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Efficient Intersection Tests for Objects Defined
 
Constructively'
 

Stephen Cameron 

Abstract 

Testing for the existence of intersections is an important part of algorithms 
for interference detection, collision detection, and the like. We describe three 
techniques that ca.n be used to implement a.n efficient intersection detection 
routine when entities are described constructively; that is, as set combina­
tions of primitive entities. All three techniques are described in a domain 
where constructive solid geometry is the principal entity description used, 
although their use in boundary representation schemes are also discussed. 
The first technique, called S-bounds, is a method of reasoning about where 
intersections may be taking place; in practise it is fast, a.nd often sufficient. 
S-bounds can also be used as a general constraint manipulation method over 
Boolean algebras. The second technique is based on spatial subdivision, a.nd 
is used mainly to improve the speed of the intersection test. The third tech~ 

nique is employed only on the regions of space that are left by the first two 
techniques; it is a specialisation of the "classical" technique of generate­
and-test. The combination of these techniques has been implemented as an 
intersection detection routine which shows a speedup over the "classical" 
algorithm of about two orders of ma.gnitude. 

'This paper is a slightly longer version of one that appeared in the Inlt.rn.a'ional 
Journal of Robotics Rt.Sl'an;h 8(1)3-25, February 1989 



1 INTERSECTION DETECTION PROBLEMS 

1 Intersection Detection Problems 

The general intersection detection problem can be formulated as: 'Given two 
subsets A and B of R'\ do they have any point in common?' A common 
use of intersection detection is to solve the interference detection problem, 
viz.: 'Given two objects, OA and 0B, do they interfere?' This can be solved 
by considering the point sets A and B, wh.ich. consist of all the points in the 
objects OA and DB, and performing an intersection test in ~. Collision 
detection can also be formulated as an intersection test, this time in i'­
[Cam84}. In fa-ct, IDAUy of the algorithms used in solid geometry, including 
ma.ny of those useful to rohoticists, rely heavily on being able to perform 
intersection tests between entities of various dimensiona.lity-for example, 
ray tracing considers the intersections of a line with a solid. 

Entities are orten described to a computer constructively; that is, as set 
combinations of simpler entities. In such systems it is possible to reformu­
late an intersection test aa one of null object detection (NOD): given the two 
entities A and B, test whether their set intersection An B is the null ~et. 

In the rest of this paper we will concentrate on the solution of NOD in the 
context of a constructive solid geometry (eSG) modelling system; that i~, a 
system in which objects are described to a computer as set combinations of 
primitive objects (SUCh as parameterised cuboids and cylinders) and which 
keeps tbese description internally as its principal representation of the ob­
jects. However, the techniques described here can also be of use in other 
systems, such as some boundary representation (B-rep) systems which also 
keep a record of the steps used to construct tbe objects, and tbe modifi­
cations reqUired will be outlined aa appropriate. (For a discuf;ision of the 
various types of solid modelling systems available, see [RV82, RV83J.) 

Tbe algorithm to be described consists of three separable parts. The 
first part is based on a new method for reasoning about tbe parts of space 
that could be occupied by the set we are testing for nullity, caUed the S· 
bounds method, and because this metbod is new its description occupies 
mucb of this paper. The use of this method is sometImes enough in itself 
to partially decide the NOD problem, as it can give the answer "definitely 
null". (As an example, the two robots in figure 1 are shown to be not 
intersecting just by using the S-bound method.) The second method is 
baaed ou a spatial subdivision technique used in computer graphics; this 
is also a partial decision procedure, with possible a.nswers "definitely null", 
"definitely not null". and '"don 't know". Both of these two techniques also 
localise the problem; that is, reduce the 'volume' of 'space' in which it is 
necessary to search for evidence of uon-nullity. The third method is the 
exhaustive method that is used when aU else fails, and is based on the 
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Figure 1: Two robots almost interfering 

folklore of computational geometry; unlike the other two methods, it is also 
highly dependent on the types of geometric features allowed in the system. 
In the a.uthor's implementation these three methods operate in cascade, with 
ea.ch sta.ge a.ttempting to answer the NOD problem itself and only passing 
on pa.rts of the original problem that it ca.nnot tackle. Much of the efficiency 
of the overall implementation results from the cannol of this cascade. 

The rest of this paper is organised as follows. The theory behind the 
S-bounds method is described in §2 in a fairly general way. §3 describes how 
this theory is used to prune the search space (or the NOD problem, using 
the theory of redundancy [TiI84]. §4 a.nd §5 provide the details of the spatial 
subdivision and the exhaustive steps respectively, §6 gives some examples of 
interference detection within the RQBMOO geometric modelling system, and 
§7 provides a summary. 
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2 The Theory of S-bounds 

2.1 Formalism 

In a. eSG modelling system objects are described either as primitive shapes, 
which a.re already known to the system, or as set-combinationsl of other 
shapes together with rigid-body transformations. In general the modelling 
system representation i5 equivalent to a set of directed graphs, where: the 
arcs represent functional application; the non~termina.l nodes represent set· 
combination or transformation operators; and the terminal nodes represent 
primitive shapes, which are specified by a set of parameters, or they refer 
to other shape gra.phs. A valid eSG graph may always be rewritten as an 
equivalent eSG tree in which the branches only represent set-combination 
operators and the leaves are transformed primitive shapes; this may be done 
by "sweeping" the transformation nodes towards the leaves, and copying 
references to other shapes as required. Although the algorithms described 
here can be modified to allow their use with the eSG graph structure itself, 
the theory is described in terms of eSG trees. 

Thus, without loss of generality we can regard a eSG tree a8 a binary 
tree with branch nodes EEl, ® and a, and leaf nodes which represent primitive 
shapes which we can label as convenient (e.g., Pn). We can write down the5e 
trees either as tree diagrams, or using an infix notation (e.g., P t ffi P2). Given 
a tree we may refer to a node in the tree as an entity in itself, or we may U5e 
the node to refer to the subtree that has that node as its root node-these 
nses can be distinguished by context. 

As described, a eSG tree is a purely synta..ctic structnre, devoid of se­
mantics. Most authors do not distinguish between such trees and their 
normal semantics, in which the trees are taken to mean the set formed by 
interpreting the leaves as the appropriate point sets, and the nodes as the 
appropriate set operations (\3.) for U or set union, ® for n or set intersection, 
a for - or set difference). However such an approach is not appropdate here 
for three reasons. Firstly, the trees are rewritten as part of the algodthms 
to be described, and this rewriting is made clearer if it ca.nnot be confused 
with manipulations of the semantics. Secondly, separating the semantics 
means that we can establish results that hold when the primitive objec\s 
are replaced by a number of different objects. And laEltly, the S-bonnds that 
form the core concept in the theory to be described in this section form an 
extra structure which is not easily appended to the old notation. (To heJp 
the reader we have summarised the extra notation used in figure 2.) ._.

- 1 here are sneral da.s8eIJ ot set~operation8; for the purpOl'f! of this paper we require 
that they (orm a Boole&ll algebra. 
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u,n,-, Set operations: union, intersection, difference, complement 
&,O,8,"" Tree node labels: union, intersection, difference, complement 
T,T Root node or entire tree; tree node or subtree 

Primitive and Full Interpretation Functions" T 
p, ~n Bounding Functions (130 always returns 0) 
i;, ;:) Partial orders on functions 
J[X I- S] Function equal to f, except that fiX I- S](X) = S 
u,n "Union" and "intersection" operatIons for S-bounds 
1, T Tree node labels, which always interprete to 0 and n resp. 

Figure 2: Summary of Notation 

Given a tree we define its semantics to be a subset of in Le., the 'sha.pe1 

ofthe tree'. To decide which subset, we need to know tW() functions: one is 
the primiHve interprttation function, which takes a leaf node of the tree and 
returns the subset of Rri that is the point set for the appropdate primiti~; 

and the bounding !undion, which limits the attention of each node in the 
tree. We denote primiti~ interpretation functions by L, t ' , etc., and bound­
ing functions, which tale a. node of the tree and return a subset of R", by 
fJ, {3', etc. How the boundlng functions are generated will be described in 
due course, but they can be thought of returning simple supersets of ob­
jects, such as boxes or spheres. (Snch bouuds are normally implemented as 
attributes attached to the CSG tree structnre itself, rather tha.n as sepa­
rate functions.) Given the primitive interpretatiou L and bounding function 
fJ, we can compute the corresponding (full) interpretation function, Ifit as 
follows: 

• If T is a tree of the form T, { i }T" then 

Tp(T) = (TP(T,) { ~ } TaCT,)) (1 P(T) 

• Otherwise, T is a leaf node, and Ta(T) = ,(T) (1 ~(T) 

In our own work we have used the regularisedset operations [Req80]; however 
all of the results in this section, and most of the results in the paper, only 
rely on the operations forming a Boolean algebra. Interpretations which 
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a.re based on other primitive interpreta.tions a.nd hounding functions will he 
denoted accordingly; for example, I p" denotes the interpreta.tion based on 
,,' a.nd (3". The idea. behind the bounding functions is that each bound (the 
value returned by the bounding function a.t each node) describes a. subset of 
R" outside of which the value of the corresponding subtree should be ignored. 
Many geometric modelling systems form 'boxes' around the primiti~ nodes 
which a.re hounds in this sense; we ha.ve simply extended. them to cover every 
node in the tree2 • Note tha.t for the trivial bounding function {Jo, which 
alwa.ys returns the universal set il, then the corresponding interpreta.tion 
IOn is alwa.ys equivalent to the normal semantics of a. CSG tree (Le., one 
without the notion of a. bounding function). For brevity, we write I(T) fOT 

ICn(T). 
In what follows we will Introduce three classes of bounding functions, 

tbe last being S-bounds, which we will show to have the desira.ble properties 
of being easy to g€nerate and which do not ch;mge the normal semantics of 
CSG trees. These particular bounds allow us to prune the su bsets of space 
in which to search whilst performing NOD. 

2.2 S-bonnds 

We distinguish three classes of bounding functions that do not change the 
semantics of a particular tree with respect to a particular primitive inter­
pretatIon: 

o Definitions 

Let T be a tree with primitive interpretation L ;md bounding 
function {J. We say that {J is consisfent (on T over L) if IIJ(T) ;::: 
I(T), and we say that (J is fotally consistent if IIJ.{T) = I(T), 
for all other bounding functions (J' :! fl· Here the notation / !; g, 
or 9 :! f, means that / and 9 are functions over the same domain 
with f(T) ~ g(T) for all argument, T. 

Consistent bounding functions preserve the meaning of a eSG tree. How­
ever. once we start using a. consistent bounding function we must c:ontinue 
using it or risk changing the semantics of the tree. As a simple example, 
consider the "'primitives" from Rl given by L(A) = [1, 2}, L(B) = [0,3]. and 
T the tree A e B. Then a suitable consistent (J is given by (J(T) = fl, 
I1(A) = I1(B) = 0, .. then IC(T) = I(T) = 0. However, if we then ,.le<­
tively ignore the bound on A, effectively by setting its bound to il, then 

·The UnlverslLy or Roches~er's PADL2 modeller is another uample that UgeS bounds 
at every node in the CSG tree. 
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the new bounding function, {j', will no longer be consistent as Iw(B) = 0. 
and I/J'(Y) = Io,(A} = [1,2]. Totally consistent bounding functions are the 
subclass of consistent bounding functions that do allow you to arbitrarily 
expand the bounds whilst staying consistent. (Apart from esoteric reasons 
for preferring totally consistent bounding functions there is a practical rea· 
5On; when we apply rewrite rules to improve such functions we wish to be 
able to restrict ourselves to certain classes of elements, which is far easier if 
we can arbitrarily expand a.ny bound.) Po is a trivial example; a less trivial, 
and useful, class of totally consistent bounding functions is one that satisfies 
the following property: 

o Definition 

Given a tree T with primitive interpretation L then a bounding 
function /3 satisfies the boxing property if 

• ~(L) ;2 ,(Ll for all lea! nodes L 01 T 

• /3(T)::: f! for all other nodes of T. 

It is normally a simple matter to generate a set of simple bounds that 
satisfy the boxing property as the primitives in a CSG represention are them+ 
selves fairly simple. (For example, it is simple to find a box that contains 
a given cylinder.) Totally consistent bounding functions are useful, but are 
generally difficult to manipulate. The S-bound (for Super-bounds) bounding 
functions are a snbclass of the class of totally consistent bounding functions 
which are susceptible to mauipulation. 

<) S-bound Functions 

Given a tree 7 with primitive interpretation L the bounding func­
tion /3 is an S-bound function (on 7 over t) if it is totally con­
sistent with respect to all smaller primitive interpreta,tions; Le. 
if I o,(7) :::: T(7) for all /3' ~ /3 and all (' !;::; r. The sets returned 
by an S-bonnd function are called S-bounds. 

It is easy to see that /30 is always an S-bound bounding function, as is any 
bounding function satisfying the boxing property. Also, if j3 is a.n S-bound 
fllnction then so is any /3' ~ /3. We can now introdnce the two thKlrems 
to.at make all this preparation worthwhile; they describe rewrite rules fOf 
generating a new, better S-bound function from an old one. The notation 
J[X l- Sj denotes the function that is equal to f everywhere, except that 
the value at X is replaced by the value S. 
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o The Upward Theorem 

Let T be a bounded tree with S-bound function {3. If T is any 
subtree of T with immediate subtrees T1 and T2 then another 
S-bound function for T is given by {3', where 

~'= ~[T ~ S n ~(T)J, 

a.nd the set S is given by 

~(Td u ~(T,) jfT=nm~ 

S = ~(Ttl n ~(T,) HT=n®~
{ 

~(Tl) ifT=ne~ 

o The Downward Theorem 

Let T be a bounded tree with S-bound function {3. 1f T is any 
subtree of T, and T 1 is au immediate subtree of T, then another 
g·bound function for T is given by /3', where 

~' = ~[T' ~ ~(T) n ~(T')] 

The proofs of these theorems are tedious, a.nd they are deferred until 
the appendix. Given the intuitive idea of hounds being boxes tha.t enclose 
the primitives in a eSG tree, the correctness of the Upward theorem should 
be evident; if we start with a bound set that satisfies the boxing property 
and just apply the Upward theorem, theu the bounds that get formed at the 
branch nodes are just supersets of the sets that are formed when you take the 
normal semantics of the corresponding subtree's interpretation. Similarly. jf 
we know that the set, represen ted by T, can be enclosed within a box B, then 
it is "obvious" that we should be able to ignore any parts of the primitivtl5 
of the tree that lie outside B. What is not as obvious, and is in fact quite 
difficult to prove, is that we can legitimately combine both types of rewrite 
rule within the same system. (The proofs are complicated by the existence 
of the 8 operator; they are almost trivial without it.) The advantage of the 
notational framework that has been built up in this section is that we can 
be quite precise ahout what rewrites are and are not allowed: this will he 
useful as we explain how S-bounds are useful within the fra.mework of CSG. 

2.3 A Two-Dimensional Example of S-bounds 

To illustrate how S·bounds can be used consider the simple CSG tree shown 
in figure 3(a), consisting of a two operator tree a.nd three primitives from !R~. 
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The primitives are each shown within a frame; this is simply to emphasis 
their relative layout. We have also shown the resultant shape described by 
the tree under the normal semantics. 

The S-bounds we will use here will be rectangles aligned with the frame, 
and a set of S-bounds that obey the boxing property are shown in figure 
3(b). If we apply the Upward Theorem twice, firstly about the ffi node and 
then about the ® node, we get the new S·bounds shown in figure 3(e); as 
expected, each bound is a superset of the corresponding subtree. We can 
then "push" the bounds back down the tree by applying the Downward 
theorem four times, twice to the children of the ® node, and then twice to 
the children of the ED node; the resulting S-bonnds are shown in figure 3(d). 
The important feature here is that the S-bounds about the primitives are 
now smaller than the original bounds and, in particular, the S-bound abont 
the left-most primitive is now the null set. Th..is reflects the fact that this 
primitive is redundant (in this configuration) [TiI841 , and could be removed 
from the eSG tree without affecting the resultant shape. (See §3 for more 
detail8.) 

In fact it is possible to simplify the bonnds further by repeating the 
process of Upward and Downward Theorem applications, starting with the 
bounds in figure 3(d). This results in the other four bounds converging 
to the smallest non-null bound in figure 3(d). Although this is a simple 
example, the same principle applies to much larger eSG trees. 

2.4 Making Use of S-bounds 

So far we have only described S-bounds as an algebraic system; we have 
not described how they can be used in practise. The practical use that we 
have made of S-bounds is to use S-bound sets that are easily described, and 
manipulated quickly-in time linear in the size of the eSG description. This 
enables us to use S-bouncls quickly as a preprocessing stage, to simplify the 
slower processing that follows. Th..is philosophy applies to the NOD problem 
in particular, when large speedups in processing time are the norm, but it 
has also been applied by default to many of the other processing algorithms 
used in our geometric mOdelling system (e.g., drawing, inertial property 
calculation, and minimum distance calculations). 

The S-bounds that are used are boxes, aligned with some arbitrary world 
coordinate axis system. Thus in two dimensions each box c~n be described 
as a four-tuple, viz.: 

(XI, Ylo Xh, Yh) :::: {(x, y) IXl :::; X :::; Xh, YI :::; Y ~ Yh} 

We need a pair of operators, U and n, such that A u B 2 A u Band 
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An B 2 An B; we use the obvious pair: 

(a,b,e,d) U (a,{3",b) (min(a, a), min(b, {3), maxie, 1'), max(d, bJ) 

(a,b,c,d) n (a,{3",b) (max(a, a), max(b, {3), mintc. 1'), min(d, bJ) 

(We also need to denote infinite bounds, and to identify llull bounds.) Such 
operators can obviously be applied in unit time; other properties of these 
operators include the identity An B = An E, and that both operators are 
commutative and associative, but neither distributes over tIle other. 

Another obvious choice for the class of bounds we could use is spheres. 
We have not used them in our implementations, but we give a corresponding 
set of operators for completeness. A spherical bound is described by its 
centre and its radius, say (c, r). Given two such spheres. say {ell rl} and 
{c8 ,rS } with r/ ~ rs , then if d is the Euclidean distance between c, and c,: 

• if the operation is n, we get three cases: 

- if d > n + r" the result is 0; 

- if d < r/ - r" the result is the same as the smaller sphere; 

- otherwise the result is a new sphere, namely 

([(d'~ + rr- r;)c/ + (d2- rr + r;)c,,] /2cf • 

[4rrr; - (d2- rr - r;)2] /4d 2 
) 

• if the operation is U, we get two cases: 

if d::; r/ - r, then the result is the same as the la.rger sphere; 

- otherwise, the result is a new sphere, namely 

([(d + r, - r,)cI + (d - r, + r,)c,J/2d, (d + r, + r,)/2) 

In each case the centre of the resulting sphere lies on the line between the 
centres of the original spheres, and the sphere has minimu Tn radius. These 
sphere operators are commntative, but not associative. 

The next problem to solve is the order in which the rewrite rules (as 
given by the Upward and Downward theorems) are applied. We have used a 
simple ordering, namely we apply the Upward theorem in a bottom·up man· 
ner throughout the whole tree, followed by applications of the Downward 
theorem in a top-down manner. (This was the ordering used in the example 
of §2.3.) As was mentioned in §2.3 we can often gain by rcpe<lting this pro­
cess; the bounds need not converge after the first applicat ions. This order 
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proc::edure setSBs(n, T)j 
setboxes(T); 
do n times begin 

upSB(T);
 
downSB(T):
 

.nd 
endproc:: 

procedure downSB(T); 
do-dSB(T, n): 

endproc 

pro(:edure do-dSB(T, B)j 
N B ~ boundof(T) n B: 
boundof(T) ~ N B: 
it not isa-lea1{T) then begin 

do-dSB(Jeftchildo(T, N B)); 
do-dSB( rigbtcbiJdo(T, N B)): 

end 
endproc 

procedure upSB(T); 
if not isa-leat(T) then begin 

upSB( leftcbildo( T)): 
upSB(r:ghtchildo(T)): 
L ~boundof(Jeftchj/do(T)): 

R ~bo"ndof(rjghtchildo(T)); 

switch on operator-ol{T) 
case 6;1: C - LU R; 
case @: C _ L n R; 
case 8: C _ L; 

endsw 
boundof(T) ~ 

boundof( T) n C: 
end 

endproc 

procedure setboxes(T); 
if isa-Jea(T) then 

attach a convenient bound 
that i8 a superset oj L(T) 

else begin 
boundoitT) _ OJ 
setboxes(Jeftchildo(T)): 
setboxes( rightchildot(T»j 

end 
endproc 

Fjgure 4: Code for S-bounds 
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of rewrite rule application is embodied in the procedure setSBsO, which is 
sketched in fignre 4; this computes a set of S-bounds that satisfy the boxing 
conditions, and then repeatedly applies the Upward and Downward theorem 
throughout the tree a given number of times. 

We have used aligned boxes in all of our work with S-bounds, although 
other types of bounds could be used. For example: boxes wi th arbitrary ori­
entation; ellipsoids; convex hulls; and maintaining both a. box and a sphere 
abont each node in a tree, and regarding their unevaluated intersection as 
an S-bound. An extreme case, which is of mainly theoretical interest, is to 
use the actual primitives themselves as initial S-bonnds, i.e. 13(L) = I-(L) for 
all leaf nodes L. However the gains to be had in obtaining "tighter" bounds 
have to be offset against the longer times required to compute them. 

Given two S-bound functions, it is rea50nable to ask whether they can 
be combined in some way. They can, by virtne of tbe following theorem, 
which is proved in the appendix: 

oS-bound Intersection Theorem 

Let {31 and {32 be S-bound functions over some tree T; then so is 
13, 0 f3" whe'e (f3, 0 f3,)(T) = f31(T) n f3,(T) fo' all suhl''''s T 
ofT. 

It is not necessary to use the algorithm shown in figure 4 to refine S­
bounds; in practise this algoritbm works well in our applications, but other 
strategies could be tried. We can regard S-bounds as a constraint manip­
ulation system in which information about individual constraints (Le. the 
primitives) are passed to other subtrees. Applying heuristics to encourage 
the spread. oftight constraints (Le. small primitives ana subtrees) could be 
fruitful. 

2.5 Convergence Properties 

In the general case a system of S-bounds need not converge at all, as there 
is no requirement that the rewrite rules be deterministic. (We can always 
choose an arbitrary superset of any S-bound.) For the S-bound sets and 
operators that we use, namely the aligned boxes, convergence in finite time 
is assured. To see this, note that each bound in Rn can be described by 
2n parameters, giving the maximum and minimum extent of the box in 
each dimension. Also, the operators U and n can only replace parameters 
for the bounds for one subtree by existing parameters from other bounds. 
Thns the total number of possible bounds is finite, and so the total number 
of possible S-bonnd functions that can be obtained b}' applications of the 
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Upward a.nd Downward theorems is finite. Convergence now (oUows from 
the (act that the opera.tions produce sequences of bounds which are (000­

strictly) monotonically decreasing in size. In fact it is possible to show 
tbat for each Upward and Downward pass either this S~bound sequence 
converges, or we ca.n set at least one S-bound value to~. From this Wfl 

can deduce that the aligned box system must converge in qua.d.ratic time 
[CY90J. Experjrnentally convergence of this system is nonnaUy quite ra.pid. 
We conjecture that, for practical purposes, a call of the form setSBs(d, T) 
will give a useful set of S-bounds, where d is the depth of T' and T' is 
obtained from T by compressing groups of ffi and 0 nodes jnto equivalent 
n-ary nodes-e.g., replacing a subtree of the form A ffi (B ffi C) by a single 
tertiary node. For our own implementation we have set d = 3, as thi~ 

seems to give good results and an S-bound processing algorithm that rum 
in time linear in the size of the eSG tree4 . We can, however, construct 
Mtifidal examples which require longer to converge fully. Consider the tree 
T = (/0 ffi 12 ffi· .. Ell hn-2) 0 (II ffi 13 ffi··· ffi hn-l), where for simplicity we 
have not ma.de the binary tree structure explicit and where 1m corresponds 
to the open interval (m,m+ 1). Then sucessive calls to upSB(T) foUowM 
by downSB(T) result in the following sequence of bounds on the node T: 
(1,2n-1), (2,2n - 2), (3,2n - 3),... , (n -l,n +1), 0. This convergence 
requires qua.dratic time, and so this example is a worst-case example for this 
problem. 

2.6 Three~Dimen8ionalExamples of S-bounds 

We only present some simple examples of S-bound manipulations here, con­
centrating on the effect of e operators in eSG trees; more examples are 
to be found in later sectious. Figure 5(a) shows two loops, both create<! 
by taking a block and differencing out a cube to fonn the hole. The two 
loops can be mated (though not without cutting them), as shown in figure 
5(b). Using S-bounds aligned with the blocks allows us to bound the space 
occupied by the intersection set, as shown in figure 5(c); figure 5(d) shows 
the total bound attained for a case in which the S-bounds are skeWed with 
respect to the objects. (The thin lines show the outlines of the original 
objects.) As can be seen a useful reduction in the space to be considered 
is obtained; the reduction is not as dramatic as in some of our exampl~ 

due partly to the limited reasoning possible through the e operators, and 

31 am indebted to Chee Yap for lhis obsenation. 
4When testing two robot assemblies we form the intersection of a pair of assemblies; 

ea.cb assembly is the union of a number of objects ("links") which are often themselves 
fairly lIimple objects. 
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pa.rtly to the true complexity of the problem. As anotller example, figure 
6(a) shows a palr of objects, one of which is shaped like an 'E' on its side, 
and the other like a '71", which a.re made up from taking tbe union of 4 blocks 
and 3 blocks, respectively. The two objects can be mated exactly, and we 
consider their intersection. With the bounds chosen to match the blocks all 
the primitives are shown to be null-bounded after 3 calls to up-SBO and 
down-SB(); figure 6(b) shows the remaining bounds after 2 calls, with the 
original bounds outlined as thin lines. Figure 6(c) shows the same objects, 
hut this time made up by differencing out the "'gaps" between the "teeth". 
In this case the S-bound set settles down to the set shown in figure 6(d); it 
is not possible to reason further about the interaction hetween the teetb. 

2.7 Summary of S-bounds 

We have demonstrated how a system of bounds can be established about 
every node in a esc tree, and we have made explicit the semantics of these 
bounds. The hounds establish regions outside which the relevant subtrees do 
not matter with respect to the entire tree. S-bounds are used where we have 
a. particular tree on which we wish to do computations, be they for drawing, 
mass properties, boundary evaluation, or whatever. For many applications 
the reduction in the size of the bounds is small (say of the order of a few 
percent), but even then they can lead to noticeable speedups in running 
times. However, when the operation to be performed is NOD we shall see 
that large increases in running speeds are the norm. 

Boxing tests have become part of the folklore of computational geometry 
and solid modelling; indeed, they were the starting point for the research 
that lead to the approach adopted in this paper. However they have not 
before been placed on the firm theoretical footing shown here. The aetdition 
of our theoretical framework has two advantages: firstly, we have been able 
to show how to refine the bounds that are used (standarrl boxing tests 
being equivalent to just using a set of S-bounds that satisfy the boxing 
property); and secondly, we have established results tllat are indepenrlcnt 
of any particular domain. The domain that we have been interested in is 
the regularised set model of shapes and motions [Req80, Cam84], but the 
results of this section hold for any Boolean algebra. The only work of which 
we are aware that is of a similar flavour to our own was performed at the 
University of Rochester's Production Automation ProjflCt~ namely the work 
on localisations [TiI81], which inspired much of the work to be r1escribcd in §3 
and has culminated in the concept of active zones [RV89]. Active zones are 
related to S-bounds in that the active zone of a subtree is, effectively, defined 
to be the region outside of which the subtree "doesn't matter". Rossignac 
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and Voelcker then show bow the active zone of a subtree can be computed, 
by use of an intermediate form (which is, effectively. a. CSG tree with no 
internal e nodes). The active zone is, as defined, a single set, and 80 it 
does not in itself admit the types- of fast processing using 14a.pproximatioDS" 
to shapes that were the driving force behind the development of S-bounds. 
However active zones are a. useful conceptual tool, and are being used in the 
development of the PADL2 marleller. 

Many B-rep modelling systems allow objects to be defined constructivelY; 
in such systems it would be possible to store the original construction in­
formation and then apply an S-bound analysis to that. This information 
conld then be used, say, for automatically scaling pictures of the object, 
or for marking the feature records in such a modeller with a box that can 
then be used when testing features for intersections. (By "feature" we pri­
marily mean edge, face or surface patch records. Feature intersection tesh 
are a commou component of many geometric algorithms, such as boundary 
evaluation. ) 

3 S-bounds and Null Object Detection 

In this section we will build on the uotion of S-bounds to develop the top 
layer of our NOD algorithm. Giveu a eSG tree we run a S-bound processing 
algorithm to refine the bounds-in our own impleutation we have effectively 
been running setSBs(3, T). Immediately we can note that any 5ubtrees with 
a null S-bound (null-boundecl) cannot affect the "value" of the tree, and so 
we can effectively prune any such subtrees from the eSG tree. In particular, 
if the whole tree is null-bounded the whole tree must be null. This is the 
sense in which the S-bound method is a partial decision procedure, and in 
onr experience with using the algorithm to perform interference detection for 
robotics it occurs suprisinglyoften. As an example, figure 1 shows two robot 
arms, and the corresponding eSG tree coutains 30 finite primlti~s and 8 
infinite half-spaces; however, when the robots are checked for interference 
the S-bouuds preprocessing step alone is sufficient. 

Having performed the S-bound step it is possible to jump straight to the 
division algorithm which is described in §4., using the S-bonnd attached to 
the root node of the tree as the spatial bound that that routine requires. 
However there is yet another stage that we can profitably intersperse. This 
extra stage is based on Tilove's redundancy algorithm [Ti184], although the 
version that we describe uses S-bounds directly. First, we need some extra 
notation. We assume that we are dealing with a particular tree, T, so that 
any subtrees we discuss are subtrees of T, and that a suitable S-bound 



3 S-BOUNDS AND NULL OBJECT DETECTION	 18 

refinement algorithm has been run on T, such as setSBs(). 

¢	 General Definitions 

•	 Two subtrees a.re said to be disjoint if neither is a subtree 
of the other. 

•	 The order of a. subtree (in T) is the number of times that 
the path from the root node of T to the root node of the 
subtree passes to the right of a. e node. For example, in 
T = A e (B Ell (C e D)) A is of order 0, Band C are of 
order 1, and D is of order 2. 

•	 A subtree is said to be positive if it is of even order, a.nd 
negative otherwise. 

•	 A subtree T is said to be 0-redundant, or simply redundant, 
if I(T) = I'on[TI-0](T)j or equivalently, if the subtree T 
conld be replaced by a. representa.tion of the null set. 

Tilove discovered in his seminal work on redundancy that all the positive 
primitives in a tree that represents the null set are 0-redundants. Further, 
if P is a positive primitive of 7 then Pis 0-rednndant if (in om notation) 

I(T) n ,(P) = 0.	 (1 ) 

The converse is not true; however l if the intersection is not null then neither 
is I(7), and so (1) can be used as the basis of a NOD algorithm: 

o Tilove's Algorithm 

Pick a positive primitive of 7, and perform the test (1). If the 
test is false, then return false; otherwise replace the primitive by 
one whose interpretation is 0, simplify 7, and repeat. 

This algorithm is useful for two reasons. Firstly, the test in (1) is effectively 
the same as solving the NOD problem for 7 within the region given by t(P); 
generally we can take advantage of this to ignore parts of T that lie outside 
t(P), giving significant computational savings. (This is an example of a 
spatial localization algorithm, whereby we focus our atten tion on only part 
of the space that we are interested in.) Secondly, at each stage we either 
demonstrate that I(7) i- 0, or we can simplify the tree-that is, replace 

5{ am indebted to an anonymous reviewer for pointing out that [RV89] gives the basis 
of an extension to Tilove's ideas, which ha.s been implemented inLo PADL2. 
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Xe.l _ Xprocedure SimpJify(T); 
if boundot(T) = 0 then X0-L _ -L 

return .1; X8.l _ X 
if not isa-Iea1{T) then 

-LeX _ -L
L ~ Simplify(JeftcMldo((T))); 

XffiT _ TR ~ Simplify('ightchildo(T))); 
rewrite T, if applicable X0T _ x 

return T 
endproc	 XeT - -L 

T8X _ ...,X 

Figure 7: Simplifying eSG Trees 

the tree by a. smaller tree. Thus, if I(T) = 0 then we will go through all the 
positive primitives in turn, at each iteration the tree tested will get smaller, 
and we wHl end up with a. tree tha.t is identically null [Til84, TUBI]. 

This is the first time we have discussed rewriting the esc tree itself, and 
some explanation is required. So far we have simply rewritten the bounds 
on each node of the tree, using the rules for S-bouuds. From now on we will 
try to reduce the size of the eSG tree we are considering as we proceed. To 
do this, we add two new terminal nodes to those that can normally be found 
in a eSG tree, pIns some new rewrite rules. The new terminal nodes are 
written .1 and T; .1 represents a primitive whose interpretation is always~. 

and T a primitive whose interpretation is alway8 n. With these nodes we 
can apply rewrite rules that reduce the size of the tree, based on identities 
such as A U0 :::: A, etc. Figure 7 shows a partiaJ set of such rules, together 
with a simple routine for applying them. For the purposes of this section 
only the rules concerning .1 are of interest; .1 can he introduced to replace 
any node whose bmmd is 0. 

3_1 Redundancy-Based NOD Algorithm 

Our algorithm is based on Tilove's, but uses totally-consistent bounds as 
the focusing regions (generated from S-hounds), rather than primitives as 
the focusing regions. Proof of its correctness follows from the Redundancy 
Theorem, which is itself proven in the Appendix. 
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o Redundancy Theorem 

Let T be a. tree with a. totally consistent bounding fu nction f3. If 
T is any positive subtree of T such that I(T) n f3(T) ::; 0, then 
I1[T I- 0] is another totally consistent bounding function on T. 

This theorem is our generalisation of (1), bot the use of bounds is generally 
more convenient than using the shapes of the primitives themselves, and 
we are not limited to just considedng leaf nodes of the tree. Note that the 
theorem does not hold if we replace both occurences of "totally consistent 
bounding function'" with "8-bonnd function"; as a counter-example, consider 
T = A e E, with ,(A) = ,(E) = X ¥ 0. Theu I(T) = 1'1 aud {in is an S­
bound (unction on T, but IJn[A I- 0] is not an S-bound function-consider 
,[E HI. 

UlSe of the Redundancy Theorem allows us to incrementally simplify the 
CSG tree as we cousider regions. We also need to be able to pick put nodes 
in the tree at which to apply the theorem; we chome the nodes from a 
covering set. 

o Definitions 

Given a tree T, a disjoint set of subtrees {Tl , T2 , ••• , Tn} is called 
a covering set (of T) if 

TJTtlT,J ... JT. '" .L 

where T1TI means the tree T with the subtree T) overwritten by 
.1, T1TtlT2 means (TlTdlT2' etc., and == is equiva.lence under 
the standard rewrite rules. 

So if we use any covering set that includes only positive subtrees in our 
modified version of Tilove's algorithm then We are gua,ranteed to discover 
either that the tree does not represent the nnll set, or that 

I(T) = I(TJTtlT,J ... JT.) = 0 

and so the tree does represent the null set. Tilove used the set of all positive 
primitives as a covering set; in fact the set of zero-ord('r primitives will also 
work, as will some smaller ISets, dilScussed in §3.2. Th(' general form of the 
redundancy algorithm is shown in S-NOD(), figure 8, in which DC-NODO 
is the next layer of the NOD routine (discussed in §4). 
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procedure S-NOD(7); 
T	 ~ SirnpIify(T); 
C <- coverset(T)j 
while C ::f:. 0 and T ¢ .1 do begin 

choose T' from C; 
C - C-T'j 
if nol DC-NOD(boundo1(T'), T) 
then 

return false; 
T - T!T'; 
T	 ~ SimpHfy(T); 

end
 
return true;
 

endproc
 

Figure 8: Redundancy-Based NOD Algorithm 

3.2 Finding Covering Sets 

A suitable covering set for A e B is {A}; for A ® B we can use either {A} or 
{B}; but for A ffi B we must use {A, B} (or the root node). We ca.n express 
the~ ideas as part of a non-deterministic procedure, coversetO, as ShOWD 

in figure 9. coversetO can generate all the possible, minimal covering sets 
of a CSG tree; for S~NODO we need to select just one. To ensure linear 
time complexity of coverseeO we use some simple heuristics, based around a 
simple estimate of the efficiency of taking different choices. This estimate i! 
simply the size of the S~bound attached to a node, whereby "size" we mean 
the diameter or volume of the bound--both work welL The reason for this is 
that a subtree with a large S-bound will probably intersect more primitives 
than one with a small S-bound, and be more diffir.ult to prove redundant; 
thus, given a choice, we should choose the subtree with the smaller bound. 
Our rules to decide which choices to make in coverset() are: 

• for a node	 of the form A 0 B, choose the child node with the smallest 
hound; 

• for a node of the form A 8 B, choose A; 

• for a node of the form A $ B, choose the child nodes A and B if 
K. • size(A Ei:' B) > size(A) + size(B), where Si2e() is the size of the 
bound on the node. (The rationale here is to consider the subtrees A 



4 SPATIAL SUBDIl'ISIOY 22 

procedure coverset(T);
 
if isa.-lea~T) then
 

return T; 
either begin 

return Tj 
end 
or begin 

L -i---- coverset(leftchjldo~T)); 

R _ cOl'erset(rightchildo~T)); 

switch on operator-of(T) 
ease ffi: return L U R; 
case 0: either return L 

or return R; 
case e: return Lj 

.ndow 
end 

endproc 

Figure 9: coverset() 

and B if the bounds would get Jloticeably smaller. otberwise stop. We 
set,.. :::: 2.) 

We have experimented with other, more complicated heuristics, but with no 
significant increase in processing speed. As well as choosing which covering 
set to pick, we also impose an order on the covering set (i .e., tum it into a 
list) so tha.t S-NODO considers the nodes in order of increasing size; in this 
way, we consider nodes which are easiest to deal with first, leaving the harder 
nodes for when the tree has been rewritten to make it smaller. Examples of 
covering sets are shown in §6. 

4 Spatial Subdivision 

The routines described so far have produced a set of regions, together with 
a CSG tree for each region within which we need to solve th(' NOD problem. 
The clas5ical way to proceed iu the three-dimensional case is to attempt 
to generate all the possible segments of any edges of the intersection set; 
if we suceed in generating any such segments then the set is not null. Un­
fortunately the number of possible edge segments is large, <l.nd so the naive 
version of this algorithm has a complexity of D(n 4 ) [TiIRl]. 1I0wever we can 
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intersperse a stage of spatial subdivision to improve greatly the expected 
speed of the NOD routine. If we use L-NOD(R,T) to mea.n the generic 
NOD problem localised within a region R then 

R=UR; L-NOD(R,T) =II L-NOD(R" T)= 
where 1\ is the logical conjunction operator. That is, we can split the prob· 
lem up spatially without affecting the answer. By itself this observation 
is of little use; however, if we can simulta.neousLy reduce the size of the 
eSG trees being considered by each subproblem we can effect a reduction 
in computational complexity. A mechanism for reducing the size of these 
trees is that used in [WQ801 WQ84, WB86} for applying spatial subdivision 
to the problem of producing graphicaJ representation of objects described 
constructively; much of this section is based on this work, but describes the 
modifications required to tackle NOD, and also presents an analysis of the 
usefulness of this stage. 

4.1 Simplifying eSG Trees in Regions 

As au example of this mechanism in actiou, consider the simple two-dimension­
al example in figure 1O(a.). In this a quadrilateral is described as the inter­
section of four hall-spacesj that is, sets of the form {x I/(x) :5 O} where 
in this case each I is of the form px + qy + d. (We use linear half-spaces 
here for simplicity, but the techuique described here will work with general 
half-spaces.) The quadrilateral is shown within the region of interest-in 
this case. a square. Figure IO{b) shows the bonndaries of the individual 
half-spaces; the "matter" side of the half-spaces are lAbeUed with their cor· 
responding leaf nodes, and the entire quadrilatera.l corresponds to the binAry 
tree (A ® B) €I (C ® D). Within the origiual region this tree is the mini· 
mum that can be used to describe the quadrilateral. However, if we consider 
the qUAdrant labelled NE sepArately (figure IO(c», it is clear that A €I D 
is a sufficient local representation of the quadrilateral within this subregion. 
Similarly, A 0 B, B 0 C and C 0 D are sufficient within the quadranh 
NW, 5W, and SE respectively. We can automate the generAtion of these 
IQealised trees as follows. We start with a region And a eSG tree that is a 
valid representation of some object in the region. Given a subregion, then 
for each prirnltive iu the tree we consider the corresponding half.space. If 
the half-space equation is always positive within the subregion then we can 
effectively replace the half-space with 0; this we do by replacing the leaf 
node with .1. Similarly, if the half-spa.ce equation is always negative within 
the region we replace the leaf node by T. For the region NE in figure IO( c) 
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(a) (b) (c) 

Figure 10: Two-dimensional example of tree localisation 

this gives us the new tree (A® T) 0 (T 0 D). Now we can apply the rewrite 
rules shown in figure 7 to obtain the tree A 0 D, a.s required. 

Thus in general we can accomplish this localisation in two stages. At 
the first stage we identify which leafnades can be replaced by 1. or T. This 
is domain specific; however it is worth noting that if both the subregion and 
the shape represented by the leaf node are convex, then we can normally 
identify such nodes quickly. For example, if we have rectangular subregions 
and two-dimensional linear half-spaces, a.s in the example of figure 10, then 
the extreme values of the half-space function Me achieved at the corners 
of the rectangle pointed at by the outward and inwa.rd pointing normals of 
the half-space boundary. For more complicated shape£l we migbt not bother 
to check precisely whether the boundary of the shape intersects the region; 
for example, if we had a helical primitive we might enclose the helix in a 
cylinder for the purpose of testing. A£l long as our tests are ronservative we 
will not simplify out any primitive that should not be removt>d from the tree. 
(It also ensures that this procedure is numerically well behavf'd.) If we have 
a bounded CSG tree then we can also take the bounds at each node into 
accountj nodes whose bounds do not intersect the subregion ca·n be replaced 
by 1.. This is the case with the NOD algorithm described, which produces 
totally consistent bonnds. 

Tbe second stage, the tree rewriting. is purely synLactic<l1. The rf'write 
rules shown in figure 7 are not in themselves complete, bu tit is not difficult to 
add the extra rules to accommodate the..., operator; for example, ..., T _ 1., 

A 0 ...,B A 8 B, etc. These rules can be applied top- down in the CSG-10 

tree to obtain a minimal tree in linear time. In our work we have not taken 
this COurse as we rewrite the trees to remove the 8 nod~s before calling 
DC-NODD; this is £limply to reduce the number of ca.Be~ that have to be 
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considered and thus the size of the program. We also take this opportunity 
to resolve primitive objects (e.g., cuboids) into combinations of half-spaces 
(e.g., intersections of linear half-spaces). For convex primitives the hounds 
that were formed can normally be transferred to the half-spaces. The tree 
rewriting can he accomplished by: setting a sign flag at each node, indicating 
whether each subtree is positive or negative; replacing the opera.tor e by 
o thronghout the tree; swapping the operators at all negative binary nodes 
(i.e. ffi for ® and vice-versa); and finally complementing the half-spaces at 
negative leaf nodes. The result of these tree rewriting steps is a. tree with 0 
and ffi binary nodes and half-spaces as leaf-nodes. 

4.2 Performing the Spatial Subdivision 

Given a set of subregions we know how to refine the trees; how do we 
decide on the subregions? Tilove [TH81] discusses a fixed set of regions, but 
Woodwark's group [WQ80] shows how to choose the regions dynamica.lly. 
The latter approach has the advantage of being able to configure the set 
of regions so that more, small regions are used near parts of space that 
are complex. Expedmentally this works well, and there is some theoretical 
justification for it-see section 4.3. 

DC-NODI) is our routine for performing spatial subdivision for NOD, 
and it is outlined in figure 11. It is based on the popular "divide-and­
conqner" paradigm; glven a region and a tree it decides dynamically whether 
to "conquer" the problem or whether to do another spatial subdivision. Here 
localise() is a routine that performs the tree simplification steps outlined in 
§4.1, can-do() is the predicate that controls the subdivision, base--NODO 
is the next layer of the NOD algorithm (discussed in §5), and copy tree() 
copies the tr~ structure. The control predicate, can-do(), is the heart of the 
algorithm; it has to try to balance the cost of performing another subdivision 
step against the ease of being able to solve the NOD problem with the 
localised trees. For our implementations we have used simple regions and a 
simple method of subdividing the regions; in three-dimensions the regions 
are cuboids, and they are divided into eight octants. (This is not quite 
true, as the initial region is split into a number of roughly cubical regions in 
order to try to balance the problems.) [WQ84] describes a more complicated 
division strategy, whereby the choice of partition is influenced by the features 
of the objects described by the tree. Our version of can-do() checks to see 
whether the tree has one of a small number of very simple forms (see §5.1); 
then it just estimates the complexlty of the tree by counting the number of 
half-spaces referenced. can-do() is actually a function of the size of the region 
being considered; for large regions, division is encouraged by only returning 
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procedure DC.NOD(R, T)j 
localise(R, T); 
if can-do(T) then 

return base-NOD(R. T); 
else begin 

split R into a partition {R;} 
roreach R; do begin 

T' - copytree(T); 
if not DC.NOD(Ril T'} then 

return false; 
end 

end 
endproc 

Figure 11: Spatial subdivision procedure for NOD 

true for small trees, but as the region size gets smaller more complex trees 
can be passed on to base-NODO. The idea. here is that regions which are 
resistant to being simplified probably coincide with parts of the "'object" 
tha.t a.re truely complicated, and 50 we will probably not gain by trying to 
divide the problem further. This control strategy work well for our domain 
(i.e. robot workcells); in the general case we can adjust can-do() by trial 
and error to give a. good performa.nce. 

There is some simila.rity between the action of this routine and the for~ 

mation of a quad tree [Sam84]. The quad tree of an image is generated by 
looking at the complexity of the image within a square region, and then 
either storing a description of the image within that square, or splitting tbe 
square into four quadrants and describing those separately. One problem 
with quad trees is that it is difficult to perform a general rotation operation 
on them; this is not a problem with DC-NODO as the division structure is 
not stored. 

4.3 Computational Complexity of Spatial Subdivision 

A worst~case analysis of the computational complexity of this spatial sub~ 

division stage only shows that it will not dominate the complexity of the 
composite algorithm; experimentally this is extremely pessimi stic. On the 
other hand calculating the expected complexity is difficult, partly because 
the analysis required is not trivial, but also because it is difficult to char~ 

aderise the inputs to the algorithm, as we do not have a statistical model 
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for a. "typical" NOD problem. Thus we shall present only a simplistic, but 
nevertheless useful, analysis of the expected complexity. 

Consider the case where the region of interest is a unit square a.nd, 
furthe:r:m.ore~ the only primitive shapes are squares, of varying sizes, which 
are aligned with the region of interest. Let the initial tree given as input 
to DC-NODO contain N leaf nodes. Furthermore, let us consider only the 
simplest version of the control predicate can-do(), namely one that counts 
the number of leaf nodes in the initial tree and, on the basis of that count 
only, chooses a. number D so that the initial unit square is divided into a 
2D X2D grid by a uniform pattern of recursive calls. At each division stage a 
square is taken and divided into four quadrants, and so there will be M =4D 

final regions. Each call to DC-NODO involves an immediate time cost that 
is linear in the size of the tree that it is given, and results in either a call to 
base-NODO or in four further calls to DC-NODO. Thus the total time cost 
for the division process is proportional to: 

the sum, over all invocations of DC-NODO, of the size of their 
input6 

which is proportional to 

the sum, over all invocations of DC-NODO, of the number of 
primitives in the simplified trees (or each region 

which is proportional to 

the sum, over all primitives, of the number of regions corre­
sponding to a call to DC-NODO that intersect the boundary of 
the primitive 

Thus in estimating the time cost we can scale up the cost o( a single primi­
tive. 

A primitive is in a simplified tree if its boundary crosses the correspond­
ing region. For large primitives (of similar size to the initial unit square) 
the number of regions affected from a uniform grid of size 2d x 2d is approx­
imately proportional to the length of the perimeter of the primitive di\'ided 
by the diameter of the regions-Le., 2d • Thus the total cost for the large 
primitive is approximately 1+2+4+·· +2D , which is 0(2D ) = O(VAl). For 
small primitives (i.e. of size comparable with the final grid size, or smaller) 
each primitiw will only affect a bounded number o( regions at each division 
stage, with total cost of O(D) = O(logM). (This result has similarities with 
the result given in [Sam80} (or generating a quad tree.) This gives a total 
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time bound for all N prim1ti~ that is D( N .JM); this compares favourably 
with simply choosing an initial grid and calling base-NOD() M times with 
the initial tree, which has a cost of O(N M). As we are restricting ourselves 
to fixing M at the first call of the procedure we can estimate the costs of 
using different formulae for M; choosing M as D(N), which we believe is 
reasonable, gives a time bound of D( N3 f2 ) for the division process; choosing 
Mas O(N'l), which we believe is pessimistic, gives a time bound of O(N'). 
Extending the analysis to 3 dimensions we see that large primitives will be 
taken into account in regions which straddle the boundary of the primitives. 
which gives a time bound for these primitives of O(N M 2/ 3 ); using the val­
ues for M suggested above gives a time bound of O(N5/3) and O(N7/3); 
in four dimensions the corresponding bounds are O(N M3/4), O(N7/4) and 
O(N5/2). 

We do not present here an analysis of time complexity for the procedure 
bast-NODO. [T1181] and [Cam84] argue that, under some reasonably gen­
eral restrictions on the spatial distributions of the primitives in the eSG 
tree, if we choose M lX N in the analysis above then the complexity of algo­
rithm will be asymptotically bounded by the cost of performing the spatial 
subdivision. We can illustrate this behaviour by noting that we could set 
up the control predicate, can.do(), to bound the size of CSG trees consid­
ered by base-NOD(), and so we can envisage this latter routine as always 
returning within some unit time. Of course, to do this we have to allow 
DC-NODO to consider regions smaller that the ones suggested a.bove; how­
ever in this case we would also expect larger temlinal regions where the 
complexity of tbe space was simpler and these would tend to balance the 
total cost. Experimenta.lJy this optimism seems well jnstified. 

5 Exhaustive Methods 

The routines described so far have tried their best to avoid looking closely a.t 
the geometry described by the eSG tree. In our experience they generally 
succeed in pruning down the amount of!J?'1 that has to he examined in detail, 
as well as considerably reducing the size of the trees. This section concerns 
ways of implementing our routine base-NODO, which takes as input a CSG 
tree and a region of Rn in which to look. Tbe routine can be thought as a 
theorem prover, which has been asked to prove a theorem of first-order pred­
icate calculus. The theorem is of the form, "there exists no point x which is 
inside the object defined by the given CSG tree (within the region given)." 
The implementation of base-NODO is highly domain specific, and the gen­
eral techniques are described elsewhere (e.g., [Til84, Ti180, Bro82]), but for 
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completeness we present an overview of our implementation of base-.NOD() 
which concentrates on the aspects which are amenable to use in other (geo­
metric) domains. There are two paradigms which we have fonnd useful-the 
syntactic paradigm and the generate-and-test paradigm. 

5.1 Syntactic Paradigm 

Some form ulae of the predicate calculus ace independent of the values taken 
on by their arguments; these are the tautologies and contra.dicationsof the 
propositiona.l calculus. These occur rarely in general CSG trees, but are 
much more frequently found among the trees given to base-NOD{) and the 
trees generated by the point classHkation routines (§5.2). The simplest, 
and most frequent, examples are the trees .1 and T. Trees consisting of 
a single half-space are also common. More complicated examples can only 
be detected if we identify equivalent and complemeutary half-spa[es (or 
primitives) at the leaves of the CSG-tr~s. For example, if we have a tree of 
the form A 08 and if we discover that A corresponds to the half-8pac~or ::; 0 
and B to x ~ 0 then we can established the nullity of the tree by reference 
to the contradiction xnX (in a regularised set system). In our own system 
we identify such leaf nodes as part of the preprocessing stage described in 
§4.1 by numerically sorting the half-spaces, which is an O(nlogn) process. 
This numerical compa,rison is practical when we are dealing with simple 
half-spaces, such as linear half-spaces, but identifying such leaf nodes in 
general domains could be difficult, due to rounding errors in the computer 
arithmetic. In such cases we could exploit meta-knowledge about surfaces; 
for example, if we have a robot planning system tbat knows that a robot 
will establish a face/face spatial relationship when it places an object on a 
surface, there is no n~d to perform a geometric comparison to establish that 
the face equalions a.re then related [AP75J. Once we have identified such leaf 
nodes we check for the existence of a tautology or contradiction only if the 
number of distinct half-spaces N is small (say ~ 5) and then by explicitly 
evaluating all 2N possible truth values. This is not as ad hoc as it ma,y at 
first appear; t.he regions passed to base-NODe) generally conta.in only a sma.ll 
number of geometric features, ea,ch of which correspond to a small number 
of half·spa.ces. The only common case in which larger numbers of half-spaces 
are found is when features are mated, in which case spatia] subdivision is 
unable to reduce the size of the CSG trees, but the number of distinct ha.lf­
spaces is still small. Such cases are common in robotic assemblies. This 
procedure could also be used to transform the CSG tr~ into conjunctive 
or disjunctive normal form and so guide the search for test points in the 
generate-a.nd-test paridigm. 
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5.2 Generate-and-Test Paradigm 

Th~ standard way of performing NOD in RJ is to generate a set of possible 
(!dge-segments for the "object" and then to check to see if any really exist-jf 
they do, the test returns false. This is an example of the generate-and-test 
paradigm. 

One method of generating points for testing would be to choose them 
randomly. This has the advantage of simplicity, but also the distinct dis­
adnntage of never terminating if the object is DUU. (However it could be 
used a.s a quick step if we had a case in which we expected the object not to 
be null.) To get around this non-termination we have to choose a finite and 
sufficient set of points. A non-null regular set must contain interior points, 
and as these are normally simpler to classify than boundary points it would 
be nice if we could choose interior points for our test set. Unfortunately it 
is difficnlt to generate such points a priori, and so points in the test set are 
likely to be on the boundary of the object. The "standard" technique in RJ 
is to take pairs of surfaces that bound the primitives, and intersect these to 
form candidate lines; these are in turn intersected with surfaces to fonn can­
didate edge segments; and these edge segments are then classified (as being 
imide, outside or surface). This generates a sufficient set of points hecause 
a (bounded) non-null three-dimensional set must have a two-dimensional 
boundary, which in turn must be a collectiou of surface patches which are 
bounded by edge-segments from the generated set. However it should be 
reaJjsed that any sufficient set of points could be used, such as points which 
would be interior to a surfate patch or points which are candidate vertices; 
there is a compromise between ease of geuerating the set and the difficulty 
in classifying the pojnts within it. 

To classify a given point we may proceed as follows. We have a eSG 
tree; if we imagine a small region arouud the given point then we will see 
that. we can use a limiting form of the tree simplification routine (§4.1) to 
form a new eSG tree valid about the point. (Instead of testing half-spaces 
against the corners of an arbitrarily small box we just evaluate the half­
space functions at the point and reject any whose absolute value is larger 
than some small e.) Immediately we may discover that the equivalent eSG 
tree is 1. or T, corresponding to points that are outside or inside the ohject 
respectively. Otherwise we have to compute a local map of the region around 
the point-a so-called neighbourhood computation [TiI80, 8r082] Intuitively, 
a neighbourhood is a map that is valid in some arbitarlly small region about 
the point. As an example, consider figure 12(a), which shows a slotted 
block. If we want to classify the point shown, which lies on a.n edge, then a 
suitable neighbourhood map is shown in figure 12(b); it is two-dimensional, 
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as the edge "'looks the same'" in the direction of the edge, and it is accurate 
within some arbitrarily small sphere, centred on the point. (Note that we 
cannot always rely on being able to make a neighbourhood map using linear 
entities; jn particular two curved surfaces may have the same normal at the 
test point, and will then have to be sorted by curvature.) U the slotted 
block is described in the natural way as the difference of two blocks then the 
simplified eSG tree for the neighbourhood will be ofthe fonn B I 8(A]@Aa), 
where B1 is the half-space of the larger block which forms the top of the 
slotted block, At is the corresponding half-space for the smaller, differenced 
block, and A 2 is the half-space of the smaller block that fafIDs the wall of 
the slot. These half-spaces are labelled in figure 12(c), wjth the labels on 
the "'matter" sjde of the half-space boundaries; note that B 1 and Al are 
equivalent as half-spaces. To classify the point, imagine walking around 
the point in the neighbourhood map, and stoppjng each time we cross the 
boundary of a half-space. For our example, this might be at the points N, 
E, Sand W shown in figure 12(d). If at each point at which we stop we 
take our existing local CSG tree, and simplify it again with respect to our 
new point, then the only possible results are T, 1., or some set-combination 
of half-spaces with the same boundary which is easily evalua.ted, possibly 
using the syntactic paradigm. Continuing with the example of figure 12, the 
point N is outside HI and AI, and so we refine our local tree as follows: 

H, e (A, 19 A,) _ .L e (.L 19 A,) - .L 

The point E gives HI e (AI ~ T) _ HI e All wh.ich requires use of the 
syntactic pa.ra.digm to show its equivalence to the null tree; the point S yields 
T e(T 0 A2) - ...,A2; and the point W yields HI e (AI 0 l) - HI' The 
last two are not equivalent to 1., which is not suprising as they correspond 
to the real faces bounding the edge. For the purpose of NOD we only have 
to look out for any evidence of non-nullity, wh.ich is easily discovered from 
the procedure above. 

Thus it may be seen that the classification process is essentially one of 
reducing the dimensionality of the problem in order to be able to manipulate 
them within the discrete, linear memory of a computer. In the case of 
classifying the edge segments we chose a point interior to the segment so 
that we could reduce the problem to classjfying a general point in two­
dimensions, namely within the confines of an arbitrarily small "'disc"-the 
neighbourhood map. In turn we could produce a local map for the disc, and 
then if necessary move away from the centre of the disc along the (projected) 
half-space boundaries to find points for which the classification problem is 
equivalent to solving for a point in a one-dimensional space; this last problem 
has a simple solution. 
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ThilS necessity of performing dimensional reduction explAins why W(' did 
Dot take the set of candidate vertices of the object (in W3); dassifyingsllch 
points entails considering a. neighbourhood that is topologically equivalent 
to a sphere. Similarly we S~ that it would be easier still to classify points 
that can only lie interior to surfa.c:e patches, as then we only have to look 
at a line tha.t pierces the patch to perform the classification. However there 
is, in general, DO easy way to generate such points as we would first halle to 
intersect all pairs of surface patches! 

In the case of ~ we use a similar analysis. First, to generate a set of 
candidate points we take all triples of half-space boundaries to form candi­
date lines, then use the haH-space boundaries again to prodnc:e cand.idate 
edge-segments. Testing points within these segments js equivalent totest~ 

ing a general point in three-dimensions, and 80 we can use the mechanismlS 
desc.ribed above to effect further reductions in problem dimensionalit)'. 

Finally, we may note that this exhaustive process can be viewed as ex~ 

ploring a search space. The first branches in our process tree correspond to 
the computation of the sufficient set of test points, and the later branches 
correspond to testing further points which are generated by the dimt'!mional 
reduction mechanism. The only order for exploring this search spaCE that 
we have tried is depth-first search; this is due mainly to the problem8 with 
memory management in the current incarnation of our system. Other search 
strategies could prove fruitfulln situations where we expect the object not 
to be null. 

6 Interference Detection in ROBMOD 

The routines described in this paper have been implemented into a geomet­
ric modelling system called ROHMOD [CA88, Cam84]. ROHMan is a CSG 
system which also has provisions for producing boundary information, and 
has been used as a tetit-bed for research Into the use of spatial rearoning 
for robotics, such as the collision detection problem [Cam8S, CamB4], a.nd 
a.s a geometric processor for the RAPT robot language [ACC86J and for the 
Oxford Autonomous Guided Vehicle Project [Caro88]. 

S-boumh, based upon boxes aJjgned with the world coordinate "ystem, 
are used by default in most of ROHMan's algorithms. As described in §2 we 
effectl vely run setSBs(3, T) to set up the S-bounds. If we consider the situa­
Hon shown in figure 1, where we are testing to see whether the intersection of 
the two robots is null, then this reduces the initia.lset of 38 primitive bounds 
(figure 13(a)) into the bounds shown in figure 13(b) after one call to upSBO 
alld downSBO, and thell to a null-boullded eSG tree after another two pairs 
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of calls. Figures 13(c) and 13(d) show covering sets for thls tree, generated 
after the equivalent of set-SBs(l, T) and set-SBs{2, T) respectively. 

Figure 14(a) shows a different situa.tion, where we are testing for in· 
tereference between a. single robot a.nd its environment. The environment 
consists of the ta.ble on which the rohot sits, a. block, and 8 rods, the latter 
being included to clutter the robot's environment. Figure 14(b) shows the 
initial set of bonnds around the primitives; it can be seen that there are a. 
considerable number of interferences between the bounds. These interfer­
ences serve to reduce the effectiveness of the S·bounds sta.ge, but despite this 
the resultant covering set, figure 14(c), is a considerable improvement over 
testing the entire workspa.c:e. Aligning the S-bounds with the robot arm im· 
proves the situation considerably (figure 14(d»: if we move the elbow of the 
robot so that there is no longer any interference between the robot and the 
block then this alignment reduces the computation time required to prove 
non-interference by about one-third. 

As a final example, consider testing for interference between a "ray" and 
an object. We can simulate this in our system by using a long, thin block 
in place of the ray; such a ray is shown intersecting a robot in figure 15(80). 
(The system is bappy considering aritrarily thin "rays"; we have shown a 
re3ll0nably thick ray for clarity.) Figure 15(b) shows the ray together with 
theintial S·bonnds around the robot; after a single pass a new S·bound set 
is obt.uned about the primitives (figure 15(c)), which is only slightly im· 
proved by further passes (figure 15(d». S-bound processing could be used 
in this way in a ray-casting system; an alternative approach, which may be 
faster if we want to pass a large number of parallel rays into the model (as is 
generally the case in picture generation) would be to generate the S·bounds 
foreach ray in parallel. Hwe consider the thick ray of figure 15 tben we note 
that the S-bounds created are valid for any 'thin' ray within the thick ray. 
In pa.rticula.r we could split the thick ray into four qua.rter-rays, copying the 
S·bounds for eacb quarter-ray and then performing furtber refinements. For 
a large number of rays this would distribute the cost of generating localised 
bounded trees, in tbe same way that the dynamic divide-and-conquer strat· 
egy employed in DC-NOD() distributes the cost of generating loca.lised trees 
for base-NOVO. 

7 Summary 

We have described a complete intersection detection routine that is com· 
posed of several separable stages. The first stage consists of installing and 
then refining a set of bounds about the nodes in the eSG tree; t bese bounds 
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are based on the new theory of S-bounds. Once refined the bounds may prove 
suffil::ient to prove non-interference; otherwise the problem is split by coo­
sidedng a covering set for the tree, and considering the appropriate bound 
sepa.rately. This is a useful step because we are then able to incrementally 
simplify the eSG trees considered, using the concept of redundancy. 

The next stage begins to consider the underlying geometry of the eSG 
primitives in more detail. We use a spatial subdivision method to split the 
problem spatially into a number of sub-problems. This technique is used 
to reduce the computational complexity of the routine significantly as it 
repla.ces one expensive problem by a number of (normally) much cheaper 
problems. Finally we may need to examine the geometry in detail. Thls 
part of the routine is the most domain-dependen t. We have described a pair 
of pa.:radigms that are reasonably general, namely one based on checking the 
fom of Booleilll functions, and one based on exploring the space looking for 
evidence of intersection. Other methods could easily be used in their pla.ce. 

We have only detailed here algorithms that return a purely Boolean 
answer to the NOD or intersection question; in fact it is not too difficult 
to modify the routines to give some idea of the size and location of the 
intersection set. As described the S-bounds and spatjal subdjvision routines 
already find regions of spa.ce that might contain "matter", and in some cases 
whl!re only a rough characterisation of the intersection set is required a list 
of tnose regions that turn out not to be empty may suffice. For a complete 
chara.cterisation of the intersection set we would require domain-dependent 
(and tedious) modifications to the methods of §5 to return the appropriate 
boundary information. 

We are wary about giving CPU timings for these routines because they 
are dependent on both tne particular implementation and (more impor­
tantly) because they vary with the situations given. In many cases we have 
fOllDd that the S-bounds method is itself able to provide an answer very 
quickly. Otherwise, for our robotic workcells then as a rough rule-of-thumb 
we expect to see processing time increases of roughly a factor of five, two 
and thirty if we disable the S-bound refinement stage, the redundancy stage, 
and the spatial subdivision stage separately. However we shouJd note that 
the stages do overlap in their effectiveness, as, say, the S-bounds refinement 
step tends to discard regions of space that would be easily processed by 
the spatial subdivision stage. Thus the total speedup for the en tire routine, 
over just performing an exhaustive method with bounded primitives, is only 
a factor of about one hundred. On a SUN 3/160 workstation (without a 
floating-point accelerator) then we do expect the routine to return within 
one or two seconds in the worst cases seen. 

Although we have described interference detection within a. CSG mod­
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elling system it is clearly pos6ible to carry out the S-bound and redundancy 
stages within a B-rep modeller provided that a. set-combination tree is avail­
able for the objects. However the other two stages described are of more 
limlted use in this case. We could perform spatial subdivision as described, 
but there is a considerable ow~rhead in testjng and refining the entities in 
the B-rep model. 
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Appendix 

For convenience in the proofs that follow we will define a. class of aux.iliary 
functions, <PfJ, by the following rules: 

• If L is a lea.f node then <P{J( L) = t( L) 

• If l' is a node of the form A { i }B then 

4>~(1') = I~(A) { ~ } I~(B). 
Then it js a.n easy proof (by structural induction [Bur69]) tha.t Ijj(T) ::::: 
4>~(1') n (3(T) for all trees 1'. 

() The U pvvard Theorem 

Let T be a bounded tree with S-bollnd function {3. If T is any 
subtree of T with immedia.te subtrees T l a.nd T'J, then another 
S-bound function for T is given by /3', where 

(3' = (3[1' ~ S n (3(1')), 

and the set S is given by 

(3(1'tJ U (3(1',) if l' = 1', <!l 1', 
.~ = (3(1',) n (3(1',) if T =1', ®1',

{ (3(1',) If l' = 1', e 1', 

Proof It is sufficient to show that Ip,,(T) = 7'(T) for any bounding func­
tion /3" with {3" :! /3'. where f3' is defined as a.bove, a.nd a.ny interpretation 
L' r: L. The idea. behind the proof is tha.t if {1/1 is any such bounding function 
then we ca.n find another bonnding function f3t satisfying the conditions 

(a)	 Ip"(T) = I;',(1') 

(b)	 (3'is identically equal to (3" exceptthat (31(1') 2 (3(1'), iJ'(1'd 2 iJ(1',), 
and (3t(T,) 2 (3(1',). 

Condition (b) implies that f3t is itself an S-bound function (as (J is), and as 
f3t is equal to jJ" except on T, T1 and T2 then it follows (from condition (a)) 
that I p1 (T) = Ih,,(T), and so both are equal to I'(T). 

To choose jJt we consider the three cases corresponding to the operator 
ofT. 
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Operator is ffi 

Consider the sets A =fJ"(T) U fJ(T) and H = fJ"(T) UfJ(Tj ) U fJ(T,). Then 
A;) fJ(T), H ;) fJ(Td, H ;) fJ(T,), and 

An H = fJ"(T) U (fJ(T) n [fJ(Td UfJ(T,)]} = fJ"(T) UfJ'(T) = fJ"(T) 

as W'(T) ;) fJ'(T). Thus 

I;',,(T) = 1>;',,(T) n fJ"(T) 

{11>;',,(Td n fJ"(Tt )] U [1>;',,(T,) n fJ"(T,)]} n (A n H) 

{11>;',,(Td n fJ"(Tt ) n H] U 11>;',,(T,) n fJ"(T,) n H]} nA 

So if we take fJt(T) = A, fJt(Td = fJ"(Tt ) n H, and fJ'(T,) = fJ"(T,) n H 
then I;J1 (T) will be identically equal to the expression a.bove and f3t will he 
of the required form. 

Operator is ® 

Consider the sets A = fJ"(T) U fJ(T), H = fJ"(T) U fJ(Tt ), and C = fJ"(T) U 
fJ(T,). Then A ;) fJ(T), H ;) fJ(Tt ), C;) fJ(T,), and 

An H n C = fJ"(T) U (fJ(T) n fJ(Td n fJ(T,)} = fJ"(T) U fJ'(T) = fJ"(T) 

Thus 

r;',,(T) =	 {11>",,(Tt ) nfJ"(Td] n 11>",,(T,) n fJ"(T,)]} n (A n H n C) 
{11>",,(T,) nfJ"(Td n H] n [1>",,(T,) n fJ"(T,) n Cl} n A 

and so choose fJt(T) = A, fJ'(Td = fJ"(Tt ) n H, and fJt(T,) = f3"(T,) n C. 

Operator is e 
Consider the sets A = fJ"(T)ufJ(T) and H = fJ"(T)UfJ(Td. Then A ;) fJ(T), 
H;) fJ(T,), and An H = fJ"(T). So 

I",,(T)	 {11>",,(Tt ) n fJ'Wj)] - 11>",,(T,) n fJ"(T,)]} n (A n H) 

{11>",,(Td n fJ'Wd n H] - 11>",,(T,) nfJ"(T,)]} n A 

and so choose fJ'(T) = A, fJt(Tt ) = fJ"(Tj ) n Hand fJt(T,) = f3"(T,). 
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o The Do'Wnward Theorem 

Let T be a. bounded tree with S-bonnd function /3. If T is any 
subtree ofT, and T 1 is an immediate subtree ofT, then another 
S-bound fnnction for T is given by {J', where 

(J' = (JIT' ~ (J(T) n (J(T')] 

Proof It is sufficient to prove that 

I~,,(T) = I'(T) 

for any bounding function {J" ;J fJl, and any interpretation ,,' ~ L. Proceed 
by considering the cases ofthe set operation at T, but first, consider the sets 
A = (J"(T') U (J(T) and B = (J"(T') U (J(T'). Then A :2 (J(T), B :2 (J(T'), 
and 

A n B = (J"(T') U [(J(T) n (J(T')] = (J"(T') U (J'(T') = (J"(T') 

We also require the following two lemmas, which are presented here with­
out proof. (Proof is by structural induction; they are proved in [Cam84].) 

o Lemma Down! 

Let T be a bounded tree with bounding fundion fJ a.nd jnter­
pretation of primitives t.. If S is an arbitrary set and ,,' is the 
interpretation given by 

jf P is a zero-order primiti~ of Ti(P)= {,(p)ns
,(P) otherwise 

then I;'(T) =Io(T) n S. 

o Lemma Down2 

Let T be a bounded treE with two bounding functions j3t and 
j3l, a.nd two interpretatious, tt and t l . If we are given a subtree 
T of T, and a subtree T 1 of T such that 

•	 j3t and j3t are identical on all subtrees of T which are not 
Stlbtrees of T 1

, 

•	 t t and t l are identical on all primitives of T which are not 
primitives of T' , and 
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• I1, (T') <; I~, (T'), 

b ·f T'· { positive }. T It (T) { C } It (T)
t en I 16 negative In 'fJl 2 (11 • 

This lemma. may be paraphrased by "making a positive snbtree 
larger results in a larger tree, and making a negative subtree 
larger results in a. smaller tree". 

Operator is @ 

Assume without 1088 of generality that T = T'@T", Then 

I;',,(T) = {[1>",,(T') nAn B] n I;',,(T")} n 11"(T) 

{11>",,(T') n B] n I",,(T")} n II1"(T) n A]. 

So consider the hounding function {3t, which is identicaJ. to {3" except that 
I1 t(T) = 11"(T) n A and 11'(T') = B. Then 11' :;) 11 (and so is an S-bound 
function), Ip,,(T):::;: Ip,(T), and {3t is identical to {3" outside T. So 

I",,(7) = I;,,(7) = I'(7) 

as required. 

Operator is Ell 

A85ume without 1055 of generality that T = T' EEl T", and note that for any 
bounding function {3 

I,,(T) ={1>,,(T') n I1(T') n I1(T)} U {I,,(T") n I1(T)} (2) 

Then consider the bounding fundions f3t = .B"[T' I- BJ and {3+ = pt[T I­
An {3"(T)J. Then {Jt ;;;) f3 and f3t ;J (J, a.nd 50 both are S-bound functions. 
Using identity (2), a.nd noting that4lp,,(T') =4Ipl (T') = 4Ipl (T'), we have 

I",(T) {1>p..(T') nAn Bn 11"(T)} U {I",,(T") n /3"(T) n A} 
I",,(T) = {1>",,(T') nAn B n 11"(T)} U {I",,(T") n /3"(T)} 

I",(T) {1>",,(T') n B n 11"(T)} U {I",,(T") n 11''(T)} 

and 50 

I",(T) <; I",,(T) <; I;,,(T) 
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Using Lemma Down2, and defining 0 to be ~ if T is positive in T, 2 
otherwise, we have 

Ip,(T)OIp,,(T)OIp,(T) (3) 

But .ot and 131: are both S-hound functions, and so the outermost terms in 
(3) are both equa.l to I'(T), and 

Ip,,(T) = I'(T) 

as required. 

OperatoJ' is e 
1fT can he written in the form T'eT" then the result holds as in the 0 rase, 
as 4111,,(1') ;; Ipll(T1

) n Ip,,(T"). So consider T = 1''' e 1". This case is by 
far the most difficult case to prove. (It is also the only case that requires S­
hounds to be different from totally consistent hounding functions). Firstly, 
define the extra. bounding functions {3t = ,0"[1' I- {3(T)J and {3t = ,BI/[T' I­
/3"(T') U ,O(TI 

)]. Then note that f3't :! /3. and is thus an S-hound function. 
Secondly, define the interpreta,tion 

tl/(P) _ { t'(P) n {3(T) if P is a primitive of zero-order in T' 
- t'( P) otherwise 

and note that by Lemma Down! 

I"(T') = I'(T') n f3(T) (4) 

The main stages of the proof follow. 

Step 1: Show that f3t is consistent 

Consider f3t. and note tha.t (or any interpretatjon to !; t 

Ip,(T) = {~,(T")-[¢p,(T')nf3t(T')]}nf3t(T) 

{1)j,,(T") - [¢p,,(T') n f3"(T')]} n f3(T) 

by the definition of f3t 
[T,,,(T") n f3(T)] - [¢p,,(T') nAn B] 

{[Ip,,(T") n f3(T)]- [¢p,,(T') n B]} U {[Ip,,(T") n f3(T)] - A} 

by tbe identity X - (Y n Z) ~ (X - Y) U (X - Z) 

= [ZD,,(T") n f3(T)]- [¢p,,(T') n B] 

as IJ,,(T") n f3(T) <;; f3(T) <;; A 

Zpl[TH](T) 
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But .8f[T' I- B] ~ {J, a.nd 80 is an 5-bound function, and ,8t[T' I- BJ is 
identical to (it outside T, and 50 

:ZP,(T) = Ip'[T"BJ(T) = r(T) 
i.e. :ZP,(T) IO(T) for any (.0 ~ L. (5) 

Step 2, Show I"(T) = I'(T) 

Note that 

r~,(T) = {I~,(T") - I~,(T')} n /3(T) 

= {I~,(T") - [I~f(T') n /3(T)J} n /3(T) 

by the identity (X - Y) n Z = (X - (Y n Z)) n Z 

= {I~,(T")-I;;f(T')}n/3(T) by (4) 

I~I(T) as L"(P) == L'(P) for primitives of Til 

But t"(P) == 1.'(P) for all primitives which are not primitives of T, and 50 

I~,(T) = I{;,(T) 

But {Jt is consistent over ,,' and 1-" (by (5)), and so 

I"(T) = I'(T)	 (6) 

Step 3, Show I;;,,(T) = I'(T) 

Now consider {it. (it is an S-bound function, and so 

I;;,(T) =I"(T) =I'(T) by (6) 

i.e.	 I;;,(T) = I'(T) (7) 

Further 

I;;,(T') =	 I~,(T') n /3(T) by Lemma Downl 

4>.,,(T') n 1/3"(T') U /3(T')J n /3(T) 
by the definition of (it 

4>.,,(T') n ([/3"(T') n /3(T») U [/3(T') n /3(T)]} 
by distributivity 

=	 4>.,,(T') n (1/3"(T') n /3(T)J U /3'(T')} 
4>.,,(T') n {1/3"(T') U /3'(T')J n I/3(T) U /3'(T')]} 
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4>/J,,(T') n W'(T') n P(T)} 

{4>/J,,(T') n P"(T')} n PiT) 

Io,,(T') n P(T) 

::;: Z{j,,(T') by Lemma Down! 

i.e. I~I (T') = I~,,(T') (8) 

But pt and 1]1' are identical outside T', and so (8) implies that 

I;,(T) = I;,,(T) 

and then (7) jmplie; 
IH,,(T) = I'(T) (9) 

Slep 4: Brackel I'p,,(T) 

I O' (T) = 4>;', (T) n pl(T) = 4>;',,(T) n P"(T) n PiT) = Io,,(T) n P(T) 

and so 
I", (T) S; Io,,(T) (10) 

Also, by Lemma Down!, LHu(T') .::: Ih,,(T') n /leT), and so 

ZOll(T') ~ Ih,,(T') which impHes 

Io,,(T) S; IH,,(T) (11) 

Combining (10) and (11) gives 

I",(T) S; Io,,(T) S; IH,,(T) (12) 

But by Lemma. Down2, (12) implies 

I", (T)OI;',,(T)oIH,,(T) 

where 0 is ~ if T is positive in T, and 2 otherwjse. But by (5) and (9) 
both of the outermost terms in this relationship are equal to I'(T), and ISO 

Ih,,(T) = T(T). as required. 

oS-bound Intersection Theorem 

Let f31 and /32 be S-bound functions Over some tree T; then sois 
P, OJ P,. where (PI 8 Pl)(T) = PI(T) n P,(T) 10r.1l subtreesT 
oiT. 
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Proof Given auy bounding function 13, we can define two associated bound­
ing functions iJ and Pas follows: 

• ~(T) = 13(7) 

• If T' is an immediate subtree of T, then !J(T') = peT') n (J(T). 

• ~(L) = ~(L) fe< all leaf nodes of T, and ~(T) = n fe< all other nodes. 

Then the following lemma holds: 

oS-bound Distribution Lemma 

Given a bounding function fJ, then if a.ny of /3, /J OT /3 is an 
S·bound function, so are all the others. 

To prove the lemma, note that /J ~ fJ and /J!: il, and so if fj is an S-bound 
[uaction, so a.re fJ and /3. Further, if fJ is an S-bouud function then we may 
a.pply the Downward Theorem repeatedly to show /J Is. So it will suffice to 
show that /J is an S-bound function if /J is. Now note that if T has immediate 
subtrees T1 and T2, then if {J' is an S-bound function with (J'(T}) = P(Tt ) 

a.rd fJ'(T2) = !J(T2), then by applying the Upward Theorem to T we can 
show that fJ'IT f- fJ'(T) n (fJ'(T,) u fJ'(T,))] is an S-hound fnnction, and as 
fJ'IT) n (fJ'(T,) u fJ'(T,)) <; NT!) u~(T,) <; ~(T) then we can nse inducUon. 
stll'ting with p, to show that iJ is an S-honnd fnndjon. This completes the 
proof of the lemma. 

So if PI and P2 are S-bonnd fundions, so are {il and ti2' Further, it is 
easily shown that PIGP2 =: t3I0{i21 and so it will suffice to show that either 

lisan S-bonnd function. Given any t ~ t, and any P'" ~ til 0131., we need to 
show that I;'.(7) = I'(T). We define 13: and 13\ hy fJ;(T) = [3"(T) U11;(T) 
fa all trees T and i =: 1,2-then both are S-bound fundions, wah /3'" ;: 
Pl0 p~. Further, define t"(L) =: t'(L) () P~(L) for all leaf nodes L. Thus 
Ii; (L) = ("(L) n fJ\(L)) n 13; (L) = I;'. (L) for all such leaf nodes. But 13: is 

all S-bound fundion, and til ~ t, and so I~ .. (T) =: IZ:(T) =: 7"(T) as hoth 
bounding functions return n away from leaf nodes. Similarly, we can show 
Hat I"(7) = I;';(7) = I'(T). Thus I;,.(T) = I'(T) for all " !::: , and all 

P":;::;J PIGP2, and so PI0P2, and thus PI0 /32, are S-bound functions. 

o Redundancy Theorem 

Let T be a tree with a totally consistent bounding function /3. If 
T is any positive subtree of T such that L(T) n fJ(T) = 0, then 
fJ[T I- 0J is another totally consistent bounding fundion on T. 
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Proor We n~d to show tha.t Ip'[Tt-X](T) =: I(T) for allY {i' ~ 13 a.nd a.ny 
set X. Assume, without loss of generality, tha.t {J'(T) := {3(T). By lemma. 
Down2 and the fact that (i' is tota.Ily consistent 

IW[Tf<I(T) <; Ip'[l>-XJ(T) <; IW[TeoJ(T) ~ I(T) ~ IW(T) 

a.nd so it will be sufficient to show that Ia'[TI-'j(T) 2 IfJ'(T). 
Consider anew primitive interpretation, t', given by t'(P) = t(P)-fJ(T) 

for all primitives P. We can show, by structural induction, that 

I;'o(TO) ~ Ipo(TO) - {3(T)	 (13) 

for any bounding function {3- and a.ny subtree T- of T (including T itself). 
Now I;'.(T) <; {3(T) by (13), and I;',(T) <; {3'(T) ~ {3(T) by tbe definition 
of IB', and so 

I;,.(T) <; {3(T) n {3(T) ~ 0 

Thus I;'.(T) ~ I;"[Te,](T), and so 

I;,.(T) ~ I;"[Te,](T)	 (14) 

Thus 

Ip'[Te,](T) :2	 Ip'[Te'J(T) - {3(T) 

I;"{Te,](T) by (13) 

I;,.(T) by (14) 

IW(T) - {3(T) by (13) 

Iw(T) as IW(T) n {3(T) ~ 0 

as required. 




