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Z and the Refinement Calculus

Steve King

Abstract

Z has been developed as a formal specification notation, and, as such, has been used
successfully for a number of years. Recently, other formal notations, the various flavours
of refinement calculi, bave emerged. They have been designed as wide spectrumlanguages
to support the whole of the development cycle, from abstract specification through to
executable code. We explore the differences between 7 and the refinement calculus, and
explain the reasons for some of those differences.

We also examine how a development might use both notations, thus giving a path to
code from a Z specification. Some rules for switching between the notations are given,
and their use is illustrated in a case study.



1 Introduction

Over the last few years, the formal language Z has been used with some success for the
specification of large software systems. However, there has been significantly less use of 2
in the later stages of the software lifecycle. In some cases, Z has been used to document
designs as well as specifications, but in very few cases have all the proofs been done.
Research has therefore been carried out (at Oxford and elsewhere) into usable natations
for developing programs from formal specifications. One of the results of this work has
been the Refinement Calculus. This notation differs from 2 in small, but significant,
ways, and it is the purpose of this paper to explore some of these differences, to give
some of the rationale behind the changes in notation, and finally to show how it is possible
{and beneficial) to use both Z and the refinement calculus together in a development.

The rest of the paper has the following structure: section 2 contains a brief intreduciion
to the two notations, and section 3 highlights some of their differences, and the reasons
for those differences. The next section discusses how a development might include both
Z and the refinement calenlus, and gives some rules and heuristic guidelines for changing
notation. Section 5 contains the development of a small system, using the rules and
methods of the previous section. Finally, we give some conclusions and suggest directions
for future work.

2 A summary of the notations

In this section, we give very brief summaries of Z and the refinement calculus. For further
details on Z, the reader is referred to (3}, (9] and {[10]. Information on the refinement
calculus can be found in the work of Back [1], Morris [8] and Morgan [6,7]. We will use
the notation of Morgan.

21 Z

Z is based on typed set theory, together with a structuring mechanism: the schema. This
is a device for introducing a named collection of variables and giving a predicate to show
how they are related. It can be used to describe both the static aspects of a system (i.e.,
the stale space, and invariant relations on the state) and the dynamic aspects (i.e., the
operations which change the state). For instance,

Class
¥,n: P Student

yNn={}
#(yUn) < maz




describes the state of a system to record which students in a class have (y) or have pot
(n) completed a set of exercises. The declaration part, above the line, introduces the
state variables, and the predicate part, below the line, gives the state invariant. An
operation toenrol a new student into the class could be described by

__ Enrol_ok
A Clasa
37 : Student

TdyUn
#{yUn) < maz
¥V=y
n'=nU{s?}

Now the decdaration introduces the state before and after the operation (in AClass) and
the input vwariable s?. The predicate shows the relation between the variables of the
state before (y and n) and the state after (y' and »") and s?. This single predicate
(there are implicit conjunctions between the lines) contains both pre- and post-condition
information. (This example is more fully developed in section 5.}

2.2 The reflnement calculus

The basis of the refinement calculus is Dijkstra’s language of guarded commands|2], to-
gether with an additional construct. So the notation has the usual (executable) elements:

® sequential composition
& asgignment
¢ alternation

e iteration

The extra(non-executable) construct is the specification statement, which takes the form
w: [pre , post]

H it could be executed, this statement wonld have the following effect on a computer:
If the initial state is described by pre, then, by changiog only the variables

listed in the frame w, establish some final state described by the posicondition
post.



For exataple, if ¢ is a set of numbers, the specfication statement

vls#{}, v €4

chooses an element ¥ from the non-empty set s.

An important aspect of the refinement calculus approach is to view specifications and
code as different parts of a spectrum. They are both examples of the same nolation—
programs. Some programs happen to be executable (those without specification state-
ments), while others are not. The development process consists of writing a specifica~
tion, or perhaps an abstract program, then applying any of a large collection of laws to
transform the program into execulable code. For instance, we could apply ihe law of
strengthening postconditions:

if post’ = post, then w: [pre, post) T w: {pre , post']

where C is the refinement relation. Taking pest’ to be y = maz(s), we can seethat the
specification statement above is refined by

v: [s #{}, v = maz(s)]

3 Notational differences

3.1 Schemas and specification statements

The walid states of a system are described in very similar ways in the two notalions. The
refinement calculus uses the keywords var and and to introduce the state vanables and
invariants on them. So the refinement calculus formmlation of the state schema Class
given above would be

var y,n : P Student ;
and yNn={}A
#(yUn) < maz

We can see a very obvious correspondence between the two notations,

However, the other main use of schemas, to describe operations on the state, has a
significantly different counterpart in the refinement caleulus. In Z, we usually describe
an operation with a schema of the form

— Op
AS
it T
el: 0

pred




This schema describes a change in the state §, with inputs 17 and outputs o!. The exact
relation between the variables of the before and after states and 1% and o! is given by
pred,

The corresponding siructure in the refinement calculus is a specification statement of
the form

w: [pre, post]

There are ssveral differences that we can notice between these two constructs, perhaps
the most obvious being that the specification statement contains two predicates, while
the schema bas only one. In specification work, it is convenient to use a single predicate
on the before and after states, which embodies both the pre- and the posiconditions. It is
the fact that we have this one predicate which allows us to use the powerful specification
combinatorn of the schema calculus, e.g. schema conjunction and disjunction. It is always
possible to obtain the precondition from this single predicate by existential quantification
over the outpuis and the after state variables (this is exactly what the pre schema
operator does). Indeed it is often recommended that this precondition checking should
be carried out and recorded as part of the specification process { see [11]). However,
when we move on to program development, it is much more convenient to have the
precondition explicitly available: in order to prove that P C @, we need to show (with
appropriate variable changes) that

pre P = pre
prePAQ =P

Clearly it is easier to discharge these proof obligations if the preconditions of P and @
are readily to hand. Indeed, if we are camrying out a development with several levels
of design, then these proofs will need to be carried out at each level. We can therefore
save ourselves much effori by working with pre/post pairs, rather than a single combined
predicate, with the need to calculate the new precondition at each level.

The second major difference between the schema and the specification siatement
w: [pre , post] is the frame w. This is a hist of the state variables which can be changed
by any implementation of this specification statement. Again, one of the reasons why the
Z schema calculus is good for writing comprehensible specifications is that it allows us to
structure our description. We can describe parts of the state of a large system and the
effect of the operations on those parts of the state, before combining them, with schema
conjunciion and disjunction, to form descriptions of the whole state and the operations
on it. However, during the refinement process, we don't have the option of using con-
junction for structuring. The problem is made worse because, as we approach executable
code, the program becomes inevitably more complicated and many more variables are
needed. However, only a few of the variables will be changed in a particular part of the
program, and so the use of the frame simplifies the postcondition by relieving us of the
obligation of writing 2’ = ¢ for each unchanged variable.
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3.2 Initial variables

In Z we distinguish between varables of the before state and the after state of an oper-
ation by adding a dash to the name of the after state variables. Thus z might tefer to
the value of a variable before an operation, while z’ would refer to its value afterwards.
In the refinement calculus, tke distinction is made, in the postcondition, by adding a
subscrpt 0 to the names of the before state variables. So y; would be the variable before
an operation, and y afterwards. This has both advantages and disadvantages: the chief
advantage is that we have less to write! The precondition will always refer to initial
variables, 50 we don’t need to give them any decoration to show that they are imitial.
The postcondition, on the other hand, will almost always refer to final variables, and
only sometimes to initial variables. So we decorate the variables that appear less fre-
quently: the initial variables. A side effect of this convention is a very simple sequential
composition law:

w: [pre , post] T w: [pre , mid]; w: [mid , posi|

for any formula mid not containing any initial variables. The same law, expressed with
the undashed/dashed convention, would be

w: [pre , post] C w: [pre , mid]; w: [mid[/] , posi]

with an inelegant renaming’ of the variables of the mid predicate.

The disadvantage of this naming convention is a loss of referential transparency: when
we refer to a variable z in the specification statement w: [pre , post], we need to know
whether the reference is in pre or post to decide whether we are talking about the
value of z before or alter the operation. Newcomers to the notation can find this a bit
disconcerting, but familiarity works wonders!

1t is interesting to see the parallel with the history of VYDM—in [4], the dashed/undashed
convention is used, while, in [5}, the averhook 7 is used for initial variables, becanse the
refinement proof rules are much simpler when expressed with this convention.

3.3 Short variable names

One of the conventions of the refinement calculus is to use short names for state vaniables—
preferably either one or two letters. These variables are copied around a lot, so this re-
duces the chances of errors jn transcription. The loss of immediate clarity in the program
is justified by saying that the program text is no longer what needs to be understood.
Instead it is the development history which needs to be clear. The collection of the final
code from the leaves of the development tree conld easily be automated—the developer
does not need to see it at all.

IThroughout this paper, we use the substitution notation [new/old]. Thus mid{_/_] denotes the
predicate mid with all dashed variables replaced by undashed ones.
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3.4 Abbreviations

While Z uses the names of schemas as (amongst other things) abbreviations for the
predicates therein, and syntactic definitions to give names to expressions, the refinement
calculus uses one mechanism (very similar to syntactic definitions) to give names to both
predicates and expressions. Use of this mechanism is very important a= it can prevent
statements from becoming too long and unwieldy.

4 Using Z and the refinement calculus together

In the previous section, we listed some of the differences in notation and the refinement
calculus, and we gave some of the reasons why the designers of the newer notation, the
refinement calculus, have fel! it necessary to make these changes. The differences in
notation fall into iwo distinct categories: some are basically insignificant—the cheice
between decorating variables of the before state or the after state in Z could be justified
either way. Some might argue that the Z convention should change to harmonise with
the refinement calculus notation, where there is a good justification for decoration of
the before state variables®. However, other changes are far more significant-—ihe use of
pre/post pairs of predicates and the frame have an important effect on the way in which
we can develop code from Z specifications., Ideally, we would have a wide specirmm
language like the refinement calculus which also allowed us the specification combinators
that we usein Z to construct large specifications from smaller ones. Unfortunately, we
don’t have that language. But we do have a reasonable number of people who have some
expertise in the use of Z for specification. It is the purpose of this section to show how
we can use 7 and the refinement calculus together, in reasonable harmony, in a single
development.

4.1 The basic rule for change of notation

Our plan for development is the following:

® specification in Z
» datarefinement in Z
» change notation to the refinement calculus notation

+ algaithm refinement using the refinement calculus

?We are more than happy to leave such discussions to their proper place—the standards commitees,



We are assuming, of course, that the system to be developed is of sufficient size and
complexity to benefit from the use of the schema notation for structuring the specifica-
tion. 1f the system is small enough to be specified directly in the refinement calculus,
then clearly that is the best method of working. There are many examples in [§] of such
developments.

So our first step is to wrile a specification in 2, using as much of the schema calculus as
ia necessary to give a comprehensible description of the system. {Detailed advice may
be found in any good book on Z—see [3,10,12,13].)

The second stage is to carry out the data refinement, still in the world of schemas.
So we propose a concrete state and a retrieve relation which relates the abstract and
concrete, and then we propose, and prove correct, the initialisation and the concrete
versions of the operations. It is at this stage that our design is probably beginning to
become unwieldy——the concrete state will have introduced the more complicated data
structures that we are likely to implement, and our descriptions of the operations are
carrespondingly more complex.

It is now that we switch notations. The first, simple change is to convert {from the
undashed/deshed convention to the use of a subscnpt 0, and to shorien the names of
variables, if necessary, also removing the ? and ! suffices from the names of input and
cutput variables. 1f the state and a typical operation on it were described by schemas
§ and Op, let us denote the ‘translated’ versions by J and Op. From 3, it is simple to
extract the declarations and the state invariants, and record them in the var and and
clauses respectively.

Now we have to consider the translation from schemas to specification statements, There
is one basic law for this, which is based on an Implicit Precondition abbrevistion which
appeared in an early draft of [6]. Suppose we have a schema describing an operation of
the form

Then we can convert this to the specification statement
w: [((Gw: T | inv e pred)[w/w)] , pred)
where

e the frame w consists of the variables of §, together with the outputs s, and T is
the type



® inv is the state invariant, obtained from §

» the substitution [w/wug] ensures that the precondition is expressed in terms of un-
decorated variables,

There are various steps we can immediately take to ‘tidy up’ this specification. This
process involves the systematic application of particular refinement calculus laws. For
instance, we can remove from the frame any variables which the postcondition says
must stay unchanged. Qbviously we also remove the relevant z = zg clause from the
postcondition. We can also remove any clauses from the postcondition which are merely
stating the precondition—it is often recommended that a Z schema should contain ita
preconditions explicitly as conjunctsin the predicate. If this convention is followed, then
the precondition clause will appear twice in the final specification statement.

So, for example, the operation Enral_ok could give rise to the following conversion: first
we change to short variable names and alter the initial variable convention.

— Lnrei_o
Clagsy =
Clus

s : Student

sgmwUng

#(w U ng) < maz
Y=
n=nU{s}

Using the mile above, and an ahbreviation (E) for the predicate of Enrel_oF, this becomes
Ez{sfwUnAf#(ywoUn)<mazAy=wAn=noU{s})

yNn={} .E) [y» 7/ ¥0,m0] E]

¥, R [(EI y, 7t P Student #(yUn) < mez

Simplifying the precondition, this becomes

ym{(ﬁigiﬁﬁm,ﬁmwwmha

sF wUng
e ( sgyUn ) #(voU ng) < maz
PRI #yun) < maz ) Y=t
n=nyU{s}

Now we can apply the ‘tidying up’ procedure mentioned above: the first two conjuncts
of the postcondition can be removed since they already appear in the precondition, and
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we can also remove y from the frame.

i3 ) vt

With practice, it would be possible to write down this specification statement directly,
without the need for the intermediate steps.

4.2 More sophisticated rules for change of notation

It would be possible to carry out ell of our notation changes using the rule above, and
then develop the final program in the refinement calculus notation. However, there are
various patterns that often occur in the schema versions of the concrete operations, and
we can use these patterns as we carry out the notational change: instead of obtaining a
simple specification statement, which is then developed into a program, we go straight to
an absiract program which already has some structure. We zre encoding the application
of several refinement calculus laws into our translation rule, thus saving the developer
the need to apply these laws in the cases where she can recognise a pattern in the
schema formulation of the concrete operations. Examples of the use of these rules are
given in the case study in the next section. Notice that we do not give rules for every
construct of the guarded command langnage. For instance, there is no rule for translating
a schema deseription of an operation directly into an iteration: it is very rare that we
can see the invariant and the bound function obviously in the schema description, There
is also no rule given below for assignment, but it is easy to work out the form of an
operation described in the schema notation which would correspond to an assignment in
the refinement calculus. However, since the rule is not needed in the case study below,
it is omitted for brevity.

Alternation 1

One of the simplest rules is used when we have an operation which is defined as the
disjunction of two cases (perhaps the successful case and an error case):

Op = Op1 Vv Op2

Suppose also that the preconditions of Opl and Op2 ate simply expressible in our target
programming language. Then we can translate Op to an alternation:

if pre Opl — Opl”
[ pre Op2 — Op2°
fi

where (Opl® and Op2 are the specification statements which result from the application
of the basgic translation rule above.



Alternation 2

The transformation above stipulated that the preconditions of Opl and Op2 should
be simply expressible in the target programming language. What happens when the
preconditions are more complex? Perhaps they involve a quantifier, or a complicated set
expression. In this case, we can introduce a local variable, and use it to store the result
of evaluating one of the preconditions before the alternation. Suppose we have

Op = 0pl v Op2
and the precondition of Opl is a complex expression. Then we ean translate this to

[[ var & : Boolean »
b: [irue , b & pre Opl];
ifb— Opl*

[ pre Op2 — Op2*

f
]l

where b is some fresh variable with scope delimited hy |[ and ]|, and @p1* and Op2* are
a8 above. Clearly, if pre Op2 = —pre Opl, then we can simplify the second guard to ~b.

Alternation 3

The most general version of the alternation rule allows ue to evaluate any expression
before the alternation, and to store the result in a fresh variable of any type. With Op
as above, the refinement calculus versicn becomes

[varr:Te
r: [true , ¢];
91— wi [$ A v, O]

B~ w: (6 Avs, Op2

1
I

where ¢, ¢, and t; are any predicates, which satisfy the side conditions

1. ¢ A(pre Opl V pre Op2) = (¥ V 42)
2. ¢ A(pre Op1V pre Op2) = (4 => pre Opi} for i =1,2

Notice that if pre Opl = —pre Op2, the antecedents above simplify to ¢, leaving

10




V. ¢ = (%1 V )
2. ¢ = (h; = pre Opi) fori =1,2

Sequential composition

The final way in which we can use the structure of the Z specification to help us with
the structure of the refinement calculus program is when we notice that the operation is
described as the conjunction of two other operations which act on disjaint parts of the
state. Suppoee we have

Op = Opl A Op2
where Opl and Op2 take the forms

Opl 2 [AS | o] = 3, A P1{s3,8}))]
Op2 = [AS | 83 = 82 A P2(a,9])]

where # and s; are disjoint (vectors of) state variables, and P1 and P2 are predicates
showing how pert of the state is altered. Then we have two possibilities: we can either
update first s; and then s;, or vice verss. So (p becomes either

s1: [pre Op2 , ﬁ} ;

o [ 07T, 71
or

s: [pre Op1 , PI);

o 052, 77

In this section, we have shown various rules and heuristics for translating from the
echemas of our data refined operations into the refinement caleulus notation of abstract
programs, First we showed the basic rule which simply extracis the precondition from
the combined predicale of the Z schema. Then we gave some rules which take advantage
of tbe structure which has been built up within the Z design, and use that structure
in the refinement caelculus program. We have given four such rules—there are probably
several other patterns of design that could be exploited in a similar way.

5 Case study

The example we have chosen is a fairly simple one, which will probably be familiar to
both VDM and Z users. The following statement of requirements comes from [4).

1



A computerised class manager’s assistant is required to keep track of students
enrolled on a class, and to record which of them have done the midweek
exercises. When a student applies for a class, he will be enrolled on it, unless
it is full. Such a student will be presumed not to have done the exercises.
‘When a student completes the exercises, the fact is to be recorded. A student
may leave a class even if he has not done the exercises, but only the students
who have done the exercises are entitled to a completion certificate.

Specification®

‘We need just one given set, to identify individual students:
[Student]

The maximum size of a class is a global constant.

maz: N

maz > 0

Qur abstract state consists of a pair of disjoint sets: the set y represents the studentis
who bave done the exercises, and n is those who have enrolled, but not yet done the
exercises,

— Class
y,n: P Student

yNn={]
#yUn) £ maz

Both sets are empty in the initial state.

__ Imit

lﬂ I
Class

v ={}
a'={]

This clearly satisfies the constraint that y' and s’ shall be disjoint, and that the size of
their union shall be less than or equal to maz.

We will describe only two of the required operations. The third, describing what happens
when a student leaves the class, is left as an exercise for the reader. The first operation

3This 2 specification is based on one given by John Wordswocth in [13].
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Qperation | Inputs | Precondition

Enrol_ok | 87 sT¢yUn
#{yUn) < maz

Compl_ok | 7 ?€Emn

Found 27 sTeyUn

Fulf #(yUn)=maz

Missing *? Té¢n

Figure 1: Preconditions of the abstract operations

describes the effect of enrolling a student in the class. This student will not have done
the exercises, so he will be put in the set n.

__Enrol_ok
Allass
37 : Student

s?7gyUn
#(yUn) < maz
y=yv

n'=nU {s7}

The second operaltion specifies the effect of a student completing the exercises. The
student will have been enrolled, but will not have done the exercises, so he will be
transferred from n to y.

Compl_ck

A Class
2?7 : Student

s7en
¥ =yU {7}
n=n\{s7}

The preconditions for the pariial operations so far defined, together with those for the
error schemas below, are summarised in the table in Figure 1.

We introduce a new type for the error reports.

Responase 1:= ok
| found
full

I
| missing
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The error situations for Enrol_ok are described by the following schemas,
— Found

EClass
a7 : Student
reap!: Response

sTeyUn
reap! = found

— Full
E Class
resp!: Responae

#(yUn)=maz
resp! = full

Similarly the operation Compl_ok has an error situation dealt with by
— Miuing
= Clasa
a7 ; Student
resp! : Response
27¢n
respl = missing

We also need to give a report in the successful cases:

. Success
resp! : Response

resp! = ok

The complete description of the operations can now be given:

Enrol = (Enrol_ok A Success) vV Full V Found
Complete = (Compl_ok A Success) v Missing

5.1 Data refinement

Our concrete representation for the sets given in the specification above will consist of
two arrays, one for students, and one for boolean values, and a counter to say how much

14



of the arrays is in use. It is intended that the values in the second array will be true
for those who have done the exercises, and false for those who have not. We model the
arrays by total functions whose domain is the index set (1.. maz).

— Class 1
c:1..mazx — Student
ex:1..maz — Boolean
num :0.. mez

{(1..num) < el) € (N = Student)

The conerete state invariant says that there will be no duplicates in the first num elements
of the array of students*.

The retrieve relation, relating the concrete and abstract states, is as follows:

— Reir
Class
Class_1

y={i:1..num|(ez i) = true o (el i)}
n={i:1l..0um|(ez i} = false @ (cl i)}

Initially, no part of either of the arrays is in use:

__Inzi 1
Class_1’

num’ =0

Our initialisation proof obligation is to show that
Init 1 F {3 Class’ & (Init A Retr’))

This is eazily shown to be true, since the value of nu;n', determined hy Init_1 to be
zero, gives the empty set {or y* and n’ when substituted in the right hand sides of the
expressions in Retr'. Thess values for y' and »' satisfy Init.

The successful part of the Enrel operation is represented hy the following concrete op-
eration,

iz..yintheoet {i:Nez<i<y]

15



.. Envol ok_1
AClys 1
s? : Student

s7¢{i:1.. numecli)
num < maz
cl! =cd @ {num' — 357}
ez’ = ez @ {num’ — false)
num' = num+1

Other schemss are required to make the operation correspond to the abstract version:

— Fulil
EClus_1
resp! : Response

num = moez
resp! = full

— Found_1
EClss1
27 : Student

resp! : Response

Ji:1..numecli=2s?
respl = found

Putting these together, we can give the robust concrete version of Enrol:

Enrol 1 = (Enrol_ok_1 A Success) V Full_1V Found_1

Similarly, we can describe the concrete versions of the different parts of the Complete
operation. The successful part is represented by

~— Compl_ok_1
AClass_1
&7 Student

Ji:l..nume (el s =37 Aezx i=jfalse A
e =cl A
ez’ = cz @ {1 — true}
num’ = num)

16



Operation Inputs | Precondition
Enrol_ok_1 | s? s?7¢{i:1..nume cli}
num < mar
Compl_ok_1 | s? (Fi:l..num e cl i = s7 A ez i = false)
Found_1 s? (3i:1..num e cl { = s7)
Full_1 num = maz
Missing 1 £7 (Vi:1l.. numecli# s7TVezxi=irue)

Figure 2: Preconditions of the concrete operations

The error part of Complete is given by

Missing_1

EClass_1
3?7 : Student
resp! : Response

Vi:l..nume cli#s7TVexi=true

resp! = missing

So the total interface for Complete is

Complete_1 = (Compl_ok_1 A Success) V Missing_1

A summary of the preconditions for the concrete operations is given in Figure 2. We can

easily verify that the operations we have given ate indeed total.

We now need to verify that the concrete versions of Enrel and Complete that we have
given are genuine refinements of the abstract operations. The theorems we have to prove

are

(pre Enrol} A Retr I pte Enrol 1

(pre Enrol} A Retr A Enrol 1+ (3 Class_1 e Enrel A Retr’)

(pre Complete) A Retr - pre Complete-1

{pre Complete) A Retr A Complete_1 1+ (3 Class_1 » Compleie A Retr)

These proofs are omitted for the sake of brevity, but they are not complex, since we can
verily immediately that both concrete and abstract versions are total, and the Retrieve

relation is functional.

17




5.2 Notational change and algorithm refinement

The first pas of the notational change is to obtain the declarations and state invariant
Irom Class_L

var ci:l..maz — Student;
ez:1..mar — Boolean;
nym : (.. maz;

and ({1..nrum)<acl) € N Student

We can also easily get the initialisation from Init_1

initialy num =0

We will use the Alternation 3 translation rule for both operations. In each case, the
specification statement that we insert before the alternation will check to see whether #
occurs in the active pari of the cl array. If it is there, then its position will be recorded
in the new rarable w; if not, w will be set to num+1, So the specificatior statement
will establish the following postcondition

(wel..aum A cllw] =)V (w = num+1 A s € cl[l.. num])

where cl[1..num] denotes the set containing the first rum elements of the array cl. Let
us call this predicate H.

The three branches of the alternation correspond to the three disjoined schemas in the
definition of Enrol_1. We have also removed cl, ez and num from the frame in the ‘error’
branches. $o we have

Enrol (value s : Student; result r : Response)

E varv:0..maz+1l e

w: [irue , H|; . 1
if w = num+1 A num < maz —
e =cly® {num — 2}
7 ez = ez ® {num — false}
roel,er,num: || w=num+1 |, - (2)
num = numg+1
num < Mmar
r = ok

[ num = maz

r:[H A num = maz , r = fuil] 3
[ wel.. rum —

r[HAwel.. num, r= found] (4)
fi
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We need first to check the provisos of translation rule Alternation 3. We note that the
concrete operation Enrol_1 is total, so we have to prove 1’ and 2'. In this case, |’ becomes

H=

(w=num4l Anum < mez)Vaum=mazVweEl, num
which is obvicusly true.
Far the first branch, 2’ is
H = {{w = num+1 A num < maz) = pre Enrol_ok_1)

Since we have w = num+1, the second disjunct of  must hold, and so s & d[1 .. num].
But

pre Enrol_ok_1= (s ¢ {i:1..num e cl i} A num < maz)
and so we are finished.

The second branch is trivial, since the new guard num = maz 1s exactly the same as

pre Foll 1.
For the third branch, we need to show
H=(wecl. num=>31i:1..num e clfi] =)

From w € 1.. num, we can conclude that the first disjunct of H halds. Therefore
clfw] = 5. So we take i = w in the RHS.

So the provisos for Alternation 3 are satisfied.

Each of the three branches of the alternation can be implemented with an assignment.
The justification, involving substituting the new value for the old in the posiconditions,
is omitted here®. In the case of (2), the development should include a check that the
state invariant is maintained—this is where the precondition of (2) is used.

(2) C r, cllnum+1], ex[num+1|, num = ok, s, falre, num+1
C r:= ok;
num = num-+l1;
cl[num] := s;
ez[num] := false
(3) C r:= full

(4) C r:= found

3A summary of & few of the laws of the refinement ealeulus is given a8 an appeadix.
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We will refine (1) to an iteration which sets the value of w. To do this, we re-phrase
to introduce the invariant:

(1) = w: [true , H]

=f=w<num+tl Asgran(l..w-1) el e
w: {true, 1 A (w = num+1V cllw] = )]

C “sequential composition”
w: [true, I]; (5)
w: [, ] A{w=rnum+lV clfu] =4)) (6)

The initialisation is trivial:
9 Cvi=1

Now we canintroduce the iteration itself

(6) C “invarant J, variant nym+1-w ”
do u#num+l Aclul#s —

I
I
H nu ] 7
’ [(w:lé[w] :jl ) (0 < numtl-—v < nem+l-up )} "

od

The body of the loop can be implemented with a simple assignment. (Tbe justification
is left as anexercise for the reader!)

() C wi=uwtl

The development of the code for the Complete operation is very similar to that for the
Enrol opention above. Once again, we nse rule Alternation 3, with exacily the same
specification statement before the alternation.

Compleie (value s : Siudent; result r : Response)
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C var w:0., maz+l e

w: [true , H]; (8)
ifuel..numaAez[w] = false —
( " = ok J
roer: |[|weEl.. num ,( _ N ) (9)
ez 1] = false ez = e1g ® (w — true}

| w=num+lVez|w)=>2tue—

r: [H A{w =num+1V ex[w] = true) , r = missing| (10)
fi

The provisos for using rule Alternation 3 are discharged as above, and the branches of
the slternation become assighments:

n

7, ex[w] 1= ok, true

(9)

(10) C r = missing

The loop development is identical to the one above:

8) Ewi=1;
do w # numtlAcl{w] #9 -
wi=w4l
od

Our final act in the development is to collect up all the code for the two operations. This
is given in Figure 3.

6 Conclusions and directions for future work

We have shown in this paper how two different notations can be used in reasonable
harmony within a single development. Our aim has been to use each of the notations
for the part of the development cycle for which it is best suited: we used Z in the
specification and design stages, where we can use the schema calculus to siructure work,
to introduce the complexity in manageable pieces and to put those piecs together to
give the whole picture. Then we used some of that structure to help us with cur frat
program in the refinement calculus notation. Finally we used the laws of ihe refinement
calculus to develop our abstract programs into executable code.
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Enrol (value s : Student; result r : Response} =
|| var v:0.. maz+1lw
wi=1;
do vZ£num+l Aclu]£s—
wi=w+l
od ;
if w = num+1 A num < maz —
r:= ok;
num = num+1;
cllnum] 1= »;
ez[num) 1= false
[ num = maz —
T = full
l wel..num —
r 1= found
fi
I

Comgplete (value s : Student; result r : Response) =
[ varw : 0.. maz+1 s
w:i=1;
do w#num+lAclv]#£s—
wi= wtl
od ;
ifucl..num A ez[u] = false —
r i= ok;
ez{w] := true
[ v=mnum+l V ez[w] = true —
T 1= missing
fi
1l

Figure 3: Code for the two operations
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As was mentioned abave, one direction for future work might be to develop further rules
and heuristics for the notaticnal change—it would be interesting to see, for instence, what
sort of programs correspond to Z specifications which use the technique of promotion.

When more case studics have been completed, it may be possible, as was hinled above,
fo recommend that the Z notation should be changed in various waya to make the dewvel-
opment path smoother. These would probably be small syntactic changes. Further case
studies may also give some ideas for enhancements to the refinement caleulus notation,
particularly in structuring and the use of modules.

A final interesting point of research would be to investigate the point in the lifecycle
at which the notational change should take place. We have advocated changing after
the data refinement, but ancther possibility would be to change immediately after the
specification, and to use the auxiliary variable techniques of [§] for data refinement, which
would allow us to ‘mix up’ algorithm refinement and data refinement.
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A Selected laws of the refinement calculus

We give here a selection of the IJaws of the refinement calculna, which are used in the
case study in section § of the paper.

1. Weakening the precondition: H pre = pré/ then

w: [pre, post]| C w: [pre , posi)

2. Strengthening the posicondition: If post’ = post then

w: [pre, post] T w: [pre, post’]

3. Introducing local variables: 1{ r does not appear free in pre or post, then

w: [pre, post] =|var z: T o w,z: [pre , post]]|
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4. Introducing assignment: If E is an expression, then
w(poat{B/w], post] C w:=E
5. Imtroducing sequential compasition:
w: [pre, post] C w: [pre, mid]; w: (mid, posi
6. Inirodueing alternation:
w [pre A (Vie G}, posi
= if(} fe G, — w:|preAGi, pest])
7. Introducing iteration:
u: [iny, moA ~(Vie G)]
C do
(§ te G~ w:[invA G, mvA (0L V < Vy)]}
od
The predicate invis the invariant and the expression V is the integer-valued variant.
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