
EFFICIENT INTERSECTION TESTS FOR OBJECTS
DEFINED CONSTRUCTIVELY

by

Stephen Cameron

Technical Monograph PRG·85
ISBN 0-902928-64-3

July 1990
------~--- ...-- '--"'''r ..•••.-.---­

Oxford University COIDPutinl L"'{'Jl.~~ :- ':.: , : ~". DATE ;
Programming Research Grou. J
11 Keble Road /' 25 fEB 2U02
Oxford OX! 3QD / ,

, ' I

EngJand r ~~.---~~_~T-_~~:_p:,." !
I- .. -~; .. :.......... i

! Ox r0 (~J;; I
'--111111111111--1

303387017X
---..-._.._.._-----­

Copyright © 1990 Stephen Cameron and MIT Press

Oxford University Computing Labora.tory
Progra.mming Research Gronp
II KebJe Road
Oxford OX! 3QD
England

"..

, , I ''''~,o;fy CO!!'p,uting laboratory
. . ,1 bU{lci:ng

! < ••' <;; Road
U){!O/U 0)(1 3OO~.

Efficient Intersection Tests for Objects Defined

Constructively'

Stephen Cameron

Abstract

Testing for the existence of intersections is an important part of algorithms
for interference detection, collision detection, and the like. We describe three
techniques that ca.n be used to implement a.n efficient intersection detection
routine when entities are described constructively; that is, as set combina­
tions of primitive entities. All three techniques are described in a domain
where constructive solid geometry is the principal entity description used,
although their use in boundary representation schemes are also discussed.
The first technique, called S-bounds, is a method of reasoning about where
intersections may be taking place; in practise it is fast, a.nd often sufficient.
S-bounds can also be used as a general constraint manipulation method over
Boolean algebras. The second technique is based on spatial subdivision, a.nd
is used mainly to improve the speed of the intersection test. The third tech~

nique is employed only on the regions of space that are left by the first two
techniques; it is a specialisation of the "classical" technique of generate­
and-test. The combination of these techniques has been implemented as an
intersection detection routine which shows a speedup over the "classical"
algorithm of about two orders of ma.gnitude.

'This paper is a slightly longer version of one that appeared in the Inlt.rn.a'ional
Journal of Robotics Rt.Sl'an;h 8(1)3-25, February 1989

1 INTERSECTION DETECTION PROBLEMS

1 Intersection Detection Problems

The general intersection detection problem can be formulated as: 'Given two
subsets A and B of R'\ do they have any point in common?' A common
use of intersection detection is to solve the interference detection problem,
viz.: 'Given two objects, OA and 0B, do they interfere?' This can be solved
by considering the point sets A and B, wh.ich. consist of all the points in the
objects OA and DB, and performing an intersection test in ~. Collision
detection can also be formulated as an intersection test, this time in i'­
[Cam84}. In fa-ct, IDAUy of the algorithms used in solid geometry, including
ma.ny of those useful to rohoticists, rely heavily on being able to perform
intersection tests between entities of various dimensiona.lity-for example,
ray tracing considers the intersections of a line with a solid.

Entities are orten described to a computer constructively; that is, as set
combinations of simpler entities. In such systems it is possible to reformu­
late an intersection test aa one of null object detection (NOD): given the two
entities A and B, test whether their set intersection An B is the null ~et.

In the rest of this paper we will concentrate on the solution of NOD in the
context of a constructive solid geometry (eSG) modelling system; that i~, a
system in which objects are described to a computer as set combinations of
primitive objects (SUCh as parameterised cuboids and cylinders) and which
keeps tbese description internally as its principal representation of the ob­
jects. However, the techniques described here can also be of use in other
systems, such as some boundary representation (B-rep) systems which also
keep a record of the steps used to construct tbe objects, and tbe modifi­
cations reqUired will be outlined aa appropriate. (For a discuf;ision of the
various types of solid modelling systems available, see [RV82, RV83J.)

Tbe algorithm to be described consists of three separable parts. The
first part is based on a new method for reasoning about tbe parts of space
that could be occupied by the set we are testing for nullity, caUed the S·
bounds method, and because this metbod is new its description occupies
mucb of this paper. The use of this method is sometImes enough in itself
to partially decide the NOD problem, as it can give the answer "definitely
null". (As an example, the two robots in figure 1 are shown to be not
intersecting just by using the S-bound method.) The second method is
baaed ou a spatial subdivision technique used in computer graphics; this
is also a partial decision procedure, with possible a.nswers "definitely null",
"definitely not null". and '"don 't know". Both of these two techniques also
localise the problem; that is, reduce the 'volume' of 'space' in which it is
necessary to search for evidence of uon-nullity. The third method is the
exhaustive method that is used when aU else fails, and is based on the

1 INTERSECTlON DETECTlON PROBLEMS 2

Figure 1: Two robots almost interfering

folklore of computational geometry; unlike the other two methods, it is also
highly dependent on the types of geometric features allowed in the system.
In the a.uthor's implementation these three methods operate in cascade, with
ea.ch sta.ge a.ttempting to answer the NOD problem itself and only passing
on pa.rts of the original problem that it ca.nnot tackle. Much of the efficiency
of the overall implementation results from the cannol of this cascade.

The rest of this paper is organised as follows. The theory behind the
S-bounds method is described in §2 in a fairly general way. §3 describes how
this theory is used to prune the search space (or the NOD problem, using
the theory of redundancy [TiI84]. §4 a.nd §5 provide the details of the spatial
subdivision and the exhaustive steps respectively, §6 gives some examples of
interference detection within the RQBMOO geometric modelling system, and
§7 provides a summary.

2 THE THEORY OF S-BOUNDS 3

2 The Theory of S-bounds

2.1 Formalism

In a. eSG modelling system objects are described either as primitive shapes,
which a.re already known to the system, or as set-combinationsl of other
shapes together with rigid-body transformations. In general the modelling
system representation i5 equivalent to a set of directed graphs, where: the
arcs represent functional application; the non~termina.l nodes represent set·
combination or transformation operators; and the terminal nodes represent
primitive shapes, which are specified by a set of parameters, or they refer
to other shape gra.phs. A valid eSG graph may always be rewritten as an
equivalent eSG tree in which the branches only represent set-combination
operators and the leaves are transformed primitive shapes; this may be done
by "sweeping" the transformation nodes towards the leaves, and copying
references to other shapes as required. Although the algorithms described
here can be modified to allow their use with the eSG graph structure itself,
the theory is described in terms of eSG trees.

Thus, without loss of generality we can regard a eSG tree a8 a binary
tree with branch nodes EEl, ® and a, and leaf nodes which represent primitive
shapes which we can label as convenient (e.g., Pn). We can write down the5e
trees either as tree diagrams, or using an infix notation (e.g., P t ffi P2). Given
a tree we may refer to a node in the tree as an entity in itself, or we may U5e
the node to refer to the subtree that has that node as its root node-these
nses can be distinguished by context.

As described, a eSG tree is a purely synta..ctic structnre, devoid of se­
mantics. Most authors do not distinguish between such trees and their
normal semantics, in which the trees are taken to mean the set formed by
interpreting the leaves as the appropriate point sets, and the nodes as the
appropriate set operations (\3.) for U or set union, ® for n or set intersection,
a for - or set difference). However such an approach is not appropdate here
for three reasons. Firstly, the trees are rewritten as part of the algodthms
to be described, and this rewriting is made clearer if it ca.nnot be confused
with manipulations of the semantics. Secondly, separating the semantics
means that we can establish results that hold when the primitive objec\s
are replaced by a number of different objects. And laEltly, the S-bonnds that
form the core concept in the theory to be described in this section form an
extra structure which is not easily appended to the old notation. (To heJp
the reader we have summarised the extra notation used in figure 2.) ._.

- 1 here are sneral da.s8eIJ ot set~operation8; for the purpOl'f! of this paper we require
that they (orm a Boole&ll algebra.

2 THE THEORY OF S-BOUNDS 4

u,n,-, Set operations: union, intersection, difference, complement
&,O,8,"" Tree node labels: union, intersection, difference, complement
T,T Root node or entire tree; tree node or subtree

Primitive and Full Interpretation Functions" T
p, ~n Bounding Functions (130 always returns 0)
i;, ;:) Partial orders on functions
J[X I- S] Function equal to f, except that fiX I- S](X) = S
u,n "Union" and "intersection" operatIons for S-bounds
1, T Tree node labels, which always interprete to 0 and n resp.

Figure 2: Summary of Notation

Given a tree we define its semantics to be a subset of in Le., the 'sha.pe1

ofthe tree'. To decide which subset, we need to know tW() functions: one is
the primiHve interprttation function, which takes a leaf node of the tree and
returns the subset of Rri that is the point set for the appropdate primiti~;

and the bounding !undion, which limits the attention of each node in the
tree. We denote primiti~ interpretation functions by L, t ' , etc., and bound­
ing functions, which tale a. node of the tree and return a subset of R", by
fJ, {3', etc. How the boundlng functions are generated will be described in
due course, but they can be thought of returning simple supersets of ob­
jects, such as boxes or spheres. (Snch bouuds are normally implemented as
attributes attached to the CSG tree structnre itself, rather tha.n as sepa­
rate functions.) Given the primitive interpretatiou L and bounding function
fJ, we can compute the corresponding (full) interpretation function, Ifit as
follows:

• If T is a tree of the form T, { i }T" then

Tp(T) = (TP(T,) { ~ } TaCT,)) (1 P(T)

• Otherwise, T is a leaf node, and Ta(T) = ,(T) (1 ~(T)

In our own work we have used the regularisedset operations [Req80]; however
all of the results in this section, and most of the results in the paper, only
rely on the operations forming a Boolean algebra. Interpretations which

2 THE THEORY OF S-BOUNDS 5

a.re based on other primitive interpreta.tions a.nd hounding functions will he
denoted accordingly; for example, I p" denotes the interpreta.tion based on
,,' a.nd (3". The idea. behind the bounding functions is that each bound (the
value returned by the bounding function a.t each node) describes a. subset of
R" outside of which the value of the corresponding subtree should be ignored.
Many geometric modelling systems form 'boxes' around the primiti~ nodes
which a.re hounds in this sense; we ha.ve simply extended. them to cover every
node in the tree2 • Note tha.t for the trivial bounding function {Jo, which
alwa.ys returns the universal set il, then the corresponding interpreta.tion
IOn is alwa.ys equivalent to the normal semantics of a. CSG tree (Le., one
without the notion of a. bounding function). For brevity, we write I(T) fOT

ICn(T).
In what follows we will Introduce three classes of bounding functions,

tbe last being S-bounds, which we will show to have the desira.ble properties
of being easy to g€nerate and which do not ch;mge the normal semantics of
CSG trees. These particular bounds allow us to prune the su bsets of space
in which to search whilst performing NOD.

2.2 S-bonnds

We distinguish three classes of bounding functions that do not change the
semantics of a particular tree with respect to a particular primitive inter­
pretatIon:

o Definitions

Let T be a tree with primitive interpretation L ;md bounding
function {J. We say that {J is consisfent (on T over L) if IIJ(T) ;:::
I(T), and we say that (J is fotally consistent if IIJ.{T) = I(T),
for all other bounding functions (J' :! fl· Here the notation / !; g,
or 9 :! f, means that / and 9 are functions over the same domain
with f(T) ~ g(T) for all argument, T.

Consistent bounding functions preserve the meaning of a eSG tree. How­
ever. once we start using a. consistent bounding function we must c:ontinue
using it or risk changing the semantics of the tree. As a simple example,
consider the "'primitives" from Rl given by L(A) = [1, 2}, L(B) = [0,3]. and
T the tree A e B. Then a suitable consistent (J is given by (J(T) = fl,
I1(A) = I1(B) = 0, .. then IC(T) = I(T) = 0. However, if we then ,.le<­
tively ignore the bound on A, effectively by setting its bound to il, then

·The UnlverslLy or Roches~er's PADL2 modeller is another uample that UgeS bounds
at every node in the CSG tree.

2 THE TIIEORY OF S-BOUNDS 6

the new bounding function, {j', will no longer be consistent as Iw(B) = 0.
and I/J'(Y) = Io,(A} = [1,2]. Totally consistent bounding functions are the
subclass of consistent bounding functions that do allow you to arbitrarily
expand the bounds whilst staying consistent. (Apart from esoteric reasons
for preferring totally consistent bounding functions there is a practical rea·
5On; when we apply rewrite rules to improve such functions we wish to be
able to restrict ourselves to certain classes of elements, which is far easier if
we can arbitrarily expand a.ny bound.) Po is a trivial example; a less trivial,
and useful, class of totally consistent bounding functions is one that satisfies
the following property:

o Definition

Given a tree T with primitive interpretation L then a bounding
function /3 satisfies the boxing property if

• ~(L) ;2 ,(Ll for all lea! nodes L 01 T

• /3(T)::: f! for all other nodes of T.

It is normally a simple matter to generate a set of simple bounds that
satisfy the boxing property as the primitives in a CSG represention are them+
selves fairly simple. (For example, it is simple to find a box that contains
a given cylinder.) Totally consistent bounding functions are useful, but are
generally difficult to manipulate. The S-bound (for Super-bounds) bounding
functions are a snbclass of the class of totally consistent bounding functions
which are susceptible to mauipulation.

<) S-bound Functions

Given a tree 7 with primitive interpretation L the bounding func­
tion /3 is an S-bound function (on 7 over t) if it is totally con­
sistent with respect to all smaller primitive interpreta,tions; Le.
if I o,(7) :::: T(7) for all /3' ~ /3 and all (' !;::; r. The sets returned
by an S-bonnd function are called S-bounds.

It is easy to see that /30 is always an S-bound bounding function, as is any
bounding function satisfying the boxing property. Also, if j3 is a.n S-bound
fllnction then so is any /3' ~ /3. We can now introdnce the two thKlrems
to.at make all this preparation worthwhile; they describe rewrite rules fOf
generating a new, better S-bound function from an old one. The notation
J[X l- Sj denotes the function that is equal to f everywhere, except that
the value at X is replaced by the value S.

2 THE THEORY OF S-BOUNDS 7

o The Upward Theorem

Let T be a bounded tree with S-bound function {3. If T is any
subtree of T with immediate subtrees T1 and T2 then another
S-bound function for T is given by {3', where

~'= ~[T ~ S n ~(T)J,

a.nd the set S is given by

~(Td u ~(T,) jfT=nm~

S = ~(Ttl n ~(T,) HT=n®~
{

~(Tl) ifT=ne~

o The Downward Theorem

Let T be a bounded tree with S-bound function {3. 1f T is any
subtree of T, and T 1 is au immediate subtree of T, then another
g·bound function for T is given by /3', where

~' = ~[T' ~ ~(T) n ~(T')]

The proofs of these theorems are tedious, a.nd they are deferred until
the appendix. Given the intuitive idea of hounds being boxes tha.t enclose
the primitives in a eSG tree, the correctness of the Upward theorem should
be evident; if we start with a bound set that satisfies the boxing property
and just apply the Upward theorem, theu the bounds that get formed at the
branch nodes are just supersets of the sets that are formed when you take the
normal semantics of the corresponding subtree's interpretation. Similarly. jf
we know that the set, represen ted by T, can be enclosed within a box B, then
it is "obvious" that we should be able to ignore any parts of the primitivtl5
of the tree that lie outside B. What is not as obvious, and is in fact quite
difficult to prove, is that we can legitimately combine both types of rewrite
rule within the same system. (The proofs are complicated by the existence
of the 8 operator; they are almost trivial without it.) The advantage of the
notational framework that has been built up in this section is that we can
be quite precise ahout what rewrites are and are not allowed: this will he
useful as we explain how S-bounds are useful within the fra.mework of CSG.

2.3 A Two-Dimensional Example of S-bounds

To illustrate how S·bounds can be used consider the simple CSG tree shown
in figure 3(a), consisting of a two operator tree a.nd three primitives from !R~.

2 THE THEORY OF S-BOUNDS 8

The primitives are each shown within a frame; this is simply to emphasis
their relative layout. We have also shown the resultant shape described by
the tree under the normal semantics.

The S-bounds we will use here will be rectangles aligned with the frame,
and a set of S-bounds that obey the boxing property are shown in figure
3(b). If we apply the Upward Theorem twice, firstly about the ffi node and
then about the ® node, we get the new S·bounds shown in figure 3(e); as
expected, each bound is a superset of the corresponding subtree. We can
then "push" the bounds back down the tree by applying the Downward
theorem four times, twice to the children of the ® node, and then twice to
the children of the ED node; the resulting S-bonnds are shown in figure 3(d).
The important feature here is that the S-bounds about the primitives are
now smaller than the original bounds and, in particular, the S-bound abont
the left-most primitive is now the null set. Th..is reflects the fact that this
primitive is redundant (in this configuration) [TiI841 , and could be removed
from the eSG tree without affecting the resultant shape. (See §3 for more
detail8.)

In fact it is possible to simplify the bonnds further by repeating the
process of Upward and Downward Theorem applications, starting with the
bounds in figure 3(d). This results in the other four bounds converging
to the smallest non-null bound in figure 3(d). Although this is a simple
example, the same principle applies to much larger eSG trees.

2.4 Making Use of S-bounds

So far we have only described S-bounds as an algebraic system; we have
not described how they can be used in practise. The practical use that we
have made of S-bounds is to use S-bound sets that are easily described, and
manipulated quickly-in time linear in the size of the eSG description. This
enables us to use S-bouncls quickly as a preprocessing stage, to simplify the
slower processing that follows. Th..is philosophy applies to the NOD problem
in particular, when large speedups in processing time are the norm, but it
has also been applied by default to many of the other processing algorithms
used in our geometric mOdelling system (e.g., drawing, inertial property
calculation, and minimum distance calculations).

The S-bounds that are used are boxes, aligned with some arbitrary world
coordinate axis system. Thus in two dimensions each box c~n be described
as a four-tuple, viz.:

(XI, Ylo Xh, Yh) :::: {(x, y) IXl :::; X :::; Xh, YI :::; Y ~ Yh}

We need a pair of operators, U and n, such that A u B 2 A u Band

2 THE THEORY OF S-BOUNDS 10

An B 2 An B; we use the obvious pair:

(a,b,e,d) U (a,{3",b) (min(a, a), min(b, {3), maxie, 1'), max(d, bJ)

(a,b,c,d) n (a,{3",b) (max(a, a), max(b, {3), mintc. 1'), min(d, bJ)

(We also need to denote infinite bounds, and to identify llull bounds.) Such
operators can obviously be applied in unit time; other properties of these
operators include the identity An B = An E, and that both operators are
commutative and associative, but neither distributes over tIle other.

Another obvious choice for the class of bounds we could use is spheres.
We have not used them in our implementations, but we give a corresponding
set of operators for completeness. A spherical bound is described by its
centre and its radius, say (c, r). Given two such spheres. say {ell rl} and
{c8 ,rS } with r/ ~ rs , then if d is the Euclidean distance between c, and c,:

• if the operation is n, we get three cases:

- if d > n + r" the result is 0;

- if d < r/ - r" the result is the same as the smaller sphere;

- otherwise the result is a new sphere, namely

([(d'~ + rr- r;)c/ + (d2- rr + r;)c,,] /2cf •

[4rrr; - (d2- rr - r;)2] /4d 2
)

• if the operation is U, we get two cases:

if d::; r/ - r, then the result is the same as the la.rger sphere;

- otherwise, the result is a new sphere, namely

([(d + r, - r,)cI + (d - r, + r,)c,J/2d, (d + r, + r,)/2)

In each case the centre of the resulting sphere lies on the line between the
centres of the original spheres, and the sphere has minimu Tn radius. These
sphere operators are commntative, but not associative.

The next problem to solve is the order in which the rewrite rules (as
given by the Upward and Downward theorems) are applied. We have used a
simple ordering, namely we apply the Upward theorem in a bottom·up man·
ner throughout the whole tree, followed by applications of the Downward
theorem in a top-down manner. (This was the ordering used in the example
of §2.3.) As was mentioned in §2.3 we can often gain by rcpe<lting this pro­
cess; the bounds need not converge after the first applicat ions. This order

2 THE THEORY OF S-BOUNDS 11

proc::edure setSBs(n, T)j
setboxes(T);
do n times begin

upSB(T);

downSB(T):

.nd
endproc::

procedure downSB(T);
do-dSB(T, n):

endproc

pro(:edure do-dSB(T, B)j
N B ~ boundof(T) n B:
boundof(T) ~ N B:
it not isa-lea1{T) then begin

do-dSB(Jeftchildo(T, N B));
do-dSB(rigbtcbiJdo(T, N B)):

end
endproc

procedure upSB(T);
if not isa-leat(T) then begin

upSB(leftcbildo(T)):
upSB(r:ghtchildo(T)):
L ~boundof(Jeftchj/do(T)):

R ~bo"ndof(rjghtchildo(T));

switch on operator-ol{T)
case 6;1: C - LU R;
case @: C _ L n R;
case 8: C _ L;

endsw
boundof(T) ~

boundof(T) n C:
end

endproc

procedure setboxes(T);
if isa-Jea(T) then

attach a convenient bound
that i8 a superset oj L(T)

else begin
boundoitT) _ OJ
setboxes(Jeftchildo(T)):
setboxes(rightchildot(T»j

end
endproc

Fjgure 4: Code for S-bounds

2 THE THEORY OF S-BOUNDS 12

of rewrite rule application is embodied in the procedure setSBsO, which is
sketched in fignre 4; this computes a set of S-bounds that satisfy the boxing
conditions, and then repeatedly applies the Upward and Downward theorem
throughout the tree a given number of times.

We have used aligned boxes in all of our work with S-bounds, although
other types of bounds could be used. For example: boxes wi th arbitrary ori­
entation; ellipsoids; convex hulls; and maintaining both a. box and a sphere
abont each node in a tree, and regarding their unevaluated intersection as
an S-bound. An extreme case, which is of mainly theoretical interest, is to
use the actual primitives themselves as initial S-bonnds, i.e. 13(L) = I-(L) for
all leaf nodes L. However the gains to be had in obtaining "tighter" bounds
have to be offset against the longer times required to compute them.

Given two S-bound functions, it is rea50nable to ask whether they can
be combined in some way. They can, by virtne of tbe following theorem,
which is proved in the appendix:

oS-bound Intersection Theorem

Let {31 and {32 be S-bound functions over some tree T; then so is
13, 0 f3" whe'e (f3, 0 f3,)(T) = f31(T) n f3,(T) fo' all suhl''''s T
ofT.

It is not necessary to use the algorithm shown in figure 4 to refine S­
bounds; in practise this algoritbm works well in our applications, but other
strategies could be tried. We can regard S-bounds as a constraint manip­
ulation system in which information about individual constraints (Le. the
primitives) are passed to other subtrees. Applying heuristics to encourage
the spread. oftight constraints (Le. small primitives ana subtrees) could be
fruitful.

2.5 Convergence Properties

In the general case a system of S-bounds need not converge at all, as there
is no requirement that the rewrite rules be deterministic. (We can always
choose an arbitrary superset of any S-bound.) For the S-bound sets and
operators that we use, namely the aligned boxes, convergence in finite time
is assured. To see this, note that each bound in Rn can be described by
2n parameters, giving the maximum and minimum extent of the box in
each dimension. Also, the operators U and n can only replace parameters
for the bounds for one subtree by existing parameters from other bounds.
Thns the total number of possible bounds is finite, and so the total number
of possible S-bonnd functions that can be obtained b}' applications of the

2 THE THEORY OF S-BOUNDS 13

Upward a.nd Downward theorems is finite. Convergence now (oUows from
the (act that the opera.tions produce sequences of bounds which are (000­

strictly) monotonically decreasing in size. In fact it is possible to show
tbat for each Upward and Downward pass either this S~bound sequence
converges, or we ca.n set at least one S-bound value to~. From this Wfl

can deduce that the aligned box system must converge in qua.d.ratic time
[CY90J. Experjrnentally convergence of this system is nonnaUy quite ra.pid.
We conjecture that, for practical purposes, a call of the form setSBs(d, T)
will give a useful set of S-bounds, where d is the depth of T' and T' is
obtained from T by compressing groups of ffi and 0 nodes jnto equivalent
n-ary nodes-e.g., replacing a subtree of the form A ffi (B ffi C) by a single
tertiary node. For our own implementation we have set d = 3, as thi~

seems to give good results and an S-bound processing algorithm that rum
in time linear in the size of the eSG tree4 . We can, however, construct
Mtifidal examples which require longer to converge fully. Consider the tree
T = (/0 ffi 12 ffi· .. Ell hn-2) 0 (II ffi 13 ffi··· ffi hn-l), where for simplicity we
have not ma.de the binary tree structure explicit and where 1m corresponds
to the open interval (m,m+ 1). Then sucessive calls to upSB(T) foUowM
by downSB(T) result in the following sequence of bounds on the node T:
(1,2n-1), (2,2n - 2), (3,2n - 3),... , (n -l,n +1), 0. This convergence
requires qua.dratic time, and so this example is a worst-case example for this
problem.

2.6 Three~Dimen8ionalExamples of S-bounds

We only present some simple examples of S-bound manipulations here, con­
centrating on the effect of e operators in eSG trees; more examples are
to be found in later sectious. Figure 5(a) shows two loops, both create<!
by taking a block and differencing out a cube to fonn the hole. The two
loops can be mated (though not without cutting them), as shown in figure
5(b). Using S-bounds aligned with the blocks allows us to bound the space
occupied by the intersection set, as shown in figure 5(c); figure 5(d) shows
the total bound attained for a case in which the S-bounds are skeWed with
respect to the objects. (The thin lines show the outlines of the original
objects.) As can be seen a useful reduction in the space to be considered
is obtained; the reduction is not as dramatic as in some of our exampl~

due partly to the limited reasoning possible through the e operators, and

31 am indebted to Chee Yap for lhis obsenation.
4When testing two robot assemblies we form the intersection of a pair of assemblies;

ea.cb assembly is the union of a number of objects ("links") which are often themselves
fairly lIimple objects.

2 THE THEORY OF S-BOUNDS 14

pa.rtly to the true complexity of the problem. As anotller example, figure
6(a) shows a palr of objects, one of which is shaped like an 'E' on its side,
and the other like a '71", which a.re made up from taking tbe union of 4 blocks
and 3 blocks, respectively. The two objects can be mated exactly, and we
consider their intersection. With the bounds chosen to match the blocks all
the primitives are shown to be null-bounded after 3 calls to up-SBO and
down-SB(); figure 6(b) shows the remaining bounds after 2 calls, with the
original bounds outlined as thin lines. Figure 6(c) shows the same objects,
hut this time made up by differencing out the "'gaps" between the "teeth".
In this case the S-bound set settles down to the set shown in figure 6(d); it
is not possible to reason further about the interaction hetween the teetb.

2.7 Summary of S-bounds

We have demonstrated how a system of bounds can be established about
every node in a esc tree, and we have made explicit the semantics of these
bounds. The hounds establish regions outside which the relevant subtrees do
not matter with respect to the entire tree. S-bounds are used where we have
a. particular tree on which we wish to do computations, be they for drawing,
mass properties, boundary evaluation, or whatever. For many applications
the reduction in the size of the bounds is small (say of the order of a few
percent), but even then they can lead to noticeable speedups in running
times. However, when the operation to be performed is NOD we shall see
that large increases in running speeds are the norm.

Boxing tests have become part of the folklore of computational geometry
and solid modelling; indeed, they were the starting point for the research
that lead to the approach adopted in this paper. However they have not
before been placed on the firm theoretical footing shown here. The aetdition
of our theoretical framework has two advantages: firstly, we have been able
to show how to refine the bounds that are used (standarrl boxing tests
being equivalent to just using a set of S-bounds that satisfy the boxing
property); and secondly, we have established results tllat are indepenrlcnt
of any particular domain. The domain that we have been interested in is
the regularised set model of shapes and motions [Req80, Cam84], but the
results of this section hold for any Boolean algebra. The only work of which
we are aware that is of a similar flavour to our own was performed at the
University of Rochester's Production Automation ProjflCt~ namely the work
on localisations [TiI81], which inspired much of the work to be r1escribcd in §3
and has culminated in the concept of active zones [RV89]. Active zones are
related to S-bounds in that the active zone of a subtree is, effectively, defined
to be the region outside of which the subtree "doesn't matter". Rossignac

'" 52 0 '"
 .;,
"'
 z

>­0 ~

~

~ ~ '"

e:
~

•"­0 0

'" .S '"<;• • ~,£l • 0

E-<
.;;•" " ~

::­
3

J
J

]1

I

11
.1

II
I

'"
lJ

r"1

I l
]1

11
11

k

;;j'"!;j

2
t>

l
0 >-<

: "" 0 .., ~ '" @

c;
,

""

k
:

3 S-BOUNDS AND NULL OBJECT DETECTION 17

and Voelcker then show bow the active zone of a subtree can be computed,
by use of an intermediate form (which is, effectively. a. CSG tree with no
internal e nodes). The active zone is, as defined, a single set, and 80 it
does not in itself admit the types- of fast processing using 14a.pproximatioDS"
to shapes that were the driving force behind the development of S-bounds.
However active zones are a. useful conceptual tool, and are being used in the
development of the PADL2 marleller.

Many B-rep modelling systems allow objects to be defined constructivelY;
in such systems it would be possible to store the original construction in­
formation and then apply an S-bound analysis to that. This information
conld then be used, say, for automatically scaling pictures of the object,
or for marking the feature records in such a modeller with a box that can
then be used when testing features for intersections. (By "feature" we pri­
marily mean edge, face or surface patch records. Feature intersection tesh
are a commou component of many geometric algorithms, such as boundary
evaluation.)

3 S-bounds and Null Object Detection

In this section we will build on the uotion of S-bounds to develop the top
layer of our NOD algorithm. Giveu a eSG tree we run a S-bound processing
algorithm to refine the bounds-in our own impleutation we have effectively
been running setSBs(3, T). Immediately we can note that any 5ubtrees with
a null S-bound (null-boundecl) cannot affect the "value" of the tree, and so
we can effectively prune any such subtrees from the eSG tree. In particular,
if the whole tree is null-bounded the whole tree must be null. This is the
sense in which the S-bound method is a partial decision procedure, and in
onr experience with using the algorithm to perform interference detection for
robotics it occurs suprisinglyoften. As an example, figure 1 shows two robot
arms, and the corresponding eSG tree coutains 30 finite primlti~s and 8
infinite half-spaces; however, when the robots are checked for interference
the S-bouuds preprocessing step alone is sufficient.

Having performed the S-bound step it is possible to jump straight to the
division algorithm which is described in §4., using the S-bonnd attached to
the root node of the tree as the spatial bound that that routine requires.
However there is yet another stage that we can profitably intersperse. This
extra stage is based on Tilove's redundancy algorithm [Ti184], although the
version that we describe uses S-bounds directly. First, we need some extra
notation. We assume that we are dealing with a particular tree, T, so that
any subtrees we discuss are subtrees of T, and that a suitable S-bound

3 S-BOUNDS AND NULL OBJECT DETECTION	 18

refinement algorithm has been run on T, such as setSBs().

¢	 General Definitions

•	 Two subtrees a.re said to be disjoint if neither is a subtree
of the other.

•	 The order of a. subtree (in T) is the number of times that
the path from the root node of T to the root node of the
subtree passes to the right of a. e node. For example, in
T = A e (B Ell (C e D)) A is of order 0, Band C are of
order 1, and D is of order 2.

•	 A subtree is said to be positive if it is of even order, a.nd
negative otherwise.

•	 A subtree T is said to be 0-redundant, or simply redundant,
if I(T) = I'on[TI-0](T)j or equivalently, if the subtree T
conld be replaced by a. representa.tion of the null set.

Tilove discovered in his seminal work on redundancy that all the positive
primitives in a tree that represents the null set are 0-redundants. Further,
if P is a positive primitive of 7 then Pis 0-rednndant if (in om notation)

I(T) n ,(P) = 0.	 (1)

The converse is not true; however l if the intersection is not null then neither
is I(7), and so (1) can be used as the basis of a NOD algorithm:

o Tilove's Algorithm

Pick a positive primitive of 7, and perform the test (1). If the
test is false, then return false; otherwise replace the primitive by
one whose interpretation is 0, simplify 7, and repeat.

This algorithm is useful for two reasons. Firstly, the test in (1) is effectively
the same as solving the NOD problem for 7 within the region given by t(P);
generally we can take advantage of this to ignore parts of T that lie outside
t(P), giving significant computational savings. (This is an example of a
spatial localization algorithm, whereby we focus our atten tion on only part
of the space that we are interested in.) Secondly, at each stage we either
demonstrate that I(7) i- 0, or we can simplify the tree-that is, replace

5{ am indebted to an anonymous reviewer for pointing out that [RV89] gives the basis
of an extension to Tilove's ideas, which ha.s been implemented inLo PADL2.

3 S-BOUNDS AND NULL OBJECT DETECTION 19

Xe.l _ Xprocedure SimpJify(T);
if boundot(T) = 0 then X0-L _ -L

return .1; X8.l _ X
if not isa-Iea1{T) then

-LeX _ -L
L ~ Simplify(JeftcMldo((T)));

XffiT _ TR ~ Simplify('ightchildo(T)));
rewrite T, if applicable X0T _ x

return T
endproc	 XeT - -L

T8X _ ...,X

Figure 7: Simplifying eSG Trees

the tree by a. smaller tree. Thus, if I(T) = 0 then we will go through all the
positive primitives in turn, at each iteration the tree tested will get smaller,
and we wHl end up with a. tree tha.t is identically null [Til84, TUBI].

This is the first time we have discussed rewriting the esc tree itself, and
some explanation is required. So far we have simply rewritten the bounds
on each node of the tree, using the rules for S-bouuds. From now on we will
try to reduce the size of the eSG tree we are considering as we proceed. To
do this, we add two new terminal nodes to those that can normally be found
in a eSG tree, pIns some new rewrite rules. The new terminal nodes are
written .1 and T; .1 represents a primitive whose interpretation is always~.

and T a primitive whose interpretation is alway8 n. With these nodes we
can apply rewrite rules that reduce the size of the tree, based on identities
such as A U0 :::: A, etc. Figure 7 shows a partiaJ set of such rules, together
with a simple routine for applying them. For the purposes of this section
only the rules concerning .1 are of interest; .1 can he introduced to replace
any node whose bmmd is 0.

3_1 Redundancy-Based NOD Algorithm

Our algorithm is based on Tilove's, but uses totally-consistent bounds as
the focusing regions (generated from S-hounds), rather than primitives as
the focusing regions. Proof of its correctness follows from the Redundancy
Theorem, which is itself proven in the Appendix.

3 S~EOUNDS AND NULL OBJECT DETECTION 20

o Redundancy Theorem

Let T be a. tree with a. totally consistent bounding fu nction f3. If
T is any positive subtree of T such that I(T) n f3(T) ::; 0, then
I1[T I- 0] is another totally consistent bounding function on T.

This theorem is our generalisation of (1), bot the use of bounds is generally
more convenient than using the shapes of the primitives themselves, and
we are not limited to just considedng leaf nodes of the tree. Note that the
theorem does not hold if we replace both occurences of "totally consistent
bounding function'" with "8-bonnd function"; as a counter-example, consider
T = A e E, with ,(A) = ,(E) = X ¥ 0. Theu I(T) = 1'1 aud {in is an S­
bound (unction on T, but IJn[A I- 0] is not an S-bound function-consider
,[E HI.

UlSe of the Redundancy Theorem allows us to incrementally simplify the
CSG tree as we cousider regions. We also need to be able to pick put nodes
in the tree at which to apply the theorem; we chome the nodes from a
covering set.

o Definitions

Given a tree T, a disjoint set of subtrees {Tl , T2 , ••• , Tn} is called
a covering set (of T) if

TJTtlT,J ... JT. '" .L

where T1TI means the tree T with the subtree T) overwritten by
.1, T1TtlT2 means (TlTdlT2' etc., and == is equiva.lence under
the standard rewrite rules.

So if we use any covering set that includes only positive subtrees in our
modified version of Tilove's algorithm then We are gua,ranteed to discover
either that the tree does not represent the nnll set, or that

I(T) = I(TJTtlT,J ... JT.) = 0

and so the tree does represent the null set. Tilove used the set of all positive
primitives as a covering set; in fact the set of zero-ord('r primitives will also
work, as will some smaller ISets, dilScussed in §3.2. Th(' general form of the
redundancy algorithm is shown in S-NOD(), figure 8, in which DC-NODO
is the next layer of the NOD routine (discussed in §4).

3 S-BOUNDS AND NULL OBJECT DETECTION 21

procedure S-NOD(7);
T	 ~ SirnpIify(T);
C <- coverset(T)j
while C ::f:. 0 and T ¢ .1 do begin

choose T' from C;
C - C-T'j
if nol DC-NOD(boundo1(T'), T)
then

return false;
T - T!T';
T	 ~ SimpHfy(T);

end

return true;

endproc

Figure 8: Redundancy-Based NOD Algorithm

3.2 Finding Covering Sets

A suitable covering set for A e B is {A}; for A ® B we can use either {A} or
{B}; but for A ffi B we must use {A, B} (or the root node). We ca.n express
the~ ideas as part of a non-deterministic procedure, coversetO, as ShOWD

in figure 9. coversetO can generate all the possible, minimal covering sets
of a CSG tree; for S~NODO we need to select just one. To ensure linear
time complexity of coverseeO we use some simple heuristics, based around a
simple estimate of the efficiency of taking different choices. This estimate i!
simply the size of the S~bound attached to a node, whereby "size" we mean
the diameter or volume of the bound--both work welL The reason for this is
that a subtree with a large S-bound will probably intersect more primitives
than one with a small S-bound, and be more diffir.ult to prove redundant;
thus, given a choice, we should choose the subtree with the smaller bound.
Our rules to decide which choices to make in coverset() are:

• for a node	 of the form A 0 B, choose the child node with the smallest
hound;

• for a node of the form A 8 B, choose A;

• for a node of the form A $ B, choose the child nodes A and B if
K. • size(A Ei:' B) > size(A) + size(B), where Si2e() is the size of the
bound on the node. (The rationale here is to consider the subtrees A

4 SPATIAL SUBDIl'ISIOY 22

procedure coverset(T);

if isa.-lea~T) then

return T;
either begin

return Tj
end
or begin

L -i---- coverset(leftchjldo~T));

R _ cOl'erset(rightchildo~T));

switch on operator-of(T)
ease ffi: return L U R;
case 0: either return L

or return R;
case e: return Lj

.ndow
end

endproc

Figure 9: coverset()

and B if the bounds would get Jloticeably smaller. otberwise stop. We
set,.. :::: 2.)

We have experimented with other, more complicated heuristics, but with no
significant increase in processing speed. As well as choosing which covering
set to pick, we also impose an order on the covering set (i .e., tum it into a
list) so tha.t S-NODO considers the nodes in order of increasing size; in this
way, we consider nodes which are easiest to deal with first, leaving the harder
nodes for when the tree has been rewritten to make it smaller. Examples of
covering sets are shown in §6.

4 Spatial Subdivision

The routines described so far have produced a set of regions, together with
a CSG tree for each region within which we need to solve th(' NOD problem.
The clas5ical way to proceed iu the three-dimensional case is to attempt
to generate all the possible segments of any edges of the intersection set;
if we suceed in generating any such segments then the set is not null. Un­
fortunately the number of possible edge segments is large, <l.nd so the naive
version of this algorithm has a complexity of D(n 4) [TiIRl]. 1I0wever we can

4 SPATIAL SUBDIVISION 23

intersperse a stage of spatial subdivision to improve greatly the expected
speed of the NOD routine. If we use L-NOD(R,T) to mea.n the generic
NOD problem localised within a region R then

R=UR; L-NOD(R,T) =II L-NOD(R" T)=
where 1\ is the logical conjunction operator. That is, we can split the prob·
lem up spatially without affecting the answer. By itself this observation
is of little use; however, if we can simulta.neousLy reduce the size of the
eSG trees being considered by each subproblem we can effect a reduction
in computational complexity. A mechanism for reducing the size of these
trees is that used in [WQ801 WQ84, WB86} for applying spatial subdivision
to the problem of producing graphicaJ representation of objects described
constructively; much of this section is based on this work, but describes the
modifications required to tackle NOD, and also presents an analysis of the
usefulness of this stage.

4.1 Simplifying eSG Trees in Regions

As au example of this mechanism in actiou, consider the simple two-dimension­
al example in figure 1O(a.). In this a quadrilateral is described as the inter­
section of four hall-spacesj that is, sets of the form {x I/(x) :5 O} where
in this case each I is of the form px + qy + d. (We use linear half-spaces
here for simplicity, but the techuique described here will work with general
half-spaces.) The quadrilateral is shown within the region of interest-in
this case. a square. Figure IO{b) shows the bonndaries of the individual
half-spaces; the "matter" side of the half-spaces are lAbeUed with their cor·
responding leaf nodes, and the entire quadrilatera.l corresponds to the binAry
tree (A ® B) €I (C ® D). Within the origiual region this tree is the mini·
mum that can be used to describe the quadrilateral. However, if we consider
the qUAdrant labelled NE sepArately (figure IO(c», it is clear that A €I D
is a sufficient local representation of the quadrilateral within this subregion.
Similarly, A 0 B, B 0 C and C 0 D are sufficient within the quadranh
NW, 5W, and SE respectively. We can automate the generAtion of these
IQealised trees as follows. We start with a region And a eSG tree that is a
valid representation of some object in the region. Given a subregion, then
for each prirnltive iu the tree we consider the corresponding half.space. If
the half-space equation is always positive within the subregion then we can
effectively replace the half-space with 0; this we do by replacing the leaf
node with .1. Similarly, if the half-spa.ce equation is always negative within
the region we replace the leaf node by T. For the region NE in figure IO(c)

4 SPATHL SUBDIVISION 24

(a) (b) (c)

Figure 10: Two-dimensional example of tree localisation

this gives us the new tree (A® T) 0 (T 0 D). Now we can apply the rewrite
rules shown in figure 7 to obtain the tree A 0 D, a.s required.

Thus in general we can accomplish this localisation in two stages. At
the first stage we identify which leafnades can be replaced by 1. or T. This
is domain specific; however it is worth noting that if both the subregion and
the shape represented by the leaf node are convex, then we can normally
identify such nodes quickly. For example, if we have rectangular subregions
and two-dimensional linear half-spaces, a.s in the example of figure 10, then
the extreme values of the half-space function Me achieved at the corners
of the rectangle pointed at by the outward and inwa.rd pointing normals of
the half-space boundary. For more complicated shape£l we migbt not bother
to check precisely whether the boundary of the shape intersects the region;
for example, if we had a helical primitive we might enclose the helix in a
cylinder for the purpose of testing. A£l long as our tests are ronservative we
will not simplify out any primitive that should not be removt>d from the tree.
(It also ensures that this procedure is numerically well behavf'd.) If we have
a bounded CSG tree then we can also take the bounds at each node into
accountj nodes whose bounds do not intersect the subregion ca·n be replaced
by 1.. This is the case with the NOD algorithm described, which produces
totally consistent bonnds.

Tbe second stage, the tree rewriting. is purely synLactic<l1. The rf'write
rules shown in figure 7 are not in themselves complete, bu tit is not difficult to
add the extra rules to accommodate the..., operator; for example, ..., T _ 1.,

A 0 ...,B A 8 B, etc. These rules can be applied top- down in the CSG-10

tree to obtain a minimal tree in linear time. In our work we have not taken
this COurse as we rewrite the trees to remove the 8 nod~s before calling
DC-NODD; this is £limply to reduce the number of ca.Be~ that have to be

4 SPATIAL SUDDNISION 25

considered and thus the size of the program. We also take this opportunity
to resolve primitive objects (e.g., cuboids) into combinations of half-spaces
(e.g., intersections of linear half-spaces). For convex primitives the hounds
that were formed can normally be transferred to the half-spaces. The tree
rewriting can he accomplished by: setting a sign flag at each node, indicating
whether each subtree is positive or negative; replacing the opera.tor e by
o thronghout the tree; swapping the operators at all negative binary nodes
(i.e. ffi for ® and vice-versa); and finally complementing the half-spaces at
negative leaf nodes. The result of these tree rewriting steps is a. tree with 0
and ffi binary nodes and half-spaces as leaf-nodes.

4.2 Performing the Spatial Subdivision

Given a set of subregions we know how to refine the trees; how do we
decide on the subregions? Tilove [TH81] discusses a fixed set of regions, but
Woodwark's group [WQ80] shows how to choose the regions dynamica.lly.
The latter approach has the advantage of being able to configure the set
of regions so that more, small regions are used near parts of space that
are complex. Expedmentally this works well, and there is some theoretical
justification for it-see section 4.3.

DC-NODI) is our routine for performing spatial subdivision for NOD,
and it is outlined in figure 11. It is based on the popular "divide-and­
conqner" paradigm; glven a region and a tree it decides dynamically whether
to "conquer" the problem or whether to do another spatial subdivision. Here
localise() is a routine that performs the tree simplification steps outlined in
§4.1, can-do() is the predicate that controls the subdivision, base--NODO
is the next layer of the NOD algorithm (discussed in §5), and copy tree()
copies the tr~ structure. The control predicate, can-do(), is the heart of the
algorithm; it has to try to balance the cost of performing another subdivision
step against the ease of being able to solve the NOD problem with the
localised trees. For our implementations we have used simple regions and a
simple method of subdividing the regions; in three-dimensions the regions
are cuboids, and they are divided into eight octants. (This is not quite
true, as the initial region is split into a number of roughly cubical regions in
order to try to balance the problems.) [WQ84] describes a more complicated
division strategy, whereby the choice of partition is influenced by the features
of the objects described by the tree. Our version of can-do() checks to see
whether the tree has one of a small number of very simple forms (see §5.1);
then it just estimates the complexlty of the tree by counting the number of
half-spaces referenced. can-do() is actually a function of the size of the region
being considered; for large regions, division is encouraged by only returning

4 SPATIAL SUBDNISION 26

procedure DC.NOD(R, T)j
localise(R, T);
if can-do(T) then

return base-NOD(R. T);
else begin

split R into a partition {R;}
roreach R; do begin

T' - copytree(T);
if not DC.NOD(Ril T'} then

return false;
end

end
endproc

Figure 11: Spatial subdivision procedure for NOD

true for small trees, but as the region size gets smaller more complex trees
can be passed on to base-NODO. The idea. here is that regions which are
resistant to being simplified probably coincide with parts of the "'object"
tha.t a.re truely complicated, and 50 we will probably not gain by trying to
divide the problem further. This control strategy work well for our domain
(i.e. robot workcells); in the general case we can adjust can-do() by trial
and error to give a. good performa.nce.

There is some simila.rity between the action of this routine and the for~

mation of a quad tree [Sam84]. The quad tree of an image is generated by
looking at the complexity of the image within a square region, and then
either storing a description of the image within that square, or splitting tbe
square into four quadrants and describing those separately. One problem
with quad trees is that it is difficult to perform a general rotation operation
on them; this is not a problem with DC-NODO as the division structure is
not stored.

4.3 Computational Complexity of Spatial Subdivision

A worst~case analysis of the computational complexity of this spatial sub~

division stage only shows that it will not dominate the complexity of the
composite algorithm; experimentally this is extremely pessimi stic. On the
other hand calculating the expected complexity is difficult, partly because
the analysis required is not trivial, but also because it is difficult to char~

aderise the inputs to the algorithm, as we do not have a statistical model

4 SPATIAL SUBDNISION 27

for a. "typical" NOD problem. Thus we shall present only a simplistic, but
nevertheless useful, analysis of the expected complexity.

Consider the case where the region of interest is a unit square a.nd,
furthe:r:m.ore~ the only primitive shapes are squares, of varying sizes, which
are aligned with the region of interest. Let the initial tree given as input
to DC-NODO contain N leaf nodes. Furthermore, let us consider only the
simplest version of the control predicate can-do(), namely one that counts
the number of leaf nodes in the initial tree and, on the basis of that count
only, chooses a. number D so that the initial unit square is divided into a
2D X2D grid by a uniform pattern of recursive calls. At each division stage a
square is taken and divided into four quadrants, and so there will be M =4D

final regions. Each call to DC-NODO involves an immediate time cost that
is linear in the size of the tree that it is given, and results in either a call to
base-NODO or in four further calls to DC-NODO. Thus the total time cost
for the division process is proportional to:

the sum, over all invocations of DC-NODO, of the size of their
input6

which is proportional to

the sum, over all invocations of DC-NODO, of the number of
primitives in the simplified trees (or each region

which is proportional to

the sum, over all primitives, of the number of regions corre­
sponding to a call to DC-NODO that intersect the boundary of
the primitive

Thus in estimating the time cost we can scale up the cost o(a single primi­
tive.

A primitive is in a simplified tree if its boundary crosses the correspond­
ing region. For large primitives (of similar size to the initial unit square)
the number of regions affected from a uniform grid of size 2d x 2d is approx­
imately proportional to the length of the perimeter of the primitive di\'ided
by the diameter of the regions-Le., 2d • Thus the total cost for the large
primitive is approximately 1+2+4+·· +2D , which is 0(2D) = O(VAl). For
small primitives (i.e. of size comparable with the final grid size, or smaller)
each primitiw will only affect a bounded number o(regions at each division
stage, with total cost of O(D) = O(logM). (This result has similarities with
the result given in [Sam80} (or generating a quad tree.) This gives a total

5 EXHAUSTNE METHODS 28

time bound for all N prim1ti~ that is D(N .JM); this compares favourably
with simply choosing an initial grid and calling base-NOD() M times with
the initial tree, which has a cost of O(N M). As we are restricting ourselves
to fixing M at the first call of the procedure we can estimate the costs of
using different formulae for M; choosing M as D(N), which we believe is
reasonable, gives a time bound of D(N3 f2) for the division process; choosing
Mas O(N'l), which we believe is pessimistic, gives a time bound of O(N').
Extending the analysis to 3 dimensions we see that large primitives will be
taken into account in regions which straddle the boundary of the primitives.
which gives a time bound for these primitives of O(N M 2/ 3); using the val­
ues for M suggested above gives a time bound of O(N5/3) and O(N7/3);
in four dimensions the corresponding bounds are O(N M3/4), O(N7/4) and
O(N5/2).

We do not present here an analysis of time complexity for the procedure
bast-NODO. [T1181] and [Cam84] argue that, under some reasonably gen­
eral restrictions on the spatial distributions of the primitives in the eSG
tree, if we choose M lX N in the analysis above then the complexity of algo­
rithm will be asymptotically bounded by the cost of performing the spatial
subdivision. We can illustrate this behaviour by noting that we could set
up the control predicate, can.do(), to bound the size of CSG trees consid­
ered by base-NOD(), and so we can envisage this latter routine as always
returning within some unit time. Of course, to do this we have to allow
DC-NODO to consider regions smaller that the ones suggested a.bove; how­
ever in this case we would also expect larger temlinal regions where the
complexity of tbe space was simpler and these would tend to balance the
total cost. Experimenta.lJy this optimism seems well jnstified.

5 Exhaustive Methods

The routines described so far have tried their best to avoid looking closely a.t
the geometry described by the eSG tree. In our experience they generally
succeed in pruning down the amount of!J?'1 that has to he examined in detail,
as well as considerably reducing the size of the trees. This section concerns
ways of implementing our routine base-NODO, which takes as input a CSG
tree and a region of Rn in which to look. Tbe routine can be thought as a
theorem prover, which has been asked to prove a theorem of first-order pred­
icate calculus. The theorem is of the form, "there exists no point x which is
inside the object defined by the given CSG tree (within the region given)."
The implementation of base-NODO is highly domain specific, and the gen­
eral techniques are described elsewhere (e.g., [Til84, Ti180, Bro82]), but for

5 EXHA USTIVE METHODS 29

completeness we present an overview of our implementation of base-.NOD()
which concentrates on the aspects which are amenable to use in other (geo­
metric) domains. There are two paradigms which we have fonnd useful-the
syntactic paradigm and the generate-and-test paradigm.

5.1 Syntactic Paradigm

Some form ulae of the predicate calculus ace independent of the values taken
on by their arguments; these are the tautologies and contra.dicationsof the
propositiona.l calculus. These occur rarely in general CSG trees, but are
much more frequently found among the trees given to base-NOD{) and the
trees generated by the point classHkation routines (§5.2). The simplest,
and most frequent, examples are the trees .1 and T. Trees consisting of
a single half-space are also common. More complicated examples can only
be detected if we identify equivalent and complemeutary half-spa[es (or
primitives) at the leaves of the CSG-tr~s. For example, if we have a tree of
the form A 08 and if we discover that A corresponds to the half-8pac~or ::; 0
and B to x ~ 0 then we can established the nullity of the tree by reference
to the contradiction xnX (in a regularised set system). In our own system
we identify such leaf nodes as part of the preprocessing stage described in
§4.1 by numerically sorting the half-spaces, which is an O(nlogn) process.
This numerical compa,rison is practical when we are dealing with simple
half-spaces, such as linear half-spaces, but identifying such leaf nodes in
general domains could be difficult, due to rounding errors in the computer
arithmetic. In such cases we could exploit meta-knowledge about surfaces;
for example, if we have a robot planning system tbat knows that a robot
will establish a face/face spatial relationship when it places an object on a
surface, there is no n~d to perform a geometric comparison to establish that
the face equalions a.re then related [AP75J. Once we have identified such leaf
nodes we check for the existence of a tautology or contradiction only if the
number of distinct half-spaces N is small (say ~ 5) and then by explicitly
evaluating all 2N possible truth values. This is not as ad hoc as it ma,y at
first appear; t.he regions passed to base-NODe) generally conta.in only a sma.ll
number of geometric features, ea,ch of which correspond to a small number
of half·spa.ces. The only common case in which larger numbers of half-spaces
are found is when features are mated, in which case spatia] subdivision is
unable to reduce the size of the CSG trees, but the number of distinct ha.lf­
spaces is still small. Such cases are common in robotic assemblies. This
procedure could also be used to transform the CSG tr~ into conjunctive
or disjunctive normal form and so guide the search for test points in the
generate-a.nd-test paridigm.

5 EXHA USTIVE METHODS 30

5.2 Generate-and-Test Paradigm

Th~ standard way of performing NOD in RJ is to generate a set of possible
(!dge-segments for the "object" and then to check to see if any really exist-jf
they do, the test returns false. This is an example of the generate-and-test
paradigm.

One method of generating points for testing would be to choose them
randomly. This has the advantage of simplicity, but also the distinct dis­
adnntage of never terminating if the object is DUU. (However it could be
used a.s a quick step if we had a case in which we expected the object not to
be null.) To get around this non-termination we have to choose a finite and
sufficient set of points. A non-null regular set must contain interior points,
and as these are normally simpler to classify than boundary points it would
be nice if we could choose interior points for our test set. Unfortunately it
is difficnlt to generate such points a priori, and so points in the test set are
likely to be on the boundary of the object. The "standard" technique in RJ
is to take pairs of surfaces that bound the primitives, and intersect these to
form candidate lines; these are in turn intersected with surfaces to fonn can­
didate edge segments; and these edge segments are then classified (as being
imide, outside or surface). This generates a sufficient set of points hecause
a (bounded) non-null three-dimensional set must have a two-dimensional
boundary, which in turn must be a collectiou of surface patches which are
bounded by edge-segments from the generated set. However it should be
reaJjsed that any sufficient set of points could be used, such as points which
would be interior to a surfate patch or points which are candidate vertices;
there is a compromise between ease of geuerating the set and the difficulty
in classifying the pojnts within it.

To classify a given point we may proceed as follows. We have a eSG
tree; if we imagine a small region arouud the given point then we will see
that. we can use a limiting form of the tree simplification routine (§4.1) to
form a new eSG tree valid about the point. (Instead of testing half-spaces
against the corners of an arbitrarily small box we just evaluate the half­
space functions at the point and reject any whose absolute value is larger
than some small e.) Immediately we may discover that the equivalent eSG
tree is 1. or T, corresponding to points that are outside or inside the ohject
respectively. Otherwise we have to compute a local map of the region around
the point-a so-called neighbourhood computation [TiI80, 8r082] Intuitively,
a neighbourhood is a map that is valid in some arbitarlly small region about
the point. As an example, consider figure 12(a), which shows a slotted
block. If we want to classify the point shown, which lies on a.n edge, then a
suitable neighbourhood map is shown in figure 12(b); it is two-dimensional,

z

5 EXHA USTIVE METHODS 32

as the edge "'looks the same'" in the direction of the edge, and it is accurate
within some arbitrarily small sphere, centred on the point. (Note that we
cannot always rely on being able to make a neighbourhood map using linear
entities; jn particular two curved surfaces may have the same normal at the
test point, and will then have to be sorted by curvature.) U the slotted
block is described in the natural way as the difference of two blocks then the
simplified eSG tree for the neighbourhood will be ofthe fonn B I 8(A]@Aa),
where B1 is the half-space of the larger block which forms the top of the
slotted block, At is the corresponding half-space for the smaller, differenced
block, and A 2 is the half-space of the smaller block that fafIDs the wall of
the slot. These half-spaces are labelled in figure 12(c), wjth the labels on
the "'matter" sjde of the half-space boundaries; note that B 1 and Al are
equivalent as half-spaces. To classify the point, imagine walking around
the point in the neighbourhood map, and stoppjng each time we cross the
boundary of a half-space. For our example, this might be at the points N,
E, Sand W shown in figure 12(d). If at each point at which we stop we
take our existing local CSG tree, and simplify it again with respect to our
new point, then the only possible results are T, 1., or some set-combination
of half-spaces with the same boundary which is easily evalua.ted, possibly
using the syntactic paradigm. Continuing with the example of figure 12, the
point N is outside HI and AI, and so we refine our local tree as follows:

H, e (A, 19 A,) _ .L e (.L 19 A,) - .L

The point E gives HI e (AI ~ T) _ HI e All wh.ich requires use of the
syntactic pa.ra.digm to show its equivalence to the null tree; the point S yields
T e(T 0 A2) - ...,A2; and the point W yields HI e (AI 0 l) - HI' The
last two are not equivalent to 1., which is not suprising as they correspond
to the real faces bounding the edge. For the purpose of NOD we only have
to look out for any evidence of non-nullity, wh.ich is easily discovered from
the procedure above.

Thus it may be seen that the classification process is essentially one of
reducing the dimensionality of the problem in order to be able to manipulate
them within the discrete, linear memory of a computer. In the case of
classifying the edge segments we chose a point interior to the segment so
that we could reduce the problem to classjfying a general point in two­
dimensions, namely within the confines of an arbitrarily small "'disc"-the
neighbourhood map. In turn we could produce a local map for the disc, and
then if necessary move away from the centre of the disc along the (projected)
half-space boundaries to find points for which the classification problem is
equivalent to solving for a point in a one-dimensional space; this last problem
has a simple solution.

6 INTERFERENCE DETECTION IN ROBMOD 33

ThilS necessity of performing dimensional reduction explAins why W(' did
Dot take the set of candidate vertices of the object (in W3); dassifyingsllch
points entails considering a. neighbourhood that is topologically equivalent
to a sphere. Similarly we S~ that it would be easier still to classify points
that can only lie interior to surfa.c:e patches, as then we only have to look
at a line tha.t pierces the patch to perform the classification. However there
is, in general, DO easy way to generate such points as we would first halle to
intersect all pairs of surface patches!

In the case of ~ we use a similar analysis. First, to generate a set of
candidate points we take all triples of half-space boundaries to form candi­
date lines, then use the haH-space boundaries again to prodnc:e cand.idate
edge-segments. Testing points within these segments js equivalent totest~

ing a general point in three-dimensions, and 80 we can use the mechanismlS
desc.ribed above to effect further reductions in problem dimensionalit)'.

Finally, we may note that this exhaustive process can be viewed as ex~

ploring a search space. The first branches in our process tree correspond to
the computation of the sufficient set of test points, and the later branches
correspond to testing further points which are generated by the dimt'!mional
reduction mechanism. The only order for exploring this search spaCE that
we have tried is depth-first search; this is due mainly to the problem8 with
memory management in the current incarnation of our system. Other search
strategies could prove fruitfulln situations where we expect the object not
to be null.

6 Interference Detection in ROBMOD

The routines described in this paper have been implemented into a geomet­
ric modelling system called ROHMOD [CA88, Cam84]. ROHMan is a CSG
system which also has provisions for producing boundary information, and
has been used as a tetit-bed for research Into the use of spatial rearoning
for robotics, such as the collision detection problem [Cam8S, CamB4], a.nd
a.s a geometric processor for the RAPT robot language [ACC86J and for the
Oxford Autonomous Guided Vehicle Project [Caro88].

S-boumh, based upon boxes aJjgned with the world coordinate "ystem,
are used by default in most of ROHMan's algorithms. As described in §2 we
effectl vely run setSBs(3, T) to set up the S-bounds. If we consider the situa­
Hon shown in figure 1, where we are testing to see whether the intersection of
the two robots is null, then this reduces the initia.lset of 38 primitive bounds
(figure 13(a)) into the bounds shown in figure 13(b) after one call to upSBO
alld downSBO, and thell to a null-boullded eSG tree after another two pairs

7 SUMMARY 34

of calls. Figures 13(c) and 13(d) show covering sets for thls tree, generated
after the equivalent of set-SBs(l, T) and set-SBs{2, T) respectively.

Figure 14(a) shows a different situa.tion, where we are testing for in·
tereference between a. single robot a.nd its environment. The environment
consists of the ta.ble on which the rohot sits, a. block, and 8 rods, the latter
being included to clutter the robot's environment. Figure 14(b) shows the
initial set of bonnds around the primitives; it can be seen that there are a.
considerable number of interferences between the bounds. These interfer­
ences serve to reduce the effectiveness of the S·bounds sta.ge, but despite this
the resultant covering set, figure 14(c), is a considerable improvement over
testing the entire workspa.c:e. Aligning the S-bounds with the robot arm im·
proves the situation considerably (figure 14(d»: if we move the elbow of the
robot so that there is no longer any interference between the robot and the
block then this alignment reduces the computation time required to prove
non-interference by about one-third.

As a final example, consider testing for interference between a "ray" and
an object. We can simulate this in our system by using a long, thin block
in place of the ray; such a ray is shown intersecting a robot in figure 15(80).
(The system is bappy considering aritrarily thin "rays"; we have shown a
re3ll0nably thick ray for clarity.) Figure 15(b) shows the ray together with
theintial S·bonnds around the robot; after a single pass a new S·bound set
is obt.uned about the primitives (figure 15(c)), which is only slightly im·
proved by further passes (figure 15(d». S-bound processing could be used
in this way in a ray-casting system; an alternative approach, which may be
faster if we want to pass a large number of parallel rays into the model (as is
generally the case in picture generation) would be to generate the S·bounds
foreach ray in parallel. Hwe consider the thick ray of figure 15 tben we note
that the S-bounds created are valid for any 'thin' ray within the thick ray.
In pa.rticula.r we could split the thick ray into four qua.rter-rays, copying the
S·bounds for eacb quarter-ray and then performing furtber refinements. For
a large number of rays this would distribute the cost of generating localised
bounded trees, in tbe same way that the dynamic divide-and-conquer strat·
egy employed in DC-NOD() distributes the cost of generating loca.lised trees
for base-NOVO.

7 Summary

We have described a complete intersection detection routine that is com·
posed of several separable stages. The first stage consists of installing and
then refining a set of bounds about the nodes in the eSG tree; t bese bounds

o

••

$

" to

~
 ~ ;.,

~

~

 , ~

;.,
 • ~

~

.
.

1;'

0
­

0 • •~

~ ~ • Q. • •"" , • " • Q. • • ~. , 8
~

s
~

• ~

.,

7 SUMMARY 38

are based on the new theory of S-bounds. Once refined the bounds may prove
suffil::ient to prove non-interference; otherwise the problem is split by coo­
sidedng a covering set for the tree, and considering the appropriate bound
sepa.rately. This is a useful step because we are then able to incrementally
simplify the eSG trees considered, using the concept of redundancy.

The next stage begins to consider the underlying geometry of the eSG
primitives in more detail. We use a spatial subdivision method to split the
problem spatially into a number of sub-problems. This technique is used
to reduce the computational complexity of the routine significantly as it
repla.ces one expensive problem by a number of (normally) much cheaper
problems. Finally we may need to examine the geometry in detail. Thls
part of the routine is the most domain-dependen t. We have described a pair
of pa.:radigms that are reasonably general, namely one based on checking the
fom of Booleilll functions, and one based on exploring the space looking for
evidence of intersection. Other methods could easily be used in their pla.ce.

We have only detailed here algorithms that return a purely Boolean
answer to the NOD or intersection question; in fact it is not too difficult
to modify the routines to give some idea of the size and location of the
intersection set. As described the S-bounds and spatjal subdjvision routines
already find regions of spa.ce that might contain "matter", and in some cases
whl!re only a rough characterisation of the intersection set is required a list
of tnose regions that turn out not to be empty may suffice. For a complete
chara.cterisation of the intersection set we would require domain-dependent
(and tedious) modifications to the methods of §5 to return the appropriate
boundary information.

We are wary about giving CPU timings for these routines because they
are dependent on both tne particular implementation and (more impor­
tantly) because they vary with the situations given. In many cases we have
fOllDd that the S-bounds method is itself able to provide an answer very
quickly. Otherwise, for our robotic workcells then as a rough rule-of-thumb
we expect to see processing time increases of roughly a factor of five, two
and thirty if we disable the S-bound refinement stage, the redundancy stage,
and the spatial subdivision stage separately. However we shouJd note that
the stages do overlap in their effectiveness, as, say, the S-bounds refinement
step tends to discard regions of space that would be easily processed by
the spatial subdivision stage. Thus the total speedup for the en tire routine,
over just performing an exhaustive method with bounded primitives, is only
a factor of about one hundred. On a SUN 3/160 workstation (without a
floating-point accelerator) then we do expect the routine to return within
one or two seconds in the worst cases seen.

Although we have described interference detection within a. CSG mod­

39 REFERENCES

elling system it is clearly pos6ible to carry out the S-bound and redundancy
stages within a B-rep modeller provided that a. set-combination tree is avail­
able for the objects. However the other two stages described are of more
limlted use in this case. We could perform spatial subdivision as described,
but there is a considerable ow~rhead in testjng and refining the entities in
the B-rep model.

Acknowledgements

Most of the work described in this paper was supported by an SERe stu­
dentship at the University of Edinburgh Department of Artificial Intelli·
gence. The ideas were refined with the support of the McDonnell Douglas
Independent Research and Development programme, and an SERe .-\tla.s
Research Fellowship. Many colleagues at Edinburgh, St. Louis and Oxford
provided valuable feedback and suggestions. J am also indebted to Ari Re­
quicha, Mike Brady and two anonymous referees, who made useful comments
on drafts of this paper, to Jarek Rossignac for useful discussions regarding
S-bounds and active zones, and to Chee Yap for his comments and his proof
of the quadratic time convergence for the bounding box system.

References

[ACC86]	 A. P. Ambler, S. A. Cameron, and D. F. Corner. Augmenting thf! RAPT
robot language. In U. Rembold and K. Hormann, editors, Langua~fB for
Sensor_Based Control in Robotics, pages 305-316, CaBtelv~cchio PMcoli,
S~ptember 1986. Springer-Verlag, ref. F29 (1987). Also as Univet'liityof
Edinburgh DAl Research Paper 330.

[AP75]	 A. P. Ambler and R. J. Popplestone. Inferring the position of bodies from
specified spatial relation!!. Art. Itltelligence J., 6(2):157-174, Summer
1975.

[Br082]	 Chris Brown. PADL-2: a technical summary. IEEE Comp. Graphu fj
Appluatiotl!l, 2(2):69-84, March 1982

[Dur69]	 R. M. Burstall. Proving propertiei of prograJll.'l by !:Itructnral induction.
Computer Journal, 12(1):41-48, 1969.

[CA88]	 Stephen Cameron and Jon Aylett. ROBMOD: A geometry engine for
robotics. In IEEE [tit. Con/. Ro6otics Qtld Auloml1tion, pages 880-885,
Philadelphia, April 1988.

[Cam84]	 S. A. Cameron. Modelling Solids in Mohon. PhD lhesi!:l, Univet'liity of
Edinburgh, 1984. Available from the Department of Arl.ifieiallntell.igence.

40 REFERENCES

[Cam8S]	 S. A. Cameron. A study of the clash detection problem in robotiee.
In IEEE lnt Conf. Robo1ie" Gnd Automation, pages 488-493, St Louis,
March 1985.

[CamBS)	 S. A. Cameron. A geometri(. database for the oxford aut.onomous guided
vehicle. In B. Ravani, editor, CAD Bast.d ProgNJmming for Sensory
Robots, pages 511-526, Castelve(.(.hio Pu(.oli, July 1988. Springer-Verlag.
Ref. r-50.

[CY90}	 S. A. Cameron and C. K. Yap. The use of bounds in geometric processing.
Accepted for publication, ACM ltansactioDs on Graphics, 1990.

[Req80]	 A. A. G. Requicha. Representations for rigid solids: Theory, methods
and tlYtltem8. Comp"ling Surv(,S, 12(4), December 1980.

[RV82]	 A. A. G. Requicha and H. B. Voelcker. Solid modeling: A hi!lt.orical
summary and contemporary assessment. IEEE Compo Graphics fj Ap.
pllcation$, 2(2):9-24, M&r(.h 1982.

[RV83]	 A. A. G. Requicha and H. B. Voelcker. Solid modeling: Current status
and research dit'\!diontl. IEEE Comp. Gro.phic~ fj AppliCtdioFU, 3(7):25­
37, October 1983.

[RV89]	 J. R. Rossignac and H. B. Voelcker. Active zone8 in CSG for at.eelerating
boundary evaluation, redundancy elimination, interference detection, and
llhading algorithms. A CM 1hnu. Graphic$, 8(1):51-87, January 1989.
AltIO as IBM Research Report RC13490, Yorktown Height-s, NY, February
1988.

[SlUJ180]	 Hanan Samet. Region representation: Quadtrees from boundary codes.
Commvnication' of the ACM, 23(3):163-170, March 1980.

{Sam84]	 Hanan Samet. The quadtree and related hierachiaJ data structures. ACM
Computing S"rocys, 16(2):187-260, June 1984.

{TiI80]	 R. B. Tilove. Set membefl'lhip classilication: A unified approach to
geometric intel'gection problems. IEEE Transactions on Comp"ter~,

29(10):874-883, October 1980.

{Til81J	 R. B. Tilove. Erpoiting Spatia/and StnJd1Jral Localii, in Geometric Mod·
elling. PhD the8is, University of Rot:he8ter, Ot:tober 1981. Available as
TM-38, College of Engineering and Applied Science.

[Ti184)	 R. B. Tilove. A null-object detection algorithm for constructive tIOlid
geometry. Communications of the ACM, 27(7):684-693, July 1984.

[WB86]	 J. R. Woodwark and A. Bowyer. Better and faster pictures from tIOlid
models. Comptiter-Aided Engineering J., pages 17-24, February 1986.

[WQ80]	 J. R. Woodwark and K. M. Quinlan. The derivation of graphics from
volume models by recursive division of the object space. In Comp1Jter
Grophic~ 80, pages 335-343, London, August 1980.

[WQ84]	 J. R. Woodwark and K. M. Quinlan. Reducing the effect of complexity
on volume model evaluation. CAD J., 14(2), March 1984.

41 REFERENCES

Appendix

For convenience in the proofs that follow we will define a. class of aux.iliary
functions, <PfJ, by the following rules:

• If L is a lea.f node then <P{J(L) = t(L)

• If l' is a node of the form A { i }B then

4>~(1') = I~(A) { ~ } I~(B).
Then it js a.n easy proof (by structural induction [Bur69]) tha.t Ijj(T) :::::
4>~(1') n (3(T) for all trees 1'.

() The U pvvard Theorem

Let T be a bounded tree with S-bollnd function {3. If T is any
subtree of T with immedia.te subtrees T l a.nd T'J, then another
S-bound function for T is given by /3', where

(3' = (3[1' ~ S n (3(1')),

and the set S is given by

(3(1'tJ U (3(1',) if l' = 1', <!l 1',
.~ = (3(1',) n (3(1',) if T =1', ®1',

{ (3(1',) If l' = 1', e 1',

Proof It is sufficient to show that Ip,,(T) = 7'(T) for any bounding func­
tion /3" with {3" :! /3'. where f3' is defined as a.bove, a.nd a.ny interpretation
L' r: L. The idea. behind the proof is tha.t if {1/1 is any such bounding function
then we ca.n find another bonnding function f3t satisfying the conditions

(a)	 Ip"(T) = I;',(1')

(b)	 (3'is identically equal to (3" exceptthat (31(1') 2 (3(1'), iJ'(1'd 2 iJ(1',),
and (3t(T,) 2 (3(1',).

Condition (b) implies that f3t is itself an S-bound function (as (J is), and as
f3t is equal to jJ" except on T, T1 and T2 then it follows (from condition (a))
that I p1 (T) = Ih,,(T), and so both are equal to I'(T).

To choose jJt we consider the three cases corresponding to the operator
ofT.

42 REFERENCES

Operator is ffi

Consider the sets A =fJ"(T) U fJ(T) and H = fJ"(T) UfJ(Tj) U fJ(T,). Then
A;) fJ(T), H ;) fJ(Td, H ;) fJ(T,), and

An H = fJ"(T) U (fJ(T) n [fJ(Td UfJ(T,)]} = fJ"(T) UfJ'(T) = fJ"(T)

as W'(T) ;) fJ'(T). Thus

I;',,(T) = 1>;',,(T) n fJ"(T)

{11>;',,(Td n fJ"(Tt)] U [1>;',,(T,) n fJ"(T,)]} n (A n H)

{11>;',,(Td n fJ"(Tt) n H] U 11>;',,(T,) n fJ"(T,) n H]} nA

So if we take fJt(T) = A, fJt(Td = fJ"(Tt) n H, and fJ'(T,) = fJ"(T,) n H
then I;J1 (T) will be identically equal to the expression a.bove and f3t will he
of the required form.

Operator is ®

Consider the sets A = fJ"(T) U fJ(T), H = fJ"(T) U fJ(Tt), and C = fJ"(T) U
fJ(T,). Then A ;) fJ(T), H ;) fJ(Tt), C;) fJ(T,), and

An H n C = fJ"(T) U (fJ(T) n fJ(Td n fJ(T,)} = fJ"(T) U fJ'(T) = fJ"(T)

Thus

r;',,(T) =	 {11>",,(Tt) nfJ"(Td] n 11>",,(T,) n fJ"(T,)]} n (A n H n C)
{11>",,(T,) nfJ"(Td n H] n [1>",,(T,) n fJ"(T,) n Cl} n A

and so choose fJt(T) = A, fJ'(Td = fJ"(Tt) n H, and fJt(T,) = f3"(T,) n C.

Operator is e
Consider the sets A = fJ"(T)ufJ(T) and H = fJ"(T)UfJ(Td. Then A ;) fJ(T),
H;) fJ(T,), and An H = fJ"(T). So

I",,(T)	 {11>",,(Tt) n fJ'Wj)] - 11>",,(T,) n fJ"(T,)]} n (A n H)

{11>",,(Td n fJ'Wd n H] - 11>",,(T,) nfJ"(T,)]} n A

and so choose fJ'(T) = A, fJt(Tt) = fJ"(Tj) n Hand fJt(T,) = f3"(T,).

43 REFERENCES

o The Do'Wnward Theorem

Let T be a. bounded tree with S-bonnd function /3. If T is any
subtree ofT, and T 1 is an immediate subtree ofT, then another
S-bound fnnction for T is given by {J', where

(J' = (JIT' ~ (J(T) n (J(T')]

Proof It is sufficient to prove that

I~,,(T) = I'(T)

for any bounding function {J" ;J fJl, and any interpretation ,,' ~ L. Proceed
by considering the cases ofthe set operation at T, but first, consider the sets
A = (J"(T') U (J(T) and B = (J"(T') U (J(T'). Then A :2 (J(T), B :2 (J(T'),
and

A n B = (J"(T') U [(J(T) n (J(T')] = (J"(T') U (J'(T') = (J"(T')

We also require the following two lemmas, which are presented here with­
out proof. (Proof is by structural induction; they are proved in [Cam84].)

o Lemma Down!

Let T be a bounded tree with bounding fundion fJ a.nd jnter­
pretation of primitives t.. If S is an arbitrary set and ,,' is the
interpretation given by

jf P is a zero-order primiti~ of Ti(P)= {,(p)ns
,(P) otherwise

then I;'(T) =Io(T) n S.

o Lemma Down2

Let T be a bounded treE with two bounding functions j3t and
j3l, a.nd two interpretatious, tt and t l . If we are given a subtree
T of T, and a subtree T 1 of T such that

•	 j3t and j3t are identical on all subtrees of T which are not
Stlbtrees of T 1

,

•	 t t and t l are identical on all primitives of T which are not
primitives of T' , and

44 REFERENCES

• I1, (T') <; I~, (T'),

b ·f T'· { positive }. T It (T) { C } It (T)
t en I 16 negative In 'fJl 2 (11 •

This lemma. may be paraphrased by "making a positive snbtree
larger results in a larger tree, and making a negative subtree
larger results in a. smaller tree".

Operator is @

Assume without 1088 of generality that T = T'@T", Then

I;',,(T) = {[1>",,(T') nAn B] n I;',,(T")} n 11"(T)

{11>",,(T') n B] n I",,(T")} n II1"(T) n A].

So consider the hounding function {3t, which is identicaJ. to {3" except that
I1 t(T) = 11"(T) n A and 11'(T') = B. Then 11' :;) 11 (and so is an S-bound
function), Ip,,(T):::;: Ip,(T), and {3t is identical to {3" outside T. So

I",,(7) = I;,,(7) = I'(7)

as required.

Operator is Ell

A85ume without 1055 of generality that T = T' EEl T", and note that for any
bounding function {3

I,,(T) ={1>,,(T') n I1(T') n I1(T)} U {I,,(T") n I1(T)} (2)

Then consider the bounding fundions f3t = .B"[T' I- BJ and {3+ = pt[T I­
An {3"(T)J. Then {Jt ;;;) f3 and f3t ;J (J, a.nd 50 both are S-bound functions.
Using identity (2), a.nd noting that4lp,,(T') =4Ipl (T') = 4Ipl (T'), we have

I",(T) {1>p..(T') nAn Bn 11"(T)} U {I",,(T") n /3"(T) n A}
I",,(T) = {1>",,(T') nAn B n 11"(T)} U {I",,(T") n /3"(T)}

I",(T) {1>",,(T') n B n 11"(T)} U {I",,(T") n 11''(T)}

and 50

I",(T) <; I",,(T) <; I;,,(T)

45 REFERENCES

Using Lemma Down2, and defining 0 to be ~ if T is positive in T, 2
otherwise, we have

Ip,(T)OIp,,(T)OIp,(T) (3)

But .ot and 131: are both S-hound functions, and so the outermost terms in
(3) are both equa.l to I'(T), and

Ip,,(T) = I'(T)

as required.

OperatoJ' is e
1fT can he written in the form T'eT" then the result holds as in the 0 rase,
as 4111,,(1') ;; Ipll(T1

) n Ip,,(T"). So consider T = 1''' e 1". This case is by
far the most difficult case to prove. (It is also the only case that requires S­
hounds to be different from totally consistent hounding functions). Firstly,
define the extra. bounding functions {3t = ,0"[1' I- {3(T)J and {3t = ,BI/[T' I­
/3"(T') U ,O(TI

)]. Then note that f3't :! /3. and is thus an S-hound function.
Secondly, define the interpreta,tion

tl/(P) _ { t'(P) n {3(T) if P is a primitive of zero-order in T'
- t'(P) otherwise

and note that by Lemma Down!

I"(T') = I'(T') n f3(T) (4)

The main stages of the proof follow.

Step 1: Show that f3t is consistent

Consider f3t. and note tha.t (or any interpretatjon to !; t

Ip,(T) = {~,(T")-[¢p,(T')nf3t(T')]}nf3t(T)

{1)j,,(T") - [¢p,,(T') n f3"(T')]} n f3(T)

by the definition of f3t
[T,,,(T") n f3(T)] - [¢p,,(T') nAn B]

{[Ip,,(T") n f3(T)]- [¢p,,(T') n B]} U {[Ip,,(T") n f3(T)] - A}

by tbe identity X - (Y n Z) ~ (X - Y) U (X - Z)

= [ZD,,(T") n f3(T)]- [¢p,,(T') n B]

as IJ,,(T") n f3(T) <;; f3(T) <;; A

Zpl[TH](T)

46 REFERENCES

But .8f[T' I- B] ~ {J, a.nd 80 is an 5-bound function, and ,8t[T' I- BJ is
identical to (it outside T, and 50

:ZP,(T) = Ip'[T"BJ(T) = r(T)
i.e. :ZP,(T) IO(T) for any (.0 ~ L. (5)

Step 2, Show I"(T) = I'(T)

Note that

r~,(T) = {I~,(T") - I~,(T')} n /3(T)

= {I~,(T") - [I~f(T') n /3(T)J} n /3(T)

by the identity (X - Y) n Z = (X - (Y n Z)) n Z

= {I~,(T")-I;;f(T')}n/3(T) by (4)

I~I(T) as L"(P) == L'(P) for primitives of Til

But t"(P) == 1.'(P) for all primitives which are not primitives of T, and 50

I~,(T) = I{;,(T)

But {Jt is consistent over ,,' and 1-" (by (5)), and so

I"(T) = I'(T)	 (6)

Step 3, Show I;;,,(T) = I'(T)

Now consider {it. (it is an S-bound function, and so

I;;,(T) =I"(T) =I'(T) by (6)

i.e.	 I;;,(T) = I'(T) (7)

Further

I;;,(T') =	 I~,(T') n /3(T) by Lemma Downl

4>.,,(T') n 1/3"(T') U /3(T')J n /3(T)
by the definition of (it

4>.,,(T') n ([/3"(T') n /3(T») U [/3(T') n /3(T)]}
by distributivity

=	 4>.,,(T') n (1/3"(T') n /3(T)J U /3'(T')}
4>.,,(T') n {1/3"(T') U /3'(T')J n I/3(T) U /3'(T')]}

47 REFERENCES

4>/J,,(T') n W'(T') n P(T)}

{4>/J,,(T') n P"(T')} n PiT)

Io,,(T') n P(T)

::;: Z{j,,(T') by Lemma Down!

i.e. I~I (T') = I~,,(T') (8)

But pt and 1]1' are identical outside T', and so (8) implies that

I;,(T) = I;,,(T)

and then (7) jmplie;
IH,,(T) = I'(T) (9)

Slep 4: Brackel I'p,,(T)

I O' (T) = 4>;', (T) n pl(T) = 4>;',,(T) n P"(T) n PiT) = Io,,(T) n P(T)

and so
I", (T) S; Io,,(T) (10)

Also, by Lemma Down!, LHu(T') .::: Ih,,(T') n /leT), and so

ZOll(T') ~ Ih,,(T') which impHes

Io,,(T) S; IH,,(T) (11)

Combining (10) and (11) gives

I",(T) S; Io,,(T) S; IH,,(T) (12)

But by Lemma. Down2, (12) implies

I", (T)OI;',,(T)oIH,,(T)

where 0 is ~ if T is positive in T, and 2 otherwjse. But by (5) and (9)
both of the outermost terms in this relationship are equal to I'(T), and ISO

Ih,,(T) = T(T). as required.

oS-bound Intersection Theorem

Let f31 and /32 be S-bound functions Over some tree T; then sois
P, OJ P,. where (PI 8 Pl)(T) = PI(T) n P,(T) 10r.1l subtreesT
oiT.

48 REFERENCES

Proof Given auy bounding function 13, we can define two associated bound­
ing functions iJ and Pas follows:

• ~(T) = 13(7)

• If T' is an immediate subtree of T, then !J(T') = peT') n (J(T).

• ~(L) = ~(L) fe< all leaf nodes of T, and ~(T) = n fe< all other nodes.

Then the following lemma holds:

oS-bound Distribution Lemma

Given a bounding function fJ, then if a.ny of /3, /J OT /3 is an
S·bound function, so are all the others.

To prove the lemma, note that /J ~ fJ and /J!: il, and so if fj is an S-bound
[uaction, so a.re fJ and /3. Further, if fJ is an S-bouud function then we may
a.pply the Downward Theorem repeatedly to show /J Is. So it will suffice to
show that /J is an S-bound function if /J is. Now note that if T has immediate
subtrees T1 and T2, then if {J' is an S-bound function with (J'(T}) = P(Tt)

a.rd fJ'(T2) = !J(T2), then by applying the Upward Theorem to T we can
show that fJ'IT f- fJ'(T) n (fJ'(T,) u fJ'(T,))] is an S-hound fnnction, and as
fJ'IT) n (fJ'(T,) u fJ'(T,)) <; NT!) u~(T,) <; ~(T) then we can nse inducUon.
stll'ting with p, to show that iJ is an S-honnd fnndjon. This completes the
proof of the lemma.

So if PI and P2 are S-bonnd fundions, so are {il and ti2' Further, it is
easily shown that PIGP2 =: t3I0{i21 and so it will suffice to show that either

lisan S-bonnd function. Given any t ~ t, and any P'" ~ til 0131., we need to
show that I;'.(7) = I'(T). We define 13: and 13\ hy fJ;(T) = [3"(T) U11;(T)
fa all trees T and i =: 1,2-then both are S-bound fundions, wah /3'" ;:
Pl0 p~. Further, define t"(L) =: t'(L) () P~(L) for all leaf nodes L. Thus
Ii; (L) = ("(L) n fJ\(L)) n 13; (L) = I;'. (L) for all such leaf nodes. But 13: is

all S-bound fundion, and til ~ t, and so I~ .. (T) =: IZ:(T) =: 7"(T) as hoth
bounding functions return n away from leaf nodes. Similarly, we can show
Hat I"(7) = I;';(7) = I'(T). Thus I;,.(T) = I'(T) for all " !::: , and all

P":;::;J PIGP2, and so PI0P2, and thus PI0 /32, are S-bound functions.

o Redundancy Theorem

Let T be a tree with a totally consistent bounding function /3. If
T is any positive subtree of T such that L(T) n fJ(T) = 0, then
fJ[T I- 0J is another totally consistent bounding fundion on T.

49 REFERENCES

Proor We n~d to show tha.t Ip'[Tt-X](T) =: I(T) for allY {i' ~ 13 a.nd a.ny
set X. Assume, without loss of generality, tha.t {J'(T) := {3(T). By lemma.
Down2 and the fact that (i' is tota.Ily consistent

IW[Tf<I(T) <; Ip'[l>-XJ(T) <; IW[TeoJ(T) ~ I(T) ~ IW(T)

a.nd so it will be sufficient to show that Ia'[TI-'j(T) 2 IfJ'(T).
Consider anew primitive interpretation, t', given by t'(P) = t(P)-fJ(T)

for all primitives P. We can show, by structural induction, that

I;'o(TO) ~ Ipo(TO) - {3(T)	 (13)

for any bounding function {3- and a.ny subtree T- of T (including T itself).
Now I;'.(T) <; {3(T) by (13), and I;',(T) <; {3'(T) ~ {3(T) by tbe definition
of IB', and so

I;,.(T) <; {3(T) n {3(T) ~ 0

Thus I;'.(T) ~ I;"[Te,](T), and so

I;,.(T) ~ I;"[Te,](T)	 (14)

Thus

Ip'[Te,](T) :2	 Ip'[Te'J(T) - {3(T)

I;"{Te,](T) by (13)

I;,.(T) by (14)

IW(T) - {3(T) by (13)

Iw(T) as IW(T) n {3(T) ~ 0

as required.

