Copyright © 1989 Andrsej Tarlecki, Rod Burstall and Joseph Goguen
Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX1 23QD
Engiand
Electronic mail:
rabfuk.ac.ed.1fcs (JANET)
goguan®uk.ac.oxford.prg {JIANET)

ACCESSION No. DATE
Resss

SHELFIVIARK

30058 1992.

e A e —'ﬂ-,m?—_:rlﬂﬂ""*"‘-

F (\:'_#3 "ﬁ' Qw—l 115"3,.45"3

e W W mkrihs TAT IR

INDEXED CATEGORIES
AS A TOOL FOR THE
SEMANTICS OF COMPUTATION

by
Andrzej Tarlecki, Rod Burstall and Joseph Goguen

Oxford University
Computing Laboratory

Programming Res ii
8-11 Keble Road Sareh Group-Library

Oxford OX1 3
Oxford (0Bas) %4014?

Technical Monograph PRG-77
August 1989

Oxdord Univemsity Computing Laboratory
Programming Research Group

B-11 Keble Road

Oxford OX1 3QD

England

Indexed Categories
as a Tool for the
Semantics of Computation

A. Tarlecki R.M. Burstall Joseph A. Goguen
Inst. of Computer Science Dept. of Computer Science Programming Research Group
Polish Academy of Sciences University of Edinburgh’*~~ > University of Oxford
Warsaw, Poland Edinburgh, 0.K.” ~ "7 Oxford, UK.

SR International
Menlo Park CA, USA

Abstract

This paper presents indezed categories, which model uniformly defined families
of categories, and suggests that they are a useful tool for the working com-
puter scientist. An indexed category gives rise to a single flattened category as
a disjoint union of its component categories plus some additional morphisms.
Similarly, an indexed functor {which is a uniform family of functors between
the component categories) induces a Hattened functor between the correspond-
ing Battened categories. Under certain assumptions, flattened categories are
(co)complete if all their components are, and fattened functors have left ad-
joints if all their components do. Several examples are given. Although this
paper is part 3 of the series “Some Fundamental Algebraic Tools for the Se-
mantics of Computation,” it is entirely independent of parts 1 and 2.

CONTENTS

Contents

1

Introducilon

Indexed Categories

Completeness of Flattened Categories
Indexed Functors

Summary

References

16

23

24

1 INTRODUCTION N

1 Introduction

Category theory has played an important role in clarifying, generalising, and developing
results in both the theory and practice of computing. Many examples oceur in aigebraic
apecification, which used initiality in the very beginning to explicate the concepl of ab-
stract data type [Goguen, Thatcher & Wagner 76], and later used final objeets [Wand 79|,
left adjoints |Thatcher, Wagner & Wright 82, Ehrich 82|, colimits {Burstall & Goguen 77|,
comma categories [Goguen & Burstall 84], 2-categories |Goguen & Burstall 30, 84a), and
sketches |Gray 87, Barr & Wells 88], Some early applications of category theoty to various
topics may be found in the collection [Manes 75|, and some recent applications to program-
ming language semantics of 2-categories, Kleisli categories, and indexed categories may be
found in {Moggi 88, 89]. [Taylor 88| applies indexed category theory to recumive domains
and polymorphism.

Institutions [Goguen & Burstall 85, 86| use category theory to formalise the concept
of logical system. Topics studied here include specification languages (Clear [Burstall &
Goguen 77, 80|, ASL [Saanella & Tarlecki 84], Extended ML |[Sannella & Tarlecki 86}},
implementations [Beierle & Voss 85, Sannella & Tarlecki 87], observational equivalence
[Sannella & Tarlecki 85|, free constructions |Tarlecki 85, 87], and model theory [Tarlecki 86].
It is hard to see how this work could be done adequately without categorical tools.

This paper is the third in a series [Goguen & Burstall 84, 84a] intended to introduce fun-
damental concepts and techniques from category theory to the warking computer scientiat,
but it is entirely independent of the previous parts. Its goal is to present indexed categories.
Many-sorted algebras are a prime example with which the reader may already be familiar:
for each many-sorted algebraic signature I, there is a category Alg(Z) of E-algebras, and
a signature morphism o: £ — I induces a functor Alg(s): Alg(Z) — Alg(E), which
we call a o-reduct. Thus, there is a functor Alg: AlgSig™ — Cat from the {index) cate-
gory of signatures to the category of categories. The mathematics literature [Johnstone &
Paré 78] develops indexed categories “up to coherent isomorphism” and is not very acces-
sible to the average computer acientist. In contrast, this paper develops “sirict” indexed
categories, which are defined “up to equality,” a special case that often arises in theoretical
computer science.

Any indexed category gives rise to a “flatiened” category by taking the disjoint union
of the component categories and adding reduct morphisms. A flattened indexed category
has a projection functor which maps each object to the index of the component category
from which it came. This is the “fibred category” [Grothendieck 63| presented by the
indexed category. [Benabou B5] argues that fibred categories formalize the same intuition
as indexed categories, but are easier to work with and conceptually simpler, However,
his argument does not apply to our strict indexed categories, which are simpler still, and
are not proposed for use in foundations, but only as a tool for doing theoretital computer
science.

Colimits have been used to “put together” many different kinds of structure, including
general systems {Goguen 71, Goguen & Ginali 78], theories |[Burstall & Goguen 80, Goguen

2 INDEXED CATEGORIES 2

r
& Burstall 8, 84a], and labelled graphs [Ehrig et af 81]. The dual concept of limit,
particularly the apecinl case of equalizer, has also been applied, for example to study
unification in computing and in lingnistics [Goguen 89a]. Tt is especially convenient to
use these constructions when every diagram has a (co)limit, i.e., when the category is
(co)complete. Section 3 shows that under certain conditions, if all cornponent categories
are {co)complete, then so is the flattened category. Thins strnplifies {co)completeness proofs
for some categories.

Given two categories indexed over the same category, an indexed functor between
them is a family of functors between their component categories that is consistent with
the functors induced by the index morphisma. An indexed functor induces a flattened
functor between its flattened source and target categories. If all the components of an
indexed functor have left adjoints, then so does the flattened functor. This can simplify
proofs that some functors have left adjoints. See Section 4.

Although these results may be in the folklore, they seem not to have been previously
published!. We believe they deserve an exposition for the working cornputer scientist. We
assume familiarity only with basic category theory and universal algebra; such material
may be found in [Burstall & Goguen 82], |Mac Lane 71], [Hertlich & Strecker 73], [Arbib
& Manes 75 and other places; see also [Goguen 88) for some guidelines for applying
category theory. Composition is denoted “;” (semicolon) in any category, and written in
the diagrammatic order; identities are denoted 1d, poesibly with subscripts. Our exposition
proceeds in what [Benabou 85 calls “naive category theory,” without commitment to any
particular foundation; indeed, nearly any foundation that has been proposed for category
theory is adequate for this paper?.

Acknowledgements

Thanks to David Rydeheard, who suggested to us that indexed categories migbt be useful
in specification theory, also to John Gray, Mike Fourman, and the anonymous referees of
Theoretical Computer Science for their comments on an early version of the paper, and
to Eleanor Kerse for her excellent typing. This work was partially supported by: grants
from the Polish Academy of Sciences, from the U.K. Science and Engineering Research
Council, and by Linkdping University (AT); and by Office of Naval Research Contracts
NO0O14-85-C-0417 and N00014-86-C-0450, NSF Grant CCR-8707155, and a gift from the
System Development Foundation (JAG).

2 Indexed Categories

It may be surprising to realise that categories over a collection of indices are quite com-
mon. In many natural examples, the categories in a family are uniformly defined, in the

1 After reading a draft of this paper, John Gray pointed out that [Gray 65| develops similar ideas for
fibred categories. In particular, his Theorem 4.2 and Proposition 4.1 yield our Theorem 1.

2A reader wha is nervous about foundations may, for example, check that each of our constructions cau
be placed at an appropriate level in a hierarchy of universes such as that described in [Mac Lane 71].

2 INDEXED CATEGORIES 3

sense that any index morphism induces 2 translation functor between the corresponding
component categories; moreover, the translation goes in the opposite direction from the
index morphism in these examples. Here is a simple example that is etill quite typical:

Example 1: Many-sorted sets. Given a set S, there is a category SSET(S) of S-sorted
{or S-indexed) sets, with S-sorted functions as morphisms, :\)(S

SSET(S) = [§ — Set], = { St= X (e SGS}

where Set is the category of sets, [S — Set] is the category of functors from S to Set
with § viewed as a discrete category and with natural transformations as morphism=s under
vertical composition {cf. [Mac Lane 71, I1.4, p.40]). We may write X: § — Set as (X,),es
where X, = X(s) for s € S, and write 9: X — Y in SSET(5) as {g,: X, — V.).cs.

Since indices are sets, index morphisms are functions, and f: 51 — §2 induces a
functor SSET(f): SSET(S2) —» SSET(S1) defined as follows:

* on objects: Given X € [SSET(S52)|, let SSET(f){X) = f;X: S1 — Set (noting
that X: S2 — Set), ie., for s1 € 51, let (SSET(/)(X))a = Xy}

* on morphisma: Given g = {g,3: X,3 — Yir)uaesa: X = Y in SSET(52), let
SSET(f)(g) = loren): Xipn = Yip))aesa: X = fiY.

These induced functors are independent of how index morphisms are decomposed, in the
sense that SSET(f; /') = SSET(f'); SSET(f); i.e., S3SET is a (contravariant) functor,

SSET: Set™ — Cat.

a
This motivates the following:

Definition 1: An sndezed category C over an index categoryInd is a functor Ind*? — Cat.
Given an index 1 € [Ind|, we may write C, for the category C{i), and given an index
morphism &: i — 7, we may write C, for the functor C(o): C(7) — C(i). Also, we may
call C; the ** eomponent category of C, and C, the translation functor induced by . O

This presents a contravariant functor as a (covariant) functor from the opposite of its
source category. While it might seemn equally reasonable to present it as a functor from
its source category to the opposite of ite target category, this would give an unnatural
direction to the component morphisms of natural transformations between such functors.

Often, we want to consider the components of an indexed category together in a single
“flattened” category obtained by forming a disjoint union of the componentis and adding
some new morphisms based on the index morphisms; this is the so-called “Grothendieck
construction” [Grothendieck 63|.

Example 1 (continued): Flattening the indexed category SSET: Set”™ — Cat yields the
category SSet = Flat(SSET) of many-sorted sets, defined as follows:

2 INDEXED CATEGORIES 4
® objects: are many-sorted sets with an explicitly given sort set, i.e., they are pairs
{S, X) where § is a set {of ports) and X: § — Set.

e morphims: A morphism (S, X} — (S, X"} in a pair {f, g) where /: S = S'isa
function and g: X — f; X" is an S-sorted function {g,: X, — X}(']),es.

e composibion: is defined component-wise, re-indexing the second component: Given
(f, g}: (S, X} = {5, X") and {J', ¢'): (S', X") — (S", X", let

L, ohl) =09 {8, XY = (5" X7,
where § = g; SSET(f)(¢') = (. 0o Xo = XFisap)ves-
a

Definition 7; Given an indexed category C: Ind® — Cat, define the category Flat(C)
as follows:

s objects: are pairs (5, a} where 1 € |Ind| and & € |G-

e morphisms: from (i, a) to (5, b) are pairs {0, /) where o: i — 3 is a morphism in
Ind and f: o — C,(b) i5 & morphism in C;.

* compontion: Given morphisms {, f): {f, a) — (5, b} and {p, g}: {5, b} — (k, ¢} in
Flat(C), let
{o, [)i{p, 9) = {30, 1;Colg)): (i, @) — (K, c).

Such a flattened category has a functor extracting the first component of its pairs,
which ig ancther important feature of the Grothendieck fibration.

Definition 3: Given an indexed categery C: Ind” — Cat, define its projection functor
Projc: Flat(C) — Ind
as follows:
o on objects: Given an object (i, a) in Flat(C), let Projc((t, a)) =1i.
¢ on morphisms: Given a morphism (g, f) in Flat(C), let Projc{{e, /}) = o.
o

We conclude this section with some further examples.

Example 2: Many-sorted algebrase signatures. Given a set S, the category of S-sorted
algebraic signatures is the functor category

ALGSIG(S) = [§* — Set]

2 INDEXED CATEGORIES 5

where §7 is the set ofall finite nonempty sequences of elements of §, regarded as a discrete
category; equivalently, ALGSIG(S) = SSET(SY). Thus, an S-sorted algebraic signature
is a family of sets (of operation symbols), one for each finite nonernpty sequence of elements
of §; such a sequence represents the rank, i.e., the arity and result sorts, of the operation
symbols in the set that it indexes. An S-sorted algebraic signature morphism i a renaming
of operation symbols that preserves their rank.

The map § — S extends to a functor (_}*: Set — Set, and the indexed category of
algebraic signatures is®*

ALGSIG = (_)*; SSET: Set’” — Cat.

The translation functor ALGSIG(f): ALGSIG(S) -+ ALGSIG(S) induced by a func-
tion f: § — S" extracts an S-sorted algebraic signature from an $§'-sorted algebraic sig-
nature using f to rename sorts: Given an §'-sorted algebraic signature I’ and a sequence
8,...8, € §*, the operation symbols of rank s,;...s, in the S-sorted algebraic signature
ALGSIG(f)(L') are exactly the operation symbols of rank f(4,)...f{s,) € (§)* from L'

Flattening ALGSIG gives the usual category of algebraic signatures (e.g., [Burstall &

Goguen 82]),
AlgSig = Flat{ALGSIG),

whose objects are pairs (S, (L,},cs+) where § is a set (of sorts) and each I, is a set (of
operation symbols of rank r). A morphism from (8§, (E,),es+} to {8, (E])re(s+) is a pair
{f,g) where f: § — 5’ is a sort renaming and ¢ = {g.: L, — E'!+(r))reg+ is an operation
symbol renaming that preserves rank (as modified by f). O

Example 3: Many-sorfed algebras. For our purposes, this is perhaps the prototypical
indexed category. Given an algebraic signature I, then ALG(L) has E-algebras as its
objects and I-homomorphisms as its morphisms. Given an algebraic signature morphism
o: L — L', then ALG(0) is the usual o-reduct {or generalized forgetful) functor

_lt ALG(E) » ALG(E),

as defined, for example, in [Burstall & Goguen 82]. Thus, the category AlgSig of algebraic
signatures provides indices for the indexed category of many-sorted algebras,

ALG: AlgSig”™ — Cat.

An object in the flattened category Flat(ALG) of many-gorted algebras is a many-sorted
algebra with an explicitly given signature; and a morphism from (L, 4) to (L', A" is a
signature morphism o: £ — L' and a I-homomorphism h: 4 — A'|,. Similar “crypto-
morphisms” occur in the specification literature, e.g., [Kamin & Archer 84]. O

3This is slightly inaccurate, since it identifies the functer (_)*: Set — Set with ita opposite,
{{_)*)°P: Set™ -+ S8et™; althongh equal as Functions, they are different as functors, i.c., @ morphisms in
Cat.

2 INDEXED CATEGORIES 6

Example 4: Diagrams. A diagram in a category T is a functor to T from a small source
category, say (, which is its skape. This is essentially equivalent to the more elementary
definition of a diagram as a graph with nodes labelled by objects of T and edges labelled by
morphisms of T having appropriate source and target (e.g., see [Goguen & Burstall 84]).
Thus, the category FUNC(T}G) = [G — T] of functers from G to T ia the category of
diagrams with shape G in T. Then

FUNC(T): Cat” — Cat
is an indexed category with
e component categories: FUNC(T)(G) = {G — T).

o iransistion functors: ®: G — G induces FUNC(T)(®): [G' —+ T]| —+ [G = T], a
functor defined on objects by FUNC{T)(®)(D') = ;D' for D': G' — T.

Flaitening FUNC(T) gives the category Func(T) = Flat(FUNC('T))} of functors into
T, or diagrams in T. A morphism from D: G —+ T to D": G' —+ T in Func(T) is a
functor @: G — G' plus a natural transformation &: D — ®;D' (between functors in
|G — T]). [Goguen 71| applies a similar category in General] Systems Theory. O

Example §: Theories. The notion of institution in |[Goguen & Burstall 85] provides an
appropriate framework for considering theories in arbitrary logical systems. An institution
I consists of:

1. a category Sign (of signatures);

2. functor Mod: Sign™ — Cat (giving for each £ € [Sign| a category Mod(Z) of
E-modus);

3. & funclor Sen: Sign — Cat (giving for each L € |Sign| a (typically discrete)
category Sen(L) of E-sentences); and

4. for each X € [Sign|, a (satisfaction) relation = C [Mod(Z)| x Sen(I),

such that the following satisfaction condition holds for each o: £ — I' in Sign, each
m' € |[Mod(L')| and ¢ € Sen(T),

m' =x Sen(o)(p) <= Mod(o)(m') Ex ».

Given o: £ — L', we may write Sen(c) as just ¢ and Mod(e) as _|,.

This definition involves two indexed categories: Mod, indexed by Sign, and Sen,
indexed by Sign”. However, we want to focus here on the indexed category TH of
theories in I, which arises naturally in the study of specifications over I. Given I € |Sign|,
8 I-presendation in a set of I-sentences, ¥ C Sen(L). Any such ¥ generates the set of its
logical consequences,

Cix(¥) = {x € Sen(T) | for all m € Mod{X), m |= v whenever m | ¥}.

A Y-theoryis a L-presentation T that is closed under semantic consequence, ie., such that
T = Clg(T). Let TH(ZL) denoie the poset category of I-theories ordered by inclusion.
This extends to an indexed category

TH: Sign” — Cat
in which given o: X — L' and a Z'-theory T,
TH(o)(T") = {» € Sen(L) | o(w) € T'}.

The satisfaction condition implies that this is a T-theory, and it is straightforward to check
that TH(o) is a functor, i.e., a monotone map.

Flattening this yields Th = Flat{TH), the usual category of theories in an institution
1 [Goguen & Burstall 85|: its objects are pairs (£, T} where L is a signature and T is a
I-theory; and its morphisms from (E, T) to (¥', T") are signature morphisms 5: £ — L'
such that o{p) € T' forall p € T.

We can define a somewhat larger indexed category of presentations. Given I, let
PRES(X) be the posst category of I-presentations in I. This yields an indexed category

PRES: Sign” — Cat
where given ¢: £ — I’ in Sign and ¥ C Sen(T'),
PRES(6)(¥') = {© € Sen(L) | o(p) € ¥'}.

We can add some further morphisme to the component categories: given I, let PRES, (L)
be the category of E-presentationa preordered by the semantic consequence relation, ¥ =y
W iff ¥ C Clg(¥'). This gives an indexed category

PRES,: Sign” — Cat.

The satisfaction condition implies that PRES_(¢): PRES,(¥’) = PRES.(L), defined
just as PRES (o) above, preserves semantic consequence.

TH is an indezed subcategory of PRES in a sense that will be made precise in Exampie 8
of Section 4 below; similarly, PRES is an indexed subcategory of PRES..

Example 6: Institutions. We first recall the definition of institution morphism from
[Goguen & Burstall 85). Given iwo institutions 1 = (Sign, Mod, Sen, {Fr)z¢|sign|) and
I' = (Sign’, Mod', Sen’, (=} }pesigny), an snstitution morphism from I to I' consists of

1. a functor ®: Sign — Sign',
2. a natural transformation §: Mod — &;Mod’, and

3. a natural transformation a: &;Sen’ —+ Sen

2 INDEXED CATEGORIES 8

such that the following satisfaction condition holds for each ¥ € |Sign|, m € [Mod(T}|
and ' € Sex{#(L)),

m |=¢ ar(¢') = Br(m) Far) ¥
Intuitively, I s “richer® than ¥': & extracts simpler I'-signatures frorn more complex I-
signatures; f extracts simpler I'-models from more complex I-models; and o« translates
I'-aentences to I-sentences, which ia possible since I is more expressive.

. Institutions and institution morphisms, with composition defined component-wise in
a rather straightforward manner, form a category [Goguen & Burstall 85]. We wish to
describe it using indexed categories. It costs no more to generalise fromn logical systems in
which the mesnings of sentences in models are true or false, to semantic systems in which
the meaninge of sentences in models lie in an arbitrary category V. Following [Goguen &
Burstall 86} after [Mayoh 85, the category Room{V) of V-rooms is the comma category

where |_|: Cat — Cat is the discretization functor and FUNCp,,.(V): DCat® — Cat is
the indexed category of functors into V restricted to discrete categories in DCat as source
(see Exampled4). Thus, a V-room is a triple (M, R, S} where M is & category, S is a discrete
categury, and R: |M| — [§ — V]. A V-roem morphism {f, ¢}: (M,R,S) - (M',R', §")
consists of a functor f: M — M’ and a function g: §' — S such that the following diagram
commutes in Cat,

M—2 sV
£} g ()
M| ——— 5~ V]

that is, R'(f{m})} = ¢; R{m)} for all m € [M], i.e,,
R'(f(m))(«') = R(m)(g(s")

for all m € |M| and &' € S’ (a ghost of the satisfaction condition).
The category of generalised institutions [Goguen & Burstall 86] with signature category
Sign is the functor category

INS(Sign) = [Sign™ — Room(V)].

{[Goguen & Burstall 86, Prop. 16] defines the category of V-rooms to be the comma category (|| | V)
where | _|°?: Cat® —+ Cat® is the opposite of the discretisation functor and V—: DCat — Cat is the
opposite of our FUNCp;,.(V): DCat™ — Cat. Coasequently, a V-room is a triple (M, R, $) where M
is a category, 5 is a discrete category, and B: [M| — [— V] is 2 morphism in Cat®, ie., B is a functor
from {§ — V| & [M|. This is a bug, since R should go the opposite way.

3 COMPLETENESS OF FLATTENED CATEGORIES 9

This extends to an indexed category
INS: Cat™ — Cat

where the tranalation functor INS{®): INS(Sign') — INS(Sign) is defined on objects
by INS{®)(I') = @;T for ®: Sign — Sign' a functor and I Sign'”? - Room(V).
This naturally extends to morphisms in INS(Sign'). Finally, the flattened category of
generalised institutions is Ing = Flat(INS). The reader may check that if V is Bool, the
category with exactly two morphisms, both identities, then this definition coincides with
the explicit definitions of institution and institution morphism given above. O

3 Completeness of Flattened Categories

This section studies how limits and colimits in a flattened category relate to the corre-
sponding constructions in its index and component categories. Given a shape category G,
a category T is G-{co Jcomplete if any diagram of shape G has a {co}limit in T, and a func-
tor is G- {ea)conténuous if it preserves the (co)limits of all diagrams of shape G. Then T is
(co}eomplete if it is G-(co)complete for all amall G. Similarly, a functor is {to}continuous
if it preserves all small (co)limits.

3.1 Limits

There is no hope for constructing limits in a flattened category unless its index and com-
ponent categories have limita. The only additional assumption needed is continuity of the
translation functors.

Theorem 1: If C: Ind” — Cat is an indexed category such that
1. Ind is complete,
2. C, is complete for all indices 1 € |Ind|, and
3. C,: C; — C; is continuous for all index morphisms o: ¢ — 3,

then Flat(C) is complete.

Proof: It suffices to prove that Flat(C) has all products and equalisers (cf. Mac Lane 71,
Th.V.2.1, p.109]).

Products: Given a family {1,, a,) for n € N of objects in Flat{C), let i be a product
in Ind of the f, with projections n,: ¥ — 1, for n € N, and let a be a product in C; of
C,.(an) for n € N with projections f,: & = Cy,(a,) for n € N. Then we claim that
{t, a) with projections (%, fa}: {f, a) — (i, @, is a product in Flat{C) of the {f,, a,}
forne N,

Given an object {J, 4 in Flai{C) with morphisms {o., g.}: {f, & — (i, a,) in
Flat(C) for n € IV, there exists a unique index morphism o: y — 1 such that oy 7, = o,

3 COMPLETENESS OF FLATTENED CATEGORIES 10

in Ind for all n € N. Moreover, continuity of C, guarantees that C,(a) with projections
Cal(/u}: Cola) = C,(C..(an)) for n € N is a product in C; of C,(C,_(a.)) = C,,_(a,)
for n € N. Hence, there exists a unique morphism g: & — C,(a) such that ¢; C.{/a) = gn
in C; for eachn € N. Then {, g): {j, &) — {1, a) is a unique morphism in Flat(C) such
that {o, g); (x., fa} = (On, g} foreachn € N.

Equallsers: Given morphiams {r1, f1),{p2, f2): (i, a) = {J, b} in Flat(C),leto: & —
be an equaliser of 01,02: ¢ — j in Ind. Notice that C,{Cq, (b)) = Coie1(d) = Crir2(b) =
Cs(Cos(b)). Let f: ¢ — C,(a) be an equaliser of C,{f1), C,{f2): C,(8) — C,(Co,1 (b)) in
C,. We claimthat (@, f}: (k, ¢} — (f, a) is an equaliser of (¢1, f1), {02, f2) in Flat(C}.
Firat obeerve that by construction we have
{o, f)ilo), 11} =(o;0l, f;C.{f1))

= {0702, [;C.(f2))

= (0! f);(d'z, f2)
Next consider {p, g}: {m, d) — (i, a) such that

(o, g)ilol, J1) = {p, g}; {02, F2},

in Flat(C), ie., p;ol = p;02 in Ind and ¢; C,(f1) = ¢;C,(/2) in C,y. By construction,
there exints a nnique index morphism #: m — k such that #; 0 = p in Ind. Moreover, since
C, is contirmous, C,(f): Cule) — C4(C,(a)) = C,(a) is an equaliser of C4(C,(f1)) =
C,(/1) and Cy(C.(f2)} = C,(/2): C,(a} — Cpp1(b) in Cm. Hence there is a unique
morphism h: d — C,{¢) suck that h; Cy(f) = g in Cy. Therefore (8, h): (m, d} — (k, ¢)
is a unique morphism in Flat{C) such that {8,); (o, [} = {p, g). O

A sharper result can be proved in much the same way: a diagram D: G — Flat{C}
has a limit in Flat(C) whenever D;Projg: G — Ind has a limit in Ind such that the
component category corresponding to the limit index i3 G-complete and the translation
functors induced by index morphisms into the limit index are G-continuous.

3.2 Colimits

The construction of colimits in a flattened category ia not quite so simple, since the proof
of Theorem 1 does not directly dualise. This is because in constructing limits, it was
easy to translate the objects (and morphisms) of component categories agairst index mor-
phisms using trans]ation functors, whereas the analogous construction for colimits requires
translation along index morphisms. The following property provides this capability:

Definition 4: An indexed category C: Ind™ — Cat is locally reversible if for each index
morphism o: i — j in Ind, the translation functor C,: C; — C, has a lefi adjoint. Given
o: £ — 7 in Ind, let us denote an arbitrary but fixed left adjoint to C,: C; — C; by
F,: C; — C; and denote the unit of this adjunction by n*: idg, = F,; C,. O

This does not require C to be “globally reversible” in the sense that the family of left
adjoints forms an indexed (by Ind®) category. In general, F,,, # F,; F,. However:

3 COMPLETENESS OF FLATTENED CATEGORIES 11

Fact 1: Given a locally reversible indexed category C: Ind™ — Cat and index morphisms
o: 1 —+ 3 and p: J — k, there is a natural isomorphism

top: Fop, = F,.F,.

Proof: F,;F, is left adjoint to C,;, = C,;C, (cf. [Mac Lane 71, Th. IV.8.1, p.101])
and any two left adjoints to the same functor are naturally isomorphic {cf. [Mac Lane 71,
Cor. IV.1.1, p.83]). In fact, given a € |C;|, then ¢, ,(a): F,,(a) — F,(F.(a)) is given by

to,0(a) = (7°(a); Co(n*(F.(a)))*

and its inverse by

i;4la) = (1" (a))*)*: F,(F.(a)) = F.,(a).
where f* denotes the morphism “adjoint” to f (the reader may determine the adjunctions
to which the sharps in this formula refer). {J

Definition 5: Given a locally reversible indexed category C: Ind” — Cat and an index
morphism p: 1 — 7, any morphism (g, g): (k, a) — {i, b} (with the same i) in Flat(C)
“lifts along p° to a morphism in C; given by

L,({o, 5')) = ‘o.p(“);Fr(g*}: Fo,(a) — Fﬂ{b)'
0

Lemma 1: Under the notation and assumptions of Definition 5, given an index morphism
9: § — m in Ind and given a morphism {p;8, f): (i, 8) — (m, ¢} in Flai(C), then
/*: P, (b} = Cy(c) 5 a morphism in C; such that in Flat(C),

{o:p, n°¥(a}); (9, L,({e, @)); /*} = (o, 9); (w0, [): (k, a) = (m, q).
Proof: We check that in C;

”a;'(a);ca;p(Lr((aa g)); ‘f#) =9 C,,(f): a— Cow;'(‘:)

as follows

n°*(a); Caip(Lo(lo, 9)): /*) (Definition 5)
= 17*{c); Co.p(t0,5(a))i Caip(F o{9*); 1*) (proof of Fact 1)
= 710(“]; Cv(n’{Fa (“)]; Cu;r{Fp(g*); r#) (Cg-", = C,; C,)
= 17{a); C.(n*(F.(a)); C,(F,(g*)); C,(/*)} (naturality of 7*)
= 17(a); Co(g*: n*(8): C,(/*)) {f =w(6);C,(/*")
= n"(a); Ca(g*): Co(f) (9 =n°(a); Colg*))

5 = §:Ca(/).

Carollary 1: Under the notaticn and assumptions of Definition 5

nﬂir(a);ca:’“”((a‘ g))) = Q;C,(ﬂ’(b))

3 COMPLETENESS OF FLATTENED CATEGORIES 12

Proof: By Lemma 1, since n*(b)* = idp). O
We are now ready for the main result;

Theorem 3: If C: Ind”® — Cat is an indexed category such that
1. Ind is cocomplete,

- 2, C; is cocomplete for all 1 € |Ind|, and

3. C is loally reversible,
then Plat({C] is cocomplete.

Proof: Dually to the proof of Theorem 1, it suffices to prove that Flat(C) has all coprod-
ucts and coequalisers.

Coproducts: Given a family {i,, a,) for n € N of objects in Flat(C), let i with injections
Pn: tn — ¢ be a coproduct in Ind of the i, for n € N, and let @ be a coproduct in C;
of the F, (o)) for n € N with injections f¥#: F, (a,) — a for n € N. Now define
fa=n"(a.);C,. (f): a, — C,, (a) for n € N. Then we claim that (3, a} with injections
(Prs fa): (4n, 8n) = {1, a) for n € N, is a coproduct in Flat(C) of the (i, a,) for n € N.
Given an object {f, b) and morphisms {0, gn}: (tn, @Gn) — {3, b} in Flat{C) forne N,
there exists » ynique index morphism o: ¢ — j such that py:0 = 0, in Ind for alln € N.
Moreover, there is a unique g: a — C,(b) such that f¥;9 = g#: F,_(a,) — C,(b) for all
n € N (g? is well defined since gn: an — C,, (C. (b))). Now because
[2iCpls) =1n"(3n); C,.(f¥): Colo)

= n"(an); C,.(f?;9)

= 1"(04); C,. (o)

= 8n
in C;,, it follows that (¢, g): (5, a) — {J, b) satisfies {p,, fo); {2, g) = {(On, ga) in Flat{C)
for all n € N. Moreover, {g, g} is the only morphism in Flat{C) with this property: The
uniqueness of ¢ is obvious, and the uniqueness of g follows by its construction from the
fact that if, given ¢": & -— C,{b) with f,;C,.(g') = g for all n € N, then f¥;g' = g¥ for
allne N, and thus g = ¢'.

Coequalisers: Given morphisms {o1, f1}, {02, f2): (i, a) — {5, d) in Flat(C), let
o: 7 — k be a coequaliser of ¢1,02: 1 —» ;7 in Ind. Then in C; there are morphisms
(cf. Definition 5}

L.((ol, fF1}), L. ({02, f2)): For.(a) = F.(b).
Let f*: F,(b} — ¢ be their coequaliser in C, and let f = n°(b); C,(f*): b — C,{c) in C;.
We now claim that {o, f); {4, B} = {k, ¢} is a coequaliser in Flat(C) of the morphisms
(o1, f1),({o2, f2): (i, a} — (5, b). First notice that by Lemma 1, in Flat(C) we have

(o1, fl){o, /) ={ol;0, n°%(a)}; {ids, L, ({01, f1}); F*)
= {02;0, n°%°(a)}; (idy, L.({02, f2)); f*)
= {2, f2);{o, f}.

3 COMPLETENESS OF FLATTENED CATEGORIES 13

Now consider a morphism {p, g): {7, b} — (m, d} such that in Flat(C)

{01, f1};{p. ¢) = (02, [2}; (p, g},

i.e., such that 61;p = 62;p in Ind and f1;C,y(g) = /2;C,3{¢) in C;. Then by construe-
tion, there exists a unique index morphism #: k£ —+ m such that ;8 = p in Ind. Moreover,
by Lemma 1
7°%¢(a); Cora (Lo({o, 11));9%*) = f1;Calg)

= f2; ng(g)

= ’T’I;a(a’); Ca!;a(La((a2; f2>;g*)
in C; (recall that ol;0 = 02;0 and that ¢*: F,(o0) — C,ld)). Hence, the properties
of adjunction imply L.({o2, f2}};¢* = L,({c1, f1});¢*. Thus, tbere exists a unique
morphiem h: ¢ —+ C,(d} such that f#*;h = ¢* in C,.

Now {8, h): {k, e} — {m, d} satisfies {g, f};{8, h) = {p, g) in Flat(C), since in C,
we have [;C,{h) = n°(b); C.([*;h) = n°(}); C-(g*) = g. Moreover, {8, A) is the only
morphism in Flat(C) with this property: the uniqueness of # is obvious; and the uniqueness
of h follows from its construction (if f;C,(h') = g for some A': ¢ — Cy(d), then f*; 4* = g*,
and thus h = A"). O

A sharper result can be proved in much the same way: a diagram D: G — Flat(C)
has a colimit in Flat(C) whenever D;Projn: G — Ind has a colimit in Ind such that
the component category corresponding to the colimit index is G~cocomplete and all the
translation functors induced by the index morphisms in the colimit cocone have left ad-
Jjoints.

3.3 Applications

We can use tbese theorems to check completeness and/or cocompleteness for same inter-
esting categories. The results are already known, but our proofs are more direct.

Example 1 (continued): Consider again the indexed category SSET: Set” — Cat
of many-sorted sets. It is well known that for any set 5, the category SSET(5) of 5-
sorted sets is both complete and cocomplete, and of course the index category Set is
also both complete and cocomplete. Moreover, it is not hard to see that the functor
SSET(f): SSET(S5') » SSET(S5) is continuous for any index morphism (ie., function)
f: 8§ — &', and that it has a left adjoint (sending a 5-sorted set (X,),cg to the §'-sorted set
(W{X, | £(8) = &'})ares where | denotes disjoint union). Thus, Theorems 1 and 2 imply
that the (flattened) category of many-sorted sets $SSet = Flat{SSET) is both complete
and cocomplete. (O

Example 2 (continued): Consider the indexed category ALGSIG: Set” — Cat of
many-sorted algebraic signatures. Again, the index category and all component categories
are both complete and cocomplete, and the translation functors are continuous and have
left adjoints (this follows from the definition ALGSIG = (_)*;SSET since SSET has all

3 COMPLETENESS OF FLATTENED CATEGORIES 14

these properties). Thus, the category of algebraic signatures AlgSig = Flat{ALGSIG)
is both compiete and cocomplete. OO

Example 8 [continued): Consider the indexed category ALG: AlgSig®™ — Cat of many-
sorted algebras. Again, the index category is complete and cocomplete {by Example 2
above), aa are all component categories, and the translation (forgetful) functors are con-
tinuous and have left adjointa (the existence of left adjoints to these forgetful functors is
a non-trivial, but familiar, property; see {Burstall & Goguen 82| for an expository pre-
sentation). Also, cocompleteness of the category of L-algebras is not quite obvious: to
form » coproduct of L-algebras, form their disjoint union and then freely complete it to a
XZ-algebra; coequalisers are not very hard. Theorems 1 and 2 now imply that the category
Flat{ALG) of many-sorted algebras is both complete and cocomplete. This provides an
appropriate frammework for operations like the amalgamated union of algebras over different
signatures, as used for example in [Ehrig & Mahr 85). O

Example 4 [continued): Let T be any category and consider again the indexed category
FUNC(T): Cat”* — Cat of functors into (or diagrams in) T. The index category
Cat is both complete and cocomplete. If T is complete, then so are all the component
categories. For, given G € |Cat|, limits in FUNCT(T){G) = [G — T] are constructed
“pointwise” a8 limits in T “parameterised” by (objecte of) G (cf. [Mac Lane 71, V.3,
p-112]). Moreover, the translation functors in FUNC(T) preserve limits conatructed in
this way. Thus, Func(T) = Flat(FUNC(T)) is complete whenever T is.

Dually, if T is cocomplete, then the component categories are also cocomnplete and the
translation functors are cocontinuous. But to apply Theorem 2, we need the translation
functora to have left adjoints; unfortunately, in general they do not.

It is interesting to compare this with Kan extensions (¢f. [Mac Lane 71, X]). Given a
functor ®: G — G’ and a diagram F: G — T, then a left Kan extension of F along @ is
an object F* ¢ [FUNC(T){G')| free over F € [FUNC(T)(G)| with respect to the functor
FUNC({T)(#): FUNC(T)(G") — FUNC(T)(G), with unit morphism ng: F —+ &;F', 2
natural transformation between functorsin [G — T|. If every diagram F: G — T has a left
Kan extension slong @, then the translation functor FUNC(T)(®): FUNC(T)(G') —
FUNC(T)(G) has a left adjoint. Dualising the construction of a right Kan extension
|Mac Lane 71, Th.X.1, p.233-4], we obtain:

Proposition 1: Given ®: G - G',and F: G — T, and v’ € |G'], let (& | n') be the
comma category of objects ®-over n' (cf. [Mac Lane T1, p.46-7]), and let P,: (& | r') =+ G
be the obvious projection functor, and let D, = P; F: (& | n') = T. Now suppose that
for each n’ € |G|, the diagram Dg: (® | n') — T has a colimit ¥'(n') € |T|. Then
the assignment n' — F'(n') extends to a functor F': G' — T, using the colimit property
of F'{n’) for n' € |G'| in the usual way. Moreover, there is a natural transformation
ny: F — &;F such that np,: F — F/(®(n)) is the morphism in the colimiting cocone for
F'(®(n)) corresponding to the object (n, idg(y)) € |(& | ®(n))| for each n € |G/|. Finally,

3 COMPLETENESS OF FLATTENED CATEGORIES 15

F' with the unit np i3 a left Kan extension of F along ®. O

Proposition 2: Given a functor §: G — G' with G small and a cocompletecategory T,
any functor F: G — T has a left Kan extension along ®. O

Even though the category of all diagrams in T need not be cocomplete when T is, we
have

Proposition 3: Let SCat be the category of all small categories, let T be a category,
and let
SFUNC(T): SCat”™ — Cat

be the indexed category of small diagrams in T, defined as the restriction of FUNC(T)
to SCat’. Then the category SFunc(T) = Flat(SFUNC(T)) of small diagrams in T is
cocomplete whenever T is. O

Example 5 {continued): Given an institution I, consider the indexed category of theories
in I, TH: Sign® — Cat. Given L € |Sign|, clearly THg is a complete lattice, i.e.,
is complete and cocomplete as a category. Moreover, it is not hard to see that given
a signature morphism o: £ — L', then TH,: THy — THjg has a left adjoint which
maps a L-theory T to the L'-theory generated by the set {o(p) | p € T} of T'-sentences.
Thus, Theorem 2 implies that the flattened category Th = Flat{TH) of theories in I is
cocomplete whenever the category Sign of signatures is cocomplete, It is even easier to
see that the categories Pres = Flat(PRES) and Pres. = Flat(PRES.) are cocomplete
whenever Sign is. A similar result holds for completeness, but is less interesting. O

Example 8 [continued): Given an arbitrary category V, consider the indexed category
INS: Cat” -» Cat of institutions. Recall that INS(Sign) = [Sign™ — Room(V)| for
Sign € |Cat|. Arguments as in Example 4 above show that Ins = Flat(INS) is complete
provided that the category Room(V} is complete. For this we can use the following
general result on comma categories {its dual is stated in [Beierle & Voss 85], and proved
in detail in [Tarlecki 86]; a slightly weaker result is given in [Mac Lane 71, Lemma in V.6]
and [Goguen & Burstall 84, Prop. 2]).

Lemma 2: Given categories A,B K and functors F: A -+ K and G: B =K, if A and
B are complete and if G: B — K is continuous, then (F | G} is complete. O

Recall that we defined Room(V) = {[—| | FUNCp;,.(V)) where |_|: Cat — Cat
and FUNCp,,.(V): DCat®™ — Cat. Since Cat is complete and DCat, the category of
discrete categories, is cocomplete (hence DCat™ is complete), the only thing to check is
the continuity of FUNCE,,. (V). This follows from the construction of colimita in DCat
and limits in Cat: The coproduct in DCat of any family of discrete categories S, for
n € N is just their disjoint union 8 = lt),cx Sn. It iz not hard to see that the functor

4 INDEXED FUNCTORS 16

category S —+ V] is (isomorphic to) the product of the categories [S, — V|, forn € N.
Then, the corqualiser in DCat of any two functors F,G: S1 — S2 is given as the natural
quotient functor H: S2 — S2/= where = is the least equivalence on (objects of) §2 such
that F(s) = G{(s) for all s € S1; and 82/= is the quotient {discrete) category. Again, it is
not hard to see that the functor category [S2/= — V] is isomorphic to the subcategory of
[S3 — V] that contains as objects all functors D: 53 — V such that F;D = G; D, and
similarly for morphisms. The isomorphism is given by the functor

FUNCp,,.(V}(H): [S3/= — V] — [S2 = V|.

Thus FUNCp,,.(V)(H) is an equaliser in Cat of the functors FUNCp, (V)(F) and
FUNCpu..(V)(G).

Summing up, FUNCp;,. (V) maps coproducts in DCat to products in Cat and co-
equalisers in DCat to equalisers in Cat. Hence FUNCp,,.(V) is continuous as a functor
from DCat” to Cat. Thus, by Lemma 2, Room(V) is complete, and thus the category
Ins of institutions is complete,

Since morphisms in Ins have richer institutions as their source, limits, not colimits,
are appropriate for “putting institutions together,” and hence the completeness of Ins is
relevant.]

4 Indexed Functors

Defilnitlon 8: An indezed functor F from one Ind-indexed category C: Ind® — Cat
to another D: Ind”® — Cat is a natural transformation F: C — D, that is, for each
t € [Ind|, a functor F;: C; — D, such that F;;D, = C,; F, for each o: ¥ — j in Ind.

Ind: Cat:
F,
H C; D;
o C, D,
C; D;
2 b F, ¥

This gives acategory INDEXEDCAT(Ind) of Ind-indexed categories, with the obvious

vertical composition of morphisms. O

Example 7: Powerset functor. Given a set S, let us define the S-sorted powerset functor
Ps: SSET(S) — SSET(S) as follows: P35 maps an S-sorted set (X,),es to the S-
sorted set (2%},.5 of the powersets of its components; and Py maps an §-sorted function
{gs: X, — Y,),es to the S-sorted family {2¢: 2%+ — 2¥+), 5 of the corresponding image

4 INDEXED FUNCTORS 17

functions, 2¢(A) = {g,(z) | = € A} for any A C X, and s € S. It is not hard to see that
P = (Pg)s¢iget| forms an indexed functor P: SSET -+ SSET. O

Example 8: Recall that Example 5 defined three indexed categories

TH: Sign” — Cat
PRES: Sign’ — Cat
PRESL: Sign™ — Cat

where THy, is a subcategory of PRESy, for each £ € |Sign|, which in turn is esubcategory
of (PRES)z. It is not hard to see that the families of inclusion functors, from THx to
PRES; and from PRES; to (PRES,.)¢ indexed by signatures I € |Sign| form indexed
functors, from TH to PRES and from PRES to PRES,..

This motivates the following definition: An indexed category C: Ind” -+ Cat is an
indezed subeategory of D: Ind” — Cat (they must have the same category of indices) iff
D; is a subcategory of C; for each i € {Ind|, and the family of inclusion functora forms an
indexed functor from D to C. This can be somewhat generalised by considering indexed
subcategories D over a subcategory of indices of C. 0O

Flattening extends from indexed categories to indexed functors.

Definition 7: Let Ind be a category. Then the flatten functor,
Flatype: INDEXEDCAT(Ind) — Cat,
is defined as follows:

* on objects: Given C: Ind® — Cat, then Flaty,g(C) is the Aattened category of
Definition 2.

* on morphisms: Given an Ind-indexed functor F: C — D (for C,D: Ind”® — Cat),
then the functor Flatynga(F): Flatyhg(C) — Flatyyd(D) is defined as fellows:

* on objects: Given {1, a) € [Flatyna(C)|, let Flatima(F){{%, a}) = (i, F(a)).

* on morphisms: Given a morphisma {g, f): (i, a}) — {§, o} in Flatpg(C), let
Flatpma (F){(o, f}) = (o, Fi(f])): {i, Fi(a)} — {j, F;{8)) in Flatps(D), recall-
ing that D,(F;(b)) = F,(C,(b)).

We may write Flat instead of Flatyng. Tt is straightforward to show it is a functor. [

Intuitively, flattened indexed functors leave the fArst element of their arguments un-
changed, but use it to select the appropriate component category for the indexed functor
to operate upon. In a sense, flattening an indexed functor forms the disjoint union of its
components. The similarity of Definition 6 to the defnitions of Example 4 (the category
of functors into a fixed target category) suggesis the following:

4 INDEXED FUNCTORS 18

Example 9: Indezed categories. The indexed category of indexed categories is defined by
INDEXEDCAT = OP;FUNC(Cat): Cat” — Cat,

where OP: Cat”™ — Cat”™ maps a category K to its opposite K, and maps a functor
F: K — M io its opposite F*: K — M. (It makes a nice puzzle to define OP =
{((_)")°".) Thus, given Ind € |Cat|, let

INDEXEDCAT(Ind) = [Ind”® — Cat]
as in Definition 8, and given ®: Ind — Ind’ and C": (Ind')** — Cat, let
INDEXEDCAT(®)(C') = #*;C": Ind™ — Cat.

Flattening yields the category IndexedCat = Flat(INDEXEDCAT) of indexed cat-
egories, with its objects an index category and an indexed category over it, and its
morphism from (Indl, C1: Ind1” — Cat) to (Ind2, C2: Ind2” — Cat) pairs (®, F)
where ®: Indl — Ind2 is a functor and F: C1 — &°*;C2 is a natural transformation.

For example, let us consider the relationship between the indexed categories of many-
sorted algebns (Example 3) and of many-sorted sets (Example 1). Firat, there is a functor
Sorts: AlgSig — Set which maps a signature to its set of sorts (in fact, this is the
projection furctor of Definition 3). Then, given an algebraic signature X, there is a forgetful
functor (e.g., [Burstall & Goguen 82})

Uy: Alg(Z) —+ SSET(Sorts(L))

which maps a Z-algebra to its many-sorted carrier. It is not hard to check that the family
U = {Ug)ggaigsig) forms a natural transformation U: ALG — Sorts™; SSET, so that
{Sorts, U): {AlgSig, ALG) — (Set, SSET) is a morphism of indexed categories.

Let us note that Flat = (Flaty,g)Inde|Cat| 29 defined in Definition 7 is also an indexed
functor, from the Cat-indexed category INDEXEDCAT to the constant Cat-indexed
category that assigns the category Cat to each index (and the identity functor on Cat to
each index morphism. O

Part of our original motivation for looking more carefully at indexed categories was
to reduce a family of adjunctions (between component categories) to a single adjunction
{between flattened categories); a somewhat parallel motive appears in “getting a charter
from a parchment™ [Goguen & Burstall 86).

Definition 8: Let U: C — D be an Ind-indexed functor. Then U has e left adjoint
locally iff Uz C; — D; has a left adjoint for each index ¢ € [Ind|. O

Theorem 3: Given an Ind-indexed functor U: C — D which has a left adjoint locally,
then Flat(U): Flat(C) — Flat(D) has a left adjoint.

4 INDEXED FUNCTORS 19

Proof: Given an object (i, a) in Flat(C}, then U;: C; — D, has (let us say) left ad-
joint Fit D; — C, with unit n;: idg, — Fy; U;. Now we claim that (i, Fi(a)} is a free
object in Flat{(D) over {i, a) with respect to the functor Flat(U}, having as its unit
{tdi, mi(a)): {3, a) — (i, U;(Fi(a))} = Flat{U)({s, F;(a)}). For, let {7, b) be an object in
Flat(D), let (g, f): (i, a) — Flat(U)({7, b}) = {5, Ui(d)} be a morphism in Flat{C},
and let f*: F;{¢) — b be the vnique morphism in D; such that n{a);Ui(/*) = f
in C;. Then {o, f*): {i, Fi(a)) — {j, b} iz the only morphism in Flat{D) such that
(idi, ni(a)y;i (o, f#) = {g, f} in Flat(C). O

Example 10: The AlgSig-indexed forgetful functor U: ALG — Sorts?;SSET was
defined in Example 9, and it is well known that each Uz: ALG(E) — SSET(Sorts(L))
has a left adjoint. Theorem 3 implies that the flattening of these forgetful functors,

Flat{U): Flat(ALG) — Flat(Sorts”; SSET),

has a left adjoint obtained by flattening the local left adjoints. O

Example 11: There is a Sign-indexed inclusion functor from the indexed category TH
of theories to the indexed category PRES of presentations in an arbitrary institution 1
(cf. Example 8). It is clear from the definitions in Example 5 (where these categories were
defined) that for eachsignature & € |Sign|, the inclusion functor from THy to PRESg has
a left adjoint (i.e., THr is a refiexive subcategory of PRESg in the sense of [Mac Lane 71,
V.3, p.83-9]}. In fact, the left adjoint is the closure operator Cly: PRESy, — THy, defined
in Example 5. Theorem 3 now implies that the category Th = Flat{TH) ol theories in I
is a reflective subcategory of Pres = Flat(PRES), the category of presentations in I. O

Theorem 3 suggests a different way to prove the cocompleteness of fiattened categories.
Given a shape category G and a target category T, the diagonal functor
AS: TG T
is defined as follows:

o on objects: Given ¢ € |T)|, let AS(t) be the “constant” diagram, i.e., the functor that
maps each object of G to ¢t and each morphism in G to the identity on £.

e on morphisms: Given f: t1 — t2 in T, let AR(f): AS5(¢1) = AS(t2) be the “con-
stant” natural transformation, AS(f), = f for each n € |G|.

Fact 2: Given categories G and T, then T is G-cocomplete iff the diagonal functor
A%: T — |G — T] has a left adjoint.

Proof: Given a diagram D: G — T, the free object over D with respect to AS is a
colimit of D; the unit is the colimiting cocone on D; and vice versa, the colimit of D is a
free object over ID with respect to A%. =

4 INDEXED FUNCTORS 20

Now we follow this hint in proving a slightly stronger form of Theorem 2.

Theorem 2': Given a category G, let C: Ind™ — Cat be an indexed calegory such that
1. Ind iz G-cocomplete,
2. C; is Gcocomplete far all § € |Ind], and
- 3. G is loally reversible.
Then Plat(C) is G<cocomplete.

Proof: C gives rise to an Ind-indexed category DIAGg of G-diagrams in C as follows:
o component eategories: Given ¢ € |Ind|, then DIAGE(Y) = [G — Ci].

« translaton funciors: Given o: ¢ — j in Ind, define the functor
DIAGE(o): [G — C;j] — |G — C. on objects by DIAGE(0)(D) = D;C, for
D: G - C;; it extends to morphisms in [G — C;] in the obvious way.
Now, we have the diagonal Ind-indexed functor
AS: C - DIAGS

defined by (84§); = AS: C; — [G — C;| for i € [Ind|. (It is not hard to check that
this in indeed an indexed functor.}) Moreover, by assumption 2 and Fact 2, Ag'_ has a left
adjoint for exch ¢ € |Ind|. Hence by Theorem 3,

Flat(Ag): Flat(C) — Flat(DIAGS)

has a left adjpint. We can identify Flat(DIAGS) with a subcategory of [G — Flat(C)|
which, roughly, contains the G-diagrams in Flat(C) that fit entirely into one of the
component cstegories of C, where a diagram D: G — Flat(C) is in Flat(DIAGS) iff
D; Projc: G— Ind is a constant functor, and a diagram morphism § is in Flat(DIAGg)
iff & horizontally compased with Projc yields a constant natural transformation.

The cotresponding faithful functor J: Flat{DIAGE) — [G — Flat{C)] may be de-
fined as follows:

o on objects: Given (i, D) € |Flat{DIAGE)| (i.e., § € [Ind| and D: G — C;), the
G-diagram J({i, D}): G — Flat(C) is defined as follows:

» on objecta: J({s, D})(n) = {i, D(n)) for n € |G|
® on morphisms: J({i, D})(e) = {id;, D(e}} for any morphism ¢ in G.
» on morphisms: Given a morphism (v, a): (i, D} — (5, E) in Flat(DlAGg), where
7: i — j is an index morphism and &: D — E;C, 5 a morphism in [G — C;),

then J{{7, a)): J{{s, D}) — J((4, E)) is the natural transformation defined by
I, a){n} = {1, a(n)): {5, D(n)) — (j, E(n)) for n € |G].

4 INDEXED FUNCTORS 21

It is not hard to see that J{{v, a)) is indeed a natural transformation, and that J is a
faithful functor.

The following identifiez Flat{DIAGE) with its image under J in (G — Flat(C)) and
refers to J as an inclusion functor. Unfortunately, Flat(DIAGS) is in general a proper
subcategory of [G — Flat(C)|, and so the proof of Theorem 2' is not yet finished. One
can directly check that

Afiui(c) = Flat(Ag); 3.
Since we already know that Flat(AS) has a left adjoint, to show that Agm(cj has a left
adjoint it is enough to prove that J hasa left adjoint (cf. [Mac Lane 71, Th. V.8.1., p.101]).
Thus, the following Iemma will complete the proof:

Lemma 2: The inclusion functor J has a left adjoint, i.e., Flat(DlAGg) is a reflexive
subcategory of [G — Flat(C)] (cf. [Mac Lane 71, V.3, p.88-9| for the definition and basic
facts ahout reflexive subcategories).

Proof (of Lemma 2); Given a G-diagram D: G — Flat(C), we are to find its reflection
in Flat(DIAGE), that is, a G-diagram R(D): G — Flat{C) in Flat{DIAGE) together
with a diagram morphism np: D — R{D) such that for any diagram D" in Flat(DIAGg)
and morphism §: I — D' there exists a unique §*: R(D) — D’ in Flat(DIA G&) such
that np; §* = 6§ in [G — Flat(C)|.

So, given an arbitrary diagram D: G — Flat(C), let D(n) = (i, an} for n € |G},
and D(e) = (0., f.): {in, @) — {fm, Gm} for £ n = m in G, let { be a colimit in Ind
of D; Projo: G — Ind, with injections p,: 5, — ¢ for n € |G| (Ind is G-cocomplete by
assumption 1}. Now define R(D): G — Flat(C) as follows:

v on objects: R(D)(n) = (s, F, (a,)) for n € |G|.

« on morphisms: R(D)(e} = {¢d;, L,_({o., f:))): (i, F, (en)} — (i, F,_{am)})
fore: n - min G.
Recall that indeed L, ({5., fo}): Fo, ., (an) = F, (8.} — F,_{a) (see Definition 5).

Let us check that R(D) is a functor, that is, it preserves identities and composition. It is
ohvious that it preserves identities (Definition 5 implies that L, ((idn, td..)) =F,_(id,.} =
idF, (a,)). For composition, given ¢&: n —+ m and d: m — k in G, we have to show that in

L,_({oe, 1) Lpu(loa, fa)) = Ly, ({oe, fo)i{oas Jo)-
This may he checked by going back to C;,: On the one hand, in C,, we have
n'" (aﬂ); CF»(LDA“C’C, fe); (od: fd)))
= 1**(2a); C,.(L,, ({0:: 04, f:: Cs,(fa)))) (Cor. 1, po = 0.; 04 pu)

= ft; Cﬂu(fd); Ca.;u(’?“ (ak))i
while, on the other hand, in C,, we have

1 (an); Co (Lo {{Ges £:}): Ly, ({04, 14))) {Cor. 1, pu = 0c; pm)
= £;C,,(n*" (am)); Co. (Con (L ({4, £23))) {Cor. 1, pp = 0 p;)
= £ Co,{fa)i Co (Couln**(as))).

4 INDEXED FUNCTORS 22

Heace, in C;,

n"'(a,.];C,_(L'_((a" !c));Ln((ad!) = n"‘(a,.);C,_(L,.((a,, Te)s (04 14)),

which by properties of adjunctions implies that indeed

L'_((ﬂ'“ fd});Lﬁ((adv fd)) = Lu(("u fs); (adu fd))'
Clearly, R(D)is in F]at(DIAGg). Having defined R{D)} as above, there is an obvious way
to define np: D — R(D): for n € |G/, let np(n) = (pa, 7"~ {aa)}: {in, @n) = {i, Fpn(an))'

We have to check that ny is a natural transformation. Given e: n — m in G, We need to
show that

D(e);np(m) = np(n);R(D)(e),
that is, that

(al'l fl)'r (Pun fI"" (a-m}) = (Pnu ﬂ"[ﬂn)); (ld,, L'_((O'., fﬂ)))‘

Since o,; pm = pn by construction, the cnly thing to check is that

foi Cc. (n"'(a-)} = ’7" (an); C!- (L!-((an fe)))’

which follows directly from Corollary 1. Now we claim that R(D) is a reflection of D in
Flat(DIAGS) with unit np: D — R(D). Given a diagram D' in Flat(DIAGE) and a
diagram morphism §: D — D', say that D'(n) = {j, b} for n € |G|, and D'{e) = {id;, ¢.)
for ¢ n » min G with g.: b, — b, in C; (such an index ; € |Ind| exists since D' is in
Flat(DIAGE)). Also, say that 5(n) = {8, ha): (in, an} — {7, bs) for n € |G|

By construction, there exists a unique index morphism +: § — j such that p,;7 = 8,
for each n € |G|. We now define the diagram morphism 6#*: R(D) — D' by §*(n) =
{1, A#): (i, F,.(0.)} — (4, ba) for n € |G|, where A*: F, (a.) — C,(b.) is the unique
morphism in C; that satisfies n*~(a,}; C,.(r*) = k. 6. — C,.(C,(b,)). First, let us
check that & is indeed a morphism in Flat(DIAGS); the non-trivial part is to verify
that §® is a ratural transformation, that is, for any ¢: n — m in G that

8*(n); D'(e) = R(D)(e); 6*(m),
or equivalently, that
(v, b)) (dy, g.) = (i, Lo ({o0) L2} (v, BR)-
We must prove that in C;
r¥; Calg.) = Lyn ({00 J0))i -
To see this, notice that by construction in C;,

n*(a.); C,.(h¥: C4(g.)) = hni Cy.(9.)

5 SUMMARY 23

and by Lemma 1 (since p, = a6,}pm)
1* (@n); Cpa(Lpn ({00, £3)18R) = £2i Co. (Am).
However, since §: D — D' is a natural transformation,
D{e); 6(m) = 6(n); D'(e),
that is

(on fa); (0un h\u) = (9”, hﬂ); (idir g!)!

which implies that
fe; Ca. (hm) = hp; Cl,. (gc}~

Hence, putting these equations together,
n*~ (a.); C,, (h:; C(g:)) = n*(aa); Cpu(Lpa ({00, fo))s h:)

Thus indeed,
h¥iCqlge) = Lya (00, £)i AR
We now claim that §#: R(D) — IV is a unique morphism in Flat(DIAG§) such that
np; 6% = 6. First, we have to verify that np(r); §*(n) = é(r) for n € |G|, ie., that

(Pm n’n (aﬂ)); ('Tt h:) = (ﬂ,‘, hal,

or equivalently, that
(2ni 1, 1" (8n); C,, (h2)) = (Bn, hin),

which is clearly true. Moreover, the construction guarantees that §*(r) is the only mor-
phism in Flat(C) such that Projg(6*(r)) = 7 and np(n};6¥(n) = 6(n). Since the
uniqueness of ~ is obvious, this gives the uniqueness of §* and completes the proof of
Lemma 2, and hence of Theorem 2'. O O

We do not apologise for giving a second proof of this theorem; on the conirary, we feel
its details are worth examining, especially the “reflection lemma™ (Lemma 2).

5 Summary

This paper has presented indexed categories and given examples supporting the view that
they are a useful tool for structuring and clarifying certain constructions and proofs in
computer science. Given an indexed category C, we have constructed a “fattened” cate-
gory Flat(C) containing the components of C. We have also introduced indexed functors,
and shown how to flatten them. Finally, we have shown that flattening preserves the
important properties of completeness, cocompleteness, and existence of left adjoints.

6 REFERENCES 24

6 References

[Azblb & Manes 75] Arbib, M.A., Manes, E.G. Arrows, Structwrcs and Functors: The Categor-
scal Imperative. Academic Press, New York, 1975.

[Barr & Wells 88] Barr, M., Wells, C. The formal description of data types using sketches. In M.
Main, A Melton, M. Mislove, D. Schmidt (eds.), Mathematical Foundations of Programming
Language Sernantics, Springer-Verlag, Lecture Notes in Computer Science 298, 1988,

[Belerle & Voss 85| Beierle, C., Voss, A. Implementation specifications. In H.-J. Kreowski (ed.),
Recent Trends sn Dala Type Specification, Informatik Fachberichte 116, Springer-Verlag,
1085, 3953

[Benabou 88] Benabou, J. Fibred categoriea and the foundations of naive category theory. Jour-
nal of Spmbotic Logic 50, 1985, 10-37.

[Burstall & Goguen 77] Burstall, R M., Goguen, J.A. Putting theories together to make spec-
ifications. In Proceedings, Fifth International Conference on Artificial Intelligence, 1977,
1045-1058,

[Burstall & Goguen 80] Burstall, R M., Goguen, J.A. The semantica of Clear, a specification
language. In Proceedings, 1978 Copenhagen Winter School on Abstract Software Deveclop-
ment, Springer- Verlag, Lecture Notes in Computer Science 86, 1980, 292-332.

{Burstall & Gogunen 83] Burstall, R.M., Goguen, J.A. Algebras, theories and freeness: an intro-
duction for computer scientists. In Proccedings, 1981 Marktoberdorf NATO Summer School,
Reidel, 1982, 329-350.

[Ebrich 82| Ehrich, H.-D. On the theory of specification, implementation and parameterisation of
abetract data types. Journal of the Association for Computing Machinery £8, 1982, 206-227.

[Ebrig et al81) Ehrig, H., Kreowski, H.-J., Maggiolo-Schettini, A., Winkowaki, J. Transfarmation
of structures: an algebraic approach. Mathematical Syatema Theory 14, 1981, 305-334.

[Ehrig & Mahr 85] Ehrig, H., Mahr, B. Fundamentals of Algebraie Specification I: Equations
and Initial Algebra Semantics. EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1985,

[Goguen T1] Goguen, J.A. Mathematical representation of hierarchically organised systems. In
E. Attinger (ed.), Global Systems Dynamies, 5. Karger, 1971, 112-128.

{Goguen 89| Goguen, J.A. A categorical manifesto. University of Oxford, Programming Research
Group, Technical Monograph PRG-72, March 1989. Also submitted for publication.

[Goguen 89a] Goguen, J.A. What is unification? — a categorical view of substitution, equation
and solution. In M. Nivat, H. Ait-Kaci (eds.), Resolution of Equations in Algebraic structures,
Academic Presa, 1989, 217-261. Also, Technical Report SRI-CS1-88-2R2, SRI International,
Computer Science Lab, Angust 1988.

6 REFERENCES 25

[Goguen & Burstall 80| Goguen, J.A., Burstall, R.M. CAT, a system for the siructured elab-
oration of correct programs from atructured specifications. Technical Report CSL-118, SRI
International, Computer Science Lah, 1980.

[Goguen & Burstall 84] Goguen, J.A., Burstall, R.M. Some fundamental algebraic taals for
the semantics of computation, part 1: comma categories, colimita, structures and theoriea.
Theoretical Computer Science 81, 1984, 175-200.

[Goguen & Durstall 84a] Goguen, J.A., Burstall, RM. Some fundamental algebraic tools for
the semantics of computation, par, 2: signed and abatract theotries. Theoretical Computer
Science 81, 1984, 263-295.

[Goguen & Burstall 85] Goguen, J.A., Burstall, R.M. Institutions: abetrsct model theory for
computer acience. Report CSLI-85-30, Centar for the 5tudy of Language and [nformation at
Stanford University. Earlier version: Introducing institutions, in E. Clarke (¢d), Proceedings,
Logics of Programming Workshop, Springer-Verlag, Lecture Notes in Computer Science 164,
1084, 221-256.

[Goguen & Burstall 88] Goguen, J.A., Burstall, R.M. A study in the foundaticns of program-
ming methodology: apecifications, institutions, chartera and parchments. In Proceedings,
Summer Workshop on Category Theory and Computer Programmeng, Springer-Verlag, Lec-
ture Notes in Computer Science 240, 1985, 313-333.

[Goguen & Glnali 78] Goguen, J.A, Ginali, S. A categorical approach to general systems theory.
In G. Klir (ed.), Applied General Syatems Research, 1978, 257-270.

[Goguen, Thatcher & Wagner 78] Goguen, J.A., Thatcher, J.W., Wagner, EG. An initial
algehra approach to the specification, correctness and implementation of abatract data types.
IBM Research, Report RC 6487, Also in R.T. Yeb (ed.), Current Trends in Programming
Methodology §, Data Siructuring, Prentice-Hall, 1978, 80-149,

[Gray 85] Gray, I.W.Fibred and cofibred categories. In 5. Eilenberg, D.K. Harriscn, S. MacLane,
H. Réhrl (eds.), Proceedings, Conferenee on Categorical Algebra, Springer-Verlag, 1966, 21-
83.

[Gray 8T] Gray, J.W. Categorical aspects of data type constructors. Theoretical Computer Sci-
ence 50, 1087, 103-135.

[Grothendieck 63] Grothendieck, A. Catégories fibrées et descente. In Revétements élales eb
groupe fendamnental, Séminaire de Géométrie Algébraique du Bois-Marie 1%60/61, Exposé
VI, Institut des Hautes Etudes Scientifiques, Paris, 1963; reprinted in Lecture Notea in
Mathematics 224, Springer-Verlag, 1971, 145194,

[Herrlich & Strecker T3] Herrlich, H., Strecker, G.E. Category Theory. Allen & Bacon, Rock-
leigh, 1973.

[Jobnstone & Paré 78] Jchnstone, P.T., Paré, R. Indexed categories and their applications. Lec-
ture Notes in Mathematica 661, Springer-Verlag, 1978,

6 REFERENCES 26

[Eamin & Archer 84] Kamin, S., Archer, M. Partial implementations of abstract data types: a
dissenting view ou srrors. In Proceedings, Conference on Semantics of Data Types, France,
Springer-Verlag, Lecture Notes in Computer Science 173, 1984, 317-336.

[MacLane T1] MacLane, 8. Cotegorics for the Working Mathematician. Springer-Verlag, 1971.

[Manen 75]) Maoes, EG. (ed.). Proceedings, 187§ Conference on Category Theory Applied to
Compstaion and Conlrol. Springer- Verlag, Lecture Notes in Computer Science 25, 1975.

[Maych 85] Mayoh, B. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus
University, 1985.

[Moggl 88] Moggi, E. Computational lambdacalculus and monads. Technical Report ECS-
LFCS-83-66, Laboratory for Foundations of Computer Science, Univeraity of Edinburgh,
1988.

{Mogg! 89] Moggi, E. A category-theoretic account of program modules. Technical Report, Lab-
aratory for Feundaticna of Computer Science, University of Edinburgh, 1989.

|Sannella & Tarleckl 84) Sannells, D.T., Tarlecki, A. Building specifications in et arbitrary
institution. In Proceedings, Symposium on Semanbics of Data Types, Lecture Notes in Com-
puter Science 173, 337-356, Springer- Verlag, 1984. Full version: Specifications in an arbitrary
institution, Information ond Compulation 76, 1988, 165-210.

[Sannella & Tarlecki 85] Sannells, D.T., Tarlecki, A. On chservational equivalence and alge-
braic specifications. Jowrnal of Computer and System Scicnces 84, 1987, 150-178. Extended
abstract in Procecdings, TA PSOFT 83, Springer- Verlag, Lecture Notea in Camputer Science
185, 1685, 308-322.

[Sannella & Tarlecki #8] Sannells, D.T., Tarlecki, A. Extended ML: an institution indepen-
dent framework for formal program development. In Proceedings of Summer Workshop on
Category Theory and Compuler Programming, Springer-Verlag, Lecture Notes in Computer
Science 240, 1985, 3854-389.

[Sannella & Tarlecki 87] Sannella, D.T, Tarlecki, A. Towards formal development of programs
from algebraic specifications: implementations revisited. Acta Informatica £5, 1988, 233-
281. Extended abstract in Proceedings, TAPSOFT 87, Springer-Verlag, Lecture Notes in
Computer Science 249, 1987, 96-110.

[Tarlecki 85| Tarlecki, A. On the existence of free models in abstract algebraic institutions. The-
oretical Computer Science §7, 1985, 269-301.

[Tarleck! 86] Tarlecki, A. Bits and pieces of the theory of institutions. In Praceedings of Summer
Workshop on Cotegory Theory and Computer Programming, Springer- Yerlag, Lecture Notes
in Computer Science 240, 1985, 334-363.

[Tarleckd 87) Tarlecki, A. Quasi-varieties in abstract algebraic institutions. Journal of Computer
and System Sceences 58, 1986, 333-360.

6 REFERENCES 27

[Taylor 88] Taylor, P. Recursive domains, indexed category theory and polymorphism. Ph.D. the-
sis, University of Camhridge, Deptartment of Pure Mathematics and Matbematical Statistica,
1986.

[Thatcher, Wagner & Wright 82] Thatcher, J.W., Wagner, E.G., Wright, J.B. Data type spec-
ification: parameterisation and the power of specification techniques. Transoctins on Pro-
gramming Langnages and Syslema 4, 1082, 711-732,

[Wand T9] Wand, M. Final algebra semantics and data type extensions. Jowrnal of Computer
and System Sciences 19, 1979, 27-44.

