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The Rewrite Rule Machine, 1988°

Joseph Goguen!, Sany Leinwand?, José Meseguer?, and Timothy Winklert

Summary

This menograph consists of two papers which jointly summarize research in the
Rewrite Rule Machine (RRM) Project as of about the end cf 1988. Research in
this period focussed on two topics: the design of very high level mnlti-paradigm
programming languages; and an architecture for executing such languages using
graph rewriting. The first paper, “Software for Lthe Rewrite Rule Machine,” gives
an overview of RRM implementation techniques for functiopal, relational {“logic™),
and object oriented languages, as well as for their combinations. This paper ia
pearly the same as one that appeared on pages 628-637 of the Proceedings of the
International Conference on Fifth Generation Compuler Systems, held in Tokyo in
November 1988. The languages are unusual hecause their designs are based directly
on logic, and pothing has been allowed to compromise their basis in logic. The
second paper, “Cell, Tile and Ensemble Architecture of the Rewrite Rule Machine,”
describes the quite unconventional hierarchical architecture of a custom VL3I chip,
called a rewrite ensemble, which processes data directly in memory, iz SIMD mode.
A complete RRM consists of many independent rewrite ensembles connected over
a network. This paper is a very substantial modification of ore appearing on pages
869-B78 of the same Proceedings.
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Software for the Rewrite Rule Machine

Joseph A. Goguen® and José Meseguer!

Abstract: The Rewrite Rule Machine (RRM) has an innovative mas-
sively parallel architecture that combines fine-grain SIMD computation
with (two levels of) coarse-grain MIMD computation. This paper de-
scribes techniques for compiling and running functional, object oriented,
relational (i.e., “logic”), and multi-paradigm languages on the RRM.
The [anguages that we use for illustration have the advantage that they
are rigorously based upon logical systems, but the implementation tech-
niques are more general, and even apply to imperative languages. The
most nrovel of these techniques is a restricted form of secend order reyrit-
ing, which involves variables that can match against function symbols,
Rules involving such variables have enormous expressive power, and can
alsa be implemented very efficiently on the RRM; indeed, they areim-
plemented essentially the same way as ordinary rules. A second innova-
tive technique involves representing ebjects (with local state) in graphs,
by restricting the ways that rules can act on them. The RRM lan-
guages also embody many useful modern features, including abstract
data types, flexible generic modules, powerful module interconnection,
muitiple inheritance, and “wide spectrum” integration of specification,
documentation and coding.

1 Introduction

Beginning with a plea for powerful, simple languages that are rigorously based upon
pure logics, this introduction discusses mulli-grain concurrency and our model of
computation, cencurrent term rewriting. These concepts motivate the Rewrite Rule
Machine (RRM) architecture and languages. The subsequent body of the paper
provides details about the languages and tkeir RRM implementation, showing that
they can be given very efficient implementations in part because of their high level
abstract character and clean design. The references deliberately emphasize related
works by the RRM group. See [16] for details of RRM architecture.

1.1 Programmability and Logical Langnages

Programmability is a central issue for massively parallel machines, because such
machines lose their value il they are too difficult to program. We suggest that
declerative languages are the key to combining hardware efficiency with program-
ming ense. Programs in such languages tend to describe problems, rather than solu-
tions. From the hardware viewpoint, declarative languages do not prescribe specific

*University of Oxford and SRI International.
1SRI International.



2 1 INTRODUCTION

RFOOPlog
reflective Homn clanse
logic with equality
POOPS Ejlog
refiective Heom clanse logic
equational Jogic with equality
OBJ
equational Jogic

Figure 1: Overview of Languages

orders of execution, and thus give maximum opportunity for concurrency. From
the sofiware viewpoint, declarative languages avoid the need to explicitly program
concurrency, which in general is difficult. Moreover, a modern declarative language
can provide facilities that can greatly augment programmer productivity, including
the wide speeirum integration of specification, rapid prototyping, validation, testing,
documentation, and coding, as well as generic modules, multiple inheritance, and
program transformation, all of which support reusability, as well as strong typing
and multiple inheritance, which aupport exception handling.

Since all this can be given a solid logical foundation, correctness problema can
be properly addressed, with both programs and proofe in the eame formal syatem.
Moreaver, programs written in declarative languages do not need to be rewritten
if the underlying hardware is alightly changed — e.g., if more processors are added
— since they are already independent of any assumptions about the underlying
hardware.

The most promising approach to declarative programming may be through fog-
veal programming {amguages, which {roughly speaking) are languages whose state-
menta are sentelces in some logical system, and whose computation is deduction
in that system ([12] gives a more precise definition). This paper describes RRM
implementation techniques for four wide spectrum logical programming languages:

1. OBJ {2, 3|, which is purely functional;
2. FOOPS |12}, which combines functional and object criented programming;

3. Eqlog [10, 11], which combines functional and *logic” (i.e., Horn clause rela-
ticoal) programming; and

4. FOOPIlog [12], which combines all three major emerging programming paradigma.

Figure 1shows the relationships between these languages and their logics.

It 8 widely recognized that pure Horn clause logic is not an adequate basis
for practcal programming, and Prolog, for example, haa added imperative features
like is, sssert and retract; the first s really an assignment statement (with
2 quite misleading name), while the second and third update Prolog'a database.
However, this does not mean that logical programming languages are a bad idea,
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but only that some logic more powerful than Horn clause logic is needed in order
to make pure logical programming practical, Subsequent sections of this paper
discuss langunages that are based on reflective (order sorted) equational logic, and
on (order sorted) Horn clause logic with equality; these languages are FOOPS and
Eqlog, respectively. Prior to this, we discuss OBJ, which is based on (order sorted}
equational logic. Order sorted logic provides a rigorous foundation for multiple
inheritance. All these languages have inltial model semantics, which formalizes
the idea that pne wants to program over a “standard model” or “closed world” in
which questions have determinate answera.

1.2 Multi-Grain Concurrency

Concurrent execution may be roughly classified as either fine-grain or coarse-grain.
Fine-grain SIMD concurrency (broadcasting a Single Instruction stream to Multiple
Data sites) achieves efficient performance at the cost of generality, flexibility, and
programmability. Coarse-grain MIMD (Multiple Instruction streams at Maitiple
Data sites) exerution is more broadly applicable, but cannot achieve maximum con-
currency bec ause of high communication costs. It is an important research problem
to eacape this fateful dichotomy.

Experience shows that many computations are locally Aomogeneous, in the sense
that many instances of one instruction can be applied simultaneously at many dif-
ferent data sites. For example, sorting, searching, matrix inversion, the fast Fourier
transform, and arbitrary precision arithmetic, all have this character. For such
computations, SIMD architecture is advantageous at the VLSI level.

On the other hand, compiex problems tend to have many different subproblemns
with little or no overlap among their instructions — that is, complex problems tend
to involve globally inhomogencaus computation. SIMD computation can be very
inefficient for such problems. We say that computations that are locally SIMD but
globally MIMD exhibit mulli-grain concurrency. Architecturally, this suggests many
processors, each running its own SIMD program, independently of what is ruaning
on other processors. Such an architecture is natursally realized hy a network of VLSI
chips, each a SIMD processor.

Thus, progress in YLSI and communication has created a technological oppor-
tunity, answering a real need for large, complex compulations. Unfortunately, there
are serious conceptual and linguistic obstructions to exploiting this opportunity. In
fact, no well known programming language or computational model is adequate for
multi-grain concurrent computation. In particular, the von Neumann languages and
model of computation are inadequate, because they are inherently sequential. How-
ever, concurrent term rewriting seems ideally suited for multi-grain concurrency.

1.3 Models of Computation

A model of computation defines the major interface between the hardware and the
software aspects of a computing system. This interface specifies what the hardware
team must implement, and what the software team can rely upon, and thus plays
a basic role in “Fifth Generation” projects. The only justification for continued
interest in the von Neumann model of computation is that it coanects current gen-
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eration (efficient) von Neumann machines with current generation (ugly but very
widely used) von Neumann languages. This model is characterized by enormously
long streams of fetch /compute/write cycles, and is inherently sequential.

By contrast, in concurrent ierm rewriting, data has a graph atructure, and pro-
grams are sets of rewrite rules. A rewrite rule consists of two templates, one de-
scribing substructures to be modified, and the other describing what they should
be replaced by. In principle, all possible rewritea can be executed simultaneously,
at all passihle data sites (see Section 2 for more detail); however, in practice, we
will mplement some form of multi-grain concurrency. This model of computation
supparts the functional, object oriented and relational paradigms, as well as their
combinations, and can effectively exploit any inherent program concurrency. For ex-
ample, in cbject criented programming, data accesses are sequentialized only when
required for correct behavior; otherwise concurrent execution is allowed.

The RRM and its mode! of computation also support programs in conventional
imperstive languages, but this seems leas desirable, because these languages have
many inherently sequential features that restrict opportunities for concurrency; alas,
their tendency to encourage the undisciplined use of global variables and cbacure
side eflects makes their programs harder to write, read, debug and modify. Conven-
tional concurrent programming languages fare hetter, but their programa remain
difficult to write, read, debug, and (eapecially) to modify and port to new machines.
However, we should not forget that an enormous amount of software has already
been written in conventional languages.

1.4 RRM Architecture

The RRM is a massively concurrent machine that realizes concurrent term rewriting
in silicon, using revolutionary architecture but conventional electronic technology.
The design avoids the so-called von Neumann bottleneck hy using a custom VLSI
chip that processes data where it is stored. The cells in a given ensembhle share a
mngle controller, so that execution is SIMD for each chip. Local communication
predominates, since rewrites require only local connectivity. The following sketches
our current prototype RRM deaign:

1. acell holds one data node and its structural links, and also provides basic
proceasing power;

2. a Rewrite Ensemble (RE) is a regular array of cells on a single YLSI chip,
with wiring for local data exchange; one RE might hold ahout a thousand cells
plus a shared controller and same interface circuitry;

3. a board might contain about a hundred REs, some backup memory, and an
ioter{ace microcomputer;

4. a complete RRM prototype might have about ten boards, with a general
connection network and a conventional minicomputer for storing rules, hal-
apcing load, and remote communication.

A single RE yields very fast fine-grain SIMD rewriting, hut RRM execution
is coarse-grain at the board level, since each RE independently executes its own
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Figure 2: The Tree of a ‘Ferm

rewrites on its own data, occasionally communicating with other ensembles. This
realization of multi-grain concurrency yields high performance without sacrificing
programmability. Our simulations of the RRM architecture at various levels of detail
have been extremely encouraging. Qur companion paper on RRM archtitecture [16]
gives much more detail.

The RRM is intended as a general purpose computational engine, and its flexj-
bility is one of ita strong points. But, like any machine, it is more suitable for some
applications than for others. Certainly, symbohe computations are very suitable,
especially when there is much parallelism. Hardware simulation falls well within
this class; natural language processing, “intelligent” databases, theorem proving,
and expert sysiems are other examples. Originally, we thought the RRM would not
be especially impressive for numerical computation, hut recent research has shown
that certain redundant representation data structures for humbers can very effi-
ciently exploit RRM capabhilities, for example, with arbitrary precision arithmetic
[22].

2 Concurrent Term Rewriting

In the concurrent term rewriting model of computation, data are terms, constructed
from a given set of operation and constant symbols, and programs are sets of
equationa that are interpreted as left-to-right rewrite rules. The left- and right-
hand sides of an equation are hoth terms constructed from variables as well as
operation sy mbols and constants. A vanable can be instantiated with any term of
appropriate sort, and a set of instantiations for variables is called a substitution.

Term re'writing {or reduction) has two phases: first, matching, which finds
a substitution, called a match, that yields a subterm of the given term when ap-
plied to the lefthand side of the rule; and second replacing that subterm by the
corresponding suhstitution instance of the righthand side of the rule. For exam-
ple, matching the lefthand side of the conditional rewrite rule {from a program for
Fihonaccl numbers)

(*) fibo(N) = fibo(N-1} + fibo(N-2) if 2 <= N
tofibo(B) in the term (fibo(8) + fibo{&)) + O (which is represented by the tree
shown in Figure 2) succeeds with the variable N instantiated to the constant 6. Since
the condition 2 <= B is satisfied, the subterm where the match occurs (called the
redex, which is 1ibo(8) in this case) is replaced by the corresponding subslitution
instance of the righthand side. In this case, the original term is rewritten te
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1ibo fibﬁ 1ibo tibo
Lo ool

Figure 3: Result of Some Concurrent Rewriting

({tibo(8-1) + £1b0(8-2)) + tibo(6)) + O .

Rewriting at only one location at a time is called sequential term rewriting.
H the rewrite rule (*) had been applied to tibo(E) instead, one atep of sequential
rewriting would have yielded

{tibo(6) + (tibo(6-1) + Tibo(6-2))) + 0
but the rule (*) could also have been applied simuitaneoualy to both £ibo(8) and
1ibo(6), yielding

((fibo(a-1) + tibo{6-2)) + (tibo(5-1) + £ibo(5-2))) + O
in just ane atep. This is called parallel term rewriting, where just one rule is
applied several places at once, and it is what a single Rewrite Ensemble realizes.
Moare generally, true concurrent term rewriting allows the application of several
different rules at several different sites at once; this is what a multi-ensemble RRM
realizes. For example, first applying the rule (*), and then concurrently applying
both the rule N + 0 -> W and a rule for subtracting 1, transforms the original tree
into the tree shown in Figure 3, in two steps of concurrent rewriting.

It is worth remarking that with concurrent term rewniting, the number of steps
required to compute tib({n) with tbe rule () is linear in n, whereas it is exponential
for sequential rewriting. This simple example llustrates that concurrency is inber-
ent in concurrent term rewriting, and that no explicit concurrency constructs are
required at the language level to achieve it or to deacribe it. However, sametimes
a clever choice of data structure or of rewrite rules is needed to achieve optimal
performance.

[7] snd [B] show that a certain second order equational logic is a natural extension
of standard first order equational logic. It is exciting that there ia a correspond-
ing natural extension of term rewriting, calied extended rewriting, that can be
realized on the RRM just as easily and efficiently as standard rewriting. This is
the most significant new idea in this paper, since extended rewriting has important
applications to implementing object oriented programming (Section 4.2) and unifi-
cation {Section 5.2). The idea is simply to allow variables that can match operation
symbols. For example,

n(X{a(4) ,b(B)),D)} = X(a{4 + D),b(B + D))
i8 similsr to a rule in Section 4.2, with X matching operation symbols of appropriate
arity, with 4 .B.D matching subtrees as usual, and with a, b unary operation symbols.
Note that this is not the most general form of second order rewriting, since (as far
as we know) only special cases can be implemented very efficiently in VLSL



Two additional topics deserve mention. The first is sharing, which permita a
common substructure of two or more given structures to be shared between them,
rather than requiring that it he duplicated. This leads to dag’s (directed acyclic
grapha) rather than just trees. The second topic is evaluation strategie, which
are annotations that impose restrictions on concurrent execution; these can be used
to improve the performance of parallel computations. Under relatively mild as-
asumptions, such strategies do not change the sementics of functional computations.
However, for applications where concurrency is essential, evaluation strategies can
be used for concurency control. For example, some further extensions to this concept
support systems programming [9].

3 TFunctional Programming

Thia section gives a brief overview of the OBJ functional programming lsnguage,
and then indicates how it is implemented on the RRM.

3.1 OBJ

OBJ [I4, 2, 3is a declarative functional programming language with semantics
based upon equational logic. It ia well known that initial algebra semantics is cor-
rectly implernented by term rewriting under certain simple assumptions (this was
first proved in [4]), and [9] shows that concurrent term rewriting is also correct under
the same assumptions. OBJ has no explicit constructs for creating or synchronizing
paralie] processes. Rather, the parallelism of an OBJ program is inAerent in the
program itself. OBJ was also designed ta directly embody various modern soft-
ware engineering techniques, rather than provide them indirectly in an asociated
environment having separate conventions and notations. These features include:

1. User-definable abstract data types, not limited to constructors, as in
moat functional [anguagea.

2. Parameterized programming, to support software reuse and wide spec-
trum integration of design, documentation, rapid prototyping, and specifica-
tion, with

+ powerful “tunable” generic modules that go far heyond Ada’s generica or
mers functional composition, and are powerful enough to give the power
of higher order programming without its difficulties in understandability
and verification [8],

e theorics, which describe semantic as well as ayntactic properiies of mod-
ules and module interfaces,

e views, which assert semantic properties of modules, and

* modulc exprecssions, which support programming-in-the-large, hy describ-
ing how to build complex subsystems from previousaly defined modules,
and then actually build them when evaluated.
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3. Subsorte, which support multiple inheritance, exception bandling, partial
functions, and operation overloading in an elegant way.

4. Pattern matehing modulo equations, including the assaciative, commu-
tative, and identity laws, which greatly increases the power of matching, and
hence the expresaiveness of the language.

5. Module hierarchies, whereby old modules may be imperted into new mod-
ules.

6. Evaluation strateglies, which avoid enslavement to any fxed evaluation
strategy, such as eager or lazy, and thus allow greater efficiency in botb time
and space.

7. Very simple denotational semantics, given by the initial algebra of the
equations in a program.

OBJ has been rather extensively studied from botb theoretical and practical
viewpoints [14, 2, 5, 3], and there are now several implementations besides OBJ3
at SRI International, including one from the Washington State University, tbhree
in Great Britain, one in Italy, and one in Japan. The British project at UMIST
(University of Manchester Institute of Science and Tecbnology) was supported by
Alvey, and involved a rather extensive set of experiments, which clearly demon-
strated the value of OBJ for practical software engineering applications; a version
of UMIST-OBJ ia now available as a commercial product in Britain, and another is
being developed hy Hewlett-Packard in Bristol, England.

3.2 A Simple Example

We use the simple program for Fibonacci numbers given in Figure 4 to illustrate
some basic features of OBJ. The most basic OBJ entity is the object, a module
encapmlating executable code. The keywords obj ... endo delimit the text of
an object. Immediately after the initial keyword obj comes the object name, in
this case FIBD; then comes a declaration indicating that the built-in object NAT is
imported. This is followed hy declarations for the new sorts of data (in this case
there are none) and the new operations (in this case, fibo), with information about
the sorta of arguments and results (here, both are Nat). Finally, a variable of sort
Kat is declared, and two equations are given; the keyword cq indicates that these are
conditicnal equations (unconditionel equations use the keyword eq). < is the “less
than” predicate, and <= is the *less than or equal” predicate; these are imported
from NiT along with the addition and subtraction operations.

3.3 Implementation on the RRM

Before describing how to implement OBJ on the RRM, we need more information
about the RRM design. The RRM has been designed hicrarchically, that is, as a
series of models, each more concrete than the one above. The highest levels are
actually semantic rather than architectural; for OBJ, these models are equational
logic and term rewriting, the former providing a denotational semantics, and the
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ob] FIBO 1s protecting NAT .

op fibo : Nat -> Net .

var N : Nat

cq fibo{N) = N if N < 2 .

cq fibo{li} = fibo(N - 1} + fibo(N - 2) 1f 2 <= N .
endo

Figure 4: Fibonacci Code in OBJ

[ tokea [ Iptr [ rptr [ flags |

Figure 5: The Logical Structure of a Cell

latter an operstional semantics. We now discuss the moet abstract architectural
model for the RRM, the cell machine, consisting of an arbitrary number of cells,
each with three major registers and an arbitrary number of “Hags,” which can be
“set” or “unset” (i.e., “up” or “down”). The token register stores the “content” of
a cell, while itz left and right pointer registers each give the location of another
cell (or else are empty)!. The Aags are used to store local status information during
matching and rewriting. Figure 5 shows the logicol structure of a cell; of course, the
physical structure is more complex, but our subsequent diagrams actually simplify
further and omit the fAags. This model assumes that each cell can communicate
directly with any other cell; [16] explains how the actual RRM realizes the same
logical power using only local connectivity.

1t is evident how to represent a binary tree (or dag} in such a cell machine; for
example, Figure 6 shows the tree of Figure 2. We now consider how tc implement
rewriting with S8TMD streams of microtnsiructions that are broadcast simultaneously
to all cells from the central controller. The following are some typical microinstruc-
tions: set a certain flag if the token has a certain value; fetch a token {or pointer)
from anatber cell whose location is known; and set the token to a certain value if a
certain flag is set. In this model, every instruction is interpreted and (if applicable)
executed in each cell using only information that is local to that cell.

A given rewrite rule is implemented by first identifying instances of its lefthand
side in a matching phase, aud then replacing each matched pattern by the corre-
sponding righthand side. Although arithmetic for the natural numbers is provided
by the RRM hardware, the following discuasion will use a basic Peano represen-
tation, with constructors the constant 0 and the unary successor operaticn s, as
shown in Figure 7. Then the rewrite rule

fiba(s(s8(N))) = fibo(s(X}) + fibo(N)
from Figure 7 can be implemented by first identifying each cell that contains the
token fibo, and then checking that the cell indicated by its left pointer contains
a successor that points to another successor (in practice, this check could be done
bottomn-up).

'Au n-ary source level operation aymbols is translated into n — 2 hinary operations forn > 2,
so that binary cells are sufficient.
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+ |
L1 | F—we], [—]
fibo o 5 /L/
[¢ ||

Figure 6: The Cell Representation of & Term

ob] FIBC iz sort Nat .
op O : -> Nat .
op » : Nat -> Nat .
op _+_ : Hat Nat -> Nat .
op Iibo : Nat -» Nat .
vars N M : Nat .
sq O+ N=N.
oq s(M) + N = (M + N).
tq Iibo(0) = O .
sq fibo(e(0)) = a{0) .
oq fiba(a{a(N))) = fibo(a(N)) + 2ibo(N) .
endo

Figure 7: Peano Fibonacci Code in OBJ

Ouce the instances of the pattern tibo(a(a(x))) are identified, then replace-
ment can begin; for example, we may replace the token fiho at the root of the
pattem by +, replace ita left pointer hy a pointer to its a(x) cell, and set its right
pointer to the x cell. See Figure 8. Notice that there is now one less pointer to the
first & cell, 8o that it should be collected as garbage if there are no other pointers to
it. Also notice that a dag structure has been created from what might previously
have been just a tree structure. The following copy rule expresses an important
restriction on modifying cells during term rewriting:

I there is more than one active pointer to a cell, then it cannot be

g0 | | ] + Sibo —

: — (ool y [—] | L1 ¢ [—]

= e

Figure 8: Rewriting a Cell Representation
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modified, and must instead be copied, unless it is the root of the redex.

Many questions might occur to the reader who has followed this discussion
closely. In gemeral, these fall into one of the following classes:

1. Architectural questions, such as “How to realize arbitrary logical connec-
tions between cells that are only locally connected phyaically?” or “How are
the microinstructions implemented?” Such questions are discuased in [18).

2. Model of computation questions, such as “What happena if two instances
of the same rule want to modify the same cell?” or “What happens if more
than one ensemble must cooperate on a rewrite? Such questiona are answered
in {9].

3. Detalled programming questions, such as “How to compute I1bo with
optimal efficiency on the RRM?” Some such questions are answered in [20],
while othere must be deferred to a future paper.

4 Object Oriented Programming

The recent history of programming languages can be seen as an attempt to ob-
tain the advantages of imperative programming without its disadvantages, while
adding new features to encourage better programming style and better support for
programming-in-the-large, progtam maintenance, ete, A major problem with tra-
ditional imperative programming style is its ohsessive and obscure use of globally
shared structures, particularly giobal variables; this not only malkes programs diffi-
cult to understand and maintain, but ig also a particular disadvantage for distributed
computing, since global variables cannot reflect and exploit distributed memory. In
our view, the essence of ohject oriented programming is not inheritance {multiple or
otherwise), nor is it message passing (which is after all just 8 metaphor for procedure
calling), hut rather it is the organization of memory into local persisient objects, as
opposed to a single global store. Such a programming style makes programs eaaier
to underastand and to modify, as well as more appropriate for distributed computing.
It in significant that object oriented programming arose in a language designed for
simulation, so that its concepts are motivated by the physical world, witb its natural
intuitions of hierarchical and distributed structure.

4.1 FOOPS

FOOPS [12] was designed to be a simple, yet expressive and efficient general purpose
ohject oriented language that embodies the various modern software engineering
techniques developed for OBJ. We chose to combine object oriented programming
with OBJ-style functional programming rather than with imperative programming,
because we wanted to restrict features that change memory to methods that only
update lacal properties of objects. By contrast, Common Loops builds on Lisp,
which has many imperative features with global side effects, such as setq, rplaca,
and their ilk, that encourage an undisciplined programming style.
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In FOOPS, objects, abstract data types, methods and attributes are all defined
in a declarative functional style. This gives FOOPS a simple syntax and semantics,
and makes it comparatively easy to read, write and learn. FOOPS is also relatively
easy to reason about, since it is based on a formal logical system; indeed, [12] gives
what seerns to be the firat ever rigorous semantics for object oriented programming.
Moreover, we have designed a graphical programming interface with which the user
can directly manipulate icons that represent ohjects, using a mouse; this leads to a
progranming style that is almost “physical” in its intuitive impact [6].

ORI is a proper sublanguage of FOOPS, used to define the abstract data types
that provide values and the funciions that manipulate these values. In addition,
FOOTS allows declarations for ¢lasses, attributes and methods; for added clar-
ity, classes and methods are written in italics, and keyworda are underlined. Each
object of a given class has a unique name, and also has values for certain attributes;
these values are usually from ahstract data types, hut may also be from other classes
([12] given details of FOOPS® powerful ohject-valued attribute facility). FOOPS dis-
tinguishes between ok axioms and error axioms, which respectively describe normal
and exceptional behavior; the basis for this distinction in order sorted algebra is
givenin [12].

We illustrate FOOPS with the following simple module for hank accounts. Ob-
jecta ip this example are bank accounta with two attrihutes. The first, bal gives the
balance of an aceount as a Money value, assuming that a representation for money
(with a positive or negative sign) has already been given in the module MONEY, and
that the sort Money has a subsort Pmoney for positive amounts of money. The second
attribule hist is a history of tbe transactions performed on the account since its
creation, represented as a list of money amounts. This list data type is imported
into the ACCT module by applying the generic LIST module to the data sort Money
and renaming its sort List to Hiet. Two methods can modify accounts, eredit and
debit, with the effect of incresing or decreasing the halance, and of appending the
corresponding amount (with appropriate sign) to the history list. There are also
error axioms to bandle overdraw exceptions.

omod ICCT is class Acct
protecting LIST[Money]+{asort Liat to Hist)
attrs bal : Acct -> Money
hist : Acct -> Hist
error overdraw : Maney -> Money
methods credit, debit : Acct PMoney -> Aecl
ok-axions
balinew(4)) = 0 .
hist{new(4)) = nil .
ballcredit(A,M)) = bal(d) + M .
hist{credit(4,M)) = app(hist(A).M) .
bal(debit(A,M)) = bal(A) - M if bal(A) <= M .
hist(debit(4,M)) = app(hist(A),-M)
if bal(A) <= M .
err-axjoms
bal{debit(A,M)) = overdraw(M) if bal(4) < M .
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hist(debit (A M))= app(hist(A), ,overdraw(M)) Lif bal(A} < M .
ende ACCT

The first two axioms can actually be omitted by invoking the FOOPS *prin-
cipal constant” convention, which saya that the initial value of an attribute is the
“principal” constant of its abstract data type, if there is one.

4.2 Implementation on the RRM

We now discuss the implementation of FOOPS objects, attributes and methods by
{extended) rewrite rules, using the above bank account example. An object, such
as Johnson-Acct, is internally represented a3 a term

Johneon- Acct(bal: (500}, hist: (200 -100 300 -100 200))
with top operation symbol the name of the ohject, and with as many subterms as
attributes. For an atiribute a the corresponding subterm is of the form a: i with
g: a unary operastion symbol having ¢ ar its argument. In general, an object & in a
class with attributes a,,...,8, has the form

Ofar: (ta)s o 0n: (ta))
and the value a,;(Q) of the attribute a; for an object O is obiained by applying the
rewrite rule

ai(O(ar: (=1} 801 (z0))) = 22
For example, this gives bal(Johnaon-Acct) = 50O for an account in the state de-
scribed above.

Method application is only slightly more complex. The axioms for a FOOPS
method declare the effects on each of the object’s attributes’. For example, the
axiom

bal(credit (A, M)) = bal(A) + N
declarea that the new balance is the old balance plus the amount being credited. In
general, a method m with axioms of the form

8(m(0, ) = k(a1(0), ,an(0), )
translates into a single rewrite rule of the form

m(X(a1: (1), en (Za) ) = X{av ({21, %, D), s 80l (Enfz1 20, 7)),
This rule is second order, involving a variable X that ranges over the operation
symbols that correspond to the names of the objects in the given class. For the
eredit method, the corresponding rewrite rule is

eredit{I(bal:(B) hist:(L)),M} = X(bal:(B + N), hist: (app(L,M)))}.

It is fortunate that the same style of broadcasting microinstructiona to RRM cells
that is used for ordinary first order rewriting will also implement this restricted form
of second order rewriting. Thns, it is straightforward to implement FOOF'S on the
RRM. The following points summarize the differences between implementing sbjects
and implementing values:

1. Objects persist, and can only be destroyed by application of a delete com-
mand.

7 Although this paper ouly discusses basic methads whose axioma have the form stated, wxioms
Tor so-called dersved methods may involve other methods in their righthand sidea [12].
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2. Dbjects are locked for method application, to ensure object integrity.
This is realized by allowing only one match attempt to succeed when several
instances of a method refer to the same object. (There is no problem when
instances of different methods refer to the same object, because the RRM
executes in SIMD mode locally.)

3. Copying of objecta is forbidden, to ensure object uniqueness.

It is remarkable that these reatrictions actually simplify ordinary term rewriting;
for example, the third condition says that we don't need to enforce the “copy rule”
of Section 3.3 for objects. To enhance efficiency, each ohject may be kept in a fixed
location, with a global address that includes the ensemble and the specific cell wbere
the (root of the) object resides; such an address can alsc be used as the internal
name of the object. Also, all objecta of the same class should be kept together in
one or more ensembles which atore the rules for the methods and attributes of the
corresponding class. For the purposes of implementation on the RRM, imperative
programming can be congidered a degenerate case of object oriented programming.

5 Relational Programming

It is widely recognized that the relational paradigm is especially euitable for prob-
lems that involve search and/or deduction; typical application areas are natural
language processing and expert aystems. Since pure Horn clause logic is not power-
ful encugh to support truly practical programming, the RRM project has chosen to
investigate more powerful logics, rather than to gralt extralogical features into Horn
clause syntax. The resulte of our explorations include designs for the languages
Eqglog and FOOPlog and some initial ideas on how to implement them, as discuased
below.

5.1 Eqlog

Eqlog combines the functional and relational programming paradigms, and also
provides the same parameterization and wide spectrum capabilities as OBJ and
FOOPS. Like these languagea, Eqlog is based on a rigorous order sorted logic that
provides multiple inheritance and a precise initial model semantics. Like FOOPS,
Eqlog is a proper extension of OBJ. However, instead of adding classes, methods,
and s on, Eqlog adds only one basic tbing to the syntax of OBJ, namely predi-
cates. To achieve semantic consistency, equality is now regarded as a ratber special
predicate that is always interpreted in models as actual identity. The logic for this
is quite well known; it is Horn clause logic with egualily, and there are rules of
deduction with completeness and initiality theorerns [11]. In this regard, the con-
tribution of our original (1984) Eqfog paper has heen rather widely misinterpreted:
the main point was not so much the suggestion to use narrowing in the operational
semantics of Eqlog, but rather the suggestion to use the initial model semantics of
Horn cause logic with equality as a criterion for the eorrectness of any proposed
implementation, and to use initiality alse for the semantics of built in types (ie.,
for what is now called Constraint Logic Programming), as further developed in [11].
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From this viewpoiat, the narrowing algorithm merely provides an existence proof
tbat certain classes of programs can be implemented. The problem of finding an ef-
ficsent implementation for some sufficiently rich suhclasa of Eqlog programs remaina
the subject of much current research. However, the initial model semantics of Horn
clause logic with equality remains the right eriterion for correctness of proposed
algorithms. For practical purposes, one might choose to implement Eqlog with the
restiction that only ayntactic equality between terms involving constructors is al-
lowed in Horn clauses and in queries involving predicates, hut with arbitrary user
definable equations for defining functions ard doing functional computation; such
an impleme ntation could also provide powerful built in types, making it & modu-
lar Constraint Logic Programming Language. Of course, the abatract daia types
defined by comnstructors can be seen as another built in type.

The operational semantics of Eqlog divides naturally into two algorithms, one for
solving systems of equations, and the other for searching. The first algorithm gener-
alizes standard, syntactic unification, the extreme case being wniversal or semantic
unification, while the second differs little from the usual Prolog-style implemen-
tation of search for SLD-resclution, except that it exploita the opportunities for
concurrency which the RRM provides. These algorithma are discussed in Sections
5.2 and 5.3 below, respectively.

5.2 Uniflication

Unification and term rewriting are closely related; in particular, the matching phase
of rewriting im n special case of unification. What may he more surprising is that
unification can be naturally implemented by rewriting, 30 as to exploit parallelism in
a natural way. As in the Martelli-Montanari unification algerithm [18], we represent
both unification problems and their solutions as sets of equations, and we give rules
that transform the farmer into the latter®; in fact, the solutions are reduced forms
under the given rules. This subsection illustrates the approach with a very simple
algorithm without the oecur check. Some other unification algoritbms are briefly
discussed at the end of the subsection.

We can consider an equation between terms ¢ and t' to be another termit = ¢,
with tbe binary infix operation = assumed commutative!. Next, we can group
several equations togetber into a aystem of equations, represented by a term of the
form

{u=tl A At =0)

Then solving a system of equations corresponds to evaluating a term of the form
golve{t; =1 A .. A Ly =1}
using the rewrite rule

golve{L} = {elim(L]}
where elim is an auxiliary operator for variable elimination whose meaning is defined
below. Our rewrite rules for unification use associative pattern matching on [iats
of equations to ease the exposition, and sometimes leave the sorts of the variables
implicit, for example, [ above ranges over lists of equations, and the variables I, I

*Herbrand’s original work on nnification ¢an also be seen as an algorithm of kind,
*Commutative cperations can be implemented on the RRM without any special difficulty.
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below will range over identifiers, of sort Id.

Wefirst give rules for “decomposing” equations, using the power of second order
rewriting. Assume that each operator name has a fixed arity (zero for constants)
and thet arities are bounded hy a small number {(although these assumptions are
realistic, they are used here only to simplify the exposition). Then the decomposition
rules are

X(z1,.,20) = X(p1, o) =(m=wm) A . A (Tn =pn)-

X@A=Y(@) = fail if X£Y.
where the variables X and Y are second order and match operation symbols, and
where [a¢l is a constant obeying the rule

{LA fail A L'} ={fail}.

Before explaining the rules for variable elimination, we hriefly discuss the opera-
tion of replacing a variable by a term. We regard replacement as a ternary operation
fet I betin ¢' with I an identifier and ¢ and #' terms. Then the replacement rules
are

let[betinI'=1f (I ==I') thentelse I fi.

leeIbetin X(21,...,2n) = X(let I betin zy,....0et Tbetinz,).
where == denotes syntactic identity. Replacement extends to equations (hy apply-
ing the replacement to hoth sides) and to lists of equations in an obvious way. Now
the variable elimination rules are

elim{nil) = nil.

elim( fasl} = fail.

{EA eim(L' A (I=t) A LM} =

if (I==1¢)then {L A elim(L' A L")} else
{{I=t) A (let Ibetin L} A elim(let I betin (L' A L"))} fv.
Finally, to avoid trivial equations in the solved form, we add the equation

{(LAa{(I=I) A L} ={L ~ L'}

Otler unification algorithms can be implemented on the RRM with similar tech-
niques. Tn particular, the occur check {(which Eqlog needs) can easily he added to
the above unification algorithm®. Eqlog also needs order-sorted unification, which
can actnally be significantly more efficient than unsorted unification, due to earlier
failure detection. A quasi-linear order-sorted Martelli-Montanari style unification
algorithm is given in {19]. Eqlog also needs unification modulo equations. The
narrowng algorithm [15) shows that this is possihle, but is known to be inefficient.
However, the RRM’s parallelism can be effectively exploited for this prohlem, since
narrowing combines rewriting and unification. The work of Martelli et al. [17]
treating narrowing as a transformation of a set of equations seems suggestive in this
regard.

5.3 Search

Searching for solutions to an Eqlog query should exploit RRM concurrency to explore
many parts of the search space in parallel. Solving a given query @ for a particular
Eglog program can be conceptualized functionally rather than nondeterministically.

°It might even be possible to perform such a check "by need” sc that, say, when exploring a
search tree the cost is only incurred on successful patha.
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To find the first n solutions of the query @ we reduce the term show G upton to a
set of substit utions, represented as a disjunction &, v 8z v ... v @,,. One apptoach to
implementing Eqlog in the RRM may be based up on ideaa similar to those of J.A.
Robinson [21] and K. Berkling |1]. However, our context is broader since it includes
Horn clause logic with equality, and our functional basis is equational logic rather
tban lambda calculus. The key observations are:

1. A sentence of the form VZVJ{A(Z) <= B(Z, #)) is logically equivalent ts one of
the forrn VZ(A(£)<=3§B(Z, #}}.

2. In tbe initial (or Herbrand) model I; defined by a set C of Hora clauses
(poesibly involving equality) |10, 11], if a predicate symbol P is defned by
Horn clauses of the form

P(t((£1)) <« By, #i), ... P(E1(£2)) <= Bal 5, )
where the B;’s are conjunctions of positive atoms, then
IrE P@)e ((Z=4(8) AIRBi(A, ) v -V
(# = t(52) A TR Bl 1))
where £ = {7) is compact notation for a conjunction of equations equating
the first variable with the first term, tbe second with the second, etc.

3. Since the & symbol in the last formula can be interpreted as equality of terms,
we can view such a formula as a rewrite rule for SLD resolution in Horn clause
logic with equality.

For example, a program to compute the transitive closure TC of a binary relation

R baving clauses

TC(zx,y¥) < Rlz,v)

TClz,y) « TC(z,z) ATC(2,y)
is transformed into a functienal program involving the rewrite rule®

expand(T"C(z,y)) = R(z,y) v 32(TC(z,z} A TC(z, y))
where the meaning of tbe function ezpand is clarified below. Rewrite rules like the
above for TC' produce complex formulas built up from systems of equations and
atomic formulas like R{z,y), by repeated application of v, A and 3. The original
expreasion show @ upto n iz reduced to a disjunction of n solutions, i.e., to n systems
of equations in solved form, each sclving the query . Solutions are extracted one
by one using the rule

(1) show Sv F upton = S v show F upto p(n)
where p i8 the predecessor function, S ranges over systems of equations, and F over
formulas. In general, an expression corresponding to a logical formula is reduced
by certain auxiliary rules (in addition to those already discussed for unification),
including:

1. FA(F' v F¥) = (F A FYv (F A F") (distributivity)

“Thie rule acts in a sense like a cloaure; ita implementation should create new inatances of the
existentially quantified variables for each rewrite. It can thus be implemented as a (special kind
of) object, in the mense of Section 4.1.
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2. I{E A(s=t)A E') = {E A E} (existential quantifer elimination)
3. {E} A {E'} = solve{E A E')

(solving the conjunction of two systems of equations)

The paallel model of computation underlying the RRRM aupports search with “or®
parallelmm so that the logical completeness of Eqlog is not sacrificed. However, the
exponential explogion of the search tree must be controlled, even when ample parallel
resources are available. For thia purpose, the expand function expands an atomic
formmls P(t,,...,ta) into a disjunction of formulss, one for each clanse having P in
its head, 82 in the TC example above. This permits a lasy breadth first strategy,
exploring deeper levels of the search tree only when no more solutiona are available
at higher levels; then, the rule (1) above does not match, and further expansion is
initiated by rules such as:

1. show F v F' upto n = show expand(F) v ezpand(F') upto n.
2. show F A F' upto n = show expand(F) A expand(F') upto n.
3. show 3z F upto n = show Iz expand(F) upton.

4. show P(ty,...,t,) upto n = show ezpand(P(t,, ...,tn)) upto n.
5. erpand(F v F') = expand(F) v expand(F').

6. espand(F A F') = expand(F) A expand(F').

7. espand(3z F) = 3z cxpand(F).

This seems a reasonable and simple way to explore the search tree, but many other
strategies are possible. The RRM supports very flexible and general evaluation
strategies [0] that can be applied to this problem. Also, creating an object with
two attributes, one the solutions already found, and the other for the remaining
search tree, and with methods for requesting additional selutions would support
very natural user interactiona,

5.4 FOOPlog

There i not space here for more than a few remarks about FOOFlog [12], which
combines all three major emerging programrming paradigms, the functional, chject
oriented, and relationel. It appears that techniques similar to those deacribed above
will aupport the efficient implementation of FOOPlog on the RRM. Moreover, we
believe that FOOPIlog is an especially suitable language for knowledge procesding,
and in particular, for natural language procesaing [12, 13].
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Cell, Tile and Ensemble Architecture
of the Rewrite Rule Machine

Joseph A. Goguen®, Sany Leinwand', and Timothy Winkler*

Abstract: The Rewrite Rule Machine (RRM) architecture is a massively parallel
mulls-grain Averarchy, in which five different levels of organization can be distin-
guished. The lowest is the cell, which stores an individual data token. Next, a tile
provides common communication resources for a amall number of cells. Tbird, an
enasemble coneists of many cells, which can represent complex data structures, to
which rewzite rules are applied under the direction of a common controller; each
ensemble is implemented by a single custom VLSI chip. Fourth, a cluster organizes
many ensembles to cooperate in solving larger problems, and finally, an entire RRM
is a network of clusters. Ensembles support fine-grained SIMD parallelism, while
clusters support coarse-grained MIMD parallelism. This multl-grain paralleliam
allows the RRM to exploit the fact that many typical complex computations are
locally homogeneous but are not globally homogeneous. This paper describes the
RRM architecture at the ensemble level, and presents some recent simulation re-
sults which suggest that one RRM ensemble has roughly 50 times the power of a
Sun-3/60. We consider this very encouraging.

1 Introduction
The goals of the Rewrite Rule Machine {(RRM) project are to achieve:
® efficiency, through multi-grain massively paralle] execution;

e generality, supporting both symbolic and numerical computation, as well as
both homogeneous and inhomogeneous computation;

s programmaobdity, by supporting & wide variety of languages, from the tra-
ditional imperative to the modern declarative, including the object-oriented,
logic (i.e., relational), and functional paradigms, as well as their combinations;
and

o gemantsc flentbility and precision, by compiling all languages into a common
model of computation called concurrent rewriting.

Thus, the RRM project aims to develop architectural concepts and a model of com-
putation to bridge the gap between high level programming and massively parallel
execution. This paper focuses on RRM architecture at the ensemble level, which

“University of Oxford and SRI International.
TSRI International.
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implements fine-grain SIMD parallelism. Certain topics from our previous papers
[5, 6, 15, 15] are only briefly summarized in this paper, but are not necessary for
understanding the rest of it.
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1.1 Muiti-grain Architecture and Locally Homogeneous Compu-
tation

Current generation massively parallel architectures typically fall mto one of the
following two classes:

e Coarse-grain architectures whose computations are organized into sizable
tasks that only rarely need to exchange data;

s Fine-grain architectures whose computations are organized into small tasks
that frequently need to exchange data.

Each option imposes certain limitations, either on the amount of parallelism that
it can effectively exploit, or else on the types of problems for which it is suitable.
For example, only computations that are very Aemogencous, in the sense that many
inetances of one instruction can be applied simultaneously at many different placea
in the data, can make efficient use of a SIMD machine. But experience showa
that many large, complex computations have many different parts with little or
no overlap among tbeir instructions. That is, large complex computationa tend
to be plobally inhomogenecus. We say that computations that are locally homoge-
neous but globally inhomogeneous have mmltl-grain parallelism, and note that
current generation architectures, languages, and models of computation are poorly
suited for such computations. In particular, vono Neumann machines, languages and
models of computation are inadequate, because they are inherently sequential. Sim-
ilarly, coarse-grain architectures can only exploit part of the parallelism available in
multi-grain parallel computations. In contrast, the RRM has a hierarchical multi-
grain architecture that exploits VLSI to pack many simple cells onto a single
chip organized for fine-grain SIMD parallel computation, and then organizes many
sucb chips for coarse-grain MIMD parallel computation. In this way, the RRM can
realize the bigh performance potential of fine-grain parallelism for highly homoge-
neous womputations, on the much larger class of computations that are only locally
homogeneous.
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1.2 Model of Computation

The model of computation plays two important roles in the RRM project:

1. It provides an abstract description of what the RRM is supposed to do, and
thus a correctnesa criterion for its architectural design.

2. It serves sa a common target language for compilers from a variety of source
languages; this allows the second stage of compilation, which produces RRM
ensemble controller code, to be shared among all languages.

This model of computation, called concurrent rewriting, adds the concepts of
partitioned rewriting (see Section 1.2.3 below) and extended variables {see [10]) to
the usual term and graph rewriting models, such as Dactl [4], Rediflow [14], Id [1],
and Alice [12]; see [13] for an overview of graph reduction models of computation.

1.2.1 Data Representalion

Although terms, such as f(z) + g{z), can be represented as trees, it is preferable to
represent them as graphs, fof the following reasons:

» Storage can be reduced by sharing common data, such as z in f(x) + g{z).
Such sharing also reduces the amount of computation required, since a shared
subcomputation can be performed just once.

» Replacement is much mmpler for graphs, because maintaining a tree represen-
tation requires copying (possibly large) structures when variables occur mare
than once in the righthand side of a matched rule.

Moreover, graph structures are unavoidable for object-oriented programiming, be-
cause of multiple access to objects [10]. The nodes of these graphs are labelled
by (tokens that represent) operator and constant symbols; constant symbols are
considered to be operator symbols with no arguments. In general, sort {i.e, type)
restrictions may be attached to operator symbols.

It s easy and natural to represent familiar data structures as such labelled
graphs, and although it may seem surprising at first, it is also easy and natural
to represent familiar algorithms as sets of rewrite rules. Much of this follows from
well-known results about implementing abatract data types using term rewriting, as
embodied, for example, in the OBJ3 language [11].

1.2.2 Concurrent Rewriting

For simplicity, the following discussion 18 largely confined to functional computation,
where there is no persistent store data, See [10] for & discussion of implemestation
techniques for object-oriented computation.

An RRM comnputation starts with a graph and a set of rewrite rules. These
rules are applied until the graph is reduced, in the sense that no rule is apphcable’,
Each rule has a lefthand and a righthand side, constructed from operator and

!This restriction can be relaxed to implement so-called perpetual proceases.
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Figure 9: Rewrite Rules for Fibonacci and Addition

variable symbols. Variables can be instantiated with any graph {of the appropriate
sort), and a set of instantiations for variables ia called a substltution. Rewriting
has two phases, called matching and replacement. The malching phase finds a
substructure of the data graph called the redex, auch that some substitution yields
the redex when applied to the lefthand aide. Then the redex is replaced by the
corresponding substitution instance of the righthand side.

Concurrent rewriting allows applying multiple rules at once, at multiple
places in the data, and is well adapted to massively parallel computation because no
explidt constructs are required to achieve or to describe parallelism. This greatly
eases programming.

Let us consider & simple example, the Fibonacci function, aa defined by the
equations

{ibo{0) = 0 .

1iba(s(0)) = s(0) .

1ibo(8(s(x)) = fibo(s(x)) + fibo(x) .

where the natural numbers are represented using only the constant O and the suc-
cessor function 8, i.e., using Peano arithmetic, so that, for example, 3 is represented
by s(s(s(0)}). Figure 9(a) shows these rules in graphical form; notice the sharing
of x in the righthand side of the third rule. Similarly, Figure 9(h) shows the rules for
the + function. These rules can be applied to any graph containing fibe, +, 8, and
0 symbols. For example, the three graphs in Figure 9(c) show an initial data graph,
then the result of applying the rules in Figure 9(a) to it, and finally the result of
also applying the rulee in 9(b), giving a graph with only 0 and 8 symbols, i.e., an
integer.
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A set of rules is confluent (sometimes called Church-Rosser] if the order of
applying ite rules is immaterial Lo the result. The fact that large confluent subsets
of rules are quite commen in practice permits some significant simphifications of the
RRM architecture, for the following reasons:

1. The rules within a confluent set can he scheduled in any order, and any one
rule can be applied at several different places in parallel.

2. Given a confluent set of rules, it is not necessary that each match of a given
rule to a given substructure is replaced when it is first recognized, provided
that the rule wiil be tried agaio later. This means that local data access can
fail without compromising correctness.

The first property removes the sequential control straitjacket inherent in the von
Neumann model of computation, while the second allows both the high periormance
of fast local connections, and the flexibility of remote connections.

1.2.3 Varlants of the Mode]

It is useful to distinguish the following variants of the basic rewriting model of
computation.

1. Concurrent rewriting allows tbe application of multiple rules at multiple
places in the data at once. This could be implemented in 8 MIMD architec-
ture where multiple controllers direct rewriting at multiple places. Although
this is potentially the fastest strategy, it would be unrealistically expensive to
implernent in full generality.

2. Parallel rewriting allows the application of a single rule at multiple placea at
once. In traditional architectures this corresponds to SIMD execution, with
one controller broadcasting instructions to many processors. Homogeneous
computations are typically handied well by this atrategy, which is implemented
at the ensemble level of RRM architecture.

3. Sequential rewriting applies rules one at & time, each at a single place in
the data. This corresponds to the traditional von Neumann model.

4. Partitioned parallel rewriting partitions a data graph into domains, within
each of which paraltel rewriting is performed, typically with different rules for
different domains. Partitioning is dynamic, reflecting the evolution of the data.

Thus, paraltel rewriting models fine-grain parallelism in a SIMD style of computa-
tion, whereas partitioned parallel rewriting, being locally SIMD but globally MIMD,
models multi-grain parallelism, thus extending the efficiency of parallel rewriting to
computations that are only locally homogeneous.

An evaluation strategy can be given as an annotation on an operator to
impose specific restrictions on the order of rewriting its argument subgraphs. These
annotations can be used to improve performance, and also to support the explicit
programming of concurrency that is needed for systems programming [5].
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1.3 Support for Programming

Programming is often the major cbstacle to the effective use of a massively parallel
machine. There are two common approaches to trying to overcome tbis obstacle:

« Reuse old programs, often written in old sequential imperative languages.
« Write new programs in new parallel imperative languages.

The first approach would have considerable merit if it were possible for a compiler
to extract sufficient parallelism from “dusty decks.” The current state of the art
can extract moderate parallelism for bomogeneous computations, often making use
of sorpe reprogramming by hand. The second approach can generally offer much
greater paralleliam, but often results in programs that are difficult to debug, modify,
and ponl to other machines, because of the notorious difficulty of underatanding par-
allel programs, and often also because of machine dependency in the programming
language and/or the program.

These problems should be alleviated by our well-defined model of computation
and hy the techniques that we are developing to compile any language onto the RRM
[10]. While we believe that the RRM can effectively support programs written in
imperative languages, we also believe that appropriate declarative programming
languages can exploit the RRM with greater efficiency, and at the same time offer
significant advantages in programming ease and maintenance. From the bardware
point of view, declarative languages do not prescribe apecific orders of execution,
and thus provide maximal opportunity for compilers and runtime systems to exploit
parallelam. From the software point of view, the languages that we are developing
for the RRM have features to support all phases of program development, from
specificstion and design to mainterance. Moreover, they bave simple syntax and se-
mantics, and thus are relatively easy to learn and to compile, These multi-paradigm
declarative languages, which extend our functional language OBJ [2, 3] to the object-
oriented [9] and logic programming paradigma [7, 8], are described in [10], along with
technigues for implementing them on the RRM. These same techniques also snitabie
for compiling more traditional languages. In particular, imperative programming
can be seen as a degenerate form of object-oriented programming.

1.4 Architectural Levels
The REM architecture can be described at the following levels of granularity:

1. A cell stores one node of the data structure, and car also perform simple
operations. Cella are kept as asimple as possible, so that as many as possible
can be fit onto a single chip.

2. Atlle provides shared communication resources for a small number of cells.

3. An ensemble is a single VLSI chip containing many tiles, with support for
their communication needs, a common controller, and local storage for the
rules that are applicable to its current data. Many cells together represent
compiex data structures, which are manipulated according to ipstructions
bioadeast by their controller.
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4. A cluster interconnects many ensembles so that they can cooperate in larger
compu tations.

5. A netwaork consists of several clusters, giving 8 complete RRM.

Implementing an ensemble a8 a single VLSI chip allows fast inter-cell communica-
tion, and minimizes the delay of off-chip signal propagation, sa that a high clock
rate can be used. Physically adjacent tiles within an ensemble communicate over
short, high speed wires. This supports rapid rewriting on data that involves only
direct connections. Remote connections are handled by (automatically) relocating &
remote cell to a adjacent tile when it is needed. Ensembles have a regular inter-cell
communication grid, to make good use of silicon Aoorapace.

Although this paper focuses on the first three levels, the other two are briefly
diascussed below, to help the reader understand the complete RRM architecture.

1.4.1 Cluster Architecture

A cluster contains many ensembles, a large backup memory, and a connection to a
conventional computer that stares the comnplete set of rewrite rules. Communication
protocals, rule distribution strategies, and load distribution are important issues
at thia architectural level. Clusters are relatively independent entities that need
to communicate relatively rarely. Thus they admit coarse-grain parallelsm and
support multi-grain parallelism.

1.4.2 Network Architecture

A complete RRM is a network of relatively few clusters, used for solving multiple
or very large problems. A general purpose interconnection switch is appropriate at
thig level. Tokens must have long global names, because the 8 to 10 bits used inside
a cluster are not sufficient to identify all the operator symbols that may occur in
a larger program. Therefore translation is required when two clusters interact. A
conventional compnter pravides a user interface to the RRM aa a whole.

2 The Cell

Cell structure is determined by the {act that cells provide physical representations
for abstract nodes in a graph, as well as the basic processing power for rewrit-
ing. Previous work [18] has suggested nsing flaga stared in cells to implement the
matching of lefthand sides against data. Matching consista of Bnding cells whick
are the roots of subtrees that match the pattern of a lefthand side. The occur-
rence of a given pattern or subpattern at a particular cell is represented by setting
a corresponding flag in that cell. The simplest subpatterns are tokens which are
labelled with corresponding flags. Complex patterns are matched by progressively
identifying larger and larger substructures, and marking themn with further fiaga. A
Bag representing a larger subpattern is set in & cell when flags corresponding to its
immediate subpatterns occur in its child cell(s), ard it contains the required token.
This process can be primarily bottom-up (from the leaves of the pattern to its root),
or a combination of top-down and bottom-up, and requires that cells have actess to
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a comparator for tokens and flags. Following a successful match, A new structure
is built, which in general requites allocating new cells and storing pointers in them.
When campleted, this new structure replaces the original redex by overwriting the
root.

These conmiderations suggest that cells should have the following:

& Atoken to represent the node’s operator symbol.

s Pointers to otber structures that serve as arguments to the op erator symbol
represented by the token.

o Plagn to summarize the local state of computation at a eell, e.g., that a certain
condition has been checked, or that a certain substructure is reduced.

« Tenporary registers to store pointers to newly created structures.

Partitioning computation into local tasks keeps the number of distinct operator
symboh amall encugh so that only (say) 8 to 10 bits are needed to represent tokens.
Pointen can also be fairly small (say 10 bits), because the number of cells iz a single
ensernble is limited by available silicon area. Two pointera suffice, because operator
symbok taking more than two arguments can be represented using several binary
operatst symbols. We have found that three temporary registers are sufficient for
rapid replacement.

2.1 Cell Control
The RRM design requires that each cell:

e Obey instructions from the controller, for example, to move data between
registers (token, pointer, or temporary) and o compare tokens with broadcast
data.

e Attempt to connect to another cell whose address is in a register, and if suc-
cessful, exchange data with that cell.

o Enter an inactive state whenever a comparison or connection attempt fails.
Inactive cella do not “listen” to the controller’s instructions, but can be hrought
back to attention by a special activation instruction.

e When inactive or free, use its resources for maintenance proceases, such as
garbage collection and data relocation.

2.2 Numerical Computation

Efficient numerical computation on the RRM needs capabilities at the cell level
beyond those required for rewriting. Although numerical operations could be im-
plemented from “basic principles” by representing natural numbers using only suc-
ceasor and zero (ie., using Peano arithmetic), this would be much too slow. Instead,
we can et cells perform simple operations on small (8 to 10 bit) numbers, includ-
ing signed addition, negation, abift, and bit operations. The incremental coet over
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the already required equality comparison on tokens is smali. Then RRM compil-
ers can implement a complete set of arithmetic operations from these built-in cell
operations. A redundant representation of arbitrary precision numbers as trees of
emall integers [17] permits highly paralle]l arithmetic operations, and very effectively
exploita RRM capabilities.

3 The Ensemble

An ensemble consists of many cells, a shared controller that broadcasts instructiona
to them, and local storage for the rules that are applicable to ite current dsta, all
on a aingle VLSI chip. Cells should be interconnected with a regular mesh of fixed
degree {e.g., rectangular or hexagonal}, to effectively use silicon Hoorapace.

Data sharing is difficult for massively parallel archilectures because it requires
expensive coordination. The two major approeches to this problem are message
passing and data passing. Message passing uses explicit access requests, which
typically involve large overhead, and thua are most suitable for coarse-grair machines
in which data transfer is sufficiently rare. Static data passing, as in pipelined
processors and systolic arrays, moves data over prearranged paths, such that data
arrives at each processor just when it is needed. Static data passing allows high
performance, but at great coat in applicability and programmability.

The RRM avoids the overhead of message passing and the inflexibility of data
passing by using what might be called dynamlc data representation. In thia
approach, adjacent tiles are directly connected by short high-speed wires, so that
matching can be very efficient when all cells are physically adjacent. When replace-
ment requires new cells, adjacent free cells can usually be found, but if all adjacent
tiles are full, then a resource allocation failure occurs. Pointers to remote cells can
also arise when a newly built structure uses a substructure obtained by matching a
variable, or when a remate cell is relocated without relocating its deacendenta.

3.1 Tile Structure

To make better use of resources, the silicon area of an ensemble is divided into a
regular array of tiles, each of which provides communication, equality comparison,
and basic arithmetic and logic operations for a small number of cells; 8 is the pumber
currently under evaluation. Direct connections are only provided between adjacent
tiles, by implementing each edge in the tessellation mesh with one communication
port, supporting either duplex or half-duplex data transmission?, shared by all cell
pairs located ia those two tiles, If there are multiple requesta for a port, only one
request succeeds and the others fail. If the mesh degree s sufficiently high (at least
4), the probability that two cells in the same tile will request communication to the
same adjacent tile is Jow. The fact that all cells in an ensemble execute the same
instruction stream also belps to minimize competition for bandwidth.

At the model of computation level, failures due to non-local connections or to
low inter-tile handwidth appear as occasional non-determiniem, in the sense that

?A duplex wire can simultaneously transmit data in both directions, while data 2 halF-duplex
wire can only transmit data in one direction at a time.
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the sequence of events is unpredictahle and unreproducible. But non-determinism
is natural to the concurrent rewriting model of computation, and can be made
to yield determinate results for confiuent rule sets, simply by repeating ensemble
controller code instruction cycles until the data graph is reduced. Indeed, this un-
predictability is s bonus, hecsuse it reduces the danger of deadlock. For example,
if two dmilar data structures are located in the same part of an ensemble, then
matching thern may overload the available communication resources, and it is possi-
ble that neither will succeed in matching the broadcast pattern. Non-deterministic
execution reduces the prohability of staying forever in auch x deadlocked situation.
The rare remaining deadlock situations are eliminated by having the communication
porta mlect the winning request at random whenever connection demands exceed a
port’s capabilities.

3.2 Ensemble Operation

A pet of rewrite rules is compiled into simple ensemble controller instructions and
loaded into the controller. These instructions implement the matching and replace-
ment phases of rewriting, as well as rule eequencing. A program will first activate
all cells that contain data, and then hroadcast tests. A cell that does not satisfy
a test is deactivated and will not execute further instructions until the next global
activation; a cell that experiences & communication failure is also deactivated.
Each controller instruction is interpreted in the local context of each cell; in this
respeci, ensemhles depart from classical SIMD design. In particular, the results
of cell operations are in part determined by the contents of their local storage,
including pointers to other cells. In contrast, the central controller in traditional
SIMY) architectures needs to know the physical location of each data connection.
Alsa, cells in an RRM ensemble can temporarily activate other cells to request data.

3.2.1 Replacement

Following a succeasful match, the replacement phase builde & new structure to re-
place the redex, Since communication or aliocation f{ailurez can prevent this new
struciure from heing completed, it muat he possible to abort replacement at any
step without corrupting the original data. The following measures are taken for this

purpose:

» The replacement is always performed by constructing the righthand side using
only newly allocated cells. Pointers into the redex may arise {rom instantiated
variahlea.

o The redex is replaced in a single atomic coamit instruction that is guaranteed
io succeed, but may take some time to complete. When the commit is finished,
the newly constructed righthand side replaces the redex. Thia only requires
changing pointers (and possibly the token) in the root cell.

s lf constructing the righthand side does not succeed, due to cell allocation or
communication failure, then the existing partial new structure is deallocated
and the redex is left unchanged.
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3.2.2 Comntroller Instruction Cycles and Termination

The model of computation does not in general prescrihe an order for applying rules.
Because one rewrite can create a structure to which anotber rule applies, rules must
be attempted several times, to see if intervening replacements have created new
redexes. Controller code should therefore be grouped into related eyecles that are
broadcast repeatedly until there are no matcbes. The choiee of rules to place in
the same cycle, their order in that cycle, and the order of broadcasting cycles, are
important for efficiency. In other cases, the coniroller should check that a redex
exists hefore starting a long instruction cycle for replacement.

A closely related issue is termination. The model of computation requires ap-
plying rulea uatil there are noc more redexes. The fact that communication feilure
can cause match failure means that instruction cycles may have to be repeated. But
in our Fibonacci example, it suffices to check that there are no instances of certain
operator symbhols, The fact that ensemhles generally execute only a suhset of rules
on a subset of daia may sometimes require either downloading further rules or else
maving some data to another ensemble; however, this is an inter-ensemble issue,
and thus outside the scope of the present paper.

Checking if there are any instances of certain Bags or tokens requires feedhack
from the cells in an ensemble to the controller, This can be implemented with a
simple binary tree network that ORs signals from all cells; but obtaining results
from this network will of course take more time than a gingle instruction.

3.8 Autonomous Procesges

Dynamic data representation may introduce remote connections that cannot be used
for direct data transfer. We propose io handle such situations with an antoaomous
hardware process. The basis for this is the ohservation that a currently inactive
cell (i.e., one that has not satisfied sorne test in the current instruction cycle, or else
is free) ignores the controller’s instructions, and is therefore available to help with
other useful tasks.

Because of remote connections, any request for data transfer may fail, and then
start an autonomous process that will eventuelly relocate the connection target to
a cell that is physically connected to the source by making a copy of it. This may
be done by creating a message cell that “moves” toward the target ceil, hy having
each such cell allocate another ceil closer to its target, and then copy its state into
that cell, and finally deallocate itself. Notice that when the target is reached, a
reverse process ia performed, until the original requesting cell is reached. When a
cell is relocated, its connections to previously adjacent cells can become remote. The
effect of autonamous data relocation is that cells move around the grid, attempting
to eliminate remote connections that are needed for further computation. Figure 12
in Section 4.2 illustrates this process.

Garhage collection can also be handled by autonomous processes at the cell level.

4 Simulation

Several ensemble simulators have been written, at different levels of ahstraciion:
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® A concurrent rewriting simulator takes rewrite rules as its primitive in-
siructions. This is useful for determining the amount of paralleliam potentially
available in a program. Some results at this level are reported in [18].

* A graph almulator uses ahstract graphs as data, treating ali connections
between cells as if they were local, so that communication never fails. This is
useful for dehugging ensembhle controller code and the compilers that produce
it.

* A geometrical simulator takes account of the geometry of the array of cells
in an ensemble, and the communication limitations that are involved. This is
useful for exploring high level design choites, to avoid errors hefore descending
to mare detailed levels.

Both graph and geometrical stimulators execute ensemble controller instructions, but
they do so in different ways.

4.1 Graph Simulation

We continue the example of Figure 9 hy giving hand-coded controller instructions
for the Fibonacci function. There are two cycles: the first, shown in Figure 10,
reduces each Fihonacei symbal to a comhination of plue and successor symbols;
the second, shown in Figure 11, eliminatas plus symbols (i.e., performs addition in
Peano arithmetic).

The regiaters of a cell are called token, Yaft, right, temp, 1temp, and rtemp.
The RRM ensemble simulator uses a Lisp-like sayntax, and include the following:

1. {init) activates all cells.
2. Tests, including the following:

e {test-token t) checks that a cell’s token is “t”.
e {(test-flag x) checks that a cell has the “x” Aag set.

e (test-tree a :1flag b :rflag c) checks that a cell has the “a” flag
set, and that the cells indicated by ita left and right pointers have their
*b” and “c” flage set, respectively; hoth the :1flag b and :rfleg <
arguments are optional,

3. Instructions that are performed hy all active cells, including:

s (set-flag x) sets the Aag “x™ (in each active cell).

e {set-1flag x :pointer left) sets the “x” flag of the cell pointed at by
each active cell’s left pointer.

e {(unset-flag x) unseta the flag “x".

e (get x y) places “x”, which may be either a token or a register name,
in the “y” register of each active cell.

+ (get x y z), for each active cell, places the contenta of register “y° of
the cell pointed at hy “x” into register “z”.
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(loop (init)
(init)
(init)

(init)

(init)

(init}

(init}

(init)

(init)

Figure 10: Ensemble Controller Code for the Fibonacci Function

(test-token ‘fibo)
(set-flag ‘a)
(test-token ‘s)
(set-flag 'b)
(test-token '0)
(aet-flag ‘c)

(teat-tree ’a :1flag ’'c)
(get '0 token)

(commit 0)

(test-tree ‘a :1flag 'b)
(set-flag 'd :pointer left)
(teat-tree d :1flag ’c)
(set-flag 'e)

(test-tree 'a :1flag 'e)
(get left left ltemp)
(get 5 token)

(comnmit 1)

(test-tree 'd :1flag 'b)
(get left left temp)
(set-flag 'f)

(test-tree ’a :1flag 'f)
(alloc ltemp ’fibo)

(get left left temp)
(alloc rtemp *fibo)

(put temp ltemp left)
(get left temp teap)
{put teop rtemp left)
(get '+ token)

{commit 2}

35
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(loop (init) (test-tokea '+)

(set-flag 'a)

(init) (teet-token 's)
(set-flag 'b)

(init) (teat-token '0)
(met-tlag ’c)

(init) (test-tree ’a :rflag ’c)
(get left right rtemp)
{get left left ltemp)
(set-flag *d)

(init) (test-rlag °d)
(commit O :poiunter left)

(init) (test-tree ’a :rflag ’b)
(alloc ltemp 's)
(get right left rtemp)
(put left ltemp left)
(commit 2)

Figure 11: Ensemble Controller Code for Addition

e (put x ¥ z) places the content of register “x” in register “z” of the cell
pointed at by “y".

e (alloc x t), for each active cell, allocates a new cell with token “t” and
puts a pointer to it in register “x”.

¢ (commit c) replaces the redex by the newly huilt structure, and transfers
ltemp to left and rtemp to right. The numerical argument is used to
count acknowledgements of reference count increments required to finish
building the instantiation of the RHS of the rule; at least ¢ must he
received before the commit will finish and delete the old LHS structure.
The instruction (commit O :pointer left) first overwrites the active
node with the contents (token, 1eft, and right) of the cell pointed at
by its left register and then does a commit.

4.2 Geometrical Simulation

At this Jevel of simulation, all eell-to-cell comnmunication requests are checked to
see if the source and target cells are in adjacent tiles. If so, then the instruction
is immediately performed (harring failuren); otherwise, an autonomous process is
atarted to move the target cell into a directly connected tile.

Simulation results can be shown graphically with grid “snapshots,” and Fig-
ure 12 shows selected pictures for our ongoing Fihonacci example, assuming a 4
by 4 rectangular grid of tiles, i.e., that each tile connecta to four neighbors, over
half-duplex wires. These anapshots show the token of each allocated cell, with its
arguments indicated by arrows that correspond to its left and right pointers.
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The mapshot in Figure 12 at clock time 18 shows the initial structure. Tbe cell
with token °root” points to the root of the data graph, which has the token tibo
with an argument a sequence of & operators applied to 0. Although each of the 16
tiles can sccommodate several cells, cells are normally evenly distributed.

First, the instruction cycle of Figure 10 is applied. At time 20 the interesting
tokens are being identified by having the appropriate flags set. Since an instance
of £ibo(s(s{x))) is found, the ensemble proceeds to build & new instance of the
correaponding righthand side. The snapshot for time 42 shows the original fibo cell
with two adjacent cells allocated that also contain fibo tokens, in one case pointing
to the original argument with one a removed, and in the other case with two removed.
The redex is replaced by the new structure in a single commit instruction, with the
result sbown in Figure 12 at time 56.

Sipee this structure containe remote pointers, the matching process fails, and
requests for relocating remote cells are jasued. Figure 12 at time 81 indicates these
requests (actually their messengers) by dotted arrows. Both £ibe cells requeat their
arguments. The details of the algorithm for relocating cells are too complex for this
paper, but the result is shown at time 86, where one of tbe moved arguments has
been located “above” the fibo operator, while the second one is still moving closer.
Completing these relocations causes new pointers to be remote, which in turn causes
further relocation requests. These can be seen at time 115, attempting to bring the
next level of fiba argument cells closer.

By time 134, there is enough adjacent structure for further rewriting. As with
the first rewrite, the redexes are identified and new structures are allocated for
replacing them. Notice that two redexea are rewritten in parallel. The graph after
the replacement ia shown at time 176. Tbe initial £ibe token has now spawned four
new fibo tokens.

Az before, the appropriate cells are activated, and new righthand structures
are pbuilt. But since there are four redexes, there is a high probability that some
requests will fail due to resource limitations. For example, the snapshot for time
209 shows three separate relocation requests independently finding their targets. A
bit later, enough cells are adjacent so that even more rules can match. At time 229,
one 1ibo{0) has heen replaced by 0, and all other fibo arguments are in adjacent
locations. Another rewrite step is shown at time 248, when another two instances
of fibo are rewritten. Finally, in the snapshot for time 318, ail instances of fibe
have been eliminated, and the graph is reduced with respect to this rule set. The
resulting data structure represents the graph shown in the middle of Figure 9{(c).

Next, the instruction cycle for addition (see Figure 11) ia broadcast. By time
361, all + and & cells have been flagged, and by time 385, two instances of + are
heing rewritten. Things proceed much as in the first cycle for a wbile. Tbe snapshot
at time 373 showe some of the messages used during commit. At time 381, two +
tokens have heen eliminated, and the remaining two have their argumentsin adjacent
locations. Their rewriting is shown at times 389 and 402, By time 454, the data
atructure is fully reduced, and the result represents 3, as expected.

A number of other programs have also been run on the geometrical simulator,
including additional versions of Fibonacci, matrix transposition, bubble sort, and a
highly parallel tree sort. These simulations have validated our algorithms for match
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and replacement, and have also shown that our techniques for resource management
do not require unacceptable overbead.

5 Summary of Novel Features

This section summarizes some of the unusual architectural concepts that have been
developed by the RRM project.

L.

Combine processing, storage, and commmunication at the cell and tile
levels, to avoid the memory access bottleneck of von Neumann architectures
and the memory latency problem of dataflow architectures.

. Locally interpreted code. The instructions broadcast to cells are inter-

preted locally, by each cell in its own context, This differs significantly from
traditional SIMD desige, in which the central controller uses the physical lo-
cation of data in ita instructions. Local instruction interpretation allows much
greater fexibility, which greatly simplifies compilation, and alsc improves effi-
ciency, because requests for acarce resources are resolved in the specific context
of each cell, rather than by the controller.

. Fast local connections. Connect physically adjacent tiles in an essemble

by short, high speed wires. This allows very fast operations when all the celis
involved are adjacent.

. Non-critical schedunling. Since the model of computation requires that

rules are executed until the data is fully reduced, the rules must be executed
repeatedly; but for many large subsets of rules, the order is arbitrary. This
permits a rewrite to be abandoned whenever convenient, provided its redex
is left in a consistent state. This in turn allows the RRM to make use of its
extremely fast Jocal connections.

. Autonomous processes. Any cell that is either inactive or free during a

particular instruction can use its resources for other worthwhile tasks, without
hindering normal rewriting. Such tasks may include garbage collection and cell
relocation.

. Dynamic data relocation. A cell’s request for access to dats in another cell

will only succeed if the other cell is adjacent. This can be accommeodated by
{autonomously) relocating remote cells to adjacent locations an an asneeded
basis. Diata sharing is thus achieved by dynamically allocating resources to
cells. The result is a sell-organizing array of cells that either interpret the in-
struction stream, or else reorganize themselves to make better use of available
resgurces.

. Desaign for average load. Communication is a critical resource in any mas-

sively parallel machine. In most cases, a rewrite can be abandoned if it will be
tried again later, so communication overload can be handled by some commu-
nication requests failing, and then deactivating their originators. This allows
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communication resources to he designed for average load, ratber than for the
worst case.

8. Multi-grain execution. The RRM extends the potential efficiency of fine-
gram execution to computations that are only locally homogeneous, by dynam-
ically partitioning data into homogeneous domains, each of which is efficiently
processed inside one ensemble.

8 Performance Estimates

In order to determine whether we are wasting our time on this ambitious and un-
usual praject, it is important to run some benchmark programs and compare their
performance with standard von Neumann processors. It is not easy to compare ma-
chines with radically different architectures and models of computation. An ideal
comparison with the von Neumnann paradigm wouid use equal clock speed, equal
silicon floorspace, equal design effort, equal compiler technology, and equal power
in supporting hardware (e.g., caching and memory). We chose a SUN-3/60 for com-
parison, just because it was readily available. Its clock rate is 20MHz, and we can
approximate its 68020 Aoorspace simply by not considering simulations that involve
excessvely large grapha, e.g., over a thousand cella. It is clear that thia does not give
equality in total silicon area, in design effort, or in compiler technology. We have put
perhapa 2 or 3 man-years into the RRM project, as compared with thousands for
the von Neumann tradition represented by the SUN-3/60, and we have really very
little idea of what techniques could be used to optimize RRM performance, whereas
many such techniques are already used in the 68020 and its associated hardware
and software. Furthermore, a Sun-3/60 has many auxiliary chips for coprocessors,
onboard memory, etc. Thus, our estimates arc conservative,

Qur benchmark programs computed the Fibonacci numbers with Peano arith-
metic and with machine arithmetic (called Peano and arithmetic fibo below), and
bubblesorted lista of numhers. Handcoded programs were run on an RRM simulator
which yields quite accurate timing results, using a 12-by-12 grid of tiles of 8 cells.
We tried to achieve approximate parity of compiler power by comparing our RRM
Fibonacci code with compiled Common Lisp (KCL) code for the Sun-3/60, and our
bubblesort program with a good sorting program in the well established low level
language C; this ia unfair to the RRM because we are still in an early stage of en-
semble controller code technology. (However, the handcoded Fihonacei code is very
sirnilar to that produced by our OBJ to RRM compiler.) We then approximated the
timing data by simple functions, as shown in the following table, where n represents
the argument for a Fibonacci function, or the lengih of a list for bubble sort:



REFERENCES m

Program [ time sizes
RRM Peano fibo | .732 x 1.53" 0-10
Sun Peanc fibo | 2918.41 x 1.748" | 0-19
RBM arith fibo [ 51xn 0-14
Sun arith fibo 4.69 x 1.838" 0-20
RRM bubblesort | 4.7 x n 0-10,20,...,130
Sun bubblesort | 2.497 x n¥ 0-10,20,...,1T0

Times are in micro-seconds. The ensemble bas a maximum capacity for representing
termas, so for each problem there is a largest instance that can be run. Furthermore,
problem instances that are ¢lose to the maximum size usually exhibit degraded
performance because communication costs increase tremendously. Our data indi-
cates that the RRM Fibonacci programs have exponential speedup, while the RRM
bubblesort is linear and the SUN bubblesort quadratic, giving a linear speedup.

The speedup factor for the largest common case of the Peano Fibonaci com-
putation run on the RRM simulator is 60, while for the arithmetic Fibonacci it is
about 34. For sequences of length 120 in bubblesort example we see a speedup of
about 64. This supports a conservative claim that a single RRM ensemble 1a roughly
50 times faster than a SUN-3/60, which is equivalent to about 150 MIPS, asuming
that a SUN-3/60 is rated at 3 MIPS.

Of course, the RRM project is still at a relatively early stage, and we have
not explored an especially wide range of problems, nor have we tried especislly
hard to get the best programs, or to test them over a wide range of dsta. On
tbe otber hand, the reaulta seem relatively consistent and ocur simulator s quite
accurate for this kind of timing data, so there ia no reason to suppose thal more
wark will have any effect other than to increase our performance estimates at this
level. Given these conditions, it seems fair to say that the RRM ensemble’s chserved
factor of roughly 50 over the SUN-3/60 is quite impressive. Moreover, we believe
that this performance will scale approximately linearly for larger problems in which
parallelism is sctually available, and that, especially for inhomogeneous problemns,
this is much better than can be expected from more conventional current generation
parallel machines. Of course, this extrapolation is on less solid ground than the
above estimates, because our simulations bave not yet been extended to the cluster
level.

References

[1] Arvind, Risbiyur Nikhil, and Keshav Pingali. I-structures: Data structures
for parallel computing. In Joseph Fasel and Robert Keller, editors, Graph
Reduetion, pages 337-269. Springer-Verlag, 1987. Lecture Notes in Computer
Science, Volume 279.

[2] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Joaé Meseguer.
Principles of OBJ2. [n Brian Reid, editor, Proceedings, 12th ACM Symposium
on Principles of Programming Languages, pages 52-68. Association for Com-
puting Machinery, 1985,



42 REFERENCES

[3] Kokichi Futataugi, Joseph Goguen, José Meseguer, and Kaji Okads. Param-
eterised programming in OBJ2. In Robert Balser, editar, Proceedings, Ninth
International Conferenee on Sofiware Engincering, pages 51-80. IEEE Com-
puter Society Press, March 1987.

4] J.RW. Glauert, K. Hammond, J.R. Kennaway, G.A. Papadopoulos, and M.R.
Sleep. DACTL: Some introductory papers. Technical Report SYS-CB8-08,
School of Information Systems, University of East Anglia, 1883.

[s]

Joszph Goguen, Claude Kirchner, and Jasé Meseguer. Concurrent term rewrit-
ing aa a model of computation. In Rabert Keller and Joseph Fasel, editors,
Proceedings, Graph Reduction Workshop, pages 53-93. Springer-Verlag, 1987,
Lecture Notes in Computer Science, Volume 275.

(6

—

Joseph Goguen, Claude Kirchner, José Meseguer, and Timothy Winkler. OBJ
as a Janguage for concurrent programming. In Steven Kartashev and Svetlana
Kartashev, editors, Proceedings, Sceond International Supercomputing Confer-
ence, Volume I, pagea 195-198. International Supercomputing Institute, Inc.
(st. Petersburg FL), 1987.

[7] Joseph Goguen and José Meseguer. Eglog: Equality, types, and generic modules
for logic programming. In Douglas DeGroot and Gary Lindstrom, editora, Logic
Programming: Functions, Relations and Egquations, pages 205-383. Prentice-
Hall, 1986. An earlier version appears in Journal of Logie Programming, Volume
1, Number 2, pages 178-210, September 1984.

(8] Jeseph Goguen and José Meseguer. Models and equality for logical program-
ming. In Hartmut Ehrig, Giorgio Levi, Rohert Kowalski, and Ugo Montanari,
editors, Procecdings, 1987 TAPSOFT, pages 1-22. Springer-Verlag, 1987. Lec-
ture Notes in Computer Science, Volume 250,

9

—

Joseph Goguen and José Meseguer. Unifying functional, object-oriented and
relational programming, with logical sermnantics. In Bruce Shriver and Peter
Wegner, editors, Research Direetions in Object-Oriented Programming, pages
41TATI. MIT Press, 1887. Preliminary version in SfGPLAN Notices, Volume
11, Nurnber 10, pages 153-182, October 1986.

[10] Joseph Goguen and José Meseguer. Software for the rewrite rule machine.
In Proceedings, International Conference on Fifth Generation Computer Sys-
tems 1988, pages 628637, Institute for New Generation Computer Technology
(ICOT), 1988.

{11] Joseph Goguen and Timathy Winkler. Introducing OBJ3. Technical Report
SRI-CSL1-88-9, SRI International, Computer Science Lab, August 1988.

[12] Peter G, Harrison and Michael Reeve. The parallel graph reduction machine,
ALICE. In Joseph Fasel and Robert Keller, editors, Graph Reduction, pages
181-202. Springer-Verlag, 1987. Lecture Notes in Computer Science, Volume
219,



REFERENCES 43

[13]

[14)

[15]

16

(m7)

(18]

Robert Keller and Joseph Fasel, editors. Proceedings, Graph Reduetion Work-
shop. Spricger-Verlag, 1987, Lecture Notes in Computer Science, Volume 279.

Robert Keller, Jon Slater, and Kevin Likes. Overview of Rediflow I devel-
opment. In Joseph Fase] and Robert Keller, editors, Graph Reduclion, pages
203-214. Springer-Verlag, 1987. Lecture Notes in Computer Science, Yolume
279.

Sany Leinwand and Joseph Goguen. Architectural options for tbe rewrite rule
machine. In Steven Kartashev and Svetlana Kartashev, editors, Proaedings,
Seccond IFnlernalional Supercomputing Conference, Yolume I, pagea 83-70. In-
ternational Supercomputing Institute, Inc. (St. Petersburg FL), 1987.

Ugo Montanari and Jeseph Goguen. An abstract machine for fast paralle]
matchin g of linear patterns. Technical Report SRI-CSL-87-3, Computer Science
Lah, SRT International, May 1987.

Timothy Winkler. Numerical computation on the RRM. Technical report,
SRl International, Computer Science Lab, November 1588. Technical Note
SRI-CSL~TN88-3,

Timothy Winkler, Sany Leinwand, and Jeseph Goguen. Sumulation of con-
current term rewriting. In Steven Kartashev and Svetlana Kartashev, edi-
tors, Procecdings, Second Internationel Supercomputing Conference, Vilume I,
pages 199208, International Supercomputing Institute, Inc. {St. Petersburg
FL), 1987.





