
c.... \',.;; \

Z AND THE REFINEMENT CALCULUS

by

Steve King

Technical MOMgraph PRG- 79
ISBN 0-902928-57-9

Febru<U"y 1990

Oxford University Computing La.boratory
Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
England

OXford UniverSity
Computing ~abomtcry
Programming Research Group-Library
8-11 Keble Road
Oxlord OX1 3QD
9lrlnrn {(l"R';) ';414'

Copyright @1990 IBM United Kingdom Laboratories Limited

Author's a.ddress:
Oxford Univusity Computing Laboratory
Progra.mm.ing Resea.rch Group
8-11 Keble Road
Oxford OX13QD
England

Electronic tlla.il: kingOuk. ac. oxford .prg (JANET)

Z and the Refinement Calculus

Steve King

Abstract

Z has been developed 8.8 a formal specification notation, and, a.s BUc.h, has been used
successfully for a. Dumber of years. Recently, other formal notations, the various flavours
of refinement calculi, have emerged. They have been designed as wide spectrnmJanguages
to support the whole of the development cycle, from abstract specification through to
executable code. We explore the differences between Z and the refinement calculus, and
explain the reasons for some of those differences.

We alBo examine how a development might use both notations, thus giving a path to
code from a Z specification. Some rules for switching between the notatiom axe given,
and their use is illustrated in a case study.

1 Introduction

Over the last few years, the formal language Z has been used with some success for the
specification of large software systems. However, there bas been significantly less use of Z
in the later stages of the software lifecycle. In some cases, Z has been used to document
des:igm as well as specifications, but in very few cases have all the proofs been done.
Research bas therefore been carried out (at Oxford and elsewhere) into u.lJable nota.tions
for developing programs from formal specifications. One of the resulh of this work has
been the Refinement Calculus. This notation differs from Z in small, but significant.,
ways, and it is the purpose of this pa.per to explore some of these differences, to give
some of the ra.tionale behind the changes in notation, and finally to show how it is possible
(and beneficial) to use both Z and the refinement calculus together in a development.

The rest of the paper has the following structure: section 2 contains a brief introduction
to the two notations, and section 3 highlights some of their differences, and the reasons
for those differences. The next section discusses how a development might include both
Z and the refinement calculus, and gives some rules and heuristic guidelines for changing
notation. Section 5 contains the development of a. small system, using the roles anq
methods of the previous section. Finally, we give some conclusions a.nd suggest directions
for future work.

2 A summary of the notations

In this section, we give very brief summaries of Z and the refinement calculus. Fbr further
details on Z, the reader is referred to [3], [91 an.d [10]. Information on the refinement
calculus can be found in the work of Back [1], Morris [8] and Morgan. {6,7J. We will use
the notation of Morgan.

2.1 Z

Z is based on typed set theory, together with a structuring mechanism: the schema. This
is a device for introducing a named collection of variables an.d giving a predicate to show
how they are related. It can be used to describe both the static aspects of a. system (i.e.,
the state space, and invanan.t relations on the state) and the dynamic aspects (i.e., the
operations which chan.ge the sta.te). For instan.ce,

ClaJ.f _

y, n : P Student

ynn={}

#(yUn) $ mo,

1

describes the state of a system to record which students in a class have (V) or have not
(n) completed a set of exercises. The declaration pari, above the line, introduces the
state variables, and the predicate pari, below the line, gives the state invariant. An
operation to enrol a new student into the class could be described by

EnroLok _

.6. ClaJ"

J? : Student

,,? ~ y U n

#(yU n) < max
VI =y
n'=nU{,,?}

Now the declaration introduces the state before and alter the operation (in .6.Cltu.s) and
the input variable .s? The predicate shows the relation between the variables of the
state before (y and n) and the state after (yl and n') and .s? This single predicate
(there are implicit conjunctions between the lines) contains both pre- and post-condition
information. (This example is more fully developed in section 5.)

2.2 The refinement calculus

The basis of the refinement calculus is Dijkstra'slanguage of guarded commands[2], to­
gether with an additional construct. So the notation has the usual (executable) elements:

• sequeo.tial composition

• assignment

• alternation

• iteration

The extra (non-executable) construct is the .specification Jtatement, which takes the form

to: [pre, po.stJ

If it could be executed, this statement would have the following effect on a computer:

IT the initial state is described by pre, then, by changing only the variables
listed in the frame to, establish some final state described by the postcondition
po"t.

2

3

For example, if $ is a set of numbers, the specification statement

y' [, # {} , Y E 'I
chooses an element y from the non-empty set $.

An imporlant aspect of the refinement calculus approach is to view specifications and
code as different parts of a spectrum. They are both examples of the same nola.tion­
programs. Some programs happen to be executable (those without specificatioll state­
ments), while others are noL Thc development process consists of writing a specifica.­
tion, or perhaps an abstract progrMD, then applying any of a large collection oflaws to
transform the program into executable code. For instance, we could apply the law of
strengthening postconditions:

if PO$t' => po"t, then w: [pre, pOBtJ ~ w: [pre, post/]

where!; is the refinement relation. Taking pOBtl to be y = max(s), we can seethat the
specification statement above is refined by

y' [, # {}, y = ma'('J]

Notational differences

3,1 Schemas and specification statements

The valid states of a system are described in very similar ways in the two notalions. The
refinement calculu8 uses the keywords var and and to introduce the state variables and
invariants on them. So the refinement calculus formulation of the state schema. Cla$$
given above would be

var 11, n : P Student;

and ynn= {}A

#(yUn) ~ma.

We can see a very obvious correspondence between the two notations.

However, the other main use of schemas, to describe operations on the slate, has a
significantly different counterpart in the refinement calculus. In Z, we usually describe
an operation with a schema of the form

Op _

AS
i? : I
0': 0

pred

3

This schema describes a change in the state S, with inputs i? alld outputs 01. The exact
relation between the variables of the before and aiter states and i? and 01 is given by
pred.

The corresponding structure in the refinement calculus is a specification statement of
the fonn

tu: [pre, POlltJ

There are several differences that we can notice between these two constructs, perhaps
the most obvious being that the specification statement contains two predicates, while
the schema bas only one. In specification work, it is convenient to use a. single predicate
on the before and aiter states, which embodies both the pre· and the postconditioDB. It is
the fact that we have this one predicate which allows us to use the powerful specification
combinatora of the schema. calculus, e.g. schema conjunction and disjunction. It is always
possible to obtain the precondition from this single predicate by existential quantification
over the outputs and the after state variables (this is exactly what the pre schema
operator does). Indeed it is often recommended that this precondition checking should
be carried out and recorded as pari of the specification process (see [11]). However,
when we move on to program development, it is much more convenient to have the
precondition explicitly available: in order to prove that P !; Q, we need to show (with
appropriate variable changes) that

pre P => pre Q
preP" Q ,*P

Clearly it is easier to discharge these proof obligations if the preconditions of P and Q
are readily to hand. Indeed, if we are carrying out a development with several levels
of design, then these proofs will need to be c!LI'ried out at each level. We can therefore
save ourselves much effort by working with pre/pollt pairs, rather than a single combined
predicate, with the need to calculate the new precondition at each level.

The second major difference between the schema and the specification statement
tu: [pre, POlltJ is the frame w. This is a list of the state variables which can be changed
by any implementation of this specification statement. Again, one of the reasons why the
Z schema calculus is good for writing comprehensible specificatioIUI is that it allows us to
strud ure our description. We can describe paris of the fitate of a large system and the
effect of tbe operationfi on those paris of the state, before combining them, with schema
conjunctioQ and difijundion, to form descriptions of the whole state and the operations
on it. However, during the refinement process, we don't have the option of using con­
junction for structuring. The problem ifi made worse because, as we approach executable
code, the program becomes inevitably more complicated and many more variables are
needed. However, only a few of the variables will be changed in a particular part of the
program, and so the me of the frame simplifies the postcondition by relieving us of the
obligation of writing x' = :z:: for each unchanged variable.

4

3.2 Initial variables

In Z we distinguish between va.riables of the before state and the after state afan oper­
ation by adding a dash to the name of the after state variables. Thus z might refer to
the value of a variable before an operation, while x' would refer to its value aiterwards.
In the refinement calculus, the dititindion is made, in the postcondition, by adding a
subscript 0 to the na.m.es of the befoTe state variables. So Yo would be the variable before
an operation, and 11 afterwards. This has both advantages and disadvantages: the chief
advantage is that we have less to write! The precondition will always refer to initiaJ
variables, so we don't need to give them any decoration to show that they are initial.
The po5'teondition, on the other hand, will almost always refer to final variables, and
only sometimes to initial variables. So we decorate the variables that appear less fre·
quently: the initial variables. A side effect of this convention is a very simple sequential
composition law:

w: [pre, pod] ~ w: [pre, mid]; w: [mid, pO.!t]

for any formula mid not containing any initial variables. The same law, expressed with
the undashedjdashed convention, would be

w: [pre, po.!t] ~ w: [pre, mid]; w: [mid[_j~] , po.!t]

with an inelegant rena.ming1 of the variables of the mid predicate.

The disadvantage of this naming convention is a loss of referential transpareDcy: when
we refer to a variable 2: in the specification statement w: [pre, po.!t], we need to know
whether the reference iii in pTe or po.!t to decide whether we are talking about the
value of :z; before or after the operation. Newcomers to the notation can find this a. bit
disconcerting, but familiarity works wonders!

It is interesting to see the parallel with the history ofVDM-in [4], the dashedjundashed
convention is used, while, in [51, the overhook xis used for initial variables, because the
refinement proof rules are much simpler when expressed with this convention.

3.3 Short variable names

One of the conventions of the refinement calculus is to use short names for state variables­
preferably either one or two letters. These variables are copied around a lot, so this re­
duces the chances of error!l in transcription. The loss of immediate clarity in the program
is justified by saying that the program text iii no longer what needs to be understood.
Instead it is the development history which needs to be dear. The collection of the final
code from the lea.ves of the development tree could easily be automated-the developer
does not need to see it at all.

IThroughout this paper, we use the substitution notation [netll/old]. Thus mid[_/_'j denotes the
predicate mid with all dashed variables replaced by undo.shed ones.

5

3.4 Abbreviations

While Z uses the names of 8chemas as (amongst other things) ,abbreviatioI18 for the
predicates therein, and syntactic definitioI18 to give names to expressions, the refinement
calculus U8eI one mechanism (very similar to syntactic definitions) to give names to both
predicates and expressions. Use of this mechanism is very important as it can prevent
sta.tements from becoming too long and unwieldy.

4 Using Z and the refinement calculus together

In the previous section, we listed some of the differences in notation and the refinement
calculus, and we gave some of the reasons why the designers of the newer notation, the
refinement eaJcu1us, have feU it necessary to make these changes. The differences in
notation fall into two distinct categories: some are basically insignificant-the choice
between decorating variables of the before state or the after state in Z could be justified
either way. Some might argue that the Z convention should change to harmonise with
the refinement calculus notation, where there is a good justification for decoration of
the before lltate variables2• However, other changes are far more significant-the use of
prelpo~t pairs of predicates and the frame have an important effect on the way in which
we can develop code from Z specifications, Ideally, we would have a wide spectmm
language lii:e the refinement calculus which also allowed us the specification combinators
that we use in Z to construct large specifications from smaller ones. Unfortunately, we
don't have that language. But we do have Il reaaonable number of people who have some
expertise in the use of Z for specification. It is the purpose of this section to show how
we can use Z and the refinement calculus together, in reuonable harmony, in a single
development.

4.1 Tbe basic rule for cbange of notation

Our plan for development is the following:

• specification in Z

• data refinement in Z

• change notation to the refinement calculus notation

• algorithm refinement using the refinement calculus

~We are IDOre than happy to leave 6uch WscWlSWns to their proper plau-~he 8~da.rda commiUeea.

6

We are assuming, of course, that the system to be developed is of sufficient size and
complexity to benefit from the use of the schema. notation for structuring the specifica.­
tion. If the system is small enough to be specified directly in the refinement calculus,
then clearly that is the best method of working. There are many examples in [6] of such
developments.

So our first step is to write a specification in Z, using a.s much of the schema calculus as
is necessary to give a comprehensible description of the system. (Detailed advice may
be found in any good book on Z-see [3,10,12,13J.)

The second stage is to carry out the data. refinement, still in the world of schema8.
So we propose a concrete state and a retrieve relation 'Which relates the abstract and
concrete, and then we propose, and prove correct, the initialisation and the concrete
versions of the operations. It is at this stage that our design is probably beginning to
become unwieldy-the concrete state will have introduced the more complicated data
structures that we are likely to implement, and our descriptions of the operations are
correspondingly more complex.

It is now tha.t 'We switch notations. The first, simple change is to convert from the
undashed/da.shed convention to the USe of a subscript 0, and to shorten the names of
variables, if necessary, also removing the? and! suffices from the names of input and
output variables. If the sta.te and a typical operation on it 'Were described by 8chema.s
Sand Op, let us denote the 'translated' versions by ~ and Vi, From~, it is simple to
extract the declarations and the state invariants, and record them in the var lUld aod
clauses respectively.

Now 'We have to consider the translation from schema.s to specification statements. There
is one basic law for this, which is based on an Implicit Precondition abbreviation which
appeared in an early draft of (61. Suppose we ha.ve a schema describing a.n operation of
the form

Up~--------------------
IlIJ
i? : [
o!: 0

pTed

Then we can convert this to the specification statement

w: [(3 w: T I ;nv • pred)[w;"Il] , prod)

where

•	 the frame w consists of the variables of S, together with the outputs 0, and T is
the type

7

•	 inti is the date invariant, obtained from "!

•	 the substitution [w / WoJ ensures that the precondition is expressed in terms of un­
decorated variables.

There are vanous steps we can immediately take to 'tidy up' this specification. This
process involves the systematic application of particular refinement calculus laws. For
instance~ we can remove from the frame any variables which the postcondition says
must stay unchanged. Obviously we a1BQ remove the relevant :z: = :z:o clause from the
postcondition. We can also remove any clauses from the postcondition which are merely
stating the precondition-it is often recommended that a Z schema should contain its
preconditions explicitly as conjuncts in the predicate. If this convention is followed, then
the precondition clause will appear twice in the final specification statement.

So, for exBJDple, the operation EnroLok could give rise to the following conversion: first
we change to short variable names and alter the initial variable convention.

EnroLol.:
CloJ", •
C14J.5
, : Student

'¢YoUno
#(10 U no) < ma.
y = 1'0
n=no U {,)

Using the rule above, and an ahbreviation (E) for the predicate of Enrol-ok, tbia becomes

E"'(. f/.YoUnoA#(YoUno)< mazAY=YoAn =noU{.))

I
yn n = {})]Y,n: [(3y, n: P Student #(YUn):$ f'nQ.% • E [y,n/YOlno] , E

Simplifying the precondition, this becomes

.f/.Youno)]y,n: [(#(YoUno)<ma. fy,n/Ya.no],E

.f/.1IoUno)

~ ,n: (,f/.yUn), #(YoUno)<maz

Y #(yUn)<ma. y~Ya
[(
n=no U{,)

Now we can apply the 'tidying up' procedure mentioned above: the first two conjunets
of the pmtcondition can be removed since they already appear in the precondition, and

B

we can also remove 11 from the frame.

n.[(.;!yUn) n-n.,u{sJ]
. #(yUn) < max ' ­

With practice, it would be possible to write down this specification statement directly,
without the need fOT the intermediate steps.

4.2 More sophisticated rules for change of notation

It would be pOlllJible to carry out aU of our notation changes using the rule above, and
then develop the final progya.Dl in the refinement calculul!: notation. However,lhere are
various patterns that often occur in the I!:cnema versions of the concrete operations, and
we can use these patterns as we carry out the notational change: instea.d of obtaining a
simple specification statement, which is then developed into a program, we go straight to
an abstract progra.m which already has some structure. We are encoding the application
of several refinement calculus laws into our trBllslation rule, thus saving the developer
the need to apply these laws in the cases where she can recognise a pattern in the
schema fonnulation of the concrete operations. E~amples of the use of these rules are
given in the case study in the next section. Notice that we do not give rules for every
construct of the guarded command language. For instance, there is no rule for tI8.llslating
a schema description of an operation directly into an iteration: it is very rare that we
can see the invaria.nt and the bound function obviously in the schema description. There
is also no rule given below for assignment, but it is easy to work out the form of an
operation described in the schema notation which would correspond to an assignment in
the refinement calculus. However, since the rule is not needed in the case study below,
it is omitted for brevity.

Alternation 1

One of the simplest rules is used when we have an operation which is defined as the
disjunction of two cases (perhap& the successful case and an error case):

Op" Opl V Op2

Suppose also that the preconditions of Op 1 and Op2 are simply expressible in our target
programming language. Then we can translate Op to an alternation:

if pre Opl - Op1*
o pre Op2 ~ Op2"
II

where opr and Op2- are the specification statements which result from the application
of the basic translation rule above.

9

Alternatioo 2

The t.ransformation above stipulated that the preconditions of Opt and Op2 should
be simply apressible in the target programming language. What happens when the
preconditions are more complex? Perhaptl they involve a quantifier, or a. complicated set
expression. In this case, we can introduce a local variable, and use it to store the result
of evalua.ting one of the preconditions before the alternation. Suppose we have

Op ;0 Opl V Op2

and t.he precondition of Op1 is a. complex expression. Then we ean &rB.D.B1ate this to

Il 'VBI' b : Boolean _

b: [true, b ~ pre Op1} i

ifb~ Opl·

op« Op2 ~ Op2·

B

II

where b is lOme fresh variable with scope delimited hy l[and 11, and Op)· and Op2· are
as above. Clearly, if pre Op2 = ""pre Op1, then we can simplify the second guard to ..,b.

Alternation "

The most general version of the alternation rule allows us to evaluate any expression
before t.he &1ternation, and to store the result in a fresh variable of any type. With Op
as above, the refinement calculus version becomes

lI_r:T.
r: [true , ~] i

if~, ~ w: [~/\,p, , (/pI]

D ~, ~ w: [~/\,p, , Dp"2]

B

II

where tbl1't and tP2 are any predicates, which satisfy the side cooditions

1. ~ A(pre Opl V pre Op2) => (,p, V,p,)

2. ~ A(pre Opl V pre Op2) => (,pi => pre Op') fOT i = 1,2

Notice that if pre Op) = "'pre Op2, the antecedents above simplify to~, leaving

10

I'. '" => (~, V ~,)

2'. '" => (~, => pre Op.) for i = 1,2

Sequential composition

The final wa.y in which we can use the stroeture of the Z specification to help us with
the structure of the refinement calculus program is when we notice that the operation is
described as the conjunction oC two other operations which ad on disjoint part! of the
state. Suppose we have

Op" Opl " Op2

where Opt and Op2 take the forms

Opl " [AS I ,; = '. " PI{", ';)1

Op2" [AS I .; =" " P2{,,, ,;)j

where "1 and -'2 are disjoint (vectors of) state variables, and PI and P2 are predicates
showing how pari of the state is altered. Then we have two possibilities: we C&D. either
update first .11 and then "2, or vice versa.. So Op becomes either

'.' [pre Op2. 1'2] ;
", [pre Opl • PI]

or

'" [pre Opl • PI];

'.' [pre Op2 • 1'2]

In this section. we have shown various rules aDd heuristics {or translating from the
schetnB.8 of our data refined operations into the refinement calculus notation of abstract
progr8.IIlB. First we showed the basic rule which simply extracts the precondition &om
the combined predicate of the Z schema. Then we gave 80Dle rules which take advantage
of tbe structure which haa been built up within the Z design, and use thst structure
in the refinement calculus program. We have given four such rules-there are probably
several other patterns of de&ign that could be exploited in a simila.r way.

Case study

The example we have chosen is a fairly simple one, which will probably be familiar to
both VDM and Z users. The following statement of requirements comes from [4].

11

5

A computerised class manager's assistant is required to keep track. of students
enrolled on a class, and to record which of them ha.ve done the midweek
exercises. When a student applies for a class, he will be enrolled on it, unless
it is fun. Such a student will be presumed not to have done the exercises.
When a student completes the exercises, the £a.ct is to be recorded. A student
may leave a class even if he has not done the exercises, but only the students
who have done the exercises are entitled to a completion certificate.

Specification'

We need jUllt one given set, to identify individual students:

[Stud",t]

The maximum size of a class is a global constant.

~

~

Our abstract state consists of a pair of disjoint sets: the set y represents the students
who ha.ve done the exercises, and n is those who have enrolled, but not yet done the
exercises.

CIM, _

Y,n, P Student

ynn={)
[
#(yUn)~ma.

Both sets are empty in the initial state.

C~JJ["y' = {}
n'= {)

This clearly satisfies the constraint tha.t y' and n' shall be disjoint, and tha.t the size of
their union shall be less than or equal to max.

We will describe only two of the required operations. The third, describing what happem
when a student leaves the class, is left as an exercise for the reader. The first operation

3This Z specification is based OlJ one given by John Wordswotth in [131.

12

Operation Inputs Precondition
EnroLok ,? $? ~ Y U n

#(yUn) < max
CompLok ,? $? E n
Found ,? $7 E y U n
Full #(YUn)~max

Mis$ing .-7 s? f/. n

Figure 1: Preconditions of the abstra.ct operations

describes the effect o{ enrolling a student in the class. This student will nol have done
the exercises, 80 he will be put in the set n.

EnroLok _

.6. C14$$

$? : Student

,,?rtyUn
#(yUn) < max
y'= y
n'=nU{,,?}

The second operation specifies the effect o{ a student completing the exercises. The
student will have been enrolled, but will not have done the exercisetl, so he will be
tr8.Il.5ferred from n to y.

CompLok _

.6. Cl4$$

$? : Student

$? E n

y' = y U (,?j
n' = n \{,?}

The preconditions {or the partial operations so {a.r defined, together with those for the
error schemas below, are summarised in the table in Figure 1.

We introduce Ii new type {or the error reports.

Re$pon."e ::= ok
I found
I full
I m~$ing

13

The error situa.tions for EnroLok are described by the following schem..as.

Found _

:::CltuJ
,1 : Student
reap! : Re"pon3e

,1 E YU n
re,p! = found

Full _

SClaJ,
re"p! : Re"pon.Je

#(yU n) = mo.
rup! =/ull

Similarly the operation CompLok has an error situation dealt with by

MuJing _

SCiu,
,1: Student
re"p! : Re"pon"e

,1, n

re"p! = mu"ing

We also need to give a report in the successful cases:

Succeu _

~ ...pl : R..po",.

[re,p! = ok

The complete description of the operations can now be given:

Enrol == (Enrol-ol: 1\ SUl:ce",,) V Full V Found

Complete == (CompLol: 1\ Succe",,) V Mu"ing

5.1 nata refinement

Our conaete representation for the sets given in the specifica.tion above will consist of
two arrays, one for students, and one for boolean values, and a counter to sa.y how much

14

of the arrays is in U!Je. It is intended that the values jn the second array will be true
for those who have done the exercises, and laue for those who have not. We model the
arrays by total functions whose domain is the index set (1 .. max).

ClaJJJ _

cl : 1 .. mlU" -+ Student
e:z: : 1 .. ma: -+ Boolean
num :0 .. max

{(l.. num) <J d) E (N _ Student)

The concrete state invariBllt says that there will be no duplicates in the first ntom. elements
of the 81'ray of students".

The retrieve relation, relating the concrete and abstract states, is as (ollows:

_Retr _

ClaJ,
ClaJ,J

y = Ii: 1 .. num I (ex iJ = true 0 (d ill
n = Ii: 1 .. num I (ex iJ = laI" 0 (d i)}

Initially, DO P81't of either of the arrays is in use:

InitJ _ r- Cl,uLI'

[num'=O

Our initialisation proof obligation is to show that

InitJ r (3 C/.,,' 0 (Init A RelT'))

This is easily shoWn to be true, since the value of nu~', determined hy IniLl to be
zero, gives the empty set for y' and n' when substituted in the right hand sides of the
expressions in Retr'. These values for y' and n l satisfy lnit.

The 6Uccessful part of the Enrol operation is represented hy the following concrete op­
eration.

4z .. ,i.8ihe8et {l:~.Z~l~,}

15

EnroLokJ _

..6.ClGJ"J

,,? : Student

,,? rJ. {i : 1 .. num • el i}

num < ma:J:

el' = cl e {num' 1-+ ,,?}

e:z ' = e:J: e {num' 1-+ false}

num'= num+1

Other schemas are required to make the opera.tion correspond to the abstract version:

FulLl _

ECII18,,_l
re"p!: Re"ponu

num= maz
re.sp! = full

FOl'ndJ _

ECla..s"J
8?: Student
reJp! : Re"ponu

3 i: 1 .. num • el i = J?
reJp! = found

Putting these together, we can give the robust concrete version of Enrol:

EnroLl == (EnroLokJ 1\ SUCCe8J) V FullJ V Found_1

Similarly, we can describe the concrete versions of the different parts of the Complete
operation. The successful part is represented by

C,mpLokJ _

..6.Cla""J
81: Student

3i: 1 .. num. (cl i =,,? 1\ e:J: i = falu 1\
ell = el 1\

c:J:' = cx e {i 1-+ true}

num' = num)

16

Operation Inputs Precondition
EnroLokJ

Compl_ok....l
FoundJ
FulU
MU.Jing 1

,1

,1
,1

,1

.J?tJ{i:1 .. numec1i}
num < mtu:

(3 i: 1 .. num e c.l i = .I? /\ ex i = falu)
(3 i : 1 .. num e d i = ,,?)
num = ma..
('Vi: 1 .. num e c1 i #- "'? V ex i = true)

Figure 2: Preconditions of the concrete operations

The error pari of Complete is given by

Mi.s.Jing....l _

5Cla".J_1
,,? : Student
re.Jp! : Re"ponse

Vi: 1 .. num e cl i #-.J? V e.. i = true
re.Jp! = miuing

So the total interface for Complete is

Complete....l == (CompLok_1/\ Succe"'.J) V MiA",ing....l

A summary of the preconditions for the concrete operations is given in Figure 2. We can
easily verify that the operations we have given are indeed total.

We now need to verify that the concrete versions of Enrol and Complete that we haw
given are genuine refinements of the abstra.ct operations. The theorems we haw to prove
are

(pre Enrol) /\ Retr l- pre EnroLl

(pre Enrol) 1\ Retr 1\ Enrol....ll- (3 Clau....l e Enrol /\ Retr')

(pre Complete) 1\ Retr l- pre Complete_l

(pre Complete) /\ Re1.r /\ Complete....ll- (3 Cla..u....l e Complete /\ Retr')

These proofs are omitted for the sake of brevity, but they are not complex, frince we can
verify immediately that both concrete and abstract versions are total, and the Retrieve
relation is fundional.

17

5.2 Notational change and algorithm refinement

The first pari of the notational change is to obtain the declarations and state invariant
from CI4.:1.:1_1.

var cl: 1 .. max -+ Student;
e~ : 1 .. max -+ Boolean;
ntlT7l : 0 .. ma.xj

and ({I .. num) <J el) E N)o+t Student

We can alSQ easily get the initialisation from InitJ

initially num = 0

We will use the Alternation 3 translation rule (or both operations. In each CMe, the
specification statement that we insert before the alternation will check to see whether J

OCCUI'l!i in the active pari of the cl a.rray. If it is there, then its position will be recorded
in the new'i'ariable w; if not, to will be set to num+l. So the specification statement
will establish the following postcondition

(w E 1 .• num A <llwl ~ ,) V (w ~ num+l A , <t clll .. num))

where cl[l" numl denotes the set containing the first num elements of the array d. Let
us call this predicate H.

The three branches of the alternation correspond to the three disjoined schemas in the
definition of EnroLl. We have also removed cl, ez e.nd num from the frame in the 'enor'
branches. So we have

Enrol (value J : Student; result r : ReJponJe)

~ var tl1 : 0 .. ma:!:+l •
w: [true H] j (I)1

it w = num+1/\ num < ma:!: __

cI='~E!l{num~,} J
ez = e%Q EB {num t-+ faLJe}

(2)r,",<X.num: [(w = '::'m+l) num = numo+1
num < ma.x (

r = ok
nllm = maz __

r: [H /\ num = max, r = ju.ll] (3)
wE 1 •. num __

r: [H /\ to E 1 .. num , r = found] (4)
II

18

We need first to check the provisos of translation rule Alternation 3. We note that the
concrete operation EnroLl il!l total, so we have to prove I' and 2'. In ibis case, 11 becomes

H:<>
(w = num+l/\ num < ma:z:) V num = maz V w E 1 .. num

which is obviously true.

For the first branch, 2' is

H => «to = num+l/\ num < maz) => pre EnroLok_l)

Since we have to = num+l, the second disjunct of H must hold, and so J ¢ elll .. numJ.
But

pre EnroCokJ (J ¢ {i : I .. num • cl i} /\ num < maz)

and 60 we are finished.

The second branch is trivial, since the new guard num :::; maz is exactly 'be sa.me as
pre FullJ.

For the third branch, we need to show

H => (to E I .. num => 3 i : 1 .. num • cl[i] = J)

From to E I .. num, we can conclude that the first disjunct of H holds. Therefore
cl[toJ = J. SO we tue i = to in the RHS.

So the provisos for Alternation 3 are satisfied.

Each of the three branches of the alternation can be implemented with &II assignment.
The justification, involving substituting the new value for the old in the postconditiOIl5,
is omitted here'. In the case of (2), the development should include a. check tha.t the
state invariant is maintained-this is where the precondition of (2) is used.

(2) ~ r,d[num+IJ,ez[num+lj,num:= ok,J,!al"e,num+1

~	 r:= okj

num:= num+lj

d[numJ:= "'j

ez[num] := /al"e

(3) [:; T:= full

(4) [:; T:= found

5A swnrnary of a few of the laws of the refinement c.a.lculus iii given 88 an appeudix.

19

We will re:6.ne(I) to an iteration which sets the value of w. To do this, we re-phrase H
to introduce the invariant:

(I) =	 w: I'""~ , HJ

1== w ~ num+I/\ .'I ¢ ran(l .. w-I) <J d.
w: !'TU', I A (w = num+1 V el[wJ = ,)]

~ "sequential composition"
w: [true, I];	 (5)
w: [I , T A (w = num+! V el[wJ = ')J	 (6)

The initialislI.tion is trivial:

(5) ~. := 1

Now we can introduce the iteration itself

(6)	 !; "invariant I, variant num+l-w"
do til #= num+l /\ cl[wj #= J ­

(7)
.,	 num+!-: < num+I-Ub)] [(w ,rriU;;1),(0 ~

od

The body of the loop C&D be implemented with a simple assignment. (Tbe justification
is len as ac exercise for the reader!)

(7) ~	 w:= w+!

The development of the code for the Complete operation is very similar to that for the
Enrol operation above. Once again, we nse rule Alternation 3, with exactly the same
specificatiQu statement before the alternation.

Complete (value .'I : Student; result T : Re.'lpon.Je)

20

I

6

!; var 10 :O .. ma:Z:+le

10: [tnt: 0];	 (8)

if10 E 1 •• num 1\ e:z:[w] = falJe_

T,ex: [('" E 1

H

.•urn) ,(T$~(ok))]_ t	 (9)
f%[W] = fa!", ex - e1'() 10 f-t rue

10 = num+l V e:z:[wJ = true--+
T: [a /\ (w = num+l V e:z:[wJ = true) , ,.::= missing] (10)

ft

The provi508 {or using rule Alternation 3 are discharged as above, and the branches of
the alternation become assignments:

(9) ~	 "', ez[w] :== ok, true

(10) ~ ,. :== miuing

The loop development is identical to the one above:

(8)	 ~ "':= 1;

do '" '" .urn+! " ell"'] '" ' ~

10 := 10+1

od

Out final. act in the development is to colled up all the code foe the two operations. This
is given in Figure 3.

Conclusions and directions for future work

We have shown in this paper how two diHerent notations can be used in reasonable
ha.nnony within a single development. Our aim has heen to use each of the notations
for the part of the development cycle for which it is best suited: we used Z in the
specification and design stages, where we can use the schema calculus to structure work,
to introduce the complexity in manageable pieces and to put those pieces together to
give the whole picture. Then we used some of that structure to help us with our first
program in the refinement calculus notation. Finally we used the laws of (he refinement
calculus to develop our abstract programs into executable code.

21

Enrol (value J : Student; result r : ReJporue) ==
If var 10: 0 .. ma::+l •

w:=l;
do to =f:. num+1 /\ cl[w] f:. J

w:= w+l

od i

if w = num+l/\ num < ma:r . ­

r:= ok;

num := num+lj

d[num):= J;

e:r[num] := falJe

o n'llln = ma:r.­
r := full

D
 wE l .. num.­
r:= found

II
II

Complete (value J : Studentj result r : ReJporue) ==
Hval'to: 0 •. maz+l _

w:= 1;

do w =f:. num+l/\ cl(w] =f:. J . ­

w:= w+l

od

if 111 E 1 .' num /\ ex[w] = falJe

r:= ok;

e:rlw] := true

D 111::= num+l V ex(w] :::: ~rue --.

r := miJJing

II

]1

Figure 3: Code for the two opera.tions

22

As was mentioned above, one direction for future work might be to develop further rules
and heuristics for the notational change-it would be interesting to see, for instance, wha.t
sort of programs correspond to Z specifications which use the technique of promotion.

When more case studies have been completed, it ma.y be possible, as was hililed above,
to recommend tha.t the Z notation should be changed in various ways to make the devel­
opment path smoother. These would probably be small synta.ctic changes. Further case
studies may also give some ideas for enhancements to the refinement calculus notation,
particularly in strudunng and the use of modules.

A final interesting point of resea.rch would be to investigate the point in the lifecycle
at which the notational change should take place. We have advocated changing after
the data refinement, but another possibility would be to change immediately after the
specification, and to use the auxilia.ry variable techniques of [6J for data refinement, which
would allow us to <mix up' algorithm refinement and data refinement.

AcknowledglDents

Thanks to Carroll Morgan a.nd Trevor Vickers for helpful comments at very short notice!
Also thanks to the VDM90 referees for their input.

A Selected laws of the refinement calculus

We give here a selectioD of the law5 of the refinement calculus, which Me used in the
case study in section 5 of the pa.per.

1. Wedening the precondition: If pre => pd then

w: [pre, po"tJ I;; w: [pd , po,,1]

2. Strengthening 1he po"tcondition: If po"t' => po.!t then

w: [pre, pOJtJ ~ w: [pre, po.!t'J

3. Introducing local variable.!: If z does Dot appear free in pre or po.!f, then

to: [pre, po"tJ = /[var z : T • w, 2:: [pre, po"tJ]1

23

4.	 Introducing a,uignment: If E is an expression, then

w: Ipo,t[E/w) • podl C; w:= E

5.	 Introdtuing Jequential compo.sition:

w: [pre, pOJt] !; to: [pre, mid]; w: [mid I pOJt]

6.	 Introducing alternati,m:

w: [pre A (V i. G,l. po,tl

iflD i. G. ~ w: [pre A G, • po,t]) fI

7.	 Introducing iteration:

til: [inv, inv" -o(V i. Go)]

~ do

(0 i. G, ~ w: linvA G, • invA (0::; V < V,)])

ad

The predicate inv is the invariant and the expression V is the integer-valued variant.

References

{I]	 R.-J. Back. A calculus of refinements for program derivations. Acta Informatica,
25:59:!-624,19BB.

[2J	 E.W. Diikstra.· A Di.scipline of Programming. Prentice-Hall, Englewood Cliffs, 1976.

[3]	 I.J. Hayes, editor. Specification ca.se Jtudie.J. Prentice-Hall International series in
computer science I C.A,R. Hoare, series editor. Prentice-Hall International, Engle­
wood Cliffs, N.J. ; London, 1987.

[4]	 C.B. Jones. Software Development: A RigoroU.J Approach. Prentice-Hall Interna.­
tional series in computer science I C.A.R. Hoare, series editor. Prentice-HalllDter­
national, Englewood Cliffs, N.J. ; London, 1980.

[5]	 C.B. Jones. SYJtematic Joftware development uJing VDM. Prentice-Hall Interna.­
tional series in computer science I C.A.R. Hoare, series editor. Prentice-Hall Inter­
national, Englewood Cliffs, N.J. ; London, 1986.

24

[6J	 C.C. Morgan. Programming from SpecijicationJ. Prentice-Hall Interna.tional series
in computer science I C.A.R. Hoare, series editor. Prentice-Hall International, En­
glewood Cliffs, N.J. ; London, 1990.

[7]	 C.C. Morgan, K.A. Robinson, and P.H.B. Gardiner. On the refinement calculus.
Technical Report. PRG-70, Programming Research Group. 1988.

[8]	 J.M. Morris. Progt8.Dl& from specifications. In E.W. Dijkstra., editor, Formal De­
velopment of ProgramJ and Proof&. Addison-Wesley, 1989.

{9]	 J.M. Spivey. Under.Jtanding Z: a &pecification language and it" formal &emantic.J.
Number 3 in Cambridge tracts in theoretical computer science. C.8JIlbridge Univer­
IJity Press, Cambridge, 1988.

[101	 J .M. Spivey. The Z notation: a reference manual. Prentice-Hall International se­
ries in computer science I C.A.R. Hoare, senes editor. Prentice·Hall International,
Englewood Cliffs, N.J. ; London, 1989.

[l1J	 J.C.P. Woodcock. Calculating properties of z specifications. ACM SigSoft So/hoare
Engineering Note&, 15(4):43-64, 1989.

(12)	 J .C.P. Woodcock.. Using Z-Specification, Refinement and Proor. Oxford University
Computing Laboratory, 1990.

[131	 J.B. Wordsworth. A Z Development Method. IBM UK Laboratories Ltd, HursIey
Park, 1989.

25

