EFFICIENT INTERSECTION TESTS FOR OBJECTS
DEFINED CONSTRUCTIVELY

by

Stephen Cameron

Technical Monograph PRG-85
ISBN 0-902928-64-3

July 1990

- ———— AR < - U R e Tk

Programming Research Grou‘ By
ot 01 S 25 FEB 2002
Oxford OX13QD

[

Oxford University Computing Lﬁwy AN ‘ DATE
[

England !

R

303397017X

Copyright (© 1990 Stephen Cameron and MIT Press

Oxford University Computing Laboratory
Programming Research Gronp

11 Keble Road

Oxford OX1 3QD

England

'\n,,.”_o’_

Moy
']BU"“J g aDora!O
U’it L ROad g ,y
Oy OXJ 3

Efficient Intersection Tests for Objects Defined
Constructively*

Stephen Cameron

Abstract

Testing for the existence of intersections is an important part of algorithms
for interference detection, collision detection, and the like. We describe three
techniques that can be used to implement an efficient intersection detection
routine when entities are described eonstructively; that is, as set combina-
tions of primitive entities. All three techniques are described in a domain
where constructive solid geometry is the principal entity description used,
although their use in boundary representation schemes are also discussed.
The first technique, called S-bounds, is 2 method of reasouing about where
intersections may be taking place; in practise it is fast, and often sufficient.
S-bounds can also be used as a general coastraint manipulation method over
Boolean algebras. The second technique is based on spatial subdivision, and
is used mainly to improve the speed of the intersection test. The third tech-
nigue is employed only on the regions of space that are left by the first two
techniques; it is a specialisation of the “classical” technique of generate-
and-test. The combination of these techniques has been implemented as an
intersection detection routine which shows a speedup over the “classical”
algorithm of about two orders of magnitude.

*This paper is a slightly longer version of one that appeared in the /nternational
Journal of Robotics Research 8(1)3-25, February 1989

1 INTERSECTION DETECTION PROBLEMS 1

1 Intersection Detection Problems

The general intersection detection problem can be formulated as: ‘Given two
gubsets A and B of £, do they have any point in common?' A common
use of intersection detection is to solve the interference detection problem,
viz.: ‘Given two cbjects, 04 and Og, do they interfere?’ This can be solved
by considering the point sets A and B, which consist of all the points in the
objects O4 and Og, and performing an intersection test in ®3. Collision
detection can also be formulated as an intersection test, this time in ®1
[CamB4}. In fact, many of the algoritbms used in solid geometry, including
many of those useful to roboticists, rely heavily on being able to perform
intersection tests between entities of various dimensionality—for example,
ray tracing considers the intersections of a line with a solid.

Entities are often described to a computer constructively; that is, as set
combinations of simpler entities. In such systems it is possible to reformu-
late an intersection test as one of null object detection (NOD): given the two
entities A and B, test whether their set intersection A M B is the null set.
In the rest of this paper we will concentrate on the solution of NOD in the
context of a constructive solid geometry (CSG) modelling system; that is, a
system in which objects are described to a computer as set combinations of
primitive objects (such as parameterised cuboids and cylinders} and which
keeps these description internally as its principal representation of the ob-
jects. However, the techniques described here can also be of use in other
systems, such as some houndary representation (B-rep) systems which also
keep a record of the steps used to construct the objects, and the modifi-
cations required will be outlined as appropriate. (For a discussion of the
various types of solid modelling systems available, see [RV82, RV83].)

The algorithm to be described consists of three separable parts. The
first part is based on a new method for reasoning about the parts of space
that could be occupied by the set we are testing for nullity, called the 5-
bounds method, and becanse this metbod is new its description occupies
much of this paper. The use of this method is sometimes enough in itself
to partially decide the NOD problem, as it can give the answer “definitely
null”. (As an example, the two robots in figure 1 are shown to be not
intersecting just by using the S-bound method.) The second method is
based ou a spatial subdivision technique used in computer graphics; this
is also a partial decision procedure, with possible answers “definitely null”,
“definitely not null”, and “don’t know”. Both of these two techniques aso
localise the problem; that is, reduce the ‘volume’ of ‘space’ in which it is
necessary to search for evidence of uon-nullity. The third method is the
exhaustive method that is used when all else fails, and is based on the

1 INTERSECTION DETECTION PROBLEMS 2

Figure 1: Two robots almost interfering

folklore of computational geometry; unlike the other two methods, it is also
highly dependent on the types of geometric features allowed in the system.
In the author’s implementation these three methods operate in cascade, with
each stage attempting to answer the NOD problem itself and only passing
on parts of the original problem that it cannot tackle. Much of the efliciency
of the overall implermentation results from the control of this cascade.

The rest of this paper is organised as follows. The theory behind the
S-bounds method is described in §2 in a fairly general way. §3 describes how
this theory is used to prune the search space for the NOD problem, using
the theory of redundancy [Til84]. §4 and §5 provide the details of the spatial
subdivision and the exhaustive steps respectively, §6 gives sume examples of
interference detection within the ROBM0OO geometric modelling system, and
§7 provides a summary.

2 THE THEORY OF §-BOUNDS 3

2 The Theory of S-bounds

2.1 Formalism

In a CSG modelling system ohjects are described either as primitive shapes,
which are already known to the system, or as set-combinations® of other
shapes together with rigid-body transformations. In general the modelling
system representation is equivalent to a set of directed graphs, where: the
arcs represent functional application; the non-terminal nodes represent set-
combination or transformation operators; and the terminal nodes represent
primitive shapes, which are specified by a set of parameters, or they refer
to other shape graphs. A valid CSG graph may always be rewritten as an
equivalent CSG tree in which the branches only represent set-combination
operators and the leaves are transformed primitive shapes; this may be done
by “sweeping” the transformation nodes towards the leaves, and copying
references to other shapes as required. Although the algorithms described
here can be modified to allow their use with the CSG graph structure itself,
the theory is described in terms of C8G trees.

Thus, without loss of generality we can regard a CSG tree as a binary
tree with branch nodes &, @ and 8, and leaf nodes which represent primitive
shapes whith we can label as convenient {e.g., P,,). We can write down these
trees either as tree diagrams, or using an infix notation (e.g., Py @ FP;). Given
a tree we may refer to a node in the tree as an entity in itself, or we may use
the node to refer to the subtree that has that node as its root node—tihese
nses can be distinguished by context.

As described, a CSG tree is a purely syntactic structnre, devoid of se
mantics. Most authors de not distinguish between suck trees and their
normal semantics, in which the trees are taken to mean the set formed by
interpreting the leaves as the appropriate point sets, and the nodes as the
appropriate set operations (¢ for U or set union, ® for M or set intersection,
& for — or set difference). However such an approach is not appropriate here
for three reasons. Firstly, the trees are rewritten as part of the algorithms
to be described, and this rewriting is made clearer if it cannot be confused
with manipulations of the semantics. Secondly, separating the semantics
means that we can establish results that hold when the primitive ebjects
are replaced by a number of different objects. And lastly, the S-bounds that
form the core concept iu the theory to be described in this section form an
extra structure which is not easily appended to the old notation. {To help
the reader we have summarised the extra notation used in figure 2.)

I There are several classes of set-operations; for the purpose of this paper we require
that they form a Boolean algebra.

2 THE THEORY OF §-BOUNDS 4

u,n, —, Set operations: union, intersection, difference, complement
#, ®, &, = Tree node labels: union, intersection, difference, complement
T, T Root node or entire tree; tree node or subtree

e T Primitive and Full Interpretation Functions

Bounding Functions (8n always returns £}

Partial orders on functions

Function equal to f, except that f[X F S X)= S
“Union” and “intersection” operations for S-bounds

Tree node labels, which always interprete to @ and 2 resp.

=

=
40>

a

]

Figure 2: Summary of Notation

Given a tree we define its semantics to be a subset of #7, i.e., the ‘shape
of the tree’. To decide which subset, we need to know twe functions: one is
the primilive interpretation function, which takes a leaf node of the tree and
returns the subset of ®" that is the point set for the appropriate primitive;
and the bounding function, which limits the attention of each node in the
tree. We dencte primitive interpretation functions by ¢, ¢/, etc., and bound-
ing functions, which take a node of the tree and return a subset of R™, by
A, 3, etc. How the bounding functions are generated will be described in
due course, but they can be thought of returning simple supersets of ob-
jects, such as boxes or spheres. (Snch bouuds are normally implemented as
attributes attached to the CSG tree structnre itself, rather than as sepa-
tate functions.) Given the primitive interpretatiou ¢ and bounding function
B, we can compute the corresponding (full) interpretation function, I, as
follows:

&
e HTisatreeof theform Ty ¢ @ } T3, then
=]

U
Ip(T) = | Ip(h) | N ¢ To(T2) | O A(T)

¢ Otherwise, T is a leal node, and I3(T) = (T} n A(T)

In our own work we have used the regularised set operations [Req80); however
all of the results in this section, and most of the results in the paper, only
rely on the operations forming a Boolean algebra. Interpretations which

2 THE THEORY OF S-BOUNDS 5

are hased on other primitive interpretations and hounding functions will be
denoted accordingly; for example, ;3,, denotes the interpretation based on
' and 3”. The idea behind the bounding functions is that each bound (the
value returned by the bounding function at each node) describes a subset of
" outside of which the value of the corresponding subtree should be ignored.
Many geometric modelling systems form ‘boxes’ around the primitive nodes
which are bounds in this sense; we have simply extended them to cover every
node in the tree?. Note that for the trivial bounding function g, which
always returns the universal set {2, then the corresponding interpretation
Ip, is always equivalent to the normal semantics of a CSG tree (i.e, one
without the notion of a bounding function). For brevity, we write I(T) for
(7).

In what follows we will introduce three classes of bounding functions,
tbe last being S-bounds, which we will show to have the desirable properties
of being easy to generate and which do not change the normal semantics of
CSG trees. These particular bounds allow us to prune the subsets of space
in which to search whilst performing NOD.

2.2 S-bounds

We distinguish three classes of bounding functions that do not change the
semantics of a particular tree with respect to a particular primitive inter-
pretation:

¢ Definitions

Let 7 be a tree with primitive interpretation ¢ and bounding
function 4. Wesay that J is consistent (on T over 1) if Tp(T) =
I(T), and we say that § is totally consistent if I5(T) = I(T),
for all other bounding functions 4’ J 4. Here the notation f C g,
or ¢ J f, means that f and g are functions over the same domain
with f(T) C ¢(T') for all arguments T.

Cousistenl bounding functious preserve the meaning of a CSG tree. How-
ever, once we start nsing a consistent bounding function we must continue
using it or risk changing the semantics of the tree. As a simple example,
consider the “primitives” from ®' given by «(A) = [1,2], «(F) = [0, 3], and
T the tree A © B. Then a suitable consistent 4 is given by 9(T) =
B(A) = B{B) = @, as then I3(7T) = Z(T) = B. However, if we then selec
tively ignore the bound on A, effectively by setting its bound to 2, then

3The University of Rochesier’s PADL2 modeller is another example that uses hounds
at every node in Lthe CSG tree.

2 THE THEORY OF 5-BOUNDS 6

the new bounding function, #, will no longer be consistent as I5(B) = @,
and Zpi(T) = Ir(A) = [1,2]. Totally consistent bounding functions are the
subclass of consistent bounding functions that do allow you to arbitrarily
expand the bounds whilst staying consistent. (Apart from esoteric reasons
for preferring totally consistent bounding functions there is a practical rea-
son; when we apply rewrite rules to improve such functions we wish to be
ahle 1o restrict ourselves to certain classes of elements, which is far easier if
we can arbilrarily expand any bound.} G is a trivial example; a less trivial,
and useful, class of totally consistent bounding functjons is one that satisfies
the following property:

o Definition

Given a tree 7 with primitive interpretation « ther a bounding
function 3 satisfies the bozing property if

e (L) 2 L) for all leaf nodes L of T
e 3(T) = 9 for all other nodes of 7.

It is normally a simple matter to generate a set of simple bounds that
satisfy the boxing property as the primitives in a C5G represention ate them-
selves fairly simple. (For example, it is simple to find a box that contains
a given cylinder.) Totally consistent bounding functions are useful, but are
generally difficult to manipulate. The S-bound (for Super-bounds) bounding
functions are a snbclass of the class of totally consistent bounding functions
which are susceptible to mauipulation.

¢ 8-bound Functions

Given a tree 7 with primitive interpretation ¢ the bounding func-
tion & is an S-bound function {on 7 aver ¢} if it is totally con-
sistent with respect to all smaller primitive interpretations; i.e.
WIG(T)=T'(T)forall f 2 p andalls C. Thescts returned
by an S-bonnd function are called 5-bounds.

It is easy to see that gg is always an 5-bound bounding function, as is any
bounding function satis{lying the hoxing property. Also,if 4 is an 5-bound
function then so is any 7' J 3. We can now introdnce the two theorems
that make all this preparation wotthwhile; they describe rewrite rules for
generating a new, better $-bound function from an old one. The notation
J[X t 5] denotes the function that is equal to f everywhere, except that
the value at X is replaced by the value §.

2 THE THEORY OF 5-BOUNDS 7

© The Upward Theorem

Let 7 be a bounded tree with S-bound function 8. If T is any
subtree of 7 with immediate subtrees T; and T; then another
S-bound fanction for 7T is given by §', where

g'=8[THSnp(T)
and the set S is given by

BT)UMT) HT=T10T,
8§ = BAT)n ﬂ(Tg) ITr=TR1;
B(Th) fTr=heaemt

o The Downward Theorem

Let 7 be a bounded tree with S-bound function 8. H T is any
subtree of 7, and T’ is au immediate subtree of T, then another
S-bound function for 7 is given by &, where

8" =BT+ BTN B(T")]

The proofs of these theorems are tedious, and they are deferred until
the appendix. Given the intuitive idea of bounds being boxes that enclose
the primitives in a C8G tree, the correctness of the Upward theorem should
be evident; if we start with a bound set that satisfies the boxing property
and just apply the Upward theorem, theu the bounds that get formed at the
branch nodes are just supersets of the sets that are formed when you take the
normal semantics of the corresponding subtree’s interpretation. Similarly, if
we know that the set, represented by 7, can be enclosed within a box B, then
it is “obvious” that we should be able to ignore any parts of the primitives
of the tree that lie outside B. What is not as obvious, and is in fact quite
difficult to prove, is that we can legitimately combine both types of rewrite
rule within the same system. (The proofs are complicated by the existence
of the B operator; they are almost trivial without it.} The advantage of the
notational framework that has been built up in this section is that we can
be quite precise about what rewrites are and are not allowed: this will he
useful as we explain how S-bounds are useful within the framework of CSG.

2.3 A Two-Dimensional Example of S-bounds

To illustrate how S-bounds can be used consider the simple CSG tree shown
in figure 3{a), comsisting of a two operator tree and three primitives from %

2 THE THEORY OF 5-BOUNDS 8

The primitives are each shown within a frame; this is simply to emphasis
their relative layout. We have also shown the resultant shape described by
the tree under the normal semantics.

The S-bounds we will use here will be rectangles aligned with the frame,
and a set of 5-bounds that obey the boxing property are shown in figure
3(b). If we apply the Upward Theorem twice, firstly about the @ node and
then about the ® node, we get the new S-bounds shown in figure 3(c); as
expected, each bound is a superset of the corresponding subtree. We can
then “push™ the bounds back down the tree by applying the Downward
theorem four times, twice to the children of the © node, and then twice to
the children of the @ node; the resulting S-bonnds are shown in figure 3(d).
The important feature here is that the S-bounds about the primitives are
now smaller than the original bounds and, in particular, the S-bound abont
the left-most primitive is now the null set. This reflects the fact that this
primitive is redundant (in this configuration) [Til84], and could be removed
from the CSG tree without affecting the resultant shape. (See §3 for more
details.)

In fact it is possible to simplify the bonnds further by repeating the
process of Upward and Downward Theorem applications, starting with the
bounds in figure 3(d). This results in the other four bounds converging
to the smallest non-null bound in figure 3(d). Although this is a simple
example, the same principle applies to much larger CSG trees.

2.4 Making Use of S-bounds

So far we have only described S-bounds as an algebraic system; we have
not described how they can be used in practise. The practical use that we
have made of §-bounds is to use 5-bound sets that are easily described, and
manipulated quickly—in time linear in the size of the CSG description. This
enables us to use S-bounds quickly as a preprocessing stage, to simplify the
slower processing that follows. This philosophy applies to the NOD problem
in particular, when large speedups in processing time are the norm, but it
has also been applied by default to many of the other processing algorithms
msed in our geometric modelling system (e.g., drawing, inertial property
calculation, and minimum distance calculations).

The S-bounds that are used are boxes, aligned with some arbitrary world
woordinate axis system. Thus in two dimensions each box can be described
as a four-tuple, viz.:

{Enynahu) ={z.)| n<z<an, u<y< wm}

We need a pair of operators, U and N, such that AU B 2 AU B and

2 THE THEORY OF 5-BOUNDS

(a) (b)

0 0

J L0

5 [

{c} (d)

Figure 3: Two-Dimensional Example of S-bounds

2 THE THEORY OF S-BOUNDS 10

AN B 2 AN B; we use the obvious pair:

{a,b,c,d) U {a,B,7,6)
(a,b,c.d} N (e, B,%,)

(min(a, a), min(5, 8), max{c,), max(d, 6))
{max(a, a), max(b, #), min(c,), min{d, &)}

(We also need to denote infinite bounds, and to identify tull bounds.) Such
operators can obviously be applied in unit time; other properties of these
operators include the identity AN B = AN B, and that both operators are
commutative and associative, but neither distributes over the other.
Another obvious choice for the class of bounds we could use is spheres.
We have not used them in our implementations, but we give a correspending
set of operators for completeness. A spherical bound is described by its
centre and its radius, say {(e,r). Given two such spheres, say {e;, ;) and
(€5, 75) With #; > r,, then if 4 is the Euclidean distance bet ween ¢; and ¢,:

» if the operation is N, we get three cases:

— ifd > r + #,, the result is @;
— il d < ry— r,, the result is the same as the smaller sphere;

— otherwise the result is a new sphere, namely

([(@®+ rF = e+ (@ = 1} + e,] f2d,
[4r,2rf -~ (@ - r} - rf):] /4d2>

® if the operation is U, we get two cases:

— if d £ r; — r, then the result is the same as the larger sphere;

— otherwise, the result is 2 new sphere, namely
{[(d4 ri— rdei +{d —r +)¢, /2d, (d4 ri+1,)/2)

In each case the centre of the resulting sphere lies on the line between the
centres of the original spheres, and the sphere has minimum radius. These
sphere operators are commntative, but not associative.

The next problem to solve is the order in which the rewrite rules (as
given by the Upward and Downward theorems) are applied. We have used a
simple ordering, namely we apply the Upward theorem in a bottom-up man-
ner throughout the whole tree, followed by applications of the Downward
theorem in a top-down manner. (This was the ordering used in the example
of §2.3.) As was mentioned in §2.3 we can often gain by repeating this pro-
cess; the bounds need not converge after the first applications. This order

2 THE THEORY OF S-BOUNDS

procedure setSBs(n, T);
setboxes(T);
do n times begin
upSB(T):
downSB(T);

d
enti[r,\lroc

procedure downSB(T);
do-dSB(T,Q);
endproc

procedure do-dSB(T, B),
NB « boundof(T)N B;
boundof(T) +— NB;
if not isa-leaf{T) then begin
do-dSB(leftchildof T, N B));
do-dSB(rightchildof T, N B)});

end
endproc

11

procedure upSB(T);
if not is2-leaf(T) then begin
upSB(leftchildof{ T));
upSB(rightchildofT)});
L —bhoundoflleftchildofT));
R —boundof{rightchildof{ T));

switch on operator-of{ T')
case @: C — LUR;
case ®: C — LN R;
case O: C — L;

endsw

boundof{T) +

boundof[T) N C;

end
endproc

procedure setboxes(T};
if isa-leafT) then
attach a convenient bound
that is o superset of 1(T)
else begin
boundof{lT) — fI;
sethoxes(leftchildof T));

setboxes(rightchildofT));

en
endproc

Figure 4: Code for 5-bounds

2 THE THEORY OF 5-BOUNDS 12

of rewrite rule application is embodied in the procedure setSBs(), which is
sketched in fignre 4; this computes a set of S-bounds that satisfy the boxing
conditions, and then repeatedly applies the Upward and Downward theorem
throughout the tree a given number of times.

We have nsed aligned boxes in all of our work with 5-bounds, although
other types of bounds could be used. For example: boxes with arbitrary ori-
entation; ellipsoids; convex hulls; and maintaining both 2 box and a sphere
abont each node in a tree, and regarding their unevaluated intersection as
an S5-bound. An extreme case, which is of mainly theoretical interest, is to
use the actual primitives themselves as initial 5-bounds, i.e. B(L) = (L} for
all leaf nodes L. However the gains to be had in obtaining “tighter” bounds
have to be offset against the longer times required to compute them.

Given two S-bound functions, it is reasonable to ask whether they can
be combined in some way. They can, by virtne of tbe following theorem,
which is proved in the appendix:

¢ S-bound Intersection Theorem

Let B, and 5; be S-bound functions over some tree T ; then so is

B1 © Bz, where (8; @ 32)(T) = Bi(T)N B2AT) for all subtrees T
of T.

It is not necessary to use the algorithm shown in figure 4 to refine §-
bounds; in practise this algoritbm works well in our applications, but other
strategies could be tried. We can regard S-bounds as a coustraint manip-
ulation system in which information about individual constraints (i.e. the
primitives) are passed to other subtrees. Applying heuristics to encourage
the spread of tight constraints (i.e. small primitives and subtrees) could be
fruitful.

2.5 Convergence Properties

In the general case a system of S-bounds need not convergge at all, as there
is no requirement that the rewrite rules be deterministic. {We can always
choose an arbitrary superset of any S5-bound.) For the S-bound sets and
operators that we use, namely the aligned boxes, convergence in finite time
is assured. To see this, note that each bound in £ can be described by
2n parameters, giving the maximum and minimum extent of the box in
each dimension. Also, the operators U and M can only replace parameters
for the bounds for one subtree by existing parameters from other bounds,
Thus the total number of possible bounds is finite, and so the total number
of possible S-bound functions that can be obtained by apylications of the

2 THE THEORY OF S-BOUNDS 13

Upward and Downward theorems is finite. Convergence now follows {rom
the fact that the operations produce sequences of bounds which are (non-
strictly) monotonically decreasing in size. ln fact it is possible to show
tbat for each Upward and Downward pass either this S5-bound sequence
converges, or we can set at least one S-bound value to @, TFrom this we
can deduce that the aligned box system must converge in quadratic time
[CY90]. Experimentally convergence of this system is normally quite rapid.
We conjecture that, for practical purposes, a call of the form setSBs(d,T)
will give a useful sei of S-bounds, where 4 is the depth of T' and T is
obtained from T" by compressing groups of @ and ® nodes into equivalent
n-ary nodes—e.g., replacing a subtree of the form A& (B @ C)} by a single
tertiary node. For our own implementation we have set d = 3, as this
seems to give good results and an S-bound processing algorithm that runs
in time linear in the size of the CSG treet. We can, however, construct
artificial examples which require longer to converge fully. Consider the tree
T=(hahL® - Pl &L - & Ly_y), where for simplicity we
have not made the binary tree structure explicit and where I,,, corresponds
to the open interval (m, m + 1). Then sucessive calls to upSB(T) followed
by downSB(T) result in the following sequence of bounds on the node T:
(1,2n-1),(2,2r - 2), (3,25 — 3),..., (n — 1,n + 1), . This convergence
requires quadratic time, and so this example is a worst-case example for this
problem.

2.6 Three-Dimensional Examples of S-bounds

We only present some simple examples of S-bound manipulations here, con-
centrating on the effect of O operators in CSG trees; more examples are
to be found in later sectious. Figure 5{a) shows two loops, both created
by taking a block and differencing out a cube to form the hole. The two
loops can be mated (though not without cutting them), as shown in figure
5(b). Using S-bounds aligned with the blocks allows us to bound the space
occupied by the intersection set, as shown in figure 5(c); figure 5(d) shows
the total bound attained for a case in which the S-bounds are skewed with
respect to the objects. (The thir lines show the outlines of the original
objects.) As can be seen a useful reduction in the space to be considered
is obtained; the reduction is not as dramatic as in some of our examples
due partly to the limited reasoning possible through the & operators, and

31 am indebted to Chee Yap for Lhis observation,

*When testing two rabot assemblies we Iorm (he intersection of a pair of assemblies;
each assembly is the union of a number of abjects (“links”) which are olten themselves
fairly simple objects.

? THE THEORY OF S-BOUNDS 14

partly to the true complexity of the problem. As anotler example, figure
6(a) shows a pair of objects, one of which is shaped like an ‘E" on its side,
and the other like a ‘x’, which are made up from taking tbe vnion of 4 blocks
and 3 blocks, respectively, The two objects can be mated exactly, and we
consider their intersection. With the bounds chosen to match the blocks all
the primitives are shown to be null-bounded after 3 calls to up-SB() ard
down-SB(); figure 6(b) shows the remaining bounds after 2 calls, with the
original bounds outlined as thin lines. Figure 6(c) shows the same objects,
but this time made up by differencing out the “gaps” between the “teeth”.
In this case the S-bound set settles down to the set shown in figure 6(d); it
is not possible to reason further about the interaction hetween the teeth.

2.7 Summary of S-bounds

We have demonstrated how a system of bounds can be estahlished about
every node in a CSG tree, and we have made explicit the semantics of these
bounds. The bounds establish regions outside which the relevant subtrees do
not matter with respect to the entire iree. S-bounds are used where we have
a particular tree on which we wish to do computations, be they for drawing,
mass properties, boundary evaluation, or whatever. For many applications
the reduction in the size of the bounds is small (say of the order of a few
percent), but even then they can lead to noticeable speedups in running
times. However, when the operation to be performed is NOD we shall see
that large increases in running speeds are the norm.

Boxing tests have become part of the folklore of computational geometry
and solid modelling; indeed, they were the starting point for the research
that lead to the approach adopted in this paper. However they have not
before been placed on the firm theoretical footing shown here. The addition
of our theoretical framework has two advantages: firstly, we have been able
to show how to refine the bounds that are used (standard boxing tests
being equivalent to just using a set of S-bounds that satisfly the boxing
property); and secondly, we have established results that are independent
of any particular domain. The domain that we have been interested in is
the regularised set model of shapes and motions [Req80, Cam84], but the
results of this section hold for any Boolean algebra. The only work of which
we are aware that is of a similar flavour to our own was performed at the
University of Rochester’s Production Automation Project, namely the work
on localisations [Til81], which inspired much of the workto be described in §3
and has culminated in the concept of active zones [RV29]. Active zones are
related to S-bounds in that the active zone of a subtree is, effectively, defined
to be the region outside of which the subtree “doesn’t matter”. Rossignac

i5

2 THE THEORY OF 5-BOUNDS

(b)

»/4;

X
TR

{c)

Figure 5: Two Intersecting Loops

'NDg

\

2 Twg THEQRY or S-Boy

(a)

T

g:’\l\l\j\
v

\

{b)
-

AoH -

A
A A

¥
(

==

{d}

Figuze 4. Effects of Using Differeny CsG Descriptions an S-Bounds

16

3 S-BOUNDS AND NULL OBJECT DETECTION 17

and Voelcker then show bow the active zone of a subiree can be computed,
by use of an intermediate form (which js, effectively, a CSG tree with no
internal & nodes). The active zone s, as defined, a single set, and so it
does not in itself admit the types of fast processing using “approximations”
to shapes that were the driving force behind the development of S-bounds.
However active zones are a useful conceptnal Lool, and are being used in the
development of the PADL2 modeller.

Many B-rep modelling systems allow objects to be defined constructively;
in such systems it would be possible to store the original construction in-
formation and then apply an S-bound analysis to that. This information
conld then be used, say, for automatically scaling pictures of the object,
or for marking the feature records in such a modeller with a box that can
then be nsed when testing {eatures for intersections. (By “featwre” we pri-
marily mean edge, face or surface patch records. Feature intersection tests
are a commou component of many geometric algorithms, such as boundary
evaluation.)

3 S-bounds and Null Object Detection

In this section we will build on the notion of S-bounds to develop the top
layer of our NOD algorithm. Given a CSG tree we run a S-bound processing
algorithm to refine the bounds—in our own impleutation we have effectively
been running setSBs(3, 7). Immediately we can note that any subtrees with
a null S-bound (Rull-bounded) cannot affect the “value™ of the tree, and so
we can effectively prune any such subtrees from the CSG tree. In particular,
if the whole tree is null-bounded the wheole tree must be null. This is the
sense in which the S-bound method is a partial decision procedure, and in
onr experience with usiug the algorithmn to perform interference detection for
robotics it occurs suprisingly often. As an example, figure 1 shows two robot
arms, and the corresponding CSG tree coutains 30 finite primitives and 8
infinite half-spaces; however, when the robots are checked for interference
the S-boauds preprocessing step alone is sufficient.

Having performed the S-bound step it is possible Lo jump straight to the
division algarithm which is described in §4, usirg the S-bound attached to
the root node of the tree as the spatial bound that that routine requires,
However there is yet another stage that we can profitably iutersperse. This
extra stage is based on Titove’s redundancy algorithm {Til184], although the
version that we describe uses §-bounds directly. First, we need some extra
notation. We assume that we are dealing with a particular tree, T, so that
any subtrees we discuss are subtrees of 7, and that a suitable S-bound

J S-BOUNDS AND NULL OBJECT DETECTION 18

refinement algorithm has been run on T, such as setSBs().

¢ General Definitions

¢ Two subtrees are said to be disjoint if neither is a subtree
of the other,

¢ The order of a subtree (in 7) is the number of times that
the path from the root node of 7 to the root node of the
subtree passes to the right of a & node. For example, in
T=A8(B@®(CHD)) Aisof order 0, Band C are of
order 1, and D is of order 2.

* A subtree is said to be positive if it is of even order, and
negative otherwise.

¢ A subtree T is said to be P-redundant, or simply redundant,
i I{T) = Zyorra(T); or equivalently, if the subtree T'
conld be replaced by a representation of the null set.

Tilove discovered in his seminal work on redundancy that all the positive
primitives in a tree that represents the null set are @-redundant®. Further,
if P is a positive primitive of T then P is f-rednndant if (in onr notation)

I(TynuP)=0. (1)

The converse is not true; however, if the intersection is not null then neither
is Z(T}, and so (1) can be used as the basis of a NOD algorithm:

o Tilove’s Algorithm

Pick a positive primitive of T, and perform the test (1). If the
test is false, then return false; otherwise replace the primitive by
one whose interpretation is @, simplify T, and repeat.

This algorithm is useful for two reasons. Firstly, the test in (1) is effectively
the same as solving the NOD problem for T within the region given by «(P);
generally we can take advantage of this to ignore parts of 7 that lie outside
«(P), giving significant computational savings. {This is an example of a
spatial localization algorithm, whereby we focus our attention on only part
of the space that we are interested in.) Secondly, at each stage we either
demonstrate that I(7T) £ @, or we can simpiify the tree—that is, replace

I am indebted to an anonymous reviewer for pointing out that [RV89] gives the basia
of an extension to Tilove’s ideas, which has been implemented inlo PADL2.

3 S-BOUNDS AND NULL OBJECT DETECTION 19

pracedure Simplif(T}); XL - X
if boundof{T) = @ then XoL — 1
returm 1;
if not isa-leafT) then X6l -~ X
L — Simplify(leftchildof(T))); L1eX - L
R — Simplify(rightchildof(T))); XeT - 7T
rewrite T, il applicable XeT - X
éeturn T
endproc X1 — 1
T6X — -~X

Figure 7: Simplifying CS5G Trees

the tree by a smaller tree. Thus, if Z(7T} =@ then we will go through all the
positive primitives in turn, at each jteration the tree tested will get smaller,
and we will end up with a tree that is tdentically null [Til84, Til81].

This is the first time we have discussed rewriting the CSG tree itself, and
some explanatiou is required. So far we have simply rewritten the bounds
on each node of the tree, using the rules for S-bouuds. From now on we wil
try to reduce the size of the CSG tree we are considering as we proceed. To
do this, we add twa new terminal nodes to thoge that can normally be found
in a C5G tree, plns some new rewrite rules. The new terminal nodes are
written L and T; L represents a primitive whose interpretation is always 4.
and T a primitive whose interpretation is always f. With these nodes we
can apply rewrite rules that reduce the size of the tree, based on identities
such as AUD = A, etc. Figure 7 shows a partial set of such rules, together
with a simple routine for applying them. For the purpases of this section
only the rules concerning L are of interest; 1 can be introduced to replace
any node whose bound is 8.

3.1 Redundancy-Based NOD Algorithm

Our algorithm is based on Tilove’s, but uses totaliy-consistent bounds as
the focusing regions (generated from S-bounds), rather than primitives as
the focusing regions. Proof of its correctness follows from the Redundaney
Theorem, which is itself proven in the Appendix.

3 S-BOUNDS AND NULL OBJECT DETECTION 20

¢ Redundancy Theorem

Let 7 be a tree with a totally consistent bounding function 3. If
T is any positive subtree of 7 such that Z(7)n §(T) = @, then
B{T + @] is another totally consistent bounding function on 7.

This theorem is our generalisation of (1), bnt the use of bounds is generally
more convenient than using the shapes of the primitives themselves, and
we are not limited to just considering leafl nodes of the tree. Note that the
theorem does not hold if we replace both occurences of “totally consistent
bounding function™ with “S-bonnd function”; as a counter-example, consider
T=A68, with (A) = (B)= X #£0. Theu Z(T) = @ and Jg is an §-
bound function on T, but Fo[A F 0] is not an S-bound function—consider
(B Q).

Use of the Redundancy Theorem allows us to incrementally simplify the
CSG tree as we cousider regions. We also need to be able to pick put nodes
in the tree at which to apply the theorem; we choose the nodes from a
covering sed.

¢ Definitions

Given a tree 7, a disjoint set of subtrees {T, Ty, ..., Ty} is called
a covering set {of T) if

TING. . I, =1

where T'|T) means the tree T with the subtree T) overwritten by
1, T|T1]T; means (T]T)|T3, etc., and = is equivalence under
the standard rewrite rules.

So if we use any covering set that includes only positive subtrees in our
modified version of Tilove’s algorithm then we are guaranteed to discover
either that the tree does not represent the nnll set, or that

I =T\ NWITl...|T.) =90

and 50 the tree does represent the null set. Tilove used the set of all positive
primitives as a covering set; in fact the set of zero-order primitives will also
work, as will some smaller sets, discussed in §3.2. The general form of the
redundancy algorithm is shown in §-NGD(), figure 8, in which DC-NOIX)
is the next layer of the NOD routine (discussed in §4).

3 S5-BOUNDS AND NULL OBJECT DETECTION 21

procedure S-NOD(7T);
T — Simplify{T);
C « coverset(T);
while C £ @ and T # 1 do begin
choose T from C’;
C—C-~-T%
if not DC-NOD(boundof{T"),T)
then
return false;
T« TIT
T — Simplifv(T);
end

return true;
endproc

Figure 8: Redundancy-Based NOD Algorithm

3.2 Finding Covering Sets

A suitable covering set for 40 B is {A}; for A® B we can use either {A} or
{B}; but for A@ B we must use {4, B} (or the root node). We can express
these ideas as part of a non-deterministic procedure, coverset(), as showr
in figure 9. coverset() can generate all the possible, minimal covering sets
of a CSG tree; for §-NOD(} we need to select just one. To emsure linear
time complexity of coverset() we use some simple heuristics, based around a
simnple estimate of the efficiency of taking different choices. This estimate is
simply the size of the S-bound attached to a node, whereby “size” we mean
the diameter or volume of the bound —both work well. The reason for this is
that a subtree with a large S-bound will probably intersect more primitives
than one with & small $-bound, and be more difficult to prove redundant;
thus, given a choice, we should choose the subtree with the smaller bound,
Our rules to decide which choices to make in coverset{) are:

¢ for a node of the form A ® B, ckoose the child node with the amallest
hound;

¢ for a node of the form A & B, choose 4;

* for a node of the form A @& B, choose the child nodes A and B il
K+ size{ A @ B) > size(A) + size(B), where size() is the size of the
bonnd on the node. (The rationale here is to consider the subtrees 4

4 SPATIAL SUBDIVISION 22

procedure coverset(T);
if isa-leaf{T) then
return T;
either begin
return 7
end
or begin
L « coverset{leftchildof T'));
R +— coverset(rightchildof T7));
switch on operator-ofl T)
case @: return L U R;
case @: either return L
or return R;
case G: return I;
Sndsw
en

endproc
Figure 9: coverset()

and B if the bounds would get noticeably smaller, otherwise stop. We
set k= 2.)

We have experimented with other, more complicated heuristics, but with no
significant increase in processing speed. As well as choosing which covering
set to pick, we also impose an order on the covering set (i.e., turn it into a
list) so that S-NOD() considers the nodes in order of increasing size; in this
way, we consider nodes which are easiest to deal with first, leaving the harder
nodes for when the tree has been rewritten to make it smaller. Examples of
covering sets are shown in §6.

4 Spatial Subdivision

The routines described so far have produced a set of regions, together with
a CSG tree for each region within which we need to solve the NOD problem.
The classical way to proceed iu the three dimensional case is to attempt
to generate all the possible segments of any edges of the intersection set;
if we suceed in generating any such segments then the set is not null. Un-
fortunately the number of possible edge segments is large, and so the naive
version of this algorithm has a complexity of O(n?) [Til21]. However we can

4 SPATIAL SUBDIVISION 23

intersperse a stage of spatial subdivision to improve greatly the expected
speed of the NOD routine. If we use L-NOD(R,T) to mean the generic
NOD problem localised within a region K then

R=|\JR; =+ L-NOD(RT)=AL-NOD(R.,T)

where A is the logical conjunction operator. That is, we can split the prob-
lem up spatially without aflecting the answer. By itself this observation
is of little use; however, if we can simultanecusly reduce the size of the
CS@G trees being considered by each subproblem we can effect a reduction
in computational complexity. A mechanism for reducing the size of these
trees is that used in [WQ80, W(Q84, WBSE] for applying spatial subdivision
to the problem of producing graphical representation of objects described
constructively; much of this section is based on this work, but describes the
modifications required to tackle NOD, and also preseats an analysis of the
usefulness of this stage.

4.1 Simplifying CSG Trees in Regions

As au example of this mechanism in actiou, consider the simple two-dimension-
al example in fignre 10(a). In this 2 quadrilateral is described as the inter-
section of four half-spaces; that is, sets of the form {x | f(x) < 0} where
in this case each f is of the form pz + qy + d. (We use linear half-spaces
here for simplicity, but the technique described here will work with general
half-spaces.) The quadrilateral is shown within the region of interest—in
this case, a square. Figure 10(b) shows the bonndaries of the individual
half-spaces; the “matter” side of the half-spaces are labelled with their cor-
responding leaf nodes, and the entire quadrilateral corresponds to the binary
tree (A ® B)® (€ @ D). Within the original region this tree is the mini-
mum that can be used to describe the quadrilateral. However, if we consider
the quadrant labelled NE separately (figure 10{c)), it is clear that A®@ D
is a sufficient local representation of the quadrilateral within this subregion.
Similarly, A® B, B® C and C @ D are sufficient within the quadrants
NW, W, and SE respectively. We can antomate the generation of these
losealised trees as follows. We start with a region and a CSG tree that is a
valid representation of some object in the region. Given a subregion, then
for each primitive iu the tree we consider the corresponding half-space. If
the half-space equation is always positive within the subregion then we can
eflectively replace the half-space with @; this we do by replacing the leal
node with L. Similarly, if the half-space equation is always negative within
the region we replace the leaf node by T. For the region NE in figure 10(c)

4 SPATIAL SUBDIVISION 24

(a) (b) ()

Figure 10: Two-dimensional example of tree localisation

this gives us the new tree (A® T)@ (T ® D). Now we can apply the rewrite
tules shown in figure 7 to obtain the tree A @ D, as required.

Thus in general we can accomplish this localisation in two stages. At
the first stage we identify which leaf nodes can be replated by L or T. This
is domain specific; haowever it is worth noting that if both the subregion and
the shape represented by the leaf node are convex, then we can normally
identify such nodes quickly. For example, if we have rectangular subregions
and two-dimensional linear half-spaces, as in the example of figure 10, then
the extreme values of the half-space function are achieved at the corners
of the rectangle pointed at by the outward and inward pointing normals of
the half-space boundary. For more complicated shapes we migbt not bother
to check precisely whether the boundary of the shape intersects the region;
for example, if we had a helical primitive we might enclose the helix in a
cylinder for the purpose of testing. As long as our tests are conservative we
will not simplify out any primitive that should not be removed from the tree.
(It also ensures that this procedure is numerically well behaved.) If we have
a bounded CSG tree then we can also take the bounds at each node into
account; nodes whose bounds do not intersect the subregion can be replaced
by L. This is the case with the NOD algorithm described, which produces
totally consistent bonnds.

Tbe second stage, the tree rewriting, is purely synlactical. The rewrite
tules shown in figure 7 are not in themselves complete, but it is not difficult to
add the extra rules to accommodate the - operator; for example, -7 — L,
A®-B — AQ B, etc. These rules can be applied top-down in the CSG
tree to obtain a2 minimal tree in linear time. In our work we have not taken
this course as we rewrite the trees to remove the © nodes before calling
DC-NOD{); this is simply to reduce the number of cases that have to be

4 SPATIAL SUBDIVISION 25

considered and thus the size of the program. We also take this opportunity
to resolve primitive objects {e.g., cuboids) into combinations of halfspaces
{e.g., intersections of linear half-spaces). For convex primitives the bounds
that were formed can normally be transferred to the half-spaces. The tree
rewriting can be accomplished by: setting a sign flag at each node, indicating
whether each subtree Is positive or negative; replacing the operator © by
@ thronghout the tree: swapping the operators at all negative binary nodes
(i.e. @ for ® and vice-versa); and finally complementing the half-spaces at
negative leaf nodes. The result of these tree rewriting steps is a tree with @
and @ binary nodes and half-spaces as leaf-nodes.

4.2 Performing the Spatial Subdivision

Given a set of subregions we know how to refine the trees; how do we
decide on the subregions? Tilove [Til81] discusses a fixed set of regions, but
Woodwark’s group [WQ80] shows how to choose the regions dynamically.
The latter approach has the advantage of being able to configure the set
of regions so that more, small regions are used near parts of space that
are complex. Experimentally this works well, and there is some theoretical
justification for it—see section 4.3.

DC-NOD() is our routine for performing spatial subdivision for NOD,
and it is outlined in figure 11. It is based on the popular “divide-and-
congner” paradigm; given a region and a tree it decides dynamically whether
to “conquer” the problem or whether to do another spatial subdivision. Here
localise() is a routine that performs the tree simplification steps cutlined in
§4.1, can-do{) is the predicate that controls the subdivision, base-NOD()
is the next layer of the NOD algorithm (discussed in §53), and copytree()
copies the tree structure. The control predicate, can-de{), is the heart of the
algorithm; it has to try to balance the cost of performing another subdivision
step against the ease of being able to solve the NOD problem with the
localised trees. For our implementations we have used simple regions and a
simple method of subdividing the regions; in three-dimensions the regions
are cuboids, and they are divided into eight octants. (This is not quite
true, as the initial region is split into a number of roughly cubical regions in
order to try to balance the problems.) [WQ84] describes a more complicated
division strategy, whereby the choice of partition is influenced by the leatures
of the objects described by the tree. Our version of can-do{) checks to see
whether the tree has one of a small number of very simple forms (see §5.1);
then it just estimates the complexity of the tree by counting the number of
half-spaces referenced. can-dof) is actually a function of the size of the region
being considered; for large regions, division is encouraged by only returning

4 SPATIAL SUBDIVISION 26

procedure DC-NOD(R,TY;
localise{ R, T);
if can-do(T) then
return base-NOD(R,T);
elge begin
split R into a partition { R;}
foreach R; do begin
T’ « copytree(T);
if not DC-NOD(R;, T’} then
return false:

end
end
endproc

Figure 11: Spatial subdivision procedure for NOD

true for small trees, but as the region size gets smaller more complex trees
can be passed on to base-NOD{). The idea here is that regions which are
resistant to being simplified probably coincide with parts of the “object”
that are truely complicated, and so we will probably not gain by trying to
divide the problem further. This control strategy work well for our domain
(i.e. robot workcelis); in the general case we can adjust can-do{) by trial
and error to give a good performance.

There is some similarity between the action of this routine and the for-
malion of a guad tree [Sam84]. The quad tree of an image is generated by
Jooking at the complexity of the image within a square region, and then
either storing a description of the image within that square, or splitting the
square into four quadrants and describing those separately. One problem
with quad trees is that it is difficult to perform a general rotation operation
on themn; this is not a problem with DC-NODX{) as the division structure is
not stored.

4.3 Computational Complexity of Spatial Subdivision

A worst-case analysis of the computational complexity of this spatial sub-
division stage only shows that it will not dominate the complexity of the
composite algorithm; experimentally this is extremely pessimistic. On the
other hand calculating the expected complexity is difficult, partly because
the analysis required is not trivial, but also because it is difficult te char-
acterise the inputs to the algerithm, as we do not have a statistical model

4 SPATIA L SUBDIVISION 27

for 2 “typical” NOD problem. Thus we shall present only a simplistic, but
nevertheless useful, analysis of the expected complexity.

Consider the case where the region of interest is a unit square and,
furthermore, the only primitive shapes are squares, of varying sizes, which
are aligned with the region of interest. Let the initial tree given as input
to DC-NODX() contain N leaf nodes. Furthermore, let us consider only the
simplest version of the control predicate can-do(), namely one that counts
the number of leaf nodes in the initial tree and, on the basis of that count
only, chooses a number D so that the initial unit square is divided into a
20 x 2D grid by a uniform pattern of recursive calls. At each division stage a
square js taken and divided into four quadrants, and so there will be M = 40
final regions. Each call to DC-NOIX) involves an immediate time cost that
is Knear in the size of the tree that it is given, and results in either a call to
base-NOD() or in four further calls to DC-NOD(). Thus the total time cost
for the division process is proportional to:

the sum, over all invocations of DC-NOIX), of the size of their
inputs

which is proportional to

the sum, over all invocations of DC-NODX), of the number of
primitives in the simplified trees for each region

which is proportional to

the sum, over all primitives, of the number of regions corre
sponding to a call to DC-NOIX) that intersect the boundary of
the primitive

Thus in estimating the time cost we can scale up the cost of a single primi-
tive.

A primitive is in a simplified tree if its boundary crosses the correspend-
ing region. For large primitives (of similar size to the initial unit square)
the number of regions affected from a uniform grid of size 29 x 29 is approx-
imately proportional to the length of the perimeter of the primitive divided
by the diammeter of the regions—i.e., 29. Thus the total cost for the large
primitive is approximately 14+2+4+ - -+22, which is 0(20) = O(v'M). For
small primitives (i.e. of size comparable with the final grid size, or smaller)
each primitive will only affect a bounded number of regions at each division
stage, with total cost of O(D) = O(log M). (This result has similarities with
the result given in [SamB0] for generating a quad tree.) This gives a total

5 EXHAUSTIVE METHODS 28

time bound for all N primitives that is O(N+/M); this compares favourably
with simply choosing an initial grid and calling base-NOD() M times with
the initial tree, which has a cost of O{ N M}. As we are restricting curselves
to fidng M at the first call of the procedure we car estimate the costs of
using different formulae for M; choosing M as O(N), which we believe is
reasonable, gives a time hound of O{ N3/?) for the division process; choosing
M a O(N?), which we believe is pessimistic, gives a time bound of O(N?).
Extending the analysis to 3 dimensions we see that large primitives will be
taken into account in regions which straddle the boundary of the primitives,
which gives a time bound for these primitives of O(N M?%/3); using the val-
ues for M suggested above gives a time bound of G({N5/3) and O(NT/?);
in four dimensions the corresponding bounds are O(N M3/4), O(N7/4) and
O(N3/2).

We do not present here an analysis of time complexity for the procedure
base NOD(). [Til81] and [Cam84] argue that, under some reasonably gen-
eral restrictions on the spatial distributions of the primitives in the C8G
tree,if we choose M o« N in the analysis above then the complexity of algo-
rithm will be asymptotically bounded by the cost of performing the spatial
subdivision. We can illustrate this behaviour by noting that we could set
up the control predicate, can-do(), to bound the size of CSG trees consid-
ered by base-NOD(), and so we can envisage this latter routine as always
retumning within some unit time. Of course, to do this we have to allow
DC-NOIX) to consider regions smaller that the ones suggested above; how-
ever in this case we would also expect larger terminal regions where the
complexity of tbe space was simpler and these would tend to balance the
total cost. Experimentally this optimism seems well jostified.

5 Exhaustive Methods

The routines described so far have tried their best to avoid looking closely at
the geometry described by the CSG tree. In our experience they generally
succeed in pruning down the amount of ®" that has to be examined in detail,
as well as considerably reducing tbe size of the trees. This section concerns
ways of implementing our routine base-NOD(), which takes as input a CSG
tree and a region of ®" in which to lock. The routine can be thought as a
theorem prover, which has been asked to prove a theorem of first-order pred-
icate calcu]us. The theorem is of the form, “there exists no point x which is
inside the object defined by the given CSG tree (within the region given).”
The implementation of base-NOD() is highly domain specific, and the gen-
eral techniques are described elsewhere (e.g., [Til84, Til80, Bro82]), but for

5 EXHAUSTIVE METHODS 29

completeness we present an overview of our implementation of base-NOD()
which concentrates on the aspects which are amenable to use in other (geo-
metric) dormains. There are two paradigms which we have found useful—the
syntactic paradigm and the generate-and-(est paradigm.

5.1 Syntactic Paradigm

Some formulae of the predicate calculus are independent of the values taken
on by their arguments; these are the tautologies and contradicationsof the
propositionial calculus. These occur rarely in general CSG trees, but are
much more frequently found among the trees given to base-NOIX) and the
trees generated by the point classification routines (§5.2). The simplest,
and most frequent, examples are the trees L and T. Trees consisting of
a single half-space are also common. More complicated examples can only
be detected if we identifly equivalent and complemeutary half-spaces {or
primitives) at the leaves of the CSG-trees. For example, if we have a tree of
the form A ® B and if we discover that A corresponds to the half-spacez < 0
and B to x > 0 then we can established the nullity of the tree by reference
to the contradiction X N'X (in a regularised set system). In our own system
we identify such leaf nodes as part of the preprocessing stage described in
§4.1 by numerically sorting the half-spaces, which is an O(nlogn) process.
This numerical comparison is practical when we are dealing with simple
hali-spaces, such as linear half-spaces, byt identifying such leaf nodes in
general domains could be difficult, due to rounding errors in the computer
arithmetic. In such cases we could exploit meta-knowledge about surfaces;
for example, if we have a robot planning system tbat knows that a robot
will establish a face/face spatial relationship when it places an object on a
surface, there is no need to perform a geometric comparison to establish that
the face equations are then related [AP75]. Once we have identified sech leafl
nodes we check for the existence of a tautology or contradiction only if the
number of distinct half-spaces & is small (say < 5} and then by explicitly
evaluating all 2V possible truth values. This is not as ad hoc as it may at
first appear; the regions passed to base-NOD() generally contain only a small
number of geometric features, each of which correspond to a small number
of half-spaces. The only common case in which larger numbers of half-spaces
are found is when features are mated, in which case spatial subdivision is
unable to reduce the size of the CSG trees, but the number of distinct half-
spaces is still small. Such cases are common in robotic assemblies. This
procedure could also be used to transform the CSG tree into conjunctive
or disjunctive normal form and so guide the search for test pointsin the
generate-and-test paridigm.

& EXHAUSTIVE METHODS 30

5.2 Generate-and-Test Paradigm

The standard way of performing NOD in ®2 is to generate a set of possible
edge-segments for the “object” and then to check to see if any really exist—if
they do, the test returus false. This is an example of the generate-and-test
paradigm.

One method of generating points for testing would be to choose them
randomly. This has the advantage of simplicity, but also the distinct dis-
advantage of never terminating if the ohject is null. (However it could be
used a8 a quick step if we had a case in which we expected the object notto
be null.) To get around this non-termination we have to choose a finite and
sufficient set of points. A non-null regular set must contain interior points,
and as these are normally simpler to classify than boundary points it would
be nice if we could choose interior points for cur test set. Unfortunately it
is difficnlt to generate such points a priori, and so points in the test set are
likely to be on the boundary of the object. The “standard” technique in ®3
is to take pairs of surfaces that bound the primitives, and intersect these to
form candidate lines; these are in turn intersected with surfaces to form can-
didate edge segments; and these edge segments are then classified (as being
tnside, outgide or surface}. This generates a sufficient set of points hecause
a {bounded) non-null three-dimensional set must have a two-dimensional
boundary, which in turn must be a collectiou of surface patches which are
bounded by edge-segments from the generated set. However it should be
realised that any sufficient set of points could be used, such as points which
would be interior to a surface patch or points which are candidate vertices;
there is a compromise between ease of geuerating the set and the difficulty
in classifying the points within it.

To classify a given point we may proceed as follows. We have a CSG
tree; if we imagine a small region arouud the given point then we will see
that we can use a limiting form of the tree simplification routine (§4.1) to
form a new CSG tree valid about the point. (Instead of testing half-spaces
against the corners of an arbitrarily small box we just evaluate the half-
space functions at the point and reject any whose absolute value is larger
than some small £.) Immediately we may discover that the equivalent CSG
treeis L or T, corresponding to points that are outside or inside the ohject
respectively. Otherwise we have to compute a local map of the region around
the point—a so-called neighbourhood computation [Til80, Bro82)] Intuitively,
a neighbourhood is a map that is valid in some arbitarily small region about
the point. As an example, consider figure 12(a), which shows a slotted
block. If we want to classify the point shown, which lies on an edge, then a
suitable neighbourhood map is shown in figure 12(b}); it is two- dimensional,

5 EXHAUSTIVE METHODS 1

/ edge
() (b}
N
w E
By A o T
A s
(c) {d}

Figure 12: An Example of a Neighbourhood Computation

5 EXHAUSTIVE METHODS 32

as the edge “looks the same” in the direction of the edge, and it is accurate
within some arbitrarily small sphere, centred on the point. (Note that we
camnot always rely on being able to make a neighbourhood map using linear
entities; in particular two curved surfaces may have the same normal at the
test point, and will then have to be sorted by curvature.) If the slotted
block is described in the natural way as the difference of 1wo blocks then the
simplified CSG tree for the neighhourhood will be of the form B12(4:® 43),
where By is the half-space of the larger block which forms the top of the
slotted block, Ay i3 the corresponding half-space for the smaller, differenced
black, and A; is the half-space of the smaller block that forms the wall of
theslot. These half-spaces are labelled in figure 12(c), with the labels on
the “matter” side of the half-space boundaries; note that B; and A4, are
equivalent as half-spaces, To classify the point, imagine walking around
the point in the neighbourhood map, and stopping each time we cross the
boundary of a half-space. For our example, this might be at the points N,
E, 5 and W shown in figure 12(d). If at each point at which we stop we
take our existing local CSG tree, and simplify it again with respect to our
new point, then the only possible results are T, 1, or some set-combination
of half-spaces with the same boundary which is easily evalnated, possibly
using the syntactic paradigm. Continuing with the example of figure 12, the
point N is outside By and A;, and so we refine ounr local tree as follows;

Bi8{(ARA)—~1o(Ll®A)—~1

The point E gives By 5 (A @ T) — B; & Ay, which requires use of the
syntactic paradigm to show its equivalence to the null tree; the point § yields
T 8(T @ A3) — ~Ay; and the paint W yields B; §{A; @ L) — By. The
last two are not equivalent to L, which is not suprising as they correspond
to the real faces bounding the edge. For the purpose of NOD we only have
to look out for any evidence of non-nullity, which is easily discovered from
the procedure above.

Thus it may be seen that the classification process is essentially one of
reducing the dimensionality of the problem in order to be able to manipulate
them within the discrete, linear memory of a computer. In the case of
clasifying the edge segments we chose a point interior to the segment so
that we could reduce the problem to classifying a general point in two-
dimensions, namely within the confines of an arbitrarily small “disc”—the
neighbourhood map. In turn we could produce a local map for the disc, and
then if necessary move away from the centre of the disc along the (projected)
half-space boundaries to find points for which the classification problem is
equivalent to solving for a point in a one-dimensional space; this 1ast problem
has a simple solution.

6 INTERFERENCE DETECTION IN ROBMOD a3

This necessity of performing dimensional reduction explains why we did
not take the set of candidate verlices of the object (in ®%}; classifyingsuch
points entails considering a neighbourhood that is topologically equivalent
to a sphere. Similarly we see that it would be easier still to classify points
that can only lie interior to surface patches, as then we only have tolook
at a line that pierces the patch to perform the classification. However there
is, in general, »0 easy way to generate such points as we would first have to
intersect all pairs of surface patches!

In the case of ®* we use a similar analysis. First, to generate a st of
candidate points we take all triples of half-space boundaries to form candi-
date lines, then use the half space boundaries again to prodnce candidate
edge-segments. Testing points within these segments is equivalent totest-
ing a general point in three-dimensions, and so we can use the mechanisms
described above to effect further reductions in problem dimensionality.

Finally, we may note that this exhaustive process can be viewed s ex-
ploring a search space. The first branches in our process tree correspond to
the computation of the sufficient set of test points, and the later branches
cotrespond to testing further points which are generated by the dimensional
reduction mechanism. The only order for exploring this search space that
we have tried is depth-first search; this is due mainly to the problems with
memory management in the current incarnation of our system, Other swearch
strategies could prove fruitful in situations where we expect the object not
to be null.

6 Interference Detection in ROBMOD

The routines described in this paper have been implemented into a geomet-
ric modelling system called RoBMOD [CA88, Cam84]. ROBMOD is a C5G
system which also has provisions for producing boundary information, and
has been used as a test-bed for research into the use of spatial reasoning
for robotics, such as the collision detection problem [Cam85, CamB84], and
as a geometTic processor for the RAPT robot language [ACCS6) and for the
Oxford Autonomous Guided Vehicle Project [CamB88}.

S-bounds, based upon boxes aligned with the world coordinate system,
are used by default in most of ROBMaD’s algotithms. As described in§2 we
effectively run set5Bs(3, T) to set up the 5-bounds. If we consider thesitua-
tion shown in figure 1, where we are testing to see whether the intersection of
the two robots is null, then this reduces the initial set of 38 primitive tounds
{figure 13(a))into the bounds shown in figure 13(b) after one call to vpSB()
and dowaS B(}, and then to a vull-bounded CSG tree after another two pairs

7 SUMMARY 34

of walls. Figures 13(c) and 13(d) show covering sets for this tree, generated
after the equivalent of set-SBs(1, T} and set-5Bs(2, T} respectively.

Figure 14(a) shows a different situation, where we are testing for in-
tereference between a single robot and its environment. The environment
consists of the table on which the rohot sits, a block, and 8 rods, the latter
being included to clutter the robot’s environment. Figure 14(b) shows the
initial set of bonnds around the primitives; it can be seen that there are a
considerable number of interferences between the bounds. These interfer-
ences serve to reduce the effectiveness of the S-bounds stage, but despite this
the resultant covering set, figure 14(c), is a considerahle improvement over
testing the entire workspace. Aligning the S-bounds with the robot arm im-
proves the situation considerahly (figure 14(d)): if we move the elbow of the
robot so that there is no longer any interference between the robot and the
block then this alignment reduces the computation time reqnired to prove
nor-interference by about one-third.

As a final example, consider testing for interference between a “ray” and
an object. We can simulate this in our system by using a Iong, thin block
in place of the ray; sach a ray is shown intersecting a robot in figure 15(a).
(The system is happy considering aritrarily thin “rays”; we have shown a
reasonably thick ray for clarity.) Figure 15(b) shows the ray together with
theintial S-bonnds around the robot; after a single pass a new S-bound set
is obtained about the primitives (figure 15(c}), which is only slightly im-
proved by further passes (figure 15(d)). S-bound processing could be used
in this way in a ray-casting system; an alternative approach, which may be
faster if we want to pass a large number of parallel rays into the model (as is
generally the case in picture generation) would be to generate the 5-bounds
foreach ray in parallel. If we consider the thick ray of figure 15 then we note
that the S-bounds created are valid for any ‘thin’ ray within the thick ray.
I particular we could split the thick ray into four quarter-rays, copying the
S-bounds for each quarter-ray and then performing further refinements. For
a large number of rays this would distribute the cost of generating localised
bounded trees, in the same way that the dynamic divide-and-conquer strat-
egy employed in DC-NOD(} distributes the cost of generating localised trees
for base-NOD().

7 Summary

We have described a complete intersection detection routine that is com-
posed of several separable stages. The first stage consists of installing and
then refining a set of bounds about the nodes in the CSG tree; these bounds

35

)

d

{

7 SUMMARY

Ilh:
il /
h‘r- 7
\nwf./

NI TR
4!1..“@%

I
Y —

(c}
Figure 13: Various primitive bounds for the two robots

36

7 SUMMARY

(d)

<)

{

Figure 14: Robot tested in a cluttered environment

37

7 SUMMARY

- 2
TN NN

\\

(d)

(¢}

Figure 15: Ray Casting with S-Bounds

7 SUMMARY a8

arebased on the new theory of S-bounds. Once refined the bounds may prove
sufficient to prove non-interference; otherwise the problem is split by con-
sidering a covering set for the tree, and considering the appropriate bound
separately. This is a useful step because we are then able to incrementally
simplify the CSG trees considered, using the concept of redundancy.

The next stage begins to consider the underlying geometry of the CSG
primitives in more detail. We use a spatial subdivision method to split the
problem spatially into a number of sub-problems. This technique is used
to reduce the computational complexity of the routine significantly as it
replaces one expensive problem by a number of (normally) much cheaper
preblems. Finally we may need to examine the geometry in detail. This
pari of the routine is the most domain-dependent. We have described a pair
of paradigms that are reasonably general, namely one based on checking the
form of Boolean functions, and one based ou exploring the space looking for
evidence of intersection. Other methods could easily be used in their place.

We have only detailed here algoritbms that return a purely Boolean
answer to the NOD or intersection question; in fact it is not too difficult
to modify the routines to give some idea of the size and location of the
intersection set. As described the S-bounds and spatial subdivision routines
already find regjons of space that might contain “matter”, and in some cases
where only a rough characterisation of the intersection set is required a list
of those regions that turn out not to be empty may suffice. For a complete
characterisation of the intersection set we would require domain-dependent
(and tedious) modifications to the methods of §5 to return the appropriate
boundary information.

We are wary about giving CPU timings for these routines because they
are dependent on both the particular implementation and (more impor-
tanily) because they vary with the situations given. In many cases we have
found that the S-bounds method is itself able to provide an answer very
quickly. Otherwise, for our robotic workcells then as a rough rule-of-thumb
we expect to see processing time increases of roughly a factor of five, two
and thirty if we disable the S-bound refinement stage, the redundancy stage,
and the spatial subdivision stage separately. However we should note that
thestages do overlap in their effectiveness, as, say, the $-bounds refinement
step tends to discard regions of space that would be easily processed by
the spatial subdivision stage. Thus the tatal speedup for the entire routine,
aver just performing an exhaustive method with bounded primitives, is only
a factor of about one hundred. On a SUN 3/160 workstation (without a
floating-point accelerator) then we do expect the routine to return within
one or two seconds in the worst cases seen.

Although we have described interference detection within a CSG mod-

REFERENCES 39

elling system it is clearly possible to carry out the S-bound and redundancy
stages within a B-rep modeller provided that a set-combination tree is avail-
able for the objects. However the other two stages described are af more
limited use in this case. We could perform spatial subdivision as described,
but there is a considerable overhead in testing and refining the entities in
the B-rep model.

Acknowledgements

Most of the work described in this paper was supported by an SERC stu-
dertship at the University of Edinburgh Department of Artificial Intelli-
gence. The ideas were refined with the support of the McDonnell Douglas
Independent Research and Development programme, and an SERC Aitlas
Research Fellowship. Many colleagues at Edinburgh, St. Louis and Oxford
provided valuable feedback and suggestions. | am also indebted to Ari Re-
quicha, Mike Brady and two anonymous referees, who made useful comments
on drafts of this paper, to Jarek Rossignac for useful discussions regarding
S-bounds and active zones, and ta Chee Yap for his comments and his proof
of the quadratic time convergence for the bounding box system.

References

[ACC86] A. P. Ambler, S. A. Cameron, and D. F. Corner. Augmenting the RAPT
robot language. In U. Rembold and K. Hormann, editors, Languages for
Sensor-Based Conirel in Robotics, pages 305-316, Casteivecchio Paseoli,
September 1986. Springer-Verlag, ref. F29 (1987). Also as Univenity of
Edinburgh DAI Research Paper 330.

[AP75] A. P. Ambler and R. J. Popplestone. Inferring the position of bodies from
specified spatial relations, Art. Istelligence J., 6(2):157-174, Summer
1675.

[Bro82] Chris Brown. PADL-2: a technical summary. IEEE Comp. Graphics &
Applications, 2(2):69-84, March 1982.

[Bur69] R. M. Burstall. Proving properties of programs by structural indeclion.
Compuler Journal, 12(1):41-48, 1969.

[CAB8) Stephen Cameron and Jon Aylett. ROBMOD: A geometry engine for
robotics. In JEEE fal. Conf. Rodolics and Aulomaiionr, pages 88}-885,
Philadelphia, April 1988.

[Cam84] S. A. Cameron. Modelling Solids in Motton. PhD thesis, Univenity of
Edinburgh, 1984, Available from the Department of Artificial Intelligence.

REFERENCES 40

[Cama85)

[Cam88]

[CY9q]

[Req80]

(RV&2)

[Rv83)

[RvEg)

[Sam80]
[Sam84]

[TiI80)

{Tis1}

[Tis4)

[WBS6]

[wQso]

(WQs4q]

S. A. Cameron. A study of the clash detection problem in robotics.
In JEEE Int. Conf Robotics and Automation, pages 488—493, St. Louis,
Mazch 1985.

§. A. Cameron. A geometric database for the oxford autonomous guided
vehicle. In B. Ravani, editor, CAD Based Programming for Sensory
Robots, pages §11-526, Castelvecchio Pascoli, July 1988. Springer-Verlag.
Ref. F-50.

S. A. Cameron and C. K. Yap. The use of bounds in geometric processing.
Accepted for publication, ACM Transactions on Graphics, 1990.

A. A. G. Requicha. Representations for rigid solids: Theory, methods
and systems. Compeling Surveys, 12(4), December 1980.

A. A. G. Requicha and H. B. Voelcker. Solid modeling: A historical
summary and contemporary assessment. [EEE Comp. Graphics & Ap-
phcations, 2(2):9-24, March 1982,

A. A. G. Requicha and H. B. Voelcker. Solid modeling: Current status
and research directions. JEEE Comp. Gruphics & Applications, 3(7):25-
37, October 1983,

J. R, Rossignac and H. B. Voelcker. Active 20nes in CSG for accelerating
boundary evalustion, redundancy elimination, interference detection, and
shading algorithms. ACM Trans. Graphies, 8(1):51-87, January 1989.
Also as IBM Research Report RC13490, Yorkiown Heights, NY, February
1988.

Hanan Samet. Region repressntation: Quadtrees from boundary codes.
Communications of the ACM, 23(3):163-170, March 1980.

Hanap Samet. The quadtree and related hierachial data structures. ACM
Computing Surveys, 16(2):187-260, June 1984.

R. B. Tilove. Set membership classification: A unified approach to
geometric intersection problems. J[EEE Transaclions on Compulers,
29(10):874-883, October 1980,

R. B. Tilove. Ezpoiting Spatial and Structural Loeality in Geometric Mod-
elling. PhD thesis, University of Rochester, October 1981. Available as
TM-38, College of Engineering and Applied Science.

R. B. Tilove. A null-object detection algorithm for constructive solid
geometry. Communications of the ACM, 27(7):684-693, July 1984.

J. R. Woodwark and A. Bowyer. Better and faster pictures from solid
models. Computer-Aided Engineering J., pages 17-24, February 1986.

J. R. Woodwark and K. M. Quinlan. The derivation of graphics from
volume models by recursive division of the object space. In Computer
Graphiea 80, pages 335-343, London, August 1980.

J. R. Woodwark and K. M. Quinlan. Reducing the effect of complexity
on volume model evaluation. CAD J., 14(2), March 1984.

REFERENCES 41

Appendix

For convenience in the proofs that follow we will define a class of auxiliary
functions, ¢5, by the following rules:

o If £ is a leal node then ¢5{L) = ¢(L)

B
e If T is a node of the form A{ ® } B then
5]

U
ép(T) = Tg(A){ N} Tp(B).

Then it is an easy proof (by structnral induction {Bur69]) that Is(T) =
ds(TYN J(T') for all trees T.

¢ The Upward Theorem

Let 7 be a bounded tree with S-bound function 4. If T is any
subtree of T with immediate subtrees Ty and 7; then another
$-bound function for T is given by /', where

B =BT §n BT,
and the set § is given by

ATNYUET) fT=Th&T;
g = ﬁ(T]) n B(Tg) T = Tl ®T2
B(T) fT=T6T

Proof It is sufficient to show that I7,(T) = I'(T) for any bounding func-
tion §” with " 3 ', where 3’ is defined as above, and any interpretation
¢ € t. The idea behind the proof is that il 7 is any such bounding function

then we can find another bonnding function 8t satisfying the conditions
(3) Zpu(T} = T5(T)

(b) At isidentically equal to 3" except that AT} 2 8(T), 4T} 2 A(Th),
and g1(73) D 4(T2).
Condition (b) implies that 3 is itself an $-bound fnnction (as g is), and as
3t is equal to 3" except on T, Ty and T then it follows (from condition (a))
that I5(T) =I5.(T), and so both are equal to IT'(T).

To choose 3! we consider the three cases corresponding to the operator
of T.

REFERENCES 42

Operator s &

Consider the sets A = "(T)U #(T) and B = g(T)U 5(T1) U 5(T2). Then
A2 8(T), B 2 f(Th), B 2 f(Ta), and

ANB = gYT)u {8(T)N [T U AT} = F/(TYUF(T) = 3"(T)
as #(T) 2 F(T). Thus
G5u(T) N B"(T)
{[#5T) 0 BTV [Bon(T2) 0 B"(T)]} 0 (AN B)
{[65AT2) 0 B(Ty) N B]U [85(T2) N B7(T2) N B} N A

Ty(T)

Soif we take A1(T) = 4, gH(Ty) = F"(T1) N B, and BYTy) = A"(T)" B
then T, (T) will be identically equal to the expressior above and Ft will be
of the required form.

Operator is ®

Consider the sets A = §*(T)U 3(T), B = "(T)U 3(T1), and C = g"{THU
B(T,). Then 42 A(T), B 3 H(Ty), C 2 B(Ts), and

ANBNC = F"(T)u{B(T)n B(T1)N B(T2)} = " (TYu F'(T) = B"(T)
Thus

i

I5(T) {{#5e(T1) 0 B (T N [$5(T2) N (T} N(ANBNC)

{{45(T2) N B"(T) 1 BI 0 [6u(T) 0 B7(T) N CI} 0 A

and so choose S1(T) = 4, FH(T1) = p"(Th) N B, and §(T;) = ()N C.

Ovperator is ©

Consider the sets A = "(T)UA(T) and B = A(T)UB(T}). Then A 2 4(T),
B> B(T1), and AN B = g*T). S0

TpT) = {16pT)) 0 B"(T0)] - (6T} BT} N (AN B)
{[#5AT0) 0 3"(T1) 0 B] - [65u(T) 0 B"(T2)] } 1 4

and so choose GH(T) = A, A1(T3) = #"(T3) N B and AH(Tz) = B(Ty).

REFERENCES 43

¢ The Downward Theorem

Let 7 be a bounded tree with S-bonnd function 4. If T is any
subtree of T, and T’ is an immediate subtree of T, then another
S-bound innction for 7 is given by ', where

B = [T+ J(T)n (T")]
Proof It is sufficient to prove that
Zpn(T)=T'(T)

for any bounding function 5 3 &, and any interpretation ¢/ C ¢. Proceed
by considering the cases of the set operation at T, but first, consider the sets
A=p(T"YU BT) and B = gMT)u H(T"). Then A 2 3(T), B 2 4(T),
and

AN B = YT [B(T)nA(T)] = AT U B(T") = B"(T")

We also require the following two lemmas, which are presented here with-
out proof. (Proof is by structural induction; they are proved in [Cam84].)

o Lemma Downl

Let T be a bounded tree with bounding function 3 and inter-
pretation of primitives +. If § is an arbitrary set and ¢ is the
interpretation given by

S(P)= {{(P)n5 if P is a zero-order primitive of T
Tl WP otherwise

then I5(T) = I(T)N .

o Lemma Down2

Let 7 be a hounded tree with two bounding functions 4! and
B%, and two interpretatious, ! and ¢*. If we are given a subtree
T of T, and a subtree T’ of T such that

s A1 and §% are identical on all subtrees of T which are not
subtrees of T”,

o 1 and ¢! are identical on all primitives of T which are not
primitives of T, and

REFERENCES 44
o I3,(T) € TH(T"),
. . ositive | . c
then if T is { P } inT, IE,(T){ 5 }Ié,(T).

negative
This lemma may be paraphrased by “making a positive sobtree
larger results in a larger tree, and making a negative subtree
larger results in a smaller tree™.
Operator is ©

Assume without loss of generality that T' = 77 ® T", Then
Zp(T) = {{¢p(T") N AN BINTLAT")} N B"(T)

{[dpdT) n BINZp(T") } N 1(TI 2 4]

So consider the hounding function S, which is identical to 3" except that
ANT) = BY(T)YN A and §YT") = B. Then 87 3 8 {and so is an S-bound
function}, Tpu(T) = I5y(T), and At is identical to 5" outside T'. So

I5u(T) = I;,,(’T) =I'(T)

as required.

Operator is &
Assume without loss of generality that 7' = 7' & T", and note that for any
bounding function g

IHT) = {$p(T") N B(T") N B(T)} U {ZHT") N BT})

Then consider the bounding functions gt = §”[T’ + B} and 8t = ST +
AnB"(T)). Then 1 248 and 4 7 3, and so both are 5-bound functions.
Using identity (2), and noting that ¢}.(T") = ¢/, (T") = ¢}, (T}, we have

(T = {&h(T)nANBag (T} u {THdT") N B"(T)N A}
Ip(T) = {&p(T)n AN BAETY} U {Zh(T" N 3"(T)}
(1) = {#p(T) B} {Z5.(7) 0 81T}

and s0

I5(T) € Ipn(T) € Iy (T)

REFERENCES 45

Using Lemma Down2, and defining O to be € if T is positive in T, D
otherwise, we have

To(TY0Z4(T)OT(T) (3

But At and /3! are both S-bound functions, and so the outermost terms in
(3) are both equal to T'(T), and

L5u(T) = T(T)

as required.

Operator ia O

If T can be writlten in the form TV©T" then the result holds as in the @ rase,
as ¢ (1) = ZL (1) N1} L(T"). So consider T = T" © 7", This case is by
far the most difficult case to prove, (It is also the only case that requires 5-
hounds to be different from totally consistent bounding functions). Finstly,
define the extra bounding functions 8t = B"[T + 8(7)] and g% = g'IT" -
A"(TYU B(T’)]. Then note that §* J 3, and is thus an S-bound function.
Secondly, define the interpretation

Py = J(PYNB(T) if Pis a primitive of zero-order in T
vy = !(P) otherwise

and note that by Lemma Downl
T =T(T) N 3T (4)

The main stages of the proof follow.

Step 1: Show that ft is consistent
Consider 81, and note that for any interpretation ¢° C ¢
(M) = {Tp(T") ~ [(T) 0 BHT)] } 0 BHT)
{ (") = 165(T") 0 8"(T")]} 1 B(T)
by the definition of gt
[Z3.(T") 0 B(T)] - [#3(T") N A1 B)
{{Z5u(T"y N B(T)] = [85(T') 0 B} U {[Z8.(T") 0 B(T)) - 4}
by the identity X - (Y NZ) = (X -Y)IU(X - Z)
(Za(T) N B(T)] - [¢3(T") 0 B]
as (TN BTYC HT)C A
Toag(T)

[l

REFERENCES 46

But BT' + B] 2 3, and so is an S-bound function, and S1[T' + B] is
identical to A outside T, and so

IEr(T) = 151[7'4-3](7-) =I°(T)

i.e. (T = IT) for any ¢ C . (8)
Step 2: Show I"(T) = I(T)
Note that
(@) = {Tp(T") - Tp(T)} N AT)

It

{Zou(T") = (T 0 BTN} N B(T)
by the identity (X -Y)NZ =(X-(¥Y NZ)NZ

= T -THT AT by ()
= In(T) as t"(P) = ¢/(P) for primitives of T"

But "{P) = /(P) for all primitives which are not primitives of T, and so
I;’;t(T) = IE,(’T)
But 8t is consistent over / and ' (by (5)), and so
(Ty=T(T) (6)

Step 3: Show Ij.(T) = I(T)

Now consider 3. A% is an S-bound function, and so

I(T) =T"(T) = T(T) by (6)
ie. I0,(T) = T/(T) ()
Further
IE:(T') = 1}'3;(7") n ATy by Lemma Downl

= (TN (T AT N A(T)
by the definition of %

= ¢p(T') N[BT N BTV [B(T") N H(T)]}
by distributivity

= ¢ (T)N {[B(TY N BT L B(T")}

= (TN {[B(TYUF(TNN[B(T) UE (TN}

REFERENCES 47

") N {B"(T) N B(T))
{¢ul(T)n (T} 0 A(T)

= én(T') n ﬂ(T)
= TH(T" by Lemma Downl
i.e. LT = Z4(T") (8)

But % and 5" are identical outside T, and so (8) implies that
I(T) = I T)

and then (7) implies
I"n(T) = I’(T) (9)

Step 4: Bracket Iéu(T)

Tp(T) = p(TINA1(T) = ¢TI N (T) N A(T) = Zpu(T) N H(T)

and so
Iy(T) C Zpu(T) (10)
Also, by Lemma Downl, g, (T") = Z5.(T') N 5(T), and so
Zg(T) € Ipe(T) which implies
T4(T) € Z4(T) (11)

Combining (10) and (11) gives

40(T) € ZhulT) € L3l T) (12)
Bnt by Lemma Down2, (12) implies

I (7L T)OLE(T)

where O is C if T is positive in 7, and 2 otherwise. But by {5) and (9)
both of the outermost terms in this relationship are equal to IY(T), and so
Zu(T) = T'(T), as required.

o S-bound Intersection Theorem

Let 3, and J3; be S-bound functicns over some tree T; then sois

51 © Bz, where (31 © B)T) = 31(T) N G4(T} for all subtrees T
of T.

REFERENCES 48

Proof Given auy bounding function 3, we can define t wo associated bound-
ing functions # and 3 as follows:

« A(T)=B(T)
¢ If T is an immediate subtree of T, then 4(T") = 3(T*) N 5(T).
¢ S(L) = A(L) for all leafl nodes of T, and A(T) = Q for all other nodes.

Tlen the following lemma holds:

¢ 5-bound Distribution Lemma

Given a bounding function J, then if any of 3, 5 or 3 is an
S-bound function, so are all the others,

To prove the lemma, note that 4 C # and 3C 3, and so if # is an §-bound
funetion, so are g and J. Further, if # is an $-bouud function then we may
apply the Downward Theorem repeatedly to show J is. So it will suffice to
show that 3 is an S-bound function if 3 is. Now note that if T has immediate
subtrees Ty and T3, then if # is an $-bound function with 8/(Th) = A(T1)
ard #(T2) = A(T:), then by applying the Upward Theorem to T we can
show that AT F §'(T)n (#(Th)} U F(T2))] is an S-bound function, and as
BTN (F(T))UF(T2)) € A(Ty)UJ(T,) C H(T) then we can use induction,
starting with 4, to show that [is an 5-hound function. This completes the
proof of the lemma.

So if A1 and B, are S-bound functions, so are §; and f,. Further, it is
easily shown that 8, ® f, = f, ® 2, and so it will suffice to show that either
isan $-bound function. Given any ¢/ C ¢, and any §* 3 §; © (2, we need to
show that T}.(7) = I'(7T). We define 4] and g} by 8)(T) = 8%(T) U BT
for all trees T and ¢ = 1,2—then both are S5-bound functions, with 3* =
B © 3. Further, define (L) = /(L) N f3(L) for all leaf nodes L. Thus
I;;(L) = (ML) FINNF(E) = Th.(L) for all such leaf nodes. But] is
a1 5-bound function, and & C ¢, and so Z}.(T) = I"B’;(T) = Z"(T) as hoth
bounding functions return away from leaf nodes. Similarly, we can show
that 7%(7T) = 1’5(7’) =TI/(T). Thus I}, (T) = I'(T) for all ¢/ C ¢« and all

515 0 bz, and so 8, @ fz, and thus §; ® J;, are $-bound functions.

o Redundancy Theorem

Let 7 be a tree with a totally consistent bounding function 3. If
T is any positive subtree of T such that Z(7}N 4(T) = @, then
B[T - 9] is another totally cousisteut bounding function on 7.

REFERENCES 49

Proof We need to show that Tsz-x)(7) = Z(T} for any &' 3 3 and any
set X. Assume, without loss of generality, that 4/(T} = §(T). By lemma
Down2 and the fact that 3’ is totally consistent

Tonra(T) € Do x (1) € T Ty = T(T) = Tp(T)

and so it will be sufficient to show that Tyqr (7} 2 IpAT).
Consider anew primitive interpretation, ¢/, given by ¢/{ P) = «(P)-3(T)
for all primitives P, We can show, by structural induction, that

5{T") = Ige(T") — B(T) (13)

for any bounding function 3* and any subtree T* of T (including 7 itself).
Now I5,(T) € 8(T) by (13), ard I5(T) C §'(T) = 5(T) by the definition
of Ty, and s0

L(TYCATINBT) =9

Thus T(T) = Ty q(T), and s0
Ip(T) = Tyren(7) (14)

Thus

I

Toreg(T) Lorew(T) - 8(T)

= Ioirg(T) by (13)

= Ip(T) by (14)

= Ip(T) - B(T) by (13)

= Ip(T) asTp(T)NA(T)=@

as required.

