r
Oy(m-,-{ L E P
"

P~

[N

Oxlciu Ox; IV

CORRECTNESS AND COMMUNICATION
IN REAL-TIME SYSTEMS

by

Steve Schneider

Technical Monograph PRG-84
ISBN 0-902928-63-5

March 1990

Oxford University Computing Labaratory
Programming Research Group

11 Keble Road

Oxford 0X13QD

England

Copyright © 1990 Steve Schoeider

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford 0X13QD

England

Electronic mail: sas€uk.ac.oxford.prg (JANET)

Correctness and Communication in
Real-Time Systems

Steven A. Schneider
Balliol College
Oxford

Snbmitted for the degree of Doctor of Philosophy, Michaeimas 1589

Abstract

This thesis builds upon the mathematical theory for real-time distributed cornput-
ing developed by Reed and Roscoe. Time-critical process constructors for mod-
elling timeonts, interrupts, and communication constructs, are defined interms of
the primitive operators of Timed Communicating Sequential Processes (TCSP).
The work on comimunication involves the modelling of channels, inputs, outputs,
chaining, and a cbaracterisation and analysis of buffers. These tools are applied to
the specification, censtruction, and verification of communication protocals, The
methods are generalised to apply to networks.

Real-time systems are inherently camplex, and this is reflected in the com-
plexity of the verification process. This thesis presents three useful verification
methods. The first is a complete compositional proof system for behavioural spee-
ifications on TCSP. The second invelves the definition of generic specifications
on processes, capturing those properties of component processes which combine
readily when constructing large networks. Methods of constructing and of identi-
{ying processes meeting such specifications are examined. and laws are farmulated
concerning tbeir interaction.

The third approach exploits the mappings between different models within
Reed’s hierarchy. A notion of timewise refinement is presented which allows simple
ptocesses to be refined by the introduction of timing considerations. Properties
which are preserved by timewise refinement are important, since there already
exist well-established techniques for proving that such properties held of processes
in models lower in the hierarchy.

Acknowledgments

I would like to thank my supervisor, Mike Reed, for his encouragement, advice,
and guidance during the course of this thesis. Thanks are also due to Bill Roscoe
for his invaluable comments and suggestions concerning this work. I am grateful for
the comments provided by Jim Davies, whose concurrent approach to the subject
has resulted in many fruitful discussions and collaborative results. This work has
also benefitted from conversations with and advice from Michael Goldsmith, Dave
Jackson, Stephen Blamey, Steve Brookes, Alan Jeffrey, Karen Paliwoda, Geraint
Jones, and many other colleagues in the PRG, and on the ESPRIT BRA-SPEC
project.

This thesis is dedicated to Flizabeth, for sharing the strain of writing up.
Thanks are also due to Mum, Dad, Chris, and Joy, for their love and suppart.

I am grateful to SERC for financial support during the course of this research.

Contents

1

2

3

Introduction
Notation
Additions to Timed CSP
3.1 Delayed Sequential Composition
32 Ipdexed Choice
3.2.1 Arbitrary non-deterministic choice,
322 Indexed prefixchoice
33 An alternative syntax for TCSP oL
3.4 Derived Operators L.
341 Timecut
342 Tireout
343 Interrupts
35 The After OQperator
3.6 Infinite behaviours Lo
Factorising Proofs
4.1 Behavioural Specifications oL L
4.2 The proof systemfor TMp
4.3 Soundmess
44 Completenessl
4.5 A treatmentofstability 000,
4.6 The proof systemfor TMer
4.7 Soundness and Completeness.
Aspects of Good Behaviour
5.1 Nomretraction. e
5.2 RBResponsiVEness e e
53 Promptness
54 Impartiality o
55 Limitedon A
5.6 Bounded Seability Lo
Timewise Refinement
61 Themapping@ i
6.2 Weak Timewise Refinement
6.3 Strong Timewise Refinement
6.4 Other Timewise Refinements

7 Communication
7.1 Definitions,o
7.2 Reat-time Buffers
73 Chaining L
T.4 Networksof processes

8 Examples
81 ATimeServer. i
6.2 Time Division Multiplexing
8.3 A Watchdog Timer
84 Some Simple Protocals L.
8.4.1 The Stop and Wait Protocol I
8.42 The Stop and Wait Protocol 1T
8.4.3 The Alternating Bit Protocol
8.4.4 The Sliding Window Protacol

9 Conclusions, Comparisens, and Future Work
9.1 Conclusions
9.2 CompariSons« e e e e e e e e e e e
9.3 Future Work Lo

A Mathematical Proofs
Al Thehidinglemma.

B Semantic Models and Mappings
B.l Reed’sHierarchy «......
B.2 Semantic Models and Mappings
B.3 Semantics for TCSP with process variables

Bibliegraphy

Index of Notation

(=]

124
124
126
130
133

137
137
139
141
145
145
154
155
159

182
162
164
174

178
178

184
184
185
198

205

210

1 Introduction

The theory of Communicating Sequential Processes { CSP) [Hoa85] has matured
into a complete methodology for the analysis of concurrent systems. [t provides
a complete [ramework for systemns design, from the capture of liveness and safety
specifications, through the development of CSP programs, to the verification of
systems. It supports program refinement, and provides the theoretical fourdation
for the occam languages. General methods concerning many important aspects of
concurrency {for example, deadlock-freedom) have been developed.

The jnclusion of real-time considerations in the theory of CSP was first at-
tempted in [Jon82]. However, technical difficulties made the treatment difficult
to apply. The introduction of mere successful real-time models {[RR86, RR87,
Ree88)) for CSP is relatively recent. Although such models enable the rgorous
analysis of processes whose description involves timing considerations, the develop-
ment of general techniques for such analysis is still in its infancy. Reed provides a
theoretical basis for the specification and verification of timed processes in [Ree88],
but any application depends upon manipulations of the axioms of the semantic
model TMrg, and this makes proofs extremely arduous. We need to develop gen-
eral methods for reasoning about time-critical and time-dependent behaviour, in
the way that the high level theary for CSP rests upon the semantic models for the
language.

Any effective model for real-time distributed computing should enable the
mathematical definition of temporal concepts such as timeouts, interrupts and
priority, and should support the definition of new process constructors (for ex-
ample, a timeout operator). An adequate treatment of communication is also
required in order to analyse processes whose characterisatjon involves the use of
communication channels, such as huffers, protocols, and pipes.

The motivation for providing a formal semantics of a computer language is
to allow “programmers to make rigorous statements about the behaviour of the
programs they write” [Sto77]. Qur primary concern is to use the timed models
to express time-dependent specifications, and to prove that these are satisfied by
candidate processes. There are a number of fruitful approaches we can take. In this
thesis, we examine three possibilities: the use of the compositional nature of the
sernantics to break down proof obligations to manageable proportions; the creation
of a library of common specifications, sucb as ‘the process will respond withjn ¢
seconds’, and developing techniques for recognising and constructing processes
meeting them; the exploitation of the hierarchy of models defined in [Ree88] so
that verifications in simple models remain valid further up the hierarchy. We will
see that each approach insulates us from much of the detail present in thesemantic

models.

The thesis is organised as follows. In chapter 2, we introduce some new nota-
tion for reasoning about timed behaviour. The following chapter introduces new
process wonstructors, including operators for time-critical constructs. In chapter 4,
we present a complete proof system for the timed failyres model { TMr) of Timed
CSP {TCSP), and consider how it can be extended to the timed failures stability
model. Chapter 5 inlroduces a series of families of specifications, and examines the
relationships between them. In chapter 6, we define two forms of timewise refine-
ment, and consider their use in verification. Chapter 7 defines several concepts for
communication, and analyses the behaviour of processes that involve their appli-
cation. Chapter 8 illustrates the methods and constructs of the previous chapters
with examples. The final chapter contains a comparison of our results with existing
work in the literature, and a discussion of future research directions.

QOur aims in this thesis are to ease the high level specification of real-time
systems. to facilitate the construction of TCSP programs, and to provide tech-
niques for verification. In particular, we consider these techniques in the context of
new coenstructs for both time-critical behaviour and point-to-point communication.
In this way, we lay the foundation for a powerful specification and development
methodalogy for real-time concurrent systems.

2 Notation

We use the notation of [Ree88], and introduce some new definitions. A glossary of
the notation introduced here is provided at the end of this dissertation.

Recall from [ReeB8] the universal delay constant &, which represents the time
taken for a process to make a recursive call, or to recover from the performance
of an event. We assume in this dissertation that the duration § is significantly
smaller than one time unit (no greater than .1 time units).

Timed Traces

Timed traces are finite sequences of (iime,event) pairs where the times associated
with the events appear in non-decreasing order. Timea are drawn from [#, o),
and events from the universal set of events £. The set of all possible timed traces
is denoted TEy. We wrile 5,52 Lo represent the concatenation of traces s; and
sg, and #s to represent the length of 5. As in [HoaB5], we define the relation in
as follows:

spinsy & Ju,veuTs v =5

Tbis relation holds whenever the first trace is a contiguous subsequence of the
second.

The first and last operators are defined upon non-empty traces, returning the
first and last events in a trace, respectively:

first({(t,0))7s) =@
lest(s~((1,a))) 2 @
To ease the subsequent mathematics we allow first({)) = last({}) = ¢ for some

object € € B (suggested by J. Davies). The begin and end operators are defined
for al} traces:

begin({}} = o0
begin({(t,a)}"s) = ¢
end(() = 0
end(s™{(t,a)) = 1

Again, the values chosen for the empty trace are the most convenient for the
subsequent mathematics.

The @n operator returns the nth timed event of a trace. It is defined as follows:

({@n = (o00,¢)
({(t,e))7s)@1 = (1,0
{(1.a))"s)@{n+ 1) = sQn

We define the during, before, and after operators on timed traces. The first returns
the subsequence of the trace with times drawn from set J. The others return the
parts of the trace before and after the specified time.

G011 = §
((t,an™s) T = ((t,a))"(sT1) ftel
(s1 1 otherwise
Hre =0
({((#,a))y"s) Tt = {((Fa))y(ste) 'St
{} otherwise
st 2 sT(teo)

where [is a set of time values. In the case that I = {¢} for some time £, we may
omit the set hrackets. The before operator, [, is also used to denote the restriction
of a trace to events drawn from a given set of events. If the second argument of
the operalor is a set, then:

Ora =
{(ta))"s) TA = ((ta)~(s1 4) ifae A
({(t,a))"s)tAd = st A otherwise
(e an~ s)rA 2 ((t,a))" (st A) ifac A
({(t,an~s) 1 = st A otberwise

If timed refusals are not heing considered, the events in a timed trace may be
labetled with hats, to indicate that they have occurred at the instant they became
available; the operator hstrip strips the hats from a timed trace:

hetrip((}) = ()
hstrip({(t,a))™s} = {(¢, a)) " hsirip(s)
bstrip(((t, 0)™s) = ({4, @) ~hstrip(s)

Following Reed, we write & for hstrip(s).

The operator istrip strips the timing information from a trace:

tstrip{(}) {}
tstrip({(1,a)}7s) = (a) " tstrip(s)

Iz

We use thstrip to denote the composition of these two functions.

We define an operator o on traces, which yields the set of events present in the
irace:

a(s) = {acB{Ite{(t a)}inhstrip(s)}

Note that we discard the ‘hat’ laformation when considering which events are
present in a trace.

We define a temporal shift operator:

0=t = g

(ha)re) =t 2 (1 tia))~s =) ift >t
({(ti,a))"s) =t s=t otherwise

and a count operator, | , which returns the number of occurrences of events from
a given set:

ix

([

slA = #(sl4)
In the case that A = {a} for some event ¢, we omit the brackets.

The following functions are used in conjunction with the corresponding TCSP
operators. We define a simple hiding operator on traces, with the effect of removing
hidden events:

s\A = sH{E-A)

and an equivalence relation = on timed traces as follows: u = v if and only if u is
a permutation of v. As both are timed traces, only events occurring at the same
time may be interchanged. Formally, ¥ = v precisely when there is a bijective
function f : {i e N | 1 € i € #u} = {i e N | ! € i € #u} such that
Vie{ie N| I <i<F#u}eu@i=08f(1).

Finally, we define parallel operators on traces, corresponding to the effect of
parallel composition in Timed CSP. These are used in the semantic equations.

In

{s|slX=unstY=vAst{XUY)=5)
{sIVtestTt=(al)™ v11)}

u iy v

ulllv

il

We write Tmerge(u, v) Lo denote the set of all traces in Tﬁ;: obtained by inter-
leaving « and v. When & = § we define the trace s = u V v to he such that § = #,
and the nth element of 5 is hatted precisely when the nth element of uor v is,

Timed Refusals

Recall the definitions from [Ree88]:

TINT = {(Lr)llreRADPL!I<r<oo}
RTOK {IxX{IeTINT AX eP(E}}
RSET {LUZ | Z € p(RTOK)}

I

I

Refusal tokens are drawn from RTOK. Each refusal token is the cross product
of a haif open interval of times, and a set of events, and is therefore considered
as a set of (time,event) pairs. Refusals ® are drawn from RSET, and therefore
consist of finite unions of these refusal tokens. Hence a refusal set is also a set of
(time,event) pairs.

A number of the operators of the previous section have a similar action when
applied to timed refusal sets, If we make the definition

IR) & {t|JeeTa(ta)ER]}

then wecan define begin and end on refusals, to be the infimum and supremum
respectively, of the times at which events are refused:

begin{R) £ oo ifR=0

begin(®) = nf([{R)) otherwise
end(R) = 0 fr=40
end(R) = sup([(R)) otherwise

The tefore, after, and during operators can be defined on refusals:

REE 2 ®N([0,¢) x D)
Bt = RN([t,00) x T)
RT[tt) = RN([t. L) x E)

Recalling that £ denotes the set of all events, we see that these restrict a refusal
set Lo events that may be refused before, during, and after the specified times.

We overload the | symbol to denote set restriction:
RIA = RN([0,00) x A)
with hiding defined in terms of restriction:

RVA = RI(E-4)

8

We define a temporal shift operator on refusals:
Rt = {(t;, —t,a)|{t,a)ENAL 21}
We define an alphabet operator a:
aR) = {acI|3te(t,a)eR}

All of the operators on refusal sets may be extended to infinite refusal sets
(which are discussed in chapter 3)
Failures

For convenience, we extend some of the above definitions to individual timed
{trace,refusel) pairs, which are termed failures.

begin(s,R) = min({begin(s), begin(R)})
end(s,R) = mazr({end(s}, end(¥}})
(W11 = (sTILRTT)

(s,R) £ = (slt,N]1)

(s,8)1¢t = (s11,R1¢)

o(s,R) = eo(s)Ua(l)

(5,0 =t & (5=¢,R=1)

(1A = (sTANTA

(s,)V 4 = (s\ AR\ A

We define a predicate A on failures, to indicate that the set A is forced over
the entire behaviour, and hence that all occurrences of events from A4 in the trace
happen as soon as possible. Such a failure is termed A-active.

A(s,R) = [0,end(s,R)) x ACTR
This allows an alternative formulation of the semantic equation for hiding in TMp:

FrlP\VA]l = {(s\ AR-N)|A(s,R) A (5,R) € Fr[P] A o(W) C A}

Processes

The functions traces, fail and stab are defined on sets of {trace,stablity, refusel)
triplesas in [Ree88):

traces(P) = {s|(s,a,%) € P}
fedd(PYy = {(s,®)|(s,a,%) € P}

stab(P) = {(s,a)|(s,a,R) € P}

SUP(PY = {(s,e,®)]| (5,R) € fail(P) A a=sup{B]|(5,5,%) € P}}
Cla(P) = {{s,a0,R)] Aw,a,¥) € Pow=s}

These functions are extended to apply to TCSP processes, by applying them
to thesemantics (in TMfss) of their arguments.

Weextend the alphabet operator to TCSP processes:
o(P) = |Ho(s)| s € traces(P)}

and observe that this differs from the alphabet concept nsed in other versions of
CSP (eg. [Hoa85]). The operator defined here only allows events that a pro-
cess may perform to be included in its alphabet, whereas the alphabet concept
in [Hoa85] also allows events that the process cannot perform to appear in its
alphabet.

Weuse 7, S, F, and £ to denote the semantic mappings from CSP to Mr, Ms,
Mr, and Mpg respectively. We use Tt, St, Fr, £%, and £7 to denote the semantic
mappings {rom TCSP to TMy, TMs, TMr, TMjg, and TMrs respectively (see
appendix B).

We use the = relation between TCSP processes when they have the same
semaatics in the model TMps (given in [ReeB8] and reproduced in appendix B.2).

P=Q = ETﬂP]=ET!IQ]I

If two processes are equivalent in this sense, then they will also have the same
semantics in TMy. Hence the laws given later for TMrs also hold for TMy.

The set of the possible initial events of a process P is denoted inits(P). It is
defined by

inits(P) = {a|3te{(ta)) € traces(P))}

Asin untimed CSP, we may label processes by applying an alphabet transfor-
mation to them,

1]

iiP = f(P)

10

where f;(a) = i.afor all events 2 € £\ {/}; but termination is still signalted by
so we have f;{(v) = /. The labels may be removed by applying f,~! to the process.
We define rem;{(P) = f~'(P).

Finally, we will use an indexed parallel operator, with finite indexing set, as an
abbreviation for a zequence of binary parallel operations. It is defined inductively
on the indexing set:

I

P;
{A]egige}

Poz (|l POy, qqutollan, Pre
{X,)Igign+ 1) {X,1Kign}

Py, Ny, Pr

I

when n 2 2. ‘This indexed parallel operator is entirely similar to the untimed
version, and so we have the standard result that the order in which the (P;, X;)
pairs are labelled does not affect the semantics of the parallel composition.

11

3 Additions to Timed CSP

The semantic models presented in [RR86, RR87, Ree88] (reproduced in Appendix B)
provide a secure foundation for the modelling of real-time concurrency. In this
chapter we build upon that foundation by defining new syntactic process con-
structors in terms of the basic ones, thus guaranteeing their well-definedness and
continuity. These operators include both timeout and interrupt, which allow the
explicitintroduction of such hehaviour into a process description. We also propose
a defining equation for arbitrary non-deterministic choice, and see that it is not
always vell defined. We discuss a timed affer operator, and the notion of infinite
behaviours, which will be used to succinctly capture particular desirable aspects
of behaviour in chapter 5, and to define strong timewise refinement in chapter 6.

3.1 Delayed Sequentizl Composition

The semantics given for the sequential composition operator P ; ¢} allows instan-
taneous passing of control from P to @, at the moment that P successfully termi-
nates. This may introduce unwanted non-determinism, since both P and @ may
perform events at the instant of P’s successful termination. If an event is pos-
sible for both processes then the choice between them will be non-deterministic.
In many cases the complexity introduced by this behaviour is not necessary for
correctness of processes, and serves only to make verification more difficult. We
shall seewhen we consider the proof system that it is easier to analyse a sequential
operator that enforces a delay between successful termination of its first operand
and the passing of control to its second. We sball also see, in Chapter 6, that it
is advantageous to use the delayed sequential composition operator in producing
timewise refinements of untimed CSP processes.

We define the new sequential composition as follows:
Pi@ = P,WAITS; @

It follows that ; is well defined and continuous, since it is defined in terms of
the basic TCSP operators. We can derive a semantic equation for P§ @ in the
evaluation domain TMps from the equations for the sequential operator ; and
WAIT § . This may be simplified to eliminate the closure operator ClLe, whose
presence in the equation for P; @ is made necessary by the instantaneous passing
of control.

12

Theorem 3.1.1 For any P and @, the semantie equations for P § @ may be
written as follows:

Er[P3Q] = SUP{(s,0,R)|v go(s)AVIETINT o
(s, R U (I x {v})} € Er[P])
U
{{(s,e,®) | F2 v o(s]t)
Als T (R TEu([0,8) x {v]) € faillEx [P])
Als=(t+8),a—(t+8),R=(t+8)e&r[QD

r[P3 Q]

SUP({(s.a, X} | v ¢ a{s) A (5,0, X U{v}) € £2[F] }
U
{(s,a, X)| At e (s 1 £)™{(¢,¥)) € traees(EL[P])
AVEaGSTHAST(LE+H =}
Als=(t+8).a—(t+6),X)e&r[Q])

Observe that SKIP ; P = WAIT §; P, and that WAIT t3 P = WAIT (1t +6); P.
The § operator cannot be used with the WAIT construct to introduce delays of
length less than 4.

This new operator obeys many of the laws which hold of the original sequentiat
composition operator:

(a—=P)s @ a— (P3;Q) (a# V)
(P;@)sR = P3(Q3R)
(WAIT ¢, ||| WAIT L) s P = WAIT min{t;, &} 3 P

However, other equivalences are no longer valid because of the delay in transfer of
control:

WAIT t; 3 WAIT t, # WAIT (i) +)
SKIP}P # P

In place of the first of these we have

WAIT t, s WAIT ty, = WAIT (¢ + tg +4)

13

3.2 Indexed Choice

3.2.1 Arbitrary non-deterministic choice

We define an indexed non-deterministic choice operator, while recognising that
it is does not always have a well-defined semantics, and does not provide for an
effective treatment of unbounded non-determinism which does not manifest itself
in a finite time. However, it is useful in many situations, such as the modelling of
a process which may terminate at any time chosen non-deterministically from an
interval,

The addition to the syntax of TCSP of an infinite non-deterministic choice
operator involves an extension of each of the semantic mappings (see appendix B)
from TCSP to the various timed models:

Definition 3.2.1 We eztend the semanlic mappings to the timed models as fol-

lows:
STHHP‘}] = SUP(‘EJIETHP.-]])
s;[ﬂp;]] = SUP(%E}[P,-]])

Iy

fz‘f[l—l £ U Fr[P]

ief teq

s2[[#] suP(lJSr[PD

13 el

=[P = Unlpi

wel ied

I

1>

However, the mappings are not in general well defined: the set SUP(|J;es E7 [[P.])
satisfies all the axioms of the model TMrs (reproduced on page 194) with the
possible exception of axiom 9, the bounded speed axiom (also axiom 5 in TMF,
axiom 6 in the other models). Recall that this axiom states that
Yi€[f,00),IneN,Vs € traces(S) e end(s) £ 1 = #s<n
for any element § of TMyps. Now consider
P, = STOP
Py, = P,|||le— STOP

P = []nr

nEN

)

14

For every n, process P, may perform n a's at time 0. Hence there is no bound on
the number of a's that P, the non-deterministic choice of all the P,, may perform
at time 0; so axiom 5 does not hold of our proposed semantics for P.

If we wish to use an infinite non-deterministic choice operator, we must take
care that this problem does not arise, by ensuring that the set of processes over
which the choiceis made has a function which places a bound upon the speed of
all the processes in that set.

Definition 8.2.2 A set {P; | i € [} ts untformly bounded in TMps if

In:[0,c) =N Viel,te[0,00)0
s € traces(é"r[P,-]) Aend(s) 1= #s < n(i)

This definition extends to the other timed models in the obvious way.

The function n provides a bound for the speed of each of the processes sep-
arately, and thus upon the speed of the non-deterministic composition, and will
ensure that |J;c;E7[P:] satisfies the bounded speed axiom. Observe that any
finite set of processes is uniformly hounded in each timed model.

If a set of processes is not uniformly bounded, then the bounded speed axiom
will not hold of |;cr €7 [P,] . Thus we bave a necessary and sufficient ¢ondition
for £r |I [Nicr P.']I to be well-defined:

Lemma 3.2.3 &r [ﬂ'el P.-] s well-defined if and only if the set

{P,|iel}

is uniformly bonnded in TMrg.

This result extends immediately to the other models.

A useful result we obtain from this analysis is that we are able to model a delay
wbich is non-deterministic over some interval. For all {, the process WAIT t has
its speed bounded by A¢ e 7, since it may perform at most one event. Hence,
for any set T € [0,), we have that the set of processes {WAITt | 1€ T} is
uniformly bounded, and so [],.p WAIT t will have a well defined semantics; we
will abbreviate it WAIT T

Corollary 3.2.4 The semantics of the process WAIT T is always well defined,
where

I

WAIT T |‘| WAIT ¢

€T

15

3.2.2 Indexed prefix choice

As we shall see in chapter 7, indexed prefix choice is required for the definition of
inputting a message onto a channel. Such a construct cannot be modelled with
binary deterministic choice if the number of possible messages for the channel is
infinite,

Definition 3.2.5 We eztend the semantic mappings of the timed madels as fol-
lows:

Erfa: A= P = {(0,0,R)]| ANa(R) = 8}

U{{{{t, a)y™ (s + (1 +6)), o+ 1+ 6,R) |
a€EAMNIZO0ANANGRTE) =D
As,o, R = (t+6)) € Er[P(a)]}

E£rfa:4— P(a)]

Ib

{(0,0.X) | AnX =6}

U{(((8,a)(s + 6),a + 6 X) |
a€AA(s,0,X) € Ex[P(a)] }

V{{{{(t,a)) (s +t+&)a+t+6, X)|
a€ANLZ0A(s,0,X) € EF][P(a)]}

frl[a: A— P,]

[

{((LR) | Ana(X) =D}

U{{{(t, a)} (s + (1 + 6)),8) |
a€AAtZONANSRIE) =D
As,R=(t+8)) e Fe[Pla)] }

b

Stla:4— P(e)] {(0. 0}
V{({(0.8))~(s + 8),a + 6) |a € AN (s,a) € Sr[P(a)]}

U{{{{t,a)y (s+Et+ 6 a+t+8)]
ace AAt20A(s,0a) €ST|IP(0}]|}

Trla:4— P(a)]

1l

{0}
u{{(0,a))~(s+6)|a€ Ar e Tr[P(a)}}
U{{t,a) s+t +6)lacArt20A s € Tr[P(a)]}

16

Recall that in the models without timing information, the presence of a bat on an
event in the trace indicates that it happened at the moment it became available.

It should be noted that the same clash with axiom 5 arises with the treatment
of indexed prefix choice. Recalling the processes P, defined above, it can be seen
that the semantics of » : N — P, will not meet that axiom, for exactly the same
reason as in the case of the infinite non-determinism operator. To define infinite
prefix choice, the same condition is necessary and sufficient:

Lemma 3.2.6 The semantics of a : A — P(a) is well-defined if and only if the
set of processes {P{a) | a € A} is uniformly bounded.

3.3 An alternative syntax for TCSP

As we shall see, the instantaneous sequential composition operator is awkward to
use both in the proof system and in timewise refinement; the closure operator used
in the defining equation gives rise to unnecessary complications in the associated
proof rule, and in conditions for preservation of timewise refinements. By using the
delayed sequential composition operator we can bypass these problems. However,
if the first argument is a simple delay, then the complications do not arise. Hence
we retain the delay operation WAIT t; P.

We will use the syntax given below as our language TCSP. We have added the
two indexed choice constructs, and bave replaced instantaneous sequential cormnpo-
sition with delayed sequential composition. We have retained the instantaneous
sequential composition operator when it is used with a WAIT ¢ command. With
the exception of these alterations, the syntax is identical to that defined in [ReegE].
Our syntax for T'CSP is given as follows:

P u= STOP | L | SKIP | WAITt |
a+P|a:A->P)| POP |[]P | POP |
PP PP | PINIPI
WAITt; P | P3P | P\A |
[THPY L f(P) | pX e F(X)

17

If we wish to give a more explicil semantic treatment of recursion. then we nse
a syntar with process variables, as follows:

P u= STOP | L | SKIP | WAITt |
a- P |a:A— Pa)| PnP | []|P| POP |

PP PlgP | PP
WAIT1:P | P3P | P\A |
J'PY LI | X | pXeP

where X is of type var, the set of process variable names. This approach is more
laborious, since the semantic equations require environments, which are only used
explicitly in the definition of recursion.

The syutax above gives rise to TCSP terms. The processes STOP, SKIP,
L and WAIT ¢! have no free process variables; X has as its set of free process
variables the set { X}, the set of free process variables of g X » P is that of P with
X removed; and the set of free variables of any other compound process is the
union of the sets of free variables of the component processes. Any TCSP term
which has no free process variables (in the sense of [Ros82)) is a TCSP process.
The semantics of a TCSP process is independent of the environment in which it
is evaluated, so the semantic equations give rise to exactly the same semantics as
that provided by the equations given in [Ree88).

We will use the syutax with variables in chapter 6, where an explicit treat-
ment o recursion is required; with the exception of that chapter, we will use the
syntax without variables throughout the thesis, although we are aware that we
could provide a more explicit (though more laborious) justification of our results
if required.

3.4 Derived Operators
We make implicit use of the following lemma in the construction of these operators:

Lemma 3.4.1 ¢(P)NX ={)=>P=P\ X

This lemma states that the hiding of an impossible set of events from a process
will not alter the behaviour of the process.

Our motivation for defining the following operators by syntactic equivalence is
that we automatically obtain the result that the operators are non-expanding. In

18

practice, when reasoning about processes built with these operators, it will usually
be easier to use the derived semantic equations.

3.4.1 Timeout

QOne important aspect of time-critical hehaviour is the timeout, where control is
passed from one process to another if the first performs no external actions in a
given period of time. This behaviour can be modelled in Timed CSP.

Definition 3.4.2 The timeout operator (& is defined as follows:

P Q = rem((i: PO WAIT ¢ ;trig — i : @)\ {trig})

If i : P performs no visible actions by time ¢, then the event !rig is made available
by WAIT ¢, trig — i : Q. The abstraction operator forces this event to occur as
soon as it becomes available, resolving the choice against process i : P; control
passes to process (i : @)\ érig, which is equivalent to i : @, since trig € o(i : @). If
i: P does perform a visible action by time ¢, then the choice is resolved in favour
of (i : P)\ frig, equivalent to P, and the other side of the choice is no longer a
possibility. Observe that i ; P may not resolve the choice with a hidden action,
since it cannot perform event trig.

If trig € a(P)U o(Q) then we have the following equivalence:
PS5 Q = (POWAITt; trig — Q)\ {trg}
Further, if P is unable to terminate successfully, v € o(FP), then we have

PLQ = (POWAITH;Q

Example

The process (a — ¢ — STOP) 5 b — STOF is imitially prepared to engage in
event ¢. If ¢ is performed within 5 time units, then (after a delay of §) the process
behaves like ¢ — STOP. If the a does not occur within 5 time units, then the
offer is withdrawn and the process hehaves like & — STOP.

19

Theorem 3.4.3 The semantics of P& Q in TMr simplifies to the following equa-

ton:

FrlPi
\4

Q] = {(s,R)| begin(s) < t A (s,R) € Fr[P]

(0. X 1) e Fr[P] A begin(s) 2 £+ 6 A
(s {t+8),R=(t+6) e Fr[Q]}

The limeout operator obeys
PR (QE R)

(PNQ)E R

Py (QNR)

(POQ)B R

Py (QUR)

(Pl @) (RIS)

(P3 Q)| (WAIT t5 R)
(WAITt s P)'E° Q

(WAIT 4, ; PYE @
((e—=P)p QI\A

3.4.2 Tireout

the following laws:

n

i

I

(PE Q"R
(PER)N(QE R)
(PE QN(PE R
(PE R)O(QE R)
(PEQIU(PER)
(PER)T(QES)

WAIT t3(Q || R)

WAIT t, ; (P55 Q)
WAIT (t; + 6)5 Q

WAIT t;: (P5" Q)
WAIT (t: + 6); @

WAIT 6, (P\ A)

if ts
if 1e
if e
if ts

2
< &

2 b
<

ifae 4,t>0

Another important aspect of timed behaviour is the tireouf, where a process is
allowed to run for a particular length of time, after which control is passed to a
second process, providing the first has not terminated.

In order to define the tireout operator, we must first define a subsidiary operator
HALT, which bebaves like its argument P up until tire ¢, but must then refuse to
perform anything else (except that it may terminate successfully if this is possible
for P). It is defined in the followiug fashion: giveu aun argument P, axiom 5 for

TMp yields that

dne¥s € traces(Ploend(s) <t => #s< n

20

Then
HALT,(P) = P glls (((|||(a 1T STOPY) ||| WAIT ¢}: STOP)
i=

where ' =T \ {v}. The semantics of HALT,(P) are therefore given by

FrlHALT,(P)] = {{s,R) |end(s\ V)<t A(s [t,R] 1) € Fr[P]
A (3,(N “)U(Nﬁ [1,00) I {'/})) E-FT[P]

Definition 3.4.4 The tireout operator, 51, is defined as follows:

i: HALT,(P) SKIP
I il o
WAIT t; 4 — SKIP b—i: @

PéQ = rems(E”{a,b,./} \ {a,6})

SKIP
[
a—b— SKIP

Remarks by A.W. Roscoe were helpful in formnlating the above definition.

This construction begins with control at i : HALT|(P), and terminates success-
fully if ¢ - HALT(P) does so before time . I 1 : HALT,{P) does not terminate
successfully by time ¢, then hidden event a becomes available and so is forced to
occur. After a delay of &, terrmination of the construct

(((3 : HALT\(P)) ||| (WAIT ¢ ; a — SKIP))

becommes possihle, so it is forced by the sequential composition operator: control is
removed from i : HALT,(P). After another delay of & the process passes control
to i : @. The construction works because (i : HALT{(P))\ {a, b} =i : HALT,(P)
and (i :)\ {a, 8} =i: Q.

Example

The process
(yXoa—»X)jfayXob—a»X

will recursively engage in event a for 10 time units, after which it will behave like
X o b — X regardless of the number of as performed.

21

Theorem 3.4.5 The semantic equation for the lircout operator reduces io the
Jfollowing:

J—'T[Pil Rl = {(s.W)|(ste,Rteud) x{vye Fr{PjAav galstt)a

sT(E+28) =0 A(s=(t+28),8=(t+26)eFr[Q]}

U

{(&,®) | (s™((#, VIR EEU0,) x {V) e Fr[P] At €t A

v go(s)Av (Rt}

U

{7 V) R) ™)R TP U 0,8 x {v]) € Fr[P]
AV StAVEa(S)A 2 AV Ea(RT[Y, ")}

If it is not possible for P to terminate successfully before (or at) time t then a
simpler construction is possible.

PiQ = (PY| WAIT¢)3SKIP; Q

This construction fails if P is able to terminate before time ¢, since on its successful
terminstion control will pass to (), whereas we require that the whole process Pé @

terminates successfully if £ does so before contrel js removed. In the case where P
cannot terminate successfully, only the first component of the union in the semantic
definition given above is non-empty, and so the semantic equation is reduced to

FAPEQ] = {0 [(sTLRTOEFLP] AsT(t +26) =0
A (s =(t+26),8 = (t+ 28) € Fr[Q])

The tireout operator obeys the following laws:

(PiQ

fy € +ip+28

PL(QER)

(PNQY{R = (PE{R)N(QER)
PL(QNR) = (PEQIN(PLR)
(POQ){R = (PER)D(QIR)
P{(QOR) = (P%Q)U(Péﬁ)

22

(PIQERIS) = (PER(QLS)

(P4 Q) || (WAIT (£ + 6); R) WAIT: +85(Q | R)

1}

(WAIT ¢t P) i Q WAIT 4, 3(P & Q) if ty 3
Ig+6 12—t

WAIT (s + 26)3 @ if 1y <ty

(WAIT:,;P)}EQ

WAIT:,;(P‘#I @ iftpzry
et
WAIT (8, + 26); Q ity ity

[

((a—oP)iJQ)\X WAITé;(PgQ)\X if aeX

(P3Q)

(P L BEQER

1i4tp4+é tr+tp+d

(P

1 ty+ig+2é

Pi(QiR)

3.4.3 Interrupts

The tireout operator passes control from one process to another at a predeter-
mined time. There is also a need to model the situation where a special interrupt
event may cause the passing of control from one process to another, known as the
interrupt handler. The interrupt described here is a simple interrupt, in the sense
that control cannot be passed back to the first process. It is a simple adaptation
of the definition of the tireout operator: the essential alteration is that it i3 the
occurrence of the interrupting event ¢, rather than the termination of a delay pro-
cess, that triggers the availability of the v event which removes control from P.
Observe that i is always available while P is running.

We will model a process that behaves like P except that iuterrupt event : is
always available before P terminates; if event i occurs, then control is removed
from P and passed to the interrupt handler @. This will be denoted P V Q.

23

Definition 3.4.6 We define the interrupt operator a3 follows:

j: P SKIP
If i o
j.i— SKIP b—j: @

PVQ = rem}(E”{JJ,L/} \{b})

SKIP
i
ji-+b— SKIP

Observe that this will not necessarily have the desired behaviour if 1 € &(P),
since the performance of event i in that case may be due to P as opposed to the
trigger process. It is therefore the responsibility of the programmer to ensure that
interrupt events are distinct from the alphabet of the interruptible process.

As in the case of the tireout operator, the interrupt operator has a simpler
formulalion if process P cannot terminate:

PV Q = (P]lli— SKIP);Q

We may generalise the interrupt operator to model the case where there are a
number of different interrupt events, and the behaviour of the process following
an interrupt is dependent on the identity of the event causing the interrupt. We
take P AEVI (1) to be the process which has each element of the set [available as

an interrupt event while it hehaves as P, and if an interrupt event i occurs, then
control is passed from P to @(i). The definition is extended as follows:

Definition 3.4.7 The generalised interrupt operator is defined as follows:

jitP SKIP
(7)
i — SKIP boiby = 7:Q(5)

PV Q = remy E”Iub;u{“))

el
SKIP
a
ji:jr— b — SKIP

whereyy = {b; |ic I}, and ;= {ji|i €T}

24

As before, we require tbat o(P)NJ = @ in order to ensure that the operator yields
the desired behaviour.

The construct allows interrupts to he prioritised. In the process
(P T, Q) ¥, R())

the interrupts drawn from set J have a higher priority than those drawn from set
I, in that they can interrupt the interrupt handler of a lower priority interrupt.

3.5 The After Operator

The after operator on untimed processes is defined as follows:

Definition 3.5.1 If s € traces(P), then

FIP/s] 2 {(w,X)] (7w, X) € F[P]}

As we shall see, the introduction of timing information requires a more subtle
treatment of the after operator.

Definition 3.5.2 We define the after operator / on processes as follows: if(s, R) €
fail(E7[P]) and end(s,R) < t then

ETHP/((SaR)J)] = {(u,a=t,)]
(s7(z+1t),0,RU R +12) € £r[P])

Otherwise P{((s,R),1) 15 undefined.

This operator is very different to the CSP version presented in [Ros82] and [Hoa85).
The only information an observer can obtain from an untimed process while it is
executing is the trace of eveuts that have occurred, so the untimed alter operator
only considers the behaviour of a process after a trace. In timed CSP, we can
also observe which events were refused during the performance of the trace, and
this additional information may enable us to predict more accurately the future
behaviour of the process. For example, consider the process

P = a—= (o STOP)S b — ¢c— STOP)
n
a— STOPDc— STOP

25

If we only concern ourselves only with traces, then we cannot know, after the
observalion of a, whether or not event b will become available. However, the
knowledge that event ¢ was refused before the @ was performed allows us to deduce
that the non-deterministic choice was resolved in favour of the first process, since
the second cannot refuse ¢ before performing a. Hence the addition of relevant
refusal information will allow us to deduce that b will certainly become available
after the a is performed.

Even the (trace,refusal) pair corresponding to what we may have observed does
not give us all the information we could use to predict possible future behaviours,
since implicit in every observation of a failure (s, R) is a time ¢ which corresponds
to the lime up to which the process has been under observation when (s,R) has
been observed. It provides information about what has not been observed: no
eventsother than those in s have been performed, and only those events in N have
been refused, up to time ¢.

The time £ associated with the failure (s,R) allows us to predict the future
behaviour of the process by enabling us to deduce how much internal progress has
taken place. In the process P above, we are able to deduce that event b will be
availahle after observing the failure ({({,a)}, [0, 7 +8) x {¢}), but we cannot know
whether or not the timeout has occurred, and hence that ¢ will become available
after b has been performed, unless we can keep track of the internal progress of
the process. The additional knowledge that nothing else has occurred {or been
refused) up until time & allows us to infer that a ¢ will become available after a &
has been performed. This is apparent from the following equivalence:

PA({(L,8)),[0,14+8)x {c}),6) = b—c— STOP

We overload the after operator in the following way:

P/(s,R) P/{{3,R), end(5,R))
P/s Pl({5,8), end(s))
Pl(s,t] = P/((s,8).1)
Pt P/{{},0),t)

Some of the laws given for the after operator in [Hoa83] extend naturally to include
time, and new laws regarding timing behaviour are introduced:

[t}

Il

PI) = P
(Pfs)fu = Pfs™(u+ end(s))
(P/t)/ts = P/t +1)

(WAIT 15 P)/t

P

26

P
P/((5,R), end(s,R) + £)

(WAIT t3 P)jt + 6
(P/{s,R))f1

3.6 Infinite behaviours

There are many cases where we would wish to consider the infinite behaviour
of processes. A classic case is iu the treatment of one form of unbounded non-
determinism, where two processes may be distinguished only by their infinite be-
haviours: for instance, we cannot distinguish in finite time between a process which
can wait an arbitrary length of time and then offer event «, and a process which
could also always refuse to offer . The problem of unbounded non-determinism
in untimed C'SP has been successfully treated in [Ros88b], where infinite traces
are added to the standard fajlures-divergence model.

Infinite behaviours are also necessary for the framing of temporal logic state-
ments such as “always ®’. Indeed, part of the definition of a timed buffer, presented
iu [SchB88], is an attempt to capture a statement of this kind: that if the buffer is
empty, then it will eventually offer to input; and if the buffer is non-empty, then
output will eventually be offered.

The semantic models presented in [Ree88] deal only with finite behaviours, in
the sense that each possible behaviour of a process can be considered as the result
of observing the process for a finite time: (s, R) € Fr[P] tells us that if we watch
P up until time end(s,R), then (s,R) is a possible observation. This notion may
be extended to infinite behaviours of P: observations that may be made if P is
watched for efl time. The infinitary nature of these observations derives from the
fact that they are possible complete histories of the process, and so the observations
themselves need not contain traces of infinite length nor unbounded refusals: it
is perfectly possible to see only a finite number of events performed, ard only a
finite number of refusals, when a process is observed for all time. The discussion
of the after operator made the point that a failure of a process may be considered
as a possible behaviour of that process up to any time after the end of the failure.
We can therefore consider it as a possible behaviour of the process observed for all
time. Hence any failure of P may also be considered as an infinite failure of P.

In this thesis, we retain tbe philosophy of the timed models presented in
[ReeB8], that processes are completely characterised by their finite behaviours.
The set of infinite behaviours of a process will therefore be completely defined by
its set of finite behaviours. Hence we are not solving the problem of unbounded
non-determinism mentioned above, but we are making it possible to frame some
statements about processes (such as the statement that a process is a buffer) in

27

lerms of infinite bebaviours. Although tbese statements could be translated into
statements concerning the finite behaviours of the process under consideration,
they will be more than convenient notational shorthand, since such statements
anticipate a treatment of infinite behaviours analogous to the treatment for un-
timed CSP mentioned earlier; when such a treatment is available, we intend that
our defiaitions and predicates are still concerned with the infinite behaviours of a
process.

Any treatment of 1nfinite failures must have that the restriction of an infinite
failure o a finite time must be a failure of . For the purposes of this thesis, we
will take any infinite failure which has this property to be an infinite failure of P.

Definition 3.6.1 Define the infinite traces TEL, and mfinite refusal sets IRSET
by
TE = {se(ff,0)xE)|Vte[0,c)esie TEL}

where the definition of the before operator | is exiended in the obvious way to allow
infinite fraces as arguments.

b

TEL
IRSET

TE U TSY
(UZ|ZcP(RTOK)AVte|)Z |t € RSET}

il

We may then define infinjte behaviours of a set of failures.

Definition 3.6.2 If P is a set of failures, then

I(P) =2 {(&,R)|Vie[0,0)e(s,R) [t € P}

This gives rise to a semantic mapping I, which denotes the infinite hehaviours
of a process.

Definition 3.6.3 We define Ir : TCSP — TZL x IRSET as follows:

I:[P] = {(s,8) |Vt e[0,00)0 (s,8) | 1 € Fr[P]}

A particularly useful subset of a set of infinite failyres is those pairs whose
traces have finite length. These allow considerations of infinite refusals following a
trace, which will be used when we come to define strong timewise refinement. For
convenience, we will call these the semi-infinite failures.

28

Definition 3.8.4 If P s a set of failures, then

SI(P) = {(s,R)|Vte[0,00)e (s, R)[t € PA#sis finite}
Again, this extends to a semantic mapping STt

Definition 3.6.5 The semantic mapping STy : TCSP -+ TEL x IRSET is de-
Jfined as follows:

SIr[P] = {(s.%)|(s,R) € Ir[P] A #s is finite]

We obtain the equations below for infinite behaviours, by considering them as
limits of finite approximations. We conjecture in section 9.3 that these equations
would also hold in a model which could adequately handle all aspects of infinite
behaviour,

I

Ir[STOP] = {({),N) | X € IRSET}

I7[1] = {(0.¥) IR € IRSET}

Ir[SKIP] = {((,1) | v ¢ o(®)}
V({08 V),R) | v g a(R T 1)}

Ir[WAIT t] = {((.R) |V ga(¥}}
V{({0t, V), R) | v g (R T [t, 1))

Irfa— P] = {((.¥) | e ga(R)]}

{{(t,a)y"s,R) [a g a(R [) A
(s—(t+8),R=(t+8) e Ir[P]}

Ir[a: A= P(a)] = {((,8)|ANna(R)=10
U
{(i(t,a)y"s,®) [Ana(RTE) =0
Als— (1 +8),8= (¢t +8)) € Ir[P(a)]}

Ir[Pn Q] = Ir[PjuIr[q]

29

Ir[POQ] = {(s,8)]((),} tbegin(s)) € o [P N Tr [@]
As.X) e Ir[P) U I [Q]}

I[P Q] = {(.R UR () € Ir[P] A (s.8e) € Ir @]}
IrfP xlly Q] = {(s. X UR) [(R UR) HXUY) =R, [XUR [Y
AlsTX,R 1 X)eIr[P]

AsTY R) eIr[Q]

AsTXUY =5}
I[P Q] = {(s;8)[Isisse s €5l e

A (51, R) € Ip[P] A (52, R) € T7[Q]

Ir[WAIT ¢; P {ls+.R) | (s,} =) € Ir[P]}

Ir[P3 Q] = {(s.W) | (s,XU[0,00) x {v}) € Ir[P} A v ¢ a(s)}
u
{(s™(w+(t+6),8) | (w,R=(t+8)) € I7[P]
AV Eals) A (), R TEU[R, 8y x {v]}) € Ir[P]}

e[(P)] = {0 (f(s).F(R) € I[P}

Observe that the equations for hiding, infinite nondeterministic choice, alphabet
transiorination, and recursion have been omitted. We will see in section 9.3 that
we would expect these to be different when all aspects of infinite behaviour can be
adequately modelled.

The following theoremn allows the derivation of semi-infinite behaviours from
(finite) stable behaviours.

Theorem 3.6.8 If (s,a,R) € £7[P] then (s,[o,00) x o(R 1 &) € SI7[P].

Proof This follows immediately from axiom 12 of TMyrs. O

30

4 Factorising Proofs

In this chapter we present the first of our verification metbods. We see that the
semantic equations for TMr naturally give rise to a compositional proof system
for a particular class of specification, behavioural ones. The advantages of compo-
sitionality in a proof system are well-known: it supports the modular development
of systems, and permuts factorisation of the verification task.

Behavioural specifications capture a wide range of predicates on processes, in-
cluding many of the specifications defined in Chapter 5. The proof system is
therefore applicable to verifications that processes have these properties. In Chap-
ter 8 we will see detailed examples of the use of behavioural specifications in the
capture of system requirements, and of the application of the proof system.

4.1 Behavioural Specifications

Reed [Ree88] defines a spectfication on TMys to be a mapping from the complete
metric space TMrs to the set { TRUE, FALSE}. We think of § as a predicate on
TMps processes, such that S holds of P if and only if S(P) = TRUE. Specifi-
cations on the other semantic models may be similarly characterised as mappings
from those models to { TRUE, FALSE].

We define a behavioural specification on TMFpg to be a predicate on lhe set of
triples (s, &, R) underlying TMrs, T2 x [0,00] x RSET. Similarly, a behavioural
specification on TMy is a predicate on TLy x RSET; a behavioural specifica-
tion on TMs is a predicate on TE; x [@,00]; and a hehavioural specification on
TM7 is a predicate on Tﬁg. We use the convention that the argument to a be-
havioural specification identifies the model employed, so for example (s, e, &)
is a behavioural specification on TMgs. Ohserve that, in this thesis, we use a
many-soried first order predicate calculus with equality as our assertion language.

We define the satisfaction relation sat heiween a TCSP process P and a
behavioural specification § to hold if and only if the specification holds of every
element of the semantics of P in the mode] identified by 5:

Definition 4.1.1

1

P sat 5(5,a,R) Y(s,a, R} € ST“P]I e 5(s,a,R)
P sat 5(s,a,X) ¥{s,a,X) € E}HP] e 5(s,a, X)
P sat 5(s,R) ¥(s,R) € Fr[P] o S(s,R)

P sat S(s,a) = V{s,a) € St[P] 5(s,a)

il

1l

1

31

Psat S5(s} = VYs&Tr[P]e5(s)

In each model, every behavioural specification has a corresponding specifica-
tion om processes. In TMps the specification S(s, @, R) corresponds to the pred-
icate U; on processes, where Us(P) = T & ¥Y(s,a,R) € ETIIPE o S(s,a,R).
In Reeds notation we obtain Predy, = S. However, not every specification on
processes has a corresponding behavioural specification: for example, the specifi-
cation ({(, a)), 2,8) € £7[P] on process P cannot be written with a behavioural
specificstion and the sat relation.

The nature of behavioural specifications gives rise to a set of inference rules
which allow us to deduce properties of the behaviours of compasite processes from
properties of the behaviours of the syntactic subcomponents. The rules can be
derived directly from the clauses of the semantic equation, and so there is a law
for eachsyntactic construct. The set of rules for TMF allows us to reduce the proof
obligation on any composite TCSP process to proof obligations on its component
processes. The cases where stability values are included in the model are not so
straightforward, so we wiil first present the rules for behavioural specifications on
TMr.

4.2 The proof system for TMy

The rules for the basic processes are as follows:

Rule sT0P

(s =) = S(s,R)
STOP sat 5(s,R)

Rule L

(s={) = S(sR)
L sat 5(s,R)

32

Rule skir

(s=0 Av Ee(R)
M = §(s,R)
(s=((t,DAvga®IIAL20) }

SKIP sat S(s,®)

Rule WAIT ¢

s=(AVEgaRRt) }
v = 5(s,R)

s=((t",) At 2tAv ga(RT[LE))
WAIT t sat S(s,R)

The rules for the more complex operators are written to enable reduction of
proof obligations. The form of tbe conclusion of each rule matches the form of
a proof requiremnent on a composite process: in order to prove it, we need only
find behavioural specifications 5; and 5s, or in some cases just Sy, such that the
premises of the inference rule hold. We will have then reduced an obligation on
a composite process to requirements on its syntactic subcomponents and a logical
proposition.

Rule a— P
P sat 5, (s,})
s=() A aga(®)=S(s,R)

s={{t,a))"s"Aago(N[t)Abegin(s) 21+ 6
NS (2 +8), (8= (2 +9) J = siew

(a — P) sat S(s,R)

Rule a:4—- P,
VacAeP, sat S.(s,R)
s=0Ac()NA=0=5(sR)

s={(t,a))"s")Y A begin(s)V 21+ 6
S DD o ste

a:A— P, sat §(s,R)

33

Rule P, 0P,

Py sat 5(s,)
Pe sat S¢(s,®)
S (8, R) v Se(s,R) = S(s,R)

P, N Pg sat 5(s,R)

Rule ., P

Yie lePsat 5(s,)
Viecle(5(s,R)= 5(s 1)

[ies Pi sat S{s, ¥}

Rule P, OP,

Pj sat S;(S,N)

Py sat S,(s,N)

(500,80 v So(2,3) s

A S0, R | begin(s)) A Se((), X | begin(s)) } = 5(.%)

P; DPg sat S(S,N)

Rule P_f ”Pg

P, sat S,(s,%)
Py sat 54(5,N)
Si(5,%) A Se(5,Re) = 5(3, R URy)

PJ ” Pz sat S(S,N)

Raule P, |, P

P, sat §,(s,R)

Pg sat Sg(S,N)

o, X)) C X Aofse, M) C Y

Ae(Mz) CE-(XUY) = S(ss, Ry URp UNy)
A S;(S;,Nj) I Sg(Sz,Nz) A sz € 5, X“Y 52)

P; X”Y Pz sat S(S,H)

34

Rule # || P:

P, sat 5;(s,1t)
P, sat Sg(S,R)
(s € Tmerge(s;,s0) A Si (51, R) A Se{s2,R)) = §(5,R)

Py ||| Pe sat 5(s,R)

Rule waAIT:.P

P sat S;(S,N)
(Sy(s = 4L, R=t) A begin(s) 2 1) = S5,)

WAIT t; P sat 5(s,R)

Rule 7 ;P,

P, sat S (s,R)

P, sat S:(s,R}

(VeEo(s)AVI € TINT « §5,(s,RU{I x {v}))) = §(5,R)
(Sefs Fe~{(t, V)L RTEU[D,) x {v]}) A

ST, t+8) =0 A8(s~(t+6),R=(t+8) }=>5(S,N)

P; 5 Pp sat S(s,R)

Rule Py 4

P sat S,(s,R)
(Si{s, B A act{A)(s,R) Aa(R) C 4) = S(s\ 4, R —)

P\ A sat 5(s,R)

Rule f-/(P)

P sat S,(s,R}
5:(/(s), /() = 5(s,R)
f7U(P) sat S(s,R)

35

Rule s(p)

P sat §(s,®)
Si(s, /4 (R)) = S(f(s),R)
[(P) sat 5(s,R)

Rule . X ¢ F(X)

YX o X sat 5;(s,8) = F{WAIT §; X) sat 5:(s,R)
5:(s,R) = 5(a,)

pX o F(X) sat S(s, %)

Observe in the last rule that the variable X in the first antecedent ranges over
al! sets of failures, not only those sets that happen to be elements of TMp. This
means that we cannot assume that the axioms for TMp hold of X. I we wish
to use this assumption in establishing that F{ WAIT § ; X) preserves 5,, then we
must also establish that §; is satisfiable:

Rule s X o F(X) alternative version
VX :TMr e (X sat S, (s,R) =

F(WAIT §; X) sat 5,(s,R))
75;(3,1‘%) = 5(s,)

[3P: TMr o P sat §,(s,8)]
pX o F(X) sat 5(s,%)

We provide the rule for instantaneous sequential composition. We also provide
rules (which may be derived from the basic rules) for some of the operators defined
in terms of the basic TCSP operators.

Rule Pr‘,Pg

P, sat §5,(s,R)

P, sat 5y(s,R)

V@a(sYAVI € TINT « 5,(s,RU (I x {¥])) = 5(s,%)
sZs(satt)AV Eols) Aend(R,) €A = 5(s,R; U(Re +1))
Si(s: ({6, V), R U (10, 1) x {v1)) A Se(se, Re) '

(P ; Pg) sat 5(s,R)

36

Rule £ ¢ P,

P, sat 5,(s.R)

Pg sat S,(S,R)

begin{s) € £ A S,(s,R) = 5(s,R)

(begin(8) 2 t + EA SR ASy(s= (2 +6),R=(t+6)))=5(s,R)

P 5 Pe sat 5(s,1t).

Rule Pj!l.Pg

P, sat 5,(s,R)

Py sat Sy(s, i)

Si(st &, RItUd)y x{vHAvEo(stt)n

T2+ 28)= () A Selo— (14 28R~ (1 4 26)) }”S(S’N)
S~ (V) RTPU0, Y x{sY AL LA } s

/¢ a(s)Av g a(R] 1)) = S(e:K)

g = 8N A ST, LR T U0,) x {v}) } - S(s¥)
ASEALSEAYZa(s)A v ga(R] [t t") :

P, Py sat S(s,R)

The rule for tireout simplifies considerably if the first process is urable to
terminate. In this case, we have v & o(P;) (which is expressible as a behavioural
specification}.

Rule F, ir Pe special case version

P, sat v ¢ a(s)

P, sat S,(s,R)

Py sat Si(s,R)

Si(s P&, RTE AT (1426 =)

Alé‘!(.‘i = (¢ +)25;,N.(:.(g+2,§)) } = 5(s,N)

P, % Py sat S{s,R)

37

4.3 Soundness
The basic processes

The semantics of each of the processes STOP, L, SKIP and WAIT t may be
written in the form

FrlF} = {81 T®)}

for the appropriate predicate T on behaviours, (irece,refusal) pairs b. The corre-
sponding law is of the form

Rule

T(4) = S(b)
F sat S(b)

The soundness of the law in each case follows from the fact that T holds of each
behaviour in P: ¥b € Fr|F] » T(b). Since we have T(b) = S(b) as a premiss,
we conclude that Wb € F7[F] o 5(b), which may be written as P sat S(#).

One place operators

The semantics of each of the one-place operators on processes, a — P, WAIT ¢; P,
P\ A f(P), and f~/(P) may be written in the form

Frlo.P] = (8| T'(®)}U{C(4) | f(b) € Fr[P] A T(b)}
and the corresponding inference rule is of the form

P sat S, ()

T'(b) = S(b)

(5:(f(8)) A T(B)) = S(C(5))
©; P sat S(b}

In the cases where Vb o T'(b) = F (i.e. all those except a —+ P), the antecedent
T'(b) = 5(b) is vacuous, and has been dropped from the rule. The soundness

38

proof of this rule runs as follows:

Frlo. Pl =
P sat
T8 =

(S:(f(8)) A T(0)) =

Foverr{fO.P] =
Foverr[o,P] =
Foverr[o, Pl =
F veFr[OP] =
F b eFr[O,P] o
+ O, P sat

Two place operators

{61 T'()}U{C(4) | f(b) € Fr[P] A T(B)}
5:(8)

5(8)

S(C(d))

¥ e {s] T'(d)}

v

b e {C(b) | f(b) € Fr{P] A T(d)}

T v 3be (¥ = CBY A f(b) € Fr[P] A T(4)
S(EYvIbe (b =CHBASUFB)ATED

S0y v Ibe (b = C(b) A S(C(H)))

S(Fyv IbeS(¥)

5(8)

All the semantic definitions for TMr for the two place TCSP operators Py M Py,
P,OPs, Pr || Pi. Pi x|ly Py Pi |l Pey Pr 3 Pa, and also those for the two place
operators Py ; Ps, Py (% Ps, P, il Pg, may be written in the form

FrP O Pe] = {C(3) | fi(br) € Fr[P.] A fa(be) € Fr[Pe] A B(b,b,, b¢)}

The corresponding rule for operator), is:

P, sat S;(%)
.P' sat Sl(b)

(8:(b;) A Se(be) A R(b, by, be)) = S(C(B))

Py Qg Pe sat S(b)

39

and the soundness proof of this rule runs as follows:
Fr[Pi@s P] = {C()1£i(b) € Fr[P:] A fobe) € Fr|Pe]
AR(b b, be)}
P, sat 5,{(b)
Pg sat Sg(b)

(Sj(bj) A S!(bl)
AR(b b, be)) = S(C(B)

- YeFr[Pi Oy Pe] = 3bbibee (0 =C@)Afi(bi) € Fr[P] A
S }-T[Pzﬁ M R(b,bhbl))

FooVe FrfPi@gPe] = 3b,bi,be e (b =C(b) A S (1) A Salbe)
A R(b, by, b))

b ovie Fr[P i@y Pe] o 3b,b,,0:0 (8 =C()AS(C(H)N
b vt e Fr[Pi@sPe] o S(¥)
F PiQsPs sat S(b)

Hence the rule for each two place operator is sound.

Indexed operators

P,and a: A — P,

The semantics for the two arbitrary choice operators []
may both he written in the form

Fi{OP] = {6 T'(BIU{CK) |3ac As f(b) € Fr[P] A T(b)}

acd

acA

and the corresponding proof rule is given by

Yaec Ae P, sat 5,(b)
T'(b) = S(b)
VacAe(S,(f(b))AT(d) = S(C(H)

Ouaea Pa sat S(b}

In the case of the nondeterministic choice we have ¥ o T'(4) = F, and so
T'(d) = S(b} is vacuous, and has therefore been dropped from the premisses of

40

that rule. The soundness proof of each rule runs as follows:

FrOeea P.]

Ya €A

T'(b)

Ya€c A

b € Fr[Ouea Pu]
LY E}-T[and Pn]

¥ € Fr[Guea P]
Vb' S 'FT[[OaEA P,;]
F @eed Pa

_T

=

sat

{6] T"(b)}u
{C(5) | Fa € Aaf(b) € Fr[P] A T(b)}
P, sat 5,(b)
S(b)
S.(8) A T(b) = S(C(b))
b = C(b) A f(b) € Fr[P.] A T(5)
S()vIa,bed =C(b) A

S.f(3)) € Fr[P.] A T(5)
S(b')vIa,be b = Cb) A S(C(B)
5(¥)
5(b)

Hence the rule for each of the indexed operators is sound.

Recursion

The recursion induction theorem for Timed CSP states that if € : TMp + TMy
is a contraction mapping, and § is a continuous satisfiable specification such that
S(P) = S(C(P)), then §(p X e F(X)). The rule for recursion is a particular
instance of the recursion induction theorem, where we restrict our attention to

behavioural specifications.

We first observe that all behavioural specifications are continuous or clesed in
TMys. To prove this, we will use theorem 9.6.3 from [Ree88] This tells us that a
specification S on TMF is closed if

YP e TMy o (-5(P) = (3t € [0,00) » Q1) = P(t) = ~5(Q))

The proof that behavioural specifications are closed then runs as follows:

(P sat S(s,R)})

(s, R) € P o ~S(s,R)

P(end(s,R) + 1) = Q{end(s,R)+ 1) = (s,R) € Q
—(Q sat §(s,®))

ogoT T 7T

The second recursion rule given above follows automatically.

41

In order to drop satisfiability of 5 from the premisses of the recursion induction,
to yield the first recursion rule given above, we extend the syntax of TCSP and
the model TMr. Define TF to be the subsets of TE} x RSET. The metricon TF
is defined exactly the same way as the metric on My, given in appendix B. Then
TF is an extension of TMy. Define TCSP+ = TCSP | Xg, where £ is drawn
from the set TF. We extend the function Fr to the function Fr as follows:

?T[/\'gn = F

The clauses for F 7 on the other TCSP* combinators are entirely similar to the
defining clauses for 7 on TCSP, with every occurrence of Fr IEPH replaced by
Fr |IP] We may therefore conclude that the inference rules for the TCSP opera-
tors in TMf are also sound for TF, and any behavioural specification on TF will
be closed in the metric.

Now any function F composed without any TCSP+ operators of the form Xg
corresponds to a mapping C on TF. The restriction of C to TMF is the mapping
on TMy corresponding to F considered as a TCSP function. Hence if C is a
contraction mapping on TF and it maps processes in TMyr to processes in TMp,
then its restriction to TMr will be a contraction mapping on TMp, and so the
fixed point of C will be in TMFr {since TMr is a complete metric space). Now
any function & composed only of TCSP operators will map TAMfr into itself, so
the fixed point in TF of the contraction mapping ¢ corresponding to WAIT §; F
will be in TMF.

By the recursion induction theorem for TF, in order to demoastrate that
X o F(X) sat S(s,R), we need only show that the specification “ sat §(s,R)” is
contimous, satisfiable, and that X sat S(s,R) = WAIT §, F(X} sat 5(s,R). We
have already shown that any behavioural specification gives rise to a closed spec-
ification on TF. It is also trivially true that X, sat 5(s, R}, since Fr[Xp] = 0.
Hence any behavioural specification on TF is automatically satisfiable. This allows
us to discharge automatically the side conditions for application of the recursion
induction theorem, and leaves us only with the principle proof obligation that
§(s,R) is preserved by recursive cails on arbitrary sels of failures — we cannot
assume in any proof that the argument to the function F' will be a process. The
soundness of the other inference rules does not rest on the assumption that the
arguments to the operators will be processes, and so those rules are also sound for
the dauses of F 7. Hence the inference rules may be used to establish that our
candidate specification § is preserved by recursive calls

42

4.4 Completeness

We have shown that the proof system is sound, in the sense that if wecan find
behavioural specifications for which all the premisses of an inference rule are s-
multaneously true, then the conclusion will also be true. We will shotly show
that the proof system is complefe with respect to the semantics, in that if the
conclusion of an inference rule is true of the semantics of a process, then there
are behavioural specifications which enable all the premisses of that mle to hold
simultanecusly. Moreover, we provide a systematic method of producing such
behavioural specifications.

Strongest Specification

The behavioural specifications satisfied by a given process P form a complete
lattice under the order

S(s,R)C T(s,8) = V(s,R) e T(s,R) = 5(s,R)

We may therefore identify the sirongest specification that holds of a given process;
it will be logically equivalent to the top element of the lattice. We denote the
strongest specification of process P by SS[P]. It is clear that

SS[PJ(s.¥) & (s,8) € Fr[P]

Consider first the case of a one-place process constructor, If it is the case that
O P sat S(b), then consider the inference rule for @, P with §& [P] substituted
for 5;. The rule becomes

P sat SS[P]
T(h) = §(b}
(SS[PR(f(8)) A T(B)) = S(C(b))

@, P sat 5(b)

The first premiss must hold, and the second and third premisses together are
equivalent to the assertion

be Fr[O:P] = S(b)
But if @, P sat 5(}), then the second and third premisses of the rule hold. Hence

if it is the case that (), P sat 5(4) then we are able to find a behavioural speci-
fication on P which enables an application of the law.

43

The same treatment applies to all the other cases (except recursion), since
in each case the inference rule is derived from the corresponding clause for the
definition of 7. Moreover, we may use the inference rules to break down the
strongest specification of a compound process into the strongest specification of
its component processes. The rules for the basic processes STOP, 1, SKIP and
WAITT i yield the strongest specifications as follows:

SS[STOP)(s,®) & s=)
SS[L](sR) & s=)

SS[SKIP](s,R) « (s={) Av go(R))
A
s={tvhAavgoRI)AL = 0)

SS[WAITt](s,R) & s=(AV go(R1t)
%
s=((t,6YNWAt z2tAV Ea(T[t¢))

As we would expect, the strongest specifications for compound processes are
given in terms of the strongest specifications of their component processes:

SSfa— Pl(s,®) & s={()AagoR)
v
s={(t,a))"SAage(Rt)Abegin(s) 2t +4
ASS[P](s = (¢ + 8), (R = (¢ +5))

SS|P B Pe](s,R) & (SS[P:](s,R) v SS[Pe](s,R)
A
SS[PJ((). R | begin(s)) A SS[Pe] ({), R | begin(s))

SSI[G:A—’P‘,](S,R) e s=Ac(R)INA=D
v
JacAes=((t,a))"s") A begin[s') Zt+EA
SS[P] (s = (14 6), R~ (t +6))

44

58[P, N Pe](s,})

SS[[P10

3

SS[Pr || Pe] (5, %)

SS[Pi xlly Pe](s:®)

SS[P; ||| Pe](s,R)

S8{P: 3 P2] (s, 1)

SS[WAIT t; P](s,R)
S8{P\ A](s,)
SS[F~(P)}(s,®)

SSIF(P)](s.R)

58 [[P, ; Pg]i (s, ®)

SS1P)(s,%) v SS[Pe) (s, 8)
JieleSS[P)(s,R)

BNI,Ng .55[P1]I(S,N1)ASS[PEH(S,Ng)
l‘\N =N1 UNZ

IR, R, 0 SS[P (s 1 X, R, [X)
I\SS[P:](SIY,NZ rY)
ARMXUY)=R, [XUR [YAs=s{XUY)

sy, 92 o (s € Tmerge(sy, se) A
SE[P) (51, R) A 5[Pe] (52, 1))

v ¢ a(s) AV € TINT e SS[P](s,RU (I x{+}))
v

SS[P(s ({1, V), R TEU[0,8) x {v]) A
sT(Lt+6) = ASS[Pe](s = (t+6),R=(t+6))

SE[P}(s = t,R = £) A begin(s) > ¢

35, 0 SS[P} (s, RU 0, end(s;)) x A) As;\A=s
SS[P)(f(s) f(R))

SS[P](s,f7' (W)

v ga(s)AVIE TINT « SS[P;](s,RU (I x{v}))
;s,,s, 025, (se+ 1) AV € als) A end(R,) < ¢

A SS[P:] (s {(t, IR U (10,8) x {V]))
A SS[P!](S!,N!)

45

SS[Pi§ Pe(s.®) & begin(s) <t ASS[P](s.R)
v
begin(s) 2 t+4& A SSER!H(()wR M)
ASS[Pe](s = (¢t +6),8=(t+6)

SS[PE Pe](s,®) & SS[P st REEU[0,) x {vDAV ga(slt)A
sT(bt+26)= () ASS[Pe](s = (t+ 28),8 = (t + 28))
v
SSIPJ (VIR TEU0,) x (V) A S EA
v @&o(s)Av ga(1t}
v
s=s7((t",v)I ATt e goa(s) A
SS{e s, vn)r T ule, i) x {v1)
AvEeR T, N AY AU S

Recursion

Recall the inference rule for recursion:

YX e X sat 5;(s,R) = F(WAIT &; X} sat §,(s,R)
Si(s, %) = §(s,¥)

p X o F(X) sat 5(s,)

If 5:(s,8) & S8[puX e F(X)](s,R), then recalling that 5;(s,R) & (s,8) €
FrleX o F(X)], we observe that the first premiss holds:
Y sat 5,(s,N)
= FrlY] c Felu X o F(X)]
= Fr[F(WAIT§;Y)] C Fr[F(WAIT§;u X o F(X))] (rmonotonicity)
= Fr[F(WAIT§;X)] S Fr[pX « F(X)]
= F(WAIT §; X) sat 5,(s,R)

[f pX o F(X) sat 5(s,R) then 5, (s,R) = 5(s,R), and so for any behavioural
specification satisfied by p X ® F(X) there is a predicate S; which enables the

46

application of the Jaw. Hence the entire proof system is complete with respect to
the semantics of Fr.

In order to prove that a recursively defined process satisfies a behavioural
specification §, we need only show that the strongest specification of that recursive
process implies 5. We therefore need a form of the strongest specification that will
facilitate this.

We know that .FTH uXe F(X)]] is the fixed point of the constructive function
corresponding to F{X) = F(WAIT§; X), and that [is §-constructive, in that

Xtt=Ylet=FX)(t+6)=FY)I{t+8)
Since we also have that
VX, YETFeX}O0=Y |0
we are able to conclude that
YX,YETF e EF*(X) I né=F*(V) | n§
In particular, instantiating ¥ with 1 X e F(X) we conclude that
VXcTFeF (X)[nb=puX e F(X)|né
and so, if we instantiate X with STOP (for definiteness), we obtain
end(s,R) < nf = ((5,R) € Fr[F(STOP)] & (s,R} € Fr[uX o FIX)])

This yields a useful form of the strongest specification for a recursively defined
process in terms of the strongest specification of STOP and the operators used in
constructing the recursive function.

S5[uX e F(X)J(s,R) & Vneend(s,R)<né= 5$|[}‘7'“(ST0P)]{3, R)

Since S [F"(STOP]]] (s, R) holds either for all n > end(s,R)/4 or for nosuch n,
the strongest specification may alternatively be written:

SS5[p X a F(X)](s,®) & SS[FLrdleRi+1(STOPY](2,R)

(|r] denotes the greatest integer no larger than r)

47

Limits of Applicability

We havesupplied a great deal of machinery for proving correctness results concern-
ing behavioural specifications. However, as we saw earlier not every specification
on processes can be written as a behavioural specification. Demonstrating that a
particular specification can be written as a behavioural specification is straightfor-
ward: we need only exhibit the specification in the right form.

‘We require conditions on specifications that tell us when they cannot be written
as hehavioural specifications, that a search for an eqnivalent specification of that
form would not succeed. We provide some snfficient conditions on specifications
that guarantee that they cannet be written as behavioural specifications.

Theorem 4.4.1 If a spectfication on TMy is not closed in TMp then it cannot be
wrilten as a behavioural spectfication.

This is equivalent to our earlier result that all behavioural specifications on TMy
are closed. This result will also be valid for the instabilities model TMg; introduced
in the next section, but it does not hold for TMrs. For example, the behavioural
specification defined by §(s,a,R®) 2 e < o0 is not closed.

Theorem 4.4.2 [fAP,Q € TMp o S(PN Q) A -S(FP) then S cannot be written

as e behavioural spectfication.

Proof Assume for a contradiction that there is a behavioural specification T'(s, R}
such that

S(P) & Psat T'(s,R)
Then we have }'T[P]] c }'T[P ri Q]], and so
Pri@sat T(s,®) = P sat T(s,R)

yielding a contradiction. O

Theorem 4.4.3 If S(P), $(Q), but ~S{P N @), then § cannot be wrilten as a
behavioural specification.

4.5 A treatment of stability

The completeness of the proof system described above rests upon the following
facts:

48

¢ given a combination of possible behaviours from subprocesses, we can de-
termine whether or not they give rise to a behaviour of the process mithout
examining the entire semantic set of each subprocess;

s if a given combination of possible hehaviours of subprocesses does give rise
to a behaviour of the process, then that behaviour is completely determined
by the given behaviours.

The semantics is in some sense directly compositional. This is reflected in the
logical premises of the proof rules: the antecedents hold precisely when thefailures
under consideration give rise to a failure in the composite process.

When we move to models which contain stability information, this is no longer
the case. For example, consider the semantic equation to TMrs for the intelleaving
operator:

Er[P il Pe] SUP(I(Pr, Ps))
I(Py,P) = {{3,0,R} |35 € Tmerge(s;, 5p), a0 = maz{a;,ap]
A (51,00, R) € E7[P])
A (32,08, R) € E7[Pe]

If we define

13

P,
Pr

g - a -+ STOP
¢ -+ WAIT 1 ; STOP

Ih

then we have

(1)1 +68) € &[P]
(0.0 14 6,0) € Er{P.]

and so
(((0,&),(1,0)),1+ 6v@) S](PhPt)

but it does not contribute to a behaviour of P, ||| P; because its stability value 1s
superseded by thal of

(({(0,a),(1,8)),24+6,8) € [{P:,Ps)

Consideration of the hehaviour ({{#, a), (!, a}}, ! +4,) in isolation will nolenable
us to determine whether or not it contributes to a behaviour of P {|| Pe. In
calculating the stability value associated with the failure ({(#,a),(!,a)),8) the

49

entire set (P, P;) must be considered. This means tbat a behavioural proof rule
for iuterleaving will not be complete. The rule is as follows:

P, sat §5,(s,a,R}
P, sat Ss(s,c,R)

s € Tmerge(s, ss) A
Si(s, 000, R) A Ss(Ss,ﬂs,R) = S(s,maz{a;,0:},R)

P1 ”le sat S(S,Q,R)

The rule is sound: any bebavipur of P; ||| Py will be the interleaving of two
behaviours from the components, with a stability value corresponding to the max-
tmum of the two component stability values. However, the rule is not complete.
Consider the application of the rule to the two processes P; and P, given earlier,
to the proof obligation §, where

5(s,0,8) < s={0,a),({,a))=>a=2+6

a behavioural specification which holds of P, ||| Pz. If we are able to find be-
havioural specifications §; and S; which hold of P, and P; respectively, then we
must have §; ({(£, a)}, L +&,8) and Se({(?, a)}, { +8,0), and so S{{(&, a),(L,a)}, 1+
6, 8). But this is not the case. Hence, the rule cannot be used in estabhshing this
proof abligation.

The SUP operator presents a further obstacle: consider the set of processes
{P,} defined by P, = n — WAIT (! — %}, then the process P = (n : N — F,)\N
has the behaviour ({}, {,8), even though there is no behaviourof 7 : N — P, from
whichit can have come. The stability value 1 really does arise from the entire set
of stability values of the behaviours that have given rise to the failure {{},9); no
single component behaviour can give rise to that stability value. Hence it is not
possible to formulate a rule for behavioural specifications of the hiding operator.

These problems can be overcome by altering our treatment of stability, em-
ploying the notion of ‘instability’ values introduced by Blamey in [Bla89]. In this
approach, each failure (s,R) is associated with a sef of instability values, each
corresponding to a time at which the process might still be unstable, having per-
formed 8 and refused R up to that time. The iustability value end(s) is always
included as a trivial instability. Hence, if process P in TMps has a behaviour
(s, a,k), then the semantics of the process described in terms of instability values
will contain ail elements of the set

{{s,7,8) | end(s) € v < a V end(s) =7 = a}

We will denote by TMgr the model which describes processes in terms of triples
(3,7,8) which represent (trace,instability,refusal} information. Blamey demon-
strates that there is a natural isomorphism between TMgs and TMer. If § is an

50

clement of TM g5, then the corresponding element of TMg; is given by
§ = {(s, M) }jJae(s,a,R) €S A (end(s) 7 < aV end(s) = 1))

Conversely, if P is an element of TMy;, then the corresponding element of TMps
is given by

P = {(s,a,®)|Iva(s,7,R) € PAa=sup{y|(s,7,R) e P}}

The semantic equation £rr : TCSP — TMps enjoys the property that allowed
the construction of a complete proof system for TMp: that it follows purely from
the nature of the component behaviours themselves whether or not they give rise
to a composite behaviour in the compound process. We are thus able to formulate
a complete (and sound) inference rule for each syntactic operator, so we arrive
at a proof system for behavioural specifications on TMp;. Blamey also shows
that behavioural specifications are clogsed i TMpy {on which the obvious metric
is defined), so the side condition for the recursion induction principle requiring
closure is autornatically discharged.

The information represented by (s,v,R) € £gy[F] is that the process may
perform s and refuse R, and that internal activity may still be oceurring after the
performance of 3 and tefusal of X [y. The expressive power of behavioural specifica-
tions on TMgy is therefore different from those on TMgs, since the triplesin each
case represent different aspects of stability behaviour. Indeed, any behavioural
specification on T'Mp; corresponds to a behavioural specification on TMps: we
have P sat §(s,v,R) if and only if P sat Ts(s,a,i), where T's is defined by

Ts(s,a,R) = S(s,end(s),¥) AV ~y € [end(s),a)» S(s5,7,R)

The converse 1s not true. For example, there is no behavioural specification on
TMjgy that corresponds to the behavioural specification on TMFrs:

S(s,a,R) = a=-end(s)+ 5§

since this can only be deduced from the whole set of instabilities. As wasthe case
for TMr, we can only apply the proof system to a particular kind of specification on
procesges: in this case, we can only treat a certain kind of behavioural specification
on TMps — those that can be written as behavioural specifications on M.

51

4.6 The proof system for TMg;

Rule s5Tor

(5 = () Ay= 0) = S(S,‘Y,R)
STOP sat S(s,v,R)

Rule

(5= 0) = (5,7 })
L sat §(s,7,8)

Rule skir

(s=0Ay=0AvEa(R))= 5(s,7,})
(s={(r, "N AV go®Rly) = 8578

SKIP sat S(s5,7,R)

Rule wArr:

(s=0A(y=0Vy<t)Av &aR]t)= 5(s,7,K)
s={v,vN AT 2EAL EaRT L)) = S(5,7R)

WAIT t sat S(s,7,R)

The following rules apply to componnd processes. When a process variable is
present. it is more convenient to match proof obligations to consequents: the form
in which the rules are presented makes this possibie.

Rule ¢ P
P sat T(s,7,R)
s=(Avy=0nageR)= S(s7.R)

s={(t,a)) (1 (t+6) Av2 end(s) Aa ga(R[1)A ,
T(s' = (L+8),7 = (t+8),R = (£ +8)) }:'S(1R

(e — P) sat S(s,v,R)

32

Rule a:4 P,

Ya€ A e P, sat S5,(5,7,})
(s=0ATY=0nA0c(R)=0)= S(s,7,})
(s={(t.a))"(s1(t+) Ay 2 end(s} A ANaR 1) A ,
Su(s = (e +8) 7= (1 48),(8 = (1 6) }=”5(1 R)

a:A— P, sat 5(s,7,R)

Rule P, NP,

P, sat 5/(s,7,R)
Py sat Sg(s,7,RN)
(SI (31')'1 R) v Sz(s,‘)‘, N)) = S(Sy T R)

Py N Pg sat §(s,7,®) o

Rule [, P,

¥iel e P sat Si(s,7,R)
Viel e (S(57R) = 5(s7,R)

rle'EJ' Pi sat 5(5173R)

Rule P, 0P,

P, sat S;(s,7,R)

P, sat 5,(s,7,R)

(Si(s,7, R) V Se (5,7, R) A

o030 1 bt A 50,0, g | = 511

P, 0 Pg sat 5(s,7,R)

Rule P | P:

P, sat §,(s,7,R)

Py sat S,(s,v,R)

Si(s, end(s),R;) A Se(5, end(s),Re A
(S] (S,‘T‘,N;) VS!(S,‘)’,Ng)

P, || P¢ sat S(s,v,R)

} = S(S,T,Nf UN:)

53

Rule p, |, P,

P, sat 5(s,7,R)

P, sat Sp(s,7,R)

S(ACXUYARIXUY =N, TXUN,T Y A

S(st X, end(s [X)),) A Sp(s Y,end(s [Y),Re) A }: S(s,7,%)
(Sels [X, Ry) v Se(s | V.7, Re))

P, X".Y P, sat S(S,’)‘,N)

Rule P, P,

P1 sat 51(3,1‘, N)

Py sat Si(s,7v,R)

(s € Tmerge(s;,sp) A Si(sr.end(s;),R) A Se(ss, end(se},R)) A

($1(51,1,8) V Se(s,7,1) ' } = Stem)

P, ||| Py sat S(s,7,R)

Rule wirri;p

P zat S;{s,7,})
(Sila=t,y =L, =2) A begin(s) 2 t Ay 2 8) = 5(s,7,8)

WAIT 1 ; P sat 5(s,7,R)

Rule Pj;Pz

P, sat 5,(s,7v, R}

P; sat S:(s,7,)

VEa(s)AVEe S5 (s, 7, RU[0,8) x {v]) = §(s,7,1)

iev gol(s 1) A S(s T17{(2,v)), 4, RU[0,8) x {v])

ASe(s ~ (t+68),7=(t+6LR=(t+6)) }=>S(sm?*)
AsT(Lt+8)={ Av2 end(s)

Py Py sat S(s,7,R)

54

Rule P\ 4

P sat 5,(s,~y, %)

end(s} Sy A Js o5 VAN

((38 > ve 8;(5,B8.RU([0, maz{F, end(R}}) x A)) Vv = 5(s,v,R)
(end(s) = a A §(5;,7,RU ([0, mez{a, end(N)} x A)))

P\ A sat 5(s,7.R)

Rule f-1(P)

P sat 5;(s,v,R)
Si(F(shv. f(])) = 5(s,7,R)
f71(P) sat S(s,7,1)

Rule f(P)

P sat S;(s,v,N)
SI(‘Ev ’LJF_I(N)) = S(f(s)’ FYvN)
f(P) sat S(s,v,R)

Rule xX e F(X)

YX e X sat S,(s,v,R) = F(WAIT§; X) sat 5;(s,7,R)
S.l (317!}"‘) = S(S,‘)‘,R)

g X o F(X) sat S(s,v,)

Observe that, similar to the corresponding rule in the proof system for TMp, the
process variable X in the first premiss ranges over all sets of instability values, not
only those in TMyy. Again, we provide an alternative rule:

Rule X e F(X) alternative version
Y X . TMgr o (X sat §;(s,v,%) =

F(WAIT §; X) sat S5;(s,v,R))
51(5,7.R) = 5(s,7,R)

3P:TMsre Psat 5,(s,~, R
P‘X.F(X) sat,S(s,%N} [rr e Psa J‘(ﬂ.)r)]

39

We alto provide some additional rules:

R'I.lle PI;Pl

P; sat 8,(s,7,%)

Pe sat Sp(s,v.R)

(vEo(s) AVE S (s, 7, RU([6,8) % {v}) = 5(s,7,R)

s g (se) AV €o(s) A end(s) € B < begn(se) A

Si(si™(B, 7)), B,R T BU([0,£) x {v)}) A = 5(s. 7,
12 end(3) A Se{se = 8,7~ 8,Rs)

(Pl ,Pg) sat S(‘;}‘T,R)

Rule P, L P,

Pj sat SJ(S,’:(,N)

P, sat Sp(s,7,R)

(Sr(s,7,R) A begin(s) € 1 = §5(s,7,R)

begin(s) 2 t+ 8 A 5, {(}, 0. R [E) A

Sels = {1+ 8), 1 (£ + 8),R = (t + 6)) }::. Se)

P, & Py sat S(s,7,R)

Rl.lle P,g &‘ Pg

P, sat §,{s,7,R)

Py sat Sp(s,7,R)

(Si{aft,end(s [t,RTEU[0,1) x {v})
ASe(s=(t+8)y=(t+6,R=(1+8)) } = 8(s,1,R)
AsT(E L+ 28)={) A~y 2 end(s)

At e S (s, V) ERTE U0,) % {v})
A\/&’a(j)f\‘/éa(k1t‘)f\7=t’ }:3(3,7,»{)

5= @ ((1, V) A3 @S (V)L TEUL0.¢) x {v]) }

Av g o(s) A v g olRT1E,) = St

P;é Pg aat S(S,"]’,N)

56

Rule P, é P, special case version

P, sat v € o(s)

F, sat S;(s,v,R)

Pg sat Sz(s,‘)‘,N)

(S;(sl tyend(s [), RIEU[D, &) x {v]

ASp(s = (t+6),vy={t+6),R=(t+6)) + = S(s,7,N)
AsT{E,t+28)=(A2 end(s)

P, é Pe sat S(s,7v,R)

4.7 Soundness and Completeness
Both soundness and completeness of the set of inference rules for TMg; follow

directly from the clauses of the semantic equation defining £77, in exactly the
same way as soundness and completeness followed for the proof system for TMp

¥

5 Aspects of Good Behaviour

In this section we first define three important aspects of desirable behaviour: non-
retraction, responsiveness, and promptness. For each of the definitions, we examine
which syntactic operators preserve it; whether it is expressible as a behavioural
specification and hence a subject for tbe proof systems; whether the defiuition is
closed; and in some cases, the circumstances under which they are preserved by
hiding and alphabet parallel, the constructors used in modelling communication.
We also examine the interaction of the properties we have defined. We make a
number of definitions which will be useful for dealing with timewise refinements,
and with communication. Many of tbese properties are defined on T'Mp; they
can be immediately extended to apply to processes in TMyg, since we have the
identity Fr !IP]I = fail(E£r [Pﬂ). Hence a specification on TMyp will apply equally
to processes in TMrs by applying the definition to the set of failures of the TMpg
process.

One of the most useful facts we can know about a process is that it is non-
retracting: that once it has offered to follow some course of action then that offer
will remain until either it is accepted or some other observable event occurs. An
imperceptible change of state will not cause the offer to be retracted. In addition
to being desirable for its own sake, we will see that this property will be valuable
(in conjunction with promptness or bounded stability) when considering timewise
refinements of parallel compeositions {see e.g. theorem 6.3.27), timewise refinements
of networks (e.g. theorem 7.4.5), and when chaining bnffers together.

Another useful property is responsiveness, a strong form of liveness. It requires
of a process that there is 2 bound on the time by which a response must be
fortheoming. A process is (£, A}-responsive if it will always offer an event from the
set 4 within time ¢. We will illustrate the use of this property in specification and
verification in chapter 8.

The specification prompiness, like responsiveness, places a bound on the length
of time it is necessary to wait for a process to respond, but it does not require that
the process is live; it specifies that if the process must respond, then it will do so
within a bounded time. This may hold of unstable processes, but otherwise the
notion is closely related to stability: if a process responds, then it must do so by the
tiine it becomes stable. We later define t-stability, which holds of processes that
always stabilise within time t. Hence a t-stable process will always be prompt
(see lheorem 5.6.6). As we have mentioned, this property in conjunction with
non-tetraction will be useful in timewise refinement

Other specifications defined in this chapter are impartiality and fimitedness.
A process is impartial on a set A if it treats each element of that set in the same

58

way: at any moment, either the entire set is available, or it is refusible. This will
be useful in identifying prompt buffers. A process is limited on a set if there js a
bound on the number of events it can perform from that set without performing
some event from outside the set. Limitedness is a property required to enable
timewise refinement for the hiding operator (see lemmas 6.3.31, 6.3.33).

This chapter presents a catalogue of definitions and laws concerning these con-
cepts and some variants. Examples of their application in both specification and
verification are presented in chapter 8.

5.1 Non-retraction

The concept of non-retraction is very mmuch a state-based concept rather than one
concerning the set of possible ohservable behaviours of a process. The intuitive
idea we are trying to capture is that once a process is in a particular state where an
event is on offer, then it cannot undergo an internal change of state whereby that
offer is no longer made. However, this state-based notion canpot be captured by a
predicate on the semantics of processes. Consider how the notion of non-retraction
would apply to the process

R = STOPN({a— STOP)E STOP) 1 (a - STOP)

[f we say that there ate three states in which R could be, one of which will retract
the offer of a after two units of time, then clearly there is a state of R where the
retraction of an offer can occur.

In contrast, we would like to aliow that the process @ defined hy
@ = STOPN(a — STOP)

is non-retracting, since there is no possible state for § in which the retraction of
an offer is possible,

It turns out that Fr [RH is equal to Fr [Q] (even though operationally R is
not equal to @). Any specification that captures non-retraction must have that &
is non-retracting if and only if § s, since their semantics are equal.

This issue arises because we cannot deduce which state R is in from a given
failure. If it is possible after a particular failure to either accept or reject a (for
example, for R at time 1, after the failure {(},®)), and yet we do not offer a at
that time, tben we cannot reason about the subsequent hehaviour of the process
depending on whether or not it would have accepted. We think of a failure of a
process as a particular experiment on that process; the trace is the result of the

59

experiment where the refusal set has been offered to the process. Semantically, a
process is defined to be the set of all possible behaviours. Hence for any particular
failure (s,®) if (¢, a) is not in R or in s, then we haveno way of saying that & would
have happened at ¢, unless all possible failures which are identical to (s,R) up to
L cannot refuse g at time ¢. In other words, saying that ¢ would have occurred at
t if it had been offered is equivalent to saying that there is no state in which 4 is
refusibleat time {. So a non-retracting process will be one which, if it can refuse
an event a at time #, must have been able to refuse that event continuously since
the last visible event. Hence it is only obliged to continuously offer an event or set
of events after it is certain to bave offered it.

This leads us to our definition of non-retraction.

Definition 5.1.1 A TCSP process P is non-retracting if for any v ™ w € traces{P)
such that begin(w) 2 tp > ¥ 2 end(u), and ¥ C L we have

(x™w,([fr, t) x YYUR) € Fr[P] = (v w,(jend(n),12) x ¥) U R) € Fr[P]

Example

The process
P=g— WAIT ;b — STOP

is nou-retracting. It has the behaviour
({{(2,0),(5,6)),[8.4) x {8} L[9,12) x {c}}
as a passible failure, so we may conclude that
({(2,a),45,8)),[1,4) x {8} U [9,12) x {c})

is a possible failure. The fact that b is refusible for some time following the
performance of the event a allows us to deduce that it is also refusible from the
time the a was performed. We also have that the failure

(((1,4).(5,8)),[4, 7} x {a}}

is a possible behaviour of P, and hence that

({(1,a).(5,8)),[1,7) x {a})

is a possible behaviour.

It is useful to be able to identify non-retracting processes from their syntax.

60

Theorem 5.1.2 If P,Q and P(a)(a € A) are all non-retracting, then so are the
following:

L, STOP, SKIP, WAIT 1, WAIT ¢, P, a —+ P, a: A -+ P(a),
PN@Q, MieaPla), POQ P Q, Pylly @ PG f(P), f~1(P).

We show later that the specification non-retracting is closed in TMr and so it
follows, if F preserves non-retraction, that y X & F(X) is non-retracting.

Observe that even if P and @ are non-retracting, P\ X and P} @ neednot be
non-retracting in general, since they both hide events whose visibility may.-have
been necessary to ensure the non-retraction of P. For example, ((WAIT 1;a —
STOP)O b — STOP) is non-retracting, since the offer of & will only be withdrawn
if a is performed. If we now hide the performance of a then we obtain

((WAIT 1 ;a —» STOP)O b — STOP)\ a = (b — STOP) & STOP

which retracts the offer of b after 1 unit of time. For the same reasons, timeout
and tireont do not in general preserve non-retraction.

Generalisations

We generalise the concept of non-retraction in several ways. We may be concerned
only with a subset X of the events P is capable of doing, requiring only that no
offers from the set X will be retracted. The specification non-retraciing on X is
defined as follows:

Definition 5.1.3 P is non-retracting on X if for any trace u™w € traces(P),
begin(w) 2 ts > 4 2 end(u), and ¥ C X we have

(7w, ([t te) x YIUR) € Fr[P] = (v w, ([end(u), 1) x YJUR) € Fr[P]

A non-retracting process is non-retracting on any subset of £, and more gen-
erally any process that is non-retracting on X is also non-retracting on any set,

YCX.

Another form of non-retraction is strong non-retraction on a set X. A process
is strongly non-retracting on X if it will not retract an offer from the set X until
an event from that set is performed.

61

Definition 5.1.4 A process P is strongly non-retracting on X if for any trace
u"w € traces(P), begin(w) 2 t; > ¢, 2 end(u), and ¥ € X we have

(u™w, ([t k) x YIUR) € Fr[P]
= (v"w, ([end(u [X),t:) x Y)UR) € Fr[P]

Example

The process
{a — STOP) || {(6 — STOP) & c — d — STOP)
1s strongly non-retracting on {a}. We have that

(((Iva)v('?;c}w(ﬁsd))![‘f:'ﬂ X {a})

is a failure of P, with a refusihle over an interval, so we may conclude that g is
refusible from the previous occurrence of a, and deduce that

(((1,a),(3,¢),(6,d)),[1,5) x {a})
1s also a possible behaviour of P.

Strong non-retraction may be generalised to the concept of non-retraction on
X until Z, where offers from X cannot be retracted until an event in Z occurs.
We insist that X C Z, since we would wish the acceptance of an offered event
from X to allow the retractiou of that offer, siuce it has been accepted.

Definition 5.1.5 A process P is non-retracting on X until Z if for any v~ w €
traces(P}, begin(w) 2 tp > t; 2 end(u), and ¥ C X we have

(v, ([tr,2e) x YIUR) € Fr[P]
= (u"w,(lend(u | Z),) x YIUR) € Fr[P]

62

Example

Thbe process
P =(b—~ 8TOP}!||{a - STOPO ¢ — d — STOP)
is non-retracting on {a} until {a,c}. We have that

({(1,¢),(3,5),(6,4)),[4,5) x {a,b})

is a failure of P, so we may deduce that

({1, ¢),(3.8),(6,d)), [1,8) x {a} U [4,5) x {b})

is also a possible hehaviour: the event @ is refusible from the last occurrence of an
event from {e, ¢}. We infer nothing further about the refusal of 5.

It follows that if P is strongly non-retracting on X, then for each z € X we
have that P is non-retracting on z until X.

A final generalisation of the concept is non-retraction when S, where S is a
predicate on traces. We may wish that a process is non-retracting only under
certain conditions, characterised by §. For example, we may wish that a buffer
is non-retracting only when it is empty. The condition on the trace that captures
this requirement is that the number of outputs is equal to the number of inputs.

The notion of non-retracting when § also generalises the other versions of non-

retraction. We define it for the most general case:

Definition 5.1.6 A process P is non-retracting on X until Z when S if for any
™ w € traces(P), begin(w) 2 t2 > U 2 end(n), and ¥ C X we have
(v, ([t te) x YYUR) € Fr[P] A S(z)
= (v"w,([end(u | 2),8) x Y)UR) € Fr[P]

Example

The process

uXeoa—(b— X5 STOP)

is non-retracting on {a, 5} until {a, b} when s = {} Vv last(s) = &.

63

This is the most general form of non-retraction; all the other forms are special
cases of it:

® Non-retraction is non-retraction on T until £ when TRUE

® non-retraction on X is non-retraction on X until £ when TR UE

& strong non-retraction on X is non-retraction on X until X when TRUE
e non-retraction on X until Z is non-retraction on X until Z when TRUE
e non-retraction when § is non-retraction on £ nntil £ when S

non-retraction on X when § is non-retraction on X until & when 5; and
strong mon-retraction on X when § is non-retraction on X until X when §

Hence in order to show that each of the varieties of non-retraction is closed in
TMy we need only prove it for the most general case. This involves a straightfor-
ward application of Reed's theorem 9.6.3 applied to TMp, which states that if a
predicate § is such that

SS(P) =+ 3t €{0,00) s (P(1) = Q) = ~S(Q))
then §is closed in TMF.

Theorem 5.1.7 The predicate ‘non-retracting on X until Z when S’ is closed.

Proof U a process P is not non-retracting on X until Z when S, then

Ju"w € traces(P), begin(w) 2 Ly >ty 2 end(u),R, ¥ C X o
(vw,[t,ts) x YUR) € Fr[P] A S(u) A
(v"w {end{u | Z),te) x YUR) & Fr EPI[

Now let @} be an arbitrary TMp process such that
Q(maz{end(u”w), L} +1) = P(maz{end(u"w), tp} + I)
It is clear that

Ju"w € traces(Q), begin(w) 2 tp > t; Z end(u), Y C X »
(v w20y x Y UR) € Fr[@] A S(u) A
(u"w,[end(s | Z),8) x YUR) ¢ Fr[Q]

64

so we conclude that ¢ is not non-retracting on X until Z when §. Therefore the
predicate ‘non-retracting on X until Z when S is closed for any X, Z and §. O

It follows immediately that all the particular cases of it are also closed.
Most of the constructors that preserve non-retraction also preserve the more

general non-retracting on X unlil Z.

Theorem 5.1.8 If P, Q and P(a){(a € A) are all non-retracting on X until Z,
then so are the following:

i, STOP, SKIP, WAIT t, WAIT ¢t ; P, ¢« -+ P, 2a: A — P(a),
PNQ, [esPla), POG P Q, Pilly @, Pl Q

Further, if inits(P) N X = then P2 @ is non-retracting on X until Z.

In general, if P 1s non-retracting on X until Z, alphabet transformation function
f does not yield non-retracting on f{X) until f(Z). Consider

P = (a- STOP 4 STOP)

Then P is non-retracting on {b} until {#}. But if the function f has f(a) = f(b) =
¢, then f{P) is not non-retracting on {c¢} until {c}.

However, we do obtain the following result:

Theorem 5.1.9 if process P is non-retracting on f~' (X) until f=1(2), then f(P)
s non-retracting on X until Z.

Hence, if f is one-one, then P non-retracting on X until Z does imply f(P) 1is
non-retracting on f(X) until f(Z)
The case for inverse functions is simpier:

Theorem 5.1.10 If F is non-retracting on X until Z, then f~7(P) is non-reiracting
on f~H(X) unted f~4(Z)

The most general form of non-retraction, non-retrecting or X until Z when
§, is not preserved by the interleaving operator or by the alphabetised parallel
operator. For example, the processes

1

P
Q

2 — STOP . STOP
b STOP {, STOP

I»

63

are non-retracting when s # {), but the processes P |i| @ and P ;il,; @ are
not non-retracting when s # (). We have ({(0,a)},[1,2) x {8}) € Fr[P || Q]
and {(8,a)) # (), but ({(0,a)},[0,2) x {b}) & fr{P I QH. The same failures
illustrate the case of the parallel operator.

The process constructors which do preserve non-retraction on X until Z when
5 are given by the followiug:
Theorem 5.1.11 If P, Q@ and P(a)(a € A) are all non-retracting on X until Z
when S(s), then so are the following:

L, STOP, SKIP, WAIT ¢, WAIT ¢, P,
PnQ’ r-lae_AP(aL PDQ: P” Q

In addition, a — P and a : A — P(e) are non-retracting on X uniil Z when
S(tad(s)). Further, if f is one-one, then f(P) is non-retracting on f(X) until
£(2) when S(F~1(s)).

As before, if f is not one-one then this is not necessarily the case.

Theorem 5.1.12 Non-reiraciion cannol be written as a behavioural specification.

Proof An application of theorem 4.4.2 will yield this result. Defining

P
Q

we have P () is non-retracting, but P is not. O

1]

(e — STOP) g STOP
STOP

1

It follows that none of the generalisations of non-retraction can be written as
behavioural specifications.

Theorem 5.1.13 Nen-retraction has the following properties:

L If P is non-retracting on A until B, and AC X\ Y, BC X, then P ||, Q

is non-retracting on A until B

2. If P is non-reiracting on A until B, and CN B = §, then P\ C is non-
retracting on A until B

3. If P is strongly non-retractingon A and A C X \ C, then (P 4|, @)\ C is
strongly non-retracting on A

66

4. P is non-refracting on A end non-retracting on B if and only if P is non-
refracting on AU B

5. If Q is strongly non-retractingon A, and o(P)NA = B, then Pé Q is strongly

non-retracting on A

The following technical results will be required later (see e.g. theorem 5.3.12,
theorem 6.3.27}:

Lemma 5.1.14 If P is non-retracting on Y, then
(s, M) € .FT[P] => (s,W) € .'FTEP]
where X' = {(£,a) |a € Y ATt 2t 2 end(s) o (1, 2) € R}

Proof This follows straightforwardly from the fact that ® is a finite union of
refusal tokens, so the definition of non-retraction will apply to each of them in
turn, O

Corollary 5.1.15 If P is non-retracting on Y, and T > end(s), T" > 0, then
(s,) e Fr[P]AACo(RT[T, T+ T))NY
=5 (5,0 U [end(s), T} x 4) € Fr[P]

Proof Follows immediately from lemma 5.1.14, (where [end(s), T') x 4) € N'].
D

Lemma 5.1.16 If P is non-retrectingon Y, and AC Y, T > end(s), 7' > 0,
then

(5.R) €SIr[PlAACRTIT, T+ 7)) = (5,RU[end(s), T) x 4 € SIr{P]
Proof
Viz T+ Te(s,RI)eFr[PlAACoRT T[T, T+ T
$0 by corollary 5.1.15 we obtain
Ytz T+ T e(s,RItUlend(s), T) x 4) € Fr[P]

(5,RU [end(s), T) x A) € SIz[P]
as required. 0

67

5.2 Responsiveness

Responsiveness on a sel of events A is a particularly strong form of liveness con-
cerning that set. To state that a process will respond within time ¢ to the set of
events 4 is to say that it cannot refnse to perform all of that set over an interval
of lengtk ¢. We call such a process (¢, A)-responsive.

Definition 5.2.1 A process P is (1, A)-responsive if it satisfies

Vs, W)€ Fr[P], T €[0,00) ¢ [T,T+1)xACR> (s 1 A)T (T, T+1)#{

Example

The process
uXeag—- X

is (1,{a})-responsive {(when 26 < 1}.
Corollary 5.2.2 In behavioural specification form we have that @ process P is
(¢, A)-respansive if
P sat VT ec[0,00)e ([T, T+ xACR=(TA)T[T, THO#()
Recall that for a process to refuse a set A over a particular time interval, on
a given trace, does not imply that the trace performs no event in 4 over that
interval; rather it means that it can perform no more events in A than it has in

fact performed. In the case of the definition for responsiveness it implies that at
least one event in A can always be performed during an interval of length ¢.

Clearly a process which is capable of terminating is not ({, 4)-responsive for any
t,A, since after termination it will refuse 4 for all time. This raises the question
of which processes are (2, A)-Tesponsive.

Theorem 5.2.3 If P,Q} and P{a)(a € B) are (1, A)-responsive for some t (> §)
and 4, then we have:

o a— Pis(i+6 AU {a))-responsive (which is (t +§, A)-responsive ifa € A)
o« WAIT V' P is (t + t', A)-responsive

¢a:B — Pla)ts (1 + 6, B)-responsive if ACB,A#£0D

¢ [1,ep Fla) is (¢, A)-responsive

68

e WAITH; a : B — P(a) is (mez{t",t + 6}, B)-responsive if A C B, A #
g,¢" > ¢

s POQ, PN Quand P||| Q are all (1, A)-responsive
e Ift'> 1 and B D A then P is (', B)-responsive
We can write (¢, A)-responsive as a behavioural specificalion, so it is continuous,

and so we obtain the result that if Fo WAIT § (F composed with WAIT delta)
preserves (I, A)-responsive, then g X o F(X) is (¢, A)-responsive. '

Generalisations

As we remarked earlier, a process capable of terminating cannot be responsive.
However, in many cases such a process will be sequentially composed with another
process, and in such circumstances we are not concerned with its behaviour follow-
ing termination. We therefore generalise the notion of responsiveness to responsive
before terminaiion.

Definition 5.2.4 A process P is (t, A)-responsive until termination if
P sat VYT e([0,o0)e (([T.TH+t)xAU[O, T+ x{vhER
(s tA T[T, T+#E() v/ €a(s))

Example

The process
a-— WAIT §,b — SKIP

is (4,{a, b})-responsive until termination. However, the process
a— WAIT 3,0 — STOP

is not responsive until termination, since termination must be successful.

Theorem 5.2.5 All the process constructors that preserve (t, A}-responsive also
preserve (&, A)-responsive uniil termination. In addition, if P and @ are (t, A)-
respongive until termination, and R is (1, A)-responsive, then we have

e SKIP is (1, A)-responsive uniil termination, for any t > 0

o WAITt is (', A)-responsive until terminalion, for any t' > t

69

o PL Qs (24 6, A)-responsive until termination

P\f' @ i3 (2t + 26, A)-responsive until termination

o P: R is (2, Aj-responsive
e Pi R is (2t + 6, A)-responsive
If we are concerned that a process has a bound on response on set A4, but we

are not concerned with the value of that bound, then we say that the process is
A-responsive.

Definition 5.2.8 A TCSP process P is A-responsive if At € [, 00} such that P
is (t,A)-responsive.

Theorem 5.2.7 If P and @, are A-responsive then 30 are
a— P, POQ, PNQ, WAIT t; P, P|| Q. P; @

To say a process is responsive is to say that it will respond to some event from .

Definition 5.2.8 A proeess is respensive if if is D-responsive.

Definition 5.2.9 A process P is A-responsive until termination if 3t € [0, 00)
such that P 1s (1, A)-responsive until termination.

Theorem 5.2.10 If a € A, then if P and @} are A-responsive uniid termingtion,
then so are

SKIP, WAITt, a— P, POQ PNQ,
WAIT t;P, PIl|Q, P3Q. P Q, P Q

Further, if ANB # 0 then 6 . B — P(g) is A-responsive unttl fermination.

The predicate A-responsive is not closed. For instance, if F(X) = WAIT [;X
then p X » F{X) = L, which is not {a}-responsive although each of the approx-
imations F*(u X e a — X) is {a}-responsive. It follows that A-responsiveness
cannot be expressed as a behavioural specification. The function F also preserves
A-tesponsive until termination, so it follows that the predicate A-responsive until
termination is not closed, and so it cannot be expressed as a behavioural specifi-
cation.

70

Theorem 5.2. 11 Responsiveness has the following properties:

1. If P is an A-responsive process and 4 € X\ ¥V then P ||, @ isan A-
TESpoOnSive process

2. If P is an A-responsive process and AV B = B, then P\ B is A-responsive

We are often: interested in the responsiveness of a process immediately following

an action, especially if the process will be used with an interrupt operator (see e.g.

section 8.2): where we are not concerned with behaviour of the argument process

following the interrupt. We say that a process is immedialely responsiveif it cannot
refuse & set over an entire time interval immediately after its last event.

Definition 5.2.12 4 process P is immedialely (¢, A)-responsive if
P sat [ead(s),end(s) +{) x AER

Example

The process
pX e((a—+X) & STOP)

is immediately (&, {a}) responsive, since it cannot refuse a for the 3 time unijts
following the occurrence of an a, (or before it has done anything).

Theorem 5.2.13 If P, @ and P(a) are all immediately (t, A)-responsive, then
so are the following:

ea— P
va:B— Pla)ifANB#B

MPe), PNQ, PDQ

o« WAITY ;a:B— Pla)ift <t,ANB £
PllQ

PLQift'>t

Further,
o f~1(P) is immediately {1, f~!(A))-responsive

71

o if P is immediately (t,f!(A))-responsive, then f(P) is immediately (, A)-
responsive

The behavioural nature of its definition entails that the predicate ‘immediately
(¢, A)-responsive’ is closed.
The following results will prove useful later.

Theorem 5.2.14 [f P is immediately (t, A)-responsive, ¢ > t, B 2 A, then P is
immediately (¢, B)-responsive,

Theorem 5.2.15 If P is immediately (t, A)-responsive, and Q s (t', Aj-responsive,
then P% Q is (t+ t' + 28, A)-responsive

Theorem 5.2.18 [f P is immediately (t, A)-responsive, and @ is immediately
(1", A)-responsive, then P ‘E @ is immediately (1 + t' + 268, A)-responsive

Theorem 5.2.17 [f P is immediately (¢, A)-responsive, and alphabel transfor-
mation | preserves “immediately (¢, A)-responsive”, then the recursive process

uXeP é F(X) is (2t + 86, A)-responsive

5.3 Promptness

We define promptness as follows:

Definition 5.3.1 A process P is t-prompt if for any (s,R) € Fr I[P] we have:

Tend(s) AT, T+)x X CR = (5,RU[T,00) x X} € SI7r[P]
This definition specifies that if the process can refuse the set X over an interval of
length ¢, then it can refuse X for all time.

Example

The process
P= (a —rSTOP) l; b — STOP

is 3-prompt: from the inforrmation that

(0,10, 1) x {8} U[3,6) x {a}) & Fr[P]

72

we may conclude that
(0,10, 1) x {b} U[3,00) x {a}) € ST+ [P]
However, P is not I-prompt; it is not the case that
({),10,00) x {8} U[3,6) x {a}} € SI7[P]

We may not conclude that {5} is infinitely refusible from the observation that it
is refused for 1 tirne unit.

We generalise the definition:
Definition 5.3.2 A process is prompt if it is {-prompt for some 1.

A weaker version will be sufficient to estahlish some timewise refinement results
in the next chapter:

Definition 5.3.3 A process P is weakly t-prompt if for any s € traces(.ﬂ-[P])
we have:
T'2 end(s)4 tAT ST ~t A(s,|T, T') x X) € Fr[P]
= (5,[T,00) x X) € §Ir [P}

Example

The process
(e = STOP) L b — STOP

is weakly 3-prompt. We may conclude from
({(2,0)),11,5) x {8}) € Fr[F]

that
{{(2,8)),[1,00) x {b}) € ST [P]

However, in contrast with the previous example, weak 3-promptness is not strong
enough to conclude

((),[0, 1) x {6} U {8, 0) x {a}) € ST [P]

from

(110.1) x {8} U (3,6} x {a}} € Fr[P]
Definition 5.3.4 A process is weakly prompt if it is weakly t-prompt for some .

73

We may strengthen the definition so that event a is not possible after its refusal
for length of time i:

Definition 5.3.5 A process P is strongly ¢-prompt if
P aat ([T, T+ x{e}CRAST(T, T+ =)= firsi(s1{(T+1)#¢

It is clear that a process which ia strengly ¢-prompt is also ¢-prompt, since it
follows from the axioms of TM that if a timed event is not possible, then it must
be refusible. However, the converse is not the case: the process

STOP & (8TOPNa — STOP)

is 1-prompt, but it is not strongly 1-prompt.
Theorem 5.3.8 If P, (Q, and P(e)(a € A) are t-prompt (1 > §) then we have

e PNQ, POQ, P @Q, [es Pla), f{P), f71(P) are all t-prompt
s STOP, 1, SKIP are t-prompt

ez~ P a:A— Pla) are t + -prompt

o WAIT t' is t prompt when ¢! < ¢t

o PG is 21+ 6-prompt

o WAIT P is ¥’ + t-prompt

However, for any T, P || @ need not be T-prompt, since they could fail to
synchronise for intervals longer than T. For example, defining

P = uXe{a—S8TOP)L (STOPL X)
Q (WAITz;P)g"aHSTOP

Il

we have P and) are both 4-prompt, but the process P || @ is not f-prompt for
any € T, since P and @ are unable to synchronise within T time units but are
guaranteed to synchronise eventually.

74

Generalisations

We may generalise the specification ¢-prompt in the following ways:

Definition 5.3.7 A process P is t-prompt on X if for any (s,R) € Fr [P] :

VT 2zend(s), Y CX [T, T+t)x VY CR = (5,RU[T,00) x Y)ESIT[P]

Example

The process
¢ — WAIT 8:b— a — STOP

is 1-prompt on a but not on 5.

Theorem 5.3.8 t-prompt enjoys the following properties:

e Pist-prompt on AU B if and only if it is t-prompt on A and on B
o IfPist-prompton Aand AC X\ V then P 4|, Q €5 t-prompt on A.

Proof The only non-trivial case is that of proving P is ¢-prompt on A and on B
implies F is t-prompt on AU B: Assume P is t-prompt on A and on B. Consider
(s,¥) € Fr[P] with T 2 end(s) A [T, T+¢) x (AU B) C R. Then

(s, RU[T,T+t)x AU[T,0) x B) € §Ir[F]
YT e(s,RU[T,T+t)x AU[T, T") x B) € F7[F]
YT e (s,RU[T,00) x AU[T, T") x B) € §Ir [P}
YT e(s,RU[T,T) x AU[T, T} x B) € Fr[P]
VT’ e (s,RU[T, T") x (AU B)) € Fr[P]

(8, RU[T, 00} x (AU B)) € SIz[F]

YLy

[
Definition 5.3.9 A process P is {-prompt on X when § if for any
(s,R) € Fr[P] -

VT 3> end(s) @ S(s) A[T,T+t)x X CR = (5,RU[T,) x X) €5I7[P]

75

Wemay also define the notions of

¢ tprompt on X when §
& strongly t-prompt on X
e strongly ¢-prompt when S and

e sirongly {-prompt on X when §

in the obvious way.
Example

The process
(b= (b= X)Na— X)
Dc— WAIT3;a — X)

ie both 1-prompt on {g} when lest(s) = b, and strongly 1-prompt on {a} when
last(s)= b. However, it is neither 1-prompt, nor 1-prompt on {a}.

pXe

Theorern 5.3.10 [t is not possible to write t-prompt as ¢ behavioural specifica-
tion.

Proaf Consider the processes P and @ defined by

»

P
Q

Then PN @ is 2-prompt, but P is not, so the result follows from theorem 4.4.2. O

WAIT § ;a2 — STOP
STOP

Tl

It follows that none of the generalisations can be written as a behavioural spec-
ification. However, recall that strong t-promptness is expressible as a behavioural
specification, and so it is closed.

The other forms of t-promptness are also continucus. To prove this, we consider
only the most general form: t-prompt on X when S.

Theorem 5.3.11 t-prompt on X when 5 is closed

Proof Assume that P is a process which is not t-prompt on X when §. Then

As,R) € Fr{P]. T 2 end(s), Y C X »
SYA[T, T+ x Y CRA(s,RU[T,00) x ¥) & Fr[P]

6

But if (s, RU (T, 00) x ¥) ¢ STr[P], then
IT'>T o (s,RU[T,T)x ¥)¢SIr[P]

Define T" = I + maz{end(s,R}, T'}. Then F(T") = Q(T”} = Q is not ¢-prompt
on X when S. Hence by Reed’s theorem 9.6.3 (see page 41) we conclude that the
specification *t-prompt on X when §' is closed. O

Hence all the forms of promptness are closed.

Theorem 5.3.12 If P and () are prompt, and F is non-retracting orn A and @}
is non-retracting on B and AUB =X NY, ther P ||, Q is prompt

Proof Let P be ¢;-prompt, and @ be ts-prompt. We will prove that P ||, @ is
i, +1s-prompt. Consider (3,8) € STz [P ||, Q] and that [T, T+{,+2)xZ C R
for some T 2 end(s). Without loss of generality, assume Z C X U Y. Define

s = slX
s = s|Y

Then

IR R, @ (SJ.N;)ESITHP] A(s!,Ng)ESITﬂQ]I AR=N, URA
Ry [(XA\Y)=RIX\NY)AR (YA X)=RI(Y\X)

and so
[T, T4+t +t) x(Zn{X\Y)) TR,
AT, T4+t +t)x(Z0{Y\ X)) CRe
and so
(s, R, U[T,00) x (ZN(X\ Y))) € SI7|P]
A (52,8 U[T,00) x (2N (Y \ X)) € ST7[Q]
Define

Zy = Xn¥nZne® t{T+4, T+ +12))
Zs = XnYnZo{e|[T+4, T+ +t) x{a} CRs}
Zy = XANYNZnalRe T[T+, T+H +1s))
Zy = XnYnzZn{a|[T+4, T+ +1s) x{a} TR}

7

Then lemma 5.1.15 yields that
(51,8 U[T,00) x (ZN(X\ Y)U[T, T+) x Z1) € Fr[P]
= (5, R U[T,0) x (ZN{X\NY)UIT 4+ 4, T+t +12) % Z, UZ;) € Fr|P]
= (3,8 U[T,00) x (ZN{X\ YNU[T + ty,00) x Z; UZ;} € FriP]
By symmetry we also obtain that
(52, R U[T,00) X (ZA(YN XN U ([T +t5,00) x Zx U Zy) € Fr{(]
and so

[T,00) x (ZN{X\ YIU[T,00) x (ZN(Y \ X))
(S: UN]UNg(U[T-Ft;,OO)X(Z;UZQUZJUZ“)) € SITlIPx"yQH

thus we obtain
{s,RU[T,00) x Z) E]—'T[PX”}, Q]

as required. O

Lemma 5.3.13 If P and Q are weakly prompt, and P is non-retracting on A and
¢ is non-retracting on B and AUB=XNY, then P |, @ is weakly prompt

Proof The proof is entirely similar to that for theorem 5.3.12

Coarollary 5.3.14 If P and @ are prompt, and P is non-retracting on X NY,
then P .||, Q is prompt

5.4 Impartiality

A process which is impartial on a set A always makes all its offers from set A at
the same time.

A process P is impartial on a set A if it either offers all of the set or none of it.

Definition 5.4.1 4 process P is impartial on 4 if

Y(s, Rl € SIr{P)a€ A o (s7{(t,a)),R) € SI7[P] =
Yoe Ade(s7((t,8), RUI(R T A) x A) € SI7[P]

78

Example

The process

pXe(a—X0b—=X0e— X)

is impartial on {a, b, ¢}, but not on {a,b,¢,d}.

Every process is impartial on the empty set, and on singleton sets.
Theorem 5.4.2 [f P, @, and P(a) are all impertial on A, then so are the fol-
lowing:

¢ STOP, L

o SKIP, WAITt ifv & Aor AC {v}

o« POQ, PNQ,T[], Ple)
PlQ PIIQ P;Q, WAIT:; P

ea:B— Ple)if ACBorANB =4

P lly@#(ACXVANX=0and(BCYVBNY =9
« P\Bif ACBorANB =

s PiQandPiQ

e f~1(P) is impartial on f~7(A)

e [f P is irnpartial on f~'(A) then f(P) is impartial on A

Theorem 5.4.3 “Impartial on A” ts closed

Proof Consider {P,} — P, with each P, impartial on A. Now let
(s7((t,8)),R) € ST [P]
Given T(> t) we have

3Nr.ﬂ>Nr=>P,|'T=P[T
= (s7((t,e)), R | T) € SI7[P.]
= VbeAe(s™{(L, b)), R} TUI((R| T)IA)x A) € STr[RA]
= VbeAde(s™(LIMRTTUI(RTT)IA) x A) € SIr[F]

79

This is true for all T, so
YoeAds(s™((1,0),R0(I(RTA)x A) e SIT[P]I
as required. O
Theorem 5.4.4 [f P is responsive on X, () is responsive on Y, P or (} is 1mn-

partiddon X N'Y, and P or Q is non-retracting, then P 1|y @ is responsive on
Xuy

Proof We will prove the case where P is impartial on X N Y and @ is non-
retracting. The other cases are proved in a similar way. Let P be (#;,X)-
responsive, and let @ be (ty, ¥)-responsive. We will prove that P .|, Q is
{t; +t, X U Y)-responsive.

Assume not, for a contradiction. Then for some (s,8) € Fr[[P !, @}, and
for some T € [0, o0), we have

(TTH+L +t)x XUY)CRA(GTXUY)T[T, T4+t +)=
and without loss of generality we may assume
end(s) S TH L+t AendR) K THE + 8
Hence end(s) € T. Define

$; st X
g = STY

Then

3K, Re e R=R, URs A(s),8,) € Fr[P] A (32, 8) € Fr[Q]
ART(X\Y)=8 X\ Y)ART(Y\X)=Re (Y X)

and so
(P, T4+t +t)x(X\NY)CR, AT, T+ +t)x (YN X)CR,
We have two cases to consider:
Case [T+4, T+t +4)CIHN, {ANY))
= (s0,[T+t, T+t +4)x X) € Fr|P]

= (s [X)T(THL, T+tat+)#£()
= (SHAXUYNT(T . THaat+4)#()

80

which yields a contradiction.

Case [T+, Tt +)L IR, [(XNY))

e C T+, T+t +) e [,) x (XNY)C R,
[, ¢") x ¥ C R,

(s2,[end(ss),#") x Y} € F[Q]

(20,[T, T+) x V) € Fr|@Q]

(e TY)T(T, T+ 4] # ()

(s HXUYNUT, T+t + 1] # ()

S

which yields a contradiction. O

5.5 Limitedon A

A process is limited on 4 if there is a bound on the amount of internal chatter
from A it may perform when the set 4 is hidden.

Definition 5.5.1 A TCSP process P is n-limited on A if
Vs € traces(Fr I[P VA, w e traces(f;rI[P]) e\ A=s=#{w] end(s)) < n

Example

The process
pXevaob—oc— X

is 3-limited on {a, #}. However, the process
pXea—- X0 X

is not n-limited on {e} for any a; there is no bound on the amount of possible
internal chatter.

Theorem 5.5.2 n-limited on A is closed in TMp
Proof By an application of Reed’s theorem 9.6.3 (see page 41}

Definition 5.5.3 A TCSP process P is limited on A if there is some n such that
P is n-limited on A

81

Theorem 5.5.4 ‘Limited’ enjoys the following properties:

* Every process is limited on §.
& [P is limited en A and AC X then P |, @ is limited on A
o If P is limited on AU B then P\ A is limited on B.

We also define a weaker notion, where the bound on chatter may depend on
the observations:

Definition 5.5.5 A TCSP process P is weakly limited on A if

Yse traces(leP\ Al),an,‘v’w € traces(frllp]) sw\A=s=>H#w<n

Example

The counter process
uYeo(puX oup— (X;down — SKIP)Ndown — SKIP):Y

has the number of possible down events it can perform bounded by the numbher of
up events that have occurred. It is therefore weakly limited on {down}, but it is
not limited on {down}.

Clearly any process that is limited on A is also weakly limited on A

Theorem 5.5.6 {f P is limited on A, @ is limiled on B, and ANY = BNX =,
then P .||, @ is imited on AU B

Proof We have
dn e w € traces(P) A 5 € traces(P\A)Aw\A=s= #wlend(s)<n
and

Ame w € traces(Q) A s € traces(Q\ A) Aw\A=s=Fwlend(s)<m

Now consider
w€ traces(P ||, @) A 5 € traces{(P y]|, @INAUB)Aw\AUB =5

Since

ANY=BnX=0

82

we have
5 € traces(P\ A x\A”Y\B Q\B)

sO

st X =5t (X\A)E traces(P\ A)
Now w\AUB =ss0

sEX=(w\AUBJIX =(v\A X =(w[X)\A

Now
w !l X € traces(F)
and so
#wlX)lend{s[X)<n
By symmetry,
#H#wlY)lend(s V)c<cm
Hence

#(wl XUY) maz{end(s | X),end(s | ¥Y)} <m+mn

and so #w { end(s) < m + n as required, O

Theorem 5.5.7 If P is limited on AU B and is weakly prompt, then P\ A is
limited on B and is weakly prompt.

Proof Let P be n-limited on A U B. We first prove that P\ A is n-limited on
B. Consider s and w such that

s € traces(P\ A\ B) A w € traces(P\ Ay A w\ B =5
Then
Iueuctraces(P)Au\A=w

Then
s\{(AUB)=s5

50
#ulend(s)<n

so #wlend(s) < n. O.

Now let P be weakly ¢-prompt. We will prove that P\ A is weakly ni-prompt.
For 5 € traces(Fr[P\ A]) let

T' 2 end(s)+nt, T < T'— nt, (s,[T, T') x X} € Fr[P\ A]

83

From lemma A.1.2 we have that

Swe (w. [T, T)x XU[0, T)x A e Fr[P] nw\A=s
Since P is »-limjted, and 77 2 end(s) + ni, we have that

IT e TET ST —tAwl (T T +4] =0

But then

(w i {T" + &), [T, T" +) x X U[0, T"+t) x A) € Fr[P]
so by weak promptuness of P we obtain

(w(T"+1),[T,00) x X U[0,00) x A) € ST [P]

50 (8,[T,0¢) x X) € STr|P] as required. O

Theorem 5.5.8 [f P is responsive on B and limited on A, and A C B, then P\ A
s responsive on B — A,

The definitions may also be extended to CSP processes:
Definition 5.5.8 A CSP process P is n-limited on A in Mr #f
VireT[Pje(ve A" Awinir)= fu <new\A=s

A CSP process P is limiled on A in My if there is some n such that P is
n-limited on A in Mt

We also define a weaker version:

Definition 5.5.10 A CSP process P is weakly imited on A in Mt if
VsETIIP\A]I,3n,Vw E‘T{P]] s(w\A=s= #tr <n)

5.6 DBounded Stability

A process is stable if all of its behaviours are stahle:

Definition 5.6.1 A TCSP process P is stable if
(s,e) € stab(Er[P]) = e < o0

84

Definition 5.6.2 A TCSP process P 1s stable when 5 if

({s,c) € stab(ET[P]) A 8(s)) =+ & < o0

A process F? is t-siable if it always stabilises within length of time ¢ of per-
forming its last action.

Definition 5.6.3 A TCSP process P is t-stable if
(s,) € stab(Ex [Pﬂ) =o€ end(s) +¢

Example
The process

pXe((a—X)Eb—a—X)
is 3-stable.

Definition 5.6.4 A process is boundedly stable if it is {-stable for somet.

Theorem 5.6.5 If P,Q, and P(e) are t-stable, and " < ¢, then

Pl|l@ P4y @ Pll@ POQ, PNQ are all t-stable
P35 is (2t + 6)-stable

o a— P anda: A— P(a)} are(t + §)-stable

WAIT V' ;2 — P and WAITV ;a: A — P(a) are (t + é)-stable
S(P) and f~1(P) are t-stable
WAIT ' ; P is (2 + 6)-stable

Further, {-stable is elosed in TMps.

Theorem 5.6.8 If P is f-stable then it is t'-prompl for any t' > ¢

85

Thecrem 5.6.7 If P is boundedly stable and weakly limited on A, then P\ A is
stable.

Prool Let P he t-stable. Consider s € traces(P \ A}. Then
Inew€ traces(P)Aw\A=s=>H#wlend(s) <n

We will prove that

(s,a,B) € Ex[P\ A] = a end(s) + nt
By the definition of the hiding operator, we have

(v,a,[0,8) x A) € [P]
for some a, 8 such that end(w) € § € a. Now if
((t:,a:),(tz, 8¢)) in w1 end(s)
then axiom 8 of TMrs yields that L < ¢, + ¢, since if ¢, > £; + ¢ then
(Wl ((te+t +8)/2),[0,(b+ 1t +1)/2) x 4)
i3 a failure of P, whose stability value is less than (¢ + # + £)/ 2, and so
(w (e + & + 6)/2)"((te, ae)}, [0, (L2 + t: + £)/2) > A)

is not a failure of P. This contradicts the fact that (w | £s,[0,te) % A) is a failure
of P.

Hence
end(w) € end(s) + #(w | end(s)}t < end(s) + (n —)¢

and so
(w,a,B) € ET[P] = a € end(s) + ni

so [defined above is less than end(s) + ni.
Therefore (s, a,8) € £r[P\ A] = a < o0, and so P\ 4 is stable. O

Theorem 5.6.8 If P is boundedly stable and limited on A, then P\ A is boundedly
stable.

Proof The proof is similar to the proof of the previous theorem. O

86

6 Timewise Refinement

In producing a refinement relation C (‘refined by’) between the various models of
Reed’s hierarchy (see appendix B.1), we aim to provide a method of transforming
proof abligations between models, The proof strategy is as follows: in order to
prove T(Q) for a specification T and process @, we aim to find a specification S
on a different (simpler) model, and a process P, such that

» S(P)
s PCQ
s VP, Qe ((S(PYAPC Q)= T(Q))

The tbird condition may be thought of as the corresponding refinement relation
between 5 and T. The establishment of the second and third conditions will
reduce the proof obligation T(Q) to the proof obligation S(P). We illustrate this
proof strategy in chapter 8, where it is used in the verification of each of three
protocols.

The projection mappings between the various models of the hierarchy represent
mappings of behavioural information. In moving from a higher to a lower model,
we restrict tbe aspects of bebaviour we are able to describe. The mapping IT can
be thought of as a translation of information about the passible hehaviours of a
process into a more restricted language, which can not talk about the behaviours
in so much detail. For example, if [T is the mapping from TMps to Mr, then
the information that ({({,a),(4,8)), {,[8,3) x {b}) is a possible behaviour of a
process in TMpg translates under the mapping II to the information that {a, b) is
a possible behaviour in Mr.

In considering refinement relations between processes in different models in the
bierarchy, we will need to use the projection mappings to translate the ssmantics
of the process in the bigher model into sets of behaviours in the lower model, for
comparison with the lower process. Our ability to make more detailed observations
in the higher model will enable us to make finer distinctions, and thus exclude some
behaviours allowed by the coarser model. For example, the information in M+ that
event g is a possible first event in both P and @ yields that it is also 2 possible
first event in P || Q. But in models which also contain timing information, it may
be apparent that there is no time at which P and @ could synchronise on a. We
would therefore expect TI{@) C P (rather than the stronger condition II{@) = P)
to be a sufficient condition for P to be refined by @.

87

We are particularly interested in timewise refinement relations: those refine-
ment relations between models which contain no timing information and those
which do contain such information. Such a relation will hold between an untimed
process and a fimewise refinement of it. We will focus attention on two timewise
refinement relations in particular, although we wil] define others at the end of the
chapter.

We first define a mapping @ : TCSP — CSP, which removes the timing
information from the syntactic description of a process. We will be interested
in conditions which yield @{Q) C @, since in those cases the production of an
untimed process P such that P C @ will reduce to an application of 8 to Q.

The first relation we will consider is the weak timewise refinement relation,
Cy. Itis a relation between the untimed traces model Mr and the timed failures
stability model TMFs. We will see that our definition of P C; € is equivalent to
TI{ Q) C P. We obtain the result that @(Q) C, @ for all TCSP processes. We also
extend C, to a refinement relation between specifications; this leads to a notion of
‘translation’ of untimed behavioural specifications into timed ones.

The second refinement relation, C;, is strong timewise refinement. It will
be between the failures model My and the timed failures stability model TMys.
We will see that the projection mapping IT : TMps — MF is too coarse for the
refinement relation between My and TMrs: while we still have that TI{Q) C P =
P C; Q, there will also be some refinements @ of P where LI{Q) € P. It turns
out that ©{Q) is not C; refined by @ in general, but we obtain useful cenditions
on @ for those cases where it does hold.

We will also define a subsidiary refinement relation which is intended as an
aid to deciding when the refinement relation C; holds between processes. The
refinement relation C,, is defined between My and TMj,, and it is shown that for
any TCSP process () we have

PC.E7[Q) = P, ErfQ]

83

6.1 The mapping ©

The mapping € removes the explicit timing information from the description of a
TCSP process, mapping it to a CSP process.

Definition 6.1.1 The function © : TCSP — CSP is defined as follows:

O(STOP)
(1)
Q(SKIP)
O(WAIT t)
Of{a — P)
O(a: A— P.))
e(PN@)
o 1r)

el
e(POQ)
OF | Q)
O(F 4ll5 @)
o(P[l| Q)
O(WAITL; P)
e(r;Q)
o(P\ 4)
(s (#))
oy~ (P)
o(X)
O(uX e P)

(1t

b

([T}

Ib

L1

I

I

1

I»

(11

b

STOP

STOP

SKIP

SKIP

a— O(F)

a: A— O(FR,))
o(P)Ne(Q)
MNer)

iel
o(rP)08(Q)
o(P) | ()
O(P) ,il5 9{Q)
e(P)lleQ)
er)
e(r);o(Q)
a(P)\ A
fler))

71 (&(P))

X

4 X o 6(P)

The definition of timeout yields the definition

B(Pg Q) = O(Q)N(6(P)06(Q))

89

Examples

O(WAIT 50 a — SKIP); WAIT 3 ;b — WAIT 4)
— (SKIPOa — SKIP); b — SKIP

OpXe(WAIT3;a » X)E b= X)
= pXe{(b-X}N(a- X0Ob—> X))

Observe in the second example that without the timing information we will be
unable to deduce that timeout occurs before a becomes available.

6.2 Waeak Timewise Refinement

The projection mapping I1 : TMps — My is given by

I({S) = tsirip(traces(S))

We first define the weak timewise relation C¢ as a relation between My and
TMps (both models reproduced in appeudix B.2):

Definition 6.2.1 If Q; € Mr and Qs € TMrs, then

HCQ = I(Qe) S Q

‘We extend the definition to a relation between CSP environments and TCSP
environments, as follows:

Definition 6.2.2
eCip = VX :varea(X)Cp{X)
We will extend the notation further, and define C, to be relation between CSP
and TCSP: if Pisa CSP term, and @ is a TCSP term, then we write P C, Q to
mean that P is weakly refined by @. This is defined as follows:

Definition 6.2.3 If P is ¢ CSP term, and Q is ¢ TCSP term, then

PC,@Q = oCip=>T[P]oC.Ex[Q]p

90

Observe that the TCSP process STOP will refine any CSP process.
We now consider which TCSP processes bave @(Q) T ¢

Definition 8.2.4 A TCSP term @ prescrves C,-refinement if

cCip=T[O(Q)]e CiEr[Q]e

Lemma 6.2.5 For any process @y € My, and any process @ € TMps, the
predicates Sy on TMrs and Sy on My defined by 5, (X) =2 @, C, X and 5(X) =
X C, Q¢ are both continuous, satisfiable predicates.

Proof We deal first with S;. Let {P,} be a convergent sequence of processes in
TMps whose limit is P. Consider s € traces(P). Then 3¢ e 5 € traces(P;), so
tstrip(s) € @;. Hence [I{P) C @J; as required. Further, we have S;(5T0F), and
so §; is both continuous and satisfiable.

We now turn our attention to Sp. Let {P;} be a convergent sequence of pro-
cesses in Mt whose limit is P. Consider s € traces((J,). Then Vi o tstrip(s) € P,
and sa tsirip(s) € P. Hence we have 5:(P), so 5; is continuous. It is also satisfi-
able, since Sz(RUN) (where RUN =a:Z — RUN). O

Lemma 6.2.6 I[fPC, Q, then uX o P, pX o)

Proof Assume o C, p, and that P C; ¢. Let Wy(X) be the semantic function
corresponding to WAIT §; X. Consider P, € TMps such that

T[uXePloC, Py
Now II(P;) = TI{Ws(P;)), so we have
I(W(P)) S T[4 X o Plo

ST [X o PlajX] . ol Wa(P))/X]
and so
T {PY(olT [u X o PJajX]) Ci Er[QY (ol Ws(P:)/ X])
T[uX o Plo C, Er[Q] (o[Ws(P:)/ X))
But

Er{uX o Q)p = fir(A Pr o Er[Q)(AIWi(P1)/ X))

91

Defining

Si(P)=(T[uXePloC P))

we have from lemnma 6.2.5 that S, is continuous and satisfiable, and we have just
obtained that S, is preserved hy the contraction mapping above, whose fixed point
isErfuX e Q]]p, which yields that u X s PC, p X ¢ (0. O

Theorem 6.2.7 All TCSP terms Q preserve C,;-refinement.

Proof By structural induction. We examine each case in turn, assuming that the
syntactic subcomponents preserve C,-refinement, and that ¢ C; p.

N(Er[STOP] o) = {(}}
(Er[L]e) = {(
T(Er[SKIP] o) = {(),{v}}
M(Er [WAIT t] o) = {(),{)}

{0} =T[6(STOP)] ¢

O =T[e()]e

{0:{v)} = T[O(SKIP)}o
{0, (v)) = T[O(WAIT t)] e

}

IN 1N 1M IN

We next consider the one-place operators.

M(€rfa — Q]r)

(& [WAIT t; Q] p)

IEr[Q\ 4} p)

nEr (@}

(IR

[ammlanl Nl

[ANIaNN

{ui(a)tr | r e N(EL[Q))
{0 uilgir [tre T[(@)])}
T[0(a — Q)ga

{tr | tr e II(ET HQBPJ}
{tr | tr e T[O(Q)]e)}
T[e(@)]e

{tr\e|tr e N(Ex]Q])
{tr\altr e T[O(@)] o)}
T[o(Q\ A)]e

{fitr) | r e (ET[Q})}

{fitry | r e T[O(Q)])
T[o(f(&N]e

92

(e[~ ()])

{tr | f(tr) e TI(Er[Q] 2}
{rr | f(rr) e T[B(Q)] o)}
Tley-" ()]s

NN

We now consider the two place operators.

H(ET[[Q; r Qz]ﬁ)

H(ETHQJ O Qz]lp)

M(Er[Q: || Qe]r)

N(Er[Qi 4ll5 Qelp)

NEr[Q Il Qe]p)

NN

NN

NN 1N |

N N Il N N

1Al

H(ETI[QI]]P) U H(ETﬂQzHP)
T[6(Q:)]e UT[B(Qs)]
T{e(Q: " Q)}e

n(&"[Qr]lP) u H(ETﬂQz]I)
T[e@)]suT[8(Q:)]e
T[®(g: O Qz)]]a

tstrip(traces(Er HQ; ﬁ p} N traces(Er ﬁ Qg]l 7))
H(gT[Qr]IP) n H(ETHQE]I P)
T[e(@))enTIe(Q:)]e

T[e(Q: |l @)«

tstrip({s | s=s T AUB A s | A€ traces(E7] Q])
A s | B¢ traces(Er[Qe] p}))
{trltr=tr TAUB Atr T A THEX[Q:]p)
AlrfB e H(ETIIQL’]]P}}
{tritr=tr fAUB Atr A€ Tr[B(Q))]e
Atrl Be T'r[@(Qz)]]a}
THO(QI 4”3 Qs)]lﬂ'

tstrip({s | 3w, v ¢ u € traces(Er[Q1])
AvE traces(f‘:r[Qz]jp) A s € Tmeree{u,v)})
{tr|2u,0 0 w e I(Ex[Q:]p) A v € TI(Er[Qe]p)
A 8 € Merge(u,v)}
{tr|3u,vene TEG(Q,)]]o Av€ T[[E)(Qg)]o'
A s € Merge(u,v)}
T[0(@ Ill @]

93

T{Er[Qi 3 Qe])

8]

1N [a}

N 1N

tstrip({s | v € o{s)As € tTaCCS(ET[QIBP}]
U{(s7(w+(t+8) | v ¢als) A

s™{(8, V) € traces(Ex[Q.] p) A
w € traces(Er[Qe] p)}

{tr|vge(tr)ntre H(leQJ]PJ}

U{tr—ir | v do(trpatr~{v) e H(ET[QJIP)

A w e TEr[Q:] o))

{tr | tr e T[O(Q:)]o A v €altr)}

U{trmtr [() € T[O(Qn)] e A te' € T[O(Qe)] o}

Tle(Qr) ;e(Qz)]"'

T[O(Qr 3 Q)]o

We next consider the indexed operators.

NErfa: 4 — Q]

nEr[[] @0

a€A

{OYu{{a)tr | a€ AAtr e TI{(E[Qu]P))
{0Yu{{a}tr|ac AAtre T[O(Q.)]o}
T[©(a: 4> QJ)]e

NNl

UA (e [Qu]p)
c UT[eQ)]s

s€d

c 7lef] @l
(17

The pracess variable case is trivial:

N{Er[X]p) = T{p(X))
o(X)
a(0(X))

T[e(x)]e

[amal e

The recursion case follows from lemma 6.2.6 -

OuXeQ) X e 0(Q)

C, uXeo@Q

Corollary 6.2.8 Evcry TCSP process Q) has ©(Q)C, Q

For any TCSP process @@ we have a simple method for producing a CSP process
which is refined by @. This will allow reduction of proof obligations on € to proof
obligations on @(Q).

K]

Observe that the ordinary sequential composition operator “;” does not pre-
serve timewise refinement in general, since it can introduce traces that are not
present in the untimed version, by means of the closure operator. For example,
the process

(6 — STOP ||| SKIP); b — STOP

has {{0,8),(8, a)) as a possible trace, but the corresponding untimed trace, (b, a}
is not a possible trace of the untimed equivalent of that process. This problem
cannot arise when the delayed sequential composition operator is used.

The operator O extends in the obvious way to fuuctions on TCSP processes
built out of the basic process constructors. We immediately obtain the following
corollary:

Corollary 6.2.9 If P is a veclor of CSP processes, @ is a vector of TCSP pro-
cesses, andVi @ P, C, @, and F is a function built from TCSP process construc-
tors, then O(F)(P) C, F(Q)

Follows immediately from theorem 6.2.7 by considering F as a TCS5P term with
free variables. O

Specifications

We can extend the refinement relation to a relation between predicates on untimed
processes and predicates on timed processes. Qur definition of the refinement
relation between specifications is motivated by our proof strategy: if we know that
8t B¢ Se, then in order to establish Sp(() it will be enough to establish §;(P) for
some P such that P C, Q.

Definition 6.2.10 If S, is a predicale on elements of Mr, and S, is a predicate
on elements of TMps, then we define:

§1Ce Sy = YQe (AP e S(F)APL, Q= 5(Q))
The following lemma provides an example.

95

Lemma 6.2.11 ‘weakly limited on A’ C, ‘weakly Hmiled on A’

The predicate ‘weakly limited on A’ on Mr is refined by the predicate ‘weakly
lirnitedon A’ on TMps.

Our proof strategy is then encapsulated by the following theorem:
Theorem 6.2.12 If PC, @, ST, T and S(P), thea T(Q)

Proof Follows immediately from the definition of C, on specifications O

The set of specifications {T | § C, 7'}, for a given S, is a complete lattice
under the < ordering. Its top element will therefore be the strongest refinement
of §: it will be denoted sr(5). Any specification weaker than sr{S5) will be a
timewise refinement of 5, and by its definition every timewise refinement of §
is weaker than (or equivalent to) sr(S). We therefore obtain that sr(S) is the
(unique) predicate that satisfies

S [;f 3?"(5) A VSz L] ((SI‘(S) = Sz) i=4 S Eg Sg)
1t follows from the definition of C; for specifications that 7' defined by
T(Q)=3Pe(S(P)APL, Q)

satisfies the abave equation for sr(§). Hence we obtain a characterisation for sr{5)
that will allow us to identify the strongest refinement of a given specification. This
will be particularly straightforward for behavioural specifications, which will make
our preof strategy immediately applicable to such specifications.

sr(SH) & IPe S(P)APLC, @

The predicate sr(S5) holds of precisely those processes which are refinements of
processes captured by S.

Corollary 6.2.13 If S(6(Q)) then sr(S) @)

Theorem 6.2.14 If A 1s a predicale on ynlimed traces, then
sr(X sat A{zr))(P} & P sat A'(s,a,R)

where A'(s, a,R) & A(tstrip(s))

96

Proof We must prove that
JPe P sat A(tr) A PC; Q@ & @ sat A'(s, o, R)
We prove first that
3PePsat A(ir) APLC, @ = Q sat A'(s,a,R)
We have P T, Q, 50 II(E7[Q)) € T[P]. Also, tr € T[P] = A(ir). Now
(s,e,®) € STﬂQ] = s€ traces(grllQ]])
= tstrip(s) € T[@]
= Altstrip(s))
= A'(s,q,R)
which yields the required result.
We now prove
Qsat A'(s,a,R)=> I PePsat Atr) A\ PC, @

Any @ € TCSP will have that U = tstrip(traces(Er[Q])) satisfies the trace
axioms (immediate from axioms (1} and (2} of TMys). Now for a given trace
u = (ty, ug, ...,), define

P,=u —ug—...> u, = STOP

P=[]~r

el
we have ‘T|[P]| = U, and so P sat A(¢r)and PC, Q. O

Defining

Example

The theorem allows the translation of a behavioural specification by an alteration
to its syntax. For example:

sT(X sat #(ir [out) < #{r [in)) = X sat #(istrip(s) | out} < #(strip(s) | in)

We may also define a function on timed predicates complementary to the
strongest refinement function. The set of predicates on untimed processes vefined
by a given timed predicate T is a complete lattice under the implication order,
so we may identily the weakest predicate refined by T. We call it the wegkes?
coarsening of T', denoted we(T). We then obtain

we(THP) & VQe(PE Q@=T(Q)

a7

Theorem 6.2.15 [f A is a predicate on unlimed fraces, then
we(X sat A'{s, o, R))(P) < P sat A(tr)

where A'(s,a,R) & A(tstrip(s))

Proofl Ii P sat A(fr), then whenever P C,; @ we must have
s € traces{ Q) = tstrip(s) € traces{P) = A(tstrip(s))

and so @ sat A'{s,a,R).

If -(P sat A(tr)) then Jtr & traces(P) o —A{ir). Let tr = {a;,as,...a,).
Then @ = a; — a3 — ... —+ a, — STOP is certainly a refinement of P, and
clearly =(Q) sat A'(s,a,¥)) as required. O

Hence for untimed behavioural specifications § we have § = we(sr(8)). This
is not true in general for non-behavioural specifications. For example, consider

S(P) & (a, b) € traces(P)
Then for any TCSP process Q we have
(©(@)Na— b— STOP)C, Q
so sr($) holds of Q. Hence sr(§) = TRUE, and so we{sr(S)) = TRUE.

6.3 Strong Timewise Refinement

In this section we consider two closely related forms of strong timewise refinement.
We will examine their relationship in some detail. We perform the same analysis
that we have just carried out for weak timewise refinement. However, we will find
that not all processes preserve strong timewise refinement, so for a given TCSP
process ¢ 1t will not in general be trivial to find an untimed process refined by
@. This makes reduction of proof obligations harder for those processes which do
not have (@) refined by . We will also see that the refinement relation can
be extended to a relation between predicates, in the same way as the C-relation
was extended; we are again able to easily characterise the strongest refinement of
a behavioural specification.

We think of a timewise refinement of a process in My as the resolution of when
events are refusible as well as when they are possible; but it is not so clear what
information in TMrs corresponds to a failure in Mp. An untimed refusal set does
not correspond to the set of events refused at some time during the performance

98

of the trace, nor even to the set of events refused at some time after the end of the
trace. If the process were to stabilise, then we would expect it to correspond to a
set of events refusible after stability. However, not all processes are stable, so we
must find some other ¢haracterisation.

We interpret the failure information (tr, X) in a timed context by saying that
there is some time, after a timed version of ¢r has been performed, after which X
may be continuously refused. We would expect, if Py were a timewise refinement
of P, in this sense, that

(s,{t,00) x X) € SI{(Py) = (tstrip(s),X) € P;

We would not expect tbe converse implication , since the introduction of timing
information will in general mean that some traces are uo longer possible, and also
that some sets may never be refusible.

If P; is a process in Mg, and P is a process in TMps, then we write P; Ty P,
to say that Pg is a strong timewrtse refinement of P,. This is defined as follows:

Definition 6.3.1
P, CyPe = Ys,R)ESI(Pe), X €P(E) w
Jte([t,00) x X CR) = (tstrip(s), X) € P,

We extend the relation C; to a relation between environments for My and envi-
rouments for T'Mpg.

Definition 6.8.2 [f o : var — Mr and p : var — TMps are environments to
their respective models, then

ol;p = VX :ivareo(X)Cy p(X)
Finally, we extend C; to a relation between CSP terms and TCSP terms.

Definition 6.3.3 [f P is a CS5P term, and @ is a TCSP term, then
PL;Q = (0L p)=> F[Plo Ly Ex[Q]p

We introduce one more form of timewise refinement, which will be useful in
resolving when P C; Q. Tt is a natural form of timewise refinement between Mp
and TMpg, although we must bear in mind that TMj; does not deal satisfactorily
with unstable processes, because of its treatment of failure sets on unstable traces
{if a trace has stability value oo then every set is refusible after that trace).

99

Definition 6.3.4 If P, € Mr and P € TMp, then
P,C, Py = V(s,a, X)€ Py (thstrip(s),X) € P,
If o : var — Mp and p: var — TM}g then
ocCup = VX :ivereo(X)C,, p(X)
If P isa CSP term, and @ 1s a TCSP term, then

U;upiflplﬂ';u S}[Q]P

il

PQHQ

We may now define what it means for a term to preserve strong timewise refine-
ment:

Definition 6.3.5 If ¢} is a TCSP term, then

o () preserves Cy-refinement if O(Q)C; @

® () preserves Cy,-refinement if ©6(Q) Cy, Q
Theorermn 6.3.6 Fach of the following predicates on Mp is contintous and satis-
fiable, for any Q; € TMrs, Q¢ € TMpg:

S5(X) = XC, @
5e(X) X Cu Qs

I

Proof Let {P;] be a convergent sequence of processes in Mp whose limit is P.
Assume that 5, (F;) for each i. Let s and X be such that

IR, Le (s, R) € SI{Q;)A([1,00) x X CTR)
Then by the definition of C; we have that (istrip(s}), X) € P, for all i, and so
(tstrip(s), X) € P. Hence P C; ¢y, and so §; is continucus. Further the process
CHAQS, defined by
CHAOS = pXe{(a:Z—-X)NL

satisfies 5y, since it exhibits every possible (trace, refusel) pair.

The proof for the continuity and satisfiability of §¢ is entirely similar. O

100

Conversely, neither §;(X) 2 P C,, X nor S:(X) = P C,, X are continuous
for general My processes P, although they may be continuous for some P (e.g.
CHAQS). Consider

P, & WAITn;a—- STOFP
e— STOP C; P,
a— STOP [n]i_‘n;oP. =1
a—STOP C, P,
a— STOP Z, lim P, =1
Both o —+ STOP C; X and @ — STOFP C,, X hold of each P,, but neither holds
of ima_.o Py.

However, the predicate

SelX)=PCL X

is continuous for {-stable and t-prompt processes, since for those processes we can
deduce information about infinite behaviours in a bounded time:

Theorem 6.3.7 Each of the following predicates is continuous for any P € Mg,
t> g

5:(X)
8e(X)

PC; X AX ist-prompt
PC; X AX ist-stable

11

i

Proof We prove §; is continuous. The proof for S, is entirely similar. Assume
{@:} = @, with S;(Q:) for each i. Now consider (s, R) € ST7[Q] with
[t',oo) x X € R, Then [t',2' +1) x X CH, so

(s,[t ' + 1) x X) € fail(E7 [Q]
and so for some n we bave
(5,[t't' +) x X) € fail(Er [Qu]
Now (2, is t-prompt, so we deduce
(5,1¢",00) x X) € fail(Er [@u]
and since P Ty @, we have (tstrip(s}, X) ¢ F[P], as required. O
Lemma 6.3.8 For any CSP term P, TCSP term § and t > 0 we have
PL,Q@ = PC, WAIT:;Q
P, @ = PLC; WAIT:., Q

101

Proof Assume P C,, @, and that o Cy, p. Then
(5,0, X) € Ex[WAIT1;Q)p = (s—t,a—1,X)€ EF[Q]p
= (thstrip(s — 1), X) € F[P]s
= (thstrip(s), X) e F[P]e
so PC,, WAITt;Q. 0
Assume P C; @, and that ¢ Cy p. Then

(s,R) € SIT[WAIT 1; Q]p At 0} x X TR
= (s—t,R=)EeSIF[Q]p At = tioo) x X TR = ¢
= (tstrip(s — t),X) € F[P)e
= (tsirip(s),X)EfI[P]a

so PC; WAIT 1, Q. O
Lemma 6.3.9 Let P be a CSP term that represents a conirection mapping, and
let Qbe a TCSP term,
CfPC; QthenpuX e P uX e
¢ fPCL,QthenuX o PCpuXeQ
Proof .'F[puXe Pﬂ is the unique fixed point of the contraction mapping

C=4Y « F[P](a[Y/X]) on Mp. Nowleto Ty p. Assume P; Ty Er[uX o Q]p
Then from lemma 6.3.8 we have P; T; E7[WAIT 6;5 X o Q] p, 50

o[P/X]|Cy pl€r [WAIT &5 X 0 Q]p/X]
so wehave

FLPY AP /X1 Ty Ex[QAEr [WAIT 65 X « Q] p/ X))
and so
C(P) Er[uX o Q]p
Hence C preserves §(X) = X Cy Er[s X # Q] p, and we have from theorem 6.3.6

that § is continuous and satishable, so it follows (from the fact that C is a con-
traction mapping) that S{fizC), as required.

The proof for C,, is entirely similar. O

We will prove that the refinement relation C; holds whenever Ty, holds. How-
ever, the converse is not the case. Consider

a— STOP C; pXe({a— STOP) L X)

102

But £3Ju X @ ({s — STOP) 4 X)] has stability value co associated with the
empty trace. Hence axiom 13 for TM7; tells us that ({),{e}) is a possible failure
of the process. But it is not a possible failure of }'[a — STOP]], S0

a— STOP Z, pXe((a— STOP)L X)

In order to provethat P C,, @ = P C; @, we must first obtain some subsidiary
results.

Definition 6.3.10 A trace 5 in Tﬁg s reflected in R #f

{(t,a)finsAt>0=>Tt" <te[t 1) x {a} ER

When timed refusals are present, we dednce that an event happens at the instant
it becomes available from the observation on R that it was refused for some interval
up to that time. Hence a trace s is reflected in R if there is evidence in R that
the hatted events in s occurred at the instant they became available. We write
R{(s,R) to abbreviate ‘s is reflected in ®’. The following simple consequences of
this definition will be used in the next theorem.

Corollary 6.3.11 The following kold of the relation R:

®» R(s,R)=> R(s = ¢, =1)
o If R(s,R) and s € Tmerge(u, v) then R(u,R) and R{v,R).
o IfR(s,R) and R = ¥;UR, then Js;,50 @ 3 =5, V 52 A R(s;, ;) A R{se, Re)

We will now define a relation between semantic sets P; in TMrs and P, in
TMp;. This relation captures the sitnation where all the possible behaviours
described by P, are also contained (in a different form) in P,. We may therefore
think of P; as a more precise description of a system than P,; the projection
II(P;) (see page 185) of P; into TMps is more deterministic than Fy'. The
relation describes the following: if (3, o, ®) € P, then we deduce that the events
refused after stability will be a possible refusal set {(after s) in Ppg; further,since s is
reflected in ®, the refusal information contained in ¥ is sufficient to deduce which
eventsin s may be hatted; finally, since TMj; does not make so many distinctions,
the stability value associated with the failure (s, X'} will in general be higher than
that associated with (5, %) in TMFs.

When this relation holds between P, and P, we say P, follows P;:

1P is more deterministic than @ if @ = PN Q (‘more deterministic’ is reflexive)

103

Deﬁnition 6.3.12 If Py € TMp; and Py € TMys, then Py follows P, if for any
s € TTy we have

(3,0, R) EP, AR(s,R) =3B 2 e (s B 0R]a)) € Pe

We abbreviate Sy follows §; to F(Ss,5;) If p, : var — TMps and ps : var —
TMps. then pp follows p; if for all process variables X we have F(p2(X),p,(X)).

If P and @ are TCSP terms, then @ follows P if

Flpz,p1) = F(E7[Q) 2. ExEP)p))

The next theorem tells us that the semantics of P in TMFs is always more
precisethan its semantics in TM2g. This result has interesting consequences. The
projection mapping Il : TMps — TMjc (see page 185) maps a process P to
the mast deterministic process in TMjg that follows P. Thus we will obtain the
following corollary:

Corollary 6.3.13 Let I1 : TMps — TM}s be the projection mapping given in
[Ree88. Then H(ETIIP]]) follows Er ﬂP]I, and s more deterministic than E}I[P]]

The consequence of the next theorem that is presently most useful is that it
will allow us to conclude that C,,-refinement 1s stronger than C;-refinement, which
will aid us in establishing the presence of the C;-refinement relation.

Theorem 6.3.14 If P is a TCSP term, then P follows P

Proof This theorem is proved by structural induction on P. The difficult cases
are indexed nondeterminism, parallel combination, hiding, sequential composition,
and recursion. We present the proofs for each of these.

We proceed by structural induction, assuming the result holds for the syn-
tactic subcomponents of the composite processes, and that in each case we have
F(pg,p). We will continue to use the notation R(s, ®) to mean that s is reflected
in #.

Case |_L P,'
Consider (3, e,R) € Er [[_L P,-]. Then define

§ = {v|3ie(5,7.R) €Er[P]os}
T = {B|3ie(s,B,c(}1a)) € EFfP]pe}

104

Then a = sup(.S). Now if T # B then (s,sup(T),e(R1a)) € £F [H,-P,-]Ip;. So to
prove the required result, we need only show that Yy € S = 3 >~ve geT

TES

= Jie(5,7,R) € Ex[P]ps
= 3i,827e(s,8,0(R17)) € Ex P pe
= Ji,f2ve(s,5,0(R1a)) €& Pifp,
= AFz~4efeT

as required.

Case P| @

Now consider (3,a,%) € Er [P || Q] 21, where R{s,R). Define:

5 = {ma.‘t:{cq.ug}|3R;,Ng.R:R,UN,I\
(3,as,8,) € ET[IP]]P: A (G as,Rs) € ET[QRP!}

T = {max{f;,0:} 35,5, X Xses=5, Vs AKX, UXp=0e(R1a)}

Then o = sup(§). Now given ¥, and R, such that ® = R, U R, we have from
corollary 6.3.11 that there are s; and sy such that s = s, V sp and B(s;, %) and
R(sp,%;), s0

§ = {maz{a;, @} | IV, Ve, 5,50 o R=R, URs As=5; Vs A
(Sper R Y€ E-[Pos A (Se 00, Re) € Er[Q]ps
R(Sr,NJ)AR(Sg,RE)}

Consider v € §. Then v = maz{a;,a;}, where
(S0, R,) €Ex[P)oi A B(si, W) A (52, 0, Re) € ET[Q] 21 A Rls2,R)
Hence
38 2 a,,Be = ar o (s, 81, 0(Rc1@))) € EX[PYpe A (32, Be,0(Relae)) € EX[Q] o2
But a; € @ and ay € a, so
oR;1a) Co® 1o} A oRela) So(Re]ar)

0
(s1.81,0(8, 1 a)) € Ex[P]pe A (52, Be,0(Re 1 0)) € E2[Q] 2
Thetefore, mar {f;,8e} € T30 34" 2 ye ¥ € T. Hence

(s,5up(T),o(R1 a)) € Ex[P || Q] o2

105

and sup(7) > sup(S). O

The cases for the alphabet parallel operator and the interleaving operator are
very similar, and again use the properties presented in corollary 6.3.11

Case P;Q
Now consider (5,a,R) € £7[P; @) o:, where R(s,®). Define:
S = {e|VIe(3,o,RU(I x{v}) €Er[P)o: A v €a(3)}
Ufa+t+6|vga(3Tt)AGB=(t+8,a,R=(t+6)eEr[Q]p
ALE TR EeU[0,8) x {v]) € fail[Ex [P]es})

T = f{of(s,e, XU{v}) €E3[Plpe A v € (s}
Ufe+ (£ +8) | (s T)7((t, 7)) € traces(E7[Plpe) A v g ols T 1)
(s (t+6),a,001 a)) € E1[@] e}
Then o = sup(S5), and if T is not empty then (.9 sup(T), (R Y a)) € £ ﬂQHPz
It is sufficient to prove that y € § = 34 > y e 4’ ¢ T. So consider v € §. Then
either:
ErRUG v+ 1) < {v}) e Er[Ploi Av €a(3) A R(s,RU[0,v+ 1) x {v}
= 7Y 2q9¢(7,0(R1NU{V)) € E5[P)ps
= 3y 2 ye(s, 7, oM a)U{v}) € £ [P]p:
= 3y 2yey €T

Oor:
T=8+(t+8} AV ga(sltt)
AT (V) R EU0,8) x {v]) € fail(Er [P] p1)
AME=(t+8),5,R=(t+8) e &r[Q] e
AR((ETE)™((t. 7)) R Ttu(0,8) x {v]))
= (s [tY(L,/) € traces(g}ﬂP]]pg)
ANIAF 2Be(s=(t+6),F . a((N=(t+6)18) € E3[Q] e
= (s [t7((t,7)} € traces(EF[P] ps)
Als = (t+8),8,0((0) 1a)) € £+ [Q) e
= F+{U+EeTABF+(t+6) 2y
= 192984 €T
]
Case P\ 4

To provethis case, we first require a technical sublemmas:

106

Sublemma 6.3.15 If(s,a.¥) € [P\ A]p A a < o0 then
Yov>aea =sup{f|Jwes=w\AA (v, ARU[0,v) x A) € Er[P]p}

Proof Consider (s,a,%) € ETHP \ Alp, and v > . Define
§ = {AlIwes=w\AATaz B2 end{w) o (w,a,RU[0,0)x A) € Er][P]p}
{Bl3wes=w\AA(w,8,RU[0,v) x 4) € Er[P]p}

Then from the definition of hiding, a = sup(5). Now lemma A_1.2 yields that
+€8 =342 yev €8, s0 we obtain sup(S,) = sup(S)

We wish to prove sup(S,) = sup(5), so we assume sup(S,) > sup(§) for a
contradiction:
sup(S.) > sup(S)
A8 S. e8> a
Juwes=w\AA (w3 R0U[0, u)xA)EEr[P]]p
35 =z Bwes=w\ AA (w,f,R0U[F, min{v,G}) x EET]IP]I
min{v, B} €8
sup(S) z min{v,8} > a

TR

which yields a contradiction. O
We can now handle the hiding case:
Let (3,0,R) € E2[P\ A]ps A R(s,R). Define:

{BlIwes=w\AAT 20> end(uw)e

(w, e, RU |0, maz{end(R), 3}) x A) € ET[P]] o1}
S5 = {AlIwes=w\AAwis A-active A (@, B,RU[0,7) x A} € Er[P] o}
T = {B|Hw3) € stab(ET[P]pe) o v\ A =5 A wis A-active}

Case a= o0

)

The result follows immediately, since] oo = §
Case a < oo

Forany+, f € S, then 33 € T ¢ ' > . Hence if Vv » sup(5,) = oo then
sup(71) = 0o, and (s,00,0(R 1 a)) € £F {P]ng.

If 34 o sup(S,) = « < oo, then set v = maz{y,a',a} + 1. Then from
sublernma 6.3.15 we obtain sup(S,) = a, and so sup(T) 2 a. Also,

peSs.
= Jwes=w\AAwis Aactive A (9,3, RU[0,v) x A) € Er[P]ai}
= Jwes=w\AAMwis A-active A (w,0(R1 B)UA) € fal(EF] P oe)
= (s,0(R1 @) € fail(EF [P\ A]pe) o

107

Case pX o P

Defne G(Y) = P[(WAIT&; Y)/X]. We will first prove that G*(STOF)
follows G*(STOP) for all n.

Base Case: STOP follows STOP is immediate.
Case n+ i:
Assume F{G{STOP), G~(5TOP)) and F(ps, p1).

&[G (STOP) pe = €7[G(G(STOPY)]p:
Ex [Pl (pel€3 [WAIT 6 G™(STOP)] pe/ X])
which follows Er [P] (9. {ST[WAIT §: GI(STOP)E oi fX])

Er[G"+(STOP)}p:

It

il

Hence we have that ¥ n ¢ F{G*(STOP), G*{STOP)).

Now {G*(STOP)} has limit 5 X o P in both TMps and TMps. Consider
(e t) € Ex[uX o P].

Case o < oo

Then 3N o N§ > maz{end(s,®), a}. So then
¥n>Ne(saR e Er[GM(STOP)]
But Y e F(G*(STOP), G*(STOP)), so
Vo> N,382as(s,f,0(R1a)) €& [F(STOP}]
Hence we obtain

Iz ee(s,BoR]e) e r[uX e FX)]
Case a= o
sup{a, | (3,a,) € stab(STﬂﬂF“(STOP)J =oo
sup{fBn | (3,8n) € stad(EL|F"(STOP)})} = oo
(s,00) € stab(E[u X o F(X)])
(s,00,0(R1a)) € Er[u X o F(X)]

suuu

108

Corollary 6.3.16 (3,00,R) € £7[P] = (s,0) € stab(€3[P])
We are now in a position to prove

Theorem 6.8.17T For any CSP process P and TCSP process () we have

PE!;Q#PEJQ

Proof Assume P C; Q. Consider (s,R) € SIT[Q], with [t,00) x X C R for
some t. Then (s,a,8) € £7[Q] for some a.

Case a=cw

Then
(5,0} € stab{S}IQ])
= (s,X) € fail(£:][Q))
= (tstrip(s), X) € F[P]

Case o < o0
Then from axiom 10 for TMgs we have
€ ae(s,f[t,mez{l,a) + 1) x X) € ETIQ]

= (3, X) € fail(}[Qﬂ]) since F(Q, Q)
= (tstrip(s), X) € F[P]

)

Theorem 6.3.18 All the process construclors ezcept hiding, infinite nendeter-
minism, and infinite-lo-onc alphabet renaming preserve Ty, refinement.

Proof By a straightforward case analysis. O

We identify sufficient conditions on timed processes for the preservation of
C(,-refinement:

Definition 6.3.19 A set of processes {(Q:} has bounded stability if

sup{e | 3i @ (5,0) € stab(E5[Q])} = 0o => Fi e (s,0) € stab(£7[Q])

Lemma 6.8.20 If{Q.} has bounded stability and { P;} is such thatVie F, C,, Q;
then [, Pi Cu [N); @&

109

Prodf Cansider (s,e, X) € £3[[1; @] We have a = sup(S), where
=(3]3ie(s.8.X) € £:[Q])

Case a=m
Then by bounded stability we have
i e (s,00) € stab(£F [Q,])
s0
(s,00,X) € £x[Q])
Hence (tstrip(s), X) €]:[P,-]I, and so (tstrip(s), X) ¢ -‘Tﬂﬂe P,-E .

Case a < oo

Then
Jie(s 4, X)Ef:TEQ.]
= (tstrip(2),X) e F P]
= (tstrip(s),X) € F{[7; Pi]
O

Definition 6.3.21 A process P is bounded under A if
Vs € traces(E7[P]) o sup{B|3(w,B) € stab(E7[P])ew\ A=s) = o0
& Jw,0c) € stab(EF[P]ow\ A=3s
Lemma 6.3.22 If Q is bounded under A and PC,, Q then P\ AC, @\ 4

Proof Consider (s,a,X) € £5[Q\ 4].
Case a = oo

Then by bounded stability we have

I w,x) € stab(EF [Q]])ow is d-active Aw\ A =3
{w,00,X U 4) EET[Q]
(thstrip(w), X U 4) € F[F]
(thsirip(w) \ 4, X) Efﬂﬂ PAA]
(thstrip(s), X) € F[P\ 4]

Pl

Case a < oo
= Jwe(w,XUA4d) efa:I(ETiQ] Aw\A=s
= (thstrip(w), X U A
= (thstrip(w) \ A, X)ef[l[P\A]
= (thatrip(s), X) €f|[P\A]]

110

Corollary 6.3.23 [If P is such that

o if Q\ A i5 a syntactic component of P then Q is bounded under A
o if[;e; Pi isa syntactic component of P then the set {P;} is boundedly stable

o if f{Q) i3 a syniectic component of P then f is finite to one
then O(PYC,, P

Proof ' Follows immediately by structural induction, using theorem 6.3.18 and
lemmas 6.3.20 and 6.3.22. D

This yields a sufficient condition for a process to be a strong timewise refinement
of its image under 6.

Corollary 6.3.24 If P is such that

o if Q\ A ts g synlactic component of P then Q is bounded under A
® if[),c; Pi is a syntactic component of P then the set {F,} is boundedly stable

o if f(Q) is @ syntectic component of P then f is finite to one
then ®(P) Ly P

We have obtained, via C,,-refiuement, a sufficient condition for TCSP termas
to preserve [¢-refinement. We now examine which TCSP operators preserve Cy-
refinement. We shall find that it is not preserved by parallel composition, despite

the fact tbat TCSP terms built with that operator do preserve timewise refinement
{under the appropriate conditions for hiding and non-deterministic choice).

Lemma 6.3.25 Each of the basic TCSP processes STOP, SKIP, WAITt, 1,
and X satisfy ©(Q) G, Q.

Proof Immediate, since they each satisfy (@) C,, @ O

Lemma 6.3.26 The followsng TCSP process consiructors preserve Cy-refinement:

a—= P a:A— Pla). PNNQ, [, P
POQ. PIIQ P;Q, f'(P)

Proof Straightforward O

111

LR 1 * .
H-owever, the ‘[’ and ‘y ||, operators do not in general preserve C-refinement.
Consider

P = g STOP
Q@ = pXo(a—»STOPé.WAITS;X)
Qe = WAITZ2,0Q,
Then P&y @; and P Ty @, but
PIPZ |l @

since P || P is unable to refuse a after the empty trace, but @; || @ can refuse
it. Formally:

{).{eh) & F[PIP]
(0,[0,00) x {a}) € STr[Q: |l Qe}

We therefore seek conditions where C;-refinement is preserved by paralle]l compo-
sition.

Theorem 6.3.27 If P; and Py are CSP processes, (Jy and @Jp are TCSP pro-
cesses, P, Ty @1, Py Ty @, both @ and Q¢ are prompt on X, N Xz, Q, is
non-relracting on Y, and Qp is non-relracting on Yy, and X, N X C Y, U Y:
then

P X, ”,\’,E Py Cr Qi X:”Xz Qs

Proof Let ¢, and @, be t"prompt. Consider (s,R) € §Ir |[Q, xx, Q:]. and
[t,00) x A C R. Then

s, R Re w568 ¢ lly, 52 AR=RUR AR)N (X \ X) =04
U(Ng)n(Xj \X};) = 0/\ (SJ,N,() ESITHQI] A (SQ,RQ) € SIT[[Qz]

We require the following definitions:
T = maz{end(s),t} +¢

T = T+¢

B, = AnY n(e(®, T[T, TY))
B: = ANYyn(o(® T[T, T))
Ci = ANYe\(e(R: T[T, T'M)
Ce = ADY \(o(R, T[T, T))

D = AD(Xi\ Xe)
Dy = AD(X:\ X))

112

Now B; € o(¥; T{T,T")), so by non-retraction of @; on Y, and lemma 5.1.16
we have

{(8:,8; Ulend(s), T) x By) € SIT[Q..‘]
so by promptness on Y, U Yy and B, C ¥, we have

(51,8 U[T,00) x B;} € STr{Q]

Now
[T, T = C; TR U[T,00) x B,
50
(s, % U[T,00) x (CyUB)) € SIT{QI]
Clearly
[T,oc)x DN =80
and so
[T,CD) x Dj Q Nj
Tberefore

(51,8, U[T,00) x (D, UC, UB,)) € STr[Q]

By a symmetric argument, we obtain
(9, Re U [T,00) x (De U Cp U By)) € STr[Q:]
Hence by the definition of C;-refinement we obtain

(tstn'p(s;), D; U Cj UB[) € }-I[P]]I

and
(tstrip(.s,), DyUC U Bz) € }-[Pz]
Now
DG uUBUb,UC,UBs=4A
and
tstrip(s) € tstrip(s;) y, | x, tstrip(ss)
and so

(tstrip(s),) € F[Ps x I, Pe]

as required. O

Corollary 6.3.28 If P, C; @ and Py Gy @y and both @; and Qs are prompt,
and @; 1s non-retracting, then

Poally PR Ty Qr xlly Qe

113

Prool If @; is non-retracting then it is non-retracting on X N Y¥; ¢ and Qg are
both prompt on X N Y, so the previous theorem applies with ¥, = XNY, Y, =0.

Theorem 6.3.29 If P, C; §Q; and P C; Qg and @, and @Qp are boundedly
Stﬂbh’,, then P; X”y P;_ EJ’ Q[X”.’r’ Qg

Proof Consider
(5,8) € STr[Q: |y Qz]],[t,oo) xz SR
Then @; x|l y Q¢ is boundedly stable, so
(s, [t, maz{t, o} + 1) x Z) € E2[Qs x]Iy Q]

so forsome
Ry Reyop €og €

we have

(st X,0,8) €Er[P] Ao(ax)N(Y\ X)=8
and

(s1Y,a8,Rs) € Er[@Q] Aofay)N(X\Y)=0
and

B, URg =[t,maz{t,a}+ 1) x 2

Let

Zy =R 1ay),Zs =Rz 1 as)
Then Z; U Zs = Z Now from theorem 3.6.6 we have that

(‘5 rX':[ahOO) x ZJ) ESIT[QI:H

and
(s r Ys [ahoo) X Z!) € SITIIQ:]I
Hence
(tstrip{s | X), Z,) € f'l[P;]I
and
(tstrip(s | Y), Ze) € F|[Ps]
30

(tstﬁp(s],Z; U Zg) e f[Pj X”}" Pz]
as required. O
If every semi-infinite behaviours of P\ A arises from a single semi-infinite
behaviour of P, rather than from a sequence of approximations, then we shall

see that the operator \ A will preserve C-refinement for P. A process with this
property is well behaved on A:

114

Definition 6.3.30 A TCSP process P ts well behaved on 4 if

{s,[t,00) x X) € SIr[P\ A} =
JweHw is finite A (,[0,00) x AU [t,o0) x X) € I[Pl Aw\A=s

Observe that not all processes are well behaved on A. For example, the process
Pz=n:N-o WAITn;a - STOP

is not well behaved on N. When the set N is hidden, the choice of n made by P
is not visible, so a can be refused for any finite length of time: ¥V o ({},(?,n) x
{a}) € Fr[P \ N}. The limit of these finite approximations is therefore a serni-
infinite bekaviour of P\ N:

((),[8,00) x {a}) € ST [P\AN]

However, there is no single semi-infinite behaviour of P that gives rise to that
behaviour of P \ N: that is, there is no trace w of P such that w \ N = {} and

(1,[0,00) x (N U {a})) € STr [P}

Hence P is not well behaved on N (and so we would not expect Py Ty P to imply
that P, \NLCy; P\ N).

Lemma 6.3.31 If @ is well behaved on A, and Py Q, then P\ AL, Q\ A

Proof Consider
(s,R) € SIT[Q\A]I A(t,c)x X)CR
Then
(s,[t,00) x X) € SIr[Q\ 4]

30

Jwes=w\AA{w[t,co} x X U[0,00x A) € SITI[QE
Now PLC; (, so
(tstrip(w), AU X) € F[P]
50
(tstrip(w)\ A, X) € F[P\ 4]
(tstrip(s), X} € F[P\ A}
as required. O

115

We now identify conditions for P to be well behaved on A.

Lemma 6.3.32 If P is weakly limited on A and weekly prompt, then P is well
behaved on A

Proof Let P be weakly {-prompt. Consider
(s,[t',00) x B) € SIT{P\ A]

Then
Jnewe traces(Fr[P)Aw\A=s=>#w<n

Define T = maz{end(s),#'} + nt + I. Then

(sl[tJ!T) x B) G-FTHP\A]

50
Juew\A=sA(w,[t,T)x Bu,T) x 4) € Fr[P]
Then
#(w{end(s)) <n
50

ATV < T—te T >t AT [TT +1]=(
Definew =w | T"=w | 7'+ ¢. Then

{(w', [t T'+t)x BU[B, T'+t) x A) € Fr[P]
80 since
T'>end(w)A [T, T+) x AUBC,\ T'"+) x BU[, T +t) x 4
we hawe by weak prompiness
(w',[t",00) x BU[0,00) x 4) € Fr]P]
as requred. O

Observe that we require that P is weakly limited: i it 15 not, then the result
need net follow. Consider the following process definition:

Qo = b— STOP
Qn.m+l = n— Qn.m
Q = n:N—>G,

116

Then @ is weakly prompt, but is not weakly limited on N. We see that

(().10,00) x {b}) € STr[@\N]

since all the finite approximations are failures of P\ N. However, there is 1o finite
trace w such that

(0, [0,00) x NU {B}) € STr[Q] A w\N=()

50 is not well behaved on N. Indeed, although 8(@Q) C; @, it is not the case
that 6(Q)\N T/ Q \N.

Corollary 6.3.33 If P is limited on A and prompt, then P is well behaved on A

The next corollary will be useful in the construction of networks of processes.

Corollary 8.3.34 If P, C; @, and P; C; @ and @ and Qe are both weakly
prompt, (), is non-retracting on A and weakly lkimiied on A', Qs is non-retraciing
on B and weakly limited on B, and AUB=A'UB' =XNY, then

(Prxlly PaINAX N Y)Ep (Qr xlly @)V (X DY)

Proof this follows directly from theorem 5.3.13 and corollary 6.3.32 O

We now present a sufficient condition for arbitrary non-deterministic choice to
preserve Cj-refinement:

Definition 6.3.85 A set of processes {P,} are well behaved if

sT:{[|P] = Uszr[r]

Not all sets of processes are well behaved. If P, = WAIT n;a — STOP then we
have
(),(0,00) x {a}) € Zr[[|]

but

(0,10,00) x {a}) € JZz[P]
so the set {P;} is not well behaved.
Lemma 6.3.36 If {Q.] is well behaved, and Vi e P; Ty Q, then [, P G, 11, @;.

117

Proof Let {@Q;} be well behaved, and Vi » P, C; ;. Consider
(s,R) € STr[[| @] e [tioo} x ACR

Then
(s,R) € U; STr[@.]}
= Jie(s,N) € SIT[Q.']
= 31 (Lsirip(s), A) € .'F[Pi]
= (tstrip(s), 4) € F[[; P

as required. O

We have seen that stable and prompt processes are useful because they permit
inferences concerning infinite behaviours from finite approximations to those be-
haviours. This enables finitary characterisations of the C;-refinement relation for
such processes.

Stable Pracesses
If @ is a stable process, then we have

P C; Q ¢ (sstrip(s), o(R 1 @) € Fr[P]
This follows from the fact that for stable processes we have

(3(s,R) € STr[P] o [t,c0) x X TR & 5,0, R) €E7[P] o a(R 1) =X

This characterisation of refinement for stable processes will be easier to work
with.

Prompt Processes

I Q is a non-retracting f-prompt process then we have

P Qr Q =
(s,R) € Fr HQ] A [end(s), end(s) + t) x X TR = (tstrip(s), X) € F[P]

Once again, we need only consider finite observations in order to tell whether or
not a process is a refinement of another.

118

The Non-determinism Order

The non-determinism partial order C [Ros82, Hoa85] is defined between processes
in a semantic model (with £ as the corresponding semantic mapping) by

Definition 6.3.37
PCQ = £[PT‘I Q] =£[P]

Refinement in the non-determinism order preserves C;-refinement

Theorem 6.3.38
PCPLCQ = PLQ
PL,QCQ = PL Y

Proof This follows immediately from the facts that

Erfpn@) =&r[P) = fad(£7[Q]) < fail(Ex[P])
Flpngl =F[P] = feil(F[Q]) C fail(F[P])

Specifications

The treatment for C;-refinement of specifications is very similar to the treatment
for C,-refinement. We extend C;-refinement to a relation between predicates on
Mr and TMgs. If S; is a predicate on Mg, and S; is a predicate on TMgsthen we
may define C; between specifications in an identical fashion to the correspending
definition for C,-refinement:

Definition 6.3.39
S Cr 8 =vQe(3PeS5(P)APL Q= 5:(Q))

We can also defipe the strongest refinement sr(5) of a given uatimed predicate 5
in the samme way:

SCer(SYA((S: = sr(S)) = STy S5))
It is given by a similar condition:

s+ (S)Q) 2P eS(PYAPL, Q

113

We can again capture the weakest coarsening of a given timed predicate T. It
is given by the following:

we{T)P) & VQ@e(PL, Q= T(Q))

‘We can express the strongest refinement of a behavioural specification on My
as a bebavioural specification on the semi-infinite bebaviours of a timed process:

Theorem 6.3.40
sr(Y sat A(tr, X))(@) < @ sat (R =[{,00) x X = A{tstrip(s), X))

Proof It is clear that Y sat (R = [t,00) x X = A(tstrip(s), X)) is a refinement
of Y sat A(#r,X). Further, if @ sat (R = [¢,00) x X = A(tstrip(s), X)), then
the set

U = {{tstrip(s), X) | It ¢ (5,[t,00) x X) € SI7[Q])
satisfies the axioms of My (page 187) and has A(w, X) for any (u,X) € U. We
define the following processes by infinite mutual recursion, indexed by failures
(x, X) and traces v:

Py = a:{inits(U1v)) - P(o ifu v
FPraxie = a:(inits(U —X)= P R i w= v
(3.X), (inits{ U 1 v) — X) A

Now axiom 4 for My yields for any (4, X) € U that
(v.X) € F[Paxp] €U

S0 we gbtain

Ve U Pexpp)S U
(s, X)EL

and hence

Frl [] Pl =V
(s.X)EV
We thus have a process, defined in terms of infinite mutual recursion, whose seman-
tics is I/. It is shown in [Ros88b, p69] that there is a simple coding trick which
converts any mutual recurston into a single one. Hence there is a CSP process
{with only single recursion) whose semantics is the set U, O

Lemma 6.3.41

Y sat (R =[t,00) x X = A(lstrip(s), X))
< Y osat (([t,o0) x X CN) = A(tstrip(s), X))

120

Proof Assume Y sat (N =[t,00) x X => A(istrip(s), X)). Then consider
(s,R) € SIT[Y] such that [{,00) x X C R. By axiom 10 for TMrs we deduce
(s,[t,00) x X) € SI7[Y]. and hence that A{tstrip(s), X)), as required.

The proof in the other direction is trvial. D

We define ihe weakest coarsening of a predicate on TMys (with respect to ;)
in the way it was defined for C,-refinement:

Definition 6.3.42

we(T)(P) e YQe(PL; @= T(Q))

The weakest coarsening of T holds of P precisely when T holds of every refinement
of P. We oblain the following result:

Lemma 6.3.43

we(Y sat (N =[t, o) x X = S(isinp(s), X)) = Y sat S(tr, X)

We again ohtain S = we{sr(5)) for behavioural specifications on M.

Deadlock Freedom

Following [Dai85], we approach deadlock-freedom via possibility of deadlock:

Definition 6.3.44 A TCSP process P may deadlock tf

(s, R),t 0 Fr[P/{(s,R),)] = Fr[P/{(s,R),1) N STOP]

This is equivalent to saying that
3(s,), ¢ » (s, XU [t,00) x T) € ST [P]

This leads to a definition of deadlock free.

Definition 6.3.45 A process P is deadlock-free if

(s,R) €SIr[P] = Vio[t,0) x T LR
Lemma 6.3.46 sr{deadlock-free) = deadlock-free

121

Proof P is deadlock-free in My if P sat X # Z. Hence we obtain from theo-
rem 6.3.40 and lemma 6.3.41 that

sr(Y sat X # L} = ¥ sat {([{,0) x X CTR)=> X #X)
whichis equivalent to our definition of deadlock-freedom for TMps.

We also define deadlock-freedom for TMp;.
Definition 6.3.47 A process P is deadlock-free in TM ¢ if
s € traces(ER[P]) = (5, %) ¢ fail(E4[P])

Lemma 6.3.48 [f P is a deadlock-free CSP process, and @ is ¢ TCSP process
such that P Ty Q, then Q is deadlock-free in TMpg.

Proof Trivial

Lemma 8.3.49 If a TCSP process @ is deadlock-free in TMpg then it is deadlock-
free in TMgs

Proof If @ is deadlock-free in TM#; then it must be stable (since ¥ is refusible
after an unstable trace), and unable to refuse L after stability. Since @ follows
@, wealso have that is stable in TMys, and unable to refuse ¥ after stability.
Hence @ is deadlock-free in TMys. T

Hence we see that deadlock-freedom is preserved by both Cy-refinement and
C,,-refinement.

6.4 Other Timewise Refinements
If we wish to refine processes to retain the stability information, we would wish
our refinement to be unstable only if the original process were unstable. Hence we

can define a timewise refinement relation T, relation between Ms and TMps.

Definition 6.4.1 If $; € M5, and 5 € TM}, then

S5/ CS5=
tstrip(traces(Ss)) C traces(S;) A (s,00} € stab(Se) = (istrip(s),00) € 5,

Hence this form of timewise refinement preserves stability in processes: il P is
stable and P C, @, then @ is stable.

122

Definition 6.4.2 We define a limewise refinement relation T belween My and
TM;s as follows: if 8, € Ms, and Sp € TMp,, then

S C 8=
tstrip(traces{Ss)) C traces(5;) A (s,00) € stab(Sy) = (thsirip(s),c} € §,

The refinernent relations Ty and C, may be combined to yield a refinement
relation between Mps and TMps:

Definition 6.4.3 The refinement relation T between Mps and TMrs is defined
as follows: if S; € Mps and S, € TMgs, then

SiC 8 = (Jte(s,[t,oo)x X)e S5I(5)) = (tsirip(s), X) € fail(5))
AILYT > te(s,00,[t, T)x X) € 8) = (tstrip(s),00,X) € 5,
Definition 6.4.4 The refinement relation C between Mps and TMps is defined

as follows: if S; € Mps and 54 € TMp,, then

SiCS = (s,0,X) €S> (thstrin(s), X) € fail(5))
A (o = oo = (thstrip(s),00,X) € §;)

Each of the refinement relations above extends to environments and torelations
between CSP and TCSP termns, in the same way as the relations C; and C; were
extended.

123

7 Communication

In this chapter we define the communication concepts of channels, input and
output, pipes, the chaining operator, buffers, and networks. The treatment of
buffers in particular provides illustrations of the specifications we have presented
in the previous chapters. We find sufficient conditions for the preservation of
LCs-refinement by the chaining operator, and thereby obtain conditions on buffers
which ensure that the pipe formed by chainiug them together is a buffer. We also
consider the more general network operator: we see how to modularise networks,
and provide conditions for the network operator Lo preserve timewise refinement.

7.1 Definitions

We thirk of the event ¢.v as corresponding to value v being passed along channel
c. If ¥V is the set of possible values that can pass along channel ¢, we define
¢.V ={e.v|v e V}. When it is clear that we intend ‘c’ to represent a channel,
then we use ¢ as an abbreviation for c. V.

e’z: V = P(z) = cx:c.V — Qle.z) where Q(c.z) = P(x)
ez P = cz—= P
¢?z : V — P(z) represents a process willing to input any message z from the set
V along channel ¢, and then behave like P(z). Ohserve that it is only well defined
if the set {P(z) | z € V} is uniformly bounded. If the set of possible messages V'
is obvious from the coutext, then we may omut it and write ¢%z2 — P(z).

The construction c!le — P represents a process willing to output message r
along channel ¢, and then behave like process P.

In specifications we often use the channel name to denote the projection of
the trace onto the channel: the sequence of messages occurring on that channel
in the trace 3. For example, ¢ denotes tstrip(s [¢). This convention will allow us
to succinctly relate the messages passed along different channels in specifications.
We therefore write out € in as shorthand for tstrip(s [out. V) < tstrip(s | in. V),
to spedfy that the sequence of messages passed on the ou? channel is a prefix of
the sequence passed on the in channel. {#r; € tr, means that ir; is a prefix of iry;
also, from [PS88)], tr; <, trs means that tr; € try and #tr; + n = #trs.)

Definition 7.1.1 A pipe is a process P such that (P} C in.Z U out.E

The definition of the chaining operator is the same as that of the untimed operator,

124

but recall that the hiding operator forces all internal communication to occur as
soon as possible; its behaviour will therefore be somewhat different.

Definition 7.1.2 We define the chaining operctor 3 on pipes P, @ as follows:

r > Q = (SD-l.c(P) {in.:}”{z,u-i} Sc.l'-(Q)) \ <

where S, is en alphobel transformation, indezed by channel names, defined by

S._‘(G.I) = b_z
Su,ﬁ(b~z) = a.r
Soily) = y fydalUbl

Theorem 7.1.3 The chaining operator > is associative

Proof Lemma A.1.4 and the following previous results are sufficient fo prove
Theorem 7.1.3:

L Pxllyuz (Qyllz B) = (P xlly @) xurllz B

e, bkne(P)={}= S5, (P =P

. f bijective = f(P 4|y @)= f(P) roollin fIAF(P\e)=f(P)\f(c)
4. Va,be 5, ; is bijective

- {a, 8} {e,d} = {} = 5.4(5:4(P)) = Sc i Ses(P))

6. PAX\Y =P\ Y\ X

[FUI]

o

Lemma A.1.4 states that ZNY =0= (P\ Z) ,|ly @ =(P yozlly @I\ Z

Let ic, co,id, do, idec, cdo abbreviate in U ¢,c U out,in Ud,d U out,inlU d U
¢, andc U d U out respectively. The proof is essentially the same as the proof for
associalivity of chaining in untimed CSF; the difference arises in the establishment
of the previous results, in particular lemma A.1.4.

125

P>Q)» 8
= (Soatd((Souto(P) icllcs Sein(Q)) N €) gl e Sam (RN d (defn)
= ((SontadlSaer,c(P) iollcy Sen(@N N Sonr,al€)) 1l gy Sain (A \ d (3. 4)
= (((Sount,d{Soure(P) illo Seiin (@) sacllge Sain(R) N)\ & (A4.1.4)
= {((out,{ Sout, C(P) :'::”ca :.in(Q))) fd'z:”dn S,g,.'.(R))\ d)\e (6}
= (({(Souta{Sont,c(P))) icll cq Sout,d(Sesn (@0)) igellao Saan (BN)N e (3.4)
= ((Santel P ill o (Somta(Sen(@)) callsy Sain (BN)\ € (1,2)
= ((Sout,e P il as (Senn{Sont,al @)) callyo Stin(R)) N)\ € {5)
= (Soare(P) il o ({5 inl Sont,a(@) gllso Sein (BN N)} N € (A.1.4)
= P> (Q>R) (defn)

7.2 Real-time Buffers

In addition to being interesting in their own right, hnffers also provide us with nice
specification examples: their definition involves both safety and liveness proper-
ties, ¥e may impose real-time constraints en them, and we may also consider the
interaction of various types of buffer.

In [Hoa85] a buffer is defined as a process which has two channels, in and
out, and outputs on the out channel exactly the same sequence of messages as
it has input from the in channel, although possibly after some delay (‘delay’ in
the untimed context meaning that it need not output messages as soon as they
have been input, but may have the capacity for inputting further messages before
outputting). This has a remarkably simple specification in the traces model — A
process P is a buffer if it is a pipe such that

Psat oul < in

Unfortunately, pracesses such as STOP satisfy this specification, not through any
fault in the specification, but rather because the traces model is nol powerful
enough to capture the essence of a buffer. All the traces model can describe is
safety properties; but we also wish to capture liveness properties.

We want a buffer to be unable to refuse an input if it is ernpty (that is, if
out = in, when it has output all its input messages), and to be unable to refuse

126

an output if it is not empty, when out < in. This leads us to the spedfication
[Hoa85, p158]:

Poat (oul €in A if out = in then in € ref else out € ref)
if we are to call P a buffer.

We extend this definition to include time. As we decided in our discussion on
timewise refinement, we consider Lhal a process is able to refuse a set of events
after a trace if there is a time after which that set can always be refused; and it
is not able to refuse that set if there is no such time. We say, therefore, that a
process is a timed buffer if there is no time after which it can always refnse to
output when non-empty, and that there is no time after which it can always refuse
to input if it is empty. We define a buffer formally as follows:

Definition 7.2.1 P ig a buffer if it is a pipe such that

(5,R) e SIr[P] = (out < in)
A if oul = in
then V¢ € [end(s),00),u€ Co[f,00) xinu ¥
else V¢ € [end(s),00) e [t,00) x out TR

where C is the set of possible messages.
Lemma 7.2.2 ‘hmed buffer’ = sr(‘untimed buffer’)
Proof Let B(F) hold if and only if P is an untimed buffer, and C(@) hold if and
only if § is a timed buffer. We have
sr(B) (Y= IP e B(P)APLC, Q
30 we are required to show that
C(Q)« AP e B(P)APL,; Q

We prove first that

C(Q)eIAPeB(PYAPL, Q
Consider (s,®) € SIr[Q],[t, 00} x 4 T K.

(tstrip(s), A) € F[F} A out < in

Aowl=in=>inug A

Aouwl <in=>out € A

= out g in
Aotl =1in = [f,00) X inu R
Aotl <in=[l,o0) x oul ER

127

s0 @ is a timed buffer.

We now show that
C(@)=3IPeB(P)APLC @
Define:

B() = in?z—oB(,)

. = outly— B,
(r)" s
-
intfz > B _ _ Ooutly - B,
(5)" ¢ =)
£ = 8

Then P is the most non-determumistic buffer. Its failure set is given by

fI[P] = {(s,X)|out gimA(out=in=>Vu:Cein.ugX)
Aout <in = out € X}

Consider @ € TCSP such that C(Q). Let (s,8) € SI7[Q]. Then out < in.
Now let [f,o0) x A CR.

Case out = in

Then Vu: Ceinu ¢ A
Case out < in

Then out € A.

Hence in either case, (tstrip(s), 4) € F[FP]. Therefore P T, (}, a3 required.
o

Timewise refinement preserves the property tbat a process is a buffer.

Categorising buffers

Buffers may be classified according to tbeir satisfaction of the various aspecls
of good behaviour detailed in chapter 5. In particular, buffers which are non-
retracting and prompt, or have bounded stability, are especially well behaved. As

we shall see, the following kinds of buffer interact in useful ways:

e prompt buffers

128

buffers with bounded stability

¢ non-retracting buffers

¢ buffers that are non-retracting on in, or on out
¢ buffers which are impartial on in

® responsive buffers

Buffers are by definition live, so promptuoess is stronger than responsiveness for
them:

Theorem 7.2.3 A t-prompl buffer is t-responsive
Proof By contradiction. Assume that we have a t-prompt buffer that is not
t-responsive. Then

Is,R) € Fr{P],.Te[0,c)e [T, T+ 1) xECRAST[T, T+ ={)

So(s T+ RITT+H1) e .7'-7|IP]. But end(s) < T, so by promptness aud the
fact that [T, T +1¢) x EC R | T + t we obtain

(s T,R (T +t)U[T,00) x £} € Fr[P]
which contradicts the claim that P is a buffer. O

However, not every {-responsive buffer is t-prompt. For exarmple, consider the
bufler B defined by

B = pXein?n:N-—(inTy — outln — outly = X
]
WAIT n; outln - X

This process is ¢-responsive for any t > £6, but there is no ¢ for which it i
I-prompt.

Hence the specification ‘responsive buffer’ is strictly weaker than the specifica-
tion ‘prompt buffer’.

The next two theorerns are useful in establishing that processes are buffers;
Examples of their use will be presented in the next chapter.

Theorem 7.2.4 If P sat out <; in, and P i5 in U oul-responsive and mpartial
on in, then B is a responsive one-place buffer

Theorem 7.2.5 If P sat out €, in, P is a deadiock-free pipe and P is impartial
on in, then P is e one-place buffer.

129

COPY — a well behaved buffer

The process COPY has the same definition as jts untimed counterpart.
COPY = pXein?t - out's = X

The results of the preceding chapters yield the following aspects of good behaviour
exhibited by COPY:

s COPY C, COPY

o COPY sat out €, in, since ©(COPY) sat out <, in in Mr

« COPY C; COPY

¢ COPY is 2é-stable

s COPY is non-retracting

¢ COPY i3 t'-prompt (¢’ > 2§)

¢ COPY is t'-responsive (' > 2§)

¢ COPY is limited on out

s COPY is a buffer

7.3 Chaining

The specification buffer(ir) of a buffer in the traces model My is that out € in.
It is clear that any timed boffer P must satisfy sr{buffer(ir)), and hence that if
P and @ are two buffers, then P » Q sat sr{buffer(tr)), since chaining preserves
buffer(tr) in My. Hence for any two buffers P and § we obtain that P» @ isa
pipe with out € in, However, P and @ may fail to synchronise on their mutual
channel. Consider

P = (uXe((in?z — STOP){ P.)g WAITZ; X)

P, = (pX o ((outlz — STOP) 155 PYL WAIT 3; X)
P is acyclic process of cycle length § + 26. When empty, it is prepared to input
on the first time unit of its cycle. When nou-empty, it is prepared to output on

the third time unit of the cycle. Hence P is a buffer, but P 3% P is not, since no
synchronisations will be possible on the internal channel.

130

Our interest lies in obtaining sufficient conditions for P @} to be a buffer. This
will be the case for those buffers where Cj-refinement is preserved by chairing, In
such cases, given buffers P and @, lemma 7.2.2 yields that we can find buffers B,
and By which are Cy-refined by P and @ respectively, and hence that B, » B, C;
P Q. Buffer law L1 in [Hoa85, p159] tells us that By 3 By is a buffer in My,
so P Q will be a buffer in TMrg. We therefore seek to identily conditions on P
and @ such that chaining preserves timewise refinement for them.

Lemma 7.3.1 If P and Q are buffers, and P has finite capacity, then
So-l,r(P) [ia,c}”{oll,c} Sin,c(Q)
is limited on ¢

Proof Follows immediately from the fact that there is some n (the capacity of
P) such that for any trace 5 of Sour,e(P) (a1 ll(sar,e} Sinic(@) we have € <, in. O

Lemma 7.3.2 If P and @ are buffers then S,,..,C(P){I-_‘C}H{“M] Sin, (@) 8 weakly
himited on ¢

Proof Follows from the fact that for any trace s of Spu,.(FP) {..“,c}"{m’c} Sin, (@)
we have e € in. O

Lemma 7.3.3 If P and Q are prompt buffers, and P is non-retracting on output
or @ is non-retracting on input, then P 3 Q) is o buffer.

Proof There exists buffers B, and B, such that B; Ty P and Bg Cy . From
theorem 6.3.27 we have that

Sout.c(Bi) {in,c}”{oll‘.:} S--,c(B!) L So-i.c(P) {.‘.,:}”{,-:,c} S‘-.,,,(Q)

and it follows that Sou,.(P) 14)l (oe1,c} Sin,c(Q) is weakly limited on ¢ and prompt,
from lemma 7.3.2 and theorem 5.3.12 respectively, so we have from corollary 6.3.33
and lemma 6.3.31 that B, 3> B; C; P 3 (0, and hence that P33 () is a buffer. O

Corollary 7.3.4 If P and @ are prompt buffers, and P is non-retractingor Q is
non-retracting, then P> @ is a prompt buffer

Corollary 7.3.5 If {F:}2, ts such that each P; is a buffer, non-retracting on
inpul, and prompt, then P, » Py > ...>» P, is a buffer, non-retracting on input,
and prompl.

131

Corollary 7.3.6 If {P;}?_, is such that each P; is prompt and non-retracting on
outpul, then Py 3» Py » ... P, 13 prompl and non-retracting on output.
Corollary 7.3.7 If {P;}!_, is such that each P; is prompt, then

P »COPY » P,»COPY »...» P,

s prompt

Lemma 7.3.8 If Q; and () are boundedly stable buffers with finite capacity, then
@ > Qe i3 a boundedly stable buffer with finite capacity.

Proof We have buffers B, and B; such that B; C; @; and B, C; @, so from
theorem 6.3.29 we have

Suul,:(B.l) {ine} "{GI!.\‘-] S-’n,c(BI’) ;_f Su-i,t:(Ql) {,'...!,]”{g-t,c} Si‘»C(QI’}

Also, from lemma 7.3.1 we have Spue (@) {i“’c}ll{m‘c} Sin. (@) is limited on ¢, so
B, » B, Cj @ 3» Q. It follows from theorem 5.6.8 that ¢4 » Q. is boundedly
stable, O

Lemma 7.3.8 If Q; and @, are boundedly stable buffers, then Q; > Qs s a stable
buffer.

Proof We have buffers B, and B; such that B, C; @, and By Ty @, so from
theorem 6.3.29 we have S, ,(Br) {-‘-.:}“{a-nc} Sin,e(Bs) Cf Sout.c(Q1) {,-,,'ﬂ}li{",'ﬂ}
Sin,e(G:). Also, from lemma 7.3.2 we have S,y (@){m‘c}||{m’c}5',-,,.,(Qz) is weakly
limitedon ¢, so By > By C; @ 3 Q. It follows from theorem 5.6.7 that ¢ 3 Qe
is stable. O

Theoremn T7.3.10 If P, ¢ end P> @ are buffers, then

e if P is strongly non-retracting on fnput, then so is P> @
® i @ is strongly non-retracting on oulput, then so is P » Q@
e if P iz in-responsive, then so is P> Q)

e if P is prompt on in, then so is P> @

132

Theorem 7.3.11 If @ end Qp are buffers, and P, Ty (¢ and Py C; Q¢, and
@, 5 non-retracting on oulput or @y is non-retracting on input, and both Q, and
Qe are prompt, then Py Pe Ty Q; 3 Qs

Proof Every buffer has out < in, and so it is weakly limited on out. Hence
{Siout,ey(Qr) {m'c}ﬁ{m,ﬂ} S{in,c)(Qe) is weakly limited on ¢. The result follows from
corollary 6.3.34. O

Corollary 7.3.12 If P, C; @, and Py T; Qy and @y and Qe are prompt, then
P> COPY > P, C; Q> COPY » @

In order to ensure that ¢, and ¢}y communicate despite their possible inability to
synchronise, we insert COPY along their mutual channel.

7.4 Networks of processes

We generalise the chaining operator to obtain networks of arbitrary size, with the
internal events hidden. If we have a set of (process,interface) pairs {(F, X:)},
where an interface is a subset of I, then these may be thought of as forming a
network. That network is the parallel combination of all those processes with all
channels internal to the network hidden. It is defined, as in [Dat85], as follows:

(i #)
Xy

X = J{xnX {1<i<)<n}
NET({(Pi, X.)}) = PAR({(P, X))\ X

PAR({(P;, X)})

We insist that any channel name is shared by at most two pracesses, so the set of
interfaces must be triple disjoint:

i;éjaék::X.-nX,ﬂX;=@

In order for the network to be a refinement of a corresponding untimed retwork,
where all the compoenents are refinements, it will be sufficient to insist that each
component is prompt, and alse that each internal channel has one of its two users
non-retracting on it.

133

Theorem 7.4.1 If
o (PAR({(P:, X:)))) is weakly limited on [HX; N X, | 1 €1 <j < n}
e Vie P,C; Q
o PAR({(Q\, X:)}) is weakly prompt

then PAR({(P;, Xi)}) Ty PAR({{(Q:, X))})-

Proof (PAR({(P., X,)})) is weakly limited on J{X; N X; | I < i <j < n}, s0
it follews from corollary 6.2.13 and lemma 6.2.11, and the fact that all TCSP
operators preserve C,-refinement, that PAR({(Q., X,)}]}) is weakly limited on
W{X.nX, | I €i<j< n}. The resuit follows immediately from lemma 6.3.32 D
Corollary A.1.5 states that

ZNY =0=2(P\Z)4Ily @=(P yozlly D\ Z

The fdlowing consequences are useful:
Corollary 7.4.2

Pxly @D\Z = (PA(X-Y)NZ)xlly Q\(Z-(X-Y))

Corollary 7.4.3

(XNYNZ)=0AZC(XUY)
= (Pxlly @\Z=(P\(ZNX)))y (Q\(ZN Y}

This wrollary generalises to a result enahling us to modularise networks:

134

Corollary 7.44.4 If the sets I, ¥, and Y; are defined by

1= UcU (xenx)y
i=1 j=m+!
v, = 1u(J(X\(U X))
=1 it 1]
ve = 10 () X\ (U X))
i=m4! FRE

then we have

NET({(@:, X)) I i< n})
= NET({(@X) |1 <i<m})y iy, NET({(@:, X:) | m+ 1 <ign})

Theorem 7.4.5 If {P:}7_, {Q.}7.,. and {X.}}_, are such that the sel {X:}3_ |

is triple disjoint and

1. Every @ is prompt
2. For every i,7, we have either O or @, is non-retracting on X; N X
3. for every i, P, C; Q;

{- (PAR({{Pi, Xi)})} is weakly limited on | J{X; N X; | € ¢ <j < n}
then NET({(P:, X.)}) E; NET({(@:, X))

Proof We first prove, by induction on r, that
PAR({(P, X} 1<i<r}) Ty PAR({(@, X} |1<i<r})

The base case (r = £) follows immediately from theorem 6.3.27.

For the inductive step, assume
PARC{(PLX) [1 i <rh) Ty PARG(QX) |1 <i <o)
Now define the set

I = {i| Q41 i3 not non-retracting on X; N Xy}

135

Then from our assumptions we have that for each ¢ € [we have that ¢ is
non-retracting on X, N X,, and so from theorem 5.1.13 we obtain that

PAR({(Q. X)L i<}

is non-retracting on J;c7(Xi N X;y). We also have that ¢, is non-retracting
on Uig(X, N X,,). Further, from the promptness conditions we have that both
PAR({(Q,, X,) | 1 €i<r))and @y, are prompt on U, gig (X N Xry (), and so
we are in a position to apply theorem 6.3.27, from which we conclude that

PAR({(P.X) |1 Si<r+t}) T, PAR({(Q.X) |1 <i<r+1})
Thus we may conclude by induction that
PAR({{P, X:)1 1 £ 1< n}) 5, PAR({(Qi, X)) | € i< n})
Now, defining
A= UHXNnX|1<i<ign)

it follows from lemma 6.2.11 that PAR({(Q:, X;} | I € i € n}) is weakly limited
on A, and from a generalisation of lernma 5.3.12 and theorem 5.3.8 it is also
prorpt, and hence weakly prompt, so from lemma 6.3.31 and lemma 6.3.32 it
follows directly that

NET({(P, X) | L S i< n}) T, NET({(@.X)]|1<i<n))

136

8 Examples

In this chapter, we provide illustrations of the application of the specification and
verification methods presented carlier. We first present three examples of specifi-
cation: in each case, tbe desired behaviour of the system is captured by a combi-
nation of behawvioural specifications and general properties presented in chapter 5.
‘We then present candidate processes which we claim meet the specification in each
case. Qur verifications consist of applications of botb the praof system and some
laws concerning the specifications. In the verifications of recursively defined pro-
cesses we use the version of the proof rule that does not require a base case to be

established.

As an example of the application of further rules from the proof system, we
present a more detailed verification, that a stop and wait protacol has a particular
liveness property. The same protocol is then shown to be a buffer by the method
of timewise refinement from a previously verified untimed protocol. Timewise
refinement is also used in the verification of an alternating bit protocol, and finally
a sliding window protocol, by relating them in each case to untimed versions

defined and verified in [P588].

8.1 A Time Server

A time server TTME provides times along a time channel. Qur specification for it
is the conjunction of the following conditions:

1. TIMFE is responsive on time
2. TIME sat ACCURATE(s,R), where
ACCURATE(s,R) = {(t,timen))cs=>0Kt—n <!
Qur proposed T'CSP implementation of a timeserver is given as follows:
TIME = pXe(pYetimed - ¥) I_i” timesuce(X)

where the alphabet transformation timesucc is defined by

time.{n+ 1)
timesucc(a) = e ifa# timenforaln

I

timesucc(lime.n}

Now timesucc clearly preserves “initially (I — 36, lime)-responsive”, so by the-
orem 5.2.17 it immediately follows that TTME is responsive on time (in [act it is
(1, time)-responsive).

137

We will use the proof system to show that TIME sat ACCURATE(s,R). Ab-
breviating A(s,R) for ACCURATE(s,R). it will be sufficient to show that the
definiog function for TIME preserves A(s,R). Assuming X sat A{s,R) we re-
quire

(s Y ® time.0 — ¥) & ; timesucc(X) sat A(s,R)
I
It is immediate that v & oz Y e time.0 — Y'), so the special case rule for tireout

can be applied. From that rule we see that we must find 5; and 5 such that

pYetimef - Y sat 5
timesucel WAIT 6;X) sat S5,

Sis (L —38),RT (1 —38)AsT((1—36),1-6={
ASe(s = (1 =8),R=(1-8) ? } = A(s,®)

Now we bave by assumption that X sat A(s,R), so we have
WAIT6;X sat A(s = 6% = 8) A begin(s) 2 6
Henceit follows from the rule for alphahet transformation that
timesucc{ WAIT §; X) sat A(timesuec™ (s = §), timesuec™ (R = §})
A begin(s) 2 6 A o(s) C ran(timesuce)
which provides us with a candidate for S:

Se(s,®) = A(timesuce™ (s = 6), timesucc™ (R = &)
A begin(s} 2 & A o(s) C ran{timesucc)

The televant property of ¢ Y o time.f§ — Y is that the value it is prepared to
output on its ftme channel is always @, so we define 5; by

S(s,®) = ({t,timen))ins=>n=1

whichmay be easily estahlished by recursion induction. We only have to establish
the logical condition to complete the proof. It reduces to

Se{s [(1—38) R (L -38))AsT((1—-38),1)=
A As(tz'mesucc"(s = I),timesuce™ ' (R = 1)))=0 } = A(s.R)

This may be established hy a case analysis on a typical timed event of the form
(¢, time.n) which appears in the trace s. We assume the left hand side of the
implication. We are hoping to estahlish that in each case we have 0 €t —n < 1.

138

Case 11— 35

Then
(¢, time.n)ins [(I — 26)

and we have

Si(st{f—38,RI1 - 38)
so weobtain 7 =0, and so 0 € ¢t — n < I as reguired.
Case te (! —36,1)
This case cannot arise since it contradicts s T ((1 — 38),1) = {).
Case 22!

Then we have
A(timesuec™! (s = 1), timesuce™ (R = 1)} A a(s) C ren{timesucc)

and also
{(t — I,time.(n — 1))} € timesucc™! (s =~ 1)
50 weobtain @ €({ —I})—(n—1)< 1,30 0 € —n < ! as required.

The required result follows in all cases, so the proof is complete. O

8.2 Time Division Multiplexing

When many processes are sharing a resource, a method is required for allocating it.
In TCSP we may represent this situation by modeiling each process as a umbered
process 1 : Py, the resource by a process RES and the allocator as a process CON
which controls access of the resource by the processes. The construction is given

by
)i P xllsun (CON (|5 RES)
=t

where
R = o(RES)
= Ueti: P
I = XnR

I represents the interface between the processes P, and the resource RES; it is
CON which restricts the occurrence of these events, and which thereby restricts the

139

access to RES of the various processes. CON will therefore embody the algorithm
by which access to RES is granted to the processes.

One such algorithm is time division multiplexing, where the resource is allo-
cated 1o each process in turn for a fixed time period. The switch occurs every ¢, and
there are n processes. The specification to be satisfied by a process implementing
such a scheduling algorithmn is the conjunction of the following requirements:

1. ¥Ym o CON is responsive and impartial on m. %

2. CON sat {(t',1.c))ins = i = [#'/t|mod n

We define CON as follows:

CON
F(X)

zX e F(X)
(pYey:0E-Y) l_53,5511&.,(){)

I

I

where

succy(m.a) = ((m+ 1)mod n).a

succ,(a) = a if a & m.X for every m

We have (succ,)™ is the identity function on L, so by considering CON as the
fixed peint of the function (F o WAIT 6)* we have that

P, 2 (uYey:0E YY)
Py = P ’_i”succ,.(WAITcS;Pm)
CON = pXePry § X

nt—58

It may be established hy induction on m that
0<r<m<n = P, isimmediately ((m +)t — 36, r.E)-responsive

The bas case of this induction is trivial, and the inductive step follows immediately
from theorem 5.2.16. Hence for every m between 0 and n — I we have that P, _;
is immediately (nt — 86, m.I)-responsive. Hence from theorem 5.2.17 we obtain
that CON is responsive on m.L for each m between # and n — I.

Impartiality on m.% is immediate from an application of theorem 5.4.2 on the
syntax of CON.

We next prove that CON sat A(s,R), where

A(s,®) = {(H,ie))insg=i=[t'[t|med n

140

Assuming X sat A(s,R) we must find §; and S such that

pYey:02—-Y sat 5
succy{ WAIT §; X) sat S
Si(sl(t— S8, RT3 AsT(t—96,1-8)=(
A Se(s = (t —6),R=(t—4)) } = Als.R)

The relevant property that will suffice for 5, is given by
S5i(s,R) = ((,te)es=>i=0

and we may use the same approach as in example 8.1 to obtain an expression for
S, since we have that X sat A(s,R):

Se(s,R) = A(suce]!(s = 8), succ] (R = §))
A beqin(s) 2 & A a(s) C ran(succa)

The third proof obligation above can easily be established by a case analysis on
the time ¢’ of any given {{¢',i.c}} in s, the cases being t' < ¢t — 28, t' € (¢ - 96, ¢),
andt'2 1. O

8.3 A Watchdog Timer

The continuing correct operation of a process may be monitored by a process such
a3 a watchdog timer. The timer is set up to expire within ¢ time units, and when
functioning carrectly, the monitored process should reset the timer by means of a
reset event. If it fails to do so by time ¢, then the timer withdraws the option of
resetting, and raises the alarm within a further time T.

We formalise these requirements as follows:

1. WTIM sat (s [reset} 1 [t;,t; +t] = (} = (s | reset}1 ¢; =)

2. WTIM sat #alarm = 0 = reset € o(R T [end(s) + 28, end(5) + 1))
3. WTIM sat s = &'~ ((t',alarm)} = ' 2 end(s') + ¢t

4. WTIM sat #alarm = 80 = [end(s),end(s} +t + T) x {alarm} € R

5. WTIM is strongly non-retracting on alarm

141

These specify that the timer will not allow a resel event if it has not performed
one during the last ¢ time units; that it must be prepared to engage in a reset
before the timer expires; that the alarm cannot go off before the timer expires,
that the alarm will always be prepared to go off within £ + T of the last reset, i.e.
within T of the timer expiring; and that once the alarm is enabled, then it will
remain enabled until it occurs. For convenience, we abbreviate the behavioural
specifications in the first four obligations to W,, W, Wy and W, respectively.

The desired behaviour of the watchdog timer following the alarm will depend
very much on the nature of the monitored process. It may be possible to restart
the process following a malfunction, in which case we would wish to restart the
timer as well. There will be some cases where the alarm triggers some emergency
action from which recovery is not possihle, sich as ejecting the pilot when the
engine fails. In these cases, the timer can terminate after the alarm has been
raised.

Our proposed implementation of WTIM will terminate after raising the alarm.
We define

WTIM = WAIT 26, TIM
TIM (p X o (resel — X) ' alarm — SKIP

]

We first prove our fifth proof obligation, that WTIM is strongly non-retracting
on alerm. From theorern 5.1.8 it is enough to prove that TIM is strongly non-
retracting on alarm. Siuce “strongly non-retracting on alerm” is closed we need
only prove that it is preserved by

F(X) & (reset > WAIT 6: X)' 12" alarm ~+ SKIP

If X is strongly non-retracting on alerm then reset — WAIT §; X is also strongly
non-retracting on alarm and inits(reset » WAIT §; X} N {alarm} = 8. We also
have slarm — SKIP is strongly non-retracting on alarm, so by theorem 5.1.8 we
conclude that (reset — WAIT 6; X)55 alarm — SKIP is strongly non-retracting
on alerm, as required. O

[norder to prove that WAIT 26; TIM sat W, (s,}), the rule for delay yields
that it will he sufficient to prove that

TIM sat W;
Wy = Wi(s,R)A((slreset)}t—26={) = 5] resel ={})

We prove this by recursion induction. Assuming X sat W;(s,R), we wish to prove
that

{reset — WAIT 6; X't alarm — SKIP sat Wi(s,R)

142

We must find .S and S, such that

reset —+ WAIT 6, X sat 5,
alerm — SKIP sat S,
begin(s) < t — 26 A S, (s, R)
v
begin(s) 2t — S A SN[t — 2§)
A Sels={t—8),R=(t—4§)

= Ws(S,N)

The property of alarm — SKIP contributing to the correctness of the construct
is that it i3 unable to perform reset. Hence we may put

Se(s,R) = 5[reset={)
From the rules for prefixing and delay, we derive a suitable S, :
Si(s W) = s=(Vs=/{(1 resef)}"s
A Ws(s = (' + 26),% = (' + 24))
Our third proof obligation

begin(s) <t — 26 A 5,(5,N)

W

begin(s) 2 £ -6 A5 ((),R [¢t — 2§)
AS(s—(t=8,R=(1-6)

= w_s(S,N)

is now straightforward to establish. O

We now provethat WAIT 26; TIM sat W,(s,R), the rule for delay yields that
it will be sufficient to prove that

TIM sat W,
We = s={(}=>resetgo(®|(t—26)
A (5 # (} Afalarm = 0) = reset € (R T [end(s) + 26, end(s) + £))

We prove this by recursion induction. Assuming X sat Wg(s,R), we wishto prove
that

(reset — WAIT §; X) 't alarm — SKIP sat Wi(s,R)

The structure of this proof is identical to that of the previous proof: The property
of alarm — SKIP that will do for Sy is that the first action it can do must be an
alarm action. Hence we set

S5 = s#£ ()= #alarm >0

143

We can see that if Wy is substituted for S, then the third proof obligation may
be discharged. So we need only prove that

reset - WAIT &, X sat W
Using the law for prefixing, we need only find Ss such that
WAIT6;X sat Ss(s,R)
s={) Areset € a(R) = Wi(s,})
i A o AR L
The second of these obligations is immediately dischargeable. To find Sy, we have
that X sat Wg(s,N), so from the delay rule we know that

WAIT 6; X sat W,(s =~ §,R=8) A begin(s) = &
so we may define
Ss(8,R) = Wa(s =46, N =8) A begin(s} 2§
Hence we have discharged our first proof obligation. The third and final proof

obligation is simple to discharge, using elementary set arithmetic. O

The proofs that WTIM sat W;(s,®) and WTIM sat W;(s, R} are identical
in structure to the previous two proofs.

To prove that WTIM sat Wi(s,R), we reduce the proof obligation, using the
rule for delay, to
TIM sat W
Wy = #s22=(s=s"{(t' alarm)) = t'> end(s) +1
As={(t' alarm)) = t' 2 1 — 2§

In this case, the instantiations for S; and Sy which are sufficient to establish that
the defining equation for TIM preserves Wy are given by

S;(S,N) = WS(S,N)‘

Se(s, W) i, ¢ e s < {(t, alarm), (¢,)}
Under the assumption that X sat W, it is straightforward to establish that

reset — WAIT6; X sat S,

glarm — SKIP sat 5,
begin(s) < £ — 26 A Si(s,})
v
begin(a) 2 Lt — 6 A S, (), R [£t — 26)
ASs(a=(t—8),R=(t-48)

= W7(S » N)

144

and hence that T/M sat W,.
We finally prove that WTIM sat W;(s,R®). The proof obligation is first re-

duced via the rule for delay to
TiM sat W,
We = s ={=[end(s)end(s)+14+ T 28} x {alarm} Z X
(s #{} A #alarm = 0) = [end(s),end(s) + t + T) x {alarm} € R

Providing T > &, it is sufficient 1o instantiate S; and 5y as follows:

4 (s, N) = wJ ('qv N)

Se(s,) s = () = alarm € o)

As#F{) = #elerm > 0

We are then able, under the assumption that X sat Wj, to establish thal

reset — WAITS; X sat 5
alarm — SKIFP sat S,
begin(s) <t — 26 A S;(s,R)
V'
begin(s) 2 £ — 6 A S;({),R [t — 26) =
A Se(s=(t—8),R=(t—48))

and hence that TIM sat W, yielding that WTIM sat W,.

Ws(s,R)

8.4 Some Simple Protocols

A protocol is a distributed algorithm for facilitating tbe communication of mes-
sages between processes. CSP is particularly suitable for the specification of pro-
tocols; the enhancements introduced in Timed CSP allow us to address the timing
considerations that are often necessary for the correctness of the protocol.

8.4.1 The Stop and Wait Protocol I

As a more detailed illustration of the application of the proof system for TMp, we
will verify that a stop-and-wait protocol, similar to the one described in [PS88|,
meets a desirable requirement of communication protocols: that an output will
always be available within two time units of an input occurring.

The proof will be performed in two stages. In the first stage we will place
conditions upen the sender and receiver, and use the rules to verify that these

145

conditions are sufficient to ensure correctness of the protocol. In the second stage,
we will propose a TCSP implementation for each of the sender and the receiver,
and the rules will be used to prove that these implementations meet the conditions
placed upon them in the first stage.

The protocol consists of two processes, F and @, communicating across two
wires; W; and Wy, Together, they control the flow of data bet ween two external
processes. This may be represented pictorially as follows:

o { W,

in P Q out

In general, protocols allow for unreliable channels, by duplicating data or re-
quiring acknowledgements: such behaviour is easily modelled in Timed CSP. How-
ever, our purpose is to illustrate the use of the inference rules; we need not concern
ourselves with these complications. Our protocol addresses only dataflow consid-
erations, and we assume that the wires W, and W, are relighle: for every input,
thereis a corresponding cutput.

There are many requirements that we could place upon the protocol, but we
will consider just one: that if a message is input, then output is ready within two
time uwnits. Formally, we wish our protocol PROT to meet the following timed
failures specification:

SPEC(s,8) = lasi(s) = in = out € o(R | (end(3) + 2))

We give conditions on the components of the protocol, and verify that they are
sufficient to ensure that the protocol exhihits this behaviour.

The sending process P should meet the following specification: it should per-
form the three events in,Im,rc in strict rotation; after performing an event, it
should be prepared to perform the next within a certain time; initially, it should
be ready to receive an input. We capture these requirements in the timed failures
specification SPECp:

SPECp(s,R) = tsirip(s) € {in,Im, re)* A
last(s) = in = Im & o(W 1 (end(s) + 2&)) A
last(s) = Im = re € o(R 1 (end(s) + 26)) A
last{s)=re = in ¢ o(R] (end(s) + 26)) A
s={)=in ¢ o(R)

146

After accepting and transmitting a message, the sending process must await confir-
mation from the receiving process before accepting another. The receiving process
will send a confirmation signal once the previcus message has been output. Ini-
tially, the system is empty. Hence we wish the receiving process § to satisfy

SPECq:
SPECq(5,®) = tstrip(s) € (rm, out, lc)* A
last(s} = rm => out & (R (end(s) + £6)) A
last(s) = out = Ic ¢ o(¥1 (end(s) + 28)) A
lasi(s) = lc = rm ¢ o(® | (end(s) + 28)) A
s={)=>rm¢ga(tt)

The wires W, and W, have a propagation delay of 1 time unit, and will not
be required to transmit more than one message at a time. However, each must be
ready to accept another input almost immediately after output. They satisfy the
specifications SPECy, and SPECw, respectively, where

SPECw,(s,R) = tstrip(s) € {Im,rm)" A
last(s) = Im => rm g o(R{ (end(s) + 1)) A
last(s) = rm = Im € a(R | (end(s) + 26)) A
s={)=>im€a(lt)

SPECw,(5,R)

tstrip(s) < (le, re)™ A

last(s) = lc = re & o(B] (end(s) + 1)) A

last(s) = rc = lc & o(R] (end(s) + 26)} A
s={)=>lcga(®)

The protocol is a combination of the sending process, the receiving process, and

the wires. It can be defined by means of the NET operator described is section 7.4.

We write it here i full in order to be able to apply the inference rules. If we define
the sets

X = {in,Im,rc}
Y = {out,rm,lc}
C = [l rc}

M = {lm,rm}

A = MucC

then the protocol may be defined:
PROT = ((P x"Y Q) xu}’”uuc (W, M”c W,)) V4

147

Having formalised our requirements, we can now use the inference rules to
dernonstrate that the protocol PROT will meet the specification SPEC. We wish
to establish that:

PROT sat SPEC(s,R)

The definition of PROT involves the hiding operator at the outermost level, so we
must firstapply the hiding rule. This reduces the proof requirement to:

(P x”y O) XLJ.'(“MUC (WI M“C We) sat U(Nr) CAA ([0, eﬂd(s,N)) x A) CR
= SPEC(s\ A,R — ¥
This is aproof requirement on a parallel combination, so we apply the rule for the
paralle] operator. We have then to find specifications §; and S such that:
Pyl @ sat 5, (s,l;l)
Wille We sat Se(s,)
o5 X} S(XUY)Aa(ss,Re} S (MUC)
cRYCE-(XUYUMUC)
S.'(E],NJ] A Sg(Sz,R;) A 83 € 5 .YUY”MUC g = SPEC(Sy \ AR— R’)
N=R, U UNy
a(R) C A A ([0, end(55,R)) x A) TR

Before we continue, we note that the specification SPEC is independent of the
hidden set of events A4, for consider the definition:

SPEC = last(s)=in = out € o(R 1 (end(s) + 2})
Formally, we can show that
SPEC(s,® | (L — A)) = SPEC(s,N)

This cowcurs with our intuition: the correctness of the protocol may be dependent
upon hidden interactions, but our formal description of the service provided (the
specifiation SPEC) should abstract away from internal detail.

Taking this in conjunction with the alphabet conditions upon the failure sets,
we may reduce the third proof obligation to

(51, R0) € (XU Y) Aa(as,8e) € (MU C)
X)) EE-(XLY)

Se{sr,Re) A SelseNe) A sy €91 yupllaruc %
[[0., Eﬂd(53,N; Uy U Nj)) x A) C R, UNR,

= SPEC(as \ A,R,)

148

To identify 5, we apply the parallel rule once again. We are then required to find
S; and Sy such that:

P sat 5(s,R)

QR sat Si(s R}

o5, ;) CXAo(s5,R5)C Y

o(Re) S EZ-(XUY) = 5,95, Ry URs URg)
Si(80 Ry) A Sp(ss,Rs) A 55 € 54 x|y 55

We already have specifications for the components P and €. Substituting these
for 5; and 85, and using the alphabet conditions upon the traces and refusals, we
can reduce this proof obligation to:

SPECe(s | X, R} X)
SPEC4(st ¥R Y) b= 5,(s,R)
o(s) S (XU Y)

This yields a suitable instantiation for 5;: the antecedent of the above expression.
In a similar fashion, we arrive at the following instantiation for Sg:

SPECWJ(S M RITM)A
SPECw (s | C,\R| C) A
o(s) S (MU C)

Our proof requirement can then be written as follows:

o(31,8,) C (X U Y) A a(ss,Re) € (MU C)
e(Re})CE—-(XUY)

SPECp(s; | X, 8, 1 X) A SPECg(s, | Y, %, | ¥)
SPECy, (se | M,Re | M) A SPECw, (3¢ | C, R 1 ©)
([0, end(ss, Ry UR, URs)) x A) SR, UR,

53 € 51 xuyllaruc 32

= SPEC(sy \ AR()

The alphabet conditions in 5; and 5p are subsumed in the first two conditions
above.

We have reduced the proof obligation to a predicate on traces and refusal sets:
the verification may be completed using simple properties of sets and sequences:
assuming the conjuncts in the aheve antecedeut, we are trying to establish that

last(sy \ A) = in = out € (R, | (end(ss \ 4) + 2))

149

From SPECe, SPECy, SPECw,, SPECw,. and the properties of sequences, we
can deduce that

sy € {in, Im, rm, out, le, rc)"
We then proceed by case analysis on the identity of the last event in 53, given that
last{sy\ A} = in, there are three possibilities. Case: last(sg) = in

By SPECs, tm & o((R, 1 X)1 (end(s; | X) + 26))

In thiscase end(s;) = end(s; | X)

and we know that mgV

Hence Im & a(R; 1 (end(ss) + 26))

Similarly, as 55 € 51 yuyllpue S

SPECy, implies that Im & o(Re 1 (end(s55) + 26))

Hernce m g o((R, URLURs) | (end(ss) + 28))
However, ([0, end(3,R; URs URy)) x A) C (8, URe URy)
and mea4

So end(R, UNs URy) € end(ss) + 26
Buté< 1,50 (N, UR, URy) | (end(ss)+ 2)) = {}

We conclude that out & o((Ry URg URs) | end(sy \ A+ 2)}

Case: lasi(ss) = Im

We establish that end(ss) < end(ss \ A) + 26: that the Im event occurred within
time 2§ of the last input.

Assume otherwise: end(sg) > end(ss \ A) + 24

If welet ¢ be the time (end(ss \ A} + end(ss) + 26}/ 2

Then we know that last(ss | 1) = in

By the previous case Imga(({R,URs URy) T t)1 (end(ss |) + 28))
From our assumptions ([0, end(ss, R, UR2 URg)) x A) C Ry UR,

And end(sy 14} + 26 = end(ss \ A) + 26 < 1

Hence Im € a(((R, UR, URg) [1)1 (end(ss | t) + 28))

Forcing a contradiction.

We can show, with a similar argument to the first case, in which the event rm
Teplaces Im, that end(R, U Ry, URy) € end(sy) + {. From above, end(sy) <
end(sy \ A) + 28: the result {ollows.

150

Case: last(s;) =r™m

By a similar argument, we can establish that the event rm must occur no later
than 7 4 26 after the last input. We then appeal to the specification of ¢, and
the result follows immediately. O

The treatment of hiding in Timed CSP is ceptral to the construction of the
above proof; the hidden events Im and rm must occur as soon as possible. Qur
method of proof allowed us to include these events in our reasoning, by eliminating
the hiding operator from our proof obligation.

Only at the final stage of the proof did we identify the protocol requirement
SPEC. To establish that another property holds of the above protocol, it would
not be necessary to perform the whole proof again. We have characterised the
behaviour of the protocol in terms of the known properties of its components. To
prove that the protocol satisfies an arbitrary specification §, we have only to show
that the following predicate is true:

o(s, BRI C(XUY)Aa(se,Re) C(MUC)

R CE—-(XUY)

SPECp(s; [X, R; [X}ASPECy(s; Y, R, | Y)

SPECw,{ss | M, Rs | M) A SPECw,(3: } C. %5 | C)

N=1N; URg URg A 55 € 51 XUY“MUO 85

a(®) C A A ([0, end(sg,R)) x A) C R
For a particular specification 5, we will be able to discard most of the conditions
in the antecedent: the residual proof requirement is often easy to discharge.

= S(ss\ A,N- ")

We now move on to the second stage in our verification of the protocol. We
propose TCSP implementations of the components, and use the inference rules to
demonstrate that they meet the appropriate specifications.

The protocol consists of two components, transmitter P and receiver &, com-
municating across two wires W; and W;. The transmitter process should accept
an input on channel in, and he prepared to transmit it along W,, via channel Im.
After this transmission has occurred, P waits for a confirmation event from wire
W, on channel re, before repeating this behaviour. Qur intuition suggests the
following as an implementation:

P =2 pXein—olm—-rc—o X

We have yet to establish that this implements our requirements: that it meets the
formal specification SPECp.

A similar set of conditions applies to the receiving process Q. It should be
prepared to receive a signal from wire W, on channel rm, hefore offering output

151

onl channel out. It should then send a confirmation signal along wire Wp, on
channel i, before returning to its initial state. Qur proposed solution:

Q =2 uYerm—out =il - ¥

Again, we wil] have to verify that this is an implementation of the specification

SPEC,.

We wish to show that the transmitting process P meets the specification placed
upon it:

pXeaina+im—-re— X sat SPECp(s,R)

This ts arecursive process; the second recursien rule requires us to find a specifi-
cation §(s, R} such that:

X sat S(s,®) = in—im— re— (WAITS;X) sat §(s,R)
S(s,®) = SPECp(s,R)

We will show that the specification SPECp is strong enough o be preserved by
the recursion. We have to show that:

X sat SPECp(s,®) = in—Im— re— (WAIT S, X) sat SPECF(s,R)
Assume that X sat SPECp(s,R). We wish to establish that:
in— Im — rc— (WAIT6; X) sat SPECp(s,R)

Applying the prefix rule three times transforms this proof obligation to the follow-
ing requirement: we must find a specification (s, R) such that:

WAITH; X sat U(s,)
s={)Atn¢o(R)]
\'
s={{tm)) s Amga(RIE)A

St +8) = Alm go(it= (4 +6))

A

5= (b +6) = {(ta M) Alm € o(R= (4 +6) 1) A+ = SPECH(s,R)
M= (te+ 8= () Arc€a(R=(t + Lo + 26))
A

s = (te + &) = ((ts, re)} ™8™ A

reE o(R = (t, +1s + 26) | 4a) A
U(s™ = (t; + te + by + 96), R = (£, + ts + ts + 36))

152

With a suitable choice of 7, 7s, 74, this can be transformed to:

WAIT §; X sat U(s,R)
s=(Aningo(tl)

v
s={(r,m)) A€EoRIT)AIm &R +46)
v
8= ((Tl'v in)v(‘r!v lm)) Adn g U(N TT;)
Alm go(RT [r +4,72))
Arcgo(R)re+6) = SPECp(s,R)
A

s={{ry,m),(re. Im), (re,7c)) s Amgo(R 7))
Alm go(RT[r; +6&71s)
Arc@o(RT {re +4,13))
A U= (ry 4 8),R = (rg+)]

Applying the second form of tbe delay rule, we can instantiate U as follows:
U(s,R) = SPECp(s -8R =8) A begin(s) 2 &

Having discharged the first proof obligation, the proof can be completed with a
simple case analysis on trace s. This becomes clear when we recall the form of
apecification SPECp:

SPECp = tstrip(s) € {(in,lm,rc)" A
lasi(s) = in = Im ¢ o(R 1 (end(s) + 26)) A
last(s) = Im = rc € o(R | (end(s) + 28)) A
lasi(s) = rc=> in € (R (erd(s)} + 26)) A
s={}=m¢aR)

The only non-trivial case corresponds to s = ((r;, i), (7, Im), (s, re)) 4. Here
we require two arguments, one for each of the cases: v = {), ¢ # {). Expanding
the specification SPECp makes the solution obvious.

This completes the verification of our transmitter process P. It will not be nec-
essary to perform a similar proof for the receiver Q; we can exploit tbe symmetry
present in our descriptions.

The operator f in TCSP allows us to relabel the events performed by a process.
In the case of injective functions, this allows us to re-use a process description.
By renaming events, we can transform processes while retaining their structure.
The relationships between different evenis are maintained: given that a particular

153

result holds for all the behaviours of a process, we can infer a corresponding result
about the behaviours of the image of that process under such a transformation:

P sat Sy(s,)
S:(s,R) = S5(f(s), f(R))

f(P) sat S(s, R}

For example, we can use the result of the previous section to establish that
@ sat SPECy, by defining injective function f such that:

f(in) = m
f(lm) = out
flre) = ke

We then observe that:
SPECp(s,R) = SPECq(f(s),f(R))
@ = f(P)
The inference rule allows us to conclude that:
@ sat SPECy(s, R}

Which completes our verification of the protocol.
8.4.2 The Stop and Wait Protocol II
A shorter verification of the stop and wait protocol can be achieved by the ap-

plication of the general specifications introduced in chapter 5 used in conjunction
with timewise refinement, We have the following definitiona:

S = pXoe(in?z o Imlz o rc?y— X)
As = imUlmUrc

R = pXe(rmlz—outlsr = lelz - X)
Arp 2 rmmUJoutUle

We also have specifications on the media M, and M,: M, is prompt and responsive
on Im and on rm, and M, sat rm €, Im; and M, is prompt and responsive on
Ic and on rc, and M, sat rc €; Ie. We further define Ay, = {Im,rm}, and
Apg, & {le, rc}. Then setting I = {S, R, M;, Ms} we may define SAWP as [ollows:

SAWP = NET{{(P,Ap)}Pel})

154

Neither of the process definitions for S and R involve either hiding or indexed
non-deterministic choice, so by corollary 6.3.24 we have that 8(5) C; §, and
@(R) C; R. 1t follows from the specifications of M, and M, that COPY C, M, ,
COPY Cy My, COPY C; My, and COPY C; M,. Further, the set {4} is triple
disjoint, every £ € I is prompt, S is non-retracting on both /m and re, and R 1s
non-retracting on both rm and le.

We define Rs = ©(5), Ra = O(R), Ry, = COPY [lm,rm/[in, out] and Ry, =
COPY/le, re/in, out]. It is proved in [PS88] that any trace of PAR({(R:, 4,)}) has

releg, o€, rmglmg,in and re g, in

s0 the channels in the trace appear in the cyclic sequence (in,Im, rm, out, lc, re)”.
Hence PAR({(R: A;)}) is limited on Im U rm U lc U re, which is the same as

U{AinA; | 1,7 € Li# 5}
Thus we apply theorem 7.4.5 to obtain
NET({(R:, A:)}) &y NET({(P,Ar)})
It was proved in [PS88] that
O(NET({(P,Ap)})) sat out € in
so from theorem 6.2.12 it follows that
NET({{(P,Ap)}) sat out<, in

Standard algebraic techniques may be used to establish that @(NET({{ R, A;}})}
is deadlock-free, so NET({(P, Ap)}) is deadlock-free; it is also a pipe, impartial on
in (immediate from the syntax), and satisfies out £ in, and so from theorem 7.2.5
we conclude that it is a one-place buffer, thus verifying the protocol.

8.4.3 The Alternating Bit Protocol

An untimed altemating bit protocol is presented and verified in [PS88]. In the ab-
sence of timing information, the timeout required by the sender of the alternating
bit protocol is modelled as a timeout event, ‘)", which may non-deterministically
occur. Using Timed CSP, we may refine the original description to model the
timeout explicitly while retaining the safety property proved of the original de-
scription.

155

The untimed description is as follows:

s = &5
% = in?’z - Imlzb— S, where be {0, 1)
S5 = ((rc?a— (if a =) then 5,.; else Ss.b))
00 — Imlz.b — S.6)\ {0}
R = R,

By, = rm?z.e > (if ¢ # b then outlz — lcle — R,
else le!b — R)) where b € {0,1}

The conditions assumed to hold of the wires M! and M2 are the following:

M! sat Imdmm
M2 sat le<dre

where s5; 9 5, means that s, is a (not necessarily contiguous) subsequence of
82. These requirements allow the media M/! and M2 to drop messages, but not
to duplicate or reorder them. The associated alphabets of the processes are the
following:

As = {in,Im,rc}

Ar = {out,rm,ic}
Ay, = {lm,rm}
Am, = {le, re}

Then setting [= {5, R, M, M} we may define ABP as follows:
ABP = NET{{(P,Ap)| P el})

The result proved in My is that ABP sat out <; in.
Pictorially, the ABP is entirely similar to the SAWP:

{0

We refine the sender by making the timeout explicit. Qur timed sender TS5 will

156

timeout at time £. The timed receiver will have the same description as the original
receiver.,

TS = TS,
TSy = in?z > Imlz.b-— TS, where b€ {0,!}
TS,y = ({re?a— (if a=2b then TS,_, else T5.,))
& Imlz.b— T5.,)
TR = TR,
TRy, = mmlz.c — (if ¢ # b then outlz — I'c — R,

else Ic'é — TR;) where b € {0, !}
Recalling from [Hoa85] the law (for the untimed models)
((e—=P)Ob— @)\ = ((a— (PA\B)DQ\BNQ\D

we obtain that &(T5) = S. We also have that O(TR) = H. Hence we obtain
from corollary 6.2.8 that S C; TS and R C; TH. Then for timed media TM! and
TM2 we may define the timed alternating bit protocol as follows:

TABP = NET{{(P,Ap)| P €I}

where I = {TS, TR, TMI, TM2}, and the Ap are the same sets as for the corre-
sponding untimed processes.

Now if sr(X sat Im < rm)(TM1) and sr(X sat lc 9 re){ TM2), then
IMIC, TMl e Ml sat Im<Qrm A IM2C, TM2 « M2 sat le Qrc

Hence there is an ABP such that ABP C, TABP and ABP sat oul <, tr, s0 we
obtain that sr(X sat oul <; in)(TABP), which is written

TABP sat out <; in

Hence we have a verified alternating bit protocol over wires TMI and TM2 for
which the above conditions hold. Written another way, the requirements of the
wires are

TM! sat Im<drm
TM2 sat le<dre

and we have a verification that the alternating bit protocol satisfies the safety
property that the ontput stream is a prefix of the input stream, of length at least
one less that the length of the input stream.

157

In order to obtain that the protocol is live, in the sense that any input will
eventually be offered as output, we require more stringent conditions on the system.
We first require that the media be live on their juput channels: that TMI is
responsive on fm, and TM2 is respousive on lc. We will also require a progress
property of the media, that they will not lose messages for ever. Since we are
presently unable adequately to mode] fairness withiu the Timed CSP framework,
we place the requirement on TM! and TM2 that they cannot input more than ¥
messages without offering one for cutput. These can be captured as behavioural
specifications:

TM! sat (s=uv"wAwlrm={_)A#w|ln>=N)
= [begin(w), end(w)) x rm € &

TM2 sat {(s=u"wAwlre={A#wll 2 N)
= [begin(w), end{w)) x re € R

A further modification to the system is necessary. Since TS is not non-
retracting on r¢, and since we do not insist that TMZ is non-retracting on re,
a generalisation of corollary 7.3.12 indicates that we will need to insert COPY
along rc in order to ensure eventual synchronisation. We will call the modified
system TABPZ.

Liveness of the A BP is not guaranteed in M, since the timeout event may al-
ways occur (non-deterministically), and no message acknowledgement received as
a result. Liveness here requires a fairness assumption, that eventually an acknowl-
edgement will be received by the sender. In Timed CSP, our explicit modelling of
the timeout removes the need for this assumption. However, the timewise refine-
ment approach to prove liveness is not open to us, since there is no corresponding
untimed result. We therefore use the proof system to establish mechanically and
laboriously that TABPZ is respousive.

The alternating bit protocol TABP2 may be described pictorially as follows:

Im TMI rm
in TS TR out

-7 copy e mare e

We make the following new definitions, and redefine A,

C = COPY[mc,rc/in, oul

158

‘We then define

Ac
AMy

TABP2 =

TABP2 is clearly impartial on in, and since 3¢ is responsive on in U out. and we
have established that it satisfies out €, in, it follows from theorem 7.2.4 that
it is a buffer, verifying the protocol. It follows as a refinement of COPY, state
that COPY C; TABP2. 1t also follows from theorem 35.1.13 that TABPZ2 is

me, rc}

{
{le, mc}

[[EtH

pon-retracting on both in and out.

8.4.4 The Sliding Window Protocol

In [PS88] it is shown how a sliding window protacol may be considered as » alter-
nating bit protocols working in parallel, controlled by a message distributer and a
message collator. Diagrammatically, the structure of the sliding window protocol

i3 a3 follows:

— DIS

159

0.send 0 : TABP2 0-pass
Lsend I: TABP? I.pass
n.gend o TABP? n.pass

NET({(P,Ap) | P € {5,R, M1, M2,C1}})

COL

out

This is defined in the process algebra as {ollows:

Q. = i:(TABP2|in, oul/i.send,i.pass|)
Ag, = i.send Ui pass
DIS = Dy

Dy = in?t — hsendls = Dyy

inlJ U t.3end

Apis =
=0
COL = (0L,
Cr = lpass?z — outlz = Cig
Acor = outlU U i.pass

SWP = NET{{(Q,Ag)|@e{Q. |0 <iga}u{CaL, DIS}))

We have from the previous section tbat COPY T; TABP2, and that TABPZ is
non-retracting on both ir and out, so

i:(COPY [in, out/send, pass]) T; i:(TABP2[in,out/send, pass))

for any ¢, and that i : (TABP2[in, out/seud, pass]) is non-retracting on both
i.9end and i.receive. It follows from corollary 6.3.24 that

O(COL) C; COL
e(pIs) T, DIS

and wealso have from theorem 5.3.6 that COL and DIS are both prompt. Defining

B
Ap

i : (COPY [in, out/send, pass|)
Ag,

[[Et

we define an untimed sliding window protocol SWP by

i

SWP = NET{(P,Ap)|Pe{P:i|0<i<n}u{0(COL), B(DIS)}}
The processes DIS and COL between them participate in every action of the

parallel combination, and they both alternate between performing an internal event
and an external one. Hence, no more than two internal events can occur between

160

external events. Therefore
PAR({(P,Ap) | P € {P, |0 < i < n}JU{(B(COL),a(COL)), (B(DIS),c(DIS))})
is limited on [JT—g(i.send U i.pass). We therefore obtain that

SWP C, TSWP

It is proved in [P588] that SWF sat cut .4 7, and it is straightforward to
prove that SWF is a buffer in the failures model. Hence we obtain that TSWP is
a buffer, and that the protocol is correct.

The full structure of the sliding window protocol is as follows:

im [y | Orm

| &.send 0-TS 1= 0-TR 0.pass

g.re 0:COP1’|0'mC 0-TM2 2.1
I.im I.rm

lsend TS 1-TRI 1.pass

) 1.re 1.me Lie
in DIS 1.'COPY1'—| 1:TM2—|~— coL out

n.im nTm

r.gend wTS n:TR |R:2823

. _ A
1 'ml"-‘COM n:TM2 |-L

This is obtained hy instantiating each of the ¢ : TABPZ with its component
processes, from the diagram on page 158.

161

9 Conclusions, Comparisons, and Future Work

9.1 Conclusions

In this thesis, we have presented a variety of methods applicable to the verifica-
tion of real-time concurrent systems. We have exhibited a sound and complete
proof system, defined a nnmber of high-level specifications and produced laws con-
cerning their interaction, and produced a method for translating specifications
between the different models of the hierarchy. We have shown how operators for
introdudng time-critical behaviour, snch as timeout and interrupt, and communi-
cation constructs such as channels, input and output, and chaining, can be added
to the syntax of TCSP. Finally, we have demonstrated the application of these
verification techniques to processes involving these constructs.

The restriction of our class of specifications to behavioural specifications has
been crucial for hoth the development of the proof system and the application
of timewise refinement to specifications. Behavioural specifications in the vari-
ous models are sufficient to capture safety, liveness, and real-time specifications,
and to distinguish deadlock, divergence, and possibility of divergence. Further,
many useful results can be obtained for the class of behavioural specifications:
for example, any behavioural specification is continuous. However, the definition
of non-etraction serves as a reminder that not all desirable specifications can be
writien as behavioural specifications.

In ¢ specification-oriented semantics [OHB83|, each process is identified with
its strongest (hehavioural) specification. Snch a semantics will be compositional
when the denotational semantics are directly compositional, in the gense described
in section 4.5. As we have seen, this is the case for TMr but not for TMgs.
We employ a congruent semantic domain TMg; which vields a complete proof
system and a corresponding mapping {rom processes to strongest specifications.
Thbis may also be considered as a2 complete proof system for TMps for a restricted
class of specifications: those specifications on TMgs corresponding to behavioural
specifications on TMpg;. Thus a compositional specification-oriented semantics may
be given for TCSP into specifications on TMps, bul the domain of specifications
will be a subset of the hehavioural specificalions on TMrs.

The proof system for TMr has already been used in a case study [Jac89]. In
this stndy, aircralt engine control software was specified using behavioural specifi-
cations, and the proof rules were used to verify a proposed TCSP implementation
with respect to the requirements specified; it was demonstrated that the rules
are wable in addition to being sound and complete. It is also apparent that the
rules can be applied in a mechanical fashion, indicating that a mechanical proof

162

assistant would be both possible and useful.

The general specifications presented in chapter 5 capture a few aspects of good
behaviour that we wonld wish to establish of systems. In particular, non-retraction,
responsiveness, and promptness are useful properties for establishing corectness.
We have seen that each can be shown to hald of a process by an examination
of its syntax., This enables us to build processes which are guaranteed Lo meet
specifications of thiz sort, by employing only those process coustructors which
preserve the desired property.

The chapter on timewise refinement showed how different models may be used
in the verification of TCSP systems, by enabling the translation of specifications
between models. The simpler model may then be used ta provide a verification for
an untimed version of the system, which serves as a verification of the timed system.
This approach allows us to use the simplest model that permits a verification
of the property uuder consideration. Qur verification that the sliding window
protacol described in chapter 8 met the specification oul € in was much easier
in Mr than it would have been in TMgs, where any proof would have involved
the manipulation of (trece, stability, refusal } triples. This approach also provides
the basis for a limewise refinement approach to development, since a real-time
specification may be broken down into the conjunction of time-dependent and time-
independent specifications. A CSP process may then be developed and verified
in Mr (or Mg) relative to the translation of the time-independent component of
the criginal specification. Any timewise refinement of that process will then meet
the time-independent specification, so our development task reduces to finding a
timewise refinement of the untimed process which also meets the time-dependent
constraints,

We have seen how process constructors can be built from the syntax of standard
TCSP; one ad vantage of this approach is that the constructors are automatically
continuous, fulfilling an essential proof obligation. Explicit time-critical constructs
such as timeout and interrupt have been defined, and algebraic laws concerning
their interaction with other process constructors have been formulated. Commu-
nication constructs have also been defined: channels, input, output, chaining, and
the more general network construct, were defined in a fashion analogous to that
of untimed CSP, although the timed behaviour of the hiding operator ensures
that chaining operator does not obey the same laws as its untimed counterpart.
The concept of a huffer was characterised, and it was seen that the specifica-
tion ‘timed buffer’ is a timewise refinement of the standard untimed specification
of a buffer. We have also seen thal to guarantee communication, we require of
one of the two communicating processes that it be non-retracting on their my-
tual channel. Non-retraction and promptness were seen to be useful in supporting
timewise refinement of networks. Chapter 8 illustrated how the specification and

163

proof techniques presented in this thesis could be applied, with reference to the
communication constructs and protocols as well as the time critical operators,
and demonstrated that TCSP is becoming a powerful tool for specification and
verification of real-time systems.

9.2 Comparisons

Approaches to the specification and verification of real-time systems fall into three
broad groups. One method is to develop a general specification language whicb
enables reasoning about systermn requirements, and which is applicable to many
process description formalisms via corresponding verification methods. Another
approach is that of a process algebra with an associated operational semantics or
set of axioms for establishing equivalence between processes. Specifications may
be predicates on a graph generated by the operational semantics (as in the case
of Petrinets). More often, a specification is a process, and a verification of a
candidate process is a demonstration that it exhibits the same behaviour as the
specifying process: that there is a bisimulaiion between them. There are different
kinds of bisimilarity relations, and the particular relation used in a verification
will reflect the aspects of behaviour we wish to verify. The third approach, taken
in this thesis, is to provide a process description language with a denotational
semantics. A specification will then be a predicate on tbe semantic domain, so the
nature of the specification language will be dependent on the semantics given,

There is a degree of overlap between these approaches. A general specification
language may be applicable to process algebras with an operational semantics,
and alse to programming languages with denotational semantics. In many cases,
a process algebra may be pravided with both a denotational and an operational
semantics, allowing results from the second and third approaches to be combined.

Temparal Logic

Standard temporal logic is particularly useful as a specification language, since
it can succinctly express botb safety and liveness properties; there uow exists a
large amount of work in the literature, which is beyond the scope of this section
— a swvey of work up to 1986 may be found in [Pnu86]. Temporal logic has been
successfully applied to the verification of systems (see e.g. [MP82], [HO83], [SL87],
among many others), and compositional proof techniques have been developed (see
e.g. [BKP84] for discrete time, [BKP85] for continuous time). We will contrast
temporal logic specifications with our specifications on TCSP processes, which are
predicates on TMrs or TME.

164

Temporal logics consist of propositional atoms which are assigned truth val-
ues at every instant, together with temporal operators such as ‘eventually’ (<),
‘henceforth (O), ‘unless’ (i) and ‘since’ (§). The semantics rests on a time do-
main, consisting of all instants together with an ordering on them; it is usually
taken to be a total order, although other models (such as branching time, and
more general partial orders) are also possible. The meaning of a temporal logic
statement thus depends on the time domain under consideration.

The propositional atoms will often be taken to be predicates on the state of a
system. For example, if r bolds of a state in which the system is ready to perform
an e action, thben the assertion that Or holds at a certain time of a system means
that it will eventually be the case that the system will be ready to perform a.
Access to state information allows the easy formulation of operational concepts
that were not so natural to formulate as predicates on observable behaviours.
Non-retraction may be succinctly captured in this way: if s holds exactly when a
occurs, and r holds exactly when g is ready to occur, then

O(r = rids) holds of P

specifies that once P is ready to perform a, then it will remain ready at least until
it is actually performed. This form of non-retraction is termed ‘persistence’ in
(Pnu86). The definition contrasts with that of non-retraction on TCSP processes
in terms of observahle behaviours, because the denotational semantics of TCSP
processes does not characterise state information. For example, the two processes

(e — STOP)N L

and

(a — STOP(N((a — STOP) & 1)N 1

have the same semantics, but they have different possible states. Using the tem-
poral logic definition we would conclude that tbe first process is persistent on a,
whereas the second is not, Hence the access to state information allows some
distinctions to be made that the denotational semantics of TCSP does nat make.

Temporal logic may also be used as an assertion language on computational
models which distinguisb systems onty by their observable events, by taking the
propositional atoms of the temporal logic to he predicates on (finite) past histories.
This allows a direct translation between behavioural specifications and temporal
logic specifications. A behavioural specification of the form X sat S(s) translates
to a temporal logic specification of the form US(s). This says that if s is the
record of what P has performed up to a time, then 5 must hold of s.

The work on temporal logic discussed so far is concerned only with qualitative
temporal reasoning. However, the analysis of time-dependent and time-critical

165

systems often requires knowledge about the actual times at which events occur or
become available. To say that a process is (¢, a)-responsive is to say that it must
make available event ¢ within time t. This is expressible within temporal logic
using the next operator (), since it is equivalent to saying

V Orla)

where the time between successive instants is one time uuit. However, this is only
possible when time is discrete, since a dense time domain will not support a next
operator; at most we can insist that a will eventually be available.

Koymans argues this case in [Koy89], and proposes an extension to the lau-
guage of temporal logic to include temporal operators which have explicit times
assoclated with them. To do this, he requires that there be a metric fuuction on
the time domain which yields the temporal distance between two instants. It is
then possible to define the required operators. For example, the operator Fs(¢)
asserts of its argument that there is a point exactly § in the future at which ¢ will
be true. Fos{¢) asserts that ¢ will hold within §. Its dual, G<;(#) asserts that ¢
will hold at all instants within &.

The atomic propositions may again access state information, allowing the for-
mulation of more operatioual style definitions. Respousivenessof P may be defined
as [ollows:

C(Fei(r)) holds of P

where r holds of a state iu which a is available. It says that ¢ will be available
within time ¢ of any instant. Promptness may also be expressed by this speci-
fication language: that if e is not available by time ¢, then it will not become
available before the next observable event. Taking s to be true precisely when an
event other than e occurs, we may specify the promptness of P as follows:

O(G¢—r = (-r)lds holds of P

The metric temporal logic language presented by Koymans provides the quan-
titative element we require for the analysis by temporal logic of systems whose
correciness rests on time-critical considerations. This specification language is
still fairly recent, and there are not compositional rules as yet. However, it is
claimed in [Koy89] that the development of a hierarchical method would not seem
to besignificantly more difficult than that developed for standard tempeoral logic.

Temporal logic is not associated with any particular programming notation.
This yields the advantage that the specification and proof techniques apply to a
wide range of system descriptions. The corresponding disadvantage is that [or any

166

particular description of a program we must first show that it meets the temporal
logic specification claimed of it. There are methods for establishing this wheu the
specification language is standard temporal logic (see e.g. [BKP85|, [Pnusf]), but
as yet there are few such methods for metric temporal logic ([HW89] is a notable
exception, discussed later in this chapter). The descriptions of time criticalsystems
will in general be complex, and it will not be immediately apparent whether or
not they meet particular specifications. Methods and tools must therefore be
developed which allow us to relate specifications to process description languages

(such as TCSF).

Operational Semantics

A different approach to system design and verification is to provide an opera-
tional semantics for the system under consideration. This may be done either by
modelling the states of the system as a (nsually finite} graph and specilying the
circumstances under which transitions may occur from one node (representing a
state) to another, as in Petri net theory; or by using a process algebra with an
operational sernantics, such as CCS, 4TP, ACP, or LOTOS, to represent systems.

Graphs

We will focus on the Petri net, since it is the most common example of the graph-
theoretic approach to analysis of concurrent systems, though there are alternatives
{e.g. HMS machines [FG89]). A safety property of a system may be expressed
as the condition that a given set of nodes is unreachable from the initial state.
Liveness properties are concerned with the availability of transitions. (see e.g.
[Mer87]). For example, deadlock freedom is expressed as the requirement that
every (reachable) state enables at least one transition.

A Petri net (see e.g. [Pet77]) consists of a set of places, a set of transitions, and
a set of directed arcs from places to transitions and from transitions to places. It
also has a marking, consisting of an assignment of tokens to places. A transition
t is enabled under a marking if all the places which have an arc to ¢ have some
token assigned to them. When the transition fires, the marking of the net alters:
the tokens enabling ¢ are removed, and a token is assigned to each place to which
there is an arc from the transition.

There are several approaches to the introduction of time into Petri nets. For
example, delays may be associated with places (see e.g. [Sif80],[CR&5]) or with
transitions. In these respective cases, a token must remain on a place for at least
the length of time associated with that place, or a transition has a duration. It
is claimed in [LS87] that these two approaches are equivalent. Alternitively, a

167

master timing mechanism may be introduced (see e.g. [CR83)). We shall consider
a different approach, described in [L587], originally presented in [MF76]. The
formation of a timed Petri net here involves associating witb each transition a
minimum and maximum length of time that the transition may be continuocnsly
enabled without firing. Hence a transition { may fire at time 7 if it has been
continuously enabled since T — min(!); it must fire if it has been continuously
enabled since 7 — maz(t). Petri nets may be considered as a special case of Time
Petri nets, with each transition having minimum enabling time 0 and maximum
enabling lime oc.

A salety property will state that particular undesirable markings cannot be
reached from the initial marking by a sequence of enabled transitions. For example,
a mutual exclusion property will be captured by the requirement that the place p
representing the critical section will never be assigned more than one token by any
reachable marking. Safety properties are preserved by an assignment of minimurm
and maximum enabling times to the transitions, which we may consider as a
‘timewise refinement’ of a net. It was remarked in [LS87] that such an assignment
can only reduce the set of reachable markings, in a fashion analogous to that of
timewise refinement in TSP, where the set of possible traces is reduced by a
Ci-refinement.

Livezess properties concern tbe eventnal enabling of transitions. For example,
we may say that a transition is live if there is a sequence of transitions from
any reachable marking after which the transition is enabled (see e.g. [Mer87]).
An analogue of (¢, A)-responsive for Petri nets may be that at least one of the
transitions in the set A must be enabled within ! time units of any moment.
Deadlock freedom is expressed as the requirement that any reachable marking
enablesat least one transition. Some liveness properties, such as deadlock-freedom,
are preserved by timewise refinement. Others, such as liveness of an entire net
(defined in [Mer87] as the condition that every transition is live}, are not necessarily
preserved. There does nol appear to be a systematic way of transforming untimed
liveness properties into timed ones, in the way that (SP liveness specifications may
be transformed into TCSP ones by means of the strongest refinement operation.

Algebras

Process algebras with operational semantics provide another way of designing and
analysing systems. A syntax for the algebra is given together with rules describ-
ing the valid transitions: these rules constitnte the operational semantics of the
language, and will generate a tree of possible transition sequences for any pracess
written in the algebra. This approach also considers a process algebra to be spec-
ification language, in that a process written in a process algebra is a description
of our requirements. For example, the ideal one-place buffer in CCS is captured

168

as follows:

Buff = in{z).ouf(z).Buff

We may think of a verification that a process is a one place buffer as a demon-
stration that it is bisimilar to Buff. Two processes are bisimilar if they exhibit
the same behaviour. (There are a number of bisimilarity relations depending on
what aspect of behaviour we are interested in: see e.g. [Mil89].) Each process
algebra has laws consistent with its operational semantics for rewriting process
descriptions while preserving bisimilarity. Verifications of systems therefore take
the form of algebraic manipulations, which establish a bisimilarity relation (see
e.g. [LM86] for an example of a protocol verification).

There have been a number of different approaches to the inclusion of time in a
process algebra. Most of these are extensions or adaptations of untimed algebras.
For example, current research at Snssex [Reg89) is investigating the consequences
of the addition of a single WAIT statement to EPL [Hen88]. The treatment of
time is discrete, and aclions are instantaneous.

Synchronised ('C5 [Mil89] considers the duration of a transition to be cne time
unit. All concurrent components of a system proceed at the same rate, in lockstep;
time is thus considered to be discrete. This yields an elegant and simple calculus.
A form of “timewise refinement’ is possible, since C'C5 processes may be ‘imple-
mented’ by SCCS ones. It also seems possible, for a given bisimilarity relation
between CCS processes, that there may be 2 weak bisimilarity relation (that ig-
notes the passage of time) that holds between SCCS processes precisely when the
corresponding untimed CCS processes are bisimilar. However, a complele set of
axioms must also be found for such a relation if it is to be useful. T am presently
unaware of any results of this form.

The algebra for timed processes 4TP [NRSV89] treats time rather diflerently.
Actions are considered to take no time, except for an explicit synchronisation ac-
tion x which is not present in the syntax but which appears in the semantics of the
Limeout operator and the terminated process {which allows time to pass but which
can perform no ather action). Concurrent processes are completely asynchronous,
(although they may communicate) apart from the requirement that they must all
synchronise on a y action. Snccessive instants are identified with snccessive occur-
rences of the x action, so time is in some sense discrete. However, processes may
perform arbitrarily many actions between two successive instants. An operational
semantics is provided for the ATP language, and a verification is a deronstration
of a bisimilarity relationship between the system under consideration and a sys-
tem we knaw to be carrect (see [NRSV89] for a verification of an alternating bit
protocol).

Timed LOTOS [QF37] and Timed ACP [BB89] are botb process algebras which

169

allow continuous time. The syntax of Timed LOTOS allows the hidden action T
to be treated on the same footing as any visible action. There is also a delay
operator WAIT ¢ (non-negative real t), which postpones the commencement of
the process following it. Thus constructs similar to the timeout construct for
TCSP may be built from the basic operators of Timed LOTOS. The existence of
an operational semantics once again allows specifications to he written as Timed
LOTOS processes, and verifications again cousist of demonstrating a bisimilarity
between a candidate process and a process we take to be the specification. Time-
wise refinement of basic LOTOS processes into Timed LOTOS processes appears
straightforward, but as in the case for SCCS verifications of untimed processes
will not be preserved by timewise refinement, unless a weak bisimulation relation
is used.

Timed ACP [BB89] is an extension of ACP [BKI84] to inclnde time, which is
considered to be the non-negative reals. Each event a is associated with a time
t, so atomic actions are of the form a(¢). An operational semantics is given for
the language, which provides the basis for a number of bisimulation preserving
aigebraic laws, as we have by now come to expect. A process is again regarded as
a specification, and a verification consists of a demonstration that two processes
are bisimilar. It is pointed out in [BB89] tbat an implementation of an ACP
process can be imagined as a real time version of the specification. However, it is
also ponted out that two equivalent processes will not in general have equivalent
real time implementations, and the question is left open as to what predictions can
be made concerning the behaviour of a timed version of an untimed ACP process
from ar untimed verification.

The contrast is sharp between the specification and verification techniques
of the process algebras discussed ahove, and the approach of this thesis. The
TCSP approach, in common with other approaches via denotational semantics
(as we shall see), considers a specification to be a property, and a verification
to be that the semantics of a candidate process bas that property. Any other
properties the process may have are irrelevant to the verification. On the other
hand, a proof that two processes are hisimilar will establish that they share every
property identified by the bisimilarity relation. Thus a verification often rednces
to algehraic manipulations of the process description we wish to verify, until a
process is obtained that is obviously correct (in the sense that it has the property
we require). The proofs of the alternating bit protocol in [NRSV89] and again in
[BBS§] are examples of this approach.

The consideration of processes as specifications will not in general allow verifi-
cations to be translated into timed verifications by timewise refinement, since the
properties we would hope to preserve are not made explicit. It also seems likely
that the addition of time into these process algebras will mean that the method

170

of proving processes correct by transforming their deseriptions to ones which are
obviously correct will predominate over the approach whereby a process is pre-
sented as a specification and a bisimulation then demonstrated. It appears that
there will be too much information contained in any process description to make
it useful as a specification; for example, the canenical one place buffer Buff given
above must perform ir(z) on its first step, which may not he a property we wish
to retain. If the bisimilarity relation is weakened to ignore the passage of time,
then we may also lose a property we wish to retain; for example, that it is always
ready to output the instant after input occurs.

A less common form of specification on process algebras is that of the specifying
equation: this is of the form C[P] = D{P], placing the requirement on P that when
it is placed in context C and in context D the results are indistinguishable (i.e.
bisimilar). The timed behaviour of C[] and D[] need not be the same, so there
will in general be fewer processes P satisfying the equation than in the untimed
version. For example, we may attempt to capture a class of process by requiring
of a candidate process B that it satisfies

B> Buff ~ Buff > B

However, the timed behaviour of Buff requires that it perform in(z) at the first
instant, so any process B that does not allow an input at the first instant will not
meet, the specification. 1f Buff is replaced by a more relaxed buffer which does not
insist upon input at the first instant, then a process B which does insisi on such
input will not mes=t the specification. On the other hand, if the bisimilarity relation
is relaxed to allow both possibilities, then we may lose more timing information
than we wish. It seems that the inclusion of timing information often leads to
overspecification when this technique is applied.

Hennessy-Milner logic [HM85], called process logic in [Mil89], provides the
approach to specification for CCS that is closest to the denotational semantics
approach. 1t would seemn that the logic could equally well be applied to other
process algebras, although | am not aware of any attempts to do this. Thelogic is
used to express safety properties of systems using two modal operators (which are
dual), (} and []. The specification (a) G asserts of a process P that it may perform
o and reach a state of which G holds. The specification [a] (7 asserts of P that
whenever P performs a it reaches a state of which & holds.

Little work seems to have been done with process logic concerning the specifica-
tion and verification of systems. In particular, 1 am nol aware of any case studies
in which a process is specified using the logic, and then proved correct; such a
study would be useful. It also seems likely that a form of timewise refinement will
be possible for such specifications. This is a topic for further research.

171

Denotational Semantics

The provision of a denotational semantics for a programming language or process
algebra involves the association of each program with a mathematical object con-
sidered to be the meaning of the program. The possible meanings of programs are
members of a semantic domain. A denotational semantics is compositional, in that
the meaning of a compound program may be deduced from the meanings of its
constituents, without any reference to their syntax. Specifications on processes are
expressible as predicates on the semantic domain. In tbe most general case, any
mapping from the semantic domain to {TRUE, FALSE} will be a specification,
but it may be considered desirable to restrict the class of specifications to make
reasoning easier. For example, the set of proof rules presented in this thesis is
complete for the class of bebavioural specifications.

The semantic domain for a process algebra is reflected in the nature of the pos-
sible specifications. As we have seen, the sernmantics provided for TCSP processes
do not refer to state information. This is because we do not wish to distingnish
processes whose external behaviour is identical, even if their internal states may
be different. It follows that specifications on TCSP processes may not be con-
cerned with the possible states of a process. Such specifications are permitted by
semantic domains which contain state information as a component of the possible
denotation of a process. The choice of a semantic domain for a process algebra is
concerned with the distinctions between processes we wish to make, which in turn
is closely associated with the kind of specifications we hope to express. Of course,
a given process algebra may be supplied with different semantic domains: these
will permit different sorts of specification. For example, CSP has the traces model
M7 and the failures model My. The traces model allows only safet y specifications,
and cannot be used to verify liveness properties, since it s nnable to distinguish
live processes from possibly deadlocking ones. The failures model permits such
distinctions.

Methods of verification using a denotational semantics or an operational se-
mantics may overlap. The denotational semantics may give rise to a complete
set of algebraic laws which allow the semantics-preserving transformation of any
syntactic process to one in normal form. Thus an algehraic proof system, of the
sort associated with operational semantics, is possible. Such proof systems may
also permit the verification that one process is more deterministic than another.
(see [Bro83) for an example of this.)

This approach is taken in [GLZ88], where a denotational semantics based on
discrete time is given for 2 CSP-based language which has a timed prefix operator:
the semantics of a process is the set of possible behaviours of that process. A

172

complete proofl system is presented lor finite processes (i.e. those defined without
recursion); further laws permit reasoning about recursive processes, but these laws
are not complete.

An example specification and verification is presented in [LZ88]. The speci-
fication on the system is that it is more deterministic than the process SAFE,
which is taken to be the most non-deterministic process that captures the salety
requirement. A verification that SAFE C NUCLEAR is presented, from which it
is concluded that NUCLEAR meets tbe safety requirement. Specifications express-
ible in the form P C X (for a fixed P) are similar to behavioural specifications,
since X will be more deterministic than P precisely when its behaviours are a
subset of those of P. The requirement is therefore captured by the behavioural
specification X sat (b € E[P]), where b ranges over behaviours, and £[P] de-
notes the semantics of P.

An alternative approach is to provide an explicit specification language together
with a denotational semantics for a given process algebra. For example, in HW89)
a denotational semantics is provided for an occam-like programming language: this
allows either discrete or continuous time. Each possible behaviour is a mapping
from time to a quadruple representing the channels on which a communication
1s taking place, those on wbich the process is waiting to send, those on which it
is waiting to receive, and a boolean value representing whether the process has
terminated. The semantics of a program is the set of its possible behaviours. The
specification language is based on real-time temporal logic similar to that presented
in [KR83], and compositional proof rules are presented which relate programs to
specifications. For example, we have the rule

send(c) sat ¢! U (c Uz, dore)

for the program send(c). This states that it is ready to send on ¢ until (weak until)
the transmission occurs; this is [ollowed one time-unit later by termination (strong
until indexed by ‘exactly one time-unit’). The rules form a sound proof system
which is also cornplete relative to provability of valid [ormulae in the specification
language.

This proof system, like the one presented in this thesis, exploits the com-
positional nature of the semantics of the language. There have been denota-
tional semantics offered for a variety ol real-time programming languages (e.g.
[KSRGAB8S),[BG87],[SN89], in addition to those already discussed). The semantic
definitions should in each case give rise to a set ol sound proof rules (thisis done
in [HR89]). Cornpleteness, however, will need to be established separately, since
it does not follow in generai; this was illustrated by the rules available for TMrg,
where our inability to establish completeness motivated the move to a different
(though congruent) semantics.

173

Although many of the semantics for real-time systems are given for extensions
of established programming languages, I am unaware of any attempts to refine
specifications and verifications of programs written in the original language, in
the way that timewise refinement for TCSF allows the transformation of untimed
specifications into timed ones. It is clear that any untimed program may also
be considered within the framework of time, and so properties such as deadlock
freedom will still hold of it; but it is often desirable to prove that such specifica-
tions hold of timed programs which contain explicit timing constructs, and if such
properties do not follow from timing considerations, then a timewise refinement
relation may be useful. The hierarchy of models for CSF and TCSP, together
with the projection mappings between them, provide the fonndation for timewise
(and other) refinement relations. It wonld be interesting to see how similar results
could be established for other languages.

9.3 Future Work

The previous section has highlighted important areas where further research into
specification and verification methods would be useful. The provision of an oper-
ational semantics for TCSF, either via timed Petri nets or in terms of potentially
infinite trees, would allow the approaches to establishing correctness that we have
Just discussed. A set of algebraic laws which preserve some form of egnivalence
{such as bisimilarity) may be obtainable, and wonld make some verifications easier.
Perhaps the most important immediate task is the development of a real-time tem-
poral logic based specification language for TCSP, similar (or even identical) to
the metric temporal logic presented in [Koy89]. This would provide an alternative
means of specifying systems, compatible with the body of research on temporal
logic that already exists, and may lead to a complete proof system similar to
that presented in [HW39]. D. Jackson, a doctoral student at Oxford, is currently
working on such a specification language.

An infinite failures model is needed to support the distinction between arbitrary
delay and infinite delay, and the distinction between arbitrarily fast and infinitely
fast. As we pointed out in the section on infinite behaviours, any model consisting
purely of finite behaviours will not be able to make this distinction. An infinite
failures model wouid have as its semantic domain sets of infinite (trace,refusal)
pairs, with each pair representing a possible record of the complete execution of
a process. We would expect the restrictions of these pairs to amy finite time to
yield the finite behaviours of TMp, yet the (infinite} semantics of a process will
not necessarily be the set of all limits of the finite behavipurs. In particular,
if I7 [[P] denotes the infinite failure semantics of P, then we would expect the
semantic equations for indexed non-deterministic choice, hiding, and renaming to

174

be as follows:

[[]P(9)) Uzr[P)]

et 1)
{(s VAR (s,RU[0,00) x A) e Zr[P]}
{(F/(). R} (s, f7'(R) € Ir [F)}

I

Ir[P\A]
Irf(P)]

We would expect to retain all of the axioms for TMp as axioms for the finite
approximations of behaviours in the infinite failures model, with the exception of
axiom 5. This axiom states that a process cannot perform an infinite number of
events in a finite time, but its formulation for TMp also prevents a process from
performing arbitrarily many events, since the two notions are indistinguishable in
TMp. The axiom states for any set § of behaviours in the semantic domain that

t€[0,00) = In(t)eN,Vs < traces(S) o end(s) £ t = #s £ n(t)

This axiom would be too strong for an infinite failures model. We only wish to
disallow infinitely many actions in a finite time, so we may weaken the axiom to:

Vie[0,x),5€ traces(S) 0 #(s [1) < x

Recall that for an indexed choice or a prefix choice to be well defined, it was re-
quired that the set of component processes were uniformly bounded. The weaken-
ing of axiom 5 allows this restriction to be lifted, and so we gain the well-defiredness
of both forms of infinite choice for all arguments.

The ‘eventually’ operator in temporal logic enables the distinction between
arbitrary delays and infinite ones (see e.g. [BKP85]). Consider the pair of processes

P = [| WAIT n;a — STOP
nEN
Q = PNSTOP

We would expect that P satisfies the temporal logic specification “X will eventually
offer a’, since any resclution of the choice will eventually offer a; but that @ does
not satisfy the specification, since it may resolve the choice in favour of 5TOP,
in which case a will never be offered. However, as has previously been remarked,
both P and @ have the same semantics in TMr (and indeed in TMrs). Hence
any temporal logic specification language which wishes to distinguish between the
two processes must be based on a model that makes such distinctions. Clearly
the infinite failures model will make precisely the distinctions required, since the
temporal logic assertions are concerned with infinite behaviour. Process P will not

175

exhibit the behaviour ({},[#, 50} x {a}), so it will not be able to refuse ¢ for all
time. However, that behaviour is possible for ¢, indicating that ¢} does not meet
the specification required. Hence an infinite failnres model will be useful for the
construction of a temporal logic based specification langnage.

The possibilities for timewise refinement are also enhanced by an infinite fail-
ures model. The reason that timewise refinement is not preserved by hiding and in-
finite non-determinism in general is that infinite non-determinism is not adequately
modelled in TMr. The equations abave for hiding and indexed non-deterministic
choice mean that both operators preserve timewise refinement (see lemmas 6.3.31
and 6.3.36), and hence that the chaining operator, whose definition involves the
hiding aperator, will also preserve timewise refinement. This will greatly ease ver-
ification of pipes via timewise refinement, and more generally of communicating
networks of processes. I conjecture that an infinite failures model will yield the
result §(@Q) C; @ for all TCSP processes). However, at the time of writing I
do not know what the structure of the semantic domain will be, nor which extra
axioms will be required, so | am unsure as to how recursion will be defined and
whether P C; X will be a continuous specification. This is a topic for further
research.

A refinement calculus for exploiting the timewise refinement relation would be
invaluable. It is presently difficult to generate a refinement of an untimed CSP
process. The only systematic way of doing this at present is either to insert delays
at suitable points in the process description, or to resolve a non-deterministic choice
by replacing it with a timeout construct. We reqnire more rnles for algebraically
refining process deseriptions, to enable us to work towards the timing reqnirements
of a specification.

A form of refinement not mentioned in this thesis is speedwise refinement,
through which processes become faster. A faster than relation between processes
could be defined, which would enable us to compare speeds of various processes.
This would provide us with the machinery to address problems associated with the
speeds of pracesses. For example, we would wish to know when the speed-up of
a component of a network will maintain correctness of the network, and whether
it will provide a speedwise refinement of the entire network; this will not be the
case in general: in the alternating bit protocol example, a significant speed np
of thesender process could result in a timeout occnrring before an acknowledge-
ment could possibly arrive; this could result in a less efficient protocel, since a
second copy of the message will always be sent, even over ideal wires. The ‘faster
than’ relation would also enahie us to examine which specifications are preserved
by speedwise refinement (e.g. ‘the process will not respond for 5s' will not be
preserved, but ‘the process will respond within 55" will be).

176

In addition to these directions, there are other areas of research that have
already heen proposed. The major extension to the hierarchy of models will be
the addition of probability to the models; this will allow the specification and
verification of fault-tolerant systems and knowledge-based systems, and will allow
the modelling of fair processes. A strategy for pursuing this line of research appears
in [Ree88]. Other lines of research into the use of TCSP for specification and
verification are currently being pursued at Oxford., The results of this research
will make easier the task of estahlishing correctness of real-time systems.

177

A Mathematical Proofs

A.1 The hiding lemma

The main result we will establish is the following hiding lemma:
ZC(X\Y)=> (P\Z) 4y @=(P4lly @\ 2
In order to prove this, we need to establish a number of subsidiary lemmas.

We first of all need a technical sublemma. Let P be an element of TMps. Let
a,8,t, X, R, v be such that

(@282 end(t) A(t, o, RU ([0, maz{6, end(R)}) x X)) € Ex[P]
Then define the following:

W = t
w, if B, =10
Wayy = { o " {{tn415 Gats)) if B, #9
where (tn1,8n4) € By
b = maz{é, end(R}}
: [some f where Jas (f,a)€ B, ifB,#48
nH = ¥ ifB, =40

B”‘ = {(ﬂ,ﬂ)lt,, g_,@s’!-’\
a & X A{wa"((B,0)),RU([0,8) x X)) € fail(Er[P])}

Sublemma A.1.1 V1 e (w,,RU[0,%) x X) € fail(Er[P]),

We prove the sublemma inductively as follows:

Base Case: n = 0, the result follows from the definitions.
Inductive Step: Assume (w.,RU([0,¢,) x X)) € feil(Er I[PB).
Case B, =10

F o (wa, RU([0,7) x X)) € fail(Er [P]) a4
Fo(wags, RU ([0, t041) x X)) Efﬂﬂ(ET[P]) o

Case B, #0
Trivial
which establishes the sublemma. O

178

We are now in a pesition to prove

Lemma A.1.2

Ya,b,1,a,™,7e

=

Proof.

Case

}_

Case

(o 2 6 2 end(2) A (L, 0, RU ([0, maz{§, end(R)}) x X)) € E7[F]
Jw,a’" v w\X =t\XAd 28A(w,a ,RU([0,7) x X)) EET[P]])

v € maz{§, end(R)}
Ba’2al(t,u’,NU([ﬂ,:r)xX))EET[P] alll

7 > maz{h, end(R)}

IN e Vs € traces(E7[P]) o (end(s) € v = #s < N)

Muwe =ty > VE 2 r o (W = Wiy)

WN4+ 1 -'/—' Wy = Vi < No(w,- -',é w,-+,)

Ay £ wipr = #Fwg, = #uw 4+ 1) defn w;, i, B;
(uny: Fwv=>Fuovey =Fw+N+I2N4 1)

end{wny,) = INy; €7

#unvys €N defn
WNyr = WN

By =19

INg: =7

Jo' e (wyy, o, RU([0,v) x X)) € ET[P]

To complete the proof, it is sufficient to show that o 2> &:

Case
Wy = wy
F Wy =wp ABy =10
F o =a all
+ o zé
Case
W < Wy
- w = wy e {(,a)) defn
= end(w) 2t 21
+ o 2 endluny) Zend(w) 2426

179

Corollary A.1.8 (s,R8) € Fr[P\ A] =2YVtdwew\A=5A(w,RU[0,1)xA) €
.'FTEP:U

LemmaA.l4 ZC (X\Y)= (P\Z) 4|y, @=(Pylly @\ 2

Recall the definitions of hiding and of the parallel operator in TMps given in
(ReeB8):
PNXY =8UP {(s\X,8,R)|Taz zend(s)e
(8,0, RU ([0, maz{B, end(R)}) x X)) € Er[P]}

Pxliy@ =SUP {(s,maz{ap,aq},Rp URqURZ)| I(sr,ar,Rp) € £7[P],
(sqroq.Re) € Er[Q] ea®p) S X Aa(Re) S Y
As € {sp gy sq) Aa(Rz) S (Z (XU Y))}

where vy w = {s € (TE); [(s H(XUY)=) A(s T X = v} A(s I ¥ = w)}
The follewing definitions will be useful:
S(C!p,C!Q) L BRP,RQ . D’(RP) C X AG"(NQ} CcvY
(ttX,apRp) € ETIPl
A (t f Y':Q'Q':NQ) € ET{QB
ARpURG) = (RU ([0, maz{f,end(R)}} x Z)} | XU Y

Dpq(t,8,R) = {maz{ap,oq}|S(ar, ag)}
CPIQ(S,R) = {#| Jte 1\Z=3s
A sup Dpgl6,8,8) 3 £ > end(1))
SPZ(SJN) = {B, at,a. a}ﬂ}end(t)At\Z:,g
Alt, @, RU ([0, maz {8, end(R)} x 2)) € €7 [P]}
Tpols,R) = {maz{ap,aq}| IRp,Rg® op=sup SE(s [X,Rp)

Aap 2@

Alst Y,GQ,RQ) EET[Q]
ARpURg=RTAXUY
ra(®p)C X A a(Re) C Y}

180

Upg(s,R) = {maz{b,ag}| INp,Rge b€ SE(s[X ,Rp)
A (3 r Ysaﬂh NQ) € ETIQ]
ARpPURg=RTXUY
Ao(Rp) C X Aa(Rg) C Y}
The definitions of these sets allow us to obtain the following equivalences (adopting
the convention that supd = —oo):
(3,x,R) € ET[P\Z] < a=sup SE(s,R)

(s,a,R) & ST[(P NEZ) ol Q] o a = sup Tp q(s,})
{s,a,R) € ST[(P vy @\ Z] & a = sup Cp,g(s,})
Hence it is sufficient to prove that, for arbitrary s, i, and any processes P and ¢},
that sup Tp g(s,R) = sup Cp g(s,R). This will be done by first showing that

sup Tp q(s,R) > sup Cp q(s,R)
and then by showing that

sup Cp q(s, %) 2 sup Tpq(s,N)

We first aim to show that sup Tp g(s,) 2 sup Cpg(s,R):

Assume Cp,g(s,R) # 0. Then let 3 € Cp g(s,R}). Take § € Dp gft,3,R),
where t \ Z = 8. Then we have

(t rX,Ctp,Rp) € ET%P]IA O’(NP) cX
A (tTY,aqRg)elr|@)recRg)CY
A (RpUR)=(RU([0,maz{B,end(N)}) x 2 XU Y

for some ap,ag, Rp, g such that maz{ap,ag} = 6. Let Rz = Rp\ ([0,) x Z).

Then
(tIX)\Z2=s1X
(¢ X,ap,Rg U ([0, maz {3, end(R)}} x Z)) € ET[P]
(t I YvaanQ)EETHQ]
NpURg=RIXUY
ap 2 end(t | X)

> > > >

Case

B >ap
k (t1 X,ap,RpU ([0, maz{ap, end(Rp)}) x 2)) € Er[P]
F ap € SE(s | X,Rp)

Case
B<ap
ko BeSks!X,Rp)
since G 2 end(t) 2 end(t [X)

181

So we deduce that min{f,ap} € SE(s | X, Np).
We have so far established

sup Dp.q(t,ﬁ,N) =B
ASlap,ag) = (Ve e min{F,ap} € SF(s | X, Np)
Fosup Tp (s, ®) 2 sup {maz{min{ap, 3},aq} | S(ap, ag}}

We again have two cases to consider.

Case
Vf.‘tp,o.‘q [(S(CIP,QQ) = F 2 &p)
b {maz{min{ar,B},oq} | S(apr,ag)} = {maz{ar,aq} | S{ar,aq)}
b sup {maz{min{apr. B}, cq} | S(ar,eq}} = sup Dpg(t,8,8) 2 3

Case
Jap,ag e S(ap,ag) hap 2 8
F sup {mez{min{ap,A},ag} | S{ap,ag)} 2 4

Tn either case we conclude that sup Tp (s, N) 2 4
(and that TPIQ(S,N] # ﬂ) o

We now aim to show that sup Cp o(s,R) 2 sup Tp g(s,R):
Assumme Tp g(s,R) #@. Then sup Tp g{s,R) = sup Up g(s,R).

Let B € Upg(s i)

F B= maz{slaQ}
Ao 2 &2 end(t)
A\Z=slX
A (t 0, Rp U ([0, maz{§, end(Re)}) x Z)) € Er [P}
Als Y, aq,Rq) € Er[@Q]
AoeRp) C X Aa(lg)C Y
I\RPUNq=NfXUY
for some 6, o, v, Rp, Ry, ¢

F 8= maz{§ ag}
Aw\X=t\X
Ao 26
Alw,of Rp U [0, maz{B,end(M)}) € €7 EP]
At\X =35t X
A(stY,aq,Rg) € Er[Q]
ARpURg =R X U Y for some w, o (femma A.1.2}

182

Let u€(wyly(st ¥}
Foo(I'ap,a',RR)ESTIIP]}
Alutag,aq,Rq) € Er[Q]
ARpURG = (RU[0, maz{B,end(®)}) x Z) [XU Y
(defining Rp = Rp U [0, maz {8, end(R)}) x Z)
Now end(w) € maz{F, end(R)}
F o oend(u | X) € mazx{f,end(R)}
Also end(u | ¥) € 8 € maz{F, end(R)}

There are two cases to consider here:

Case
maz{a’,ag} € end(R)
- Dpﬂ(ﬁ,ﬁ, R) = Dplq(t, maz{a‘,aq},R)
F maz{a’,ag} € Cpg(s,R)
(since end{u) € maz{a’, ag})
Case
maz{a’,ag} > end(R)

subcase f 2 end(u)
FB e Crg(s,R)

subcase A < end(u)

F mazr{8, end(R)} = end(R) = end(u)
(since end (v [X} € maz{B, end(®)}, end(u [V) £ 8,
so B < end(u) € maz{fF, end(R)})

F o 2endR) 26
Ao 2z end(R) 2 ag

F mez{a’,ag} € Dpg(u,end(R),R)
Amaz{a, ag} 2 end(u)

- maz{d, aq} € Crqls,N)

Also maz{c’,ag} = end(u) > 4.

Therefore sup Cp g(s,R) 2 sup Up g(s,R} = sup Tpg(s,®) O

Corollary A.1.5 ZNY = 0= (P\Z) £ll, @ = (P yuslly @\ 2

183

B Semantic Models and Mappings

B.1 Reed’s Hierarchy

The semantic models are arranged tn a hierarchical structure as follows:

TMrs
|
~ Mrs T TMgs
A U B
THr " My Ms — TM;

Mz

TMr

Some Projection Mappings
II: TMps — TMp is defined on processes @ € TMrs by

(@) = fail(Q)

The projection mapping I : TMps —» TMZc may be expressed using cur notion
of s reflected in R. It is defined as follows:

184

Let P € TMrs. For each s € TEL, let
Pls]={(5,3,®) € P |s is reflected in R}

I{P) = {{s,a,X) € TEL x TSTAB x P(T) |
Pls] # 9
A
o= sup{B](3,8.R) € P[s]}
A
(x <ooAT(3B,R)€Pls]e X =c{R1a)
Va=ooA X € P(Z)}
Il1: TMrs — My is defined on processes) € TMgs by
(P) = {(tstrip(s), X) | (s,&,8) € P A s, R) € fail(P) e
a g begin(R} < o Ac(R) =X
v
a=oc A X € P(D)}

B.2 Semantic Models and Mappings
We reproduce the definitions for [Ree88] of the (untimed) trace model, the (un-

timed) failures model, the untimed-failures timed-stability model, the timed fail-
ures model, and the timed failures stability model.

The traces mmodel
The Evaluation Domain Mr.

We formally define My to be the set of all those subsets 5 of L= satiafying:
1. €8

2 sTwesS = s€8.

The Complete Partial Order C on My.

For §;,5: € Mr,let 5; C S if and only il §; € Ss.

185

The Complete Metric d on Mr.

For § € Mr, we define

S(n) = {s€ S| #s<n).

The complete metric on M is defined:
d(5;,8,) = inf{27" | 5;(n) = Se(n)}.

The Semantic Function T.

We now define a semantic function 7 : CSP — M.

T[4
T[sTOP]
T[SKIP)
T[a — Pﬂ
T[POQ]
T[P N Q]
TP Q)
T[Pxlly @]

7Pl Q]
T[P; Q]

TP\ X]
TP
T[uP.F(P)]

T[uP.F(P)]

b

Iir

I»

Ip

»

i

>

I

»

i

or

it

{t

{1

{01}

{0}V {{a)~slse T[P}}
T[PIUTQ]
T[PjuT[Q]
TIPInT[Q]

{slstXeT[P] AstYeT[q]
Ast(XUY)=s}

{s]3ueT[P],veT[Q] =
s € Merge(u,v)}

{slseT[P]Av¢s}
U{sttts~ () eT[P] A te T[Q]}
{s\ X |seT[P]}

{sif(s) € T[P]}

The least fixed point of the continuous mapping with re-
spect to the complete partial order C on Mt represented
by F.

The unique fixed point of the contraction mapping with
respect to the complete metric 4 on My represented by
F.

186

We may also add the equations
Tla: A— P(a)] = (lulla)s|eaeAAaseT[P(a)]}

T[[]Pia)] U7T[P(a)]

I

The failures model
The Evaluation Domain Mp.

We formally define My to be those subsets § of Z* x P(X), satisfying:
1. {} € Traces(5)
2. s~ we Traces(5) = 5 € Traces(5)
3. (s, X)ESAYCX = (5Y)eS
{. (5, X) eSS A (VaeV, ((s.a),0)€5) = {5,XU¥)eS§
The Complete Metric on Mr.
If § € My, we define

S(n) = {(s,X)€ S5 |#s<n}
U{(s,X) | #5=n A s € traces(S}}.

The complete metric on Mr is defined;

d{5;,S¢) = inf{27" [5;(n) = Sz(n)}

The Semantic Function F.

We now define the semantic function F : CSP — Mp.

Fl1] = {(0.x) | X eP(E)}
J-'[.S'TOP] = {({X)| X eP(B)}
FISKIP] = {(0,X)|v g XIu{({v),X)]| X € P(E)}

187

}_ﬂa — Pﬂ
FlPogQ]

FlPn Q]
Pl Q]

FI2 4y Q1

FiPrQf

f[P ; Qﬂ

FIP\ X)

Fi-1(P)]
Flrpl
FluP.F(P)]

i

1

i»

i»

If

I

I

1

>

i

{0, ag X}

U{({a}"s X)r(s X) G}'[P]I
{t0.X) 110, X) e F{P] n F[Q]}
U{(sX ef[P]UI[Q]IsaH)}
FiPjuFIR]

{(s, XU Y)| (s, X)ef[[P[]

As, Y)Y e FIQI}
{{5,2pUZqU2Z) s (XUY)=3sA
ZpCXAZqCY AMZC(E—-(XUVUY))
A(srX,Zp)eJ-'iPﬂﬂ
A(slY, Z9)e FIQ]]
{(s,X)|3u,vGE'l(u,X)€}'[[P]
Av,X) € }'[Q] A's € Merge{u, v)}
{(5,X)|vs A (s,XU{\/})E.'FlIP]]}
U{(s"~w,X) | vgs A (s7{v),0) e F[P]

Alw,X) e F[Q]}
{s\X,Y)|(s,XuY)e F[P}}

U{(s, Y) | ¥n = #s, Jw, € Traces(F[P])
Wy < Wnpr A 5= wy \ X}

{(s,X) | (f(s), f(X)) € F[P]}
{U(e),X) | (,/- (X)) € F{P]}

The unique fixed point of the contraction mapping
c(Q) = m where ' is the mapping on
Mr represented by F. ~

We may also add the equations

Fla: A— P(a)]

FI[Pa)]

i

{{{),X)1AnX = 8}
U{({a)"s,X)|ae AA(s,X) € .’F[Pﬂ}

UFIP(a)]

In

188

The (Untirmed Failures)-(Timed Stability) Model
The Evaluation Domain TM3;
We formally define TM}; to be those subsets S of Tf); x [0, 00] X L satisfying:

1. {) € traces(S)

s w € iraces(S) = s € traces(S)
(5,0, X) €S = (3,0,X)€ S
(s,0, X) €S A sZw = (w,a,X)€ES

G e W e

s7{(t,a)) € traces(S) = It < Lo (s |){(I &) € traces(S) A
(<" < = (s 1 7).((t",) € traces(5))
Yt e [0,o0), In(t) € N such that Vs € traces(S),(end(s) € L = #s5 € n(t))

(s,a),(s, ') € slab(§) = a=2o
s,a) € stab(§) = end(s}< a

o o -

(
(s,a) € stab(S) As™((t, a)) € traces(5) = t<€a
(

10, (s,a)e stab(S} = ift>a, ' Z2a,a€Land

weE Tig is such that w = {(¢, a)}"w",
then (s7w, o, X) € § = (s7(w+ ('~ 1)}, 7, X) € S,
wherey 2 of + (t' —) -

11, (3,0, X) €S AYCX = (5,0,Y)€S

12, (5,q, X) €S ATY €eP(D)e(Vac Y,
It 2 ae (s7((t,a)),0) & fail(S})) = (5,0, XV Y)ES

19. (s,0) € stab(S) A X e P(E) = (5,00, X) €S
The Complete Metric on TM};

If § € TM}; and t € [0, c0), we define
5(t) = {(s,a,X)eS|ax<t}

U{(s,00, X) | end(s) < t
A da 2t such that (s,) € stab(§) A X € P(E)}.

189

The complete metric on TMzg is defined:

d(Sr,8:) = inf{27"| 5:(t) = 5:(4)}

The Semantic Function £%

We now define the semantic function £% : TCSP — TMGs.

£7[1]
£ ST0P]
Ex[S5KtP]

£x[wair (]

£5[a - P]

£x[rPnQ]

£x[rn Q]
Ex[rli @]

EX[P 4lly @]

£x[P111 Q]

£r[P; Q]

1

In

I

b

I

il

b

W

I

13

Ih

{({},00,X) | X €P(2)}

{{(.0,X)] X eP(EY}

{0, X)|v ¢ X}

u{({(e,7)),0,X) 1 X € P(E)}

u{({(¢,), t, X) [t=2 0 A v ¢ X}

{() 6. X)| v ¢ X}

u{({(¢, V) ¢, X) | X € P(Z)}

u{({(¢, N, " X) |2t A X eP(E)}

{({ 0, X)IaﬁEX}

V{(((0,8))(s + &),a+6,X)) (5,0, X) € E+[P]}

{2y ay (s +(t+8),e+t+6X)t 20
Afs, e, X) EE}I[P]]]

SUP({(()ya, X) | (),) € stab(€x[P] U €[Q)
A (() X) € fail(ST{P])ﬂfG"(Er[{Q D}
U{(s, e, X)EETHP UST[[Q]|3 13))]
supEs[PluerlQD
SUP({((SP v Sq), maz{ap,qu},Xp u XQ) | (Sp,(l’P, XP) € g’.f‘ I[P]I
Alsg,ag,Xg) € S}MQ]I ASp = Bg})
{(s, maz{ap,aq}, Zp U ZqU Z) | sp,ap, Zp) € E-[P]
Alsq.ag,Zg) €Er[Q) with Zp CXAZgC Y o
$€(sp ylly s) ANZC(E-(XV Y]]}
SUP({(s,maz{ap,aq}, X) | I(u,ep, X) € £F |IP]
A(v,aq, X) € €1[Q] o s € Tmerge(u, v}})
CLa(SUP({(s,0, X) | (5., X U {v}) € E3[P] A v ¢ o(s)}
U{(s™(w + t),a+t,X) | s7((t, 7)) € traces(E3[P])
Av ga(s) A (w,eX)eer[Q]1)

190

I

{(s\ X,a,Y)|sis X-active in E}I[P]]
Aa=sup{B|IHw.p) € EF[P] »

wis X-active A wi X =5\ X}

Ala<oo A (s, XU Y)e fail(E3[P])

V ([@=oc A Y €P{L)))}

where s is X-active pravided

§ contains no element of the lorm (¢,a) fora € X
{(all communications in X are in the form &).

{(s; 0, X) [(f(9)s e, S(X)) € E3[P]}
SUP({{f(s),c. X) | (s 7' (X)) € €3 [P]})

The unique fixed point of the contraction mapping
C(Q} = C{WAIT §;Q), where C is the mapping
on TM}s represented by F.

&r[P \ X]

I

gl (P
erlr (i
& [[,u P.F(P)l

b

in

We may add the following equations
e[] Pla)] SUP(J e5[P(a)])
acA 2EA
E}[a:A-—v P(a)] {0, 8,X)|AnX =0}
V{{{(0.2})"(s + 6),0 + 6, X} |
a€ AN (s,0,X) € E}Hp(a)]]}

U{{({(t,a}"(s+t+8)a+t+8X)|
acAAt20A(s,0X)€EF[Pa)]}

>

I

whenever the set {P(a)] & € A} is uniformly bounded.

181

The timed failures model
The Evaluation Domain TMr.

We formally define TMr 1o be those subsets § of TZy x RSET satisfying:
1. {) € Traces(S)
2. (s"w,R)eS = (s5,R] begin{w))ES
3. s,WeSAans=w = (vR)ES
4. (s,N) € fatl(5} = IN' € RSET »
N RCN A (s,X) € fail($) A
(V< LA, a) &)
= (s P&, a)}, ¥ [£} € fadl(5)
5. Vie[f,00), In(t) e Ne Vs traces(5),(end(s) € t = #35 < n(t)}
6. (sR)ESAN ERSETANCR = (s,N) €S
7. {s"w,R) € SAN € RSET » end(s) € begin(R'} A end(¥) € begin(w) A

(W(t,8) € ¥, (s.{(t.)}, R T E) ¢ 5)
= (s,RUR) € S

The Complete Metric on TMr.

If S € TMr and ¢ € [0, 00), we define

1>

S(t) {(s,R) € § | end(s) < t A end(R) < £}.

The complete metric on TMF is defined:

d(5:,8:) = inf{27"| S1(2) = 5e(t)])

The Semantic Function Fr.

We now define the semantic function Fg : TCSP — TMr.

192

Fr[1] = {(0.®)|Re RSET}
FrlsToP] = {({),®)|Re RSET}
Friskip] = {((R)]v ¢ o(R)}
U{(((t,\f)),R: UR) JE= 0A TR C[D,E)AV §a(¥,))
A I{Ry) C [t,00)}
Fr[WAITt] = {((.®)IRN([t,00) x {v}) =0}
U{ ((!’), N;UN:UNg)[t">H\I cl0 8
AI(Re) C LAV ¢ a(Ny))AI(N, [o0)}
Frla—P] = {{(,®)a¢go(¥)}
U{({(t,)}~ (s+ 2+)R UR U Rs + (E+6))) 12 0
AT(R)C[0,8)Aagd o A TR C L, t+8)
A(SsNJ)G}-T[P]I}
Fripo@] = {((),N)I(O‘R)EFTIIP]IH}'THQH}
U{(s,R) | s #{) A (s,R) € Fr|P U.FT[[Q]I
A ((),R [begin(s}) € Fr[P] n Fr[Q]}
Fr[PnQ) = Fr[PlurriQ]
Fr[Pi Q] = {(5.8pURQ)|(s,%p) € FT[P] A (s,Rq) € Fr[Q]}
FriP xlly @1 = {(s.RpURQURz) | Hsp, Rp) € Fr[P]
A (sg,Rq) € Fr[Q) with s(Rp) C X Ac(Ng)C Ve
s € (sp clly 5q) Ao(Rz) S (E—(X U Y))}
FrlP1Q] = {(&®)] 3uR)e Fr[P], (%) € Fr[Q]
such that s € Tmerge(n, #)})
Fr[PiQ] = Cla({{s,®)|v ¢ a(s)
A(VIe TINT, (s,RU (] x {J})) € 7’;—|[Pﬂ}}
s+)R, UR, + 1)) |V €
ALV, mu([vt x {v])) efrlPB
Aend(R <) A (w,Ry) E}'TﬂQ]
FrP\X] = {(\X,R)|{s,RU ([0, maz{end(s), end(R)}) x X) € Fr[P]}

193

{(s,®) | (f(s), (%)) € Fr[P]}
{FG)R) | (s, /- (®)) € Fr[P])

The unique fixed point of the contraction mapping
C{@) = C(WAIT 6, Q), where C is the mapping
on TMp represented by F.

Frlf(P)]
Frlfip)]
FrleXoe F(X)]

Ib

i

We may also add the following equations:

Fri[]Pa)] = U FrlPa)]
2EA sEA
Frla: 4= P = {(0.0)] Ano(®) =)

U{({(t,a)}"(s + (t + 6)),8) |
a€AANtZO0AANGRTL)=1
As,R=(t+8) € }‘T|[P(a)]}}

provided the set of processes {P{a) | 2 € A} is uniformly bounded.

The timed failures stability model
The Evaluation Domain TMFs.

We {ormally define TMps to be those subsets S of (TZ)g x [0, 00] x RSET satis-
Iying the following 12 axioms:

I. {}€ Traces(S)
2. (s~w,R) € fail(S) = (5,X | begin(w)) € fai(S)
3. e R)eSAs=w = (waReS

4. (s,R) € fail(5) = AW € RSET »
Atz0 RCN A (s,®) € fail(8) A
(UEiAa(t a)gR)y= (s ¢t a)),® [') € fail(S)
5. te[0,00)= In(t) € Nsuch that ¥s € Traces(5),
end(s) € t = #s € n(t)

6. (5,0,R),(s,0,R})ES = a=4

194

7. (5,0, R} €S = end(s) €
8 (s,a,R)e S A(s{(,a))WeflS)Aat>t>antzend® = a)gh

9. (s, R) €S = ift>emt'2a,a€L and
w € (TE): is such that w = (¢, a)).w', ther
(sw, e RYES A NCW L =
Ay za+(t'—tje
(s(w+ (=), ¥ URURs + (¢ = 1)) €S,
where &, = R la, Ry = [o,) x B(®'N([a,) xT)),
and Ry = ®' N ([¢,00) x I).

1. (s, 8) € § AR € RSET such that & C R
= Ja' 2 a such that (s,a’,®) € S

11 (s.w,a, R} € S AR € RSET is such that end(s) < begin(R') A
end(N) < begin(w) A (¥(t,a) € X, (s.(t, a)), R [1) & fail(5))
= (s, g, RUR) €S

12, (s,a,)e S =
(VI e TINT, I Cla,00)= (3,0, RU (] x Z(R N ([e,00) x EP}) € S

The Complete Metric on TMps.

If S € TMrs an t € [0, 00), we define

5() = {(s,a,R) eS8 [ax<trendR) <t}
U{(s,00,R) | end(s) < t Aend(B) <t A Ja >t e (5,aR) €S}

The complete metric on TMgps is defined:
d(S:,8) = inf{27'] 5:(2) = 5:(1)}
The Semantic Function £r.

We now define the semantic functior £7: TCSP — TMrs.

£rfl] = {((),00,®) | R € RSET}

b

£r[STOP] {({),0,%) | ® € RSET)

195

Er[SKIP]

Il

{(0,0.8) | v ¢ Z(V)}
V{8,) L UR) [L2 0A(F(R) C [0, 2)A Y EZ(R,))
A I(RQ) g [1,00)}

Er [WAIT 1]

1

{00, 6. %) | RN ([2,00) x {/}) = B}
O{{{(t", V) R U R URs) | 2 tAT(R,) C[0,2)
AI(Re) C [) AV ¢ E(Re)) A T(Rs) C [t 00)}

1

Erfa—~ PJ {{{)0,®) | a g (R)}
U{({(t ey (s + (¢ + 8)) e+ £ + 6, R} |

120 Aag SRID)A(s,a,R = (t+6) € £7[P]}

I

ST[PU Q] SUP({((), maz{ap,ccq},R) | ((),QP,R) € ET[[P]]
A ({)aq,R) € Ex[Q]}
U{(s,a,®) [s# O A (s,0,R) € Er[P] UEr[Q]

A (), R | begin(s)} € fail(Er[P]) N fail(Ex[Q])})

[

Er[Pn Q] supErfP]uERfQ])

i

&P |l Q) SUP({(s, maz{ap,aq}, Rp URg) |

(s,ap,Rp) € ETEP] I (S,QQ,RQ) < fr[Q]I})

b

Er{FP,lly Q) SUP{(s, maz{ap,ag},Rp URg URZ) |

J(sp,ap, Rp) € Er[P]I,(sq,aq,Rq) € 51‘{@]] .

a(Rp)C X Aa(Rg)C Y A

s € (s xlly s9) A o(Rz) S (E- (X U Y))}

where

vyllyw={s € (TE)Z s € (XU Y) A
stTX=vAslY =w}

it

ErfP 1l Q) SUP ({(s, maz{ap,ag},R) | Iu,ap,®) € E1]P]

(v,xq,R) € 5THQ} o 5 € Tmerge(u,v)})

196

I

ST[P§ Q]I

I

£x[P\ X]

Ih

erff(py)

I

Er /(P

1

Er[up.F(p)]

CLa(SUP({(s,a,8) | v ¢ a(s) A VI € TINT o

(3,0, R U (] x {v})) € £2[P]}

U{(s™(wHi),a+t, ¥ U(Re+1))!

SEa(s) Aerd(R;) S A (wooRy) € ST[Q]
AT)R U ([0,0) x (V) € fal(Er [P]))))

SUP({s\ X,A,R)| Ja > 8> end(s) »

(5,0, XU ([0, maz{F, end(W)}) x X)) € E7 [P]})

{{s;aR) | (f(s), 2. f(R)) € E2{P]}

SUP({{f(s),a,R) | {s, 0. f7'(R)) € Er [P]})

The unique fixed point of the contraction mapping C(Q) =
C{WAIT §; Q), whete C is the mapping on TMrs rpresented
by F.

We may also add:

frﬂa A P(a)]

£r[[]P(a)]

I}

{((,0.¥) | ANE(R) =0}

V{(((t,a)) (s + (t + &))a + 1+ 6,R) |
t20 AANTR) =P A (s,0,8 = (4 8)) € & [P]}
when {P(e) | a € A} is uniformly bounded

SUP(JEr[P(a)])
when {P(a) | 6 € A} is uniformly bounded

197

B.3 Semantics for TCSP with process variables

We give the semantic equations which map CSP with variables and TCSP with
variables to the semantic domains defined in [Ree88].

CSP with variables

P u= L) STOP | SKIP | a— P | a: A — P(a)
PRQ | MPle) | POQ | PIQ | Pxlly @
PINQ | P;Q 1 PNALFP) | FI(P)
X | pgXeP

TCSP with variables

P u= L | STOP | SKIP | WAIT{ | WAITt; P
ea—=P|a:A-Fla) | PNQ | [P(a) | POG
PIQIPyly@I|PlIQ|P;Q | P\A
FPYI P | X | pXeP

The Semantic Function 7.

The esvironment o is of type var — M.

We now define a semantic function 7 : CSP —~ Mp.

198

THJ.]O‘

T [STOFP)e

7 [SKIP) e
T[a~ Pl

‘TEa A P(a)]a
T [POQ]e
TPnQ]e
T[MPa))e
TP Qe

TEP xiy Qo

TPl Qe
‘T[[P:,Q]]a

T [P\ X]o
Tl (P)]e
Tjx)e
T[uXePle

T[pXoP]a

i»

I

I3

Il»

I

I

I

i

I

I

[N

il»

1N

I

b

1

ar

I}

{0}

{0}

{0. (v}

{0}u{(a)~s|s e T[P]a}
{0}u{{a)~s|a€ AnseT[P(a)]o)
T[P]UUT{Q]O'

T[PleuT[Q]o

UTﬂP(a)]a

T[PlonT[Q]e

{s|lstXeT[Plo A st YeT|Q)e
AsXUY)=s)

{s|veT[Ple. veT[Q]o»
s € Merge(u,v)}

{s|seT[Plenv ¢s}
u{s™t|s™(v) eT[Ple A teT[Q]a}

{s\X |seT[P]s}
{s1/s) € T[P))
a(X)

The least fixed point of the continuous map-

ping A Y o T[P](a[Y/X]) with respect to
the complete partial order C on Mr.

The unique fixed point of the contraction

mapping A ¥ e T[P](e]Y/X]) with respect
to the complete metric d on Mr.

199

The Semantic Function F.

We now define the sernantic function F : CSP — Mp.

fl[_L]Icr
FsTOP] s
F[SKiF]e
."FI[a — Pﬁa

fﬂu: A— Pla)]e
."F[PDQ]O'

FlIPﬂ Q]O’
F[ﬂ P(a)]cr
.'F[P II Q]a

FlPxly Q)e

Firieje

FiP; Qle

FP\ X]e

Flr-1(p)e
}'EI(P)]IJ
}'|IX]]J
FluX e P)]o

13

In

1}

1]

I

i

i

>

1l

In

i

I

I

{0, X) 1 X eP(D)}

{(, X} X e P(Z)}

{0 X v g XFu{{(v), X) | X € P(E)}
{0, X) [ag X}

W{({a)"~s, X} | (s, X) € F[P]o}
{thx)lanx =0}

U{({a)~s, X) |a€ AA (s, X) € F[P]o}

{((),X)|(():X)€fia‘?ﬁﬂf[[c?]]cr}

U{(s, X) e F[PlouF{Q)o |5 # ()}

}'[P]IJU}'[Q]IU

UF[P(a)]e

{(s, XuY)|(s,X) € f[P!]a
Als,Y)eF Q]Ic.r}

{(8,ZpUZgU2Z)|sI(XU¥)=35A

ZpCXANZqCY AZC(Z-(XUY)

A(sIX,ZP)G}'iP]ﬂa

AsT Y, Zq) e Fl@]e)

{(3,,’())30,0EE'G(u,X)E}-EP]]a'

Ar,X) e fﬂQ]a’ A 3 € Merge(u, v)}

{(s,X)|v¢s A (s,XU{v]}e F[P]es}

U{{s~w, X) | v €3 A (s7(v),0) € F[P]e
A(w,X)e F[Q]e}

[s\X,¥)|(3,XuY)eF[P]c}

U{{s,Y)|V¥n>4s, Juw, € Tmces(}"[P}a’)l

W < Waps A s=1w, \ X}

{(s, X) | (f(s)./(X)) € F[P}o}

{{f(s), X) | (s, /1 (X)) € F[P] o'}

a(X)

The unique fixed point of the contraction

mapping A ¥V @ F[P](¢[¥/X]) on M.
200

The Semantic Function £%.

We now define the semantic function £% : TCSP — TM}..

A
erf{sTopr]s
£r[SKiIP)p

ER[WAIT t]p
Ex[WAIT t ; Ple

Er [d — P]p

E4fa: A — P(a)]p

Ll Fa=1a) P

&P Q]]p
&lNPa]e

Ex[P il Qlo

I

I

II»

1P

i

Y

lix

1]

{({},00, X) | X € P(E)}

{(0,0,X) | X e P(E)}

{(0,0,X) | v ¢ X}

u{({(0.v)).0,X) | X € P(E}}

Uit v aX) [tz 8 A v ¢X)

{(0.1.X) | 7 ¢ X}

u{(((t. 7)), &, X) | X € P(E)}

u{{{(¢', v}, X) ¢ =2t A X ePE))

{0, 6, X) [v ¢ X)

Ul(s+t,a+ 8, X)|(s,0,X) € S}ﬂP]p}

{(0.0,X) | a & X}

U{({(0, @) (s + 8),a + &, X) | (s, 5, X) € £[P] }

U{{{(t,a}"(s+ (t+ 8, a+t+ 6, X) |t 2 0
A (3,0, X € E-[P] 0}

{0, X} AnX =8}

UL(0, &) (s + 8),a+6,X) | a € AA

(s,0.X) € 5[Pla)] o}

Wt e (s + {4+ 8)),a+ 1+ 6, X))}

a€ AAt>0A (s,0,X) € E3[P(a)] 0}

when {P{a) | a € A} is uniformly bounded

SUP({({},a, X) | ((),a) € stab(€3[P]p U £4[Q] 2
A, X) € fail(E7 [P]p) N Jail(£2[Q] 0))
ui{s,a, X) € Ex[PlouEr[Qle | s # (1)

SUP(£1[P]o U €3[Q] 0)

SUP(UE7 [P(a)] o)
when {P(a)| a € A} is uniformly bounded

SUP('{((SP \ sQ},max{ap,aq},Xp U XQ) {
(sp,op, Xp) € Ex[P]p Alsq, aq, Xq) € E7[Q]p
Asp =3q})

201

€x [Py Qe

Exfr 1l Q)e

&P Qe

&P\ X]»

&lr 1P
&1(P]o
E}i[){lp
E}ﬂy XePlp

I

I

Ii»

iy

1l

I

1l

1l

{(s,maz{ap,aqg}, ZpU Zy U Z) |

3(sp,ap,Zp) € Er{Plo N (30,20, 29) € £ [Q] 0

ZpCTXNZgT YA

s€(spylly sQ)AZ C (2~ (XU}

SUP({(s. maz{ap,ag}, X) | Au,ap, X) € £3[P]p,
(0,09, X) € £5[Q] p ® s € Tmerge(re, 9)})

CL=(SUP({(s,a, X) | (5,0, X U{V]}) € ER[P]p A v & E(5)}
U{(57(w + t),a + £, X) | s™{(t, 7)) € Traces(E5[P]p)

AV EE(s) A (o, X) €E7[Q)P)))

{{s\ X,e, Y) | sis X-active in £3[P]p

Aa = sup{f | Hw,B) € £5[P]p such that

wis X-active A w\ X =3\ X}

Ala<oo A (5,XUY)E€ fail(E3[P]p)

Vie=o00 A Y e P(E)))}

where s is X -active provided

s contains no element of the form (i, a) for a € X

(all communications in X are in the form &).

{(S'ai X) | (f(s),a,f(X)) € E;‘HP]IP}
SUP({{f(s), 0 X) | (5,0, f (X)) € E2 [P} o))
A(X)

The unique fixed point of the contraction
mapping A ¥ o E-[P]{p! Ws(¥)/X]), where
W is the mapping on TMj; corresponding to
AY e WAITE, Y.

202

The Semantic Function £.

We now define the semantic function £ : TCSP — TMps.

Ergl] e
ST[SK[P]] P

ErfWAIT t] p

Er[WAIT¢; P]p

E;rl[a—v P]lp

Er[[a A — P(a)]]p

STI[PD Q]]ﬂ

Er[PNQ]e

e[1P(a)] e

erlP 1 Q]

I

I

I

ip

13

Il

I»

i

I

i

It

{({),00,8) | & € RSET}

{((y,0,8) | R € RSET}
{(().0.8) | v £ Z(R)}
U{{{{t.v)} Ry UR [2 0 A{TR) S0,) AV E ER,))
A T(Rq) € [t 00)}
{(0, R0) RN ([t,e0) x {v}) =)
U{({(¢, /), £\, URg URS) [2 LA T(R) C[0,0)
AUT(Re) S [L6) A v & D)) A T(Re) € 1, 00)}
{{s,e,®) | (s—ta—t,R=1) € ET'[PHP}
{((,0,8) | a ¢ ER)}
U{{{(t,a"(s+(E+8))a+t+61R)
t20 AagRME))A (s, R = (£ +6)) € Ex[P]o}
{((-0,8) | AN E(R) = B}
U{(((t,a)})~ (s + (t+ 8)),a+ 1+ 6,R) |
t20 AANER D =0)A(s,00R = (£ +8)) € E[P] 0}
when {P(a) | e € A} is uniformly bounded
SUP({((}, maz{ap,aq}.®) | ({},ar, ¥} € £7[P]p
A ((}aq.R) € E7[Q]p}

U{(s,a,8) |5 #£) A (s,0,8) € ST[P]pUST[Q]P
A ((3 R | degin(s)) € fail(Ex[P) o) 0 fail(E2[Q] £)})

SUP(Er[P)euEr[@]e)

SUP({JEr[P(a}]e)
when {P(a) | a € A} is uniformly bounded
SUP({(s, maz{ar, ag}, Xp UNg) |

(s,ap, Rp) € ST[P]IpA (5,09, Rg) € STIIQ]P”

203

Er[Pyliy Q]P

&Pl Qpe

&P Qe

ETHP\X]p

Erlrt(P)]e
Er[f(P)]p
ET|IX]|p
ExfuXePlp

b

»

13

il

t

1

Y

it

SUP{(s, maz{ap,ag},Rp URgUNz)|

A(sp,0p,Rp) € ST[P]p,(SQ,aq,Nq) € ETIIQ]p .

cRp) X Aa(Ng) S Y A

s€(sp xlly se)Aa(Rz) S (T - (XU T))}

where

vyllyw={se (T |se(XUY)A
stX=vAsl Y =w)

SUP ({(s, maz{ap,0q},R)) I, ap,R) € E7[P]p
A (v, g, 8) € E;r-ﬂQ]p » s € Tmerge(u,v)})

CLet(SUP{{(3,0,R) | v ¢ a(s) A YT € TINT »
(5,0, RU(T x {v}}) € Er[P] 0}

u {(s™(wt+t)at+t, R, U (Re+1)) |

J¢o(s) A end(R;) S tA (w,o,Re) € Er[Q]p

A ()08 U {[0,8) x (VD) € fail(Ex[P]o)}))

SUP({s\ X,8,8)| Jaz B2 end(s)w
(5,0, R U ([0, maz {8, end(W)}) x X)) € £z [P] o))

{(8,0‘, k'!) | (f(s)va'uf(N)) = ETI[P:HP}
SUP({(f(s),) | (s,0,4 (%)) € Ex[P] o))
p(X)

The unique fixed point of the contraction
mapping A Y » E£7 [P](p[Ws(Y)/X]), where
W; is the mapping on TMps corresponding to
AY e WAITS: Y.

204

Bibliography

[BRSY]

[BC&7)

[BK83)

(BK84]

(BKI84]

[BKPS4]

[BKP85]

[Bla8g)]

(BR8]

[Bro83]

[CR83|

(CRSS]

J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. PRG,
Universily of Amsterdam, 1989. {draft)

A. Boucher and R. Gerth. A Timed Model for Extended Communi-
cating Processes. Proceedings of ICALP '87, LNCS 267, pp 95-114,
1987.

H. Baringer and R. Kuiper. Towards the Hierarchical, Temporel
Logic, Specification of Concurrent Systems. LNCS 207 pp 157-183,
1983.

H. Barringer aud R. Kuiper. Hierarchical Development of Concurrent
Systems in ¢ Temporal Logic Framework. LNCS 197 pp 35-€1, 1984.

J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Com-
munication. Information and Control 60, pp 109-137, 1984,

H. Barringer, R. Kuiper and A. Pnueli. Now You May Compose Tem-
poral Logic Specifieations. Proceedings of the 16th ACM Symposium
on the Theory of Computing, pp 51-63, 1984.

H. Barringer, R. Kuiper and A. Pnueli. A Really Abstract Concurrent
Model and its Temporal Logic. Proceedings of the 13th ACM Sym-
posiumn on the Principles of Programming Languages, pp 173-183,
1985.

S R. Blamey. TCSP Processes as “Predicalcs”. Oxford University,
1989. (to appear)

S.D. Brookes and A.W. Roscoe. An Improved Failures Model for Com-
municating Proeesses. Proceedings of the Pittsburgh Seminaren Con-
currency, LNCS 157, pp 281-305, 1985.

S.D. Brookes. A Model for Commaunicating Sequential Processes. Ox-
ford University D.Phil thesis, 1983.

J.E. Coolahan aud N. Roussopoulos. Timing Reguirements for Time-
Driven Systems Using Augmented Petri Nets. IEEE Transactions on
Software Engineering, SE-9, September 1983.

J.E. Coolahan and N. Rousscpoulos. A Timed Petri Net Methodology
for Specifying Real-Time System Timing Constraints. Proceedings of

205

[Datss)

(DS89]

[FG3g]

[GF89]

[GL.Z8g)

[Hengg)
[HGR47]

{HMS3|

[HOS3]

[Hoafs)

[HR89]

[HW8)

the International Workshop on Timed Petri Nets, Torino, Italy, July
1985

N. Dathi. The Pursuit of Deadlock Freedom. Oxford University M.Sc.
thesis 1985.

J.W. Davies and S.A. Schneider. Factorising Proofs in Timed CSP,
Proceedings of the Fifth Conference on the Mathematical Founda-
tions of Programming Semantics, March 1989. (to appear)

M.K. Frauklin and A. Gabrichan. A Transfermational Method for
Verifying Safety Properties in Real-Time Systems. Presented at the
10th Real-Time Systems Symposium, December 1989.

A. Gabrielian and M.K. Franklin. Muiti-Level Specification and Veri-
fication of Real-Time Software. Thomson-CSF, Inc. Technical Report
89-14, July 1989,

R. Gerber, 1. Lee and A. Zwarico. A Complete Axiomatization of
Real-time Processes. University of Pennsylvania, November 1988.

M. Hennessy. An Algebraic Theory of Processes. MIT, 1988,

C. Huizing, R. Gerth, and W.P. de Roever. Full Abstraction of a
Real-Time Denotational Semantics for an occam-like Language. Pro-
ceedings of the 14th ACM Symposium on Principles of Programming
Languages, pp 223-237, 1987.

M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and
Concurvency. Journal of the ACM, 32, pp 137-161, January 1985.

B.T. Hailpern and §.5. Owicki. Modular Verification of Computer
Communication Protocols. IEEE Transactions on Communications,

COM-31, pp 56-68, 1983.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

J.J.M. Hooman and W.P. de Roever. Desigr and verificalion in real-
time distributed compuling: an fntroduction fo compesitional meth-
ods. Proceedings of the Ninth International Symposinm on Protocol
Specification, Testing and Verification, North Holland, 1989.

J. Hooman and J. Widom. A Temporal-Logic Based Compositional
Proof System. for Real-Time Meszage Passing. Proceedings of PARLE
'89 (2), pp 424441, LNCS 366, 1989,

208

[Jac89)
[Jon82]

[Koy89]

[KR83)

[KSRGASS]

[LM36]
[LS87]

[LZ87)

(L2388}

[MF76]

[Mil8o]
[MP82)

[Mer87]

I>.M. Jackson. The Specification of Aircraft Engine Control Software
U/sing Timed CSP. Oxford University M.Sc. thesis, 1989.

G. Joues. A Timed Model of Communicating Processes. Oxford Uni-
versity D.Phil thesis, 1982.

R.L.C. Koymans. Specifying Message Passing and Time-Critical Sys-
tems with Temporal Logic. PhD) thesis, Eindhoven University of Tech-
nology, The Netherlands, 1989.

R. Koymans and W P. de Roever. Ezamples of a real-time temporal
logic specification. LNCS 207, pp 231-252, 1983.

R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and
S. Arun-Kumar. Compesitional Semantics for Real-Time Distributed
Computing. Information and Computation, 79, pp 210-256, 1988.

K.G. Larsen and R. Milner. Verifying a Protocol Using Relativised
Bisimulation. LNCS 267, pp 126133, 1986.

N.G. Leveson and J.L. Stolzy. Safety Analysis Using Peiri Nets. IEEE
Transactions on Software Engineering, SE-13, March 1987.

I. Lee and A. Zwarico. An Algebra of Commaunieating Time Depen-
dent Processes. University of Pennsylvania, report MS-CIS-87-110,
December 1987.

I. Lee and A. Zwarico. Timed Acceptances: A Model of Time Depen-

dent Processes. University of Pennsylvania, January 1988.

P .M. Merlin and D.J. Farber. Recoverability of communication pro-
tocols — Implications of a theoretical study. IEEE Transactions on
Communication, COM-24, pp 1036-1043, 1976.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Z.. Manna and A. Pnueli. Vertfication of Concurrent Progmums; The
Temporal Framework. in R. Boyer and J. Moore (eds.) The Correct-
ness Problem in Compuler Science. International Lecture Series in
Computer Science, Academic Press, London 1982.

A. Merceron. Fatr Processes. in Advances in Petri Nets, LNCS 266,
pp 181-195, 1987,

207

[NASg]

[NRSVS9]

[NS&9]

[OHz3]

[Pet77]
[Pou77]

{Paugs|

[PS88]

[QF8T]

[Reegs)

{Regsg)
[Ros82]

[Ros88a)

[Rossgb]

K.T. Narayana and A.A. Aaby. Specification of Real-Time Systems tn
Real-Time Temporal Interval Logic. IEEE Real-Time Systemns Sym-
posium, Huntsville, Alabama, December 1988.

X. Nicollin, J-L, Richier, J. Sifakis and J. Voiron. ATP: an Alge-
bra for Timed Processes. Submitted to IFTP Working Conference on
“Programming Concepts and Methods”, April 1990,

K.T. Narayana and E. Shade. Language Concepts for Heal-titme Con-
currency. The Pennsylvania State University, 1989.

E.R. Olderog and C.A R. Hoare. Specification-oriented Semantics for
Communicating Processes. LNCS 154, pp 561-572, 1983; Acta Infor-
matica 23, pp 9-66, 1986.

J.L. Peterson. Petri Nets. ACM Computing Surveys, September 1977.

A. Pnueli. The Temporal Logic of Programs. Proceedings of Founda-
tions of Computer Science, pp 46-57, 1977.

A. Pnueli. Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A survey of current trends. LNCS
224, pp 510-584, 1986.

K. Paliwoda and J.W. Sanders. The Shding- Window Protoeol in CSP.
Oxford University Programming Research Group Technical Mono-
graph PRG-66, 1988,

J. Quemada and A. Fernandez. Introduction of Quantitative Relative
Time into LOTOS. in Protocol Specification, Testing and Verification
VII (H. Rudin, C.H. West eds), Norih Holland 1987.

GM. Reed. A Uniform Mathematical Theory for Real-Time Dis-
tributed Computing. Oxford University D.Phil thesis, 1988.

T. Regan. Personal Commaunication. November 1989.

AW, Roscoe. A Mathematical Theory of Communicating Processes.
Oxford University D.Phil thesis, 1982.

AW. Roscoe. An Alternative Order for the Failures Model Ox-
ford University Computing Laboratory technical monograph PRG-67,
1988.

A.W. Roscoe, Unbounded Nondeterminiam in CSP. Oxford University
Computing Laboratory technical monograph PRG-67, 1988.

208

[RRS6]

[RRS7]

[Sch88]

[Sif80]

[SL87]

[SL8Y]

[SN89]

(5ta77]
[Tan81]
[Zeds9)

G.M. Reed and A. W. Roscoe. A Timed Model for Communicating
Sequential Processes. Proceedings of ICALP’86, LNCS 226, pp 314-
323, 1986; Theoretical Computer Science 58, pp 249-261, 1983.

G.M.Reed and A. W. Roscoe. Metric Spaces as Models for Real-time
Concurrency. Proceedings of the Third Workshop on the Mathemati-

cal Foundations of Programming Language Semantics, LNCS 298, pp
331-343, 1987,

S.A. Schneider. Communication in Timed Distributed Computing.
QOxcford University M.Se. thesis 1988.

J. Sifakis. Performance Evaluation of Systems Using Nets. LNCS 84,
pp 307-319, 1080.

A.U. Shanker and $.5. Lam. Time-dependent distributed systemas:
proving safety, liveness and reel-time properties. Distributed Com-
puting 2, pp 61-79, 1987.

A.U. Shanker and S.8. Lam. A stepwise refinement heuristic for pro-
tocol construction. University of Maryland Technical Report, 1989,

E. Shade and K.T. Narayana. Real-time Semantics for Shared-variable
Concurrency. The Pennsylvania State University, 1589,

J.E. Stoy. Denotational Semaniics. MIT Press, 1977.
A.S. Tanenhaum. Computer Nefworks. Prentice-Hall, 1981.

H. Zedan. Formal Modelling of Distributed Real-Time Systems. Dept,
of Computer Science, University of York, 1989,

209

Index of Notation

Notation
Notation on traces

TSy

—~

#

in
first
last
hegin
end

Notation on refusal sets

TINT
RTOK
RSET
I

Page

T T =T 1= T IR ST Lt G

0o 00 0o OO

210

Notation

begin
end
§3

1t
T

[A
\A
=1
g

Notation on failures

begin

end

ti

it (on times)
11

o

={

tA4 (on events)
\A

A (A-active)

Notation on processes

traces
fail
stab
supP
Clw

N9

3
o
L3

© © 00 Go 0o o G0 GO 00

[Io 3 Fo R = Y T o e BT - T QT]

10
10
10
10
10
10
10
10
10
10

Notation

Other notation

rem,

Sl e R
N
)
a0

Ry

1 (on untimed processes)
1 (on timed processes)

Page

10
10
10
10
10
10
10

10
11
11
12
14
16
19
21

24
24
25

28
28
28
28

29

Notation

SIr{P]
sat
TF
S8

[(Py, Py)

o

C. (between processes)
C; (between predicates)
st (on M7 specifications]
we (to M specifications)
C; (between processes)
T, (between processes)

R{s,R)

F(P,, Py)

L (between predicates)
st (on My specifications)
we {to My specifications)

2.v
eV
elz
elr

211

Page

29
31
42
43
49
89
90
95
96
97
99
99
103
104
119
119
120
124
124
124
124
124
124
125
125
133
133
156

