
~ ,""(.S \ \:,. C<>f~ \

AN mTRODUCTION TO TIMED CSP

by

Jim Davies
Steve Schneider

Oxford University
Computing Laboratory
Progremmlng Researoh aroup-Ubrary
8-11 Keble Road
Oxford OXl 300
Oxford (0865) 54141

Techukal Monograph PRG-75
ISBN 0-902928-57-0

August 1989

Oxford University Cowpulillg Laboratory
Programming Research Group
11 Keble Road
Oxford OXl 3QD
England

Oxford University
Compulinc ~.aboi'ntory
Progcammlng Research Group-Library
8-11 Keble Road
Oxford OX1 300
Oxford (0865) 54141

Copyright © 1989 Jim Da.vies, Steve Schneider

Oxford University Computing La.bora.tory
Programming Research Group
11 Keble Road
Oxford OXl 3QD
England

Electronic mail:	 jda.vissCluk.a.c.ox.prg (JANet)
sa.sOuk.a.c.ox.prg (JANet)

ACCESSION No.

\(\L:­ '~

DATE
2 8 JUN 1995

SHELFMARK

C)YFoe-r;

.111111111111
300581997%

rC'ff::~;""E~n~~;-v'W~;;-?~::l
; ~, .H ~\~li ~'. U~ r ~::.::.:.0 f'. ~-.'" L ..2) ~~ L:.-=-••,..,)~ ~
l _~_..,,--~~~~_.=.-1

Prologue

Timed CSP is an extension of Communicating Sequential Processes
which includes timing information. It can be used to model time­
dependent properties of concurrent systems. An algebraic notation is
employed in the definition of processes, capturing the behaviour of a
system in a clear and intuitive manner. A uniform hierarchy of se­
mantic models for this notation is presented in [Re8S]. Each sel]antic
model identifies a process with a set of possible behaviours: by £faSOll­

ing about these sets, we may establish properties of the corresporlding
processes.

This Illonograph contains two papers on Timed CSP. The first of
these introduces the language of Timed esp, aimed at those familiar
with Hoare's book on esp, [H85]. The second presents a complete
proof system for reasoning about the most useful class of Timed CSP
specifications: behavioural specifications aD timed failures. Together,
these two papers provide a foundation for the specification and design
of real-time concunent systems using Timed CSP.

Contents

An Introduction To Timed CSP

1 Introduction 1

2 Timed esp: Syntax 2

3 Timed Interaction 8

4 Protocols 10

5 Simple Interrupts 13

6 Timed CSP: Semantics 18

7 Specification 22

8 Discussion 27

A Appendix: Notation 30

Factorising ProoCs in Timed CSP

1 Introduction 36

2 Notation 37

3 Abstraction and Concurrency 40

4 A Simple Protocol 43

5 Recursion and Delay 49

6 Implementing the Protocol 52

7 Completing the Picture 56

8 Stability 59

9 Conclusions 60

A Appendix: Inference Rules 63

B Appendix: Example Proofs 66

n

1

An Introduction To Timed CSP

Jim Davies and Steve Schneider

Oxford University Computing Laboratory

Programming Research Group

11 Keble Road

Oxfmd OX! 3QD

Abstract. This paper is an introduction to the language of Timed esp. The
syntax is presented and explained through several examples of timed interaction.
The subsequent chapters show how the synta.x may be used to represent aspects
of time-critical behaviour. The Use of the semantic models in specification is
demonstrated. The paper ends with a brief discussion of future researclJ directions.

Introduction

This paper is intended a.s an introduction to Timed CSP for those already familiar
with Tony Hoare's book Communicating Sequential Processes, [H85}. Because of
this, we may assume that. om readers are aware of the advantages of using such a
notation to reason about the properties of concnrrent systems. There is a need for
a simila.r treatment of real-time communicating processes, where corrt'ctness may
depend upon subtle timing considerations; applications include communication
protocols and operating systems.

A number of timed models have been postulated for Hoare's Communicating
Sequential Processes, notably in [J82], [Z86], a.nd [BG87]. However, the hierarchy

1

of compatible models for Timed esp, presented by Reed and Roscoe in [RR861,
[RR871, and [Re881 h", the following advantages:

•	 the models are compatible with the existing nntimed models of CSP.

•	 infinite hiding and infinite alphabet transformations are possible.

•	 deadlock and divergence may be distinguished.

•	 divergence may be distinguished from the possibility of divergence.

•	 the models are arranged in a hierarchy, permitting timewise refinement of
specifications.

In this paper, we introduce the models of the hierarchy, and show how they can be
used in the specification and design of concurrent systems. We begin by introduc­
ing the syntax of Timed esp, together with some examples of its a.pplication. We
show how to model aspects of timed interaction: timeouts and interrupts. Timed
CSP descriptions of two protocols are given as examples. We present the semantic
models, and illustrate their use in the specification and verification of Timed esp
processes. Finally, we discuss the enhancements that are being made to the theory
of Timed CSP.

2 Timed CSP: Syntax

2.1 Assumptions

We make a small number of assumptions about timing in a distributed system:

•	 there is a non-zero lower bound, h, on the length of the time interval between
any two events in the history of a sequential process.

•	 there is no lower bound on the time interval between two independent actions,
such as those performed by two processes running asynchronously in parallel.

•	 the times at which events occur in the system relate to a conceptual global
clock: time passes at the same rate in each process.

•	 hidden events occur as soon as they become available.

For further details, and a more mathematical treatment, see [Re8S).

2

2.2 Processes

The process algebra TCSP is essentially that of untimed esp, with the addition
of a. delay opera tor WAIT:

p 1- I STOP I SKIP I WAIT t I a ---> P I
PDPIPnPIPIiPIPAII.PIPIIIPI
P;PIP\A If-l(p) If(P) I~X of(X)

Although the semantic treatment of the operators is quite different, the intuition
behind their use remains the same. In many cases, the new semantics :reflect this
intuition more closely: the introduction of time information allows Uj to draw
new distinctions. The notion of process alphabet introduced in [H85] has been
discarded; synchronisation of events is achieved by means of an alphabeticised
parallel operator.

Basic Operators

1- The divergent process .1 can perform no observable actions.

However, internal activity may continue indefinitely; it.is live_

locked, like an infinite loop.

STOP	 The deadlock process STOP cannot perform any edemal ac­

tions; neither can it make any internal progress.

SKIP	 This construct models the successful termination of a process,

signalled by the occurrence of the special event ..I; thi, is the

only event tha.t this process ma.y engage in.

WAITt	 The delay operator, WAIT t, models the delayed successful
termiuation of a process, introducing a delay of time! before
the special event ..I becomes a.vailable. The processes IVAIT 0
and SKIP are equivalent.

Prefixing

a ---> P	 The process a --+ P represents a process which is initially pre­

pared to engage in event a. A short delay (0) follows the

occurrence of event a, and the process then beha.ves as P. The

delay introduced by the prefix operator models the minimum

time required for a sequential process to recover from partici ­

pation in an event. Longer recovery times can be modelled by

explicit use of the WAIT operator.

3

Choice

PnQ The notion of nondeterministic choice remains unchanged with
the introduction of time. The process P n Q represents an
internal choice between P and Q: the environment cannot
interfere. The indexed version of the operator may be used to
model infinite nondeterministic choice.

PDQ The notion of deterministic choice is also unchanged from the
untimed models. The process PDQ represents an external
choice between the two processes. Control is passed to the
:first process to perform an external action; the choice is made
with the co-operation of the environment.

Parallelism

P xlly Q	 The alphabeticised parallel operator provides for synchronisa­
tion in Timed CSP. In the parallel combination P xII y Q ,
process P may perform only those events drawn from the set
X. Similarly, process Q is restricted to events from the set
Y. The two processes must synchronise on events from the
intersection X n Y.

PIIQ	 The simple parallel operator is a special case of the alphabeti­
cised operator: when the set arguments are omitted, they are
taken to be the universal set of events E. In the parallel com­
bination P II QI the two processes must synchronise on all
events.

Pili Q	 The interleaved parallel combination of two TCSP processes
perfonns as the two components acting independently: there
is no synchronisation between them.

Sequential Composition

P;Q	 The sequential composition operator is used to transfer control
from one process to another. In the process P;Q, the transfer is
effected once P signals successful termination, modelled by the
occurrence of the special event /. The sequential composition
operator hides this event from the environment, with the result
that the event occurs as soon as possible.

4

Abstraction

P\A The hiding operator allows ns to abstract from internal detail,
hiding certain events from the environment of a process. This
has the effect of forcing these events to occur as soon as they
become available: the events are no longer observable, but the
delays are retained. In ordinary esp, the set of events to be
hidden must be finite; in Timed esp, this restriction no longer
applies. The new models support infinite hiding.

Renaming

f(P), f-l(P)	 The notion of process relabelling is unchanged in the timed
version of esp. The process f(P) is obtained by applying the
alphabet transformation f to the events in the description of
process P. The second form of process relabelling, J- 1(P),
allows ns to consider all of the possible processes which behave
in a fashion similar to P.

Recursion

pX. F(X)	 Recursion in Timed esp introduces a delay of time 0, similar
to that of the prefix operator, as illustrated by this equivalence:

pX.F(X) "" F(WAIT6;pX.F(X))

2.3 Alphabets

In Hoare's treatment of esp, [H85], each process P is associated with a. unique
set of events oP, the process alphabet. If P appears in a parallel combination of
processes, events from uP require the co-operation of P. In the approach to esp
used by Roscoe and Reed in [R082] and [Re88] the need for process alphabets is
removed by the introduction of an alphabeticised parallel operator.

This operator is parametrised by two sets of events. In the parallel combination

P AIIB Q

process P may perform only those events in set A, process Q may perform only
those events in set B, and the two processes mnst co-operate on events dra.wn from
the intersection of A and B.

5

Using Hoare's approach, we may restrict the behaviour of a process P by placing
it in parallel with the process STOP, parametrised by a suitable alphabet. For
example, the process STOP{IJ} II P behaves as P, with all occurrences of event
a blocked. Without alphabets, we use the set of all events, ~, to construct an
equivalent process using the alphabeticised parallel operator:

STOP (olliE P

It is still necessary to identify the set of possible actions of a process - we use
u(P) to denote the set of all events in which process P may participate.

2.4 Algebra

A number of properties of un timed esp processes are no longer true in Timed esp.
It is perhaps instructive to examine these, and the reasons for their disappearance:

• P II STOP t- STOP if P;< ~

P may still make internal progress: the right-hand side is a stable process, but
the left-hand side need not be. Internal activity is not prevented by the need to
synchronise with the stable process STOP.

• (a--;P)\at-P\a

Even though the a event occurs instantaneously, it is followed by a delay of 0, which
is still recorded. Thus we now have the equivalence (a --+ P) \ a == WAIT 0; (P\ a)

• pX. F(X) t- F(I'X. F(X))

Any recursion takes time 0 to unfold; this delay is present before each recursive
call. The ccrrect equivalence is I'X. F(X) =' F(WAIT6;I'X. F(X)).

•	 (a --; P) III (b --; Q) t- a --; (P III (b --; Q))
o
b --; ((a --; P) III Q)

We have true parallelism, not time-slice parallelism, so the left.hand process may
engage in the two events a and b within an interval of time which is arbitrarily
small The right-hand side, however, describes a sequential process: after perform.
ing the first event, time 6 must elapse before it can perform another.

6

• Pn(QDR)t(pnQ)O(pnR)

This law fails because we now have more information about the history of aprocess.
We can do refusal testing; we have a record of the events refused by J process
tluoughout its history. H event a is offered only by process Q, the knowledge that
event a is refused by the left-hand side resolves the nondeterministic choice. On
the right-hand side, only one of the choices is resolved: R is stiU a possibility.

Many of the identities established in [H85] a.re retained...

PoSTOP '= P

P;(Q;R) =; (P;Q);R

STOP 1/1 Q =; Q

SKIP; Q '= Q

(a ~ P); Q =; a ~ (P; Q) if a" J

... and the introduction of lime brings more:

WAIT t, ; WAIT t, _ WAIT (td to)

WAIT t, II WAIT t, _ WAITma"{t,,t,}

(WAITt, III WAITt,);P ~ WAIT min{t" t,}; P

2.5 Example

Consider the process VM defined below:

VM =- coin - rattle _ WAIT(d - b) ; drink _ VM

This is intended to represent a simple vending machine. FoUowing the in>ertion of
a coin, a rattling sound may be heard as the coin drops. A drink is then offered
by the machine; this offer is made no earlier than time d after the ratlle. 1£ the
drink is accepted, the machine returns to its initial state.

We are considering timed behaviour, and there is a minimum delay of time EJ

between participation in events. To ensure that the drink becomes availa.ble after
the specified interval, the delay is represented by a WAIT of time d - t.

However, the observa.tion of the rattling sound should not be necessary for the
correct behaviour of the machine, so we abstract from the event, using lne hiding
operator to conceal it from the environment.

VM \ rattle =; coin ~ WAIT d; drink ~ (VM \ rattle)

Notice that the hidden event rattle. occurs as soon as possible.

i

3 Timed Interaction

3.1 A Simple Timeout

One important aspect of time-critical behaviour is the timeout: a change of state
in which control is passed from one process to another, if the first performs no
external actions in a given period of time. We can represent this behaviour in
Timed CSP using the deterministic choice operator, the sequential composition
operat.or, and a suitable delay. Consider the TCSP process given by

(PDWAITt);Q

where P and Q are also TeSp processes. If P performs no external actions by
time t, then the special event ..I is made available by the delay construct. The
presence of the sequential composition operator forces this event to occur as soon
as it becomes available, removing the external choice and passing control to process
Q; events from P are no longer available. If P performs an external action before
time t, then the choice is resolved in favour of P, and the WAIT t process is no
longer present.

3.2 Example

As an illustration of the use of Timed esp, we will consider a simple representation
of a sensitive vending machine and its user. The sensitive na.ture of the machine
lies in its response to a kick: if it is kicked while the coin is still dropping, it may
refuse to dispense a drink. In untimed esp, the machine may be described as
follows:

drink ~ SVM)
SVM == coin ------) 0

(kick ~ (STOP n drink ~ SVM)

As we are unable to observe the coin's progress inside the machine, we cannot de­
termine the effect of a kick event between the insertion of a coin and the attempted
removal of a drink. If the machine is confronted with a user such as USE, where

USE == coin ------) kick _ drink --t USE

then this sequence of events may lead to deadlock:

STOP)
USE II SVM '= coin ~ kick ~ n

(dnnk ~ (USE II SVM)

8

Timed esp allows us to include more information in our description. In the
case of the vending machine, the time at which it is kicked affects the outcome
of the kick event; if we allow time for the coin to drop, a kick will do no harm.
Consider the description of a time-sensitive vending machine gi\'en by:

kick ~ STOP) (drink ~ TSVM)
TS VM == coin ---) 0 ; 0

(WAlT 1 kick ~ drink ~ TSVM

Providing that the user does not kick the machine within a second of inserting the
coin, a drink will become available. If we have a user whose patience extends to
three seconds,

TUSE == coin _ WAIT 3; kick _ drink - TUSE

then we can guarantee a satisfactory outcome.

TUSE II TS VM '" coin ~ WAIT J; kick ~ drink ~ (TUSE II TSVM)

Including timing information in our description has the effect of resolving the
nondeterminism. The outcome of a kick is dependent upon when tbe kick occurs;
any untimed description must include an element of nondeterminism. The timed
process TS VM is a timewise re../inement of the untimed process S VM.

3.3 A Timeout Operator

The timeout construct presented above is adequate for most purposes, but it has
one undesirable property. In the TCSP process

(PO WAlT t); Q

control is passed to process Q if P performs no external events before time t.
However, the same thing wi1l happen if P terminates successfully; the sequential
composition operator prevents P from signalling successful termination to the
environment.

We now define a timeout operator for Timed esp, using the syntactic equiva­
lence:

P,:,Q = (PO(WAITt;b-; Q))\b

where b ¢ 17(P) U 0'(Q). If P performs no external e\'ents before time t, the event
b removes control; as a hidden event, it occurs as soon as possible (at time t)

9

and resolves the choice against P. The process then behaves as Q \ b, which is
equivalent to Q by our choice of b.

If P engages in an external action before the timeont occurs, then the process
continues to behave as P \ b, which is equivalent to P. If this process should ter­
minate successfully, then the special event ,J will be observed by the environment.

This opeJator will be a useful TCSP process constructor. As a guide to its
application, consider the following identities:

(P tl. Q) Ilt;"t1 R == P ~ (Q t:; R)

(pnQ)';R", (p,;R)n(Q,;R)

(PDQ)';R '" (P';R)D(Q';R)

((a~P)';Q)\X '" WAIT6;(P\X) (aEX,t>O)

4 Protocols

One area of study involving the analysis of timed concurrent behaviour is the
design and verification of communication protocols: distributed algorithms for
facilitating the transfer of information. We can use the notation of Timed CSP to
produce dear, concise descriptions of these protocols.

4.1 The Alternating Bit Protocol

We present a time'Wise refinement of the alternating bit protocol presented in
[PS88]. This protocol consists of a sending process S and a receiving process R,
and operates over a medium represented by wire:; Ml and M2:

_inI I I: :::: : I lout
s R

The sending process operates in the following fashion: a message is inpnt along
channel tn, tagged with a bit value, and output along channel 1m. Consecutive
messages are tagged with alternating bits. The process awaits a confirmation bit
on channel re; this should match the bit .value of the last transmission. If no
such bit arrives within a specified time, the process times out and retransmits the

10

message with the same bit value. This behaviour is captured by the following
TC5P process:

s ­ .s;,
S. _ in?x --+ Im!x.b --+ 5d

5%.6 =: (rc?a --+ (if a = b then 51_.6 else s'•. ~)) t Im!x.b --+ 5:.~

The receiving process complements this behaviour: a message received along the
channel rm is stripped of its bit value, which is transmitted 011 channel Ie as
an acknowledgeIllent bit. If the bit value matches the bit value of the previous
message, the message is discarded. Otherwise, the message is output 00 channel
out. A TCSP representation might be:

R == R]
R6 == nn?x.c --+ (if c::; b then lc!c --+ Rt else out!x --+ lc!c --+R,o)

We then have a formal description of the protocol in Timed esp. This permits
a rigorous analysis of its behaviour and a clear description of the interface with
the environment. If we obtain a similar description of the communicationmedium,
then we may use Timed esp to verify that the protocol will function correctly.
For example, we may describe the wires Ml and M2 using TCSP.

A suitable representation for Ml and M2 is given by the TCSP process below:

RW. _ nRW".
t=o

RWo,.. -= in?x --+ out!x --+ RW..

RWH1,.. in?x --+ RWt ,..

This process successfully transmits at least ~ of the inputs with which it is pre­
sentedj it can never discard n consecutive inputs. We can use this to model a
communication medium in which the probability of losing n consecutive messages
is negligible. If we relabel the channels, we can obtain TC5P representations of
wires Ml and M2.

4.2 Local Area Network Protocol

Local Area Networks can be used to connect systems that need to communicate
over fairly short distances: up to a few kilometres apart. In most cases, data is
broadcast across a transmission medium, perceived by all stations or nodes. One

11

protocol designed for use in this situation is the Ethernet protocol introduced in
[MB76].

This protocol operates by accepting a packet of data and attempting to trans­
mit it across the broadcast medium. The medium is monitored throughout the
transmission, which is halted in the case of interference. This procedure is called
collision detection. If a collision occurs, the transmitter waits for a random amount
of time before trying again. H the same message is interrupted too many times,
then an error is reported.

In this section, we are not concerned with the mechanism of transmission. We
wish to describe the service provided by an ethernet-like protocol to each node
of a network. In the ISO seven-layer model, see [T8IL this corresponds to the
interface between the datalink layer and the network layer. The datalink layer is
the parallel combination of the datalink components of all of the network nodes;
at each of these the interface consists of three chanuels: in, con and out.

in con out
NETWORK

DATALINK

At node i, messages are transmitted to the datalink along channel i.in. The
datalink then processes the message, and attempts to transmit the contents to
the other nodes on the network. In our representation, the outcome of such an
attempt is nondeterministic. If the message m is successfully transmitted then
the network layer is notified using channel i.con. If not, then a failure is reported
using the same channel.

The factors influencing the success or failure of an attempt cannot be deter­
mined from the network layer, but knowledge of the datalink structure allows us to
include timing information in our description. For example, if the time taken for
the datalink to pass a message m to the transmission medium is tm, a successful
transmission cannot be reported within time t... of an input.

In ethernet-like protocols, if the transmission is interrupted, the datalink backs
off for a random period, then begins again without informing the network layer,
abandoning the current message only after 15 consecutive attempts have failed;
only then is the failure reported. H the backoff time is restricted to the interval
[t".in, t".w:l, then the failure report for a message m may become available at any
time between 15t".in and 15(t... + t...=). Because of this, if the transmission of a
message m is to succeed, it must succeed by time 15(t... + t...<u).

12

5

We can capture this timing information in Timed esp. If we choose N to
represent the set of node identifiers, and let t.",] be the time taken for a signal to
travel from node i to node j, we may represent the service provided by thedatalink
layer as follows:

DATALlNK = "' NODE.
iEN

NODE. = •. in?m _ (SUCCESS.,m n FAILURE.)

SUCCESS;.m = (WAIT Is); III WAIT 4j ;j.out!m - STOP
>EN

111<
(. i.con!success -+ NODE.

FAILURE. = (WAIT IF) ; i.con!/ailu", - NODE.

where

WAITI = nWAITt
leI

Is = [tm,15(tm+t,.~J]

IF = [15tm•• , 15(t,. + tm=J]

Note that the arrival of a report on the channel con is preceded by a nondeter·
ministic delay. This is modeUed by a nondeterministic choice over an interval of
time.

Simple Interrupts

An interrupt is a signal that interrupts the execution of a process. Sl1bsequent
behaviour may be determined by an interrupt handler: a process that identifies
the nature of the interrupt signal and acts accordingly. In some cases I an inter.
rupted process may resume execution at the point of interruption; the process
state is stored for the duration of the interrupt. In others, the existing process is
terminated, to be replaced by another or simply restarted.

It is possible to model the first class of interrupts in Timed esp; we simply
suspend all internal activity present in the interrupted process. This requires a
new semantic definition, outside the scope of an introduction to the notation of
Timed esp.

13

In this section we will address the second class of interrupts, the simple inter­
rupts. These can be used to model any situation in which the internal state of
the interrupted process P need not be preserved; any external actions of P before
the interrupt can be recorded and acted upon during and after the interrupt has
occurred.

5.1 A First Approach

Consider the TCSP process

(Pllla~SKIP);Q

where a ¢ a(P). Tltis behaves as process P until the first occurrence of event
a. This signals the successful termination of the first construct, passing control
to process Q. Event a acts as an interrupt event to process P. We can use this
construction to model simple interrupts.

The fact that the behaviour following an interrupt is the same as that following
successful termination of P need not concern us. In many cases, process P will
never terminate successfully. If we require that P should be able to signal successful
termination, or that there should be a choice of interrupt events, we can use the
TCSP interrupt operator presented later in this section.

Fmther, we can dispense with the interrupt event altogether, automatically
removing control from process P at a particular time. In the process

(P III WAIT t); Q

the first construct will terminate at time t, transferring control to process Q.

5.2 Example

We consider a simple pinball machine. To play, the user must insert a coin, and
press the start button. At the end of the game, the machine returns to its initial
state. To add interest, the user may cause an interrupt during play by tilting the
machine; this results in the immediate termination of play:

PINBALL "" coin ~ start ~ (PLAY III tilt ~ SKIP) ; PINBALL

The user's interaction with the machine is not limited to the above three events.
During the game, two flippers are provided; the action of these is described by the
processes below:

LEFTFLIP "" left ~ WAIT (d - 26); LEFTFLIP

RIGHTFLIP "" right ~ WAIT (d - 26); RIGHTFLIP

14

Observe that occurrences of the event left, representing the triggering of the left
flipper are restricted; there is a minimum delay d between any two occurrences. A
similar restriction is placed upon the event right. However, each flipper should be
independent of t he other; there are no bounds on the interval between consecu tive
left and right events.

We make no other observations during the game, which may end a.t <my time
after the short interval required for the ball to enter play. This is modelled using
an infinite nondetenninistic choice:

PLAY '" (LEFTFLIP III RIGHTFLIP) IIi n WAIT t
IE[3,oo)

Finally, we may cause an interrupt at a higher level. For example, the user
may ina.dvertently cut of[the power to the ma.chine; if this happens, no further
interaction is possible. This may be represented with another simple interrupt
construct:

MACHINE '" (PINBALL III unplug --. SKIP); STOP

5.3 A Simple Interrupt Operator

If the same TCSP process may be interrupted by more than one event, or if we
wish to a.llow successful termination, the simple interrupt construct is not sui table.
Instead, we may use the TCSP operator defined by the syntactic equivalence below.
In this expression, I denotes the set of possible interrupt events, and br denotes
the set {b; 11 E I}, the set of hidden synchronisation events.

(

P; a ~ SKIP)
III
i : I ~ SKIP

(a --. SKIP
; 0

bi : b[~ Q(i)

)

P'V Q(i).E! Elllu'IU{.) \bIU[a}

(

a ~ a ~ SKIP)

~: I --. bi --. SKIP

where the following alphabet conditions hold:

In u(P) ~ 0
(b I U [a}) n (u(P) U U'E! u(Q(i)) ~ 0

15

The synchronisation events should be chosen to make them independent of the
processes, and P should not be able to interfere with its own interrupt signals.
To see tha.t this is a satisfactory definition of the interrupt operator, consider the
possible behaviours of the process:

•	 if process P has not teoninated successfully, and no interrupts have oc­
curred, then any of the interrupt events i are available to the environment.
The synchronisation event a is hidden from the environment, but may not
OCCUI; although it is available in the lower half of the parallel combination,
it remains blocked (by P) in the upper half.

•	 if .an interrupt i occurs, then the corresponding synchronisation event bi

is enabled. This event is hidden from the environment, and will occur as
soon as it becomes available in both halves of the parallel combination. At
the same time, P has been interrupted, and control in the upper half has
been passed to a deterministic choice between a and a set of synchronisation
events. However, i has occurred, so the lower half is willing to participate
only in the event b.. As all of these events have been hidden, bi occurs
immediately, and control passes to Q(i), the correct interrupt handler.

•	 if P terminates successfully, the hidden event a is enabled, and occurs at
once. In the upper half, control again passes to the deterministic choice, but
this time only the event a is being offered by the lower half, which must have
synchronised upon the first a. Thus a second hidden a occurs, and the entire
construct teoninates successfully.

5.4 Example

To illustrate the use of this operator, we return to our pinball machine. The latest
model PINBAL~1 has a unpleasant feature: if a coin is inserted while a game
is being played, the machine abandons the current game and is prepared to staIt
a new one. We now have two interrupt events during play: tilt and coin. The
behaviour following an interrupt depends upon the nature of the interrupt event:

PINBALL, " coin ~ GAME

GAME" start ~ (PLAY V HANDLE(i)); PINBALL,
.El

where the set I contains only the events tilt and coin, and the interrupt handler
is defined as follows:

HANDLE(tilt) " SKIP

HANDLE(coin) " GAME

16

5.5 A Timed Interrupt Operator

We can define a. timed interrupt operator for Timed esp. This has the effect of
transferring COD tr01 from one process to another l after a. predetermined period of
time. Unlike the construct presented in section 5.1 , this opera.tor permits the first
process to signal successful termination.

(

P; a~ SKIP)
III
WAITt;b~ SKIP

(a ~ SKIP)
; III

b ~ Q

pi Q, _ dl{o,6} \ {a,b}

a ~ a ~ SKIP)

(~ ~ b -; SKIP

where {a, b} n (7(P) U a(Q)) ~ 0 Note that a delay of 28 i, introduced when
control is passed by this operator: the second process starts execution at time
t + 26. This is reflected in the following identity:

(pi Q) i R" pi(QiR)
11 11 +~+26 Il 12

\Ve can extend the definition of the interrupt operator to allow interrupts over
an interval, occurring nondeterministically:

(

P; a. ~ SKIP)
III
WAIT T; b ~ SKIP

(a ~ SKIP)
; III

b ~ Q

pi Q
T

_
E lI{o,.) \ {a, b}

(

~ ~ a ~ SKIP)

b _ b --+ SKIP

where {o., b} n (cr (P) U cr(Q)) = 0 and T represents a finite interval of time. The
construct WAIT T is as defined at the end of section 4.2:

WAIT T '"	 nWAIT t
'ET

17

6 Timed CSP: Semantics

Timed CSP has been given a variety of semantic models. These can be used to
produce formal descriptions of process behaviour. In each model, a timed CSP
process is identified with a set of possible behaviours. A typical element of a
semantic set is a tuple, whose elements represent different aspects of a possible
behaviour.

The untimed models consider the traces, refusals and stabilities of a process;
these are closely related to the traces, refusals and divergences of untimed esp. The
timed models address the timed equivalents of these components: timed traces,
timed refusals, and timed stabilities. As the untimed models are not the subject
of this paper, we will omit the prefix timed where no ambiguity will arise.

6.1 Traces

A timed trace of a Timed CSP process is a finite sequence of observable events jn
the history of that process, each labelled with the time at which it occurs. The
events are presented in chronological order. In the simpler models of timed CSP
- those without timed refusal information - we must identify the times at which
events first become available, in order to reach a satisfactory definition of hiding.
We do this by placing a hat upon an event whenever it occurs at the first moment
of availability.

As an example, consider the trace set of the process

p '" WAIT1;(a~b~STOP)

((0.5, a), (1, b)) is not a trace of P: the first event ca.nnot take
place before time 1.

«1, a), (2, b)) is a trace of P

«1,0), (2, b)) is a trace of P

«(1.5,0), (2, b)) is not a trace of P~ the hat on a is incorrect, as
the event first becomes available at time 1.

«2, a), (2 + D, b)) is a trace of P.

«2,b)) is not a trace of P: the first event must be an a.

((1.5, b), (1, a)) is not a trace of P: the sequence of ti roes in any
trace must be non-decreasing.

18

6.2 Refusals

Timed refusals represent the times at which events may be refused during the
observation of a given trace; they are not simple extensions of un timed refusal sets.
A timed refusal is finite umon of refusal tokens; a refusal token is the product of a
finite half-open interval of time with a set of events. A typical element of a refusal
set is thus a (tim.e,event) pair. The restrictions on the composition of a refusal set
allow us to consider only those observations made in a finite period of time. As
in the case of untimed esp, (trace, refusal) pairs are termed failures. We precsent
two different explanations of refusals:

Timed refusals are refusals

We may interpret a timed refusal as the set of (time, event) pairs refused in a
possible history of the process. In the failure (s,l{), we consider the refusal set N
to be the set of (time) event) pairs that the process may refuse to engage in given
that it performs the trace s. In the case of our example process P:

«(I,a)),([O,1 + 6) x (b})) is a failure of P: event a may t<1ke place at time 1,
and in this ease, event b may he refused IIp until
time1+6

((I,a)),([0,2) x {a})) is a failure of P: if event a occurs as soon as it
becomes available, then it is refused up until that
time and from that time onwards.

«(2,a)),([0,2) x (a})) is not a failnre of P, as event a must be 1I.vailable
from time 1 nntil such time as it occurs.

((I,a)},([O,oo) x (a})) is not a failure of any process: the alleged refusal
describes infinite behaviour.

Note that there is no reason why a pair (t , a) should not be present in both the
trace s and the refusal set N. In the second failure above, the process refuses a up
until time L Having engaged in the event at time 1, it refuses any further offers
of the same event. Tills apparent contradiction is not present in the alternative
exposition given below, willch also permits an intuitive explanation of the hiding
operator.

Timed refusals are forcing sets

Alternatively, we may "l'iew timed CSP processes as entities upon which the global
environment may experiment. In addition to simply observing events, this envi­
ronment may force events over finite intervals of time: if the process is prepared to

19

perform an event when the environment forces it, it must occur instantaneously.
Events that are not forced may still OCCllI, if available.

A timed refusal may be viewed as the history of such an experiment; a timed
trace is a possible result. The presence of a pair (t, a) in a refusal set corresponds
to the act of forcing event a at time t. In the light of this interpretation, we
reconsider the failure set of process P:

«(l,a)),([O,1+o) x {b})	 is a failure of P: if event b is forced over the in­
terval [0,1 + o}, an event a may be observed at
time 1.

«(1,a)),([0,2) x {a)))	 is a failure of P: if event a is forced over the
interval [0, 2), it must occur as soon as it becomes
available (at time 1).

«(2, a)), ([0,2) x {a})) is not a failure of P: a should have occurred at
time 1.

«(2,a)),0) is a failure of P: if a is not forced, it may occur
at any time at which it is available.

The advantages of this intuition are

•	 the interpretation of the empty refusal set, always possible for any trace, is
more easily understood.

•	 hiding a set of events A corresponds to forcing them upon a process.

•	 the sequential composition operator works by forcing any available occur­
rence of the special event ,J.

It should be observed that the global environment is merely an intuitive device;
we cannot model it as a TCSP process - such a process may pennit or prevent
the occurrence of events, but cannot force their occurrence.

6.3 Stability

In addition to the traces and refusals of a process, which record the response and
reaction to external stimuli, we are also interested in the internal activity of a
process. We wish to know whether or not the process is making internal progress,
whether the process has stabilised. Once a process has stabilised, there can be
no further changes of state without an external action occurring. The concept of
stability is dnal to that of divergence, discussed in earlier models of CSP.

20

Intuitively, we may imagine a red light on the back of a process that is ex­
tinguished once all internal activity has ceased. The stability component of a
behaviour is the earliest time by which the light is guaranteed to be off. In the
failures-stability model for Timed CSP, a typical behaviour of a process is rep_
resented by a triple (s, Ct, N): the stability value a is the earliest time by which
the process must have stabilised, given that it exhibits the external behaviour
described by trace 8 and refusal N.

Choosing Ct to represent the earliest time of guaranteed stability means that
every (trace,7-efu..sal) pair of a given process is associated with a unique stability
value. Similarly, in the timed stability model, where behaviours are (trace,stabi/ity)
pairs, each tra,ce is associated with a unique stability value.

6.4 Models

The semantic models for CSP and Timed CSP presented in [Re88] form a hierarchy,
ordered according to the information contained in a, typical element of a semantic
set. All of the models are based upon metric spaces, and projection mappings
have been defined, allowing the various aspects of a process's behaviour to be
considered separately. In the diagram below, these mappings are represented by
arrows connecting the various models.

TMFS

MFS

/ ~

TMF MF Ms TMs

~/

MT

TMT

21

7

As we move up the hierarchy, further aspects of process behaviour are revealed.
The lower models in the hierarchy, M T , MF , Ms and MFS have no timed informa.
tion at all; they are the traces, failures and stability models of untimed esp. The
lowest timed model, TMT, identifies only the timed traces of a process. Higher
models identify failures and stabilities, allowing us address both external response
and internal activity.

In [ReSS], a semantic function is defined for each modeL The complexity of the
semantics reflects the amount of information required for a successful treatment of
timed concurrency. AE an example, we present the semantic clause for the prefix
operator in the timed failures model:

FriH pI " (((),N) Ia" a(N))
U

{(((t,a))~(s+ (t+8)),N) It" 0 1\ a" a(N rt) 1\

(s,N ~ (t + 8)) E Frlpl)

where:Fr is the semantic function from TCSP to TMF.

A behaviour of a ~ P may arise in one of two ways. If event a has not yet
occurred, then it must be available at all times, hence a must not be in I7(N), the
set of all events in refusal set N. U a has occurred, at time t, and is recorded as the
first event of the trace, then it must have been available before time t. The process
may not participate in any event during an interval of length a, hence any event
may be refused. The subsequent behaviour of the process must be a behaviour of
P, transla.ted through time t +a.

The notation employed above 'Will be defined formally in section 7.2.

Specification

In this section, we show how the requirements placed upon a system may be
translated into Timed esp specifications. AE the semantic sets represent sets
of possible behaviours, we can write each specification as a predicate upon the
semantics of a process.

We ha.ve seen how the syntax of Timed esp can be used to produce formal
descriptions of time~critical systems. These descriptions can be used to suggest
an implementation, or as an algorithmic representation of an existing system at
a suitable level of abstraction. Further, we can determine whether or not such a
description meets our formalised requirements.

22

7.1 Behavioural Specifications

We consider a beha.vioural specification to be a predicate on a typical behaviour
of a process. H this predicate holds of all possible behaviours of a process, we say
that the process satisfies the specification. This permits us to define a relation
between TCSP processes and behavioural specifica.tions: the satisfaction operator
sat for a process P and a specification 5(5, N):

P sat 5(8, N) '" \1(" N) E Frl P! .5(s,N)

The form of a beha,,;oural specification identifies the model employed. In the
above example, the parameters 8 and N indicate that the timed failures model,
TMF, is being used. This extends the definition made in [H85]. In [Re88], Reed
defines specifications as predicates on the entire semantic set of a process. We
define predicates on a typical element of that set. Reed's specifications permit
a more detailed analysis of the process semantics; ours are more suited to the
capture of general requirements upon a process.

For every behavioural specification S, we can define a corresponding Reed
specification Rs as follows:

Rs(P) P sat 5(sY)

However, not every Reed specification has a corresponding behavioural specifica­
tion. For example l the predicate

(((1,a),(2,b)),0) E Fr[P!

caIlnot be written as a beha\o'ioural specification. It states that ({ (1, a) l (2, b)) I 0)
is a possible behaviour of P, aIld to decide upon its truth we need to examine the
whole of the sem.antic set.

We are interested in the correctness of processes. Behavioural specifications
reflect this: they insist that every possible behaviour is acceptable. To slate that
a process may participate in a certain event at a cert.un time, or refuse a certain
event at another, \\<-ithout further information, is of little use. We are iuterested
in what Can be guaranteed about a process behaviour.

7.2 Notation

To capture our requirements as predicates, we define a number of operators on
timed traces and tirued refusals. A more extensive list of semantic operators is
given as an appendix to this paper.

23

Timed traces are sequences of (time,event) pairs. We write 81 52 to represent
the concatenation of haces Sl and 82, and #s to represent the length of s. As in
[H85], we define the relation in as follows:

Sl in S2 == 3u,V.U......S1V=S2

This relation holds whenever the first trace is a contiguous subsequence of the
second.

The last operator is defined on non-empty timed traces, returning the last event
in a trace:

last(s~((t, a»)) '" a

while the end operator is defined for all haces:

'nd(()) '" 0

,nd(s~((t, a») ­

The definition of the restriction operator includes the clauses for hatted. events in
a trace. These are present only in the lower models of the hierarchy; timed refusal
information makes them unnecessary.

()r A '" ()
(((t, a»)~s) r A '" {(t, a»)~(s rA) if a E A
(((t, a»)~s) t A '" s rA otherwise

(((t, a»)~s) t A '" {(t, a))~(s t A) if a E A
(((t, a))~s) t A '" s t A otherwise

This operator restricts the trace to events drawn from a given set A.

We define two operators on timed refusals. The first restricts the refusal set to
events that may be refused after a specified time:

N 1 t '" Nfl ([t,oo) x E)

where E denotes the set of all events. The second operator yields the set of events
mentioned in the refusal set H.

O"(N) '" {aEEI3t.(t,a)EN}

If an event is not in O"(N), then it is not refused during the behaviour (s,N).

24

To illustrate the use of these operators, we define:

(s,N) '" (((I,a),13,c)),[0,3) x {a,b})

and observe that;

last(s) c

endls) 3
5 r (a,b) «1, a))

a(N) {a, b}

N12 [2,3)x{a,b)

7.3 Example

Recall the definition made in section 2, of a simple vending machine:

VM == coin-----)rattle.-----) WAIT(d-6)jdrink---+ VM

This process satisfies the following behavioural specifications:

S,(s} '" «(t"rnttle),(t"drink))ins=<>t,;;>t,+d

S,(s, N) '" last(s) = rattle =<> drink rj a(N 1 (end(s) + d))
S,(s,,,"} '" last(s) ~ coin =<> a = end(s) + 6

These capture the following requirements:

•	 a drink is not available until time d has elapsed, following the OCCllITence of
mttle. .

•	 when a mUle is heard, tben a drink will be available after a further time d.

•	 at a time fJ after the insertion of a coin, the machine has stabilised: all
internal activity has ceased.

That the process meets these specifications could be verified with reference to the
semantics. With more complex process descriptions, this is impractical. Fortu­
nately, there is an alternative. We can derive a number of inference rilles tra.nsform­
iug a behavioural specification on a TCSP process to behavioural specifica.tions on
its components. Indeed, a complete proof system for timed failures specifications
is given in [DS89].

25

7.4 Proof

A proof of correctness of a Timed CSP process is a verification that it meets a
given specification. For example, we might wish to prove that the simple vending
machine VM meets the first of the above specifications. We can write this proof
requirement using the sat relation:

VM sat S,(s,~)

and establish the truth of this assertion by demonstrating that the predicate
8 1(s, N.) holds for a typical element of the semantic set :FT [VM] .

A more complex requirement can be placed upon the parallel combination of
the time-sensitive vending machine and its user:

TUSE" TSVM sat last(s) = kick => drink '1- <T(~ 1 (end(s) + 6))

This ca.ptures the requirement that the user cannot break the machine by kicking
it; a drink will always become available. Recalling the definitions of the component
processes

kick ~ STOP) (drink ~ TSVM)
TSVM == coin _ 0 ; 0

(WAfT 1 kick ~ drink ~ TSVM

TUSE == coin _ WAIT 3; kick _ drink _ TUSE

we can see that this is guaranteed by the combination of the user's restraint and
the invulnerability of the machine after a certain time interval. More formally, we
can show that:

TSVM sat last(s) = kick A end(, t coin) + 2';; end(s)

=> drink '1- a(~ 1 (end(s) + <5))

TUSE sat last(s) ~ kick => (end(' rcoin) +2';; end(s)

A drink '1- a(~ 1 (end(s) +6)))

and use the following inference rule (from [DSg9]) to establish that the required
result holds:

PI sat TI(S,~)

P, sat T,(s, N)

T,(s,~,) A T,(s,N,) => S(s,N, u ~,)

PI II P, sat S(s, N)

26

8

To establish that a parallel combination meets a given specification S) it is s!lfficient
to find two specifications, one for each component, that yield S for a combination
of behaviours. More precisely, a typical failure of PI II P2 must satisfy:

•	 any trace of Pi II P1 is a trace of each component.

•	 any refusal set of PI II P2 will be the union of two refusal sets: one from each
of the component processes.

The parallel combination refuses to participate in an event e whenever either or
both of its components refuses e.

Similar rules exist to verify that the simpler, sequential processes TUSE and
TSVM satisfy the two specifications given above. Using these rnles, we can estab­
lish any property of a process that can be captured as a behavioural specification.

Discussion

This paper was intended as a brief introduction to Timed esp. The ideas and
notation presented in the previous sections provide the foundation for a uniform
theory of timed concurrency. As it stands, Timed esp is a powerful tool for
capturing requirements in a dear and concise fashion, and commnnicating these
requirements to others. Additions being made to the theory, inclnding a com­
plete proof system for behavioural specifications, will simplify the analysis and
verification of processes; software tools can be developed to assist in this.

The additions being made to the theory inclnde:

Instability sets: In [Bl89], Blarney develops an alternative treatment of process
stability, associating each failure with a set of instabilities, rather than a single
stability value. Using this approach, we may obtain a basis {or a complete proof
system {or all models of Timed esp.
Event times: The b delay, present at each prefix, can be replaced by a function,
associating a different delay with each event. This yields a more intuitive trt~atment
of sequential processes, and permits event refinement.

Time-slice parallelism: The parallel operators given in this paper can be nsed
to describe true parallelism. However, we may wish to model multiprocessing
behaviour, in which the execution of a process may be suspended. A new semantic
definition is required, and has already been formnlated in [DS9].

Timewise refinement: We can use the structure of the hierarchy to refine pro­
cesses and specifications, adding the timing information of a higher model.

27

A number of other directions are also being pursued; these inclade the addition
of probabilistic models to the heirarchy, the development of software tools, and a
methodology for process design and implementation.

Acknowledgments

The authors would like to thank Bill Roscoe, :Mike Reed, and Stephen B1amey
for laying the foundations; Jim Woodcock, Carroll Morgan, Richard Miller, Greg
Abowd, Dave Jackson and Michael Goldsmith for advice; Alice King-Farlow and
Elizabeth Schneider for inspiration; Phil, Alan, Jeremy, and Colin for coffee and
biscuits. This work was supported by grants from SERC and BP.

References

[B89]	 S.R. Blarney, TCSP Processes as Predicates, (to appear) Oxford 1989.

[BG87]	 A. Boucher and R. Gerth, A Timed Failures Model for Extended Commu­
nicating Sequential Processes, ICALP 1987 Springer LNCS.

[089]	 J.W. Davies, A Time-Slice Parallel Operator for Timed esp, (to appear)
Oxford 1989.

[DS89J	 J.W. Davies and S.A. Schneider, Faetorising Proofs in Timed CSP, in this
volume.

[H85]	 C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall Inter­
national 1985.

[J82]	 G. Jones, A Timed Model for Communicating Processes, Oxford University
D.PhiI Thesis 1982.

[MB76] R.M. Metcalfe and D.R. Boggs, Ethernet: Distributed Packet Switching
for Local Computer Networks, Communications of the ACM, July 1976,
395-404.

[OH83] E.R. Olderog and C.A.R. Hoare, Specification-oriented Semantics for
Communicating Processes, Springer LNCS 154 1983, 561-572. (Also,
Acta Informatica 23 1986,9-66.).

[PS88]	 K. Paliwoda and J.W. Sanders, The Sliding- Window Protocol in CSP,
Oxford University Programming Research Group Technical Monograph
66, 1988.

28

[Re88]	 G.M. Reed, A Uniform Mathematical Theory for Real-time Distributed
Computing, Oxford University D.Phil thesis 1988.

[RR86]	 G.M. Reed and A.W. Roscoe, A Timed Model for Communicating Se­
quential Processes, Proceedings of ICALP'86, Springer LNCS 226 (1986),
314-323; Theoretical Computer Science 58 1988, 249-261.

[RR87]	 G.M. Reed and A. W. Roscoe, Metnc Spaces as Models for Real-time Con­
eurrency, Proceedings of the Third Workshop on the Mat.hematical Foun­
dations of Programming Langua.ge Semantics, LNCS 298 1987, 331-343.

[Ro82] A.W. Roscoe, A Mathematieal Theory of Comm'unicaiing Proces5e!J, Ox­
ford University D.Phil thesis 1982.

[T81] A.S. Tanenbaum, Comp'uter Networks, Prentice Hall Iuternational1981.

[Z86] A.E. Zwarico, A Formal Model of Real-Time Computing, University of
Pennsylvania Technical Report 1986.

29

A Notation for Specification

We define a Dumber of opera.tors on timed tra.ces, timed failures and timed refusals.
These will be useful in formulating definitions and specifications of Timed CSP
processes.

A.I Timed Traces

Timed traces are sequences of (time,event) pairs. We write 8182 to represent the
concatenation of traces 81 and S2 l and #3 to represent the length of s. As in [H85J,
we define the relation in as foUows:

81 in Sol == :I tL, 1! • u....... St v = 81

This relaLion holds whenever the first trace is a contiguous subsequence of the
second.

First and Last

The first and last operators are defined upon non-empty traces, returning the first
and last events in a trace, respectively:

fiTst«((t, a))~s) =a
last(s~((t, a))) a

and the begin and end operators are defined for all traces:

b,gin(()) =0 00

b,gin(((t, a))~s) =0 t

'nd(()) =0 0

,"d(s~((t, a)) =

The values chosen for the empty trace are the most convenient for the subsequent
mathematics.

30

During, Before and After

We define the during, be/ore, and after opera.tors on timed traces. The first return~

the subsequence of the trace with times dra.wn from set I. The others return the
parts of the trace before and after the specified time.

oTI ~ 0
«((I, a))~s) T I ~ (t, a))~(s TI) if tEl

(s TI) otherwise

sit ~ s T[0, tl
s1 t ~ s 1(1,00)

where I is a set of time values. In the case that 1= {t} for some time t,e may
omit the set brackets. The be/ore operator, r ,is also used to denote the restriction
of a trace to events drawn from a given set. If the second argument of the operator
is a set, then:

OIA ~ 0
«(I, a))~s) t A ~ ((I, a))~(s t A) if a E A

~ stA otherwise

«((t, a))~sli A ~ «(I, a))~(s t A) if a E A
~ ,t A otherwise

Stripping

If timed refusals are not being considered, the events in a timed trace may be
labelled with hats; the operator hstrip strips the hats from a timed trace:

hstrip(()) ~ 0
hstrip((t,a»)~s) ~ «t,a))~hBtrip(s)

hstrip((t, a))~s) ~ «t, a))~h~lrip(s)

whereas the operator tstrip strips the timing information from a trace:

/strip(0) ­ o
/strip«((t, a))~s) (a)~/slrip(s)

We use thstrip to denote the composition of these two functions.

31

Alphabet

We define an operator a on traces, which yields the set of events present in the
trace:

<7(s) '" {a E E 13 t. ((t, a)) in hstrip(s))

Note that we discard the 'hat' information when considering which events are
present in a trace.

Shifting and Counting

We define a temporal shift operator:

o~ t - 0
(((t"a))~s) ~ t - ((t, - t, a))~(s ~ t) if it ~ t
(((t"a))~s) ~ t == s -'- t otherwise

and a collnt operator, ! ,which returns the number of occurrences of events from
a given set:

s 1 A '" #(s r A)

In the case that A = {a} for some event a, we omit the brackets.

Hiding, Equivalence and Parallel Combination

The following functions are used in conjunction with the corresponding TCBP
operators. We define a simple hiding operator on traces, with the effect of removing
hidden events:

s \ A '" s r (E - A)

and an equivalence relation 3: on traces as follows: u 3: v if and only if u is a
permutation of 'V. As both are timed traces, only events occurring at the same
time may be interchanged.

Finally, we define two parallel operators on traces, corresponding to the effect
of parallel composition in Timed CSP:

vxllyv'" {sldX=v!\sry=v!\sf(XUY)=s}

vlliv '" (s'Vt.sTt~(vTt)~(vTt))

32

Examples

As an example, consider the timed trace s, where

s'" (I,a),(2,h),(2,a),(3,cJ)

we observe that:

last(s) c

h,gin(s) 1

s i [2,3) (2, b), (2, a))

s t 2 «(I, a), (2, b), (2, a))
st{a}11 ((2, a))

o(s) {a,b,c}

ilstrip(s) ((1, a), (2, b), (2, a), (3, c))

istrip(s) (a,b,a,c)
tilstrip(s) (a, b, a, c)

s I a 2
s~2 «(0, b), (0, a), (I, c))

s\a ((2, b), (3, c))

To illustrate the use of the parallel operators, w~ make the following definitions:

u '" ((I,a),(2,b),(2,c))
v '" ((1, d), (2, b), (2, c))

w '" ((2,b),(3,c))

X '" {a,b,c}

y '" (b, c, d)

and observe that:

u xlly 1/ {((I, a), (I, d), (2, b), (2, cJ), ((I, d), (I, a), (2, b), (2, c))}

U xlly w o
u III w {((I, a), (2, b), (2, b), (2, c), (3, c)),

((1, a), (2, b), (2, c), (2, b), (3, c))}
, (;

A.2 Timed Refusals

A number of the above operators have a similar action when applied to timed
refusal sets. If we make the definition

liN) '" {tI3a.(t,a)EN}

33

then we can define begin and end on refusals:

b'gin(N) - 00 if N = 0
b,gin(N) - mf(I(N)) otherwise

end(N) '" ° if N= 0
end(N) '" sup(I(N)) othe,wise

Before, After and D~ring

The befort, after, and during operators can be defined 'on refusals:

N r t '" N n ([0, t) x 1:) [0

N1t '" Nr1([t,oo) x 1:)

N ilt" i,l '" N r1 ([t,,~) x 1:)

Recalling that E denotes the set of all events, we see that. these restrict a refusal
set to events that may be refused before, during, and after the specified times.

Restriction and Hiding

We overload the r symbol to denote set restriction:

N,A '" Nr1([O,co) x A)

with hiding defined in the obvious way:

N \ A '" N 1(1: - A)

Shifting

We define a temporal shift operator on refusals:

N~t '" {(t,-t,a)[(t"a)ENi\t, ;H}

Alphabet

We define an alphabet operator J:

~(N) '" {aE1:[3t.(t,a)EN}

34

Examples

To illustrate the use of these operators, we make the definition:

N '" ([0,2) x (a, b}) U ([1, 5) x (c, d})

and observe that:

I(N) [0,5)

begin(N) a
end(N). 5

NrJ ([0,2) x (a, b}) U ([1,3) x (c, d})

N13 [3,5) x {c,d}

<7(N) {a,b,c,d}

N t a [0,2) x (a)
N~2 [0,3} x {c,d}

A.3 Failures

For convenience, we extend some of the above definitions to individual failures:
timed (trace) refusal) pairs:

begin (s, N) '" min (begin(s), begin(N))

end(s,N} '" max(end(s),end(N))

(s,N) TI '" (s TI,N T1)

(s,NHt '" (s rt,N rt)
(s,N) 1 t '" (s1 t,N 1 t)

<7(s,N} '" ,,(s)U,,(N)
{s,N)~t '" (s~t,N~t)

(s, N) r A '" (8 i A, N r A)

(s,N)\A '" (s\A,N\A)

A.4 Processes

We extend the alphabet operator to TCSP processes:

u(P) '" U(,,(s) I s E traces(P))

and observe that this differs from the alphabet concept used in earlier versions of
esp.

35

1

Factorizing Proofs in Timed CSp1

Jim Davies and Steve Schneider

Oxford University Computing Laboratory

Programming Research Group

11 Keble Road

Oxfo'd OX! 3QD

Abstract. A simple notion of specification is introduced, and a complete set
of inference rules given, {or reasoning about real-time processes. The notation
of Timed Communicating Sequential Processes is employed, and the strongest
possible specification of a. process is discussed. A proof of correctness of a simple
protocol is given to illustrate the method of verification.

Introduction

Timed CSP is ~n extension of Communicating Sequential Processes [H85] which
includes timing informa.tion. It can be used to model time-dependent properties
of concurrent systems. An algebraic notation is employed in the definition of
processes. capturing the behaviour of a. system in a dear and intuitive manner. A
uniform hierarchy of semantic models for this notation is presented in [Re88]. Each
semantic nlOdel identifies a process with a. set of possible beha.viours: by reasoning
about the~e sets, we may establish properties of the corresponding processes.

lTbe material presented in this paper will appear in the proceedings of the Fifth Conference
on the Mathematical Foundations of Progranuning Semantics (1989); Spriflger- Verlag LNCS.

36

In untimed CSP we have a number of algebraic laws that preserve the semantics
of a process. These laws allow us to rewrite a process definition to facilitate such
reasoning; if necessary, we may eliminate the abstraction and parallel operators.
This is not possible in Timed esp. The semantics of the timed models are neces­
sarily complicated, but we may use the semantic equations to derive a number of
useful laws relating processes to predicates on behaviour.

These laws are central to the application of Timed esp to the design and
analysis of complex systems. V.le can capture the requirements of the specification
using the notation of the semantic model, and formalise our intended solution in
the process algebra. This solution allows us to move towards an implementation,
should this be Our aim. In any case, we are obliged to show that our proposed
solution meets our requirements; we must verify it.

We consider a verification of a Timed esp process to be a demonst.ration that
all its possible behaviours meet a proposed specification, expressed as a predicate
on a typical element of its semantics. In this case, we say that the process satisfies
the specification. A specification in TMFS , the most expressive model, can often
be written as a conjunction of constraints in the simpler models; the process can
then be shown to satisfy each of these independently.

Even within the simpler models, TMF , TMs and TMr , the construction of
such a proof directly hom the semantics may be difficult and laborious. If we are
to reason about complex time-critical distribnted systems, we require a method of
translating a proof obligation on a process into proof obligations on its syntactic
subcomponents. This method will employ a number of rules grounded in the
semantic mappings introduced in [RR86], [RR87] and [Re881.

In this paper, we present the notion of behavioural specifications: correctness
conditions on the possible behaviours of a process. We then give a complete set
of inference ru1es for translating such a specification on a compound process into
requirements upon its subprocesses. The soundness of each rule can be established
hom the semantic equations for the relevant operators; example proofs are included
as an appendix. To illustrate the use of these rules we present a verification of a
simple stop-and-wait protocol in the Timed Failures model, TMF .

Notation

In this section, we present the notation of Timed esp, the process algebra and the
semantic models, as defined in [ReBB]. We then explain OUr concept ofspecification
and introduce the additional notation required for this paper.

37

2

2.1 Timed CSP

Timed CSP is a simple extemion of CSP [H85]. The process algebra, TCSP, is
given in Backus-Naur form below:

P 0:= .L I STOP I SKIP I WAIT t I a ~ P I
PDP I P n PIP II PIP .11. PIP III PI
P; PIP \ A I f-l(P) I f(P) I~ X. F(X)

These operators axe given interpretations in a hierarchy of semantic models, as
detailed in (ReBS]. These models allow os to write process specifications: a peed.
icate on the semantics of a process corresponds to a requirement on its possible
behaviours.

The scmantic model TMF consists of sets of pairs (s, N) satisfying the seven
healthiness conditions given in [ReBS]. We refer to a pair (s. N) as a timed failure.
The semantic fundion F T is defined on elements of TCSP , mapping them to
failure sets in TMF .

The first component of a timed failufC represents a possible timed trace of the
process: a sequence of timed observable events. The second cOUlponent, ~, rep­
resents a finite union of refusal tokens, each refusal token being the product of a
half-open finite time interval and a subset of the set of all events, E. This compo·
nent denotes the (time l event) pairs that may be refused if the process performs
the trace s.

2.2 Specification

We consider a specification to be a predicate on a typical behaviour of a process: an
arbitrary element of its semantics. If this predicate holds of all possible behaviours
of a process, we say that the process satisfies the specification. We define the
satisfaction operator sat for a process P and a specification S(s, N):

P sat S(s,~) '" V(s,~) E FrlP] • S(,,~)

From this definition. we can establish a number of simple inference rules:

P sat S(s,~) P sat S(,,~)

P sat T(s,~) Sis, N) => T(s,~)

P sat true P sat S(s,~) II T(,,~) P sat T(s,~)

Using the sat operator l we can capture any requiremenl that corresponds to a
condition upon all of the possible behaviours of a process. The resulting predicate

38

upon the TCSP process we call a behavioural specification. lu [Re88], Reed defines
specifications as predicates on the semantic set of a process, we define predicates
on a typical element of that set. Behavioural specifications form a subset of Reed's
specifications.

Reed's specifications permit a more detailed analysis of the process representa­
tionj ours are more suited to the capture of general requirements upon a process.

For example, the predicate

(((1, aJ, (2, b)), 0) E .1'r IpI
cannot be written as a behavioural specification. It states that (((1, al, (2, b)),0)
is a possible behaviour of P, and to decide upon its truth we need to examine the
whole of the semantic set.

We are interested in the corredness of processes. Behavioural specifications
reflect this: they insist that every possible behaviour is acceptable. To state that
a process may participate in a certain event at a certain time, or refuse a certain
event at a.nother, without further information, is of little use. We are interested
in what can be guaranteed about a process behaviour.

2.3 Notation

For convenience, we define a number of operators On timed failures, timed traces
and timed refusals 2. We define two fundions on traces:

last(s~((t,a))) " a

tstrip(()) " ()

tslrip«((I, a))~s) " (a)~tslrip(s)

The first returns the last event in the trace, the second merely strips the time
informa.tion from the trace.

We define the be/ore, after, aIld during operators on refusa.1e;:

Nil " Nn ([0, t) x E)
Nl I " Nn([I,oo) x E)

NTIt,,;,) " Nn ([I,,;,J x E)

Recalling that I: denotes the set of all events, we see that these restrict a refusal
set to events that may be refused before, during, and after the specified times.

'lFrom now on, we wiU omit the prefix 'timed' as all subsequent specifications will be dzawn
from TMp

39

We define a subtraction operator on traces and refusals, translating through
time:

()~I = ()
s-'-t iItl<t

(((t"a))~8)~t = { ((t,-t,a))~(8~t) othe,wise

~~t = {(t,-t,a)l(t"a)E~t1t,"t)

We define an operator Q on traces and refusals, yielding the set of events that
occur in each. For convenience, we extend the definition of Cf to cover failures and
processes; in the latter case, the result is the set of events in which the process
may participate. Observe that this operator differs from the alphabet concept used
in earlier versions of esp.

a(8) = {a E E 13t. ((t,a)) in s}

a(~) = {aEEI3t.(t,a)E~}

a(8,~) = a(8)Ua(~)

alP) = U{a(8) I 8 E traces(P))

Similarly, we extend the definition of end in [ReSS]:

end(8,~) = max{end(s),end(~))

Finally, for use with the hiding operator, we define a predicate on failures, indexed
by a set of events A:

A = ([0, end(8, ~)) X A) <;; N

This predicate holds exactly when the failure (8,~) is activated on set A.

3 Abstraction and Concurrency

As an introduction to our method of verifying processes, we consider two operators
centra.! to the language of Timed esp: the hiding and para-llel opera-tors.

3.1 Hiding

In a.pplying Timed esp to complex systems, we use the hiding operator to abstract
awa.y from internal behaviour. To prove our description correct, we may need to

40

reason about this behaviour. Hiding a set of events A from the environment
of a process P restricts the set of possible behaviours to those in which P is
forced to perforlll events from A as soon as they become available: the A-activated
behaviours.

The events in A are no longer observable from the environment, and we may
not mention them in reasoning about P \ A. Instead, we identify the A-activat.ed
behaviours of the process, establishing results that may involve events from A.
These results IIlay then be used to derive a specification that is independent of
events from A. This specification is then satisfied by P \ A.

In the untiIned version of esp, we can use algebraic laws to eliminate the
hiding operator from a process description: these laws preserve the equivalent set
of behaviours. It would be possible to derive similar laws for Timed esp, but
their complexity would render them unusable: consider the identity below, which
corresponds to the simplest non· trivial case of hiding over deterministic choice.

(a ~ STOP 0 b ~ SKIP) \ {aJ " ((SKIP 0 b ~ SKIP); SKIP) II b~ SKIP

Our approach offers a simple, systematic solution to the problem of hiding.

We defined the - operator in tbe previous section: Aholds precisely when (s, N)
is an A-activated failure. The following inference rule illustrates the relationship
between the failures of P and those of P \ A:

P sat (A(s, N) /I neW) <:; A) => S(s \ A, N- W)

P\A sat S(s,N)

This follows from the semantic equation for the hiding operator given in [ReBS],
and transforms a proof obligation ou P \ A into one on P.

3.2 Parallelism

Timed esp has three parallel operators: alphabeticised parallel, synchronised par­
allel and interleaving. The latter operators can be viewed as particular instances
of the first. In this paper, we will illustrate the use of the most general form of
parallel operator.

The alphabeticised parallel operator places a restriction on the events commu_
nicable by each a.rgument: in the parallel combination P x /I y Q, process P may
perform only those events in set X. Similarly, Q is restricted to those in Y. The
two processes must co-operate on events common to both sets.

41

As in the case of hiding, it would be impractical to eliminate alphabetici:ied
parallelism using algebraic laws. As an illustration, consider the identity below,
which holds for un timed CSP.

,~P III b ~ Q '" a ~ (P III b ~ Q) 0 b ~ ((a ~ P) III Q)

Thi:i is no longer true for Timed CSP processes because of the delay 6 introduced
by the prefix operator. This can arise whenever a process contains a form of
parallelism which is not completely synchronised.

This means that, except for the simple case of completely synchroni:ied paral­
lelism, we cannot transform a process in a semantics-preserving fashion and alter
the degree of parallelism present. However, our inability to do thi:i need not detract
from the applicability of the formalism; time-critical systems with communication
delays have a minimum degree of parallelism. We can derive rules to allow us to
establish properties of such systems.

As an introduction to the operator, consider the special case that is synchro­
nised parallelism. The following inference rule can be derived for thi:i operator:

P,	 .at S,(s,N)
P, .at 5,(s, N)
S,(s, N,) II S,(s, N,) =} Sis, N, UN,)

P, II P, .at S(s, N)

To establish that a parallel combination meets a given specification 5, it is sufficient
to find two specifications, one for each component, that yield S for a combination
of behaviours. More precisely, a typical failure of PI II P2 must satisfy:

•	 any trace of PI 1\ P2 is a trace of each component.

•	 an)" refusal set of PI II P2 will be the union of two refusal sets: one from each
of the component processes.

The parallel combination refuses to participate in an event e whenever either or
both of its components refuses e.

The rule for the alphabeticised parallel operator is necessarily more compli­
cated:

PI	 sat 51 (s, N)
P, .at 3,(s, N)
(a(s" N,) <; X II a(." N,) <; Y II a(N,) c:; E - (X U Y) /\ S,(s, , N,)

II S,(s" N,) II ., E s, x lIy s,) =} Sis"~ N, UN, U N3)

P, xII, P, .at S(s,N)

42

4

As before 1 we IIl.ust find two specifications, one for each component, tha.t yield S
for a combination of behaviours. This time, a failure of the parallel combination
must satisfy:

•	 any trace of PI x II y P2 must be the parallel combination of a trace from each
component.

•	 any refusal set of PI x II Y P2 must be the union of three refusal sets: one from
each component, and an arbitrary refusal set whose alphabet lies outside
XU Y.

Recall that the parallel operator on traces produces a set of traces: sequences of
events drawn from X U Y, whose restriction to the sets X and Y produces the
first and second arguments of the operator, respectively.

These conditions lead to the third antecedent of the rule, which allows us to
transform a predicate on the failures of a parallel combination into requirements on
the corresponding failures of the component processes. Together with the hiding
rule, this is sufficient to treat the example of the next section.

A Simple Protocol

A protocol is a distributed algorithm for facilitating the communication of messages
between processes. CSP is particularly suitable for the specification of protocols;
the enhancements introduced in Timed CSP allow us to address the timing consid­
erations that are often necessary for the correctness of the protocol. Using Timed
esp, we can describe and analyse processes that include timeouts, interrupts and
time-critical synchronisation.

In this section, we consider the specification of a simple 'stop-and-wait' proto­
col, similar to the one described in [PS88]. This consists of two processes, P and
Ql communicating across two wires: WI and W2. Together, they control the flow
of data between two external processes. This may be represented pictorially as
follows:

in I pi: : ::, ~ I Q lout

43

fn general, protocols allow [or unreliable channels, by duplica.ting data or re­
quiring acknowledgements: such behaviour is easily modelled in Timed esp. How­
ever, our purpose is to illustrate the use of the inference rules; we need not concern
ourselves with these complications. Our protocol addresses only data.:B.ow consid­
erations, and we assume that the wires WI and W2 are reliable: for every input,
there is a corresponding output.

4.1 Specifications

There are many requiIements that we could place upon the protocol, but we will
consider just one: that if a message is input, then output is ready within two
seconds. Formally, we wish our protocol PROT to meet the following timed failures
specification:

SPEC(s,H) ~ last(s) = in '* out ~<>(H 1 (end(s) +2))

We gi ve conditions on the components of the protocol, and verify that they are
sufficient to ensure that the protocol exhibits this behaviour.

The sending process P should meet the following specification: it should per­
form the three events in, lm, rc in strict rotation; after performing an event, it
should be prepared to perform the next witbin a certain time; initially, it should
be ready to receive an input. We capture these requirements in the timed failures
specification SPECp :

SPECp(s,H) ~	 /strip(s)'; (in, 1m, re)" "

last(s) ~ in '* 1m ~ <>(H 1 (end(s) + 25))"

last(s) = 1m '* re ~ <>(H 1 (end(s) + 25))"
last(s) = re => in ~ <>(H 1 (end(s) + 25))"

s = () => in ~ <>(H)

After a..ccepting and ttansmitting a message, the sending process nlUst await confir­
mation from the receiving process before a..ccepting anoth('r. The receiving process
will send a confirmation signal once the previous message has been output. Ini­
tially, the system is empty. Hence we wish the receiving process Q to satisfy
SPECQ:

SPECQ(s,H) ~	 /strip(s)'; (rm,aut,le)" "

last(s) = rm => out ~ <>(H 1(end(s) + 25))"
last(s) = out => Ie ~ <>(H 1(end(s) + 25))"

last(s) ~ Ie '* rm ~ <>(H 1 (end(s) + 25))"

s = () => rm ~ <>(H)

44

The wires WI and W2 have a propagation delay of 1 second, and will not be
required to transmit more than one message at a time. However, each must be
ready to accept another input almost immediately after output. They satisfy the
specifications SPECw, and SPECw~ respectively, where

SPECw , (s,~) " tstrip(s) " (1m, rm)" 1\

last(s) = 1m => rm ~ ,,(~ 1 (end(s) + 1)) 1\

last(s) = rm => 1m ~ ,,(~ 1 (end(s) + 26)) 1\

s = () => 1m ~ ,,(~)

SPECw,(s,~) " tstrip(s) " (Ic,rc)" 1\

last(s) = Ie => rc ~ ,,(~ 1(end(s) + 1)) 1\

last(s) Cc rc => Ie ~ ,,(~ 1 (end(s) + 26)) ~

s = () => Ie ~ ,,(~)

The protocol is a combination of the sending process, the receiving process, and the
wires. We combine these in TCSP by way of the alphabeticised paralld operator,
and hide the internal detail. If we define the sets

x =. {in, Im , n:}
y " {out,rm,lc}
C " {Ic,re}
M " {1m, rm}
A " MUC

then the protocol may be defined:

PROT " «(P xlly Q) XUYIlMuc (W, Mile W,)) \ A

4.2 Verification

Having formalised our requirements, we can now use the inference rules given
in section 3 to demonstrate that the protocol PROT will meet the specification
SPEC. We wish to establish that:

PROT sat SPEC(s,~)

The definition of PROT involves the hiding operator at the outermost level, so we
must first apply the hiding rule. This reduces the proof reqnirement to:

(PxlI y Q)xuYIIMuc(W'Mllc W,) sat	 ,,(W) C;;AI\([O,end(s,~))x A) C;; ~

=> SPEC(s \ A, ~ - N')

45

This is a proof requiremeut on a parallel combination, so we apply tbe rule for the
paraUeloperator. We have tben to find specifications 8 1 and 52 such that;

PxllrQ sat S,(s,N)

W, .lle W, sat S,(s,N)

a(",~,) s:: (XU Y)/la(s"N,) S::(MU C)]
a(N,) s:: !: - (X U Y U M U C)

S,(,,,N,) /I S,(""N,) /I" E', xuYIlMue s, =} SPEC(s, \ A,~ - N')
N = N1 U N2 U N3

a(W) s:: A /I ([0, end(", N)) x A) s:: N

Before we continue, we note that the specification SPEC is independent of the
hidden sel of events A, for consider the definition:

SPEC =0 la't(s) = in =} out '/ a(N 1 (end(,) + 2))

FormallYI we can show that

SPEC(s, N r(!: - A)) =} SPEC(", N)

Tills concurs with OUr intuition: the correctness of the protocol filay be dependeut
upon hidden interactions, but our formal description of the service provided (the
specification SPEC) sbould abstract away from internal detail.

Taking this in conjunction with the alphabet conditions upon the failure sets,
we may reduce the third proof obligation to

u(8" N,) s:: (X U Y) /I a("" N,) s:: (M U C))

n(N,) s::!: - (X U Y) =} SPEC(s, \ A,N,)
SI(81, Nd 1\ 52(82, N2) 1\ 83 E 51 XUYIlMuc 82

(/0, end(", N, U ~2 UN,)) x A) s:: N, UN,

To identify 51 we apply the parallel rule once again. We are then required to find
54 and S5 such that:

P sat S,(s,N)

Q sat 5,(" N)
a(s" ~4) s:: X /I ai'"~ N,) s:: Y }
a(N,) s:: !: - (X U Y) =} S,(s,;, N, U N, uN,)

5<t(s4,N.d 1\ 5s(s5,N:;) 1\ % E 84 xlly 8:;

46

We already have specifications for the components P and Q. Substituting these
for 54 and S~" and using the alphabet conditions upon the traces and refusals, we
can reduce this proof obligation to:

SPECp(s t X, N rX) }

SPECQ(s t Y, N r Y) ~ S,(s, N)

a(s) <;; (X U Y)

This yields a suitable instantiation for 51: the antecedent of the above expression.
In a similar fashion, we arrive at the following instantiation for 52:

SPECw,(s rM,N rM) A
SPECw,(s t C, N t C) A
a(s) <;; (M U C)

Our proof requirement can then be written as follows:

a(sl, N,) <;; (X U Y) A a(s" N,) <;; (M U C)

a(N,) <;; E - (X U Y)
SPECp(s, t X,N , tX)ASPECQ(s, t Y,N, t Y)

~ SPEC(s, \ A, N,)
SPECw,(s, t M,N, r M) A SPECw,(., t C,N, t C)
([0, end(s" ~, UN, UN,)) X A) <;; N, U N,

SJ E 81 xuyll..wuc "':l

The alphabet conditions in 51 and 5~ are subsumed in the first two conditions
above.

We have reduced the proof obligation to a predicate on traces and refusal sets:
the verification may be completed using simple properties of sets and sequences:
assuming the conjuncts in the above antecedent, we are trying to establish that

last(s, \ A) = in ~ out 'I- a(N, 1 (end(., \ A) + 2))

From 5PECp , SPECQ , 5PECWl , 5PECw" and the properties of sequences, we
can deduce that

83 ((in,lm, Mn, ou.t, Ie, rc)"

We then proceed by case analysis on the identity of the last event in 83, given that
last(83 \ A) = in, there are three possibilities.

47

Case: last(sJ) = in

By SPECp , Im¢,,((~, rX)1 (end(s, tX) + 26))

In this case end(s,) ~ end(s, t X)

and we know that Im¢ Y

Hence 1m ¢ "(N, 1(end(s,) + 26))

Similarly. as
 S3 E Sl xuYIlMuC 8-:2,

SPECW1 implies that 1m ¢ ,,(~, 1(end(so) + 26))

Hence 1m ¢ ,,((~, U~, U ~3) 1(end(s3) + 26))

However, ([0, end(s, ~, U~, U ~,)) x A) ,:: (~, U~, UN,)

and ImEA

So end(~, U~, U ~,) <; end(s,) + 20

But 6 <t: 1, so (~, U~, U ~,) 1 (end(s,) + 2) ~ {I

We conclnde that out ¢ ,,((~, U~, U ~,) 1end(s, \ A + 2))

Case: la.st(sJ) = 1m

We establish that end(S:3) ~ end(s3 \ A) +26: that the 1m event occurred within

time 26 of the last inpnt.

Assume otherwise: end('3) > end(s, \ A) +26

If we let t be the time (end(s, \ A) + end(s,) +26)/2

Then we know that last(s, t t) = in

By the previous case 1m ¢ ,,(((~, U~, UN,) r t) 1(end(s, r I) + 26))

From our assumptions ([0, end(s" ~, U N, UN,)) x A) <; N, UN,

And end(s, t t) +26 = end(s, \ A) + 26 < t

Hence 1m E Q(((~, U~, U N3) t t) 1 (end(s, t t) +26))

Forcing a contradiction.

We can show, with a similar argument to the first case, in which the event rm

replaces 1m, that end(N1 UN2 UN J) ~ end(sJ) +1. From above, end(sJ) ~ end(sJ\

A) +26: the result follows.

Case: last(sJ) = rm

By asimiIar argument, we can establish that the event rm must occur no later
than 1 +26 after the last input. We then appeal to the specification of Q, and the
result follows immediately. 0

48

The treatment of hiding in Timed CSP is central to the construction of the
above proofj the hidden events 1m and rm must occur as soon as possible. Ou r
method of proof allowed us to include these events in our reasoning, by eliminating
the hiding operator from our proof obligation.

4.3 Other Requirements

Only at the final stage of the proof did we identify the protocol requirement SPEC.
To establish that another property holds of the above protocol, it would not be
necessary to perform the whole proof again. We have characterised the behaviour
of the protocol in terms of the known properties of its components. To prove that
the protocol satisfies an arbitrary specification S, we have only to show that the
following predicate is true:

a(s"N,) C;; (XU Y) A a(",N,) C;; (MU C)
a(N,) C;; l: - (X U Y)
SPECp(s, t X, N, r X) A SPECQ (8, t Y, N, t Y)

=> S(83 \ A,N - N')
SPECw, (>z t M, N, t M) A SPECw,(" t C, N, t C)

N: = N] U Nz UN,) /\ 33 E 31 XuY IlMuC 32

a(N') C;; A /\ ([0, end(83' N)) x A) C;; N

For a particular specification S, we will be able to discard most of the conditions
in the antecedent: the residual proof requirement is often easy to discharge.

5 Recursion and Delay

The inference rules presented in section 3 were sufficient for the example proof
above. IT we wish to provide implementations for the components mentioned in
the previous section, we will require other TCSP operators; to verify these imple­
mentations, we will require other inference rules.

5.1 Prefixing

The simplest TCSP process is deadlock, or STOP. It cannot engage in any event,
so any trace must be empty. It may refuse any event at any time, so there are no
restrictions upon refusal set N:

STOP ••t (s = 0)

49

This process will be useful in showing that certain specifications are sati..q/iable:
that there is a process that will satisfy them.

More interesting processes will be able to perform events: for these, we will
require the prefix operator. In Timed esp, this operator introduces a delay, cor­
responding to the time taken to recover from participation:

P sat T(9, N)

'~Ollarta(N) }

V => S(9, N)
9 ~ «t, a))~9' II a rt a(N t t) II T(9' ~ (t +0), N~ (t + 0))

(, ~ P) sat S(" N)

Any behaviour of the process a _ P must involve the non-refusal of event a until
it has been performed. If event a occurs at time t, the subsequent behaviour will
be that of process P, but starting at time t + J instead of time O. If process P
meets the specification T(s, H), then these subsequent behaviours will be described
by the p"dicate T(,' ~ (t + 0), N~ (t +0)),

5.2 Recursion

Almost aDy application of TCSP will involve repetitive behaviour: to model this,
we can use the recursion operator 11. If F is a function defined on rcsp processes l
we define the function:

CjI TM, ~ TM,

CjI(X) " Fd WAfT 0; F(X)]

The proress 11 X • F(X) behaves as the fixed point of Cj :in the model rMF :

~X.F(X) '" F(WAfTo;~X.F(X))

The recursion induction theorem introduced by Roscoe in [Ro82), developed by
Reed in [Re88], provides the basis for an inference rule for recursively-defined
processes:

VX: TCSP.X sat S(9,N)=> F(WAITo;X) sat S(9,N)
3P: TCSP. P sat S(9,N)

~ X • F(X) sat S(" N)

The topological result from which this rule is derived requires that the predicate
"sat 5(.'1, N)'" be both continuous and satisfiable on rcsp processes. It is a

50

consequence of the definition of the sat operator that all such predicates are
continuons; this leaves the rule with ouly one side condition: included as the
second antecedent above. We also require that Cjl is a contraction mapping on
TMF, and that the specifica.tion 5(8, N) is preserved by each recursive call. The
first of these follows from the continuity of all basic TCSP operators, the second
becomes the first antecedent of the rule.

It is possible that the specification S(8, N) may only be satisfiable by a recursi ve
process. In this case, the side condition cannot be established without a. separate
inductive proof. By extending the contraction mapping that corresponds to P, we
can produce a rule that does not have this problem:

Ii X • X sat S(s, N) ='} F(WAIT 0; X) sat SIs, N)

I' X • F(X) sat S(s, N)

This follows from the same topological result as the previons rule, given a simple
extension to the semantic function FT, as detailed in appendix B. We have elim­
inated the second antecedent. The first antecedent is stronger: we may no longer
assume that the semantics of X satisfies the axioms of TMF : we have lost the
implicit assumption that X is a TCSP process.

The set of inference rules in this paper is independent of the axioms of the
model TMFl so each rule may be applied to arbitrary sets of failures: they can
therefore be used to establish the new antecedent. Further, the fact that all of our
specifications are behavioural means that this rule is no weaker than the recursion
rule in TMF .

5.3 Delay

Finally, we will need to reason about the behaviours of processes involving delays.
We may derive a simple rule from the inference rules (or the sequential composition
and delay operators:

P sat T(s, N)

s = () /I end(N) " t }
V ='} S(s,N)
b,gin(s);> t A T(s ~ t, N ~ t)

WAIT t ; P sat S(s, N)

The inclusion of arbitrary refnsals N' before time t reflects the fact that WA1T t; P
may refuse any event before time t.

51

Whenever we apply the recursion rule, we will be left with a proof obliga.tion
on WAIT 6: X. given that X satisfies a certain specification. In this case, an
alternative form of the above rule will be more useful:

P Sat S(s, N)

WAIT t ; P sat s = 0 1\ end(N) <; t
V

begin(s) ;;, t 1\ S(. ~ t, N ~ t)

No event may occur befOIe time t, and the subsequent behaviours are simply the
failures of process P translated through time t.

We have now presented all the rules required to verify a simple implementation
of the protocol specified in section 4.

6 Implementing the Protocol

In 5edion 4 we used Timed CSP to establish the correctness of a simple protocol:
this result was dependent upon the coned behaviour of each component of the
protocol. We now propose TCSP implementations of the components, and use the
inference rules given in section 5 to demonstrate that they meet the appropriate
specificatiDns.

6.1 Implementation

The protocol consists of two components. trausmitter P and receiver Q, commu­
nicating across two wires WI and W2 • The transmitter process should accept an
input on channel in, and be prepared to transmit it along WI, via channel 1m.
After thi~ transmission has occurred, P waits for a confirmation eveut from wire
W 2 , on channel rc, before repeating this behaviour. Our iutuition suggests the
following as an implementation:

p::: IlX.in----+lm----+rc----+X

We have yet to establish that this implements our requirements: that it meets the
formal specification SPECp .

A similar set of conditions applies to the receiviug process Q. It should be
prepared to receive a signal nom wire WI, on channel rm, before offering output
on chaDllel out. It should then send a confirmation signal along wire W2 , on
channel Ic, before returning to its initial state. Our proposed solution:

Q == IlY.rm----+out lc----+ Y

52

Again, we will have to verify that this is an implementation of the specification
SPECQ •

We could also model wires Wl and W2 in the TCSP process algebra. Consider
wire Wl: the propagation delay, the delay between input on channel 1m and avail­
ability of output on channel TIn, should be no more than one second. There will
be a very small (O(b)) recovery time after output has occurred. In the context of
[SSS], it behaves as a stable oue-place timed buffer:

w, " ~X.lm~ WAIT(I-6);rm~X

W, " ~ Y. Ie ~ WAIT (I - 6) ; rc ~ Y

Note that the explicit delay between the occurrence of lm aud the availability of
TIn is shortened by b to allow for the delay introduced by the prefix operator: the
time taken to recover from performing au event. Although we would not wish to
implement wires in this fashion, the TCSP description could be used to produce
a software simulation of their behaviour.

6.2 Verification

We wish to show that the transmitting process P meets the specificatiou placed
upon it:

JJX. in -----t lm -----t rc -----t X sat SPECp(s,N)

This is a recursive process; the second recursion rule requires us to find a specifi­
cation S(s, N) such that:

X sat S(" N) =} in ~ 1m ~ Te ~ (WAIT 6; X) sat S(s,~)

S(" N) =} SPECp(s, N)

Our strategy for finding such a specification would be to consider S to be SPECp 1\

S', strengthening S' until the conjunction, which must still be satisfiable, is pre­
served by the recursive call. In this example, the specification SPECp is strong
enough to be preserved by the recursion, and no other conditions are required. We
instantiate S with SPECp. We have then to show that:

x sat SPECp(s, N) =} in ~ 1m ~ Te ~ (WAIT 6; X) sat SPECp(s, N)

Assume that X sat SPECp(s, N). We wish to establish-that:

in ~ 1m ~ Te ~ (WAIT 6; X) sat SPECp(s, N)

53

V

Applying the prefix rule three times transforms this proof ohligation to the follow­
ing requirement: we must find a specification U(s,N) such that:

WAIT05;X sat U(s.N)

s = 0 II i. \1' a(N)

s ~ ((t, i.))~s' II in \1' a(N r t,) II

s' ~ (t, + 05) = 0 II 1m \1' a(N ~ (t,+ 05))
V

s' ~ (t, + 05) = ((t"lm))~s" II 1m \1' a(N ~ (t, + 05) t 1,) II ". SPECp(s, N)

s"~ (I, + 05) = 0 II rc \1' a(N ~ (t, + I, + 205))
V

s" ~ (I, + 05) = ((t" rc))~s'" II

TC \1' a(N ~ (t, + I, + 205) t t,) II

U(s'" ~ (t, + I, + t, + 305), N ~ (t, + I, + t, + 305)

With a sn..itable choice of T}, T2, TJ, this can be transformed to:

WAIT 05;X sat U(s,N)

s = 0 II in \1' a(N)
V

S = ((T"in») IIE\1' a(N t T,) II 1m \1' <>(N 1T, + 05)
V

S = ((T"in), (T"1m)) II in \1'a(N tT,)
II 1m \1' a(N T [T, + 05, T,))

". SPECp(s, N)II rc \1' a(N 1 T, + 05)
V

S = ((T,. in), (T" 1m), (T" rc))~u	 II in \1' a(N t T,)

II 1m \1' a(N T [T, + 05, T,)
II rc \1' <>(N T[r, + 05,T3))
II U(u ~ (T,+ 05),N ~ (T,+ 05))

Applying the second form of the delay rule, we can instautiate U as follows:

U(s,N) " SPECp(s~05,N~05)1I begin(s);' 05

Having discharged the first proof obligation, the proof can be completed with a
simple case analysis on trace 8. This becomes clear when we recall the form of
specifica.tion SPECp :

54

SPEC, = tstnp(s),,; (in, 1m, rel" 1\

lasl(s) = in => 1m O! a(N 1 (end(s) + 26)) 1\

last(s) = 1m => re O! a(N 1 (end(s) + 26)) 1\

last(s) = re => in O! a(N 1 (end(s) + 26)) 1\

s = () => in O! a(N)

The only non-trivial case corresponds to s = {(Tt, in), (T2, 1m), {T3' rc))'""u. Here
we require two a.rguments, one fOI each of the cases: u. = (), u I- (). Expanding
the specification SPECp makes tbe solution obvious.

This completes the verification of our transmitter process P. It wilinot be nec­
essary to perlonn it. similar proof for the receiver Q; we can exploit the symmetry
present in our descriptions.

6.3 Renaming

The operator f in TCSP allows os to relabel the events performed by a process.
In the case of injective functions, this allows ns to re·use a process description.
By renaming events, we can transform processes while retaining their structure.
The rela.tionsmps between different events are maintained: given that a partkular
result holds for all the behaviours of a process, we can infer a corresponding result
about the behaviours of the image of that process under such a transformation:

P sat S,(,Yj
S,(s, N) => S(f(s),/(N))

f(P) sat S(s, N)

For example, we can use the result of the previous section to establish that
Q sat SPECQ, by defining injective function f such that:

f(in) = rm

f(lm) = out

f(re) = Ie

We then observe that:

SPECp(s, N) SPECQ(f(s),f(N)

Q f(P)

The inference rule allows us to conclude that:

Q sal SPECQ(s, N)

55

Which completes our verification of the protocol.

This method of re-using implementation/specification pairs helps to eliminate
redundant verifications: by observing and exploiting symmetry, we can re~use

process components and their specifications.

1 Completing the Picture

The laws presented a.bove, together with the others in the appendix, are complete
with respect to the semantics: any specification provable from the semantics is
provable using these laws. This becomes clear when we consi der the strongest
specijicatlOn of a process.

7.1 Strongest Specifications

The identification of a process with the strongest specification that it can sat­
isfy has been discussed before. It provides an alternative method for eliminating
the process algebra from our proof obligations. The inference rules presented in
this paper are more flexible in this: our specification may reflect only one of the
properties of the system. Using our intuition, we need consider only the relevant
propertil:'S of each component: those necessary to establish that the system meets
the specification. As an example, consider the law:

P, sat 5,(s, N)

P, sat 5,(s, N)

SI(S, N,) A S,(s, N,) => S('" Nl UN,)

PI II P, sat S(s, N)

For Pl II P1, to meet specification 5, we require that PI and P1, meet specifica­
tions 5, and ~ respectively. These need only be strong enough to fulfil the third
antecedent of the rule.

If we lack this intuition, we can use the strongest specifications of PI and
P1, as iB:stantiations for 51 and~. If suitable instantiations exist, they can be
no stronger than these: any property of a process is a logical consequence of its
strongest specification. We write SS[pj to denote the strongest specification of
process P. For example, the strongest specification of deadlock is given by:

SS[STOP](s, N) " s = ()

This isall we can possibly know about the behaviours of STOP, we can draw no
conclusions about the refusal set: STOP may refuse any event at any time.

56

For a compound process, the strongest specification is defined in terms of the
strongest specifications of its proper syntactic subcomponents:

SSla~ p!(sY) " s=Olla¢Q(N)
V

3 s', t. (s = «t, a))~s') II a ¢ Q(N r t) II
SSlpj(s', N ~ (t H))

These definitions are equivalent to the semantic equations for the model TMF .

The equivalence

SSlp!(s,N) " (s,N) E hlp!

can be established by structural induction upon process P.

Strongest specifications may he used to reduce the proof requirement on a
compound process to a predicate on traces and refusals. similar to the one at the
end of 4.2. The inference rules giveu in this paper may provide a much simpler
predicate; we ca.n discard unnecessary information. But strongest specifications
provide a more mechanical methodj there are no choices to be made, even in the
case of recursion.

SSlliX. F(X)!(s,N) "	 A".(end(s,N) < Iii => sS!i";(STOPJ!(s,N))

where F(X) ~ WAIT Ii; F(X)

We consider the recursive process jj X • F(X) to be the limit of the finite ap­
proximations F'(STOP). A given behaviour of the recursive process must be a
behaviour of all the finite approximations involving a sufficient number of recur­
sious. If the behaviour in question is described by the failure (s, N), then aJl of
the approximations F'(STOP), where i > end(s, N)/5, must also exhibit that
behaviour.

Hence the strongest specification of jj X • F(X) can be written as the con­
junction of the strongest specifications of Its finite approximations, guarded by
an applicability condition end(s, N.) < 5i. We are spared the task of finding a
sufficient specification that will be preserved by each recursive call.

Strongest specifications provide a complete description of the possible be·
haviours of a process. To decide whether a component is adequate for use in
a given situation. we can use the inference rules in this paper to confirm that it
meets the requirements. IT a component is to be re-used in different systems, then
it should be supplied with its strongest specification. The comprehensive nature
of strongest specifications also allows us to demonstrate that the inference rules
presented iu this paper are complete with respect to the semantics.

57

7.2 Completeness

The inference rules presented in this paper are easily seen to be sound; example
proofs are present,ed in appendix B. If we can use the rules to show that process P
satisfies il. specification 5(8, N) then predicate 5(8, N) must hold for all beha.viours
of P: it must be true of all the elements of the set of failures corresponding to P
in the semantic model TMFo

These rules also form a complete set. If a predicate S (s, N) holds for all be·
havioursof P 1 then we can use the rules to establish that P sat S(s,N). We can
demonstrate tms by showing that the rules preserve strongest specifications: they
yield the strongest specification of a compound process in terms of the strongest
specifica.tioDS of its components. For example, consider the case of the parallel
operator.

Suppose that the parallel combination PI II P2 meets the specification 5(3, N:).
In our proof, we would employ the following inference rule:

P, sat S,(s, N)

P, sat S,(s, N)

S,(s, N,) 1\ 5,(s, N,) =} Sr" Nt UN,)

P, II P, sat S(s, N)

This requires that we exhibit specifications 51 and S2 for which the three an­
tecedents of the rule hold. The first two antecedents insist that these are no
stronger than the corresponding strongest specifications, so if tILe third is also to
hold, it must hold with the following instantiation:

SS[P,](s,N,) I\SS[P,](s,N,) =} S(s,N, UN,)

However, as 5(s, N) is true of all behaviours of PI II P2 , it can be no stronger than
the strongest specification of that process, i.e.

SS[P,1I P,](s,N) =} S(s,N)

But the strongest specification is given by:

SS[p, II P,j(" N) '" 3N" N, • SS[Ptl(s,N,) 1\ SS[P,j (s, N,) 1\ N = N, UN,

So the inference rule is sufficient to establish that PI II P2 sat S(s,N:). The same is
true for the other operators, and we have shown that the equivalences that define
our strongest specifications are no weaker than the semantic. equations: we lose
no information. Hence our inference rules form a complete set with respect to the
semantics.

58

8 Stability

In this paper, we have been 'Working within the Timed Failures model of TCSP,
TMF. Timed CSP identifies a further aspect of a process's behaviour: the stability
value corresponding to each (trace, refusal) pair. In [ReB8], this is defined to be the
earliest time at which it can be guaranteed that the process can make no further
internal progress. This notion has been refined by Blarney in [Bl89]. Here, he
associates with each (trace,refusal) pair an "'instability" set rather than astability
value: the set of times at which the process might not be stable.

One advantage of this approach is that it allows us to extend the work in this
paper to models which include stability. Using instability sets, we can express the
behaviour of a compound process in terms of the behaviours of its components.
This is not possible in the original stability models, TMs and TMFS: to see why,
consider the processes defined below.

PI = a --+ STOP

P, '" a ~ WAIT I ; STOP

The stabilities associated with this process are given by:

srlp,] _ {(O,O)j U [(((t,a)),t +8) I t;> O}

Sr Ip,] _ [((),O)jU{(((t,a»),t+1+6) I t ;;,O}

Now consider the behaviours of the process P1111 P2 , given the semantic equation
for the interleaving operator:

srlp, III P,] SUP{(s, max!""",}) I
3($[,,,,) E Srlp,],(""",) E srlp,]- 8 E Tmerge(s,,8,)j

The compound process can engage in a single a event, £rom each of its components,
and give rise to a stability value that cannot be inferred from the properties of a
typical behaviour of either process acting independently. The trace {(O, a)) has a
stability value of 1 +.5: this can only be deduced by considering all of the stability
values associated. with that trace.

However, if we identify instability sets rather than stability values, no such
difficulties arise. The properties of a typical instability set of a compound process
beha"'iour can be deduced from the properties of arbitrary behaviours of the com~

ponent processes. As with the timed failures model, we can restrict our attention
to a typical element of the-semantics. We can thus formulate a set of inference rules
for reasoning about specifications involving stability conditions. As an example,

59

9

we can derive the following rule for the nondeterministic choice operator:

PI sat S,(s,7,N)

P, sat S,(S,7,N)

(SI(S,7,N) V S,(S,7,N)) => S(S,7,N)

PI np, sat S(S,7,N)

ln the above specifications J represents an arbitrary instability value, and the sat
operator is extended in the obvious way. The rule illustrates that an instability
value of PI n P2 must be an instability value for one of the components PI> P2•

The converse is also true; this is not the case in TMFS , in which an arbitrary
behaviour requires more information. Similar results are obtained for the other
TCSP operators.

Conclusions

ln this paper, we have shown how we can factor out the complexity inherent in
reasoning about timed distributed systems. We introduced behavioural specifica­
tions, capturing correctness conditions as simple predicates on a typical elemen t
of the semantics. We have given inference rules, derived from the semantic map­
pings, for reasoning about these specifications. These rules allow us to reduce proof
obligations on a composite Timed esp process to requiremen ts on the syntactic
subcomponents.

The lack of sufficient algebraic laws means that we cannot construct a proof
system for Timed esp similar to the one developed in [Br831, but we can produce a
complete set of inference rules for proofs of correctness. Further, we have presented
the rules in such a form as to make their application completely mechanical: an
automated proof assistant could be developed similar to the one employed in [D8?].

As an illustration of the use of the rules, we have presented a verification of
a simple flow control protocol, whose definition involved both abstraction and
concurrency. The correctness of this example depends upon the subtle treatment
of hiding in Timed esp: any· hidden events are forced to occur as soon as they
become available. An implementation of the protocol was proposed and verified;
this required a useful result about the properties of recursive processes.

We have exhibited strongest specifications for Timed CSP processes and used
these to verify that Our rules form a complete set with respect to the semantics.
Our intention is to work towards a specification-oriented semantics for Timed esp,
similar to the one described in [OH83], using the enhanced timed failures-stability
model and the hierarchy of lower models. This will allow us to work towards

60

a powerful specification and development methodology for real-time concurrent
systems.

Acknowledgements

The authors would like to thank Bill Roscoe and Mike Reed for their advice and
encouragement; Stephen Blarney, Steve Brookes, Jim Woodcock, and :Mike Gold.
smith for their suggestions; Alice King-Farlow and Elizabeth Schneider for further
inspiration. We are also indebted to our colleagues in the Programming Research
Group for their friendship. This work was snpported by grants from SERC and
BP.

References

[BlS9J S. R. Blamey, TCSP Processes as Predicates, (to appear) Oxford 19S9.

[BrS3] S. D. Brookes, A Model for Communicating Sequential Processes} Oxford
University D.Phil thesis 1983.

[D87] J. \V. Davies, Assisted Proofs for Communicating Sequential Processes}
Oxford University M.Sc. thesis 1987.

(H85] C. A. R. Hoare, Communicating Sequential Processes, Prentice.Hall Inter­
national 1985.

[OH83]	 E.R. 01derog and C.A.R. Hoare, Specification-oriented Semantics for
Communicating Processes Springer LNCS 154 1983,561-572. (Also, Ada
Informatica 231986,9-66.).

[PS88]	 K. Paliwoda and J.W. Sanders, The Sliding- Window Protocol in CSP,
Oxford University Programming Research Group Technical Monograph
1988,66.

[Re88]	 G. M. Reed, A Uniform Mathf'.matical Theory for Real-time Distributed
Computing, Oxford University D.Phil thesis 1988.

[RR86]	 G. M. Reed and A.\V. Roscoe, A Timed Model for Communicating Se­
quenti.a1 Processes Proceedings of ICALP'86, Springer LNCS 226 (1986),
314-323; Theoret1cal Computer Science 58 198&,249-2-61.

61

[RR87]	 G. M. Reed and A.W. Roscoe, Metric Spaces as Models fOT Rea.l.time
Ctlncurrency Proceedings of the Third Workshop on the Mathematical
Foundations of Progra.mming Language Semantics, LNCS 298 1987, 331­
343

[Ro82]	 A.W. Roscoe A Mathematical Theory of Communicating Processes Oxford
Urtiversity D.Phil thesis 1982.

[S88]	 S.A. Schneider Communication in Timed Distributed Computing Oxford
University M.Sc. thesis 1988.

62

A	 Inference Rules

In this appendix, we present a complete set of infenmce rules for behavioural
specifications. A rule is presented for each TCSP operator.

Rule	 STOP

STOP sat (8 = 0)

Rule	 1­

1- sat (s = 0)

Rule	 SKIP

SKIP sat (8 ~ () A J ¢ a(N))
V

(s = «t, J)) A J ¢ a(N it) At" 0)

Rule	 WAIT t

WAIT t sat 8 = 0 A J ¢ a(N 1t)

V

s = «t',J)) A t'" t A J ¢ a(N T[t,t'))

The following rules apply to compound processes. When a process variable is
present, it is more convenient to match proof obligations to consequents: the fann
in which the rules are presented makes this possible.

Rule	 a_ P

P sat	 T(s,N)
8 = 0 A a ¢ a(N)	 }
V	 :>S(s,N)
s = « t, a))~8' A a ¢ a(N r t) A T(8' ~ (t +0), (N ~ (t +0))

(a~ P)	 sat S(8,N)

63

Rule P,OP,

P, sal S,(s, N)

P, sal 5,(s, N)

(S,(S, N) V 5,(s, N) }

A => S(s, N)

S,((),N t begin(s)) /I 5,((),N rbegin(s))

P, 0 P, sal S(s, N)

Rule a: A ~ Po

Va EA. Pa sat S.. (s,N)
(N n ([0, begin(s)) x A) = 0 }

A => S(s, N)

Va EA. (s = «(t, a))~s') => So(s' ~ (t +0), N ~ (I + 8))

a: A ~Po sal S(s,N)

Rule P, n P,

P, sat S,(s, N)
P, sat 5,(s, N)
5,(s, N) V S,(s, N) => S(s, N)

P, n P, sat S(s, N)

Rule P, II P,

P, sat S,(S, N)

P, sat 5,(s, N)

S,(s, N,) /I S,(s, N,) => Sis, N, UN,)

P, II P, sat S(s, N)

Rule P, xlly P,

P, sal S,(S, N)

P, sat S,(s, N)

(a(s" N,) <;; X /I a(sa, N,) <;; Y]

/I

/I a(N3) <;; E - (X U y) => S(S3, N, uN, U N3)

~'(S"N,) /I S,(sa,N,) /I S3 E s, xlly sa)

P, xlly P, sat S(s,N)

64

Rule	 P, III P,

PI sat Sl(S,N.)
P, sat S,("~)

(. E Tmerg,(u,v) 1\ S,(u,~) 1\ S,(v,~)) '* S("~)

P, III P,	 sat S("~)

Rule	 P,; P,

P, sat 5, ("~)

P, sat 5,(.,~)

(,I rt a(.) 1\ If I E TINT. S'("~ U (I x (,I}))) '* S("~)

• "" ,,~(s, + t) 1\,/ rt at',) 1\ end(~,)" t }
1\ '* S("~' U (~, + t))
S'(" ~«t, ,I)), ~, U ([0, t) x (,I})) 1\ S,(S" ~,)

(P, ; P,) sat S("~)

Rule	 P\A

P sat A(.,~)l\a(N') <;A '* S(,\A,~-~')

P\ A sat S("~)

Rule	 I-I(P)

P sat 5d',~)

S,U(,),/(~)) '* S("~)

I-I(P) sat S("~)

Rule	 I(P)

P 5at 5d',~)

S'(',/-' (~)) '* S(I(.), ~)

I(P) sat 5(,,~)

Rule	 I' X • F(X)

If X • X 5at S("~) '* F(WAIT 0; X) sat S(., ~)

I'X. F(X) sat S("~)

65

B Example Proofs

In this appendix we present a proof of soundness for the prefixing rule. We then
extend the sema.utic function F T to permit a proof of the second recursion rule
given in section 5. We verify that the proposed extension is consistent with the
originaJ formulation, and provide a simple proof of the hiding rule.

Bot Prefixing

Rule

P Sat T(s,~)

,=()"arta(~) }
V => S(" ll)
,= ((t, a»)~s'" a rt a(~ r t)" T(s' ~ (t +0), ~ ~ (t + 0)

(a ~ P) sat S(s,~)

Semantics

Frla~PI = [((),~)Iarta(~)}
U

[(((I,a)}~(s+(I+O)},~, U~,U(~, + (1+0)) I
I;;' 0" (I(~,) <; [0,1)" art a(ll,))
"I(~,) <; [I, I +0)" (s, ~,) E FrlpJ)

Proof

P sat T(s,~)

(s,~) E Frla ~ pI=>, = ()" a rt a(~)

V

3 ~" ~" ~" " • s = ((t, a))~(8' + t +0)
" ~ ~ ~, U~, U (~, + I + 0) " t ;;, °
" I(~,) <; [0, I) " art ,,(N,)
"I(~,) <; [I, t +0)" (s', N,) E Frlpl

66

r V(s,N) E FT[a ~ p! • s ~ () A a ¢ "(N)
v
s = ((t, a))~(s' + t + 8) A t' ;, 0 A a ¢ ,,(N t t)

A (B', N ~ (t H)) E Fdp!

r a --; P sat s = () A a ¢ ,,(N)

V

B= ((t, a))~(B' + t +8) A t' ;, 0 A a ¢ ,,(N t t)

A T(s', N ~ (t H))

The inference rule for prefixing follows immediately, by a simple property of
the sat operator (see the third inference rule given in section 2). We conclude that
the rule rests soundly upon the semantics.

B.2 The Sem.antic Function :FT

As mentioned in section 5, we obtain a more powerful rule for reasoning abollt the
behaviour of recursive processes if we extend the semantic function FT. First, we
must define the type of failure sets, IT:

TF '" P(TI:. x RSET)

where TE(and RSET are as defined in [ReBS]. We then extend the syntax of
Timed esp:

TCSP+ ::~ TCSP I X.

where E ranges over the whole of TF. Finally, we extend the semantic function
F r in the following fashion:

FT[X.] eo E

FrlP\A! eo {(s \ A,N - N') I (s,N) E FrlP! A A(s, N) A ,,(N') ~ A}

The remauung clauses are entirely similar to the defining equations for FT. To
show that the new semantic function is an extension of F T we must demonstrate
that the two functions agree on the intersection of their domains: TCSP. A
simple structural induction will suffice: the only non-trivial case is that of the
hiding operator. In this case, recalling the relevant semantic equations

FT[P\A! eo {(s\A,N)I(s,NU([O,end(s,N))xA))EFrlP!l

FT[P\A! eo {(B\A,N-N')I(s,N)EFrlP!AA(B,N)A,,(N')~A)

67

and the definition

A(s, N) '" ([0, end(s, N)) x A) <; N

we proceed as follows:

Assume that F T [p] = F T [pJ and that P is a process.

(s, N) E FriP \ AI
f- 38" N" N, • 8 ~ s, \ A /I (Sj, N U ([0, end(s" N)) x A)) E Fripl

/I N, ~ NU ([0, end(Sj, N)) x A)

/I N ~ N, - N, /I a(N,) <; A

f- 3S11 N1,N1 .s = SI \A AN = NI ~ N2 A (sl,Nd E ..FT[P]
/I [0, end(s" N.») x A <; NI /I a(N,) <; A

since end(sl, N} = end(sl' Nd

f- 3 s" NI , N, • s ~ s, \A /I N ~ N, - N, /I (Sl \ A, NI - N,) E F rip \ AI
f- (s,N)EFrlP\Aj

Conversely,

(s,N)EFrlP\AI

f- 3s1,Nt ,N 2 • s = Sl \ AA N = N1 - N2 A (s1>Nd E .:FT[P]
/I [0, end(s" NI)) x A <; N, /I a(N,) <; A

f- 3 s" N" N, • s ~ s, \ A /I (8" N U ([0, end(s" N,)) x A)) E F rIpI
/I N, ~ N U ([0, end(s, , N,)) x A)
/I N ~ N, - N, /I a(N,) <; A

by Axiom 6 of TMF

f- 3s, • s ~ s, \ A /I (s" NU ([0, end(s, , Nl) x A)) E TripI

by Axiom 6 again, since end(sl' N} ~ end(s\. Nd

f- (s,N)EFT[P\A]

o

68

B.3 Hiding

Having verified that F T is an extension of FT, we can easily establish the soundness
of the rule for the hiding operator:

P .at A(s, N)" a(W) ~ A '* S(s I A, N- W)

P I A sat S(s,N)

Given the semantic equation

J'r1PIA] '" {(sIA,N-N')!(s,N)EJ'r1Pj "A(s,N)"a(W)~A}

we proceed as follows:

P sat A(s, N)" a(W) ~ A '* S(s I A, N- N')

(s,N)EFrlPIA! '* 3 8I, NI, N2 •	 S = 8} \ A /\ N = N1 - N2 1\

A(s" N,)" (Slo N,) E J'r[P!
" a(N,) ~ A

~ \I(s,N)EFrlPIA! .3s"N Io N,.s=s,IA"N=N,-N,
" S(s, I A, N, - N,)

~	 PIAsatS(s,N)

B.4 Recursion

Finally, we establish the result that provides the motivation for the extension to
the semantics: the second inference rule for recursion:

\IX. X sat S(s,N) '* F(WAITo;X) sat S(s,N)

~ X • F(X) sat S(s, N)

We begin by extending the topology on TMF defined in [Re8S] to TF in the
obvious way: Reed '5 proof that all of the basic TCSP operators are non.expanding
is independent of the axioms. That all basic TCSP+ operators are non-expanding
follows immediately.

If F is a function on TCSP+ composed of basic operators, there is a corre­
sponding function CF defined on TF by:

C,(E) '" J'r[F(X.))

69

From the above result, it follows that F is non-expandiug, and that if any of the
components of Fare coutracting, then so is F. The function WAIT 8; X is always
contracting; if we define

F(X) ~ F(WAIT 8; X)

then, for any F, the function F will be contracting; the corresponding mapping
on TF, CF, will be a contraction mapping on a metric space: it will have a unique
fixed point. This fixed point is the semantics of p X • F(X).

If we consider the sequence {En.}, where

En ~ C;(0)

we observe that

lim (En) = F r[~ X 0 F(XJIn_=
The antecedent of the recursion rule

If X 0 X sat S(s, N) => p(X) sat S(s, N)

allows us to conclude that

IfX,noXsatS(8,N) => pn(x) sat S(s,N)

However, it is easy to show that VS • X sat S(s, N), and so

Ifn 0 pn(x) sat S(s,N)

and it can be shown that all predicates of the form sat S(.'I, N) correspond to closed
predicates in TF: if such a predicate holds of all the elements of a sequence, it
must hold of the limit. Hence

I'X 0 F(X) sat S(s,N)

Hence the recursion rule is sound with respect to the new semantics. 0

70

