
t.. .~ ...;.c " ­
'" , j .<,~. \ -"I. 

ORDER-SORTED ALGEBRA I:
 
EQUATIONAL DEDUCTION FOR MULTIPLE INHERII'ANCE,
 
OVERLOADING, EXCEPTIONS AND PARTIAL OPER~TIONS
 

by 

Joseph A. Goguen 
Jose Meseguer 

OXford University 
Computing Laboratory 
Programming ResearCh Group-UbllIry8-11 Kable Road 
Oxlord OX1 3QD 
OXford (0865) 54141 

Technica.l Monograph PRG~80 

December 1989 

Odord University Compnting Laboralory 
Programming Research Group 
8-11 Kehle Road 
Oxford OXl 3QD 
England 



»
r-e

 
7

\l 
("

')
()

 
("

')
~=>

::'
 1

 
l'li

 
m

':!
;.~

.d:
' I

,
)(

 
(J

j 
, 

(J
j

~?
:~

 
-

{;
 

0
r, 

"" 
(J

j 
;;;

: 
C

\i ,"
 

C
) 

:r::
 

-+ 
;;;:

_
rf

 • 
!
~

 
0

1'1
' 

r-
i=

'" 
l 

."
 

....
...,

 
tJ

 s.
:
 

N
O

:t>
(J

) 
:0

 
en

 
;;.;

; 
~

 

c::
= 

0 
:z

 
» -t

-tD 
m

 
tD

 
<.

rO
 

~
-
-
-
-
-



-' ,-,-,". , .... 

Order-Sorted Algebra I:
 
Equational Deduction· for Multiple Inheritance,
 
Overloading, Exceptions and Partial OpeTations
 

.~ .....-- ........- '" 

,; : ~ :: 

Joseph A. Goguen·
 
Jose Meseguer
 

Abstract 

This paper generalizes many-sorted algebra (hereafter, MSA) to order· sorted algebra (here­
after, OS A) by allowing a partial ordering relation on the set of sorts. This supports abstract 
data types with multiple inherita.nce (in rougbJy the sense of object-oriented programming), 
several forms of polymorphism and overloading, partial operations (as total on equationally 
defined subsorts), exception handling, a.nd an operational sema.ntics ba.s.ed on term rewrit ­
ing. We give the basic algebraic canstructioD5 for GSA, including quotient, image, product 
a..nd term algebra, and we prove their basic properties, including Quotient, HamolXlorphism, 
and Initiality Theorems. The paper's ma-jor mathematical results include a- notion of GSA 
deduction, a Completeness Theorem for it, a.nd a.n GSA BirkhotfVa.ciety Theorem. We also 
develop conditioaal GSA, including InitiaJity. Completeness, a.nd McKinsey-Malcev Qua­
si~ety Theorems, and we reduce GSA to (conditional) MSA, which aJ.1owslifting many 
known MSA results to GSA. Retra.cts, wb.ich intuitively are left inverses to subsort incla­
sions, provide relatively inexpensive 11UL-time error ha.ndling. We show that it is safe to add 
retra.cts to any GSA signature, in the sense that It giVeli rise to a conservative extension. 
A final section compares a.nd contrasts many different approaches to GSA. This paper also 
includes several examples demonstrating the 8exlbility a..nd O3.pplic03.billty of OSA. includ. 
iag some standard benchma.rks like STACK" a.nd LIST, as well as & mnch more substantial 
example, the number hierarchy from the naturals up to the qu03.temions. 

·Supported in part by Office of Naval Research Contracts NOOOl4-B2-C0333, NOOOl4-B5-C­
0417, a.od NOOOl4-B6-C-0450, National Science Found03.tion Grant MCSB2013BO, &lid a gift from the­
System Development Foundation. 
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1 Introduction 

The essence of order-sorted algebra (hereafter, OSA) is a partial ordering :s on a set S 
of sorls; this subsart relation imposell the reslricliou on an S-sorled algebra A that if 
.!I :s :l in S then A .. ~ A., where A~ denotes the set of elements of sort .!I in A. J\ major 
motivation is to correctly handle erroneous and meaningless expression9, such l.'5 the top of 
an empty stack or division by zero. This has been an important prohlem from the earliest 
days of the algebraic approach to abstract data lypeIl134]. Error algebra was a first try at 
a more elegant solution 116J, but unfortunately error algebra specifications do nol a.lwa.ys 
have initial algebras (65]. OSA, which originated in (171, provides what now seems a folly 
satisfactory and very fiexibII' approach that provides: 

I. Several forms of polymorphism and overloading; 

2.	 Error definition, detection and recovery; 

3.	 Multiple inheritance; 

4. Selectors when there are multiple constructors; 

5.	 Rntracts, which (iutuitively) are left iuverses to subsort inclusions; 

6.	 Partial operations made total on eqllationa.lly defined subsorts; 

7.	 An operational semantics that executes equations as (left-lo-right) rewrite rules; and 

8.	 A rigorous model-theoretic semantiCl'i for allthe!;e features. 

The research reported here supports OBJ, a programming language with rnil.thf'mati~al 

semantics given by order-sorted algebra, and opcrational semantics given by order-sorted 
term rewrlting (18,13,14,221. Our experience with ODJ shows that subsorts are enormously 
helpful in practice, siuce they can greatly improve both expressivity and readability. 

1.1 Type Disciplines
 

A .type discipline for a programming language has two main benefits:
 

1.	 it facilitatcs conceptual clarity by makiug explicit the restrictions on the arguments 
aud results of operations, and • 

2.	 it allows simple checks at prog,am entry time that can catch many errors before 
compilation or execution are attempted. 

Thl'" most obvious type discipline is strong typing, where each operation has a fixed 
sequeuce of argllmenttypes and a fixed result type. Many-sorted algebra (herearter, MSA) 
formalizes this (or first-order operations, hy intf'rpretiug !'trongly typed synhx in many­
sort('d algebra. However, traditioual strong typing ill both (00 rigid and too inf'xpressive. 
Order-sorted a,lgl"'bra overcomes both limitatiOn!> by combining two key idea,s: inheritance 
and subsort polymorphism. 

1.1.1 Inheritance and Polymorphism 

Inheritance as a programming langl1age feature developed from th~ Simula la.Jlguage [12], 
and intuitively corresponds to inchlsion of concepts, as found in natural language. For 
I"'xample, we say that every hound is a dog and that every dog is a mammal, because 
our concl'pt of nlammal include; that of dog which in turn includcli that of hound. If we 



associate an ertension to each concept, the set of objects that fall under it (e.g., the set of 
all hounds, or the set of all rational numbers), then indusion of concepts appears a.<; set­
theoretic inclusion of the corresponding extensions. The obvious way to fo..-malize this kind 
of indusion is by a partial ordering, that is, a reflexive, transitive, anlisymrnetric relation. 
For example, the names Natural, Integer, and Rational !iali!;fy the relation 

Natural < Integer < Rational 

and their extensions, denoted N, Z, and Q respectively, !iatisfy the corresponding subset 
indusions, N~Z~Q. In order· sorted algebra, names such as Natural and Rational arC' 
called sorb, and belong to the syntax, while the extensions N, Z, Q belong to an irllerprf'­
ration of the syntax, that is, to an (order-sorted) algebra. The synlax is called a signatUl'"e 
and consists of a family of .<;orls, ordered by a partial order relation of inheritance, plus a 
family of oppration symbols with appropriate type information <IS discussed below. 

A very attractive feature of stamlard mathematical notation is thaI. it allows using on<' 
symbol for several different bnl related operations, so that in applying this symbol w(' nlay 
not even fMlize that we ue moving about within the type hierarchy in 3. quite fr('(' way. 
This is nic<'ly i1hll;trated by the number hierarchy. We can add 2 + 2 (two natura].<;), or 
-7 + 2/3 (all integer and a rational), or l/S + 7/9 (two rationals), or 2 + 3/29 (a natural 
a,nd a rational). This flexihilit.y comes from combining the "overloading" of the + symhol 
for a,ddHion with inheritauce among naturals, integers and rationals, in such a way that no 
matter which addition is used, we get the same result from the same arguments, whenever 
they make seme. We summarize this situation by saying thal + is subso..-t. polymorphic. 
A.s discussed in the n('xl subsection, this is only one of several different wa.ys that the word 
"polymorphic" is used. 

1.1.2 Polymorphism is Polymorphic 

The term "polymorphism" wa.<; introduced hy Christopher StracheJ to express the nse 
of a sil\gl~ operation symbol with differeut meanings in a programming langllag<,. He 
distinguished two main forms of polymorphism, which he called ad hoc and parametric. III 
hi!> own word!> (75]: 

In ad hoc polymorphi!>1JI thNe is no simple sy.<;tematic way of dete rrninjn~ the 
type of the resnll from t.he type of the argu!uents. There may be severa,1 rules of 
limited extent which reduce lohe number of ca.<;es, bill these arc themselves ad hoc 
both in scope and content. All the ordinary arithm('tic operations and functions 
come into this category. It seems, moreover, that the automatic in!>erlion Df 
lran~fer functions by the compiling !>ystem is limited to lld.<; class. 

Pa,ra.metric polymorphi!>m is more regula.r and may be iIlust..-ated by an 
example. Suppose f is a function whose argnment is of type 0 and whose rermlt 
is of t:ype (1 (so that t.he type of f might b~ written (t ...... (1), and that L is a 
Jist whose elements arc all of lype 0 (so that the typP of L is otist). We can 
imagine a function, say Map, which applies f in turn to each mem bN of Laud 
makes a lisl of the results. Thus Map!f,Lj will produce a {3list. We would like 
Map to work on all types of list provided f was a suitable function, 50 that Ma_p 
would have to bp polymorphic. However its polymorphism is of a. particularly 
simple parametric typ<, which could be written (0 --+ (1,olist)----+ {31ist, wh<'re 0 
and (3 sland for any types. 

St.rache)"s distillction is b<lSed on the kind or semantic relationship ihat holds between th<' 
differ('nt meanings of an operation symbol, and it sugge!>ts a. spectrum of possiblf' styles fDr 
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the mnltiple use of an operation symbol, in which the more "regular'" the tdationship is, 
the easier it is to do type inference, and the closer it is to parametric polymorpbism: 

•	 ad hoc in its strongf'St sense indicate9 semantically unrelated uses, mch as + for 
both integer addition and Boolean disjunction. (Even in such an extreme case, there 
ia sHU the tenuous connedion lhat both instances of + are associative, commutative, 
and have a.n identity element.) 

•	 multiple representation when the uses are related semantically, but their repre­
sentations may be different, as with Strachey's arithmetic system. 

•	 llubsort polymorphism where thE' different instances of an operation symbol arf' 
related by inheritance (interpreted M subset indnsion) such that the result do('s not 
d('pend on the instance u!;ed, a.<; with + for natural, integer, and rational nllmhers. 

•	 pa.rametric polymorphi~m, as in Stradey's Map function; this i:- implemented 
in higher order functional programming languages ,;nch as Hope [5). ML [39) anlJ 
Miranda [77J. 

OSA distinRuishes and supports all fOllr style9 of polymorphilim. Ad hoc polymorphism is 
slIpport('<f by signatures in which th(' same symbol is I1sed for sorts thaJ are unrrlated in the 
inhf'ritance hierarchy; subsort polymorphism jl[ inherent in the nat.ure of OSA, as already 
explained. The implementation ofarithmf'tic described by Strachey involves "lransfer func­
tions" (which might now be called "coercions") to change the represenl.a.lion of numhers. 
nut coerciOns are not net>ded for subsort polymorphic operations, since inherita.nce appears 
as subset indu.~ion or the data element::;; also, for rpgular signatures (Definition 2.3 below), 
any expression involving subsort polymorphi~m has a smallest sorl. OSA also nicely !\C. 

comodates coercions and multiple representation polymorphism, a.::; discussed in 12fl) and 
briefly reviewed in Section 1.5 helow, while parametric polymorphi::;m is provided by pa­
rameterized ordered-sorted algehras such as LIST[l] that provide higher-order capabilities 
in a first-order setting (20J. These are called parameterized objects in the OBJ language 
(13, 14, 18), and their Semantics will be treated in Part III of this paper. 

1.2 Logical and Operational Semantics 

The orip;inal vision of "logiC programming" called for IIsing pure first. order predinte calcullls 
directly as a programming lanp;nage (181. As has been WE'll argued by Prolog 1Hlvoca.tes 
«('.g., [73]), this confers some imporlant benefits, including: program simplicity "'nd clarity 
(which can greatly ea.s(' program undNstanding, reusabilit.y, debugging 'lud maintenallce); 
separation of logic and control; and identit.y of program logic with proof logic. In such a 
language, a high level description of what a program does is actually a program, and call he 
executed. Prolog pO, 9] only partially realil.es this vision, since it has many features with 
no ,orresponding feature in logic (e.g., cut, is and assert), and also lacks some important 
featllres of logic (e.g., semantic equality and true negation). 

We believe th at the many advantages claimed for logic programming are all compromi,;E'd 
to the extent that it fails to realizE' a pure logic. Consequently, a major goal of our research 
has bet>n to create powerful programming languages that are based IIpon pure logicli and 
}'d still sllpport truly practical programming. An important advantage of logic-basl"d 
lanp;uages is that they aTe more convenient ror parallel machine~, since the compiler and 
operating system can ('xploit whatever Concurrency is actually available in the program and 
the particular target rna,hine, because programs are not tjed down to particulu control 
strategies (s{'{(uential control in traditional imperative languages, and tasking, rrndezvous, 
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etc. in im(H"u.tive languages providing ~xplicit concurre'ncy). To this end, we have taken 
the broad view:2 that a logical programming language I:. consists of; 

•	 a well'llnderstood3 logical system I together with two subclasses of s@ntence called 
statements and queries, 

such tha.t 

•	 an l'. program P is a finite set of statements, 

•	 every program has an initial model4 , which gives its denotationaJ semantics, 

•	 operational semantics is a (reasonably efficient) form of deduction in I, and 

•	 a query is satisfied in an initial model of P if and only if it can be proven from P 
(thiB is a form of completeness). 

We can now define an answer to a query to be some property of a proof of the query; 
for example, we might extract a value for each variable that occnrs in the query. This 
definition of logical programming explicates the perhapB mote familiar notion of dec/amlilJe 
progmmmi1l9, in which programs tell what properties the result should have, rather thau 
how to calculate il.. We claim that programs in logical programming la.nguages are N.sier 
to read, understand, write, debug, reuse, modify, maintain, and verify; we also claim that 
it iB ea.<;ier to build environments to support sneh langllages; ill particula.r, it is ea.<;ier to 
build debuggers (sef' (63] for a discnssion of some serious difficulties that arise in tryitlg to 
implement a dE'bngger that can handle Prolog's cnt). Logical programming in this general 
sense includes: 

•	 functional programming, where th(' logic is some kind of equational logic, i.e., a 
logir of the snbstitution of eqnals for ~qlJaJs; for example, ODJ is ba.";l'd on first order 
order· sorted equational logic, and th ... usual higher order functiona.l programming 
languages can be seen as b;Jsed upon higher order eqnational logic. 

•	 relational (i.e., predicale, or lIorn clause, or "logic"') programming, where the logic 
is fir~t order Horn clause logic (without eqnality), a.5 in pure Prolog [51). 

•	 multiparadigm programming, by combining the underlying logiral systems, for 
example, to get combined rf'lational and runrtional programming from 1I0rn cla,use 
logir with equalit.y as in Eqlog 125), combined funelional aud ohject-oriented pro­
gramming from reRective eqll3tionallogic as in FOOPS [291, and all three paradiF!:ms 
together from a reftecli\'e Horn r1all~~ logic with eqnality <\.S in rOOPlog (29). 

Logical proj;!;r(l,mming can be given a prlO'cise grounding using the notions of inst.itution 
[21) and 10gicaJ system [53), and this is in part responsibllO' for the cleanlin('sI> and simplicilY 
of the various languages lhat we have designed. A logical programming 1a.l1gllage "wears its 
semantics on its sleeve" and does not need the complex machinery of Scott-Strachey-styllO' 
"'denotational" semantics pO, 74] or of Hoare-style "axiomatic" semantics [42]. in fael, we 
would claim that a languagf> thal call only be given a semantics in one of these styles, and 

- I he ba..ic in~ui~ion~ lnr !h;~ ~iew were e:r:I'res~ed in [25J .and fmm&lized using in.<Lt.illlli""u in [19J The 
definition below i~ &n iblormAl uJXl"ilion 01 the more recenl formaliutioo in [53]. 

'In p&rLkuliIJ. there "hould b" reasonably 9imple notions of sentence, deduction, modellLnd :;a.lis[&ction, 
prderably with a rompletene!ls theorem. uying thu the nolion of de-ductioll is fully a.dequllle for the 
notion of model, in the sense thal gi~en ny ~t l' of >lentencffl, &nother !Oenltnce 3 can he ded"o;:e.:! from l' 
if and only if every model of l' ~&li8fit'\< J. 

'In llQme sense. initial mooel9 ue ~..land&rdn or "mOll! PtototypicAl~ model ..; o>ec below (or more det",iL 



thus is not a logical programming language, is jnst too complex. Strictly speaking, most 
functional programming languages are not logical programming languages in our sl"nse, since 
tbey have features which are not consistent with any simple deductive or model·theoretic 
semanlic.s5 • 

Although equational deduction by undirected replacement of equals by eqllals can be 
very inefficient, directed replacement (Le., term rewriting) can be much faster. For exam­
ple, [6J) claims speeds comparable to compiled Lisp on sequential machines for a (r($tricted) 
class of equations, and the R1>write Rule Machine Project at SRI is developing a parallel 
architecture on which term rewriting promises to be much more efflcient than conventional 
lilnguages on conventional machines [50, 30J; see also (45) for a survey of efficient imple­
mention techniques for higher order functional programming. Term rewriting provides a 
complete deductive system for equality, and any expr('Ssion reduces to a unique "canoni­
cal form" (one that cannot be further rewritten), provided certain simple conditjon~ are 
satisfleds . Thu!', the proof theory oforder-60rted equational logic developed in t.his paper 
gives efficient term rewriting in two different ways, yielding two different OBJ sy~tems: 

• ODJ2	 [22) rednces order-sorted rewriting to many-sorted rewriting using rt'.~u1ts ill 
Section 4 and [22J . 

•	 OIt.]:l mies a more efficient operationalscmantics that does order-.~ort.ed tr:rm rewriting 
directly {47]. 

1.3 Retracts 

In a .~trongly typed programming language, certain expressions may fail strong t.vpe check· 
ing, even I,hough intuitively they have a meaningful value. For example, if the factorial 
fuuction is only defined for natural numbers, then the expression «- 6)/(- 2»! is not 
well-formed, since the argument of the fadorial function is a rational number. However, 
we would like to give such an expression the "benefit of the doubt" at run-time, since it 
might actually evaJuate to a natural (in this case, it evaluates to 3). Retrads provide this 
flexibility by lowering the sort of a suhexpression to the required subsort. In this example, 
the parser inserts the retract function symbol, 

rRational.llatural Rational -> Natural 

to fill the gap, yielding the expression (rRationU,....tunl ( - 6) 1(- 2»)!. R~tract.s only 
disappear if tlleir argument has the required sort. This is accomplished hy "retract equa­
tions" of th{' form 

r~, .•'(%) = % 

where:/ :5 I'l and z is a variable ohort :9'. Otherwise, the retract remains, providing an error 
message that pinpoints exactl}' where the problem occurred. For example, t.he expression 
7 ... ((- 3)/(- 9»!) evalualeslo7 + (rRational,laturalOI 3»!. Theha.~jcresllit 

about retracts asserts its sOllndnes.~, in the sense that adding retracts and retract equations 
to an order-sorted specification is a {'"otlservati"e e%lClISioTl, i.e., the original equa.tional de­
duction and standard model are not disturbed. Retracts combine the f1exibilit}, of untyped 
languages with the discipline of strong typing. 

.- ... 
o l"or e:u.mple, M I, hilll assignmenl.5 and e:o:cepLion9, while Miranda has otl hoc c"..rdona among vlI.rioua 

kinds or nnmbers, as _ell iIlI IU1 pUlern mlltching. 
!These conditj"n8 are Lhll.l lhe equdions, _hen viewed as rules. ATe terminating and Chu,ch_Rn~r; in 

the order-sorted case. one mut &lao 1l.'IlllIme that lhe rules are 90rt.decreasing. 
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1.4 Exceptions and Partial Operations 

It is very diffirnlt to handle ex<:eptionaJ expressions, sll<:h as division by zero or the top 
of an empty sti\Ck, within a strong typing discipline. For example, there is no satisfactory 
way to spedfy a type M simple a.<; stack of naturaJ number, because top(ebtpty) should be 
a natural nnmber but isn't. Rational numbers are even worse, becanse avoiding division 
by zero requires heavy nse of "hidden fun<:tions" and "error constants." However,OSA 
provides very simple solutions to all these problems. For stacks, it suffices to spedf)' a 
subsort of nonempty stacks, NeStack < Stack, such that top and pop have lIeStack "-" their 
argnment sort. Similarly, for rational numbers, it sullkes to specify a subsort NzRational 
< Rational of nonzero ratiouals such that division has NzRational a..<; its second (divisor) 
argnment sarlo 

OSA supports in a natural way many different stylps for dealing with errors and part.ial 
operations. The two examples discusficd abovp mil.ke the oppralions well-defined hy spf'dfy­
ing an appropriate doma'ln subsort. More generally, the domain of a partial operatioll ll1ay 
be specified by a condition; for example, to compose two paths in a graph, the end vertex 
of the first patb should <:oincide with the source vertex of the semnd. Such wnditions are 
called sort constraints. In other cases, the best approach may tH' to provid(' an error 
supersort. For examplp, an opNation to read the valne, of sort Value, of ",n arr<lY in 
a given po~ition could hav(' valu(' sort Value?, a supersort of Value, that contaills f'rror 
messages for atlempling to read at positions where no value is stored. Part II of this paper 
will cover all t.hese different il.pproaches and their semantics, also discllssing how lhey rdale 
to other solutions, such a.<; partial aJgebra.<; and error algebras. 

1.5 Constructors, Selectors, MUltiple Representations and Coercions 

Structured <lala are generally composed by construdor,91lJld decomposed by sf'lcdor,9. The 
inadequacy of strong typing for t.he slack example is a speciaJ <:a.se of wh~l we call the 
constructor-selector problem: for a given constrll<:tor, to define operations that relrieve 
its components. Although lhis problem is insoluble in MSA (many-sorted alg!'bra), it has 
a simple solution in OSA (28). 

There are also many problems where one wanls lo represent data in more lhan one wa}", 
a.nd then convert freely among the r('presentations, using whkhever is more <:onvenient 
or efficient in a given ron text. This is multiple representalion; for ('xample, f.ollsidl'r 
Carte~ian and polar coordinil.tes for poinls. Tpere are other problems where one wants 
to con veri from one sort of data to another in an irreversible way; for example, lo apply 
integC'r addition to two rational numbers, one mighl firsl lruncale them; this illuslrales 
coercions. ~1lJJtiple represenlation is a spedal case of coerdon, since the selectors for one 
representation applied to data of another can be <:onsidered mediated by coerdolls that 
change the representation. Thc difference is that conversions bet ..... ('en multiple represf'nta­
lions are necessarily rf'versible, i.e., are isomorphisTn~_ OSA also provides an initial algebra 
semantics for all these constructions [281. 

1.6 About this Paper 

After introdudng the b;\..<;ic concepts of OSA, tbis paper gi~'es a detail('d accounl of order­
sorted l"qualional deduclioll, illduding a compleleness theorem and an initial algellTa con­
struction for conditional equations. This machinery is lhen applied lo show that adding 
retracts is a conservative extension. A rednction theorem shows thal encodi ng order-sorted 
algebras <IS !DAlly-sorted aJgebras yjf'lds all eqllivalen<:e of <:ategories, which can then be ex­
ploited to prove a general exislence lheorem for initial algehra.<; (it applies even when terms 
do not have a lea..'it sort) as well a5 simple proofs of OSA McKinsey-Malcev Quasi~'atiety 
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and Dirkhoff Variety Theorems. A final section comparc!!; ollr notion of order-sorted alg~bra. 

to others in the literature. To help the reader's intuition and illustrate thl" l"xprellsive case 
of OSA, a number of exampll"s are given using an OBJ-Uke syntax:. Appendix A gives a 
more ambitious example, ODJ code for a number hierarchy from the naturals up to the 
quaternions. 

This paper has been a long time in gestation. The first paper on order-sorted algpbra 
\17) was writt~n in 1978, but never publishE'd bKause it seemed so posflible iIJld desira,ble 
to simplify and generalize its approach. Thl" present pap~r finally fulfills the promise of 
[17], wilh suitable simplifications and generalizations, and it also treats some new topics, 
induding order-sorted equational deduction and model-theoretic rl"'Sults about varieties and 
qua.si-varieities. Several versions of the prf'sent paper have been drr.ulated fairly widely; 
their litles are slight variations of the current title, and their dates indude '1 March 1985, 
'1'1 October 1986, and 17 May 19~8. The last of these reflects our decision to split the paper 
into three par los, as further disclIssed in the subsection below. In the meantine, a rathpr 
large literature has grown llP around order-sorted algebra and its applications, and {,rying 
to take proper account of it has slowpd llS down further. 

1.8.1 Brief Overview of Subsequent Parts 

Part II of this pap~r will r.onsider exception handling ami .~nrt comtraints in rl"tail, in" 
eluding several error recovery and error specification disciplines and their soundn('ss, and 
comparing retrads, error supersorts and strict and unsafe operations. It will also discuss 
the very important topic of sort constraints, which permit defiuing subsorts by ('\'\uational 
conditions. The main thf'orem for sort constraints is an initial algebra construction reducing 
the problem to order-sorted eqnationallogic. Part III will give an algebraic semantics for 
parameterized order-sorted abstract data types with the related concepts of tlit'Ory, view 
and modulf' expression, as in OnJ [13. 11] and Clf'ar {:l, 1J. This supports the elTedive 
inlegration of the programming and assertional a.sPfftS of On.1, which ma.ke it a "wide 
spectrum" langll<l.ge. 
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7 



2 Order-Sorted Algebra 

This section contains the most basic definitions and results of OSA, including signature, 
algebra, homomorphism, term, least sort of a term, inHiality, equation, sa.tisfaction, subal­
gebra, quoti",nl, congruence, image, the Homomorphism Theorem, and pTodnct. 

2.1 Signatures 

The notation of sorted (also called "indexed") sel!! greatly facilitates the technical develop­
ment of both MSA and OSA. Civen a "sort set~ S, an S-sorted set A is just a family of 
sets A.. for each "sort" !l E 5; we will write {A .. I !J E S}. Similarly, given 5-sorlcd sets A 
and B, an S-sor·ted (undion /: A ..... D is an S-sorted family f '= {f.: A ....... 8 .. 1!J E 5J. 

In lheorder-sorted C<l.Se, S is a partially ordered Bel, or posel, i,e., there is a binary 
relation ~ on S that is reflexive, transitive, and antisymmetric,in t.he sense th;,.t z:$. yand 
y :$. z imply z :.-:. y. Every poset also has an associated relation <, defined by x < y iff x :$. y 
anrJ z 1:- y, that is transitive ;,.nd antireftexive in the sense that ..,(x ( oX)_ We will orten 
use the extension o[ the ordering on 5 to strings of eq'lJallength in S· by 81 ...8 n :$. .~~ ...8~ 

iff 8;:$. .~: for I:$. i:$. n. Similarly,:$. extends to pairs (w,s) in S· x 5 by (111,5) :$.(w',s'} 
iff w s.: 11" and s:$. .~'. (These are the orderings that arise [rom poset products.) 

Definition 2.1 A ITlany-sorted signature is a pair (5,E), where 5 is ca.l1E:'r! the' .sort 
set and "E is an S· x S-sorted family {Ew,.lw E S·and s E 5}. Eleme'nts of (the' sets in) 
E are c;,.l!..d operation (or function) symbols, or ror short, operations. All order-sorted 
signature is a triple (S,:$., E) such thai (5, E) is a manY-50rted signature, (S,:$.) is a poset, 
and the operatioh.'i satisfy the [allowing mono tonicity condition. 

(] E E"'l,.t n E lL'2 ••1 and wI :$. w2 imply 81 :$. 82. 

When the sort set 5 is dear, we write E [or (5, E), and when the poset (5,:$.) is dear, we 
",,-rite E [or (5,:$., E). When (7 E E,.". we say that (7 has rank (w, s), sri ty 111, and (viI.lne, 
or result, or coarity) sort 8. 

We rna}' write (7: 111 --- s for (7 E Ell',. to emph<l.Size that (1 denotes a [unelion with arity 
wand sort~. An important special ca:;e is 111 ::: .\, the empty string; th(,11 (7 E E.\". denote'S a 
constant of sort 8. Notice thal the monotonicity cundition excludes oveTloaded constants, 
becal1se .\ = ",I = 1112 implies..'ll = 82. 0 

Example 2.2 (Lists of Integers) We give an order-sorted signature [or lists or integNs, 
assuming that the rort lnt of integers is already defined. The subsortllleList of nonempty 
Lists is introduced so thaI. the (traditionally partial) head and tail opera.tions can be total 
on this snb60rL The nOlal,ion used in this example (and in subsequent examples) supports 
a powerful and nexible "mix fix" operation syntax; in particular, it aJlow~ prefix, postfix, 
infix and "outlix" (<l.S in (_I for singleton set formalion). Here the kIll uuderbar character 
(_) is a placeholder in an operation form that shows where to Pill an expression whose sort 
is less than or equ;,.l to the kIll sort in the sort list (which occurs between the: ;,.Ild the -> 
signs); the value sort follows the ->. Also, :$. is written ( for typographic convenience. All 
the1ie syntactic conventions follow OBJ. 

sorts MaList List 
SUbsorts Int ( NeList ( List 
op nil : -) List . 
op List List -) List . 
op NeList List -) NeList 
op head NeList -) rnt . 
op tail : NeLiBt -) List . 
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The douhle underhar operation rorm d~(jnes a juxtaposition notation ror concatenation or 
lists. This concatenation operation is subsort polymorphic, and would be ambiguous in a.n 
ordinary many-sorted signatnre. To rnlly de9crilJ(> the intended model, we need more than 
just a signatnre, we also need equations, algebras, and initiality; these are introduced in 
the subsections below. 0 

Given an operation symbol ~ and a lower bound wO ror the sorh o( its arguments, we 
can roDlIlider the following three conditions: 

(I) There is a least arity (or 0 that is ~ wOo 

(2) Th~re is a least rank for ~ among those with arity 2:: wOo 

(3) There is a least lIlort (or (1 among those with arHy 2:: wOo 

lt turns out that (1) and (2) are equivalent because or monotonicity, and thal both imply 
(3). Signatures satidying (I) are quite basic to our exposition, and are called regular. 
Regular signatureI' both lIllipport a least sort (or terms, and extend the usual word (or 
term) alg~bra constrllction lo GSA (see Section 2.3). Signatures satisfying (3) are caJled 
preregular, and are di.~culiSed (urther in Section 5.2 below. 

Definition 2.3 All order,sOfte(1 sigllature E is regular Hf given ~ in E,ul,'l and given 
wO:O:;: wI in S· there ill a I(last rank {w,S)E 5· x S such that wO:$ w and ~EE,",... 0 

Regularity allow~ a stron~ form o( suhsort polymorphism "locally," while still permitting 
ad hoc polymorphism "globally" (Section 1.1.1 explained these terms); (or exampl~, .. can 
denol,e addition over the complex numbers and its many subtypes with ~ub~or\ polymor­
phism, as well as Roolean E"xcllll'live or with ad hoc polymorphism. The signatllre ill Exampl~ 

2.2 above is regular, but it would not be i( an operation __ o( rank (ListNEIList, NEiLiet) 
were added to it. We now give a more prE"dse statement o( some relations among the three 
conditions above: 

Fad 2.4 An ordcr-sorted signature E is regnlar iff given 0 in Ewl,.. 1 and given IL,Q ::::; wI in 
S· there is a least arity w E S· such that wO:O:;: w and ~E~w., ror some!J E S. Moreover, 
i('E is regular then given 0 in E wl ,.1 with tIlO :$ wI there is a least sorl s E 5 snch that 
(1 E ~IU,A (or some w E S· with wO :$ w, and ,his 8 is the same one that appear~ in the 
Ic;u;t rank (w,s) ror ~ with w ~ wO; I,hus, regularit.y implies prer~gularily. 

Proof: The "only W' is immediate, while "if" (ollows (rom monotonicity. The olher 
il.Sflertions are also easy. 0 

When the poset of sorts satisfies a de~cending chain condition (and thus ill particular, 
when it is nnite), there is a combinatorial condition that is equivalent to regularit.y. (Figure 
1 illustrates the relalions among the arities and sorts in this result.) 

Definition '2.5 A poset (S,:O:;:) sat-isnes the ascending chain condition, or IS Noethe­
rian, iff there is no strictly increasing infinite cha.in 31 < s2 < ... < s" < in (5, :0:;:). 
Similarly, (5,:0:;:) .<l~.tisfies the descending chain condition, or is coNoet herian, iff there 
is no strictly decreasing infinite chain SI > Sl > ... > 3" > ... in (5, :0:;:). 0 

Lemma 2.6 An order-sorted iljignature E over a coNoetherian pos('t (.5',:0:;:) IS regnlar j( 

and only if ..... henever ~ E E ....1,.1 n EwZ ,#l and there is Borne wO::::; wI, w2 th~n (here is some 
w:$ wI, w2 such that 0 E EIl1 , .. and tIlO -:;: til. 
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w2-----1~'; /,1
 
w , '" 
I
/ ~ '" 

wO 

Note:	 Dia.gonal and vertical lines indicate sort inclusions, while horizontal arrows 
indicate instances or the operation symbol (1. 

F"igore 1: Visualizing Lemma 2.6 

Proof: The "'only if" part is easy. For the "w' parl, let us say that a pair (w, <~) "fiatisfies 
condition P" iff a E EU',~ and wO ::; w. Then E is regula.r iff (101, .'II) satisfies r implies 
there is alu.-::t (w,.'!) satidying P. So we now suppose that there is some (uJI,.'lI) sa.Jidying 
P but there is no least (lo,s) sa.tidying P. Then in particular, (wi, .'11) cannot be least 
rOT P, and so there is some (wl',.'ll') sa-tidying P such tha.t (w1',.'II')! (tlll,.'I!). Then hy 
assumption, Lhere il'l 80me {W2,32} < (101,.'11) sa.tidying P. Iterating this process yields 
an infinite descending chain (tvl,.'!!) > (102,s2) > ... > (lVn,.m) > ... , which contradicts 
the coNoetherian assumption. (This last step uses the eMy to check ract that any finite 
product of coNoetherian posets is coNoetherian.) 0 

2.2 Algebras 

W{' now turn to the models that provide actual runctions to interpret the operation symbols 
in a signature. 

Definition 2.7 Let (8, E) be a many-sorted !Iignature. Then an (5, E)-algebra A is a 
ramily {A. I II E 5} or sets called the cArriers or A, together with a runetion A.... : AU! ..... A. 
ror each 11 in E III,. where Aw = A... x: ... x A... when w = IIL.. ,''ln and wh~re A w is a one 
point Set when w = .l.. 

Let (S,5:,E) be an order-sorted signature. Then an (5,:S,E)-algebrA is an (5, E)­
algebra A such that 

1. II 5: II' in 5 implies A. <;; A., and 

2. (1' E E",I,.1 n E'lJ2,.2 and wI $ 102 imply A.. : Awl ..... Ad equals A,,: AU!2 ..... A.2 on 

A~'l' 

Doth or these are mOllotonicity conditions. When the sort set 5 is clear, (5, E)-algebras 
may be called mAny-sorted E-algebrAs; similarly, when (5, :S) is clear. (S, :S, E)-algebras 
may be called order-sorted E-algebras. Also, we may write A:" for A .... : AU! ..... A•. 0 

Many different ways to define order-sorted algebras have by now appeared in the lit­
erature. However, most or them are either less general (ror example, they rail to admit 
overloading) or else are more complex, as discussed in Section 5 in much more detail. 

Example 2.2: (continued) H we let Z denote the set or all integers, then the algebra that 
we have in mind ror the List or lntegers signature has ALi.t = Z'" (all lists or integers), 
A...Lillt == Z+ (I,he non-empty li~ts), AInt = Z (the lists or length 1), ni 1 = .l. (the empty 
list), __ as concatenation, a.nd head and tail as expected. Nol(> that Z <;;. Z+ <;;. Z·. 0 
Stacks can be desrribed in a Very similar way, with pop and top partial operations defined 
only on the non-empty stacks; see Example 2.15 in Section 2.4. 
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Definition 2.8 Let (5, E) be a many-sorted signature, and let A and B he (5,~)-aJgebra.a. 

Then an (5,E)-bonlomorphism h: A -+ B is an 5-sorted fUllction h::::. {h.: A. -+ B. I 
s E 5} satisfying the following homomorphism condit.ion 

(1) h.. (A;:"·(a» = B;', .. (h .... (n» for eacb u E E...... and n E A", 

where hUl(n) = (h. 1 (al),. __ ,hon(nn)) when w:=. sl...sn and n = (al, ... ,nn) wit.h ai EA.; 
for i::::.l,... ,n when UI :f:. A. If w = A, condition (l) speciaJizes to 

(I') h.(A~··) = 8;'·. 
(5, E)-algebras and (5, E)-homomorphisms form a category that we denote Algi;' When 
the sort set 5 is dear, (5, E)-homomorphism may be caJled just (many-sorted) E-homomor­
phisIllS. 

Lel (5,5, E) be an order-sorted signature, and let A, B he order-Borted (S,~, E)­
algehras. Then an (5,5, E)-bomomorphism h: A -+ D is all (5, E)·homomorphism 
satisfying the following restriction condition 

(2) s::;; s' aud a EA. imply h.(a) = h•• (a). 

When the pmiet (5, .::;) is dear, (5, ::;;, E)-homomorphisms are aJso caJled (order-sorted) E­
homomorphisms. The (5,::;;, E)-aJgelu<LS and (5,:5:, E)-homomorphisms form a category 
that we denote OS AlgI;' 0 

Since, Ly defiuition, every (5,::;;, E)-algebra is an (5, E)-algebra and every (S,.:5:, E)­
homomorphism is an (5, E)-homomorphism, there is a "forgetful" functor from OSAlgl: to 
Algl,;. Notice the slight abuse o( lallguage whereby E denotes two different signatures: an 
order-sortt)d signature (5,::;;, E) ill OSAIgI; and a many-sorted signature (5, E) in Algl:. 
Also notice that OSA pmJH'.rly generaliufI MSA, in the sense that any many-sorled (5, E)­
algehra. is all order-sorted (5,::S, E)-algeLra for ::s tlle trivial ordering on 5 with s ~ Sl iff 
s ::::. ~'. Indeed, witll this ordering on 5 we bave that OSAlgE = AlgI; and the forgetful 
fUllctor OSAlgl; -- AlgI; is the identity. 

Injective and surjective are defined (or an order-sorted E-homomorphism I; A -+ B just 
as (or tIle mally-sorted case; I ig injective iff I. is an injective (unction for each fI E 5, 
and / is surjective iff I. is surjective (or each s E 5. Similarly, I is an isomorphism iff 
I is bo~h iujective and surjeclive. Just as ill die many-sorted case we have 

Lemma 2.0 An order-sorted E-homomorphism I; A -+ B is an isomorphism jff there is 
an order-sorted B-llOmolllorphism I-I; D -+ A such that 1- 1 0 I::: lA and 1 0 /- 1 ::: lB. 

Proof: Since the "i(" part is e<L:iy, we will just show the "only if" part, usiug the well­
kuowlL (act tha.t the desired rct>uh holds (or many-sorted algebra. This gives a many· sorted 
~-holl\omorphilim /-1: D ..... A satisfying tlle desired two equatiolls. Now we only need 
to check tlLat 1-1 satisfies the restriction condition of Definition 2.8. Let b E B. a.nd let 
s 5 s'. Theil b = f.(a) (or some a E A~ and also b = I •. (a) since I is order-sorted. Thus 
f,-'(b) ~"~ f,~'(b). 0 

2.3 Terms 

This subsection shows that terms over regular signatures have a well-defined leali( Bort, and 
also that the standOl.rd MSA term algebra construction gives an initiaJ order-sorted. algebra. 
We first review the inductive construction o( the many-sorted term a.lgeLra TI; using the 
same notaLion as in [56], except that we will be more pedantic, using ( and) to denote 
parelltheses used as (ormaJ syntactic symbols; however, this pedantry is only tempora.ry. If 
E is a mally-sorted signature with sort set 5, then; 

11 



•	 E~,. ~ TI:,.; 

•	 if nEE...,. a.nd if ti E T1:,.; ror i:: 1, ...• n where to:: ,d .....m with n) 0, then (the 
string) <1{tl ...tnl is in TE.•. 

Now given an order-sorted signature E, we similarly construct the artier-sorted E-telm 
algebra TE M the least ramily {T}; .• l.'l E 5} or sets satisrying the rollowi ng conditions: 

•	 1::~,. <; T1:,. rOr.'l E S; 

•	 TI:,.' ~ T1:,. if !J' 'S !J; 

•	 if (TE1::"..• and ir ti E TI:,.; where w:: .'ll...!Jn ~ >'. then (the string) O'ftl ... tnl E TI:••. 

Also. 

•	 rOI <1 E r: w ,. let 7;,: Tw r. send H, ...• tn to (the string) <1it1 .. Jn2­---1' 

Thus we un write'(7(tl, ... , tn.) ror aftl...tnl. 
Clea.rly T}; is an order-sorted E-algebra. Notice that T1:,. is not in general eqllalto 1'I;,. 

Dr even La U.,<. TI:,." ALso not.ice that it is quite possible that TI;,.:: 0 ror some a, i.e., 
that there are -no ground terms or sort.'l. Tl: is a kind or order-sorted lIerbrand universe 
construction; unrortnnately, some authors insist on a.dding a constant i r none is otherwise 
provided, thus destroying the initiality or their con.~truction. 

A given term t in an order-sorted term algebra can have many different sorts. III 
particular, ir ! E TI; haB sort .'l, then it also has sort .'l' ror cuty .'l' ~ s; and because an 
operation symbol a may have different ranks, a term <1(tl, ... ,tn) can even have sorts that 
are not directly comparable. One unrortunate consequence or such am biguity is that TI; 
may rail to be initial. just as in the many-sorted case TI; may rail to be initial ir E i~ 

ambiguous. However, this problem disappears ror regular signatures. 

Proposition 2,10 Given a reglliar order-sorted signature E. ror eVl'ry 7 1. E TI; there is a 
least!J E S, called the least sort or t and denoted LS(t), such that j E 7I;,•.
 

Proof: We proceed by induction on the depth or terms ill TI;. H t E T1: has depth 0,
 
then t = 11 ror some a E I:~,II and so by regularity with wO = UJI = A. there is a leas!,
 
,~ E S such that a E I:~,.; this is the least sort or <1. Now consider a. well-rormed term
 
t =: aft!...!n} E TI;.~ or depth n + 1. Then each Ii has depth 5' n a,nd thererore by the
 
induction hypothesis, ha.~ a l{,il.~t sort, say .'li; I~t wO == sL.sn. Then (7 E r:1I."." ror SOntl:'
 

W',~I with!J' 'S !J and wO 'S w', and by regularity, there a.re least w' and Sl sn('.h that
 
(7 E E w ' •• ' and w' ~ wO; this leaBt .'l' iii the desired least sort or t. 0
 

This wiult can be generalized by weakening the notion or regularity to preregularity. 
In ract, preregularity is actually equivalent to the existence or a IeaBt sort ror each term (by 
Proposition 5.2 in Section 5.2). We now turn to the important issue or initial algebras. 

Definition 2.11 Let E be an order-sorted signature. Then an order-sorted E-algebra
 
is initial in the class or all order-sorted E-algebril.~ iff there is a unique order-sorted E­

homomorphism rrom j~ to any other order-liorted E-algebra. 0
 

Theorem 2.12 Let E be a regular order-sorted signature. Then TI; is "" initial order­

sorted I:-aJgebra.
 
Proof: In this proor we write T ror TI;. Let A be an order-sorted I::-algebra; the-n we
 
must show that there is a unique order-snrted r:-homomorphism h: T _ A. We will (1)
 



constrnct h, then (2) show it is an order-sorted I:-homomorphisrn. and finally (J) show it 
is nnique. 

(1) We constmct h by indn£tion on the depth of terms in T. There are two cases: 
(la) 1ft E T has depth 0, then t = n for some consh.nt u in E. fly regnlarity, n has a 

least sort s. Then for any .'I' ~ .!I we define 

"",(n) = A;'''_ 

(lb) If t = u(t I . ..tn) E T has depth n + 1, then by regnlarity there are least wand .!I 

with n E I: ...." where w = sl...sn ':J ), and LH(ti) S 3i for i = I, ... , n. Then for a.ny .!II ~ .'I 

we define 

h",(t) = A:'~(hd(t1) .... ,"...(tn»). 

noting that h•• (ll), .... h~..(tn) are already defined. 

(2) We now show that h is an order-sorted I:-homomorphism. By wnstruction h satisfies 
the restriction condition «2) of Definition 2.8). To see that it ",Iso satisfies the hOlllomor­
phism condition « I) of Definition 2.8). we ~ain consider two C3-~es: 

(2a) n E E>'.6 is a £Onstant. By regularity and monotonicily,.~ is the lea.~t sort of (Y. and 
we have already defined 

h~(O") = A';'" 

as needed. 
(2b) We now consirler a term t of depth greater than 0, and let. a E E...,,~, with w' = 

s'l...~'n ':J)' be such that I = a(tl. .. tn) = T.,w" ..'(tl,.".tn). By regnluity and PlOposition 
2.10 there are least w = .~l. .. sn and .'I = LS(t) such that t = rr(tl...fn) = T".w'~(!I .... , tn). 
Then tlJ S w' and .s .$ ~' so that (2) of Deftnition 2.7 gives A~"·' = A::"~ on 11'''. Thus, 
using the already established fa.ct that" satisfies the restriction conrlition, we have 

h~,(a(n ... tn)) = A::"~(h~1 (1I), ... , h...(tn)) = A:',~I (h.'l(ll), ..., h.J,,(1n») 

3-<; needed. 

(3) Finally, we show the uniqueness of h. In fa.d, we will. show that if h': T ----+ A is 
an order-S<lrted E-homomorphism, then h = h'. by indndion on the depth of t.erms. For 
depth 0 consider (1 E E>.,~. Then .!I is the least sort of 0". and for any.~? .'I', we must have 

h~J(u) = h~(O") = A;,' = h~(a) = h.,(a). 

as desired. Now a..~suming the result for depth S n, conflider a term t = O"(!J...tn) = 
T;~""'(I1, .. '. in) of depth n +1 with (T E E w',.' and Wi = s'l.. ....'n. As in (2h). ther~ are least 
IlJ = ~1...~n and s ::: LH(t) such that t '" n(t1...tn) = T"w'.(!1, "', tn) and A~J'·'" :: A;'" on 
A"'. Then 

h~,(t) = A;"",(h~,. (tJ), h~,.. ( tn» 
= A:",·' (h"1 (tl), , h.,,,(tn)) (by indndion hypothesis) 
= A;"~(h.I(t1), ... , h.n(tn» 
~ h•• (l) 

as needed. 0 
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The trfms considered above are gt"Ound terms, in the sense that they involve no 
variables. We cau extend the above resnlt to so-called free algebras by considering instead 
terms that may involve variables. In fact, terms with variables can be seen as a special 
case of ground terms, by enlarging the signature with new constants that correspond to 
the variable symbols. Let us assume that each variable comes with a given 80rt, 50 that we 

have an S'sorted family X :::: {X. I B E S} of disjoint sets that we shall caJl a variable set. 
Given an order-sorted signature (5,:5, E) and an 5-sorted variable set X that is disjoint 
from E, we define the new order-sorted signature (5,5, E( Xl) by E( Xh ... .= E A,. U X. and 
E(X)w,.. = E w,. for w 1:.l.. It is easy to see that E(X) is regular if E is. Now form TE(XI 

and view it as an order·sorted E-algebra just by forgetting about the constants in X; let 
us denote I,his a.l.gebra TE(X). The following result and proof are entirely analogous to the 
MSA c.... {561. 

Theorem 2.13 Given a regular order-sorted signature (5,~, El, let A be a E-algebra and 
let a: X .... A be an 5-sorled function; hereafter we caJ( !luch a function an 8ssignDlenl. 
Then thE're is a unique order-sorted E-homomorphism a-: TE(X) -> A such that a*(x) = 
n(r) for e;u:h rEX. 

Proof: E-algebras A with an assignment a: X A are in bijective correspondence with-----0 

E(X ).algl'bras A. Now the initiaJity ofTI:(X) among all E(X)-algebra."J A (Thoorem 2.12) 
gives thE' desired result. a 

2.4 Equations 

Order-sorted algebra would be very impoverished without equations We first give two 
simple examples of what eqllations can do, and then we give the formal definitions; thcse 
are sOlnE'what more suMle than might be expected. tn the exampll's, the keyword pair 
obj ... elldo delimits an object and indicates that initial algebra semantics is intended. 

Example 2.14 (Bits) 

obj BITS is 
sorts Bit ErrBit List ErrList , 
Bubsorts Bit ( List < ErrList 
8ubsorts Bit ( ErrBit < ErrList 
ops 0 1 : -> Bit . 
op nil : -> List . 
op __ : List List -> List 
op head : List -> ErrBit . 
op tail : List -> ErrList 
varu L L' L" : List. 
var B : Bit 
eq nil L = L . 
eq L nil = L . 
eq L (L' L") = (L L') L" 
eq head(B L)= B 
eq tail(B L)., L 

endo 

What is interesting here is the way the "error snpersorts" ErrBit and ErrList are used 
in head and tail; in the intended inlerpretation, elemE'nts that ar£' in ErrList but not 
in List serve as error messages. An a.l.ternative a.pproach follows Example 2.2 by defining 
a subsort ReUst as the domain for head and tail; this would have made ErrBit and 



ErrList unnecessary. Also note that Bit is a suhsort of the non-empty lists purely for 
syntactic convenj4'!nce, allowing us to say that 0 is itself a list. 0 

Example 2.15 (Stack of Integers) This example is interesting primarily hecause it has 
previously been treated in 50 many differ~nt formalisms, so that comparison hetween for­
malisms is facilitated. We helieve tha.t no other formalism gives so simple and na.tural a 
description as th4'! following: 

obj STACK-OF-INT is 
extending lIfT . 
sorts Stack NeStack 
8ubsort NeStack < Stack 
op empty : -) Stack . 
op push Int Stack -) JleStack 
op top_ : JleStack -) Int . 
op pop_ : JleStack -) Stack . 
var E : lnt . 
var S : Stack . 
eq top(push(E,S» = E 
eq pop(push(E,S» ., S 

endo 

o 

The above exa.mples are actually executable OBJ3 code [351. Of course, our development 
of OSA is fully general and considers arbitrary models for sets of equations over an order­
sorted signature. OBJ USe!> this 'loose' or 'theory' semantics to describe requirements on 
actual parameters for parametf'fized ohjects. For example, a parameterized sorling ohject 
should allow any partially ordered set as actual parameter, and a parameterized polynomill.l 
object should allow any commulatiw> ring for its coefficients. Initiality modulo a set o( 
equations is discussed in Section 3 below, but parameterit.ation and requirement theori~s 

are deferred to Part 111 of this paper. 
We now d~velop th~ formalities concerning equations. Recall that hy the freeness o( 

Ts( X) (Theorem 2.13), an assignment a of values In an order-sorted E-algehra A to elements 
(rom a variable S4'!t X that is disjoint (rom E extends to an order-sorted 1:-homamorphism 
a* to A from the I:-lerms with variables in X. The OSA definition of equations is similar 
to that for MSA [56), in that equations are triples (X,t,ll) with t and I' in 1I:(X), and 
an order-sorted a.lgehra A satisfies such an equation iIT a*(/) = a·(f') for e:u:h il.Ssignm~nt 

a: X -+ A. However, before actually giving such a definition we need to considerwha.t sorts 
to allow (or the terms t and f'. lu MSA, we are forced to require that t and !' have the 
same sort, but OSA allows more ft~xihilily. For example, in the BITS example ahove, the 
equation head (8 L) '" B has a leHhand side whose least sort is ErrBi t and a righthand side 
whose leat;t sort is Bit. The following example will help to motiva.te a general restriction 
on the form o( equations. 

Example 2.10 

obj ABeD is 
sorts ABe D 
subsort A e ( B 
subsort C ( 0 
op a -),. 
op b : -) B 
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op C : -) C
 
op d ; -) D
 

eq a '" b
 
Qq b '" c
 

el{ C '" d
 
en do 

These equations do not involve an.l' v:triables. To sa.l' that an algebra H satisfies thl'ln 
presumahly means that hA(a) :::: hB(b) = hc(c) :::: hD(d) for h: TE-+ 11 the unique order­
sorted homomorphism (where E is the signature of the exampll'). Given these equations, 
one expects 1.0 be able to "replace equals by equals" and deduce that the equation a '" d 
holds, even though the sor~s A and D are not comparable in the sort orderingS. In fact, 
under the notion of satisfaction snggested above, the equation a '" d is satisfied by allY 
algebra" that satisfies the original eqnations. This might suuest that we only require 
that th(' sorts of lhe terms / and t' in au equation lie in the same connected [ol~ponentg of 
the poset (5, $). 0 

Deflnition 2.17 For (S, $, E) a regular order· sorted signature, a E·equation is a triple 
(X, i,t' ) where X is a variable set and t,t' are iu TE(xj with LS(t) and LS(t' ) in tIle same 
connected component of (S, $). We \I.'ill use the notation ('9'X) t :::: I'. An order-sorted 
E-algebra A satisfies a !>equation ('9'X) l :::: t' iff aiS(I)(!) :::: aiS(I')(t') in A for eVNy 
assignment a: X_ A. Similarly, A satisfies a set r of E-equations iff it satisfies each 
memhl'f of f; in this case, we say that A is a (E,f)-algebra. When the variahle set X can 
be deduced from the context (for example, if X contains just the variables that occurr in t 
and L' , with sorts that are uniqnely determined or else have been pre\'iously declared) we 
allow it to be omitted; that is, we allow IInquantified notation for equationslO . 

Order-sorted conditional equations generalize order-sorted equations in the usual way, 
i.e., they are expressionB of the form ('9'..\") l:::: l' if C, where the condition C is a finite 
set of unquautified E-equations involvillgonly variables in X (when C:::: 0. conditional E­
equatiohs are regarded as ordinary E-equations). An order-sorted E-i1gebra A satisfies the 
equation IVX) t = t' if C iff for each assignment a: X ---+ A such that ais(,,)(t') :::: ai.,sfu"(v') 

in A for each equation v = Vi in C, then also aiS(I)(t):::: ai-S("I(C') in A. 
Given a signat.ure E and a sel r of (possibly conditional) E-equations, we let OSAlgE,r 

denote the category of all (E, f)-algebra."i, with all E-homomorphisms among them. 0 

Although these notions of I'quation and satisfaction seem qnite reasonable for OSA, 
and in particula.r SCf'lll general ehough to support equational d('duction, there is a suhtle 
difficulty: equational satisfaction is not dosed nnder isomorphism, i.e .• an order-sorted 
a.lgebra A may satisfy an equation that is not satisfied by an isomorphic. algebra B. The 
following exhibits this curious phenomenon: 

Exarnple 2.18 

obj ABC is 
Sorts ABC 
Ilubllorts B ( A C 
op a : -> A , 

'" Bul notice Ihal the IlOrtB lire comp;uable (or each equation in the BITS and snell: eJ:aJl1ple~. 
9Gi"'en a poI'et (S, 5), let == d~"ote the luruitive and 5ymmelfic c105ure of $. Then;:: ift all equivalence 

relation "'!lose equivalence di11<Be5 are called the cORnected components of (S, $) 
10Howe"u. the runer ,.IIould be a...are thai ~&tid&Ction of aD equation depends crucially on ih yuiable 

set {56]. 
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op b -> B 

op C -> C 

eq a .. C 

enda 

Letting r; be the signalure of this example, the term algebra TE has (TE)A == {n,b}, 
(TElB == {b} ,HId (TE)c == {h,c} does not satisfy the equation a'" c. I1owever,the order­
sorted E-a.lgebra. R with llA == lie == {b,d} and lIB == {b}, with the constants a,h,e 
interpreted a.s d. b. d (respecti ....ely) does satisfy a .. c, even though the unique order-sorted 
E-homomorphilim h: TI; ...... R is a E-isomorphism. 0 

The desire to be rid of this analomy motivates the following: 

Definition 2.19 A poset (5, $) is (llpward)ftitered if(fot any twoelemenls .9,5
1 E 5 there 

is an element 5'1 E 5 such that s, s' S s", A partially ordered set 5 is locally Altered iff 
each of its connected components is lilleted. An order-sorted signature (S, $, E) is locally 
filtered iff (5, .0:::;) is locally filleted, (l,nd is coherent iff it is locally filtered and regular. 0 

We will show below that for coherent signatures, satisfaction is "abstract" in the sense 
of being closed under isomorphism. Coherence guarantees that all sorts in a connected 
component "cohere" in the sense that any finite set of them can always be reconciled by 
appeal to a bigger sort; "incoherencp" causes the trouble in Example 2.18. Any many-sorted 
signature is coherent, since the trivial ordering (.9 S .9' iff .9 = .9') is always locally filtered 
and regular. In many examples, the sort poset is Noetherian. 

Proposition 2.20 A Noetherian poset is locally filtered if and only if each connected 
component ha.c; a maximum element. 

Proof: The "if" part is obvious. For the "only if" part, assn me that there is no maximulll 
element in a given connected component C and pick any element .$1 E C. Since 31 is not a 
maximum, there must be an elelllPnt .9~ E C such that .9~ {.91' Since 5 is locally filtNed, 
we get an element .52 2': .qlo.9~ such that .91 < 82' We can now iterate this process to get 
a, strictly increa..c;ing sequence 8, < '~2 < ". < 8 n < ... that contradicts the Noetherian 
assumption. 0 

Proposition 2.21 Given a coherent signature E and isomorphic: E-algebras A and B, then 
A satisfies an l'qllation (VX) t = t' if and only if B does. 

Proof: By symmetry of thl' isomorphism relation, it is enough to prove the "only if" 
pa.rt. Assume tha.t A satisfies (VX) I = I' and let J: A ----+ B be an isomorphism. Then any 
assignment b: X ----+ B can be written b = J 0 a for some ac;signment 11: X ----+ A. Initiality 
now implies that b* = J 0 a*. tet .9 2: LS(I), LS(t'). Then 

b:(l) = f,(":(t)) = 1,(":(1')) ~ b:(t') 

as desired. 0 
This result generalizes easily to the satisfaction of conditional equations. 

How restrictive is coherence? In practice, not at all. In fact, coherence can he auto­
maticaUyensured by a computer implementation, just by adding some new top elements to 
the signature given by a user: given a regular order-sorted signature E, extend it to a co­
herent signature coh(E) identkalto E except for adding a new sort uc for each nonliltered 
connected component C. Note that for each sort.9 in the original set of sorts we then have 
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Teoh(E)•• =TE,. and for the new sorts uc we have 1;,"hIE).uc =U.ec TE,•. This approach is 
even more flexible and general than requiring a universal maximum of an sorts as in [22). 
Intuitively, the sorts in a connected component form a semantically related "Iocal nniveflle" 
of discourse. 

One benefit of requiring signatures to be coherent is a great simplicity and flexibility 
in	 the treatment of equality, since we can always assume that t and e have the same 
sort whenever they appear in an equation t = t' by going to a common supersort. This 
does require that t and t' lie in the same connected component, but we do not consider 
equations across different components to be meaningful; moreover, even this condition could 
be dropped by adding a universal sort, as discus~ed in Section 5. 

2.5 Subalgebras l Congruences, Quotients and Products 

This subsection gives OSA forms of some familiar MSA concepts, including subalgebra., 
congruenc~ relation, quotient algebra, kernel, image, and product algebr a. It. also proves 
the Homomorphism Theorem and the universal properties of quotients and products. 

Definition 2.22 For (5, r) a many-sorted ,;ignatllre and fat A a many·sorted E·algebra, 
a many-sorted E-subalgebra B of A is an 5~sorted family of subsets Elf ~ A~ for each 
s ES l'iUch that 

(I)	 given (J E E ul •• wjth w = sI.. ..~n and hi E B, for i = 1, ... ,n, then A,,(hl •... ,hn) E B~; 

in particular. when tl1 = l then A". E B •. 

For (5, $, ~l an order-sorted signature and A an order-sorted E-aJgebra, an order-sorted 
E-subalgebra B of A is a many-sorted t:-subalgebra B of A such that 

(2) B. ~ n., whenever s:S: Sl. 

o 

Definition 2.23 For (5, E) a many·sorted signature and A a many-wrted E-algebra., a 
many-&orted E·congruence == on A is a 5-sorted family {=.I S E 5} of equiva.ll'n<"e 
relations =. ou A~ such that 

(1)	 given (1 E E..... with w sL.sn and given ai,a'i E A•• for i "= 1, ... ,n such that. 
ai :;::oi a'i, then 

Ao{al •... ,an) =. A".(a'l, ... ,aln). 

For (5, S,E) an ordrr-sorted signature a.nd A an order-sorted E-algebra., an order·sorted 
t:-congrueuce =" on A is a many-sorted E-congrulO'nce == such that. 

(2) given.~ :::; Sl in 5 and a.a' E A. then a =~ a l iff a =~, a'. 

o 

Proposition 2.24 Let t: be an order-sorted signaturl!. Then 

1.	 The order-sorted E-subalgebras of an order-sorted r-algebra A form a complete latticl! 
un&r the inclusion ordering. 

2.	 The order sorted E-congrllences on an order-sorted t:-algebra A form a complete 
latti~ under the indusion ordering. 

Mor('()ver, in these lattices greatest lower bound is computed by set interse<"tion. (These 
results are well known for MSA.) 
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Proof: By the following lemma. it suffices to show that any intersection of E-algebras or 
of E-congruences is a E-congruence, which is easy in this case. 0 

Lemma 2.25 A cla..~s C of subsets of a set C is a complete lattice under set inclusion if it 
is closed under a.rbitrary set-theoretic intersections. including intersection over the empty 
family of subsets, which hy convention is the maximum element of C; moreover, greatest 
lower bound is then computed by set intersection. 0 

Definition 2.26 Let /: A -+ B be a many-sorted E-homomorphism. Then lhp. kernel of 
/ is the S-sorted family of equivalence rela.tions ==- / defined by a = /.11 a' iff /,(a) = /,(a'); 
it will be denoted ker(/). 0 

Proposition 2.27 A kernel is a many-sorted congruence. If /: A -+ B is an order-sorted 
E-homomorphism, then kf,r(f) i1> an order-sorled E-congruence.
 

Proof: Given a.n S-indexed function I: A. ----- B, then each ==-/,11 is l'U1 equivaJencr relation.
 
To prove the congruence propert)' (1), let" E Ew ,lI with w = sl...,m and assume that
 
a,i ==-/,11 a'i, i.e., tha.l /.(ni) = III(a'i) for i = l, ... ,n. Then
 

1.( A.(al, ... , an)) = 1l.1f•• (aJ), ... ,J..(aa)) = 
R"(/1I1(a'1)•. --. Im(a'n) = /,(A,,(a·l •... ,a·n)) 

so that 
A,,(al, ... ,an) =/.'1 A,,(/l'l,. _,/l'n) 

as desired. Wh<>n I is orner·sorted, we have to check the congruence property (2). This 
follows from the fact that /,(a) = I.,(a) ann /.(a') = /.,(a') wh"'never s $ lin 5 and 
a,a' EA•. 0 

Definition 2.28 The image of a E-homomorphism /: A -+ B is thesllbalgebra/(".1.) with
 
I(A). = I(A.) fa< each, E S. 0
 

Fad 2.29 If /: A ...... B is an order-florted E-homomorphism, then /(r1) is an order-sorted
 
subalgebra.
 

Proof: To check condilion (1) of the definition of subalgebra, let TT E E,u,.ldth w =
 
sl...3n, let bi E /( A),; for i = 1, ... , n, and let ai E A.i such that bi = /,;(ai) for i = 1, ... , n.
 
Then B.,(b l, ''', btl) E /(A). since B,,(b1, ... , b,,) = /.( Au(al • ... , an». For the order-sorted
 
c~e, we have to check condition (2). but this is an easy set-theoretic consequence of the
 
fact that, / is order-sorted. 0 .
 

We now fiefine the quotient of an order-sorted aJgebra by a congruence ulation and 
(more generally) hy a set of relations. This construction is t;impler for locally filtered 
signatures, hut it can he generalizf'n to arbitrary signatures. 

Definition 2.30 FOT (S, $, E) a locally filtered order-fiorted signatme, A an order-sorted 
E-algebra, and == an order-sorted ~-congruence on A, the quot.ient of A by == is the 
order-sorted E-alge-hra AI==- defilled as follows: for each connected component C, let Ac = 
U.Ec A, and define the congruence relation ==-c by a ==-c a' jff there is a sort! E C such 
that a =. a'. Then == is clearly reflexive and symmetric. It is transitive since a ==-. a' and 
a' ==,, a" yield a = .." all for s" 2': ", a'. The inclusion A. ~ Ac induces an injective map 
A.. I ==-.-+ Acl==-c since for a,a' EA. we have a~. a' implies a ==-c a' by construction, and 
conversely a ==-c a' implies a ==-.' n' for some a' E C, and taking a" 2': a, s' it also implif':S 
a =." a' and therefore it implies a ==-, a' by property (2) of the de~nition of order-sorted 
congruence. Denoting by qc the natural projection qc: Ac -+ Acl ==c of earh element 
a into its =c-equivalence class, we define the carrier (AI==-), of sort s in the quotient 
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A fql/B
 
AIR 

Figure 2: Condition (2) of Proposition '2.34 

algl"bra to be qc(A,). The order-sorted aJgebra A{=. comes equipped with a surjective 
order-sorted ~-homomorphj!:mq: A -+ A{= defined by restriction of the qc to {'<Lch of th{' 
sorts, (aJJ~d the quotient mop <Lst:;odated to the congruence =. The operations arc definf'd 
by (A/=)~([all,...• [anJ):= IAa(al, ... ,anJI, which is well defiued since =: is an order-sorted 
E-congrllence. 0 

Fnd 2.31 tinder the asslImptionp; of Definition 2.30, keT(q) = =:. 0 

Fad 2.32 Agi\in under the assnmption of Definition 2.30, any S·sorl('1! family R of binar:.' 
relations R. on A. for s E S is cont.ained in a IlmaJ)cst order-sortf'd E-(ungruenc(' on A. 

Proof: This coogrll('lIce can be ('xprcssed a.<; the intersection in the lat lief' of congruences 
of all order-sorted congruelltes that contain R. a 

D«!ftnition 2.33 Given an arbitrary 5-sort{'d family R of binary relations R.• 011 A.• for 
s E 5, then the quoti«!nt of A by R, denol{'d A/R, is the quoli{,l1t of A by the smallest 
ordN.sorted E·congruence on 11 containing R. 0 

Proposition 2.34 (Universal PropI"rty of Quotl{'nt) If E is a locaJly filtered ord{'r-sort('d 
signature, if A is an order sorl{'d I;·algebra, and if R is an S-sort{'d family of binary relations 
R~ on As for s E 5, lh{'n the quotient. map q: A -" A/R sat.isfies the following: 

(I)	 R~ker(q), and 

(2)	 if f: A ..... B is any order-sorted E-homomotphism such that R ~ kerr/). then there 
iii; &uniqlle E-homomorphism v: A/R -+ B such that voq = I (sC'«! Figure 2). 

Proof: 
(1) follows from ker(q) b('ing the smallest congruence containing R. 
For (2), let f: A ...... B be an ordN-sorted ·E·homomorphism such that R ~ ker(f). 

Then ker(q) ~ ker(f) and both ate mngruences 50 thai. for each conIlC'eted component C 
we have ker(q)c ~ keT(/)e and there is a uniqu{' function ve: (A/Rl e -+ Be such that. 
vc 0 qe :: Ie for Ie: Ac ----' lie delinf'd by Ic(il) = 1~(t1) if a E A~ (lhis is well defined by 
local filtering). It re!llains only 10 check that, rel;trictiug lie to each onC' of the sorts ,q E C, 
th(' famil), {VI I .~ E 5} thus oblilinerl is an order-sorted E·holllomorphislIl. Property (Z) 
for order-sorted homomorphisms follows by conslr'ldion. Let (1 E. r,,-,,~ with w = sl ... .."in 
and letni E Asi for i = 1, ... ,n. Th('n (omittlngsort qualifications t.hroughout) wehavc 

v«AI R).([all •.... Iaa))) ~ ,,([A.(a I, .... aa)J) ~ 

f( a,lal • ... , aa)) ~ R.U(a I) • ... ,f(va)) ~ 

R.I'llal)) .... , v([aa))). 
\-Vc leave th{' ca~e 111 = ~ for the reader to chf'ck. 0 

We remark that this universal property characterizes the quotil'nt map uniquely up 10 
jsomorphism. The following is now an ('asy ronseQuencf' of Proposilioll '2.34: 

Proposition 2.35 (Homomorphism Theorem) Let E be a locally filtered order·sorted sig­
nature and let I: A ....... li be an order-sortl'd E-homomorphisrn. Th«!n A/ker(!) ~ I(A) 
(Isomorphism as order-sorted E-algebras). 
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Proor: Let f': A --+ f(A) denote tht" corestriction of f to f(A). Then hy the univN~al 

property of the quotient wilh R = ker(f') = ker(f), there is a (unique) v: Alker(j) - f(A) 
streh that v 0 q = f'. Then v is surjective since f' is, and it remains to show th at v is 
injective. To this end (omitting sort qualifications again), suppose that 11([al]);;:: v([n2]). 
Thea f(a1) = f(a2), '0 [all = (a21. 0 

We shall ~ay th;tt all order-sorted a.lgebra C is an homomorphic image Dr anot!u"r 
ordt'r-sorted aJgebra A iff there is an order-sorted E-homomorphism f: A --+ B meh that 
C = f(A). By the Homomorphism Theorem (for E locally filtered), C i" a homomorphic 
image of A iff C is E-isomorphic 1,0 AI:= for some order-sorted E-congruence :=. 

Deflnition 2.36 Let (S,~) be an orrler-sorted signature and let A and B be many-sort('d 
E·a.lgebra.~. Then \lie define their product A x n to be the many-sorted E-algebra with 
ca.rriers (A x n)" = A. x lJ. for earh ~ E S, and with (A x n)",((nl,bl)"",(~n,bn» = 
(A"(n,, ... , an). 0,,( bJ, .... h,,)) for eac.h q: ,'ll ... ,'l" ..... ,~ in E, where each a; and b, are of ~ort 

.'; for i :::: I, ... , n. We now defl[J(' the two projections pI: A x lJ --+ A and p2: A x B _ lJ 
to he {pI, I 9 E S} and {p2, I ,~ E 5} respl'r.tively, whert" pl.: A. x n. ----' A. and 
112.: A, x n. _ H, <Ire th(' first and scr.ond projection functions from the Cartesian product 
A. x B•. Notice that p1 and ,,2 are E·hOlnomorphisms. If A and n are order-sorted algebras, 
then so is A. x n, and the projection functions a.re order·sorted hOllJomorpl,jsm.~.Similarly. 
Wf' can def1nf' th.e (lrodtlcl n, A, of a family {A, liE I} of many-sorted or order-sorted 
E-algebra.~, with lJrojection homomorphisms Pi: njAj --+ AJ • 0 

Proposition 2.37 (Universa.l Propt"rty of Product) Let A, B,C be order-sorted (or mallY­
sorted) E-algehra."i, all(l let q1: C ....... A and q2: C ..... B be order-sorted (or many-sorted) 
E-homomorphi~ms.Then thNe is a unique order-sorted (or many-sorted) E-homomorphi~m 

v: C --+ A x B su~h that 711 0 v = ql and p20 v = q2. This result also generalizes lo products 
of arbitrary families. 0 

3 Order-Sorted Equational Deduction 

This spction givcs Tules of deduction for OSA with conditional e!]ual.ions, alI<I proves their 
completeness. This yields a C'Onstrllct.ion for initial a.nd free order-sorted algebras as fllIO' 

t.ients of term a.lgebras hy the congruence gener<l.t.ed by the rules of deduction from t.h(' 
given eqnations, in a way t.hat parallels MSA. . 

Before turning to the ruJes, w(' ron sider order-sorted term substitulion. Gh'ena cohercnt 
order-sorted signature (S,:S, E) alld two S-sorted variable sels X and l~, <I. substitution is 
an S-sorted map 9: X --+ TdY); note that this is a special case of the as.~i9rml(rJi concepl. 
gh'en earlier (Theorem 2.13) in ....·hirh th(' values assignt"d to the variables are terms. W(' 
adopt the convention that the unique order-sorted E-homomorphism ()*: TdXj _ Ti;(r) 
induced by (I is a.lso denoted 8. 

3.1 The Rules of Order-sorted Equational Deduction 

Given an order-sorLed signa.ture ~ a.nd a s('t r of conditional ~.equations, we consider each 
unconditiona.l equalion ill r to he derivable. ThE> following rules allow deriving further 
(unconditiona,l) cq ua.tions: 

(1) Reflerivity. Ea.rh equation of the form 
(.X)t~1 

is derivablc. 
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(2) Symmetry. If 
(VX) t == t'
 

is derivable, then so is
 

(VX) .' ~ •. 
(3) Tmnsitit'ity. II tht" t"quations 

(VX) I = I', (VX) I' ~ I" 
are derivable, then so is
 

(VX) t == I".
 

(4) Congruence. If 6, 9': X -+ T~(Y) art" substitutions such that for each.r EX, 
the equation 

IllY) 6(I) =6'(x) 
is derivable, then givt"n I E TI;(X), the equation 

IllY) 9(t) = 9'(/)
 
is also deorivablt".
 
(5) Substitu/ivily. If 

(VX) t == t' 1I C 
is in r, and if 6: X -+ TdY) is a subslitntion such that for t"ach u == v in C, 
thE' equation 

(VI') 9(,,) =9(v)
 
is derivable, tbt"n so is
 

(VI') 9(1) =9(1').
 

V\'hE'n the l'quations in far€' nnronditional, rule (5) takes the form 

(5') Unconditional Substitu/ivily. ff 
(VX) t =,, 

is in I, and if 6: X ..... TdY) is a substitution, then 
(VY) 9(t) ~ 6(/') 

is derivable. 

Although these rules art" raf.hN compactly formulated, they correspond t"xaclly to intuitions 
that we feel should be expected for ('quational dt"dudion. Of courst", therE' art" many pof;sibJe 
variations on tbis rult" set; for e,;ample, see [72]. Also, order-sortt"d Horn clause logic is 
discllsst"d in {27!, and [26J givt"s an overvit"w of the equational case. 

3.2 Completeness and Initiality Theo~ems 

We now show that tht" abov!' rulf's are sound and complete for deriving all the unconditiOllal 
equations thal hold in the c1il-ss of all algt"bras that satisf}' f. Wt" then obtain initial and 
free algebras for ast"t f of conditioJlal t"quations as a corollary. Whilt" the structure of our 
proof is fairly traditional, it i" more succinr:l than traditional proofs, becaust" it explnjts 
tht" machinery of algt"bra rathN than relying on purely syntactic argument,,; lor example, 
it uses initiality to prove commutativily of a diagram. 

Theorem 3.1 (Completeness} Given a coht"ft"nt ordt"r-sortt"d signature E, given t,t' in 
TdX), and given a st"t r of conditional E-eqnations, the following assertions art" t"quivalent: 

(el) (V'X) r == t' is derivablt" from f using rules (l)-(5). 

(C2}(V'X) f == t ' is satisfi('d by every order-sorted E-algebra tbat satbillt"s r. 

When allE'qualions in f are unconditional, tht" same holds rt"placing rule (5) by rule (5'). 
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Proof: W~ve the reader to check soundness, Le., that (CI) implieR (C2); this follows 
as usual by induction from the soundness of each rule of deduction separately. lIere we 
show completeness. Le., that (C2) implies (CI). The structure of this proof is M follows: 
We are given a E-equation e =(VX) t :: t' that is satisfied by every E·algebra that satisfies 
f, and we wish to show that e is derivable from f; to this end, we construct a E·algebn\ A 
such that if A satisfies e then e is derivable from r; then we show that A satisfies r. 

First, we show that the following properly of terms t, t f E '1I;(X). for !lome sort 5, defines 
an order·sorted r::-congrnence on '1I;(X): 

(D) ('iX) t = I' is derivable from r \I~ing rules (1)-(.'). 

Let us denote th.i~ relation '··'Tn) Then rules (1)-(.3) ~ay that ·...T(X) is an equivalence 
relation on h(X).. for each sort s. Dy applying rule (1) to terms l of the form O'(:r., ...• x n ) 
for (T E E, we see that "'r{XI is a many-sorted E-congruence. Finally, "'r(X) is also an 
ordcr·sortl"d E-congruence, hecall!ll' propl'rty (D) does not depend upon s. 

Now we can form the order-sorted quotient of Tr(X) by '''''T(X), which we dl'notc by 
'11:,r(X), or within this proof, jllSl A for short. Thl'n by thl' constrnction of .A, for each 
/,t' E '1dX) we have 

(0) [IJ = (1') ;n A iff (D) hold" 

where [lJ denotes the "'T(Xj-equi\'alellcl' dass of l. 
We next show thl" key propl"rty of A, that 

(u) (IfX) t = I' satisfil"d in A implies that (D) holds. 

Since the equation (VX) / ::::; " is satisfil"d in A, we can use thl' indusion ;x: X ---->.A sfC>nding 
x to [xl a..'J an S-sorted a~signment to get that [tl :: \l'J in A; then (D) holds hy (t). 

We now prove that A sat.isfil's r. J.r.t (VY) t :: t' if C he a conditional equation in r, 
and lr.t 9~ Y ...... A hI' an S·sorted assignmeut such thai. 9(u) .:: 6(v) for each u = v in C. 
T1wn for each ,q E S and ~ach Y E Y. we can chaosI' a repr~entat.iv~ '!I E TdX). such 
thal 9(y) :: [Iv] in A. Now let ¢: Y --. TdX) be the substitution sending y to Iv. Then 
9(y).:: {¢(y)J for €'ach Y E Y, and thereforl" 9(1):: [¢(t)J in A for any t E rr(}'), by the 
freeness of '1r(}') over Y. 

f TE(X)

Y-~-8~[_]
 

Then'fore, [<p(u)] = [¢(v)] holds in A, and by the' propl'rly (*), the equation (If X) ¢(u) =:: 

<p(ll) is derivable from fusing (1)-(5) for each u :: 11 in C. Therefore by rull' (.5), the 
equation (VX) ¢(t) = ¢U') is derivable from r, and hence by (*), 9(t) = 9(n holds in A, 
and tllUS the conditional equation (IfY) t = i' if C holds in A. 

Since an unconditional equation is just a couditional equation whose set C of conditions 
is empty, wheu ev€'ryequaLion iu r is unconditional we are reduced to the simplified special 
ca...'1.e of the above argument where only the rule (5') is needed. 0 

It is interesting to noUce that this t.hl'Orem also givp.s the Completeness Theorems for 
ordinary MSA, and of course for unsorted algebra, as special cases. Now the initiality and 
frM-ne!;s results. 

Corolla.ry 3.2 (lnitiality I) Given a cohl'rpnt onler-sorted signature E alld a set r of con­
dilional E-equations, then '1r ,r(0) (henceforth denoted '11:.r) is an initial (E , r)-a1gebra, 
and Tr.dX) is a free (E , f)-algebra on X. 
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Proof: First notice that the freeness of TE,r(X) specializE!! to the initiality of TE•r when 
X = 0, &/) that it suffices to show the freeness of Tr:.rCX). Let A be an order-sorted 
algebra satisfying r, and let 0: X --> A be an assignment for A. Then we have to show 
that there is a unique order-sorted E-homomorphism a"': 1i:.rCX) --> A extending a, Le., 
such thatm"'(q(r)) = a(x) for each x E X, where q denotes the quotient homomorphism q: 
TdX) ..... TE,r(X). The existence of ok follows from the Completeneo;s Theorem, because 
the fad that A satisfies r implies that a*(t) = o*(t'} for every equation ('v'X) t = t' that 
is derivabll:! from r with the rules (1)-(5), and this implieo; that ·...T(X)<; ker(o*J, and thus 
by the un,:versal property of quotients (Proposition 2.34), there is a unique order-sorted 
homomorphism a"': TE,r(X) --> A with a* = a'" 0 q. 

The y~iquencs of ak now follows by combining the universal property of TI;(X) as a 
free ordcr·sorted algebra on X with the universal property of q as a quotient, as follows: 
Let h: T~,r(X) --+ A be another order-sorted homomorphism such that h(q(r)) = 0(7.) for 
each x EX. Since TE(X) is a free order-sorted algebra on X, we have a* = h 0 q, and by 
the uniV1!lsal property of q as a quotient we have h = ak as desired. 0 

It is also worth explicitly drawing out the following consequence of our proof of the 
Completelless Theorem: 

Corollary 3.3 Given a coherent order-sorted signature E and a set r of (conditional) E­
equation~, an equation ('v'X) t = t' is satisfied by every E-algebra that satisfies r iff it is 
satisfied by TE.rCX). 0 

3.3 Retracts 

We have already shown in the Introduction that strong typing if> not flexible enough in 
practice, and suggested that OSA can provide the necessary flexibility with retractS. For 
example,a term such as head(tail(O 1 0 0») is not well-formed according to the syntax 
of Exarill'le 2.14 (BITS), because head's argllments should have sort NeList hut. the term 
tail(O 1 0 0) only has sort List, even though we know that it will evaluate to the 
nonempty list 1 0 O. One might think lhat this is "just run-time type checking," and 
should therefore be handled by the opera.tional semantics. However, retruts have a very 
nice, purely semantic treatment a.~ a consf'rootive ntension (6ee below); of course, there is 
also an operational sema.ntics, clevelopecl in joint work with Jean-Pierr~ Jouannand 122J. 

The basic conslruction extencls an order-seu-ted signature E to a.no/,her order-sorted 
signatuu EO having the same sorts as E, aad having ~he same 0pNation symbols i\..'J E plus 
some new ones called retn.ds of the form r~,,~: s' --> s for euh pair .,', S wi~h s' > s. The 
semantics of ret ruts is then given by new retratt equations of the form 

(Vx) ,.,,.{x) = x 

where :r;s a variahl~ of sort s. 
The ODJ implementation inserts retracts to transform ill-formed E-lerms, such as 

head(tail(O 1 0 0)), that might become well-formed after reduction, into EO-terms. 
This has lhe eITed of giving them the benefit of the doubt at parse time, by filling gaps 
between a.clual sorts and required sorts with retracts, For example, 

head(tail{O 1 0 0)) 
is replaced hy 

hUd(rUn,leLbtCtail(O 1 000))) 
and is then reduced to 1 by applying the rules in BITS and a retrad rule; thus the original 
term is I'indicated during reduction. On the other hand, the term 

hud(tail(tail (1))) 
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is temporarily accepted as the term 
head(rLlat,.eLbt (tall(rLlat.•eLiBt (tall (1»») 

and is then reduced to 
head(rLht,.eLiBt (tll.ll(rLiBt,leLiBt (nll»» 

which serves all a \lery iuformative error message. This kind of run-timE' typechecking is 
relalively inexpensive, aud together with the polymorphism provided by subsorta and by 
parameterized modulesll , comhiues the syut~tic flexibility of untyped languages with the 
advautages of strong typing. In fact, unlike the untyped case, truly nouseullical expressions 
can be detected at compile time and rejected, whereas any expression that could possibly 
recover is allowed to be evaluated. By "truly nonseusical" we meau expresion6 sqch as 
factorlal(false) that coutain subexpressions in the wrong connected component (as­
suming that booleanB and natural uumbers are in different connected components of the 
sort poset) and therefore cannot be pa.rsed by inserting retracts. 

We now show that adding retracts is safe. Suppose that we begin with an order-sorted 
signature E and a set r of conditional E-equations. By adding the retract operations we 
extend E to a signature EIlo:I, and by adding the retract equations we extend f to a BPt 

of eqnations [0. Our reqllirement for retracts to be WE'll-behaved is that the extension 
(E. f) ~ (EIlo:I, f@) should be conservative in the sense that 

t "T(X) " iff f. "T0{X) t', for all t,t' E TdX). 

In model-theoretic lerms, this is equivalent t.o (('quiring that the unique order-wrted E­
homomorphism tPx~ 1i:,dX) --> TE0 ,r0(X) which leaves the elements of X fixed, is in­
jective. We will prove this uuder the following very natural assumption on the algebras 
TI;,dX): given X ~ X', then the unique E·homomorphism lX,X': TI;,dX) ..... TE.I'(X ' ) 
induced hy the composite map X '-+ X' ---+ 1i:,r(X') (first inclusion, then the nalural map­
ping of each variable to the rJass of terms equivalent to it) is injective. We will say that 
a presE'ntation CE, f) is faithful if it sat.isfies this injectivity condil.ion. Allhough they are 
pathological, unfaithful pre~entatjonsdo exist" and for them the extension with Tetrads is 
not c:onservative, a.s shown by the following example from [24): 

Example 3,4 Let E have sorts a,b,u with a,b $ tt, have an operation {: a ~ b, have no 
constants of sort a, have constants 0, I of sort b, plus +, & binary infix and -. nnary prefix of 
sort b, Lf't f have the equations -.(x) "= {(x), y+y = y, yky = y, y +( ~y) = I, (-.y) + y = 
1, yk(--,y) =0, (""y)&y =0, -.0 = 1, -.1 = O. ThE'n ('tI)l =0 is dE'dmjble froRl r, where 
x is a variable of sort a, although ('to)1 = 0 is not deducible frorn r. Thlls (E,f) is not 
faithful. Note t.hat TE,r has I i- 0 (becanse of the second equation) bllt TE0 ,r@ ha."! 1 == 0 
because of the first equation and the presence of constants of sort a sur.h as ru,,,,(O) and 
ru.",(l). Thus, the extension (E,r) ~ (EO, f 0 ) is not conservative. 0 

There are simple conditions 011 both the signature E and on the equations r that 
guarantee faithfulness or a presentation (E, 1'). For arbitrary f, it is neceM,ary and sufficient 
that E has no quasi-empty models, which arc algebras A such that A. = 0 for some 8 

but A., i- 0 for :o;ome other sort 8' ['24]. For arbitrary E, it is SlJllicient that f is a set of 
conflur.nt rewrite rules [55] 

The following model·throretic proof of the conservative extension result for faithful pre· 
5f'utations uses naturality of the family "X of morphisms, which in particular gives commu­
tativity of the following diagram for X ~ X', where Jix,x' is the unique E0-homomorphism 
induced by the composite map X '---' X' -- 1i;8,n~(XJ): 

II n __ 
r ...r"''''~l~nzeo lDodules will be the mlLin subject of lhe forthcoming Pul III or lhi' paper. 
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Tr..reX) ~Tr:0.r,.(X) 

,x.x'! I"x,x' 

TE,dX') -",-TI;@.r@(X')
.x' 

Theorem 3.5 HE is coherent and (E, I') is faithful, then the extension (E, f) ~ (E@,rl8l ) 
is c:onserva.tive. 

Prool: We have to show that T/Jx: Tr..dX) --> TI;@,re(X) is injective. By the above 
naturalit} diagram. plus raithrlllnf~ss, it suffice!' to show that "x,: TE,d X') -+ TE@.P~(X') 

is injectiW!, where X' ;2 X is obtained from X by adding a. new variable symbol of sort 
s for each sort s with X~ = 0. Now pick an arbitrary variable symbol z~ E X8 for each 
oS E S. The key step is to make the (E, f)-algebra TE,dX') into a (E@,f l8l )-algehra. by 
defining r.,.,: Tr.,r(X')., - TE,dX'). to be the function that sends [tl E Tr:.r(X'). to Ill, 
and otherwise sends H to z~. II. is now e;u;y to S~ that the retract equations are satisfied. 
Thus the freeness of TE8p~(X) implies that the na.tural inclusion X' _ TE,dX') indl1ces 
a uniqueE0-homomorphism q: TE@,['@(X')-+ TE,dX') such that qo t/JX, is the identily. 
Therefon t/lx' is injective. 0 

4 Reduction to Many-Sorted Algebra 

Thi!'J section reduces OSA to conditional MSA, thu!'J providing a systematic way to import 
OSA analogues of known MSA results. The difference is essentially one of viewpoint; 
mathematically, it is an "equivalence of categories" ( this notion is defined below), This 
result also implies that MSA rewriting can be used <l.S the operational semantics of a logical 
programming language b<l.sed Qn Qrder'!'Jorted algehra (<l.S in onn [J J, J.lJ); see (2'21 for 
details. Next, we relate OSA and MSA equational satisfaction, and grl. Ies!'J direct proofs of 
the existfnc(' of initial and free order-sorted algebr<l.s for conditional equations than those 
in Section 3.'2 abQve. We also lift the BirkhofTVariety Theorem aud the McKinsey·Malcev 
QUMivarifty Theorem from MSA to OSA. 

4.1 Reduction Theorem 

The basicidea is to provide for e<tch locally filtered order·sorted signature!; a corresponding 
many-sorted signature E# wilh a set J of E#.equations such that being an order-sorted 
E-algehra is "essentially the same" (i.e., up to isomorphism) as being a many-sorled E#­
algebra satisfying J. 

Given a IOG\lIy tiltered order-sorted signature E with sort poset (5, 5.), the corre!'Jpond­
jng E# has the !'Jame sort !'Jet S, has an operation symbol (7v.'.~ E E!,.s for each (1 E Ew,~ 

(including cQnstants, where w = .A), and has additional operation symbols c~,~, E E~., 
whenever !I S s' in S, called inclusion operatiQns. Th(' conditional equaliQns in J are Ih(' 
following (omitting the obvious quantifier aud sort information): 

I.	 (identity) cs.s(x) = %, for e;vh.~ E 5: 

2.	 (injectivil}') x = y if c.,~,(:r) = c.,s'(y), for each !I S 3' in 5; 

3. (transitivity) c~,.~,,(('....,(%)) = (~.~,,(z), for each s 5. 5' 5. !I" in 5; 

4.	 (hQmomorphism) whenever 0-: sl...sn - 5 and (7: s'1...s'n ~ s' are in E with .~i $" s'i 
and therefore (by monotonicity) 5 S 3' in S, then 

,.
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c.,.'(0.l ... "n,.(:t1 , ... ,:tn )) = 0.'1 .•'n,.' (C•• ,.'l (XI), ... , C.n,.'n (.Zn))· 

(Note that the iujectivity equat.ion is conditional.) 
We can vi~w an order-sorted E·algebra A as a many-Borted E#.algebra A# by letting 

At = A. for each 8 E 5, with At- , the indusion At ~ A~ for each 8 $ lJ' and with 

At... = A... : AlII .-.,. A. for 0 E E:::... Then A# sat.isfies J by construction. Moreover, 
this 'construction of A# from A ~xtends naturally to homomorphisms, since an order-sorted 
E-homomorphism I: A - B is also a many-sorted E#-homomorphism I': A# ........ B# with 
If = I.: At ........ B!. This follows becanse the operaLions ow,. satisfy condition (1) of 
Definition 2.8 by construction, while for the operations c.,,, this is just condition (2) for I 
to be an order-sorted homomorphism. In this way we get a functor 

(.)#: OS AlgI; ........ AlgI;.,J
 

wh~re AISI;.,J is the category of many-sorted E#-algebras satisfying J. The Reduction 
Theorem below shows that this fnnctor is an equivalence of categories. 

Our proof of the R.eduction Theorem needs some facts about filtered colimits of sets. 
A filtered diagratn of sets is a functor D: (8, $) ........ Set where (5, $) is a filtered poset; 
Le., D is a collect.ion of sets {D.. I.~ E S} together with functions d.,.': D, ........ D" for ea,ch 
lJ S .~' in (5, $), with d.,.. the identHy on D. for ea.ch 8, and such that d.,." = d ,." 0 d..,II' 

11 "whenever 8 $ 8' S 05 . The colimit of snch a filtered diagram D, written colim(D), can be 
computed a.'i a quotient of the coproduct U..es D.. (which we represent as the disjoint union 
U.. es D. x {.,}) by the equivalence relation:::::: defined by (11, 8) :::::: (a', 8') ilT for some ,~" ~ lJ, .,' 

in 5, d•.,"(I1) = dll', ..,,(a'). R~8exivity and symmetry of the relation:::::: are obvious, and 
transitivity follows from filtration. For each D.. there is a map i,: D• ........ eolim(D) defined 
as the composition of the coproduct injection D• ........ U.es D. with the natural projection 
into equivalence classes U..es D• ........ colim(D), and the j. commute with the d"., in the 
natural way by construction. Moreover, one can now check that colim(D) with the maps 
j, has the following universal prop~rty of a colimit in Set of the diagram D: givrm maps 
{I.: D• ........ A I ., E 5} such that I. = I., 0 d.. ,.' whenever lJ S lJ', then there is a unique map 
I: colim( D) ........ A such that 10 j, = I. for each .~ EX. We need the following result about 
this construction: 

Lemma 4.1 If all the d..,,' of a filt('f('d diagram D: (5, $) --' Set are injecl.ive, then the i .. 
ar~ also injective. 

Proof: (a, ... ) == (a' ,8) iff d..,.. ,(a) = d•.• ,(a') for some 8' ~ lJ ilT (since the d.,., are injective) 
a = a'. 0 

Theorem 4.2 (Reduction) Given a coherent order· sorted ~ignature E, thf"n t.he functor 
(_)1: OS AlgI; ..-.> AlgI:. J is an equivalence of categories, in the sense that there is Another 
fundor (_).: AlgI;#.J - OS AlgI: such that for each A in OSAlgI: and B in Algl;j1,J there 
are isomorphisms A ~ A#· and B ~ B·# ~hat are natural l1 in A and B, respectively. 

Proof: Given Bin AlgI:. J we define B· as follows: First, notice that, for ea.ch ronnected 
component C of 5, the sets' {B. I ., E C} together with their c.,.' form a fJitered diagram, 
and the maps j, into the filtered colimit Be are injective by Lemma 4.1. Now define 
B: = j.(B.), and given 0 E r.\....n define B~~ B:I....n ........ B: by
 

B;(j.I(b.), ... ,i.n(bn») = j.( B;I ..•n'·(bt , ... , bn». 
"The condition for a.n lSOmotprll~m ~o tie natural IS spelled out In Lhe tlody 01 Lhls proot; see also L4!lJ, 

Theorem IV.4. 
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Checking that D· in fad satisfies the conditions of an order-sorted aJgebra is' an exercise 
in the use of the equations J and the commutation of the i. with the c~ ...,. 

This construction becomes a functor as follows: first notice that given a connected 
component C of S a.r)d given h: A ..... B in AISI;•.J the maps h.. constitute a natural 
transformation between two diagrams on the poset C, and therefore they induce a map
he: Ac ..... Dc hetween their colimits: on elements, the map he is defined by hC(((a, s)}) = 
[(h~(a), s)J. Therefore, we can define maps h: by restricting he to domain A: and codomain 
n;. It follows from the definitions of (_)# and (~). that for any order-sorted I:-algebra A 
One has A'- ~ Ai indf'ed, in this case we can compute the colimits A~- as unions U~EC A~ 
alld get all actual equality ...1'- = A. 

By using the equations in J it is also easy to check that tne bijections i,: B, -+ 8:# 
define an isomorphism aB: B !:::: B-#. We now have to show that the isomorphism UB is 
natural in D. This just means that wheTl B varies over Algr;#,J the aB's are compatible 

with the functor (_)-#, i.e., for any h: B -+ D' in Alg!:#,J the diagram 

fl h fl' 

aB aB' 

B"'--­h.# D'·# 

commutes. Tllis follows from the definition of h-# alld is left as an exercise. (The identity 
Alt'- ::::: A that we got computing the colimits involved as unions is already natural iu A, 
since (_)..- is the identity functor on OSAlg1.:') 0 

4.2 Semantic Consequences or the Reduction Theorem 

Tile Reduction Theorem is also useful for lifting other MSA resuHs to OSA. Because an 
equivalCllce of categories preserves initial objects (for example, by the general result that all 
equivalence of categories preserves colimits, e.g., [.,19], Theorem V.5.1), the Reduction The­
orem implies thal (_)# sends any initial order-sorted E-algebra. to an initial {E#, J)-algebra 

whenevff 1; is coherent, and so we get the isomorphism T! == Tr;#,J. Similarly, when E is 

a (not. necessarily regular) locally fillered signalure, (~)- sends the initial (E#,J)-aJgehra 
T~#,J to an initial order~sorted algebra, because (_)- is an equivalence of categories. TilliS 

initial order-sorted algebras exist even w)ten E is not regular (of course, there is an isomor­
phism TE#.J == T1.: when E is coherent). Uy the equivalence of categories, the exislence of 
an initial order-sorted algebra now follows direcLly from tile well-knowlI existence of many­
sorted iniLia.1 algebras fur couditional equatipns. However, the explicit cOllslructioll of Tr. 
given in Theorem 2.)2 when E is regular is fairly simple, helps to develop intuitions about 
OSA, alld does not require local filtering. 

Corollary 4.3 (Initiality II) Giveu a. locally filtered order-sorted signature E wilh sorts S, 
and an S-sorted set X disjoint from E, then Ti:. J is an initiaJ order-sorted E-aJgebra aud 

(Tr;. ,AX»- is a free order-sorted E-algebra on ~\'" i if E is coherent then Tt is an initjaJ 
(E*, J)·algebra and Tr;(X)# is a free (E#, J )-algebra on X. 0 

This corollary could aJso be obtained by noticing that lhere is a (right adjoinL) forgetful 
functor U: Algr;#,J -+ SetS (where SetS is the category of S-sorled sets) with U(B) := 

{B~ I 3 E S} and using the facls that an equivalence of categories is an adjoint and that 
the composition of adjoints is an adjoint (see [49], Theorems IV.8.l and IVA. I). 
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This corollary is useful in connection with parsing order sorted terms, through the 
unique E#-homoIIlorphism from the initial E#-algpbra, h: Tl:. -+ Tt or, if we Wi'l.nt term~ 
with variables, hX= Tl:#(X) -.. Tl:(.\)#. The set P(I) == {t' E Tl:.(X) I hx(t'):= t) for 
t E TE(X) is the set of all disambiguated parse" of t ~ a E#.term; let pet). denote 
the set of parses of / of sort .II, Le., P(t) n Tl:'(X),. Proposition 2.10 8howed that for E 
coherent. then' is a least 1I0rt s with t E Tt:.• and thE"Tefore with pet). non empty; this sort 
s was denoted LS(t). For r a set of order-sorled equations, conditional or not, let p(r) 
denote the set of all possible parses for puh pquation in r. 

In fact, the construction of Proposition 2.10 can bp adapled as follows to find the least 
sort parse LP(t) of t: First, for x a variable gymbol, let LP(x):= x; next, for t:= lJ(tl...tn) 
with n ~ 0 and with si == LS(li), leI. (Ut,.'I) be lhp leO\."t pair such that .'I1.. ..'In ~ TV and 
u E E w ,. (which exists because E is regular); then LP(t) == t1"".(LP(t.I), """' LP(ln)). 

The results of this section are also uspful in reducing the satisfaction of eq~ations in 
OSA to the satisfaction of equations in MSA. The main theorem is: 

Theorem 4.4 (Satisfaction) For E a coherent order-sorted signatme: 

(1)	 A E-algebra A satisfie~ a wnditional equation ('9'X) f == l' if C iff the Ii-algebra 
A# satisfies any conditional equation (say of sort s) ('9'X) tt == !~ if C t such that 
hX,.(fd:= t, hx.•(i'i):= f', and hx(Cd:= C. 

(2) Conversely, a p:;#, J)-alg('llTa B satisfies a conditional equation (VX) it == tj if C 1 (of 
sort ,'I) iIT the order-sorled algebra B- sat.isfies the conditional equation (VXl hx(t,) := 

hx(t'i) ifllx (Cd· 

Proof: For any assignment a: X -, A, let a+: Tl:jI(x) ----> AI and a·: Tt:(X) ----> A denote 
the uniqne homomorphisms induced by d. By definition of sati.'lfaction, to pro\"e (I) it is 
enongh to show that fot any I E 71:(-") and t, E Tl:.(X). such thaI. hx ...(t.):= I, one has 
d;(f.) = a-(t). This follows from the initiality of Tl:.(x) by noting that the diagram 

hx 

gives d-#(hx(x)) = a·#(x):= a(x):= d+(X), and thus a-I 0 hx equals the homomorphism 
a+: 1i:'(XI -.. A*". Next, we r~ducp the proof of (2) to the proof just given for (1) by 
noticing that since B is i~omorphic to Be#, it satisfies exactly the same equations as 
B-# and (\I~ing ( l» Be' satisfies an equation ('0'X) t l = I~ iff B- satisfies the equation 
(VX) hx.,('d = hx..(';). 0 

This theorem shows that for r a ~et of ronditional order-sorted E~equations and for 
P(f) the sel of all possible parse~ of the equations in r as conditional E#-equations, the 
functor (_)# restricts as (')lpeded: 

Corollary 4,5 for L a coherent signature and r a set of conditional E-equatiolls, there is 
an equivalence of catl'gories 

(-)#: OSAlg1:,r -.. AIgr:',JuP(r)' 

o 
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As beCore, this means that initial algebras, and more generally Cree algebras, are pre­
served by the equivalence of categories. ThereCore we can prove in a different way, without 
appeal to order-sorted deduction, the existence of initial and free order-sorted algebras. 

Corollary 4.6 (InitiaUty III) Given a coherent signature E, the class OSAlgr:.r of E· 
algebras satisfying a set r of conditional equations has an initial a.lgebra, and for any 
variable set X, also a free (E, f)-algebra over X. In particular, (TI:#.JUP(r)· is an initial 
(E. f)-algebra. and (TI:" .JuP(r)(XW is a free (E, f)-algebra on X. 0 

Two important consequences of the Satisfaction Theorem are order· sorted versions of 
the	 McKinsey-Maleev Quasivariety and the BirkhofT Variety Theorems. Since the cast! 
when the set of sorts S is infinite requires some additional developments (Cor which Set! 

(24)), we treat the case of a finite set of sorts. The MSA McKinsey-Malcev ThCQrem 
states tha.t a class of many-sorted algebras is defmable by conditional equations ilT it is 
closed under products, suLalgebras, and ~Itered colimits (for example. see [371 63.3, where 
the statement is one-sorted; note that our formulation considt!rs limits and colimits up 
to isomorphism, so we do not need closure under isomorphisms). The DirkLoff Variety 
Throrem (11 characterizes clMse~ of algebras defmable by unconditiona.l equations a..<; tholie 
da.<;ses dosed under product);, s'lLalgebras, and homomorphir images (Dirkhoff's original 
formulation was one-~;:orted; see {H] for the flfSt mally-sorted formula.tion, and 12·1] Cor 
a corrected statem£>nt regarding quantifIcation of variahles and a discussion of infinitely 
many sorts). Our aim is to use I,he f'quivalence of categories to lift tht!&e two theorems 
from MSA to OSA. However, fIrSt we nPed to relalivize the MSA Mr.Kinsey-Malcev and 
Dirkhotl'Theorems to a subclass defmed hy conditional equations, due to lhe presence of 
the conditional E#-equations J. 

First some notation: For C a class of order-sorted E·algehras, let F(C), S(C), II(C), 
F(C) denote the closure of C uuder products, sUbaJgebras, homomorphic images, and filtNed 
colimits, respecth'ely. Similarly, for C1 a da..c;s of many-sorted E#.algebras, let P'(CI), 
5'(C1 ), W(C I ), F'(C I ) denote the corresponding many-sorted dosur£>s. 

Lemma 4.7 Given a many-sorted signature 0 with a finite sort set, a set for 1'. of ron­
ditional U-equations, and a da..c;s C, of algebras contained in Algn,T', then the following 
hQld: 

(1)	 C1 is of the form Algn,rl Ur'2 for some set r;r of conditional equalions lIT it is closed in 
Algn,r1 under products, suhalgebras a.nd filtered colimits. 

(2)	 C, is of the form Algo.rlUr) for some set f 1 of unconditional equation!'; iff it is closed 
in Algn.r1 under products, subalgebra..c; and homomorphic images. 

Proof: The first statement follows from the well known (and easily shown) fact that 
classes of equations and classes of algeLra..c; form a Galois connection, and the closures 
under products, subalgebras, and f.ltered colimits of any class iu Algo .f • and in Algo 
coincide precisely by virtue of the McKinsey-Malcev Theorem. 

The second slatcment follows hy remarking that Algo.r • is dosed under products and 
subalgebras, so that those two closures coincide in AlgrU'1 and in Algu . The closure 
under homomorphic: images of C. in Algn,r is just the intersection ll'(Cd n Algn.r •. 

l 

Since CI is assumed closed under producls and subalgebras, and since the dosnre under 
homomorphic images of a class closed under products and subalgehr~c; is afro so dosed, the 
DirkhofT Variety Theorem implies that R'(C.) is of the form Alg n.r2 for some set r] of 
uncondiliona.l equations, aud so we have C, =:: Algn,1"1 n Algn.r1 = Algn ,r,ur3 as desired. 
The converse is now easy. 0 



Corollary 4.8 (McKinsey-Maleev Quasivariety and Birkhoff Variety) For (5,::;, E) a co­
herent order-sorted signature with 5 finite: 

•	 A dass of order-sorted E-algebras is definable by some set of conditional ~uations r 
(i.~., is of the form OSAlgr:,r for some set r of conditional equations) iff it is closed 
tinder produets13 , subalgebras, iUld filtered colimits . 

•	 A dass of order-sorted E-algebras is d~finable by some set of (unconditional)eqllations 
r (Le., is of the form OSAlgt:,r for some r of unconditional equations) iff it is closed 
und~r products, subalgebras, and homomorphic images. 

Proof: Notice that by the Satisfaction Theorem, any class of order-sorted alg~bra..c; of the 
form OSAlgt:,r for r a set of conditional equations, can be written as (Algt',JuP(r)'''' 
Similarly, for ria. set of couditional E*-equations, one has (Alg~.. ,JUri)· = OSAlg~,hK (rll 
(where X iB a set of variables that containB all LhoBe declared in the equation~ of r.). 
This means that .2L clasB of order-Borted E-algebras C is definable by conditional equations 
(respectively, unconditional equations) iff it iB of the form (Alg~"Jurl)" for f. some set 
of conditional (respectively, unconditional) E#-equations. Note also that if C. is it. cli\.55 of 
many·sorted algebri\S contained in Alg~.. ,J aud dosed under iBomorphisms, then (C,)· is 
aJso closed under isomorphisms; in particular, equationally definable classes of order-sorted 
E·algebras are closed under isomorphismB (this was the motivation for defining coherellt 
signatures), Now consider the following identitie5 that hold for C1 a class of many-Borted 
algebras contained in AlgE",J and dosed under isomorphisms: 

(1) P(C.J·) ~ (P'(C,))' 

(2) S«C,)') = (S'(C,))' 

(3) H«C, ).) ~ (H'(C,))' 

(4) F(C, ).) = (F'(C,))', 

Since equivalences of categories preserve alilimils and colimHs, (l) ami (4) are imhlf'diate. 
(2) and (3) follow from CI (and thui'i (C I )") being clOBed under isomorphisms, by r~mark­
ing that the functors (_)# and (_)" both preserve injectionB and surjections. The OSA 
McKinBey-Malcev Theorem now followB from Lemma 4.7 and (1), (2), (4). whilr the OSA 
Dirkhoff Theorem follows from Lemma 4.7 and (1), (2), (3). 0 

5 Variations on the Theme 

Many different ways to define order-Borted algebra have a.ppeared in the Iiteraturr. However, 
most are lesB general than our approach; for example, they may fail to admit Inany-sorted 
algebra as a special case, or to provide a semantic account of overloading. 

5.1 Preregularity 

Let UB begin with a variation of our own invention, a weakening of regularily that i~ needed 
for the discussions which follow: 

Deftnition 5.1 An order-sorted Bignature E is preregular iff given wO ~ wI in S· and 
given (J in Ewl ,.J1 there iB a least Bort .. E S Buch that wO ~ wand a E E.... ,. for Borne w E S·; 
we ca.ll .. the least sort of (J with arguments (arity) over wO, and denote it L5(a, mO). 
Notice that E(X) is preregular if E is. 0 

,~. .....
--I.e., proancU! II. A, of r.mili"" IA.1 i E II o~el.lbi~l.r,. ind~JI; ~ls 1. 
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Proposition 5.2 The following are equivalent 14 for <\n order-sorted signature E: 

1.	 r:: is preregular. 

2.	 Each tETE has a least J E 5 such that t E Tr.• called the least sort of t <\Rd denoted 
£5(1). 

3.	 Given 5' S;; 5 and <\ v<\riable set X that is disjoint from E, then n.es' Tr;(Xl. 
U",SS' Tr;(X)., (where J' $ 5' means that 8' $ 8" for all 8/1 E 5'). 

Proof: 
(1 )::::>(2) m<\y be proved essentially the same way as Proposition 2.10. 
(2)::::>(3): Since preregularity is preserved by adding constants, we need only consider 

ground terms, and since tbe opposite containment is obvious, it is enough to show that 
n.es' T:r:,. ~ U.,<s' TE,.'· For any t E n.es' TE., we have LS(t)$S'; thus, t E U.'<s' TE,.' 
as desired. -	 ­

(3)=>(1): Suppose tht E is not preregular. Then there are wO <\nd a such that CT is in 
Ewl.d wHh wO $ wI for some wI E S· but LS(CT, wO) does not exist. Let 1/)0 = .,l...sn, 
<\nd let..\' consist of the v<\ri<\bles zl, ... , zn of sorts "I, ... , "n. Then the set 5' of all possible 
sorts for the term CT(d ••..• :rn) is such that <\ny /J' with a E Ew' ••' and wO $ III' is ill 

5' and any 8" in 5' is of the form 8/1 ~ 8' for one such /J'; thllS, the set 5' cannot have 
<\ least element. Since a(zl, ... ,xn) belongs to n.es' Tr;(X). <\nd by hypothesis we have 
n.es' '7i:(X). = U.'<s' TEC..\' )., we can conclude that 5' has a least element, which ill a 
conlradktion_ 0 ­

The Il'allt parse LP(t) of a term t discussed in Section .f.2 also generalizes to preregular 
signatures. 

5.2 Related Work 

The approach to order-sorted algebr<\ given in this paper generalizes the one given in [22J, 
and differs from others in the lilNatllre [15, 67, 71, 72J. This section gives a precise com­
parison of our <\pproach with theJe otherll, and concludes that the approaches are dose 
enongh thot they can simulate each other; on the other hand, it also concludes that there 
are subshnlial advantages, both in generality and in the pragmatics of langnage design, 
th<\t support our choice. Our main goals in choosing definitions have been: 

•	 To be as general and simple as reasonably possible. 

•	 To insure that MSA is a special case of OSA. 

•	 To give a semantic account of overloading. 

All authors ll('('m to agrP(' on the notion of order-sorted signature (except perhaps for 
an inessential restriclion in [15)). However, significant dilTerences arise in the notions of 
algebra and homomorphism. From more to less general we have the following: 

L	 OSAlgr; is the notion given in this p<\per, which in particular involves the following 
monotonicity caudition in the definitiou of order·sorted algebra: 

(2) CT E E",t,ll n E w1,.1 and wi $ w2 imply that A:,I.·I(a) =: A:,1,51(a) for all 
a E A",I' 

"\Vc fint proved lhi9 res,l!t ASsuming lhd the VOl":"t S of .ilQrb utislied the descendin! chai .. covdition; 
we Lhank Cerl Smolka. ror pointing oul lhd thtl TesLrictjon is unnff:es:sa.ry. 
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2.	 OSAlg~ reph.ces our condition (2) by the condition 

(2')	 if rJ E E",I.d n r Ill2.•, and if there ill a wO s: wl,w2, then A:,I,~I(a) = A:2.•l(a) 
for all a E A...,o. 

The definition of homomorphism is exactly the same in these two c~es. 

3. OSAIg'f is the category proposed by (15,67, 71, 72). It replaces condition (2) by 

(2") ifrJ E E ....l.~1 n L"'l,.] and if a E Awl n AWl, then A:,I'·'(a) = A:,1,.1(a). 

The notion of homomorphism f: A ..... B adds to ours the requirement 

(H) ;[ a E A, n A" then f,(a) = f.,(a). 

The differences in g~nerality are reflecled by inclusions of categories, 

OSAlg~ ~ OSAlg~ ~ OSAlgE 

where the inclusion OSAlgI; ~ OSAlgE is full, wh£'reas the inclusion OSAlg~ ~ OSAlgI; 
is not full in general (Le., there are homomorphisms in our sense that are not homomor­
phisms in OSAlgt;). The discufision below will show that; 

•	 If 1: is reglilar then OSAlg~ = OSAlgE. 

•	 If r is preregular then TI; is initial in OSAlg£. 

•	 Any preregular siguature E can be f"xtf'nded to a regular signature I;' such that 
OSAlgl; = OSAlgI;J. 

Thus the diITerence between OSAlg~ and OSAlgI; is not \'NY fiubstantial and, since reg­
ularity is nker than preregularity, thp main parts of thi~ paper stick 1,0 regularity. 

Condition (2) may seem surprisingly general, because it admits some pos~ibly unex­
p£'cted behavior. For example, consider (S,E) where S = {sl,~2,~3} with.91 s: .92,.93, 
where a E E~,d an~ rJ E E~],~2 n E~J,~3' Then there are order-sorted E-algcbras A such 
that 

A;1,.2(n) #: A;.1,N(a). 

For example, one such algpbra has A'l = {a}, A~l = {a, b}, A~3 = {n, c} with 
A;]·~l(a) = A~'J"](b) = b 

and 
A:"~'(a) = A:;.:J,>J(b) = c. 

Condition (2') excilldes this kind of behavior, but condition (2) is technically easirr to work 
with, as well as more general; moreover, it is needed for one of the main resulls of this 
paper, Theorem 4_2 

Although preTegularity may seem \'ery natura.l, it fails to ensure til£' ("quivalenc(" of 
conditions (2) and (2') in the dellnition of ordeHorted algebra. For example, ron5idcr a 
signature 1: with sorts S = {sO,sl,1l2,.93}, subsort relations sO'S sl,.92, and opera.tions 
rJ: III --+ .93 and a: 52 --+ 113. Thpn ~ is prereglllar, but the order-sorted algehra N with 
N.; = N, the natural numbers, for i = 0,1,2,3, and with N,,: N~l -0 N~J th(' identity 
function and N,,: N~2 --+ N~3 the wnstanl, function mapping all the natural ~ulnbert; to 
0, fails to satisfy condition (2'). One can rule out such bizarre models by acc<'Pting only 
algebras in the su bcategory OSA Igl; of OSAlgE containing algebras that satisfy condition 
(2'). Since Lemma 5.4 below shows thai any prcregular signature can be extended to a 
regular signature and, since regular .qignatures ensure condition (2'), this paper emphasizes 
regularity and the simpler, more general condition (2). Moreover, we have 

Fad 5.3 If E is a regular order-sorted signature, then a 1:-algebra A satisfies condition (2) 
iff it satisfies condition (2' ). 
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Proof: Clearly (2') implies (2). Conversely, assume that A satisfies (2), let q E E wL••1 n 
E"'2,., and let wO ~ wI,m2. Then thNe is a Jeallt (liJ,,,) with (1 E EUI ,. and IlIO $" w. In 
particnlar, (w,.~) ~ (wl,sl),{w2,.~2). Therefore, A;'l,., and A;",JZ are equal to A:" on 
Aw • Thl]~, if a E A...o then aJso a E Aw and A;,I,d(a) = A:,'··2(a). 0 

Lemm8. 5.4 Given a prere-gular signature E, there is a regular signature E' on the same 
sort posel such that E ~ E' and there is an isomorphism of categories OSAlg~ ~ OSAISE" 

Proof: Let E' be the signature containing E (with the same sort poset S) and for each 
tll E S' such that (1 E Ew'.~' for some 10' ~ W a new operation (1: IV ---> LS(q,w). Since E 
satisli~s the mono tonicity condition, and w .0:::: tll impJi('S LS«(1, w) ~ LS«(1, w') whenever 
this is ddined, the signature E' also satisfies the monotonidty condition. Also, for each 
IV E S" such that (1 E Ew',J' for some w' ~ w the least rank for q with arity greater than 
or equal to w is precisely (w, LS( (1, til»). Therefore E' is regular. 

The functor OSAISE' ..... OSAlg~ of lhe claimed isomorphism just forgets about t.he 
nJ>w operations introduced in E', noting that condition (2') is satisfied because E' is regular. 
Showing that there is an invl'ue functor is tantamount to showing that each A in OSAlg~ 

can be extended in a unifjuewa.y to an algehra A' in OSAlgE, identical with A foroperalions 
in E in such a way that if f: A ---> D is in OSAlg~ then f: A' ---> H'is in OSAlg1:" Since 
for each new operation tT: III ---> J,S(cr,w) in E' there is an opf'Cation (7: w' --+ LS((1,w) 
in E wilh w ~ w', the extension A', if it exists, must dearly be uuiqul' and then E­
homomorplli~ms must preservp the new operations since these arejnst restrictions of already 
eltisting operations. But existence of A' is guarantet:ld by restriction of the already eltisting 
operations, preci!>ply by condition (2'). 0 

Corollary 5,5 For a preregular signatllfe E the algebra Tr. i~ inHial in the full snbcategory
 
OSA lsI: of OSAISE defined by those algebras satisfying condition (2').
 

Proof: This can be proved directly, by minor modifications of the proof of Theorem 2.12,
 
but it follows more abstractly from the i!';omorphism of categories OSAIS~ ~ OSAlgE,
 
that maps T1: to Tr.', sillce isomorphisms of categories preserve all limits and colimits and
 
in particular preserve initial objects. 0
 

A nice property of term aJ~ebras is that they automatically satisfy condition (2"); more­
over, in the "mailer category OSAlgE the term algl'bra TE is initial for any ordN-sorted 
signature E. However, there are good praglllati~ r",asons to requirp regu);Hity in any casp. 
Poigne [671 perceived regularity dol'S not actually disa,ppear in the category OSAIg't; it 
is hiddf'n in cOlulition (2") in a spn!;e to be made pn~dsp below. However, the calegory 
OSAJg~ has some serious drawbacks, including the following: 

•	 Condition (2") rules out thf' convl'nient flexibility of ad hoc polymorphism. For ex­
ample, one C.l,nnot have an algebra in which 0 and 1 arp both Boo1eans and naturals, 
and in which + is both addition of naturals and eltclusive or of Dooleans . 

•	 Conditions (2") and (II) radically excludf' many-sortl'd algebra as a partiCldar case of 
order-sorted algebra.. In a many-sorted algebra, two different sorts may have elements 
in common, but homomorphisms may map the same element to different iml\ges 
deprnding on the 150rt. 

This lack of compalability between the many-sorted and order-sorted approarhes asfiocialed 
with OSAlg~ is unfortunate, since order-sorted logic is in principle a refinement of many· 
sorted logic, and since the previous literaturp on abstract data types has, almost entirely, 
b_n developed in the many-sorted framework. 
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It is also unfortllnate that overloading is so severely limited in thill approach, b('(·.allse ad 
hoc polymorphism is such a pervasive and important part of ordinary mathematical notation 
that it would be a great pity, ei~her to entirely rule it out in the design of programming 
languages, or to relegate it to the realm of "mere syntax," without the backing of a proper 
semantic theory, 150 ~hat one cannot know in advance whether or not some propmed feature 
might work. Discussions about overloading are difficult, and sometimes even acrimonious, 
for languages as diverse as Ada [62) and Haskell [43), precisely because of the lack of an 
underlying semantic b3sis for these discussions. 

We also wish to mention that requiring signatures to be coherent allows a v~ry simplf" 
and flexible treatment of equality, since we can always assume that t and t' have thf" same 
sort whenever they appear in an eqnationl:'i t ::: t' by going to a common supersort. By 
contrast, Smolka [71] introduces special equality predicates of the form =",' and requires 
closure under certain properties of such predicates (so· called "balanced" signatures) in order 
to obta.in 11. completeness theorem. This seems somewhat unnatural. 

A one-sorted "universe" view of order· sorted algebra lurks within condition~ (2") and 
(H). Defining A = UaES A, to be the "universe", then condition (2/1) is equivalent to the 
existence for f"ach operation C1 with n a.rguments of a partial operation A",: An ..... A whose 
domain of definition is the union of the AUI such that C1: tv -----. sill E satisfies appropriate 
sort conditions for the results. Simila.rly, condition (II) is equivalent to the existf'nce of 
a set-theorf"tic function bel-ween uni"'ers~s that preserves sorts and operations. 'fherf"fore, 
one way to reconcile our view with that of (15, 67, 711 is to make t.he universe explicit. 
This has also the advantage of showing how an order-sorted "'universe" view can ea."iily be 
embedded into an nnsortf"d view where one gets for free (in both the categorkal and the 
pragmatic senses!) informative error messages for ill typed expressions that take the form of 
terms whose only sort is the entire universe, The idea is very simple. Take any order· sorted 
signature E and extend it to 3signature E" by adding to it a new sort u such that s ~ u 
for any old sort s. and also adding operations C1: un ..... It for all C1: sl.. .•m -----. sin E (but 
note that E" need not be regular when E is). We then have: 

Theorem 5.6 

•	 OSAlgE" OSAlgE" and in particular, TEu is the initial algebra for all three 
categories. 

•	 The forgetful functor (-Id: OSAlgEu -+.OSAlgE that forgets about th~ universe 
sort lands inside OSAlg~ and sends one term algebra to the other, i.e., 7i;-IE = TE. 

•	 There is a fundor (_"'): OSAlg~ -+ OSAlgEu left adjoint to (-Id with a natura,1 
(unit) identity A ::: A"'IE and with a very simple de!lcriptioll, namely A~(xl, ... ,xn) = 
if xi E A~i a.nd C1 E Ed ...~n,~ then A,,(xl, ..., xn) ~ the term C1(X 1, ... ,xn) of sort u. 

o 

There is another wa.y of relating the two different approaches to order-sorted alp;ebra 
that has the advantage of making explicit in what sensf" the regularity assumption is hidden 
in conditions (2") a.nd (II). This ha.<; also been noticed by Poigne [6iJ, although his statement 
ofthe facts seems to be inaccurate because he claims 11. full suhcategory inclusion rather than 
an isomorphism of categories. The idea is to complete the sort poset 5 by finite intersections 
into a poset 1(5): The elements of 1(5) can be represented as finite expressions sl&: ...&.m 

I .• ~ .....-- ru'Cllll Iftall. we require I and I' lo lie in Lhe same connl'(:tl'd component, since we do noL consider 
equations acr08ll different eomponenls meaningful. Ho",e"er, e"en 'his reslridion could be dropped by 
adding a nnivelllal sorl. 
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for .,1 •...,om E S and with slk ...ksn S .,'Ik...&lslm iff for each slj there is an .,i such 
that ."Ii $ ."I'j; and of course. two reprellentations ."I1&... &:."In and sllk ...&lm are equal ill 
.,1& ...&3R :'S s'l&: ...&s'm and sJ&: ...&lsn ~ s/I&l ...&lm. For a general justification of why 
this con5lruc~ion of I(S) works and makes the indusion map 5 ---+ 1(5) universal, see for 
example Corollary 3.2 (dualized) of (52J. 

We can extend an arbitrary order·sorted signa~ure E on S to a regular signature I(E) 
on I(S) if E satisfies the following reasonable finiteness condition l6 : fOT any 0 in E having 
n argum~nts, and for any word wO of length n in 1(5) the set {VI E S· I (1 ( E"'.8 and 
wO:'S w) has a finite set of minimal elements, say lVl, , lVn, with (1: wi ---+ si. When such 
a set is n"nempty, we introduce in J(E) an operation 0": wO ...... sl& ...&sn. This makes I(E) 
rl:'gular by construction. Now notice that eVp.r.v algebra A in OSAlg~ can be extended to 
an J(E)-a.lgl'bra I(A) by defining I(A).lk ...k." = A. I n ... n A,,, wilh operations extended 
t.o intemction sorts in the natural way, i.e., suppose that we have 0: wO -+ sl&:...&sn as 
above, obtained from (1: wi - ••~i. Then a E A",o implieg that a E AUJi and by condition 
(2"), A,,(a) is uniquely defined and belongs to A 6 , for each i = I, ... , n and therefore to 
A.1k ...&,•. Since th{' homomorphisms h: A ..... n in OSAlg~ are functions on the nniverse5 
that prelierve the sorts and the operations, tht!y also preserve intersection of sorts. In 
other words. th.ere is a functor I: OSAlgE..... OSAlg/{E) that i5 faithful and injer.tive on 
objects Ind presen'es initial algebras; I is also full, since many.sorted functions that agree 
on intl"rll'rtions glue togethN to give a function on thl" nniverses. Therefore, we can rf'gard 
OSAlgj; as a full subcategory of OSAlg /IE). However, the category OSAlg/(I:) can have 
other Ob1'C~8 IJ ~uch that there is a proper inclusion BA1& ...k ... C HAl (1 ... n [J... rathN than 
an equality. Actually, OSAlgr: can be niC(~ly axiomatized by sort conslrain!s of the form 

IlSI sl t ... t en if:r el and ... and:r: sn. 

Fllrlherdetails on ~ort const.raints must W<l.it for Part II of this papP.r; however, ~l'e 122] for 
a very brief introduction. In summary, WI" have 

Theorem 5.7 The functor I: OSAlg~ ..... OSAlg1(l:) is full, faithful and injecliv(' on 
ohjeds, and therefore makes OSAlg~ isomorphic to a filII subcategory of OSAlg1(I:J' 
Moreover, 1 pr~serves initial algl:'bra.<;, i.e .• /(TI:) = T,(E)' 0 

Pragmaticall}', it is very helpful to have a least sort for each term t ill an order.sort<':d 
term al~ebra. This makes the task of parsing much ea.<;ier and also supports good pro­
gramming and specification practice. Our expe~ience wilh many exa.mples indicates that 
this lIerJ' natural properly is generally satisfied in practice, and morf'Qver, nonsatisraction 
is often connected with conceptual errors. Of course, it i5 also easy to check this condition 
syntactically. The above subcategory inclusion tells us that in a sense, regularity is always 
present, but We prefer to make it explicit, since this gives a milch simpler approach to the 
syntactic ll.<;pects of order-sorll'd algebra thal any programming language based on these 
ideas must necessarily address. Moreover, as alrl'ady mentionl'd, our choice ill the only one 
that makes the logic a natural extension of many·sor~ed logic. For all these reasonfl, as well 
a.<; for its being simpler and more general, we pr<':fer our approach to the alternatives in 
(15,67,71, 721. Another reason lhat has been implicit in our cboice, and I,herefore should 
also be ml'ntioned, is that our approach is intimately conn{'c!"d with the Cartesian algehraic 
theoril'sof catf'goricallogk and (with the addition of sorl constraints) it actually gives a 
vl:'ry convenient way to specify Cartesian thPOries that avoids many of their shortcomings; 
th.is will also be explained in Part II of thill paper. 

·QWe muld aclu..!!)' d<;l it ""iUwul a."'~lIming LAi8 condition. but llten infinih: inlerseclions <;If sorls would 
need to be added 
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5.2.1 Summary
 

We may summarize the above discussion with the rollowing points:
 

•	 There is basic agrElement among all authors about the concept or order-sorted signa­
ture; also, the approaches in {IS. 67,71, 72} are all equivalent (except perhaps ror an 
inHlsential restriction in [lSi). 

•	 Our approach is more general in the sense thal, ror each signature, the algebras and 
homomorphism or the alternative approaches rorm a subcategory or our algebras and 
homomorphisms. 

•	 Only om approach provides a natural extension or many-sorted algebra as the par­
ticular case 'Where the sort poset has the discrete order. 

•	 Only our approach permits the convenient fleKibility or ad hoc polymorphism. 

•	 All approaches ca.n be reconciled, yielding identical categories, by adding a universe 
sort and extending the operal,ion symbols at the universe level. 

•	 The approach or [15,67,71, 72J h;\S the a.dvantagp that (erm algebras arc initial in 
general, wherea.'l we mllst r~quire that each term have a It'a."it sort; however, initial 
algebras exist in our approach even without this requirt'Jnent, as shown by lnitiality 
Theorem If (Theorem 4.3 or Section 1.2). The requirement that a least sort exist 
ror each term is implicit in the ol.hN approaches in a liense made explicit by a rull 
subcategory embedding. We believe that the leMt sort requirement is very natural, 
and that it supports gimpier implementations and beUer programming praltice. 

5.3 Further Literature 

There is by now such a vast amount or related work that we can hardly do more than cite 
pxampipli almost a.t random, including the rollowing: 

I.	 Implementations or inheritance in Simula (12] M rurther d('v~loped in Smalltalk [36J 
a.nd other object-oriented languages. 

2. Overloading and subtypes in Ada [62]. 

3.	 The theory or (higher order) polymorphism as developed in [57), [68J, [81 and [MJ. 
among many others. 

'1. There has been recent work on adding subtypes to higher ordN calculi 17. 2]. 

5. Work on "classified algebras" [78] and on "multi-target operation" algebra [J8]. 

6.	 Work on the semantics or natural and artifidallangllages, including: IH], w)Jich shows 
how Montague grammar [58] (a rormal system ror naturallangllaogf' semantics) can 
bf' treatpd with a Vf'rsion or initial algebra semantics with subsorts; [321, which uses 
error aJgebritS to define programming Ia.nguages (and thus compilf'rs); a.nd [~Ol, which 
uses partial algebras to give a semantics ror subscriptt'd variables. 

7.	 There is some e,;plidt theory or multiple inheritancf' in the context or objert.orif>nted 
programming, including [6) and 176). and we have oursf'lves applied order-~orted al­
gebra to this problem 129]. 
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8. ThNe il: aJ:;o some work giving operational llemantics for suh~orts hy rewriting, e.g., 
[II} and [801; [22] and (47) give details of two different operational semantics that 
implem('nt precisely the framework given in this paper. 

9.	 P('ler Mosses has generalized order-sorted algebra to "unified aJgebra" [60], which 
trealll el('ments and subsorts in a uniform way, and thus can handle non-determiuism 
in an algebraic setting. Mosses developed lhis formalism to support his "action se­
mantics," an algebraic approach to denolational semantiCll{59]. 

There are many interesting relatiouships among these papers: for example, [15] follows (l7J 
in using ~ignatur('s E that are "flllly overloaded'" in the sense tbat i( 0: w -+ s is in E 
and w' ~ w and ~ :0:::: 5', then ,,: w' ---> 5' is in E. Our weaker notion of regular signatur(' 
is intendl.'d to capture ad hoc polymorphism. Reynolds has subsequently abandoned the 
aJgebrairapproarh of [691, sineI' (hf' says) it (ails to handle the higher-order case. However, 
higher-order ahstract data types have been treated by (64], even with a notion of subsort; 
see (66] for som(' corrections to [64]. In Cad, the approach of [69J can be seen as arising 
from taking the so-called t('nsor product of one algebraic theory with another that consists 
enUrdy of subsort indusions. 

The ('Itremes to whirh onf' might be driVen by the difficulties oC partial algebras are 
iIIustratd in [,10], which models a state change by a change oC algebra, and thus models 
a rompulil.tion by a spqllenre of alg{"bras. The "r/a.<;sified algebra" of [78J seems to he 11 

version of OSA, and t.he "multi-target operation'" approach of (38] combi ues aspects oC the 
partial a.lgebra and the explicit Nror sort approaches. 

There is also now much interesting work on unification for order-sorted algebra, includ­
ing (Ill and 180), who discuss algorithms for Ilnification, and 1791, who argues for the utility 
of subsorts in connection with resolution and paramodulal.ion. [17] gives a systematic treat­
ment of order wrled unification tha.t is consistent with the pr(!~ent papf'f, and includes a 
linear time unification algorithm for signatures satisfying some simple condil.ions. 

Katnifl and Archer (461 argue that tol~ "lgebra.'1 are unsuitll,ble for treating errors, Cor 
reasons lile the following: 

•	 lh~error messages from various abstractiousthat use (say) the integers, Int, cannot 
be kept separate; 

•	 you have to !l;perify all the error behavior of a module in aclvance oC implementing it; 

•	 and thus, to show correctness of an implementation, all this behavior must also be 
verified. 

None of these objecl.ions is valid aga.inst the full power of OSA. The first ohjection is mE't 
in an el..-gant and simple Tni\nflN hy pPTmill,ing each different abstraction lhat uses Int to 
have its Ollln supersort of Int ('ontaining its own error beha,..ior; these supNsorts need have 
no interst'Ction outside of Int. The force of the second and third objectious arise Crom thp 
fact thO'll Lhe error behavior of an abstraction is often determined by the context in which 
YOll wallt to usc it. OSA again saves thE" day, although some concepls not discllssed in this 
paper are needed: the notion of behavioral equivalence of abstract machines (23, 56} can 
be I:lightly generalized to consider only certain designated subsorts, e.g., those that exclude 
the error messages; behavior outside these subsorts is not specified, and thus ueed not he 
verified. The method is nE"xible enough to pf'rmit specifying error messages when required 
by a problem; for example, in specifying a colllpiler, one might well want to require that 
certain specific error messagl"5 are produced for certa.in kinds oC erroneous input. Kamiu 
and Archl'r 1461 also argue tha.t error feattlre!'; like the finite bound of a stack or array 
should not be !ipedfi ...d, but should bE" determined by the implementation; but we think 
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this is wrong, since one oft('n wants to specify that alleast a certain amount of storage must 
be available. The "implementation" with no storage capacity at all is not useful. These 
issues are discussed in more d('tail in (56). It is perhaps worth emphasizing that OSA can 
be used in connection with both abstrad mac:hines (which have internal states) and data 
constraints, which together give much more power for applications than we have been able 
to illustrate in the pres.ent paper. 

A A Number Hierarchy 

This appendix illustrates the expressiveness of order-sorted a1gehra by construding the 
number hierarchy from scratch, all the way from the naturals to the quaternions with 
rational coefficien ts. Figure 3 dil'iplays the highly nontrivial sort structure of thi~ example. 

The actual OOJ3 code consists of modules NAT, INT, RAT, CPI-RAT and QUAT·RAT, plu!'i 
some test cases that use a module TEST defining decimal digils <1.<; shorthand for Lhe reano 
notation with zero and successor given in the code. Since the Peano notation is clumsy and 
inefficient, 08J3 pl"ovides built in modules NAT, liT and RAT that satisfy the specifications 
given here, but with efficient impl('mentations of the usual decimal nol"tion. However, the 
code below does not make any u~e of these built in data types. 

It is worth noting thal standard many-sorted algehra ctlnnol .satisfactory ~pecify an 
C'xample like this_ Since RAT, CP7i-RAT and QUAT-RAT are fields, aile sinks into the murky 
water of division by ~ero, and the resiliting code is inevitably embarrassingly complex, or 
even wrong. By contrast, providing subsorts for nonzero elements makes division by zero 
a nonproblem Moreover, subsort polymorphism for the arilhmetic operators allows llfiing 
the same function symbol for operations like addition throughout the hierarchy, as is usual 
in mathematical notation. 

---) th1ll file is lusers/goguen/obj/nWII/quat.obj 
---) nWllber hierarchy up to the quart ern ions 

obJ HAT 111 sorts lI'at NzJrlat Zero 
Bubsorts Zero JfzNat < Nat 
op ° : -) Zero . 
op s_ : Nat -> IIzNat 
op p_ : NzNat -) Nat 
op _+_ Nat Nat -) Nat [anoe COIIIIII] • 

op _._ Nat Nat -) Nat 
op _._ NzNat l'IzNat -) NzHat 
op _) _ Nat Nat -) Bool . 
op d : Nat Nat -) Nat [eolftll'l.) 
op quot : Nat JfzNat -) N",t . 
op gcd : NzNat NzNat -) NzNat [eollllll) . 
vars I .. : Nat . 
vars I'"' NzNat 
eqpllNzN_ 
eqJl+O=-N. 
eq (s N)+(s It) = II s(N + It) . 

eql.O-O. 
eqO.I=O_ 
eq (s N).(8 It) = seN +Ot +(N • It)) 

eq 0 ) " =- fa1ge 
eq I' ) 0 • true 
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eqsl>sM"'I)K
 
eq d(O,R) '" R .
 
eq d(s I, s M) '" d(N,K)
 
eq quot('.K-) "if «I) M')odl "',. K'» then a quot(d(I.K').M')
 

else 0 fi . 
eq gcd(I' ,K-) -= if I' :"" M' then N' elae (if I' ) K' then 

gcd(d(N',K'),K') else gcd(I' ,d(I' ,K'»f1)fi 
endo 

obj HIT is sorts Int Nzlnt 
protll'dng JI AT .
 
aubsort lat < Int .
 
subsorts IzN'at ( Nzlnt ( Int .
 
op - : Int -> Int .
 
op - _ : Nzlnt ~> Nzlnt
 
op _+_ Int Iut -> Int [assoc COIlllD.]
 

op _*_ : Int Int -) Int
 
op _*_ : Nzlnt Nzlnt -) Nzlnt
 
op quot : Int Izlnt -) Int .
 
op gcd : NzI nt Nzlnt -) NzNat [comm]
 
vars I J : Int .
 
vars I' J' Rzlnt
 
vus N' K' : RzNat
 

eq I "
 
eq - 0 c 0
 

eq I + 0 '" I
 
eq K' +(- N') = if N' ""= M' then 0 else
 

(if N' ) M' then - deN' ,K') else dO'" .K')f1)U . 
eq (- 1)+(- J) = <I + J) • 

eql*O=O. 
eqO*I=O. 
eq I *(- J) "'"' -(I * J) 
eq (- J)* I - -(I * J) 
eq quot(O.IJ) '" 0 
eq quot(- I'. J') ,. - quot(I' JJ') 
eq quot(I' ,- J') • - quot(I' ,J') 
eq gcd(- I'.J') "" gcd(I' ,JJ) . 

endo 

obj RAT is Borts Rat NzRat . 
protecting INT 
8ubsort Int ( Rat . 
subsorts Nzlnt ( NzRat ( Rat 
op -' _ Rat NzRat -) Rat 
op -'_ NzRat JlzRat -) NzRat 
op Rat -) Rat. 
op _ NzRat -) NzRat 
op _+_ Rat Rat -) Rat [assoc COIlllD.] 

op _*_ Rat Rat -> Rat 
op _*_ NzRat fizRat -) NzRat . 
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vue I' J' : Nzlnt 
vue R S : Rat . 
VArl!l R' 5' : NzRat 
eq R I(R' / S') • (R .5')/ R' . 
eq (ft / R')! 5' • R /(R' .5') 
ceq J' / I'. quot(J',gcd(J',I'»/ quotO',gcd(J',I'» 

if gcd(J' ,I') =/= 8 0 . 

eqRlsO"R. 
eqO/R'=O. 
eq R 1(- R') • (- R)/ R' . 
eq -(R / R') • (- R)/ R' . 
eq R ~(S / R') .. «R. R')+ 5)/ R' . 
eq R -(5 / R') = (R • 5)/ R' 
eq (5/ R'). R .. (R • 5)/ R' . 

endo 

obj CPt-RAT is sorts Cpx Imag Nzlmag llzCp:r . 
protetting RAT . 
subsDrt Rat < Cpx 
subsDrt bRat < NzCpx 
l!lubsorts NzImag < NzCpx Imag < Cpx . 
8ubeorte Zero < Imag . 
op 1 Rat -> Imag 
op _i NzRat -) Nzlmag 
op Cpx -) Cpx . 
op NzCpx -> NzCpx . 
op .+. Cpx Cpx -> Cpx [assoc COUllll] • 

op _+_ NzRat Nzlmag -) NzCpx [asBoc comm) 
op _._ Cpx Cp:r -) Cpx . 
op _._ NzCpx NzCpx -> NzCpx 
op _I. Cpx NzCpx -> Cpx 
op _, : Cpx ~> Cpx . 
op 1.1-2 Cp:r -> Rat 
0P 1.1-2 NzCp:r -) NzRat 
vaTs R 5 Rat. 
vars R' R" 5' 5" NzRat . 
var ABC : Cpx 
eqOi .. O. 
eqC+O"C, 
eq (R 0"(5 1) = (R .. SH . 
eq -(R' "(S' ill .. (- R')+«- S')i) . 
eq -(5' 0 .. (- S')! . 

eq R *(5 i) = (R • sH 
eq (5 i). R'" (R * S)i 
eq (R i)*(S i) '"' -(R * 5) 

eq C *(A .. 8) = (C * A)"(C * 8) 

eq (A + 8)* C .. (C * A)"(C • 8) 
eqRI"'R. 
eq (R' "(5' 0)' '" R' .. «- S'H) 
eq (5' 1) I '" «- 5') 1) . 
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eq I C 1-2 .. C • (C I) . 
eq (5' i)f R" • (5' I R")1 
eq (R' +(S' i»1 R" '" (R' / R")+«S' / R")i) . 
eq A /(R' i) = , .«(- s 0)/ R')i) 
eq A /(R" +(R' 1) :. 

• '«R" I I(R" '(R' iJJl-2)'«(- R')f I(R" '(R' 1)1-2)1». 
endo 

obj QUAT-RAT is sorts Quat MzQuat J HzJ . 
protecting CPX -RAT . 
subsorts iii;;>;] Zero < J < Quat 

subsorts IiIzCpx < HzQuat Cpx < Quat . 
subsort NzJ < NzQuat 

op _j Cpx - > J . 
op _j : HzCpx: -) HzJ 
op -_ : Quat -> Quat 

op _+_ Quat Quat -> Quat (assoc commJ 

op _+_ Cpx NzJ -> HzQuat [aesoc commJ 
op _._ Quat Qua.t -> Quat 

op _._ HzQuat HzQuat -> HzQlIat 

op j _ Quat NzQuat -> Quat 
op _I : Quat -> Quat. 

op LI-2 : Quat -> Rat 
op 1_'·2 : IiIzQuat -) NzRat 

var 0 P Q : Quat 

vus B C : Cpx 
vus C' : IiIzCpx 

eq 0 j '" 0 
eqQ+O:Q. 

eq -(C '(B j» • (- C).«- B)i ) . 
eq (C j)+(B j) '" (C + B)j 
eq C .(B j) '" (C. B)j . 

IiIq (B j). C '" (B .(C I)}j 
eq (C j).(B j) '" -(C .(B I» 
eq Q .(0 + P) '" (Q • O)+(Q • P) 
eq (0 + P). Q '" (0 • Q)+(P • Q) 

eq (P + Q)I" (P I)+(Q I) 

eq (C ill. (- e)j 
eq I Q '-2 .. Q .(Q I) 

eq Q I(C' j) - Q '«e 0 1(- C'»j) 
eq Q I(C .(C' J» • Q .«(C l)f I(C .(C' j»I-2) • 

«(- C')I I(C .(C' j»1-2)j)) 
endo 

••• nov some test cases, preceded by some helpful notation 

obj IST is protecting QUAT-RAT . 
ops 1 2 3 4 5 6 7 8 9 : -> HzHa.t [memo] 

eq i '" s 0 
eq 2 =s 1 
eq 3 '" s 2 
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eq4"83
 
eq S .. 8 4
 
eq8 a .5
 
eq7"86
 
eq8"87
 
eq9"88
 

endo 

reduce 3 + 2 
reduce 3 • 2 
reduce p p 3 
reduce 4: > 8 
reduce d(2.B) 
reduce quot(7 ,2) 
reduce gcd(9.6) 
reduce (- 4)+ B 
reduce (- 4). 2 
reduce 9 /(- 2) 
reduce (l / 3)+(4 / 6) . 
reduce 1 1 +(2 i) I ~2 

reduce 1(1 +(3 i»+(1 +«- 2) 1»1-2 . 
reduce (3 +«3 i)+«- 2) i») /«2 0+ 2) . 
reduce (2 +«3 OJ)) __ «5 i)+(7 j») . 
reduce (1 +«(1 OJ))/(2 j) . 
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