributed systems. We introduced behavioural specifica-
tions, capturing correctness conditions as simple predicates on a typical element
of the semantics. We have given inference rules, derived from the semantic map-
pings, for reasoning about these specifications. These rules allow us to reduce proof
obligations on a composite Timed CSP process to requirements on the syntactic
subcomponents.

The lack of sufficient algebraic laws means that we cannot construct a proof
system for Timed CSP similar to the one developed in [Br83], but we can producea
complete set of inference rules for proofs of correctness. Further, we have presented
the rules in such a form as to make their application completely mechanical: an
automated proof assistant could be developed similar to the one employed in [D87].

Ag an illustration of the use of the rules, we have presented a verification of
a simple flow control protocol, whose definition involved both abstraction and
concurtency. The correctness of this example depeads upon the subtle treatment
of hiding in Timed CSP: any hidden events are forced to occur as soon as they
become available. An implementation of the protocol was proposed and verified;
this required a useful result about the properties of recursive processes.

We have exhibited strongest specifications for Timed CSP processes and used
these 1o venfy that our rules form a complete set with respect to the semantics.
Our iniention is to work towards a specification-oriented semantics for Timed CSP,
similar to the one described in [OH83], using the enhanced timed failures-stability
model and the hierarchy of lower models. This will allow us to work towards
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a powerful sperification and development methodology for real-time concurrent
systems.
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A Inference Rules

In this appendix, we present a complete set of inference rules for behavioural
specifications. A rule is presented for each TCSP operator.

Rule sTop

STGP sat {s={})

Rule L

1 sat {s = {))

Rule skip

SKIP sat (s=() A v & a(R))
\%
(= (&, V) AV gaR T AL20)

Rule warr:

WAITtsats={) Av a(R]1t)
v
a={(t".vIIAtZtAVEaRT[LE))

The following rules apply to compound processes. When a process variable is
present, it is more convenient to match proof obligations to consequents: the form
in which the rules are presented makes this possible.

Rule ¢« - P

P sat T(s,%)

s={)Aa¢a®)

v = 5(s,R)
s={{t,a)) " Ac@aR[)AT(=(t+8),(R=(t+68)

(& — P) sat S(s,R)

63



Rule popR

P, sat 5,(s,N)

P, sat 5;(s,R)

(S1(s,®) v S(s,R) }

A = S(s,R)
Si((), R 1 begin(s)) A S({), R | begin(s))

P, O P, sat S(s.R}

Rule ¢:4 - P,
Ya€ Ae P, sat S,(s,R)
(RN ([0, begin(s)) x A) = 0
A } = 5(s, R}
Vae Ao fs = {(t,a)"s) > Su(s = (E+8),R = (t+5))

s: 4 — P, sat §(s,R)

Rule NP,

P[ satl Sl(s, R)
P; sat 5,(s, ®)
5.(5,R) V Sa(s,R) = §(s,R)

P1|_|P2 sat S(S,N)

Rule P, | R,

P, sat 5(s, &)
Py sat S(s, R)
S](S,N]) A Sg(S,Rz) = S(S, ® U Ng)

Py || P, sat 5{s,R)

Rule P, ||, P,

Pl sat S}(S,R)

Pg sat SQ(S,R)

(G(S],Nl) g. XA a(S‘ZaRZ) g 4

A

Aa(R) CE~(XUY) = S(s, R UR; URy)
A

Sl(sl,Nl) A 32(32,“2) ASEs XIIY 32)

P1 X”Y Pg sat S(S,N)
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Rule

Py ||| P

P, sat S,(s,R)
P; sat 5,(s,R)
(s € Tmerge(u,v) A 5i(x,R) A S53(v,R)) = S(s,N)

Rule

Py ||| P sat 5(s,R)

Py P

Py sat Sy (s,R}

P, sat 5,(s,R)

(vea(s) AVI€ TINT o Si(s,RU(I x {v}))) = S(s,R)

s (ot AV Eals) A end®) <t

A = S(s, R U(Ra+2))
Si{si™((2, V), R U ([0, £) x {V})) A Sa(s5,Ra)

Rule

(P1; P;) sat S(s, R}

P\ A
Psat A(s,R}Aa(R)C A= S(s\AR-N)

Rule

P\ A sat 5(s,})

f71(p)

P sat Si(s,R)
51(f(s), F(R)} = S(s,R)

Rule

f7(P) sat S(s,R)

f(p)

P sat Sy (s,R)
Sl(ﬂwf‘](k)) = S(f(s)lu)

Rule

F(P) sat S(s,R)

aX e F(X)
VX o X sat S(s, %) = F(WAIT§; X) sat S{s,RY

pX o F(X) sat S(s,R)
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B Example Proofs

In this appendix we present a prool of soundness for the prefixing rule. We then
extend the semantic function Fr to permit a proof of the second recursion rule
given in section 5. We verily that the proposed extension is consistent with the
original formulation, and provide a simple proof of the hiding rule.

B.1 Prefixing

Rule
P sat (s, R)
s= (A e ¢ ali)
v } = 5{s,R)
s={{t,e)"s"Aaga(RT DA T = (£4+6),8~ (¢ +8)

{a — P) sat S(s, )
Sermnantics

Frie =P} = (R} a g o)
U
{({(t,@)) (s + (¢ + 8)), X URT U (Rg + (8 +6))) |
tZO0A{I(R)C[0,4) A aga(iy))
A I(R) € [t +8) A (s, %) € Fr[P]}

Proof
P sat T{s i}

(s,8) € Fra = P]l=s= () Aa galX)
W
IR, Ry, N, 8" @5 = ((8,0))7 (8" + £ +6)
AR=RUR UM+t 4+ 8)At20
AI(R)C[0,8) A a g a(Ry)
A (R} C [t ¢+ 8) A (s, R5) € Fr[P]
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F Ys,®yeFraaP] o s=()Aagall))
\'
s={{t,a))" (S +t+)At' 20Aadgalli |1)
Ag R~ (t+6) € Fr{P]

F e— Psats={)Aadal)
v
s={{t,e)"(F+t+HAt' 20Aaga(R|E)
AT\ R=(t+8)

The inference rule for prefidng follows immediately, by a simple property of
the sat operator {see the third inference rule given in section 2). We conclude that
the rule rests soundly upon the semantics.

B.2 The Semantic Function F;

As mentioned in section 5, we obtain a more powerful rule for reasoning about the
behaviour of recursive processes if we extend the semantic function F7. First, we
must define the type of failure sets, TF:

TF = P(TZ; x RSET)
where TE% and RSET are as defined in [Re88). We then extend the syntax of
Timed CSP:

TCSPY == TCSP| Xg
whete E ranges over the whole of TF. Finally, we extend the semantic function
Fr in the following fashion:

Frlxs] = E
FriP\ 4] = {(s\AR-R)|(s,®) € F7[P] A A{s, 1) A a(R) C A4}

The remaining clauses are entirely similar to the defining equations for Fr. To
show that the new semantic function is an extension of Fr we must demonstrate
that the two functions agree on the intersection of their domains: TCSP. A

simple structural induction will suffice: the only non-trivial case is that of the
hiding operator. In this case, recalling the relevant semantic equations

FrlPVAl = {(s\VAR) | (s.RU((0,end(s,R)) x A)) € Fr[P])
FriP\ 4] = ((s\ A R=R)|(s,R) € Fr[P] A A(s,R) A a(¥') € 4}
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and the definition
A(s,R) = ([0,end(s,R)) x A)C R

we proceed as follows:
Assume that Fr IIPﬂ =Fr [[P] and that P is a process.

(s,8) € Fr[P\ A]
+ oy, Ry, Ry @5 = 5\ AA (3, RU([0, end(5,¥)) x A)) € Fr[P]
ARy =RU ([0! Eﬂd(sl,R)) X A)
."\N=N1—R2/\C!(N2)QA

- Esl,Nl,Rzos=sl\AAN:leRz!\(sth)E?—T[P]
A0, end(s, M)} x ACR, Aa(l,) C A

since end (s, R) = end(s,,B)
+ s, Ry N o s = s \AAR =N — Ry A {5 \ A, R =) € Fr[P\ 4]
F (s,R) e Fr[P\ 4]
Counversely,
(s,R) € Fr[P\ 4]

i aslaRhNZ.s:sl\AANle*N2A(31,N1)E?TIIP]
Al end{s, })) x ACRKR, Aa()C A

+ Fo, R Ry e s =5\ AA (8, RU ([0, end(sr, 1)) x A)) € Fr{P]
AR =RU([0, end (s, R1)) x A)
AN:Nl—RQAQ(Rz)(_:A

by Axiom 6 of TMyp

- oy o5 =5\ AA (s, RU ([0, end{s,R)) x 4)) € Fr[P]

by Axiom 6 again, since end(s;, R) < end(s, ¥y}

= (s,R) e Fr[P\ A]
[}
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B.3 Hiding

Having verified that Fr is an extension of Fr, we can easily establish the soundness
of the rule for the hiding operator:

Peat A(s,R}Aa(R)C A= S(s\ 4R -N)

P\ A sat S(s,R)

Given the semaniic equation

FrlP\A] = {(s\AR=R)](s,8) € Fr[P] A A(s,R) A o(R") C 4}

we proceed as follows:
Psat A(s,R) Ae(R)C A= S(s\ A, R—N)
(R e Fr[PVA] = Sa B Res=5\AAN=R -1 A

Afs1,Ry) A (31, 8) € Fr[P]
A Q(Nz) _C_ A

Fov(s,R)e Fr[P\A] » 35, R, Nes=5\AAR=R -},
AS{a \ 4,8 —Re)

F P\ A sat S(s,})

B.4 Recursion

Finally, we establish the result that provides the motivation for the extension to
the semantics: the second inference rule for recursion:

VX o X sat S{s,R) = F(WAIT§; X) sat 5(s,R%)
pX e F(X) sat 5(s,R)

We begin by extending the topology on TMF defined in [Re88] to TF in ihe
obvious way: Reed’s proof that all of the basic TCSP operators are non-expanding
is independent of the axioms. That all basic TCSP* operators are non-expanding
follows immediately.

If F is a function on TCSP' composed of basic operators, there is a corre-
sponding function Cr defined on TF by:

Cr(E) = Fr [F(XE)]
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From the above result, it follows that F is non-expanding, and that if any of the
components of F are coutracting, then so is F. The function WAIT §;X is always
contracting; if we define

F(X) = F(WAIT6;X)

then, for any F, the function F will be contracting; the corresponding mapping
on TF, Cp, will be a contraction mapping on a metric space: it will have a unique
fixed point. This fixed point is the semantics of g X « F{X).

I we consider the sequence {E,}, where
E. = C0)
we observe that
lim(E.) = FripX e F(X)]
The antecedent of the recursion rule
VX e X sat S(s,R) = F(X)sat S(s,R)
allows us to conclude that
YX,neX sat §5(s,R) = F*(X)sat §(s,R)
However, it is easy to show that V5 » X sat 5(s,®}, and so
Yn e F°(X) sat S(s,R)

and it can be shown that all predicates of the form sat 5(s, ) correspond to closed
predicates in TF: if such a predicate holds of all the elements of a sequence, it
must hold of the limit. Hence

pX e F(X) sat  S(s,R)

Hence the recursion rule is sound with respect to the new semantics. O
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