INVESTIGATIONS INTO THE COMPLEXITY
OF SOME PROPOSITIONAL CALCULI

by

~ Marcello D’Agostino

Oxford University
Computing Laboratory

Programmin ,
8-11 Koble % oﬂazsearch Group-ubrary

Oxtord OX1 30D
Oxiord (0865) 54141

Technical Monograph PRG-88
ISBN (-902928-67-8

November 1990

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford 0X13QD

England

Copyright © 1996 Marcello D*Agostino

Oxford Unversity Computing Laboratory
Programming Research Group

11 Keble Road

Oxford 0Y1 3QD

England

Electronic mail: marcello@prg.oxford.ac.uk (JANET)

Abstract

Cut-free Gentzen systems and their semantic-oriented variant, the tableau
method, constitute an established paradigm in proof-theory and are of con-
siderable interest for automated deduction and its applications. In this latter
context, their main advantage over resolution-based methods is that they
do not require reduction in clausal form; on the other hand, resolution is
generally recognized to be considerably more efficient within the domain of
formulae in clausal form.

Iu this monograph we analyse aud develop a recently-proposed alternative
to the tableau method, the system KE [Mon88a, Mon88b]. We show that
KE, though being ‘close’ to the tableau method and sharing all its desirable
features, is essentially more efficient. We trace this phenomenon ts the fact
that KE establishes a closer connectiou with the intended (classical, bivalent)
semantics. In particular we point out, in Chapter 2, a basic ‘redundancy’ in
tableau refutations {(or cut-free Gentzen proofs) which depends on the form of
the propositional inference rules and, therefore, affects any procedure based
on them. Tu Chapter 3 we present the systemn KE and show that it is not
affected by this kind of redundancy. An important property of KE is the
analytic cut property: cuts cannot be eliminated but can be restricted to
subformulae of the theorem, so that the subformula principle is still obeyed.
We point out the close relationship between KE and the resolution method
within the domain of formulae in clausal form. In Chapter 4 we undertake
an analysis of the complexity of the propositional fragment of KE relative
to the propositional fragments of other proof systems, including the tableau
method and natural deduction, and prove some simulation and separation
results. We show, among other things, that KE and the tableau method
are separated with respect to the p-simulation relationship (KE can linearly
simulate the tableau method, but the tableau method cannot psimulate
KE). In Chapter 5 we consider Belnap’s four-valued logic, which has been
proposed as an alternative to classical logic for reasoning in the presence of
inconsistencies, and develop a tableau-based as well as a KE-based refutation
system. Finally, in Chapter 6, we generalize on the ideas contained in the
previous chapters and prove some more simulation and separation results.

Acknowledgements

This monograph consists of my thesis submitted for the degree of Doctor of
Philosophy in the University of Oxford. [wish to thank my supervisors, Joe
Stoy and Roberto Garigliano, for their encouragement, advice and guidance
during the course of this thesis. Thanks are also due to Marco Mondadori
for his invaluable comments and suggestions. I bave also benefitted from
conversations with Jan Gent, Rajev Gore, Angus Macintyre, Paolo Mancosu,
Bill McColl, Claudio Pizzi, Alasdair Urquhart, Lincoln Wallen and Alex
Wilkie,

I also wish to thank Dov Gabbay for providing me with a draft of a
forthcoming book of his; Peter Aczel and Alan Bundy for giving me the
opportunity to discuss my work in seminars given at Manchester and Edin-
burgh, and Michael Mainwaring for doing his best to make my English more
acceptabie.

I am grateful to my parents and to all my friends, especially to Gabriella
D’ Agostino for her usual impassioned support.

This research has been supported by generous grants awarded by the
Italian Ministry of Education, the City Council of Palermo (*Borsa di studio
Ninni Cassara’) and CNR-NATO.

Contents

1 Introduction

2 The redundancy of cut-free proofs

2.1
2.2
23
2.4
2.5
2.6

Invertible sequent caleuli Lo L.
From sequent proofs to tableau refutations
Cut-free proofs and bivalence
The redundancy of cut-free proofs
Theculprit L
Searching for a countermodel

2.6.1 Expansionsystems
262 Redundanttrees

3 An alternative approach

31
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

Bivalencerestored L oo
Thesystem KE
Soundness and completenessof KE
3.3.1 Completeness of KE: proofone
3.3.2 Completeness of KE: proof two,
3.3.3 The subformula principle
KE and the Davis-Putnam Procedure
The first-order system KEQ
Soundness and completenessof KEQ
A digression on direct proofs: the system KI,
Analytic natural deduction Lo L,
Non-classical logics L.

Computational complexity

4.1 Absolute and relative complexity
4.2 Relative complexity and simulations.
43 Anoverviewo
4.4 Are tableaux an improvement on truth-tables?

4.5 The relative complexity of KE and KT . . . | . .
451 KEversusKI.
4.5.2 KE versus the tableau method
4.5.3 KE versus Natural Deduction
454 KE and resolution

4.6 A more geueral view

Belnap’s four valued logic

5.1 Introduction
5.2 ‘How a computer should think’ .,,
5.3 Beluap’s four-valued model
5.4 Semantic tableaux for Belnap’s logic
5.4.1 Propositional tableaux
5.4.2 Detecting inconsistencies
54.3 First-order tableaux
5.5 An efficient alternative

A generalization: cut systems

6.1 Properderivedrules
6.2 Culsysterns
6.3 Aualytic cut syslems versus cut-free systems . . .

Conclusions

CONTENTS

List of Figures

2.1 A closed tableau for {AV B,AV-B,~Av(C,~Av-C} ... 23

22 Atypicalpattern. L L 24
2.3 Redundancy of tableau refutations. 25
3.1 Two different analyses. 35
3.2 A KE-refutation of {AV B,AV-B,-AvC,-Av-C} ... 40
41 A KE-refutation of Hp p,p,.o .. . o0 Lo 76
42 A KE-refutationof Hy. 80
51 Aproofof ((Av B)a—-A) - (BV(AA-AY 97
5.2 A failed attempt to prove the disjunctive syllogism 98
5.3 An REg.-proof of (AV B)A-A) o (BV(AA=A)) 107

List of Tables

2.1
2.2

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4

Sequent rules for classical propositional logic. 14
Propositional tableau rules for unsigned formulae. 17
KE rules for unsigned formulae. 39
CNF reduction mules. 47
Generalized KErules. 49
A sequent-conclusion natural deduction system. 83
Propositional tableau rules for Belnap’s four valued logic. . . 95
Formulaeof type o o Lo 96
Formulacof type B. Lo oo 96
Therulesof REg,. . . . - -« - o o 0 o0 it s e e 10%

Chapter 1

Introduction

Traditionally, proof theory has been concerned with formal representations of
the notion of proof as it occurs in mathematics or other intellectual activities,
regardless of the efficiency of snch representations. The rapid development of
computer science has bronght abont a dramatic change of attitude. Efficiency
has become a primary concern and this fact has given rise to a whole new
area of research in which the ‘old’ questions about provability, completeness,
decidability, etc. have been replaced by new ones, with considerations of
comnplexity playing a major role. A formal representation which is complete
in principle may turn out to be *practically incomplete’ because in some cases
it requires unrealistic resources (in terms of computer time and memory).
As a result of this change of perspective, formal representations which are
eqnivalent with respect to the consequence relation that they represent, can
be seen to be essentially separated as to their practical scope.

Nowhere has this shift of emphasis been more apparent than in the field
of propositional logic. Here the neglected star is back in the limelight. Open
questions of theoretical computer science like P =?AP and N'F =7co- AP
have revitalized a subject which seemed to be ‘saturated’ and to deserve
only a brief mention as a stepping stone to the ‘real thing’. Bul the interest
in propositional logic is not restricted to these fundamental open questions.
There is a plethora of problems which are perhaps less fundamental but of
practical and theoretical importance. Many of them arise when we consider
logic as a teol. This was certainly the attitude of the pioneers of formal
logic, from Aristotle to Letbniz. The latter dreamt of a calculus ratiocinator
of which mathematical logic would be the heart, and explicitly related the

6 CHAPTER 1. INTRODUCTION

importance of his project to its potential ‘usefulness’:

For if praise is given to the men who have determined the number
of regular solids — which is of no use, except insofar as it is
pleasant to contemplate — and if it is thought to be an exercise
worthy of a mathematical genius to have brought to light the
more elegant property of a conchoid or cissoid, or some other
figuire which rarely has any use, how much better will it be to
bring under mathematical laws human reasoning, which is the
most excellent and useful thing we have!.

Later the role of logic in the foundations of mathematics took over and, while
this opened up an entire world of conceptual and technical subtleties, it also
brought about the neglect of many interesting questions?. Among such ques-
lions are all those related to the direct use of logic to solve problems about
our ‘world’ (or our database), that is as a partial realization of Leibniz’s
dream. In the second half of this century, the revival of Leibnriz’s program
(known as ‘automated deduction') as well as the significant role played by
a variety of logical methods in both theoretical and applied computer sci-
ence, has resulted in a greater awareness of the computational aspects of
logical systems and a closer {or at least a fresh} attention to their proof-
theoretical representations. As Gabbay has stressed [Gab90a, Gab90b] logical
systems ‘which may be conceptually far apart (in their philophical motiva-
tion and mathematical definitions), when it comes to automated techniques
and proof-theoretical presentation turn out to be brother and sister'[Gab90a,
Section 1.1]. On the other hand, the same logical system (intended as a set-
theoretical definition of a consequence relation) usually admits of a wide
variety of proof-theoretical representations which may reveal or hide its sim-
ilarities with other logical systems®. The consideration of these phenomena
has prompted Gabbay to put forward the view that

1[Parés, page 166].

In hissurvey paper [Urq90a) Alasdair Urquhart mentions the simplification of Boclean
formulae. ‘Here the general problem takes the forr: how many logical gates do we need to
represent a given Boolean function? This is surely as simple and central a logical problem
that one tould hope to find; yet, in spite of Quine’s early contrihutions, the whole area
has been simply abandoned by most logicians, and is apparently thought to be fit only for
engineers. He also remarks that ‘our lack of understanding of the simplification problem
retards our progress in the atea of the complexity of proofs.”

3As an example of this approach, Gabbay observes that ‘it is very easy to move from

[-..] a logical system L is not jnst the traditional consequence
relation I, but a pair (F,S¢), where F is a mathematically defined
consequence relation {i.e. a set of pairs (A, @) such that A F @)
and Sy is an algorithmic system for generating all those pairs.
Thuos, according to this definition, classical logic F perceived as
a set of tautologies together with a Gentzen system Sp is not
the same as classical logic together with the two-valued truth-
table decision procedure Ty for it. In our conceptual framework,
{F,S:) is not the same logic as (F, T)*.

Gabbay’s proposal seems even more suggestive when considerations of com-
putational complexity enter the picture. Different proof-theoretical algo-
rithms for generating the same consequence relation may have different com-
plexities. Even more interesting: algorithmic representations which appear
‘close’ to each other from the proof-theoretical point of view may show dra-
matic differences as far as their efficiency is concerned. A significani part of
this work will be devoted to illustrate this somewhat surprising phenomenon,

In the tradition which considers formal logic as an organon of thought® a
central role has been played by the ‘method of analysis’, which amounts
to what today, in the computer science circles, is called a ‘bottom-up’ or
‘goal-oriented’ procednre. Though the method was largely used in the math-

the truth-table presentation of classical logi¢ to a truth-table system for Lukasiewicz’s
n-valued logic. It is not so easy to move to an algorithmic system for intuitionistic logic.
In comparison, for a Gentzen system presentation, exactly the opposite is true. Intu-
itionistic and classical logic are neighbours, while Lukasiewicz’s logics seem completeley
different.’[Gab%0a, Section 1.1].

4IGab90a, Section 1.1].

SOf conrse, as a matter of historical fact, logicians do nol need to be full-time repre-
sentatives of a single tradition. Leibniz is perhaps the best example: while he emphasized
the practical utility of his dreamt-of calculus of reason to solve verbal disputes, he also
claimed that the whole of mathematics conld be reduced to logical principles, indeed to
the sole principle of identity; this made him a precursor of the logicist tradition in the phi-
losophy of mathematics. Gentzen, who certainly belonged to the ‘fonndational’ tradition,
showed some concern for the practical aspects of his own work. Among the advantages
of his calculus of natural deduction he mentioned that ‘in mast cases the derivations for
true formulae are shorter [...} than their counterparts in logistic calenli’[Gen35, page 80].
A brilliant representative of both traditions is Beth: he was involved in the practical as
well as the fonndational aspects of logic. His emphasis on the advantages of the tableau
method as a tool for drawing inferences is pervasive and, as we will see, even excessive.

8 CHAPTER 1. INTRODUCTION

ematical practice of the ancient Greeks, its fullest description can be found
in Pappus (3rd century A.D.), who writes:

Now analysis is a method of taking that which is sought as though
it were admitted and passing from il through its consequences in
order, to something which is admitted as a result of synthesis;
forin analysis we suppose that which is sought be already done,
and we inquire what it is from which this comes about, and again
what is the antecedent cause of the latter, and so on until, by
retracing our steps, we light upon something already known or
ranking as a first principle; and such a method we call analysis,
as being a solution backwards®.

This is the so-called directional sense of analysis. The idea of an ‘analytic
method’, however, is often associated with another sense of ‘analysis’ which
1s related to the ‘purity’ of the concepts employed to obtain a result and,
in the framework of proof-theory, to the subformula principle of proofs. In
Gentzen's words: ‘No concepts enter into the proof other than those con-
tained in its final result, and their use was therefore essential to the achieve-
ment of that result’[Geu33, p. 69] so that ‘the final result is, as il were,
gradually built up fram its constituent elements [Gen33, p.88]. Both mean-
ings of analysis have been represented, in the last fifty years, by the notion
of a cul-free proof in Genlzen’s sense: not only cut-free proofs employ no
concepts outside those contained in the statement of the theorem, but they
can also be discovered by means of simple ‘backwards’ procedures like that
described by Pappus. Therefore Gentzen-style cut-free methods (which in-
clude their semantic-flavoured descendant, known as ‘the tableau method’)
were among the first used in automated deduction” and are today enjoying
a deserved revival® which is threatening the unchallenged supremacy that
resolution and its refinements® have had for over two decades in the area of

5[Thodl] pp. 596-599.

"See, for example, [Bet58), [Wan6(], [Kans3]. Cfr. also [Dav83) and [MMOB83].

8[Fit00] and [Gal86] are recent texthooks on ‘logic for computer science’ which are en-
tirely based on the tableau method and on cut-free Gentzen systems respectively. [Wal90]
is a book which combines the technical power of Bibel’s tornection method [Bib82) with
the conceptual clarity of the tableau representation of classical as well as non-classical
logic. [0388] is a recent example of a complete theorem-prover based on the iableau
method.

¥See [CL73] and [StiB6] for an overview.

autornated deduction and logic programming.

There are indeed several reasons which may lead us to prefer cut-free
Gentzen methods to resolution as a basis for automated deduction as well
as for other applications, like program verification. First, unlike resolution,
these methods do not require reduction in any normal formn, which fact allows
them to exploit the full power of first order logic!®. Second, the derivations
obtained coustitute an acceptable compromise between ‘machine-oriented’
tests for validity, like resolution derivations, and ‘human-oriented’proafs, like
those constructed in the framework of natural deduction calculi; this makes
them more suitable for ‘interactive’ use, Third, they admit of natural exten-
stons to a wide variety of non-classical logics!! which appear less contrived
than their resolution-based counterparts!’.

On the other hand, there is one reason, which usually leads us to prefer
some form of resolution: efficiency. As will be shown in Chapter 4 cut-
free methods are hopelessly inefficient and lead to combinatorial explosion
in fairly simple examples which are easily solved not only by resolution but
even by the old, despised truth-tables. What is the ultimate cause of this
inefficiency? Can it be remedied? The main contribution of our work is a
clarification of this issue and a positive proposal motivated thereby. The
clarification can be expressed as a paradox: the ultimate cause of the in-
efficiency of cut-free methods is exactly what has traditionally made themn
so useful both from the theoretical and practical point of view, namely their
being cut-free. But, as Smullyan once remarked, ‘The real importance of cut-
free proofs is not the elimination of cuts per se, but rather that such proofs
obey the subformula principle.”®. Apart from Smullyan’s short paper cited
above, however, the proof-theory of analytic cut systems, i.e. systems which
allow cuts but limit their application so that the resulting proofs still obey
the subformula principle, has not been adequately studied, and the same is

1%0n this point see [Cel87].

For Intuitionistic and Modal logics, see [Fit83]; see also {Wal90] for a tableau-oriented
extension of Bibel’s connection method to intuitionistic and modal logics; for relevance
logics see [TMMB88); for many-valued logics see [Car87]; for linear logic see [Gir87b] and
[AvrBS).

128¢e (FERY) and [Fit87]. For a review of these and other resolution-based methods for
non-classieal logics, see [Wald0].

H[Smu8hb}, p. 560.

10 CHAPTER 1. INTRODUCTION

true of their relative complexity'?. In this work we shall take some steps in
a forward direction. Moreover, while considerations of efficiency are nsually
strictly technical and unconnected with more conceptual issues, for example
semantical issues, we shall make a special and, we hope, successful effort to
bring out a clear connection between computational efficiency on the one
hand, and a close correspondence with the underlying (classical) semantics
on the other.

We shall base our study an a particular system, the systern KE, recently
proposed by Mondadori {Mon88a, Mon88b) as an alternative to the tableau
method for classical logic. As will be argued, KE is in some sense ideal for
our purposes in that it constitutes a refutation system which, though being
proof-theoretically ‘close’ to the tahleau method, is essentially more efficient.
Moreover, it is especially suited to the purpose of illustrating the connection
between efficiency, analytic cut and classical semantics, which is the object
of our study.

In Chapter 2, we examine what we call the ‘redundancy of cut-free proofs’
as a phenomenon which depends on the form of the cut-free rules themselves
and not on the way in which they are applied: this phenomenon affects cut-
free systems intended as non-deterministic algorithms for generating proofs
and therefore affects every proof generated by them. We relate this intrinsic
redundancy to the fact that the cut-free rules do not reflect, in some sense,
the (classical bivalent) structure of their intended semantics. In Chapter 3
we develop an alternative approach based on Mondadori’s system KE which
1s not cut-free yet obeys the subformula principle (and also a stronger normal
form principle), so preserving the most important property of cut-free sys-
tems. The system KE is a refutation system which, like the tableau meihod,
generaltes trees of (signed or unsigned) formulae by means of tree expansion
rules. Iis distinguishing feature is that its only branching rule is the rule PB
(Principle of Bivalence) which is closely related to the cut rule of Gentzen
systems. So, in spite of all the similarities, KE hinges upon a rule whose
absence is typical of the tableau method (and of all cut-free systems). An
important related property of KE is the analytic cut property: cuts are not
eliminable but can be restricted to analytic ones, involving only subformulae
of the theorem. We also show that the set of formulae to be considered as

1For a recent exception see [Urqgob).

11

cut formulae can be further restricted as a result of a strong normal form
theorem.

In Chapter 4, after briefly reviewing the most important results on the
relative complexity of propositional calculi, we examine how the use of ana-
lytic cuts affects the complexity of proofs. We show that KE {and, in fact,
any analytic cut system) is essentially more efficient than the tableau method
(or any cut-free system). These results should be read in parallel with the
semantic-oriented analysis carried out in Chapter 2: KE establishes a close
connection with classical (bivalent) semantics which the tableau method fails
to do, and this very fact has important consequences from the computational
point of view.

Like the tablean method, KE can be adapted to a variety of non-classical
logics including intuitionistic and modal logics. All these non-classical ver-
sions can be obtained trivially, given the corresponding tableau-based sys-
tems, as explained in Section 3.9. In Chapter 5 we shall examire a new
case: Belnap’s four-valued logic. This is a form of relevant logic which has
also an interesting motivation from the point of view of computer science,
since it is intended to formalize the notion of deduction from inconsistent
databases. We formulate a tableau-based and a KE-based system both of
which, as in the case of classical two-valued logic, generate simple binary
trees. These systems are based on a reformulation of Belnap’s four-valued
semantics which ‘mimics’ the bivalent structure of classical semantics and, to
the best of our knowledge, is new to the literature. Although Belnap’s logic
is a restriction of classical logic (intended as a consequence relation), our
systems can be seen as ezfensions of the corresponding classical systems in
that tbey allow us to characterize simultanecusly the classical two-valued and
Belnap's four-valued consequence relation using the same formal machinery.

Finally, in Chapter 8, we generalize on the ideas contained in the previous
chapters. We show that, as far as the complexity of ‘conventional’ (analytic
and non-analytic) proof systems is concerned, the cut rule is allthat matters
and the form of the logical rules (under certaju conditions) does not play any
significant role. This chapter finalizes the process started in Chapter 2: what
in Gentzen-type systems is elimirable (and indeed its eliminability provides
a major motivation for the form of the rules) becomes, in ‘cut systems’, the
only essential feature.

Chapter 2

The redundancy of cut-free
proofs

2.1 Invertible sequent calculi

Gentzen introduced the sequent calculi LK and LJ as well as the natural
deduction calculi NK and NJ in his famous 1935 paper [Gen35]. Apparently
he considered the sequent caleuli as technically more convenient for metalog-
ical investigation'. In particular he thought that they were ‘especially suited
to the purpose’ of proving the Hauptsatz and that their form was ‘largely de-
termined by considerations connected with [this purpose]’?. He called these
calculi ‘logistic’ because, unlike the natural deduction calculi, they do not
involve the introduction and subsequent discharge of assumptions, but deal
with formulae which are ‘true in themselves, i.e. whose truth is no longer con-
ditionalon the truth of certain assumption formulae™. Such *unconditional’
formulae are sequents, i.e. expressions of the form

(2.1) Ai,..., At By,..., B,

{where the A;’s and the H;’s are formulae) with the same informal meaning
as the formula
An.. MNA, =B V...VB,.

1[Gend5), p. 69.
2[Gen35, p. B9).
3{Gends), p. 82.

2.1. INVERTIBLE SEQUENT CALCULI 13

The sequence to the left of the turnstyle is called ‘the antecedent” and the
sequence to the right is called ‘the succedent’. In the case of intuitionistic
logic the succedent may contain at most one formula. In this chapler we
shall consider the classical system and focus on the propositional rules.

Although Gentzen considered the antecedent and the succedent as se-
gquences, it 1s often more convenient to use sets, which eliminates the need
for ‘structural’ rules to deal with permutations and repetitions of formulae?,
Table 2.1 shows the rules of Gentzen’s LK once sequences have been re-
placed by sets (we use T, A, etc. for sets of formulae and write I A as an
abbreviation of T' U {A}). A proof of a sequent T' F A consists of a tree of
sequents built up in accordance with the rules and on which all the leaves
are axioms. Gentzen’s celebrated Hauplsatz says that the cut rule can be
eliminated from proofs. This obviously implies that the cut-free fragment is
complete. Furthermore, one can discard the last structural rule left — the
thinning rule — and do without structural rules altogether without affecting
completeness, provided that the axioms are allowed to have the more general
form

I AFA A

This well-known variant corresponds to Kleene’s system G4 [Kleb7, chapter

VIL.

Gentzen's rules have become a paradigm both in proof-theory and in its
applications. This is not without reason. First, like the natural deduction
calculi, they provide a precise analysis of the logical operators by specifying
how each operator can be introduced in the antecedent or in the succedent
of a sequent®. Second, their form ensures the validity of the Hauptsatz:
each proof can be transformed into one which is cut-free, and cut-free proofs

4This reformnlation is adequate far classical and intuitionistic logic, but not if one wants
to use sequents for some gther logic, like relevance or linear logic, in which the number
of occurrences of formulae counts. For such logics the antecedent and the succedent are
usually represented as multisets; see [TMM88] and [AvrB8).

$Whereas in the natural deduction calculi there are, for each operater, an introduction
and an elimination rule, in the sequent calcult there are only introduction rules and the
eliminations take the form of introductions in the antecedent. Gentzen seemed to consider
the difference between the two formulations as a purely technical aspect. See [Sun83]. He
also suggested that the rules of the natural deduction calculus could be seen as definitions of
the operators themselves. In fact he argued that Lhe introduction rules alone are sufficient
for this purpose and that the elimination rules are ‘nc more, in the final analysis, than

14 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

Axioms
AF A

Structural rules

T,AFA THAA
TFA

'-A

_Tra [Cut]
TOFAA

[Thinning]

Operational rules

TAFA T,BFA P+AA THA,B

TAVBFA (I-viefq T AAND [T-Aright]
Tanpra A A (lvrigh]
”riA—» g’f g 2 Lot % [L— right]
e e DAL frina

Table 2.1: Sequent rules for classical propositional Iogic.

21. INVERTIBLE SEQUENT CALCULI 15

enjoy the subformula property: every sequent in the proof tree contains only
subformulae of the formulae in the sequent to be proved. From a conceptual
viewpoint this property represents the notion of a purely analytic or ‘direct’
argumeni®: ‘no concepts enter into the proof other than those contatned
in 1ts final result, and their use was therefore essential to the achievement
of that result’(Gen35, p. 69]. Third, the rules of a cut-free system, like
Kleene's G4, seem to be particularly suited to a ‘goal-oriented’ search for
proofs: instead of going from the axioms to the endsequent, one can start
from the endsequent and use the rules in the reverse direction, going from the
conclusion to suitable premises from which it can be derived. This method,
which is clearly reminiscent of Pappus’ ‘theoretical analysis’®, works only in
virtue of an important property of the rules of G4 described in Lemma 6 of
(Kle67], namely their invertibility,

Definition 2.1.1 A rule is invertible if the provability of the sequent below
the line in each application of the rule implies the provability of all the
sequents above the line.

As was early recognized by the pioneers of Automated Deduction®, il a logical
calculus has to be employed for this kind of ‘bottom-up’ proof-search it js
essential that its rules be invertible: this allows us to stop as soon as we reach
a sequent that we can recognize as unprovable (for instance one containing
only atomic formulae and in which the antecedent and the succedent are
disjoint) and conclude that the initial sequent is also unprovable. We should
uotice that the absence of the thinning rule is crucial in this context becanse
it is easy to see that the thinning rule is not invertible: the provability of its
conclusion does not imply, in general, the provability of the premise.

consequences of these definitions’[Gends, p. 80]. He also observed that this ‘harmony’
is exhibited by the intuitionistic calculus but breaks down in the elassical case. For a
thorough discussion of this subtle meaning-theoretical issue the reader is referred to the
writings of Michael Dummett and Dag Prawitz, in particular [Dum?78] and [Pra78].

$On this point see [Sta77].

"See the Introduction above.

8See for instance {Mat62).

16 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

2.2 From sequent proofs to tableau refuta-
tions

As far as classical logic is concerned, a system like G4 admits of an interesting
semantic interpretation.

Let us say that a sequent I' F A is valid if every situation (i.e. a boolean
valuation) which makes all the formulae in T true, also makes true at least
one formula in A. Otherwise if some situation makes all the formulae in T
true and all the formulae in A false, we say that the sequent is falsifiedle and
that the situation provides a counfermodel to the sequent.

According to this semantic viewpoint we prove that a sequent is valid by
ruling out all possible falsifying situations. So a sequent I' - A represents a
valuation problem: find a boolean valuation which falsifies it. The soundness
of the rules ensures that a valuation which falsifies the conclusion must alse
falsify at least one of the premises. Thns, if applying the rules backwards we
reach an axiom in every branch, we are allowed to conclude that no falsifying
valuation is possible (since no valuation can falsify an axiom) and that the
endsequent is therefore valid. On the other hand, the invertibzlity of the rules
allows us to stop as soon as we reach a falsifiahle sequent and claim that any
falsifying valuation provides a countermodel to the endsequent. Again, if
the thinning rule were allowed, we would not be be able, in general, to re-
transmit falsifiability back to the endsequent. So, if employed in bottom-up
search procedures, the thinning rule may result in the loss of crucial semantic
information.

Beth, Hintikka, Schiltte and Kanger (and maybe more) independently showed,
in the '50s, how this semantic interpretation provided a strikingly simple and
informative proof of Gédel's completeness theorem®. Their results suggested
that the semantic interpretation could be presented as a proof method on
its own, in which sequents do not appear and complex forrmulae are progres-
sively ‘analysed’ into their successive components. This approach was later
developed and perfected by Smullyan with his method of *analytic tableaux’
[(Smub8a).

The construction of an analytic tableau for a sequent T F A closely
corresponds to the systematic search for a courtermodel outlined above ex-

°[Bel55), [Hin55], [Sch§6], [Kan57).

2.3. CUT-FREE PROOFS AND BIVALENCE 17

T F -(AAB) Eon
5 —|A| -B
~(AV B
(-,A) E-v AVBEV
B Al B
MEﬁ_, A— B
A E—
B Al B
—A
A E_|_I

Table 2.2: Propositional tableau rules for unsigned formulae.

cept that Smullyan’s presentation uses trees of formulae instead of trees of
sequents. The correspondence between the tableau formulation and the se-
quent formulation is illustrated in detail in Smullyan’s book [Smu68a) to
which we refer the reader’®. The propositional tableau rules (for unsigned
formulae) are listed in Tahle 2.2,

2.3 Cut-free proofs and bivalence

This evolution from the original LK system to Smullyan’s system of ‘ana-
Iytic tableaux’ took over thirty years but did not change Gentzen's formu-
lation significantly. However, Gentzen’s rules are not the only possible way
of analysing the classical operators and not necessarily the best for all pur-
poses. The form of Gentzen’s rules was influenced by considerations which
were partly pbilosophical, partly technical. In the first place he wanted to set
up a formal system which ‘comes as close as possible to actual reasoning™!.
In this context he intraduced the natural deduction calculi in which the in-
ferences are analysed essentially in a constructive way and classical logic is

105ee also [Smué8c] and [Sur83]
11[Gen3s), p. 68.

18 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

obtained by adding the law of excluded middle in a purely external manner.
Then herecognized that the special position occnpied by this law would have
prevented him from proving the Hauplsatz in the case of classical logic. So
he introduced the sequent calculi as a technical device in order to enunciate
and prove the Hauptsatz in a convenient form!? both for intuitionistic and
classical logic. These calculi still have a strong deduction-theoretic flavour
and Genizen did not show any sign of considering the relationship between
the classical calculus and the semantic notion of entailment which, at the
time, was considered as highly suspicious.

The approach developed in the ‘50’ by Beth and Hintikka was mainly
intended to bridge the gap between classical semantics and the theory of
formal derivability. In his 1955 paper, where he introduced the method of
semantic tableaux, Beth thought he had reached a formal method which was
‘in complete harmony with the standpoint of [classical bivalent] semantics’
[Bet35, p. 317). He also claimed that this method would allow for the ‘purely
mechanical’ construction of proofs which were at the same time ‘remarkably
concise’ and could even be ‘proved to be, in a sense, the shortest ones which
are possible’ [Bet53, p. 323]. On the other hand Hintikka, who indepen-
dently and simultaneously developed what amounts to the same approach,
hoped that in this way he would ‘obtain a semantical theory of quantifica-
tion which satisfies the highest standard of constructiveness’ [Hin55, p. 21].
Both authors explicitly stressed the cotrespondence between their own rules
and those put forward by Gentzen!®, So two apparently incompatible aims
seemed to be achieved in the formal framework of Gentzen-type rules.

Thesolution to this puzzle is that the so-called semantic interpretation of
Gentzen’s rules does not establish those ‘close connections between [classical]
semantics and derivability theory’ that Beth tried to point out. In fact if
one takes the cut-free rules as a formal representation of classical logic, the
situation seems odd. The rule which the Hauptsatz shows to be eliminable is
the cut rule:

T'AFA THAA
TFA

[CUT)

If we read this rule upside-down, following the same semantic interpretation

12{Gen35), p. 69.
13{Bet55), p. 318 and p. 323; [Hin55], p.47.

23 CUT-FREE PROOFS AND BIVALENCE 19

that we adopt for the operational rules, then what the cut rule says is:

In all circumstances and for all propositions A, either A is true
or A is false.

But this is the Principle of Bivalence, namely the bastc principle of classical
logic. By contrast, none of the rules of the cut-free fragment implies biva-
lence (as is shown by the three-valued semantics for this fragment!?). The
elimination of cuts from proofs is, so to speak, the elimination of bivalence
from the underlying semantics'®.

We have, then, a rather ambiguous situation: on the one hand we have
a complete set of rules which are usually taken as a convenient analylic rep-
resentation of classical logic; on the other hand, these rules do not assign to
the basic feature of classical semantics — the Principle of Bivalence — any
special role in the analysis of classical inferences'®. We can ask ourselves two
questions: is the elimination of bivalence (cut) necessary? Is it harmless?

As Smullyan once remarked: “The real importance of cut-free proofs is not
the elimination of cuts per se, but rather that such proofs obey the subformula
principle.”” So, our two questions can be reformulated as follows: {1) Can
we think of an analysis of classical inferences which gives the Prnciple of
Bivalence the prominent role that it should have in a formal representation
of classicallogic? (2) Would such an analysis accomplish a more concise and
efficient representation of classical proofs which preserves the most important
property of the cut-free analysis (the subformula principle)?

The twoe questions are independent, but jt is only to be expected that a
positive answer to the second will be a by-product of 2 good answer to the
first.

In the rest of this chapter we shall argue that the Principle of Biva-
lence (i.e. some form of cut) should indeed play a role in classical analytic

14See [Gir87a), chapter 3; see also [Sch77).

130f course, the fact that the cut-free rules, in the semantic interpretation, are sound
from the standpoint of classical semantics does not necessarely mean that they are in
‘complete harmony’ with this standpoint.

'%Hintikka was fully aware that in his approach he was depriving the principle of biva-
lence of any role. In fact he did it inteniionally in order Lo pursue his quasi-constructivist
program, Cfr. [Hin5}, chapter III, pp. 24-26

17[Smu68b, p.560]. A problem: is Lhere any application of cul-elimination which requires
the proofs to be cut-free, not just to satisfy the sublormula property?

20 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

deduction'®; that the reintroduction of bivalence in the analysis not only
does not affect the subformula principle, but elso allows for much shorter
proofs, because it eliminates a kind of redundancy which is inhereut to the
cut-free analysis. In the next section we shall discuss a typical example of
this redundancy.

2.4 The redundancy of cut-free proofs

Gentzen said that the essential property of a cut-free proof is that ‘it is not
roundabout’ [Gen35, p.69]. By this he meant that: ‘the final result is, as it
were, gradually built up from its constituent elemenis. The proof represented
by the derivation is not roundabout in that it contains only concepts which
recur in the final result’ {Gend3, p.88). However there is a sense in which
cut-free proofs are roundabout.

Let us consider, as a simple example, a cut-free proof of the sequent:

AV B,AV B, -AVC,~AVCH+ 0

expressing the fact that the antecedent is inconsistent.

A minjmal proof is as follows (we write the proof npside-down according to
the interpretation of the sequent rules as rednction rules in the search for
a counterexample; by I' -, we mean I' - @ and consider as axioms all the
sequents of the form I', A,-A F)):

AVB,AV-B ~AVC -AV-CFH

/

A, AV-B,~AVC.~AV-CF B, AV-B,~AVC,~AvV-CFk
Tt T2

‘Where 7; =

8By this we do not mean that some form of cut shonld be ‘thrown into’ the cut-free
sysiem, but that some of the rules for the logical operators should be modified to allow
the cut rule to play a role in the analysis.

2.4, THE REDUNDANCY OF CUT-FREE PROOFS 21

A, AV -B,—AVC,~AV-CF

T

AAV=B,~A AV -CF A AVB,C,~AV~CF

<N

A AV-B C-AF A, Av-B,C,~CF

and T; =
B,AVv-B -AVC,—AV~CF
T
B,A-SAVC,-AV-CH B -B-AVvC-AvV-ClH
/ \
B, A A —AV-CH B,AC,—AV-CF

/N

B AC-AF B,AC-CH

Such a proof is, in some sense, redundant when it is interpreted as a (failed)
systematic search for a countermodel to the endsequent (i.e. a model of the
antecedent); the subiree 7; encodes the information that there are no coun-
termodels which makc A true, but this information cannot be used in other
parts of the tree and, in fact, 7; still tries (in its left subtree) te construct a
countermodel which makes A true, only to show again that such a counter-
model is impossible.

Notice that (i) the proof in the example is minimal; (i1) the redundancy
does not depend on our representation of the proof as a free: the reader can
easily check that all the sequents which label the nodes are different from
each other and, as a result, the proof would have the same size if represented
as a sequence or as a directed acyclic graph. The only way to obtain a non-
redundant proof in the form of a sequence or a directed acyclic graph of
sequents would be by using the thinning rule :

22 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

(1) A C.-AF Axiom

(2) AC-CFE Axiom

3y AC-AV-CH From (1) and (2)

(4) A,-A,-AV-CH Axiom

(5) A-AvC,-AV-CFH From (4) and (3)

(6) B,A-AVC -Av-CF From (3) by thinning
(7Y B,~B,-Av(C,~Av-CF Axiom

(8) B,AV~-B,~AVC(C,mAvV-CFH From (6) and (7)

(9) A,AV-B,-AVC,-AvV-CF From (5) by thinning

(10) AvB,AV-B-AVvC,-Av-CF From (8) and (9)

In this case the proof obtained by employing thinning is not much shorter
because of the simplicity of the example considered. Yet, it illustrates the
use of thinning in direct proofs in order to eliminate redundancies. However,
for the reasons discussed in section 2.1 the thinning rule is not suitable for
bottom-up proof search.

The situation is perhaps clearer if we represent the proof in the form of
a closed tableau & le Smullyan (see Fig. 2.1). It is easy to see that such a
tableau shows the same redundancy as the sequent proof given before.

This intrinsic redundancy of the cut-free analysis is responsible in many
cases for explosive growth in the size of the search tree. Moreover, it is
essentigl it does not depend on any particular proof-search procedure (it
affects minimal proofs) but only on the use of the cut-free rules. In the rest
of this chapter this point will be examined in detail.

2.5 The culprit

Can we think of a more economical way of organizing our search for a conn-
termodel? of avoiding the basic redundancy of the cut-free analysis? We
must first identify the culprit. Our example contains a typical pattern of
cut-free refutations which is represented in figure 2.2. Here the subtree T;
searches for possibile countermodels which make A true. If the search is suc-
cessful, the original sequent is not valid and the problem is solved. Otherwise
there is no countermodel which makes A true (i.e. if we restrict ourselves to
classical bivalent models, every countermodel, if any, must make A false). In
both cases it is pointless, while building up 73, to try to construct (as we do

2.5, THE CULPRIT

23

AV DB

AvV-B

—AVC

|
A ///’ \\\\B

ﬂfl\b A/\XB
EAVINA

/\

Figure 2.1: A closed tableau for {AV B,Av ~B,-~Av C,-Av =C}

24 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

AV B'is true
AV B is true

a

A is true B is true

T T

Figure 2.2: A typical pattern.

if our search is governed by Gentzen's rules) countermodels which make A
true, becazuse this kind of covutermodel 1s already sought in 7.

In general, we may have to reiterate this redundant pattern an arbitrary
number of times, depending on the composition of our input set of formulae.
For instance, if a branch contains n disjunctious A v B4,..., AV B, which
are all to be analysed in order to obtain a closed subtableau, it is often the
case that the shortest tablean has to contain higly redundant configurations
like the one shown iu figure 2.3: where the subtree 7* has to be repeated
n times. Each copy of 7™ may, in turn, contain a similar pattern. It is not
difficult to see how this may rapidly lead to a combinatorial explosion which
is by no means related to auy ‘intrinsic difficulty’ of the problem considered
but only to the redundant behaviour of the cut-free rules.

2.6 Searching for a countermodel

The example discussed in sectious 2.4 and 2.5 suggests that, in some sense,
analytic tableaux coustructed according to the cut-free tradition are not well-
suited to the nature of the problem they are intended to solve. [u this section
we shall render this claim more precise.

Let us call a partial valuation of T, where T' is a set of formulae, any partial

2.6. SEARCHING FOR A COUNTERMODEL 25

A/E\Bl
g A/ \Bz
AN

TU

Figure 2.3: Redundancy of tableau refutations.

function v: T — {1,0} where 1 and 0 stand as usual for the truth-values true
and false respectively. It is convenient for our purposes to represent partial
functions as total functions with values in {1,0,*} where » stands for the
‘undefined” value. By a total valuation of I' we shall mean a partial valuation
which for no element of T yields the value *, For every element A of T’ we say
that A is true under v if v(A) = 1, false under v if v(A) = 0 and vndefined
under v if 2(A) = x. We say that a sequeni '+ A is true under v Fv(A) = 0
for some A € T or v{ A) = 1 for some A € A. We say that it is false under v
Hfv(A)=1forall A€l and v(A) =0 forall A€ A.

Let F denote the set of all formulae of propesitional logic. A boolean
valuation, defined as usual, is regarded from this point of view as a special
case of a partial valuation of F, namely one which is total and is faithful to
the usual truth-table rules.

In the no-countermodel approach to validity we start from a sequent I' F A
intended as a valnation problem and try to find a countermodel to it — at the
propositional level a boolean valuation which falsifies it. Here the direction
of the procedure is characteristic: one moves from complex formulae to their
components 1n a typical ‘analytic’ way. [n this context it is sufficient to
construct some partial valuation which satisfies certain closure conditions.
Such partial valuations have been extensively studied in the literature and
are known nnder different names and shapes. They constitufe the basic idea

26 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

underlying the simple completeness proofs discovered in the ‘50’s which have
been mentioned in the first two sections of this chapter. Following Prawitz
[Pra74] we shall call them ‘semivaluations”:

Definition 2.6.1 Let T denote the closure of the set of formulae T’ under the
subformula relation. A (hoolean) semivaluation of T is a partial valuation v

of T' which satisfies the following conditions, for all A, B € T:
1. fv(AV B) =1, thenv(A)=1orv(B) =1,

3. fu(AAB)=1, then v(A) =1 and v(B) = |;

(
2. ifv(AV B) =0, then v(A) =0 and v(B) = {;
(
4. if v(A A B) = 0, then v(A) =0 or v(B) = 0;

. if oA — B) =1, then v(A) =0 or v(B) = 1;

. ifv(A — B) =0, then v(A) =1 and v{B) = 0;

-1 & o,

. if ¥(=A) = 1, then (A} = 0;
8. if o{—=A) =0, then v(4) = 1.

The property of semivaluations which justifies their use is that they can be
readily extended to boolean valuations, i.e. models in the traditional sense:

Lemma 2.6.1 Every semivaluaiion off‘ can be extended to a boolean valu-
ation.

Each stage of our attempt to construct a semivaluation which falsifies a
given sequent I' = A can, therefore, be described as a partial valuation
v:TUA {1,0, x}. We start from the partial valuation which assigns 1 to
all the formulae in I and 0 to all the formulae in A and try to refine it hy
extending step by step its domain of definition, taking care that the classical
rules of truth are not infringed. 1f we eventually reach a partial valuation
which is a semivaluation, we have successfully described a countermodel to
the original sequent. Otherwise we have to ensure that no way of refining
the initial partial valuation will ever lead to a semivaluation.

2.6. SEARCHING FOR A COUNTERMODEL 27

The search space, then, is a set of partial valuations which are naturally
ordered by the approximation relationship (in Scott's sense [Sco70]):

v C v’ tf and only if »(A) < v'(A) for all formulae A

where = is the nsual partial ordering over {1,0,x}, namely

*

The set of all these partial valuations, together with the approximation rela-
tionship defined above, forms a complete semilattice. It can be convenient to
transform this semnilattice into a complete lattice by adding an ‘overdefined’
element T. This ‘fictitious’ element of the lattice does not correspond to any
real partial valuation and is used to provide a least upper bound for pairs of
partial valuations which have no common refinement'®. Hence wecan regard
the equation
vl =T

as meaning intuitively that v and v are inconsistent.

Having described the primitive structure of the search space, we are left
with the problem of formulating efficient methods for exploring it. Con-
structing an analytic tableau is one method and, as we will see, certainly
not the most efficient. This point is best seen by generalizing the basic idea
underlying the tablean method. This is what will be done in the next two
subsections.

2.6.1 Expansion systems

We assume a 0-order language defined as usual. We shall denote by X, Y, Z
(possibly with subscripts) arbitrary signed formulae (s-formulae), i.e. expres-
sions of the form t(A) or f{A) where A is a formula. The conjugate of an

19Namely partial valuations v and v’ such that for some A in their common domain of
definition v(A) =1 and v'{A) = 0.

28 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

s-formulais the result of changing its sign (so t(A) is the conjugate of f(A)
and viceversa). Sets of signed formulae will he denoted by 5, I/, V (possibly
with subscripts). We shall use the upper case greek letters I', A, . .. for sets
of unsigned formuniae. We shall often write §, X for SU {X } and S,U for
SUU. Given a formula A, the set of its subformulge is defined in the usual
way. We shall call subformulae of an s-formula s{(A) (s = t,f) all the for-
mulae of the form t(B) or {{B) where B is a subformula of A. For instance
t(A), t{B),f(A),{(B) will all be subformulae of t{AV B).

Definition 2.8.2 We say that an s-formula X is satisfied by a boolean val-
vation vif X = t(A4) and v(A) = | or X = f(A) and v(A) = 0. A set .S of
s-formulae is satisfiable if there is a hoolean valuation v which satisfies all its
elements.

A setof s-formulae 5 is ezplicitly inconsistent if S contains both t(A) and
f(A) for some formula A. If S is not explicitly inconsistent we say that it is
surface-consistent.

Sets of sformulae correspond to the partial valuations of the previous section
in the obvious way (we shall omit the adjective ‘partial’ from now on): given a
surface-consistent set S of s-formulae its associated valuation is the valuation
vg defined as follows:

1 ift(d)e S
vs(A)=¢ 0 iff(A)e S

* otherwise

{An explicitly inconsistent set of s-formulae is associated with the top element
T.) Conversely, given a partial valuation v its associated set of s-formulae
will be the set S, containing t(A) for every formula A such that v(A) =1,
and f(A) for every formula A such that v(4) = 0 (and nothing else).

S0 we can always regard the s-formulae t(A) and f(A) as ‘meaning’ »(A) =
1 and v{A) = 0 respectively.

The sets of s-formulae corresponding to semivaluations are known in the
literature as Hintikka sets.

Definition 2.6.8 A set of s-formulae S is a (propositional) Hintikka set if
it satisfies the following conditions (for every A, B):

1. For no variable P, t(P) and {(P) are both in S.

ho
>

SEARCHING FOR A COUNTERMODEL 29

2.l {—A) € 8, then {(A) € 5.

3. If f(-~A) € 5, then t(A} € S.

4. Ift(Av B) € 5, then t(A) € Sor t(B) € §.
5. T {(AV B) € S, then f{A) € § and {(3) € S.

f(AA B) € S, then f(A) € § or {(B) € 5.

ft(AAB) e 8, then t{A) € Sand t(B) € S.
i
If t(

A— B)e 8, then f{A) € S or t(B) € 5.

. H{(A— B)e S, then t(4) € S and {(B) € §.

The sets of s-formulae corresponding, in a similar way, to a boolean valuation
are often called truth sefs or saturated sefs. The translation of lernma 2.6.1
is known as the (propositional} Hintikka lemma.

Lemma 2.6.2 (Propositional Hintikka lemma) Every propositional Hin-
tikka set is satisfiable.

In other words, every Hintikka set can be embedded in a truth set.
We shall now define the notion of ezpansion system which generalizes the
tableaw method.

Definition 2.6.4

1. An n xXm ezpansion rule R is a relation between n-tuples of s-formulae
and m-tuples of s-formulae, with n > 0 and m > 1. Expansion rules
may be represented as {ollows:

Xa
Xn
Ull. .. |Urr|,

where the x.’s and the v;’s are schemes of s-formulae. We say that the
rule has n premises and m conclusions. If m = 1 we say that the rule
is of linear type, otherwise we say that the rule is of branching type.

30 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

2. An ezpansion sysiem S is a finite set of expansion rules.

3. We say that S, X is an expansion of § under an # x m rule R if there
is an n-tuple a of elements of § such that X belongs to some m-tuple
b in the set of the images of a under f.

4. Let A be an n x m expansion rule. A set [/ is saturalied under R or
R-saturated, if for every n-tuple e of elements of I/ and every m-tuple
b in the set of the images of ¢ under R, at least one element of & is also

in U,
5. A set U/ is S-salurated if it is R-saturated for every rule R of §.

The rules of an expansion system are to be read as rules which allow us to
turn a tree of s-formulae into another such tree. Suppose we have a finite
tree 7 and ¢ is one of its branches. Let R be an n x m expansiou rule and
(¥1,...,Y.) an image under R of some n-tuple of s-formulae occurring in 4.
Then we can extend T by appending m immediate snccessors (¥],..., Yn)
(in different branches) to the end or ¢. Let us call 7' the result. We say that
T' results from T by an epplication of R.

We also say that the application of R is aenalytic if it has the subformula
property, Le. all the new s-formulae appended to the end of ¢ are subformulae
of s-formulae occurring in ¢. A rule R is analytic if every application of R is
analytic (ie. all the conclusions are subformulae of the premises).

We can then use an expansion system S to give a recursive definition of
the notion of (analytic) S-tree for 5, where § is a finite set of s-formulae,

Definition 2.6.5 Let 5 = {X|,..., X,.}.
L. The following one branch tree is an (analytic) S-tree for S:
Xy
X3z
Xn
2. 1{ 7T is an (analytic) S-tree for S and 7" results from T by an (analytic)

application of an expansion rule of S, then 7 is also an (analytic) S-tree

for S.

2.6. SEARCHING FOR A COUNTERMODEL 1

3. Nothing else is an (analytic) S-tree for 5.

Let ¢ be a branch of an S-tree. We say that ¢ 15 closed if the set of its
nodes is explicitly inconsistent. Qtherwise it is open. A tree T is closed if
all its branches are closed and open otherwise. We also say that a branch ¢
is complete if it is closed or the set of its nodes is S-saturated. A tree T is
completed if all its branches are complete.

As far as this chapter is concerned we are interested in expansion systems
which represent (analytic) refutation systems for classical propositional logic,
i.e. systems 8 such that, for every finite set of s-formulae 5, S is classically
unsatisfiable if and only if there is a closed S-tree for 5.

2.6.2 Redundant trees

Any set of rules meeting our definition of analytic refutation system can be
considered aa adequate formalization of the idea of proving vahdity by a
failed attempt to construct a countermodel. Each expansion step ino such as
systemn reduces a problem concerning a set § (is 5 satishable?) to afinite set
of ‘easier’ subproblems of the same kind concerning supersets of §. Thinking
in terms of partial valuations, each step yields a finite set of more accurate
approximations to the sought-for semivaluation(s).

However, we have observed that the search space has a natural structure
of its own. It is therefore reasouable to require that the rules we adopt in
our systematic search reflect this structure. This can be made precise as
follows: given an S-tree T we can associate with each node n of T, the set
of the s-formulae occurring in the path from the root to n or, equivalently,
the partial valuation v, which assigns 1 to all the formulae A such that t{A)
occurs in the path to n, and 0 to all the formulae A such that f(A) occurs
in the path to n (and leaves all the other formulae undefined). We can then
require that the relations between the nodes in an S-tree correspond to the
relations between the associated partial valuations.

Definition 2.6.6 Let T be an S-tree and let =<7 the partial ordering defined
by T on the set of its nodes (i.e. for all nodes ny,nq, n; < ng ifan only if n,
is a predecessor of n;). We say that a refutation system 8 is non-redundant
if the following condition is satisfied for every S-tree T and every pair n;, ng
of nodes of T

ny X ny = vy, © v,

32 CHAPTER 2. THE REDUNDANCY OF CUT-FREE PROOFS

Non-redundancy as defined above seems a very natural requirement on refu-
tation systems: we essentially ask that our refutation system generate trees
which follow the structure of the approximation problems they set out to
solve. (Notice that the if part of the condition is trivial, but the only-if part
is not so trivial.) One corollary of non-redundancy, which justifies this choice
of terminology, is the following: let us say that an S-tree T is redundant if for
some pait of nodes ny, ny belonging to different branches of 7, we have that
Un, £ vp,. Such a tree is obviously redundant for the reasons discussed in
section 2.5: if vn, can he extended to a semivaluation, we have found a coun-
termodel lo the original sequent and the problem is solved. Otherwise, if no
extension of v,, is a semivaluation, the same applies to »,,. It immediately
follows from our definitions that:

Corollary 2.8.1 If S is a non-redundant system, no S-tree is redundant.

The importance of non-redundaucy for a system is both conceptual and prac-
tical. A redundant tree does not reflect the structure of the sernantic space of
partial valuations which it is supposed to explore and this very fact has disas-
trous compufalional consequences: redundant systems are ill-designed, from
an algorithmic point of view, in that, in some cases, they force us to repeat
over and over again what is essentially the same computational process.

It is easy to see that the non-redundancy condition is nef safisfied by
the tableau method (and in general by cut-free Gentzen systems}. We can

therefore say that, in some sense, such systems are not natural for classical
logic®,

22This suggestion may be contrasted with Prawitz's suggestion, advanced in [Pra74],
that ‘Geatzen’s caleulus of sequents may be understoad as the natural system for gener-
ating logical truths’.

Chapter 3

An alternative approach

3.1 Bivalence restored

The main feature of the tableau method and of all the variants of Gentzen’s
cut-free systems is the close correspondence between their rules and the
clauses of the semantic definition of semivaluation'. This is the reason that
such systems are usually regarded as ‘natural’. But, as we have argued,
the tree-structure generated by the semivaluation clauses hears a tortuous
relation to the structure of the space of partial valuations, i.e. the partial
semantic objects by which we represent our successive approximations to the
sought-for countermodel. So, our non-redundancy condition suggests that
we should not use such clauses as rules in our search.

Is there a simple way out? There is. We need only to tzke into con-
sideration that models, or countermadels, in classical logic, are bivalent. As
seen is section 2.3, this crucial piece of semantic information i hidden by
the cut-free Gentzen rules. So in order to establish a close correspondence
between formal derivability and classical semantics we have to reintroduce
the notion of bivalence in our analysis. It will transpire that this is in fact
all we need to do.

The non-redundancy condition given in definition 2.6.6 is automatically sat-
isfied hy any refutation sysiem S which satisfies the stronger condition that,

1This correspondence is discussed thoroughly in [PraT4].

33

34 CHAPTER 3. AN ALTERNATIVE APPROACH

for all S-trees T and all nodes ny,n,
(3.1) ny Arngand np Arny = v, U, =T

i.e., any two different branches define inconsistent partial valuations.

It is obvious that the onaly rule of the hranching type which generates
trees with this property is a O-premise rule, corresponding to the principle of
bivalence:

t(A) f(A)

So our discussion strongly suggests that the principle of bivalence should be
re-introduced in some way as a rule in the search for a countermodel and
that, indeed, it should be the oniy ‘branching’ rule to govern this search.

Three problems immediately arise in connection with the use of PB in a
refutation system:

1. Are there simple analytic rules of linear type which combined with PB
yield a refutation system for classical logic?

2. Since a 0-premise rule like PB can introduce arbitrary formulae, can
we restrict ourselves to analytic applications of PB without affecting
completeness?

3. Even if the previous question has a positive answer, we shall be left
wilh a large choice of formmlae to intraduce via PB. This could be a
problem from a practical point of view. Can we further restrict this
choice?

The rest of this chapter will be devoted to studying an alternative approach
based on the system KE, recently proposed in [Mon88a, Mon88b], which
Bives our three questions positive answers.

3.2. THE SYSTEM KE 35

t(Av B) WAV B)

t{H)

TFigure 3.1: Two different analyses.

3.2 The system KE

Let us consider the case in which, at a certain point of the search tree,
we examine a partial function which renders a disjunction, AV B, true.
Then, instead of applying the tableau branching rule as in the left diagram
of figure 3.1, we apply the rule PB as in the diagram on the right®. Next,
we observe that any boolean valuation which makes A v B true and A false
must make B true.

If we compare the result of this way of analysing the disjunction with the
result of applying the tableau branching rule, we notice that (i) the lefthand
branch represents the same partial valuation, but (ii) the partial valuation
represented by the righthand branch is more defined, i.e. contains more in-
formation: precisely the information that if 4 is not true, it must be false;
so if there are no countermodels which make A true, every countermodel, if
any, must make A false. We can then use this information to exch:de from
the search space associated with the righthand branch all the partial valua-
tions which make A true, whereas such partial valuations are not excluded
if we apply the standard tableau rule. In other words, our chances of closing

In this example we apply PB to the formula A. A similar configuration is obtained
by applying PB to the formula B. We need only one of these applications. Although the
choice of the formula does not affect completeness, it may affect the complexity of the
resulting refutation. See below p. T9.

36 CHAPTER 3. AN ALTERNATIVE APPROACH

branches are significantly increased.

The example suggests that we can find a set of rules of the linear type which,
combined with PB, provides a complete refutation system for propositional
logic. We need only to notice that the following eleven facts hold true (for
any formulae A,B) under any boolean valuation:

1. If Av B is true and A is false, then B is true.
2. If AV B 1s true and H is false, then A is true.
3. If Av B is false then both A and B are false.
If AA B is false and A is true, then B is false.

oroe

If AA B is false and B is trne, then A is false.
6. If AA B is true then both A and B are true.
7. f A— Bis true and A is true, then B is true.
8. If A— B is true and B is false, then A is false.
9. If A— B is false, then A is true and B 1s false.

10. If ~A is true, then A is false.

11. If - A is false, then A is true.

These facts can immediately be nsed to provide a set of expansion rules of
the linear type which, with the addition of PB, correspond to the the propo-
sitional fragment of the system KE proposed in [Mon88a, Mon88b]. The
rules of KE are shown below. Notice that those with two s-formmnlae below
the line represent a pair of expansion rnles of the linear type, one for each
s-formula.

Disjunction Rules

t{AVB) HAV B) f(Av B)

f(A) f(B) f(A)
_—t(B) Etvl —t(A) Etv2 #B)

Efv

3.2, THE SYSTEM KE 37

Conjunction Rules

f((A)f\) f((,;)/\B) t((i)/\ B} EtA
t{A4 t t
B Efal Ay Efn2 4(B)

Implication Rules

H{A - B) t(A — B) (A B) oo
MA) g 1B gy t(A)
1(B) f(A) f{(B)

Negation Rules

t(~A) f(-~4)
f(A) Et— WA Ef—

Principle of Bivalence

t(A) | {{A) PB

The rules involving the logical operators will be called (propoesitional) elimi-
nation rules or E-rules3

In contrast with the tableau rules for the same logical operators, the E-
rules are all of the linear type and are not a complete set of rules for classical
propositional logic. The reason is easy to see. The E-rules, intended as
‘operational rules’ which govern our use of the logical operators do not say
anything about the bivalent structure of the intended models. If we add the
rule PB as the only rule of the branching type, completeness is achieved. So

3Quite independently, and with a different motivation, Cellucci [Cel87] formulates the
same set of rules (although he does not use signed formulae). Surprisingly, the two-premise
rules in the above list were already discovered by Chrysippus who claimed thetn to be the
fundatnental rules of reascning (*anapadeiktoi’), except thal disjunction was interpreted
by him in an exclusive sense. Chrysippus also maintained that his ‘anapodeiktoi’ formed
a cotnplete set of inference sules (‘the indemonstrables are those of which the Stoics say
that they need no proof to be maintained. [...] They envisage many indemonstrables but
especially five, from which it seems all others can be deduced’. See [Bla70], pp.115-119
and [BoceB1], p.126.

38 CHAPTER 3. AN ALTERNATIVE APPROACH

PB is not eliminable in the system KE.

We shall call an application of PB a PB-inference and the s-formulae
which are the conclusions of the PB-inference PL-formulae. Finally, if t(A}
and f(A) are the conclusions of a given PB-inference, we shall say that PB
has been applied to the formula A.

Definition 3.2.1 Let S = X,,...,X,.. Then T is a KE-tree for S if there
exists a finite sequence (7;,7;,...,T,) such that 7} is a one-branch tree
consisting of the seqnence of X;,...,X,,, 7n = T and for each t < n, Ty
results from 7; by an application of a rule of KE (see section 2.6.1 for this
terminology).

Definition 3.2.2

1. Given a tree T of s-formulae, a branch ¢ of T is closed if for some
atomic formula P, both t(P) and {(P) are in ¢. Otherwise it is open.

2. Atree T of s-formulaeis closed if each branch of T is closed. Otherwise
it is open.

3. Atree T is a KE-refutation of Sif T is a closed KE-tree for S.

4, Atree T is a KE-proof of A from a sel T of formulae if T is a KE-
refutation of {t(B)|B € T} U {f(A)}.

5. Ais KE-provable from I if there is a KE-proof of A from .

6. Aisa KE-theoremif A is KE-provable from the empty set of formulae.

Remark: it is easy to prove that if a branch ¢ of 7 contains both t(A)
and f(A) for some formnla 4 (not necessarily atomic), ¢ can be extended by
means of the E-rules only to a branch ¢’ which is closed in the sense of the
previous definition. Hence, in what follows we shall consider a branch closed
as soon as both t{A) and f(A) appear in it.

As pointed out in Section 2.3, there is a close correspondence between the
semantic rule PB and the cat rule of the seqnent calculus. We shall return
to this point in Section 4.5.2.

3.2. THE SYSTEM KE 39

Disjunction Rules

AV B AVE —~(AV B)
VY gy
—A B =B v ~4
B g -B

Conjunction Rules

—~(AAB) ~(AA B) AN
4 B aEA
—F E-nl T E~A2 B
Implication Rules
A= B A~ B ~(A—B)
A -5 __—A - —
oy I E-+1 ey — E—=2 _B

Negation Rule

——A

A E~—

Principle of Bivalence

AT-A B

Table 3.1: KE rules for unsigned formulae.

We can give a version of KE which works with unsigned formulae, The
rules are shown in Table 3.1. [t is intended that all definitions be modified
in the obvious way.

We can see from the unsigned version that the two-premise rules corre-
spond to well-known principles of inference: modus ponens, modus tollens,
disjunctive syllogism and the dual of disjunctive syllogism. This gives KE
a certain natural-deduction flavour (see Section 3.8). However, the classical
operators are analysed as such and not as “stretched’ versions of the con-
structive ones.

In Fig. 3.2 we give a KE-refutation (using unsigned formulae) of the

40 CHAPTER 3. AN ALTERNATIVE APPROACH

Figure 3.2: A KE-refutation of {AV B,AV-B,-Av{,—AV-C)

same set for which a minimal tableau was given on p. 23; the reader can
compare the different structure of the two refutations and the crucial use of
(the unsigned version of) PB to eliminate the redundancy exhibited by the
tableau refutation.

3.3 Soundness and completeness of KE

We shall give the proofs for KE-trees using signed formulae. The modifica-
tions for KE-trees using unsigned formulae are obvious.

Proposition 3.3.1 (Soundness of KE) If there is a closed KE-tree for
S, then § is unsatisfiable.

Proof. The proof is essentially the same as the soundness proof for the
tableau method. See [Smu68a, p. 23].

The completeness of KE can be shown in several ways. One is by proving

3.3. SOUNDNESS AND COMPLETENESS OF KE 41

that the set of KE-theorems includes some standard set of axioms for propo-
sitional logic and is closed under modus ponens. Another way is by modify-
ing the traditional completeness proof for the tableau method. We shall give
both these proofs because they provide us with different kinds of information.
{One can also obtain a proof & la Kalmar [Kal34]. See {Mon88a).)

3.3.1 Completeness of KE: proof one
Theorem 3.3.1 If A is e valid formula then there is a KE-proof of A.

Proof. The theorem immediately follows from the following facts which at
the same time provide examples of KE-refutations {we write just - for Fgg):

Fact 3.3.1 - A — (B — A)

f{A— (B~ A)
t(A}

(8 — A)

t(8)

f(A)

x

Fact 3.32 F (A= (B () > ((A- B)—={A- ()

(A= (B> C) = (A= B) > (A= C)
t(A = (B -~ C))

(4 — B) — (4)

LA — B)

f{A—-)

t{A)

HC)

(B — C)

(B

)
B)

=

*

42 CHAPTER 3. AN ALTERNATIVE APPROACH

Fact 3.33 F (=B — -A) - (A > B)
f{(-B — -A) = (A — B))

t(—=B — —A)
f(A— B)

t{A)

f(B)
~B) | =5)
t(—~A) t(B)
f(A) x
x

Fact 3.34 If- A and+ A — B, thent+ B

Proof. It follows from the hypothesis that there are refutations 7, and 7;
respectively of {f(A)} and {f{A — B)}. Then the following tree:

f(B)
A= B) | KA B
f(A) T
T

is a refutation of {{(B)}}.0

This kind of proof provides a simulation of a standard axiomatic system.
In this simulation it is essential to apply the rule PB to formulae which
are not subformulae of the theorem to be proved. We notice that such a
simulation cannot be directly obtained by the tableau methed, since it is
non-analytic. Are such non-analytic applications of PB necessary or can they
be eliminated without loss of completeness? i.e. can we restrict ourselves to
analylic applications? Let us say that a KE-tree T for I is analytic if PB
is applied in T only to (proper) subformulae of formulae in I'. Let us call
KE* the analytic restriction of KE, i.e. the system in which the applications
of PB are restricted to subformulae of the formulae occurring above in tbe
same branch. So our problem becomes: is KE* complete?

A positive answer to this question can be obtained from the second com-
pleteness proof which follows the lines traced by Beth [Bet55] and Hintikka

3.3. SOUNDNESS AND COMPLETENESS OF KE 43

{Hin35]. This proof not only ensures that we can restrict ourselves to analytic
applications of PB so that our refutations will obey the sublormula principle,
but also provides more information concerning the formulae to be considered
in these applications.

3.3.2 Completeness of KE: proof two

It is convenient to use Smullyan’s unifying notation in order to reduce the
number of cases to be considered.

We use the letter *o’ to stand for any signed formula of one of the forms:
t(AAB), f(AV B), {{A - B), t{-4), {(-A).

For every such formula o, its components o, and o are defined asin the
following table:

o a gy
t(ANB) [t(A)] (B
f(AvB) | (4] {B)
f{A— B) | t(4) | [(B)

t-A) | f{4) | i(A)

f(-4) | t(4) T t(A)
We use ‘3’ to stand for any formula of one of the forms: f{A A B),t(AV B),
t{A — B). For every such formula 8, its components 5, and #, are defined
as in the following table:

B B | B
AAB) | 1(A) | (B)
WAV B) | (A) [Y(B)
(A= B) | [(A) | U(B)

So the E-rules of KE can be ‘packed’ into the following three tules (where
', 1 = 1,2 denotes the conjugate of 3;):

=
Rule A oy
(25]

B B

Rule Bl f] Rule B2 8

B2 B

44 CHAPTER 3. AN ALTERNATIVE APPROACH

Remarks. The unifying notation can be easily adapted to unsigned formu-
lae: simply delete all the signs ‘t* and replace all the signs ‘f” by ‘-+’. The
‘packed’ version of the rules then suggests a more economical version of KE
for unsigned formulae when 3! is taken to denote the complement of 5; de-
fined as follows: the complement of an unsigned formule A, is equal to - B if
A = B and to B if A = ~B. In this version the rules EvV1l, EV2 and E—2
become:

AvEB AVEB A— B
Al B B
B C A

This version is to be preferred for practical application. Notice also that the
Rule A represents a pair of expansion rules, one with conclusion «; and the
other with conclusion as.

In each application of the rules, the signed formulae o and # are called
major premises. In each application of rules Bl and B2 the sigued formulae
!, 1 = 1,2 are called minor premises (rule A has no minor premise).

We firsi define a notion akin to that of a Hintikka set:

Definition 3.3.1 Let us say that a set of s-formulae § 1s a prepositional
analytic sef if and only if it satisfies the following conditions:

Ag: For no atomic formula P, t(P) and f(F) are both in 5.
Ay fae 8, then oy € S and a3 € 5.
Ag: If f¢€ 5 and 8] € S, then 8; € 5.
Az: If fe 5 and 8 € &, then 5, € 5.

An analytic set differs from a Hintikka set in that it may be the case that
for some in the set neither F, nor f; is in the set.

Definition 3.3.2 We say that an analytic set S is S-complete if for every 3
in S one of the following two conditions is satisfied:

B.: either 5, € Sor 8 € 5;

3.3. SOUNDNESS AND COMPLETENESS OF KE 45

B,: either 3, € 5 or 8 € 5.
It is then easy to verify that:

Fact 3.3.5 If S is a propositional analytic set end S is §-complete, then S
is a propositional Hinttkka sel.

Let us say that a branch ¢ of a KE-tree is F-complete if the set S, of the
s-formulae occurring in it is saturated under the E-rules of KE. Let us also
say that ¢ is F-complete if for every formula of type J occurring in it and
some ¢ = 1,2, either 8; or B! occurs in ¢. We say that ¢ is completeif 1t is
E-complete and S-complete. Finally, we say that a KE-tree T is completed
if every branch of T is either closed or complete. Of course if ¢ is an open
branch in a completed KE-tree, the set S, of its s-formulae is a J-complete
analytic set and, hence, a Hintikka set.

Thus, completeness follows from fact 3.3.5 and the propositional Hintikka
lemma.

Theorem 3.3.2 (Completeness Theorem) If I' |= A, then there is a
closed KE-tree for {t(B)|B € I'} U {f{A)}. In particular every completed
KE-tree i3 closed.

3.3.3 The subformula principle

Our proof of the completeness of KE yields the subformula principle as a
coroliary. Since all the rules except PB are analytic, we need only to observe
that the completeness proof given ahove immediately implies:

Corollary 3.3.1 {Analytic cut property) IfS is unsatisfiable, then there
15 a closed KE-tree T' for § such that all the applications of PB are analytic.
FEgquivalently, the analylic restriction of KE 15 complete.

A constructive proof of the subformula principle, which yields a procedure
for transforming any KE-proof in an equivalent KE-proof which enjoys the
subformula property, is given in [Mon88h).

Our completeness proof also gives us some additional information. Let us
say that a formula of type 8 is analysed in a branch ¢ if either §; or 3,
occurs in ¢. An application of PB in a branch ¢ of a KE-tree is canonical if

46 CHAPTER 3. AN ALTERNATIVE APPROACH

the s-formulae of this application are 5; and 5} for some i = 1,2 and some
non-analysed formula of type 8 occurring in ¢. A KE-treeis canonical if it
contains only canonical applications of PB. It follows from our completeness
proof that

Corollary 3.3.2 If S is unsatisfiable, then there is a closed canonical KE-
tree for S.

In other words, our proof establishes the completeness of the restricted system
KE' obtained by replacing the ‘liberal’ version of PB with one wbich allows
only canonical applications.

There are several procedures which, given a finite or denumerable set of
signed formulae S, generate a completed (canonical) KE-tree. Here is one
possibility (adapted from [Smu68a, [pp. 33-34]}. Let us say that a node is
Sulfilledif (1) it is an atomic s-formula or (2) it is of type & and both &, and
ay occur in all the branches passing through the node or (3) it is of type
B and for every branch ¢ passing through the node all the following three
conditions are satisfied: (3a) if 8] occurs in ¢, A also occurs in ¢; (3b) if 7,
occurs in ¢, f§; also occurs in ¢; (3c) for some ¢ = 1,2 either f; or 3! occurs
in ¢. Obviously a KE-tree is completed if and only if every node is fulfliled.

We can now describe a simple procedure to construct a completed KE-
tree for every denumerable set of s-formulae. Let S be arranged in a denu-
merable sequence Xy, X3,.... Start the tree with X;. This node constitotes
the level 1. Then fulfil* the origin and append X, to every open branch. Call
all the nodes so obtained nodes of level 2. At the i-th step fulfil all the nodes
of level i — 1 and append X; to the end of each open bhranch. So every node
gets fulflled after a finite number of steps. The procedure either terminates
with a cdlosed KE-tree or rons forever. (If S is finite, the procedure always
terminates). In this case we ‘cbtain’ an infinite tree which is a completed
KE-tree for §. Since the tree is finitely generated, by Kdnig’s lemma it must
contain an infinite branch which is obviously open. The set of s-formulae in
this branch is a Hintikka set. Therefore S is satisfiable. If S is nnsatisfiable
the procedure generates a finite tree.

The procedure just described is a simple variant of a similar procedure
based on the tableau method which is used to provide (among other things)

*By ‘fulfilling a node’ we mean applying the KE-rules so that the node becomes fulfiiled.

3.3. SOUNDNESS AND COMPLETENESS OF KE 47

a proof of the compactness theorem. Our adaptation is an example of how
all the useful theoretical ptoperties of cut-free systemns can be almost imme-
diately transferred to a system like KE which is not cut-free.

Remark. Like the tableaun method, KE (with PB restricted to canonical
applications) can be used as a method for turning arbitrary formulae into dis-
junctive normal form. However, the DNFs obtained by means of the tableau
method may often be highly redundant and contain a number of conjunctions
which are subsumed by other conjunctions {a conjunction € subsumes an-
other conjunction Cy, if all the literals occurring in C; occur also in &3). By
contrast the DNFs obtained by means of K¥ are in most cases remarkably
concise. The dual versions of the rules (i.e. the rules obtained from rules A,
B, and B; by swapping a and) provide a method for turning an arbitrary
formula into conjunctive (or ‘clausal’) normal form.

o

-—A g @ o
A L B Sy a Qo
ﬁz [15] 23]

Table 3.2: CNF reduction rules.

Again, the CNFs yielded by this method are in most cases much more con-
cise than those yielded by the analogous dual version of the tableau method
(see [Fit90, p. 26]). It is a consequence of results in Section 4.5.2 that in the
worst case the number of (disjunctions) conjunctions in the shottest® normal
form of A yielded by the (duals of the) tableau rules is not even polynomially
related to the corresponding number of (disjunctions) conjunctions yielded
by the (duals of the) KE rules. By contrast the (duals of the) KE rules
never yield normal forms which are longer than those yielded by the (duals
of the) tableau rules.

5That is to say, we consider the non-deterministic version of the algarithm.

48 CHAPTER 3. AN ALTERNATIVE APPROACH

3.4 KE and the Davis-Putnam Procedure

The Davis-Putnam procedure was introduced in 1960 [DP60] and later re-
fined in |[DLL62). It was meant as an efficient theorem proving method® for
(prenex normeal form) first-order logic, but it was soon recognized that it
combined an efficient test for truth-functional validity with a wasteful search
through the Herbrand universe’. This situation was later remedied by the
emergence of unification. However, at the propositional level, the procedure
is still considered among the most efficient, and 1s clearly connected with the
resolution method, so that Robinson’s resolution [Rob65] can be viewed as a
(non-deterministic) combination of the Davis-Putnam propositional module
and unification, In a single inference rule. It is not difficnlt to see that, if
we extend our language {o deal with ‘generalized’ disjunctions and conjunc-
tions, the Davis-Putnam procedure (in the version of [DLL62] which is also
the one exposed in [CL73, Section 4.6} and in Fitting’s recent book [Fit90,
Section 4.4]), can be represented as a special case of the canonical procedure
for KE outlined in the previous section. So, from this point of view, KE
provides a generalization of the Davis-Putnam procedure which does not re-
quire reduction in clausal form.

We enrich our langnage to include expression of the form A, v...V A,
and A; A... A A,, where A;,..., A, are formulae, and use the notation
Ajo...0A,\ A;, where o is Vor A, ¢ = 1,...,n, to denote the result of
removing A; from A,0...0A,. We then replace the rules Evi, E-Af, i = 1,2,
E-v, EA of KE with the generalized versions shown in Table 3.3 (we use
the notation A’ for the complement of A4).

We czan generalize Smullyan’s notation to cover the new language includ-
ing n-ary conjunctions and disjunctions: use the notation a™ for an n-ary
conjunction or the negation of an n-ary disjunction, and the notation §* for
an n-ary disjunction or the negation of an n-ary conjunction (or an n-ary
implication A; — (...(A,_; — A,)...)). The components of and 7, for
i=1,...,n are defined in the obvious way. The notation g™V, i=1,...,n

SThe version given in [DP60] was not in fact a completely deterministic procedure: it
involved the choice of which literal to eliminate at each step.

7See [Dav83d].

34. KE AND THE DAVIS-PUTNAM PROCEDURE 49

AIVVAH _‘AI/\.../\Aﬂ)
Al A;

(A V.o VAIVA (A A A A\ A)

(A V...V 4,) AN AA,
“ A, A
—A, An

Table 3.3: Generalized KE rules.

is used as foliows:

ﬂn\i“ (Al\f...VAn)\A,' ifﬁ":AIV,_,VAn
T AV VAN A) HB = (A AL A A

Let us consider now the procedure given in the previous section and replace
the definition of fulfilled node as follows: let us say that a node is fulfilled
if (1) it is a literal or (2') it is of type @™ and, for every i = 1,...,n, ol
occurs in all the branches passing through the node or (3"} it is of type g
and for every branch ¢ passing through the node all the following conditions
are satisfied: {3'a) if 7 occurs in ¢, ™\ also occurs in ¢; (3'b) for some
i =1,2,...,n either 87 or § occurs in ¢.

It is not difficult to see that the same procedure described in the previous
section is complete for this extended language. Moreover, if we restrict our
attention to formulae in CNF and add two simplification rules corresponding
to the ‘affirmative-negative’ rule and to the ‘subsumption rule’ (see [DLL62]
and {Fit90]}, the procedure becomes equivalent to the DavisPutnam pro-
cedure. So KE incorporates the basic idea underlying resolution theorem
proving in a tableau-like set up. From this point of view it is somehow
related to non-clausal resolution [Mur82, MW80).

We also notice that the system resulting from this generalized version of
KE by disallowing the branching rule PB includes, as a special case, the
restrictiou of resolution known as unit resolution [Cha70]. This restricted
version of KE can then be seen as an extension of unit resolution (it is there-
fore a complete system for Horn clauses, although its scope is not confined

50 CHAPTER 3. AN ALTERNATIVE APPROACH

to formulae in clausal form).

3.5 The first-order system KEQ

In this section we consider a standard first-order language with no functional
symbols. We use the letters z,y, z, .. . (possibly with subscripts) as individual
variables and the letters a,b,¢,... (possibly with subscripts) as parameiers.
For any variable z and parameter a, A(z/a) will be the result of substituting
all the free accurrences of z in A with a. Subformulae are defined in the
usual way, so that for every parameter a, A(z/a) is a subformula of Yz A(z).

The rules of the first-order system KEQ consist of the rules of the
propositional fragment (with the obvious assumptiou that the metavariables
range over closed first-order formulae) plus the quantifier rules of the tableau
method, namely:

Universal Quantifier Rules

t((Vz)A) f{(¥z)A) with & now

AR/ TA(z/a)) L7 with
Existential Quantifier Rules

f((32)A) t((3z)A) e

HAz/a)) OO WA(zfa)) 9 withan

The versions for unsigned formulae are obtained, as before, by changing the
sign f into ‘=’ and deleting the sign t.

We shall use Smullyan’s nnifying notation for first-order formulae. For-
mulae of type o and 3 are defined as in the propositional case (except that
formulae here means closed first-order formulae). In addition we use 7 to
denote any formula of one of the forms t(¥z A(z})), {(3zA(x)), and by ~(a)
we shall mean, respectively, t(A(z/a)), {(A(z/a)). Similarly § will denote
any formula of one of the forms t(IzA(z)), {(Vz A(z)) and by é{e) we shall
mean, respectively, t{A(z/a)), {{A(z/a)).

3.6. SOUNDNESS AND COMPLETENESS OF KEQ 31

Using the unif{ying notation the quantifier rules are:

‘Y
Rule C y{a) for any parameter a

Rule D é
© 4(a) for a new parameter a

3.6 Soundness and completeness of KEQ

The first-order system KEQ is obviously sound for the same reasons as the
tableau method. It is easy to extend the first completeness proof given for
the propositional fragment in section 3.3.1. We just need to observe that
the set of KEQ-theorems is closed under the standard quantifier rules of a
first-order axiomatic system.

Fact 3.6.1 [fFxgg A — Bla) and a does not occur in A, then
FxkeEg A — (Vz)B{a/z)

Fact 3.8.2 Iftgpg B{a) — A and a does not occur in A, then
}"KEQ (3.’:)8 — A,

The second completeness proof given in section 3.3.2 can also be readily
extended to the first-order system.
We recall the notion of first-order Hintikka set.

Definition 3.6.1 By a first-order Hintikka set (for a universe U/) we mean a
set S of s-formulae (with constants in U) such that the followiag conditions
are satisfied for every a, 3,7, § over U:

Hy: No signed variable and its complement are both in 5.
Hi:fa€S, thenay € Sand a; € 5.

Hy:HpeS thenfiecSorf,es.

Hy: Hy €8, then for everya in U, y{a} € &.

Hs: If § € G, then for some a in U, §{a) € .

52 CHAPTER 3. AN ALTERNATIVE APPROACH

The notion of first-order analytic set over U is the analogous extension of the
propositional notion:

Definition 3.6.2 By a first-order analytic set (for a universe U/ we mean a
set S of s-formulae (with constants in U/) such that the following conditions
are satisfied for every a, 8,4, é over IJ:

Ag: No signed variable and its complement are hoth in X.
Ay Hae§, then ap € S and az € S.

Az: f 5€5 and § € 5, then G € S.

Az: I f€ S and 95 € S, then 3, € S.

Ayt If v € 8, then for everya in U, y(a) € X.

As: If 6 €85, then for some ain U, §(a) € S.

Again we observe that if S is a first-order analytic set and S is A-complete,
S is a first-order Hintikka set.

It is not difficult to define a procedure which, given a set of s-formulae S,
generates either a (canonical) closed KEQ-tree or an open KEQ-tree such
that for every (possibly infinite) opeu branch ¢, the set Sy of the s-formulae
occurring in ¢ is an analytic set which is also J-complete (the only tricky
part of such a procedure concerns condition A4 and can be dealt with as in
{Smu68a, pp.58-60]). Thus, completeness follows from Fact 3.3.5 and Hin-
tikka’s lemma for first-order logic. This completeness proof establishes the
analogs for the first-order system of Propositions 3.3.1 and 3.3.2. In formulat-
ing a refutation procedure to be used in practical applications, Skolem func-
tions and unification can be employed exactly as with the standard tableau
method. The reader is referred to [Fit90] on this topic. A *‘naive’ Prolog
implementation of a KE-based theorem prover for classical first order logic
has been developed by Rajev Gore [Gor90]. Comparisons with a similar im-
plementation of the tableau method given in [Fit90] (see also [Fit88]) fully
confirm our theoretical predictions about the relative efficiency of the two
systems.

We have therefore shown that KEQ provides positive answers to the three

3.7. A DIGRESSION ON DIRECT PROOFS: THE SYSTEM K1 53

questions at the end of the previous section: that KEQ is complete for clas-
sical first-order logic; that we can restrict ourselves to analytic applications
of PB; moreover, we are able to determine the formulae to be considered for
these analytic applications with a degree of precision which leaves little room
for guesswork®.

3.7 A digression on direct proofs: the sys-
tem KI

The abstract notion of expansion system outlined in Sectior 2.6.1 is by no
means restricted to representing refuiaiion systems. Nor is there any as-
sumption that the expansion rules should be elimination rules. We can in
fact obtain a proof system for classical propositional logic if, instead of con-
sidering the ‘analytic’ rules of KE, we consider the following ‘synthetic’ rules,
corresponding to those of the system KI [Mon88d, Mon89, Mon8&c):

Disjunction Rules

f(A)
f(B) 4(A) « B)
Tave V mave ™t wave 1V
Conjunction Rules
$(A)
i(B) f(A) {(B)
A " Hasm M RAnE)
Implication Rules
t(A)
_fB) g, A g B o
f(A~+ B) t{A — H) t(A — B)

80f course there is still plenty of room for heuristics which help us to choose which
formula should he analysed next.

54 CHAPTER 3. AN ALTERNATIVE APPROACH

Negation Rules

t(A4) fid) ..
f(~A) If- W(A) It
Principle of Bivalence
A TR LD

The rules involving the logical operators will be called introduction rules or
I-rules. A Kl-tree for § will be, as usual, an expansion tree regulated by
the rules of KI starting from s-formulae in § (when 5 is emply, the origin
of the tree is labelled with ©). Closed and open branches are defined in the
usual way A KI-preofof A from T is a KI-tree for {t(B)|B & I'}, such tbat
t{A) occurs in every open branch. We say that A is a KI-theorem if A is
provable from the empty set of formulae. A version for unsigned formulae
can be obtained, as before, by changing all f’s into —, and deleting ail t's.
Mondadori [Mon88c, Mon89) has also formulated a first-order version of the
system which will not concern us here.

The Irules of KI correspond to the notion of inductive wvaluation (see
[Pra74]).

Definition 3.7.1 We shall call inductive set a set of s-formulae saturated
under the I-rules. We shall call 2 set of s-formulae a base when it is used for
the industive definition of an inductive set. So the inductive set generated
by a base U will be the smallest inductive set which includes U. Finally, a
synthetic set will be an induclive set generated by a base U such that all the
elements of U are atomic s-formulae and for no atomic formula P both t(P)
and f(P) are in U.

The notion of a synthetic set bears the same relation to the calculus KI as
does the notion of an analytic set to KE.

Our definitions make sense if, instead of considering the set E of all the
formulae of propositional calculus, we restrict our attention to a subset which
is closed under subformulae. If we denote by | T the set of all subformulae of
formulac in T, by a set of s-formulae over T' we mean a set of s-formulae
s(A) (s=t,f), with A € T. The related notions of a synthetic set, a truth

3.8, ANALYTIC NATURAL DEDUCTION %]

set and saturation under a rule, with reference to sets over f are intended
to be modified in the obvious way. For example, by saying that a set S over
[is saturated under PB, we shall mean that for every formula A in T either
t(A)Y e Sor f(A) € 5.

It is easy to vetify that:

Proposition 3.7.1 (Inversion Principle} [f S is a synthetic {erdytic)
set over [and S is salurated under PB, then S is an analytic (synthetic) set
over [.

Corollary 3.7.1 If § is a synthetic (analytic) set over T' and S is salurated
under PB, then S is a truth set over I,

The completeness of KI as well as the subformula principle follow immedi-
ately from corollary 3.7.1.

Let us say that an application of PB is atomic if the s-formulae resulting
from the application are t(F) and () for some atomic formula F. Let us
denote by PB* the expansion rule resulting from restricting PB to atomic
applications. Intuitively, it is obvious that KI is complete for classical logic
even if we replace PB with PB*. Formally, this can be seen to be a conse-
quence of the following lemma:

Lemma 3.7.1 (Truth-table lemma} IS is a synthetic set over f, and §
is saturated under PB* then S is ¢ iruth set over I

So, given an arbitrary formula 4 to be tested for tautologyhood, we can use
KI as a simulation in tree form of the familiar truth-tables. However, if we
postpone the applications of PB* until no further application of an I-rule
(over the set of subformulae of A) is possible, we may in mary cases stop
expanding a branch before PB* has been applied to all the atomic formulae.
This kind of procedure amounts to a ‘lazy evaluation’ of boolean formulae
via partial truth-assignments,

3.8 Analytic natural deduction

As mentioned before, the rules of KE have a certain natural deduction
flavour. We can make this more evident by changing the format of the

56 CHAPTER 3. AN ALTERNATIVE APPROACH

rules (in the version for unsigned formulae). It is convenient to extend the
language to include the constant F, standing for ‘the absurd’. The natural
deduction system KEND is characterized by the following rules:

Disjunction Rules

AVB -A AvHB -B ~{AVB) -(AVE)
B A A -B

Conjunction Rules
~(AAB) A —~(AAB) B AnB AAB
-8B —-A A B

Implication Rules

A—-B A A-B -B ~(A—B) -~(A— B)
B —A A —-B

Negation Rule

—|—\A

A

Absurdum Rule

A -A
F
PB
4 A
F F
F

Every application of PB discharges the assumptions A and —A. A KEND-
tree is a tree of formulae regulated by the above rules. As in natural deduc-

3.9. NON-CLASSICAL LOGICS 57

tion, a proef of A from I is a KEND-tree with origin A and such that its
undischarged assumptions are in T.

The rules can be put in linear form by using a Fitch-style representation
or nested boxes (as in [Smu65]). In this case instead of PB we can use a
versiou of classical Reductio ad Absurdum:

[~A]

F
——[Ra]

In this last format the rules of KEND have been independently proposed
by Cellucci [Cel87].

3.9 Non-classical logics

One of the attractions of the tableau method is that it can be adapted to a
variety of non-classical logics in a relatively simple way. In all the cases in
which a Kripke-style characterization exists?, these adaptations essentially
consist of systems for reasoning classically about Kripke models. For ex-
ample, in the case of intuitionistic and standard modal logics, the tableau
rules systematically search for a Kripke model which is a countermodel of
the alleged theorem (whereas in the case of modal logics the use of signed
formulae is optional, in the case of intuitionistic logic it is compulsory). As
in the classical case, a proof of A is a frustrated attempt to construct a
Kripke model in which A is not true. Signed formulae t(B) and f(B) are
interpreted as ‘B is true in the current world’ and ‘B is not true in the cur-
rent world’, respectively. The crucial feature of these non-classical tableaux
is the use of ‘up-dating’ or ‘branch modification rules’ (see [Fit83]) to reflect
the jump from one possible world to another. We just mention here that
exactly the same devices can be used in the context of KE. The typical KE
rule, namely PB, expresses the classical postulate that for every proposition
A and every Kripke model M, either A is true in AL or A s not true in
M. Given the branch modification rules defined by Fitting, the KE-style
versions of intuitionistic and analytic modal logics are obtained by means of

See [Fit83).

58 CHAPTER 3. AN ALTERNATIVE APPROACH

trivial adaptations. Moreover, the rule PD is necessary in the context of non-
analytic modal logics (like $5) so that the KE-version looks, in these cases,
less ad hoc. The same redundancy of the cut-free rules pointed out in the case
of classical logic can also be observed for these non-classical logics. Therefore
the KE-versions also result in an improvement in efficiency. In Chapter 5
we shall study a non-classical logic, Belnap’s four-valued logic, which has an
interesting interpretation from a computer science viewpoint, and shall for-
mulate two new methods corresponding to both kinds of tableaux (standard
and KE-like) which provide particularly simple characterizations of it.

Chapter 4

Computational complexity

4.1 Absolute and relative complexity

The subject of computational complexity can be seen as a refinernent of the
traditional theory of compulability. The refinement, which is motivated by
practical considerations and above all by the rapid development of computer
science, consists of replacing the fundamental question, ‘Is the problem P
computationally solvable?’ with the question, ‘Is P solvable within bounded
resources (time and space)?’. Workers in computational complexity agree
in identifying the class of ‘practically solvable’ or ‘feasible’ problems with
the class P of the problems that can be solved by a Turing machine within
polynomial time, i.e. time bounded above by a polynomial in the length of
the input.

Most computational problems can be viewed as language-recognition prob-
lems i.e. problems which ask whether or not a word over a given alphabet is
a member of some distinguished set of words. For instance, the problem of
deciding whether a formula of the propositional calculus is a tautology can
be identified with the set TAUT of all the words over the alphabet of proposi-
tional calculus which express tautologies, and an algorithm which solves the
problem is one which decides, given a word over the alphabet, whether or
not it belongs to TAUT. So the class P can be described as the class of the
languages which can be recognized in polynomial time by a Turing machine.

The rationale of this identification of feasible problems with sets in P is
that, as the length of the input grows, exponential time algorithms require

59

60 CHAPTER 4. COMPUTATIONAL COMPLEXITY

tesources which quickly precipitate heyond any practical constraint. Need-
less to say, an exponential time algorithm may be preferable in practice to
a polynomial time algorithm with running time, say, n!™®. However, the
notion of polynomial time computability is theoretically nseful because it is
particularly robust: it is invariant under any reasonable choice of models of
computation. In fact, there is an analog of the Church-Turing thesis in the
field of computational complexity, namely the thesis that a Turing machine
can simulate any ‘reasonable’ model of computation with at most a polyno-
mial increase in time and space. Moreover polynomial time computability is
invariant under any reasonable choice of ‘encoding scheme’ for the problem
under consideration. Finally, ‘natural problems’, i.e. problems which arise in
practice and are not specifically constructed in order to defy the power of
our computational devices, seem to show a tendency to be either intractable
or solvable in time bounded by a polynomial of reasonably low degree.

The analog of the class P, when non-deterministic models of computation
are considered, for example non-deterministic Turing machines?, is the class
NP of the problems which are ‘solved’ in polynomial time by some non-
deterministic algorithm. The class AP can be viewed as the class of all
languages I such that, for every word w € L, there is a ‘short’ proof of
its membership in L, where ‘short’ means that the length of the proef is
bounded abave by some polynomial fnnction of the length of w. (See [GJ79]
and [Sto87] for definitions in terms of non-deterministic Turing machines.)
The central role played by propositional logic in theoretical computer science
1s related to the following well-known resnlts [Coo71, CR74]:

1. There is a deterministic polynomial time algorithm for the tautology

problem if and only if P = AP,

2. There is a non-deterministic polynomial time algorithm for the tautol-
ogy problem if and only if AP is closed under complementation.

As far as the first result is concerned, the theory of A'P-completeness? is

providing growing evidence for the conjecture that P # AP, which wonld
imply that no proof procedure can be uniformly feasible for the whole class
of tautologies (it can of course be feasible for a number of infinite subclasses
of this class).

1See [GI79] and [Sto87).
We refer the reader to [G79].

4.1. ABSOLUTE AND RELATIVE COMPLEXITY 61

The second result involves the notion of a proof system rather than the
notion of a proof procedure. The following definitions are due to Cook and
Rechow [CRT4] (L* denotes the set of all finite strings or ‘words’ over the
alphabet T):

Definition 4.1.1 If L ¢ ¥*, a proof system for L is a function f: If s L
for some alphabet ¥, where f € £ (the class of functions computable in
polynomial time).

The condition that f € £ is intended to ensure that there is a feasible way,
when given a string over Iy, of checking whether it represents a proof and
what it is a proof of. So, for example, a proof system S is associated with a
function f such that f(z) = Aif = is a string of symbols which represents a
legitimate proof of A in 8. If x does not represent a proof in 8, then f(z) is
taken to denote some fixed tautology in L.

Definition 4.1.2 A proof system f is polynomtelly bounded if there is a
polynomial p(n) such that for all ¥ € L, there is an = € X3 such that
y = f(z) and |z| < p(|y|), where |z| is the length of the string z.

This definition captures the idea of a proof system in which, for every element
of L, there exisis a ‘short’ proof of its membership in L. If a proof system is
polynomially bounded, this does not imply (unless P = A/P) tbat there is a
proof pracedure based on it (namely a deterministic version) which is poly-
nornially bounded. On the other hand if a proof system is not pelynomially
bounded, a fortiori there is no polynomially bounded proof procedure based
on it.

The question of whether a proof system is polynomially bounded or not
is one concerning ils absolute complexity. As we will see, most conventional
proof systems for propositional logic have been sbown not to be polynomially
bounded by exhibiting for each system some infinite class of ‘hard examples’
which have no polynomial size proofs. One consequence of these results
(which will be reviewed later), as far as the use of proof systems for automated
deduction is concerned, is that we should not expect a complete proof system
to be feasible and should be prepared either to give up completeness and
restrict our language in order to attain feasibility (this is the line chosen for
most of the resolution-based applications), or to appeal to suitable heuristics,
namely fallible ‘strategies’ to guide our proofs. In fact the results mentioned

62 CHAPTER 4. COMPUTATIONAL COMPLEXITY

above imply that heuristics alone is not sufficient if we want to be ahle to
obtain proofs expressible as formal derivations in some couveutional system.
So we should be prepared to use heuristics and give up completeuess.

However the importance of the complexity analysis of proof systems is by
no means restricted to the P versus A'P question. Nor should we conclude
that all conventional systems are to be regarded as equivaleut and that the
only difference is caused by the heuristics that we use. Besides the questions
concerning the absolute complexity of proof systems, there are many inter-
esting ones concerning their relative complexity which are computationally
significant even when the systems have been proved intractable. As far as
automated deduction is concerned, such questions of relative complexity are
relevant, before any heuristic considerations, to the choice of an appropriate
formal systern to start with.

4.2 Relative complexity and simulations
Let 8 be a proof system for propositional logic, We write
[Fs A
to mean that there is a proof ™ of A from I' in the system S such that
|#| < n (where |x| denotes as usual the length of = intended as a string of
symbols aver the alphabet of 8).

Suppose that, given two systems S and §', there is a fuuctiou ¢ such that

for all T', A;
n g(n)
(4.1) I'tg A==TFs A
we are interested in the rate of growth of ¢ for particular systems S and 8.

Positive results about the above relation are usually obtained by means of
simulation procedures:

Definition 4.2.1 If f; : £ — L aud f, : 5 — L are proof systems for
L, a simulation of f, in f; is a computable function k : £} +— I3 such that

f2(h(z))= fa(z) for all z € L.

Negative results consist of lower bounds for the function g.
An important special case of the relation in (4.1) occurs when g(n) is
a polynomial in n. This can be shown by exhibiting a simulation function

4.3. AN OVERVIEW 63

(as in definition 4.2.1) h such that for some polynormial p(n), k(z) < p(|z])
for all . In this case S is said to palynomially stmulate®, or shorily p-
stmulate, 8. A p-simulation is theu a mapping from proofs in S’ to proofs
in 8 which preserves feasibility: if §' is a polynomially bounded system for
L, sa is S (where L can be any infinite subset of TAUT). The p-simulation
is obviously a partial ordering and its symmetric closure is an equivalence
relation. We can therefore order proof systems and put them into equivalence
classes with respect to their relative complexity. Systems belonging to the
same equivalence class can be considered as having ‘essentially’ (i.e. up to
a polynomial) the same complexity. Qu the other hand if S p-simulates
S’, but there is no p-simulation in the reverse directiou, we can say that S
is essentially more efficient than S — S is polynomially bounded for every
I ¢ TAUT for which § is polynomially bounded but the opposite is not
true; therefore § has a larger ‘practical’ scope than §'.

The study of the relative complexity of proof systems was started by
Cook and Rechow {CR74, CR79]. Later on, some open questions were settled
and new anes have been raised. In section 4.5 we shall analyse the relative
complexity of KE and KI with respect to other proof systems. First, in the
next section, we shall briefly review the most importaut results concerning
the absolute and relative complexity of conventional proof systems.

4.3 An overview

In this section we shall use the notation 8'<, 8, where S and §' are proposi-
tional proof systems for ‘S’ is p-reducible to §’ or equivalently ‘S p-simulates
5”. The notations 8'<, S and §'=, 8 are used in the abvious way.

The tableau method was among the first systems to be recognized as
intractable for fairly simple examples {CR74]. Cook and Rechow remarked
that their hard examples had easy (linear) resolution proofs, i.e.

(4.2) Tableau method ¥, Resolution®.

3Qur definition of p-simulation is slightly different from the original one given, [or
instance, in [CR79]. However it is easy to see that it serves exactly the same purposes as
far as the study of the relative complexity of proofl systems is concerned. Qur definition
is the same as the one used in (Bus87].

4Because resolution is restricted to clausal form any ¢omparison with other proof sys

64 CHAPTER 4. COMPUTATIONAL COMPLEXITY

The intractability of the tableau method obviously implies the intractability
of the Gentzen cut-free system in tree form {with or without thinning), given
the easy correspondence between tableau refutations and cut-free proofs in
tree form. A rigorous proof of the latter result, using a different class of hard
examples, is contained in [Sta78]. Statman remarked that his examples had
polynommial size proofs in the Gentzen system with cut. Hence

(4.3) Cut-free Gentzen (tree) #, Gentzen with cut (tree)
Since it is obvious that
(4.4) Gentzen with cut (tree) >, Cut-free Gentzen (iree)

Statman’s result showed that the system with cut is strictly more powerful
than the cut-free system, even at the propositional level. The intractability
of the cul-free Gentzen system without thirring, when proofs are arranged
as sequences or directed acyclic graphs (d.a.g.'s) of sequents instead of trees,
was proved by Cook and Rackoff [Coo78] using a class of tautologies known as
the ‘pigecnhole principle’ encoding the so-called ‘occupancy problem’ studied
by Cook and Karp®.

In [CR79] the authors consider families of proof systems which geuneralize
the traditional Gentzen system with cut, Natural Deduction and the Hilbert-
style axiomatic systems (called ‘Frege systems’), and show that p-simulation
is possible between any two members of each family. Moreover, they show
that all three familes are in the same complexity class, namely:

(4.5) Gentzen with cut {(d.a.g.) =, Natural Deduction {d.a.g.)

(4.6) =, Frege systems

An exponential lower bonnd for cut-free Gentzen systems had been proved
by Tseitin in [Tse68] (the first paper on the topic), with the proviso that
proofs are regular, i.e. (moving from the root to the leaves) a formula which
has been eliminated in a branch cannat be reintroduced in the same branch.
Urquhart has recently proved an exponential lower bound for unrestricted

tems is intended to be made in the domain of formulae in ¢lausal form (or some suitable
syntactical variant).

®See [Coo71] and [Kar72]. See also [DH76], in which the authors give a decision proce-
dure to solve this problem efficiently.

4.3. AN OVERVIEW 65

cut-free Gentzen systems (with proofs defined as sequences or directed acyclic
graphs of sequents) using a class of examples involving the biconditional
operator {Urq89]. Again Urquhart's examples have polynomial size proofs if
cut is allowed. Hence

(4.7) Cut-free Gentzen (d.a.g.) #, Gentzen with cut (d.a.g.)
whereas there is a trivial p-simulation in the opposite direction. Therefore:
{4.8) Cut-free Gentzen (d.a.g.) <, Gentzen with cut (d.a.g.),

It then follows from (4.5) and (4.6) that

{4.9) Cut-free Gentzen (d.a.g.} <, Natural Deduction {(d.a.g.)
(4.10) <p Frege systems.

As far as resolution is concerned®, an early intractability result was proved
by Tseitin [Tse68), again under the assumption that derivations are regu-
lar (a literal cannot be eliminated and reintroduced on the same path), and
later refined by Galil {Gal7?]. The intractability of unrestricted resolution
has been proved by Hacken {Hac85) and Urquhart [Urq87]. Hacken’s proof
also uses ‘the pigeonhole principle’ and provides a lower bound on the com-
plexity of resolution proofs of this class of tautologies which is expouential
on the cube root of the input size. Hacken’s technique has been extended
by Buss and Turdn to give an exponential lower bound for resolution proofs
of the generalized pigeonhole principle [BG88]. Urquhart’s proof is based on
a different construction which evolves from an idea used by Tseitiu [Tse68]
in order to prove an exponential lower bound for regular resolution, and it
provides a lower bound which is exponential in the input size. Urquhart
explicitly notices that his examples have polynomial size proofsin Frege sys-
tems. Since Frege systems can p-simulate resolution (see [CR74)}, Urquhart’s
result implies

(4.11) Resolution <, Frege systems

which in turn, by (4.5) and (4.6) implies

(4.12) Resolution <, Natural deduction (d.a.g.)
(4.13) Resolution <, Gentzen with cut (d.a.g.)

*See footnote 4.

66 CHAPTER 4 COMPUTATIONAL COMPLEXITY

Hacken’s and Urquhart’s results show that there are families of tautologies
which have no feasible resolution proofs. A recently result by Chvatal and
Szemerédi [CS88] shows that these are not isolated examples. Using a prob-
abilistic analysis they prove tbat randomly generated sparse sets of clauses
are very likely to be ‘hard’ for resolution.

Cook and Rechow [CR79] had consideted the pigeonhole principle in re-
lation to Frege systems (as the Hilbert-style axiomatic systerns are knawn in
the complexity lterature) and had conjectured that there were no palyno-
mial size proofs. This conjecture has been recently disproved by Buss [Bns87]
who has exhibited polynomial size Frege proofs of this class of tautologies,
so establishing (4.11) in a different way. However Ajtai has more recently
proved that no such polynomial size proofs are possible if the depth (that is
the number of alternations of V and A) of the formulae is bounded [A[t88).

This series of negalive results leaves, among the conventional proof systems”,
only unrestricted Frege systerns and natural deduction as well as Gentzen
systems with cut, as possible candidates for a polynomially bounded system.
However Ajtai’s theorem offers little hope for any reasonable restriction of
the search space which is compatible with the existence of polynomial-size
proofs of the entire class of tautologies, not to mention that even if such a
restricted system were possible, the widespread conjecture that P # AP
would imply, if true, that we would not be able to formulate a polynomial
time proof procedure based on it.

As said before, the fact that the existence of a polynomially bounded
proof system seems to be higly improbable does not decrease our interest in
the relative efficiency of alternative formalizations. Indeed, considerations of
relative efficiency are now even more important because intractable systems
may have quite different ‘practical scopes’, i.e. may differ cousiderably with

7We have not mentioned exiended sysiems, which involve the introduction of new vari-
ables as abbreviations of formulae. This device was first introduced and used by Tseitin
[T'se68] in the context of resclution. Cook and Rechow [CR79] defined ertended Frege sys-
lems in a similar way and showed that the pigeonhole priuciple has polynomial size proofs
in such systems. It is open whetber or not conventional Frege aystems can polynomially
simulate extended Frege systems. In the cited paper Cook and Rechow had conjectured
that the pigeonhole principle provided a ciass of examples sufficient to establish a separa-
tion result. But Buss has recently shown that the two families are not discriminated by
this class of examples, since there are polynomial size proofs in conventional Frege systems
as well.

44. ARE TABLEAUX AN IMPROVEMENT ON TRUTH-TABLES? 67

respect to the extension and the type of the subsets of TAUT for which they
are polynomially bounded, From this point of view a minimal requirement
for a proof system seems to be that its practical scope properly include that
of the truth-table method which consists of using the very semantic definition
of tantology (combined with the semantic definitions of the logical operators)
as a proof systern. In the next section we shall see that this requirement is
not as trivial as is usually assumed.

4.4 Are tableaux an improvement on truth-
tables?

The truth-table method, introduced by Wittgeustein in his Tractates Logico-
Philosophicus, provides a decision procedure for propositional logic which
is immediately implementable on a machine. However, in the literature on
Automated Deduction, this time-honoured method is usually mentiored, only
to be immediately dismissed because of its incurable inefficiency. Here is a
typical quotation from a recent textbook on this topic ®:

Is there a betler way of testing whether a proposition A is a tau-
tology than computing its truth table (which requires computing
at least 2™ entries where n is the number of proposition symbols
occurring in A)? One possibility is to work backwards, trying to
find a truth assignment which makes the proposition false. In
this way, one may detect failnre much earlier. This is the essence
of Gentzen [cut-free} systems ...

Similarly, in another recent textbook in which the anthor advocates the use
of Smullyan’s semantic tableaux, we find the remark that ‘tableau proofs can
be very much shorter than truth-table verifications™. Beth himself, who was
(in the ‘50"s) one of the inventors of tableaux, also stressed that they ‘may be
considered in the first place as a more convenient presentation of the familiar
truth-table analysis”® Richard Jefirey, in his well-known book Formal Logic,
takes over this point and says:

8Gal86, pages 44-45].
|Fit90, page 391
19Bet58, page 82).

68 CHAPTER 4. COMPUTATIONAL COMPLEXITY

The truth-table test is straightforward but needlessly laborious
when statement letters are numerous, for the number of cases
to be searched doubles with each additional letter (so that, e.g.,
with 10 letters there are over 1,000 cases). The truth-tree [i.e.
tableau] test [...] is equally straightforward but saves labor by
searching whole blocks of cases at once!!.
This appraisal of the relative efficiency of tableau proofs with respect to
truth-table verifications, however, may turn out to be rather unfair. In fact,
the situation is not nearly as clear-cut as it appears. 1t 15, of course, true that
a complete truth-table always requires the computation of a number of rows
which grows exponentially with the number of variables in the expression to
be decided, and also that in some cases a tableau proof can be much shorter,
However, what usually goes unnoticed is that in other cases tableau proofs
can be much longer than truth-table verifications. The reason is simple: the
complexity of tableau proofs depends essentially on the length of the formula
to be decided, whereas the complexity of truth-tables depends essentially
on the number of distinct propositional variebles which occur in it. If an
expression is ‘fat’??, i.e. its length is large compared to the number of distinct
variables in it, the number of branches generated by its tableau analysis
may be large compared to the number of rows in its truth-table. One can
easily find fat expressions for which this is the case. If we consider the
asymplotic behaviour of the {wo systems, we can observe that if there is an
infinite sequence S of expressions for which the shortest tableau proofs are
exponential in the input size, and the input size i1s &° for some ¢ > 2, the
truth-table method would perform essentially better, even asymptotically,
over this sequence than the tableau method: the complexity of the truth-
table verifications would be O(2* - £°) = O(2%+¢'6¥), So, in this case, the
size of the tableau proofs would not even be polynomially related to the
size of the truth-tables. Moreover, if S is an infinite sequence of ‘truly fat’
expressions of length 2%, where & is the number of variables involved, any
tableau-based refutation procedure is very likely to be ridiculed by the old
truth-table method: if f(r) is a functien expressing a lower bound on the
number of branches in a closed tableau for an expression of length n, then
the fastest possible procedure based on the tableau method will generate,

11[3efB1, page 18].
12This rather fancy terminology is used in [DHT6].

4.4. ARE TABLEAUX AN IMPROVEMENT ON TRUTH-TABLES? 69

for each element of 5, at least f(2*) branches, whereas the ‘slow’ truth-table
method will always require 2¥ rows. The faster f(n) grows, the worse for the
tableau-based procedure'®.

An extreme example is represented by the sequence of truly fat expres-
sions in conjunctive normal form, defined as follows: given a sequence of k
atomic variables Py, ..., Py, consider all the possible clauses containing as
members, for each i = 1,2,...,k, either P; or - P, and no other member.
There are 2% of such clauses. Let Hp, 5, denote the conjunction of these 2
clauses. The expression Hp, _ p is unsatisfiable. For instance, Hp, p, is the
foltowing expression in CNF:

P|VP2 A P;[V"P‘_l A “P]_VP; Fay ﬁP]V"’Pg

Notice that in this case the truth-table procedure contains as many rows as
clauses in the expressions, namely 2*. In other words, this class of expressions
is not ‘hard’ for the truth-table method. However we claim that it is hard
for the tahleau method?®, and therefore:

Claim 4.4.1 The teblean method cannot p-simulate the truth-table method.

The nature of these considerations is not only technical but also conceptual.
They confirm that there is something inadequate about the tableau {and the
cut-free) analysis of classical inferences. It seems that, in order to pursue
the ‘ideal of purity of methods’ the cut-free tradition has sacrificed aspects
{bivalence, cut) thal are compatible with this ideal and, indeed, essential
to establish a close connection between (analytic) formal derivability and
classical semantics. After all, truth-tables are nothing bnt a literally-minded
implementation of the classical definition of logical truth {or falsity) as truth
(or falsity) in all possible worlds (or under all possible truth-assignments to
use a less suggestive terminology) combined with the classical definition of
the logical operators. In general, given a decidable logic L which adinits of
characterization by means of m-valued truth-tables, the complexity of the
semantic decision procedure for L is essentially O(n - m*) where n is the

13n most interesting cases f(n) grows at least linearly with n and so does the number
of nades in each branch, therefore for such a sequence the truth-table method is uniformly
mete efficient than the tableau method.

“Tn a recent personal communication Alasdair Urquhart has suggested 2 way of proving
our claim.

70 CHAPTER 4. COMPUTATIONAL COMPLEXITY

length of the input formula and k is the number of distinct variables iu it.
This is an upper bound which can be derived immediately from the semantic
characterization of L. In the case of classical logic, in which m = 2, this
upper bound is essentially O(n - 2¥). This can be taken as a *natural’ upper
bound on every proof system for classical logic. In other words, it is odd for
a classical proof system to generate proofs which, in some simple cases, are
much more complex than the direct, unimaginative, computation based on
classical semantics. This applies especially to the tableau method which is
usually claimed to be a direct translation of the semantics of classical logic
into a formal system (this aspect was certaiuly one of the motivations for its
inventors, in particular for Beth). So the point we are making may also be
considered as an argument agaipst this claim.

If wetake the upper bound for the truth-table computation as a ‘natural’
upper bound on the tautology problem, we can turn our considerations intoe
a precise requirement on a ‘natural’ proof system for classical logic:

A ‘natural’ proof system for classical logic should never generate
proofs whose complexity (significantly) exceeds the complezity of
the corresponding iruth-tables.

The example given above shows that the tableau method does not satisfy
this requirement. As suggested before, its poor performance 1s related to the
way in which the tableau rules analyse classical inferences and unfold the
informalion conient of the formulae. As we have shown in Chapter 2, the
tableau rules ‘hide’ a considerable amount of information which is contatned
in the input formulae and this is indeed the origin of their odd (and some-
times monstrous) computational behaviour: they hide all the information
pertaining to the ‘bivalent’ struciure of classical logic.

So onr negative considerations raise a positive problem. Are there proof
systems which can be considered as a reel (uniform) improvement on the
truth-table method (and on the tableau method)?

Let us say that a proof system is standard if its complexity is O(n - 2¥)
where n is the length of the input formula and k the number of distinct vari-
able occurring in it. It is not difficult to show that the analytic restrictions'®

5By ‘analytic restriction’ of KE and KT we mean the systems obtained by restricting
the applications of PB in a proof of A from I' to subformulae of 4 or of formulae in I'.

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 71

of both KE and KI are standard proof systems. This is obvious in the case
of KI: as seen in Section 3.7 KI can be viewed as a uniform improvement of
the truth-table method. For KE it will appear as a corollary of the fact that
this system can linearly simulate KI, to be shown in the next section.

4.5 The relative complexity of KE and KI

In this section we compare the propositional fragments of the systems KE
and KI with the propositional fragments of other well-known proof systems.,
All the proof systems we shall consider here enjoy the so-called (weak) sub-
formula property, that is: to prove a formula A one only needs to consider
its weak subformulae, where a weak snbformula of A is either a subformula
of A or the negation of a subformula of A. We call a proof enalytic if it en-
joys this property. Some systems of deduction (like the tableau method and
Gentzen’s sequent calculus without cut) yield only analytic proofs. Others
(like Natural Deduction, Gentzen’s sequent calculus with cut, KE and KI)
allow for a more general noticu of proof which includes non-analytic proofs,
although in all these cases the systems obtained by restricting the rules to
analytic applications are still complete. Since we are interested, for theoret-
ical and practical reasons, in analytic proofs, we shall pay special attention
to simulation procedures which preserve the subformula property.

Definition 4.5.1 The length of a proof 7, denoted by || is the total number
of symbols occurring in r (intended as a string).

The A-eomplezxity, of r, denoted by A(w), is the number of lines in the
proof r (each ‘line’ being a sequent, a formula, or any other expression asso-
ciated with an inference step, depending on the system under consideration).
Finally the p-complezity of x, denoted by p(7) is the length (total number of
symbols) of a line of maximal length occurring in .

Qur complexity measures are obviously connected by the relation
7] < A(%) - p(m).

Now, observe that the A-measure is sufficient to establish negative results
about the simulation relation in 4.1, but is not sufficient in general for positive
results. 1t may, however, be adequate also for positive results whenever one

72 CHAPTER 4. COMPUTATIONAL COMPLEXITY

can show that the p-measure (the length of lines) is not significantly increased
by the simulation procedure under consideration. All the procedures that we
shall consider in the sequel will be of this kind. So we shall forget about the
p-measure and restrict our attention to the A-measnre.

As said before, we are interested in the complexity not of proofs in gen-
eral but of analytic proofs. We shall then appeal to tbe notion of analytic
restriction of a system: let S be a system which enjoys the subformula prop-
erty. We can take S as defined not by its inference rules, but extensionally,
by the set of proofs which it recognizes as sound. Then we can denote by
S* its analylic restriction, i.e. the subset of 8 consisting of the proofs which
enjoy the subformula property. All the notions defined for proof systems can
be extended to analytic restrictions in a natural way.

We shall consider the versions of KE and KI which use unsigned formulae.

4.5.1 KE versus KI

We start by showing that proofs in KE and KI have essentially the same
complexity:

Theorem 4.5.1 KE and KI can linearly simulate each other. Moreover,
the ssmulation preserves the subformula property.

Proof. First, cbserve that the rules of KI can be simulated in KE as follows
(we show tbe procedure only for the rules 1A and I-V, the other cases being
similar):

A - A
B -B
In /\ I-v /\
AAB (AN B) AV EH -{AV B)
-B B

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 73

where x marks a closed branch.

Now, if T is a KI-tree with assumptions I', then replace each application
of a KTL-rule with its KE-simulation (the applications of PB can be left un-
changed since PB is also a rule of KE). The result is a KE-tree 77 containing
at most A{T)+c¢- A(T) nodes, where ¢ is the maximum number of additional
nodes generated by a KE-simulation of a KI-rule (namely 2). Thus, if 7 is
a KI-proof of A from I, 7' is a KE.tree such that all its open branches have
A as terminal node. Moreover, A(T'} < 3A\(T) and 7" does not contain any
formulae which do not occur in 7. Simply adding —A to the assumptions
will provide a closed KE-tree for I', - A.

The inference rules of KE can be easily simulated in KI as follows (we
show the procedure only for the rules EV1 and E-Al, the other cases being
similar):

-A A
AV B -~{AA B)
Evl /\ E-Al /\
B -B B -B
-(Av B) AANEB
hd X

Now,if T is a KE-tree with assumptions I', ~ A, Lthen replace each application
of a KE-rule with its KI-simulation (the applications of PB can be left
unchanged since PB is also a rule of KI). The result is a KI-tree T’ containing
at most A7)+ c- A{T) nodes, where ¢ is the maximum number of additienal
nodes generated by a KI-simulation of a KE-rule (namely 2). Thus, if 7 is
a closed KE-tree for T', - A, then T’ is a closed KI-tree for ', 4. Moreover,
MT?") £ 3MT) and T’ does not contain any formula which does not occur
in T. Hence, by applying PB to A4, one obtains the required KI-proof of A
from .0

Let us say that a KI-tree is atomic if PB is applied to atomic {formulae
only.

74 CHAPTER 4. COMPUTATIONAL COMPLEXITY

Proposition 4.5.1 If A is a tautology of length n and containing k distinct
variables, there is an atomic KI-proof T of A with AM(T) < n - 2%,

Proof. Trivial. (See above, Section 3.7.)

Theorem 4.5.2 KE and KI are standard proof systems, i.e. for every tau-
tology A of length n and containing k distinct variables, there is a KI-proof
T of A and @ KE-refutation T' of = A with M(T") = O(MT)) = O(n - 2F)

The theorem is obvious for KI (see above Section 3.7). For KE it is an
immediate corollary of theorem 4.5.1.

4.5.2 KE versus the tableau method

First we notice that, given a tableau refutation 7 of T' we can effectively
construct an aralytic KE-refutation T’ of [' which is not essentially longer.

n Pig
Theorem 4.5.3 T'Frry A=TFgg- 4

Proof. Observe that the connective rules of KE, combined with PB, can
easily simulate the branching rules of the tableau method, as is shown below
in the case of the branching rule for eliminating disjunctions (all the other
cases are similar):

AV E

N

B -B

Such a simulation lengthens the original tableau by one node for each appli-
cation of a branching rule. Since the linear rules of the tableau method are
also rules of KE, it follows that there is a KE-refutation 7 of ' such that

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 75

AT} < A(T) + k, where k is the number of applications of branching rules
in 7. Since k is obviously < A(7), then A(77) < 2A(T).00

We have seen that in spite of their similarity, KE and the tableau method
appear to be separated with respect to their complexity. This fact is already
suggested by Claim 4.4.1, and Theorems 4.5.2 and 4.5.3, and will later be
proved as a consequence of a result in [CR74]. In accordance with Theo-
rem 4.5.2, the ‘hard examples’ on which Claim 4.4.1 was based (see above
Section 4.4) can be seen to have short KE-refutations. Figure 4.1 shows a
KE-refutation of the set of clauses Hp, p, p,. It is apparent that, in general,
the number of branches in the KE-tree for Hp, . _p,, constructed according
to the same pattern, is exactly 2*! (which is the number of clauses in the
expression divided 2) and that the refutation trees have size O(k - 2*).

While all the tableau rules can be easily simulated by means of KE-rules,
KE includes a rule, namely PB, which cannot be easily simulated by means
of the tableau rules. Although it is well-known that the addition of this rule
to the tableau rules does not increase the stock of inferences that can be
shown valid (since PB is classically valid and the tableau method is classi-
cally complete), its absence, in some cases, is responsible for an explosive
growth in the size of tableau proofs. In chapter 2 we have given a semantic
explanation of this combinatorial explosion. The syntactic counterpart to
that semantic argument can be expressed in terms of ‘analytic cut’. Suppose
there is a tableau proof of A from T, i.e. a closed tableau 7| for I',~ A4 (where
A is assumed to be atomic for the sake of simplicity) and a tableau proof
of B from A, A, i.e. a closed tableau 7; for A, A, ~B; then it follows from
the elimination theorem (see [Smu68a)]) that there is also a closed tableau for
T, A, -B. This fact can be seen as a typical ‘cut’ inference:

T+ A
AA ‘- B
T.A F B

where '’ stands for the tableau derivability relation. When a rule like PB
is avajlable, simulating this kind of ‘cut’ inference is relatively inexpensive in
terms of proof size as is shown by the diagram below:

76 CHAPTER 4. COMPUTATIONAL COMPLEXITY

I&

PaV Py

Pyv=Ps

Py Py

—\Pz A —|P3

Py -P;

x x

pr.Pz.P:

RN

P

P2V P

P;u v "'Pa

-|P1 v P3

P v P

P:/ \-P;v
||

P P
-P P
x x

Figure 4.1: A KE-refutation of Hp, p, p,.

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 77

r

-B
A —A
T T

But if PB is not in our stock of rules, reproducing the cut inference may be
much more expensive. Let us assume, for instance, that = A is used more than
once, say n times, in 77 to close a branch, so that 7; contains n occurrences
of A in distinct branches which will be left open if —A is removed from the
assumptions. Similarly, let A be used more than once, say m times, in T; to
close a branch, so that T; contains m occurrences of — A in distinet branches
which will be left open if A is removed from the assumptions. Then, in
some cases, the shortest tableau refutation of I'; A, —~B will have one of the
following two forms:

r r

A A

~B ~B

T T2
A A “A e -4
T T T T

where the subrefutation 7; is repeated n times in the lefthand tree and the
subrefutation 7, is repeated m times in the righthand tree. The reader should
notice that in this case the ‘elimination of cuts’ from the tableau proof does
not remove ‘impure’ inferences, because A is assumed to be a snbformula of
formulae in I, A. So the cut proof is analytic.

78 CHAPTER 4. COMPUTATIONAL COMPLEXITY

Because of this intrinsically inefficient way of dealing with analytic cut in-
ferences, examples can be found which require a great deal of duplication in
the construction of a closed tableau. We have already given a class of ‘hard
examples’ for the tableau method which are easy not only for (the aralytic
restrictions of) KE and KI but also for the truth-table method. Another
class of hard examples is described in [CR74}: Let

Hp={£tA'V+AI VAL V...VAT .}

where +A means A and —A means —A, and the snbscript of A’ is a string of
i —1 +%sor —s corresponding to the sequence of signs of the preceding A,
7 < 1. Thus H,, contains 2™ disjunctions and 2™ — 1 distinct atomic letters.
For instance H; = {A'v A3, A"V -A%, ~Al v AZ,-~A'V -A%),

In [CR74) Cook and Rechow report without proof a lower bound of 22 on
the number of nodes of a closed tableau for the conjunction of all disjunctlions
in H,. Moreover, since there are 2™~ distinct atomic letters, this class
of examples is hard also for the truth-table method. In contrast, we can
show that there is an ‘easy’ analytic KE-refntation of H,. which contains
2™ 4+ 2™m — 2 nodes. Such a refutation has the following form: start with
H,.. This will be a set containing n{= 2™) disjunctions of which n/2 start
with A' and the remaining n/2 with its negation. Ther apply PB to ~A',
This creates a branching with —A! in one branch and =~ A" in the other.
Now, on the first branch, by means of n/2 applications of the rule Evl we
obtain a set of forrnulae which is of the same form as H,,_;. Similarly on
the second branch we obtain another set of the same form as H,,_,. By
reiterating the same procedure we eventually produce a closed tree for the
original set H,,. It is easy to see that the numher of ncdes generated by the
refutation can be calculated as follows (where n is the number of formulae
in H,,, namely 2™):

logn—1

) 1_2!@(!\—1
AT)=n+ Z 4+n = n+2-?+n-(logn—l)
=1
= n+nlogn —2.

This is sufficient to establish:

Theorem 4.5.4 The tableau method cannot p-simulate the analytic restric-
tion of KE (and KI).

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 79

This result also shows that the truth-tables cannot p-simulate KE (and KT)
in non-trivial cases'®. Figure 4.2 shows the KE-refutation in the case m =
3. This class of examples also illustrates an interesting phenomenon: while
the complexity of KE-refutations is not sensitive to the order in which the
elimination rules are applied, it can be, in certain cases, highly sensitive to the
choice of the PB formulae. If we make the ‘wrong’ choices, 2 combinatorial
explosion may result when ‘short’ refutations are possible by making different
choices. If, in Cook and Rechow’s examples, the rule PB is applied always
to the ‘wrong’ atomic variable, namely to the last one in each clause, it is
not difficult to see that the size of the tree becomes exponential. To avoid
this phenomenon an obvious criterion suggests itself from the study of this
example: apply PB to a formula which has a large number of occurrences in
the branch under consideration. So, as far as proof search is concerned, we
need some further information about the composition of the formulac in the
branch to guide our choice of the PB formulae. We expect that some variant
of Bibel's connection method ([Bib82], see also [Wal90]) will prove nseful in
this context.

In any case, our discussion shows that analytic cuts are sometimes essen-
tial for the existence of short refutations with the subformula property’”.

4.5.3 KE versus Natural Deduction

It can also be shown that KE can linearly simulate natural deduction (in
tree form). Moreover the simulation procedure preserves the subformula

l6We mean that the exponential behaviour of the truth-tables in this case does not
depend onrfy on the large number of variables but also on the logical structure of the
expressions. So these examples are essentially different from the exarnples which are
usually employed in textbooks to show that the truth-tables are intractable {a favourite
one is the sequence of expressions A V —A where A contains an increasing number of
variables).

"This can be taken as furtber evidence in support of Boolos’ plea for not eliminating cut
[BooB4]. In that paper he gives a natural example of a class of first order inference schemata
which are ‘hard’ for the tableau method while admitting of ‘easy’ (reon-analytic) natural
deduction proofs. Boolos’ example is a particularly clear illustration of the well-known
fact that the elimination of cuts from prools in a system in which cuts are eliminable can
greatly increase the complexity of praofs. (For a related technical result see [Sta78].) KE
and KI provide an elegant solution to Boolos’ problem by making cut non-eliminable while
preserving the subformula property of proofs. Our discussion also shows that eliminating
onalytic cuts can result in a combinatorial explosion.

80 CHAPTER 4. COMPUTATIONAL COMPLEXITY

Hs
AL Al
ATv AR, AL vaAl,

A? v-a?, Al v-aAl,

~A? v A2 _ ~AL v AL

—~A? v A3 _ —AL v-AY_
A? —~A? A% -A%
A, A3 _ A3 _ AL,
—AY, —A2 —A -A%,

x x x x

Figure 4.2: A XKE-refutation of Hj.

4.5. THE RELATIVE COMPLEXITY OF KE AND KI Bl

property. We shall sketch this procedure for the natural deduction system
given in [Pra65], the procedure being similar for other formulations.

We want to give an effective proof of the following theorem (where ND
stands for Natural Deduction):

Theorem 4.5.5 If there is an ND-proof T of A from [, then there is a
KE-proof T' of A from I' such that A{T') < 3A(T) and T' contains only
fermulae A such that A eccurs inT,

Proof. By induction on A(T}.

If A(T) =1, then the ND-tree consists of only one node which is an assump-
tion, say . The corresponding KE-tree is the closed sequence C, ~C.

If AM(T) = k, with k > 1, then there are several cases depending on which
rule has been applied in the last inference of 7. We shall consider only the
cases in which the rule is elimination of conjunction (EA) and elimination of
disjunction (EV), and leave the others to the reader. If the last rule applied
in 7 is EA, then T has the form:

A
e

AA B
A

By inductive hypothesis there is a KE-refutation 7 of A,=(A A B) such
that A(7y") < 3MT;). Then the following KE-tree:

A
-A
o /\
AANB ~(A A B)
A 7)

is the required KE-proof and it is easy to verify that M(7T') € JA(T).

82 CHAPTER 4. COMPUTATIONAL COMPLEXITY

If the last rule applied in T is the tule of elimination of disjunction, then T
has the form:

A, A?y [A] A'-’u [B]
T 7; T
AvEB C C
C

By inductive hypothesis there are KE-refutations Ty of Ay, ~(AV B), T of
Ny, A, —C, and T} of Az, B,-C, such that AM(T) < 3A(T}), i = 1,2,3. Then
the following KE-tree:

L

19 the required proof and it is easy to verify that A{7’) < 3A(7).0

In [Cel88] Cellucci has proposed a new form of natural deduction which he
has shown in several examples to produce shorter proofs than Prawitz’s style
natural deduction. In Cellucci’s system, as in natural deduction, assumptions
are introduced which may subsequently be discharged; however the inference
rules involve sequents rather than single formulae. The rules of the propo-
sitional fragment are shown in table 4.1. (A and A represents sequences of

4.5. THE RELATIVE COMPLEXITY OF KE AND KI 83

[Structural rules
A A A
—3 _ {Thin] B ABA] 22 1 Cont]
AA AB AA AL A
Logical rules
AA A B AAANEB AAAB
A1) A {AE-1] [AE-2]
AAAAB AA A, B
AAVB A AVE
14l v 2 vE
AA VB{ 1 AAR VEl
(4]
) AA AA—-B
AA— B (-1 AMB [—F]
(4]
AA A-A
=] -E
a,-A (-1 AA (=]

Table 4.1: A sequent-conclusion natural deduction system.

formulae, not sets. If they are taken to represent sets, the rules Perm and
Cont becorne redundant.) According to Celluce, derivations in his system
are ‘significantly simpler (i.e. contain fewer symbols) than in [Prawitz’s style]
system™®, It is not difficult to show, by means of an argument analogous to
the one given above for Prawitz’s style natural deduction, that:

Theorem 4.5.6 If there is a proof = in Cellucci’s system of the sequent A
from assumptions I, then there is a KE-refutation 7 of T') A, where A is
equal to {~B | B € A}, such that A{zx') € JA(x). Moreaver, the simulation
preserves the subformula property.

18[Cel88B, p.29].

84 CHAPTER 4. COMPUTATIONAL COMPLEXITY

4.5.4 KE and resolution

The relationship between KE and resolution-like methods has been discussed
in Section 3.4. We can easily adapt the KE-rules to deal with formulae in
clausal form and, once this has been done, the system is seen 1o incorporate
the basic idea underlying resolution theorem proving as a special case. As
far as the relative complexity of KE and resolution s concerned, within the
domain of clausal form logic, it depends on how refutations are represented.
If propositional resolution is represented as in {DLL62], i.e. as a eomhination
of unit resolution and the splitting rule, its complexity is the same as that
of the clausal form fragment of KE. This way of representing resolution is
much clearer and appears to be more convenient from a practical point of
view, in that it seems to reduce the generation of redundant clauses. If the
resolution rule is defined in the more usual way as a single rule, and refuta-
tions are represented as sequences or directed acyclic graphs of clauses, it is
easy to see that KE can linearly sitnulate resolution with a procedure which
involves only subformulae of the formulae occurring in the given resolution
refutation. Such a refutation will be, strictly speaking, non-analytic because
the resolution rule does not have the subformula property. An open question
is whether or not the analytic restriction of KE can efficiently simulate the

standard version of resolution. We conjecture that it can'®.

4.6 A more general view

As seen in section 4.5.2, the speed-up of KE over the tableau method can he
traced to the fact that KE, unlike the tableau method, can easily simulate
inference steps based on ‘cuts’, like the example on p.77. In other words,
KE allows a uniform method for grafting proofs of subsidiary conclusions, or
lemmala, in the proof of a theorem. However, the existence of such a uniform
method is hy no means sufficient. In Natural Deduction, for instance, replac-
ing every occurrence of an assumption A with its proof provides an obvious
grafting method which, though very perspicuous, is highly ineflicient, leading
to much unwanted duplication in the resulting proof-tree. We should then
require that the method be also e¢fficient. A way of making this requirement

191f resolution refutations are represented in tree form, it is not difficult to sce that snch
a simnulation is posaible.

4.6. A MORE GENERAL VIEW 85

precise is to ask that the following condition be satisfied by a proof system

S:

(C) Let m; be a proof of A from I' and let 73 be a proof of B from A, A, then
there is a uniform method for constructing from m, and m; a proof 73
of B from T, A such that A(my) < A(my) -+ A(m;) + ¢ for some constant

C.

[t can be easily seen that condition (C) is satisfied by KE and KI, the
required method being the one described on p.77. In contrast, the standard
way of grafting proofs of subsidiary conclusions iu Natural Deduction proofs,
though providing a uniform method, does not satisfy the further condition
on the complexity of the resulting proof. The rules of Natural Deduction,
however, permit us to bypass this difficulty and produce a method satisfying
the whole of condition (C). Consider the rule of Non-Constructive Dilemma

(NCD):
T, (4] A, 4]
B B
B

This is a derived role in Prawitz’s style Natural Deduction which yields
classical logic if added to the intuitionistically valid rules (see {Ten78, section
4.5]). We can show Natural Deduction to satisfy condition (C) by means of
the following construction:

A

LA A [-4)
: F
B B
B

Notice that the construction does not depend on the number of occurrences
of the assumption A in the subproof of B from I', A.

In analogy to condition (C) we can formulate a condition requiring a proof
system to simulate efficiently another form of cut which holds for classical
systems and is closely related to the rule PB:

86 CHAPTER 4. COMPUTATIONAL COMPLEXITY

{(C*) Let m; be a proof of B from I', A and 7, be a proof of B from A, —A.
Then there is a uniform method for constructing from m; and =; a proof
73 of Bfrom T, A such that A{ma) < A(m;)+ A(w2)+¢ for some constant
c.

Similarly, the next condition requires that proof systems can efficiently sim-
ulate the er falso inference scheme:

(XF) Let 1 be a proof of Afrom I' and #; be a proof of —A from A. Then
there is a uniform method for constructing from =, and =, a proof
of B from T, A, for any B, such that A(x3) < A(m;)+ A{wz) + ¢ for some
constant c.

So, let us say that a classical proof system is a classical cul sysiem if
it satisfies conditions (C*) and (XTF). It is easy to show that every classical
cut system satisfies also condition (C) above and, therefore, allows for an
efficient implementation of the transitivity property of natural proofs. The
next thecrem shows that every classical cut system can simulate KE withont
a significant increase in proof complexity and with a procedure which pre-
serves the subformula property®®. This clearly shows that it is only the use
of (analytic) cut and not the form of the operational rules which is crucial
from a complexity viewpoint (this will be further discussed in chapter 6.).

Theorem 4.6.1 [fS is ¢ classical cut sysiem, then S can linearly simulate
KE (end KI) with a procedure which preserves the subformula property.

To prove the theorem it is convenient to assume that onr Janguage includes
a 0-ary operator F' (Falsum} and that the proof systems include suitable
rules to deal with it*!. For KE this involves only adding the obvious rule
which allows us to append F to any branch containing both A and - A for
some formula A, so that every closed branch in a KE-tree ends with a node
labelled with F. The assumption is made only for convenience’s sake and
can be dropped without consequence. Moreover we shall make the obvious
assumption that, for every system S, the complexity of a proof of A from A
in 8 is equal to 1.

1n this chapter we are restricting ourselves to analytic proof systems, i.e. proof systems
which enjoy the subformula property.

218ystems which are not already defined over a language containing F ctan usually be
redefined over su¢ch an extended language without difficulty.

4.6. A MORE GENERAL VIEW 87

Let r(x) denote the number of nodes generated by a KE-refutation r of
T (i.e. the assumptions are not counted)??. Let S be a classical cut system.
If S is complete, then for every rule r of KE there is an S-proof =, of the
conclusion of r from its premises. Let 8, = Maz (A(7,)) and let b; and & be
the constants representing, respectively, the A-cost of simulating classical cut
in § — assoctated with condition (C*) above — and the A-cost of simulating
the er falso inference scheme in § — associated with condition (XF) above.
As mentioned before, every classical cut system satisfies also condition (C)
and it is easy to verify that the constant associated witb this condition,
representing the A-cost of simulating ‘absolute’ cut in S, 15 € by + b3 +1. We
set e = by + by + by + 1.

The theorem is an immediate consequence of the following Lemma:

Lemnma 4.6.1 For every classical cut system S, if there is a KE-refutation
7 of T, then there is an S-proof 7’ of F from T with A(x') < ¢ - 7(x).

Proof. The proof is by induction on 7{r), where is a KE-refutation of
T

7(r) = L. Then I is explicitly inconsistent, i.e. contains a pair of com-
plementary formulae, say B and -B, and the only node generated by the
refutation is F, which is obtained by means of an application of the KE-rule
for F to B and —B. Since there is an $-proof of the KE-rule for F', we can
obtain an S-proof =’ of the particular application contained in = simpiy by
petforming the suitable substitutions and A(r') < b < e.

7(r) > 1. Case 1. The KE-refutation = has the form:

T

where C follows from premises in [' by means of an E-rule. So there is a KE-
refutation x; of [',C such that 7(r) = r(m;) + 1. By inductive hypothesis,

22The reader should be aware that our r-measure applies to KE-refutations and not
to trees: the same tree can represent different refutations yielding different values of the
T-measure.

88 CHAPTER 4. COMPUTATIONAL COMPLEXITY

there is an 8-proof 7} of £ from I, C such that A(r}) € ¢ 7(r,). Moreover,
there is an S-proof m, of C from the premises from which it is inferred in
7 such that A(m3) € b;. So, from the hypothesis that S is a classical cut
system, it follows that there is an S-proof 7’ of F [rom I" such that

A(x') (7r1)+b1+bz+b3+1
~(m) +

(r(m) + 1)
-7(m)

Case 2. 7 has the following form:

IA A A TA
[y} 0 0 f‘!

r
o -~C
T T

So there are KE-refutations m and m; of I',C and T, = respectively such
that 7(r) = (71} + (77} + 2. Now, hy inductive hypothesis there is an
S-proof z] of F' from I',C and an S-proof n} of F from T', ~C with A(r}) <
c-7(m),i = 1,2. Since S is a classical cut system, it follows that there is an
S-proof ' of F' from T such that

AMr') < cor(m)+c-t(m) + b
< ¢ 1(m)+ec-m(m)+c¢
< c-(r{m) +7(mg) +2)
< c¢-7(m)
O
It follows from Theorem 4.6.1 and Theorem 4.5.2 that:

Corollary 4.6.1 Every analytic cut system is a standard proof system, i.e.
for every tautology A of length n and containing k distinct variables there is
a preof m, with A(m) = O(n . 25).

4.6. A MORE GENERAL VIEW 89

Moreover, Theorem 4.6.1, Theorem 4.5.3 and Theorem 4.5.4 imply that:

Corollary 4.6.2 Every analytic cul sysiem cun hinearly simulate the tableau
method, but the tableau method cannot p-simulate any analylic cut system.

Since (the classical version of} Prawitz's style natural deduction is a classical
cut system, it follows that it can linearly simulate KE. The same holds also
for Cellucci’s system and for the ‘natural deduction’ variant of KE described
in Section 3.8 under the name KEND. Moreover, for all these systems, the
sirmulation preserves the subformula property (i.e. it maps analytic proofs to
analytic proofs). Therefore Theorem 4.6.1, together with Theorems 4.5.1,
4.5.5 and 4.5.6, imply that Prawitz’s style natural deduction, Cellucci's nat-
ural deduction, KE, KEND and KI car linearly simulate each other with
a procedure which preserves the sublormula property. Corollary 4.2 implies
that all these systems are essentially more efficient than the tableau method,
even il we restrict our attention to analyiic proofs {the tableau method can-
not p-simulate any analytic cut system). Finally Corollary 4.6.1 implies that,
unlike the tableau method, all these systems are standerd proof systems, i.e.
have the same upper bound as the truth-table method.

Chapter 5

Belnap’s four valued logic

5.1 Introduction

The study of first-degree entailment occupies a special position in the field of
relevance logics: it can be seen either as the study of the validity of formulae
of the fom A — B, where ~+ is Andersou and Belnap's relevant implica-
tion and A, B are implication-free formulae, or as the study of the notion
of relevant deducibility between standard formulae built-up from the usual
connectives. In the latter interpretation it is associated with the problem —
well-known to computer scientists who work in the area of Automated Deduc-
tion — of obtaining sound information from possibly inconsistent databases®.
An interesting semantic characterization of first-degree entailment was given
by Belnap in {Bel77] who also emphasized its connections with the problem of
*how a computer should think'[Bel76]. In [Dun76] Dunn presented a tableau
system based on a modificatiou of Jeflrey’s method of ‘coupled trees’ [Jef81].
In this chapter we study the consequernce relation associated with Belnaps
semantics and produce two different calculi which are sound and compiete
for it. Unlike Dunn’s ‘coupled tree’ calculus, our calculi use one tree only.
This simplification allows us to exploit fully the formal analogy with the cor-
responding classical calculi, and to obtain simple extensions to a first order
version of Belnap’s logic (ueither Jeffrey nor Dunn explain how the method
of ‘coupled trees’ can be exteuded to deal with quantifiers).

! For recent contributions in this area and in the related one of logic programming, see

[DCHLSS0] and [BS89).

90

5.2, '‘HOW A COMPUTER SHOULD THINK’ 91

In sections 5.2 and 5.3 we briefly discuss the background problem and
illustrate Belnap’s semantics. In section 5.4 we formulate a tableau method
which produces ‘single’ instead of ‘coupled’ tableaux, and prove it sound and
complete for (the first-order version of} the consequence relation associated
with Belnap’s semantics. Then, in section 5.5, we define another calculus
based on the classical systems KE which has been studied in Chapter 3.

5.2 ‘How a computer should think’

Deductive Reasoning is often described as a process of revealing ‘hidden’ in-
formation from explicit data and, as such, it is a basic tool in the area of
‘intelligent’ database management or question-answering systems. Unfortu-
nately, the most time-honoured and well-developed framework for deductive
reasoning -- classical logic — is unsuitable to this purpose. The reason is that
databases, especially large ones, have a great propensity to become mconsis-
ten?: first, the information stored is usually obtained from different sources
which might conflict with each ather; second, the information obtained from
each source, even if it is not obviously inconsistent, may ‘hide’ contradictions,
But it is well-known that classical two-valued logic is oversensitive to contra-
dictions: if [is an inconsistent set of sentences, then -— according lo classical
logic — any sentence follows from [. This does not imply, of course, that
classical logic is incorrect, but only suggests that there are circumstances in
which it is highly recommendable to abandon it and use another. A radical
solution to this problem would be to require any database to be consistent be-
Jjore starting deductive processing. But, for practical reasons, this ‘solution’
is no better than the original problem: first, contradictions do not always
lie on the surface, and the only way to detect such implicit contradictions
is to apply deductive reasoning itself; second, even explicit contradictions
may not be removable because they originate in conflicting data fed into the
computer by different and equally reliable sources.

But if classical logic is not to be recommended for application in deductive
database management, what kind of logic is the one with which a computer
should *think’?

92 CHAPTER 5. BELNAP'S FOUR VALUED LOGIC

5.3 Belnap’s four-valued model

In this chapter we shall make use of the approach developed by Belnap [Bel77,
Bel76] on the basis of a work of Dunn {Dun76]. Let 4 denote the set {T, F,
Both, None}. The elements of 4 are called truth-values. Belnap calls them
‘told values' to emphasize their epistemic character. We may think of them
as the four possible ways in which an atonuc sentence P can belong to the
‘present state of information’ : (1) the computer is told that P is true (and
is not told that P is false); (2) the computer is told that P is false (and is
not told that P js true); (3) the computer is told that P is both true and
false (perhaps from different sources, or in different instants of time); {4) the
computer is not told anything about the truth value of P.

The values of complex sentences are obtained by Belnap by means of
monotony considerations, based on Scott’s approximation lattices, resulting
in the following tables:

INone F | T | Both
jNone T | F | Bath

A None | F T Both
None | None | F [None F |
F F F| F F
T None | P T Both
Both F F | Both | Both

v None F Both

None | None | None

T
T
F None F T | Both
T
T

Both T Both Both

5.3. BELNAP'S FOUR-VALUED MODEL 93

These tables represent a lattice which is called L4:

T

None Both

F

We define a set-up as a mapping of atomic formulae into 4. Using the truth-
tables given above, every set-up can be extended to a mapping of all formulae
into 4 1n the usual inductive way. We shall call such an extended mapping a
4-valuation .

Definition 5.3.1 We say that A entails B, and write A — B, if for all 4-
valuations v, v(A) =< v(B), where < is the partial ordering associated with
the lattice L4. We also say that a non empty set of {ormulae T' entails A,
and write T F A, if the conjuaction of all formulae in T' entails A.

Notice that the relation - mentioned in Del, 5.3.1 is 2 monotonic consequence
relation.

The logic characterized by Belnap’s semantics corresponds to the logic of
first-degree entailment (see {AB75, section 15.2]). This system admits of the
following Hilbert-style formulation:

Axioms:

(5.1) AANB = A

(5.2) AAB - B

(5.3) A—AVEH

(5.4) B— AV B

{5.5) AAN(CY B)— (AAB)V(
(5.6) A— A

(5.7) A — A

94 CHAPTER 5. BELNAP’S FOUR YVALUED LOGIC

Rules:

(5.8) A-=BBC F AC
(5.9) A-BASC F A BAC
(5.10) A-C,B—-C F AVB—-C
(5.11) A—-B F =B -4

Let us now introduce some useful terminology:
Definition 5.3.2 Let us say, given a 4-valuation v, that a formula A is:
1. at least true under v if v(A) = T or v(A4) = Both.
2. non-true under v if v(A) = ¥ or v(A) = None.
3. atleast false under v if v(A) = F or v(A) = Both.
4. non-false under v if +(A) = T or v(A) = None.

It is not difficult to see that the defiuition of I' - A given in Definition 5.3.1
1s equivalent to the following one:

Definition 5.3.3 I' F A if and only if for every 4-valuation v, (i) if all the
elements of I' are at least true under v, then A is at least true under v and
(ii) if all the elements of T are non-false under v, then A is non-false under
v.

5.4 Semantic tableaux for Belnap’s logic

In this section we suggest a tableau method which, unlike Dunu’s one, uses
only one tree. The resulting tableaux are binary trees and are identical to
classical tableaux of signed formulae except that they contain four types of
s-formulae instead of two.

5.4.1 Propositional tableaux

Signed Formulge. We introduce the symbols t, f, t*, {* and define a signed
formula as an expression of the form t(A4), {{A), t*(A) or {*(A), where A is

5.4. SEMANTIC TABLEAUX FOR BELNAP’S LOGIC 95

t(AAB) - t*(AAB) f(Av B) f*(Av B)
oA v Ay Ty
t(8) v(8) f(8) r(8)
(AAB) *(AAB) t(Av B) \(Av B)
f(4) [£(B) r(4) | C(B) tA) | «B) t=(4) | v(B)
t(—A) t*{—4) f{~A) " (-A)
r(4) 1(4) t*(4) 1{A)

Table 5.1: Propositional tableau rules for Belnap’s four valued logic.

an unsigned formula. Intuitively we interpret ‘t(A)’ as ‘A is at least true’,
“{A) as ‘A is non-true’, ‘t*(A) as ‘A is non-false’ and ‘f"(A) as "A is at
least false’,

The conjugate of an s-formmula s{A) is:
fl4) ifs=t
t{A) Hs="1
fr(A) ifs=1t"
t*(A) ifs=f{"

The converse of an s-formula s(A) is:

t(A) ifs=t
t(A) ifs =t"
f'(A) ifs=1
f(A) ifs =

We are now in a position to formulate our tablean rules which are given in
Table 5.1. The reader will notice the formal analogy with the classical rules.

It may be useful to extend Smullyan’s unifying notation to cover the new
types of s-formulae which occur in our language.

We use the letter ‘o’ to stand for any s-formmula of one of the forms:
t{(AAB), t"(AAB), f(AVE), {7(AV B), t(-A), t* (- A), f{-A) and {*(- A). For
every such formula a, its components &, and e, are defined as in Table 5.2,
We use ‘3’ to stand for any formula of one of the forms: f{4 A B), {~(4 A B),
t{AV B) or t"(A v B}. For every such formula 3, its components 8; and 8,

96 CHAPTER 5. BELNAP’S FOUR VALUED LOGIC

o (e 5] [+0]
HAAB) | H{A) | UB)
t(AAB) | t*(A) |t (B)
KAV EB) | f(A) | {(B)
F(AVB) | T(A) | T(B)

HoA) [17(A) | I*(4)
t(~4) | f(4) | i(4)
f(=4) 1¥°(4) | t*(A)
f*(~A4) | Y4) | t4)

Table 5.2: Formulae of type a.

8 A B
f(AnB) | {(A) | {(B)
(AAB) | *(A) | (B)
t(Av B) | t{A} | t(B)
t*(AvV B)} t*(A) | t°(B)

Table 5.3: Formulae of type 3.

are defined as in the Table 5.3. So our tableau rules can be ‘packed’ into the
following two rules:

[4

— B
Rule A o Rule B
~ BIE

We say that a branch ¢ of a tableau is elosed if it contains both an s-formula
and its conjugate. Otherwise we say that ¢ is open. A tableau is closed if all
its branches are closed. Otherwise it is open. A formula A is provable from
the set of formulae I' if and only if there is a closed tableau for {t(B)|B ¢
Y ufifA)}.

An example of a closed tableau representing a proof of ((AV BYA -A) —

5.4. SEMANTIC TABLEAUX FOR BELNAP’S LOGIC 97

t((AV B) A —A)
f{BV (A A-A)
t(Av B)
t(—A)
f=(A)

i{(B)

f{A A -A)

/N

f(A) f(~A)

Figure 5.1: A proof of ((AV BYA ~A) = (BV (AA-A))

{Bv(AA—=A))is given in Fig. 5.1. A failed attempt at proving the disjunctive
syllogiam is shown in Fig. 5.2.

Soundness.
Definition 5.4.1 Let us say that a 4-valuation v realizes s(A) if
1. s{A) = t(A) and A is at least true under v.

2. s(A) = f(A) and A is non-true under v.

S

(
(

. s(A) = t*(A) and A is non-false under v
(

4. s(A) = {*(A) and A is at least false under v.

98 CHAFPTER 5. BELNAP’S FOUR VALUED LOGIC

t{(AV B)A-A)
f(B)
t{AV B)
t(-A4)
£*(4)

Figure 5.2: A failed attempt to prove the disjunctive syllogism

A set U of s-formulae is said to be realizable if there is a 4-valuation v which
realizes every element of U.

In order to prove soundness we need the following lemma:

Lemma 5.4.1 If T s a closed tableav for U, where U is a set of signed
formulae, then the tableavw T' obtained from T by replacing every (occurrence
of an) s-formula with {an occurrence of) its converse is a closed tableau for
the sel U™ of the converses of the s-formulae in U.

The proof is a straightforward induction on the number of nodes in a closed
tableau.

Now, it is easy to verify that our tableau rules are correct in the sense
that every 4-valuation which realizes the premise of the rule A realizes also
both the conclusions of the rule, and every 4-valuation which realizes the
premise of the rule B realizes also at least one of the conclusions of the
rule. Therefore it follows, by an elementary inductive argument, that if a
4-valuation v realizes all the initial s-formulae of a tableau 7, then there is
at least one branch ¢ of 7 such that v realizes all the s-formulae occurring

5.4, SEMANTIC TABLEAUX FOR BELNAP’S LOGIC 99

in ¢. But, of course, no 4-valuation can realize two conjugate s-formulae
simultaneously, Therefore if 7 is a a closed tableau, no 4-valuation can realize
all the initial s-formulae of T. So, if T is a closed tableau for {t(B)|B €
I') u {f(A)}, it follows that for every 4-valuation v, A is at least truein v
whenever all formulae in I' are. Moreover it follows from lemma 5.4.1 that
no 4-valuation can realize the converses of all the initial signed formulae of
T, i.e. no 4-valuation can realize {t"(B}|B € I'} U {{*(4)}. Hence for every
4-valuation », A is non-false in v whenever all the formulae in T are. So, by
def. 5.3.3, ' - A. This concludes the proof.

Completeness. Let us say that a branch ¢ of a tableau T is eomplete if (i)
for every @ in ¢ both &, and a; occur in ¢ and (1) for every § in ¢ at least
one of 4y, B; occurs in ¢. Let us also say that a tableau T is compleled when
every branch of T is complete. We have the following theorem:

Theorem 5.4.1 Every complete open branch of any tableau is realizable.

We shall first define the analog of Hintikka sets within our framework. The
theorem will then immediately follow from the analog of Hiutikka's lemma.

Definition 5.4.2 Let us say that a set of signed formulae U/ is an R-Hintikka
set if and only if it satisfies the following conditions:

Hy: No signed variable and its conjugate are both in {7.
Hy:facl,then ey € U and a3 € U.
Hy: lfBelU,then ;i eUVor el

It follows from our definitions that the set of s-formulae in a complete open
branchof any tableau is an R-Hintikka set. Then the theorem is an immediate
consequence of the following lemma:

Lemma 5.4.2 Fuery R-Hintikka set is realizable.

Proof. Let {7 be an R-Hintikkka set. Let ns assign to each variable P which
occurs In at least an element of U/ a value in 4 as follows:

() Ift(P) € U, and *(P) ¢ U, give P the value T.
() If t(P) € U, and [~(P) € I/, give P the value Both.

100 CHAPTER 5. BELNAP’S FOUR VALUED LOGIC

(3) f f(P) ¢ U, and t*(P) & U, give P the value F.
(4Y U {(P)el,and t (P) € I, give P the value None.
(5) if t*(P}Ye U/, and {{P) € U, give P the value T.
(6) if {*(P) e U, and t(P) ¢ U, give P the value F.

Now it is obvious that the 4-valuation induced by this assignment realizes
all the signed variables occurring in {/. Then we only need to observe that

{1} If 2 4-valuation realizes both @; and ey, then it realizes also c.
(ii) If a 4-valuation realizes at least one of f;,5; then it realizes also S.

The lemma then follows from an easy induction on the complexity of the
s-formulae in U.

Theorem 5.4.1 implies

Theorem 5.4.2 (Completeness Theorem) [T F A then there is a closed
tableau for {t(B)}|B € T} U {{{A)}.

5.4.2 Detecting inconsistencies

Although we do not want inconsistencies to have the catastrophic effect that
they have in classical logic, it would be desirable to be able to check our
databases for consistency. After all, we do not want to ‘glorify’ contradic-
tions. On the contrary we usnally want to remove them.

Fortunately, consistency checks are quite easy to carry out without mod-
ifying our framework. We shall show that, in fact, our tableaux ‘contain’
their classical version: to obtain classical tableaux we only need to modify
the closure condition on a branch.

Definition 5.4.3 The weak conjugate of an s-formula is defined as in the
following table:

Signed formula | Weak conjugate I

t(A) (A)
f(A) £*(A)
t*(A) f(A)

f7(A) £(A)

5.4. SEMANTIC TABLEAUX FOR BELNAP’S LOGIC 101

We say that a branch ¢ of a tableau T is weakly closed if ¢ contains an
s-formula and its weak conjugate. The tableau T is weakly closed if all its
branches are weakly closed.

Let us use s as a variable ranging over signs, i.e. over the symbols {t,f,1*,{*}.
By 3 we mean:

f if s=t
t i s=1
f* if s=1t*
t* if s={"

By s* se mean:

tm i s=t
f* i s=1
t if s=t"
I f s=1"

We have the following lemma:

Lemma 5.4.3 Let us say thal a set of s-formulae S is homogeneous if all
the s-formulae in it have the same sign s. Then if S is a homageneous set
of s-formulae, every tableau T for S contains only s-formulae with sign s or
4%,

Proof: By inspection of the rules and induction on the rank of the s-formulae
occurring in 7.

The following theorem states the connection between classical and relevant
derivability:

Theorem 5.4.3 T is a (elassically) unsatisfiable set of formulee if and only
if there is @ weakly closed tableav for {t(B)|B € T}. Therefore A is classically
deducible from T if and only if there is @ weakly closed tableau for {1(B)|B €
FYu {t(=A)}.

Proof: If I is classically unsatisfiable, there is a closed classical tableau for
{t(B)|B € I'}. It s casy to see that the tableau obtained from it by replacing
each sign { with {* is a weakly closed tableau for {1(B)|B € T'}.

102 CHAPTER 5. BELNAP'S FOUR VALUED LOGIC

Suppose there is a weakly-closed tableau 7 for {t(B)|B € I'}. By
Lemma 5.4.3 this tableau can contain only formulae signed with t or *.
Therefore every weakly-closed brauch contains t{ A} and {*(A) for some A. It
follows that every 4-valuation which realizes the initial formulae, must realize
both t(A) and f7(A) for some A, i.e. it must assign Both to A for some A.
Hence there is no boolean valuation which satisfies T'.

As we said before, the notion of weakly closed tableau is useful in that a
weakly closed tableau shows an inconsistency in our database and, there-
fore, the need for revision. So our tableaux are sensitive to contradictions
like classical tableaux; unlike classical tableaux, however, when they detect
a contradiction they do not panic but keep on making ‘sensible’ deductions.

We observe that, in our approach, an initial formula of the form f(A) al-
ways represents a ‘query’, whereas data are represented by initial formulae of
the form t(A). So, checking our data for consistency aud answering questions
on the base of our data are formally distiuct tasks.

5.4.3 First-order tableaux

Another advantage of our single-tableaun formulation is in the treatment of
quantifiers. These are dealt with by means of rules obtained, as in the case
of the binary connective rules, by taking over the standard classical rules
(for s-formulae) and supplementing therm with their ‘starred’ versions. By
contrast, the sujtable quantifier rules for the first-order version of the method
of coupled-trees are not so straightforward.

We consider a standard first-order language with no functional symbols.
We use the letters x, ¥, z,. .. (possibly with subscripts) as individual variables
and the letters e,b,¢,... {possibly with subscripts) as parameters. For any
variable z and parameter o, A(z/e} will be the result of substituting all the
free occurrences of £ in A with a. Subformulae are defined in the usual way,
so that for every parameter a, A(z/a) is a subformula of Yz A(x).

An obvious way of extending Belnap's semantics to formulae containing
quantifiers is the following:

Let U be a non-empty universe. We assume a set {7 of consfents naming
the elemments of U (of course neither U nor I/ need to be denumerable).
By a U-formula we mean a formula built up from the logical operators, the
relation symbols, the individual variables and the constants in /. (Thusa [/-

5.4 SEMANTIC TABLEAUX FOR BELNAP’S LOGIC 103

formula is like a formula with parameters but with elements of U/ in place of
parameters.) Let FU be the set of closed U-formulae. A firsi-order valuation
over U is defined as a mapping v of all elements of FU into 4 such that (i) »
is a 4-valuation (see above p. 93) and (ii) v satisfies the following additional
conditions for quantifiers (where MV and UV denole, respectively, the g.l.b.
and the lLub. of the set V in L4):

v(Vz(A(z))
v(Jz(A(z))

{o(A(k/x)k € U}
U{o(A(k/z))Ik € U}

il

The first-order consequence relation associated with this extended semantics
1s then:

Definition 5.4.4 T'+ A if and only if for every universe U and all first-order
valuations v over U, (i) if all elements of I" are at least true under v, then A
is at least true under v and (ii) if all the elements of I' are non-false under »,
then A is non-false under v.

The quantifier rules are the expected ones:

__t(VA‘C(A/(“’B for alla —veAlZ)) ((V‘EA/(I))))
ajx Ala/z
__f(Va:A(a:)) with ¢ new f(VeA(z))
f(A{a/z)) f*(A(a/z))
_—t(ﬂxA z)) with a new ———t (324(z))
H{A(a/z)) t*(A(a/z))
—f(ﬂ:cA(:c)) for all a —f*(aa:A(.r))
f(4(a/2)) F(A(a/2))

[t is convenient to use Smullyan’s notation for quantified formulae. So «
will denote any formula of one of the four forms t{(VzA(z)), t"(VzA(2)),
f3rA(z)), £7(3zA(z)) and by y(a) we shall mean, respectively, t(A{z/a)),
t*(A(x/a)), f{A(z/a)), {*(A(z/a)). Similarly & will denote any formula of
one of the four forms t(IzA(z)), t*(IrA(z)), f(V:cA(), f*(¥zA(z)) and
and by &(a) we shall mean, respectively, t(A(z/a)), t*(A(z/q}), {(Alz/a}),
f*(A(z/a)).

104 CHAPTER 5. BELNAP'S FOUR VALUED LOGIC

Thus, our first-order rules can be succintly expressed by the following two
rules:

Rule C ——

4(a) for any parameter a

1)
Rule D §(a) for a mew parameter a

Soundness and completeness of this first-order system can be proved —
given the corresponding proofs for the propositional fragment — by means
of straightforward adaptations of the standard proofs for classical tableaux
(as given ip [Smu68al). In fact, in our framework, quantifiers do not involve
any non-standard notion which does not arise already at the propositional
level. For instance, in crder to prove completeness, we define the first-order
analog of a complete tableau (where, of course, a complete branch may be
infinite} and a procedure which generates a complete tableau for a set I of
s-formulae. We can then define first-order R-Hintikka sets (over a universe
U) by adding to the clauses in definition 5.4.2 the following two clauses:

Hs: y€ U, then for every kin U, y(k) € ['.
H,: H§el/, then for some kin U, §(k) e U.

It is easy to see that the set of s-formulae occurring in every open branch of
a complete tableau is an R-Hintikka set, Then, completeness follows from
the lemma:

Lemma 5.4.4 Every R-Hintikka set for a universe U is realizable,

The previous discussion about the completeness of the first-order systems
shows the heuristic advantage of this approach. The proofs of the analogs of
most of the theorems which hold for the classical version can simply be carrted
over to the non-standard version with minor modifications. In fact this is true
of most of the theorems included in [Smu68a). We just mention here that the
proofs of the compactness theorem and of the analog of Lowenheim-Skolem
theorem require virtually no modification. Moreover, any implementation
of a cassical tableau-based theorem prover can be casily adapted to our
framework, so providing a theorem prover for Belnap’s logic and classical legic
(via the notion of ‘weak closure’) simultaneously. A ‘naive’ implementation
in Prolog, adapted from a program by Fitting, is given in [Gor%0)

5.5. AN EFFICIENT ALTERNATIVE 105
t{AA B) t"(AA B) (A A B) [(AAB)
t{4) () yA) t(B)

1 B) {B) f(B) f(4)
{AA B) f(A A B) f(A v B) f"(Av B)
t*(4) t*(8) f(A) (4)
*(B) 1°(4) fi(8) ~(B)
t(Av B) t{Av B) LAV B) t*(4Av B
f{A) f(5) "{4) (B)
tB) 1(4) t(4) t(4)
t{—A) 1{-A4) t*(~-A) 7 (-4)
(A4) t(A) A4 t{A)

LA} | 1(4) v(A) | °(4)

Table 5.4: The rules of RE4,.

5.5 An efficient alternative

Another simple tree method for first-degree entailment is obtained by adapt-
ing the rules of the system KE (see above, Chapter 3). The system so
obtained will be baptised RE.. The propositienal rules of REg, are given
in Table 5.4. The quantifier rules are the same as the rules for the tablean
method given in the previous section.

Again, the logical rules can be expressed in a succint form by means of our
extended use of Smullyan’s notation {where 3, { = 1,2 denotes the conjugate

of 3:):

=
Rule A o
g

3 8
Rule B1 3} Rule B2 3;
o7 B

Rule C —1—

Y(a) for any parameter a

106 CHAPTER 5. BELNAP’S FOUR VALUED LOGIC

Rule D §
5(a) for a new parameter a

In each application of the rules, the s-formulae a, 3, v and § are called major
premises. In each application of rules Bl and B2 the s-formulae 8/, i = 1,2
are called minor premises (rules A, C and D have no minor premises).

In the system REg, all the logical rules have a linear format. However,
they are not sufficient for completeness: our ‘cut-rules’, PB and P B¥, are not
eliminable,

Definition 5.5.1 Anr REy.-free for I/, where U/ is a set of s-formulae, is a
tree of s-formulae constructed in accordance with the rules above starting
from s-formulae in /. A branch of an RE,.-tree is closed when it contains
a signed formula and its conjugate. Otherwise it is opcn. The tree itself is
said to be closed when all its branches are closed.

An s-farmula occurring in a REg,.-tree is said to be analysed if it has
been used at least once as major premise of one of the rules.

In Fig. 5.3 we give an RE.-proof of the same example of which a tableau
proof was given in Fig. 5.1. The reader can compare the structure of proofs in
the two methods. Notice that the RE,-tree contains no branching. Indeed,
the system RE(,, is more efficient than the tableau method formulated in
the previous section for much the same reason as the classical system KE
is more efficient than the classical tableau method (see Chapters 2 and 4
ahove): the use of PB and PB* — our ‘cut rules’ — allow us to avoid many
redundant branchings in the refutation tree.

A lemnma analogous to Lemma 5.4.1 holds:

Lemma 5.5.1 If T is an REg.-tree for U, where U is a set of signed for-
mulae, then the tree T' oblained from T by replacing every (occurrence of
an) s-formula with (an occurrence of) is converse is an REg,-tree for the
set /" of the converses of the s-formulae in U.

Soundness. The proof is strictly analogous to the one given for the tableau
method.

Completeness. We define a notion akin to the notion of R-Hintikka set :

5.5. AN EFFICIENT ALTERNATIVE 107

t{(AV B)A-A)
f(BVv(AA-A))
t{Av B)
t(—A)
*(A)

f(B)
fAA-A)
t(A)
f(=A4)
t*(A)

Figure 5.3: An REg.-proof of ({AV B) A ~A4) -+ (B V (A A -A))
Definition 5.5.2 Let us say that a set of signedformulae U is an E-analytic
set if and only if it satisfies the following conditions:

Aq: No signed variable and its conjugate are both in U.
Ay Wael/, then oy € U and a3 € U.

Ay H €U and 8 € U, then 3, € U.

Ay T8 e U and § € U, then f, € U.

Ay If v € U, then for every kin U, y(k} € U.

Ag: If 6§ € U, then for some kin U, §(k) e U.

An R-analytic set differs from a R-Hintikka set in that it may be the case
that for some # in the set neither 8, nor 3; are in the set.

Definition 5.5.3 We say that an R-analytic set is F-completeif for every 3
in U either of the following two conditions is satisfied:

1. either B, € U or 8] € U,

108 CHAFTER 5. BELNAP'S FOUR VALUED LOGIC

2. either fy € U or 33 € U;
It is then easy to verify that:

Fact 5.5.1 If U is an R-analytic set and U is f-complete, then U is an
R-Hinttkka sel.

It is not difficult to define a procedure which, given a set of s-formulae U,
generates either a closed REgq.-tree or an open REg,-tree such that for every
{possibly infinite) open branch ¢ the set of all the s-formulae occurring in
¢ is a R-analytic set which is also §-complete (the only tricky part of such
a procedure concerns condition A4 and can be dealt with as in [Smu68a,
pp-58-60]). Thus, completeness follows from fact 5.5.1 and lemma 5.4.4.

We can define the notions of weakly closed branch and weakly closed treein
exactly the same way as we did for the tableau method discussed in the pre-
vious section. Again the relation between classical and relevant deducibility
is the same mutatis mutandis.

Our proof of the completeness of REy, yields the subformula principle
as a corollary:

Corollary 5.5.1 {Analytic Cut Property) Ifthere is a closed REg,-free
T for U, then there is a clesed REg.-tree T' for U such that the rules PB
and PB* are applied only to subformulae of s-formulae in U.

In fact, the proof shows that, when applying PB or PB*, we need to
consider only the immediate signed subformulae of signed formulae of type
B occumring above in the same branch and which have not been already
‘analysed’. Since all the logical rules preserve the subformula property, we
have:

Corollary 5.5.2 (Subformula Principle) [f there is a closed REg, -tree
T for U, then there is a closed REg,.-tree T' for U such that every s-formula
occurring tn T' is g signed subformula of s-formulae in U

A constructive proof of the subformula principle, which yields a procedure
for transforming any REg,.-proof in an equivalent REq,-proof which enjoys
the subformula property, can be obtained by adapting the proof given by
Mondadori for the system KE [Mon88b|.

The completeness of the {propositional fragment of the) system REg, can
also be proved by showing that all the axioms of the Hilbert-style formulation

5.5. AN EFFICIENT ALTERNATIVE 109

{given on p. 93) are theorems of RE¢. and RE,-derivability is closed under
the rules (8)-(11). All these facts are shown below.
In what follows I stands for FrE,,, -

Fact 5.5.2 AABF A

(1} t(AAB) Assumption
(2) f(A) Assumption
(3) t(A) Eta (1)
(1) (B) EtA (1)

Fact 5.5.3 AANBW+ B

Proof as above.

Fact 5.5.4 AFAVE

(1) t(A4) Assumption
(2) f(Av B) Assumption
(3) 1(A) Efv (2)
{4) (B Efv (2)

Fact 5.5.5 B+ Av B
Proof as above.
Fact 5.5.6 AA(BVC)F(AABYVC

(1) t(AA(BVCY)) Assumption
{2) f(AABYVC) Assumption

(3) t(A) EtA (1)

{4) t(BvC() Eta (1)

(5) f(AA B) Efv (2)

(6) f(C) Efv (2)

(7) t(B) Etv 2 (4,6)
(8) f{(B) Ef A1 (5,3)

Fact 5.5.7T A} --A
(1) t(A) Assumption

(2) f(--A) Assumption
(3) t°(~A) Ef- (2)
(4) f(A) Et*~ (3)

110 CHAPTER 5. BELNAP'S FOUR VALUED LOGIC

Fact 5.5.8 -—~AF A
(1) t{—-4) Assumption

(2) f(4) Assumption
(3) (-4 Ef= (1)
(1) t(A4) Ef*- (3)

Fact 5.5.9 fAF B and B+ C, then AF C

It follows from the hypothesis that there are closed trees 77 and 7p for
{t(A), {(B)}and {t(B),f(C)} respectively. Therefore the following is a closed
tree for {t(4),1(C)}:

t(A)

£(C)
t(B) | i(B)
T2 7

Fact 5.5.10 /[fA+ B and AF C, then AF BAC

It follows from the hypothesis that there are closed trees 77 and 77 for
{t(A),f(B)} and {t(A),{(C)} respectively. Therefore the following is a closed
tree for {t{A),{{(B A C)}:

t(A)
[(BAC)
t(B) | f(8)
f(C) T
T

Fact 5.5.11 [fAFC and B+ C, then AVEBLF C

It follows from the hypothesis that there are closed trees 77 and 7, for
{t(A),{{C)} and {t{B),)} respectively. Therefore the following is a closed
tree for {t(4 v B),{C)}:

AV B)

f(€)
t(4) l f{A4)
T t{(B)
T

5.5. AN EFFICIENT ALTERNATIVE 111

Fact 5.5.12 If A - B, then ~B - —A.

By hypothesis there is a closed trees T for {t(A),f(B)}. It follows from
Lemma. 5.5.1 that there is a closed tree 7' for{t*(A),{"(B)}. Therefore the
following is a closed tree for {t(~5),{(-A)}:

t(~5)
f(~4)
f(8)
t=(A4)
Tf

We conclude by mentioning that a ‘naive’ implementation in Prolog of the
system RE, has been developed by Rajev Gore [Gor%0].

Chapter 6

A generalization: cut systems

6.1 Proper derived rules

We want to address the following problem:
WHAT 1S A DERIVED RULE ?

As background for our investigation we assume the Gentzen-style formaliza-
tion which uses sequents, i.e. expressions of the form:

(6.1) Aoy Aty ... AnF Bo, By, ..., B

with the usual meaning: if all of the A;’s hold, then at least one of the B;'s
holds. It is convenient to treat the antecedent and the succedent as sets
instead of sequences.

By a Gentzen rule R we mean a schematic figure for passing from several
sequents to another sequent, a typical example being the rule of Modus Po-
nens:

'-A AHA—- B

(MP) T,AFB

A finite set of Gentzen rnles defines a Gentzen system. Given a Gentzen
system S, there are at least three natural ways of representing proofs in it:
as trees, as directed acyclic graphs ot as sequences of sequents generated in
accordance with the rules of §. Whereas there is no difference in complexity

112

6.1. PROPER DERIVED RULES i13

between a proof in the farm of directed acyclic graph (or ‘d.a.g.’) and a
proof in the form of a sequence of seqnents, it is well-known thal represent.
ing proofs in tree-form may introduce a great deal of redundancy, because
identical subirees may appear many times. However, we shall observe in the
sequel that the format in which proofs are represented seems to be significant
only in some special cases.

The paradigmatic Gentzen systern is the calculus of sequents. There are other
systems, like Natural Deduction, which can also be represented as Gentzen
systems, though their original formulation is not in terms of sequeats. In
this chapter we restrict our attention to classical systems.

Definition 6.1.1 We say that a sequent is correct for a Gentzen system S
if and only if it is provable in S. A rule R is correct for S if and only if the
conclusion of R is correct for S whenever all the premises are correct for S.

The notion of correctness of a sequent (and of a rule} makes sense even for
systems which are not formulated in terms of sequents. Given a sequent
I' - A, with A = {A,,..., A}, by a single-conclusion sequent ussociated
with I' - A we mean auy sequent:

F,"‘Alg---,“A;—lu“AH.le--w"An F A;

for7 = 1,...,n. In classical logic, every sequent is equivalent to every single-
conclusion sequent associated with it. So, given an arbitrary proof system
S (not necessarily formulated in term of sequents), we take as a proof of a
multiple-conclusion sequent any proof of a single-conclusion sequent associ-
ated with it, that is a proof of the single formula in the succedent {rom the
formulae in the antecedent.

Let us go back to our initial problem: what is a derived rule? A first (as we
shall argue, unsatisfactory) answer is the following:
(1) A rule R is a derived rule of a system S if and only if K is correct for S.

[ncidentally, this answer is assumed in many logic textbooks. [t is motivated
by the fact that when a rule is correct for a system S its addition to § does
not increase the stock of provable sequents.

114 CHAPTER 6. A GENERALIZATION: CUT SYSTEMS

H we accept such a definition of derived rule, then saying that R is a
derived rule of § means only that the relation V is closed under R (there is
a proof of the sequent below the inference line whenever there are proofs of
the sequents above the inference line).

From a proof-theoretical point of view, however, we are not interested in
the mere ezistence of a procf of the conclusion of a rule 2, but in an effective
procedure for constructing such a proof from proofs of the premises. This
leads us to a different notion of derived rule:

(2) A rule R is a derived rule of S if and enly if there is an effective proce-
dure for constructing a proof of the conclusion of R from proofs of its
premises.

But, if we are interested in the complexity of proofs, we should also require
that the procedure be efficient. A natural requirement, for instance, is that
the complexity of the resulting proof does not exceed the sum of the com-
plexities of the component proofs plus a constant ¢. To make this further
requiremernt precise we can use the A-measure used in Chapter 4:

Definition 6.1.2 The complerityof a proof 7, denoted by A(r), is the num-
ber of lines in 7 (each ‘line’ being a sequent, a formula, or any other ex-
pression associated with an inference step, depending on the system under
consideration).

We are now ready to give a definition of derived rule which takes into account
the complexity of the procedure associated with it:

(3) An n-premise rule R is a derived rule of S if and only if there is an
effective procedure, consisting of applications of the primitive rulesof S,

for constructing a proof 7 of the conclusion of R from proofs m, ..., 7,
of its premises, such that A{r} < A{m)+ -+ + A(m,) + ¢ for some
constant ¢,

We shall call a derived rule satisfying (3) proper derived rule.

We suggest that this notion of proper derived rule can be useful for the
analysis of the relative complexity of formal proofs. In the rest of this chapter
we shall illustrate this claim in a few simple examples.

6.]. PROPER DERIVED RULES 115

Again, we point out that the A-measure is sufficient to establish negative
results, but is not sufficient in general for positive results. It may, however,
be adequate also for positive results whenever one can show that the length
of lines is not significantly increased by the simulation procedure under con-
sideration. All the procedures that we shall cousider in the sequel will be of
this kind. We assume the notions of simulation and p-simulation as defined
in Chaptler 4.

Definition 6.1.3 Let us say that S’ linearly simulates S if and only if there
is a constant ¢ such that for every S-proof 7 of A from I' there is an §’-proof
7' of A from I such that A(#x') < ¢- A(m).

In other words A(x’) = O(A(x)).

The following proposition is a straightforward consequence of our definitions:

Proposition 6.1.1 Let S be a Gentzen sysiem in tree form end §' be an
arbitrary proof system. If all the rules of S are proper derived rules of §',
then §' linearly stmulates S.

Among all the possible rules a special role is played by four rules which
are correct for an important class of logics (including, of course, the topic of
this chapter: classical logic).

The rule of reflerivity.

(REFL) ' A whenever 4 €T

the rule of menotontcity

'-a
(MONO) TTFAA
the rule of substitutivity

I'A

{SUBST) “TFsA

116 CHAPTER 6. A GENERALIZATION: CUT SYSTEMS

for any substitution function s {sT for a set T is defined in the obvious way),
and the rule of transitivily or cut

TFAA T AF A

(CUT) LTFAN

These rules will be called common rules. They are, of course, correct for
all classica) systems. Since it is difficult to imagine a sensible proof system
in which REFL, MONQO and SUBST are not proper derived rules, we shall
restrict our attention to systems in which they are proper derived rules and
shall assume, for simplicity’s sake, that the constant ¢, representing the A
complexity of the derivation of the rule, is equal to 0. On the other hand,
there are well-known proof systems in which CUT, though being obviously
a correct rule (that is a ‘derived rule’ in the weak sense), is not a proper
denived rule. Since CUT expresses the basic transitivity property of proofs,
these systems can hardly claim to represent a realistic model of the notion
of classical proof.

6.2 Cut systems

It is somewhat surprising how far one can go by assuming only that cut is
a propet derived rule of a system. The next proposition, for example, states
that any such system is as powerful (from the point of view of complexity)
as any Frege system (another denomination of Hilbert-style proof systems).

Propgsition 6.2.1 If eut is a proper derived rule of S, § linearly simulates
any Frege system.

Proof. A Frege proof 7 is a sequence of formulae A,,..., A,, where 4, is
the theorem and A;, ¢ = 1,...,n is either an axiom or follows from previous
lines by means of a rule. We shall consider axioms as rules with 0 premises.
Since § is complete, then for each rule R = By,...,B,./C, m > 0, there is
an S-proof =g of C from By, ..., B,.. Let ¢ = max(A{ng)) for A ranging over
the set of rules of the Frege system. Let A, follow from Aj;,..., A, with
i €a—1. Then, thereis an S-proof of A, from Aji,..., A,z and, by MONO,
from A;,..., A, with A-complexity less than or equal to ¢. Now, let A, .,
follow from Ap, ..., Apg, with p < n — 2. Then there is an S-proof of A,_,

6.2. CUT SYSTEMS 117

from Ay, ..., Apg and, by MONO, from 4,,..., A._2 with A-complexity less
than or equal to ¢. Since CUT is a proper derived rule of 8, there is a proof
of A, from Ay,..., A2 with complexity less than or equal to 2¢ + d, where
d is the constant associated with the simulation of CUT in 8. It is easy to
verify that by repeating this procedure we eventually obtain an S-proof =’ of

Apwith Ma'Y < e-Am)+d- (A=} -1). O

Remarks: [t follows from results in [CR79} that Frege systems can poly-
nomially simulate all natural deduction systems and all Gentzen systems.
More recently Buss [Bus87] and Urquhart [Urq87] have shown that resolu-
tion cannot polynomially simulate Frege systems. Urquhart has also shown
[UrqR9] that the cut-free sequent calculus in d.a.g. form cannol psimulate
the sequent calculus with cut. Thus Proposition 6.2.1 above implies that nei-
ther resolution nor the cut-free sequent calculus can p-simulate any system
in which cut is a proper derived rule.

Notice that our definition of proper derived rule does not make any as-
sumption about the format in which proofs are represented. In particu-
lar there are many systems in frec form (including Natural Deduction and
Gentzen's sequent calculus with cut) in which cut is a proper derived rule
{or can be rendered such by means of minor transformations, see chapter 4).
The proposition above then implies that neither resolution nor the cut-free
sequent calculus in d.a.g. form can p-simulate any system in tree form in
which cut is a proper derived rule.

Finally notice that the assumption that the system is classical does not
play any role in the proof. Therefore it can be extended to any logical system
in which the common rules and cut are proper derived rules.

The rule of CUT we have given above is completely general and does not in-
volve any logical constant. Auother form of CUT which is typical of classical
systems is the following:

[LAFA T, ~AF A
LU FAA

(CUT*)

This form of cut involves the negation operator and implies that it behaves
in a classical way. In classical logic the behaviour of negation is captured by

118 CHAPTER 6. A GENERALIZATION: CUT SYSTEMS

two basic rules. The firsi one is also correct in intuitionistic logic:

TFAA
() T-AFA

The second one is peculiar to classical logic:

T,-AF A
(E-) TFAA

It is easy to verify that (i) if CUT* and I- are proper derived rules of a
system 8, so are CUT and E-, and (i) if CUT and E- are proper derived
rules of 8§, so are CUT* and 1-.

Definition 6.2.1 Say that a system S is a classical eut system or simply a
cut systemif both CUT™ and I are proper derived rules of § or, equivalently,
if both CUT and E— are proper derived rules of 8.

We have already considered cut systems in relation to KE in chapter 4.
The definition adopted there was slightly different, but can be easily proved
equivalent to the present one under the assumption that the common rules
are proper derived rules. Incidentally, this is an illustration of how the notion
of cut system is robust under reasonable changes of definition. The following
proposition states a property of cut systems:

Proposition 6.2.2 [fS is a cut system, then all the rules of Genlzen’s nat-
ural deduction and sequent calculus in tree form are proper derived rules of
S. Moreover, if S enjoys the subformula property, the derivation of eaeh rule
involves only formulae which are {weak) subformulae of formulae occurring
in the premises or in the conclusion of the rule.

The proof is left to the reader.

6.3 Analytic cut systems versus cut-free sys-
tems

The appeal of some well-known systems in which CUT is not a proper derived
rule, like Gentzen’s sequent calculus without cut or the tableau method, is

6.3. ANALYTIC CUT SYSTEMS VERSUS CUT-FREE SYSTEMS 119

mainly due to the fact that these systems yield proofs with the subformula
property (SFP). In contrast, a system in which CUT is a primitive or a proper
derived rule allows for proofs without the subformula property. However, it
may well be that such ‘non-analytic’ proofs are not necessary for cornplete-
ness, l.e. that the existence of a proof with the SIF'P is always guaranteed.
This is trivially true of all systems in which CUT is eliminable. On the other
hand, it is obvious that we do not need to efiminate CUT in order to obtain
proofs with the subformula property: it is sufficient to restrict ourselves to
‘analytic cuts’, i.e. to cut inferences in which the cut formula js a sublormula
of the assumptions or of the conclusion. It is well-known that the elimina-
tion of cuts can greatly increase the complexity of proofs. But we have seen
in Chapter 4 that -— if we consider proofs in tree-form — proofs including
‘analytic cuts’ can be essentially shorter than any equivalent cut-free proof
while still enjoying the SFP. In particular, we have seen in Section 4.6 that
any analytic cut system is essentially more efficient than the tableau method.
For the reader’s convenience we restate this result here in a different form:

Proposition 6.3.1 Let S be any analytic eut system. Then the analytic
restriction of 8 linearly simulates Genizen’s sequent calculus without cut (in
tree form). But Gentzen's sequent calculus without cut (in tree form) cannot
p-simulate the analytic restriction of S,

Sketch of the proof. The positive part follows from Proposition 6.1.1 and
Proposition 6.2.2. The negative part follows from Theorem 4.5.4 and Theo-
rem 4.6.1.

The interest of these results lies mainly in the fact that the cut-free sequent
calculus in tree-form (or the tableau method) seems to lend itself well to
computer search. The tree-form, in this case, is more natural. Moreover,
as far as the cut-free sequent calculus is concerned, it seems that one can
find relatively short proofs in d.a.g. or linear form only by employing the
Thinning rule (for some results see {Urq90b]). However, as argued in Sec-
tion 2.1, this rule does not suit the usual ‘bottom-up’ search procedures used
in automated deduction, essentially because it is not iavertible. On the other
hand there are analytic cut systems, like our KE, which are as suitable for
automation as cut-free Gentzen systems but are essentially more efficient.

Chapter 7

Conclusions

Our discussion shows that KE constitutes a refutation system which lends
itself well to computer search. We propose it as an alternative both to the
tableau method and resolution which combines features of both systems and
remedies some of their drawbacks. It is sufficiently similar to the tableau
method to share all its ‘desirable’ features: it does not require reduction to
any normal form, obeys the subformula principle, works in the ‘analytic’ (or
‘bottom-up’) direction, is ‘natural’, easy to implement and can be adapted
to a wide variety of non-classical logics. On the other hand it avoids the
basic redundancy of cut-free methods and establishes a closer connection
with classical semantics as a result of the crucial role played by the rule PB
in the analysis of the formulae of the ‘disjunctive’ (3) type. We have ex-
plicitly stressed the connection between this kind of analysis and that the
Davis-Putnam procedure which is, in turn, closely related to resolution. So,
from this point of view, KE can be seen as an extension of a resolution-style
analysis to the domain of full first-order logic. Qur semantic-criented argu-
ment, presented in Chapter 2, is sufficient to ensure that this kind of analysis
represents a uniform improvement over the traditional cut-free analysis, at
least asfar as the complexity of proofs is concerned. The results contained
in Chapter 4 confirm and strengthen this argument in the more conventional
framework of complexity theory: the KE analysis stands with the cut-free
in a relation of dominance with respect to p-simulation (KE linearly simu-
lates the tableau method but the tableau method cannot p-simulate KE).
Whether or not such considerations of complexity be relevant to the choice
of a formal representation for purposes other than the practical ones, is a

120

121

matter which is still to be explored. Our discnssion in Chapter 2, however,
strongly suggests that the tableau method is not a ‘natnral’ formalization of
the notion of a classical refutation and goes near to characterizing KE as the
natural one.

From the vantage-point of KE cut-free systems are seen as too resiricted,
in a way which is not justified by their own purposes (subformula property
and easy proof-search). Similarly, resolution is too restricted from the syn-
tactical point of view: eflicient classical refutations can be obtained without
confining ourselves to the domain of formnlae in clausal form. There are, in
fact, connections between KE and non-clausal resolution [Mur82, MW80].
However KE represents refutations in a completely different way: its rules
are genuine inference rules, in the sense that they formalize traditional in-
ference principles, We have also emphasized (in Section 3.8) that KE can
be represented as a kind of ‘natnral deduction’ system. Moreover, Lthe pres-
ence of a rule like PB, which can be used in a non-analytic way, makes it
possible to use KE to formalize non-analytic argnments as well as analytic
ones. This should be considered as an advantage from many points of view.
First, as Dana Scott pointed out [Sco73], analytic logics, i.e. logics which ad-
mit of formal representations that obey the subformula principle, are more
an exception than the rule. Therefore KE provides a logical framework
which can be extended in a natural way to non-classical logics for which
a cut-free representation is impossible. Second, even within the domain of
classical logic, the possibility of representing non-analytic proofs can be an
advantage. For example, it has been known since the earliest work on auto-
mated theorem proving (see for instance {Wan60]) that biconditionals tend to
cause combinatorial explosion in proof search procednres based on a cut-free
Gentzen system. Recent results by Urgnhart [Urg89, Urq90b] have not only
proved that this phenomenon is unavoidable, but also that the use of ana-
lytic cut cannot help as far as pure biconditional expressions are concerned
{see Theorem 6.1 in [Urq90b]). In this case, non-analytic methods are defi-
nitely more efficient. This is one example of the well-known fact that using
non-analytic, ‘external’, lemmata can considerabhly shorten proofs. Boolos
!Boo84| has illustrated this fact strikingly by exhibiting a natural class of
first-order schemata which have no feasible tablean proofs but do have short
natural deduction proofs. He traced the fact that natural deduction methods
are essentially more efficient than the tableau method to the fact that ‘modus
ponens, or cut, is obvionsly a valid derived rule of standard natural deduc-

122 CHAPTER 7. CONCLUSIONS

tion systemns, but not obviously a valid derived rule of the method of trees”,
and adds that ‘the most significant feature possessed by natural deduction
methods but not by the tree method, a feature that can easily seem like a
virtue, is [...| that it permits the developmeut and the utilization within
derivations of subsidiary conclusions’®. Qur notions of ‘proper derived rule’
and ‘cut-system’, defined and used in Chapter 6, were also meant to formalize
some of the intuitions underlying Boolos’ remark.

So, there are many contexts in which purely analytic methods are hope-
lessly inefficient. As Boolos himself pointed out, there is a trivial solution
to this problem: simply add cut to the cut-free rules. But this move would
not elimipate the redundancy of the cut-free rules that we have pointed out
in Chapter 2. Moreaver, the cut rule would be, so to speak, ‘thrown into’
the cut-free system in a purely external way, and we would be left with no
obvious criteria concerning its application. We claim that KE represeuts a
natural and elegant solution to this problem: it does not employ any rule
which generates redundancy in the sense of Chapter 2; the cut rule comes
into play only when the operational rules cannot be further applied; although
its applications can be restricted to analytic ones, the unrestricted system
can be used to simulate efficiently all the conventional non-analytic proof
systems and therefore any algorithm based on them.

Given our previous considerations, some future directions of reasearch
suggest themselves. One concerns the development of efficient proof search
procedures for classical logic based on KE. We expect that, for analytic pro-
cedures, some variant of Bibel's connectiou method ([Bib82}; see also the
exposition in [Wal90]), should prove useful. Similar proof-search procedures
for non-classical logics could be developed by adapting Wallen’s metbods
[Wal90]. Moreover, as suggested above, we expect KE to be useful in for-
mulating non-analytic proof-search algorithms both for classical and non-
classical logics, especially when non-analytic methods are the only efficient
ones, or even, in the case of some non-classical logics, the only possible ones.

1[Boo84), p.373.
?{Boo84], p.377.

Bibliography

[ABT5]

[Ajt88]

[AVrSS]

[Bel76]

[Bel7]

(Bet55]

[Bet58]

BGSS)

A. R. Anderson and N.D. Belnap Jr. Entailment: the Logic of
Helevance and Necessity, volume 1. Princeton University Press,
Princeton, 1975.

M. Ajtai. The complexity of the pigeonhole principle. In Pro-
ceedings of the 29th Annual Symposium on the Foundations of
Computer Science, 1988. Preliminary version.

A. Avron. The semantics and proof theory of linear logic. The-
oretical Compuler Science, 57:161-184, 1088,

N. D. Belnap Jr. How a computer should think. In G. Ryle,
editor, Contemporary Aspects of Philosophy, pages 30-55. Oriel
Press, 1976.

N. D. Belnap Jr. A useful four-valued logic. In J. M. Dunn and
G. Epstein, editors, Medern uses of multiple-valued logics, pages
8-37. Reidel, Dordrecht, 1977,

E. W. Beth, Semantic entailment and formal derivability. Med-
edelingen der Koninklijke Nederlendse Akademie van Weten-
schappen, 18:300-342, 1955.

E. W. Beth. On machines which prove theorems. Simon Stewvin
Wissen Natur-kundig Tijdschrift, 32:49-60, 1958. Reprinted in
[SW83), vol. 1, pages 79-90.

5. R. Buss and G. Turdn. Resolution proofs of generalized pi-
geonhole principles. Theoretical Computer Science, 62:311-17,
1938.

123

124
[Bib82]
[Bla70]
[Boc61]
[Boo84]
[BS89)
[Bus81]

[Car87]

[Cel8?)

[Celg8]

[Chat0]

[CL73]

BIBLIOGRAFPHY

W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig,
1982.

R. Blanché. [La logique et son histoire. Armand Colin, Paris,
1970.

I. M. Bochensky. A History of Formal Logic. University of Notre
Dame, Notre Dame (Indiana), 1961.

G. Boolos. Don't eliminate cut. Journal of Philosophical Logic,
7:373-378, 1984.

H. A. Blair and V. S. Subrahmanian. Paraconsistent logic pro-
gramming. Theoretical Computer Science, 68:135-154, 1989.

S. R. Buss. Polynomial size proofs of the pigeon-hole principle.
The Journal of Symbolic Logic, 52:916-927, 1987.

W. A. Carnielli. Systematization of finite many-valued logics
through the method of tableaux. The Journal of Symbolic Logic,
52:473-493, 1987.

C. Cellucci. Using full first order logic as a programming lan-
guage. In Rendiconti del Seminario Matematico Universita e
Politecnico di Torino. Fascicolo Speciale 1987, pages 115-152,
1987. Proceedings of the conference on ‘Logic and Computer
Science: New Trends and Applications’.

C. Cellucci. Efficient natural deduction. In Temi e prospettive
della logica e della filosofia della scienza coniemporanee, volu-
me I, pages 29-57,CLUEB Bologna, 1988.

C.L. Chang. The unit proof aund the input proof in theorem
proving. Journal of the Association for Computing Machinery,

17:698-707, 1970,

C.L Chang and R.C.T. Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, Boston, 1973.

BIBLIOGRAPHY 125

[CooT1]

[CooT8]

[CR74]

[CRT9]

[Csss]

[Dav8l]

[DCHLS90]

[DH76]

[DLL62]

[DP60]

5. A. Cook. The complexity of theorem proving procedures.
In Proceedings of the 3rd Annual Symposium on the Theory of
Cemputing, 1971.

S. A. Cook. Letter o Richard Statman. Unpublished, 4, April
1878.

S. A. Cook and R. Rechow. On the length of proofs in the propo-
sitional calculus. In Proceedings of the 6th Annual Symposium
on the Theory of Computing, pages 135-148, 1974.

S. A. Cook and R. Rechow. The relative efficiency of proposi-
tional proof systems. The Journal of Symbelic Logic, 44:36-50,
1979.

V. Chvatal and E. Szemerédi. Many hard examples for reso-
lution. Journal of the Association for Computing Machinery,

35:759-768, 1988.

M. Davis. The prehistory and early history of auntomated de-
duction. In [SW83], pages 1-28. 1983.

N.C.A. Da Costa, L.J. Henschen, J.J. Lu, and V.S. Subrahma-
nian. Automatic theorem proving in paraconsistent logies: The-
ory and implementation. In M.E. Stickel, editor, Lecture Notes
in Artificial Intelligence, volume 449, pages 72-86, 1990. 10th
International Conference on Automated Deduction.

B. Dunham and H. Wang, Towards feasible solutions of the
tautology problem. Annals of Maihematical Logic, 10:117-154,
1976.

M. Dawvis, G. Logemann, and D. Loveland. A machine program
for theorem proving. Communications of the Association for
Computing Machinery, 5:394-397, 1962. Reprinted in [SW383],
pp. 267-270.

M. Davis and H. Putnamn. A computing procedure for quantifi-
cation theory. Journal of the Associalion for Computing Ma-
chinery, 7:201-215, 1960. Reprinted in [SW33], pp. 125-139.

126

[Dum78]
[Dun76}
[FE89]
[Fit83]

[Fit87)

[Fit88]
[Fit90]
[Gab20a)

[Gabyob]

[Gal77)

[Galst)

[{Gen3s)

BIBLIOGRAPHY

M. Dummett. Truth and other Enigmas. Duckworth, Londen,
1978.

J. M. Dunn. Intuitive semantics for first-degree entailment and
coupled trees. Philosophical Studies, 29:149-168, 1976.

L. Farinas del Cerro and P. Enjalbert. Modal resolution in
clausal form. Theoretical Computer Science, 65:1-33, 1989.

M. Fitting. Proof Methods for Modal and Intuitionisiic Legics.
Reidel, Dordrecht, 1983,

M. Fitting. Resolution for intuitionistic logic. In Z.W. Ras and
M. Zemankova, editors, Methodologies for Inlelligent Systems,
pages 400—407. North-Holland, Amsterdam, 1987.

M. Fitting. First-order modal {ableaux. Journal of Automated
Reasoning, 4:191-213, 1988.

M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, Berlin, 1990.

D. M. Gabbay. Lds-labelled deductive systems. Preliminary
draft of a book intended for Oxford University Press, May 1990.

D. M. Gabbay. Theory of algorithmic proof. In S. Abrfamsky,
D.M. Gabbay, and T.5.E. Maibaum, editors, Handbook of Logic
in Theoretical Computer Science, volume 1. Oxford University
Press, 1990. To appear.

Z. Galil. On the complexity of regular resolution and the Davis-
Putnam procedure. Theoretical Computer Science, 4:23-46,
1977.

J. H. Gallier, Logic for Computer Science. Harper & Row, New
York, 1986.

G. Gentzen. Unstersuchungen iber das logische Schliessen.
Math. Zestschrift, 39:176-210, 1935. English translation in
[Sza69].

BIBLIOGRAPHY 127

[Gir87al
[GirB7b)

[GI79]

[Gor90]

[Hac85]

[Hinb3]

[Jef8&1]

[Kal34]

{Kan57]

[Kan63]

[Kar72]

[Kle67]

J. Y. Girard. Proof Theory and Logical Complexity. Bibliopolis,
Napoli, 1987,

J. Y. Girard. Lineal logic. Theoretical Computer Science, 50:1-
101, 1987.

M. R. Garey and D. S. Johnson. Computers and Intractability.
A Guide to the theory of NP-Completeness. W.H. Freeman &
Co., San Francisco, 1979.

R. Gore. Naive implementations of semantic tableaux with and
without cut for classical logic, asserted 3-valued logic and bel-
nap’s 4-valued logic. Technical report, Cambridge University
Computer Laboratory, 1990. Forthcoming.

A. Hacken. The intraciability of resolution. Theoretical Com-
puter Science, 39:297-308, 1985.

J. K. J. Hintikka. Form and content in quantification theory,
Acta Philosophice Fennice, V111, 1955.

R. C. Jeffrey. Formal Logic: its Scope and Limits. McGraw-Hill
Book Company, New York, second edition, 1981. First edition
1967.

L. Kalmar. Uber die Axiomatisierbarkeit des Aussagenkalkulus.
Acta Scient. Math. Szeged, 7:222-243, 1934.

S. Kanger. Provability in logic. Acta Universitatis Stockolmien-
sis, Stockolm studies in Philosophy, 1, 1957.

S. Kanger. A simplified proof method for elementary logic.
In Computer Programming and Formal Systems, pages 87-94.
North-Holland, Amsterdam, 1963. Reprinted in {SW83].

R. M. Karp. Reducibility among combinatoriat problems. In
R.E. Miller and J.W. Thatcher, editors, Complexity of Computer
Computations, pages 85-103. 1972,

S. C. Kleene. Mathematical Logic. John Wiley & Sons, Inc.,
New York, 1967.

128

[Mat62]

[MMOS3]

[Mon88al

[Mon83b)

[Mon88d|

[Mon88d)

{Mon89]

[Mur82]

[MWsq]

(0Ss8]

[Par6]

BIBLIOGRAPHY

V. A. Matulis. Two versions of classical computation of predi-
cates witbout structural rules. Soviet Mathematics, 3:1770-1773,
1962.

5. Yu. Maslov, G. E. Mints, and V.P Orevkov. Mechanical proof-
search and the theory of logical deduction in the USSR. In
[SW83], pages 29-38. 1983.

M. Mondadori. Classical analytical deduction. Annali
dell’Universita di Ferrara; Sez. III; Discussion paper series 1,
Universith di Ferrara, 1988,

M. Mondadori. Classical analytical deduction, part II. Annali
dell’Universita di Ferrara; Sez. III; Discussion paper series 5,
Universita di Ferrara, 1988.

M. Mondadori. On the notion of a classical proof. In Temi e
prospetiive della logica e della filosofia della scienza contempo-
ranee, volume I, pages 211-214, CLUEB Bologna, 1988.

M. Mondadori. Sulla nozione di dimostrazione classica. Annali
dell’Universita di Ferrara; Sez. III; Discussion paper series 3,
Universita di Ferrara, 1988,

M. Mondadori. An improvement of Jeffrey’s deductive trees.
Annali dell’Universita di Ferrara; Sez. 111; Discussion paper se-
ries 7, Universita di Ferrara, 1989.

N. V. Murray. Cornpletely non-clausal theorem proving. Artifi-
ctal Intelligence, 18:67-85, 1982.

Z. Manna and R. Waldinger. A deductive approach for program
synthesis. ACM Transactions on Programming Languages and
Systems, 2:90-121, 1980.

F. Oppacher and E. Suen. HARP: A tableau-based theorem
prover. Journal of Automated Reasoning, 4:69-100, 1988.

G. H. R. Parkinson, editor. Leibniz. Logical Papers. Oxford
University Press, 1966.

BIBLIOGRAFPHY 129

[Pra65]

[Prat4j

[Pra78]

[Rob65]

(Scb56)

[Sch77]
[ScoT0)

[ScoT3)

[Smu65|

[Smub8a)

D. Prawitz. Nalural Deduction. A Proof-Theoretical Study.
Almqvist & Wilksell, Uppsala, 1965.

D. Prawitz. Comments on Gentzen-type procedures and the
classical notion of truth. In A, Dold and B. Eckman, editors,
ISILC Proof Theory Symposium. Lecture Notes in Mathematics,
500, pages 290-319, Berlin, 1974. Springer.

D. Prawitz. Proofs and the meaning and completeness of the
logical constants. In J. Hintikka, 1. Niinduoto, and E. Saarinen,
editors, Essays on Mathematical and Philosphical Logic, pages
25-40. Reidel, Dordrecht, 1978,

J. A. Robinson. A machine-oriented logic based on the resolution
principle. Jourral of the Association for Computing Mackinery,
12:23-41, 1965,

K. Schiitte. Ein System des verkniipfenden Schliessens. Archiv
fir matematische Logik und Grundlagenforschung, 2:34-67,
1956.

K. Schitte. Proof Theory. Springer-Verlag, Berlin, 1977.

D. Scott. Qutline of a mathematical theory of computation.
PRG Technical Monograph 2, Oxford University Computing
Laboratory, Programming Research Group, 1970. Revised and
expanded version of a paper under the same title ir the Proceed-
ings of the Fourth Annual Princeton Conference on Information
Sciences and Systems (1970).

D. Scott. Completness and axiomatizability in many-valued
logic. In L. Henkin, editor, Tersky Symposium. American Math-
ematical Society, 1973.

R. M. Smullyan. Analytic natural deduction. The Journal of
Symbolic Logic, 30:549-559, 1965,

R. M. Smullyan. First-Order Logic. Springer, Berlin, 1968.

130

[Smub8b)
[Smub8c]

[Sta?7]

[Sta78)

[Stis6]

(Stog7)

[Sun83]

[SW83]
[52a69]
[Ten7§]

[Tho]

[TMMss]

BIBLIOGRAPHY

R. M. Smullyan. Analytic cut. The Journal of Symbolic Logic,
33:560-564, 1968,

R. M. Smullyan. Uniform gentzen systems. The Journal of
Symbolic Logic, 33:549-559, 1968.

R. Statman. Herbrand’s theorem and Gentzen’s notion of a
direct proof. In J. Barwise, editor, Handbook of Mathematical
Logic, pages 897-912. North-Helland, Amsterdam, 1977.

R. Statman. Bounds for proof-search and speed-up in the pred-
icate calculus. Annals of Mathematical Logic, 15:225-287, 1978.

M. E. Siickel. An introduction to automated deduction. In
W. Bibel and P. Jorrand, editors, Fundamentals of Ariificial
Intelligence, pages 75-132. Springer-Verlag, 1986.

L. Stockmeyer. Classifying the computational complexity of
problems. The Journal of Symbolic Logic, 52:1-43, 1987.

G. Sundholm, Systems of deduction. In D, Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, volume 1, chap-
ter 1.2, pages 133-188. Reidel, Dordrecht, 1983.

J. Siekman and G. Wrightson, editors. Automation of Reasoning.
Springer-Verlag, New York, 1983.

M. Szabo, editor. The Collected Papers of Gevhard Gentzen.
North-Holland, Amsterdam, 1969.

N. Tennant. Natural Logic. Fdimburgh University Press, Edin-
burgh, 1978.

I. Thomas, editor. Greek Mathematics, volume 2. William Heine-
mann and Harvard University Press, London and Cambridge,
Mass., 1941.

P. B. Thistlewaite, M. A. McRobbie, and B. K. Meyer. Auto-
mated Theorem Proving in Non Classical Logics. Pitman, 1988.

BIBLIOGRAPHY 131

[Tse68]

[Urq#?]

[Urq89)]

[Urq90a]

[Urq90b)

[Wal90]

[Wan60]

G. 8. Tseitin. On the complexity of derivations in propositional
calculus. Studies in constructive mathematics and mathematical
logic. Part 2, pages 115-125, 1968. Seminars in rmathematics,
V. A. Stkelov Mathematical Institute.

A. Urquhart. Hard examples for resolution. Jeurnal of the As-
soctation for Computing Machinery, 34:209-219, 1987.

A. Urquhart. The complexity of Gentzen systems for proposi-
tional logic. Theoretical Computer Science, 66:87-97, 1989.

A. Urquhart. Complexity of proofs in classical propositional
Togic. In Y. Moschovakis, editor, Logic from Computer Science,
Springer-Verlag, Berkeley. Forthcoming.

A. Urquhart. The relative complexity of resolution and cut-free
Gentzen systems. Discrete Applied Mathematics. Forthcoming.

L.A. Wallen. Automated Deduction in Non-Classical Lagics. The
MIT Press, Cambridge, Mass., 1990.

H. Wang. Towards mechanical mathematics. [BY Journal
for Research Development, 4:2-22, 1960. Reprinted in [SW83],
PP. 244.264.

