
·

THE REWRITE RULE MACHINE, 1988

by

Joseph Goguen, Sany Leinwand, Jose Meseguer, and Timothy Winkler

Oxford University
Computing Laboratory
Programming Research Group-Ubrary
8-11 Keble Road
Oxford OX1 3QD
Oxford (0865) 54141

TechnicaJ. Monosraph PRG-76

August 1989

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX1 3QD
England

The Rewrite Rule Machine, 1988'

Joeeph GOluen', Sany Leinw&nd~, Jose Meseguert • IIlId Timothy Wi.nlder t

Summary

Tail! monograph consists oC two papers which jointly summarize research in the
Rewrite Rule Machine (RRM) Project as DC about the end of 1988. Research in
this period (ocll811ed on two topics: the design of very high level multi-paradigm
programming languages; and an accbitecture for executing such la.nguages using
graph rewriti.ng. The first paper, "Software Cor the Rewrite Rule Machine," givea
aD overview of RRM implemen~tion techniques (or functional, relational ("logic"),
and object orien~ed languages, as well as Cor their combinations. This paper is
nearly the sam.e as one that appeared on pages 628-637 of the Proceeding. 0/ the
International Conference Oft FiltA Gt.n.eration Computer Sr8tems, held in To.yo in
November 1988. The language:'.:!l ace UDuaUal hecause their designs are hued directly
on logic, and nothing haa heen allowed to compromise their basis in logic. The
second paper, "Cell, Tile &Ild Ensemble Architecture of the Rewrite Rule Machine,"
describe.'J the quite unconventional hierarchical architecture of a custom VLSI chip,
called a rewrite tIIM.mble, which processes data directly in memory, in SIMD mode.
A complete RRM consists or many independent rewrite ensembles connected over
a network. This paper is a very substantial modification of oDe appearing on pages
869-878 of the same Proceedings.

·Supported by Office of Naval Research Contra.ch NOOO14-8S-C-0411 and NOOOl4-86-C04S0,
NSF Grant CCR_870715S, and a gift fr<lm the Sy~tem Development Foundatioll.

'University of Orlord and SRJ lnt"'rnational.
'SRI InternationaL

CONTENTS

Contents

Software for the Rewrite Rule Machine

1 Introduction 1

1.1 Programmability and Logical Languages I

1.2 Multi~Gra.in Concurrency 3

1.3 Models of Computation 3

1.4 RRM Architecture ... 4

2 Concurrent Term Rewriting 5

3 FuncUonal ProgrammIng 7

3.1 OBJ .. 7

3.2 A Simple Example . 8

3.3 Implementation on the RRM 8

4 Object Oriented ProgrammIng 11

4.1 FOOPS II

4.2 Implementation on the RRM 13

5 Relational Programming 1..

5.1 Eqlog ... 14

5.2 Unification 15

5.3 Search 16

5.4 FOOPlog 18

Cell, Tile and En8emble Architecture of the Rewrite
Rule Machine

1 Introduction 22

1.1 Multi-grain Architecture and Locally Homogeneous Computation 23

1.2 Model of Computation 24

1.2.1 Data Representation. 24

1.2.2 Concurrent Rewriting 24

1.2.3 VarianL! oC the Model 26

1.3 Support for Programming . 27

1.4 Archite<:tural Levels 27

1.4.1 Cluster Architecture 28

1.4.2 Network Architecture 28

2 The Cell 28

2.1 Cell Control. 29

2.2 Numerica.l Computa.tion 29

3 The Enaem.ble 30

3.1 Tile Structure 30

3.% Ensemble Operation 31

3.2.1 Replacement 31

3.2.2 Controller Instruction Cycles and Termination 32

3.1 Autonomous Processes 32

• Simulation 32

(.I Graph Simulation. . . . 33

(,Z Geometrical Simulation 35

• Summary 01 Novel Features 38

8 Performance Estimates 39

Software for the Rewrite Rule Machine

Joseph A. Goguen" a.nd Jose Meseguer t

Abstract: The Rewrite Rule Machine (RRM) has an innovative m~

sively parallel architecture that combines fine-grain SIMD computation
with (two levels of) coarse-grain MIMD computation. This paper de
6Cribes techniques for compiling and running functional, object oriented,
relational (i.e., "logic"), lJl1d multi-paradigm la.nguages on the RRM.
The languages that we use for illustration have the advantage that they
are rigorously based upon logical syatemB, but the implementation tech_
niques are more general, and even apply to imperative languages. The
most novel of these techniques ia a restricted focm of second order r~llIrit·

1'ng, which involves variables that can match against function symbols.
Rules involving such variables have enormous expressive power, and can
also be implemented very efficiently on the RRM; indeed, they are im
plemented essentially the SlLl1le way as ordinary rules. A second innova
tive te<::hnique involves representing objecle (with local state) in graphs,
by restricting the ways that rules can act on them. The RRM lan
guages also embody many useful modern features, including abstract
data types, flexible generic modules, powerful module interconnection,
multiple inheritance, and "wide spectrum" integration of specification,
documentation and coding.

1 Introduction

Beginning with a plea for powerful, simple Janguages that are rigorously b8lled upon
puce logics, this introduction disCUB8eB multi-grain concurrency and our model of
computation, concurrent term rewriting. These concepts motivate the Rewrite Rule
Machine (RRM) architecture and languages. The subsequent body of the paper
provides details about the languages and their RRM implementation, showing that
they can be given very efficient implementations in part because of their high level
abstract character and clean design. The references deliberately emphasi2e related
works by the RRM group, See [16] for details of RRM architecture.

1.1 Programmability and Logical Languages

Programmability is a central issue for massively parallel machines, because such
machines lose their value if they are too difficult to program. We suggest that
dedlJrot1ve languagu are the key to combining hardware efficiency with program·
ming e88e. Programs in such languages tend to describe problems, rather th&n solu
tions. From the hardware viewpoint, declarative languages do not prescribe specific

OTT '. , '"UllIvenll<Y 01 vxiord a.nd SRI International.

'SRIlntem"tiona.\.

2 INTRODUCTION

RXlPlog

r rdkd:i¥e Hom clau& "' 1ogK; with equality

FOOl'S 19I""
rdIeclive Hom clawz logic

ecpuOOnallogic wilh equality

~~:'C r
Figure 1: Overview of Languages

orden of execution, and thus give maximum opportunity for concurrency. From
the software viewpoint, declarative languages avoid the need to explicitly program
concurrency, which in general is difficult. Moreover, a modern declarative language
can provide facilities that can greatly augment progranuner productivity, including
the wide .pedram integration of specification, rapid prototyping, validation, testing,
documentation, and coding, as well as generic modules, multiple inheritance, and
program transformation, all of which support reusability, as well as 8trong typing
and multiple inheritance, which support exception handling.

Since all this can be given a solid logical foundation, conednesa probleInl'l can
be properly addressed, with both programs and proofs in the lame formal Byl!ltem.
Moreover, progr8lDl!l written in declarative language!! do not need to be rewritten
if the underlying hardware is sligbtly changed - e.g., if more processors are added
- sinee tbey are already independent of any &lIsumptionB about the underlying
hardware.

The most promising approach to declarative progr&llUlling may be through log.
ieal p"Of"Imming langaogu, which (roughly speaking) are languages whose state
ment4!l are 8entence!! in eome logical system, &lid whose computation is deduction
in that system ([121 gives a more precise definition). Tbis paper de8C':ribes RRM
implementation techniques for four wide spectrum logicaJ programming languages:

1. OBJ \2, 31, which is purely functional;

2.	 FOQPS [12J, which combines functional &lid object oriented programming;

3.	 Eqlol 110, 111, wbil:h combines functionaJ and -logic" (i.e., Horn clause rela.
tiODaJ) programming; and

4.	 FOOPlog [12J, wbil:b l:ombine3 all three major emerging programming para.digme.

Figure 1 ,bows tbe relationships between thll!6e languages and their IOBics.
It is widely recognized tbat pure Horn clause logic is not an adequate basis

for pract.ical programming, and Prolog, for Il!llample, h&ll added imperative features
like i., IBsen and retral:t j the first is reaJly an aasignment statement (with
a quite misleading Dame), while the !lCCond and third update Prolog's database.
However, tbis dOe!! not mean tbat logical programming languages are 8 bad idea,

1.2 Multi-Grain Concurrency 3

but. only that toome logic more powerful t.han Horn clause logic is needed in order
to make pure logical progr&mming practical. Subsequent sections of thin paper
discllila languages that are based on reRective (order 8Orted) equational logic, and
on (order sorted) Horn clause logic with equality; these languages are FOOPS and
Eqlog, respectively. Prior to this, we discuss 08J, which is baaed on (order !IOrted)
equational logic. Order sorted logic provides a rigorous foundation for multiple
inheritance. All these languages have initial model 8@IDADt!cs, which formalizes
the idea tha.t one wants to program over a "standard model" or "closed. world" in
which questions have determinate answers.

1.2 Multi-Grain Concurrency

Concurrent execution may be roughly c1&88ified as either fine-grain or coarse-grain.
Fine-grain SIMDconcurrency (broadcuting a Single Instruction stream to Multiple
Data sites) achieves efficient performance at the coat of generality, Rexibility, and
programmability. Coarse-grain MIMD (Multiple Instruction streams at Multiple
Data sites) exer.ution is more broadly applicable, but cannot achieve maxlmum con
currency because of high communication coats. It is an important research problem
to eacape this fa.teful dichotomy.

Experience shows that many computations are locally Aomogeneous, in the sense
that many instances of one instruction can be applied simultaneously at many dif
ferent data sites. For example, 8Orting, searching, matrix inversion, the fast .'ourier
transform, and arbitrary precision arithmetic, all have this character. For such
computations, SIMD architecture is advantageous at the VLSI level.

On the other hand, eomple% problemlJ tend to have many different subproblems
with little or no overlap among their instructions - that is, complex problelIlll tend
to involve globally inhomogen~ous computation. SIMD computation can be very
inefficient for BUch problems. We say that computations that are locally SIMD but
globally MIM:D exhibit multi-grain concurr~ncy. Architecturally, this SUgges~8 many
processors, each running its own SIMD program, independently of what is running
on other processors. Such an architecture is natur&ily realized hy a network of VLSI
chips, ea.ch a. SIMD processor.

Thus, progress in VLSI and communication has created a technological oppor_
tunity, answering a real need for large, complex computations. Unfortunately, there
are serious conceptual and linguistic obstructions to exploiting this opportunity. In
fact, no well known programming language or computational model is adequate for
multi-grain concurrent computation. In particular, the von Neuma.nn la.nguages and
model of computa.tion are inadequate, because they are inherently sequential. How
ever, concurrent tenn rewriting :reemB ideally suited for multi-grain concurrency.

1.3 Model8 of Computation

A model of computation defines the major interfa.ce between the hardware and the
80ftware upects of a computing system. This interface Bp~ifies what the hardware
team must implement, and what the software team can rely upon, and thus plays
a basic role in aFifth Generation" projects. The only justification for continued
interest in the von Neumann model of computation is that it connects current gen

4	 1 INTRODUCTION

eraLioD (efficient) von Neumann machines with CUl'l'eot generation (ugly but very
widely uaed) yon Neumann languase.ll. This model is characterized by enormously
long dreams of fetch/compute/write cycles, and is inherently sequential.

By contrast, in conC1lrnnt term remtin" data has Ito graph atrncture, and pro
grama are sda of rewrite rules. A rewrite rule consists of two templates, one de
scribing substructures to be modified, and the other deecribing what they should
be replaced by. In principle, all possible rewrites caD be executed mmult&neoullly,
at all pCl88i.hle data sites (see Section 2 for more del.ail); however. in practice, we
will implement l!lOme form of multi-grain concurrency. Tbill model of computation
8UPpart.8 the functional, object oriented and relational parBdilfTT1B, as well u their
combiDatioDB, and can effectively exploit any inherent pr0stlUJl concurrency. For ex
ample, in object oriented. progrBlllllling, data ac:ce!18e8 are Bequentialized only when
required. for correct behavior; otherwise concurrent execution is aUowed.

The RRM and ita model of computation alBo support prosrams in conventional
imperative languages, but this seems le8!l desirable, because these languages have
many inherently sequential features that restrict opportunities for concurrency; also,
their tendency to encourage the undisciplined use of global variables and obscure
side effects makes their programs harder to write, read, debug and modify. Conven
tional concurrent programming languages fare hetter, but their programa remAin
difficult to write, read, debug, and (especially) to modify and port to new machines.
However, we should not forget that an enormous amount of software has already
been written in conventional languages.

1.4 RRM Architecture

The RRM is a m8SSively concurrent machine that realizes concurrent term rewriting
in silicon, ulling revolutionary architecture but conventional electronic technology.
The de&ign avoids the so-called von Neumann bottleneck hy using a custom VLSI
chip that processea data where it is stored. The cells in a given ensemble share a
single controller, eo that execution is SIMD for each chip. Local communication
predominates, since rewrites require only local connectivity. The following sketches
our cummt prototype RRM deaign:

1.	 a ceD holds one data node and its structural links, and also provides basic
proceasing power;

2.	 a Rewrite El1IIemble (RE) is a regular array of cells on a single VLSI chip,
wil.h wiring for local data exchange; one RE might hold ahout a. thousand cells
pIllS a shared controller and some interlace circuitry;

3.	 a board might contain about a hundred REs, eome backup memory, and an
interlace microcomputer;

4.	 a complete RRM prototype might have about ten boards, with a general
connection network and a conventional minicomputer for storing rules, hal
ancing load, and remote communication.

A single RE yields very fast 6ne.grain SIMD rewriting, hut RRM execution
i.s coan&ograln at the board level, since each RE independently executes its own

5

2

/+"'-.0

/\

fibo fibo

I I
6 6

Figure 2: The Tree of a Term

rewrites on its own data, occasionally communicating with other ensembles. This
realization or multi-grain concurrency yields high perlormance without sacrificing
programmability. Our simulations of the RRM architecture at vanouslevela of detail
have been extremely encouraging. Our companion paper on RRM archtitecture [16J
gives much more detail.

The RRM is intended as a general purpose computational engine, and its flexi
bility is one of its strong points. But, like any machine, it is more suitable for some
applications than for others. Certainly, symbolic computations are very suitable,
especially when there is much parallelism. Hardware simulation falls well within
this dUll; natural language proce98ing, "intelligent~ databases, theorem proving,
and expert systems are otber examples. Originally, we tbought the RRM would not
be especially impressive for numerical computation, but recent research has ahown
that certain redundant representation data structureB (or numbers can 'Very effi
ciently exploit RRM capabilities, (or example, with arbitrary precision arithmetic
[22).

Concurrent Term Rewriting

In tbe concurrent term rewriting model o(computation, data are terms, constructed
(rom a given set o(operation and constant symbols, and programs are sets of
equatioDB that are interpreted as left· to-right rewrite rules. The left- and right
hand sides of an equation are both terms constructed from variables as well as
operation symbols and constants. A 'Variable can be instantiated with any term of
appropriate sort, and a set o(instantiations (or variableB is called a substitution.

Term re"Wl'iting (or reduction) bas two phases: first, matching, which finds
a substitution, Called a match, that yields a subterm o(the given term when ap
plied to the leCtband side o(tbe rule; and second replacing that subterm by the
corresponding substitution instance of the righthand side o(the rule. For exam
ple, matching the lefthand side of the conditional rewrite rule «(rom a program (or
Fihonacci numbers)

(.) hOO(H) ,. hOO(H-I) + hbo(N-2) if 2 <= N

to fibo(6) in the term (fibo(6) + fibo(5» + 0 (wbicb is represented by the tree
shown in Figure 2) succeeds with the variable Ninstantiated to the constant 6. Since
the condition 2 <s 6 is satisfied, the subterm where the match occurs (called the
redex, which is fibo (6) in this case) is replaced by the corresponding subsLitution
instance of the rigbth&Dd side. In this case, the original term is rewritten to

6 2 CONCURRENT TERM REWRITING

/.~
/\ /.~

f1bo :Iibo tibo :tibo

I I I I
6 4. 4. 3

Fipn: 3: Re~lUlt of Some Concurrent Rewriting

«fibo(8-1) + flbo(6-2» + flbo(6» + 0 .
Rewriting at only one location at a time is called sequentlal tenn I'ewriting.

U the rewrite rule (.) had. been applied. to fibo(6) instead, one step of sequential
rewr:iiio! would have yielded

(1ibo(6) + (fibo(6-1) + flbo(6-2») + 0
but. ,he rule (.) could also have been applied. simultaneously to both fibo(6) and
fibo(5), yielding

«fibo(6-1) + fibo(6-2» + (fibo(6-1) + flbo(6-2») + 0
in j1DC cme 'kp. This is called parallel term rewriting, where just one rule is
applied several plaeee at once, and it is what a single Rewrite Ensemble realizes.
MQl'e pnerally, true (:QDeurrent term. rewriting allows the application of several
different. rules at several different sites at once; this is what a multi-ensemble RRM
realize•. For example, firet applying the rule (.), and then concurrently applying
bot.h 'be rule N + 0 -> H and a rule for subtracting I, t.ransforms the original tree
int.o the t.ree shown in Figure 3, in t.wo st.epl!l of concurrent. rewrit.ing.

It. ia worth remarking that. with concurrent. term rewrit.ing, t.he number of steps
required t.o comput.e :Ub (n) with tbe rule (.) llliinear in n, whereas it is exponent.ial
for sequent.ial rewriting. This Kimple example illu:lt.rat.ea that. concurrency III inber
ent. in concurrent term rewrit.ing, and that no explicit. concurrency construct.8 are
required at. t.he language level to achieve it or to deBCribe it.. However, somet.itnell
a denr choice of dat.a structure or of rewrite rules is needed t.o achieve optimal
performance.

[71 and 18J show t.hat a certain second order equational logic i8 a natural extension
of standard first order equational logic. It. III excit.ing t.hat. t.here is a correspond
ing na~ural extension of term rewrit.ing, called extended rewriting, that can be
realized on t.he RRM just. as easily and efficiently as standard rewrit.ing. This is
the mOllt significant new idea in this paper, "ince extended rewrit.ing h8l!l import.ant
applicaLions to implementing object. orient.ed programming (Section 4.2) and unifi
cation (Section 5.2). The idea i8 simply t.o allow variables that can ma.tch operation
symbols. For example,

.(I(a(!),b(B»,O) • I(a(! + O),b(B + 0»

is simillll' to a rule in Sect.ion 4.2, with I matching operat.ion symbols of appropriate
arit.y, with! ,B ,0 matching subt.rees as U.!Iual, and with a, b unary opera.tion symbole.
Note that. this III not the mOllt general form of second order rewriting, since (as far
&8 we bow) only special C&8e9 can be implement.ed very efficiently in VLSI.

7

Two additional topics deserve mention. The first is sharing, which permits 8

common substructure of two or more r;iven structures to be shared between them,
rather than requiring that it be duplicated. This lew to dag's (directed acyclic
graphs) rather than just trees. The second topic is evaluatIon strategIes, which
are annotuioDS that impose restrictions on concurrent execution; these can be used
to improve the performance of parallel computations. Under relatively mild as
sumptions, Bluch strategies do not ch6Dge the semantics of functional computations.
However, for applications where concurrency is essential, evaluation strat.egies CaD

be used Cor concurency control. For example, SOme further extensions to this concept
support systems programming [91.

3 Functional Programming

TbiB section gives a brief overview of the OBJ function&!. programming la.nguage,
and then indic.ates how it is implemented on the RRM.

3.1 OBJ

OBJ [14, 2, 3J is a declarative functional programming language with semantics
hASed upon equational logic. It is well known that initial algehra semantics ill: cor
rectly implemented hy tenn rewriting under certain simple assumptions (this was

first proved in [41l, and [9J shows that concurrent term rewriting is also correct under
the same assumptions. OBJ has no explicit constructs for creating or synchronizing
parallel procell8e8. Rather, the parallelillm of an OBJ program is inJaerelft in the
program itBeU. OBJ was also designed to directly embody various modern soft
ware engineering techniques, rather than provide them indirectly in an UlOciated
environment having separate conventions and notations. These features include:

1.	 User-deBnable abstract daia types, not limited to constructors, as in
most func.tionallanguages.

2.	 Para.o::teteriaed progrannning, to support software reuse and wide spec
trum integration of design, documentation, rapid prototyping, and !Ipedfica
tion, with

•	 powerful "tunable" gefl.e';e modules that go far heyond Ada's generics or
mere functional compO!lition, and are powerful enough to give the power
of higher order programming without its difficulties in understandability
and verification [8],

•	 theorie" which describe semantic as well as syntactic properties of mod
ules and module interfaces,

•	 views, which 88St'rt semantic properties of modules, and

•	 module upru,iofl." which support programming-in-the-Iarge, by descri]'
ing how to build complex subsysteID.5 {rom previoUlllly defined modules,
and then actually build them when evaluated.

8	 3 FUNCTIONAL PROGRAMMING

3. SUb80rt8, which support multiple inheritance, exception handling, partial
functions, and operation overloading in an elegant way.

4. Pattern mat~g modulo equations, including the &B8Ociative, commu
tative, and identity laws, which greatly increases the power or matching, and
hence the expressiveness or the language.

5. Module hieran:hies, whereby old modules may be imported iDto new moo
des.

6. Evaluation strategIes, which avoid enslavement to any fixed evaluation
strategy, such 8t.I eager or lazy, and thus allow greater efficiency in both time
and space.

7.	 Very simple denotaUoDal semantIcs, given by the initial algebra or the
equatioD.8 in a program.

081 hatJ been rather extensively studied from both theoretical and practical
viewpoints [14, 2, 5, 3}, and there are now several implementations besides OBJ3
at SRI International, including one Crom the W88bington State University, tbree
in Great Britain, one in Italy, and one in Japan. The British project at UMIST
(University oC Manchester Institute oC Science and Tecbnology) was supported by
Alvey, and involved a rather extensive set or experiments, wbicb clearly demon
strated the value oC OBJ Cor pracUcalllOftware engineering applications; a version
oC UMlST-OBJ is now available 8t.I a commercial product in Britain, and another is
being developed hy Hewlett-Packard in Bristol, England.

3.2 A Simple Example

We use the BimpJe program Cor Fibonacci numbers given in Figure 4 to illustrate
IIOme buic Ceatures oC 081. The most basic 081 entity is the object, a module
encapBlilating executable code. The keywords obj ... endo delimit the text oC
an object. Immediately after the initial keyword obj comes the object name, in
this cue FIBD; then comes a declaration indicating that the built-in object HAT is
imported. This is Collowed hy declarations ror the new IIOrts or data (in tbis case
there lIle none) and the new operations (in this case, fibo), with inCormation about
the lION oC arguments and results (here, both are Hat). Finally, a variable or sort
Hat is declared, and two equations are given; the keyword cq indicates that these are
conditional equations (unconditional equations use tbe keyword eq). < is the "leas
than" predicate, and <... is the "le8l!l than or equal" predicate; these are imported
Crom NAT along with the addition and subtraction operations.

3.3 Implementation on the RRM

BeCore describing how to implement OBJ on the RRM, we need more information
about the RRM design. The RRM has been designed ltierarcltica1l!/, that is, as a
series of models, each more concrete than the one above. The highest levels are
actually semantic rather than architectural; Cor 081, these models are equational
logic and term rewriting, the Conner providing a denotational semantics, and the

3.3 Implecnentation on the RRM 9

obj FIBO 1s protecti%l8 NAT
op fibo : Nat -;> Nat
Tar N : Mat

cq fiboOI) ;; N if N < :;l:

cq fibo(H) - fibo(N 1) + fibo(N - 2) if 2 <- N
endo

Figure 4: FibonlKCi Code in 083

[i.OJreiiTlpt, I¥pag. I

Figure 5: The Logical Structure of a OeD

latter M operational semantics. We now discuss the moat abBtract &rchitocturaJ
model for the RRM, the cell machine, consisting o(&l1 &rbitrary number of cells,
each with three major registers and an &rbitrary number o("Oagl'l," which can be
"lM!t" or "unset~ (i.e., "up" or "down"). The token register stores the "content" of
a cell, while ita left Md right pointer registers each give the location of another
cell (or else areempty)l. The ftags Ille used to store loc:allltatus information during
matching and rewriting. Figure 5 shows the logical structure or a cell; o(coune, the
r;hyaic4lstructure is more complex, but our subsequent diagrams actua.lly eimplify
further and omit the ftags. This model &88umes that each cell can communicate
directly with My other cell; [16] expl&ins how the actual RRM realizes the sllJJle
logical power wing only local connectivity.

It is evident how to reprelM!nt a binary tree (or dag) in such a cell machine; (or
exa.mple, Figure 6 shoVr'B the tree of Figure 2. We now consider how to implement
rewriting with SJMD streams o(microinstructions that are broadc88t simultaneously
to all cells from the central controDer. The following are BOrne typical microinlltruc
tions: set a certain Oag if the token has a certain valuej fetch a token (or pointer)
from another cell whoae location is known; and set the token to a certain value i(a
certain flag is set. In this model, every instruction is interpreted and (if applicable)
executed in each cell using only information that is local to that cell.

A given rewrite rule is implemented by first identifying instances of its lefthand
side in a matcbing phase, aud then replacing each matched pattern by the corre
sponding righthand side. Although Illithmetic for the natural numbers is provided
by the RRM hardware, the following discussion wiD use a haBic Peano represen
tation, with cOD!lotructors the cObBtant 0 and the un&ry successor operation s, 8B

shown in Figure 7. Then the rewrite rule
fibo(s(s(N») • fibo(s(N» + fibo(N)

(rom Figure 7 CM be implemented by first identifying each cell that contains the
token fibo, and then checking that the cell indicated by its left pointer contains
a successor that points to another successor (in practice, this check could be done
bottom-up).

l Au. II-ary 80urce level open-tion .ymbois it tnnBlll.k>d into II - ~ binary opeI1Llioni for" > 2,
80 that binary celli llle nfflcient.

10 3 FUNCTIONAL PROGRAMMING

+ I I I --;-----.t 0 1__ 1__

+ I I I ---+--------t fibo I I I __

fib<> I I 1---1 I' 1---1--

• 1---1--
Figure 6: The Cell Representation of a Term

obj FIBO is Bort Nat

op 0 : -> Hat .

op • : Nat -> Nat .

op _+_ : Nat Nat -> Nat

op f1bo : Hilt -> Hilt

Tua N M Hilt

.qO.S-S .

•q sCM) ... N • sCN + N).

tq Ubo(O) • 0 .

•q fibo(a(O» • a(O) .
•q fiboCaCa(N») • fibo(a(N» + fibo(N) .

•"0
Figure 7: Peano Fibonacci Code in OBJ

Ouce the i.n.atanees of the pattern fibo(a(a(x») are identified, then repla.c.e
meat tan btgiOj for example, we may repla.c.e tbe token fiho at the root of the
pattern by +, replace itL'l left pointer by a pointer to its sex) cell, and set its rigbt
pointer to the x cell. See Figure 8. Notice that there is now one leBB pointer to the
first B cell, so that it should be collected as garbage if there are no other pointers to
it. Also notice that II dag structure has been creaLed from what might previously
have been just a tree structure. The following copy rule expresses an important
restriction on modifying cells during Lerm rewriting:

H there is more than one active pointer to a cell, then it cannot. be

, 1---1 I 1--'b<> I ~~=~=~-~tb<> :---I , 1--c:> I ,---I I • 1--

Figure 8: Rewriting a Cell Representation

11

modified. and must instead be copied, unlesa it is the root of the redex.

Many quest-iODfl might occur t.o the reader who has followed thiA diecUMion
clCl8ely. In gener&1, these £&11 into one of the foUowing cl888eB;

L	 Architectural quesUoDS, such 88 "How to realise arbitrary logical connec
tions bet'Ween cells that are only locally connected physically?" or "How are
the microinstructions implemented?" Such questions are discussed in [161.

2.	 Model of computation questions, such 83 "What happens if two ins'ance8
of the same rule want to modify the same cell?" or "What bappeIlB if more
than one ensemble muet cooperate on a rewrite?" Such questions are 8JlBWered

in [9].

3.	 Detalled programming questions, such &8 "How to compute 11bo with
optimal efficiency on the RRM1" Some such questions are answered ill [2°1.
while othel'B must be deferred to 8. futun! paper.

'" Object Oriented Programming

The recent history of progumming languages can be seen as an attempt to ob
tain tbe advanta.ges of imperative programming witbout its disadvantages, while
adding new features to encourage better programming style and better support for
programming-io-tbe-Iarge, program maintenance, etc. A maJor problem witb. tra
ditionaJ. imperative programming style is its obsessive and obscure U8e of globally
shared structures, particularly global variables; tbis not only makes progr&D18 diffi
cult to understand and maintain, but is aJ.80 a particular disadvantage for distributed
computing, since global variables cannot reflect and exploit distributed memory. In
our view, tbe eBl'leDce of object oriented programming is not inheritance (multiple or
ot:.herwise), nor is it message p8BBing (which i. &ft.er all just a metapbor for procedure
calling), hut ratb.er it is the organization of memory into local per,utent objects, 88

oppoeed to a single global store. Such a programming style makes progrB.lTl!l easier
to understand and to modify, as well 88 more appropriate for distrihuted computing.
It is significant tbat object oriented programming arose in a language desigQed for
simulation, 80 thllt it.s concepts are motivated by the physical world, witb its naturaJ.
intuitions of hierarchical8.l1d distributed structure.

4.1 FOOPS

FOOPS [121 was designed to be a simple, yet expressive and efficient generaJ. purp06e
object oriented language that embodies the various modern software engineering
tecbniques developed for OBJ. We chose to combine object oriented programming
with OBJ-style tunctionaJ. programming rather than with imperative programming,
because we wanled to restrict features that change memory to methods tbat only
update IClCal prClperties of objects. By contrast, Common Loops builds on Lisp,
which has many imperative features with global side effects, such as setq, rplaca,
and their ilk, that encourage an undisciplined programming style.

12 4 OBJECT ORIENTED PROGRAMMING

In FOOPS, objects, abstract data types, methods and attributes are all defined
in a declarative functional style. This gives FOOPS a simple syntax and semantics,
and roes it comparatively easy to read, write and learn. FOOPS is also relatively
easy tlJ reason about, since it is based on a formal logical system; indeed, [12J gives
wbat &eem8 to be the first ever rigorous semantics for object oriented programming.
MOreO'l'er, we have designed a graphical programming interface with which the user
can directly manipulate icons that represent objects, using a mouse; this leads to a
programming style that i8 almost '"physical" in its intuitive impact [6].

OBJ is a proper sublanguage of FOOPS, used to define the abstract data types
that provide values and the functions that manipulate these values. In addition,
FOOPS allows declarations for ewsee, attributes and methods; for added clar
ity. cl8ll8eS and methods are written in italics, and keywords are underlined. Eacb
object. of a given cl88ll has a unique name, and also bas values for certain attributes;
these values are usually from abstract data types, but may also be from otber classes
([121 gives details of FOOPS' powerful object-valued attribute facility). FOOPS dis
tinguishes between ok axioms and error axioms, whicb respectively describe normal
and exceptional bebavior; tbe basis for this distinction in order sorted algebra is
given in. 112].

We illustrate FOOPS witb tbe following simple module for bank accounts. Ob
jects ill this example are bank accounts with two attributes. The first, bal gives the
balance of an account as a Money value, 88lluming tbat a representation for money
(with a positive or negative sign) bas already been given in tbe module MOHEY, and
that the sort Money bas a subsort P.oney for positive amounts of money. The second
attribute hist is a history of tbe transactions performed on tbe account since its
creation, represented as a list of money amounts. This list data type is imported
into the ACCT module by applying tbe generic LIST module to the data sort Money
and renaming its sort List to Bist. Two metbods can modify accounts, credit and
deltit, vith the effect of inc.resing or decreasing tbe balance, and of appending the
cOlTe8pOnding amount (witb appropriate sign) to the history list. Tbere are also
error WODll!!l to bandle overdraw exceptions.

oa04 .lCCT b class Acct
protecting LIST[MoneY]$(sort Liat to Bist)
attn bal : Acct -> Money

hist : Acct -> Hist
error overdraw : Money -> Money
aethods credit, de6i~ : Acc~ PMoney -> Acc~

ok-moa.
bal~ew(A» • 0 .
hist(new(A» .. nil
bal(credi~(A.M» • bal(A) + M
hiat(credit(A.M» • app(hist(A) .M)
balUebit(A.M» • bal(A) - M it bal(A) <- M .
hbt(debit(A .M» ... app(hist (A) • -M)

i! bal(A) <; M .

err-lld olB

bal(~ebit(A.M» '" overdraw(M) it bal(A) < M .

4.2 Implementation on the RRM	 13

hiBt(debit(,\ ,N»= app(h1st (A) ,overdraw(N» 1.[baHA) < N
endo ACCr

The timt two axioms CMl actually be omitted by invoking the FOOPS "prin
cipal constant" convention, which says that the initial value of an attribute is the
"principal" constant of its abstract data type, if there is one.

4..2 Implementation on the RRM

We now discuss the implementation of FOOPS objects, attributes and methods by
(extended) rewrite rules, using the above bank account example. An object, such
88 Johnson-Acct, is internally represented 88 a term

Johnson-Actt(bal:(600). h1st;(200 -100 aoo -100 200»
with top operation symbol the name of the ohject, and with 88 many subterIIl8 B8

attributes. For an attribute a the corresponding subterm is of the form a: t with
a: a unary operation symbol having t aa its argument.]n general, an object 0 in a
cl6BB with attributes aI, ... ,an haa the form

Ora"~ (.tl, ...,a.' ('.))
and the value a;(O) of the attribute 4i for an object 0 is obtained by applying the
rewrite rule

",(O(a" (%,), ... ,a., «.J)) = ".
For example, this gives bal(Johnllon-Acct) - 500 for an account in the state de
scribed above.

Method application is only slightly more complex. The axioms for a FOOPS
method declare the effects on each of the object's attributes;. For example, the
axiom

bal(creditU,N» • bal(A) + N
declares that the new balance is the old balance plus the amount being credited. 10
general, a method m with axioms of the form

a;(m(O,lI)) = t;(a,(Oj, ... ,a.(Oj,YJ
translates into a single rewrit.e rule of the form

meXCa"~ ("'d, ...,a., «.)), YJ = X(a" (t, (%>, ...,<., YJ), ... , an' (•• (%>, ...,<., YJ)).
This rule is second order, involving a variable X that ranges over the operation
symbols that correspond to the names of the objects in the given class. For the
credit method. the corresponding rewrite rule is

uedit(l(bal:(B),hiat:(L».N) -l(hal:(B + N), hist:(app(L,N»).
It is fortunate that the same style of broadcasting microinstructions to RRM cells

that is used for ordinary first order rewriting will also implement this restricted form
of second order rewriting. Thns, it is straightforward to implement FOOPS on the
RRM. The following points summarize the differences between implementing objects
and implemen ting values:

1.	 Obj~ct8 persist, and CI:W only be destroyed by application of a delete com
mand.

~Although thill paper only dillCUft8eB 6lUie ...dA<l<U who8e monu ha:..e the form 8tated, axiom.
for I()-called derit.led me/hod.! may involve other mdhodl in their rightha.nd .ide. [12].

14	 5 RELATIONAL PROGRAMMING

2.	 Objects are locked ror method appllcadon, to ensure object integrity.
This is realized by &l1owing only one match attempt to succeed when several
instances of a method refer to the same object. (Tbere is no problem when
instances of difFerent methods refer to the same object, because the RRM
executes in SIMD mode locally.)

3. CopylDg or objects is rorbldden, to ensure object uniqueness.

h is remarkable that these restrictions actually nmplify ordinary term rewriting;
for exunple, the third condition says that we don't need. to enforce the "copy rule"
of Section 3.3 for objects. To enhance efficiency, each object may be kept in a fixed
locatiOD., with a global address that includes the ensemble aDd the specific cell where
the (root of the) object resides; BUch an address can also be used as the internal
name of the object. Also, all objects of the same cl88!l should be kept together in
one or more ensembles which atore the rules for the methods and attrihutes of the
corresponding class. For the purposes of implementation on the RRM, imperative
programming can he considered a degenerate case of ohject oriented programming.

5 Relational Programming

It is widely recognized that the relational paradigm is especially euitahle for prob
lems iliat involve search and/or deduction; typical application areas are natural
lanSUll6e processing and expert systems. Since pure Horn clause logic is not power
ful enough to support truly practical programming, the RRM project has chosen to
investigate more powerful logics, rather than to graft extralogical features into Horn
clause syntax. The results of our explorations include designs for the languages
Eqlos and FOOPlog and 90me initial ideas on how to implement them, as discussed
below.

5.1 Eqlog

Eqlos comhines the functional and relational programming paradigms, and also
provides the same parameterization and wide spectrum capahilities as OBJ and
FOOPS. Like these languages, Eqlog is hased on a rigoroUB order sorted logic that
provides multiple inheritance and a precise initial model semantics. Like FOOPS,
Eqlog is a proper extension of OBJ. However, instead of adding classeH, methods,
and 1IO on, Eqlog adds only one hasic thing to the syntax of OBJ, namely pred'
clites. To achieve semantic consistency, equality is now regarded as a rather special
predicate that is always interpreted in models as aetual identity. The logic for this
is quite well known; it is Horn clause logic with equality, and there are rules of
deduction with completenesB and initiality theorems [111. In this regard, the con
trihution of our original (1984) Eqlog paper has heen rather widely misinterpreted:
the main point was not 90 much the suggestion to use narrowing in the operational
semantics of Eqlog, hut rather the suggestion to use the initial model semantics of
Horn clause logic with equality as a criterion for the eorrutness of any proposed
implementation, and to use initiality also for the semantics of huilt in types (Le.,
for what is now called Constraint Logic Programming), as further developed in [11].

5.2 ULliJication 15

From this v iewpoint, the narrowing algorithm merely provides an exiat.ence proof
tbat. cert.ain classes of programs can be implemented. The problem of finding an ef
ficient implementation for some sufficiently rich suhc18Sll of Eqlog prograJM remaiD8
the subject of much current research. However, the initial model semant.ice. of Hom
dause logic with equality remains the right criterion for correctness of proposed
algorithms. For pra.ctical purposes, one might choose to implement. Eqlog with the
restiction that onl)' syntactic equality between terms involving const.ructOrB is al
lowed in Horn clauses and in queries involving predicates, hut. wit.h arbit.fa.ry user
definable equations for defining functions and doing functional comput.at.ion; such
an implementation could also provide powerful built. in types, making it a modu
lar Constra.int Logic Programming Language. Of course, the abstract. data t.ypes
defined b), constructors can be seen as another built in t.ype.

The operat.ional semantics of Eqlog divides nat.urally into two algorithms, one for
solving S)'st.elI"l8 of equations, and t.he other for se8l"Ching. The first algorithm gener
alizes st.andard, syntactic unification, the extreme case heing universal or Itrna"tic
unification, while the second differs little from the usual Prolog-style implemen_
t.ation of search for SLD-resolution, except that it exploits t.he opportunit.ies for
concurrency whicb the RRM provides. These algorit.hInll are cliscUBBed. in Sedions
5.2 and 5.3 below, respectively.

5.2 Unification

Unification and term rewriting ate closely related; in part.icular, the makhing phase
of rewriting is a special case of unification. What may he more surptisinll is that.
unification can be naturally implemented by rewriting, so as t.o exploit parallelism in
& natural wa.y. A1J in t.he Martelli-Montanari unification algorithm [18], we represent.
hoth unification problema and their solutions 118 seta of equations, and we give rules
t.hat tranaform the former into the latter'; in fact, the solutions are reduced forms
under the given rules. This llubsection illust.rates the approach with a very lIimple
algorithm without the oCt;ur check. Some other unification algorit.hms are brie8y
discussed et the end of t.he IJUbsection.

We can consider an equation between terms t and t' t.o be another term t :::::: t',
witb tbe binary infix operation == assumed commutative4.. Next, we can group
several equations togetber into a system of equatioDs, represented by a term of t.he
form

{tl=t~ /\ /I. tn==t~}.

Then solving a system of equations corresponds to evaluating a term of the fonn

solve{tl := t't 1\ '" /I. t n == t~}

using the rew-rite rule
so/v,{L} = {'lim(L))

where dim is an auxiliary operator for variable eliminat.ion whose meaning is defined
below. Our rewrite rules for unificat.ion use &88Ociat.ive pattern mat.ching on fiats
of equations to ease the exp08ition, and sometimes leave the sort!! of the v&riables
implicit, (or example, L above ranges over lists of equat.ions, and the variables I, l'

SHerbrand'l!I original work on nnill.cation can a.Iao be aeen at aD algorithm of kind.

'Commutative opera-tiona can be implemented on the RRM wilhou~ any Bpecial difficulty.

16 5 RELATIONAL PROGRAMMING

below will range over identifiers, of sort Id.
Welirst give rules for "decomposing" equations, using the power of second order

rewriting. ABBume that each operator Dame has II fixed arity (zero for constants)
and that arities are bounded by II small number (although these assumptions ace
realistic, they are used here only to simplify the exposition). Then the decompotrition
rtdell are

X(%l • %..):= X(rn •...• "") = (2:1 == yI) 1\ ... 1\ (x.. == "..).
Xli) =Y(j) ~ 'aUq XI' Y.

where lb.e variables X and Y are second order and match operation symbols, lind
where fail ia II constant obeying the rule

{L" 10;/ " L'} = {fail}.
Before explaining the rules for variable elimination, we brieRy discuS8 the opera-

tion of replacing II variable by II term. We regard replacement 88 II ternary operation
let I be t in t' with I an identifier and t and t' terms. Then the replaument rules
Me

let J bt: t in I' = if (1 == I') then t else r fi.
let I bt: t in X(Zl, .. OJ :z:") = X(let I be t in Xl, ""let I bt: t in %").

where == denolieB syntactic identity, Replacement extends to equations (by apply
ing the replacement to hoth sides) and to lists of equations in an obvious way. Now
the variable elimiftation. rulu are

elim(nil) = nil.
elim(fail) = fail.
{L" el;m(L' " (I = t) " L"ll =

if (I == t) then {L 1\ elim(L' 1\ L")} else
{(I == t) 1\ (let I be t in L) 1\ elim(let I be t in (L' 1\ L"»)} fi.

Finally, to avoid trivial equations in the solved form, we add tbe equation

{L" (I = 1) " L'} = {L " L'}.
Other unification algorithms can be implemented on tbe RRM with similar tecb

niques. In particular, the occur check (whicb Eqlog needs) can easily be added to
the above unification algorithm', Eqlog also needs order-sorted unification, which
can actually be significantly more efficient than unsorted unification, due to earlier
Cailure detection. A quasi-linear order-sorted Martelli-Montanari style unification
algorithm is given in [19J. Eqlog also needs unification modulo equations. The
narrowing algorithm [15J shows that this is p08llible, but is known to be inefficient.
However, the RRM's parallelism can be effectively exploited for this problem, since
narrowing combines rewriting and unification. Tbe work of Martelli d at [17J
treating narrowing as a transformation of a set of equations seems suggestive in this
regard,

5.3 Search

Searching for solutions to an Eqlog query should exploit RRM concurrency to explore
many parts oC the search space in parallel. Solving a given query Q for a particular
Eqlog program can be conceptualized functionally rather than nondeterministically.

~It might even be pOlJ6ible to perform 8uch a check ~by need" 80 tha.t, ny, when exploring a.
search tree the coat ill only incurred on successful pa.th8.

5.3 Search	 17

To find the first n solutions of the query Q we reduce the term show Q upttl n to a
set of substitutions, represented as a disjunction ih V (J2 V ... V (Jft. One approac:h to
implementing Eqlog in the RRM may be b88ed up on ideM similar to thOlle of J .A.
Robinson [21] and K. Berkling 11J. However, our context is broader since it includes
Horn clause logic with equality, and our functional bMis i.e equationallogit rather
than lambda. CaiCulllil. The key observations ate:

1.	 A sentence of the (orm Vi'Vg(A(z) <= B(£, Y) is logically equivalent to one of
tho fo'm V"(A(i)<=3IiB(",iI)).

2.	 In tbe initial (or Herbrand) model Ie de6ned by a set C of Horn clauses
(possibly involving equality) [10, 111. if a predicate symbol P is detined by
Horn clamet'l of the fonn

P(t~Uill <= B, (zi, .i), ... ,P(I~(i;')) <= B.(i;',';;')

where the Bj's are conjunctioDB o(positive atoms, then

Ie F PI") <> «"~ Il(zi) A3.iB, (zi, .i)) v ...V

(i''' qz-;') A 3';;'B.(>;.,';;')))

where x == iti) is compact notation (or a conjunction o(equations equating
the first vuiable with the first term, tbe BeCOnd with the second. etc.

3. Since the # symbol in the last formula can be interpreted 118 equality of terms,
we c:an view such a (ormula as a rewrite rule (or SLD resolution in Horn dauBe
logic: with equality.

For example, a program to compute the transitive closure TC of a binary relation
R having clau8es

TC(z,y) ~ R(z,.)
TC(z,y) ~ TC(z,z) A TC(z,.)

is transformed into a functional program involving the rewrite rule6

<%pand(TC(z, .)) = R(z,.l V 3z(TC(z,z) A TC(z,.))
where the meaning of tbe (unction e%pond is clatmed below. Rewrite rules like the
above (or TC produce complex !ormulll,. built up from system.9 of equatiollJl and
atomic (orml1l8ll like R(%, IJ), by repeated application of v, 1\ and 3. The original
expression show Q upto n is reduced to a disjunction of n solutions, i.e .• to n ~ystem.9

of equations in solved form, each solving the query Q. SolutioDB are extracted one
by one using the rule

(t) shQ1.V S V P upto n = S V show F upto p(n)
where p is the predecessor function, S ranges over systems of equatioDB, and F over
formula.s. In general, an ex.pression c:orresponding to a logical formula is reduced
by certain auxiliary rules (in addition to th08e already discWl8ed for unification),
including:

1.	 F /I. (F' V fll) = (F /I. F') V (F /I. F") (distributivityJ

'Thil rule a.ctl in a. !lenl~ like a. "~~urf; it! implementa.~ion Ihould crute new inAtUlca of the
exil1entia.lly quanti6ed varia.ble. for ea.ch rewrite. It un thul be imp~ltl~nt8d a8 a. (Ipe<-ia.l kind
of) Objfd, in the senll.e of Section 4.1.

18 5	 RELATIONAL PROGRAMMING

2.	 31'{E A (% == t) A Et) = {E A E'} (exi8\entiaJ qU&Iltme.r eliminac.ion)

3.	 IE} A {E'} = .aI.,{E A E')

(d"ing the conjunction oC two lIystema of equatioDII)

The plla.Ue1 model of. computation underlying the RRM lIupporta search with "'or"
pat&1lelio:n eo that. the logic.aJ. completetlf* at Eqlog i8 not MCrificed. However, the
exponential aplcmon olthe.arch tree mWlt be controlled, even when ample parallel
re8OurtI.II are available. For this purpoee, the e%pand' fubction expands an atomic
formula P(tl •...• t..) into a di.ejunction of (ormulu. one fQJ' each clause having P in
ig head, as in the TO example above. Thia penni'- .IU1 breadth fint Btrategy,
exploring deeper levels of the search tree only when no mOn! 101utioDa are available
at h.qher levelaj then, the rule (t) above doell not match, and further expansion is
initi.tied by rulel!l 8uch as:

1. 'AOW F V F' upto n = .how npand(F) V ezpt:lnd(F') upto n.

2. ,how F /\ 1" upto n = .how t'%p<Ind(F) /\ e:z;pan.d(F') upto n.

3. ,how 3% F upto n = .how 3% ezpand(F) upto n.

4.•how P(t1' ... , t,.) upto n = show ezpand(P(tlo ... , tn)) upto n.

5. cpand(F V 1") = ..pand(F) v,zpand(F').

6. (~pand(F /I. 1") = e~p4nd(F) /I. e~p4nd(F').

7. cpand(3. F) = 3. ,zpand(F).

This _ms a reasonable and simple way to explore the _arch tree, bill. mllDY otber
strategies are p088ible. The RRM supports very Rexible and general evaluation
strategies 19] that can be applied to this problem. Also, creating an object with
two attributes, one the solutions already (ound, and the other (or the remaining
search tree, and with methods (or requesting add.itiOD~ IIOlutions would support
very nBtural user interactions.

5.4 FOOPlog

There is not space here (or more than a (ew remarks about FOOPlog [12J, which
combines aU three major emerging programming paradigms, the (uDctioo~, ohject
oriented, and relatione!. It appears that techDiques similar to those described above
will 8Upport the efficient implementation o(FOOPlog on the RRM. Moreover, we
believe that FOOPlog is an especially suitable language (or kDowledge procesfling,
and in particular, (or natur~ language proces8iDg [12, 131.

Acknowledgements

Mr. Timothy Winkler deserves special thanks for extensive disc.uae.ions and many
very nluable suggestions on the ideas presented in this paper, especially 00 the
imple.-ntation o(Eqlog, &lid also (or help with the figures. We &1so thank the

19 REFERENCES

other members oC the Rewrite Rule Machine Project., Dr. Sany Leinwand, Prof. Hi
tashi Aida and Prof. Ugo Montanari, with whom we ba.ve had extensive diacueeions
of these ideas, and the other members oC the OBJ team, Dr. Kokichi Futatsugi
and ProC. Jean-Pierre Jouannaud, 88 well as Drs. Cl&l.lde and HeleneKirchner and
Mr. Aristide Megrelis.

References

(11	 Klaus Berkling. Epsilon.reduction: Another view oC unification. Technical
report, Syracuse Univenity, 1986.

12)	 Kokicbi Futatsugi, J08eph Goguen, Jean-Pierre Jouannaud, and JOl!Ie Meseguer.
Principles of OBJ2. In Brian Reid, editor. P'DC~edirt'lJ, 11th ACM Sympollllm
Oft PrinciplelJ 0/ Programming Languages, pagel! 52-66. Association for Com
puting Machinery, 1985.

(3]	 Kokichi Futat.eugi, Joseph Goguen, Jose Meseguer, and Koji Okada. Param
eterized progranunlng in OBJ2. In Robert Balzer, editor, Proeeedin'B, Hintle.
Interna.tioruu Cora/etenee Ort Software Ert,irturirt9, pages 51-60. IEEE Com
puter Society Preaa, March 1987.

!4]	 Joseph Goguen. How to prove algebraic inductive hypothesel!l without induc
tion: witb applicatioDl!l to the correctne8l!l of data type representations. In
Wolfgang Bibel and Rohert Kowalski, editors, Proceedin,s, FijtA COll/eruee
Ort Automatcd Deductiora. pagelll356-373. Springer-Verlag, 1980. Lecture Notes
in Comput;er Science, Volume 87.

[5]	 Joseph Goguen. Paramet;erized programming. TranaacnofU on Software &tgi
nccrirtg. S£-10(5):528-543, September 1984.

[6J	 Joseph Goguen. Graphical progranurung by generic example. In St;even Karta..
shev and Svetlana KartBBhev, editonl, Prouedin,a, Second. Internationll Super
computing Cort/crence, Volume I, pages 209-216. Int;ernational Supercomputing
Institute, Inc. (St. Petersburg FL), 1987.

[7J	 Joseph Goguen. OBJ 88 a theorem prover. with application to hardware verifi
cation. In V.P. Subramanyan and Graham Birtwhistle, editors, Currcnt Tnn/h
irt Hardwan Vcrijicatiort orad A utomated. Theorem Prouing, pages 218-267.
Springer-Verlag, 1989. Also, Technical Report SRI_CSL-88-4R2, SRI Inter
national, Computer Science Lab, Auguet 1988.

[81	 Joseph Goguen. Higher-order (unctions considered unnece8l!lary for higber-order
progranuning. In David Turner, editor, Proeeed.irtga, Univeristy 01 Tera.s Year
01 Programmirtg, lnd'tute ort Declarative Programm1·n,. to appear 1989. Pre
liminary veJ"l!lion in SRI Technical Report SRI.CSL-88-1, January 1988.

[9J	 JOl!Iepb Goguen, Claude Kirchner, and Jose Meseguer. Concurrent termrewrit
ing as a model of computation. In Robert Keller and Joseph Fasel, editonl,
Proceedings, Graph Red.ucriort Workshop, page- 53-93. Springer-Verlag, 1987.
Lecture Notes in Computer Science, Volume 279.

20 REFERENCES

[101	 Joseph Goguen and Josi Meeeguer. Eq1a«: Equality, types, and generic modules
for logic programmiog. In Douglu DeGroot and Gary Lindstrom, editors, Logic
P'Of"I",,,,ing: F."etio,..., Rt:latio..~ anti Ef/uatwu, Pagel 295--363. Prentice
Hall, 1986. An eadier version appeare in JDU,,,d 0/ Logic Programming, Volume
1, Number 2, pase8 179-210, September 19&4..

[111	 Joseph Goguen and Josi Meeeguer. Mode18 and equality for logical program
ming. In Hutmut Ehrig, GiorKio Levi, Robert KowaJ.ski, and Ugo Montanari,
editars, Prof%eding_, 1987 TAPSOFT, pages 1-22. Springer.Verlag, 1987. Lec
ture Note8 in Computer Science, Volume 250.

[121	 Joseph Goguen and Josi Meseguer. Unifying functional, object-oriented &Ild
rela.tional programming, with logical IIemantics. In Bruce Shriver and Peter
Wegner, editors, ReseArch Diredio". in 06ject-O,;cntcd Programming, pages
417-477. MIT Prf!9B, 1987. Preliminary version in SIGPLAN Noheu, Volume
21, Number 10, pages 153-162, October 1986.

[13] J(Beph	 Goguen &lid JaR Meseguer. Logical programming for situation sern&ll
tiCli. In Mack Gawron, David Israel, and J08~ Meseguer, editors, Semanbe. of
Nct.rol and Computer Langwages. MIT Press, 1989. To appear.

jI4]	 JCRpb Goguen &lid Joseph Tardo. An introduction to OBJ: A language for
writing and testing eoftware specifications. In Marvin ZeIJcowitz, editor, Spec
ification of ReUa61~ Software, pages 170--189. IEEE PresB, 1979. Reprinted
in Software Spuijicatlon Techniques, Nehan Geha.ni and Andrew McGeUricll,
ed.it.on, Addison- Wealey, 1985, pages 391-420.

[15]	 Jean-Marie Hullot. Canonical forms and unification. In Proeudings, 5th Con·
ference on A.tomated Deduction, pages 318--334. Springer.Verlag, 1980. Lecture
Notes in Computer Science, Volume 87.

[16]	 Suy Leinwand, Joeeph Goguen, and Timot.hy Winkler. Cell and ensemble ar
chitecture of the rewrite rule machine. In Proeer:dings, International Conference
011 FiftA Generation Computer Srstern.s 1988, pasea 869-878. Institute for New
Generation Computer Technology (ICOT), 1988.

[17]	 Alberto Martelli, C. Moiso, and G.F. Roesi. Luy unification algorithms for
canonical rewrite syteIIlll. In Maurice Nivat and H8S8an Ait-Kaci, editors, Re.·
olltion of EquatioM in Algdrai~ Strudurr:s, Volume 2: Rewriting Teehnique.,
pq:es 24.5-273. Academic Preas, 1989. Preliminary venion in Proceedings, Col
loquium on the Resolution of Equations in Algebraic Structures, held in Lake
way TX, May 1987.

118]	 Alberto Martelli &lid Ugo Montanari. An efficient unification algorithm. ACM
Tnlnsadio"" on Programming Languages and Srstern.s, 4:258-282, 1982.

[19]	 J~ MeBeguer, Joseph Goguen, and Ger!; Smolka. Order-BOrted unification.
Tedmical Report CSLI.87-86, Center for the Study of Language and Inforrna.
tioD, Stanford Univenity, March 1987. To be submitted for publication.

21 REFERENCES

[20]	 Ugo Mont!lJlari and J08epb GOgllen. An abstract machine for rut parallel
matching of linear patterne. Technical Report SRI-CSL-87-3, CompukrScience
Lab, SRI International, May 1987.

[211	 J. AlaD. Robin80D. A 'fifth generation' programming B)'stem based on "highly
parallel reduction machine. Technical report, Sehool of Computer and Infor
mation Science, Syracuse Univel1!.ity. 1984.

[221	 Timothy Winkler. Numerical comput.etion on the RRM. Technical report,
SRI Int.ernationB.l, Computer Science Lab, November 1988. Technical Note
SRI.CSL-TN88-3.

1

Cell, Tile and Ensemble Architecture
of the Rewrite Rule Machine

Joseph A. Goguen·, Sany Leinwand'. and Timothy Winkler·

Abstract: Tbe Rewrite Ru.le Machine (RRM) arc.hitectlln! is a massively p&l'allel
muUi-grain hierarchy, in which five different levels of organization can b4! distin
guished. The loweet is the cell, which store9 an individual data token. Next, a tUe
provides common communication reBOurces for a small number of cella. Third, an
eD8emble consists of many cells, which can represent complex data structures, to
which rewrite rules are applied under the direction of a common controller; each
ensemble is implemented by 8. single custom VLSI chip. Fourth, a cluster organizes
many ensembles to cooperate in solving larger problems, and finally, an entire RRM
is 8. network of cluders. En6Elmbles support fine-grained SIMD parallelism, while
dusters support coarse-grained MIMD parallelism. This multi-grain paralleliaxo
allows the RRM to exploit the fact that many typical complex computations are
locally homogeneoUJi but are not globally homogeneous. This paper describes the
RRM architecture at the ensemble level, and presents some recent simulation re
Bults which BuggeBt that one RRM ensemble has roughly 50 times the power of a
5un-3/6O. We consider this very encouraging.

Introduction

The goals of the Rewrite Rule Machine (RRM) project are to achieve:

•	 efficiency, through multi-grain m8SSively parallel execution;

•	 generality, supporting both Bymbolic and numerical computation, as well as
both hC::HDogeneouB and inhomogeneous computation;

•	 programmabiiity, by Bupporting a wide variety of languages, from ~he tra
dition&.l imperative to the modern declarative, including the object-oriented,
logic (i .e., relational), and functional paradigms, as well as their combi!lations;
and

•	 semantic fle%ibility and precision, by compiling all languages into a common
model of computation called concurrent rewriting.

Thus, the RRM project aims to develop architectural concepts and a model or com
putation to bridge the gap between high level programming and ID8SSively parallel
execution. This paper focUBes on RRM architecture at the enlilembJe level, which

-Univel'llity of Oxford &lid SRI Intema.tiona.l.

tSRI Internationa.l.

24	 I INTRODUCTION

implements fine-grain SIMn paulleliam. Certain topics from our previous papers
[5, 6, 18, 15J are only briefly summarized in this paper, but are not necessary (or
undemanding the rest of it.

AckntM'ledgements

We thw Prof. Hitoshi Aida for his very valuable contributions to this paper and
to the RRM project in general, and in particular, Cor his work on the RRM simula.
tor, (orhia compiler from OBJ to the RRM, and fot his help with the simulation!
reponed in the final section. We also thank Dr. Jose Meseguer (or his many impor
t&llt contributions to the work described here, ranging (rom programming language
8elnantica to project management. Finally, we thank Prof. Ugo Montanari for his
&8lIintaaee with RRM compiler technology and for many uaefuJ dil!lCll88ioDS about
paraUeliIlm.

1.1	 Multi-grain Architecture and Locally Homogeneous Compu
tation

Current generation massively parallel architectures typically (all into one of the
following two clll8lle8:

•	 Coarse-grain archil.ecturell' whose computations are organized iDto si%able
t..b that only rarely need to exchange data;

•	 Pme-gram att.h.itecturel!l whose computations are organized into small tasks
that (requently need to exchange data.

Ea.c.h option imposes urtain limitations, either on the amount o(parallelism that
it can effectively exploit, or elae on the types o(problems for which it is Imitable.
For example, only computations that are very homogeneous, in the sense that many
instances of one instruction can be applied simultaneously at many different places
in the data, can make efficient use of a SIMD machine. But experience shows
that many large, complex computations have many different parts with little or
no overlap among tbeir instructions. That is, large complex comput.ationB tend
to be glo6tJll, inAomogeneowr. We say that computations that ace locally homoge
neous but globaUy inhomogeneous have multi-grain parallcillam, and note that
current generation architecturel!l, languages, and modeb of computation are poorly
suited for such computations. In particular, yon Neumann machines, languages and
modelll o(computation are inadequate, because they are inherently sequential. Sim
ilarly, coarse-grain architectures can only exploit part of the paralleliBm available in
multi-grB.in parallel computations. In contrast, the RRM has a hierarchical multi
grain architecture that exploits VLSr to pack many simple cells onto a single
chip organized (or fine-grain SIMD parallel computation, and then organizes many
sucb chips (or CO&l'8e-grain MIMD parallel computation. In this way. the RRM can
realize the high performance potential of fine-grain parallelism (or highly homoge
neoWl computations, on the much larger class o(computations that are only locally
homoseneous.

1.2 Model of Computation	 25

1.2 Model of Computation

The model of computation plays two important roles in the RRM project:

1.	 It provides an abstract description of what the RRM ill supposed to do, and
thus a correctnesa criterion for itB architectural design.

2.	 It serves sa a common target language for compilers from &. variety of BOurce
languages; this allows the lleeOnd stage of compilation, which produces RRM.
ensemble controller code, to be shared. among all languages.

This model of computation, called. concurrent rewriting, adds the concepts of
partitioned rewriting (aee Section 1.2.3 below) and extended variables (see 1101) to
the usual term and graph rewriting models, such as Dactl [4], Rediflow [14], Id [lJ,
and Alice [12); see [13] for an overview of graph reduction models of computation.

1.2.1 Data Representation

Although terlI18. such ISS J(z) +g(z), can be represented as trees, it is preferable to
represent them as graphs, for the following reasons:

•	 Storage can be reduced by sharing common data, such 88 z in J(z) +g(z).
Such sharing also reduces the amount of computation required, since a. shared.
subcomputation can be performed just once .

•	 Replacement is much simpler for graphs, because maintaining a tree represen
tation requires copying (p08Sibly large) structures when variables occur more
than onCe in the righthand side of a matched rule.

Moreover, graph structures are unavoidable for object-oriented programming, be
caUl:le of multiple accesa to objects [10]. The nodes of these graphs are labelled
by (wkens that represent) operator and constant symbols; constant symbols are
considered to be operator symbols with no arguments. In general, sort (i.e., type)
restrictions may be attached to operator symbols.

It is easy and natural to represent familiar data structures as such labelled
graphs, and although it may seem surprising at first, it is also easy and natural
to represent familiar algorithms as sets of rewrite rules. Much of this follows from
well-known reaults about implementing abstract data types using term rewri~ing, 8.B

embodied, for example, in the 08J3 language [11].

1.2.2 Concurrent Rewriting

For simplicity. the following discusaion is largely confined to functional computation,
where there is no persistent store data. See [lOJ for a discussion of implemelltat.ion
techniques for object-oriented computation.

An RRM computation starts with a graph and a set of rewrite rules. Thel:le
rules are applied until the graph is Teduced, in the l:lense that no rule is applica.ble].
Each rule has a lefihand and a rlghthand side, constructed from opera.tor and

IThis festrk tion c~n be relaxed to implement ,o-caJJed pupd..a1 procl!llllee.

26 J INTRODUCTION

fibo
+

x
0
~ ==> 0

~bo 1\ /'\. ::=:>
fibo

, ::=:> filx>
x 0

filx>
~•, ==>i , t... / /'\., ::=:> ,/'\.y

0 ~ x
~ x x I ~
0 y x

(.) (b)
+filx>

~ /~ ,+• +

•
~

::=:> /".., ,1\
0 ::=:> ,•

~

• •
~

0

• /'\.
0

~ ••00 ~

• ~
~ 0
0

(e)

Figwe 9: Rewrite Rules (or Fibonacci and Addition

variable symbols. Varia.bles cab be instantiated with any graph (of the appropriate
8Ort), and a set of iDltaotiatioDS for variablell ill called a subst:1tution. Rewriting
has two phuea, called. mat:(:h1ng and replat:ement:. The maliching phase finds a
substructure DC the data graph called. the redex, such that some substitution yields
the me:.: wben applied. to the lerthand aide. Then the redex is replACed by the
co:rraponding substitution instAnce of the righthand aide.

Cont:urrent rewriting allows applying multiple rules a\ once, at mUltiple
placel! in the data, aod is weU adapted to ma88ively parallel computation because DO

explicit coDBtructa are required to achieve or to describe parallelism. This greatly
eases programming.

Let U8 consider a simple example, the Fibonacci function, as defined by the
equatiDna

11'0(0) = 0 .
flba(.(O» • 8(0)

fiba(8(8(X» • fibo(8(X» ~ fibo(x) .

when the natural DUmbers are represented using only the constant 0 and the suc
ceseor function 8, i.e., using Peano arithmetic, 90 that, (or example, 3 is represented
by 8(8(8(0»). Figure 9(a) shows thelle rules in graphical Corm; notice the sha.ring
o(x in the righthand side ofthe third rule. Similarly, Figure 9(h) shows the rules Cor
the ~ function. These rules can be applied to any graph containing f iba, ~, 8, and
o symbols. For example, the three graphs in Figure 9(c) show an initial data graph,
then the result o(applying the rules in Figure 9(a) to it, and finally the result oC
also applying the rulee in 9(b). giving a graph with only 0 and 8 symbols, i.e., an
integer.

1.2 Model of Computation	 27

A set of rules is confluent (90metimes called Church-R088er) if the order of
applying its rules is immaterial to the result. The fact that large conduent subsets
of rules are quite common in practice permits 90me significant simplificatioD8 of the
RRM architecture, ror the rollowing reasons:

1.	 The rules within a confluent set can he 8cheduled in any order, and anyone
rule can be applied at several different places in parallel.

2.	 Given a conduent set of rules, it is not necessary that each match or a given
rule to a given substructure is replaced when it is first recognized, provided
that the rule will he tried again later. This means that local data a«:ess can
fail without compromising correctness.

The fimt property removes the sequential control straitjacket inherent in the von
Neumann model of computation, while the second allows both the high performance
or fast local connections, and the Hexibility of remote connections.

1.2.3 Varlanh of the Model

It is useful to distinguish the following variants of the basic rewriting model of
computation.

1.	 Concurrent rewriting allows tbe application of multiple rules at multiple
places in the data at once. This could be implemented in a MIMD .vchitec
ture where multiple controllers direct rewriting at multiple places. Although
thiB is potentially the fastest strategy, it would be unrealistically expensive to
implement in full generality.

2.	 Parallel rewriting allows the application of a single rule at multiple places at
once. In traditional architectures this corresponds to SIMD execution, with
one controller hroa.cl.casting instructions to many processors. Homogeneou8
computations are typically handled well by this 8trategy, which is implemented
at the ensemble level or RRM architecture.

3.	 Sequential rewriting applies rules one at a time, each at a single place in
the data. This corresponds to the traditional von Neumann model.

4.	 Partitioned parallel rewriting partitions adata graph into domains, within
each of which parallel rewriting is performed, typically with different rules for
different domains. Partitioning is dynamic, reHeeting the evolution of the data.

Thus, parallel rewriting models fine.grain parallelism in a SIMD style of computa.
tion, whereas partitioned parallel rewriting, being locally SIMD but globally MIMD,
models multi-grain parallelism, thus extending the efficiency of parallel rewriting to
computations that are only locally homogeneous.

An evaluation strategy can be given as an annotation on an opera.tor to
impose specific restrictions on the order or rewriting its argument subgrapru. These
annotations can be used to itnprove performance, and also to 8upport thetxplicit
programming o(concurrency that is needed ror systems programming [5].

28	 I INTRODUCTION

1.3 Support for Progra.nuni.ng

ProgramminS is often the major obstacle to the effedive use of & massively parallel
m.achi.ne. There are two common approaches to trying to overcome tbis obstacle:

•	 Reuse old programs, often written in old sequential imperative languages.

•	 Write new programs in new parallel imperative 18D.gua~8.

The &m approach would have considerable merit if it were p068ible (or & compiler
to extnct sufficient parallelism from "dusty decks." The current state of the art
can extrllCt moderate parallelism for homogeneous computations, often mums use
of IIOme rt'!programming by hand. The second approach can genera.lly offer much
greater par.uelism, but often rsults in programs that are difficult to debus, modify,
and poJ1 to other machines, bet':&use of the notorious difficulty ofunderstanding par
allel progrlUIUl, and orten abo because of machine dependency in the programming
language and/or the program.

Theee problems should be a1levia.ted by our well-defined model of comput.a.tion
and hy the techniques t.hat we are developing t.o compile any language on t.o t.he RRM
IIOJ. Wtille we believe tha.t the RRM can effectively support programs writ.ten in
imperative languages, we also believe that a.ppropria.te decla.rative programming
langu&pll can exploit the RRM with grea.t.er efficiency, and a.t t.he same t.ime offer
signific.ant advanta.ges in progrlLIDDling ease and maintenance. From the bardware
point of view, declarative languages do not prescribe specific orders of execution,
and thua provide maximal opport.unity for compilers and runt.ime systems to exploit
parallelism. From the sort.ware point. of view, the languages tha.t we are developing
for the RRM have fea.tures t.o support. all phases of program development., from
IIpedfication and design to maintenance. Moreover, t.hey ba.ve simple synt.ax and Be

mantia, and thus are relatively easy to learn and t.o compile. These multi-paradigm
declarative languages, which extend our functionallangua.ge OBJ [2, 3J to the object
oriented 19J and logic programming paradigms [7, 8J, are de&Cribed in [10], along wit.h
techniqlles for implement.ins them on the RRM. These same techniques also suit.a.ble
for compiling more tradit.ionallanguagea. 10 particular, impera.t.ive programming
can be teeD as a. desenera.te form of object-orient.ed programming.

1.4 Architectural Levels

The RRM architecture CM be described a.t t.he following levels of granularity:

1.	 A cell stores one node of t.he da.t.a. structure, and ca.n also perform simple
opera.tiolUl. Cells are kept as simple &8 possible, so tha.t as many a.a possible
can be fit onto a single chip.

2.	 A tile provides shared communica.t.ion resoUl'ces for a. small number of cells.

3.	 An enaemble is a. single VLSI chip cont.aining many tiles, with support. for
their communicat.ion needs, a common controller, a.nd local stora.ge for t.he
rulet! tha.t are applica.ble to its current. da.ta. Many cells toget.her represent.
complex da.t.a st.ructures, which are manipula.t.ed according t.o instructions
broadcast. by t.heir cont.roller.

29

4. A duster interconnects many ensembles IlO that they can cooperate in larger
cornpu tations.

5. A net"W(lrk consists of several clusters, giving II complete RRM.

Implementing a.n ensemble as II single VLSI chip allows fast inter-cell communica
tion, and minimizes the delay or off-chip signal propagation, 80 tbat II high clock
fate ca.n be used. Physically adjacent tiles within an ensemble communicate over
short, high speed wires. This supports rapid rewriting on data that involves only
direct connections. Remote connections are handled by (automatica.lly) nelocating a.

remote cell to a. e.dja.cent tile when it i8 needed. Ensembles have a regular inter-cell
communication grid, to make good use of silicon 80Dl'9pace.

Although this paper focuses on the fuIIt three levelB, the other two an briefly
discussed below, to help the reader understand the complete RRM architecture.

1.4.1 Cluster ArchItecture

A cluster cont.&ins many en8embles, a large backup memory, and a connection to a
conventional computer that stores the complete set of rewrite rules. Communication
protocol.6, rule distribution strategies, and lo&d distribution are important is8ues
at this architectur&! level. Clusters are relatively independent entities that need
to communiclIte relatively rarely. Thus they &dmit colI.r8e-grain pa.r&!lelillm and
support multi-grain parallelism.

1.4.2 Net'Work Archlteclure

A complete RRM is a network of relatively few clusters, used for solving multiple
or very large problems. A general purpose interconnection switch is appropriate at
this level. Tokens must have long global names, because the 8 to 10 bite used inside
a cluster are not sufficient to identify all the operator symbols that may occur in
a larger program. Therefore translation is required when two clusters interact. A
conventional compoter provides a user interface to the RRM as a whole.

2 The Cell

Cell structure is determined by the fact that cells provide physic&! representations
for abstract nodes in a graph, as well as the basic processing power for rewrit
ing. Previous work [161 has suggested mung 8ags stored in cells to implement the
matching of lefthand sides against data. Matching consists of finding cells which
are the roots of subtrees that match the pattern of a lefthand side. The occur
rence of a given pattern or subpattern at a particular cell is represented by setting
a corresponding Hag in that cell. The simplest subpatterns are tokens which are
labelled with corresponding 8ags. Complex patterns are matched by progressively
identifying larger and larger substructures, and marking them with further 8ags. A
Hag repre8en ting a larger subpattern is set in a cell when flags corresponding to its
immediate subpatterns occur in its child ceU(s). and it contains the required token.
This process can be primarily bottom-up (from the leaves of the pattern to its root),
or a combination of top-down and bottom-up, and requires that cells have BCCeM to

30	 2 THE CELL

" comparator Cor ktkene and Bags. Following" sueel!:8lfu] match, " bew structure
.. built, which in pneral requires allocating new cells and storing pointers in them.
Whu c.cmpleted, thY new llbucture replaces the ori,pnal nedex by overwriting the
root.

Th. cClUlideratiODs 8Uggest that cella should have the following:

•	 A token to repreeent the node's operator symbol.

•	 Pomten to otbu etructuree that serve as arguments to the operaklr symbol
represented by the token.

•	 Plaga to IRImmarUe the local state of computation at " cell, e.g_, that a certain
coo.clition bu bMn checked, or that a certain Bubetrudure is reduced.

•	 Tunporary "P.tel'll to store pointers kl newly created structures.

PariitiOlling computation into local tasks keeps the number of distinct operator
lIymbolumall enough 80 that only (say) 8 to 10 bits are needed to represent tokens.
Pointer. can aleo be fairly 8IDall (say 10 bits), because the number of cells in "single
ensemble is limited by available silicon area. Two pointers suffice, because operaklr
symbolll taking more than two arguments can be repreBeDted using several binary
operator symbols. We have round that three temporary registers are sufficient ror
rapid replacement.

2.1 Cell Control

The RRM design requires th&t each cell;

•	 Obey instructions from the controller, ror example, to move data between
reglsten (token, pointer, or temporary) IIIld 10 compare tokens with broadcast
data.

•	 Attempt to conneet to .another cell whose addreas is in a register, and ir suc
te88fuI, exchange d&t& with that cell.

•	 Eater IIIl inactive state whenever & comparison or conneetion attempt rails.
Inactive cells do not "liatenn to the controller's instructions, but can be hrought
back to attention by a speeisl a.c.tiv&tion instruction.

•	 When inactive or free, use its resources ror maintenance processes, such as
sarbage collection and data relocation.

2.2 Numerical Computation

Efficient numerical computation on the RRM needs capabilities &t the cell level
beyond those required ror rewriting. Although numerical operations could be im
plemen~ from "basic principles" by representing natural numben using only suc
cessor and zero (i.e., using Pe.ano arithmetic), this would be much too slow. Instead,
we can let cells perform simple operations on small (8 to 10 bit) numbe1'8, includ
ing siBoed addition, negation, sbift, and bit operations. The incremental coet over

31

the already required equality compa.ri.Bon on tokens is small. Then RRM oompil
en can implement a. complete !Jet of arithmetic opera1ioDs from these buUt-in cell
opera.tions. A redundant represen\ation of arbitrary precision numben as trees of
8II1aJ.l integers [17] permits highly plll'aJ.lel arithmetic operations, and very efl'ectively
exploits RRM capabilities.

3 The Ensemble

An ensemble consists of many cella, a. sha.red cont.roUer tha.t broadcasts instructions
to them, and local f1torage for the rules that Me applicable to itB current data, all
on a. single VLSI chip. Cells should be interconnected with a. regular mesh of fixed
degree (e.g., rectangular or hexagonal), to effectively use silicon 8oonlpa.ce.

Data sharing is difficult for m88Bively para.llel architedures because it requires
expensive coordination. The two major approachell to "hill problem are rneS8&ge
PA&'Iing and data pall8ing. Message passing UBe8 explicit ac.cesa requestll, whic.h
typic.aJ.ly involve large overhead, and thus are most suitable (or oo8l'8e-grain machines
in which data transfer is sufficiently rfU'e. Static data paB8mg, as in pipelined
prot:essors lind systolic. arrays, moves data over prearranged paths, suc.h that data
arrives at each prOc.e880r just when it is needed. Static. data passing allows high
performance, but at great coet in applicability and programmability.

The RRM avoids the overhead o(message pa88ing and the inflexibility o(data
Pa88ing by using what might be called dynamic data representation. In this
approach, adjacent tiles fU'e directly connected by short high-speed wires, so that
matching can be very efficient when all cellB are physically adjacent When replace
ment requires new cells, adjacent free cells can usually be (ound, but if all adjacent
tiles are (ull, then a resource allocation failure occurs. Pointers to remote cells can
also arise when a newly built structure uses a substructure obtained by matching a
variable, or when a remote cell is relocated without relocating its deacendenta.

3.1 Tile Structure

To mue better use of resources, the silicon area of an ensemble is divided into a
regular array of tiles, each of which provides commun~ation, equality comparison,
and ba.sic arithmetic and logic operations for a small number of cells; 8 is thenumber
currently under evaluation. Direct connection9 are only provided between adjacent
tiles, by implementing each edge in the te98ellation mesh with one communication
port, supporting either duplex or half-duplex data transmisaion:l, shared by all cell
pairs located in thoee two tiles. I(there are multiple requestB (or a port, only one
request succeeds and the others fa.i.l. If the mesh degree is sufficiently high (at lea.st
4), the probability that two cella in the same tile will request communication to the
same adjacent tile is low. The (act that all cells in an ensemble execute the same
instruction stream also belps to minimize competition (or bandwidth.

At the model of computation level, failure9 due to non-local connectioDs or to
low inter_tile bandwidth appefU' B8 occasional non-determinism, in the sense that

, A dopl~ wire can .imulla..lle<luly tra.nJImit data in both direction', while data a ha1l'-dnplex
wire can only t:ransmit da.ta ill one direction at a time.

32 • THE ENSEMBLE

the lIeqllence of evenUi ia unpredict.ahle and unreproducible. But non-determinism
is nalW'a1 to the concurrent rewriting model of computaticm, and can be made
too yield de~rminate n!8ul~ for con.8uent rule !lets, simply by repeat.ing eDBemble
controller code instruction cycles until the data graph is reduced. Indeed, tbiB un·
predku.hilit.y is • bonua, hecsulle it nducee the danger of deadlock. For I!nmple,
if two mmilar data st.ructures are located in the same part of an eDBemble, then
mak.hiag them ma,. overload the availahle communication reeourcee. and it is pollBl
ble that neither will eucceed in matching the broadcast pMtern. Non-detenniniltic
execution nducee the probability of staying forever in lIucb a deadlocked litu.tion.
The rare remai.n.iDg deadlock situations are eliminated by haviog the communication
poria .leet the winning request at random whenever connection demands exceed. a
pori's capabilities.

3.2 Ensemble Opera.tion

A 11et; at rewrite rules is compiled into simple enaemble cootraUer i.Dstructions and
loaded into the controDl!r. Thl!8e inatructiolll implement the matc.hiD g and replace
ment pbasee of rewritiDg, as weD as rule eequencing. A program will first. activate
all eella t.hat contaiD da.ta. and then hroadcast lrests. A cell that does not satisfy
a tesC; is deactivated and will not I!xecute further instructions until the next global
activat.ion; a cell that experiences a communication failure is also deactivated.

Ed controDer instruction is interpreted in the local context of each cell; in this
resped, eDllemhlel!l depart from classical SIMD design. In parlicular, t.he results
of cell operations are in part determined by the contents of their local storage,
including pointers to other cells. In contrast, the central controller io traditional
SIMD architecturee needs to know the pA,aietJlIDt'lltiD" of each data connection.
Aleo, cd1I in an RRM enaemble can temporarily lK:tivate other cellil to request data.

3.2.1 ~lacemoeot

Following a succesBful match, the replacement phase builds a new Iltructure to re
place the redl!x. Since communication or allocation failures can prevent this new
structure from heing complet.ed, it must he p088ible to abort replacement at any
Iltep without corrupting the original data. The following measures ace taken for this
pUrpCE:

• The replacement is always performed by constructing the righth8.D.d side using
only newly alloc.ated cellil. Pointers into the redex may arise from instantiated
variahles.

• Thl! redex is replaced in a single atomic cou!t instruction that is guaranteed
to succeed, but may take some time to complete. When the commi t is finished,
the newly constructed righthand side repllK:es the redex. This only requires
changing pointers (and p088ibly the token) in the root cell.

• If constructing the righthand side does not succeed, due to cell allocation or
communication failure, then the existing partial new structure is deallocated
And the redex is left unchanged.

3.3 Autonomous Processes 33

3.2.2 Controller InstruC":tlon Cycles and TenninatioD

The model of comput.ation does not in general prescrihe an order for applying rules.
Because one rewrite can create a structure to which another rule applies, rules must
be attemptoed several times, to see if intervening replacements have created new
redexes. Controller code should therefore be grouped. into related cydes that are
broadcast repeatedly until there are no mak.bes. The choice of rules to place in
tbe same cycle, their order in t.hat cycle, and the order of broadcuting cycles, are
important for efficiency. In other cases, the controller should check that a redex
exists hefore starting a long instruction cycle for replacement.

A closely related issue is termination. The model of computation requires ap
plying rules until there are no more red.exes. Tbe fact that communicat.ion failure
can cause Inatch failure means that instruction cycles may have to be repeated. But
in our Fibon8.l:ci example, it suffices to check that there are no instance6 of certain
operator symhols. The fact that ensembles generally execut.e only a subset of rules
on a suhset of data may 80metimes require either downloading further rules or else
moving SOlne data to another ensemble; however, this is an inter.ensemble issue,
and thus outside the scope of the present paper.

Checking if there are any instances of certain flags or tokens requires feed.ba.clc
from the cells in an ensemble to the controller. This can be implemented with a.
simple binacy tree network that ORs signals from all cells; hut obtaining results
from tbis network will of course take more time than a single instruction.

S.S Autonomous ProC":elUles

Dynamic data representation may introduce remote connections that cannol be used
for direct d&ta transfer. We propose to handle such Bituations with an autollomous
hardware proceBs. The basis for this is the ohservation that. a currently inactive
cell (i.e., one that hu not satisfied. some tetit in the current instruction cycle, or else
is free) ignores the controller's instructions, and is therefore available to help with
other useful tasks.

Because of remote connections, any requeat for data transfer may fail, and then
start an autonomous prOCe6D that will eventually relocate the connection target to
a cell that w physically connected. to the source by making a copy of it. This may
be done by creating a message cell that "moves" toward the target cell, by having
each such cell allocate another cell closer to its target, and then copy its state into
tbat cell, and finally deallocate itself. Notice that when t.be target is rellChed, a
reverse process is performed., until the original requesting cell is reached. When a
cell is relocated, its connections to previously adjacent cells can become remote. The
effect of autoDamous data relocation is that. cells move around the grid, attempting
to eliminate remote connections that are needed for further computation. Figure 12
in Section 4.2 illustrates this process.

Garhage collection can also he handled by autonomous processes at the cell level.

4 Simulation

Several ensemble Dimulators have been written, at different levels of ahstrllCtion:

:w	 f SIMULATION

•	 A concurrent rewriting: simulator takes rewrite rules all its primitive in
mudione:. This is useful (or determining the amount of parallelism potentially
available in a program. Some results at thi81evel are reported in 118J.

•	 A graph almuJator UBe8 abator-ad graphs 118 data, treating all COD.Dectioll8

between cella u if they were locaJ, eo that communication never fails. Thie is
useful for debugg1n8 enaemble controller code and tbe compilers that produce
it

•	 A geometrical dDmlator takes account. of tbe geometry of the array of cells
in ao eneemble, and the communication limitatione: that are involved. Thi.e is
UMfuL for exploring high level design choices, to avoid errore before descending
\0 more detailed levels.

Both Vaph and geometrical simulators execute ensemble eontroller instl'\1ctioDS, but
they do 110 in difFerent ways.

4.1 Graph Simulation

We coot.inue the example of Figure 9 by giving hand-coded controller ill8truetioDS
for the Fibonacci funcLion. There are two cycles: the first, 8hown in Figure 10,
reduees each Fihonacci symbol to a combibation of plua aad SUCCes80r symbols;
the second, shown in Figure 11, eliminatss plus symbols (i.e., performa addition in
Peano arithmetic).

The regilten of a cell ace called token, ldt, right, temp, 1temp, and rtemp.
The RRM eD.lJl!mble simulator U8eS a Lisp-like syntax, and ibclude the foUowing:

1. (tnit) activates all cella.

2. TestB, ibcludinll: the foUowinll::

•	 (teet-token t) cbecks that a cell's token is "t".

•	 (te.t-flag x) checks that a ceU has the -x" Oall: set.

•	 (teet-tree a : ltlag b :rllag c) ched:s tbat a cell hu the "a" flag
set, and that the cells indicated by its left and rill:bt pointers bave their
lib" and "c" 8&1JB set, respectively; botb tbe : lflall: b and :rllag c
arguments are optional.

3. Instructions that ace performed hy all active ceUs, includinll::

•	 (eet-flag x) sets the Oag "x" (in each active cell).

•	 (eet-flag x :poillter left) sets tbe "x" Oall: oBbe cell pointed at by
each active cell's left pointer.

•	 (unset-flag x) unsets the 8ag "x".

•	 (get x y) places "x", which may be eitber a token or a rell:ister name,
in the <IT' rell:ister of each active ceU.

•	 (get x y z), for each active cell, places the contents of register "T' of
the cell pointed at hy "x" into rell:ister "z".

4.1 Grapb SimuJ/l~jOf)	 35

(loop (1.n1t) (test-token 'fibo)
(set-flag 'a)

(init) (test-token 's)
(set·flag 'b)

(init) (test-token '0)
(set-flag 'c)

(init)	 (test-tree 'a :lfl&g 'c)

(get '0 token)

(coDit 0)

(init) (test-tree '8 :lflag 'b)

(set-flag 'd :pointer left)

(inlt) (test-tree 'd :lflag 'c)

(set-flag 'e)

(inlt)	 (test-tree '8 :lflag 'e)

(get left left Itemp)

(get's token)

(coDit 1)

(init)	 (test-tree 'd :lflag 'b)

(get left left temp)

(set-flag 'f)

(init)	 (test-tree 'a :lf18g 'f)

(alloc Itemp 'fibo)

(get left left temp)

(alloc rtemp 'fibo)

(put temp Itemp left)

(get left temp temp)

(put temp rtemp left)

(get ,+ token)

(couit ~)

Figure 10: Ensemble Controller Code for the Fibonacci Function

36	 4 SIMULATION

(loop (in! t) (test-token •+)

(set-Uas la)

(init) (teet-token 's)

(set-Uas 'b)

(init) (teat-token '0)

Ceet-Has Ie)

(init)	 (teet-tree 'a :rf1as 'c)

(set left right rteap)

(set left left Ite.p)

Ceet-Uas 'd)

(1n1t)	 (teet-lIas 'd)

(co..it 0 :poiuter left)

(iDit)	 (teet-tree 's :rflag 'b)

Calloe Itup 'III)

{set ript left rtell.p}

(put left lteap left)

(co_it ~)

Figure 11: Ensemble Controller Code for Addition

•	 (put x Y z) places the content of register "x" in register "z." of the cell
pointed at by y.

•	 (alloc x t). for each active cell, allocates & new cell witb token "t" and
puts & pointer to it in register "x".

•	 (co_it c) replaces the redex by the newly built structure, and transfers
lteap to left and neap to right. The numerical argument is used to
count acknowledgements of reference count increments required to finish
building the instantiation of the RHS of the rule; at least c must he
received before the rommit will finiah and delete the old LHS structure.
The instruction (commit 0 :pointer left) first overwrites the active
node with the contents (token, left, and right) of the cell pointed at
by ita left register and then does a commit.

4.2 Geometrical Simulation

At this level of simulation, all cell-to-cell communication reques~ are checked to

see if the source and target cells are In adjacent tiles. If so, then the instruction
is immediately performed (harring fa.ilures); otherwise, an autonomous process ia
stacted to move the target cell into a directly connected tile.

Simulation results can be shown graphically with grid "snapshots," and Fig
ure U shows selected pictures Cor our ongoing Fihonacci example, assuming a 4
by 4 rectangular grid oC tiles, i.e., that each tile connecta to four neighbors, over
half-duplex wires. These snapshots show the token of each aJlocated cell, with its
arguments indicated by arrows that correspond to its left and right pointers.

• ~ ~
. .

" · ~.
~ 0 ~ " - -oj . - -
~ - -

0/IE - -
0 / 0 . · I~~ 0/0 ,.1 .

0/.
13 · I{ ~ j)[\. - ~ '-- 0

~ • "'" \·
~ · ~ - ~

~ · •·
< < V I: "

_I
-:L" .0 . . · .. •

0
~L

r~ 0 I · ~/ o. .0 j{: 0 1:/: -L ..;. ·
13 " H. I~~ 3 :..kv. ~ '1 I~ 0 ~ -~ :-h.

~· t'oP.. .'f

" • ~ . I~ :; " ~ ·
~ " ~" · .'i _0 " · ..

0 " I: 0 . · 0 f 0 .0 1': 1 " 1:/: /'
. · · .

Ij · " Ij " .. ~ IV rf ~~ IT r-,:. 0 ~ " ~·
• • " I~ · •" ·

I~ ~. " taL + .0 I, t · •• I
0 · If 0 / i 0 / - . II" : T " 1:/: .

·
11 - · Ij " III If V "'"

~. .
o h " II.

38 4 SIMULATION

The m8pshot in Figure 12 at clock time 16 shows the initial structure. Tbe cell
with token "root" points to the root of the data graph, which has the token fibo
with &1:1 argument a sequence of • operators applied to o. Although ea.ch of the 16
tiles can accommodate several cells, cells are non:nally evenly distributed.

Firat, the instruction cycle of Figure 10 is applied. At time 20 the interesting
tokens are being identified by having the appropriate Hags set. Since an instance
of fibo(s(s(x») is found, the ensemble proceed9 to build a new instance of the
corresponding rightb,and side. The snapshot for time 42 shawl! the original fibo cell
with two adjacent cells &1located that also contain fibo tokens, in one case pointing
to the original argument with one s removed, and in the other case with two removed.
The redex is replaced by the new structure in & single coni t instruction, with the
result shown in Figure 12 at time 56.

Sine! this structure contains remote pointers, the matching process fails, and
requestl! for relocating remote cells are issued. Figure 12 at time 81 indicates these
requesta (actually their messengers) by dotted arrows. Both 11bo cells request their
arguments. The details of the algorithm for relocating cells are too complex for this
paper, but the result is shown at time 86, where one of tbe moved arguments has
been located "'above" the fibo operator, while the second one is still moving closer.
Completing these relocations causes new pointers to be remote, which in tum causes
further relocation requests. These can be seen at time 115, attempting to bring the
next level of 11bo argument cells closer.

By time 134, there is enough adjacent structure for further rewriting. A2, with
the fint rewrite, the redexes are identified and new structures are allocated for
replacing them. Notice that two redexes are rewritten in parallel. The graph after
the replacement is shown at time 176. Tbe initial 11bo token has noW' spawned four
new f1bo tokens.

AP. before, the appropriate cells are activated, and new righthand structures
are built. But since there are four redexes, there is a high probability that some
requests will fail due to resource limitations. For example, the snapshot for time
209 llhows three separate relocation requests independently finding their targets. A
bit later, enough cells are adjacent I!lO that even more rules can match. At time 229,
one fibo(O) has heen replaced by 0, and all other fibo arguments are in adjacent
locations. Another rewrite step is shown at time 246, when another two instances
of flbo are rewritten. Finally, in the snapshot for time 318, all instances of fibo
have been eliminated, and the graph is reduced with respect to this rule set. The
resulting data structure represents the graph shown in the middle of Figure 9(c).

Next, the instruction cycle for addition (see Figure 11) is broadcast. By time
361, all + and B cells have been Bagged, and by time 365, two instances of + are
heins rewritten. Things proceed much as in the first cycle for a wbile. Tbe snapshot
at time 373 shows some of the messages used during commit. At time 381, two +

tokens have heen eliminated, and the remaining two have their arguments in adjacent
locations. Their rewriting is shown at times 389 and 402. By time 454, the data
structure is fully reduced, and the result represents 3, as expected.

A number of other programs have also been run on the geometrical simulator,
including additional versions of Fibonacci, matrix transposition, bubble sort, and a
highly parallel tree sort. These simulations have validated our algorithrnll for match

39

and repJac.ement, and have also shawn that our techniques (or resource management
do not require unacceptable overbe&d.

6 SUID:Dlary of Novel Features

This section summarizes some of the unuaual architectural concepts that have been
developed by the RRM project.

L.	 Combine proceealng, storage, and l':Ol:mnunlcatlon at the cell and tile
levels, to avoid the memory access bottleneck or von Neumann architectures
and the memory latency problem of dataJIow architectures.

2.	 Locally interpreted code. The instructions broadcast to cells ate inter
preted locally, by each cell in ita own context. This dHrere significantly from
traditional SIMD design, in which the central controller uses the pJa,ncallfJ
cation of data in ita instructions. Local instruction interpretation allow8 much
greater 8exibility, which greatly simplifies compilation, and also impraves effi.
deney, because requests for scarce resources are resolved in the: specific context
of each cell, rather than by the controller.

3.	 Fast local COnnKU011.8. Connect physically adj6Cent tiles in an ensemble
by short, high speed wires. This allows very fast operations when all the cells
involved are adjacent.

4.	 Non--eritical scheduling. Since the model of computation requites that
rules are executed. until the data is fully reduced, the: rulel:l must be executed
repeatedly; but for many large subsets of rules, the order is arbitrary. This
permits a rewrite to be abandolte:d. whene:ver convenient, provided its redex
is le:ft in a consistent state. This in turn allows the: RRM to make uee of its
extremely fast local connections.

5.	 Autonomous processes. Any cell that is e:ither inactive or fre:e during a
particular instruction can use its resources for other worthwhile tasks, without
hindering normal rewriting. Such task! may include garbage collection and cell
relocation.

6. DynADJ.ic	 data relocation. A cell's request for access to data in another cell
will only succeed if the other cell is adjacent. This can be accommodated by
(autonomously) relocating remote cells to adjacent locations on an as-neede:d
basis. Data sharing is thus achieved by dyn/Ullically allocating resources to
cells. The result is a sell-organizing array oC cells that either interpret the in
struction stream, or else reorganize themselves to make better use of available
resources.

7.	 DeBlgn for average load. Communication is a critical resource in any mas
sively parallel machine:. In most cases, a rewrite can be abandone:d if it will be
tried again later, so communication overload can be handle:d by some commu
nication requests failing, and then deactivating their originatortl. This allows

6

<0	 6 PERFORMANCE ESTIMATES

communication resources to he designed for average load, fatber than for the
wom case.

8.	 MulLl-gram exec:ution. The RRM extends the potential efficiency of fine
grain execution to computdioDs that are only locally homogeneous, by dynam
ically partitioning data into homogeneous domains, each of which is efficiently
proceaBed inside one ensemble.

Performance Estimates

In order to determine whether we are wasting our time on this ambitious and un
usual projec.t, it is important to run some benchmark progr8JJ18 and compare their
performance with standard von Neumann processors. It is not eMy to compare ma
chines with radically different architectures and models of computation. An idea.!
comparison with the von Neuma.nn paradigm would use equal. clock speed, equal
silicon lloorspace, eqU&1 design effort, equal. compiler technology, and equal power
in supporting hardware (e.g., caching and memory). We chose a SUN-3/60 for com
parison, just because it was readily available. Its dock rate is 20MHz, and we can
approximate its 68020 800rspace simply by not considering simulations that involve
excessively large graphs, e.g., over a thousand cells. It is dear that this does not give
equality in total silicon area, in de8ign effort, or in compiler technology, We have put
perhapa 2 or 3 man-yean into the RRM project, as compared with thousandB for
the von Neumann tradition represented by the SUN-3/60, and we have really very
little idea of what techniques could be used to optimne RRM performance, whereas
many such techniques are already used in the 68020 and ita as90ciated hardware
and software. Furthermore, a Sun-3/60 hlL'l many auxiliary chips for coprocessors,
onboard memory, etc. Thus, our estimates arc conservative.

Our benchmack programs computed the Fibonacci numberB with Peano arith
metic and with machine arithmetic (called Peano and arithmetic fibo below), and
bubblesorted lists of numheI1l. Handcoded programs were run on an RRM simulator
which yields quite accurate timing results, using a 12-by-12 grid of tiles of 8 cells.
We tried to achieve approximate parity of compiler power by comparing our RRM
Fihonacci code with compiled Common Lisp (KCL) code for the Sun-3/60, and our
bubble80rt program with a good sorting program in the well established low level
language Cj this is unfair to the RRM because we are still in an early stage of en
semble controller code technology. (However, the handcoded Fihonacci code is very
si.rnilar to that produced by our OBJ to RRM compiler.) We then approximated the
timing data by simple fundions, as shown in the following table, where n represents
the ugument for a Fibonacci function, or the length of a list for bubble sort:

41 REFERENCES

np'o.,.am I time I ,izee n
RRM Pe&D.o 6bo .732 X 1.53" 0-10
SUD Peano 6bo 2918.41 X].748" 0-1"
RRM with 6bo 5.1 X n 0-14
SUD arith fibo 4.69 X 1.638" 0-20
RRM bubbJesort 4.7 x n 0-10,20,...•130
SUD bub MelIOrt 2.497 X n 0-10,20,... ,170

Times are in micro-seconda. Tbe ensemble bas a maximum capacity for representing
terma, 80 for each problem there is & largest instance that C&D. be run. Furthermore,
problem instances that ere close to lobe maximum size usualJy exhibit degraded
performaoce because communication costs increase tremendously. OUf dlta indi
cates tbat the RRM Fibona.c:ci progl"8lIl8 have exponential speedup, while the RRM
bubblesor1 is linear and the SUN bubblesort quadratic, giving A linear speedup.

The speedup factor for lobe largest common case of the Peano Fibonacci com
putation run em the RRM simulator is 50, while for the arithmetic Fibonacci it is
about 34. Far sequences of lengtb 120 in bubbleeort example we see a speedup of
about 64.. This supports a conservative claim that a single RRM ensemble is roughly
50 times faster t.han a SUN-3/5O, which is equivalent. to about 150 MIPS, MBuming
t.hat. a SUN-3/ro is rated at 3 MIPS.

Of course, the RRM project. is st.iIl at a rela.tively early stage, and we have
not. explored an especially wide range of problema, nor have we tried eepeci&.lly
hard to get. t~ best progr&ll18, or to teet them over a wide range of data. On
tbe otber hand, tbe f'elIults seem relatively consistent. and our aimulator is quite
accurat.e for t.his kind of timing data, 90 t.bere is no reuon to suppose thaL more
w<lrk will have any effect. otber than to increase our performance estimates at t.his
level. Given these conditioDs, it. seema fair to say tbat t.he RRM ensemble's observed
fact.or of roughly 50 over the SUN-3/5O js quite impressive. Moreover, we believe
t.hat this performance will 8Cale approximately linearly for larger problems in which
parallelism is actually available, and that, especially for inhomogeneous problems,
t.his is much better than can be expected from more conventional current generat.ion
parallel machmes. Of course, t.bis extrapolat.ion is on less solid ground t.ban t.he
above estim~tell, because our simulat.ions bave not yet been extended to the cluster
level.

References

[1]	 Arvind, Risbiyur Nikhil, and Kesbav Pingal.i. I-st.ructures: Data structures
for parallel computing. In JOI!Ieph Faset and Robert Keller, edit.ors, Graph
Re:dudion, pages 337-369. Springer-Verlag, 1987. Lecture Notes in Computer
Science, Volume 279.

[21	 Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jm~ Meseguer.
Principles of OBJ2. In Brian Reid, edit.or, Procudirtg8. 11!th ACM Symposium
on Prirtt=iples of Programming Languages, pages 52-00. Association for Com
put.ing Machinery, 1985.

42	 REFERENCES

13J	 Kokkbi Fut&taugi, Joeeph Goguen, J08l§ Meseguer, and Koji Okada. Param
eteriled Programminfl in 0002. In Robert Balzer, editor, Proceed'ng., Ninth.
]ntemGhoncU Con/erenee on Softfllare Engineering, pagel!! 51--60. IEEE Com
puter Society Press, March 1987.

141	 J.RW. Glauert, K. Hammond, J.R. Keoo&waJ, G.A. Papadopoulos, and M.R.
Sleep. DACTL: Some i.ntroductory papers. Technical Report SYS-C88-08.
School of Information Systems, University of East Anglia, 1988.

15]	 Joeeph Goguen, Claude Kirchner, and J081§ Meseguer. Concurrent term. re\\'t"iL
ins IS a model of computation. In Robert Keller and Joseph Fuel, editors,
P,ouediJt,., ar".pli Red.dio" WorbAop, paflell 53-93. Springer-Verlag, 1981.
Leetun: Notes in Computer Science, Volume 279.

[6J	 JOIIeph Goguen, Claude Kirchner, Joeii Meseguer, and Timothy Winkler. OBJ
all a. lanfluage for concurrent programming. In Steven Kartuhev and Svetlana
Kartasbev, ed.iton, Proeeeding8, Seeond International S.percomputing Confer
u(e, V"I.me I, pqell 195--198. International Superc.omputing Institute, Inc.
(St Petersburg FL), 1987.

17}	 Jc:eeph Goguen and JOIN!: Me8eguer. Eqlog: Equality, types, and generic modules
for logic programming. In DoU81ll8 DeGroot and Gary Lindstrom, editors, Logie
ProfTOmmin,: Fundio.." RelatioJU anef Efuatiofl8, pages 295-363. Prentice
Ball, 1986. An e8l'lier venlion appe&r8 iD Journd of Logie Programming, Volume
1, Number 2, pqell 179-210, September 1984.

{8J	 Jceeph Goguen and JOIM!: Meaeguer. Models and equality for logical. proflram.
ming. In Hanmut Ehrifl, Giorgio Levi, Rohert Kowalski, and Ugo Montanari,
cditonl, Prow:efing.J 1981 TAPSOFT, page8 1-22. Sprinfler-Verlag, 1987. Lec
ture Notes iD Computer Science, Volume 250.

[9]	 Jaeeph Goguen and Joeii Meaeguer. Unifying functional, object-oriented and
rrlational programminfl, with logical semantica. In Bruce Shriver and Peter
Wesner. editonl, Re.el1,d Diredion. in Olljul.On·enleef Programming, pages
417-471. MIT Press, 1987. Preliminary vel'8ion in S/GPLAN Notice., Volume
21, Number 10, pages 153-162, October 1986.

[IOJ	 Joseph Goguen and Joeii Meseguer. Softwau for the rewrite rule machine.
In Proceeding., /nte'hl1tiohal Con/erenee on Fifth Generalion Cflmputer Sys
tenu 1988, pqes 628-037. Institute for New Generation Computer Technology
(ICOT), 1988.

!ll] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report
SRI-CSL-.88-9, SRI Intemationa1, Computer Science Lab, August 1988.

[12]	 Peter G. Harrison and Michael Reeve. The parallel flraph reduction machine,
ALICE. In Joseph Faseland Robert Keller, editors, Graph. Reefuction, pages
181-202. Springer-Verlag, 1981. Lecture Notel!l in Computer Science, Volume
279.

REFERENCES '3

1131	 Robert KeUer and JO&eph Fasel, editorB. Proceeding" Graph ReduttioA Worl:
IlIaOp. Springer.Verlag, 1987. Lecture Notes in Computer Science, Volume 219.

[14J	 Robert Keller, Jon Slater, and Kevin Likes. Overview at RediDow n devel
opment. In Joeeph F8l!Ie1 and Robert Keller, editors, Graph Reductiofl, pages
203-214. Springer.Verlag, 1987. Lecture Notes in Computer Science, Volume
279.

[15]	 Suy Leinwa.nd and Joseph Goguen . .Architectural optioDs Cor the rewrite rule
machine. In Steven Kartashev and Svetlana Kartaahev, editors, Prot:u.dings,
Second Internationol Supercomputing Conference, Volume 1, pages 63--70. In
ternational Supercomputing Institute, Inc. (St. Petersburg FL), 1987.

[161	 Uga Montman and Joseph Goguen. An abstract machine for fast parallel
matching oflinev patterna. Technical Report SRI-CSL-87-3, ComputerSdence
Lah, SRI International, May 1987.

[17J	 Timothy Winkler. Numerical computation on the RRM. Technical report,
SRI International, Computer Science Lab, November 1988. Technical Note
SRI-CSL-'l'N8S.3.

[181	 Timothy Winkler, Sa.ny Leinwa.nd, a.nd Joseph Goguen. Simulation of con
current teIm rewriting. In Steven Kartashev and Svetla.na Kartashev, edi
tors, Proceeding'l Seeond InternotionGl Sv~reomputing CtJtl!ereneeJ Volume I,
pages 199-208. Intemational Supercomputing Institute, Inc. (St. Petersburg
FL),1987.

