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Laws of the Logical Calculi 

Carroll Morgan and J. W. Sanders 

September 14, 1989 

Abstract 

This document records aome important laws of classical predica.te 
logic. It is designed as a reservoir to be tapped by U8ers of logic, in 
system development. Though a systematic presentation is att.empted, 
many of the laws appea.r just because they happen to be usefuL. 

Introduction 

The formulae of predicate logic are cOll.':ltructed from: terms, denoting val­
ues (for example, %+1); predicate symbols denoting properties (for example, 
[sEven)j logical operators (negation ..." conjunction A, disjunction v, impli­
cation --t and others) i and quantifiers (for all V and there erists:3), This is 
such a formula 

(\I z. IBEv<n(z) ~ IBOdd(z+l)). 

It happens to be true if we give [sEven, IsOdd, and + their conventional 
meanings, and take the quantification V to range over integers. The selec­
tion of such meanings - conventional or otherwise - is called an inter­
pretation. Interpretations fix the meanings of predicate symbols (IsElJen), 
function symbols (+), constants (1), and the range of quantifiers (x ranges 
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over integers). However1 the meaning of the logical operators is the same 
in every interpretation. 

Most of the laws below are of the form A = B. where A and B stand for 
arbitrary formulae. These equalities state that A is true exactly when B is, 
no matter what the interpretation. Thus the equalities are useful whether 
reasoning a.bout digital hardware or the Examination Decrees. 

Note that A = B is not it8tlf a formula, even though A and B arei it 
is a statement about formulae, saying that they are equal - hence inter­
changeable. (The statement 1 + 1 = 2 is not an integer, though both 1 + 1 
and 2 ate.) So we can as UBUaJ in mathematics write chains of equalities 
A = B = G = ... meaning·A = B and B = C and C = ...". 

2 Some propositional laws 

Throughout this section A~ B and C denote formulae of predicate calculus. 
The laws are propositional because they do not deal with the quantifiers 'V 
and 3 or with substitution. 

2.1 A distributive lattice 

The propositionaJ connectives for conjunction, 1\, and disjune tioD, v, ate 
idempotent, commutative, associative and absorptive. and they distribute 
through each other. Thus the formulae modulo = form a what is known as 
a distri6utivt lattiet1 • 

1Bnt )'00. do l10t l1eed to know tbia in order to undentand them. 
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2.1.1 IdelIl.potence of 1\ and v 

Conjunction and disjunction are idempotent connectives 

A 1\ A = A = A V A. (1) 

2.1.2 Com.mutativity of 1\ and v 

Conjunction and disjunction are I:ommutative connectives. (Sometimes the 
adjective 8f1mmetril: is used instead of commutative, but we follow mathe­
matical tradition and reserve that for describing relations rather than op­
erations.) 

AI\B BI\A (2) 
AvB BVA. (3) 

2.1.3 Associativity of 1\ and V 

Conjunction and disjunction are assol:iative connectives 

AI\(BI\C) (A 1\ B) 1\ C (4) 
A V (B V C) (AVB)VC. (5) 

Laws 1 to 5 mean that we can ignore duplication, order and bracketing 
in conjunctions A 1\ B 1\ '" 1\ C and disjunctions A V B V ... V C. This 
enables iterated conjunctions and disjunctiontl to be expressed in prefix 
notation indexed by a set2 • 

2What happens to such nota.tion for connectiVe! which are merely commutative and 
assoda.tive? 
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2.1.4. Absorption laws 

Sometimes terms can be removed immediately from expressions involving 
both conjunctions and disjunctions; this is absorption 

A II (A V B) = A = A V (A II B). (6) 

2.1.5 Distributive laws 

The distribution of A through V is reminiscent of the distribution of multi­
plication over addition in arithmetic. But in logic, distribution goes both 
ways: V a.lso distributes through A 

AII(BVO) = (AIIB)V(AIIO) (7) 

A V (B II 0) (A V B) II (A V 0). (8) 

These laws extend to distribution over any finite conjunction or disjunction. 

2.2 A Boolean algebra 

In the previous laws We can think of A A B as the smaller of A and B: that 
is, A yields the minimum of its arguments. Similarly V yields the maximum. 
This intuition is relied upon in the next laws: the constants false and true 
act as minimum and maximum respectively of the distributive lattice, and 
negation.., acts as a complement. This converts the lattice into a Boolean 
algebra. 

2.2.1 Maximum and minimum 

The constant false is the minimum of the lattice and true is the maximum 

AAtrue = A (9) 
A V true = true (10) 
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A /I/al.. false (11) 

A v false A. (12) 

2.2.2 Negation complements the lattice 

Nega.tion ..., acts as a complement of the distributive lattice 

A /I ~A = false (13) 
A v ...... A = true. (14) 

Furthermore it is an inuolution 

...,...,A=A (15) 

and it satisfies De Morgan's laws 

~(A /I B) ...,AVoB (16)
 
~(A V B) ...,A /\ -,B. (17)
 

These laws extend by induction to negations of finite conjunctions and
 
negations of finite disjunctionss. 

2.2.3 Further absorptive laws 

With negation, we have two more absorptive laws 

A V (~A/I B) AvB (18) 
A /I (~A V B) A /I B. (19) 

2.2.4 Nonnal forms 

A formula is in dlsiunetive normal form if it is a finite disjunction of other 
formulae each of which is, in turn, a conjunction of single letters or their 

"For "infini~e" onel, we mU6t wait for Law8 82 and 83 in lIection 4. 
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negations. (Although those letters may themselves stand for other fornlU­
lae, we ignoN! that structure here.) Conjunctive normal form is defined 
complementarily. 

Laws 7, 8, 16 and 17 serve to convert any proposition to either disjunc­
tive conjunctive normal form, and Laws 13 and 14 serve to remove adjacent 
complementary terms. For example 

Ah(BA C AA) 
AA(~BV~CV~A) by Law 1 
(A A ~B) V (A A ~C) V (A A ~A) by Law 7 
(A A ~B) V (A A ~C) V fa/Be by Law 13 
(AA~B) V(AA~C) by Law 12. 

The second formula above is in conjunctive normal form and the third, 
fourth, and fifth are in disjunctive normal fOrID. 

2.3 Implication 

Implication _ can be defined by the law 

A _ B = ,A V B, (20) 

and this leads on to the laws below: 

A~A true (21) 

A~B ~(A A ~B) (22) 

~(A ~ B) AA~B (23) 
A~B ~ ,B-'A. (24) 

The last above is called the contrapositive law. Useful special cases of these 
are 

~A - true true (25) 
true _ A (26)= A 
A ~ false = ~A (27) 
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false - A true (28) 
A_...,A ~A (29) 
...,A_A A. (30) 

The next two la.ws distribute _ through finite conjunction and disjunction4 
• 

C ~ (A II B) = (C ~ A) II (C ~ B) (31) 
(A V B) ~ C = (A ~ CJ II (B ~ C). (32) 

The laws above are useful in negating an entire formula: that iS 1 in 
moving an outer-most negation as far in as possible. For instance 

~(A II (8 ~ (~A V C))) 
~A V ~(B ~ (~A V CJ) by Law 16 

= ~A V (B II ~(~A V CJ) by Law 23 
= ~AV(BIIAII~C) by Law 17. 

Here we have reached disjunctive normal fOrIDj but we can continue 

(~A V B) II (~A V A) II (~A V ~C) by Law 8 
(~A V B) II (~A V ~C) by Laws 14,9 

= ~A V (B II ~C) by Law 8 
= A- (BII~C) by Law 20. 

FinaUy, we have these laws , true in any Boolean algebra 

AIIB=A 
iff AvB=B (33) 
iff ...,A V B = true. 

2.3.1 Extra	 laws of implication 

The following laws are useful in showing that successive hypotheses may be 
conjoined or even reversed 

A ~ (B ~ C)	 = (A II B) ~ C (34) 
= B ~ (A ~ Cj. (35) 

tFor their infinite counterparlll, see LawllI 111 aDd 112. 
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The next law is the basis of definition by cases: 

(A ~ B) A (~A ~ C) = (A A B) V (~A A C). (36) 

It extends to finitely many Ai, provided they are pairwiae exclU6ive (Ai" 
Aj = false for i # j) and overall ,%ha""liv, «V; A;) = Iru,). Law 36 is 
often helpful when reasoning about specifications which are expressed like 
the right-hand side: the first disjunct describes the normal behaviour and 
the second describes the error case. NonetheleBS it may well be easier to 
reason about the behaviour using implication, and so the Jaw comes into 
play. 

2.4 Other connectives 

In this section we consider some other propositional connectives: equiva­
lence, +-+; exclusive or, Vi and the conditional connective with three argu­
ments, If _ then _ else _ . 

2.4.1	 Equivalence 

Equivalence is defined from first equation below 

A _ B	 = (A ~ B) A (B ~ A) (37) 
= (A A B) V ~(A V B) (38) 
= ...,A ...... ...,B. (39) 

AIBO 

A_A = true (40) 
A +-+ ...,A ~ fals' (41) 

A ...... true = A (42) 
A +-+ false = ~A (43) 

A _ (A A B)A~B = (44)
 
B~A = A _ (A V B) (45)
 

A V (B _ C) = (A V B) _ (A V C). (46)
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Equivalence is commutative and associative 

A-B = Bt-tA (47) 
A ~ (B ~ 0) = (A ~ B) ~ 0 (48) 

and1 from Law 331satisfies E. W. Dijkstra1s Golden Rule 

(A 1\ B ~ A ~ B ~ A V B) Cc true. (49) 

2.4.2 Exdusive or 

Exclusive or I \J, is particularly useful in the description and development 
of digital systems. It is defined by one of the following three equivalent 
equations 

AVB =	 ~(A~ B) (50) 
(~A 1\ B) V (A 1\ ~B) (51) 
(A V B) 1\ ~(A 1\ B). (52) 

Exclusive or is commutative and associative 

AVB = BVA (53) 

(A V B) V 0 = A V (B V 0), (54) 

and satisfies 

AVA = false (55)
 
A \l..,A = true (56)
 

A \l true = ..,A (57)
 
AvfoJse = A (58)
 

AI\(BVO) = (AI\B)V(AI\O). (59)
 

These laws can be used to prove, for insta.nce1that the three assignments 

x := x 9 1/; 1/:= x \l 1/j x:= x \l 1/ 

suffice to interchange the Boolean values of x and 1/ without the luxury of 
an intermediate variable. 
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2.4.3 The conditional 

The familiar if _ then _ else _ construct from programming we will write 
A <l P t> Bj it is defined 

A<lPto-B = (P~Al"(~P~B). (60) 

Its main properti~ follow from this definition and the previous laws: the 
binary operator _ <l P t> _ is idempotent and BBsociative 

A<lPto-A A (61)
 
A <l P to- (B <l P to- C) A<lPto-C (62)
 

(A <l P to- B) <l P to- C (63)
 

and it distributes through _ <l Q t> _ in both directions 

A <I P to- (B <l Q to- C) (A <l P to- B) <l Q to- (A <l P to- C) (64) 
(A <I P to- B) <l Q to- C = (A <l Q to- C) <l P to- (B <l Q to- C). (65) 

The next pair of laws enable a conditional to be expressed as a truth func­
tion of ita components 

A<l true t>B = A (66) 
A <lfalse to-B = B (67) 

and the following laws assist in the simplification of conditional expressions 

A"B = A <l B to- B (68) 

AVB A <l A to- B (69) 

~A false <l A to- Irue (70) 

true <l A t> false A (71) 
A <I (B <l P to- C) to- D (A <l B to- D) <l P to- (A <l C to- D). (72) 
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Equality and ordering 

With the laws so far I we can show that A = B iff A +-+ B = true. For only 
if, we use Law 40j (or ill we proceed 

A 
A ........ true by Law 42 
A~ (A B) by assumption 
(A ..... A) B by Law 48 
B by Laws 40, 42. 

By analogy, we define the relation::::} between formulae so that A ::::} B 
iff A ---+ B = true. This allows us to write chains A ::::} B ::::} C=>··· 
meaning "A::::;.. B and B => C and C::::}· ..". 

We have that whenever A ::::} B 8Jld B ::::} A then A = B also, a.nd in 
fact it is easy to show that::::} is a non-strict partial order over formulae. 
The next laws show that A V B and A /\ B are upper and lower bounds 
respectively of A and B 

A,* (A V B) and B '* (A V B) (73) 
(A II B) '* A and (A II B) '* B. (74) 

Finally, note that all the equalities (33) are equivalent to A ::::} B, and thus 
that::::} is the usual order on the Boolean algebra. 

Some predicate laws 

In this section we consider laws concerning the universal and existential 
quantifiers1 V and 3. Although for most practical purposes we wish the 
quantification to be typed 

("'"ToP) 
(3 " ToP) , 
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where T denotes a type and P a predicate, for theoretical purposes (e.g. 
statement of the completeness theorem) it is more convenient to insist that 
all quantification be untyped 

(V z 0 P) 
(3% 0 P). 

We will adopt untyped quantification 8B our basis; the following laws enable 
us to convert between the two styles 

(V x: T 0 A) = (V Z 0 z: T --> A) (75) 
(3 z: T 0 A) (3 Z 0 z: T II A), (76) 

where the expressions %: T on the right-hand sides are interpreted as pred­
icates meaning "z is of type T." 

Before introducing further laws of the predicate calculus, we discuss 
occurrence and substitution of variables. 

4.1 Occurrence of variables in formulae 

We say informally that a variable occurs in a formula if we can see it 
written there: for example, z occurs in z < y (we are regarding "<" as a 
two-place predicate). But we need to distinguish free and bound occurrences 
of variables in formulae; in the following formula, for example, :x occurs free 
and 11 occurs bound 

(3y o z<y). 

Informally, % occurs free in the formula because it is saying something about 
z: that "there is a number greater than it." But the formula does not say 
anything about y: y just a place-holder. Indeed, we could have used z, 
writing (3 z • z < z), and the meaning would have been the same. This is 
why we say that y occurs bound. 

The concepts of free and bound occurrence are found elsewhere in math­
ematics. In integrals, the '\ra.riable of integration" is bound; below we see 
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that % is free and II is bound 

It %y dy. 

H we evaluate the integral 

%y , 1·=1 % 

=2.:
0 

=2" 

it's clear that the meaning of the expression depends only on %. In this 
sense, evaluating integrals corresponds to lI:eliminating quantifiers" (Laws 
77). 

4.2 Substitution 

We write substitution of a term t for a variable % in a formula A as 

A[%\t] 

and we write the multiple substitution of terms t and u for variables 1: and 
II respectively as 

A[%, y\t, u]. 

In simple cases, such substitutions replace the variable by the term. In 
more complex cases, however, we must take account of whether variables are 
free or bound. Suppose, for example, that A is the formula (3 % • % ¥- 1/) 1\ 

X = 1/; then 

AI"\y] is (3 % • % l' y) /\ Y = Y
 
and A[II\%] is (3 z • z l' %) /\ % = %.
 

The variable z is fresh, not appearing in A. In the first case, % ¥- II is 
unaffected because toot occurrence of % is bound by 3 %. Indeed, since we 
could have used any other letter (except II) without affecting the meaning 
of the fonnula - and it would not have- been replaced in that case - we 
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do not replace it in this case either. The occurrence of x in :z = y is free, 
however\ and the substitution occurs. 

In the second case, since both occurrences of y are free, both are replaced 
by x. But on the left we must not "'accidentally" quantify over the newly­
introduced x - (3 x • x 0:1 x) would be wrong - so we change (before the 
substitution) the bound x to a fresh variable z. 

Fina.lly, note that multiple substitution can differ from successive sub­
stitution 

Alv\xJ\x\vJ (OJ z • z # V) /\ V ~ V
 
but A[V,x\x, vi = (OJ z • z # x) /\ V = x.
 

4.3 Eliminating quantifiers 

The following one-point laws allow quantifiers to be eliminated from for­
mulae 

(If x • x = t ~ A) = A[x\tJ = (OJ x • x = t /\ A) . (77) 

If the type T in Laws 75 and 76 is finite, say {B, b}, we have similar laws: 

(If z: {a, b} • A) A[x\aJ /\ A[x\b] (78) 
(h: {a, b} • A) A[x\a] V A[x\bJ. (79) 

These can be extended to larger (but still finite) types {a, b,···, z}. We 
are led to think, informally, of universal and existential quantification as 
infinite conjunction and disjunction respectively over all the variables of 
our logic 

(If x • A) represents A(x,) /\ A(z,) /\ ... /\ A(z,,)··· 
(OJ x • A) represents A(xil V A(z,) V··· V A(z,,)···. 

Still informally, many of the laws from the section 2 have in./initary coun­
terparts, which we investigate in the present section. Throughout, A, B 
and C denote formulae of predicate calculus, x, y and z denote variables 
and t denotes a term. 

14 



4.4 Quantifiers alone 

Quantification is idempotent 

(V % • (V % • All (V % • A) (80) 
(3 % • (3 % • All (3 % • A) . (81) 

Extending De Morgan.' law. (16 and 17) 

~ (V % • A) ~ (3 % • ~A) (82) 

~ (3 % • A) ~ (V % • ~A) . (83) 

With the laws so far, a formula can be negated. For example here is the 
negation of that cliche from analysis which expresses continuity of f at c 

~ (V E > 0 • (36) 0 • (V %0 1% - c 1< 6 ~I f(x) - ftc) 1«))) 
(3 E >0. ~(3 6 >0. (V %0 Ix-c 1< 6~lf(x)-f(c)l< E))) 
(3 E >0. (V6>0. ~(V%O 1x- c 1< 6~lf(x)-f(c) 1< E»)) 
(3 E >0. (V6>0. (3 x. ~(I x-c 1<6~lf(x)-f(')1< .)))) 
(3 E > 0 • (V 6 > 0 • (3 %0 1x - c 1< 6 Ih(J f(x) - ftc) 1< E)))) 
(3 E >0. (V6>0. (3 %0 Ix-c 1<6/\ If(x)-I(c) 12:.))). 

We have used Laws 82, 83, 15 and 23, a.nd ha.ve followed standard mathe­
matical practice in writing 0: > 0 for the type sta.tement 

a:{x:R 1 x> OJ. 

4.5 Extending the commutative laws 

(V x • (V y • A)) (V y • (V x • A)) (84) 

(3 x • (3 y • A)) (3 y • (3 x • A)) (85) 
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4.6 Quantifiers accompanied 

Extending the associative and previous laws, 

(If % • A 1\ B) (If % • A) 1\ (If % • B) (86) 
(3 % • A V B) (3 x • A) V (3 % • B) (87) 

(3 % • A ~ B) (If % • A) .~ (3 % • B). (88) 

Here are weaker laws - implications rather than equivalences (recall section 
3) - which are nonetheless useful: 

(If % • A) ~ (3 % • A) (89)
 
(If % • A) V (If % • B) ~ (If % • A V B) (90)
 

(If % • A ~ B) ~ (If % • A) ~ (If % • B) (91)
 
(3 % • A 1\ B) ~ (3 % • A) 1\ (3 x • B) (92)
 

(3 x • A) ~ (3 % • B) ~ (3 x • A ~ B) (93)
 
(3 V • (If x • A)) ~ (If x • (3 V • A)l . (94)
 

4.7 Manipulation of quantifiers 

If a variable has no free occurrences, ita quantification is BuperfLuous 

(If x • A) = A if x is not free in A (95) 
(3 x • A) = A if x is not free in A. (96) 

Other useful laws of this kind are the following, many of whkh are 
specialisations of Laws 86 to 88. In each easel % must not be free in N. 

(If x • N 1\ B) ~ N 1\ (If x • B) (97)
 
(If x • N V B) = N V (If x • B) (98)
 

(If x • N ~ B) = N ~ (V x • B) (99)
 
(If x • A ~ N) = (3 x • A) ~ N (100)
 

(If x • A <1 N I> B) = (If x • A) <1 N I> (If x • B) (101)
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(3 •• N /\ B) ~ N /\ (3 •• B) (102) 
(3 •• N V B) ~ N V (3 •• B) (103) 

(3 •• N ~ B) ~ N ~ (3 •• B) (104) 

(3 •• A ~ N) ~ (If •• A) ~ N (105) 
(3 •• A <l N to> B) ~ (3 •• A) <l N to> (3 •• B). (106) 

As mentioned in section 4.1, bound variables behave like dummy vari­
ables in mathematics 

(If •• A) = (If y • A['\yD if y is not free in A (107) 

(3 •• A) = (3 y • A[r\y]) if y not free in A. (lOB) 

We can write the5e in the more general form 

(If •• A[.\rJ) ~ (If y • A[z\yD if., y not free in A (109) 

(3 •• A[z\rJ) ~ (3 y • A[z\yD if., y not free in A. (110) 

These laws can be USEd to convert a formula to prenex normal form. 
For example if z and fI occur free in A and C but z does not occur free in 
B, 

({If •• A) ~ ~ (3 y • B)) ~ (If •• (If y • C)) 
«(If •• A) ~ ~ (3 a • B[y\a])) ~ (If b • (If c • C[., y\b, cD) by (lOB), (107) 
«If •• A) ~ (If a • ~B[y\aD) ~ (If b • (If c • C[., y\b, cD) by Law B3 
(If a • (If •• A) ~ ~B[y\aD ~ (If b • (If c • Gi', y\b, cD) by Law 99 
(If a • (3 •• A ~ ~B[y\aD) ~ (If b • (If c • C[., y\b, c])) by Law 105 
(3 a • (If •• (A ~ ~B[y\a]) ~ (If b • (If c • CI., y\b, c])))) by (105), (100) 
(3 a • (If •• (If b • (If c • (A ~ ~B[y\a]) ~ C[., y\b, c])))) by Law 99. 

where G, b, c are fresh variables. 

Finally, extending the fact that A /\ B is a lower bound and A V B an 
upper bound for A and B, we have 

(If •• A) '" A[.\t] (111) 

A[.\t] '" (3 •• A). (112) 
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