Laws of the Logical Calculi
by

Carroll Morgan and J. W. Sanders

Oxford University
Computing Laboratory

Programming Res -
81 Keble Road -~ - Croup-Library
Oxford OX1 3QD

Oxford (0885) 54141

Technical Monograph PRG-78
ISBN 0-902928-58-9

September 1989

Oxford University Computing Laboratory
Programming Research Group

811 Keble Road

Oxford OX1 3QD

England

Copyrighi ©1989 Carroll Morgan and J. W. Sanders

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X1 3QD

England

Laws of the Logical Calculi

Carroll Morgan and J. W. Sanders

September 14, 1989

Abstract

This document records some important laws of classical predicate
logic. It is designed as a reservoir to be tapped by users of logic, in
aystem development. Though a systematic presentation is attempted,
many of the lawe appear just because they happen to be naeful.

1 Introduction

The formulae of predicate logic are constructed from: terms, denoting val-
ues {for example, z+1); predicate symbols denoting properties (for example,
IsEven); logical operators (negation -, conjunction A, disjunction v, impli-
cation — and others); and guantifiers (for all V and there exists J). This is
such a formula

(V z » IsEven(z) — IsOdd(z +1)).

It happens to be true if we give IsEven, IsOdd, and + their conventional
meanings, and take the quantification V to range over integers. The selec-
tion of such meanings — conventional or otherwise — is called an inter-
pretation. Interpretations fix the meanings of predicate symbols (/sEven),
function symbols (+), constants (1}, and the range of quantifiers (z ranges

1

over integers). However, the meaning of the logical operators is the same
in every interpretation.

Most of the laws below are of the form 4 = B, where A and B stand for
arbitrary formulae. These equalities state that A is true exactly when B is,
no matter what the interpretation. Thus the equalities are useful whether
reasoning about digital hardware or the Examination Decrees.

Note that A = B is not tfself a formula, even though A and B are; it
is a atatement chout formulae, saying that they are equal — hence inter-
changeable. (The statement 1+ 1 = 2 is not an integer, though both 1 +1
and 2 are) So we can as usual in mathematics write chains of equalities
A=B=C=- - meaning “A=Band B=Cand C=--".

2 Some propositional laws

Throughout this section A, B and C denote formulae of predicate calculus.
The laws are propositional because they do not deal with the quantifiers ¥
and 3 or with substitution.

2.1 A distributive lattice

The propositional connectives for conjunciion, A, and disjunction, v, are
idempotent, commutative, associative and absorptive, and they distribute
through each other. Thus the formulae modulo = form a what is known as
a distributive lattiee'.

1But you de not need to know this in order to understand them.

2.1.1 Idempotence of A and v

Conjunction and disjunction are sdempotent connectives

ANA=A=AVA. (1)

2.1.2 Commutativity of A and v

Conjunction and disjunction are commutative connectives. (Sometimes the
adjective aymmetric is used instead of commutative, but we follow mathe-
matical tradition and reserve that for describing relations rather than op-
erations.)

AAB = BAA (2)
AVB = BVA. (3)

2.1.3 Associativity of A and v

Conjunction and disjunction are associgtive connectives

AA(BAC) = (AABYAC (4)
Av(BvC) = (AvB)vC. (5)

Laws 1 to 5 mean that we can ignore duplication, order and bracketing
in conjunctions A A B A --- A C and disjunctions Av Bv.--v (. This
enables iterated conjunctions and disjunctions to be expressed in prefix
notation indexed by a set?.

2What happens to such notation for connectives which are merely commutative and
associative?

2.1.4 Absorption laws
Sometimes terms can be removed immediately from expressions involving
both conjunctions and disjunctions; this is absorption

AA{AVB)=A=AV(AAB). (e)

2.1.5 Distributive laws

The distribution of A through V is reminiscent of the distribution of multi-
plication over addition in arithmetic. But in logic, distribution goes both
ways: V also distributes through A

AA(BvC) = (AAB)V(AAC) (N
AV{(BAC) = (AvB)A(AvC). (8)

These laws extend to distribution over any finite conjunction or disjunction.

2.2 A Boolean algebra

In the previous laws we can think of A A B as the smaller of A and B: that
is, A yields the minimum of its arguments. Similarly V yields the maximum,
This intuition is relied upon in the next laws: the constants false and true
act as minimum and maximum respectively of the distributive lattice, and
negation - acts as a complement. This converts the lattice into a Boolean
algebra. -

2.2.1 Maximum and minimum

The constant false is the minimum of the lattice and true is the maximum

AAntrue = A (9
AVirue = true (10)

A A false = false (11)

AV false = A. (12)
2.2.2 Negation complements the lattice
Negation — acts as a complement of the distributive lattice
AN-A = false (13)
AvV-A = tree. (14)
Furthermore it is an tnvelution
A=A (15]
and it satisfies De Morgan's laws
“(AAB) = -Av-B (16)
-(AvB) = -AA-B. (17)

These laws extend by induction to negations of finite conjunctions and
negations of finite disjunctions®.

2.2.3 Further absorptive laws

With negation, we have two more absorptive laws

Av(-AAB) = AvB (18)
AA(-AVB) = AAB. (19)

2.2.4 Normal forms

A formula is in disjunctive normal form if it is a finite disjunction of other
formulae each of which is, in turn, a conjunction of single letters or their

3For “infinite” ones, we Thust wait for Laws 82 and 83 in sectjon 4.

5

negations. (Although those letters may themselves stand for other formu-
lae, we ignore that structure here.} Conjunctive normal form is defined
complementarily.

Laws 7, 8, 16 and 17 serve to convert any proposition to either disjunc-
tive conjunctive normal form, and Laws 13 and 14 serve to remove adjacent
compiementary terms. For example

Ar—(BACAA)

= AA(~Bv-CVv-4) by Law 1
= (AA-B)V(AA-C)V(AA-A) byLlaw?7
= (AA-B)V(AA-C)V false by Law 12
= (AA-B)Vv{(AA-C) by Law 12.

The secord formula above is in conjunctive normal form and the third,
fourth, and fifth are in disjunctive normal form.

2.3 Implication

Implication — can be defined by the law
A—B = -AVBE, (20)

and this leads on to the laws below:

A— A = true (21)
A—-B = ﬂ(AA—'B) (22)
~(A— B) = AA-B (23)
A—-B = —-B— -A (24)

The last above is called the contrapositive lew. Useful special cases of these
are

A —true = true (25)
true - A = A (26)
A — false = A (27)

6

folse = A = true (28)
A— -4 = -4 (29)
~“A— A = A (30)

The next two laws distribute — through finite conjunction and disjunction?.
C — (AAB) (C— 4)A(C — B) (31)
(AvB)—>C (A= C)A(B—C). (32)

The laws above are useful in negating an entire formula: that is, in
moving an outer-most negation as far in as possible. For instance
=(An(B—(~AVC)))
= AV ~(B—-(~AvC)) by Llaw 16
= —AV(BA-(-AVC)] by Law 23
—SAV(BAAA-C) by Law 17.

Here we have reached disjunctive normal form; but we can cortinue
(FAVB)A(-AVA)A(~AV-C) by Law 8

= (mAVB)A(-Av-C) by Laws 14, 9
= -AvV(Ba-0O) by Law 8
= A— (BAa-C) by Law 20.

Finally, we have these laws, true in any Boolean algebra

AAnB=A
if AVE=2D8 (33)
if -4v B = true.

2.3.1 Extra laws of implication

The following laws are useful in showing that successive hypotheses may be
conjoined ar even reversed

A—)(B—tC')

(AAB)—>C {(34)
= B> (A— C) {(35)

“For their infinite counterparts, see Lawa 111 and 112.

7

The next law is the basis of definition by cases:

(A= B)Aa(mA—>C)=(AAB)v(-AAC).

(36)

It extends to finitely many A;, provided they are pairwise erclusive (A; A
Aj = false for v # 7) and overall ezhaustive ((V; A;) = true). Law 36 is
often helpful when reasoning about specifications which are expressed like
the right-hand side: the first digjunct describes the normal behaviour and
the second describes the error case. Nonetheless it may well be easier to
reason about the behaviour using implication, and so the law comes into

play.

2.4 Other connectives

In this section we consider some other propositional connectives: equiva-
lence, +; exclusive or, 37; and the conditional connective with three arguo-

ments, if _ then _ else _.

2.4.1 Equivalence

Equivalence is defined from first equation below

A+— B

Also

Ao A

A= —A

A s lrue

A — falae

A— B

B—+ A

Av(B & C)

(A— B)A (B — A)
(AAB)v-(Av B)
-A «~ B,

= true

false

A

A

A+ {(AAB)
A+ (AV B)

= (AVB) e (AVC).

8

(37)
(38)
(39)

(40)
(41)
(42)
(43)
(44)
(45)
(46)

Equivalence is commutative and associative

AwB = Bo A (47)
Av(BerC) = (Ao B)er C (48)

and, from Law 33, satisfies E. W, Dijkstra’s Golden Rule
(AAB+— Ao B Av B) = true. (49)

2.4.2 Exclusive or

Exclusive or, 2, is particularly useful in the description and development
of digital systems. It is defined by one of the following three equivalent
equations

Ay B = ~(A+ B) (50)
= (-AAB)V(AA-B) (51)
= (AvB)A~(AAB). (52)

Exclusive or is commutative and associative
AGEB = BgA (53)
(AVB)vC = Ay {(ByO0), (54)

and satisfies

AV A = false (55)
AG~A = true {s6)
A true = -4 (57)
A false = A {58)
AA(BYC) = (AAB)V(AAQ). {59)

These laws can be used to prove, for instance, that the three assignments
=2V Y Y=y, =2V

suffice to interchange the Boolean values of z and y without the luxury of
an intermediate variable.

2.4.3 The conditional

The familiar if _ then _ else _ construct from programming we will write
A < P p Bjitis defined

AdPp>B = (P— A)A(-P—~ B). (60)

Its main properties follow from this definition and the previous laws: the
binary operator — < P > _ is idempotent and associative

AQPpA = A (61)
A<dPp(Ba4PpC) = AadaPDBC (62)
= (A< PpB)dqPpC (63)

and it distributes through < @ > _ in both directions

A4dPpr (B QprC) = (AP B)dAQb(Ad P > C) (64)
(AdPpB)d@QpC = (AdQ>C)aPr(Bd Qb C).(65)

The next pair of laws enable a conditional to be expressed as a iruth func-
tion of ita components

Adtrue b B = A (66)
Adfalse B = B (67)

and the following laws assist in the simplification of conditional expressions

AAB = A< BB {68)

AVB = AdApB {69)

~A = false 94 A b true (70

trued A > folse = A {71)
Ad{(BaPrC)pD = (AdBED)aPb(Ad C D). (72)

10

3 Equality and ordering

With the laws so far, we can show that A = B iff A « B = true. For only
if, we use Law 40; for if, we proceed

A

= A+ true by Law 42
= A++(A+ B) by assumption
= (A~ A)— B by Law 48
= B by Laws 40, 42.

By analogy, we define the relation = between formulae so that 4 = B
iff A— B = true. This allows us to write chains A = B = ¢ = .
meaning “A=> Band B=> Cand C = --.".

We have that whenever A = B and B = A then A = F also,and in
fact it is easy to show that = is a non-strict partial order over formulae.
The next laws show that Av B and A A B are upper and lower bounds
respectively of A and B

A= (AvB) snd B = (AV B) (73)
{AAB) > A and (AAB)= B. (74)

Finally, note that all the equalities (33) are equivalent to A = B, and thus
that = is the usual order on the Boolean algebra.

4 Some predicate laws

In this section we consider laws concerning the universal and existential
quantifiers, ¥V and 3. Although for most practical purposes we wish the
quantification to be typed

(Vz: T o P)
(3x:T e P),

11

where T denotes a type and P a predicate, for theoretical purposes [(e.g.
statement of the completeness theorem) it is more convenient to insist that
all quantification be untyped

(vz e P)
(3z e P).

We will adopt untyped quantification as our basis; the following laws enable
us to convert between the two styles
(VT e A) = (Vzez:T — A) (75)
(32:T o A) (Jz e z:T A A), (76)

where the expressions z: T on the right-hand sides are interpreted as pred-
icates meaning “z is of type T."

Before introducing further laws of the predicate caleculus, we discuss
oceurrence and substitution of variables.

4.1 Occurrence of variables in formulae

We say informally that a variable occurs in a formula if we can see it
written there: for example, z occurs in z < y (we are regarding “<™ as a
two-place predicate). But we need to distinguish free and bound occurrences
of variables in formulae; in the following formula, for example, z occurs free
and y oceurs bound

Gyez<y).

Informally, z occurs free in the formula because it is saying sorn ething about
z: that “there is a number greater than it.” But the formula does not say
anything about y: y just a place-holder. Indeed, we could have used z,
writing (3 z z < z), and the meaning would have been the same. This is
why we say that y occurs bound.

The concepts of free and bound occurrence are found elsewhere in math-
ematics. In integrals, the “variable of integration® is bound; below we see

12

that z is free and y is bound

I3 zy dy.
If we evaluate the integral
z
y=0 2

it’s clear that the meaning of the expression depends only on z. In this
sense, evaluating integrals corresponds to “eliminating quantifiers” {Laws
77).

4.2 Substitution

We write substitution of a term ¢ for a variable z in a formula A as
Alz\2]

and we write the multiple substitution of terms ¢ and u for variables r and
y respectively as

Alz, y\t, u].

In simple cases, such substitutions replace the variable by the term. In
more complex cases, however, we must take account of whether variables are
free or bound. Suppose, for example, that A is the formula (3 z » z # y) A
z = y; then

Alz\y] B8 (Jzez#y)ry=y
and Aly\z] is (JzezFz)Az =1z

The variable z is fresh, not appearing in A. In the first case, z # y is
unaffected because that occurrence of z is bound by 3 z. Indeed, since we
could have used any other letter (except y) without affecting the meaning
of the formmula — and it would not have been replaced in that case — we

13

do mnot replace it in this case either. The occurrence of z in z = y is free,
however, and the substitution occurs.

In the second case, since both occurrences of y are free, both are replaced
by z. But on the left we must not “accidentally” quantify over the newly-
introduced £ — (3 1 » £ # z) would be wrong — so we change (before the
substitution) the bound z to a fresh variable z.

Finally, note that multiple substitution can differ from successive sub-
stitution

Aly\z)lz\y]
but Ay, z\z, ¥

(Fzezfy)ry=y
(Fzezc#z)ry=2z.

i

4.3 FEliminating quantifiers

The following one-point laws allow quantifiers to be eliminated from for-
mulae

(Wzez=t—A4) =Alz\tj]= (Jzez=tAA). ()
If the type T in Laws 75 and 76 is finite, say {a, b}, we have similar laws:

(¥ z:{o, b} » A) Alz\a] A A[z\b] {78)
(3z:{s,b} » A) = Alx\a]Vv A[z\D]. (7T9)

These can be extended to larger (but still finite) types {a, b,---,2}. We
are led to think, informally, of universal and existential quantification as
infinite conjunction and disjunction respectively over all the variables of
our logic

(Vz o A) represents A(z:) A A(m)A--- A Ag,)---
{3z » A) represents Az} VvV A(z) vV A(z) .

Still informally, many of the laws from the section 2 have :rfinttary coun-
terparts, which we investigate in the present section. Throughout, 4, B
and C denote formulae of predicate calculus, z, y and ¢ denote variables
and t denotes a term.

14

4.4 Quantifiers alone

Quantification is idempotent

(Vze(Vze 4)) = (VzeA)

(Qze(Tze A4)) = (Tz e 4).

Extending De Morgans® laws (16 and 17)

—(Vze A) = (Jze-4)
Sz e A) = (Vze-A).

(80}
(81)

(82)
(83)

With the laws so far, a formula can be negated. For example here is the
negation of that cliché from analysis which expresses continuity of [at ¢

(Ve 0e(36>00 (Vzo |z—c|<b—|f(z)—f(c) |<e)))

Be>0e~-(F6>0e(Vzo|z—c|<b—|f(z)-f(c)]|<¢)
(Fe>00(VE6>00- (Vo |z—c|<b—|f(z)—f(c)|<€))
(Fe>0e (V>0 (Fze~(|z2—c|<s—|f(z)-S(c)|< e
(He>0e (V6>0e0 (Fze |z —c|<bn{]f(z)— ()< €))
(Qe>0e(VE>0e (Jze |z—c|<sA|f(2)—F(c)|2€))).

We have used Laws 82, 83, 15 and 23, and have followed standard mathe-

matical practice in writing & > 0 for the type statement

a:{z:R| z> 0}.

4.5 Extending the commutative laws

(Vze(Vyed)) = (Yyo(VzeA)
(3ze(JyeAd)) = (Fye(Ize 4)

15

(84)
(85)

)
)
)
)

)
)

)

4.6 Quantifiers accompanied

Extending the associative and previous laws,

(vzeAAB) = (Vze AJa(Vz e B) (86)
(3zeAvB) = (Jze A)jv(IzeB) (87}
(3zeA—B) = (Vze Ay (3ze B). (88)

Here are weaker laws — implications rather than equivalences (recall section
3) — which are nonetheless useful:

(Vzod) » @zo4) (89)
(Wze AJv(VzeB) = (VzeAdVB) (90}
(VzeA—B) = (Vze A)> (Vze H) (91)
(3ze AAB) = (Jzre AJa(dz e B) {92)
(3zeA)—=(I3zeB) = (z+ A— B) {93)
Bye(vzad)) = (Vze(Iye A). {94)
4.7 Manipulation of quantifiers

If a variable has no free occurrences, its quantification is superfluous
(vzeA) =A ifzisnotfreein A {95)
(3ze A) =A ifzisnot free in A. (98)

Other useful laws of this kind are the following, many of which are
specialisations of Laws 86 to 88. In each case, £ must not be free in N.

(vze NAB)=NA(VzeB) (97)
(YzeNvB)=Nv(vzeB) (98)
(vzeNoB)=N—(VzeB) (99)
(Vze A N)=(Jze AN (100)
(Vvze AANDBB)=(¥Vze A)a N> (Vzre B) (101)

16

(3ze NAB)=NnA{(Jze B) {102)

(3ze NVB)=NV(3ze B) {103)
(3ze N> B)y=N—>({dze B) {104}
(BzeAN)=(Vze A= N {105)
(JzeAada NpB)=(3ze A)aNp(dz«B). {106)

As mentioned in section 4.1, bound variables behave like dummy vari-
ables in mathematics

(vzed)= (Vye Alz\y|]) if y is not free in A (107)
(BzeAd)= (Jye Alz\y]) if y not free in A. (108)

We can write these in the more general form

(Yz e Alz\z])= (Vy e Alz\y]) ifz, y not free in A (109)
(Aze Alz\z])= (T y e Alz\y]) if z, y not freein A. (110)

These laws can be used to convert a formula to prenez normal form.
For example if z and ¢ occur free in A and € but z does not oceur free in
B1

(VMze A=~ (TyeB))(Vze(Vye ()
((vzeA)—=-(JaeBly\a])) = (Yoo (Vce Clz,y\b,¢])
(WzeA) 5 (Vae-Bly\a])) > (Vbe [VeceClz,y\b,]))
(Vae(Vz e A)—>-Bly\g]) = (Vbe (Yce Clr,y\b,c]))
(Vae(Iz e A— -Bly\a))) = (Ybe (¥co Clz,y\b,c])
(Fae(Vz e (A—-Bly\a]) > (Ve (¥ce Clz,y\b,ec]))
(Fae(vVz e (Vbe(Vce({d—-Bly\a)— Clz,y\b, <))

[T o 1 |

where a, b, ¢ are fresh variables.

Finally, extending the fact that A A B is a lower bound and AV B an
upper bound for A and B, we have

(Vzed) = Alz\t] {111)
Alz\t] = (T z e A4). {112)

17

by (108), (107)
by Law 83

by Law 99

by Law 105

by (105), (100)
by Law 99,

