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Prologue 

Timed CSP is an extension of Communicating Sequential Processes 
which includes timing information. It can be used to model time­
dependent properties of concurrent systems. An algebraic notation is 
employed in the definition of processes, capturing the behaviour of a 
system in a clear and intuitive manner. A uniform hierarchy of se­
mantic models for this notation is presented in [Re8S]. Each sel]antic 
model identifies a process with a set of possible behaviours: by £faSOll­

ing about these sets, we may establish properties of the corresporlding 
processes. 

This Illonograph contains two papers on Timed CSP. The first of 
these introduces the language of Timed esp, aimed at those familiar 
with Hoare's book on esp, [H85]. The second presents a complete 
proof system for reasoning about the most useful class of Timed CSP 
specifications: behavioural specifications aD timed failures. Together, 
these two papers provide a foundation for the specification and design 
of real-time concunent systems using Timed CSP. 
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An Introduction To Timed CSP 

Jim Davies and Steve Schneider 

Oxford University Computing Laboratory
 
Programming Research Group
 

11 Keble Road
 

Oxfmd OX! 3QD
 

Abstract. This paper is an introduction to the language of Timed esp. The 
syntax is presented and explained through several examples of timed interaction. 
The subsequent chapters show how the synta.x may be used to represent aspects 
of time-critical behaviour. The Use of the semantic models in specification is 
demonstrated. The paper ends with a brief discussion of future researclJ directions. 

Introduction 

This paper is intended a.s an introduction to Timed CSP for those already familiar 
with Tony Hoare's book Communicating Sequential Processes, [H85}. Because of 
this, we may assume that. om readers are aware of the advantages of using such a 
notation to reason about the properties of concnrrent systems. There is a need for 
a simila.r treatment of real-time communicating processes, where corrt'ctness may 
depend upon subtle timing considerations; applications include communication 
protocols and operating systems. 

A number of timed models have been postulated for Hoare's Communicating 
Sequential Processes, notably in [J82], [Z86], a.nd [BG87]. However, the hierarchy 
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of compatible models for Timed esp, presented by Reed and Roscoe in [RR861, 
[RR871, and [Re881 h", the following advantages: 

•	 the models are compatible with the existing nntimed models of CSP. 

•	 infinite hiding and infinite alphabet transformations are possible. 

•	 deadlock and divergence may be distinguished. 

•	 divergence may be distinguished from the possibility of divergence. 

•	 the models are arranged in a hierarchy, permitting timewise refinement of 
specifications. 

In this paper, we introduce the models of the hierarchy, and show how they can be 
used in the specification and design of concurrent systems. We begin by introduc­
ing the syntax of Timed esp, together with some examples of its a.pplication. We 
show how to model aspects of timed interaction: timeouts and interrupts. Timed 
CSP descriptions of two protocols are given as examples. We present the semantic 
models, and illustrate their use in the specification and verification of Timed esp 
processes. Finally, we discuss the enhancements that are being made to the theory 
of Timed CSP. 

2 Timed CSP: Syntax 

2.1 Assumptions 

We make a small number of assumptions about timing in a distributed system: 

•	 there is a non-zero lower bound, h, on the length of the time interval between 
any two events in the history of a sequential process. 

•	 there is no lower bound on the time interval between two independent actions, 
such as those performed by two processes running asynchronously in parallel. 

•	 the times at which events occur in the system relate to a conceptual global 
clock: time passes at the same rate in each process. 

•	 hidden events occur as soon as they become available. 

For further details, and a more mathematical treatment, see [Re8S). 
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2.2 Processes 

The process algebra TCSP is essentially that of untimed esp, with the addition 
of a. delay opera tor WAIT: 

p 1- I STOP I SKIP I WAIT t I a ---> P I 
PDPIPnPIPIiPIPAII.PIPIIIPI 
P;PIP\A If-l(p) If(P) I~X of(X) 

Although the semantic treatment of the operators is quite different, the intuition 
behind their use remains the same. In many cases, the new semantics :reflect this 
intuition more closely: the introduction of time information allows Uj to draw 
new distinctions. The notion of process alphabet introduced in [H85] has been 
discarded; synchronisation of events is achieved by means of an alphabeticised 
parallel operator. 

Basic Operators 

1- The divergent process .1 can perform no observable actions.
 
However, internal activity may continue indefinitely; it.is live_
 
locked, like an infinite loop.
 

STOP	 The deadlock process STOP cannot perform any edemal ac­

tions; neither can it make any internal progress.
 

SKIP	 This construct models the successful termination of a process,
 
signalled by the occurrence of the special event ..I; thi, is the
 
only event tha.t this process ma.y engage in.
 

WAITt	 The delay operator, WAIT t, models the delayed successful 
termiuation of a process, introducing a delay of time! before 
the special event ..I becomes a.vailable. The processes IVAIT 0 
and SKIP are equivalent. 

Prefixing 

a ---> P	 The process a --+ P represents a process which is initially pre­

pared to engage in event a. A short delay (0) follows the
 
occurrence of event a, and the process then beha.ves as P. The
 
delay introduced by the prefix operator models the minimum
 
time required for a sequential process to recover from partici ­

pation in an event. Longer recovery times can be modelled by
 
explicit use of the WAIT operator.
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Choice 

PnQ The notion of nondeterministic choice remains unchanged with 
the introduction of time. The process P n Q represents an 
internal choice between P and Q: the environment cannot 
interfere. The indexed version of the operator may be used to 
model infinite nondeterministic choice. 

PDQ The notion of deterministic choice is also unchanged from the 
untimed models. The process PDQ represents an external 
choice between the two processes. Control is passed to the 
:first process to perform an external action; the choice is made 
with the co-operation of the environment. 

Parallelism 

P xlly Q	 The alphabeticised parallel operator provides for synchronisa­
tion in Timed CSP. In the parallel combination P xII y Q , 
process P may perform only those events drawn from the set 
X. Similarly, process Q is restricted to events from the set 
Y. The two processes must synchronise on events from the 
intersection X n Y. 

PIIQ	 The simple parallel operator is a special case of the alphabeti­
cised operator: when the set arguments are omitted, they are 
taken to be the universal set of events E. In the parallel com­
bination P II QI the two processes must synchronise on all 
events. 

Pili Q	 The interleaved parallel combination of two TCSP processes 
perfonns as the two components acting independently: there 
is no synchronisation between them. 

Sequential Composition 

P;Q	 The sequential composition operator is used to transfer control 
from one process to another. In the process P;Q, the transfer is 
effected once P signals successful termination, modelled by the 
occurrence of the special event /. The sequential composition 
operator hides this event from the environment, with the result 
that the event occurs as soon as possible. 
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Abstraction 

P\A The hiding operator allows ns to abstract from internal detail, 
hiding certain events from the environment of a process. This 
has the effect of forcing these events to occur as soon as they 
become available: the events are no longer observable, but the 
delays are retained. In ordinary esp, the set of events to be 
hidden must be finite; in Timed esp, this restriction no longer 
applies. The new models support infinite hiding. 

Renaming 

f(P), f-l(P)	 The notion of process relabelling is unchanged in the timed 
version of esp. The process f(P) is obtained by applying the 
alphabet transformation f to the events in the description of 
process P. The second form of process relabelling, J- 1(P), 
allows ns to consider all of the possible processes which behave 
in a fashion similar to P. 

Recursion 

pX. F(X)	 Recursion in Timed esp introduces a delay of time 0, similar 
to that of the prefix operator, as illustrated by this equivalence: 

pX.F(X) "" F(WAIT6;pX.F(X)) 

2.3 Alphabets 

In Hoare's treatment of esp, [H85], each process P is associated with a. unique 
set of events oP, the process alphabet. If P appears in a parallel combination of 
processes, events from uP require the co-operation of P. In the approach to esp 
used by Roscoe and Reed in [R082] and [Re88] the need for process alphabets is 
removed by the introduction of an alphabeticised parallel operator. 

This operator is parametrised by two sets of events. In the parallel combination 

P AIIB Q 

process P may perform only those events in set A, process Q may perform only 
those events in set B, and the two processes mnst co-operate on events dra.wn from 
the intersection of A and B. 
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Using Hoare's approach, we may restrict the behaviour of a process P by placing 
it in parallel with the process STOP, parametrised by a suitable alphabet. For 
example, the process STOP{IJ} II P behaves as P, with all occurrences of event 
a blocked. Without alphabets, we use the set of all events, ~, to construct an 
equivalent process using the alphabeticised parallel operator: 

STOP (olliE P 

It is still necessary to identify the set of possible actions of a process - we use 
u(P) to denote the set of all events in which process P may participate. 

2.4 Algebra 

A number of properties of un timed esp processes are no longer true in Timed esp. 
It is perhaps instructive to examine these, and the reasons for their disappearance: 

• P II STOP t- STOP if P;< ~ 

P may still make internal progress: the right-hand side is a stable process, but 
the left-hand side need not be. Internal activity is not prevented by the need to 
synchronise with the stable process STOP. 

• (a--;P)\at-P\a 

Even though the a event occurs instantaneously, it is followed by a delay of 0, which 
is still recorded. Thus we now have the equivalence (a --+ P) \ a == WAIT 0; (P\ a) 

• pX. F(X) t- F(I'X. F(X)) 

Any recursion takes time 0 to unfold; this delay is present before each recursive 
call. The ccrrect equivalence is I'X. F(X) =' F(WAIT6;I'X. F(X)). 

•	 (a --; P) III (b --; Q) t- a --; (P III (b --; Q)) 
o 
b --; ((a --; P) III Q) 

We have true parallelism, not time-slice parallelism, so the left.hand process may 
engage in the two events a and b within an interval of time which is arbitrarily 
small The right-hand side, however, describes a sequential process: after perform. 
ing the first event, time 6 must elapse before it can perform another. 
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• Pn(QDR)t(pnQ)O(pnR) 

This law fails because we now have more information about the history of aprocess. 
We can do refusal testing; we have a record of the events refused by J process 
tluoughout its history. H event a is offered only by process Q, the knowledge that 
event a is refused by the left-hand side resolves the nondeterministic choice. On 
the right-hand side, only one of the choices is resolved: R is stiU a possibility. 

Many of the identities established in [H85] a.re retained...
 

PoSTOP '= P
 

P;(Q;R) =; (P;Q);R
 

STOP 1/1 Q =; Q
 

SKIP; Q '= Q
 

(a ~ P); Q =; a ~ (P; Q) if a" J
 

... and the introduction of lime brings more: 

WAIT t, ; WAIT t, _ WAIT (td to) 

WAIT t, II WAIT t, _ WAITma"{t,,t,} 

(WAITt, III WAITt,);P ~ WAIT min{t" t,}; P 

2.5 Example 

Consider the process VM defined below: 

VM =- coin - rattle _ WAIT( d - b) ; drink _ VM 

This is intended to represent a simple vending machine. FoUowing the in>ertion of 
a coin, a rattling sound may be heard as the coin drops. A drink is then offered 
by the machine; this offer is made no earlier than time d after the ratlle. 1£ the 
drink is accepted, the machine returns to its initial state. 

We are considering timed behaviour, and there is a minimum delay of time EJ 

between participation in events. To ensure that the drink becomes availa.ble after 
the specified interval, the delay is represented by a WAIT of time d - t. 

However, the observa.tion of the rattling sound should not be necessary for the 
correct behaviour of the machine, so we abstract from the event, using lne hiding 
operator to conceal it from the environment. 

VM \ rattle =; coin ~ WAIT d; drink ~ (VM \ rattle) 

Notice that the hidden event rattle. occurs as soon as possible. 

i 



3 Timed Interaction 

3.1 A Simple Timeout 

One important aspect of time-critical behaviour is the timeout: a change of state 
in which control is passed from one process to another, if the first performs no 
external actions in a given period of time. We can represent this behaviour in 
Timed CSP using the deterministic choice operator, the sequential composition 
operat.or, and a suitable delay. Consider the TCSP process given by 

(PDWAITt);Q 

where P and Q are also TeSp processes. If P performs no external actions by 
time t, then the special event ..I is made available by the delay construct. The 
presence of the sequential composition operator forces this event to occur as soon 
as it becomes available, removing the external choice and passing control to process 
Q; events from P are no longer available. If P performs an external action before 
time t, then the choice is resolved in favour of P, and the WAIT t process is no 
longer present. 

3.2 Example 

As an illustration of the use of Timed esp, we will consider a simple representation 
of a sensitive vending machine and its user. The sensitive na.ture of the machine 
lies in its response to a kick: if it is kicked while the coin is still dropping, it may 
refuse to dispense a drink. In untimed esp, the machine may be described as 
follows: 

drink ~ SVM ) 
SVM == coin ------) 0 

( kick ~ (STOP n drink ~ SVM) 

As we are unable to observe the coin's progress inside the machine, we cannot de­
termine the effect of a kick event between the insertion of a coin and the attempted 
removal of a drink. If the machine is confronted with a user such as USE, where 

USE == coin ------) kick _ drink --t USE 

then this sequence of events may lead to deadlock: 

STOP )
USE II SVM '= coin ~ kick ~ n 

( dnnk ~ (USE II SVM) 
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Timed esp allows us to include more information in our description. In the 
case of the vending machine, the time at which it is kicked affects the outcome 
of the kick event; if we allow time for the coin to drop, a kick will do no harm. 
Consider the description of a time-sensitive vending machine gi\'en by: 

kick ~ STOP) (drink ~ TSVM ) 
TS VM == coin ---) 0 ; 0

( WAlT 1 kick ~ drink ~ TSVM 

Providing that the user does not kick the machine within a second of inserting the 
coin, a drink will become available. If we have a user whose patience extends to 
three seconds, 

TUSE == coin _ WAIT 3; kick _ drink - TUSE 

then we can guarantee a satisfactory outcome. 

TUSE II TS VM '" coin ~ WAIT J; kick ~ drink ~ (TUSE II TSVM) 

Including timing information in our description has the effect of resolving the 
nondeterminism. The outcome of a kick is dependent upon when tbe kick occurs; 
any untimed description must include an element of nondeterminism. The timed 
process TS VM is a timewise re../inement of the untimed process S VM. 

3.3 A Timeout Operator 

The timeout construct presented above is adequate for most purposes, but it has 
one undesirable property. In the TCSP process 

(PO WAlT t); Q 

control is passed to process Q if P performs no external events before time t. 
However, the same thing wi1l happen if P terminates successfully; the sequential 
composition operator prevents P from signalling successful termination to the 
environment. 

We now define a timeout operator for Timed esp, using the syntactic equiva­
lence: 

P,:,Q = (PO(WAITt;b-; Q))\b 

where b ¢ 17( P) U 0'( Q). If P performs no external e\'ents before time t, the event 
b removes control; as a hidden event, it occurs as soon as possible (at time t) 
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and resolves the choice against P. The process then behaves as Q \ b, which is 
equivalent to Q by our choice of b. 

If P engages in an external action before the timeont occurs, then the process 
continues to behave as P \ b, which is equivalent to P. If this process should ter­
minate successfully, then the special event ,J will be observed by the environment. 

This opeJator will be a useful TCSP process constructor. As a guide to its 
application, consider the following identities: 

(P tl. Q) Ilt;"t1 R == P ~ ( Q t:; R) 

(pnQ)';R", (p,;R)n(Q,;R) 

(PDQ)';R '" (P';R)D(Q';R) 

((a~P)';Q)\X '" WAIT6;(P\X) (aEX,t>O) 

4 Protocols 

One area of study involving the analysis of timed concurrent behaviour is the 
design and verification of communication protocols: distributed algorithms for 
facilitating the transfer of information. We can use the notation of Timed CSP to 
produce dear, concise descriptions of these protocols. 

4.1 The Alternating Bit Protocol 

We present a time'Wise refinement of the alternating bit protocol presented in 
[PS88]. This protocol consists of a sending process S and a receiving process R, 
and operates over a medium represented by wire:; Ml and M2: 

_inI I I: :::: : I lout
s R 

The sending process operates in the following fashion: a message is inpnt along 
channel tn, tagged with a bit value, and output along channel 1m. Consecutive 
messages are tagged with alternating bits. The process awaits a confirmation bit 
on channel re; this should match the bit .value of the last transmission. If no 
such bit arrives within a specified time, the process times out and retransmits the 
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message with the same bit value. This behaviour is captured by the following 
TC5P process: 

s ­ .s;, 
S. _ in?x --+ Im!x.b --+ 5d 

5%.6 =: (rc?a --+ (if a = b then 51_.6 else s'•. ~)) t Im!x.b --+ 5:.~ 

The receiving process complements this behaviour: a message received along the 
channel rm is stripped of its bit value, which is transmitted 011 channel Ie as 
an acknowledgeIllent bit. If the bit value matches the bit value of the previous 
message, the message is discarded. Otherwise, the message is output 00 channel 
out. A TCSP representation might be: 

R == R] 
R6 == nn?x.c --+ (if c::; b then lc!c --+ Rt else out!x --+ lc!c --+R,o) 

We then have a formal description of the protocol in Timed esp. This permits 
a rigorous analysis of its behaviour and a clear description of the interface with 
the environment. If we obtain a similar description of the communicationmedium, 
then we may use Timed esp to verify that the protocol will function correctly. 
For example, we may describe the wires Ml and M2 using TCSP. 

A suitable representation for Ml and M2 is given by the TCSP process below: 

RW. _ nRW". 
t=o 

RWo,.. -= in?x --+ out!x --+ RW.. 

RWH1,.. in?x --+ RWt ,.. 

This process successfully transmits at least ~ of the inputs with which it is pre­
sentedj it can never discard n consecutive inputs. We can use this to model a 
communication medium in which the probability of losing n consecutive messages 
is negligible. If we relabel the channels, we can obtain TC5P representations of 
wires Ml and M2. 

4.2 Local Area Network Protocol 

Local Area Networks can be used to connect systems that need to communicate 
over fairly short distances: up to a few kilometres apart. In most cases, data is 
broadcast across a transmission medium, perceived by all stations or nodes. One 
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protocol designed for use in this situation is the Ethernet protocol introduced in 
[MB76]. 

This protocol operates by accepting a packet of data and attempting to trans­
mit it across the broadcast medium. The medium is monitored throughout the 
transmission, which is halted in the case of interference. This procedure is called 
collision detection. If a collision occurs, the transmitter waits for a random amount 
of time before trying again. H the same message is interrupted too many times, 
then an error is reported. 

In this section, we are not concerned with the mechanism of transmission. We 
wish to describe the service provided by an ethernet-like protocol to each node 
of a network. In the ISO seven-layer model, see [T8IL this corresponds to the 
interface between the datalink layer and the network layer. The datalink layer is 
the parallel combination of the datalink components of all of the network nodes; 
at each of these the interface consists of three chanuels: in, con and out. 

in con out 
NETWORK 

DATALINK 

At node i, messages are transmitted to the datalink along channel i.in. The 
datalink then processes the message, and attempts to transmit the contents to 
the other nodes on the network. In our representation, the outcome of such an 
attempt is nondeterministic. If the message m is successfully transmitted then 
the network layer is notified using channel i.con. If not, then a failure is reported 
using the same channel. 

The factors influencing the success or failure of an attempt cannot be deter­
mined from the network layer, but knowledge of the datalink structure allows us to 
include timing information in our description. For example, if the time taken for 
the datalink to pass a message m to the transmission medium is tm, a successful 
transmission cannot be reported within time t... of an input. 

In ethernet-like protocols, if the transmission is interrupted, the datalink backs 
off for a random period, then begins again without informing the network layer, 
abandoning the current message only after 15 consecutive attempts have failed; 
only then is the failure reported. H the backoff time is restricted to the interval 
[t".in, t".w:l, then the failure report for a message m may become available at any 
time between 15t".in and 15(t... + t...=). Because of this, if the transmission of a 
message m is to succeed, it must succeed by time 15(t... + t...<u). 
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We can capture this timing information in Timed esp. If we choose N to 
represent the set of node identifiers, and let t.",] be the time taken for a signal to 
travel from node i to node j, we may represent the service provided by thedatalink 
layer as follows: 

DATALlNK = "' NODE. 
iEN 

NODE. = •. in?m _ (SUCCESS.,m n FAILURE.) 

SUCCESS;.m = (WAIT Is); III WAIT 4j ;j.out!m - STOP 
>EN 

111< 
(. i.con!success -+ NODE. 

FAILURE. = (WAIT IF) ; i.con!/ailu", - NODE. 

where 

WAITI = nWAITt 
leI 

Is = [tm,15(tm+t,.~J]
 

IF = [15tm•• , 15(t,. + tm=J]
 

Note that the arrival of a report on the channel con is preceded by a nondeter· 
ministic delay. This is modeUed by a nondeterministic choice over an interval of 
time. 

Simple Interrupts 

An interrupt is a signal that interrupts the execution of a process. Sl1bsequent 
behaviour may be determined by an interrupt handler: a process that identifies 
the nature of the interrupt signal and acts accordingly. In some cases I an inter. 
rupted process may resume execution at the point of interruption; the process 
state is stored for the duration of the interrupt. In others, the existing process is 
terminated, to be replaced by another or simply restarted. 

It is possible to model the first class of interrupts in Timed esp; we simply 
suspend all internal activity present in the interrupted process. This requires a 
new semantic definition, outside the scope of an introduction to the notation of 
Timed esp. 
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In this section we will address the second class of interrupts, the simple inter­
rupts. These can be used to model any situation in which the internal state of 
the interrupted process P need not be preserved; any external actions of P before 
the interrupt can be recorded and acted upon during and after the interrupt has 
occurred. 

5.1 A First Approach 

Consider the TCSP process 

(Pllla~SKIP);Q 

where a ¢ a(P). Tltis behaves as process P until the first occurrence of event 
a. This signals the successful termination of the first construct, passing control 
to process Q. Event a acts as an interrupt event to process P. We can use this 
construction to model simple interrupts. 

The fact that the behaviour following an interrupt is the same as that following 
successful termination of P need not concern us. In many cases, process P will 
never terminate successfully. If we require that P should be able to signal successful 
termination, or that there should be a choice of interrupt events, we can use the 
TCSP interrupt operator presented later in this section. 

Fmther, we can dispense with the interrupt event altogether, automatically 
removing control from process P at a particular time. In the process 

(P III WAIT t); Q 

the first construct will terminate at time t, transferring control to process Q. 

5.2 Example 

We consider a simple pinball machine. To play, the user must insert a coin, and 
press the start button. At the end of the game, the machine returns to its initial 
state. To add interest, the user may cause an interrupt during play by tilting the 
machine; this results in the immediate termination of play: 

PINBALL "" coin ~ start ~ (PLAY III tilt ~ SKIP) ; PINBALL 

The user's interaction with the machine is not limited to the above three events. 
During the game, two flippers are provided; the action of these is described by the 
processes below: 

LEFTFLIP "" left ~ WAIT (d - 26); LEFTFLIP
 

RIGHTFLIP "" right ~ WAIT (d - 26); RIGHTFLIP
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Observe that occurrences of the event left, representing the triggering of the left 
flipper are restricted; there is a minimum delay d between any two occurrences. A 
similar restriction is placed upon the event right. However, each flipper should be 
independent of t he other; there are no bounds on the interval between consecu tive 
left and right events. 

We make no other observations during the game, which may end a.t <my time 
after the short interval required for the ball to enter play. This is modelled using 
an infinite nondetenninistic choice: 

PLAY '" (LEFTFLIP III RIGHTFLIP) IIi n WAIT t 
IE[3,oo) 

Finally, we may cause an interrupt at a higher level. For example, the user 
may ina.dvertently cut of[ the power to the ma.chine; if this happens, no further 
interaction is possible. This may be represented with another simple interrupt 
construct: 

MACHINE '" (PINBALL III unplug --. SKIP); STOP 

5.3 A Simple Interrupt Operator 

If the same TCSP process may be interrupted by more than one event, or if we 
wish to a.llow successful termination, the simple interrupt construct is not sui table. 
Instead, we may use the TCSP operator defined by the syntactic equivalence below. 
In this expression, I denotes the set of possible interrupt events, and br denotes 
the set {b; 11 E I}, the set of hidden synchronisation events. 

( 

P; a ~ SKIP)
III 
i : I ~ SKIP 

(a --. SKIP 
; 0 

bi : b[ ~ Q( i) 

) 

P'V Q(i).E! Elllu'IU{.) \bIU[a} 

( 

a ~ a ~ SKIP ) 

~: I --. bi --. SKIP 

where the following alphabet conditions hold: 

In u(P) ~ 0 
(b I U [a}) n (u(P) U U'E! u(Q(i)) ~ 0 
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The synchronisation events should be chosen to make them independent of the 
processes, and P should not be able to interfere with its own interrupt signals. 
To see tha.t this is a satisfactory definition of the interrupt operator, consider the 
possible behaviours of the process: 

•	 if process P has not teoninated successfully, and no interrupts have oc­
curred, then any of the interrupt events i are available to the environment. 
The synchronisation event a is hidden from the environment, but may not 
OCCUI; although it is available in the lower half of the parallel combination, 
it remains blocked (by P) in the upper half. 

•	 if .an interrupt i occurs, then the corresponding synchronisation event bi 

is enabled. This event is hidden from the environment, and will occur as 
soon as it becomes available in both halves of the parallel combination. At 
the same time, P has been interrupted, and control in the upper half has 
been passed to a deterministic choice between a and a set of synchronisation 
events. However, i has occurred, so the lower half is willing to participate 
only in the event b.. As all of these events have been hidden, bi occurs 
immediately, and control passes to Q(i), the correct interrupt handler. 

•	 if P terminates successfully, the hidden event a is enabled, and occurs at 
once. In the upper half, control again passes to the deterministic choice, but 
this time only the event a is being offered by the lower half, which must have 
synchronised upon the first a. Thus a second hidden a occurs, and the entire 
construct teoninates successfully. 

5.4 Example 

To illustrate the use of this operator, we return to our pinball machine. The latest 
model PINBAL~1 has a unpleasant feature: if a coin is inserted while a game 
is being played, the machine abandons the current game and is prepared to staIt 
a new one. We now have two interrupt events during play: tilt and coin. The 
behaviour following an interrupt depends upon the nature of the interrupt event: 

PINBALL, " coin ~ GAME 

GAME" start ~ (PLAY V HANDLE(i)); PINBALL,
.El 

where the set I contains only the events tilt and coin, and the interrupt handler 
is defined as follows: 

HANDLE(tilt) " SKIP
 

HANDLE( coin) " GAME
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5.5 A Timed Interrupt Operator 

We can define a. timed interrupt operator for Timed esp. This has the effect of 
transferring COD tr01 from one process to another l after a. predetermined period of 
time. Unlike the construct presented in section 5.1 , this opera.tor permits the first 
process to signal successful termination. 

( 

P; a~ SKIP )
III 
WAITt;b~ SKIP 

(a ~ SKIP ) 
; III 

b ~ Q 

pi Q, _ dl{o,6} \ {a,b} 

a ~ a ~ SKIP) 

( ~ ~ b -; SKIP 

where {a, b} n (7(P) U a(Q)) ~ 0 Note that a delay of 28 i, introduced when 
control is passed by this operator: the second process starts execution at time 
t + 26. This is reflected in the following identity: 

(pi Q) i R" pi(QiR)
11 11 +~+26 Il 12 

\Ve can extend the definition of the interrupt operator to allow interrupts over 
an interval, occurring nondeterministically: 

( 

P; a. ~ SKIP )
III 
WAIT T; b ~ SKIP 

(a ~ SKIP) 
; III 

b ~ Q 

pi Q 
T 

_ 
E lI{o,.) \ {a, b} 

( 

~ ~ a ~ SKIP ) 

b _ b --+ SKIP 

where {o., b} n (cr (P) U cr( Q)) = 0 and T represents a finite interval of time. The 
construct WAIT T is as defined at the end of section 4.2: 

WAIT T '"	 nWAIT t 
'ET 
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6 Timed CSP: Semantics 

Timed CSP has been given a variety of semantic models. These can be used to 
produce formal descriptions of process behaviour. In each model, a timed CSP 
process is identified with a set of possible behaviours. A typical element of a 
semantic set is a tuple, whose elements represent different aspects of a possible 
behaviour. 

The untimed models consider the traces, refusals and stabilities of a process; 
these are closely related to the traces, refusals and divergences of untimed esp. The 
timed models address the timed equivalents of these components: timed traces, 
timed refusals, and timed stabilities. As the untimed models are not the subject 
of this paper, we will omit the prefix timed where no ambiguity will arise. 

6.1 Traces 

A timed trace of a Timed CSP process is a finite sequence of observable events jn 
the history of that process, each labelled with the time at which it occurs. The 
events are presented in chronological order. In the simpler models of timed CSP 
- those without timed refusal information - we must identify the times at which 
events first become available, in order to reach a satisfactory definition of hiding. 
We do this by placing a hat upon an event whenever it occurs at the first moment 
of availability. 

As an example, consider the trace set of the process 

p '" WAIT1;(a~b~STOP) 

((0.5, a), (1, b)) is not a trace of P: the first event ca.nnot take 
place before time 1. 

«1, a), (2, b)) is a trace of P 

«1,0), (2, b)) is a trace of P 

«(1.5,0), (2, b)) is not a trace of P~ the hat on a is incorrect, as 
the event first becomes available at time 1. 

«2, a), (2 + D, b)) is a trace of P. 

«2,b)) is not a trace of P: the first event must be an a. 

((1.5, b), (1, a)) is not a trace of P: the sequence of ti roes in any 
trace must be non-decreasing. 
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6.2 Refusals 

Timed refusals represent the times at which events may be refused during the 
observation of a given trace; they are not simple extensions of un timed refusal sets. 
A timed refusal is finite umon of refusal tokens; a refusal token is the product of a 
finite half-open interval of time with a set of events. A typical element of a refusal 
set is thus a (tim.e,event) pair. The restrictions on the composition of a refusal set 
allow us to consider only those observations made in a finite period of time. As 
in the case of untimed esp, (trace, refusal) pairs are termed failures. We precsent 
two different explanations of refusals: 

Timed refusals are refusals 

We may interpret a timed refusal as the set of (time, event) pairs refused in a 
possible history of the process. In the failure (s,l{), we consider the refusal set N 
to be the set of (time) event) pairs that the process may refuse to engage in given 
that it performs the trace s. In the case of our example process P: 

«(I,a)),([O,1 + 6) x (b})) is a failure of P: event a may t<1ke place at time 1, 
and in this ease, event b may he refused IIp until 
time1+6 

((I,a)),([0,2) x {a})) is a failure of P: if event a occurs as soon as it 
becomes available, then it is refused up until that 
time and from that time onwards. 

«(2,a)),([0,2) x (a})) is not a failnre of P, as event a must be 1I.vailable 
from time 1 nntil such time as it occurs. 

((I,a)},([O,oo) x (a})) is not a failure of any process: the alleged refusal 
describes infinite behaviour. 

Note that there is no reason why a pair (t , a) should not be present in both the 
trace s and the refusal set N. In the second failure above, the process refuses a up 
until time L Having engaged in the event at time 1, it refuses any further offers 
of the same event. Tills apparent contradiction is not present in the alternative 
exposition given below, willch also permits an intuitive explanation of the hiding 
operator. 

Timed refusals are forcing sets 

Alternatively, we may "l'iew timed CSP processes as entities upon which the global 
environment may experiment. In addition to simply observing events, this envi­
ronment may force events over finite intervals of time: if the process is prepared to 
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perform an event when the environment forces it, it must occur instantaneously. 
Events that are not forced may still OCCllI, if available. 

A timed refusal may be viewed as the history of such an experiment; a timed 
trace is a possible result. The presence of a pair (t, a) in a refusal set corresponds 
to the act of forcing event a at time t. In the light of this interpretation, we 
reconsider the failure set of process P: 

«(l,a)),([O,1+o) x {b})	 is a failure of P: if event b is forced over the in­
terval [0,1 + o}, an event a may be observed at 
time 1. 

«(1,a)),([0,2) x {a)))	 is a failure of P: if event a is forced over the 
interval [0, 2), it must occur as soon as it becomes 
available (at time 1). 

«(2, a)), ([0,2) x {a})) is not a failure of P: a should have occurred at 
time 1. 

«(2,a)),0) is a failure of P: if a is not forced, it may occur 
at any time at which it is available. 

The advantages of this intuition are 

•	 the interpretation of the empty refusal set, always possible for any trace, is 
more easily understood. 

•	 hiding a set of events A corresponds to forcing them upon a process. 

•	 the sequential composition operator works by forcing any available occur­
rence of the special event ,J. 

It should be observed that the global environment is merely an intuitive device; 
we cannot model it as a TCSP process - such a process may pennit or prevent 
the occurrence of events, but cannot force their occurrence. 

6.3 Stability 

In addition to the traces and refusals of a process, which record the response and 
reaction to external stimuli, we are also interested in the internal activity of a 
process. We wish to know whether or not the process is making internal progress, 
whether the process has stabilised. Once a process has stabilised, there can be 
no further changes of state without an external action occurring. The concept of 
stability is dnal to that of divergence, discussed in earlier models of CSP. 
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Intuitively, we may imagine a red light on the back of a process that is ex­
tinguished once all internal activity has ceased. The stability component of a 
behaviour is the earliest time by which the light is guaranteed to be off. In the 
failures-stability model for Timed CSP, a typical behaviour of a process is rep_ 
resented by a triple (s, Ct, N): the stability value a is the earliest time by which 
the process must have stabilised, given that it exhibits the external behaviour 
described by trace 8 and refusal N. 

Choosing Ct to represent the earliest time of guaranteed stability means that 
every (trace,7-efu..sal) pair of a given process is associated with a unique stability 
value. Similarly, in the timed stability model, where behaviours are (trace,stabi/ity) 
pairs, each tra,ce is associated with a unique stability value. 

6.4 Models 

The semantic models for CSP and Timed CSP presented in [Re88] form a hierarchy, 
ordered according to the information contained in a, typical element of a semantic 
set. All of the models are based upon metric spaces, and projection mappings 
have been defined, allowing the various aspects of a process's behaviour to be 
considered separately. In the diagram below, these mappings are represented by 
arrows connecting the various models. 

TMFS 

MFS 

/ ~
 
TMF MF Ms TMs 

~/
 
MT 

TMT 
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As we move up the hierarchy, further aspects of process behaviour are revealed. 
The lower models in the hierarchy, M T , MF , Ms and MFS have no timed informa. 
tion at all; they are the traces, failures and stability models of untimed esp. The 
lowest timed model, TMT, identifies only the timed traces of a process. Higher 
models identify failures and stabilities, allowing us address both external response 
and internal activity. 

In [ReSS], a semantic function is defined for each modeL The complexity of the 
semantics reflects the amount of information required for a successful treatment of 
timed concurrency. AE an example, we present the semantic clause for the prefix 
operator in the timed failures model: 

FriH pI " (((),N) Ia" a(N)) 
U 

{(((t,a))~(s+ (t+8)),N) It" 0 1\ a" a(N rt) 1\ 

(s,N ~ (t + 8)) E Frlpl) 

where:Fr is the semantic function from TCSP to TMF. 

A behaviour of a ~ P may arise in one of two ways. If event a has not yet 
occurred, then it must be available at all times, hence a must not be in I7(N), the 
set of all events in refusal set N. U a has occurred, at time t, and is recorded as the 
first event of the trace, then it must have been available before time t. The process 
may not participate in any event during an interval of length a, hence any event 
may be refused. The subsequent behaviour of the process must be a behaviour of 
P, transla.ted through time t +a. 

The notation employed above 'Will be defined formally in section 7.2. 

Specification 

In this section, we show how the requirements placed upon a system may be 
translated into Timed esp specifications. AE the semantic sets represent sets 
of possible behaviours, we can write each specification as a predicate upon the 
semantics of a process. 

We ha.ve seen how the syntax of Timed esp can be used to produce formal 
descriptions of time~critical systems. These descriptions can be used to suggest 
an implementation, or as an algorithmic representation of an existing system at 
a suitable level of abstraction. Further, we can determine whether or not such a 
description meets our formalised requirements. 
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7.1 Behavioural Specifications 

We consider a beha.vioural specification to be a predicate on a typical behaviour 
of a process. H this predicate holds of all possible behaviours of a process, we say 
that the process satisfies the specification. This permits us to define a relation 
between TCSP processes and behavioural specifica.tions: the satisfaction operator 
sat for a process P and a specification 5(5, N): 

P sat 5(8, N) '" \1(" N) E Frl P! .5(s,N) 

The form of a beha,,;oural specification identifies the model employed. In the 
above example, the parameters 8 and N indicate that the timed failures model, 
TMF, is being used. This extends the definition made in [H85]. In [Re88], Reed 
defines specifications as predicates on the entire semantic set of a process. We 
define predicates on a typical element of that set. Reed's specifications permit 
a more detailed analysis of the process semantics; ours are more suited to the 
capture of general requirements upon a process. 

For every behavioural specification S, we can define a corresponding Reed 
specification Rs as follows: 

Rs(P) P sat 5(sY) 

However, not every Reed specification has a corresponding behavioural specifica­
tion. For example l the predicate 

(((1,a),(2,b)),0) E Fr[P! 

caIlnot be written as a beha\o'ioural specification. It states that ({ (1, a) l (2, b)) I 0) 
is a possible behaviour of P, aIld to decide upon its truth we need to examine the 
whole of the sem.antic set. 

We are interested in the correctness of processes. Behavioural specifications 
reflect this: they insist that every possible behaviour is acceptable. To slate that 
a process may participate in a certain event at a cert.un time, or refuse a certain 
event at another, \\<-ithout further information, is of little use. We are iuterested 
in what Can be guaranteed about a process behaviour. 

7.2 Notation 

To capture our requirements as predicates, we define a number of operators on 
timed traces and tirued refusals. A more extensive list of semantic operators is 
given as an appendix to this paper. 

23 



Timed traces are sequences of (time,event) pairs. We write 81 ...... 52 to represent 
the concatenation of haces Sl and 82, and #s to represent the length of s. As in 
[H85], we define the relation in as follows: 

Sl in S2 == 3u,V.U......S1 ......V=S2 

This relation holds whenever the first trace is a contiguous subsequence of the 
second. 

The last operator is defined on non-empty timed traces, returning the last event 
in a trace: 

last(s~((t, a»)) '" a 

while the end operator is defined for all haces: 

'nd(()) '" 0 

,nd(s~((t, a») ­

The definition of the restriction operator includes the clauses for hatted. events in 
a trace. These are present only in the lower models of the hierarchy; timed refusal 
information makes them unnecessary. 

()r A '" () 
(((t, a»)~s) r A '" {(t, a»)~(s rA) if a E A 
(((t, a»)~s) t A '" s rA otherwise 

(((t, a»)~s) t A '" {(t, a))~(s t A) if a E A 
(((t, a))~s) t A '" s t A otherwise 

This operator restricts the trace to events drawn from a given set A. 

We define two operators on timed refusals. The first restricts the refusal set to 
events that may be refused after a specified time: 

N 1 t '" Nfl ([t,oo) x E) 

where E denotes the set of all events. The second operator yields the set of events 
mentioned in the refusal set H. 

O"(N) '" {aEEI3t.(t,a)EN} 

If an event is not in O"(N), then it is not refused during the behaviour (s,N). 
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To illustrate the use of these operators, we define: 

(s,N) '" (((I,a),13,c)),[0,3) x {a,b}) 

and observe that; 

last(s) c 

endls) 3 
5 r (a,b) «1, a)) 

a(N) {a, b} 

N12 [2,3)x{a,b) 

7.3 Example 

Recall the definition made in section 2, of a simple vending machine: 

VM == coin-----)rattle.-----) WAIT(d-6)jdrink---+ VM 

This process satisfies the following behavioural specifications: 

S,(s} '" «(t"rnttle),(t"drink))ins=<>t,;;>t,+d 

S,(s, N) '" last(s) = rattle =<> drink rj a(N 1 (end(s) + d)) 
S,(s,,,"} '" last(s) ~ coin =<> a = end(s) + 6 

These capture the following requirements: 

•	 a drink is not available until time d has elapsed, following the OCCllITence of 
mttle. . 

•	 when a mUle is heard, tben a drink will be available after a further time d. 

•	 at a time fJ after the insertion of a coin, the machine has stabilised: all 
internal activity has ceased. 

That the process meets these specifications could be verified with reference to the 
semantics. With more complex process descriptions, this is impractical. Fortu­
nately, there is an alternative. We can derive a number of inference rilles tra.nsform­
iug a behavioural specification on a TCSP process to behavioural specifica.tions on 
its components. Indeed, a complete proof system for timed failures specifications 
is given in [DS89]. 
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7.4 Proof 

A proof of correctness of a Timed CSP process is a verification that it meets a 
given specification. For example, we might wish to prove that the simple vending 
machine VM meets the first of the above specifications. We can write this proof 
requirement using the sat relation: 

VM sat S,(s,~) 

and establish the truth of this assertion by demonstrating that the predicate 
8 1(s, N.) holds for a typical element of the semantic set :FT [ VM] . 

A more complex requirement can be placed upon the parallel combination of 
the time-sensitive vending machine and its user: 

TUSE" TSVM sat last(s) = kick => drink '1- <T(~ 1 (end(s) + 6)) 

This ca.ptures the requirement that the user cannot break the machine by kicking 
it; a drink will always become available. Recalling the definitions of the component 
processes 

kick ~ STOP) (drink ~ TSVM )
TSVM == coin _ 0 ; 0 

( WAfT 1 kick ~ drink ~ TSVM 

TUSE == coin _ WAIT 3; kick _ drink _ TUSE 

we can see that this is guaranteed by the combination of the user's restraint and 
the invulnerability of the machine after a certain time interval. More formally, we 
can show that: 

TSVM sat last(s) = kick A end(, t coin) + 2';; end(s) 

=> drink '1- a(~ 1 (end(s) + <5)) 

TUSE sat last(s) ~ kick => (end(' rcoin) +2';; end(s) 

A drink '1- a(~ 1 (end(s) +6))) 

and use the following inference rule (from [DSg9]) to establish that the required 
result holds: 

PI sat TI(S,~)
 

P, sat T,(s, N)
 
T,(s,~,) A T,(s,N,) => S(s,N, u ~,)
 

PI II P, sat S(s, N) 
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To establish that a parallel combination meets a given specification S) it is s!lfficient 
to find two specifications, one for each component, that yield S for a combination 
of behaviours. More precisely, a typical failure of PI II P2 must satisfy: 

•	 any trace of Pi II P1 is a trace of each component. 

•	 any refusal set of PI II P2 will be the union of two refusal sets: one from each 
of the component processes. 

The parallel combination refuses to participate in an event e whenever either or 
both of its components refuses e. 

Similar rules exist to verify that the simpler, sequential processes TUSE and 
TSVM satisfy the two specifications given above. Using these rnles, we can estab­
lish any property of a process that can be captured as a behavioural specification. 

Discussion 

This paper was intended as a brief introduction to Timed esp. The ideas and 
notation presented in the previous sections provide the foundation for a uniform 
theory of timed concurrency. As it stands, Timed esp is a powerful tool for 
capturing requirements in a dear and concise fashion, and commnnicating these 
requirements to others. Additions being made to the theory, inclnding a com­
plete proof system for behavioural specifications, will simplify the analysis and 
verification of processes; software tools can be developed to assist in this. 

The additions being made to the theory inclnde: 

Instability sets: In [Bl89], Blarney develops an alternative treatment of process 
stability, associating each failure with a set of instabilities, rather than a single 
stability value. Using this approach, we may obtain a basis {or a complete proof 
system {or all models of Timed esp. 
Event times: The b delay, present at each prefix, can be replaced by a function, 
associating a different delay with each event. This yields a more intuitive trt~atment 
of sequential processes, and permits event refinement. 

Time-slice parallelism: The parallel operators given in this paper can be nsed 
to describe true parallelism. However, we may wish to model multiprocessing 
behaviour, in which the execution of a process may be suspended. A new semantic 
definition is required, and has already been formnlated in [DS9]. 

Timewise refinement: We can use the structure of the hierarchy to refine pro­
cesses and specifications, adding the timing information of a higher model. 
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A number of other directions are also being pursued; these inclade the addition 
of probabilistic models to the heirarchy, the development of software tools, and a 
methodology for process design and implementation. 
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A Notation for Specification 

We define a Dumber of opera.tors on timed tra.ces, timed failures and timed refusals. 
These will be useful in formulating definitions and specifications of Timed CSP 
processes. 

A.I Timed Traces 

Timed traces are sequences of (time,event) pairs. We write 81 .......82 to represent the 
concatenation of traces 81 and S2 l and #3 to represent the length of s. As in [H85J, 
we define the relation in as foUows: 

81 in Sol == :I tL, 1! • u....... St ...... v = 81
 

This relaLion holds whenever the first trace is a contiguous subsequence of the 
second. 

First and Last 

The first and last operators are defined upon non-empty traces, returning the first 
and last events in a trace, respectively: 

fiTst«((t, a))~s) =a 
last(s~((t, a))) a 

and the begin and end operators are defined for all traces: 

b,gin(()) =0 00 

b,gin(((t, a))~s) =0 t 

'nd(()) =0 0 

,"d(s~((t, a)) = 

The values chosen for the empty trace are the most convenient for the subsequent 
mathematics. 
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During, Before and After 

We define the during, be/ore, and after opera.tors on timed traces. The first return~ 

the subsequence of the trace with times dra.wn from set I. The others return the 
parts of the trace before and after the specified time. 

oTI ~ 0 
«((I, a))~s) T I ~ (t, a))~(s TI) if tEl 

(s TI) otherwise 

sit ~ s T[0, tl 
s1 t ~ s 1(1,00) 

where I is a set of time values. In the case that 1= {t} for some time t, .....e may 
omit the set brackets. The be/ore operator, r ,is also used to denote the restriction 
of a trace to events drawn from a given set. If the second argument of the operator 
is a set, then: 

OIA ~ 0 
«(I, a))~s) t A ~ ((I, a))~(s t A) if a E A 

~ stA otherwise 

«((t, a))~sli A ~ «(I, a))~(s t A) if a E A 
~ ,t A otherwise 

Stripping 

If timed refusals are not being considered, the events in a timed trace may be 
labelled with hats; the operator hstrip strips the hats from a timed trace: 

hstrip(()) ~ 0 
hstrip((t,a»)~s) ~ «t,a))~hBtrip(s) 

hstrip((t, a))~s) ~ «t, a))~h~lrip(s) 

whereas the operator tstrip strips the timing information from a trace: 

/strip( 0) ­ o 
/strip«((t, a))~s) (a)~/slrip(s) 

We use thstrip to denote the composition of these two functions. 
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Alphabet 

We define an operator a on traces, which yields the set of events present in the 
trace: 

<7(s) '" {a E E 13 t. ((t, a)) in hstrip(s)) 

Note that we discard the 'hat' information when considering which events are 
present in a trace. 

Shifting and Counting 

We define a temporal shift operator: 

o~ t - 0 
(((t"a))~s) ~ t - ((t, - t, a))~(s ~ t) if it ~ t 
(((t"a))~s) ~ t == s -'- t otherwise 

and a collnt operator, ! ,which returns the number of occurrences of events from 
a given set: 

s 1 A '" #(s r A) 

In the case that A = {a} for some event a, we omit the brackets. 

Hiding, Equivalence and Parallel Combination 

The following functions are used in conjunction with the corresponding TCBP 
operators. We define a simple hiding operator on traces, with the effect of removing 
hidden events: 

s \ A '" s r (E - A) 

and an equivalence relation 3: on traces as follows: u 3: v if and only if u is a 
permutation of 'V. As both are timed traces, only events occurring at the same 
time may be interchanged. 

Finally, we define two parallel operators on traces, corresponding to the effect 
of parallel composition in Timed CSP: 

vxllyv'" {sldX=v!\sry=v!\sf(XUY)=s} 

vlliv '" (s'Vt.sTt~(vTt)~(vTt)) 
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Examples 

As an example, consider the timed trace s, where 

s'" (I,a),(2,h),(2,a),(3,cJ) 

we observe that: 

last(s) c 

h,gin(s) 1 

s i [2,3) (2, b), (2, a)) 

s t 2 «(I, a), (2, b), (2, a)) 
st{a}11 ((2, a)) 

o(s) {a,b,c} 

ilstrip( s) ((1, a), (2, b), (2, a), (3, c)) 

istrip( s) (a,b,a,c) 
tilstrip( s) (a, b, a, c) 

s I a 2 
s~2 «(0, b), (0, a), (I, c)) 

s\a ((2, b), (3, c)) 

To illustrate the use of the parallel operators, w~ make the following definitions: 

u '" ((I,a),(2,b),(2,c)) 
v '" ((1, d), (2, b), (2, c)) 

w '" ((2,b),(3,c)) 

X '" {a,b,c} 

y '" (b, c, d) 

and observe that: 

u xlly 1/ {((I, a), (I, d), (2, b), (2, cJ), ((I, d), (I, a), (2, b), (2, c))} 

U xlly w o 
u III w {((I, a), (2, b), (2, b), (2, c), (3, c)), 

((1, a), (2, b), (2, c), (2, b), (3, c))} 
, (; 

A.2 Timed Refusals 

A number of the above operators have a similar action when applied to timed 
refusal sets. If we make the definition 

liN) '" {tI3a.(t,a)EN} 
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then we can define begin and end on refusals: 

b'gin(N) - 00 if N = 0 
b,gin(N) - mf(I(N)) otherwise 

end(N) '" ° if N= 0 
end(N) '" sup(I(N)) othe,wise 

Before, After and D~ring 

The befort, after, and during operators can be defined 'on refusals: 

N r t '" N n ([0, t) x 1:) [0 

N1t '" Nr1([t,oo) x 1:) 

N ilt" i,l '" N r1 ([t,,~) x 1:) 

Recalling that E denotes the set of all events, we see that. these restrict a refusal 
set to events that may be refused before, during, and after the specified times. 

Restriction and Hiding 

We overload the r symbol to denote set restriction: 

N,A '" Nr1([O,co) x A) 

with hiding defined in the obvious way: 

N \ A '" N 1(1: - A) 

Shifting 

We define a temporal shift operator on refusals: 

N~t '" {(t,-t,a)[(t"a)ENi\t, ;H} 

Alphabet 

We define an alphabet operator J: 

~(N) '" {aE1:[3t.(t,a)EN} 
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Examples
 

To illustrate the use of these operators, we make the definition:
 

N '" ([0,2) x (a, b}) U ([1, 5) x (c, d}) 

and observe that: 

I(N) [0,5) 

begin(N) a 
end(N). 5 

NrJ ([0,2) x (a, b}) U ([1,3) x (c, d}) 

N13 [3,5) x {c,d} 

<7(N) {a,b,c,d} 

N t a [0,2) x (a) 
N~2 [0,3} x {c,d} 

A.3 Failures 

For convenience, we extend some of the above definitions to individual failures: 
timed (trace) refusal) pairs: 

begin (s, N) '" min (begin(s), begin(N)) 

end(s,N} '" max(end(s),end(N)) 

(s,N) TI '" (s TI,N T1) 

(s,NHt '" (s rt,N rt) 
(s,N) 1 t '" (s1 t,N 1 t) 

<7(s,N} '" ,,(s)U,,(N) 
{s,N)~t '" (s~t,N~t) 

(s, N) r A '" (8 i A, N r A) 

(s,N)\A '" (s\A,N\A) 

A.4 Processes 

We extend the alphabet operator to TCSP processes: 

u(P) '" U(,,(s) I s E traces(P)) 

and observe that this differs from the alphabet concept used in earlier versions of 
esp. 
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Abstract. A simple notion of specification is introduced, and a complete set 
of inference rules given, {or reasoning about real-time processes. The notation 
of Timed Communicating Sequential Processes is employed, and the strongest 
possible specification of a. process is discussed. A proof of correctness of a simple 
protocol is given to illustrate the method of verification. 

Introduction 

Timed CSP is ~n extension of Communicating Sequential Processes [H85] which 
includes timing informa.tion. It can be used to model time-dependent properties 
of concurrent systems. An algebraic notation is employed in the definition of 
processes. capturing the behaviour of a. system in a dear and intuitive manner. A 
uniform hierarchy of semantic models for this notation is presented in [Re88]. Each 
semantic nlOdel identifies a process with a. set of possible beha.viours: by reasoning 
about the~e sets, we may establish properties of the corresponding processes. 

lTbe material presented in this paper will appear in the proceedings of the Fifth Conference 
on the Mathematical Foundations of Progranuning Semantics (1989); Spriflger- Verlag LNCS. 
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In untimed CSP we have a number of algebraic laws that preserve the semantics 
of a process. These laws allow us to rewrite a process definition to facilitate such 
reasoning; if necessary, we may eliminate the abstraction and parallel operators. 
This is not possible in Timed esp. The semantics of the timed models are neces­
sarily complicated, but we may use the semantic equations to derive a number of 
useful laws relating processes to predicates on behaviour. 

These laws are central to the application of Timed esp to the design and 
analysis of complex systems. V.le can capture the requirements of the specification 
using the notation of the semantic model, and formalise our intended solution in 
the process algebra. This solution allows us to move towards an implementation, 
should this be Our aim. In any case, we are obliged to show that our proposed 
solution meets our requirements; we must verify it. 

We consider a verification of a Timed esp process to be a demonst.ration that 
all its possible behaviours meet a proposed specification, expressed as a predicate 
on a typical element of its semantics. In this case, we say that the process satisfies 
the specification. A specification in TMFS , the most expressive model, can often 
be written as a conjunction of constraints in the simpler models; the process can 
then be shown to satisfy each of these independently. 

Even within the simpler models, TMF , TMs and TMr , the construction of 
such a proof directly hom the semantics may be difficult and laborious. If we are 
to reason about complex time-critical distribnted systems, we require a method of 
translating a proof obligation on a process into proof obligations on its syntactic 
subcomponents. This method will employ a number of rules grounded in the 
semantic mappings introduced in [RR86], [RR87] and [Re881. 

In this paper, we present the notion of behavioural specifications: correctness 
conditions on the possible behaviours of a process. We then give a complete set 
of inference ru1es for translating such a specification on a compound process into 
requirements upon its subprocesses. The soundness of each rule can be established 
hom the semantic equations for the relevant operators; example proofs are included 
as an appendix. To illustrate the use of these rules we present a verification of a 
simple stop-and-wait protocol in the Timed Failures model, TMF . 

Notation 

In this section, we present the notation of Timed esp, the process algebra and the 
semantic models, as defined in [ReBB]. We then explain OUr concept ofspecification 
and introduce the additional notation required for this paper. 
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2.1 Timed CSP 

Timed CSP is a simple extemion of CSP [H85]. The process algebra, TCSP, is 
given in Backus-Naur form below: 

P 0:= .L I STOP I SKIP I WAIT t I a ~ P I 
PDP I P n PIP II PIP .11. PIP III PI 
P; PIP \ A I f-l(P) I f(P) I~ X. F(X) 

These operators axe given interpretations in a hierarchy of semantic models, as 
detailed in (ReBS]. These models allow os to write process specifications: a peed. 
icate on the semantics of a process corresponds to a requirement on its possible 
behaviours. 

The scmantic model TMF consists of sets of pairs (s, N) satisfying the seven 
healthiness conditions given in [ReBS]. We refer to a pair (s. N) as a timed failure. 
The semantic fundion F T is defined on elements of TCSP , mapping them to 
failure sets in TMF . 

The first component of a timed failufC represents a possible timed trace of the 
process: a sequence of timed observable events. The second cOUlponent, ~, rep­
resents a finite union of refusal tokens, each refusal token being the product of a 
half-open finite time interval and a subset of the set of all events, E. This compo· 
nent denotes the (time l event) pairs that may be refused if the process performs 
the trace s. 

2.2 Specification 

We consider a specification to be a predicate on a typical behaviour of a process: an 
arbitrary element of its semantics. If this predicate holds of all possible behaviours 
of a process, we say that the process satisfies the specification. We define the 
satisfaction operator sat for a process P and a specification S(s, N): 

P sat S(s,~) '" V(s,~) E FrlP] • S(,,~) 

From this definition. we can establish a number of simple inference rules: 

P sat S(s,~) P sat S(,,~)
 

P sat T(s,~) Sis, N) => T(s,~)
 

P sat true P sat S(s,~) II T(,,~) P sat T(s,~) 

Using the sat operator l we can capture any requiremenl that corresponds to a 
condition upon all of the possible behaviours of a process. The resulting predicate 
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upon the TCSP process we call a behavioural specification. lu [Re88], Reed defines 
specifications as predicates on the semantic set of a process, we define predicates 
on a typical element of that set. Behavioural specifications form a subset of Reed's 
specifications. 

Reed's specifications permit a more detailed analysis of the process representa­
tionj ours are more suited to the capture of general requirements upon a process. 

For example, the predicate 

(((1, aJ, (2, b)), 0) E .1'r IpI 
cannot be written as a behavioural specification. It states that (((1, al, (2, b)),0) 
is a possible behaviour of P, and to decide upon its truth we need to examine the 
whole of the semantic set. 

We are interested in the corredness of processes. Behavioural specifications 
reflect this: they insist that every possible behaviour is acceptable. To state that 
a process may participate in a certain event at a certain time, or refuse a certain 
event at a.nother, without further information, is of little use. We are interested 
in what can be guaranteed about a process behaviour. 

2.3 Notation 

For convenience, we define a number of operators On timed failures, timed traces 
and timed refusals 2. We define two fundions on traces: 

last(s~((t,a))) " a 

tstrip( ()) " () 

tslrip«((I, a))~s) " (a)~tslrip(s) 

The first returns the last event in the trace, the second merely strips the time 
informa.tion from the trace. 

We define the be/ore, after, aIld during operators on refusa.1e;: 

Nil " Nn ([0, t) x E) 
Nl I " Nn([I,oo) x E) 

NTIt,,;,) " Nn ([I,,;,J x E) 

Recalling that I: denotes the set of all events, we see that these restrict a refusal 
set to events that may be refused before, during, and after the specified times. 

'lFrom now on, we wiU omit the prefix 'timed' as all subsequent specifications will be dzawn 
from TMp 
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We define a subtraction operator on traces and refusals, translating through 
time: 

()~I = () 
s-'-t iItl<t 

(((t"a))~8)~t = { ((t,-t,a))~(8~t) othe,wise 

~~t = {(t,-t,a)l(t"a)E~t1t,"t) 

We define an operator Q on traces and refusals, yielding the set of events that 
occur in each. For convenience, we extend the definition of Cf to cover failures and 
processes; in the latter case, the result is the set of events in which the process 
may participate. Observe that this operator differs from the alphabet concept used 
in earlier versions of esp. 

a(8) = {a E E 13t. ((t,a)) in s} 

a(~) = {aEEI3t.(t,a)E~} 

a(8,~) = a(8)Ua(~) 

alP) = U{a(8) I 8 E traces(P)) 

Similarly, we extend the definition of end in [ReSS]: 

end(8,~) = max{end(s),end(~)) 

Finally, for use with the hiding operator, we define a predicate on failures, indexed 
by a set of events A: 

A = ([0, end(8, ~)) X A) <;; N 

This predicate holds exactly when the failure (8,~) is activated on set A. 

3 Abstraction and Concurrency 

As an introduction to our method of verifying processes, we consider two operators 
centra.! to the language of Timed esp: the hiding and para-llel opera-tors. 

3.1 Hiding 

In a.pplying Timed esp to complex systems, we use the hiding operator to abstract 
awa.y from internal behaviour. To prove our description correct, we may need to 
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reason about this behaviour. Hiding a set of events A from the environment 
of a process P restricts the set of possible behaviours to those in which P is 
forced to perforlll events from A as soon as they become available: the A-activated 
behaviours. 

The events in A are no longer observable from the environment, and we may 
not mention them in reasoning about P \ A. Instead, we identify the A-activat.ed 
behaviours of the process, establishing results that may involve events from A. 
These results IIlay then be used to derive a specification that is independent of 
events from A. This specification is then satisfied by P \ A. 

In the untiIned version of esp, we can use algebraic laws to eliminate the 
hiding operator from a process description: these laws preserve the equivalent set 
of behaviours. It would be possible to derive similar laws for Timed esp, but 
their complexity would render them unusable: consider the identity below, which 
corresponds to the simplest non· trivial case of hiding over deterministic choice. 

(a ~ STOP 0 b ~ SKIP) \ {aJ " ((SKIP 0 b ~ SKIP); SKIP) II b~ SKIP 

Our approach offers a simple, systematic solution to the problem of hiding. 

We defined the - operator in tbe previous section: Aholds precisely when (s, N) 
is an A-activated failure. The following inference rule illustrates the relationship 
between the failures of P and those of P \ A: 

P sat (A(s, N) /I neW) <:; A) => S(s \ A, N- W) 

P\A sat S(s,N) 

This follows from the semantic equation for the hiding operator given in [ReBS], 
and transforms a proof obligation ou P \ A into one on P. 

3.2 Parallelism 

Timed esp has three parallel operators: alphabeticised parallel, synchronised par­
allel and interleaving. The latter operators can be viewed as particular instances 
of the first. In this paper, we will illustrate the use of the most general form of 
parallel operator. 

The alphabeticised parallel operator places a restriction on the events commu_ 
nicable by each a.rgument: in the parallel combination P x /I y Q, process P may 
perform only those events in set X. Similarly, Q is restricted to those in Y. The 
two processes must co-operate on events common to both sets. 
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As in the case of hiding, it would be impractical to eliminate alphabetici:ied 
parallelism using algebraic laws. As an illustration, consider the identity below, 
which holds for un timed CSP. 

,~P III b ~ Q '" a ~ (P III b ~ Q) 0 b ~ ((a ~ P) III Q) 

Thi:i is no longer true for Timed CSP processes because of the delay 6 introduced 
by the prefix operator. This can arise whenever a process contains a form of 
parallelism which is not completely synchronised. 

This means that, except for the simple case of completely synchroni:ied paral­
lelism, we cannot transform a process in a semantics-preserving fashion and alter 
the degree of parallelism present. However, our inability to do thi:i need not detract 
from the applicability of the formalism; time-critical systems with communication 
delays have a minimum degree of parallelism. We can derive rules to allow us to 
establish properties of such systems. 

As an introduction to the operator, consider the special case that is synchro­
nised parallelism. The following inference rule can be derived for thi:i operator: 

P,	 .at S,(s,N) 
P, .at 5,(s, N) 
S,(s, N,) II S,(s, N,) =} Sis, N, UN,) 

P, II P, .at S(s, N) 

To establish that a parallel combination meets a given specification 5, it is sufficient 
to find two specifications, one for each component, that yield S for a combination 
of behaviours. More precisely, a typical failure of PI II P2 must satisfy: 

•	 any trace of PI 1\ P2 is a trace of each component. 

•	 an)" refusal set of PI II P2 will be the union of two refusal sets: one from each 
of the component processes. 

The parallel combination refuses to participate in an event e whenever either or 
both of its components refuses e. 

The rule for the alphabeticised parallel operator is necessarily more compli­
cated: 

PI	 sat 51 (s, N) 
P, .at 3,(s, N) 
(a(s" N,) <; X II a(." N,) <; Y II a(N,) c:; E - (X U Y) /\ S,(s, , N,) 

II S,(s" N,) II ., E s, x lIy s,) =} Sis"~ N, UN, U N3 ) 

P, xII, P, .at S(s,N) 
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As before 1 we IIl.ust find two specifications, one for each component, tha.t yield S 
for a combination of behaviours. This time, a failure of the parallel combination 
must satisfy: 

•	 any trace of PI x II y P2 must be the parallel combination of a trace from each 
component. 

•	 any refusal set of PI x II Y P2 must be the union of three refusal sets: one from 
each component, and an arbitrary refusal set whose alphabet lies outside 
XU Y. 

Recall that the parallel operator on traces produces a set of traces: sequences of 
events drawn from X U Y, whose restriction to the sets X and Y produces the 
first and second arguments of the operator, respectively. 

These conditions lead to the third antecedent of the rule, which allows us to 
transform a predicate on the failures of a parallel combination into requirements on 
the corresponding failures of the component processes. Together with the hiding 
rule, this is sufficient to treat the example of the next section. 

A Simple Protocol 

A protocol is a distributed algorithm for facilitating the communication of messages 
between processes. CSP is particularly suitable for the specification of protocols; 
the enhancements introduced in Timed CSP allow us to address the timing consid­
erations that are often necessary for the correctness of the protocol. Using Timed 
esp, we can describe and analyse processes that include timeouts, interrupts and 
time-critical synchronisation. 

In this section, we consider the specification of a simple 'stop-and-wait' proto­
col, similar to the one described in [PS88]. This consists of two processes, P and 
Ql communicating across two wires: WI and W2. Together, they control the flow 
of data between two external processes. This may be represented pictorially as 
follows: 

in I pi: : ::, ~ I Q lout 
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fn general, protocols allow [or unreliable channels, by duplica.ting data or re­
quiring acknowledgements: such behaviour is easily modelled in Timed esp. How­
ever, our purpose is to illustrate the use of the inference rules; we need not concern 
ourselves with these complications. Our protocol addresses only data.:B.ow consid­
erations, and we assume that the wires WI and W2 are reliable: for every input, 
there is a corresponding output. 

4.1 Specifications 

There are many requiIements that we could place upon the protocol, but we will 
consider just one: that if a message is input, then output is ready within two 
seconds. Formally, we wish our protocol PROT to meet the following timed failures 
specification: 

SPEC(s,H) ~ last(s) = in '* out ~<>(H 1 (end(s) +2)) 

We gi ve conditions on the components of the protocol, and verify that they are 
sufficient to ensure that the protocol exhibits this behaviour. 

The sending process P should meet the following specification: it should per­
form the three events in, lm, rc in strict rotation; after performing an event, it 
should be prepared to perform the next witbin a certain time; initially, it should 
be ready to receive an input. We capture these requirements in the timed failures 
specification SPECp : 

SPECp(s,H) ~	 /strip(s)'; (in, 1m, re)" " 

last(s) ~ in '* 1m ~ <>(H 1 (end(s) + 25))" 

last(s) = 1m '* re ~ <>(H 1 (end(s) + 25))" 
last(s) = re => in ~ <>(H 1 (end(s) + 25))" 

s = () => in ~ <>(H) 

After a..ccepting and ttansmitting a message, the sending process nlUst await confir­
mation from the receiving process before a..ccepting anoth('r. The receiving process 
will send a confirmation signal once the previous message has been output. Ini­
tially, the system is empty. Hence we wish the receiving process Q to satisfy 
SPECQ: 

SPECQ(s,H) ~	 /strip(s)'; (rm,aut,le)" " 

last(s) = rm => out ~ <>(H 1(end(s) + 25))" 
last(s) = out => Ie ~ <>(H 1(end(s) + 25))" 

last(s) ~ Ie '* rm ~ <>(H 1 (end(s) + 25))" 

s = () => rm ~ <>(H) 
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The wires WI and W2 have a propagation delay of 1 second, and will not be 
required to transmit more than one message at a time. However, each must be 
ready to accept another input almost immediately after output. They satisfy the 
specifications SPECw, and SPECw~ respectively, where 

SPECw , (s,~) " tstrip(s) " (1m, rm)" 1\ 

last(s) = 1m => rm ~ ,,(~ 1 (end(s) + 1)) 1\ 

last(s) = rm => 1m ~ ,,(~ 1 (end(s) + 26)) 1\ 

s = () => 1m ~ ,,(~) 

SPECw,(s,~) " tstrip(s) " (Ic,rc)" 1\ 

last(s) = Ie => rc ~ ,,(~ 1(end(s) + 1)) 1\ 

last(s) Cc rc => Ie ~ ,,(~ 1 (end(s) + 26)) ~ 

s = () => Ie ~ ,,(~) 

The protocol is a combination of the sending process, the receiving process, and the 
wires. We combine these in TCSP by way of the alphabeticised paralld operator, 
and hide the internal detail. If we define the sets 

x =. {in, Im , n:} 
y " {out,rm,lc} 
C " {Ic,re} 
M " {1m, rm} 
A " MUC 

then the protocol may be defined: 

PROT " «(P xlly Q) XUYIlMuc (W, Mile W,)) \ A 

4.2 Verification 

Having formalised our requirements, we can now use the inference rules given 
in section 3 to demonstrate that the protocol PROT will meet the specification 
SPEC. We wish to establish that: 

PROT sat SPEC(s,~) 

The definition of PROT involves the hiding operator at the outermost level, so we 
must first apply the hiding rule. This reduces the proof reqnirement to: 

(PxlI y Q)xuYIIMuc(W'Mllc W,) sat	 ,,(W) C;;AI\([O,end(s,~))x A) C;; ~ 

=> SPEC(s \ A, ~ - N') 
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This is a proof requiremeut on a parallel combination, so we apply tbe rule for the 
paraUeloperator. We have tben to find specifications 8 1 and 52 such that; 

PxllrQ sat S,(s,N) 

W, .lle W, sat S,(s,N) 

a(",~,) s:: (XU Y)/la(s"N,) S::(MU C)] 
a(N,) s:: !: - (X U Y U M U C) 

S,(,,,N,) /I S,(""N,) /I" E', xuYIlMue s, =} SPEC(s, \ A,~ - N') 
N = N1 U N2 U N3 

a(W) s:: A /I ([0, end(", N)) x A) s:: N 

Before we continue, we note that the specification SPEC is independent of the 
hidden sel of events A, for consider the definition: 

SPEC =0 la't(s) = in =} out '/ a(N 1 (end(,) + 2)) 

FormallYI we can show that 

SPEC(s, N r(!: - A)) =} SPEC(", N) 

Tills concurs with OUr intuition: the correctness of the protocol filay be dependeut 
upon hidden interactions, but our formal description of the service provided (the 
specification SPEC) sbould abstract away from internal detail. 

Taking this in conjunction with the alphabet conditions upon the failure sets, 
we may reduce the third proof obligation to 

u(8" N,) s:: (X U Y) /I a("" N,) s:: (M U C) ) 

n(N,) s::!: - (X U Y) =} SPEC(s, \ A,N,) 
SI(81, Nd 1\ 52(82, N2) 1\ 83 E 51 XUYIlMuc 82 

(/0, end(", N, U ~2 UN,)) x A) s:: N, UN, 

To identify 51 we apply the parallel rule once again. We are then required to find 
54 and S5 such that: 

P sat S,(s,N) 

Q sat 5,(" N) 
a(s" ~4) s:: X /I ai'"~ N,) s:: Y } 
a(N,) s:: !: - (X U Y) =} S,(s,;, N, U N, uN,) 

5<t(s4,N.d 1\ 5s(s5,N:;) 1\ % E 84 xlly 8:; 
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We already have specifications for the components P and Q. Substituting these 
for 54 and S~" and using the alphabet conditions upon the traces and refusals, we 
can reduce this proof obligation to: 

SPECp(s t X, N rX) }
 
SPECQ(s t Y, N r Y) ~ S,(s, N)
 
a(s) <;; (X U Y)
 

This yields a suitable instantiation for 51: the antecedent of the above expression. 
In a similar fashion, we arrive at the following instantiation for 52: 

SPECw,(s rM,N rM) A 
SPECw,(s t C, N t C) A 
a(s) <;; (M U C) 

Our proof requirement can then be written as follows: 

a(sl, N, ) <;; (X U Y) A a(s" N,) <;; (M U C) 

a(N,) <;; E - (X U Y) 
SPECp(s, t X,N , tX)ASPECQ(s, t Y,N, t Y) 

~ SPEC(s, \ A, N, )
SPECw,(s, t M,N, r M) A SPECw,(., t C,N, t C) 
([0, end(s" ~, UN, UN,)) X A) <;; N, U N, 

SJ E 81 xuyll..wuc "':l 

The alphabet conditions in 51 and 5~ are subsumed in the first two conditions 
above. 

We have reduced the proof obligation to a predicate on traces and refusal sets: 
the verification may be completed using simple properties of sets and sequences: 
assuming the conjuncts in the above antecedent, we are trying to establish that 

last(s, \ A) = in ~ out 'I- a(N, 1 (end(., \ A) + 2)) 

From 5PECp , SPECQ , 5PECWl , 5PECw" and the properties of sequences, we 
can deduce that 

83 ( (in,lm, Mn, ou.t, Ie, rc)" 

We then proceed by case analysis on the identity of the last event in 83, given that 
last(83 \ A) = in, there are three possibilities. 
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Case: last(sJ) = in 

By SPECp , Im¢,,((~, rX)1 (end(s, tX) + 26))
 
In this case end(s,) ~ end(s, t X)
 
and we know that Im¢ Y
 
Hence 1m ¢ "(N, 1(end(s,) + 26))
 

Similarly. as
 S3 E Sl xuYIlMuC 8-:2, 

SPECW1 implies that 1m ¢ ,,(~, 1(end( so) + 26))
 

Hence 1m ¢ ,,((~, U~, U ~3) 1(end(s3) + 26))
 

However, ([0, end(s, ~, U~, U ~,)) x A) ,:: (~, U~, UN,)
 
and ImEA 

So end(~, U~, U ~,) <; end(s,) + 20
 
But 6 <t: 1, so (~, U~, U ~,) 1 (end(s,) + 2) ~ {I
 

We conclnde that out ¢ ,,((~, U~, U ~,) 1end(s, \ A + 2))
 

Case: la.st(sJ) = 1m 

We establish that end(S:3) ~ end(s3 \ A) +26: that the 1m event occurred within
 
time 26 of the last inpnt.
 

Assume otherwise: end('3) > end(s, \ A) +26
 
If we let t be the time (end(s, \ A) + end(s,) +26)/2
 
Then we know that last(s, t t) = in
 
By the previous case 1m ¢ ,,(((~, U~, UN,) r t) 1(end(s, r I) + 26))
 

From our assumptions ([0, end(s" ~, U N, UN,)) x A) <; N, UN,
 
And end(s, t t) +26 = end(s, \ A) + 26 < t
 
Hence 1m E Q(((~, U~, U N3 ) t t) 1 (end(s, t t) +26))
 

Forcing a contradiction.
 

We can show, with a similar argument to the first case, in which the event rm
 

replaces 1m, that end(N1 UN2 UN J ) ~ end(sJ) +1. From above, end(sJ) ~ end(sJ\
 
A) +26: the result follows.
 

Case: last(sJ) = rm 

By asimiIar argument, we can establish that the event rm must occur no later 
than 1 +26 after the last input. We then appeal to the specification of Q, and the 
result follows immediately. 0 
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The treatment of hiding in Timed CSP is central to the construction of the 
above proofj the hidden events 1m and rm must occur as soon as possible. Ou r 
method of proof allowed us to include these events in our reasoning, by eliminating 
the hiding operator from our proof obligation. 

4.3 Other Requirements 

Only at the final stage of the proof did we identify the protocol requirement SPEC. 
To establish that another property holds of the above protocol, it would not be 
necessary to perform the whole proof again. We have characterised the behaviour 
of the protocol in terms of the known properties of its components. To prove that 
the protocol satisfies an arbitrary specification S, we have only to show that the 
following predicate is true: 

a(s"N,) C;; (XU Y) A a(",N,) C;; (MU C) 
a(N,) C;; l: - (X U Y) 
SPECp(s, t X, N, r X) A SPECQ (8, t Y, N, t Y) 

=> S(83 \ A,N - N')
SPECw, (>z t M, N, t M) A SPECw,(" t C, N, t C) 

N: = N] U Nz UN,) /\ 33 E 31 XuY IlMuC 32
 

a(N') C;; A /\ ([0, end(83' N)) x A) C;; N
 

For a particular specification S, we will be able to discard most of the conditions 
in the antecedent: the residual proof requirement is often easy to discharge. 

5 Recursion and Delay 

The inference rules presented in section 3 were sufficient for the example proof 
above. IT we wish to provide implementations for the components mentioned in 
the previous section, we will require other TCSP operators; to verify these imple­
mentations, we will require other inference rules. 

5.1 Prefixing 

The simplest TCSP process is deadlock, or STOP. It cannot engage in any event, 
so any trace must be empty. It may refuse any event at any time, so there are no 
restrictions upon refusal set N: 

STOP ••t (s = 0) 
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This process will be useful in showing that certain specifications are sati..q/iable: 
that there is a process that will satisfy them. 

More interesting processes will be able to perform events: for these, we will 
require the prefix operator. In Timed esp, this operator introduces a delay, cor­
responding to the time taken to recover from participation: 

P sat T(9, N)
 

'~Ollarta(N) }
 
V => S(9, N) 
9 ~ «t, a))~9' II a rt a(N t t) II T(9' ~ (t +0), N~ (t + 0)) 

(, ~ P) sat S(" N) 

Any behaviour of the process a _ P must involve the non-refusal of event a until 
it has been performed. If event a occurs at time t, the subsequent behaviour will 
be that of process P, but starting at time t + J instead of time O. If process P 
meets the specification T( s, H), then these subsequent behaviours will be described 
by the p"dicate T(,' ~ (t + 0), N~ (t +0)), 

5.2 Recursion 

Almost aDy application of TCSP will involve repetitive behaviour: to model this, 
we can use the recursion operator 11. If F is a function defined on rcsp processes l 
we define the function: 

CjI TM, ~ TM, 

CjI(X) " Fd WAfT 0; F(X)] 

The proress 11 X • F(X) behaves as the fixed point of Cj :in the model rMF : 

~X.F(X) '" F(WAfTo;~X.F(X)) 

The recursion induction theorem introduced by Roscoe in [Ro82), developed by 
Reed in [Re88], provides the basis for an inference rule for recursively-defined 
processes: 

VX: TCSP.X sat S(9,N)=> F(WAITo;X) sat S(9,N) 
3P: TCSP. P sat S(9,N) 

~ X • F(X) sat S(" N) 

The topological result from which this rule is derived requires that the predicate 
"sat 5(.'1, N)'" be both continuous and satisfiable on rcsp processes. It is a 
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consequence of the definition of the sat operator that all such predicates are 
continuons; this leaves the rule with ouly one side condition: included as the 
second antecedent above. We also require that Cjl is a contraction mapping on 
TMF, and that the specifica.tion 5(8, N) is preserved by each recursive call. The 
first of these follows from the continuity of all basic TCSP operators, the second 
becomes the first antecedent of the rule. 

It is possible that the specification S( 8, N) may only be satisfiable by a recursi ve 
process. In this case, the side condition cannot be established without a. separate 
inductive proof. By extending the contraction mapping that corresponds to P, we 
can produce a rule that does not have this problem: 

Ii X • X sat S(s, N) ='} F( WAIT 0; X) sat SIs, N) 

I' X • F(X) sat S(s, N) 

This follows from the same topological result as the previons rule, given a simple 
extension to the semantic function FT, as detailed in appendix B. We have elim­
inated the second antecedent. The first antecedent is stronger: we may no longer 
assume that the semantics of X satisfies the axioms of TMF : we have lost the 
implicit assumption that X is a TCSP process. 

The set of inference rules in this paper is independent of the axioms of the 
model TMFl so each rule may be applied to arbitrary sets of failures: they can 
therefore be used to establish the new antecedent. Further, the fact that all of our 
specifications are behavioural means that this rule is no weaker than the recursion 
rule in TMF . 

5.3 Delay 

Finally, we will need to reason about the behaviours of processes involving delays. 
We may derive a simple rule from the inference rules (or the sequential composition 
and delay operators: 

P sat T(s, N) 

s = () /I end(N) " t } 
V ='} S(s,N) 
b,gin(s);> t A T(s ~ t, N ~ t) 

WAIT t ; P sat S(s, N) 

The inclusion of arbitrary refnsals N' before time t reflects the fact that WA1T t; P 
may refuse any event before time t. 
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Whenever we apply the recursion rule, we will be left with a proof obliga.tion 
on WAIT 6: X. given that X satisfies a certain specification. In this case, an 
alternative form of the above rule will be more useful: 

P Sat S(s, N) 

WAIT t ; P sat s = 0 1\ end(N) <; t 
V 

begin(s) ;;, t 1\ S(. ~ t, N ~ t) 

No event may occur befOIe time t, and the subsequent behaviours are simply the 
failures of process P translated through time t. 

We have now presented all the rules required to verify a simple implementation 
of the protocol specified in section 4. 

6 Implementing the Protocol 

In 5edion 4 we used Timed CSP to establish the correctness of a simple protocol: 
this result was dependent upon the coned behaviour of each component of the 
protocol. We now propose TCSP implementations of the components, and use the 
inference rules given in section 5 to demonstrate that they meet the appropriate 
specificatiDns. 

6.1 Implementation 

The protocol consists of two components. trausmitter P and receiver Q, commu­
nicating across two wires WI and W2 • The transmitter process should accept an 
input on channel in, and be prepared to transmit it along WI, via channel 1m. 
After thi~ transmission has occurred, P waits for a confirmation eveut from wire 
W 2 , on channel rc, before repeating this behaviour. Our iutuition suggests the 
following as an implementation: 

p::: IlX.in----+lm----+rc----+X 

We have yet to establish that this implements our requirements: that it meets the 
formal specification SPECp . 

A similar set of conditions applies to the receiviug process Q. It should be 
prepared to receive a signal nom wire WI, on channel rm, before offering output 
on chaDllel out. It should then send a confirmation signal along wire W2 , on 
channel Ic, before returning to its initial state. Our proposed solution: 

Q == IlY.rm----+out ....... lc----+ Y
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Again, we will have to verify that this is an implementation of the specification 
SPECQ • 

We could also model wires Wl and W2 in the TCSP process algebra. Consider 
wire Wl: the propagation delay, the delay between input on channel 1m and avail­
ability of output on channel TIn, should be no more than one second. There will 
be a very small (O(b)) recovery time after output has occurred. In the context of 
[SSS], it behaves as a stable oue-place timed buffer: 

w, " ~X.lm~ WAIT(I-6);rm~X 

W, " ~ Y. Ie ~ WAIT (I - 6) ; rc ~ Y 

Note that the explicit delay between the occurrence of lm aud the availability of 
TIn is shortened by b to allow for the delay introduced by the prefix operator: the 
time taken to recover from performing au event. Although we would not wish to 
implement wires in this fashion, the TCSP description could be used to produce 
a software simulation of their behaviour. 

6.2 Verification 

We wish to show that the transmitting process P meets the specificatiou placed 
upon it: 

JJX. in -----t lm -----t rc -----t X sat SPECp(s,N) 

This is a recursive process; the second recursion rule requires us to find a specifi­
cation S(s, N) such that: 

X sat S(" N) =} in ~ 1m ~ Te ~ (WAIT 6; X) sat S(s,~) 

S(" N) =} SPECp(s, N) 

Our strategy for finding such a specification would be to consider S to be SPECp 1\ 

S', strengthening S' until the conjunction, which must still be satisfiable, is pre­
served by the recursive call. In this example, the specification SPECp is strong 
enough to be preserved by the recursion, and no other conditions are required. We 
instantiate S with SPECp. We have then to show that: 

x sat SPECp(s, N) =} in ~ 1m ~ Te ~ (WAIT 6; X) sat SPECp(s, N) 

Assume that X sat SPECp(s, N). We wish to establish-that: 

in ~ 1m ~ Te ~ (WAIT 6; X) sat SPECp(s, N) 
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V 

Applying the prefix rule three times transforms this proof ohligation to the follow­
ing requirement: we must find a specification U(s,N) such that: 

WAIT05;X sat U(s.N) 

s = 0 II i. \1' a(N) 

s ~ ((t, i.))~s' II in \1' a(N r t,) II 

s' ~ (t, + 05) = 0 II 1m \1' a(N ~ (t,+ 05)) 
V 

s' ~ (t, + 05) = ((t"lm))~s" II 1m \1' a(N ~ (t, + 05) t 1,) II ". SPECp(s, N) 

s"~ (I, + 05) = 0 II rc \1' a(N ~ (t, + I, + 205)) 
V 

s" ~ (I, + 05) = ((t" rc))~s'" II 

TC \1' a(N ~ (t, + I, + 205) t t,) II
 
U(s'" ~ (t, + I, + t, + 305), N ~ (t, + I, + t, + 305)
 

With a sn..itable choice of T}, T2, TJ, this can be transformed to: 

WAIT 05;X sat U(s,N) 

s = 0 II in \1' a(N) 
V 

S = ((T"in») IIE\1' a(N t T,) II 1m \1' <>(N 1T, + 05) 
V 

S = ((T"in), (T"1m)) II in \1'a(N tT,) 
II 1m \1' a(N T [T, + 05, T,)) 

". SPECp(s, N)II rc \1' a(N 1 T, + 05) 
V 

S = ((T,. in), (T" 1m), (T" rc))~u	 II in \1' a(N t T,) 

II 1m \1' a(N T [T, + 05, T,) 
II rc \1' <>(N T[r, + 05,T3)) 
II U(u ~ (T,+ 05),N ~ (T,+ 05)) 

Applying the second form of the delay rule, we can instautiate U as follows: 

U(s,N) " SPECp(s~05,N~05)1I begin(s);' 05 

Having discharged the first proof obligation, the proof can be completed with a 
simple case analysis on trace 8. This becomes clear when we recall the form of 
specifica.tion SPECp : 
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SPEC, = tstnp(s),,; (in, 1m, rel" 1\ 

lasl(s) = in => 1m O! a(N 1 (end(s) + 26)) 1\ 

last(s) = 1m => re O! a(N 1 (end(s) + 26)) 1\ 

last(s) = re => in O! a(N 1 (end(s) + 26)) 1\ 

s = () => in O! a(N) 

The only non-trivial case corresponds to s = {(Tt, in), (T2, 1m), {T3' rc))'""u. Here 
we require two a.rguments, one fOI each of the cases: u. = (), u I- (). Expanding 
the specification SPECp makes tbe solution obvious. 

This completes the verification of our transmitter process P. It wilinot be nec­
essary to perlonn it. similar proof for the receiver Q; we can exploit the symmetry 
present in our descriptions. 

6.3 Renaming 

The operator f in TCSP allows os to relabel the events performed by a process. 
In the case of injective functions, this allows ns to re·use a process description. 
By renaming events, we can transform processes while retaining their structure. 
The rela.tionsmps between different events are maintained: given that a partkular 
result holds for all the behaviours of a process, we can infer a corresponding result 
about the behaviours of the image of that process under such a transformation: 

P sat S,(,Yj 
S,(s, N) => S(f(s),/(N))
 

f(P) sat S(s, N)
 

For example, we can use the result of the previous section to establish that 
Q sat SPECQ, by defining injective function f such that: 

f(in) = rm 

f(lm) = out 

f(re) = Ie 

We then observe that: 

SPECp(s, N) SPECQ(f(s),f(N) 

Q f(P) 

The inference rule allows us to conclude that: 

Q sal SPECQ(s, N) 

55 



Which completes our verification of the protocol. 

This method of re-using implementation/specification pairs helps to eliminate 
redundant verifications: by observing and exploiting symmetry, we can re~use 

process components and their specifications. 

1 Completing the Picture 

The laws presented a.bove, together with the others in the appendix, are complete 
with respect to the semantics: any specification provable from the semantics is 
provable using these laws. This becomes clear when we consi der the strongest 
specijicatlOn of a process. 

7.1 Strongest Specifications 

The identification of a process with the strongest specification that it can sat­
isfy has been discussed before. It provides an alternative method for eliminating 
the process algebra from our proof obligations. The inference rules presented in 
this paper are more flexible in this: our specification may reflect only one of the 
properties of the system. Using our intuition, we need consider only the relevant 
propertil:'S of each component: those necessary to establish that the system meets 
the specification. As an example, consider the law: 

P, sat 5,(s, N)
 
P, sat 5,(s, N)
 
SI(S, N,) A S,(s, N,) => S('" Nl UN,)
 

PI II P, sat S(s, N) 

For Pl II P1, to meet specification 5, we require that PI and P1, meet specifica­
tions 5, and ~ respectively. These need only be strong enough to fulfil the third 
antecedent of the rule. 

If we lack this intuition, we can use the strongest specifications of PI and 
P1, as iB:stantiations for 51 and~. If suitable instantiations exist, they can be 
no stronger than these: any property of a process is a logical consequence of its 
strongest specification. We write SS[pj to denote the strongest specification of 
process P. For example, the strongest specification of deadlock is given by: 

SS[STOP](s, N) " s = () 

This isall we can possibly know about the behaviours of STOP, we can draw no 
conclusions about the refusal set: STOP may refuse any event at any time. 
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For a compound process, the strongest specification is defined in terms of the 
strongest specifications of its proper syntactic subcomponents: 

SSla~ p!(sY) " s=Olla¢Q(N) 
V 

3 s', t. (s = «t, a))~s') II a ¢ Q(N r t) II 
SSlpj(s', N ~ (t H)) 

These definitions are equivalent to the semantic equations for the model TMF . 

The equivalence 

SSlp!(s,N) " (s,N) E hlp! 

can be established by structural induction upon process P. 

Strongest specifications may he used to reduce the proof requirement on a 
compound process to a predicate on traces and refusals. similar to the one at the 
end of 4.2. The inference rules giveu in this paper may provide a much simpler 
predicate; we ca.n discard unnecessary information. But strongest specifications 
provide a more mechanical methodj there are no choices to be made, even in the 
case of recursion. 

SSlliX. F(X)!(s,N) "	 A".(end(s,N) < Iii => sS!i";(STOPJ!(s,N)) 

where F(X) ~ WAIT Ii; F(X) 

We consider the recursive process jj X • F(X) to be the limit of the finite ap­
proximations F'(STOP). A given behaviour of the recursive process must be a 
behaviour of all the finite approximations involving a sufficient number of recur­
sious. If the behaviour in question is described by the failure (s, N), then aJl of 
the approximations F'(STOP), where i > end(s, N)/5, must also exhibit that 
behaviour. 

Hence the strongest specification of jj X • F(X) can be written as the con­
junction of the strongest specifications of Its finite approximations, guarded by 
an applicability condition end(s, N.) < 5i. We are spared the task of finding a 
sufficient specification that will be preserved by each recursive call. 

Strongest specifications provide a complete description of the possible be· 
haviours of a process. To decide whether a component is adequate for use in 
a given situation. we can use the inference rules in this paper to confirm that it 
meets the requirements. IT a component is to be re-used in different systems, then 
it should be supplied with its strongest specification. The comprehensive nature 
of strongest specifications also allows us to demonstrate that the inference rules 
presented iu this paper are complete with respect to the semantics. 
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7.2 Completeness 

The inference rules presented in this paper are easily seen to be sound; example 
proofs are present,ed in appendix B. If we can use the rules to show that process P 
satisfies il. specification 5(8, N) then predicate 5(8, N) must hold for all beha.viours 
of P: it must be true of all the elements of the set of failures corresponding to P 
in the semantic model TMFo 

These rules also form a complete set. If a predicate S (s, N) holds for all be· 
havioursof P 1 then we can use the rules to establish that P sat S(s,N). We can 
demonstrate tms by showing that the rules preserve strongest specifications: they 
yield the strongest specification of a compound process in terms of the strongest 
specifica.tioDS of its components. For example, consider the case of the parallel 
operator. 

Suppose that the parallel combination PI II P2 meets the specification 5(3, N:). 
In our proof, we would employ the following inference rule: 

P, sat S,(s, N)
 
P, sat S,(s, N)
 
S,(s, N,) 1\ 5,(s, N,) =} Sr" Nt UN,)
 

P, II P, sat S(s, N) 

This requires that we exhibit specifications 51 and S2 for which the three an­
tecedents of the rule hold. The first two antecedents insist that these are no 
stronger than the corresponding strongest specifications, so if tILe third is also to 
hold, it must hold with the following instantiation: 

SS[P,](s,N,) I\SS[P,](s,N,) =} S(s,N, UN,) 

However, as 5(s, N) is true of all behaviours of PI II P2 , it can be no stronger than 
the strongest specification of that process, i.e. 

SS[P,1I P,](s,N) =} S(s,N) 

But the strongest specification is given by: 

SS[p, II P,j(" N) '" 3N" N, • SS[Ptl(s,N,) 1\ SS[P,j (s, N,) 1\ N = N, UN, 

So the inference rule is sufficient to establish that PI II P2 sat S(s,N:). The same is 
true for the other operators, and we have shown that the equivalences that define 
our strongest specifications are no weaker than the semantic. equations: we lose 
no information. Hence our inference rules form a complete set with respect to the 
semantics. 
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8 Stability 

In this paper, we have been 'Working within the Timed Failures model of TCSP, 
TMF. Timed CSP identifies a further aspect of a process's behaviour: the stability 
value corresponding to each (trace, refusal) pair. In [ReB8], this is defined to be the 
earliest time at which it can be guaranteed that the process can make no further 
internal progress. This notion has been refined by Blarney in [Bl89]. Here, he 
associates with each (trace,refusal) pair an "'instability" set rather than astability 
value: the set of times at which the process might not be stable. 

One advantage of this approach is that it allows us to extend the work in this 
paper to models which include stability. Using instability sets, we can express the 
behaviour of a compound process in terms of the behaviours of its components. 
This is not possible in the original stability models, TMs and TMFS: to see why, 
consider the processes defined below. 

PI = a --+ STOP 

P, '" a ~ WAIT I ; STOP 

The stabilities associated with this process are given by: 

srlp,] _ {(O,O)j U [(((t,a)),t +8) I t;> O} 

Sr Ip,] _ [((),O)jU{(((t,a»),t+1+6) I t ;;,O} 

Now consider the behaviours of the process P1111 P2 , given the semantic equation 
for the interleaving operator: 

srlp, III P,] SUP{(s, max!""",}) I 
3($[,,,,) E Srlp,],(""",) E srlp,]- 8 E Tmerge(s,,8,)j 

The compound process can engage in a single a event, £rom each of its components, 
and give rise to a stability value that cannot be inferred from the properties of a 
typical behaviour of either process acting independently. The trace {(O, a)) has a 
stability value of 1 +.5: this can only be deduced by considering all of the stability 
values associated. with that trace. 

However, if we identify instability sets rather than stability values, no such 
difficulties arise. The properties of a typical instability set of a compound process 
beha"'iour can be deduced from the properties of arbitrary behaviours of the com~ 

ponent processes. As with the timed failures model, we can restrict our attention 
to a typical element of the-semantics. We can thus formulate a set of inference rules 
for reasoning about specifications involving stability conditions. As an example, 
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9 

we can derive the following rule for the nondeterministic choice operator: 

PI sat S,(s,7,N)
 
P, sat S,(S,7,N)
 
(SI(S,7,N) V S,(S,7,N)) => S(S,7,N)
 

PI np, sat S(S,7,N) 

ln the above specifications J represents an arbitrary instability value, and the sat 
operator is extended in the obvious way. The rule illustrates that an instability 
value of PI n P2 must be an instability value for one of the components PI> P2• 

The converse is also true; this is not the case in TMFS , in which an arbitrary 
behaviour requires more information. Similar results are obtained for the other 
TCSP operators. 

Conclusions 

ln this paper, we have shown how we can factor out the complexity inherent in 
reasoning about timed distributed systems. We introduced behavioural specifica­
tions, capturing correctness conditions as simple predicates on a typical elemen t 
of the semantics. We have given inference rules, derived from the semantic map­
pings, for reasoning about these specifications. These rules allow us to reduce proof 
obligations on a composite Timed esp process to requiremen ts on the syntactic 
subcomponents. 

The lack of sufficient algebraic laws means that we cannot construct a proof 
system for Timed esp similar to the one developed in [Br831, but we can produce a 
complete set of inference rules for proofs of correctness. Further, we have presented 
the rules in such a form as to make their application completely mechanical: an 
automated proof assistant could be developed similar to the one employed in [D8?]. 

As an illustration of the use of the rules, we have presented a verification of 
a simple flow control protocol, whose definition involved both abstraction and 
concurrency. The correctness of this example depends upon the subtle treatment 
of hiding in Timed esp: any· hidden events are forced to occur as soon as they 
become available. An implementation of the protocol was proposed and verified; 
this required a useful result about the properties of recursive processes. 

We have exhibited strongest specifications for Timed CSP processes and used 
these to verify that Our rules form a complete set with respect to the semantics. 
Our intention is to work towards a specification-oriented semantics for Timed esp, 
similar to the one described in [OH83], using the enhanced timed failures-stability 
model and the hierarchy of lower models. This will allow us to work towards 
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a powerful specification and development methodology for real-time concurrent 
systems. 
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A	 Inference Rules 

In this appendix, we present a complete set of infenmce rules for behavioural 
specifications. A rule is presented for each TCSP operator. 

Rule	 STOP 

STOP sat (8 = 0) 

Rule	 1­

1- sat (s = 0) 

Rule	 SKIP 

SKIP sat (8 ~ () A J ¢ a(N)) 
V 

(s = «t, J)) A J ¢ a(N it) At" 0) 

Rule	 WAIT t 

WAIT t sat 8 = 0 A J ¢ a(N 1t)
 
V
 

s = «t',J)) A t'" t A J ¢ a(N T[t,t'))
 

The following rules apply to compound processes. When a process variable is 
present, it is more convenient to match proof obligations to consequents: the fann 
in which the rules are presented makes this possible. 

Rule	 a_ P 

P sat	 T(s,N) 
8 = 0 A a ¢ a(N)	 } 
V	 :>S(s,N) 
s = « t, a))~8' A a ¢ a(N r t) A T( 8' ~ (t +0), (N ~ (t +0)) 

(a~ P)	 sat S(8,N) 
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Rule P,OP, 

P, sal S,(s, N)
 
P, sal 5,(s, N)
 
(S,(S, N) V 5,(s, N) }
 
A => S(s, N)
 
S,((),N t begin(s)) /I 5,((),N rbegin(s))
 

P, 0 P, sal S(s, N) 

Rule a: A ~ Po 

Va EA. Pa sat S.. (s,N) 
(N n ([0, begin(s)) x A) = 0 }
 
A => S(s, N)
 
Va EA. (s = «(t, a))~s') => So(s' ~ (t +0), N ~ (I + 8))
 

a: A ~Po sal S(s,N) 

Rule P, n P, 

P, sat S,(s, N) 
P, sat 5,(s, N) 
5,(s, N) V S,(s, N) => S(s, N) 

P, n P, sat S(s, N) 

Rule P, II P, 

P, sat S,(S, N)
 
P, sat 5,(s, N)
 
S,(s, N, ) /I S,(s, N,) => Sis, N, UN,)
 

P, II P, sat S(s, N) 

Rule P, xlly P, 

P, sal S,(S, N)
 
P, sat S,(s, N)
 
(a(s" N, ) <;; X /I a(sa, N,) <;; Y ]
 
/I
 

/I a(N3 ) <;; E - (X U y) => S(S3, N, uN, U N3 )
 

~'(S"N,) /I S,(sa,N,) /I S3 E s, xlly sa) 

P, xlly P, sat S(s,N) 
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Rule	 P, III P, 

PI sat Sl(S,N.) 
P, sat S,("~)
 

(. E Tmerg,(u,v) 1\ S,(u,~) 1\ S,(v,~)) '* S("~)
 

P, III P,	 sat S("~) 

Rule	 P,; P, 

P, sat 5, ("~)
 

P, sat 5,(.,~)
 

(,I rt a(.) 1\ If I E TINT. S'("~ U (I x (,I}))) '* S("~)
 

• "" ,,~(s, + t) 1\,/ rt at',) 1\ end(~,)" t } 
1\ '* S("~' U (~, + t)) 
S'(" ~«t, ,I)), ~, U ([0, t) x (,I})) 1\ S,(S" ~,) 

(P, ; P,) sat S("~) 

Rule	 P\A 

P sat A(.,~)l\a(N') <;A '* S(,\A,~-~') 

P\ A sat S("~) 

Rule	 I-I(P) 

P sat 5d',~)
 

S,U(,),/(~)) '* S("~)
 

I-I(P) sat S("~)
 

Rule	 I(P) 

P 5at 5d',~) 

S'(',/-' (~)) '* S(I(.), ~) 

I(P) sat 5(,,~) 

Rule	 I' X • F(X) 

If X • X 5at S("~) '* F( WAIT 0; X) sat S(., ~) 

I'X. F(X) sat S("~) 
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B Example Proofs 

In this appendix we present a proof of soundness for the prefixing rule. We then 
extend the sema.utic function F T to permit a proof of the second recursion rule 
given in section 5. We verify that the proposed extension is consistent with the 
originaJ formulation, and provide a simple proof of the hiding rule. 

Bot Prefixing 

Rule 

P Sat T(s,~) 

,=()"arta(~) } 
V => S(" ll) 
,= ((t, a»)~s'" a rt a(~ r t)" T(s' ~ (t +0), ~ ~ (t + 0) 

(a ~ P) sat S(s,~) 

Semantics 

Frla~PI = [((),~)Iarta(~)} 
U 

[(((I,a)}~(s+(I+O)},~, U~,U(~, + (1+0)) I 
I;;' 0" (I(~,) <; [0,1)" art a(ll,)) 
"I(~,) <; [I, I +0)" (s, ~,) E FrlpJ) 

Proof 

P sat T(s,~) 

(s,~) E Frla ~ pI=>, = ()" a rt a(~)
 
V
 

3 ~" ~" ~" " • s = (( t, a ))~( 8' + t +0) 
" ~ ~ ~, U~, U (~, + I + 0) " t ;;, ° 
" I(~,) <; [0, I) " art ,,(N,) 
"I(~,) <; [I, t +0)" (s', N,) E Frlpl 
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r V(s,N) E FT[a ~ p! • s ~ () A a ¢ "(N) 
v 
s = ((t, a))~(s' + t + 8) A t' ;, 0 A a ¢ ,,(N t t) 

A (B', N ~ (t H)) E Fdp! 

r a --; P sat s = () A a ¢ ,,(N)
 
V
 

B= ((t, a))~(B' + t +8) A t' ;, 0 A a ¢ ,,(N t t) 

A T(s', N ~ (t H)) 

The inference rule for prefixing follows immediately, by a simple property of 
the sat operator (see the third inference rule given in section 2). We conclude that 
the rule rests soundly upon the semantics. 

B.2 The Sem.antic Function :FT 

As mentioned in section 5, we obtain a more powerful rule for reasoning abollt the 
behaviour of recursive processes if we extend the semantic function FT. First, we 
must define the type of failure sets, IT: 

TF '" P( TI:. x RSET) 

where TE( and RSET are as defined in [ReBS]. We then extend the syntax of 
Timed esp: 

TCSP+ ::~ TCSP I X. 

where E ranges over the whole of TF. Finally, we extend the semantic function 
F r in the following fashion: 

FT[X.] eo E 

FrlP\A! eo {(s \ A,N - N') I (s,N) E FrlP! A A(s, N) A ,,(N') ~ A} 

The remauung clauses are entirely similar to the defining equations for FT. To 
show that the new semantic function is an extension of F T we must demonstrate 
that the two functions agree on the intersection of their domains: TCSP. A 
simple structural induction will suffice: the only non-trivial case is that of the 
hiding operator. In this case, recalling the relevant semantic equations 

FT[P\A! eo {(s\A,N)I(s,NU([O,end(s,N))xA))EFrlP!l 

FT[P\A! eo {(B\A,N-N')I(s,N)EFrlP!AA(B,N)A,,(N')~A) 
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and the definition 

A(s, N) '" ([0, end(s, N)) x A) <; N 

we proceed as follows: 

Assume that F T [p] = F T [pJ and that P is a process. 

(s, N) E FriP \ AI 
f- 38" N" N, • 8 ~ s, \ A /I (Sj, N U ([0, end(s" N)) x A)) E Fripl
 

/I N, ~ NU ([0, end(Sj, N)) x A)
 
/I N ~ N, - N, /I a(N,) <; A
 

f- 3S11 N1,N1 .s = SI \A AN = NI ~ N2 A (sl,Nd E ..FT[P] 
/I [0, end(s" N.») x A <; NI /I a(N,) <; A 

since end(sl, N} = end(sl' Nd 

f- 3 s" NI , N, • s ~ s, \A /I N ~ N, - N, /I (Sl \ A, NI - N,) E F rip \ AI 
f- (s,N)EFrlP\Aj 

Conversely, 

(s,N)EFrlP\AI 

f- 3s1,Nt ,N 2 • s = Sl \ AA N = N1 - N2 A (s1>Nd E .:FT[P] 
/I [0, end(s" NI )) x A <; N, /I a(N,) <; A 

f- 3 s" N" N, • s ~ s, \ A /I (8" N U ([0, end( s" N,)) x A)) E F rIpI 
/I N, ~ N U ([0, end(s, , N, )) x A) 
/I N ~ N, - N, /I a(N,) <; A 

by Axiom 6 of TMF 

f- 3s, • s ~ s, \ A /I (s" NU ([0, end(s, , Nl) x A)) E TripI 

by Axiom 6 again, since end(sl' N} ~ end(s\. Nd 

f- (s,N)EFT[P\A] 

o 
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B.3 Hiding 

Having verified that F T is an extension of FT, we can easily establish the soundness 
of the rule for the hiding operator: 

P .at A(s, N)" a(W) ~ A '* S(s I A, N- W)
 

P I A sat S(s,N)
 

Given the semantic equation 

J'r1PIA] '" {(sIA,N-N')!(s,N)EJ'r1Pj "A(s,N)"a(W)~A} 

we proceed as follows: 

P sat A(s, N)" a(W) ~ A '* S(s I A, N- N') 

(s,N)EFrlPIA! '* 3 8I, NI, N2 •	 S = 8} \ A /\ N = N1 - N2 1\ 

A(s" N,)" (Slo N,) E J'r[P! 
" a(N,) ~ A 

~ \I(s,N)EFrlPIA! .3s"N Io N,.s=s,IA"N=N,-N, 
" S(s, I A, N, - N,) 

~	 PIAsatS(s,N) 

B.4 Recursion 

Finally, we establish the result that provides the motivation for the extension to 
the semantics: the second inference rule for recursion: 

\IX. X sat S(s,N) '* F(WAITo;X) sat S(s,N)
 

~ X • F(X) sat S(s, N)
 

We begin by extending the topology on TMF defined in [Re8S] to TF in the 
obvious way: Reed '5 proof that all of the basic TCSP operators are non.expanding 
is independent of the axioms. That all basic TCSP+ operators are non-expanding 
follows immediately. 

If F is a function on TCSP+ composed of basic operators, there is a corre­
sponding function CF defined on TF by: 

C,(E) '" J'r[F(X.)) 
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From the above result, it follows that F is non-expandiug, and that if any of the 
components of Fare coutracting, then so is F. The function WAIT 8; X is always 
contracting; if we define 

F(X) ~ F( WAIT 8; X) 

then, for any F, the function F will be contracting; the corresponding mapping 
on TF, CF, will be a contraction mapping on a metric space: it will have a unique 
fixed point. This fixed point is the semantics of p X • F(X). 

If we consider the sequence {En.}, where 

En ~ C;(0) 

we observe that 

lim (En) = F r[~ X 0 F(XJIn_= 
The antecedent of the recursion rule 

If X 0 X sat S(s, N) => p(X) sat S(s, N) 

allows us to conclude that 

IfX,noXsatS(8,N) => pn(x) sat S(s,N) 

However, it is easy to show that VS • X sat S( s, N), and so 

Ifn 0 pn(x) sat S(s,N) 

and it can be shown that all predicates of the form sat S( .'I, N) correspond to closed 
predicates in TF: if such a predicate holds of all the elements of a sequence, it 
must hold of the limit. Hence 

I'X 0 F(X) sat S(s,N) 

Hence the recursion rule is sound with respect to the new semantics. 0 
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