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Z and the Refinement Calculus 

Steve King 

Abstract 

Z has been developed 8.8 a formal specification notation, and, a.s BUc.h, has been used 
successfully for a. Dumber of years. Recently, other formal notations, the various flavours 
of refinement calculi, have emerged. They have been designed as wide spectrnmJanguages 
to support the whole of the development cycle, from abstract specification through to 
executable code. We explore the differences between Z and the refinement calculus, and 
explain the reasons for some of those differences. 

We alBo examine how a development might use both notations, thus giving a path to 
code from a Z specification. Some rules for switching between the notatiom axe given, 
and their use is illustrated in a case study. 



1 Introduction 

Over the last few years, the formal language Z has been used with some success for the 
specification of large software systems. However, there bas been significantly less use of Z 
in the later stages of the software lifecycle. In some cases, Z has been used to document 
des:igm as well as specifications, but in very few cases have all the proofs been done. 
Research bas therefore been carried out (at Oxford and elsewhere) into u.lJable nota.tions 
for developing programs from formal specifications. One of the resulh of this work has 
been the Refinement Calculus. This notation differs from Z in small, but significant., 
ways, and it is the purpose of this pa.per to explore some of these differences, to give 
some of the ra.tionale behind the changes in notation, and finally to show how it is possible 
(and beneficial) to use both Z and the refinement calculus together in a development. 

The rest of the paper has the following structure: section 2 contains a brief introduction 
to the two notations, and section 3 highlights some of their differences, and the reasons 
for those differences. The next section discusses how a development might include both 
Z and the refinement calculus, and gives some rules and heuristic guidelines for changing 
notation. Section 5 contains the development of a. small system, using the roles anq 
methods of the previous section. Finally, we give some conclusions a.nd suggest directions 
for future work. 

2 A summary of the notations 

In this section, we give very brief summaries of Z and the refinement calculus. Fbr further 
details on Z, the reader is referred to [3], [91 an.d [10]. Information on the refinement 
calculus can be found in the work of Back [1], Morris [8] and Morgan. {6,7J. We will use 
the notation of Morgan. 

2.1 Z 

Z is based on typed set theory, together with a structuring mechanism: the schema. This 
is a device for introducing a named collection of variables an.d giving a predicate to show 
how they are related. It can be used to describe both the static aspects of a. system (i.e., 
the state space, and invanan.t relations on the state) and the dynamic aspects (i.e., the 
operations which chan.ge the sta.te). For instan.ce, 

ClaJ.f _ 

y, n : P Student 

ynn={}
 
#(yUn) $ mo,
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describes the state of a system to record which students in a class have (V) or have not 
(n) completed a set of exercises. The declaration pari, above the line, introduces the 
state variables, and the predicate pari, below the line, gives the state invariant. An 
operation to enrol a new student into the class could be described by 

EnroLok _ 

.6. ClaJ"
 
J? : Student
 

,,? ~ y U n 

#(yU n) < max 
VI =y 
n'=nU{,,?} 

Now the declaration introduces the state before and alter the operation (in .6.Cltu.s) and 
the input variable .s? The predicate shows the relation between the variables of the 
state before (y and n) and the state after (yl and n' ) and .s? This single predicate 
(there are implicit conjunctions between the lines) contains both pre- and post-condition 
information. (This example is more fully developed in section 5.) 

2.2 The refinement calculus 

The basis of the refinement calculus is Dijkstra'slanguage of guarded commands[2], to­
gether with an additional construct. So the notation has the usual (executable) elements: 

• sequeo.tial composition 

• assignment 

• alternation 

• iteration 

The extra (non-executable) construct is the .specification Jtatement, which takes the form 

to: [pre, po.stJ 

If it could be executed, this statement would have the following effect on a computer: 

IT the initial state is described by pre, then, by changing only the variables 
listed in the frame to, establish some final state described by the postcondition 
po"t. 

2 
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For example, if $ is a set of numbers, the specification statement 

y' [, # {} , Y E 'I 
chooses an element y from the non-empty set $. 

An imporlant aspect of the refinement calculus approach is to view specifications and 
code as different parts of a spectrum. They are both examples of the same nola.tion­
programs. Some programs happen to be executable (those without specificatioll state­
ments), while others are noL Thc development process consists of writing a specifica.­
tion, or perhaps an abstract progrMD, then applying any of a large collection oflaws to 
transform the program into executable code. For instance, we could apply the law of 
strengthening postconditions: 

if PO$t' => po"t, then w: [pre, pOBtJ ~ w: [pre, post/] 

where!; is the refinement relation. Taking pOBtl to be y = max(s), we can seethat the 
specification statement above is refined by 

y' [, # {}, y = ma'('J] 

Notational differences 

3,1 Schemas and specification statements 

The valid states of a system are described in very similar ways in the two notalions. The 
refinement calculu8 uses the keywords var and and to introduce the state variables and 
invariants on them. So the refinement calculus formulation of the state schema. Cla$$ 
given above would be 

var 11, n : P Student;
 
and ynn= {}A
 

#(yUn) ~ma.
 

We can see a very obvious correspondence between the two notations. 

However, the other main use of schemas, to describe operations on the slate, has a 
significantly different counterpart in the refinement calculus. In Z, we usually describe 
an operation with a schema of the form 

Op _ 

AS 
i? : I 
0': 0 

pred 
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This schema describes a change in the state S, with inputs i? alld outputs 01. The exact 
relation between the variables of the before and aiter states and i? and 01 is given by 
pred. 

The corresponding structure in the refinement calculus is a specification statement of 
the fonn 

tu: [pre, POlltJ 

There are several differences that we can notice between these two constructs, perhaps 
the most obvious being that the specification statement contains two predicates, while 
the schema bas only one. In specification work, it is convenient to use a. single predicate 
on the before and aiter states, which embodies both the pre· and the postconditioDB. It is 
the fact that we have this one predicate which allows us to use the powerful specification 
combinatora of the schema. calculus, e.g. schema conjunction and disjunction. It is always 
possible to obtain the precondition from this single predicate by existential quantification 
over the outputs and the after state variables (this is exactly what the pre schema 
operator does). Indeed it is often recommended that this precondition checking should 
be carried out and recorded as pari of the specification process ( see [11]). However, 
when we move on to program development, it is much more convenient to have the 
precondition explicitly available: in order to prove that P !; Q, we need to show (with 
appropriate variable changes) that 

pre P => pre Q 
preP" Q ,*P 

Clearly it is easier to discharge these proof obligations if the preconditions of P and Q 
are readily to hand. Indeed, if we are carrying out a development with several levels 
of design, then these proofs will need to be c!LI'ried out at each level. We can therefore 
save ourselves much effort by working with pre/pollt pairs, rather than a single combined 
predicate, with the need to calculate the new precondition at each level. 

The second major difference between the schema and the specification statement 
tu: [pre, POlltJ is the frame w. This is a list of the state variables which can be changed 
by any implementation of this specification statement. Again, one of the reasons why the 
Z schema calculus is good for writing comprehensible specificatioIUI is that it allows us to 
strud ure our description. We can describe paris of the fitate of a large system and the 
effect of tbe operationfi on those paris of the state, before combining them, with schema 
conjunctioQ and difijundion, to form descriptions of the whole state and the operations 
on it. However, during the refinement process, we don't have the option of using con­
junction for structuring. The problem ifi made worse because, as we approach executable 
code, the program becomes inevitably more complicated and many more variables are 
needed. However, only a few of the variables will be changed in a particular part of the 
program, and so the me of the frame simplifies the postcondition by relieving us of the 
obligation of writing x' = :z:: for each unchanged variable. 
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3.2 Initial variables 

In Z we distinguish between va.riables of the before state and the after state afan oper­
ation by adding a dash to the name of the after state variables. Thus z might refer to 
the value of a variable before an operation, while x' would refer to its value aiterwards. 
In the refinement calculus, the dititindion is made, in the postcondition, by adding a 
subscript 0 to the na.m.es of the befoTe state variables. So Yo would be the variable before 
an operation, and 11 afterwards. This has both advantages and disadvantages: the chief 
advantage is that we have less to write! The precondition will always refer to initiaJ 
variables, so we don't need to give them any decoration to show that they are initial. 
The po5'teondition, on the other hand, will almost always refer to final variables, and 
only sometimes to initial variables. So we decorate the variables that appear less fre· 
quently: the initial variables. A side effect of this convention is a very simple sequential 
composition law: 

w: [pre, pod] ~ w: [pre, mid]; w: [mid, pO.!t] 

for any formula mid not containing any initial variables. The same law, expressed with 
the undashedjdashed convention, would be 

w: [pre, po.!t] ~ w: [pre, mid]; w: [mid[_j~] , po.!t] 

with an inelegant rena.ming1 of the variables of the mid predicate. 

The disadvantage of this naming convention is a loss of referential transpareDcy: when 
we refer to a variable 2: in the specification statement w: [pre, po.!t], we need to know 
whether the reference iii in pTe or po.!t to decide whether we are talking about the 
value of :z; before or after the operation. Newcomers to the notation can find this a. bit 
disconcerting, but familiarity works wonders! 

It is interesting to see the parallel with the history ofVDM-in [4], the dashedjundashed 
convention is used, while, in [51, the overhook xis used for initial variables, because the 
refinement proof rules are much simpler when expressed with this convention. 

3.3 Short variable names 

One of the conventions of the refinement calculus is to use short names for state variables­
preferably either one or two letters. These variables are copied around a lot, so this re­
duces the chances of error!l in transcription. The loss of immediate clarity in the program 
is justified by saying that the program text iii no longer what needs to be understood. 
Instead it is the development history which needs to be dear. The collection of the final 
code from the lea.ves of the development tree could easily be automated-the developer 
does not need to see it at all. 

IThroughout this paper, we use the substitution notation [netll/old]. Thus mid[_/_'j denotes the 
predicate mid with all dashed variables replaced by undo.shed ones. 
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3.4 Abbreviations 

While Z uses the names of 8chemas as (amongst other things) ,abbreviatioI18 for the 
predicates therein, and syntactic definitioI18 to give names to expressions, the refinement 
calculus U8eI one mechanism (very similar to syntactic definitions) to give names to both 
predicates and expressions. Use of this mechanism is very important as it can prevent 
sta.tements from becoming too long and unwieldy. 

4 Using Z and the refinement calculus together 

In the previous section, we listed some of the differences in notation and the refinement 
calculus, and we gave some of the reasons why the designers of the newer notation, the 
refinement eaJcu1us, have feU it necessary to make these changes. The differences in 
notation fall into two distinct categories: some are basically insignificant-the choice 
between decorating variables of the before state or the after state in Z could be justified 
either way. Some might argue that the Z convention should change to harmonise with 
the refinement calculus notation, where there is a good justification for decoration of 
the before lltate variables2• However, other changes are far more significant-the use of 
prelpo~t pairs of predicates and the frame have an important effect on the way in which 
we can develop code from Z specifications, Ideally, we would have a wide spectmm 
language lii:e the refinement calculus which also allowed us the specification combinators 
that we use in Z to construct large specifications from smaller ones. Unfortunately, we 
don't have that language. But we do have Il reaaonable number of people who have some 
expertise in the use of Z for specification. It is the purpose of this section to show how 
we can use Z and the refinement calculus together, in reuonable harmony, in a single 
development. 

4.1 Tbe basic rule for cbange of notation 

Our plan for development is the following: 

• specification in Z 

• data refinement in Z 

• change notation to the refinement calculus notation 

• algorithm refinement using the refinement calculus 

~We are IDOre than happy to leave 6uch WscWlSWns to their proper plau-~he 8~da.rda commiUeea. 
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We are assuming, of course, that the system to be developed is of sufficient size and 
complexity to benefit from the use of the schema. notation for structuring the specifica.­
tion. If the system is small enough to be specified directly in the refinement calculus, 
then clearly that is the best method of working. There are many examples in [6] of such 
developments. 

So our first step is to write a specification in Z, using a.s much of the schema calculus as 
is necessary to give a comprehensible description of the system. (Detailed advice may 
be found in any good book on Z-see [3,10,12,13J.) 

The second stage is to carry out the data. refinement, still in the world of schema8. 
So we propose a concrete state and a retrieve relation 'Which relates the abstract and 
concrete, and then we propose, and prove correct, the initialisation and the concrete 
versions of the operations. It is at this stage that our design is probably beginning to 
become unwieldy-the concrete state will have introduced the more complicated data 
structures that we are likely to implement, and our descriptions of the operations are 
correspondingly more complex. 

It is now tha.t 'We switch notations. The first, simple change is to convert from the 
undashed/da.shed convention to the USe of a subscript 0, and to shorten the names of 
variables, if necessary, also removing the? and! suffices from the names of input and 
output variables. If the sta.te and a typical operation on it 'Were described by 8chema.s 
Sand Op, let us denote the 'translated' versions by ~ and Vi, From~, it is simple to 
extract the declarations and the state invariants, and record them in the var lUld aod 
clauses respectively. 

Now 'We have to consider the translation from schema.s to specification statements. There 
is one basic law for this, which is based on an Implicit Precondition abbreviation which 
appeared in an early draft of (61. Suppose we ha.ve a schema describing a.n operation of 
the form 

Up~--------------------
IlIJ 
i? : [ 
o!: 0 

pTed 

Then we can convert this to the specification statement 

w: [(3 w: T I ;nv • pred)[w;"Il] , prod) 

where 

•	 the frame w consists of the variables of S, together with the outputs 0, and T is 
the type 
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•	 inti is the date invariant, obtained from "! 

•	 the substitution [w / WoJ ensures that the precondition is expressed in terms of un­
decorated variables. 

There are vanous steps we can immediately take to 'tidy up' this specification. This 
process involves the systematic application of particular refinement calculus laws. For 
instance~ we can remove from the frame any variables which the postcondition says 
must stay unchanged. Obviously we a1BQ remove the relevant :z: = :z:o clause from the 
postcondition. We can also remove any clauses from the postcondition which are merely 
stating the precondition-it is often recommended that a Z schema should contain its 
preconditions explicitly as conjuncts in the predicate. If this convention is followed, then 
the precondition clause will appear twice in the final specification statement. 

So, for exBJDple, the operation EnroLok could give rise to the following conversion: first 
we change to short variable names and alter the initial variable convention. 

EnroLol.: 
CloJ", • 
C14J.5 
, : Student 

'¢YoUno 
#(10 U no) < ma. 
y = 1'0 
n=no U {,) 

Using the rule above, and an ahbreviation (E) for the predicate of Enrol-ok, tbia becomes 

E"'(. f/.YoUnoA#(YoUno)< mazAY=YoAn =noU{.)) 

I
yn n = {}) ]Y,n: [(3y, n: P Student #(YUn):$ f'nQ.% • E [y,n/YOlno] , E 

Simplifying the precondition, this becomes 

.f/.Youno) ]y,n: [( #(YoUno)<ma. fy,n/Ya.no],E 

.f/.1IoUno )
 
~ ,n: ( ,f/.yUn ), #(YoUno)<maz
 

Y #(yUn)<ma. y~Ya
[	 ( 
n=no U{,) 

Now we can apply the 'tidying up' procedure mentioned above: the first two conjunets 
of the pmtcondition can be removed since they already appear in the precondition, and 
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we can also remove 11 from the frame. 

n.[( .;!yUn ) n-n.,u{sJ] 
. #(yUn) < max ' ­

With practice, it would be possible to write down this specification statement directly, 
without the need fOT the intermediate steps. 

4.2 More sophisticated rules for change of notation 

It would be pOlllJible to carry out aU of our notation changes using the rule above, and 
then develop the final progya.Dl in the refinement calculul!: notation. However,lhere are 
various patterns that often occur in the I!:cnema versions of the concrete operations, and 
we can use these patterns as we carry out the notational change: instea.d of obtaining a 
simple specification statement, which is then developed into a program, we go straight to 
an abstract progra.m which already has some structure. We are encoding the application 
of several refinement calculus laws into our trBllslation rule, thus saving the developer 
the need to apply these laws in the cases where she can recognise a pattern in the 
schema fonnulation of the concrete operations. E~amples of the use of these rules are 
given in the case study in the next section. Notice that we do not give rules for every 
construct of the guarded command language. For instance, there is no rule for tI8.llslating 
a schema description of an operation directly into an iteration: it is very rare that we 
can see the invaria.nt and the bound function obviously in the schema description. There 
is also no rule given below for assignment, but it is easy to work out the form of an 
operation described in the schema notation which would correspond to an assignment in 
the refinement calculus. However, since the rule is not needed in the case study below, 
it is omitted for brevity. 

Alternation 1 

One of the simplest rules is used when we have an operation which is defined as the 
disjunction of two cases (perhap& the successful case and an error case): 

Op" Opl V Op2 

Suppose also that the preconditions of Op 1 and Op2 are simply expressible in our target 
programming language. Then we can translate Op to an alternation: 

if pre Opl - Op1* 
o pre Op2 ~ Op2" 
II 

where opr and Op2- are the specification statements which result from the application 
of the basic translation rule above. 
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Alternatioo 2 

The t.ransformation above stipulated that the preconditions of Opt and Op2 should 
be simply apressible in the target programming language. What happens when the 
preconditions are more complex? Perhaptl they involve a quantifier, or a. complicated set 
expression. In this case, we can introduce a local variable, and use it to store the result 
of evalua.ting one of the preconditions before the alternation. Suppose we have 

Op ;0 Opl V Op2 

and t.he precondition of Op1 is a. complex expression. Then we ean &rB.D.B1ate this to 

Il 'VBI' b : Boolean _ 

b: [true, b ~ pre Op1} i
 
ifb~ Opl·
 

op« Op2 ~ Op2· 

B
 
II
 

where b is lOme fresh variable with scope delimited hy l[ and 11, and Op)· and Op2· are 
as above. Clearly, if pre Op2 = ""pre Op1, then we can simplify the second guard to ..,b. 

Alternation " 

The most general version of the alternation rule allows us to evaluate any expression 
before t.he &1ternation, and to store the result in a fresh variable of any type. With Op 
as above, the refinement calculus version becomes 

lI_r:T. 
r: [true , ~] i
 

if~, ~ w: [~/\,p, , (/pI]
 
D ~, ~ w: [~/\,p, , Dp"2]
 
B
 

II
 
where tbl1't and tP2 are any predicates, which satisfy the side cooditions 

1. ~ A(pre Opl V pre Op2) => (,p, V,p,) 

2. ~ A(pre Opl V pre Op2) => (,pi => pre Op') fOT i = 1,2 

Notice that if pre Op) = "'pre Op2, the antecedents above simplify to~, leaving 
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I'. '" => (~, V ~,) 

2'. '" => (~, => pre Op.) for i = 1,2 

Sequential composition 

The final wa.y in which we can use the stroeture of the Z specification to help us with 
the structure of the refinement calculus program is when we notice that the operation is 
described as the conjunction oC two other operations which ad on disjoint part! of the 
state. Suppose we have 

Op" Opl " Op2 

where Opt and Op2 take the forms 

Opl " [AS I ,; = '. " PI{", ';)1
 
Op2" [AS I .; =" " P2{,,, ,;)j
 

where "1 and -'2 are disjoint (vectors of) state variables, and PI and P2 are predicates 
showing how pari of the state is altered. Then we have two possibilities: we C&D. either 
update first .11 and then "2, or vice versa.. So Op becomes either 

'.' [pre Op2. 1'2] ; 
", [pre Opl • PI] 

or 

'" [pre Opl • PI]; 

'.' [pre Op2 • 1'2] 

In this section. we have shown various rules aDd heuristics {or translating from the 
schetnB.8 of our data refined operations into the refinement calculus notation of abstract 
progr8.IIlB. First we showed the basic rule which simply extracts the precondition &om 
the combined predicate of the Z schema. Then we gave 80Dle rules which take advantage 
of tbe structure which haa been built up within the Z design, and use thst structure 
in the refinement calculus program. We have given four such rules-there are probably 
several other patterns of de&ign that could be exploited in a simila.r way. 

Case study 

The example we have chosen is a fairly simple one, which will probably be familiar to 
both VDM and Z users. The following statement of requirements comes from [4]. 

11 
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A computerised class manager's assistant is required to keep track. of students 
enrolled on a class, and to record which of them ha.ve done the midweek 
exercises. When a student applies for a class, he will be enrolled on it, unless 
it is fun. Such a student will be presumed not to have done the exercises. 
When a student completes the exercises, the £a.ct is to be recorded. A student 
may leave a class even if he has not done the exercises, but only the students 
who have done the exercises are entitled to a completion certificate. 

Specification' 

We need jUllt one given set, to identify individual students: 

[Stud",t] 

The maximum size of a class is a global constant. 

~
 
~
 

Our abstract state consists of a pair of disjoint sets: the set y represents the students 
who ha.ve done the exercises, and n is those who have enrolled, but not yet done the 
exercises. 

CIM, _ 

Y,n, P Student 

ynn={)
[ 
#(yUn)~ma. 

Both sets are empty in the initial state. 

C~JJ["y' = {} 
n'= {) 

This clearly satisfies the constraint tha.t y' and n' shall be disjoint, and tha.t the size of 
their union shall be less than or equal to max. 

We will describe only two of the required operations. The third, describing what happem 
when a student leaves the class, is left as an exercise for the reader. The first operation 

3This Z specification is based OlJ one given by John Wordswotth in [131. 
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Operation Inputs Precondition 
EnroLok ,? $? ~ Y U n 

#(yUn) < max 
CompLok ,? $? E n 
Found ,? $7 E y U n 
Full #(YUn)~max 

Mis$ing .-7 s? f/. n 

Figure 1: Preconditions of the abstra.ct operations 

describes the effect o{ enrolling a student in the class. This student will nol have done 
the exercises, 80 he will be put in the set n. 

EnroLok _ 

.6. C14$$ 

$? : Student 

,,?rtyUn 
#(yUn) < max 
y'= y 
n'=nU{,,?} 

The second operation specifies the effect o{ a student completing the exercises. The 
student will have been enrolled, but will not have done the exercisetl, so he will be 
tr8.Il.5ferred from n to y. 

CompLok _ 

.6. Cl4$$ 

$? : Student 

$? E n 

y' = y U (,?j 
n' = n \{,?} 

The preconditions {or the partial operations so {a.r defined, together with those for the 
error schemas below, are summarised in the table in Figure 1. 

We introduce Ii new type {or the error reports. 

Re$pon."e ::= ok 
I found 
I full 
I m~$ing 

13 



The error situa.tions for EnroLok are described by the following schem..as. 

Found _ 

:::CltuJ 
,1 : Student 
reap! : Re"pon3e 

,1 E YU n 
re,p! = found 

Full _ 

SClaJ, 
re"p! : Re"pon.Je 

#(yU n) = mo. 
rup! =/ull 

Similarly the operation CompLok has an error situation dealt with by
 

MuJing _
 

SCiu, 
,1: Student 
re"p! : Re"pon"e 

,1, n 

re"p! = mu"ing 

We also need to give a report in the successful cases: 

Succeu _ 

~ ...pl : R..po",. 

[re,p! = ok 

The complete description of the operations can now be given: 

Enrol == (Enrol-ol: 1\ SUl:ce",,) V Full V Found
 

Complete == (CompLol: 1\ Succe",,) V Mu"ing
 

5.1 nata refinement 

Our conaete representation for the sets given in the specifica.tion above will consist of 
two arrays, one for students, and one for boolean values, and a counter to sa.y how much 
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of the arrays is in U!Je. It is intended that the values jn the second array will be true 
for those who have done the exercises, and laue for those who have not. We model the 
arrays by total functions whose domain is the index set (1 .. max). 

ClaJJJ _ 

cl : 1 .. mlU" -+ Student 
e:z: : 1 .. ma: -+ Boolean 
num :0 .. max 

{(l.. num) <J d) E (N _ Student) 

The concrete state invariBllt says that there will be no duplicates in the first ntom. elements 
of the 81'ray of students". 

The retrieve relation, relating the concrete and abstract states, is as (ollows: 

_Retr _ 

ClaJ, 
ClaJ,J 

y = Ii: 1 .. num I (ex iJ = true 0 (d ill 
n = Ii: 1 .. num I (ex iJ = laI" 0 (d i)} 

Initially, DO P81't of either of the arrays is in use: 

InitJ _ r- Cl,uLI' 

[num'=O 

Our initialisation proof obligation is to show that 

InitJ r (3 C/.,,' 0 (Init A RelT')) 

This is easily shoWn to be true, since the value of nu~', determined hy IniLl to be 
zero, gives the empty set for y' and n' when substituted in the right hand sides of the 
expressions in Retr'. These values for y' and n l satisfy lnit. 

The 6Uccessful part of the Enrol operation is represented hy the following concrete op­
eration. 

4z .. ,i.8ihe8et {l:~.Z~l~,} 
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EnroLokJ _ 

..6.ClGJ"J
 
,,? : Student
 

,,? rJ. {i : 1 .. num • el i}
 
num < ma:J:
 

el' = cl e {num' 1-+ ,,?}
 
e:z ' = e:J: e {num' 1-+ false}
 
num'= num+1
 

Other schemas are required to make the opera.tion correspond to the abstract version: 

FulLl _ 

ECII18,,_l 
re"p!: Re"ponu 

num= maz 
re.sp! = full 

FOl'ndJ _ 

ECla..s"J 
8?: Student 
reJp! : Re"ponu 

3 i: 1 .. num • el i = J? 
reJp! = found 

Putting these together, we can give the robust concrete version of Enrol: 

EnroLl == (EnroLokJ 1\ SUCCe8J) V FullJ V Found_1 

Similarly, we can describe the concrete versions of the different parts of the Complete 
operation. The successful part is represented by 

C,mpLokJ _ 

..6.Cla""J 
81: Student 

3i: 1 .. num. (cl i =,,? 1\ e:J: i = falu 1\ 
ell = el 1\ 

c:J:' = cx e {i 1-+ true}
 
num' = num)
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Operation Inputs Precondition 
EnroLokJ 

Compl_ok....l 
FoundJ 
FulU 
MU.Jing 1 

,1 

,1 
,1 

,1 

.J?tJ{i:1 .. numec1i} 
num < mtu: 

(3 i: 1 .. num e c.l i = .I? /\ ex i = falu) 
(3 i : 1 .. num e d i = ,,?) 
num = ma.. 
('Vi: 1 .. num e c1 i #- "'? V ex i = true) 

Figure 2: Preconditions of the concrete operations 

The error pari of Complete is given by 

Mi.s.Jing....l _ 

5Cla".J_1 
,,? : Student 
re.Jp! : Re"ponse 

Vi: 1 .. num e cl i #-.J? V e.. i = true 
re.Jp! = miuing 

So the total interface for Complete is 

Complete....l == (CompLok_1/\ Succe"'.J) V MiA",ing....l 

A summary of the preconditions for the concrete operations is given in Figure 2. We can 
easily verify that the operations we have given are indeed total. 

We now need to verify that the concrete versions of Enrol and Complete that we haw 
given are genuine refinements of the abstra.ct operations. The theorems we haw to prove 
are 

(pre Enrol) /\ Retr l- pre EnroLl
 
(pre Enrol) 1\ Retr 1\ Enrol....ll- (3 Clau....l e Enrol /\ Retr')
 
(pre Complete) 1\ Retr l- pre Complete_l
 
(pre Complete) /\ Re1.r /\ Complete....ll- (3 Cla..u....l e Complete /\ Retr')
 

These proofs are omitted for the sake of brevity, but they are not complex, frince we can 
verify immediately that both concrete and abstract versions are total, and the Retrieve 
relation is fundional. 
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5.2 Notational change and algorithm refinement 

The first pari of the notational change is to obtain the declarations and state invariant 
from CI4.:1.:1_1. 

var cl: 1 .. max -+ Student; 
e~ : 1 .. max -+ Boolean; 
ntlT7l : 0 .. ma.xj 

and ({I .. num) <J el) E N )o+t Student 

We can alSQ easily get the initialisation from InitJ 

initially num = 0 

We will use the Alternation 3 translation rule (or both operations. In each CMe, the 
specification statement that we insert before the alternation will check to see whether J 

OCCUI'l!i in the active pari of the cl a.rray. If it is there, then its position will be recorded 
in the new'i'ariable w; if not, to will be set to num+l. So the specification statement 
will establish the following postcondition 

(w E 1 .• num A <llwl ~ ,) V (w ~ num+l A , <t clll .. num)) 

where cl[l" numl denotes the set containing the first num elements of the array d. Let 
us call this predicate H. 

The three branches of the alternation correspond to the three disjoined schemas in the 
definition of EnroLl. We have also removed cl, ez e.nd num from the frame in the 'enor' 
branches. So we have 

Enrol (value J : Student; result r : ReJponJe) 

~ var tl1 : 0 .. ma:!:+l • 
w: [true H] j (I)1 

it w = num+1/\ num < ma:!: __ 

cI='~E!l{num~,} J 
ez = e%Q EB {num t-+ faLJe} 

(2)r,",<X.num: [(w = '::'m+l) num = numo+1 
num < ma.x ( 

r = ok 
nllm = maz __ 

r: [H /\ num = max, r = ju.ll] (3) 
wE 1 •. num __ 

r: [H /\ to E 1 .. num , r = found] (4) 
II 

18 



We need first to check the provisos of translation rule Alternation 3. We note that the 
concrete operation EnroLl il!l total, so we have to prove I' and 2'. In ibis case, 11 becomes 

H:<> 
(w = num+l/\ num < ma:z:) V num = maz V w E 1 .. num 

which is obviously true. 

For the first branch, 2' is 

H => «to = num+l/\ num < maz) => pre EnroLok_l) 

Since we have to = num+l, the second disjunct of H must hold, and so J ¢ elll .. numJ. 
But 

pre EnroCokJ (J ¢ {i : I .. num • cl i} /\ num < maz) 

and 60 we are finished. 

The second branch is trivial, since the new guard num :::; maz is exactly 'be sa.me as 
pre FullJ. 

For the third branch, we need to show 

H => (to E I .. num => 3 i : 1 .. num • cl[i] = J) 

From to E I .. num, we can conclude that the first disjunct of H holds. Therefore 
cl[toJ = J. SO we tue i = to in the RHS. 

So the provisos for Alternation 3 are satisfied. 

Each of the three branches of the alternation can be implemented with &II assignment. 
The justification, involving substituting the new value for the old in the postconditiOIl5, 
is omitted here'. In the case of (2), the development should include a. check tha.t the 
state invariant is maintained-this is where the precondition of (2) is used. 

(2) ~ r,d[num+IJ,ez[num+lj,num:= ok,J,!al"e,num+1 

~	 r:= okj
 
num:= num+lj
 
d[numJ:= "'j
 

ez[num] := /al"e
 

(3) [:; T:= full 

(4) [:; T:= found 

5A swnrnary of a few of the laws of the refinement c.a.lculus iii given 88 an appeudix. 
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We will re:6.ne(I) to an iteration which sets the value of w. To do this, we re-phrase H 
to introduce the invariant: 

(I) =	 w: I'""~ , HJ 

1== w ~ num+I/\ .'I ¢ ran(l .. w-I) <J d. 
w: !'TU', I A (w = num+1 V el[wJ = ,)] 

~ "sequential composition" 
w: [true, I];	 (5) 
w: [I , T A (w = num+! V el[wJ = ')J	 (6) 

The initialislI.tion is trivial: 

(5) ~. := 1 

Now we can introduce the iteration itself 

(6)	 !; "invariant I, variant num+l-w" 
do til #= num+l /\ cl[wj #= J ­

(7) 
.,	 num+!-: < num+I-Ub ) ] [(w ,rriU;;1 ),(0 ~ 

od 

The body of the loop C&D be implemented with a simple assignment. (Tbe justification 
is len as ac exercise for the reader!) 

(7) ~	 w:= w+! 

The development of the code for the Complete operation is very similar to that for the 
Enrol operation above. Once again, we nse rule Alternation 3, with exactly the same 
specificatiQu statement before the alternation. 

Complete (value .'I : Student; result T : Re.'lpon.Je) 
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I 

6 

!; var 10 :O .. ma:Z:+le 

10: [tnt: 0];	 (8) 

if10 E 1 •• num 1\ e:z:[w] = falJe_ 

T,ex: [('" E 1

H

.•urn) ,( T$~(ok ))]_ t	 (9)
f%[W] = fa!", ex - e1'() 10 f-t rue 

10 = num+l V e:z:[wJ = true--+ 
T: [a /\ (w = num+l V e:z:[wJ = true) , ,.::= missing] (10) 

ft 

The provi508 {or using rule Alternation 3 are discharged as above, and the branches of 
the alternation become assignments: 

(9) ~	 "', ez[w] :== ok, true 

(10) ~ ,. :== miuing 

The loop development is identical to the one above: 

(8)	 ~ "':= 1;
 

do '" '" .urn+! " ell"'] '" ' ~
 
10 := 10+1
 

od
 

Out final. act in the development is to colled up all the code foe the two operations. This 
is given in Figure 3. 

Conclusions and directions for future work 

We have shown in this paper how two diHerent notations can be used in reasonable 
ha.nnony within a single development. Our aim has heen to use each of the notations 
for the part of the development cycle for which it is best suited: we used Z in the 
specification and design stages, where we can use the schema calculus to structure work, 
to introduce the complexity in manageable pieces and to put those pieces together to 
give the whole picture. Then we used some of that structure to help us with our first 
program in the refinement calculus notation. Finally we used the laws of (he refinement 
calculus to develop our abstract programs into executable code. 
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Enrol (value J : Student; result r : ReJporue) == 
If var 10: 0 .. ma::+l • 

w:=l; 
do to =f:. num+1 /\ cl[w] f:. J .... 

w:= w+l
 
od i
 
if w = num+l/\ num < ma:r . ­


r:= ok;
 
num := num+lj
 
d[num):= J;
 
e:r[num] := falJe
 

o n'llln = ma:r.­
r := full
 

D
 wE l .. num.­
r:= found 

II 
II 

Complete (value J : Studentj result r : ReJporue) == 
Hval'to: 0 •. maz+l _ 

w:= 1;
 
do w =f:. num+l/\ cl(w] =f:. J . ­


w:= w+l
 
od
 
if 111 E 1 .' num /\ ex[w] = falJe ....
 

r:= ok;
 
e:rlw] := true
 

D 111::= num+l V ex(w] :::: ~rue --.
 
r := miJJing
 

II
 
]1 

Figure 3: Code for the two opera.tions 
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As was mentioned above, one direction for future work might be to develop further rules 
and heuristics for the notational change-it would be interesting to see, for instance, wha.t 
sort of programs correspond to Z specifications which use the technique of promotion. 

When more case studies have been completed, it ma.y be possible, as was hililed above, 
to recommend tha.t the Z notation should be changed in various ways to make the devel­
opment path smoother. These would probably be small synta.ctic changes. Further case 
studies may also give some ideas for enhancements to the refinement calculus notation, 
particularly in strudunng and the use of modules. 

A final interesting point of resea.rch would be to investigate the point in the lifecycle 
at which the notational change should take place. We have advocated changing after 
the data refinement, but another possibility would be to change immediately after the 
specification, and to use the auxilia.ry variable techniques of [6J for data refinement, which 
would allow us to <mix up' algorithm refinement and data refinement. 
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A Selected laws of the refinement calculus 

We give here a selectioD of the law5 of the refinement calculus, which Me used in the 
case study in section 5 of the pa.per. 

1. Wedening the precondition: If pre => pd then 

w: [pre, po"tJ I;; w: [pd , po,,1] 

2. Strengthening 1he po"tcondition: If po"t' => po.!t then 

w: [pre, pOJtJ ~ w: [pre, po.!t'J 

3. Introducing local variable.!: If z does Dot appear free in pre or po.!f, then 

to: [pre, po"tJ = /[ var z : T • w, 2:: [pre, po"tJ]1 
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4.	 Introducing a,uignment: If E is an expression, then 

w: Ipo,t[E/w) • podl C; w:= E 

5.	 Introdtuing Jequential compo.sition: 

w: [pre, pOJt] !; to: [pre, mid]; w: [mid I pOJt] 

6.	 Introducing alternati,m: 

w: [pre A (V i. G,l. po,tl 

iflD i. G. ~ w: [pre A G, • po,t]) fI 

7.	 Introducing iteration: 

til: [inv, inv" -o(V i. Go)] 

~ do
 
(0 i. G, ~ w: linvA G, • invA (0::; V < V,)])
 

ad 

The predicate inv is the invariant and the expression V is the integer-valued variant. 
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