
An Algorithm for

Type-Checking Z

A Z Specification

J. N. Reed
J. E. Sinclair

Abstract

We present an outline of an algorithm for type-checking Z specifications
and ddermining appropriate error messages. The algorithm understands an
a.bstract syntax of Z as given by J .M. Spivey, and i8 similar to the one im
plemented in the Forsite prototype specification liupport environment. The
outline presented here is intended to serve as a. brief introductory overview
to implementing a Z type checker, and to elucidate important and subtle
details involved in type checking Z. We do not discuss user interface or per
formance issues such as display of error messa~s or representation of data
structures. The outline is itsell described in Z.

Copyright © 1990 J. N. Reed
J. E. Sinclair

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

CONTENTS

Contents

1 Introd uetion 1

2 Notation 2

3 Abstract Syntax 3

4 Exceptions and Error Messages 5

5 Types and Signatures 6

6 Dictionaries and Environments 7

1 Normalised Declarations 8

8 Types of Expressions 15

9 Schema Expressions 18

10 Unification 20

II Predicates 27

12 The Document 29

13 Related Work 31

14 Conclusions 33

1

1 Introduction

We present an outline of an algorithm for type-checking Z specifications.
The purpose of this outline is to specify an overview of the algorithm for
those planning to implement a Z type checker. The specification describes
the task of checking an abstract syntax tree of a Z specification for type
correctness and determining appropriate error messages.

Over the past ten years or so, Z h.u; matured and is now a popular language
used for software specification. A number of software development groups
who use Z have done so without automated tool support (other than editors
equipped with Z symbols and simple cross referencing). While it might be
a.:rgued that the sta.ndardisation required for any kind of tool support for Z
would render the language inflexible and hinder its further development, it
is widely believed that tools such as parsers and type checkers are invaluable
aids in many cases.

The first automated tool set for 2 to provide both syntax and type checking
was the Forsite prototype developed in 1986. The Forsite project began in
1985 under Alvey sponsorship with four collaborators: Racal Research, Sys
tems Designers, PRG Oxford, and Surrey University. The objective was to
develop a specification support environment for Z which provided automated
syntax checking, ty-pe checking, and proof assistance. The prototype, lI'hich
did not offer any support for theorem proving but provided substantial SYn
tax and type checking, was distributed to a small number of development
groups for fJ evaluation. The general opinion from these groups was that
while certain improvements (e.g., performance) were necessa.:ry, such a tool,
particularly the type checker, was essential for most industrial developmen
tal work. At the completion of the Forsite project in March 1989 a first
attempt at an assistant for proof work had been made and the toolset had
been upgraded to take account of users' comments. The environment is now
available for commercial development.

A recent trend among groups using Z is to build their own customised ed
itors, parsers, and type checkers. Aiding these efforts has been the distri
bution of BNF forms of a. Z syntax definition [KSW88,SPI88bj. We lI'ould
like to further ease the difficulty of implementing a type checker for Z by
providing a specificatlon of an algorithm for checking an abstract syntax.

A complete specification would by its nature be so extensive and detailed
as to be extremely difficult to understand as a first introduction to the

2 2 NOTATION

problem. Taus we have decided to produce an overview, ra.ther than a.
complete specification. We have developed this specifica.tion 'With foltJ.lng in
mind - the outline given here is the top layer, 'With further details folded
below. We hope to impart a clear description of the opera.tional model for
the algorithm. The details which are omitted are straightforward variations
of those which are discussed.

The style ofpresentation is functional, rather tha.n state-based. The func
tional style i~ na.tural for transla.ting the type semantics given by J.M. Spivey
[SPI88a]. Indeed, many of the functions are "translitera.tions" of the corre
sponding deflnitions in [SPI88a]. The specification presented here describes
an abstract operational model, directly implementable with a. functional
language but suitable for implementation with an imperative language.

We first present some notational conventions, followed by a definition of the
abstract syntax understood by the algorithm. Section 4 describes the way
in which errors are reported, and Section 5 introduces the idea of types and
signatures. Section 6 describes environments, which serve as symbol ta.
bles. Section 7 discusses the concept ofnonnalised declarations, the dllving
force for Z type checking. Sections 8-11 give descriptions of checking vari
ous groups of syntactic constructs, culminating in a. function which checks
a complete abstract syntax tree for a Z document. Included is a description
of a unification algorithm used to infer types of expressions containing im
plicitly instaatiated generic objects. Finally we present a brief compaxison
with similar work and general conclusions.

2 Notation

The notation that we use is conventional Z with certain syntactic differences,
introduced simply as a shorthand. These can be easily (automatically) tex
tually expanded into conventional Z.

Many of the functions we define are conditional in that their value depends
on a boolean expression. We use the following more recognisable form:

value = i.f fJ
then X

else Y

3

V

3

to mean

(~ 1\ value = X)

(~~ 1\ value = y)

We use ellipses (...) within a declara.tion or definition to indicate that
there would be additional information in the complete spedfication. While
we freely omit information from the body (predicate) of definitions, we do
give complete signatures of all referenced terms. We use the data type
seq X so freqnently tha.t we adopt the convention that for arbitrary X, Xs
is shorthand for seq X. For example, SIGs is defined to be seq SIG.

Abstract Syntax

OUf algorithm opera.tes on an abstract syntax tree whose structnre ac<:ords
with the following syntax description. This is, with minor differences, the
abstract syntax proposed by J. M. Spivey.

[STRING]

word == STRING

decor === seq STRING

ident ::= [dent <: word X decor :J>

rename ::= Rename <: ident x decor»

decl ::= Ded <: (seq ident) X expr >

I Include < JdeJ :::»

4 3 ABSTRACT SYNTAX

pred ::= Equal <: ezpr x ezpr >
I Member <:: ezpr X expr >

I 7h.th

I Falsity

I No' < pred:>

I And < pred X pred :>

I Or < pred X pred :>

I Implies < pred X pred :>

I Exist8 <: scheroo x pred >
I Ezist81 <:: schema X pred::>

I Farall <:: schema x pred ,.

I Spred < 'de' :>

schema ,,= Schemo < (''''/l decl) x pred :>

optiooolexpr ::= Justerpr <: expr >

I Noc"pr

ezpr ::= Ref <: ident x seq eqJr >

Number <: word >
$expr <:: sdes >-

Ext <:: seq erpr >
Camp <:: schema X optionale:epr >

Power <:: e:r:pr >-

Thple <: seq erpr >
Seq <: seq e:r:pr >
Product <: seq e:rpr ::>

Theta <: word X decor ,.

Selec~ <:: erpr X ident :>

Apply <:: expr X ezpr:>

Lambda <:: schema x erpr >
Mu <:: schema x optionalexpr ::>

sdes ::= Sdes <:: word x decor X (seq erpr) X (seq rename) :>

5

4

sexp ::= Text <: schema>

I Srel« sdes >
I Snot <: Se'&p ;»

I Spre <: Selp >
I Sand <: sap X se;cp >

I Sor <: sexp X se;cp :>

I Simplies <: se;rp X sexp >

I Sequiv < sexp X sexp »

I Project <: sexp X se;cp »

I Hide <: sexp X seq sexp »

f Fatsemi <: sexp x sezp »

! Sexists <: schema x sexp »

I Sforall <: schema X sexp :".

arm ::= Arm «: ident X optiQnalexpr >

lhs :: = Lhs « ident X seq ident :»

para ::= Given <: seq ident »

I Let <: schema»

I Sdef <: word X (seq ident) X sexp ;)

I Pred <: pred :»

I Define <: (seq went) x schema>

I Eqeq <: Ihs X e.tpr »

J Data <: seq (ident x seq arm) »

I Theorem <: (seq ident) x (seq e;cpr) X pret1 >

spec == seq pam

Exceptions and Error Messages

Intuitively.. we would like to construct functions which, when dealing with
correct Z will calculate some value, but otherwise supply an appropriate
error message. \Ve make the following generic definition to capture this:

ResuU[X] ~~ X X ERROR

6

5

5 TYPES AND SIGNATURES

When an enOl is encountered, a. default value of the correct type is supplied
with the error message. Tltis allows type checking to continue whilst trap
ping and dealing with errors in an a.ppropriate wa.y. The error reports used
in this pa.per are described by the following da.ta type:

ERROR moot/OUM notlJalid~chema notpowertype badsubslitution
idnotdeclared ckar badunification badapplication

typevarsinpred

Use of the Result mechanism is described further in section 7.

Types and Signatures

We model the concept of a. Z TYPE with the following da.tatype:

TYPE ,= identty <: iden' >- - given set type
I pou",,,y <: TYPE >- - power type
I product'y <: TYPEs >- - cartesian product type
I schematy <: ident -++ TYPE) > - schema. type
I unity - error type

We can think of proper Z types for a specifica.tion as its given sets, power
sets of type6, cartesian products of types, and "schema bindingsn betw"een
identifiers and types. We introduce the unity type as a "univeral error
type" for expwssions which cannot be assigned a proper type because of
errors in the specification. This type is useful for reducing cascading of
error messages.

User-defined data types are not included as they may be viewed as derivable
from other Z constructions (see {SPI88bj).

A major task of the type checker is to calcula.te a signature for each identi
fier (including generic ones), which associates the identifier (and its generic
parameters) with its type:

GENTYPE == iden" x TYPE

BIG == ident x TYPE

GENSIG == ident x (seq ident) X TYPE

Signatures make up environments, which are used to detennine the variables
which are in scope for a given expression.

7

6 Dictionaries and Environments

The type of an expression in a specification depends on the definitions
in scope for that expression. Visibility of Z definitions is modeled using
enmronment8 which play the role of symbol ta.bles. Environments contain
signa.tures which are grouped into dictionaries. A dictionary contains a list
of generic signatnTe3. Entries with mill sequences of generic parameters
represent nongeneric axiomatic definitions.

DIeT == ident -++ GENTYPE

nulldict : DIeT

nulldid = 0

The use of Result is illustra.ted below in the definition of lookup, which
produces the generic parameters and type of any identifier stored in a given
dictionary, and a. default value plus erTor messa.ge for any not found.

lookup: ident --+ DIeT Re.•ltllt[GENTYPE]

'V id: ident; diet: DICT •

lookup id diet =

if id E dom diet then (diet id,clear)
else «< >, unity), idnotfound)

To project out the first element of a Re~mft (that is, its type) we define the
function value:

value ~= fir3t [GENTYPE, ERROR]

Another useful dictionary operation is addsig, which a.dds a simple signa.ture
to a dictionary.

addsig : BIG DICT DICT

'V id: ident; t : TYPE; diet: DIeT.

addsig(i,t)d= dfl' (i~ (o,t))

7

8 7 NORMALISED DECLARATIONS

An enmrollment c:onsists of an axiomatic dictionary and a schema dictionary
(dlstingui6hing between axiomatic and schema signatures is convenien t but
not necessary):

ENV == DICT X DICT

Given sets are added to an environment simply by recording that their types
are power sets of themselves:

installgiven : ident -+ ENV --+ ENV

'T/ given.'Jet: went; axddtBchemadct: DIeT.

installgiven given.'Jet (auld, 8chemadct) =
(addsig(givemet, powerty(identty givenset»axdct, schemadct)

We name Bome other useful environment operations, omitting the full defi
nitions:

azdi<;t , ENV ~ DICT

schemadict : ENV --+ DIeT

imiallgen.'lchemaMg : ENV -+ GENSIG -+ ENV

iNtallgivens : ENV -+ P ident -+ ENV

iNtallsigs : ENV -+ P BIG -+ ENV

iNiallgensigs : ENV -+ P GENSIG -+ ENV

The first two project the axiomatic and schema dlctionaries respectively from
an environment. The fUIlction installgen.~chemasig adds a generic signature
to the schema dictionary. The others add collections of signatures or gi....en
sets to an environment and would be defined in much the same way as
installgiven.

Normalised Declarations

The type checker must check each declara.tion with respect to its "current"
environment, and update this environment a.ccordingly. It does this by
transforming, i.e., normalising, defiD..itjons from the Z specification into sig
natures which it adds to the environment. Normalising a simple declara.tion

9

produces a signature which associates the declared variable with its type,
and for a schema name used as a declaration produces a list of signatures
which associate the schema variables with their types.

We first define some Ilseful "pseudo inverse'" functions. Intu.itively, these
functions behave as inverse functions provided that they are applied to values
in the range of their counterpart, otherwise they "except" supplying an
appropriate error message.

Often we need to extract the signature list from a schema type. Recall
that Bchematy is a constructor for the TYPE datatype, and is therefore an
injection with a functional inverse. We extend this inverse function to give
a total function on TYPE:

invschematy: TYPE --+ P SIG

Vty: TYPE.

(ty E ranschematy /\ invschematy ty = schematy-l ty) V

(ty = unity /\ invschematy ty = 0) V

(ty ¢ (unity Uran schematy) /\ invschcmaty ty = value(Ql, notvalid$chema))

Important Notes :

1.	 When the type checker meets the default type unity, it is the case
that an error has previously been discovered and an error message
generated. To limit cascading of error messages initiated from a single
error, no further error messages are supplied.

2.	 Notice that in the above function definition, since we extract only
the value component from the Result, the error message is logically
superflons. We have chosen to think of this function as returning values
of its range type P SIG when things go smoothly, while excepting
with a message together with a (default) value of the range type when
things go wrong.We could think of the function, value as having some
side-effect which deals with errOr messages in an appropriate way. To
be fully formal, we could have such functjons return the complete
Result, rather than just the vallie. To simplify subsequent refprences
to invschematy , we have chosen to express it as having range type
tha.t of the value. i.e., P SIG. The logically superflous information
contained in the above predicate is intended to guide the implementor.
We use this convention for all functions which possibly generate error
messages.

10 7 NORMAUSED DECLARATIONS

Very similar to inv.9chematy is the function invpowerty, which strips off the
P from a polL/my, and excepts with tmity and the error 'uotpowertype':

invpowerty: TyPE TYPE

Vty: TYPE.

(ty E ran powerty 1\ invpowerty ty = powerty-t ty) V

{ty = unity 1\ invpowerty ty = unity V

(ty fJ. (unity U ran powerty) 1\ invpowerty ty = 'Value('Unity, notpowert.ype))

For expreSfiioDs representing sets, it is useful to compute the type which
contaiul'i that set as a subset, e.g., intuitively, {:r: : N I % ~ 5} is a subset of
N. given that N is a type. (Note that the type of this expression is P N.)
To compute this "superset" type, all that needs doing is to find the type of
the expression and then strip off the "P" :

supertype : ENV erpr TYPE

Vetlv: ENV; ezp: erpr _

supertype ent! erp = invpt:Jwerty (typeoj ent! czp)

Note that the expression on the right might "except", producing an error
message and returning unity as the supertype. This is as intended, but also
as intended we need not concern ourselves in this function with the resulting
error messagB - rather we proceed as if a proper type was calculated,

Important Note - The function typeoj above, yet to be defined, calcalates
the type of an expression with respect to the current environment. In a
more complete presentation of this algorithm, we would combine HUpertype,
typeoj, and "ariouB other function definitions into one mutually recursive set
of a.'X.iomatic definitions. So that we can indivjdually explain each definition,
we present them here as separate definitions, The type of the function typeoj
is the same:a.s that of supertype.

11

Simple declarations

To normalise a simple declara.tion consisting of "variables: expression"

such as

"alb: X", the type checker simply builds signatureB associating each vari

able wi th the 8Upertype of the expression on the right of the colan:

l
I norrnDed, ENV - (,anD",l) - P SIG

env: ENVi idlist : Idrnts; exp: expr •

nonnDecl env (Ded(idlist, exp» =
ran(map(>. id : went. (id, ~upertypeenv exp)idlut)

where map is the usual function used in functional programming which may
be defined:

[I,X, Y]~~~~~~~~~~~~~

map,(X_ Y)-(I-X)-(I- Y)

Vfn:X- Y; ax: 1-++ X; i:1; y: Y.
(i,y) E (mapln ..) <> (3x, X. (i,x) E .. A Inx = y)

Named achemas

Normalising a declaration consisting of a named schema wi th possibly &ome
actual pa.ra.meters requires "unraveling" the schema. to its normalised com
ponent signatures, and then instantiating the generic parameters with the
actuals. We first define functions for the imitantiation, which will also be
useful for instantiating generic function applications, both implied as well
as explicit.

The function instant takes a list of substitutions, each indicating tha.t a
generic parameter should be replaced by an actual type, together Vr'ith a
type, and returns this type with the indicated substitutions. For example,
instant with the substitution {(a, P N), ({J,N)} and target type (ax{J) yields
(P N) xN. The definition of instant is recursive on the structure of the tuget
type. The base cases are: (i). the null substitution, in which case the ta.rget
type is left unchanged, (ii). the target type is unity ~ unity is returned, and
(iii). a simple identifier target type, in which case the target is replaced by
the indicated substitution if the identifier appears in the substitution list,
or left unchanged if the identifier does nor appear in the list.

12 7 NORMAUSED DECLARATIONS

GENPARAM == ident

imtant : (GENPARAM - TYPE) --+ TYPE --+ TYPE

Vsubst : GENPARAM - TYPE; taryetty; TYPE;
targetid : ident; ty9: TYPEs; binding: ident -1+ TYPE.

instant {} targettll = targetty
A

instant subst (idcntty eargetid) =

irtaryetid Edam ..mbst then subst targetid else identty targetid
A

instant suost (powerty taryeUy) = potOerty (instant 8ubst targetty)
A

in8tant subst (productty tY8) = productty (map (instant subst) t1/8)
A

in.dont subst (8chematy binding) = schematy (map (imtant 8ubst) binding)
A

instant sub8t unity =< unity

A declaration consisting of an included schema name may contain a decora
tion and some renames. The following two functions are useful for handling
these. The function deconJars decorates all the variables of a signatnre list
with a given decoration. The function renamevars renames all the variables
within a schema type according to a given list of renames. (It excepts, leav
ing the schmla type unchanged, if a new variable collides with an uncha.nged
original, or if a variable to be replaced does not appear in the original schema
type.) We omit the complete definitions for these two functions:

dernnJars : P SIC ---t decor ---t P SIG

renamevars: renames ---t TYPE ---t TYPE

The function mksubst constructs a substitution list of generic param.eters
paired whh instantiations, to be used by instant. Actual parameters axe ex
pressions, but mksubst constructs the substitution list using their super-types.
For example, if the generic parameter is /3 and the actual parameter is
{:l: : N I :z: ~ 5}, we treat /3 as being instantiated with N. The function
excepts if the numbers of the generics and the actuals supplied to it are not
equal, or if there is a repeat in the generic list.

13

mksv.bst: ENV --+ GENPARAMs -+ exprs --+ (GENPARAM ... TYPE)

Venv: ENV; gens: GENPARAMs; actual:J: exprs •

mksubst env g€ru aduols =

if(#actuals = #gens) 1\ (#gens = #raIJ. gens)

then gens-1 ; (map (supertyenv) actuaLs)

else value({}, Ixldsubstitution)

We now explain how to normalise a. declaration which is a. schemadesigntJtor,
consisting of a name of a. previously declared schema, together with optional.
decoration, actual parameters, and list of renames. The type checker must
look up the undecorated schema name in the schema dictionary, decorate
the va.riables in the stored signature with the decoration from the inclnded
schema nallle, rename the variables as indicated, ma.ke a substitution list as
sociating the 5upertypes of tIle actl.\aJ parameter expressions with the generic
types in the schema signature, and finally, replace the generic types iD the
signature with their corresponding actual. types. If the schema name is not
located in the schf'ma dictiona.ry, the function excepts.

For example, suppose the schema S is :

r:[:~;YJ
b: P Y

and the type cheeker encounters the decla.ration:

S'[{1,2),PNJls\aJ

The following steps should be takf'n:

•	 Look "Up S in the schema dictionary. This should give the generic type,

« X, Y >,sch,maty{(a,X),(b,P Y)}).

•	 Decorate the schema variables giving {(a',X),(b',P Y)}.

•	 Rename the schema variables as directed making the schematype {(a, X), (b', P Y)}.

•	 Make a substitution list: X N, Y PN.

14 7 NORMALISED DECLARATIONS

• Apply the substitution, yielding schematy {(3,N),(b' ,PN)}

This is the task of the function Normlnclude. It uses a. function:

I B8sign'l1ors: GENTYPE -+ TYPE

to assign t}'Pe variables to any generic parameters which have not been
instantiated. This is described further in the section on unification.

normlndude: ENV -+ (ran Include) -+ P BIG

Venv : ENV : wd: worn; dcr: decor : actuals : expr3j newnames : renames.

(normlnclude env Include(Sdes (wd dcr actuala newnames» =

if (e:z:ception t: clear) then value(0, schemanotdec/a.red»

else assign'IJors (gens, infJ8chematy (instant subst renamedty»

where

gens: GENPARAMs; genty, decoratedty, renamedty : TYPE;
eocep'icn: ERROR; ,.b,' : ''''l (GENPARAM X TYPE)

I «gen3,genty),eocepticn) = (lookup (iden'(wd,<>)) (,chemadi,' env))

1\ decorty = schematy(decorvar3 (inv8chematy genty) dcr)

1\ renamedty = renamevars newname3 decoratcdty

1\ subst = mksubst env gens actuals

The function norrnIndude defined above is quite useful- we shall see it again
when we deal with schemas as ordinary expressions.

We end this section by giving tbe function normded, which normalise5 an
arbitrary declaration. From the previously defined functions, we see that
for a simple declaration, normdecl produces a list associating each variable
on the left with the supertype of the expression on the right, and for an
included schema name it produces a list consisting of the unraveled schema
component signatures, properly decorated, renamed and instantiated:

nDrmdecl : ENV -+ decl -+ P BIG

V en'll : ENV; d: decl •

(d E (ran Decl) 1\ normdecl env d = normDecl en'll d)

V (d E (ran Include) 1\ nonndecl en'll d = normInclude efltl d)

8

15

Types of Expressions

Much of the work of the type checker consists of calculating the types of
expressions with respect to a cu.rrent environment. We examine in detail
the most interesting and/or abstruse of these calculations - that of a sim
ple reference to an identifier, a schema expression, a set comprehension,
and a theta term. We devote the next section to describing the type of a
function application and the unmcation involved in inferring implicit actual
parameters for generic functions.

A reference to an identifier (Ref <: ident X seq expr ::» consists af its
name and a possibly empty list of actual parameters. The type of the
identifier is the type found in the axiomatic dictionary for the name, with
the generic parameters replaced by the supertypes of the actual parameters.
The function typeo/Ref given below calculates the type of a reference to
an idenl, with a sequence of expr, possibly empty, as actual parameters.
(If the actual parameters are not explicitly given, the type returned is the
original generic type [or the identifier. This is sorted out elsewhere by the
type checker. As the Ref will be part o[a larger syntactic structure type
inference may be possible.) The function excepts if th.e identifier is not
found jn the axiomatic dictionary of the current environment. Exceptions
may also be generated by mksubst if the actual and generic paramete1'8 are
not consistent.

typeofRef : ENV ident ezprs -+ TYPE

Venti: ENV; id : ident; exps : ezprs •

typeofRef env id exps =
if exception 1: clear then tlalue(unity, idnotdeclared)

else assignvars (gens, 1nstant (mlcsubst entl gens ezpJ) gentype)

where

gens: GENPARAMs; gentype: TYPE; exception; ERROR

«genpamms, gcntype), ezceptwn) = lookup id (axdid env)

A schema designator may appear as an expression (Sexpr <: sdes ». For
example, if TABLE ~re deftned as a (generic) schema, then its occunence
in the declaration, tab: TABLE[SYMBOLj is as a schema designator
with actual parameter SYMBOL. The type of such a schema. expression
is intuitively the powerset of the schema type of the normalised signatures
of the designated schema components, properly instantiated, renamed and

16 8 TYPES OF EXPRESSIONS

decorated. The function normInclude, defined previously, handles these
matters. Thus typeofSexp defined below is nicely concise:

tvPeo/Sezp : ENV --+ 3des --+ TYPE

VentI: ENVi ad : sdes •

typeofSezp env ad =
1JOwerty (8chematy (normlnclude env (Include ad)))

In order to describe how to calculate the type of a set comprehension ex
pression
Camp « schema X optionalezpr >, we must first introduce the !lotion of
adapting an environment with new declarations. The function adapt up
dates an environment by installing normalised signatures of declarations. It
uses installsigs (a. function introduced in section 6) to add the generalised
union of the normalised signatuxe6 of declarations to an environment:

adapt: EHV -+ deds -+ ENV

VeT1.tI : ENV; dee8: deds _

ad4pt eT1.tI dees

installsigs env ra.n(U(map (nQtmdecl env) decs))

The type of a set comprehension expression is the powen;et of the type of
its "'defining term" wHh respect to the current environment adapted with
the contained declarations. IT the defining term is not explicitly given, it is
taken to be the ch.aractaristic tuple of the variables in the declaration. The
way in which. this characteristic tuple is built is described in [SPI88bJ.We
do not give the full definHion of a tuple- building function here. However,
its declaration is:

mkchartuple : decls -+ ezpr

Since the function mkchartuple can be used to make the defining term of a
comprehension, when determining the type of a set comprehensjon we need
only consider the case where the optional expression is present. This is done
by the function typtXJIComp:

17

typeo/Camp: ENV -0 (schema X apr) TYPE

'tJ env : ENV; det:s : deds : pre : pred; exp; expr _

(typeofComp env (Sehema(decs,pre), exp) = powerty (typro! newenv exp)

/I. (pre, newenv) E groundpreds

where

newenv : ENV I newenv = adapt env decs

Important Note - The set groundpred, discussed in section 10, describes a.
notion of predica.tes being type correct with respect to an environment. We
just note here that the predicate above about groundpreds is "'univena11y
true", but error messages may be generated through its "side effects".

A theta expression (Theta <:: word x decor:;») conIDsts of a name a.ud a
decoration. To determine the type of a theta expression, the type checker
retrieves the varial:Jles from the schema type stored in the schema dietiOllary
for the undecora.ted schema name, decorates these variables with the given
decoration, determines the types of these decorated variables for the cur
rent environment (hence these decorated variables must be in scope), forms
normalised signatures associating the undecorated variables with the types
of their decorated version, and finally, returns the schema type over these
normalised 6ignatures.

This has the consequence, described in [SPISSb), that the types come from
the current environment and not from the schema. So, for a schema S, lhere
is no guarantee that US E S. For a fuller description, see [SPlSSbl.

Decorating a single variable is stra.ightforward:

dectlar : decor - ident _ ident

V olddcr, newdcr : decor; name: word •

decvar newdcr (Ident(name, olddcr)) = lcient(name, olddcr'-' newder)) ~
Retrieving the variables from the undecorated schema name can be achieved
by treating the schema name as if it were an included declaration, aIld ex
trading them from the normalised signature. If the types of any of the
decorated versions of the variables is unity, the function initiates an excep
tion. Again we see normlndude used in the definition of typeo/Theta:

18

9

9 SCHEMA EXPRESSIONS

typeo/Theta: ENV _ (word x decor) _ TYPE

If env : ENV; name: word; dcr : decor _

typeofTheta env (name,dcr) =
if unity E newsig then value(unity, notinscope)

else schematy newsig

where ne11lsig : SIG; origvars : idents

I origvars =
dom(normlndude env Indude(Sde.q(name, <>, <>, <>)))

f\ ne11lsig =
(>. va,- : idem _ (var, typeo! env (decvar dcr var))) Corigvarsl)

Moving now from specific kinds of expressions to expressions in general, the
function typeo! defined below produces the type of any arbitrary expression
with respect to a given environment. Note tha.t the function typeol would
be mutually recursive with groundpreds and superty:

typeo! : ENV _ expr _ TYPE

f\ typeo! env (Re/(id,aetuals)) = typeo/Ref env id actuals

1\ typeof env (Sezp(sd)) = typeofSexp env sd

1\ typeo! env (Comp(schematerm,opexp)) =
typeofComp env (schematerm, opexp)

1\ typeof env (Theta(name, dcr)) = typeofTheta env (name, de,-)

This may be extended to cover all other Z expressions in the same manner
as those described here.

Schema Expressions

A schema. expression (sexp) consists of either a set of declarations together
with a predicate (typically expressed with the box notation), or some "log
ical" combination from the schema calculus of schema expressions (e.g., S
1\ T). The type checker unravels such schema expressions, producing nor·
malised signatures associating component variables with their types.

19

For a. schema expression consisting of a. set of declarations together wilh a.
predicate (Tezt <t: schema:;»), the function normTe:rt nonnalises the dec
larations and checks the predicate with respect to the current environment
adapted wi th the normalised declaIations:

normTezt : ENV -4 JJchema -+ P SIG

'" decs : decls; pre : pred •
normTeZ't mil (Schema(decs,pre)) = newMgs

1\ (pre, insta/lsigs env newrigs) E groundpred

where newsigs : 5IGS J newsigs = map nornulecl docs

A schema expression can reference another schema (for example, the right
hand side of T = 5[a\2:; b\yJ is a reference to schema 5 with z and y re
named to a and b). Nonnalising such a schema expression (Brei ¢: sde3 :;»)
simply involves treating the reference as an included schema declaration:

normSref : ENV - sdes -+ SIGS

'" entl: ENV; 3d: sdes •

normSref en" 3d = normlnclude env 3d

In order to normalise logical combinations of schema expressions the type
checker simply groups together the component normalised signatures. Check
ing that the resulting list of signatures contains no collisions is left to the
function nonnsezp, which is mutually recursive with normTezt, normSref,
and tbe other specific schema normalising functions (see below).

A representative logical combination of schema expressions is "schema and"
(Sand <: sezp x sexp:»:

noffnSand : ENV - (sexp x sexp) - P BIG

'r/ env : ENV; sf'XPJ, s~ : sezp _

normSand entl sexr>t seXFl =
(normsexp entl 8exr>t) U (normsexp enu s~)

The definitions for the other schema expression normalising functions, which
are all variants of the ones given above. The general function normse:z::p
given below takes an arbitrary schema expression and produces a normalised

20 10 UNIFICATION

signature list. It must ensure that there are no "collisions", i.e., redeemed
variables in this list. The funetjon rmcollirions chec.ks a set of s.ignatures
for collisions, generating a.n a.ppropriate error message for each one. Any
variables wHh colliding signa.tures "'ill be a.s5igned tbe type unity to allow
type checking to continue. We omit complete definitions for these fune tions:

I rmcollisions: BIGs - BIGs

MrmBe%p : ENV _ sexp _ SIG~

1\ normsezp (Tm(schematext)) = rmcollisions(normText env schematext)

1\ nQrmBezp env (Sref(schemades)) = rmcollisions(normSreJ env schemafle-::j

1\ normsexp env (Sand(se:lp:L, se~)) = rmcollision8(no-nnSand entl (seX!)l, sexPl))

Here, we do not give details of checking all schema operations. The general
approach is the same, with the following guidelines. Schema quantification,
hiding, projection and precondition all have tbe effect of hiding some of the
components of their argument schemas. Tbe components being hidden must
occur in the argument schema and have the same type as in the schema.
The type of the schematerm is the type of the original schema, but wi thout
the bindings of the hidden components.

The sequential composition, S; T, is well-typed when the dashed variables
of S match exactly the undashed variables of T. The resulting schema has
a type consisting of the bindings of all the undashed variables of S and the
dashed Y<l.I'iables of T.

IOUnification

The type system of Z depends only on the signatures in the environment
and not on any of the constraints, and it is therefore decidable1 . However,
because of the presence of generic definitions which may be used without ex
plicit imtantiation, type expressions may require unification to see whether
terms are correctly typed. The process of unification takes two (possibly

'The following acconnl of nnification in Z and the nnification algorithm itself are de
rived Crom the work of Mike Spivey. ThllJlks.

21

generic} types and discovers which (if any) instantiations of the generic para
waters would make these types match exactly. Z requires that we must be
able to find exactly one s11ch instantiation, and that no generic parameters
be left uninstantiated.

For instance,

0~3

is badly typed. The empty set is a generic constant having generic type
[X] p X. Since it is set-valued, there is no value fOf X that can unify
the type of i2I with N, the type of the right-hand side. In this case, no
instantiation would work.

Spivey[SPI88b] gives examples using the function firs' which gives the first
of a pair of objects. first has generic type [X, Yj p(eX X Y) X X). The
expression:

jirs'(QJ,3) E FN

is correctly typed since we can determine that first must be ine:tantiated
with P Nand N, and the empty set with N. However, the expre6sion:

jirst(3,0) = 3

is incorrectly typed. This time the problem is that there are too many pos
sible unifiers - the types of the occurances of /21 and first cannot be uniquely
determined. This situa.tion can always be resolved by explicit insta.ntiation
of the unknown parameters.

The type checker must report an error if either (i) the types assigned so far
indicate that a conflict has arisen, or (li) at a time when all generic types
should have been assigned actual parameters some of them remaln uninstan
Hated. The time for deciding (ii) is when an ":::'" or "E". or any relational
operator is encountered. It is not possible to accrue type information over
several expressions conta.in.ing different occurances of some generic object.
For instance, the expression:

(jirst(0,3) = 3) A (0 E F N)

does not determine the type of first, or indeed of the first OCCUIance of /21.
This is because the two occurances of the empty set are treat6Ml as separate
instances and both must be completely instantiated.

22 10 UNIFICATION

Unification works by assigning type variables to generic types and trying to
calculatE a unique instantiation of these variables. We extend our definition
of type to reflect this:

TYPE := identty <:: went >- - given set type
I powerty <:: TYPE >- - power type
I prod.ctty <: TYPE.:» - cartesian prodnct type
I 8chematy < ident -++ TYPE):> - schema type
I varty <t: name ;)- - type variable
I unity - error type

Example

As an eXilJDple, consider how the following expression would be type checked:

C2l = {S ,PN I S = C2l. 0}

As Doted above, the three occurances of Q:l are all dHferent and here we
number them jU8t to emphasize the point:

0,= {S,PN I S =0,. 0,}

The generic type of Q:l is [X] P X. For ea.c.h occurance of the empty set we
form its type using a type variable, taking care to use fresh variables each
time. Choosing the type variable 0: we can say that the type of the left-hand
side is Per:

0\:Pa

We must unify this with the type of the set comprehension term. So now
consider the tenn {S : P N I S = O2 • 0 3}. 10 type check a set we add
its declarations (in this case. S: P N) to the environment. In this extended
environment we must check the predkate S = 02, which involves unifying
the type of S with the type of 02. We will need a new type variable, (3.
with which to represent the type of the second occurance of the empty set.
With this we know that:

S,PN

and

0"P/l

23

Our aim is to unify the two types. This is easily achieved l\'1th j3 equal to N.
With this substitution the types of both sides of the relational expression
S == QI are completely and uniquely defined as required.

The defining term of the set expression is 0 3 and using another new variable
we represent its type as P')'. And so for the whole set comprehension,

{S: P N I S ~ 0, • 0,) : PP1

a!ld it is P P (' that we must finally uwfy with P Q. This tells us that Q must
be equal to P Il but there is no unique way to give values to a and " So
the e.'Cpression is incorrectly typed because it does not contain enough type
information.

Functions

As shown above, unification may be necessary for any two terms related
by some relational operator. At the beginning of this section 'We gave an
e.'Ca.mple where a function .a.pplication gave rise to a type error. Function
application is another form of expression where unification may be required.
Here we consider how the type checker should deal with a, function applica
tion.

A function in Z is just a set of ordered pajrs, and so will have type P(X x Y)
for some X and Y. possibly containing generic pa.rameters. A function
application is a tenn consisting of the function name and the a.rgument to
which it is applied. The whole expression is well typed if the argument bas a
type unifiable to X, and its type is Y (possibly with suitable instantiation).

Examples of possible situations arising from function application:

•	 first(3, 1) This is a well-typed term with all generic pa.ra..meters fully
instantiated. This instance of the function first has type peeN x N) x
N). The argument has type N X N and the t:,rpe of the whole term is
N.

•	 first(0,3) Using a type variable, o. we can represent the type of this
occnrance of first as P«((Po) X l'\l) X a). The argument has type
(Po) X N and the type of the whole term is (Po). The presence of
a. type varjable is acceptable at this stage because in a wider context
the function application tenn may well be related to some other term
which gives us more infonna.tion. For insta.nce. if the context were
first(0,3) E F N then we could unify a with N and all would be well.

24	 10 UNIFICATION

•	 first(3, 0) Using type va.riable, fl, first has type peN X P (J) X N) and
the argument has type N x P fl. The only potis.ibility for the type of
the whole term is N. But this bas no reference to the type variable,
/3, which would get left behind, forever unmstantiated. So we can tell
that, whatever its context, the function application cannot be correctly
typed.

To deal with all these possibilities the type cherker can behave in the follow
ing way when dealing with a function application. First, find the type of the
function (which is possibly generic aJld of the form P(X x Y)). Find the
type, Z, of the argument and unify this with X. Then use the information
gained from the unification to instantiate X and Y. There may be type
variables left in both X and Y. Type variables left in Y are permissible at
this stage because they may be given values by the wider context. However,
type varia.bles left in X which do not also a.ppear in Y have no possibility
of instantiation and a type error should be reported.

An algorithm for unification

A successful unification will return a (possibly empty) set of substitutions
assigning actual types to type variables. A substitution is represented as a
partial. injection:

SUBST == Ulord)o-l-lo TYPE

In fact, the Nsult is defined as belonging to the following type:

OPTSUBST ::= jus' -<:: SUBST :>

I nothing

which allows nothing to be returned when a type conflict is discovered. The
function unopt projects the substitution from an OPTSUBST:

unop' : OPTSUBST ~ SUBST

'</ s: SUBST. unopt (jwt 11) = S

To aid t.he description of the unification process we declare, but do not fully
define the following useful functions:

I applysub: SUBST ~ TYPE ~ TYPE

Given a substitution and a type the function applysub applies the substitu
tion to the type, yielding a new type.

25

I tyvars: TYPE --- P word

The function tyvGrs gives the set of type variable names which occur within
a. given type.

I order: TYPE ~ TYPE

The function order is used when dealing with i5chema. types. It forms a
sequence of all the types bound within the schema. type. the order being the
lexicographical order of the identifier names. Finally, we haVt> already used
the function

) assignvaT8; GENTYPE TYPE

which, for each uniusta.ntiated generic parameter in a generic type assigns
a fresh type variable, thus converting a generic type to a type with type
variables which were Dot previously in use.

The following function, unify, finds the unifying substitution (if any).

26 10 UNIFICATION

.nih: SUBST - (GENTYPE x GENTYPE) _ OPTSUBST

Ifs: SUBST; n: worn; t,u: TYPE; i: [DENT; ti,ul: TYPEs.
(unify s (uarty n, t):::

if n E dom s then (unify s «s n), t»

else (if n E uu then nothing

else just((s; (applysub{ n 1-+ uu}» u {n 1-+ uu})
where uu :::: applysub s t

A
unify s (t, uarty n) :::

if nEdomsthen (unifys(t,(sn)))

else (if n E uu then nothing

else just« s; (applY8ub{ n 1-+ uu})) U {n 1-+ Uti})
where uu :::: applysub s t

A
unify s (identty t, identty i) ::: just s

A
unify s (powerty t, powerty u) ::: unify stu

A
unify s (productty {},produetty (}) :::: just s

A

unify s (productty < t > '"'tl,productty < u >ul) :::

if ss ::: nothing then nothing

else unify (unopt ss) (productty tl)(productty ul)

where ss ::: unify stu

A
unify s (schematy t, sehematy u) ::::

if (dom t) :::: (dom u) t hen unify s (order (schematy t), order (schematy 1l))

else nothing
A

unify s (unity, t) = s
A

unifys(t,unity) = s ,
. . . for all other cases return nothing

With this function we can type check a function application term:

27

typeojApply: ENV -+ (ezpr X expr) -+ TYPE

Venv: ENV; 5, t: ezpr.

tyPetJ/Apply env (5, t) =
if (sub = nothing) then value(unity, badunification)

else (if (tyvars ss) ~ (tyvars

ttl then tt
else valuer unity, badapplication)

where ss = applysub (uoopt sub) stype /I.

tt = applysub (unopt sub) ttype
)

where stype, ttype : TYPE; sub: SUBST I
stype = typeo! env s /I.

ttype = typeof env t /I.

sub = unify 0 (stype, ttype)

11 Predicates

The type checker must make sure that all predicates are correctly t)'Ped.
We have represented this by the requirement:

(p, env) E groundpreds

for a predicate, p, and environment, env.

A predicate is correctly typed with respect to an environment if all its con
stituent terms and predicates are correctly typed. As discussed in the pre
vious section, unification may be necessary, and all type variables must at
this stage b@ assigned actual types by the unification process. The following
function to apply nnification and check for the presence of type variables
will be of use:

28 11 PREDICATES

unifypmJ , (TYPE x TYPE) ~ TYPE

Vs,t: TYPE_

unifypmJ(s, t) =

if (tyvars S8) = (tyvars tt) = 0 then S8

else value (typevarsinpred, unity)

where sub: SUBST; 88, tt : TYPE I
sub = unify {} (s, t) A

ss = applysub sub s /\

tt = applysub sub t

We can now define the set groundpreds:

groundpreds , P(pred x ENV)

V tl, t2 : e:z:pr; pl,p2 : pred; env : ENV •
(Equal(tl, '2), env) E groundpreds ..

unifypmJ(typeo! tl env),(typeo! t2 env)) E TYPE
A

(Member(tl, t2), env) E groundpreds ..
unifypmJ(powerty (typeo! tl env),(typeo! t2 env)) E TYPE

A
(Implies(pl,p2), env) E groundpreds ..

«(pl), env) E groundpreds A (p2), env) E groundpreds)
A

(Troth,env) E groundpmJs)
A

The idea. is that the test for membership of groundpreds is always satisfied
(since unifypred always returns a type), but performing the check would have
the side effect of generating appropriate error messages where necessary.

For a quantification, the predicates are checked in an environment updated
with the signatures of the quantified variables. Eg:

V decs : decls; pl,p2 : pred; env: ENV •

(Fomll(Schema(d,pl),p2), env) E groundpreds ..

«pl,newenv) E groundpreds 1\ (p2,newenv) E groundpreds)

where

newenv : env I newenv = in8tallsigs env U(ran(map normded decs))

29

A schema. reference used aJ; a predicate is correctly typed if all the com
ponents of the schema are currently in scope and have the same typf'5 as
in the schema.. The predicate part of the schema paired witb the current
environment must also be a member of groundpreds.

12 The Document

A Z specification is structured as a sequence of paragraphs, each be1.D.g a
declaration (of a schema, given sets, axiomatically defined constants, syn
tactic equivalences, or data types). a predicate (indicating a constrcUntj, or
theorem. To check a specification, the type checker checks each paragraph
with respect to a current environment, adapting this current environmellt for
those paragraphs introducing declarations. The first paragraph is checked
with re5pect to a primitive environment conesponding to the Z library. The
final result of the type checker after checking a type correct document is an
environment containing the definitions which are in scope at the top level
of the document.

We examine here paragra.phs introducing simple a.x.iomatic definitions, schema
definitions, and syntactic equivalences. Finally, we produce the function
which pulls everything together by checking the entire document.

A simple nongeneric axiomatic definition consists of a Bet of declarations
together with a predicate. The function installLet returns the CUJTeut en
vironment adapted with normalised declarations, and checks the predicate
with respect to this adapted environment:

instal/Let, ENV ~ (dec/9 X pred) ~ ENV

Venv : ENV; decs: deds; pre : pred •

in..c:taULet env (decs, pre) = newenv

II (pre, newenl}) E groundpred

where newenv : ENV I newenv = adapt env decs

A syntactic equivalence definition, which may be generic, equates an iden
tiller with an expression. The function instalLEqeq determines the type of
a.n expression with respect to the current environment with the generic pa
rameters added as given sets, a.nd installs the resulting ~neric signature
tuisociating the identifier with the type of the expression into the current

30 12 THE DOCUMENT

environment:

installEqeq: ENV - «ident X GENPARAMs) X expr) _ ENV

'r/ env: ENV; id: ident; gem; GENPARAMa; exp: expr •

installEqeq env « id, gens), exp) =
irntallgensig env (id, gens, (typeo! (innalIgivern env gens) ezp))

A schema definition, which may be generic, consists of a name which is
an undecorated identifier, possibly some generic parameters, and a body
which is a schema. expression. The function instaliSdef Dormalises a. schema
expression with respect to the current environment to which has been added
the generic paxameters as given sets, and then installs the resulting generic
schema tignature assodating the given name with the schema type of the
normalised signa.ture into the current environment:

installSdej: ENV _ (word X GENPARAMs x sexp) --. ENV

Venv: ENV; wd; word; gens: GENPARAMSj sexpr: serp _

installSdej env (wd, gens, sezpr) = installgenschemasig env

(Ident(wd, <», gens, normSexp (installgivern env gens) sexpr)

Given functions to check each particular sort of paragraph we can define
installpara which handles an arbitrary paragraph:

installpara : ENV _-10 para _ ENV

1\ imtalipara env (Given(ids)) = installgivens env (ran ids)

1\ irntallpara env (Le~(Schema(decs,pre))) = instailLet env (decs, pre)

1\ installpara env (Eqeq(Lhs(id, gens), ezp)) = irntallEqeq env « id, gens), ex!))

1\ ins~allpara env (Sdej(wd, gens, sexpr)) = installSdej env (wel, gens, SeZp1")

Checking the entire document

To check the entire document, the type checker checks each paragraph in
turn - with the first paragraph checked with respect to a primitive envi
ronment corresponding to a library. The result of this checking (ignoring
side effect error messa.ges) is an environment of signa.tures which has been

31

incrementally cOIl5tructed after each paragraph. We are now ready to define
a function which checks the syntax tree for an entire Z document. Its prim
itive environment would typically be ODe corresponding to the conventional
Z library, but it could be arbitrary (indeed, the Z library environment it
self could be generated with the null environment). The function checkspec
checks a document with respect to an arbitrary (library) environment:

checkspec ; ENV --t spec --t ENV

V primenv : ENV; doc : seqt pam _

checkspec primenv 0 == primenv 1\

checkspec primenv doc :::: checkspec (irntallpam primenv (head doc)) (tail doc)

13 Related Work

Peter Hancock has defined a type checker for the funcliona11anguage Mi
randa in Miranda itselflHAN87]. He represents success and failure with a
defined type reply. This type is used for functions which may succeed or
fail, returning a "proper value" upon success or a special value FAILURE
upon failure. However, in recognition that error-handling code tends to ob
scure the code for correct cases. in [HAN87/ Hancock has chosen to give
an abridged version which does not provide a.ny error messages indicating
the reason for failure. In Miranda, the only object that can appear as the
right haJf of a declaration is a type, so there is no notion of fiofTnolising a.
declaration· a major task for a Z type checker.

c. Sennett has produced a Z specification of a Z type checker, which has
been implemented at RSRE[SEN87]. He presents a model for a type checker
which operates in parallel with a one pass parser. The complete specific a,·

tion consists of a set of schema operations defined for syntactic constructs
individually presented to the type checker as they are parsed. For certain
constructs (e.g., the (J term), his model deviates from the type semanticS
given in [SP188aJ. This is in contrast to our abridged specifiation of a type
checker which checks a complete abstract syntax tree according to the type
semantics of [SP188a].

Two other type chec.k.ing systems have evolved from the Programming Re
search Group, Oxford. One has been produced by Mike Spivey and is known
ao FUzz.. Fuzz obtains its input by extracting the formal text from a LATEX
input file. Spivey provides a set of LATEX macros with which to write Z

32 13 RELATED WORK

text. It uses the type system described in [SPI88a] {or type matching, but
also uses type abbreviations when computing the type of expressions. This
allows more meaningful error reporting, reflecting the way in which. objects
have been defined. Fuzz initially loads a. "prelude" containing the mathemat
ical tool-kit definitions of [SPI88b], which can be extended or snb8tituted
if required. Fuzz is written in C, can work on pes and is commercially
available.

Bernard Sufrin has produced an ML parser and type checker for Z known as
zebm. He is currently producing a modular ML system known as hippo which
can be used as a front end to processing Z in many different applications.
The programs use ascii input (which can be supplied directly or translated
from other forms, such as QED output). They can take input from a file,
or be used interactively. The current environment can be interrogated to
find tbe types of particular identifiers or expressions. A standard Z library
database is provided for zebra. Again, this can be altered or other databases
used as required. The syntax UDderstood by the systems is dliferent from (in
general, more permissive than) that of [SPI88bJ. For instance, generic data
type definitions are permitted.. Also, the type system is somewhat different
witb overloading supported and objects treated in [SPI88bJ as generic sym
bols here viewed as functions. For example: foUowing [SPI88b] the relation
symbol would be an infix generic symbol with type:

~, [X,Y] PP(Xx Y)

zebra gives the type as:

~, [X,Y] P«(PX)x(P Y»x (PP(Xx Y)))

The use of "pseudotypes" allows the user to nominate certain sets to be
treated as much like types as possible, making reported types more recog
nisable to the user.

33

14 Conclusions

The model of a Z type checker that we present can be summarised a.c; follows:

For a Z abstract syntax tree, the type checker produces an environment of
signatures. These signatures indicate the generic parameters (if any) and
type 0/ each variable in Sl'1Jpp at the rop most level of the tree.. The type
checker builds the environment incrementally, starting with an environment
con-esponding to a predefinai library, and then checking each paragraph node
of the tree in turn to extend the enuitonment accordingly.

The key to incorporating new declamtion8 into an environment is a notion
of nonnalising tkclarotiom into signatures associating variables w1th their
types. For a simple declaration introdudng a variable drawn from an expres
sion representing a set, a signature is formed by a390ciating the variable. with
the type 0/ the expreS$ion with the P removed. For a schema name used as
a declaration, the normalised signature list consists of the nommlised com
ponent signatures.

The determination 0/ the type 0/ an expression is recursive on the strudure
0/ the e2:pt"Cssion. The type 0/ a !'chema c%pression, also recursively calcu
lated from its structure, J'ruJolves nonnalising the schema ez:pression into its
component signatures. Each 0/ these calculations may require checking a
predicate with Te.7peCt to an emnronment adapted with new declaratiOrLl.

EM'Or diagnostics are generated as side effects os the type checker triaits each
node.

Because the complete algorithm is very diverse with a high degree ofmntual
recursion, a single fully comprehensive specification would by its complex
nature not reveal a clear introductory overview of the approach. Specifying
how to check every possible form of expression wonld involve a good deal
of repetition of the techniques used. \Ve have therefore chosen to present
an abridged version directed at those wanting an introduction to the prob
lem. of implementing a. Z type checker. The various expressions chosen for
explanation are intended to form a representative sample, covering the ba
sic functjons of ~he type checker, and some of the less obvious detaiu too.
Thus we have presented an "underspecification", with details included ei
ther because they are essential for presenting the model (e.g., normalising
declarations), or because they a.re interesting in their own right (e.g., the 8
term).

34 14 CONCLUSIONS

Our original jmplementation of the type checker for the Forsite prototype
represented a transliteration of the formal definitions of [SPI888,] into the
language ML. using functions very similar to those described here. Since OllIS

Wall the first effort to build a. type checker for Z based on its denotational
sewa.ntics, we chose to focus on functional correctness. Little attention was
paid to implementation issues such as performance. but even so, the pro
totype system provided a useable type checker which indicated what could
be achieved if the prototype system were to be developed into a carefully
engine€red product.

35 REFERENCES

References

[KSW88] KING, SORENSEN & WOODCOCK Z, Gramma, and Concrete
and Abstract SyntaxES, Oxford University Programmimg Research
Group Technical Monograph, PRG 68.

[SPI88a]	 J. M. SPIVEY Understanding Z, Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press (1988).

[SPI8Sb]	 J. M. SPIVEY The Z Notation: A Reference Manual, Prentice
Hall International (1988).

[HANS?] P. HANCOCK A Type-Checker, The Implementation o(Func
tiona] Programming languages, ed. S.L.P. Jones, Prentice
Hall International (1987).

[SEN87]	 C. T. SENNETT Review af 1lJpe Checking and Scope Rules '/ the
Specification Language Z, RSRE Report No. 87017 (1987).

