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Order-Sorted Algebra I: X
Equational Deduction-for Multiple Inheritance,
" Overloading, Exceptions and Partial Operations

Joseph A. Goguen®
José Meseguer

Abstract

This paper generalizes many-sorted algebra (hereafter, MSA} to order-sorted algtbra (here-
after, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract
data types with multiple inheritance (in roughly the sense of object-oriented programming),
several forms of polymorphism and overloading, partial operations {as total on equationally
defined subsorts), exception handling, and an operational semantics based on term rewrit-
ing. We give the basic algebraic canstructions for OSA, including quotient, image, product
and term algebra, and we prove their basic properties, including Quotient, Homomorphism,
and Initiality Theorems. The paper’s major mathematical results include a notion of 054
deduction, a Completeness Theorem for it, and an OSA Birkhoff Variety Theorem. We also
develop conditional OSA, including Initiality, Completeness, and McKinsey-Malcev Qua-
sivariety Theorems, and we reduce OSA ‘o (conditional) MSA, which allows lifting many
known MSA resclts to OSA. Retracts, which intuitively are left inverses to stbsort incla-
sions, provide relatively inexpensive rup-time error handling. We show that it s safe to add
retracts to any OSA signature, in the sense that It gives rise to a conservative extension.
A final section compares and contrasts many different approaches to OSA. This paper also
includes several examples demonstrating the Aexibility and applicability of 0SA, includ-
ing some standard benchmarks like STACK and LIST, as well as 2 moch more substantial
example, the number hierarchy from the naturals up to the quaternions.
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1 Introduction

The essence of order-sorted algebra (hereafter, OSA) is a partial ordering < on a set §
of sorts; this subsort relation imposes the restrictiou on an S-sorted algebra A4 that il
3 <9 in § then A, C A, where A, denotes the set of elements of sort a in A. A major
motivation is lo correctly handle erroneous and meaningless expressions, such as the top of
an empty stack or division by zero. This has been an important prohlem fram the earliest
days of the algebraic approach to abstract data typea [34]. Error algebra was a first try at
a more elegant solution |16], but unfortunately error algebra specifications do not always
have initial algebras [65]. OSA, which originated in [17], provides what now seems a (nlly
satisfactory and very flexible approach that provides:

1. Several forms ol polymorphism and overloading;

2. Error defiuition, detection and recovery;

3. Multiple inheritance;

4. Selectors when there are multiple constructors;

5. Retracts, which (iutuitively) are left iuverses to subsort inclusions;

6. Partial operations made total on equationally defined subsorts;

7. An operational semantics that execules equations as (left-Lo-right) rewrite rules; and
8. A rigorous model-theoretic semantics for all these features,

The research reported here supports OBJ, a programming language with mathematical
semantics given by order-sorted algebra, and operational semantics given by order-sorted
term rewriting [18, 13, 14, 22]. Qur experience with OBJ shows that subsorts areenormously
helpful in practice, siuce they can greatly improve both expressivity and readability.

1.1 Type Disciplines
A type discipline for a programming language has two main benefits:

1. it [acilitates conceptual clarity by makiug explicit the restrictions on the arguments
aud results of operations, and

2. it allows simple checks al progcam entry time that can catch many errors before
compilation or execution are attempted,

The most obvious type discipline is strong typing, where each operation has a fixed
sequeuce of argument types and a fixed result type. Many-sorted algebra (hereafter, MSA)
foralizes this for first-order operations, by interpretiug strongly typed syntax in many-
sorted algebra. However, traditional sirong typing is both too rigid and too incxpressjve,
Order-sorted algebra overcomes both limitations by combining two key ideas: inheritance
and subsort polymorphism.

1.1.1 Inheritance and Polymorphism

Inheritance as a programming lznguage (eature developed from the Simula language [12],
and intuitively corresponds to inclusion ol concepts, as found in natural langaage. For
example, we say that every hound is a dog and that every dog is a mammal, becanse
onr concept of mammal includes that of dog which in turn includea that of hound. If we



associate an ezrfension to each concept, the set of objects that fall under it {o.g., the set of
all heunds, or the set of all rational numbers), then inclusion of concepts appears as set-
theoretic inclusion of the corresponding extensions. The obvious way to formalize this kind
of inclusion is by a partial ordering, thati is, a reflexive, transitive, antisymmetric relation.
For example, the names Natural, Integer, and Rational salisly the relation

Natural < Integer < Ratlional

and their extensions, denoted N, Z, and Q respectively, satisly the corresponding subset
inclusions, NCZCQ. In order-sorted algebra, names such as Natural and Rational arc
calted sorts, and belong to the syntax, while the extensions N, Z, Q belong to an interpre-
fation of the syntax, that is, to an (order-sorted) algebra. The syntax is called a signature
and consists of a family of sorts, ardered by a partial order relation of inheritance, plus 2
family of operation symbols with appropriate type information as discussed below,

A very attractive feature of standard mathematical notation is thal it allows using ane
syinbaol for several different but related operations, so that in applying this symbol we may
not even realize that we are moving about within the type hierarchy in a. quite frec way.
This is nicely illustrated by the number hierarchy. We can add 2 + 2 (two nalurals), or
-7 + 2/3 (an integer and a rational), or 1/5 + 7/9 (two rationals), or 2 + 3/29 (a natural
and a rational). This flexibility comes froin combining the “overloading™ of the + symbol
for addition with inheritauce among naturals, integers and rationals, in such a way that no
matter which addition is used, we get the same result from the sane arguments, whenever
they make sense. We summarize this situation by saying that + is subsort polymorphiec.
As discussed in the next subsection, this is only one of several different ways that the word
“polymorphic” is used.

1.1.2  Polymorphism is Polymorphic

The term “polymorphism™ was introduced hy Christopher Strachey to express the nse
of a single operation symbol with differeut meanings in a programming language. Ie
distinguished two main forins of polymorphism, which he called ad hoc and parametric. In
his own words [75]:

In ad hoc polymorphism there is no simple systematic way of determining the
typeof the resnlt from the type of the arguments. There may be several rules of
limited extent which reduce the number of cases, but these are themselves ad hoc
both in scope and contenl. All the ordinary arithmetic operations and lunctions
ceme into this category. It seems, moreover, that the automatic insertion of
Lransfer functions by the compiling systemn is limiled to this class.

Parametric polymorphism is more regular and may be illustrated by an
example, Suppose { is a [unclion whose argnmenl is of type a and whaose result
is of type § (so that the type of f might be written &« — f}, and that Lis a
list whose elements are all of type a (so that the type of L is alist). We can
imagine a function, say Map, which applies { in turn to each member of L aud
makes a list of the results. Thus Map|l,L] will produce a flist. We would like
Map to work on all types of list provided [ was a suitable function, so that Map
would have to be palymorphic. Tlowever its palymorphism is of a particularly
simple parametric type which could be written (& — F.alist)— Flist, where o
and J stand for any types.

Strachey’s distinction is based on the kind of semantic relationship that holds between the
different meanings of an operation symbol, and it suggests a spectrum of possible styles for



the multiple use of an operation symbol, in which the more “regular” the relationship is,
the easier il is to do type inference, and the closer it is to parametric polymorphism:

+ ad hoc in jts strongest sense indicates semantically unrelated uses, such as + for
both integer addition and Boolean disjunction. (Even in such an extreme case, there
is still the tenuous connection that both instances of + are associalive, commutative,
and have an idenlily element.)

multiple representation when the uses are related semantically, but their repre-
sentations may be diflerent, as with Strachey’s arithmetic system.

subsort polymorphism where the diflerent instances of an cperation symbol are
related by inheritance (interpreted as subset inclnsion) suck that the result does not
depend on the instance used, as with + for natural, integer, and rational numbers.

-

parametric polymorphism, as in Strachey’s Map function; this is inuplemented
in higher order functional programming languages such as Hope [5], ML [39] and
Miranda [77].

OSA distinguishes and supports all four styles of polymorphism. Ad hoe polymorphism is
supported by signatures in which the same symbol iz used for sorts that are unmwlated in the
inheritance hierarchy; subsort polymorphism is inherent in the nature of OSA, as already
explained. The implementation of arithmetic described by Strachey involves “wransfer func-
tions” {which might now be called “coercions™) to change the representation of numbers.
But coercions are not needed for subsort polymorphic operations, since inheritance appears
as subset inclusion of the data elements; also, for regular signatures (Definition 2.3 below}),
any expression involving subsort polymorphism has a smallest sort. OSA also nicely ac-
comaodates coercions and multiple representation polymorphism, as discussed in [28] and
briefly reviewed in Section 1.5 helow, while parametric polymorphism is provided by pa-
rametetized ordered-sorted algchras such as LIST[X] that provide higher-order capabilities
in a first-order setting [20]. These are called parameterized objects in the OBJ language
{13, 14, 18], and their semantics will be trealed in Part I1] of this paper.

1.2 Logical and Operational Semantics

The original vision ol “logic programming” called for using pure first order predicate calculns
directly as a programming langnage [48). As has been well argued by Prolog advocates
(c.g.. [73]), this confers some imporiant benefits, including: prograin simplicity and clarity
{which can greatly ease program understanding, reusability, debugging aud maintenance);
separation of logic and control; and identity of program logic with proof logic. In such a
Janguage, a high level description of what a prograin does is actually a program, and can he
executed. Prolog [10, 9] only partially realizes this vision, since it has many features with
no corresponding feature in logic (e.g., cut, is and assert}), and also lacks someimportant
features of logic {e.g., semantic equality and true negation).

We helieve Lthal the many advantages claimed for logic programming are all compromised
to the extent that it fails to realize a pure logic. Consequently, 2 major goal of our research
has been 1o create powerful programming languages that are based upon pure logics and
yet still support truly practical programming. An important advantage of logic-based
languages is that they are more convenient for parallel machines, since the compiler and
operating system can exploit whatever concurrency is actually availablein the program and
the particular target machine, because programs are not tied down to particular control
strategies (sequential control in traditional imperative languages, and tasking, rendezvous,



etc. in imperative languages providing explicit concurrency). To this end, we have taken
the broad view? that a logical programming language L consists of:

e a well-understaod? logical system T together with two subclasses of sentence called
statements and queries,

such that
* an £ program P is a finite set of statements,
» every program has an initial model!, which gives its denctational semantics,
* operational semantics is a (reasonably efficient) form of deductionin Z, and

* a query is satisfied in an inttial model of P if and only il it can be proven from P
(this is a form of completeness}.

We can now define an answer to a query to be some property of a proof of the query;
for example, we might extract a value for each variable that occnrs in the query. This
definition of logical programming explicates the perhaps more familiar notion of declaraiive
programming, in which programs tell what properties the resuit should have, rather thaa
how to calcalate it. We claim that programs in logical programming languages are casier
to read, understand, write, debug, reuse, modify, maintain, and verify; we also claim that
it is easier to build environments to support snch languages; in particular, it is easier to
build debuggers {see [63] for a discnssion of some serious difficulties thal arise in trying lo
implement a debngger that can handle Prolog’s cnt). Logical programming in this general
sense includes:

s functional programming, where the logic is some kind of equational logic, i.e., a
logir of the snbstitution of eqnals for egnals; for example, OBJ is based on first order
order-sorted equational logic, and the usual higher order functional programming
languages can be seen at based upon higher order eqnational logic.

*» relational (i.c., predicale, or Horn clanse, or “logic™) programming, where the Jogic
is first order Horn clause logic (without eqnality), as in pure Prolog [51).

* multiparadigm programming, by combining the undetlying logical systems, for
example, to gel combined relational ard functional programming from Horn clause
logic with equality as in Eqlog |25], combined funclional aud ohject-oriented pro-
gramming {rom reflective equational logic as in FOOT'S [29], and all three paradigms
Logether from a reflective Horn clause logic with egnality as in FOOPIlog [29).

Logical prograniming can be given a precise grounding using the notions of institution
[21] and logical system [53), and this is in part responsible for the cleanliness and simplicity
of the various languages that we have designed. A logical programming language “wears its
semantics on its sleeve” and does not need the complex machinery of Scott-Strachey-style
“denotational” semantics {70, 74] or of Hoare-style “axiomatic” semantics [42]. In fact, we
would claim that a language that can only be given a semantics in onc of thesc styles, and

?The basic intuitions or this view were expressed in [25) and farmalized uvsing inatitutions in [19] The
definilion below is an informal exposition of the more recent formalization in [53].

*In particular, there should be reasonably simple notions of senlence, deduction, model and satisfaction,
preferably with a completeness theorem, saving that the notion of deduclion is fully adequate for the
notion of model, in the sense thal given any set P of sentences, another senlence s can be deduced from P
il and only if every model of P satisfies s,

*In some sense, initial modely ate “standard” or “most prototypical” models; sec below for more detail.



thus is not a logical programming language, is jnst too complex. Strictly speaking, most
functional programminglanguages are not logical programming languages in our sense, since
they have features which are not consistent with any simple deductive or model-theoretic
semantics®.

Although equational deduction by undirected replacement of equals by eqnals can be
very inefficient, directed replacement (i.e., term rewriting) can be much faster. For exam-
ple, [61) claims speeds comparable Lo compiled Lisp on sequential machines for a (restricted)
class of equations, and the Rewrite Rule Machine Project at SRI is developing a parallel
architecture on which term rewriting promises to be much more efficient than conventional
languages on conventional machines [50, 30]; see also [45] for a survey of efficient imple-
mention techniques for higher order functional programming. Term rewriting provides a
complete deductive system for equality, and any expression reduces to a unique “canoni-
cal form™ (onc that cannot be further rewritten}, provided certain simple conditions are
satisfied®. Thus, the proof theory of order-sorted equational logic developed in this paper
gives efficient term rewriting in two different ways, yielding two different OBJ systemas:

e OBJ2 [22]) rednres order-sorled rewriting to many-sorted rewriling using resufts in
Section 4 and [22].

+ ORJ3 uses a more efficient operational semantics that does order-sorted termrewriting
directly {47].

1.3 Retracts

In a strongly typed programming language, certain expressions may fail strong type check-
ing, even though intuitively they have a meaningful value. For example, if the factorial
function is only defined for natural numbers, Lhen the expression ((- 6)/(- 2))! is not
well-formed, since the argument of the factorial function is a rational nuinber. However,
we would like to give such an expression the “benefit of the doubt™ al run-time, since it
might actually evaluate to a natural {in this case, it evaluates to 3). Retracls provide this
flexibility by lowering the sort of a suhexpression to the required subsort. In this example,
the parser inserts the retract function symbol,

TRational Natural @ Ratlonal -> Natural

to fill the gap, yielding the expression (TRatiena) matura1({~ 63/(- 23})!. Retracts only
disappear if their argument has the regnired sort. This is accomplished hy “retract equa-
tions” of the form

rs,:'(:) =z

where 3’ < 9 and z is a variable of sort 5*. Otherwise, the retract remains, providing an ccror
message that pinpoints exactly where the problem occurred. For example, the expression
T+ (({- 3)/(- 9})1) cvaluates to 7 + (TRational Watural{l / 3))!. The hasic result
about retracts asserts its soundness, in the sense that adding retracts and retract equations
to an order-sorted specification is a conservative extension, i.e., the original equztional de-
duction and standard model are not disturbed. Relracts combine the flexibility of untyped
languages with the discipline of strong typing.

*For example, ML has assignments and exceplions, while Miranda has ad hoc coercions among various
kinds of nnmbers, as well as lazy pattern matching.

"These conditions are Lhal the equalions, when viewed as rules, are terminating and Church-Rosser; in
the order-sorted case, one must alao asaume that Lhe rules are sort-decreasing.



1.4 Exceptions and Partial Operations

It is very difficnlt to handle exceptional expressions, such as division by zero or the top
of an empty stack, within a strong typing discipline. For example, there is no satisfactory
way to specily a type as simple as stack of natural number, because top(ampty)} should be
a natural number but isn't. Rational numbers are even worse, becanse avoiding division
by zero requires heavy nse of “hidden functions™ and “error constants.” Ilowever, OSA
provides very simple solutions to all these problems. For stacks, it suffices to specily a
subsort of nonempty stacks, BeStack ¢ Stack, such thal top and pop have NeStack as their
argnment sort. Similarly, for rational numbers, it suffices to specily a subsort HzRational
< Rational of nonzero ratiouals such that division has NzRational as ils second (divisor)
argnment sort.

OSA supports in a natural way mary different styles for dealing with errors and partial
operations. The twoexamples discussed above make the operalions well-defined hy specify-
ing an appropriate domain subsort. More generally, the demain of a partial operation may
be specified by a condition; for example, to compose two paths in a graph, the end verlex
of the first path shouid coincide with the source vertex of the second. Such conditions are
called sort constraints. In other cases, the best approach may be to provide an error
supersort. For example, an operation to read the value, of sort ¥alue, of an array in
a given position could have value sort Yalue?, a supersort of ¥alua, thal contains error
messages for attempting to read at positions where no value is stored. Part 11 of this paper
will cover all these different approaches and their semantics, also discussing how Lhey relate
to other solutions, such as partial algebras and error algebras.

1.5 Constructors, Selectors, Muitiple Representations and Coercions

Strictured dala are generally composed by constructors and decomposed by seleciors. The
inacdequacy of strong typing for the stack example is a special case of whal we call the
construcior-selector problem: [or a given constructor, to define operations that retrieve
its components, Although this problem is insoluble in MSA (many-sorted algebra), it has
a simple solution in OSA [28).

There are also many probleins where one wants to represent data in thore than one way,
and then convert freely among the rcpresentations, using whichever is miore convenieut
or efficient in a given rontext. This is multiple representation; for example, consider
Cartesian and polar eoordinates for points. There are other problems where one wants
to converl from one sort of data to another in an irreversible way; lor exaruple, to apply
integer addition to two rational numbers, one might first truncate thein; this illustrates
coercions. Multiple representation is a special case of coercion, since the selectors for one
representation applied to data of another can be considered mediated by coercions thal
change the representation. The difference is that conversions betwcen multiple representa-
tions are necessarily reversible, i.e,, are isomorphisms, OSA also provides am initial algebra
semantics [or all these constructions [28].

1.6 About this Paper

Alter introducing the basic concepts of OSA, this paper gives a detailed account of order-
sorted equational deduction, including a completeness theorem and an initial algebra con-
striction for conditional equations. This machinery is then applied to show that adding
retracts is a conservative extension. A rednction theorem shows Lhat encoding order-sorted
algebras as inany-sorted algebras yields an equivalence of categories, which can then be ex-
ploited toprave a general existence Lheorem lor initial algebras (it applies even when terms
do not have a least sort) as well as simple proofs of 0SA McKinsey-Malcev Quasivaricty



and Dirkhoff Variety Theorems. A final section compares our notion of order-sorted algebra
to others in the literature. Ta help the reader’s intuition and illustrate the expressive case
of OSA, a number of examples are given using an OBJ-like syntax. Appendix A gives a
more ambitious example, OBJ code for a number hierarchy from the naturals up to the
quaternions.

This paper has been a long time in gestation. The first paper on order-sorted algebra
[37) was written in 1978, but never published because it seemed so possible and desirable
to simplify and generalize its approach. The present paper finally (ulfills the promise of
[17], with suitable simplifications and generalizations, and it also treats some new topics,
including order-sorted equational deduction and model-theoretic results about varieties and
quasi-varieities. Sewveral versions of the present paper have been circulated fairly widely;
their Litles are slight variations of the current title, and their dates include 2 March 1985,
22 October 1986, and 17 May 1988, The last of these reflects our decision to split the paper
into three parls, as larther discussed in the subsection below. In the meantine, a rather
large literature has grown up around order-sorted algebra and its applications, ard trying
to take proper account of it has slowed us down further.

1.8.1 HBrielf Overview of Subsequent Parts

Part 1l of this paper will consider exception handling and snrt constraints in detail, in-
cinding several error recovery and error specification disciplines and their soundness, and
comparing reiracts, error supersorts and strict and unsafe operations. Jt will also discuss
the very important topic of sort constraints, which permit defiuing subsorts by equational
conditions. The majn theoretn for sort constraints is an initial algebra construction reducing
the problem to order-sorted equational logic. Part IIl will give an algebraic semantics for
parameterized order-sorted abstract data types with the related concepts of Uicory, view
and module expression, as in OBJ [13, 14] and Clear [3, 4). This supports the ellective
integration of the programming and assertional aspects of OBJ, which make it a “wide
spectrum” language.
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2 Order-Sorted Algebra

This section contains the most basic definitions and results of OSA, including signature,
algebra, homomorphism, terin, least sort of a term, iniliality, equalion, eatisfaction, subal-
gebra, quotient, congruence, image, the Romomorphism Theorem, and prodnct.

2.1 Signatures

The notation of sorted (also called “indexed™) sets greatly facilitates the technical develop-
ment of botk MSA and OSA. Given a “sort set” 5, an 5-soried set A is just a fanily of
sets A, lor each “sort” s € §; we will write {A, | s € §}. Similarly, given §-sorted sets A
and B, an S-sorted function f: A — B is an §-sorted [amily f = {f,- A, — B, | s € §5}.

In Lhe order-sorted case, § is a parlially ordered sel, or posel, i.e., Lhere is a binary
relation < on § that is reflexive, transitive, and anlisymmetric, in the sense that £ < y and
vy < z imply £ = y. Every poset also has an associated relalion <, defined hyz < pilfz <y
and z # y, that is transitive and antireflexive in the sense thal -(z < x). We will olten
use the extension of the ordering on § to strings of equal length in 5* by s)...5, < 3.8},
if 8; < sl for 1 < i< n. Similarly, € extends to pairs {(w,s) in 5 x S by (w,s) <{v', )

iff w < ' and s € 3. (These are the orderings that arise [rom poset products.)

Definition 2.1 A many-gorted signature is a pair {(5,5), where 5 is called the sort
set and Tis an §* x S-sorted family {5, | w € $*and s € §}. Elements of (the sels in)
T are called operation (or function) symbols, or for short, operations. An order-sorted
signatureis a triple (§, <, £) such that (5, £)is a many-sorted signature, {5, <) is a poset,
and the operations satisfy the lollowing monolonicily condition,

0E€ Lyun a1 N Bez,7 and wl € w2imply s1 < 82,

When the sort set § is clear, we write I lor (8, £), and when the poset (§,<) is clear, we
write I for (§,<,T}, When o € £, we say that o has rank (w, ), arity w, and (valne,
or result, or coarity) sort s.

We may write o: w — s for 6 € Z,,, lo emphasize that ¢ denotes a funclion with arity
1 and sorl s. An important special caseis w = A, the empty string; then & € £, , denoles a
couslant of sort 5. Notice thal the monotonicity condition excludes overfoaded constants,
becanse A = wl = w2 implies 31 = 2. O

Example 2.2 (Lists of Integers) We give an order-sorted signalure for lists ol integers,
assuming that the sort Int of integers is already defined. The subsorl BeL ist ol nonempty
lists is introduced so that the (traditionally partial) head and tail operations can be total
on this snbsort. The notatien used in this example {and in subsequent examples) supporls
a powerlu]l and flexible “mixfix” operation syntax; in particular, it allows prefix, postfix,
infix and “outfix” (as in {_} for singleton set formation). Ilere the k™ uuderbar character
{-) is a placeholder in an operation form that shows where Lo pnl an expression whose sorl
is less than or equal to the k* sort in the sort list {which occurs between the : and the ->
signs); the value sort follows the ->. Also, < is wrilten < for lypographic convenience. All
these syntaclic conventions follow OBJ.

sorts NeList List .

subparts Int < NelLiat < List
op nil : -> List

op — . : List List -> List .

op - - : NelList List -> NaList .
op head : NeList -> Int .

op tail : NeList -> List



The douhle underbar operation form defines a juxtaposition notation for concatenation of
lists. This concatenation operation is subsorl polymorphic, and would be ambiguous in an
ordinary many-sorted signature. To [nlly describe the intended model, we need more than
just a siguatnre, we also need equations, algebras, and initiality; these are introduced in
the subsections below. D

Given an operation symbol o and a [ower bound wd for the sorts of its arguments, we
can consider the following three conditions:

(1) There is a least arity for ¢ that is > wi.
(2) There is a 1east rank for ¢ among those with arity > w0.
(3) There is a least sort for o among those with arily > w0.

It turus out that (1) and (2) are equivalent because of monotonicity, and that both imply
(3). Signatures satis{lying (1) are quite basic to our exposition, and are callel regular.
Regular signatures both support a least sort for terrs, and extend the uswal word (or
term) algebra construction to OSA (see Section 2.3). Signalures satislying (3] are called
prercgular, and are discussed further in Section 5.2 below,

Definition 2.3 Au order-sorted siguature T is regular ilf given o in T, 4 and given
wl < wl in 5* there is a least rank {w, s)e §* x § such that w0 < w and ¢€EL,,. O

Regularity allows a strong form of suhsort polymorphism “locally,” while stillpermitting
ad hoc polymorphism “globally™ (Section 1.1.1 explained these terms); lor example, + can
denole addition over the complex numbers and its many subtypes with subsort polymor-
phism, as well as Boolean exclusive or with ad hoc polymorphism. The signaturein Example
2.2 above j5 regular, but it would not be il an operation _ _ of rank {ListMeList, NeLint}
were added to it. We now give a more precise statement of some relations among the three
conditions above:

Fact 2.4 An order-sorted signature I is regnlar iff given ¢ in T, 5 and given w0 < w1 in
§* there is a least arity w € 5* such that w0 < w and o€ Z,,; for soine s € 5. Moreaver,
il ¥ is regular then given o in I, g with u) < wl there is a Jeast sorl s € § snch that
g € T, for some w € §* with w0 < w, and this s is the same one Lhat appears in the
least rank {w,s) for ¢ with & > w0; thus, regularity implies preregularity.

Proof: The “only il” is immediate, while “i” follows from monotonicity. The other
asserilions are also easy. D

When the poset of sorts salisfies a descending chain condition (aud thus in particular,
when it is finite), there is a combinatorial condition that is equivalent to regulaity. {Figure
1 illustrates the relalions among the arities and sorts in this result.)

Definition 2.5 A poset (5, <) satisfies the ascending chain condition, or s Noethe-
rian, ill there is no strictly increasing infinite chain 3; < 53 < ... < s, < .. in (5,5}
Similarly, (5, £} satisfies the descending chain condition, or is coNoetherian, ilf there
is mo strictly decreasing infinite chain sy > 53 > ... > 3, > ...in (§5,€). O

Lemma 2.8 An order-sorted signature I over a coNoetherian poset (5,<) s regnlar il
and only if whenever 0 € Eyp 41N Eyz2 and there is some w( < wl, w2 then there is some
w < wl, w2 such that o € £, and w0 < w.
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Note: Diagonal and vertical lines indicate sort inclusions, while horizontal arrows
indicate instances of the operation symbol &,

Fignre 1: Visvalizing Lemma 2.6

Proof: The “only H" part is easy, For the “i{” part, let us say that a pair (1, 4} “satisfies
condition P" ifa € £,,, and wD < w. Then ¥ is regular iff (w], sl) satisfies P implies
there is aleast (w, 3) satislying P. So we now suppose that there is some {w1,s1} satislying
P but there is no least {w,s) satislying P. Then in particular, {wl,s1) cannot be least
for P, and so there is some {w1’,31°) satislying P such that (wl’, 51’} } {wl,31). Then by
assumption, there is some {w?2, 52} < (wl,sl) satislying P. Iterating this process yields
an infinite descending chain (w131} > (w2,52) > ... > {wn,sn) > ..., which contradicts
the coNoetherian assumption. (This last step uses the easy to check lact that any finite
product of coNoetherian posets is coNoetherizn.} O

2.2 Algebras

We now turn to the models that provide actual functions to interpret the operation symbols
in a signature.

Definition 2.7 Let (5,E) be a many-sorted signature. Then an (5, X)-algebra A is a
family {4,] s € 5§} of seta callzed the carriers of A, together with a function A, A, — A,
for each o in L,,, where A, = A, %X ... X A, when w = sl...an and where A, is a one
point set when w = A.

Let {5, <,E) be an order-sorted signature. Then an (5, <,E)-algebra is an (5, E)
algebra A such that

1. s <s'in 5 implies A, C A, and

2. ¢ € Buiai NEyays and wl € w2 imply A, Ay — A equals Ayt Ay — Ay on
Al

Doth of these are Imonotonicity conditions, When the sort set § is clear, (5, &)-algebras
may be called many-sorted E-algebras; similarly, when (8, <) is clear, (S, <, E)-algebras

may be called order-sorted E-algebras. Also, we may write A% for A,: A, — A,. D

Many different ways to define order-sorted algebras have by now apprared in the lit-
erature, However, most of them are either less general (for example, they fail to admit
overloading) or else are more complex, as discussed in Section § in much more detail.

Example 2.2: (continued) If we let Z denote the set of all integers, then the algebra that
we havein mind for the List of Integers signature has Apiac = Z* (2l] lists of integers),
Amerint = Z* [the non-empty lists), Agne = & (the lists of length 1), nd1 = A (the empty
list), _ _ as concatenation, and head and tail as expected. Note that Z C Z+t C 2. O
Stacks can be described in a very similar way, with pop and top partial operations defined
only on the non-empty stacks; see Example 2,15 in Section 2.4,
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Definition 2.8 Let ($, £) be a2 many-sorted signature, and let A and B he (5, E)-algebras,
Then an (§,Z)-homomorphism h: 4 — B is an S-sorted function h = {h,;: 4, — B, |
s € 5} satisfying the lollowing homomorphism condition

(1) hy(A¥*{a)) = BY*(hy(a)) foreach o € E,, anda € 4,

where h,(a) = {(hs1{al), ..., hyn(an)} when w = 5l..3n and a = (al,...,an) withai € A,;
for i=1,...,n when w # A. If w = A, condition {1) specializes to

(1) hs(AZ) = By

(5, E)-algebras and (S, Z)-homomorphisms form a category that we denole Algr. When
the sort set 5 is clear, (5, £)-homomorphism may be called just {many-sorted) E-homoemor-
phismus.

Let ($,%,Z) be an order-sorted signature, and let A, B he order-sorted {5, <,X)-
algehras. Then an (5,<,%)-bomomorphism A: 4 — B is an (5,E)-homomorphism
satislying the following restriction condition

(2) s € 5" and a € A, imply hy{a) = h,.(a).

When the poset (§, <) is clear, (5, <, £)-homomorphisms are also called (order-sorted) -
homomorphisms. The (5, <, E}-algeliras and (5, <, E)-homomorphisins form a category
that we denote O0S Algg. D

Since, Ly definition, every (5, _,2)-a.lgebra is an (5,L)-algebra and every (5, <, E)-
lomomorphism is aa (S, L}-homomorphistn, there is a “forgetful” functlor from O8Algy o
Algy. Notice the slight abuse of janguage whereby I denotes two different signalures: an
order-sorled signature (§, <, E) in OSAlgs and a many-sorted signature (5,Z)in Algg.
Also notice that QS A properly generalizes M3A, in the sense thal any many-sorted (5, £)-
algebra is au order-sorted (S5, <, L}-algebira for < the trivial ordering on § withs < & iff
s = &'. Indeed, with this ordering on § we bave that OSAlgy = Algy and the forgetful
functor OSAlg; — Algy is the identity.

Injective and surjective are defined for an order-sorted E-homomorphism f: 4~ B just
as for the inany-sorted case: f is injective ifl f, ia an injective function for each 3 € §,
and [ is surjective iff f, is surjective for each s € 5. Similarly, f is an isomorphism iff
f is both injective and surjective. Just as in Lthe many-sorted case we have

Lemma 2.8 An order-sorted I-homomorphism f: A — B is an isomorphism iff there is
an order-sorted S-homomarphism f~': B — A such that flo f=1gand fo /' =1g.
Proof: Since the “if” part is easy, we will just show the “only if™ part, using the well-
known fact that the desired result holds for many-sorted algebra. This gives a many-sorted
.homomorphisin f~1: B — A salisfying the desired two equations. Now we anly need
to check thal f-' satisfies the restriction condition of Definition 2.8. Let & € B, and let
s < &' Then b= f,(a)} for some & € A, and aleo b = f,.(a) since f is order-soried. Thus

A OENEY (N

2.3 Terms

This subsection shows that terms over regular signatures have a well-defined least sorl, and
also thal the standard MSA term algebra construction gives an initial order-sorted algebra.
We first review Lhe inductive construction of the many-sorted term algelira Ty using the
same notation as in [56], except that we will be more pedantic, using { and ) to denote
parentheses used as formal synlactic symbols; however, this pedantry is only temporary. If
L is a many-sorted signature with sort set S, then:
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bl E),s g TI:.J;

e iloeL,,andif ti € Tr,fori=1,...,n where w = s1..9n with a > 0, then (the
string) o(t1...tn) is in Ty,

Now given an order-sorted signature X, we similarly construct the order-sorted I-term
algebra T as the least family {Tg, | s € §] of sets satislying the lollowing conditions:

5, CTr,forae§;

o To, CTr,ils <49

o iflaeE,, and il li € Tp,; where w = 3l...sn # A, then (the string) o[(1...tn) € Tx ,.
Also,

e foroe Iy, let T,: Ty — 7, send t1,...,In to (the string) agl.,.!nl.

Thus we can write"a(tl, e dn) for a(tl...in).

Clearly T¢ is an order-sorted E-algebra. Notice that Ty, is not in general equal to Tg,
or even lo| )., Tr,y. Also notice that it is quite possible that 7z, = @ for some s, ie.,
that there are no ground terms of sort 9. Tt is a kind of order-sorted Herbrand universe
construction; unfortunately, some authors insist on adding a constant if none is otherwise
provided, thus destroying the initiality of their construction.

A given term ¢ in an order-sorted term algebra can have many different sorts. In
particular, if t € Ty has sort s, then it also has sort &' for any & > 3; and because an
operation symbo!l ¢ may have different ranks, a term o(£1, ...,In) can even have sorls that
are not directly comparable. One unfortunate consequence of such am biguity is that 7¢
may fait to be initial, just as in the many-sorted case Ty may fail to be initial il £ is
ambiguous. However, this problem disappears for regular signatures.

Proposition 2.10 Given a regular order-éorted signature T, for every? t € Tg there is a
least s £ 5, called the least sort of ¢ and denoted LS(t), such that1 e Tg,.

Proof: We proceed by induction on the depth of terms in 7. [f { € Tg has depth 0,
then t = ¢ for some g € Xy, and so by regelarily with wl = wl = A, there is a least
a € 5 such that ¢ € By, this is the least sort of . Now consider a well-formed term
{ = o(tl..tn) € Ty, of depth n + 1. Then eagh ti has depth < n and therefore by the
induction hypothesis, has a least sort, say si; let w0 = sl..sn. Then o € T,. . for sone
w', 2’ with & < s and w0 < w’, and by regularity, there are least w’ and s’ snch that
o € By, and w' > wi; this least o' is the desired least sort of £. O

This result can be generalized by weakening the notion of regularity to preregularity.
In fact, preregularity is actually equivalent to the existence of a least sort for each Lerm (by
Froposilion 5.2 in Section 5.2). We now turn to the important issue of initial algebras.

Definition 2.11 Let T be an order-sorted signatvre. Then an order-sorted E-algebra
is initial in the class of al! order-sorted I-algebras ill there is a wnique order-sorted -
homomorphism from it to any other order-sorted E-algebra. O

Theorem 2,12 Let L be a regular order-sorted signature. Then Ty is an initial order-
sorted I-algebra.

Prool: In this proof we write 7 for 7. Let A be an order-sorted T-algebra; then we
must show that there is a unique order-sorted I-homomorphism h: T — A. We will (1)

"By convention, for A a E-algebra, g € A means a € A, lor some s € 5.



constract h, then (2) show it is an order-sorted L-homomorphiem, and finally (3] show it
is mnique.

(1) We construct k by indnction on the depth of terms in 7. Thete are two cases:
(ta) f t € T has depth 0, then ¢ = o for some constant ¢ in E. By regnlarity, o has a
Jeast sart 3. Then for any & > s we define

h,n(d“) = A:“'.

(1b}If ¢t = o(t1...tn) € T has depth » + 1, then by regularity there are least w and 3
with ¢ € B, where w = sl..an # A and LS(ti) < aifor i = 1,..,n. Then for any &' > s
we define

hao(8) = AWe(h, (D). .. A(tn)),
noting that h, (11), ..., hea{tn) are already defined.

(2) We now show that h is an order-sorted E-homomorphism. By constructionh satisfies
the restriction condition ({(2) of Definition 2.8). To see that it also salisfies the homomor-
phism condition ((1) of Definition 2.8), we again consider two cases:

(2a) 0 € B, , is a constant. By regularity and monotonicity, 4 is the least sortof ¢, and
we have already defined

hola) = A2

as needed.

(2b) We now cousider a term t of depth greater than 0, and let ¢ € By o with v’ =
s'l..3'n # A be such that i = a({l...tn) = T*'*(11,...,tn}. By regnlarity and Pioposition
2.10 there are least w = sl...sn and s = L5(1) such that t = w(il...in) = T**(!,..,tn).
Then w < w' and s < 5 50 that {2) of Definition 2.7 gives A¥'' = A¥® on 4. Thus,
using the already established fact that h satisfies the restriction condition, we have

ho(o(11...tn)) = AL (A, (11), o han(tn)) = AZ (Aan (L), ooy Ryn (190])
as needed.

(3) Finally, we show the uniqueness of h. In lact, we will show that ff A: T — A is
an order-sarted E-homomorphism, then & = A’, by indnction on the depth of terms. For
depth 0 consider & € 5 ,. Then s is the least sort of ¢, and for any 5 > s, we must have

Wole) = k(o) = A3* = hy(a) = h, (o),

as desired. Now assuming the result for depth < n, consider a term { = ofl]l...tn) =
T:,’“""(fl...,.!n) of depth n+ 1 with ¢ € By and w’ = s'1..a'n. Asin (2h), there are least
w = sl..sn and 8 = LS(1) such that ¢ = a(tl...in) = T22(11,....n) and AY"* = A% on
A", Then
R(1) = AW (W (01), - Ky (tn)

= A¥' ' (R, (11), ..., by {tn)} (by induction hypothesis)

= A:’"(hll(“)!"-t h.n("‘))

= hx'(l)
as needed. O
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The terms considered above are ground terms, in Lhe sense that they involve no
variables. We cau extlend the above resnli Lo so-called free algebras by considering instead
terms that may involve variables. In fact, terms with variables can be seen as a special
case of ground terms, by enlarging the signalure with new constants that correspond te
the variablesymbols. Let us assume Lhat each variable comes with a given sort, so Lhat we
have an §-sorted family X = {X, | s € §) of disjeint sets that weshali call a variable set.
Given an order-sorted signature {§,<,T) and an S-sorted variable set X Lhat is disjoint
from I, we define the new order-sorted signature ($, <, Z(X)) by Z(X)x 5 = £1,U X, and
E(X )uw,s = Tu, for w# A It is easy to see that E{ X} is regular if T is. Now form Tyx)
and view it as an grder-sorted D-algebra just by forgetting about the constants in X; let
us denote this algebra Tp(X ). The following result and proof are entirely analogous to the
MSA case (56].

Theorem 2.13 Given a regular arder-sorted signature (5, <, T}, let A be a T-algebra and
let a: X — 4 be an §-sorted function; hereafter we call such a funclion an assignment.
'Then there is a unique order-sorted T-homomorphism a*: Tg(X) — 4 such that a*(z) =
e(z) foreach z € X.

Proof: T-algebras 4 with an assignment a: X — A are in bijective correspandence with
E(X }-algebras A. Now the initiality of T2(X ) among all (X )-algebras A {Theorem 2.12)
gives the desired result. O

2.4 Equations

Order-sorted algebra would be very impoverished without equations, We first give two
simple examples of what equations can do, and then we give the formal definitions; these
are somewhat more subtle than might be expected. In the examples, the keyword pair
obj.. .endo delimils an object and indicates Lhat inilial algebra semantics is intended.

Example 2.14 (Bits)

obj BITS i
sorte Bit ErrBit List Errlist .
subsorts Bit < List < Errlist .
aubsorts Bit < ErrBit ¢ ErrList .
ops O 1 : -> Bit .
op nil : -> Limt .
op - - : List List -> List .
ap head : List -> ErzBit
op tail : List -> Errlist .

vars L L* L7’ : List .
var B : Bit .

eqnil L =L .

eq L nil =L .,

eq L (L* L’') = (L L') L'
aq head(B L)= B .

eq tail(B L)=1L .

endo

What is interesting here is the way the “error snpersorts™ ErrBit and ErrList are used
in head and tail; in the intended interpretation, elements that are in ErrList bul not
in List serve as error messages. An alternative approach follows Exam ple 2.2 by defining
a subsort NeList as the domain [or head and tail; this would have made ErrBit and



ErrList unnecessary. Also note that Bit is a subsort of the non-empty lists purely for
gyntactic conveaience, allowing us to say that 0 is itself a list, O

Example 2.15 (Stack of Integers) This example is interesting primarily becase it has
previously been treated in so many different formalisms, so that comparison belween for-
malisms is facilitated. We believe that no other formalism gives so simple and natural a
description as the following:

obj STACK-OF-INT is
extending INT .
sorts Stack NeStack .
subsort NaStack < Stack .
op empty : -> Stack .
op push : Int Stack -> NeStack .
op top_ :@ NeStack -> Int .
op pop- : NeStack -> Stack .
var E : Int .
var S : Stack .
oq top{push(E,5)) = E .
aq pop(push(E,S)) =5
endo

The above examples are actually executable OBJ3 code [35]. Of caurse, our development
of OSA is fully general and considers arbitrary models for sets of equations over an order-
sorted signature. OBJ uses this ‘loase’ or ‘theory’ semantics to describe requitements on
actual parameters {or paramelerized objects, For example, a parameterized sorling object
should allow any partially ordered set as actual parameter, and a parameterized poly nomial
object should allow any commutative ring for its coefficients. Initiality moduo a set of
equations is discussed in Section 3 below, but parameterization and requirement theorics
are deferred to Parst 111 of this paper.

We now develop the formalities concerning equations. Recall that by the freeness of
Ts(X}(Theorem 2.13), an assignment a of values in an order-sarted I-algebra A to elements
from a variable set X that is disjoint from ¥ extends to an order-sorted L-homamorphism
a* to A from the E-terms with variables in X. The OSA definition of equations is suinilar
to that for MSA [56], in that equations are triples {X,, ) with t and ¢ in To(X), and
an order-sorted algebra A satisfics such an equation T a*(f) = a*(t') for each assignment
a: X — A. However, before actually giving such a definition we need to consider what sorts
to allow for the terms ¢ and . Iu MSA, we are forced to require that t and ! have the
same sort, but OSA allows more Rexibility. For example, in the BITS exainple above, the
equation head (B L) = B has alefthand side whose least sort is ErzrBit and arighthand side
whose least sort is Bit. The following example will help to motivate a general restriction
on the form of equations,

Example 2.18

obj ABCD is
sorts A B CD .
subgort A C ¢ B .
subsort C < D .
opa: ->»A.
opb: —->»B .



Gpc : =» C .
opd : > D .
eqa=>b .
egb = c .
egc=d
ande

These equations do not involve any variables. To say that an algebra A satisfies them
presumably means that ha{a) = Ag(b) = Ac(c) = Ap(d) for h: Tz — H the unique order-
sorted homomorphism (where T is the signature of the example}. Given these equations,
one expecls o be able to “replace equals by equals” and deduce that the equation a = 4
halds, even though the sorts A and D are not comparable in the sort ordering®. In fact,
under the notion of satisflaction snggested above, the equation a = dis satisfied by ary
algebra I that satisfies the original equations. This might suggest that we only require
that the sorts of the terms ¢ and ¢ in au equation lie in the same connected component? of
the poset (§,<). D

Definition 2.17 For (5, <, Z) a regular order-sorted signature, a £-equation is a triple
(X, 1,t') where X is a variable set and ¢, are iu Ty y) with L5(¢) and LS(1) in the same
connccted component of (5, <). We will use the notation (v.X) ¢ = . An order-sorted
I-dlgebra A satisfies a T-equation (YX) 1 = ¢ iff “Esm(!) = “Esm(t') in A for every
assignment a: X' — A. Similarly, A salisfles a set I' of Z-equations ilT it satisfies each
memnber of T; in this case, we say that A is a (£,I')-algebra. When the variable set X can
be deduced from the context {for example, if X contains just the variables that occurr in ¢
and £, with sorts that are unignely determined or else have been previously declared) we
allow it to be omitted; that is, we allow unguantified notation for equations'®.

Order-sorted conditional equations generalize order-sorted equations in the usual way,
i.e., they are expressions of the form (¥YX) ¢ = ¢ il C, where the condition C is a finite
set of unquantified E-equations involving only variables in X (when C = @, conditional Z-
equations are regarded as ordinary Z-equations). An order-sorted E-algebra A satisfles the
equation (YX)1 = ' if € ifl for each assignment a: X — A such that 2l sey() = ais(u,,(u’)
in A for each equation v = v' in C, then also aj g1} = 8L gy (¢} in A.

Given asignature T and a sel T of (passibly conditional) T-equations, welet OSAlgyr
denaote the category of all (E,T')-algebras, with all E-homomorphisms among them. O

Although these notions of equation and satisfaction seem gquite reasonable for OSA,
and in parficular seemt general enough to support equational deduction, there is a subtle
difficuity: equational satisfaction is not closed under isomorphism, i.e., an order-sorted
algebra A may satisly an equation that is not satisfied by an isomorphic algebra B. The
[ollowing exhibits this cutious phenomenon:

Example 2.18

obj ABC is
sorts A B C .
subscrts B < A C
opa: =>4 .

®But notice that the sorts are compatable for each equation in Lhe BITS and STACK examples.

®Given s poset (5, €), let = denote the Lransitive and symmetric closure of . Then = in an equivalence
relation whose equivalence classes are called Lhe coanccted components of (5, <).

"“[Ht}'ﬂe‘rer. the reader should be aware thal satisfaction of an equation depends crucially on its variable
set [56].
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opb : —->»B .
opc: —>C.
eq a = C
endo

Letting £ be the signature of this example, the tetm algebra Tp has (Tx)s = {a,b},
(Te)p = {b} and (Tx)c = {b,c} does not satisly the equation a = c. However, the order-
sorted L-algebra H with H, = He = {b,d} and g = {b}, with the constanis e,b,c
interpreted as d, b, d (respectively) does satisfy a = ¢, even though the unique order-sorted
¥-homomorphism f: Tz — H is a E-isomorphism. O

The desire to be rid of this analomy motjvates the lollowing:

Deflnition 2.19 A poset {5, <) is (upward) filtered ifl for any two elements 3,4 € 5§ there
is an element 5" € § such that s, s' < s¥. A partially ordered set 5 is locally fltered iff
each of its connected components is filtered. An order-sorted signature (5, <, X} is locally
filtered iff (S, <) is locally fillered, and is coherent iff it is locally filtered and regular. O

We will show below that for coherent signatures, satisfaction is “abstract”™ in the sense
of being closed under isomorphisin. Coherence gnarantees that all sorts in a connected
component “cohere” in the sense that any finite set of them can always be reronciled by
appeal to a bigger sort; “incoherence” causes the trouble in Example 2.18. Any many-sorted
signature is coherent, since the trivial ordering {s < s' iff s = s’} is always locally filtered
and regular, In many examples, the sort poset is Noetherian.

Proposition 2.20 A Noetherian poset is locally filtered if and only if each connected
component has a maximum element.

Proof: The “il” part is obvious. For the “only if” part, assume that there ts no maximnm
element in a given connected component C and pick any element 5, € €. Since sy is not a
maxitmum, there must be an element s{ € € such that s} £ s;. Since 5 is locally filtered,
we get an element s; > 51,9} such that s; < g2. We can now iterate this process to get
a strictly increasing sequence s; < s3 < ... < 3, < ... that contradicls the Noetherian
assumption. O

Proposition 2.21 Given a coherent signature ¥ and isomorphic E-algebras A and B, then
A satisfies an equation (VX)) ¢ = ' il and only il B does.

Proof: By symrnetry of the isomorphism relation, it is enough to prove the “only il”
part. Assume that A satisfies (YX)¢ =1 and let f: A — B be an isomorphism. Then any
assignment b: X — B can be written b = [ v a for some assignment a: X — 4. Initiality
now implies that & = foa®. Let s > L5(1), LS(!). Then

(1) = fulal(2)) = Li(a3(t)) = B(¥)

as desired. O
This result generalizes easily to the satisfaction of conditional equations.

How restrictive is coherence? In practice, not at all. In lact, coherence can he anto-
matically ensured by a computer implementation, just by adding some new topelemnents Lo
the signature given by a user: given a regular order-sorted signature I, extend it to a co-
herent signature cofi{ £} identical to T except for adding a new sort u¢ for eachnonfiltered
connected component C. Note that for each sort 3 in the original set of sorts we then have
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Teonry,s = Tr,s 2nd for the new sorts ug we have Topyxyue = Usee 5.0 Fhis approach is
even more flexible and general than requiring a universal maximum of all sorts as in [22].
Intuitively, the sorts in a connected component form a semantically related “local universe”
of discourse,

One benefit of requiring signatures to be cokerent is a great simplicity and flexibility
in the treatment of equality, since we can always assume that ¢ and ¢’ have the same
sort whenever they appear in an equation ¢t = ¢ by going Lo a common supersort. This
does require that ¢ and t' lie in the same connected comporent, but we do not consider
equations across different components to be meaningful; moreaver, even this conditior could
he dropped by adding a universal sort, as discussed in Section 5.

2.5 Subalgebras, Congruences, Quotients and Products

This subsection gives OSA forms of some familiar MSA concepts, induding subalgebra,
congruence relation, quotient algebra, kernel, image, and product algebra. It also proves
the Homomorphism Theorem and the universat properties of quotients and products.

Deflnition 2.22 For (§, %) a many-sorted signature and for A a many-sorted Z-algebra,
a many-sorted I-subalgebra B of A is an S-sorted family of subsets B, C A, for each
& €5 such that

(1) givenc € E,,, with w =sl..sn and b1 € B, for i = 1,...,n, then A, (bl,..,bn) € B,
in particular, when w = A then A, € B,.

For (S, <,E] an order-sorted signature and A an order-sorted E-algebra, an order-sorted
EZ-subalgebra B of A is a many-sorted E-subalgebra B of A such that

(2) B, C 8, whenever s < &'\

a

Deflnition 2.23 For (5,£) a many-sorted signature and A a many-sorted Z-algebra, a
many-sorted L-congruence = on A is a S-sorted family {=,| s € 5} of equivalerce
relations =, ou A, such that

(1) given s € £,, with w = sl...sn and given ai,¢"i € A, for i = 1,...,n such that
ai =,; d’i, then

Aq(al,. . an) =, A (2], ...,a'n).

For (5, £,%) an order-sorted signature and A an order-sorted E-algebra, an order-sorted
L-congrueuce = on A is a manysorted I-corgruence = such Lhat.

(2) givens < ¢'in Sand a,a’' € A, thena =, ¢ ife =, o'
]
Proposition 2.24 Let T be an order-sorted signature. Then

1. The order-sorted E-subalgebras of an order-sorted E-alpebra A form a complete lattice
under the inclusion ordering.

2. The order-sorted I-congruences on an order-sorted E-algebra A form a complete
lattice under the irclusion ordering.

Moreover, in these lattices greatest lower bound is computed by set intersection. {These
results are well known for MSA.)
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Proof: By the following lemma, it suffices to show that any intersection ol I-agehbras or
of D-congruences is a I-congruence, which is easy in this case. O

Lemmna 2.25 A class € of subsets of a set € is a complete lattice under set inclusion if it
is closed under arbitrary set-theoretic intersections, including intersection over the empty
family of subsets, which by convention is the maximum element of C; moreover, greatest
tower bound is then computed by set intersection. O

Definition 2.28 Let f: A — B be a many-sorted E-homomorphism. Then the kernel of
f is the S-sorted [amily of equivalence relations =; defined by a =y, a' iff f,(a} = f,(a");
it will be denoted ker(f). O

Proposition 2.27 A kernel is a many-sorted congruence. If f: A — B is an otder-sorted
%-homomorphism, then ker(f) is an order-sorled I-congruence.

Proof: Given an S-indexed [unction f: A — B, then each =, is an equivalencw relation.
To prove the congruence property (1}, let # € ¥, , with w = sl...sn and assume that
ai =y, a't,ie., that fi(ai) = f({) fori=1,....n. Then

fo(Ao(al, ..., am)) = By(fulal),.. fun(an)) =

Bd(f.!](all),-—w f.m(ﬂ'“)l = fs(An(“‘lv---,a,nn
so that

Agfal,...,an) =5, As(n'l, .. n'n}
as desired. When [ is order-sorted, we have Lo check the congruence property (2). This
follows from the fact that f,{a) = f,{a) and f,{(a’) = f,{a"} whenever s < 5'in § and
a,a €A, 0

Definition 2.28 The image of a I-homomorphism f: A — B is the subalgebra f( A) with
f(A), = f(A)foreachs€ 5. O

Fact 2.20 If f: A — B is an order-sorted X-homnomorphism, then f(A)is an order-sorted
subalgebra.

Proof: To check condition (1) of the definition of subalgebra, let ¢ € E,,, with w =
sl..an, let bi € f(A)y; fori=1,...,n,and let ai € A,; such that bi = f(as}fori=1,...,n,
Then B,(b1,..,6n) € f{A), since B,(b1,...,bn) = f,(A,(al,...,an}). For the order-sorted
case, we have ta check condition (2), but this is an easy sel-theoretic consequence of the
fact that f is order-sorted. O )

We now define the quotient of an order-sorted algebra by a congruence relation and
(more generally} by a set of relations. This construction is sitnpler for locally filtered
signatures, but it can be generalized to arbitrary signatures.

Defnition 2.30 For (5, <, E) a locally fillered arder-sorted signature, A an order-sorted
I-algebra, and = an order-sorted T-congruence on A, the quotient of A by = ig the
order-sorted E-algebra Af= defined as follows: for each connected component C,let A¢ =
Usec As and define the congruence relation =¢ by @ =¢ o' iff there is a sorl s € C such
that a =, a’. Then = is clearly reflexive and symmetric. It is trangitive since a =, a’ and
o' =, a” yield @ =, a"” for " > £,5. The inclusion A, C Ac induces an injclive map
A,f=,— Ac/=c since for a,a’ € A, we have & =, o’ implies a =¢ a’ by construction, and
conversely @ =¢ a’ implies a =+ a’ for some ' € C, and taking s” > 35,5 it also implies
a =, e and therefore it implies @ =, a’ by property (2} of the definition of order-sorted
congruence. Denoting by go the natural projection go: Ag — Ac/ =¢ of eath element
e into its =¢-equivalence class, we define the carrier (A/=), of sort s in the quotient
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Figure 2: Condition (2) of Proposition 2.34

algebra to be go{A4,). The order-sorted algebra A/ = comes equipped with a surjective
order-sorted £-homomorphism ¢: A —+ A/= defined by restriction of the g¢ to eack of the
sorts, called Lthe quotient map associated to the congruence =. The operations are defined
by (A/=),([al),...,[an]) = {A.(al, ...,an)], whicb is well defived since = is an order-sorted
Z-congruence.

Faet 2.31 Under the assumptions of Definition 2.30, ker(q) = =. O

Fact 2.32 Again under the assumption of Definition 2.30, any S-sorted family R of binary
relations i, on A, for s € 5 is contained in a smallest order-sorted T-congruence on A.
Proof: This congrience can be rxpressed as the intersection in the lattice of congruences

of all order-sorted congruences that contain R. 4

Drefinition 2.33 Given an arbitrary S-sorted family R of binary relations R, on A, for
s € 5, then the quotient of A by R, denoled A/ R, is the quotient ol A by the smallest
order-sorled E-congruence on A rontaining 2. O

Froposition 2.34 (Universal Property of Quotient) If ¥ is a locally filtered order-sorted
signature, if A is an order-sorted L-algebra, and if R is an S-sorted family of binaty relations
R, on A, lor s € §, then the quotient map ¢: A — A/R satishies the following:

(1) RCker(g), and

{2) if f: A — B is any order-sorted L-homomorphism such that R € ker{f). then there
is aunique I-homomorphism v: A/R — B such thal voq = [ (sce Figure 2).

Proof:

{1) follows from ker(q) being the smallest congruence containing R.

For (2), let f: A — B be an arder-sorted -E-homomorphism such that R C ker(f).
Then ker(g) C ker(f) and both are congruences so that for each connected component €
we have ker(q)c C ker([)c and there is a unique function ve: (A/R)e — B such that
ve o qo = fo for fo: Ag — Bg defined by [o(e) = fi(a) il @ € A, (this is well defined by
localt filtzring}. It remains only to check that, restrictiug ne to each one of the sorts s € C,
the family {v, | s € 5} thus oblained is an order-sorted E-homomorphism. Property (2}
{or ordersorted homomorphisms follows by constriction. Let o € £, , with w = sl...sn
and let ai € A, for i = 1,...,a. Then (omitting sort qualifications throughout) we have

v({AfR),([al), ....[an])) = v([As{al, ...,an}]) =

f(aglal,...;an)) = B,(f(aM). ..., f{an)) =

B, (vltal]), .., v{[an])).

We leave the case w = A for the reader to check. O

We remark that this universal property characterizes the quotient map uniquely up to
isomorphism. The following is now an easy conseguence of Proposilion 2.34:

Proposition 2.35 (Homomorphism Theoremn) Let T be a locally filtered order-sorted sig-
nature and let f: A — B be an order-sorled Z-homomorphisin. Then Afker(f) = f(A)
(isomorphism as order-sorted T-algebras).
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Proofl: Let f: A — f{A) denote the corestriction of f to f(A). Then hy the universal
property of the quotient with R = ker(f*) = ker(f), thereis a (unique) v: A/ker(J) — f(A)
guch that ve ¢ = f'. Then v is surjective since f’ is, and it remains to showthat v is
injective. To this end (omitting sort qualifications again), suppose that v{[al])= v([a2]).
Then f(el) = f(a2),so[al] = [e2]. O

We shall say that an order-sorted algebra  is an homomorphic image of another
order-sorted algebra A iff there is an order-sorted E-homomorphism f: A — Bench that
C = f(A). By the llomomorphism Theorem (for T locally filtered), C iz a homomorphic
image of A il € is E-isomerphic lo A/ = lor some order-sorted I-congruence =.

Definition 2.36 Let (5, T) be an order-sorted signature and let A and B be many-sorted
E.algebras. Then we define their product 4 x # to be the many-sorted E-algebra with
carriers (A x B), = 4, x B, lor earh 5 € §, and with (A x B)o({m, b}, ... (10, 8.)) =
(Ag(my,..,0,). Bol by, ... b)) for each o1 8y..3, — s in I, where each ¢; and b, are of sort
s; fori=1,..,n Wenow definc the two projections pl: Ax B — Aand p2: Ax B = B
1o he {pl, | » € S5} and {p2, | s € S} respectively, where pl,: A, x B, = A, and
p2,: Ay X B, — B, are the first and sccond projection functions rom the Cartesian product
A,x By. Noticethal pl and p2 are Z. hamomorphisms. Il A and B are order-sorted algebras,
then so is A x B, and the projection functions are order-sorted homomorphisms. Similarly,
we can define the product [], A, of a family {4, | £ € I} of many-sorted or order-sorled
E.algebras, with projection homomorphisms p;: [[; A; — 4,. O

Proposition 2.37 (Universal Property of Product) Let A, B, C be order-sarted (or many-
sorted) T-algehras, and let gl € — A and g2: € — B be order-sorted (or many-sorted)
E-homomearphisins. Then there is a unique order-sorted {or many-sorted ) Z-hemomorphism
v: € — Ax B such that plov = ¢1 and p2ov = ¢2. This result also generalizes to products
of arbitrary (amilies. O

3 Order-Sorted Equational Deduction

This section gives tules of deduction for OSA with conditional equations, and proves their
completeness. This yields a construction for initial and free order-sorted algebras as quo-
tients of term algebras hy the congruence generated by the rules of deduction from the
given eqnations, in a way that parallels MSA. ~

Before turning to the rules, we consider order-sorted terin substitution, Givena coherent
order-sorted signature (5, <, £} and two S-sorted variable sets X and V', a. subslitution is
an §-sorted map &: X — Tg(Y): note that this is a special case of the assignment concept
given earlier (Theorem 2,13} in which the values assigned Lo the variables are (erms. We
adopt the convention that the unique order-sorted T-homomorphism #*: Te(X) — Tu(})
induced by # is also denoted 8.

3.1 The Rules of Order-sorted Equational Deduction

Given an order-sorled signature £ and a set T of conditional S-equations, we consider each
uneconditional equation in T to he derivable. The following rules allow deriving lurther
{unconditional) equations:

{1} Reflerivity. Each equation of the form

(¥X)t =1
is derivable.
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(2) Symmeiry. If
¥Xye=r
is derivable, then so is
X))t =t
{3) Transitivity. If the equations
VX t=t,(¥X) ="
are derivable, then so is

(¥X) t= "
{4) Congruence. 1{ 8,8#: X — Tg(¥) are substitutions such that for eachz € X,
the equation

() 8(z) = 6'(x)
is derivable, then given t € Tg(X), the equation

(VY 8(t) = &{1)
is also derivable.
(5) Substitutivity. 1f

WX)t=ti[C
isinT, and if 8: X — T(Y¥) is a substitntion such that for each u = v in C,
the equation

(vY) 8(u) = 8(v)
is derivable, then so is

(VY)Y 81y = 8(1").

When the equations in I' are nnconditional, rule (5) takes the form

(5'} Unconditional Substitutivity. [f
Wxje=1¢

is in [, and il #: X — Tg{¥ ) is a substilution, then
(VY) 8(1) = 8(¢")

is derivable.

Although these riles are rather compactly formulated, they correspond exactly to intuitions
that we feel should be expected for equational deduction. Of course, there are many possible
variations on this rule set; lor example, see [72]. Also, order sorted Horn clanse logic is
discussed in {27}, and [26] gives an overview of the equational case,

3.2 Completeness and Initiality Theorems

We now show that the above rules are sound ard complete for deriving all the unconditional
equations thal hold in Lhe class of all algebras that satisfy [. We Lhen obtain initial and
free algebras for a set [ of conditicnal equations a3 a corollary. While Lhe structure of gur
prool is fairly traditional, il is more succinel than traditional proofs, becanse it exploits
the machinery of algebra rather than relying on purely syntactic arguments; for example,
it uses iniliality to prove commutativily of a diagram.

Theorem 3.1 {Completeness} Given a coherent order-sorted signature X, givea f,1' in
Tx(X), and given a set T of conditional T-equations, the following assertions are equivalent:

(C1(¥X) 1 = t' is derivable from I using rules (1)-{5).
(C2(¥X) t =t is satisfied by every order-sorted Z-algebra that satisfies [

When all equations in ' are unconditional, the same holds replacing rele (5) by rule (5).
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Proof: Wedsave the reader Lo check soundness, i.e., that {C1) implies {C2); this lollows
as usual by induction from the soundness of each rule of deduction separately. Here we
show completeness, i.e., that (C2) implies {C1). The structure of this prool is as [ollows:
We are given a L-equation e = (¥X ) ¢ = t' that is salisfied by every L-algebra that satisfies
T, and we wish to show that e is derivable from T; to this end, we construct a E-algebra A
such that il A satisfies e then e is derivable [rom ['; then we show that _A satisfies I,

First, we show that the lollowing property of terms [, ¢’ € Tg( X ), for some sort 3, defines
an order-sorted I-congrnence on To(X ):

(D) (YX) ¢t = t' ts derivable from T using rules (1)-(5).

Let us denote this relation ~r¢x). Then rules (1)-(3) say that ~p(xy is an equivalence
relation on 7g(X ), for each sort 5. By applying rule (4) to terms [ of the form a(z,...,T,)
for ¢ € L, we see that ~p(x) is a many-sorted E.congtuence. Finally, ~r(x) is also an
order-sorted I-congruence, hecause property (D) does not depend upon s.

Now we can form the order-sorted quotient of 7e{X) by ~r(x), which we denote by
Tr,r(X), or within this proofl, just A for short. Then by the constraction of A, for each
t,' € To(X) we have

(*) [t] = [t'] in A iT (D) belds,

where [f] denotes the ~pyxj-cquivalence class of ¢.
We next show the key property ol A, that

(**) (VX) £ =t satisfied in .4 implics that (D) holds.

Since the equation (Y.X) 1 = /' is satisfied in 4, we can use the inclusion fx: X — Asending
7 to [r] as an §-sorted assignment to get that [¢f] = {') in A; then {D) halds by (4).

We now prove that A satisfies ' Tet (YY)t = ' il C he a conditional equation in T,
and let #: ¥ — .4 be an 5-sorted assignment such that #{u) = f(v) for each u = v in C.
Then for each & € § and each y € Y, we can chonse a representative £, € Tg(X), such
that 8(y) = [,} in A, Now let ¢: ¥ — Tg(X) be the substitution sending y tot,. Then
#(y) = [#{y)] for each y € Y, and therefore 8(t) = [¢(t)) in A lor any t € Tr(V), by the
frecness of Tg{}) over V.

y— T

4 [

A

Therefare, [¢(x)] = [¢(v)] holds in A, and by the propertly (), the equation (¥X) ¢(u} =
@(w) is derivable from I' using (1)}-{(5) for each ¥ = v in C. Therefore by rule (5), the
equation (YX} #(2) = ¢{t’) is derivable from I, and hence by {*), #(t} = 6(1') hotds in A,
and thus Lhe conditional equation (¥¥'} ¢ = ¢/ il C holds in A.

Since an unconditional equalion is just a couditional equation whose set C of conditions
is empty, wheu every equation iu I is unconditional we are reduced to the simplified special
case of the above argument where only the rule (5') is needed. O

it is interesting to notice that this thecrem also gives the Compleleness Theorems for
ordinary MSA, and of course for unsorted algebra, as special cases. Now the initiality and
freeness results.

Corallacy 3.2 (Inttiality I) Given a coherent order-sorted signature & and a set I" of con-
ditional L-equations, then 75 (@) (henceforth denoted Txr) is an initial (%, [)-algebra,
and Ter{X)is a free (£,T)-algebraon X.
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Proof: First notice that the [reeness of Tg, (X ) specializes to the initiality of Tx ¢ when
X = @, = that it suffices to show the freeness of T7gr(X). Let A be an order-sorted
algebra satisfying T', and let a: X — A be an assignment for A. Then we have to show
that thereis a unique order-sorted E-homomorphism a¥: 7 r(X) — A extending a, i-e.,
such that a%{g¢(z)) = a(z) for each = € X, where ¢ denotes the quotient homomaorphism g:
T5(X) — Tor{X). The existence of a% follows from the Completeness Theorem, because
the fact that A satisfies I' implies that g*(2) = a*(t'] for every equation {(V.X') 1 = ¢ that
is derivable from T with the rules (1)-(5), and this implies that ~p(x)C ker(a”), and thus
by the universal property of quotients (Proposition 2.34), there is a unique order-sorted
homomorphism a®: T, r{X) — A witha" = a¥%o0yq.

The uriquencs of a% now follows by combining the universal property of 7(X) as a
free order-sorted algebra on X with the universal property of ¢ as a quotient, as follows:
Let h: Tgp(X) — A be another order-sorted homomerphism such that h(g(z)) = a{z) for
each z € X. Since 75(X} is a frce order-sorted algebra on X, we have a" = hog, and by
the universal property of ¢ as a guotient we have h = a% as desired. D

it is also worth explicitly drawing out the following consequence of our proof of the
Completeness Theorem:

Corollary 3.3 Given a coherent order-sorted signature £ and a set I' of (conditional} E-
equalions, an equation (VX) ¢ = ' is satisfied by every I-algebra that satisfies I iff it is
satisfied by 7o (X}, O

3.3 RBetracts

We have already showr in the Introduction that strong typing is not flexible enough in
practice, and suggested that OSA can provide the necessary flexibility with retracts. For
example,a term such as head(tail(0 1 0 0}) is not well-formed accor ding to the syntax
of Example 2.14 (BITS), because head’s arguments should have sort NeList but the term
tail{0 1 0 0) only has sort List, even though we know that it will evaluate to the
nonempiy list 1 © 0. One might think that this is “just run-time type checking,” and
should tkerefore be handled by the operational semantics. However, retracts have a very
nice, purely semantic treatment as a conservalive eztension (sce below ); of course, there is
also an operational semantics, developed in joint work with Jean-Pierre Jouannaud (22].

The basic construction extends an order-sarted signature T to another order-sorted
signatute £® having the same sorts as £, aad having Lhe same operation symbols as T plus
some nev ones called retracts of the form r, ,: 8’ — 3 for each pair 3', s with &' > 5. The
semantics of retracts ts then given by new retraet equations of the form

(Vx)ryp )=z

where zis a variable of sort s.

The OBJ implementation inserts retracts to transform ill-formed ZI-lerms, such as
head(tail{0 1 0 0)), that might become well-formed after reduction, into T¥-terms.
This has the effect of giving them the benefit of the dovbt at parse time, by filling gaps
between actual sorts and required sorts with retracts, For example,

head(tail{o 1 0 0)})
is replaced hy

head(riiseeLiat (tail(0 1 0 0 0)))
and is then reduced to 1 by applying the rules in BITS and a retract rule; thus the original
term is vindicated during reduction. On the other hand, the term

head(tail(tail{2)))
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is temporarily accepted as the term

head(rp st yeList (t211{r jar perine(tall(1})))})
and is then reduced to

head(rp st Nelist (t211{r 1t weLipt{Nil}))}
which serves as a very informative error message. This kind of run-time typechecking is
relalively inexpensive, and together with the polymorphism provided by subsorts and by
parameterized modules!!| comhines the syntactic flexibility of untyped languages with the
advantages of strong typing. In fact, unlike the untyped case, truly nonsensical expressions
can be detected at compile time and rejected, whereas any expression that could possibly
recover is allowed to be evaluated. By “truly nonsensical” we mean expresiors such as
factorlal(false) that coutain subexpressions in the wrong connected component (as-
suming that booleans and natural unmbers are in different connected components of the
sort poset) and therefore cannot be parsed by inserting retracts,

We now show that adding retracts is safe. Suppose that we begin with an order-sorted
signalure ¥ and a set I' of conditional E-equations. By adding the retract operations we
extend T to a signature Z%®, and by adding the retract equations we extend I' to a set
of equations [®. Our requirement for retracls to be well-behaved is Lthat the extension
(E,I'}C(E2,I'®) should be conservative in the sense that

t~rixy it ~re(x) ', for all £t € TR(X).

In model-theoretic lerms, this is equivalent to requiring that the nnique order-sorted -
homomorphism wx: Tgr(X} — Tge ra(.X) which leaves the elements of X fixed, is in-
jective, We will prove this undec the following very natural assumption on the algebras
Ter(X): given X C X', then the unique E-homemorphism ey x: Ter(X) = To (X'}
induced hy the composite map X — X’ — Tz (X'} {first inclusion, then the natural map-
ping of each vaciable to the class of terms eqnivalent to it) is injective. We will say that
a presentation (X, T') is faithful if it satisfies this injectivity condilion. Although they are
pathalogical, unfaithful presentations do exist, and for them the extension with retracis is
not conservative, as shown by the following example from [24]:

Example 3.4 Let ¥ have sorts 4,4, u with a,b < u, have an operation f: a ~ b, have no
constants of sort @, have constants 0,1 of sort b, plus +, & binary inkx and - nnary prefix of
sort b. Let T have the equations =(z) = f(z), y+y =y, vy =y, y+(-9) = L{~y)+y =
1, yk(-y) =0, (-y)&ky = 0,-0 =1, -1 = 0. Then (¥z)! = 0 is deducible from T, where
z is a variable of sort a, although (¥8}1 = 0 is net deducible from . Thus (L,T') is not
faithful. Note that Tg has 1 # 0 (becanse of the second equation) but Tpe e has 1 =0
because of the [irsi equalion and the presence of constants of sorl a such as r,,(0) and
rua{1). Thus, the extension (E,T) C {E®, ['®) is not conservative. O

There are simple conditions on both the signature £ and on the equations ' that
guarantee faithfulness of a presentation (Z, I'). For arbitrary [, it is necessary and sufficient
that £ has no quasi-empty models, which are algebras A such that A, = @ for some s
but A, # 0 for some other sort 5' [24]. For arbitrary I, it is sufficient that T'is a set of
confluent rewrite rules [55].

The lollowing model-theoretic proof of the conservative extension result for faithful pre-
seutations uses naturality of the family ¥»x of morphisms, which in particular gives commu-
tativity of the following diagram for X C X', where ux xr Is the unique Z®-homemorphism
induced by the compaosite map X — X' — Tpera(X'):

U Parameterized modules will be the main subject of the farthcoming Part 111 of Lhis paper.
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Tor(X) X Trara(X)
tx X Hx X+

Te,r(X) Trora(X")

Uxe

Theorem 3.5 If T is coherent and (I, ') is faithful, then the extension (I,T) C (£®,'®)
is conserative.

Proof: We have to show that yx: Tg (X)) — Tgs re{X) is injective. By the above
naturality diagram plus faithfulness, it suffices to show that ¥x: Tep{ X*) — Teare{X")
i3 injective, where X* 2 X is obtained from X by adding a new variable symbol of sort
s for eac) sort s with X, = 0. Now pick an arbitrary variable symbol 2% € X, for cach
3 € 5. The key step is to make Lthe (&, [')-algebra Ty p(X') into a (T®,I'®)-algebra by
defining 1y, Te (X"}, — Tor{X‘)s to be the function that sends [t] € Tr.r(X"), to {{],
and otherwise sends it to z%. 1l is now easy to see that the retract equations are satisfied.
Thus the freeness of Tpe re{ X ) implies that the natural inclusion X' — Ty r(X’) induces
a unique £®-homomorphism ¢: Tye re{X’) - Tor(X') such that qo . is the identily.
Therefore ¥ix« is injective. O

4 Reduction to Many-Sorted Algebra

This section reduces OSA to conditional MSA, thus providing a systematic way to iinport
OSA andogues of known MSA results. The difference is essentially one of viewpoint;
mathematically, it is an “equivalence of categories” { this notion is defined below). This
result also implies that MSA rewriting can be used as Lhe operational sermantics of a logical
programiing language based on order-sorted algehra (as in OBJ2 (13, 14]); see [2‘2] for
details, Noxt, we relate OSA and MSA equational satisfaction, and get less direct proofs of
the extstence of initial and free order-sorted algebras for conditional equations than those
in Section 3.2 above. We also lift the Birkhofl Variety Theorem aud the McKinsey-Malcev
Quasivariety Theorem from MSA to OSA.

4.1 Reduction Theorem

The basicidea is Lo provide for each locally filtered order-sorted signature £ a corresponding
many-sorled signature Z# wilh a set J of £#-equations such that being an order-sorted
Z-algebrais “essentially the samme” (i.e., up to isomorphism) as being a many-sorted Z#.
algebra satisfying J.

Givena locally filtered order-sorted signature E with sort poset (5, <}, the correspond-
ing T# his the same sort set §, has an operation symbol oy, € I, foreach o € T,
{including constants, where w = 1), and has additional operation symbols ¢, € Ef.a'
whenevers < s' in $, called inclusion operations. The conditional equations in J are the
following {omitting the obvious quantifier aud sort information):

L. (identity) e, ,{z) = z, for each s € §:

2. (injectivity) z = y if ¢, ,(7) = €,.4(y). for cach 5 < 5" in §;

3. {transitivity ) e, 4m{6, 0(2)) = €44n(z), for each s < " < 8" in §;

4. (homomorphism) whenever ¢: s1..sn — 5 and o2 5'1...8'"n — &' are in T with si < 5"

and thetefore (by monotonicity) s <" in §, then
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(Note that the iujectivity equation is conditional.)

We can view an order-sorted T-algebra A as a many-sorted Z#.algebra A* by letting
A# = A, for each s € §, with Ac*‘ . the inclusion At C A: for each s £ &' and with
A!_._ = Ag: Ay -+ A, for 0 € I,.,. Then A* catisfies J by construction. Moreover,
this construction of A¥ [rom A extends naturally to homomorphisma, since an order-sorted
£-homomorphism f: A — B is also a many-sorted £#¥-homomorphism f#: A* — B# with
f# = f,: A¥ - B} This follows becanse the operalions o,,, satisfy condition (1) of
Definition 2.8 by construction, while for the operations ¢, ,+ this is just condition (2) for f
to be an order-sorted homomorphism. In this way we get a [unctor

(-)*: OSAlgy — Alges o

where Algga ; is the category of many-sorted £#.algebras satisfying J. The Reduction
Theorem below shows that this fanctor is an equivalence of categories.

Qur proof of the Reduction Theorem needs some facts aboul filtered colimits of sets.
A flltered diagram of sets is a functor D: (9, <) — Set where (§, <) is a filtered poset;
i.e., D is a collection of sets {D, | s € §} together with functions d, ,: Dy — D, for each
a < ¢ in (5, <), with d,, the identity on D, for each s, and such that d, ,» = dy v 0d, .
whenever 5 < ¢’ € s”. The colimit of snch a filtered diagram I}, written colim{D), can be
computed as a quotient of the coproduct | |, s 7y (which we represent as the disjoint union
Uses Dax{5]} by the equivalence relation = defined by (a,s) = (o', ¢') il for somes” > 3,4’
in §, d, u(a) = dy p(a’). Reflexivity and symmetry of the relation = are obvious, and
transitivity follows from filtration. For each I, there is a map j,: Dy — colim(I}) defined
as the composition of the coproduct injection D, — | |,.s D, with the natural projection
into equivalence classes | J,cs ), — eolim(D), and the j, commute with the d,, in the
natural way by construction. Moreover, one can now check that celim{D) with the inaps
js has the lollowing nniversal property of a colimit in Set of the diagram D: given maps
{fs: Dy — A| s € S}such that f, = fyod,, whenever s < &', then there is a unigue map
J:eolim(D) — A such that foj, = f, for each 3 € X. We need the lollowing result about
this construction:

Lemma 4.1 If all the d, . of a filtered diagram D: (8, <) — Set are injective, then the j,
are also injective. )

Proof: (e,s)=(a’,s)ifld,(a}) = d,,(a’} for some &’ > 3 ifl (since the d, y areinjective)
a=a. 0O

Theorem 4.2 (Reduction) Given a coherent order-sorted signature I, then the functor
(-)#: OSAlgy; — Algge ; is an equivalence of categories, in the sense that there is another
functor (}*: Algre ; — OSAlgy such that for each A in OSAlgy and B in Alggs  there
are isomorphisms A ~ A¥* and B ~ B** that are natural!? in A and B, respectively.
Proof: Given B in Alggpa ; we define B® as follows: First, notice Lhat, for each connected
component C of S, the sets {B, | s € C} together with their ¢, , form a filtered diagrain,
and the maps j, into the filtered colimit B?, are injective by Lemma 4.1. Now define
By = j,(B,), and given o € Ty _4q define B): B, | — B! by

B:Ual(bl )v ~-'1J-m(bn)) = J,( B;l"'""(bh ...,b,.)).

'¥The condition for an isomotphism Lo be natural is spelled ont in the body of this proof; see also [49),
Theorem 1V 4.
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Checking that B* in [acl satisfies the conditions of an order-sorted algebra is"an exercise
in the use of the equations J and the commutation of the j, with the ¢, .

This construction becomes a functor as follows: first notice Lthat given a connected
component C of § and given h: A — B in Algye ; the maps h, constitute a natural
transformation between two diagrams on the poset C, and therefore they induce a map
he.: AL — BE hetween their colimiis: on elements, the map Af is defined by h&({[(a, s)}} =
[(hs(a), s)). Therefore, we can define maps A} by restricting hf. to domain A% and cedomain
. It follows from the defaitions of (J)¥* and (.)}* that for any order-sorted T-algebra A
one has A#* ~ A;indeed, in this case we can compute the colimits Ag' as unions [ J,ec A,
and get ap actual equality A#* = A,

By using the equations in J it is also easy to check that the hijections j,: B, — B¢*
define an isomorphism ag: B ~ B*#. We now have to show that the isomorphism ap is
natural in B. This just means that when B varies over Algrs j the ap’s are compatible
with the functor {_}**,i.e., for any h: B — B"in Algyy 5 the diagram

I h B
ap g
B-# - h'# Bro#

comimutes. This follows from the definition of A*#* and is left as an exercise. (The identity
A¥®* = { that we got computing the colimits involved as unions is already natural ju A,
siuce () is the identity fTunctor on OSAlgy.} O

4.2 Semantic Consequences of the Reduction Theorem

The Reduction Theorem is also uselul for lifting other MSA results to OSA. Because an
equivalence of categories preserves initial objects (for example, by Lhe gencral result that an
equivalence of categories preserves colimits, e.g., [19], Theorem V. 5.1}, the Reduction The-
orem implics that {.)* sends any initial order-sorted L-algebra to an iuitial {E#, J)-algebra
whenever ¥ is coherent, and so we get the isomorphism T,_? = Tis 4. Similarly, when I is
a (nol necessarily regular) locally fillered signalure, (-)* sends the initial (Z#, J)-algehra
Ty¢ 5 toan initial order-sorted algebra, because (-)* is an equivalence of categories. Thus
initial order-sorted algebras exist even when I is not regular (of course, Lhere is an isomor-
phism T}, , = Ty; when I is coherent). By tle equivatence of categories, Lhe esisteace of
an initial order-sorted algebra now follows directly [rom the well-known exislence of many-
sorted inilial algebras for couditional equations. However, the explicil construction of Ty
given in Theorem 2.12 when I is regular is fairly simple, helps to develop intuitions about
OSA, and does nal require local filtering.

Corolkry 4.3 (Initiality [1) Giveu a locally fillered ordec-sorted signature ¥ with sorts 5,
and an §-sorted set X disjoint from E, then Ty, | is an initial order-sorted E-algebra aud
{Tre j(X))* is a [ree order-sorted £-algebra on X; if T is coherent then 'TE* i an initjal
(Z*, J)algebra and Tp(X )* is a lree (Z# J)-algebraon X. O

This corollary could also be obtained by noticing that there is a (right adjoint} forgetful
Tunctor {f: Alggy ; — Set’ (where Set® is the category of §-sorted sets) with U(B) =
{Bs | s€ 5} and vusing the facts that an equivalence of categories is an adjoint and that
the composition of adjoints is an adjoint (see [49], Theorems IV.8.1 and IV.4.1).

28



This corollary is useful in connection with parsing order sorted terms, throngh the
unique E#.homomorphism from the initial T#*-algebra, i: Tya — T,:' or, il we want terms
with variables, Ax - Tpe(X) — Te(X . The set P(t) = {t' € Tra(X) | hx(t') = 1} for
t € Te(X) is the set of all disambiguated parses of { as a T#-term; let P(), denote
the set of parses of 1 of sort a, i.e., P(t) N Tre(X),. Proposition 2.10 showed that for &
coherent, there is 2 least sort s with 1 € 7g, and therefore with P(1), nonemply; this sort
s was denoted L5(¢). For I' a sel of order-sorled equations, conditional or not, let P(T')
denote the set of all possible parses for each equation in T.

In fact, the construction of Proposition 2.10 can be adapled as follows to find the least
sort parse LP(t) of t: First, for z a variable symbol, let LP{x) = z; next, for { = o(t1...tn}
with n > 0 and with si = LS(ti), let {w, s} be Lhe least pair such that sl...sn € w and
o € ., (which exists because ¥ is regular); then LP(t) = o, ,(LP(t1), ..., LP(in}).

The results of this section are also useful in reducing the satisfaction of equations in
OS A to the satisfaction of equations in MSA. The main theorem is:

Theorem 4.4 (Satisfaction) For T a coherent order-sorted signature:

(1) A ZT-algebra A satisfies a conditional equation (YX)} t = ' if C iff the E¥-algebra
A# satisfies any condilional equation (say of sort s) (VX} t; = t] il Cy such that
hx(t) = t, hxa(th) = ¥, and hy(C1) = C

(2) Conversely, a (E#,J)-algebra B satisfies a conditional equation (YX) ¢, = {if C; (of
sort ) iff the order-sorted algehra B* satisfies the conditional equation (VX ) hx(#,) =
Ry (1)) i hx (C1)-

Proof: For any assignment a: X — A, let a*: Teagx) — A* and @¢”: To{X) — A denote
the uniqne hontomorphisms induced by a. By definition of satisfaction, to prove (1) it is
enongh to show that for any t € T( X} and ¢ € Tea(X), such that by ,(f;) =/, one has
a¥ (i) = a*(t). This follows from the initiality of Tre(x) by noting that the diagram

Tragy ———Te(X*

!\

gives a**(hx(z)) = ¢*#(z) = a(z) = a*(z), and thus a"# o hy equals the homomorphism
at: Treexy — A®*. Next, we reduce the proof of (2) to the proof just given for (1) by
noticing that since B is isomorphic to B*®_ it satisfies exactly the same equations as
B# and (using (1)) B*# satisfies an equation (¥X) ¢, = #} iff B® satisfies the equation
(VX) hxo{ti) = hx(tt). O

This thearem shows that for T a set of conditional order-sorted T-equations and for
P(T) the set of all possible parses of the equations in I' as conditional T#-equations, the
functar {_)® restricts as expected:

Corollary 4.5 For T a coherent signature and T a set of conditional T-equatiors, there is
an equivalence of categaries

{-)*: OSAlgyr — Algpe jupry
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As before, this means that inilial algebras, and more generally free algebras, are pre-
served by the equivalence of categories. Therefore we can prove in 2 different way, without
appeal to order-sorted deduction, the existence of initial and lree order-sorted algebras.

Corollary 4.8 (Initiality II[} Given a coherent signature ¥, the class OSAlgs ;- of E-
algebras satislying a set T of conditional equations has an initial algebra, and for any
variableset X, also a free (£, ['}-algebra over X. In particular, (Tyg jup(r))® is 2n initial
(X, I')-algebra, and (T sup(ry{ X))* is a free (£, T)-algebraon X. O

Twoimportant consequences of the Satisfaction Theorem are order-sorted versions of
the McKinsey-Malcev Quasivariety and the Birkhoff Variety Theotems. Since Lhe case
when the set of sorta § is infinite requires some additional developments (for which see
[24]), we treat the case of a finite set of sorts. The MSA McKinsey-Malcev Thearem
states that a class of many-sorted algebras is definable by conditional equations ifl it is
closed under products, subalgebras, and [ltered colimits {for example, see [37] 63.3, where
the siatement is one-sorted; note that our formulation considers limits and colimits up
to isomorphism, so we do not nced closure under isomorphisms). The Birkboff Varicty
Theorem [1] characterizes classes of algebras definable by unconditional equations as those
classes tosed under products, subalgebras, and homomorphic images (Birkhofl's original
[ormulation was one-sorted; see [11] for the first mauny-sorted formulation, and [24] for
a corrected stalement regarding quantification of variahles and a discussion of infinitely
inany sorts). Our aim is 1o use the equivalence of categories to lift these two theoremns
Irom MSA to OSA. However, lirst we need to relalivize the MSA MrKinscy-Malcev and
Birkhoff Theorems to a subclass defined by conditional equations, due to the presence of
the conditional ©#-equations J.

First some notation: For C a class of order-sorted E-algebras, let F(C}, S(C}), JJ{C),
F{(C) denote the closure of € uuder products, subalgebras, homotnorphic itnages, and filtered
colimits, respectively. Similarly, for C; a class of many-sorted T#.algebras, let P'(Cy),
S5'(Cy), H'(Cy), F(Cy) denote the corresponding many-sorted closures.

Lemma 4.7 Given a many-sorted signature §! with a finite sort set, a set for I'; of ron-
ditional -equations, and a class C; of algebras contained in Alggp, then the following
hold:

{1} Cyis of the form Alg - [or some set Tz of conditional equations iff it is closed in
Ul
Algg r, under products, subalgebras and filtered colimits.

(2) Ciis of the form Algg 1, r, for some set Ty of unconditional equations ifl it is closed
in Algg -, under products, subalgebras and homomorphic images.

Proof: The first statement follows from the wel! known (and easily shown) fact that
classes of equations and classes of algebras form a Galois connection, and the closures
under products, subalgebras, and hitered colimits of any class iu Algqa, and in Algg
coincide precisely by virtue of the McKinsey-Malcev Theorem.

The second statement follows hy remnarking that Algg -, is closed under products and
subalgebras, 50 that those two closures coincide in Algg, and in Algg. The closure
under homomorphic images of €y in Alggr, is just the intersection H'(Cy) N Algg, -
Since €, is assumed closed under products and suhalgebras, and since the closnre under
homomorphic images of a class closed under products and subalgebras is also so closed, the
Birkhofl Variety Theotem implies that H'(C,) is of the form Alggy, for some set I'; of
unconditional equations, aud so we have &, = Algg - N Algar, = Algar,ur, as desired.
The converse is now easy. O



Corollary 4.8 ( McKinsey-Malcev Quasivariety and Birkhoff Variety) For{5,<,Z} a co-
herent order-sorted signature with § finite:

¢ A class of order-sorted E-algebras is definable by some set of conditional equations T
(i.c., is of the form OSAlgy - for some set T of conditional equations} iff it is closed
under products!?, subalgebras, and fltered colimits.

¢ A class of order-sorted E-algebras is definable by some set of {unconditional)equations
T (i.e., is of the form OSAlgg r for some I' of unconditional equations) iffit is closed
under products, subalgebras, and homomorphic images.

Proof: Notice that by the Satisfaction Theorem, any class of order-sorted algebras of the
form OSAlgrr for T a set of conditional equations, can be written as (Alggs yupir))-
Similarly, for I’y a set of couditional E¥-equations, one has (Algpe sr,)* = OSAlgg 4, (1)
{wheee X is a set of variables that contains all those declared in the equations of [y).
This means that a class of order-sorted I-algebras C is definable by conditional equations
(respectively, nnconditional equations) iff it is of the form (Algge ;yr,)* for I\ some set
of conditional (respeclively, unconditional) E#-equations. Note also that if Cy isa class of
many-sorted algebras contained in Alggs ; aud closed under isomorphisms, then (Cy}* is
also closed under isomorphisms; in particular, equationally definable classes of arder-sarted
T-algebras are closed under isomorphisms (this was the motivation for defining coherent
signatures}. Now consider the following identities that hold for €y a class of many-sorted
algebras contained in Algys ; and closed under isomorphisms:

(1) P((C)*) = (P(C})*

(2) 5((€r)*) = (51C))*

(3) H{C)") = (H'{C1))"

(4) F(€)*) = (FC))y.
Since equivalences of categories preserve all limits and colimits, (1) and {4} are immediate.
(2) and (3) follow from €, (and thus {C;)*) being closed under isomorphisms, by remark-
ing that the functors (_)* and (.)* both preserve injections and surjections. The OSA

McKinsey-Malcev Thecrem now follows from Lemma 4.7 and (1), {2), (4), while the DSA
Birkhofl Theorem follows from Lemma 4.7 and (1), (2), (3). O

5 Variations on the Theme

Many diflerent waysto define order-sorted algebra have appeared in the literature. llowever,
most are less general than our approach; for example, they may fail Lo admit many-sorted
algebra as 2 special case, or to provide a semantic account of overloading.

5.1 Preregularity

Let us begin with a variation of our own invention, a weakening of regularity that is needed
for the discussions which follow:

Definition 5.1 An order-sorted signature T is preregular iff given w0 < wlin §* and
given a in I,y ;1 thereis a least sort 3 € § such that w0 < wand o € £, , for some w € §*;
we call s the least sort of ¢ with arguments (arity} over w0, and denote it L5{o, w0).
Notice that E(X) is preregular if £ is. O

PLe., products [, A, of families { A, | { € ] over arbitrary index sets [.
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Propositisn 5.2 The lollowing are equivalent' for an order-sorted signature I:
1. I is preregular.

2. Bacht € Tg has a least s € § such that { € Ty, called the least sort of { and denoted
L5(1).

3. Given §' € S and a variable se! X that is disjoint from I, then [,es To(X), =
Uarcs Te(X )y (where o < 5" means that 5’ < s for all €S

Proof:

(1)=(2) may be proved essentially the same way as Proposition 2.10.

(2)=-(3): Since preregularity is preserved by adding constants, we need only consider
ground terms, and since the opposite containment is obvious, it is enough to show that
Nies T84 € Upes Teo- For any t € ,es Te, we have LE(t)<S'; thus, { € U,ico Tr o
as desired. h

(3)=>(1): Suppose that T is not preregular. Then there are w0 and & such thal 7 is in
Lowt,a1 With w0 < wl for some wl € 5 but L§{e, w0} does not exist. Let w0 = sl...sn,
and let X consist of the variables z1,...,zn of sorts al, ..., an. Then the set §' of all possible
sorts for the term eo(zl,...,zn} is such that any s’ with ¢ € Z, » and wl < v’ is in
5" and any & in §' is of the form s > &' for one such &'; thus, the set §' cannot have
a least element. Since o(zl, ...,zn) belongs to \,e5 Te(X), and by hypothesis we have
Mses Te(X)e = U,rcs- Te(X), we can conclude that §’ has a least element, which is a
contradiction. @

The lesst parse LP(f) of a term ¢ discussed in Section 4.2 also generalizes to preregular
signatures.

5.2 Related Work

The approach o order-sorted algebra given in this paper generalizes the one given in [22],
and differs from others in the lileratnre [15, 67, 71, 72]. This section gives a precise com-
parison of our approach with these others, and concludes that the approaches are close
enongh that they can simulate each other; on the other hand, it also concludes that there
are subsiantial advantages, both in generality and in the pragmatics of language design,
that support our choice. Qur main goals in choesing definitions have been:

® To be as general and simple as reasonably possible.
¢ Toinsure that MSA is a special case of OSA.
¢ To give a semantic account of overloading.

All asthors scem to agree on the notion of order-sorted signature (except perhaps for
an inessential restriction in [15]}). Nowever, significant differences arise in the notions of
algebra and homomorphism. From more to less general we have the following:

1. OSAlgg is the notion given in this paper, which in particular involves the following
monotonicity coudition in the definitiou of order-sorted algebra:

(e € Lyt N Euz,ez and wl € w? imply that A¥'*'{a) = A¥%2(a) for all
a€ Ay

'*We fint proved thia result assuming thal the poset § of sorts satiskied the descending chain condition;
we Lhank Gert Smolka for pointing out Lhal this restriction is unnecessary.
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2. OS5 Algt replaces our condition (2) by the condition

(2} if 0 € Bura1 N Eyz,z and if there s a wd < wl, w2, then AY'-*(a) = 44742 (q)
for all @ € Ay

The definition of homomorphism is exactly the same in these two cases.
3. OSAlgy is the category proposed by (15, 67, 71, 72]. It replaces condition (2) by
(2%) if 0 € Tyt N Euza and ifa € A¥' N A2 then A¥121(a) = A¥T*¥(a).
The notion of hamomarphism f: A — B adds to ours the requirement
(H) ifae A,N A, then f,(a) = f.(a).
The differences in generality are reflected by inclusions of categories,
OSAlgE C OSAlg: C OSAlgy

where the inclusion OSAlgk C OSAlgy is full, whereas the inclusion OSAlgy C OSAlgye
is not full in general (i.e., there are homomorphisms in our sense that are not homomar-
phisms in OSAlg#). The discussion below will show that:

s I{ T is regular then OSAlg: = OSAlgy.
« I ¥ is preregular then 7¢ is initial in OSAlgyp.

s Any preregular siguature I can be extended to 2 regular signature E' such that
OSAlgk = OSAlgg..

Thus the difference belween OSAlgy and OSAlgy is not very substantial and, since reg-
ularity is nicer than preregularity, the main parts of this paper stick to regularity.

Condition (2) may scem surprisingly general, because it admits some possibly unex-
pected behavior. For example, consider (§,L) where § = {s1, 52, 53} with sl < 52,33,
where 8 € 3,3 anl v € E,3,2 N L,3,3. Then there are order-sorted I-algebras A such
that

Ao a) # A2a),
For example, one such algebra has A,; = {a}, 4,2 = {8,0}, A3 = {n,c} with

A;"‘d(d) = A;?.:?(b) =b
and

A;‘"‘(a) = A;‘!.ﬂ(b] =c.
Candition (2') excludes this kind of behavior, but condition (2) is technically easicr to work
with, as well as more general; moreover, it is needed for one of the main results of this
paper, Theorem 4.2

Although preregularity may secm very natural, it fails to ensure the equivalence of
conditions (2) and (2’) in the definition of order-sorted algebra. For example, consider a
signature ¥ with sorts § = {s0, 51, 52,33}, subsort relations s0 < sl, s2, and aperations
o: 31 — 93 and &: 52 — 83, Then I is preregular, but the order-sorted algebra N with
N, = N, the natural numbers, for i = 0,1,2,3, and with N,: Ny — N,3 the identity
function and N,: N,» — N,3 the constant function mapping all the natural nuinbers to
0, fails to satisly condition (2'). One can rule out such bizarre models by accepting only
algebras in the subcategory OSAlgy of OSAlgy containing algebras that satisly condition
{2'). Since Lemma 5.4 below shows that any preregular signature can be extended to a
regular signature and, since regnlar rignatures ensure condition (2), this paper emphasizes
regularity and the simpler, more general condition (2). Moreover, we have

Fact 5.3 If D is a regular order-sorted signature, then a E-algebra A satisfies condition (2)
ifl it satisfies condition ().
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Proof; Clearly (2’) implies (2). Conversely, assume that A satisfies (2),let ¢ € B, N
Tw2,ea and et w0 £ wl, w2, Then there is a least {w,s} with ¢ € £, and w0 < w. In
particnlar, (w,s) < (wl,s1),{w2,92). Therefore, A¥"*! and AY?*? are equal to A% or
Ay. Thu, if 3 € Auo then also ¢ € A, and A¥M(a) = A¥T*3{q). D

Lemmas5.4 Given a preregular signature £, there is a regular signature I’ on the same
sort posel such that £ C £ and there is an isomorphism of categories OS Algy = OSAlgy..

Proof: Let T’ be the signature containing £ (with the same sort poset 5) and for each
w € 5* such that & € B, for some w' > w a new operation a: w — L§(g,w). Since T
satisfies the monotonicity condition, and w < u’ implies L5(e, w) < LS(o,w'} whenever
Lhis is defined, Lthe signature I’ also satisfies the monotonicity condition. Also, for each
w € § such that ¢ € .., for some w' > w the least rank for ¢ with arity greater than
or equal (o w js precisely {w, [8{c,w)). Therelore T/ is regular.

The lunctor QSAlgy, — OSAIgE of the claimed isomorphism just forgets about the
new operations introduced in £', noting that condition (27) s satisfied because L’ js regular.
Showing that there is an inverse functor is tantamount to showing that each A in OSAlgy
can be extended in a unique way to an algebra A’ in OSAlgy, identical with A for operations
in Ein suich a way that il f: A — B is in OSAIgL then f: A’ — B’ }s in OSAlgy,. Since
for each new operation o: w — LS({o,w) in L’ there is an operation o: w' — LS(r, w)
in & with w < w', the extension A‘, if it exists, must clearly be unique and then E-
homeornorpliisms must preserve the new operations since these are just restrictions of already
existing operations. But existence of A’ is guaranteed by restriction of the already existing
operations, precisely by condition (2'}. O

Corollary 5.5 For a preregular signature £ the algebra Tg is initial in the full snbcategory
OSAlgyof 0SAlgy defined by those algebras satisfying condition {2').

Proof: This can be proved directly, by minor medifications of the proof of Theorem 2.12,
but it follows more abstractly from the isomorphism of categories OSAlgh = OSAlgy.
that maps Tg to Tg., since isomorphisms of categories preserve all limits and colimits and
in particular preserve initial objects. O

A niceproperty of term algebras is that they automatically satisfy condition (2"); more-
over, in the smaller calegory OSAlgf the term algebra Ty is initial for any order-sorted
signature I, However, there are good pragmatic reasons to require regularity in any case.
Poigné |61 perceived regularity does not actually disappear in the category OSAlgy; it
is hidden in condition {2") in a sense to be made precise below. However, the ralegory
OSAlg? has some serions drawbacks, including the following:

¢ Condition (2"} rules oul the convenient flexibility of ad hoc polymnorphism. For ex-
ample, one cannot have an algebra in which 0 and 1 are both Booleans and naturals,
and in which + is both addition of naturals and exclusive or of Booleans.

Conditions (2"} and (1) radically exclude many-sorted algebra as a particular case of
order-sorted algebra. In a many-sorted algebra, two different sorts may have elements
in common, but homomorphisms may map the same element to different images
depending on the sort.

This lack of compatability belween the nany-sorted and order-sorted approarhes associaled
with OSAlg?. is unfortunate, since order-sorted logic is in principle a refinement of many-
sorted logic, and since the previous literature on abstract data types has, almost entirely,
been developed in the many-sorted framework.

34



It is also unfortunate thal overloading is so severely limited in this approach, because ad
koc polymorphism is such a pervasive and important part of ordinary mathematical notation
that it would be a great pity, either to entirely rule it out in the design of programmming
languages, or to relegate it to the realm of “mere syntax,” without the backing of 2 proper
semantic theory, so that one cannot know in advance whether or not some proposed leature
might work. Discussions about overloading are difficult, and sometimes even acrimonious,
for languages as diverse as Ada [62] and Haskell [43], precisely because of the lack of an
underlying seman tic basis for these discussions.

We also wish to mention that requiring signatures to be coherent allows a very simple
and flexible treat ment of equalily, since we can always assume that ¢ and ¢ have the same
sort whenever they appear in an egnation’® ¢ = ¢’ by going to a common supersort. By
contrast, Smolka [71] introduces special equality predicates of the form =, , and requires
closure under certain properties of such predicates {so-called “balanced” signatures}in order
to obtain a completeness theorem. This seems somewhat unnatural.

A one-sorted “universe” view of order-sorted algebra lurks within conditions (2*) and
(H). Defining A = [J,cs A, to be the “universe”, then condition (2") is equivalent to the
existence for each operation o with n arguments of a partial operation A,: A" — A whose
domain of definition is the union of the A¥ such that o: w — s in I satisfies appropriate
sort conditions for the results. Similarly, condition {I[} is equivalent to the existence of
a set-theoretic function between universes that preserves sorts and operations. Therefore,
one way to reconcile our view with that of [15, 67, 71] is to make the universe explicit.
This has also the advantage of showing how an order-sorted “universe” view can easily be
embedded into an unsorted view where one gets for free (in both the categorical and the
pragmatic senses! ) informative error messages for ill typed expressions that take the forin of
terms whose only sort is the entire universe. The idea is very simple. Take any order-soried
signature £ and extend it to asignature I* by adding to it a new sort u such that s <
for any old sort s, and also adding operations o: u™ — u for all o: sl...sn — sin £ (but
note that £¥ need not be regnlar when £ is). We then have:

Theorem 5.6

s OSAlg{. = OSAlgs. and in parlicular, Tz« is the initial algebra for all three
categories.

¢ The forgetful functor {_|g): OSAlgy. — OSAlgy that forgets about the universe
sort lands inside OSAlgy and sends one term algebra to the other, i.e., Tu|p = Tg.

¢ There is a funclor (*): OSAlg} — OSAlgy. left adjoint to () with a natural
{unit) identity A = AY|g and with a very simple description, namely A%(zl,...,zn) =
if zi € A,y and o € .y an,» then A,(z1,...,2z7) else the term o(z1,...,zn)of sort 1u.

There is another way of relating the two different approaches to order-sorted algebra
that has the advantage of making explicit in what sense the regularity assumptionis hidden
in conditions (2¥) and (II). This has also been noticed by Poigné [67], although his statement
of the lacts seems to be inaccurate because he claims a full suhcategory inclusion rather than
an isomorphism of categories. The idea is to complete the sort poset § by finite intersections
into a poset 7(§): The elements of 7(5) can be represented as finite expressions s1&...&sn

'*Recall that we require t and ' Lo lie in Lthe same connected component, since we do nol consider
equalions acroes different components meaningful. However, even this restriclion could be diopped by
addiug a universal sort.
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for s1,...sn € 5§ and with s1&._ .&sn < #'1&..&s'm ifl for each #'; there is an si such
that si < »'f; and of course, two representations s1&...&sn and s'1& .. . &s'm are equal ifl
s1%. Lo <€ 3", &9'm and al&.. . &an > #'1&..&5'm. For a general justification of why
this construction of f(5) works and makes the inclusion map § — J(.5) universal, see for
example Corollary 3.2 {dualized) of [52].

We can extend an arbitrary order-sorted signature E on 5 to a regular signature (L}
on f{5}i T satisfies the following reasonable finiteness conditionS: for any @ in £ having
n arguments, and for any word w0 of length n in /(5)*, the set {w € §°* |0 € I, and
w0 < w) has a finite set of minimal elements, say wt, ..., wn, with o: i —+ si. When such
a set is gonempty, we introduce in J(T) an operalion o: w0 — 31&.. . &sn. This makes [(L}
regular by construction. Now notice Lhal every algebra A in OSAlgy can be extended to
an J(Z)algebra {(A) by defining f{A)ua. asn = A,y N ... N A,, wilh operations exlended
to intersrction sorts in the natural way, i.e., suppose that we have o: w0 — s1&. &sn as
above, chtained from o: wi — si. Then a € A" implies that @ € A** and by condition
(2"), Ajla) is uniquely defined and belongs to A,, for each i = 1,...,n and therclore to
Aug. g Since the homomorphisms f: A — B in OSAlgh are Junctions on the nniverses
that preserve the sorts and the opcrations, they also preserve intersection of sorts. In
other words, there is a functor /: OSAlgE — OSAlgyy that is faithful and injective on
objects and preserves initial algebras; I is also full, since many-sorted lunctions that agree
on intersections glue together to give a function on the universes. Therefore, we can regard
OSAlg§ as a full subcategory of OSAlg;g). However, the category OSAlgy g can have
other obiects IF such that there is a proper inclusion B,14. 4, © B N...N B;, rather than
an equality. Actually, OSAIlgF can be nicely axiomatized by sort constraints of the form

apr : 581 & ..k 8n if ¥ : 81 and ...and x 7 &8N .

Furtiher details on sort censtraints must wait for I'art [I of this paper; however, see [22] for
a very bricl introduction. In summary, we have

Theorem 5.7 The lunctor f: OSAlgy — OSAlgyy, is [ull, Taith{ul and injective on
objects, and therefore makes OSAlgY isomorphic to a [ull subcategory of OSAlgys).
Moreover, [ preserves initial algebras, le., J{Tg) = Tyg). O

Pragmatically, it is very helplul to have a least sort for each term ¢ in an order-sorted
term algebra. This makes the task of parsing much easier and also supports good pro-
gramming and specification practice. Qur experience with many examples indicates that
this very natural property is generally satisfied in practice, and moreover, nonsatislaction
is often connected with conceptual errors. Of course, it is also easy to check this condition
syntactically. The above subcategory inclusion tells us that in a sense, regularity is always
present, but we prefer to make it explicit, since this gives a much simpler approach to the
syntactic aspects of order-sorted algebra that any programming language based on these
ideas must necessarily address. Moreover, as already mentioned, our choice is the only one
that makes the logic a natural extension of many-sorted logic. For all these reasons, as well
as for its being simpler and more general, we prefer our approach to the alternatives in
{15, 67,71, 72]. Another reason that has heen implicit in our choice, and Lherefore should
also be mentioned, is that our approach is intimately connected with tha Cartesian algebraic
theories of categorical logic and (with the addition of sert constraints) it actually gives a
very convenient way to specily Cartesian theories that avoids many of their shortcomings;
this will also be explained in Part II of this paper.

""We rould actually do it withoul assuming Lhis cordition, bat Uhen infinite intersections of sorls would

need to be added.
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5.2.1 Summary

We may summarize the above discussion with the [ollowing points:

5.3

There is basic agreement among all authors about the concept of order-sorted signa-
ture; also, the approaches in [15, 67, 71, 72} are all equivalent (except perhaps [or an
inessential restriction in [L5]).

Our approach is more general in the sense that, lor each signature, the algebras and
homomorphism of the alternative approaches form a subcategory ol our algebras and
homomorphisms.

Only onr approach provides a natural extension of many-sorted algebra as the par-
ticular case where the sort poset has the discrete order.

Only our approach permits Lhe convenient Aexibility of ad koc polymorphism.

All approaches can be reconciled, yielding identical categories, by adding a universe
sort and extending the operation symbols at the universe level.

The approach of [15, 67, 71, 72] has the advantage that term algebras are initial in
general, whereas we must tequire that each term have a least sort; however, inttial
algebras exist in our approach even without this requireinent, as shown by Initiality
Theorem IJ (Theorem 4.3 of Seetion 4.2). The requirement that a least sort exist
for each term is implict in the other approaches in a sense made explicit by a full
subcategory embedding. We believe that the least sort requirement is very natural,
and that it supports simpler implementations and belter programming praclice,

Further Literature

There is by now such a vast amount of related work that we can hardly do more than cite
examples almost at random, including the lollowing:

1.

Iuiplementations of inheritance in Simula [12] as [urther developed in Smalltalk [36]
and other object-oriented languages.

. Overloading and subtypes in Ada [62].

. The theory of (higher order) polymorphism as developed in [57], [68], [8] and [51],

among many others.

. There has been recent work on adding subtypes to higher order calenli {7, 2].
. Work on “classified algebras” [78] and on “inulti-target operation™ algebra |38].

. Wark on the semantics of natural and artificial languages, including: [14], which shows

how Mentague grammar [58] (a formal system for natural langnage semantics) can
be treated with a version ol initial algebra semantics with subsorts; [32], which uses
error algebras to define programming languages (and thus compilers); and [10], which
uses partjal algebras to give a semantics lor subscripted variables.

. There is some explicit theory of multiple inheritance in the context of object-oriented

programming, including [6] and |76], and we have ourselves applied order-sorted al-
gebra to this problem [29].
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8. Thete is also some work giving operational semantics for subsorts by rewriting, e.g.,
[11) and [80); [22] and [47] give details of two different operational semantics that
implernent precisely the framework given in this paper.

9. Peter Mossez has generalized order-sorted algebra to “unified algebra™ [60], which
treals elements and subsorts in a uniform way, and thus can handle non-determiuism
in an algebraic setting. Mosses developed this formalism to support his “action se-
mantics,” an algebraic approach to denolational semantica {59].

There are many interesting relatiouships among these papers: for example, [15] follows [17]
in using signatures T that are “{ully overloaded™ in the sense that if o: w — sisin T
and w' <wand s < &, then 7 w' — & is in L. OQur weaker notion ol regular signature
is intended to capture ad hec polymorphism. Reynolds has subscquently abandoned the
algebraicapproach of [69], since (he says) it fails 1o handle the higher-order case, HHowever,
higher-order ahstract data types have been treated by [64], even with a netion of subsort;
see [66] for some corrections to [64]. In fact, the approach of [69] can be seen as arising
frowmn taking the so-called tensor product of one algebrajc theory with another that consists
entirely of subsort inclusions.

The crtremes to which one might be driven by the difficultics of partial algebras are
illustrated in [10], which models a state change by a change of algebra, and thus tnodels
a computation by a sequence of algebras. The “classified algebra” of [78] seems to be a
version of 0SA, and the “multi-target operation” approach of [38} combiues aspects of the
partial algebra and the explicit etror sort approaches.

Thereis also now much intereating work on unification for order-sorted algebra, includ-
ing [11] and |80, who discuss algorithms for unification, and {79], who argues for the utility
of subszorts in connection with resolution and paramodulation. [17] gives a systematic treat-
ment of order sorted unification that is consistent with the prosent paper, and includes a
linear time unification algorithm for signatures salislying some simple conditions.

Kamin and Archer [46] argue that tolal algebras are unsuitable for treating errors, for
reasons like the following:

® Lheerror messages froun various abstractious that use (say) the integers, Int, cannot
be kept separate;

you have to specify all the error behavior of a madule in advance of implementing it;

and thus, to show correctness of an implementalion, all this behavior must also be
verified.

None of these ohjections is valid against the full power of OSA. The first objection is et
in an elegant and simple manner by permitting each different abstraction that uses Int to
have its own supersort of Int containing its own error behavior; these supersorts need have
no intersection outside of Int. The force of the second and third objectious arise from the
fact that the error behavior of an ahstraction is often determined by the rontext in which
you want to use it. OSA again saves the day, although some concepls not discussed in this
paper are needed: the notion of behavioral equivalence of abstract machines [23, 56} can
be slightly generalized to consider only certain designated subsorts, e.g., those that exclude
the error messages; behavior outside these subsorts is not specified, and thus veed not be
verified. The method is Nexible enough to permit specifying error messages when required
by a problem; for example, in specifying a compiler, one might well want to require that
certain specific error messages are produced for certain kinds of erroneous input. Kamiu
and Archer J46] also argue that error features like the finite bound of a stack or array
should not be specified, but should be determined by the implementation; but we think
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this is wrong, since one often wants to specily that at leasi a certain amount of gtorage must
be available. The “implementation™ with no storage capacity at all is not useful. These
issues are discussed in more detail in [56]. It is perhaps worth emphasizing that 0SA can
be used in connection with both abstract machines (which have internal 6tates) and data
constraints, which together give much more power for applications than we have been able
to illustrate in the present paper.

A A Number Hierarchy

This appendix illustrates the expressiveness of order-sorted algehra by constructing the
number hicrarchy from scratch, all the way from the naturals to the quaternions with
rational coeflicients. Figure 3 displays the highly nontrivial sort structure of this example,

The actual QB J3 code consists of modules NAT, INT, RAT, CPX-RAT and QUAT-RAT, plus
some test cases thiat use a module TEST defining decimal digits as shorthand for the Peano
notation with zero and successor given in the code. Since the Peano notation is clumsy and
inefficient, OBJJ provides built in modules NAT, INT and RAT that aatiafy the specifications
given here, but with efficient implementations of the usual decimal nolation. Hawever, the
code below dees not make any use of these built in data types.

It is worth noting that standard many-sorted algebra cannot satisfactory specily an
example like Lhis. Since RAT, CPE-RAT and QUAT-RAT are fields, one sinks into the murky
waler of division by zero, and the resulting code is inevitably embarrassingly complex, or
even wrong. By contrast, providing subsorts for nonzero elements makes division by zero
a nonproblem Moreover, subsort polymorphism for the arithmetic operators allows using
the same function symbol for operations like addition thraughout the hierarchy, as is usual
in mathematical notation,

---> this file is /fusers/goguen/obj/num/quat.obj
---> number hierarchy up to the quartarnions

ob] NAT ls sorts Nat NzNat Zero .
subsorts Zero NzNat ¢ Nat .
op 0 : -» Zero
op s_ : Nat -> FzNat .
op p. : NzNat -> Nat
op _4+_ : Nat Nat -> Hat [assoc comm)]
op _*_ : Nat Nat ~-> Nat
op .*_ : NzNat KNzNat -> NzNat .
op _»_ : Nat Nat -» Bonl .
op d : Nat Nat -> Nat [comm)
op quot : Nat NzNat -> Nat .
op ged @ NzNat NzNat -> NzNat [comm] .
vars N M : Nat
vars K' X’ : NzNat ,
eqpa N=N
aq N +0=N
aq {8 M)+(s ¥) =8 (N + N)
eq N » 0 =0
eq 0 * N =0
ag {8 WD (s M) g(N +(M +(N » M)}
eq 0 > M = falss |
eq K> > 0 = trus .
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Figure 3: Sort Structure for the Number Hierarchy
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aqe N>s M =R>N.

eq d(0,0) = N .

aq dis N, s M) = d(N N} .

oq quot(R,M*) = it ((R > H')or(N == N’}) then B quot{d(N ,N’) .N*)
elsa O fi .

aq ged(W' M*) = if K’ == M’ then N' alse (if N’ > N’ then
ged(d(R’,M*) ,H') alse gcd(N’ d(R* N*))F1)Ei .

endo

obj IRT is sorts Int NzInt .
provecting NAT .
subsort Nat < Int .
subsorts NzNat < NzInt < Int .

op =_ : Int —-> Int .

op -. : NzInt -> NzInt ,

op _#_ : Int Int -> Int [assoc comm]
op _*_ : Int Int -> Int .

op -%. : NzInt NzInt -> NzInt .
op quot : Int NzInt -> Int .
op gcd : NzInt NzInt -> NzNat [comm]
vars I J : Int .
vars I' J' : RzInt .
vars K* N' : NRzNat .
eq - - I
eq - 0 = .
eql +0=1 .
aq M’ +(- N*) = if R' == M? then O ¢lse
(1t N’ > M’ then - d(NK’,M’} else d(N' ,M')fi1)f] .
oq (- I)+(- J) = -1+ 7).
eq I 0 =0
eq 0 * I =0
eq ¥ «(- ]} = ~(I « J} ,
eq (- J)* I = ~(I * J} .
eq quot{(0,I') =0 .
eq quot{- I',J') = - quot{I’, J*) .
aq quot{l',- J*} = - quot(I',J’) .
eq ged(- I',3*) = ged(1’,5°)
endo

(= ]

obj RAT ie sorts Rat NzRat .
protacting INT
subsort Int ¢ Rat .
subsorts Nzlnt < NzRat ¢ Rat .
op _/_ : Rat NzRat -> Rat .
op _f_ : NzRat HzRat -> NzRat .
op =_ : Rat —> Rat .
op -. : NzRat -> NzRat .
op .*. : Rat Rat -> Rat [assoc comm] .
op .*. : Rat Rat -> Rat .
op _*=_ : NzRat NzRat -> NzRat .
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vars I* J' : NzInt .

vars £ 5 : Rat .

varg ' 5* : NzRat .

aq R /(R" / 58"} = (R » 53"}/ R'

eq (R/ R*)}/ 5" =R /(R' *» 5’} .

ceq ) / I' » quot(17,gcd(J’ 1"}/ quos(l’,ged(1’,1%))
if ged(17,I%) =/=80 .

eq R/e0=R.

eq O/ R =0 .
eq R /(- R*) = (- R}/ R* .
eq ~(R / R*) = (- R)f R* .
eq R4(5 / R’) = ((R » R")*+ 5)/ R' .
aq R+(5 / R') = (R » 5)/ A'
oq (S/R')+R = (R S5/ R .

anda

obj CPY-RAT is sorts Cpx Imag NzImag NzCpx .
protecting RAT .
subaort Rat < Cpx .
subsort NzRat < NzCpx .
subsorts NzImag < NzCpx Imag ¢ Cpx .
subsorts Zero < Imag .
op _i: Rat -> Imag .
op _i: NzRat -> Nzlmag .

op -_: Cpx -> Cpx .

op -. : NzCpx -> NzCpx .

op _+. : Cpx Cpx -> Cpx [assoc comm]

op _+_ : NzRat NzImag -> NzCpx [assmoc comm] .
op _*. : Cpx Cpx -» Cpx .

op _*. : NzCpx NzCpx -> NzCpx .

op /. : Cpx NzCpx -> Cpx .

op .t : Cpx -> Cpx .

op |.|"2 : Cpx -> Rat .

op |_|1"2 : NzCpx -> NzRat .

vars R 5 : Rat .

vars R’ R" 5' 5" : NzRat .

var A B C : Cpx .

eq 0i =0 .

8q C+» 0 =¢ .

eq (R i)+(5 1) = (R + 534 .

eq -(R* +(5" i)) = (- R")+({- S’)i) .
eq -(8* 1) = (- 87)i .

eq A«(5 1) = (R » S)1 .

eq (8 i) R = (R * S)i .

eq (R i)+«(5 1) = ~(R = 5) .

eq Ca(A + B) = (C« A)+(C » B) .
eq (A + B)x C = {C e A)+(C = B) .
eq R# =R .

aq (R* +(5" 1))8 = R’ +((- 53')4) .
eq (5* 1) 8 = {(- 5') 1} .
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eql Cl2=Cas (CH) .
eq (5 1)/ R" = (S5 / R")i .
aq (R’ +(8* £3)/ R" = (R* / R")+((5* / R"I1) .
aq A f(R* i} = 4 #({(- s 0}/ R*)1) .
aq A J(R" +(R* 1)) =
A «CR" / TR (R AN I"D+(((- R*)/ 1R +(R’ 1)) ["2)1)).

endo

obj QUAT-RAT is sorts Quat NzQuat J NzJ .
protecting CPX-RAT .
subsorts NzJ Zerc < J < Quat .
subsorts NzCpx < NzQuat Cpx < Quat .
subsort NzJ < NzQuat .
op _j ¢ Cpx => J .
op .j : NzCpx -> NzJ .
op -_ ! Quat => Quat .

op .+_ : Quat Quat -> Quat [assoc comm] .
op _+_ : Cpx NzJ -> NzQuat [assoc comm] .
op _*_ : Quat Quat -> Quat .
op _*_ : NzQuat MzQuat -> NzQuat .

!/

op ./_ : Quat NzQuat -> Quat .

op .® : Quat -~> Quat .

op |_ : Quat -> Rat .

op I. : NzQuat -> NzRat .

var O F Q : Quat .

vars B C : Cpx .

vars C' : NzCpx .

eq 0 j =0 .

eq Q + 0 =4Q .

og -(C +(B 1)) = (- C)+((- B)j ) .
aq (C j)+(B 1) = (C+ B)j .

eq C *(B 1} = (C» B)j .

aq (B J)* C = (b «(C #7)] .

eq (C jI*(B ]) = -{C «(B #)) .

aq Q *(0 + P) = (Q « 0)+(Q « P) .
aq (D + P}« Q = (0 « Q)+(P = Q) .
aq (P+ Qe = (P H)+(Q &) .

aq (C j)® = (- C)] .

eq 1 Q12 =0q «(Q %) .

eaq @ /(C' 1) = Q *«((s 0 /(- C*))) .
eq Q /(C +(C’ 1)) = Q «((CC )/ [(C +(C* j))II"2) +
(- 37 1(c +{c” 1IN 2y .

-2
1°2

endo

s4# DOV Bome teBt cases, precedad by some helpful notation
obj TST is protecting QUAT-RAT .
ops 12345 6789 : > NzNat [memo] .

aq 1 = .
eq 2 =151.
eq 3 =g 2
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eq 4=
aq 5=
aq 8=
g 7=
eq 8 =
eq 9=
endo

m @ a5 ® 0
@~ W

Teduce 3 + 2 .

reduce 3 » 2 .,

reducep p 3

Teduce 4 > 8 .

Teduce 4(2,8) .

reduce quot(7,2)

Teduce ged(9,6)

Teduce (- 4)+ 8§ .

reduce (- 4)» 2 .

reduce B /(- 2)

reduce (1 / 3}+(4 / 6}

Teduce | 1 +(2 i)1°2 .

reduce (1 +{3 £))+(1 +{{- 2) i)Y|"2 .
raduce (3 +((3 LD+{(- 2) 1))) /({2 1)+ 2} .
Teduce (2 +({3 i)j)) *((5 L)+(7 J))
reduce {1 +((1 1)§¥)/(2
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