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Abstract 

This paper presents indexed eategorJt:s, which model unifonnly defined families 
of categories, and suggests that they are a useful tool for the working com
puter scientist. An indexed category gives rise to a single flattened category as 
a disjoint union of its component categories plus some additional morphisms. 
Simila.rly, a.n indexed functor (which is a uniform family of functors between 
the component categories) induces a flattened functor between the correspond
ing flattened categories. Under certain assumptions, flattened categories are 
(co)comple:te: if all their components are, and flattened functors have left ad
jointti if all their components do. Several examples are given. Although this 
paper is part 3 of the series "Some Fundamental Algebraic Tools for the Se

mantics of Computation,"' it is entirely independent of parts 1 and 2. 
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1 lNTRODUCTION 1 

• 
1 Introduction 

Ca.tegory theory has played an important role in clarifying, generalising, and developing 
result",: in both the theory and practice of computing. Many examples occur in algebraic 
I!pec:ification, which used initiality in the very beginning to explicate the concept of ab
I!trad data type IGoguen, Thatcher &I. Wagner 76], and later used final objects [Wand 791, 
left adjointl!J [Thatcher, Wagner & Wright 82, Ehrich 821, colimitelBurstall &: Goguen 771, 
comma categories [Goguen &I. Burstall 84], 2-<:a.tegories IGoguen & BurstallSO, 84&1. and 
sketches [Gray 87. Barr &I. Wells 88]. Some early applications of category theory to various 
topics may be found in the collection [Manes 751. and some recent applications to program
ming language semantics of 2-eategories, KleisJi categories, and indexed categories may be 
found in IMoggi 88, 89]. [Taylor 881 applies indexed category theory to recU1"8ive domains 
and polymorphism. 

Institutions [Goguen &: Burstall 85, 86] UBe category theory to formalise the concept 
of logical system. TopiC6 studied here include specification languages (Clear [Burstall &: 

Goguen 77. 801. ASL ISannell. &; Tarlecki 841. Extended ML ISanneU. &; rarlecki 861). 
implementatioD8 (Beierle &£ Voss 85, Sannella &£ Tarlecki 87], observational equivalence 
[Sannella &£ Tarlec.ki 85], free coD8tructions JTarlecki 85, 87], and model theory [Tarlecki 86]. 
It is hard to see how this work could be done adequately withou t categorical tools. 

This paper is the third in a series [Goguen &£ Burstall84, 84a] intended to introduce fun
damental concepts and techniques from category theory to the working computer scientist, 
but it is entirely independent of the previous parts. Its goal is to present indexed categories. 
Many-sorted algebraJI are a prime example with which the reader may already be familiar: 
for each many-sorted algebraic signature E, there is a category Alg(E) of E-algebras, and 
a signature morphism a: E --+ E' induces a functor Alg(u): Alg(E') --+ Alg(E), which 
we call a u-redud. Thus, there is a functor Alg: AlgSigOF --+ Cat from the (index) cate
gory of signatures to the category of categories. The mathematics literature [Johnstone &: 

Pare 78J develops indexed categories "up to coherent isomorphism" and is not very acces
sible to the average computer scientist. In contra.l5t, this paper develops "skict" indexed 
categories, which are defined "up to equality," a special case that often arises in theoretical 
computer science. 

Any indexed category gives rise to a "fI.attened" category by taking the disjoint union 
of the component categories and adding reduct morphisIIl8. A Battened indexed category 
has a projection functor which maps each object to the index of the component category 
from which it ca.me. This is the "libred category" [Grothendieck 63] presented by the 
indexed category. [Benabou 85J argues that fibred categories formalize the same intuition 
as indexed categories, but are easier to work with and conceptually simpler. However, 
his argument does n<Jt apply to our strict indexed categories, which are simpler still, and 
are not proposed for use in foundations, but only as a tool for doing theoretical computer 
science. 

Colimits have been used to "put together" many different kinds of structure, including 
general systems !Goguen 71, Goguen &: Ginali 78], theories [Burstall &: Goguen 80, Goguen 



:I INDEXED CATEGORIES 2 

• 
&: BlUIItall Ill, !Hal. and labeDed graphs [Ehrig <t aI 81]. The dual concept of limit. 
particularly the l!Ipecial ease of equalizer, has also been applied, for example to study 
unification in computing and in linguistics [Goguen 89&1. It ill especi&11y convenient to 
use thelle constructions when every diagram has a (co)limit, i.e., when the category is 

(co)complete. Sectiotl 3 shows that under certain conditions, if all component categories 
are (co)complete, then 80 ill the flattened category. Thill simplifies (co)completeness proofs 
for some categories. 
. Given two categories indexed over the same category, an indexed functor between 

them is a family of functors between their component categories that is consistent with 
the fundol'll induced by the index morphisIDII. An indexed fundor induces a flattened 
functor betlleeJl ita flattened source and tiU'let categories. IT all the components of an 
indexed fundo! have left adjointB, then 80 does the flattened functor. This can simplify 

proofs that some functors have left ad,jointB. See Section 4.. 
AJthough these results may be in the folklore, they seem not to have been previously 

publiabed1• We believe they deserve an exposition for the working com.puter scientist. We 
assume familiarity only with basic category theory and univer1tal algebra; such material 

may be found in [Bumall ok Goguen 82]. IMAc Lane 71], [Herrlich &: Strocker 73]. [Arbib 
at; Manes 7!i1 and other placesj see a1Bo IGoguen 89] for some guidelines for applying 
category theory. Composition is denoted ";" (&emicolon) in any category, and written in 
the diagrammatic order; identities are denoted id, possibly with subscripts. Our exposition 
proceeds in what IBenabou 85] calls "naive category theory," without commitment to any 
particular foundation; indeed, nearly any foundation that has been proposed for category 
theory is adequate for this paper'. 

A«:kDow]edgemeDtl 
Thanb to David Rydeheard, who suggested to us that indexed categories migbt be useful 
in specificatioD theory, also to John Gray, Mike Fourman. and the anonymous referees of 

Theoretical Computer S~it.n(( for their comments on an early version of the paper, and 
to Eleanor Keree for her excellent typing. This work was partially supported by: grants 

from the PoliBh Academy of Sciences, from the U.K. Science and Engineering Research 
Council, IUld by Linkoping University (AT); and by Office of Naval Research Contracts 
NOOOI4-8&-C-0417 and NOOOI4-86-C-0450, NSF Grant CCR-8707155. and a gift from the 
System Development Foundation (JAG). 

2 Indexed Categories 

It may be 511I'prising to realise that categories over a collection of indices are quite com
mon. In many natural examples, the categories in a family are uniformly defined, in the 

~After reading a drah of tbis paper, John Gray pointed out thai. [Gray 65J develoPll similar ideM (or 
6bred categories. In partico.lar, his Theorem 4.2 and PropOllitioD 4.1 yield our Theorem 1. 

2 A reader who is nervoua about (ouuda~ioDll may, (or exa.mple, th<e(:k thai ncb of our cOnJItrnctwn.s c,,"u 
be placed at an appropriate level in a hierarchy of univenes luch all tha~ deecribed ill [M6' LlIDe 71J. 
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sense that any index morphism induces a. translation functor between the corresponding 
component categories; moreover, the translation goes in the opposite direc\ion from the 
index morphirlm in these examples. Here is a simple example that is still quite typical: 

Exa.mple 1: ManY-8orted sets. Given a set 8, there is a category SSET(S) of S-aorted 
(or S-indexed) sets, with S-aorted functions as morphisms, .'.,/ "'),A,I <:o}I 

SSET(S) = IS ~ Setl, A- {504 X.U, 50 E, J. 

where Set is the category of sets, [S -+ Set] is the category of functors from S to Set 
with S viewed as a discrete category and with natural transformations as morphisID8 under 

vertical composition (cr. [Mac: Lane 71, 11.4, pAO]). We may write X: S -+ Set as (X,).es 
where X, = Xes) for 8 E 5, and write 9: X -+ Y in SSET(S) as (g,: X, - Y.}.ESo 

Since indices are sets, index morphisms are functioDB, and f: 51 52 induces a-4 

functor SSET(f): SSET(S2) ~ SSET(Sl) defined as follow", 

•	 on objects: Given X E ISSET(S2)1, let SSET(f)(X) ~ f; X: Sl ~ Set (noting 
that X, S2 ~ Set), Le., for s1 E Sl, let (SSET{/)(X))" ~ XII")' 

•	 on morplaisms: Given g = (9.2: X,I - Y")dESI: X - Y in SSET(52},let
 

SSET{/)(g) ~ (gIl")' XII") ~ Y/I.,))"eS1' f; X ~ f: Y.
 

These induced Functors are independent or how index morphisms are decomposed, in the 
seme that SSET(/; f) = SSET(Ph SSET(J); Le., SSET is a (contravariant) functor, 

SSET: SetOP _ Cat. 

o 
This motivates the following: 

Definition 1: An indexed categor~ C over an index category Ind is a functor Ind"ll Cat.-4 

Given an index i E lInd!, we may write C i For the category C(i), and given an index 
morphism u: i _ i, we may write C .... For the fundor C(u): C(j) -4 C(i). Also, we may 
call C i the s"tll eomponent category of C, and C .... the tranalation functor induced by u. 0 

This presents a contravariant Fundor as a (covariant) Functor from the opposite of its 
source category. While it might seem equally reasonable to present it as a functor from 
its source category to the opposite of its tArget category, this would give an unnatural 
direction to the co:mponent morphisms of natural transFormations between such functors. 

Orten, we want to consider the components of an indexed category together in a single 

"flattened" category obtained by Forming a disjoint union of the componenbJ and adding 
some new morphisDlS based on the index morphisms; this is the so-called "Grothendieck 
construction" [Grothendieck 631. 

Example 1 (continued): Flattening the indexed category SSET: Set"P -4 Cat yields the 

category SSet = Flat(SSET) of many-sorted sets, defined as fonows: 
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•	 object.: are many-sol'ied sets with an explicitly given sort set, Le., they are pairs 
(S, X) where 5 is • set (of oortal and X: 5 - Set. 

•	 """Pili.....: A morphism (5, X) _ (5', X') is • pair (t, g) where I: 5 - 5' i' • 
fundion and g: X - Ii X' is an S-sorted function (g,: X, - X;(,)}'ES. 

•	 eompoli:tion: is defined component-wise, re-indexing the second component: Given 
(I, g): (5, X) - (5', X') and (t', g'): (5', X') - (5', X'), let 

(t, 9)i(/', g') = (/;/', g): (5, X) - (5', X"), 

where I = 9i SSET(fJ(g') = (g,; gj(,): X, - Xj.U(,»),.s. 

o 

De8.DlUon 3: Given an indexed category C: IDd"" ---I' Cat, define the category Flat(C) 
as followB: 

•	 o~j..tI: are pain (i, 0) where i E lInd I and 0 E IC:I. 
•	 morpltitms: from (i, 0) to V, b} are pairs (q, J) where q: i - i is a morphism in 

Ind &lid I: 0 _ C,(~) is. morphism in C:. 

•	 compo,;non: Given morphisme (u, f): (i, 0) _ (j, ~) and (p, g): (j,~) _ (k, ,) in 
Flat(C),let 

{u, f)i (p, g) = (UiP, liC.(9)): (i, 0) - (k, c). 

o 

Such a Battened category has a. functor extracting the first component of its pairs, 
which is another important feature of the Grothendieck fibra.tion. 

DeftDitiOD S: Given an indexed category C: Ind"" _ Cat, define its proiedion junctor 

Projc: Flat (C) _ Ind 

as follows: 

• on o"j,da: Given an object (i, 0) in Flat(C), let Projc((i, a» = i. 

• on morphiBms: G'jven a morphism (u, J) in Flat(C), let Projc«u, J)) = u. 

o 

We conclude this section with ElOme further examples. 

Example 3: Many-sorted algebraie signatures. Given a set S, the category of S-sorted 
algebraic signatures is the functor category 

ALGSIG(S) = [5+ _ Set] 
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where S+ is the set ofall finite nonempty sequences of elements of S. regarded as a discrete 
category; equivalently, ALGSIG(S) = SSET(S+). Thus, an S-sorted algebraic signature 
is a family of sets (of operation symbols), one for each finite nonempty sequence of elements 
of 5; such a sequence represents the rank, i.e., the arity and result sorts, of Lhe operation 
symbols in the set that it indexes. An S-sorted algebraic signature morphism is a renaming 
of operation symbols that preserves their rank. 

The map S _ S+ extends to a functor (_)+; Set --+ Set, and the indexed category of 

algebraic signatures isS 

ALGSIG ~ (_)+;SSET: Set"" ~ Cat. 

The translation functor ALGSIG(f): ALGSIG(S') ~ ALGSIG(S) induced by a func
tion f: S --+ 5' extracts an S-sorted algebraic signature from an 5'-sorted algebraic sig
nature using f to rename sorts: Given an Sf_sorted algebraic signature E' and a sequence 

81...8" E S+, the operation symbols of rank 81 ...8" in the S-sorted algebraic signature 
ALGSIG(f)(E') axe exactly the operation symbols of rank f('.) .../(••l E (5')+ from E'. 

Flattening ALGSIG gives the usual category of algebraic signatures (e.g., fBurstall & 
Goguen 82]), 

AlgSig ~ Flat(ALGSIG), 

whose objects are paini (8, (Er)rES+) where 8 is a set (of soris) and each E, is a set (of 
operation symbols ofra.n.k r). A morphism from (8, (Er)rES+-) to (8', (E~)rE(S')+) is a pair 

(/,g) where f: 8 --+ 5' is a sort renaming and g = (gr: E. - E'+(r».ES+ is an operation 
symbol renaming that preserves rank (as modified by I). 0 

Example 3: Many-sorted algebras. For our pUt'pOl3es, this is perhaps the prototypical 
indexed category. Given an algebraic signature E, then ALG(E) has E-algebras as its 
objects and E-homomorphisms as its morphisms. Given an algebraic signature morphism 
a: E _ E' , then ALG(a) is the usual a-reduct (or generalized forgetful) functor 

_I.: ALG(E') ~ ALG(E), 

as defined, for example, in [Burstall & Goguen 821. Thus, the category AlgSig of algebraic 
signaturel provides indices for the indexed category of many-sorted algebras, 

ALG: AlgSig"" - Cat. 

An object in the flattened category Flat(ALG) of many-sorted algebras is a many-sorted 
algebra with an explicitly given signature; and a morphism from {E, A} to (E' , A') is a 
signature morphism u: E _ E' and a E-homomorphism n: A _ A'l... Similar "crypto

morphisms" occur in the specification literature, e.g., [Kamin AI: Archer 84]. 0 

'Thill ill lllightly inaccurate, IImu it identi6es the functor (-l+: Set ..... Set with iu opposite, 
H-}+)OP: Setop ..... Set""; althongh equal all functiont, th"y al"e different Il8 fundon, i.e., lIlI morphislD8 in 
Cat. 
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Example 4.: DiagrGmJI. A diagram in a category T is a functor to T from a small source 
category, say G, which is its shape. This is essentially equivalent to t.he more elementary 
definit.ion of a diagram. as a graph with nodes labelled by objec.t8 of T and edges labelled by 
morphiams ofT having: appropriate source and taxget (e.g., see IGoguen k. Bursta.ll 841). 
Th1l8, the calegory FUNC(T}(G) = [G ~ Tj of fundo," from G to T is the category of 
diagrams with shape G in T. Then 

FUNC(T): Cat" ~ Cat 

is an indexed category with 

• eompo..nt calegorieo: FUNC(T}(G) = IG ~ TI. 

•	 Ira.../ajjon/un<!oro: .: G ~ G' indue.. FUNC(T}(.): [G' ~ T] ~ [G ~ Tj, a 
functor defined on object. by FUNC(T}(.}(D') = .;D' for D': G' ~ T. 

Flattening FUNC(T) giv.. the category Func(T) ~ Flat(FUNC(T)) of fundo," into 
T. or diacnma in T. A morphism from D: G -+ T to D': G' -+ T in Func(T) is a 
functor .: G _ G' plus a natural transConnation a: D -+ .;D' (between functors in 
IG -+ TJ). IGoguen 711 applies a similar category in General Systems Theory. 0 

Example I: TJaeoriu. The notion of institution in IGoguen &: BurstaLl 851 provides an 
appropriate framework for cODSidering theories in axbitra.ry Iogica.lsystems. An in.stitution 
I COD!liste of: 

1.	 a catesory Sign (of signatures); 

2. functor Mod: Sign" ~ Cat (giving for each E E ISignl a category Mod(E) of 
E-modds); 

3.	 a functor Sen: Sign -+ Cat (giving for each E E ISignl a (typically discrete) 

category Sen(E) of E-sentern:ea); a.nd 

4. for each E E ISIgnI, a (."'i./.ction) relation h: ~ IMod(E)1 x Sen(E), 

such that the following stUis/tJetion condition holds for each 0': E _ E' in Sign, each 

m' E IMod(E')I and 'P E Sen(E), 

m' FE' Sen(o)('P) ~ Mod(o)(m') FE 'P. 

Given (7: E -+ E'. we may write Sen(O') as jUBt 0' and Mod(O') as -I.,.. 
ThiB definition involves two indexed categories: Mod, indexed by Sign, and Sen, 

indexed by Sign"P. However, we want to focus here on the indexed category TH of 
theorieI!J in I, which arises naturally in the study of specifications over I. Given E E ISignl, 
a E-presentotion is a set of E-sentences, lJf ~ Sen(E). Any Buch lJf generates the set of its 
logit41 coruequern:e8, 



Gld'!') = {<p E Sen(E) I for.ll m E Mod(E), m F '" whenever m f '!'}. 

A E-theory is a. E-preentation T that is closed under semantic consequence, Le., such that 
T = C1dT). Let TH(E) denote the pOI!let category of E-theories ordered by inclusion. 
This extends to an indexed category 

TH: Sign"" - Cat 

in which given 0-: :E ~ r1 and a E'-theory or, 

TH(u)(T) = (", E Sen(E) Iu(",) E T}. 

The satisfaction condition implies that this is a E-theory, and it is straightforward to check 
that TB(u) is a. functor, Le., a. monotone map_ 

Flattening thi15 yitlds Tb = Flat(TB), the usual category of theories in an. institution 
I [Goguen & BUI'5tall 851: its objects are pairs (E, T) where E is a signature a.nd T is a 
B·theory; and its morphisms from (E, T) to (E'. T') are signature morphisms u: E _ 1::' 
such that u(rp} E T' for all rp E T. 

We can define a somewhat larger indexed category of presentations. Given E, let 
PRES(E) be the POllet category of E-presentations in I. This yields an indexed category 

PRES: Sign"P --t Cat 

where given u: E - B' in Sign and 'Ir' ~ Sen(E'), 

PRES(u)(>I<') ~ (", E Sen (E) Iu(",) E '!"}. 

We can add some further morphisIDlS to the component categories: given E,IEt PRESl=(E) 
be the category of I:-presentations preordered by the semantic consequence relation) '111' t=I: 
'Ir iff 'Ir ~ Cld'lr'). This gives &n indexed category 

PRESI=: Sign"P --t Cat. 

The satisfaction condition implies that PRESI=(u): PRESI=(E') - PRESI=(E), defined 
just as PRES(u) above, preserves semantic cOIDIequence. 

TH is an indexed 8ubt:ategorvofPRES in aaense that will be made precise in Example 8 

of Section 4 below; similarly, PRES is an indexed subcategory of PRESI=' 0 

Example 6: Institutions. We first recall the definition of institution morphism from 

[Goguen & Burstall 85]. Given two institutions I = (Sign,Mod, Sen, (Fl:)EEISlgnl) and 
I' = (Sign', Mod', Sen', O:::i:,h:'E/SIgn'I), an institution morphism from I to r consists of 

1. a functor.: Sign _ Sign', 

2. a natural transformation fJ: Mod --t .jMod', and 

3. a natural tra.nsformation a: .;Sen' --t Sen 
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such that the following satisfaction condition holds (or each I:: E ISignl, m E IMod(E)1 
and 'P' E SeD'{.(E)), 

m F< ad'P') <=> p,,(m} F_«) 'P'. 

Intuitively, I is "richer" than I': • extracts simpler r-signatures from more complex 1
signatures; (J mrads simpler J'-mode18 from more complex I-models; and a translates 
I'-aentences to I-sentences, which is possible since I is more expressive. 

. Institutions and institution mocphituns, with composition defined component-wise in 
a rather strai&htforwvd manner, form a category !Goguen It BwstaJl 851. We wish to 
describe it uaing indexed categories. It costs no more to generalise from logical systems in 
which the mWlinp of sentences in models are true or false, to semantic systelIlfl in which 
the meaninpof sentences in models lie in an ubitrary category V. Following !Goguen It 
Burstall86l4. after IMayoh 851, the category Room(V) of V-room, is the comma category 

Room(V) = (I-I! FUNCD;,,(V)), 

where I_I: Cat - Cat i8 the discretization functor and FUNCDiu(V): DCatOJ' _ Cat is 
the indexed ca.tegory of functors into V restricted to discrete categories in DCat as source 
(see Exa,mpIe4). Thus, a V -room ill a triple (M, R, 5) where M i8 a category, 5 is a discrete 
category, and R: IMI ~ IS ~ VI. A V -room morphi.m (f, g): (M,n, S) ~ (M', R', S') 
consists of a lUnctor f: M - M' and a function g: 5' - 5 such thi\t the following diagram 
commutes in Cat, 

IMI R IS~VJ . . 

g; (-)IfI 

[S'~VJIM'I R' 

that ill, R'(f(rn)) ~ g;R(m) for all m E IMI, i.e., 

R'(f(m))(.') = R{m)(g(s')) 

for aU m E IMI and s' E 5' (a ghost of the Si\tisfa.ction condition). 
The categl)ry of g£R£ro.lism inatitutiom [Goguen &r. Bursta1l86] with signature category 

Sign is the functor ca.tegory 

INS(Sign) = /Sign"" ~ Room(V)J. 
---;,;;:,~:;-.--:-.-=-.---;.7..-:::-::--:-::-:--::

-tuoguen d/; lU1J1lUJ.l86, Prop. 161 definu ~he c.a.~elory of Y.rooma kl be ~he COWlIl8 ca~eRory (I_I"" ~ Y-) 

where ~Iop: Cat'" ---+ Cat'" ill ~he oppo8ite of tbe d.cre~i.lation funC~OT and Y-: nCat __ Cat"" is the 

oppol!lik of onrFUNCD'.c(V): DCat"" ---+ Cat. Consequently, a V·room is.a. triple (M,a,S) .... here M 
is a category, S. a diKre~e cilotegory, and R: IMI---+ [S ---+ YI is a morphism in Cat"", i.e., R is a functor 
from IS ---+ VI to 1M I· This ill a bug, Bince R Bhould go the oppOllite .... ay. 
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This extends to an indexed category 

INS: Cat"P _ Cat 

where the transla.tion functor INS(.): INS(Sign') _ INS(Sign) is defined on objects 
by INS(.)(I') = e""jr for.: Sign _ Sign' a. funcwr and I': Sign'''' -+ Room(V). 
This naturally extends to morphisms in INS(Sign'}. Finally, the flattened category of 
generalised institutions is Ins = Flat (INS). The reader may check that if V is Boot, the 
category with exactly two morphiBms, both identities, then this definition coincides with 
the explicit definitions of institution and institution morphism given above. 0 

3 COUlpleteness of Flattened Categories 

This section studies how limits and colimits in a flattened category relate to the corre
sponding constructi<lns in its index and component categories. Given a shape category G, 

a category T is G-(ro}wmplete if any diagram of shape G has a. (co)limit in T, and a func
tor is G-(co)continuous if it preserves the (co)Ii.mit6 of all diagrams of shape G. Then T is 
(co)comp/efe if it is G-(co)complete for an small G. Similarly, a functor is (eo)continuous 
if it preserves all SIna.l] (co)limits. 

3.1 Limits 

There is no hope for constructing limits in a Battened category unless its index and com
ponent categories have limits. The only additional assumption needed is continuity of the 
translation functors. 

Theorem 1: If C: Ind'" - Cat is an indexed category such that 

L Ind is complete, 

2. C i is complete for all indices i E IIndl, and 

3. C u : C i - C i is continuous for all index morphisms u: i - j, 

then Flat(C) is complete. 

Proof: It suffices to prove that Flat(C) has all products and equalisers (cI. [Mac Lane 71, 
Th.V .2.1, p.109]). 

Products: Given a family (i.., a..) for n E N of object6 in Flat(C), let i be a product 
in Ind of the i .. with projections l'l'.. : i _ i .. for n EN, and let a be a product in Co: of 

C .... (a..) for n E N with projections 'n: a - C ..n(a..) for n E N. Then we claim. that 
(I, a) with projections (l'l'.. , f ..): (i, a) _ (i .., a..) is a product in Flat(C) of the (i.. , a..) 
fornEN. 

Given an object (j, b) in Flat(C) with morphisms (u... g..): (i, b) -+ (I.. , a..) in 
Flat(C) for n EN. there exists a unique index morphism u: j - I such that Uj l'l'.. = Un. 
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in Iud for an n E N. Moreover, continuity of C .. guarantees that C,,(a) with projections 
C,(f.): C,(a) _ C,(C,.(,,-)) for n E N is a product in C, of C,(C,.(a.)) ~ C,.(a.) 
for n E N. Bence, there exists a unique morphism g: b -+ C .. (a) such that gjC.. {/n) = gn 
in C j for eachn E N. Then (u, g): V, b) -+ (., a) is a unique morphism in Flat(C) such 
Ihal (11. g); ('•• I.) ~ (.... g.) for each n E N. 

Equallaen: Ginn morphmm. (..I. fI), (..2, 12): (i, a) - (j. b) in Flat(C), lei 11: k - i 
be an equaliser of ..1,112: i _ j in Ind. Nolice Ihal C,(C,,(b)) = C,;•• (b) = C,;,,(b) = 
C.(C,,(b)). Lei I: e _ C,(a) be an equaliser of C,(fl), C,(f2): C.(a) - C,(C.1(b)) in 
C •. We claim lhal (11. f): (k, e) _ (i, a) is an equaliser of (111. II). (112. 12) in FlaI(C). 
Firat obee.rve thai by construction we have 

(11.1);(111, II)	 = (";111, ';C,(fl))
 
= (11;112, I;C,(f2)}
 
= (11, f); (112. 12).
 

Next consider (p, g): (m, tI) -+ (i, a) such that 

(p, g); (111. II) = (p. g); (112. 12), 

in Flat(C), i.e., Pial = Piu2 in Ind &Dd g; CpUl) = 9jC,,(j2) in C",. By cOIlBtruction, 
there exiIIts a unique index morphism 6: m -+ k such that 8; (I' = p in Ind. Moreover, since 
C. is conlinuo.... C.(f): C.(e) - C.(C,(a») = C,(a) is an equaliser of C.(C,(fI)) ~ 

C,(fl) and C.(C,(f2)) = C,(f2): C,(a) _ C'~;'l(b) in C~. Hence Ihere is a unique 
morphism h: 4 - C.(e) Buch lhal h; C.(f) = g in C~. Therefore (8, h): (m. d) - (k. c) 
is a unique morphism in Flat(C) Buch Ihal (8, h); (11, f) = (p. g). 0 

A sharper result can be proved in much the same way: a diagram D: G -+ Flat(C) 
has a limit in Flat(C) whenever Dj Proje: G -. Ind has a limit in Ind such that the 
component category corresponding to the limit index is G-complete and the translation 
functora induced by index morphisms into the limit index are G-continuous. 

3.2 ColImit. 

The construction of colimits in a flattened category is not quite so simple, since the proof 
of Theorem 1 does not directly dualise. This is because in cOIUltructing limits, it was 
easy to trarudate the objects (and morphisms) of component categories againllt index mor
phisms using translation functors, whereas the analogous cOIUltruction for colimits requires 
translation oJong index morphisms. The following property provide8 this capability: 

DeflnitioD 4: An indexed category C: IndOP _ Cat is Iotdl11l reversible if for each index 
morphism u: j -. j in Ind, the translation functor C.,: Cj - C; has a left. adjoint. Given 
u: i -. i in Ind, let us denote an arbitrary but fixed left adjoint to C a : Cj -. C i by 
Fa; C i -. C; and denote the unit of this adjunction by l1 a 

; ide. - F.,: C.,. 0 

This does not require C to be "globally reversible" in the sense that the family of left 
adjoint81 fOnnll an indexed (by IndOP 

) category. In general, F.,;p i- F.,;F po However: 
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Fact 1: Given a locally reversible indexed category C: IndtJP ........,. Cat and index morphisms
 
0: i -+ j and p: j ---t k, there is a natural isomorphism 

'a,,: Fa., ~ F.,;F,. 

Proof: F.;F, is left adjoint to C,;, = C,;C. (ef. [Mac Lane 71, Th. 1V.8.I, p.lOI]) 
and any two left a.djoints to the same functor are naturally isomorphic (d. [Mac Lane 71, 
Cor. IV.l.l, p.83]). In fact, given a E [C;[, then ,.,,(a); F.Aa) ~ F,(F.(a)) is given by 

'.,,(a) = (,'(a); C. (,'(F.(a))))* 

and its inverse by 

';,:(a) = ((,';'(a))*)*: F,(F.(a)) ~ F.Aa), 

where f* denotes the morphism '"adjoint" to f (the reader may determine the adjunctionB 
to which the sharps in this formula refer). 0 

Definition 5: Given a locally reversible indexed category C: Ind"J' -+ Cat lI.Ild an index 
morphism p: i........,. i, any morphism «(T, 9): (It, a) -+ (i, b) (with the same i) in Flat(C) 
"lifts along p" to a. morphism in C i given by 

L,(u, g)) ~ '.,,(a);F,(g*): F.;,(a) ~ F,(6). 

o 

Lemma 1: Under the notation a.nd asSumptiOllB of Definition 5, given an index morphism 
(J: j -+ min Ind and given a morphism (p;lJ, J): (i, b) _ (m, e) in Flat(C), then 
1*: F.(6) ~ C,(e) is a morphism in C j ,ueh that in Flat(C), 

(u;p, ,';'(a»);(9, L,«u, g));I*) ~ (u, g); (p;9, I); (k, a) ~ (m,,). 

Proof: We check that in C. 

,,·;'(a);C.AL,«u, g)); 1*) ~ g; C.(I): a ~ C.;,Ae) 

as follows 
,';'(a); C.AL,( (u, g)); 1*) (Definition 5) 

~ if;'(e); C.A,.,,(a)); C.AF ,(g*); 1*) (proof of Fact I) 
~ if(a); C.(,'(F.(a)); C.;,(F ,(g*); 1*) (C,;, = C,; C.) 
~ if(a); C.(,'(F.(a)); C,(F,(g*)); C,(/*)) (naturaJi~y of '1') 
~ if(a); C.(g*;o'(6); C,(I*)) (I = ,'(6); C,(I*) ) 
~ ,·(a);C.(g*);C.(1) (g = ,'(a);C,(g*)) 
= g;C.(I). 

o 

Corollary 1: Under the notation and assumptions of Definition 5 

,·;'(a);C.AL,(u, g))) = g;C.(,'(6)) 
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Proof: By Lemma 1, since 'l'(b)* = idl",(6)' D 

We are now ready for the main result: 

Theorem 2: If C: Ind"P - Cat is an indexed category such that 

1. Ind is cocomplete, 

. 2. C, io cocomplele for all i E lind!, and 

3. C is locally reversible, 

then P'lat(C) ill cocomplete. 

Proof: Dually to the proof of Theorem 1, it suffices to prove that Flat(C) has all coprod
ucts and coequaJi8ers. 

Coproducts: Given a fllIDily (in' lin) for PI. E N of objects in Flat(C), let i with injections 
P..: in - i be a coproduct in Ind of the in for PI. EN, and let a be a coproduct in C. 
of the F,.(a..) for n E N with injec.tiOIlB It: F,.. (a,.) - a for n E N. Now define 
In = 'l~(4.,,);Chl(J!): a. - C,,,(a) for n E N. Then we claim that (i, a) with injections 
(PII' In): (in. a,.) - (it a) for n E N, is a coproduct in Flat(C) of the (in' a,.) for PI. EN. 

Given an object (j, b) and morphisms ("" g.): (i., ..) ~ (j, b) in Flat(C) for n EN, 
there exists a unique index morphism u: i _ i such that ""; u = u,. in Ind for all n EN. 
Moreover, thtn!! is a unique g: a - C,,(b) such that Iti9 = g,!: F... (a") _ C,,(b) for all 
n E N (g,! is weD de6.ned since g": ~ - c". (C,,(b» ). Now because 

/.;C... (,)	 = ~'·( ..);C,.(J,nC.. (g)
 
=~'·(a.);C,.(J!;g)
 

=~'·(a.);C,.(g!)
 
=g,. 

in C i ., it follows that (u, g): (i, a) - (j, b) satisfies (p,., fn}i (u, g) = (0,., g,.) in Flat(C) 
for all n E N. Moreover, (u. g) is the only morphism in Flat(C) with this property: The 
uniqueness of u is obvious, and the uniqueness of 9 follows by its construction from the 
fact that if, given y: a _ C,,(b) with In; C ... (g') = g,. for all n EN, then Iti g' = gt for 
all n EN, and thus 9 = II. 
CoequaliAen: Given morphisms ("I, /1), (,,2, /2): (i, a) ~ (j, b) in Flat(C), let 
u: j - k be a coequaliser of u1, u2: i _ j in Ind. Then in C t there are morpmsms 
(ef. Definition 5) 

L.(("I, /1)),£.((<72, /2)): F.,;.(o) ~ F.(b). 

Let /': F.(b! ~ c be their coequaliser in C. and let / = ~·(b);C.(J'): b ~ C.(e) in C;. 
We now claim that (u, J); (it b) - (k, c:) is a coequali5er in Flat(C) of the morphisms 
(,,1, /1), (,,2, /2): (i, a) ~ 0", b). First notice that by Lemma I, in Flat(C) we have 

("1,	 /1);(", f) = ("1;", ~'l;·(o));(id., L.(("I, /1));/')
 
= ("2;", ~";'(o)); (id., L.((,,2, /2)); /.)
 
~ (,,2, /2); ('" f).
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Now consider a. morphism (p, g): (j, b) ......... (m, 4) such that in Flat(C)
 

(ai, 11); (p, g) = (a2, /2); (p, g), 

i,e., such that al;p = u2;p in IDd and /1; C ...1 (g) = j2; C".J{g) in Cio Then by construc
tion, there exists a. unique index morphism 9: k ......... m such that a; (J = p in Ind. Moreover, 
by Lemma 1 

~·1;·(a);C"AL.((a1, /l»);g') ~ /l;C.,(g) 
= /2; C.,(g) 
= ~·';·(a);C.,;.(L.((a2, /2};g') 

in C j (recall that al;a = a2;u and that g*: F".(u) ......... C,(d)). Hence, the properties 
of adjunction imply L".«(0"2, /2});g* = L".«(al, /1»;g*. Thus, tbere exists a unique 
morphism h: c --t C,(d) such tha.t f*; h = g# in Ct. 

Now (9, h): (k, c) ~ (m, d) sat;,fies (a, J); (9, h) = (p, g) in Flat(C), ,ince in C; 
we have /;C.(h) = .·(b);C.U';h) = ~·(b);C.(g') = g. Moreover, (9, hl;s the only 
morphism in Flat(C) with this property: the uniqueness aU is obvious; and tbe uniqueness 
of h follows from its construction (if I; C,,(h') = 9 for some h': (; ......... C,(d), then!"; h' = g* I 

and thus h = h'). 0 

A sharper result can be proved in much the same way: a diagram D: G _ Flat(C) 
has a colimit in Flat(C) whenever D;Projc: G _ Ind has a colimit in Ind such that 
the component category corresponding to the colimit index is G-cocomplete and all the 
translation functors induced by the index morphisms in the colimit cocone have left ad
joint6. 

3.3 Applications 

We can use tbese theorems to check completeness and/or cocompleteness for some inter
esting ca.tegories. The results are already known, but our proofs are more direct. 

Example 1 (continued): Consider again the indexed category SSET: Set°P - Cat 
of many-sorted sets. It is well known that for any set S, the category SSET(S) of S
sorted sets is both complete and cocomplete, and of course the index category Set is 
also both complete and cocomplete. Moreover, it is not hard to see that the functor 
SSET(J): SSET(S') ......... SSET(S) is continuous for any index morphism (i.e., function) 
f: S ......... S', and that it has a left adjoint (sending a S-sorted set (X~)'ES to theS'-sorted set 
(eJ{X, I f(s) = .s'})"ES' where l;' denotes disjoint union). Thus, Theorems 1 and 2 imply 
that the (flattened) ci\tegory of many-sorted sets SSet = Flat(SSET) is both complete 
and cocomplete. 0 

Example 2 (continued): Consider the indexed category ALGSIG: SetllJ' - Cat of 
many-sorted algebraic signatures. Again, the index category and all component categories 
a.re both complete and cocomplete, and the translation functors are continuous and have 
left adjoints (this fonows from the definition ALGSIG = (_)+; SSET since SSET has all 
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these properties). Thus. the category of algebraic signatures AIgSig = FIat(ALGSIG) 
is both complete and cocomplete. 0 

Ex..unple S (continued): Consider the indexed category ALG: AlgSigDp --t Cat ofmany
80rted algebras. Again, the index category is complete and cocomplete (by Example 2 
above), u are aU component categories j and the translation (forgetful) functors are con
tinuous and have left adjointa (the existence of left adjoints to these forgetful functors is 
.. non-trivial, but familiar, property; see jBUllltalJ & Goguen 82] for an expository pre
sentation). Also, cocompleteness of the category of E-algebras is not quite obvious: to 
form a coproduct of E-algebraa, form their disjoint union and then freely complete it to a 
.E-algebra; eoequalisers are Dot very hard. TheoremB 1 and 2 now imply that the ca.tegory 
Flat(ALG) of m.any-sorted algebras is both complete and cocomplete. This provides an 
appropriate framework for operations like the ama.lga.ma.ted union of eJgebras over different 
.ignalureo, .. UBOd for example in IEhrig &< Mahr 851. 0 

Exmnple 4 (continued): Let T be any category and cOJUllider again t.he indexed category 
FUNC(T): Cat."" --t Cat. of functors into (or diagrama in) T. The index category 
Cat is both complete and coeomplete. H T is complete, then 80 are all the component 
ca\egori... For, given G E ICall, limil. in FUNCT(T)(G) = IG ~ TI are conslrucled 
"pointwise" as limil. in T "paramelerised" by (objecl. of) G (cf. IMac Lane 71, V.3, 
p.1l2J). Moreover, the translat.ion functors in FUNC(T) preserve limits cOJUlltructed in 
lhiB way. Th.., Func(T) = FIaI(FUNC(T)) is complele whenever T is. 

Dually, ifT is cocomplete, t.hen t.he component categories are &Iso cocomplete and the 
translat.ion fundol'B a.re eocontinuous. But to apply Theorem 2, we need the translation 
functors 'to have left adjointaj unfortunately, in general they do not. 

It. is interee1iing'to compa.re this with Kan extensioJUll (ef. [Mac Lane 71, Xl). Given a 
func'tor .: G --t G' and a diagram F: G --t T, then a left Kan eztension of F along. is 

an objecl F' E IFUNC(T)(G')I free over FE IFUNC(T)(G)I wilh reapecllo Ihe funclor 
FUNC(T)(t): FUNC(T)(G') ~ FUNC(T)(G), wilh unil morphism ~y: F ~ .; F', a 
nat.ura1 tramformation between functors in [G -t T]. Hevery diagram F: G --t T has a left 
Kan exlelUlion along ., Ihen Ihe IrlLllBl.lion funclor FUNC(T)(.): FUNC(T)(G') ~ 

FUNC(T)(G) hall a left adjoint. Dualising the construction of a right Kan extension 
IMac Lane 71, Th.X.1, p.233-4!, we ohlain: 

PropoBit1oa 1: Given.: G -t GI, and F: G --t T , and n' E [G'l, let (. ! n' ) be the 
comma catelory of objects .-over n' (cf.[Ma.c Lane 71, p.46-7l), and let. p",: (~ ! n' ) --t G 
be the obvioll8 projection functor, and let D", = p",; F: (~! nIl --t T. Now suppose that 
for each n' E [G'I, the diagram D",: (~ ! n') --t T has a colimit F'(n') E ITI. Then 
the aasigQ.JD£Dt n' ......... F'(n') extends to a functor F': G' --t T, using the eolimit property 
of pl(n') for n' E IG'1 in the usual wa.y. Moreover, there is a natural transformation 
".,: F --t .;Y'such that "1',": F -t F'(~(n)) is the morphism in the colimitingcocone for 
F'(.(n)) corresponding 10 Ihe objecl (n, .4(0 )) E 1(. j.(n))1 for each n E IGI. Fin.lly, 
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F' with the unit '1F is a left Kan extension of F along •. 0 

Proposition 2: Given a functor.: G _ G' with G small and a cocompleteca.tegory T, 
any functor F: G --+ T has a left Kan extension along •. 0 

Even though the category of all diagrams in T need. not be cocomplete when T is, we 
have 

Proposition 3: Let SCat be the category of all small categories, let T be a category, 

and let 
SFUNC(T): SCat"" ~ Cat 

be the indexed categary of small diagrams in T, defined as the restriction of FUNC(T) 
to SCat"". Then the category SFunc(T) = Flat(SFUNC(T)) of 'mall diagrams in T is 

cocomplete whenever Tis. 0 

Example 5 (continued): Given an institution I, consider the indexed category of theories 
in I, TB: Sign"" --+ Cat. Given E E ISignl, clearly THE is a complete lattice, i.e.• 
is complete a.nd cocomplete as a category. Moreover, it is not hard to see that given 
a signature morphism u: E --....jo E', then THv : THE' -+ THE has a left adjoint which 
maps a E-theory T to the E'-theory generated by the set {u(~) I~ E T} of E'-sentences. 
Thus, Theorem 2 implies that the flattened category Th = Flat(TH) of theories in I is 
cocomplete whenever the category Sign of signatures is cocomplete. It is even easier to 
see that the categories Pres = Flat(pRES) and Pres"" = Flat(PRES",,) arecocomplete 
whenever Sign is. A similar result holds for completeness, but is less interesting. 0 

Example 6 (continued): Given an a.rbitra.ry category V, consider the indexed category 
INS: Catl>J' ---I' Ca1; of institutions. Recall that INS(Sign) = [Signl>J' -+ Room(V)j for 
Sign E /Catl. Arguments as in Example 4 above show that Ins = Flat(INS) is complete 
provided that the category Room(V) is complete. For this we can use the following 
general result on COlllIIla categoriee (its dual is stated in [Beierle & Voss 85], and proved 
in detail in [Ta.rlecki 86]; a slightly weaker result is given in [Ma.c Lane 71, Lemma in V.6] 
and [Goguen &; Burstall B4, Prop. 2]). 

Lemma 2: Given categories A, B, K and functors F: A -+ K and G: B - K, if A and 
B are complete and if G: B -+ K is continuous, then (F ! G) is complete. 0 

R""all that we defined Room(V) ~ (1_1 I FUNCD;,,(V)) where I_I, Cat ~ Cat 
and FUNCDi,c(V): DCat"" -+ Cat. Since Cat is complete and DCat, the category of 
discrete categories, is cocomplete (hence DCatOP is complete), the only thing to check is 
the continuity of FUNCv.;,c(V). This follows from the construction of colimits in DCat 
and limits in Cat: Tile coproduct in DCat of any family of discrete categories S .. for 
n E N is just their disjoint union S = WnEN S... It is not hard to see that the functor 
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category {S .... V] is (isomorphic to) the product of the categorie8 IS" _ Vl, for n EN. 
Then, the coequaliser in Deat of any two functors F,G: 81 _ 82 is given as the natural 

quotient functor H: 82 - 82/=. where == is the least equivalence on (objects of) 82 such 
that F(.) = G(.) for all. E 51; and 52/= is the quotient (discrete) category. Again, it is 
not hard \0 !lee that the functor category [82/= - V] is isomorphic to the 8ubcategory of 
IS2 -+ VI tbat contains as objects all functors D: 82 - V such that F; D = Gj D, and 
similarly for morphisms. The isomorphism is given by the functor 

FUNC",..(V)(B): [S2/= ~ VI ~ [S2 ~ VI. 

Thus FUNC",..(V)(H) ill an equaliaer in Cat of the functors FUNC",..(V)(F) and 
FUNC",..(V)(G). 

SUDlll1int: up, FUNClJ'.c(V) maps coproducts in Deat to products in Cat and co
equa.liaen in DCat to equalisers in Cat. Hence FUNCDi.,,(V) is continuoUB as a functor 
&om DCat" \0 Cat. Thus, by Lemma 2, Room(V) is complete, and thus the category 
1nII of instUutiolUJ is complete. 

Since morphiams in IDs have richer iIlBtitutions as their source, limits, not colimits, 
are appropriate for "putting irultitutions together," and hence the completeness of Ins is 
relevant. 0 

4 Indexed Functors 

Definition 8: An iruJe%ed fundor F from one Ind-indexed category C: lado, - Cat 
to another D: Ind.... _ Cat is a natural trll.DSfonnation F: C _ D, that is, for each 

i E lladl, a functor F i : C i - D. such that F j ;Df7 = C f7 ;F. for each u: i - i in Ind. 

IDd: Cat: 
F;

C; D; 

u C. D. 

I 
j C i D;

F; 

This gives a category INDEXEDCAT(Ind) of Ind-indexed categories, with the obvious 
vertical composition of morphisms. 0 

EXJID1ple 7: Poweraet functor. Given a set S, let U8 define the S-sorted powerset functor 
P s : 55ET(S) ~ SSET(S) as follows: P s map' an S-""rted ,et (X,).ES to the S
sorted set (~·).ES of the powersets of its components; and P s maps an S-80r~d function 
(g.: X. _ Y.)-ES to the S-sorted family (2~: 2x • - 2Yo).es of the corresponding image 
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functions, 2:(A) = {g.(x) I x E A} for any A ~ X. and 8 E s. It is not hard to see that 
P = (Ps)sE!8etl forms an indexed functor P: SSET ----+ SSET. 0 

Examplf! 8: Recall that Example 5 defined three indexed categories 

Signl1P _ CatTH: 
PRES: Sign"" _ Cat 

PRES F: Sign"" _ Cat 

where THI: is a subcategory of PRESI: for each E E ISignl. which in turn is asubcategory 
of (PRESI=h::. It is Dot hard to see that the families of inclusion funcl.oT'8, from THE to 
PRES!: and from PRESr; to (PRESI=)& indexed by signatures E E ISignl form indexed 
functors, from TH to PRES and from PRES to PRES!='. 

This motivates the following definition: An indexed category C: Ind"J' -+ Cat is an 
indexed 8ubeategory of D: Indl>P -4 Cat (they must have the sa.me category of indices) iff 
Do is a subcategory of C j for each i E IIndj. and the family of inclusion functors forms an 
indexed functor from D to C. This can be somewhat generalised by considering indexed 
subcategories D over a subcategory of indices of C. 0 

Flattening extends from indexed categories to indexed functors. 

Inftnition 7: Let Ind be a category. Then the flatten functor, 

FlatInd: INDEXEDCAT(lnd) ~ Cat, 

is defined as follows: 

•	 on objects: Given C: Ind"" - Cat, then FlatIDd(C) is the Battened category of 
Definition 2. 

•	 on morphi~ms: Given an Ind-indexed functor F: C _ D (for C,D: Ind"" ---+ Cat), 

then the functor FlatInd(F): FlatInd(C) ~ FlatInd(D) io defined as follows: 

• on objects: Given (i, a) E IFlatlnd(C)I, let FlatInd(F)((i, a)) ~ Ii, Fi(a)) . 

• on morphism$: Given a :Qlorphism (a, f): (i, a) ---+ (j, a) in FlatInd(C), let 

Flatlnd(F)((u, f)) ~ (u, F;(f)): (i, Fi(a)) ~ U, F;(h)) in FlatIn,(D), recall
ing that D.(F;(bJ) ~ F,(C.(b)). 

We :Qlay write Flat instead of Flathd. It is straightforward to show it is a functor. 0 

Intuitively, 8attened indexed functors leave the first element of their arguments un
changed, but use it to select the appropriate component category for the indexed functor 
to operate upon. In a sense, flattening an indexed functor forms the disjoint union of its 
components. The similarity of Definition 6 to the definitions of Example 4 (the category 

of functors into a fixed target category) suggests the following; 
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Example 9: lrukz,ed ealegon"ea. The indexed category of indexed categories is defined by 

INDEXEDCAT = OP;FUNC(Cat): Cat" ~ Cat, 

where OP: Cat"P -+ CatCIP maps a category K to its opposite K"P, and maps a functor 
F: K -+ M to its opposite FlIP; X"P -+ MOP. (It makes a nice puzzle to define OP = 

(_)")".) Thua, given IIId E ICatl, let 

INDEXEDCAT(lIId) = IlIId" ~ Catl 

as in Definition 8, and given .: IIId -+ IIId' and C': (lIId')CIP -+ Cat, let 

INDEXEDCAT(;t)(C') = ;t"; C': IIId" ~ Cat. 

Flattening y~lds the ,ategory IIIdexedCat = Flat(INDEXEDCAT) of indexed cat
egories, with its objects an index category and an indexed category over it, and its 
morpmam flODl (lndl, CI: IIIdl" ~ Cat) to (lIId2, C2: IIId2" ~ Cat) pairs (;t, F) 
where .: IDdl -+ IDd2 is a functor and F: Cl -+ .lIP; C2 is a natural transformation. 

For example, let us consider the relationship between the indexed categories of many
aoned algebna (Example 3) and of many-<lOrted ..ts (Example 1). First, there is a functor 
Sonl: AJsSig -+ Set which IDApc!I a signature to its set of sorts (in fact, this is the 
projec:tion functor of Deftnition 3). Then, given a.n algebraic signature E, there is a forgetful 
functor (e.g., IBurstall &: Goguen 821) 

U.: AIg(E) ~ SSET(Sorlo(E)) 

which mapc!l a E-aJaebra to its many-sorted carrier. It is not hard to check that the family 
U = {UchelAlaSlII forms a natural tramnormation U: ALG -+ SortsCIPjSSET, 80 that 
(Sorts, U): (AlgSIg, ALG) ~ (Set, SSET) is a morphism of indexed categori... 

Let U8 no~ that Flat = (FlatIDd).IDdEICat.1 as defined in Definition 7 is also an indexed 
functor, from the Cat-indexed category INDEXEDCAT to the consta.nt Cat-indexed 
category that assigns the category Cat to each index (and the identity functor on Cat to 

each index morphism.. 0 

Part of our original motivation for looking more carefully at indexed categories was 
to reduce a family of adjunctions (between component categories) to a single adjunction 
(between ftattened categories); a somewhat parallel motive appea.I"8 in "getting a charter 
from a parcbment" [Goguen &: Burstallll6l. 

Definition 8: Let U: C -+ D be an Ind-indexed functor. Then U has a left adioint 
lowll-V iff U j : C i -+ D; has a left adjoint for each index i E lIndI· 0 

Theorem 3: Given an IIId-indexed functor U: C -+ D which has a left adjoint locally, 
then Flat(U): Flat(C) ~ Flat(D) has a left adjoint. 
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Proof: Given a.n object (i, a) in Flat(C), then Vi; Co' - D i has (let us say) lert ad
joint F,: D i - C. with unit 'Ii: ide; _ FiiUio Now we claim that (i, F;(a» is a free 
object in Flat(D) over (i, a) with respect to the functor Flat(U}, having as its unit 
{it/;, .,(a)): (i, a) ~ (i, U,(F,(a))) = Flat(U)({i, F;(a))). Far, let IJ, b) b' an object in 
Flat(D), let (u, f): (i, a) ~ Flat(U)(j, b)) = (j, U,(b» be a morphiBm in Flat(C), 
and let 1*: F,(c) ~ b be the unique morphiBm in D, .uch that .,(a);U;(f*) = f 
in C,. Then (0, f*): (i, F,(a» ~ (j, b) iB the only morphiBm in Flat(D) .uch that 
(it/;, .,(a)); (o, f*) ~ (0, f) in Flat(C). D 

Example 10: The AlgSig-indexed forgetful functor U: ALG ----t Sortsfl'j SSET was 
defined in Example 9, &ad it iB well known that each UE: ALG(E) ~ SSET(Sort.(E» 
has a left adjoint. Theorem 3 implies that the Rattening of these forgetful functors, 

Flat(U): Flat(ALG) ~ Flat(Sort.... ; SSET), 

has a left adjoint obtained by flattening the local left adjoints. 0 

Example 11: Th.ere is a Sign-indexed inclusion functor from the indexed category TH 
of theories to the indexed category PRES of presentations in an arbitrary institution I 
(ef. Example 8). It is dear from the definitions in Example 5 (where the8e categorie8 were 
defined) that for eachsignatu.re E E ISignl, the inclusion functor from THE to PRESE has 
a left adjoint (i.e., THE is a reflexive subcategory of PRESE in the sense of [Mac Lane 71, 
Y.3, p.88-9]). In fact, the left adjoint is the closure operator GIE: PRESE - THE defined 
in Example 5. Theorem 3 now implies that the category Th = Flat(TH) of theories in I 
is a reflective subcategory of Pres = Flat(PRES), the category of presentations in I. 0 

Theorem 3 suggests a different way to prove the cocompleteness of flattened categories. 
Given a shape category G and a target category T, the diagonal frmdor 

t>¥: T ~ [G ~ Tj 

is defined as follows: 

•	 on obiect6: Given t E ITI, let .tI.¥(t) be the "constant" diagram, i.e., the functor that 
maps each object of G to t and each morphism in G to the identity on t . 

•	 on morphisrrn3: Given f: t1 --J t2 in T, let .tI.¥(/): .6¥(tl) - .tI.¥(t2) be the "con
stant" natural transformation, .tI.¥U)" = f for each n E IGI· 

Faet 2: Given categories G and T, then T is G-cocomplete iff the diagonal functor 
.tI.¥: T _ [G T] has a left adjoint. --J 

Proof: Given a diagram D: G T, the free object over D with respect to .6¥ is a--J 

colimit of D; the unit is the colimiting cocone on D; and vice versa, the colimit of D is a 
free object over D with respect to .tI.¥. 0 
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Now we follow this hint in proving a. slightly stronger form of Theorem 2. 

Theorem 2': Gi"en a category G. let C: Ind.... -+ Cat be an indexed category such th"t 

1. IDd is G-cocomplete, 

2. C i i8 G-c.ocomplete for all i E IIndl, and 

. 3. G is 1oeal1y reYeI"IIible. 

Then Flat(C) is G-<:ocomplete. 

Proof: C gives rise to an Ind-indexed category DIAGg of G-diagra.ms in C as follows: 

•	 wmpo..nt eategories: Given i E Ilndl, Ihen DIAGg(i) = [G ~ C,I. 

•	 trorulaDon /undors: Given (7: i --+ i in Iud, define the functor 
DIAGg(u): IG ~ C;) ~ [G ~ C,I on objecls by DIAGg(u)(Dl = D; C. for 
D: G --+ Cii it extends to morphisms in [G -.., Cjl in the obvious way. 

• 
Now, we have the diagonal Ind-indexed functor 

.6.8: C --+ DIACg 

defined by (dg); = <l.g;: C, ~ IG ~ C,I for i E lind I. (II is nol hard 10 check thaI 
this is indeed an indexed functor.) Moreover, by assumption 2 and Fact 2, .6.8; haa a left 
adjoint for e"h i E IlDdl. Hence by Theorem 3, 

Flal(<l.g): FIaI(C) ~ FIaI(DIAGg) 

haa a left adjoint. We can identify Flat(DIAGg) with a subcalegory of [G ~ Flat(C)1 
which, rouahlY, contains the G-diagrams in Flat(C) tha.t fit entirely into one of the 
component categories of C, where a diagram. D: G _ Flat(C) is in Flat(DIAGg) iff 
Dj ProJc: G-+ Ind is a constant functor, and a. diagram morphism 6 is in Flat(DIAGg) 
iff 6 horizontaJly composed with Projc yieJdB a. constant natural transformation. 

The cornoponding failhful funclor J: Flat(DIAGg) ~ [G ~ Flat(C)] may be de
fined as follows: 

•	 on obi"16: Given (i, D) E IFlat(DIAGg)l (i.e., i E lind I and D: G ~ C,), the 
G-cIi"lllllIl J«i, D)): G ~ Flat(C) is defined .. folluw" 

•	 on obieets: J(i, D))(n) = (i, D(n)) for n E IGI. 

•	 on morphism" J«i, D))(s) = (id;, D(e)) for any morphism e in G. 

•	 on morphi..rr&I: Given a. morphism (-Y, a): (i, D) _ (j, E) in Flat(DIAGg), where 
'1: i - ; is an index morphism and a: D -+ Ej C", is a. morphism in [G -+ C;], 
Ihen J(b, all: J«i, D)) ~ J((i, E)) is Ihe natural Iransformalion defined by 
J«7, a))(n) ~ b, a(n)): (i, D(n)) ~ (i, E(n)) for n E IGI. 
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It is not hard to see that .1((" a)) is indeed a. natural transformation, and that .J is a 
faithful functor. 

The following identifies Flat(DIAGg) with its image under ;J in [G - Flat(C)! and 
refers to .J as an inclusion functor. Unfortunately. Flat(DIAGg) is in general a proper 

5ubcategory of [G --+ Flat(C)], and 80 the proof of Theorem 2' is not yet finished. One 
can directly che<:k that 

ai'"'lc) ~ Flat(ag);;J. 

Since we already know that Flat(.A~) has a. left adjoint, to show that ..6.~lat(C) has a. Left 
adjoint it is enough to prove that .J has a. left adjoint (cC. [Mac Lane 71, Tb. V.8.l., p.lOl]). 
Thus, the following lemma wiU complete the proof: 

Le:rmna 2: The inc:lusion functor .J has a. left adjoint, i.e., Flat(DlAGg) is a. reBexive 
,ubcategory of [G ~Flat(C)] (cf. [Mac Lanc 71, V.3, p.8S-9] for tbe defiuition and basic 
facts about reBexive subcategories). 

Proof (of Lemma 2): Given a. G-diagram D: G --+ Flat(C), we are to find its re8ection 
in Flat(DIAGg). tbat is, a G-diagram R(D): G ~ Flat(C) in Flat(DIAGg) together 
with a. di&gram morphism '71>: D _ R(D) such that for any diagram D' in Flat(DIAGg) 
and morphism 6: D ---+ D' there exi6tS a unique 6*: R(D) --+ n' in Flat(DIAGg) such 
tbat ~D;6* ~ 6 in [G ~ Flat(C)I. 

So, given an arbitrary diagram D: G _ Flat(C), let D(n) = (i., ...) for n E IGI, 
and D(e) = (0"" f.): (i", don) ---+ (i,"' a".) for e: n -+ m in G, let i be a colimit in Ind 
of Dj Projc: G --10 Ind, with injections p,.: i .. - i for n E IGI (Ind is G-cocomplete by 
assumption 1). Now define R(D): G -+ Flat(C) as follows: 

• on objects: R(D)(n) = (i, F,.(a.)) for n E IGI. 

• on morphis"",: R(D)(.) = (iii;, L,.({u" I,))}: (i, F ... (a.)) - (i, F,.{am») 
for e: n ---+ m in G. 

Reoal1tht indeed L•• ((u" I,)): F.,,,.(a.) = F,.(a.) _ F,.(am) (Bee Definition 5). 
Let us ched that R(D) is a functor, that is, it preserves identities and composition. It is 

obvious that it preserves identities (Definition 5 implies that L,.. ((id",. ida..}) = F ,. (id.... ) = 

idl'~(IJ.. )' For composition, given e: n -+ m and d: m --+ k in G, we have to show that in 
C; 

L•• (u" 1,);L..({u" I,)) ~ L.. ((u" I,); (u" I,)). 

This may be checked by going back to C i .. : On the one hand, in Ct. we have 
~'"(a.);C,.(L ..({u.. I,); (u" I,))) 

= ~'"(a.);C,"(L"({u,;u,, I,; C., (J,)))) (Cor. 1, Pn = a,; ad; Pl) 

= I,; C., (J,); C.,;.,(~"(a,)), 
while, on the other hand, in C i .. we have 

~'·(a.);C,.(L,.({u.. 1,});L"((u,, I,))) (Cor. 1, P,. = a,.;p.... ) 
= I,; C., (~,. (am)); C., (C,. (L" ((u" I,)))) (Cor. I, PM = ad; Pl) 

= I,; C., (J,); C., (C.,(~"(a,))). 
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Hence, in C i .. 

~'·( ....);C,.(L,.((o" 1.»;L,.((o" I,m = ~'·(a.);C,.(L"((u,, f.); (1',. I,))). 

which by properties of adjunct ions implies that indeed 

L...«(o" 1.»);L,,((o,. I,)) ~ L"((u,, I.); (0,.1<»). 

Olearly, R(D) is in Flat(DIAGg). Having defined R(D) as above. there is an obvious way 
to define 'In: D ~ R(D): for n E IGI, let 'In(n) = (P•• ~'·(a.)): (i., a,,) ~ (i. F,.(a.)). 
We have to check that '1D is a natural tr&IUlformation. Given e: n - rn in G, we need to 
show that 

D(');~D(m) = ~D(n);R(D)(.). 

that is, that 

(0" I.); (P., ~,.(...)) = (P•• ~'·(..));(id;. L... ((u" I.»). 

Since O'.i P. = prJ by construction, the only thing to cheek is that 

I.; C•• (~'·(a.)) ~ ~,. (a.); C,.(L,. ((I'" I.m, 

which follow. directly from Corollary 1. Now we c1a.i.m. that R(D) is a reflection of D in 
FJat(DIAGg) with unit w: D ~ R(D). Given a diagram D' in Flat(DIAGg) and a 
diagram morphism 6: D ~ D', say that D'(n) = (i. b.) for n E IGI. and D'(.) = (ad;. g.) 
for e: n _ min G with g.: b,. - b". in C; (such an index j E IIndl exists since D' is in 
FJat(DIAGg)). Also, .ay that 6(n) = (6•• h,,): (i....) ~ (i. b.) for n E IGI. 

By construction, there exi1!lts a unique index morphism...,: i _ j such that P..;.., = 9.. 
for each n E IGI. We now define the diagram morphism 6*: R(D) ~ D' hy 6*(n) = 

(-y, h!): (i, ' .. (..)) ~ V. b.) for n E IGI. where ht: F.. (..) ~ C,(b.) is the unique 
morphism in C. that satisfies t1'" (o.,.)j C,.. (ht) = h..: 0... - C,.. (C..,(bn)). FiI1lt, let us 
check that 6f is indeed a morphism in J'lat(DIAGg); the non-trivial part is to verify 
that 6" is a natural transformation, that iB, for a.nye: n _ m in G that 

6*(n);D'(.) = R(D)(.);6*(m), 

or equivalently, that 

(-t. h!); (id;. g.) = (id;, L,.((u" I.))); (-t, h!). 

We must prove that in C; 

h!;C,(g.) = L,.«(u" I.));h!. 

To see this, notice that by construction in Ci .. 

~ •• (an); C,. (h!; C,(g.)) ~ h.; C •• (g.) 
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and by Lemma 1 (since p" = tT.; p",) 

~,. (a.); C,. (L,. ((u" t.)); h~) ~ t.; Ca. (h_). 

However, since 6: D --I' D' is a natural transformation, 

D(e};6(m} = 6(n);D'(e), 

that is 
(u" t.); (8M , ~) = (8., hn); (id;. g.), 

which implies that 
t.;Ca.(hM ) = h.;C,.(g.}. 

Hence, putting these equations together, 

~,. (..); C,. (h~; C,(g.j) ~ ~'" (a.); C,.(L,. ((0" t.)); h~}. 

Thus indeed, 

h~;C,(ge) = L,.((o" t.));h~. 

We now claim that 6*: R(D) _ D' is a unique morphism in Flat(DIAGa> such that 
'7D; 6* = 6. FiIl'lt, we have to verify that '7D(n)j 6*(n) = 6(n) for n E IGI. Le., that 

(p., ~'·(a.)); h, h~} = (8., h.), 

or equ ivalently. that 

(P.;~, ~'·(a.);C,"(h~))~ (8., hn). 

which is clearly true. Moreover, the construction guarantees that 6*(n) is the only mor
phism in Flat(C} such that Projc(6*(n)) = ~ and lJD(n);6*(n) = 6(_). Since the 
uniqueness of I is obvious, this gives the uniqueneslS of 6* and completes the proof of 
Lem.ma 2, and hence of Theorem 2'. 0 0 

We do not apologise for giving a second proof of this theorem; on the cOIltrary, we feel 
its details are worth examining, especially the "reflection lemma" (Lemma 2). 

5 Summary 

This paper has presented indexed categories and given examples supporting the view that 
they a.re a useful tool for structuring and c1a.rifying certain constructions md proofs in 

computer science. Given an indexed category C, we have constructed a "flattened" cate
gory Flat(C) containing the components of C. We have a.lso introduced indexed functors, 
and shown how to flatten them. Finally, we have shown that flattening preserves the 

important properties of completeness, cocompleteness, and existence of left adjoints. 
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