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Abstract 

Cut-free Gentzen systems and their semantic-oriented variant, the tableau 
method, constitute an established paradigm in proof-theory and are of con­
siderable interest for automated deduction and its applications. In this latter 
context, their main advantage over resolution-based methods is that they 
do nol require reduction in clausal form; on the other hand, resolution is 
generally recognized to be considerably more efficient within the domain of 
formulae in clausal form. 

Iu this monograph we a.nalyse aud develop a recently-proposed alternative 
to the tableau method, the system KE [Mon88a, Mon88b]. We show that 
KE, though being 'close' to the tableau method and sharing all its desirable 
features, is essentially more efficient. We trace this phenomenon to the fact 
that KE establishes a closer connectiou with the intended (classical, bivalent) 
semantics. In particular we point out, in Chapter 2, a basic 'redundancy' in 
tableau refutations (or cut-free Gentzen proofs) which depends on the form of 
the propositional inference rules and, therefore, affects any procedure based 
on them. Iu Chapter 3 we present the system KE and show that it is not 
affected by this kind of redundancy. An important property of KE is the 
analytic cut property: cuts cannot be eliminated but can be restricted to 
subformulae of the theorem, so that the subformula principle is still obeyed. 
We point out the close relationship between KE and the resolution method 
within the domain of formulae in clausal form. In Chapter 4 we undertake 
an analysis of the complexity of the propositional fragment of KE relative 
to the propositional fragments of other proof systems, including the tableau 
method and natural deduction, and prove some simulation and separation 
results. We show, among other things, that KE and the tableau method 
are separated with respect to the p-simulation relationship (KE can linearly 
simulate the tableau method, but the tableau method cannot p-simulate 
KE). In Chapter 5 we consider Belnap's four-valued logic, which has been 
proposed as an alternative to classical logic for reasoning in the presence of 
inconsistencies, and develop a tableau-based as well as a KE-based refutation 
system. Finally, in Chapter 6, we generalize on the ideas contained in the 
previous chapters and prove some more simulation and separation results. 



Acknowledgements 

This monograph consists of my thesis submitted for the degree of Doctor of 
Philosophy in the University of Oxford. [wish to thank my supervisors, Joe 
Stay and Roberto Garigliano, for their encouragement! advice and guidance 
during the course of this thesis. Thanks are also due to Marco Mondadori 
for his invaluable comments and suggestions. I have also benefitted from 
conversations with Ian Gent, Rajev Gore, Angus Macintyre j Paolo Mancosu, 
Bill McColl, Claudio Pizzi, Alasdair Urquhart, Lincoln Wallen and Alex 
Wilkie. 

I also wish to thank Day Gabbay for providing me with a draft of a 
forthcoming book of his; Peter Aczel and Alan Bundy for giving me the 
opportunity to discuss my work in seminars given at Manchester and Edin­
burgh, and Michael Mainwa.ring for doing his best to make my English more 
acceptable. 

I am grateful to my parents and to all my friends, especially to Gabriella 
D' Agostino for her usual impassioned support. 

This research has been supported by generous grants awarded by the 
Italian Ministry of Education 1 the City Council of Palermo CBorsa. di studio 
Ninni Cassara') and CNR-NATO. 



Contents 

1	 Introduction 5
 

2	 The redundancy of cut-free proofs 12
 
2.1 Invertible sequent calculi . . . . .	 12
 
2.2 From sequent proofs to tableau refutations	 16
 
2.3 Cut-free proofs and bivalence .	 17
 
2.4 The redundancy of cut-free proofs	 20
 
2.5 The culprit .	 22
 
2.6 Searching for a countermodel	 24
 

2.6.1 Expansion systems	 27
 
2.6.2 Redundant trees	 31
 

3	 An alternative approach 33
 
3,1 Bivalence restored. . . . . . . . . . 33
 
3.2 The system KE .	 35
 
3.3 Soundness and completeness of KE	 40
 

3.3.1 Completeness of KE: proof one	 41
 
3.3.2 Completeness of KE: proof two	 43
 
3.3.3 The subformula principle ....	 45
 

3.4 KE and the Davis-Putnam Procedure	 48
 
3.5 The first-order system KEQ . .	 50
 
3.6 Soundness and completeness of KEQ _	 51
 
3.7 A digression on direct proofs: the system KI .	 53
 
3.8 Analytic natural deduction.	 55
 
3.9 Non-classicallogics	 . 57
 

1 



2 CONTENTS
 

4 Computational complexity 59
 
4.1 Absolute and relative complexity 59
 
4.2 Relative complexity and simulations. 62
 
4.3 An overview. .. . . 63
 
4.4 Are tableaux an improvement on truth-tables? 67
 
4.5 The relative complexity of KE and KI 71
 

4.5.1 KE versus KI . 72
 
4.5.2 KE versus the tableau method 74
 
4.5.3 KE versus Natural Deduction 79
 
4.5.4 KE and resolution 84
 

4.6 A more geueral view . . 84
 

5 Belnap's (our valued logic 90
 
5.1 Introduction . 90
 
5.2 'How a computer should think' 91
 
5.3 Beluap's four-valued model ... 92
 
5.4 Semantic tableaux for Belnap's logic 94
 

5.4.1 Propositional tableaux 94
 
5.4.2 Detecting inconsistencies 100
 
5.4.3 First-order tableaux 102
 

5.5 An efficient alternative . . . . 105
 

6 A generalization: cut systems 112
 
6.1 Proper derived rules . 112
 
6.2 Cut systems . . . . . . . . . . . . . . 116
 
6.3 Aualytic cut systems versus cut-free systems 118
 

7 Conclusions 120
 



List of Figures
 

2.1 A closed tableau for {A V B, A V ~B, ~A V C, ~A V ~C} 23
 
2.2 A typical pattern. . . . . . . . . . . 24
 
2.3 Redundancy of tableau refutations. . " .... 25
 

3.1 Two different analyses. . . . . . . . . . . . . . . . . . . . 35
 
3.2 A KE-refutation of {A V B, A V ~B, ~A V C, ~A V ~C} 40
 

4.1 A KE-refutation of HPbP'l'P~' 76
 
4.2 A KE-refutation of H,. ... 80
 

5.1 A proof of «A V B) i\ ~A) -> (B V (A i\ ~A)) . . . . 97
 
5.2 A failed attempt to prove the disjunctive syllogism . 98
 
5.3 An REr...·proof of «A V B) i\ ~A) -> (B V (A i\ ~A)) . 107
 

3 



List of Tables
 

2.1 Sequent rules for classical propositional logic. 14
 
2.2 Propositional tableau rules for unsigned formulae. 17
 

3.1 KE rules for unsigned formulae. 39
 
3.2 CNF reduction rules. 47
 
3.3 Generalized KE rules. 49
 

4.1 A sequent-conclusion na.tural deduction system. .. . . . . .. 83
 

5.1 Propositional tableau rules for Belnap's four valued logic. 95
 
5.2 Formulae of type 0'. . 96
 
5.3 Formulae of type {3. 96
 
5.4 The rules of REfd•. • 105
 

4 



Chapter 1 

Introduction 

Traditionally, proof theory has been concerned with formal representations of 
the notion of proof as it occurs in mathematics or other jntelleetual activities, 
regardless of the efficiency of snch representations. The rapid development of 
computer science has bronght abont a dramatic cbange of attitude. Efficiency 
has become a primary concern and this fact has given rise to a whole new 
area of research in which the 'old' questions about provability, completeness, 
decidabilitYl etc, have been replaced by new ones, with considerations of 
complexity playing a major role. A formal representation which is complete 
in principle may turn out to be 'practically incomplete' because in some cases 
it requires unrealistic resources (in terms of computer time and memory). 
As a result of this change of perspective, formal representations which are 
eqnivalent witb respect to the consequence relation that they represent, can 
be seen to be essentially separated as to their practical scope. 

Nowhere has this shift of emphasis been more apparent than in the field 
of propositional logic. Here the neglected star is back in the limelight. Open 
questions of theoretical computer science like P = ?NP and NT =?CQ-Np 
have revitalized a subject which seemed to be 'saturated' and to deserve 
only a brief mention as a stepping stone to the 'real thiug'. But the interest 
in propositional logic is not restricted to these fundamental open questions. 
There is a plethora of problems which are perhaps less fundamental but of 
practical and theoretical importance. Many of them arise when we consider 
logic as a tool. This was certainly the attitude of the pioneers of formal 
logic, from Aristotle to Leibniz. The latter dreamt of a calculus ratiocinator 
of which mathematical logic would be the heart, and explicitly related the 
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6 CHAPTER 1. INTRODUCTION 

importance of his project to its potential 'usefulness': 

For if praise is given to the men who have determined the number 
of regular solids - which is of no use, except insofar as it is 
pleasant to contemplate - and if it is thought to be an exercise 
worthy of a mathematical genius to have brought to light the 
more elegant property of a conchoid or cissoid, or some other 
figure which rarely has any use, how much better will it be to 
bring under mathematical laws human reasoning, which is the 
most excellent and useful thing we have l . 

Later the role of logic in the foundations of mathematics took over and, while 
this opened up an entire world of conceptual and technical subtleties, it also 
brought a.bout the neglect of many interesting questions2 • AlTIong such ques­
tions are all those related to the direct usc of logic to solve problems about 
our 'world' (or our database), that is as a partial realization of Leibniz's 
dream. In the second half of this century, the revival of Leibniz's program 
(known a.s 'automated deduction') as well as the significant role played by 
a variety of logical methods in both theoretical and applied computer sci­
ence, has resulted in a greater awareness of the computational aspects of 
logical systems and a closer (or at least a fresh) attention to their proof­
theoretical representations. As Gahhay has stressed [Gah90a, Gab90bJ logical 
systems 'which may be conceptually far apart (in their philophical motiva­
tion and mathematical definitions), when it comes to automated techniques 
and proof-theoretical presentation turn out to be brother and sister'[Gab90a, 
Section 1.1}. On the other hand, the same logical system (intended as a set­
theoretical definition of a consequence relation) usually admits of a wide 
variety of proof-theoretical representations which may reveal or hide its sim~ 

ilarities with other logical systems3 . The consideration of these phenomena 
has prompted Gabbay to put forward the view that 

1[Par66, page 166]. 
21n his survey paper [Urq90aJ Alasdair Urquhart, mentions the simplification or Boolean 

formulae. 'Here the general problem t.akes the form: how many logical gates do we need to 
represent EL given Boolean function? This is surely as simple and central a logical problem 
that one could hope to find; yet, in spite or Quine's early contributions, the wnole area 
has been simply abandoned by mosl.logicians, and is apparently though t to be fit only ror 
engineers.' He also remarks t.hat 'our lack or understanding or the simplification problem 
retards our progress in the area of the complexity of proofs,' 

3 As an example of tbis approach, Gabbay observes that 'it is very easy to move from 
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[... J a logical system L is not jnst the traditional consequence 
relation f-, but a pair (f-, St-), where I- is a mathematically defined 
consequence relation (i.e. a set of pairs (~, Q) such that ~ I- Q) 
and St- is an algorithmic system for generating all those pairs. 
Thns, according to this definition, classical logic f- perceived as 
a set of tautologies together with a Gentzen system SI- is not 
the same as classical logic together with the two-valued truth­
table decision procedure Tt- for it. In OUf conceptual framework, 
(r,Se) is not the same logic as (r, Te)'. 

Gabbay's proposal seems even more suggestive when considerations of com­
putational complexity enter the picture. Different proof-theoretical algo­
rithms for generating the same consequence relation may have different com­
plexities. Even more interesting: algorithmic representations whidJ appear 
~close' to each other from the proof-theoretical point of view may show dra­
matic differences as far as their efficiency is concerned. A significanL part of 
this work will be devoted to illustrate this somewhat surprising phenomenon. 

In the tradition which considers formal logic as an or'ganon of thought5 a 
central role has been played by the 'method of analysis', which amounts 
to what today, in the computer science circles, is called a 'bottom-up' or 
'goal-oriented' procednre. Though the method was largely used in the math-

the truth-table presentation of classical logic to a truth-table system for Lukasiewicz's 
Tl-valued logic. It is not so easy to move to an algorithmic system for intuitionistic logic. 
In comparison, for a Gentzen system presentation, exactly the opposite is true. Intu­
itionistic and c1assicallogic are neighbours, while Lukasiewicz's logics seem completeley 
different. '[GabgOa, Section 1.1]. 

4{Gab90a, Section 1.1]. 
sOf comse, as a matter of historical fact, logicians do not need to be ftlil-time repre­

sentatives of a single tradition. Leibniz is perhaps the best example: while he emphasi.zed 
the practical utility of his dreamt-of calculus of reason to solve verbal disputes, he also 
claimed that the whole of mathematics conld be reduced to logical principles, indeed to 
the sole principle of identity; this made him a precursor of the logicist tradition in the phi­
losophy of mathematics. Gentzen, who certainly beiOilged to the 'fonndational' tradition, 
showed some concern for the practical aspects of his own work. Among the advantages 
of his calculus of natural deduction he mentioned that 'in most cases the derivations for 
true formulae are shorter [... ] than their counterparts in logistic calcnli'[Gen35, page 80]. 
A brilliant representative of both traditions is Beth: he was involved in the practical as 
well as the fonndational aspects of logic. His emphasis on the advantages of the tableau 
method as a tool for drawing inferences is pervasive and, as we will see, even excessive. 
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ematical practice of the ancient Greeks, its fullest description can be found 
in Pappus (3rd century A.D.), who writes: 

Now analysis is a method of taking that which is sought as though 
it were admitted. and passing from it through its consequences in 
order 1 to something which is admitted as a result of synthesis; 
for in analysis we suppose that which is sought be already done, 
and we inquire what it is from which this comes about, and again 
what is the antecedent cause of the latter, and so on until, by 
retracing our stepsl we light upon something already known or 
ranking as a first principle; and such a method we call analysis, 
as being a solution backw<tJds6 

• 

This is the so-called directional sense of analysis. The idea of an 'analytic 
method', however, is often associated with another sense of lanalysis' which 
is related to the 'purity' of the concepts employed to obtain a result and, 
in the framework of proof-theory, to the subformula principle of proofs. In 
Gentzen's words: 'No concepts enter into the proof other than those con­
tained in its final result, and their use was therefore essentia.l to the achieve­
ment of that resulC[Geu35, p. 69] so that 'the final result is, as it were, 
gradually built up from its constituent elements [Gen35, p.88]. Both mean­
ings of analysis have been represented, in the last fifty years, by the notion 
of a cut-free proof in Gentzen's sense: not only cut-free proofs employ no 
concepts outside those contained in the statement of the theorem, but they 
can also be discovered by means of simple 'backwards' procedures like that 
described by Pappus. Therefore Gentzen-style cut-free methods (which in­
clude their semantic-fla.voured descendant, known as 'the tableau method') 
Were among the first used in automated deduetion7 and are today enjoying 
a deserved revivalS which is threatening the unchallenged supremacy that 
resolution and its refinements9 have had for over two decades in the area of 

6[Th041] pp. 59~599.
 
7See , for example, [Bet58]' [Wan60], [Kan63]. err. also [Dav83) and [MM083J.
 
8[Fit90] and [GaI86] are recent text hooks on 'logic for computer science' which are en­

tirely based on the tableau method and on cut-free Gentzen systems respectively. [WaI90] 
is a book which combines the technical power of Bibel's connection method [Bib82] with 
the conceptual clarity of the tableau representation of classical as well as non-classical 
logic. [OS88J is a recent example of a complele theorem-prover ba.<>ed on the tableau 
method. 

9See [CL73] and [5t;861 for an overview. 
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automated deduction and logic programming. 
There are indeed several reasons which may lead us to prefer cut-free 

Gentzen methods to resolution as a basis for automated deduction as well 
as for other applications, like program verification. First, unlike resolution, 
these methods do not require reduction in any normal form, which fact allows 
them to exploit the full power of first order logiclO• Second, the deriva.tions 
obtained constitute an acceptable compromise between 'machine-oriented' 
tests for validity, like resolution derivations, and 'human~oriented'proofs,like 
those constructed in the framework of natural deduction calculi; this makes 
them more suitable for 'interactive' lise. Third, they admit of natural exten­
sions to a wide variety of non-classicallogics11 which appear less contrived 
than their resolution-based counterparts12• 

On the other hand, there is one reason, which usually leads us to prefer 
some form of resolution: efficiency. As will be shown in Chapter 4 cut­
free methods are hopelessly inefficient and lead to combinatorial explosion 
in fairly simple examples which are easily solved not only by resolution but 
even by the old, despised truth-tables. What is the ultimate cause of this 
inefficiency? Can it be remedied? The main contribution of our work is a 
clarification of this issue and a positive proposal motivated thereby. The 
clarification can be expressed as a paradox: the ultimate cause of the in­
efficiency of cut-free methods is exactly what has traditionally made thetn 
so useful both from the theoretical and practical point of view, namely their 
being cut-free. But, as Smullyan once remarked, 'The real importance of cut­
free proofs is not the elimination of cuts per se, but rather that such proofs 
obey the subformula principle. 113

• Apart from Smullyan's short paper cited 
above, however, the proof-theory of analytic cut systems, i.e. systems which 
allow cuts but limit their application so that the resulting proofs still obey 
the subformula principle, has not been adequately studied, and the same is 

lOOn this point see [Cel87]. 
llFor lntuitionil'itic and Modal logics, see [Fit,83]; see also [Wa190j for a t.ableau-oriented 

extension of Bibel's connedion method to intuitionistic and modal logics; for relevance 
logics see [TMM88]; (or many-valued logics see [Car87]; for linear logic see [Gir87b] and 
[Av<88J. 

USee [FE89] and [Fit87}. For a review of these and other resolution-based methods for 
non-ciassicallogics, see (WaI90]. 

13[Smu68b), p. 560. 
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true of their relative complexity14. In this work we shall take some steps in 
a forward direction. Moreover, while considerations of efficiency are nsually 
strictly tochnical and unconnected with more conceptual issues, for example 
seman tical issues, we shaH make a special and, we hope, successful effort to 
bring out a clear connedion between computational efficiency on the one 
hand, and a close correspondence with the underlying (classical) semantics 
on the other. 

We shall ba.."ie our study on a particular system, the system KE, recently 
proposed by Mondadori [Mon88a, Mon88b] as an alternative to the tableau 
method for classical logic. As will be argued, KE is in some sense ideal for 
our purposes in that it constitutes a refutation system which, though being 
proof-theoretically 'close' to the tahleau method, is essentia.lly more efficient. 
Moreover, it is especially suited to the purpose of illustrating the connection 
between efficiency, analytic cut and classical semantics, which is the object 
of our stlldy. 

In Chapter 2, we examine what we call the 'redundancy of cut-free proofs' 
as a phenomenon which depends on the form of the cut-free rules themselves 
and not on the way in which they are applied: this phenomenon affects cut­
free systems intended as non-deterministic algorithms for generating proofs 
and therefore affects every proof generated by them. We relate this intrinsic 
redundancy to the fact that the cut-free rules do not reflect, in some sense, 
the (classical bivalent) structure of their intended semantics. In Chapter 3 
we develop an alternative approach based on Mondadori's system KE which 
is not cut-free yet obeys the subformula principle (and also a stronger normal 
form principle), so preserving the most important property of cut-free sys­
tems. The system KE is a refuta.tion system which, like the tableau method, 
generates trees of (signed or unsigned) formulae by means of tree expansion 
rules. Its distinguishing feature is that its only branching rule is the rule PH 
(Principle of Bivalence) which is closely related to the cut rule of Gentzen 
systems. So, in spite of all the similarities, KE hinges upon a rule whose 
absence is typical of the tableau method (and of all cut-free systems). An 
important related property of KE is the analytic cut property: cuts are not 
eliminable but can be restricted to ana.lytic ones, involving only subformulae 
of the theorem. We also show that the set of formulae to be considered as 

l'lFor a recent exception see [Urq90bJ. 
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cut formulae can be further restricted as a result of a strong normal form 
theorem. 

rn Chapter 4, after briefly reviewing the most important results on the 
relative complexity of propositional calculi, we examine how the use of ana­
lytic cuts affects the complexity of proofs. We show that KE (and, in fact, 
any analytic cut system) is essentially more efficient than the tableau method 
(or any cut-free system). These results should be read in parallel with the 
semantic-oriented analysis carried out in Chapter 2: KE establishes a close 
connection with classical (bivalent) semantics which the tableau method fails 
to do, and this very fact has important consequences from the computational 
point of view. 

Like the tableau method, KE can be adapted to a variety of non-classical 
logics including intuitionistic and modal logics. All these non-classical ver­
sions can be obtained trivially, given the corresponding tableau-based sys­
tems, as explained in Section 3.9. In Chapter 5 we shall examine a new 
case: Belnap's four-valued logic. This is a form of relevant logic which has 
also an interesting motivation from the point of view of computer science, 
since it is intended to formalize the notion of deduction from inconsistent 
databases. We formulate a tableau-based and a KE-based system both of 
which, as in the case of classical two-valued logic, generate simple binary 
trees. These systems are based on a reformulation of Belnap's four-valued 
semantics which 'mimics' the bivalent structure of classical semantics and, to 
the best of our knowledge, is new to the literature. Although Belnap's logic 
is a restriction of classical logic (intended a..., a consequence relation), our 
systems can be seen as extensions of the corresponding classical systems in 
that tbey allow us to characterize simultaneously the classical two-valued and 
Belnap's four-valued consequence relation using the same Cormal machinery. 

Finally, in Chapter 6, we generalize on the ideas contained in the previous 
chapters. We show that, as far as the complexity of 'conventional' (analytic 
and non-analytic) proof systems is concerned, the cut rule is all that matters 
and the form of the logical rules (under certaiu conditions) does not play any 
significant role. This chapter finalizes the process started in Chapter 2: what 
in Gentzen-type systems is eliminable (and indeed its eliminability provides 
a major motivation for the form of the rules) becomes, in 'cut systems', the 
only essential feature. 



Chapter 2 

The redundancy of cut-free 
proofs 

2.1 Invertible sequent calculi 

Gentzen introduced the sequent calculi LK and LJ as well as the natural 
deduction calculi NK and NJ in his famous 1935 paper [Gen35]. Apparently 
he considered the sequen t calculi as technically more convenient for metalog­
ieal investigation l . In particular he thought that they were lespecially suited 
to the purpose' of proving the Hauptsatz and that their form was 'largely de­
termined by considerations connected with [this purpose]'2. He called these 
calculi 'logistic' because, unlike the natural deduction calculi, they do not 
involve the introduction and subsequent discharge of assumptions, but deal 
with fonnulae which are 'true in themselves, i.e. whose truth is no longer cOn­

ditionalon the truth of certain assumption formulae'3. Such 'unconditional' 
formulae are seqllents, i.e. expressions of the form 

(2.1 ) A1, ... ,An I-B1 , ••• ,Bn 

(where the Ai'S and the Bi's are formulae) with the same informal meaning 
as the formula 

Al 1\ ... 1\ An ---+ B I V '" V B m. 

'[C,,35], p. 69 
'[C,,35. p. 89J. 
'[C,,35], p. 82. 

12 



13 2.1. INVERTIBLE SEQUENT CALCULI 

The sequence to the left of the turnstyle is called 'the antecedent' aDd the 
sequence to tbe right is called 'the succedent'. In the case of intuitionistic 
logic the succedent may contain at most one formula. In this chapter we 
shall consider the classical system and focus on the pl'Opositional rule;. 

Although Gentzen considered the antecedent and the succedent as se­
quences, it is often more convenient to use sets, which eliminates the need 
for 'structural' rules to deal with permutations and repetitions of fonnulae4 • 

Table 2.1 shows the rules of Gentzen's LK once sequences have been re­
placed by sets (we use r,D.., etc. for sets of formulae and write f,A as an 
abbreviation of r U {A}). A proof of a, sequent r I- D.. consists of a tree of 
sequents built up in accordance with the rules and on which all tDe leaves 
are axioms. Gentzen's celebrated Hauptsatz says that the cut rule can be 
eliminated from proofs. This obviously implies that the cut-free fragment is 
complete. Furthermore, one can discard the last structural rule left - the 
thinning rule - and do without structural rules altogether without affecting 
completeness, provided that the axioms are allowed to have the more general 
form 

r,.4~1\,A. 

This well-known variant corresponds to Kleene's system G4 [Kle67, chapter 
VI). 

Gentzen's rules have become a paradigm both in proof-theory and in its 
applications. This is not without reason. First, like the natural deduction 
calculi, they provide a precise analysis of the logical operators by specifying 
how each operator can be introduced in the antecedent or in the succedent 
of a sequent5 . Second, their form ensures the validity of the Hauptsatz: 
each proof can be transformed into one which is cut-free, and cut-free proofs 

"This reformnlation is adequatl' for classical and intuitionistic logic, but not if one wants 
to use sequents for some othl'r logic, like rell'vancl' or linear logic, in which t.he number 
of occutrences of formulae counts. For such logics the antl'cl'dl'nt and the succedent are 
usually represented as multisets; see [TMM88] and [Avr88]. 

5Whereas in thl' natural deduction calculi there are, for each operator, an introduction 
and an elimination rull', in the sequent calculi there are only introdudion rules and the 
eliminations take the form of introductions in the antecedent. Gentzen seemed to consider 
the difference between the two formulations as a purely technical aspect. See [Sun83]. He 
also suggested that the rules of the natuml deduction calculus could be seen as de.jini1ionfJ of 
the opl'rators themselves. In fact he argued that lhe introduct.ion rules alone are sufficient 
for this purpose and that the elimination rules are 'no more, in the final analysis, t.han 
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Axioms 

A~A 

Structural rules 

r,A~~ r~~,A[Cut]r ~ ~ [Thinning]
r e , ~ ~,A r ~ ~ 

Operational rules 

r,A ~ ~ r, B ~ ~ [I-V/eft] r ~ ~,A r ~ ~,B [I-A ri htl 
r,AvB~~ r ~ ~,AA B 9 

r,A,B ~~ r~~,A,B 

r,A A B ~ ~ [I-A/eft] r ~ ~,A VB [I-V right] 

r,A~~,Br ~ ~,A r, B ~ ~ [l--+left] r ~ ~,A -+ B [l--+right] 
r,A-+B~~ 

r~ ~,A r,A~~ 
r, ~A ~ ~ [I-~left] r ~ ~,~A [l-~right] 

Table 2.1: Sequent rules for classical propositional logic. 
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enjoy the subformula property: every sequent in the proof tree contains only 
subformulae of the formulae in the sequent. to be proved. From a conceptual 
viewpoint this property represents the notion of a purely analytic or 'direct' 
argument6 

: 'no concepts enter into the proof other than those contained 
in its final result, and their use was therefore essential to the achievement 
of that result'[Gen35, p. 69]. Third, the rules of a cut-free system, like 
Kleene's G4, seem to be particularly suited to a 'goal-oriented' search for 
proofs: instead of going from the axioms to the endsequent, one can start 
from the endsequent and use the rules in the reverse direction, going from the 
conclusion to suitable premises from which it can be derived. This method, 
which is clearly reminiscent of Pappus' 'theoretical analysis'1, works only in 
virtue of an important property of the nlles of G4 described in Lemma 6 of 
[Kle67], namely their invertibility. 

Definition 2.1.1 A rule is inver1.ible if the provability of the sequent below 
the line in each application oC the rule implies the provability of all the 
sequents above the line. 

As was early recognized by the pioneers of Automated DeductionS, if a logical 
calculus has to be employed Cor this kind of 'bottom-up' proof-search it is 
essential that its rules be invertible: this allows us to stop as soon as we reach 
a sequent that we can recognize as unprovable (for instance one containing 
only atomic formulae and in which the antecedent and the suceedent are 
disjoint) and conclude that the initial sequent is also unprovable. We should 
uotice that the absence of the thinning rule is crucial in this context because 
it is easy to see that the thinning rule is not invertible: the provability of its 
conclusion does not imply, in general, the provability oC the premise. 

consequences of these definitions'[Gen35, p. 80J. He also observed that this 'harmony' 
is exhibited by the intuitionistic calculus but breaks down in the dassical case. For a 
thorough discussion of this subtle meaning-theoret.ical issue the reader is referred to the 
writings of Michael Dummett and Dag Prawitz. in particular [Dum78] and [Pra78]. 

60n this point see [Sta77]. 
1See t,he Introduction above. 
8See for instance [Mat621. 
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2.2	 From sequent proofs to tableau refuta­
tions 

As far as dassicallogic is concerned, a system like G4 admits of an interesting 
semantic interpretation. 

Let us say that a sequent r I- ~ is valid if every situation (i.e. a boolean 
valuation) which makes alI the formulae in r true, also makes true at least 
one formula in.6.. Otherwise if some situation makes all the formulae in r 
true and a.ll the formulae in .6. false, we say that the sequent is falsifiable and 
that the situation provides a countermodel to the sequent. 

According to this semantic viewpoint we prove that a sequent is valid by 
ruling out all possible falsifying situations. So a sequent r I- ~ represents a 
valuation problem: find a boolean valuation which falsifies it. The soundness 
of the rules ensures that a valuation which falsifies the conclusion must also 
falsify at least one of the premises. Thns, if applying the rules backwards we 
reach an axiom in every branch, we are allowed to conclude that no falsifying 
valuation is possible (since no valuation can falsify an axiom) a.nd that the 
endsequent is therefore valid. On the other hand, the invertib£Jity of the rules 
allows us to stop as soon as we reach a falsifiahle sequent and claim that any 
falsifying valuation provides a countermodel to the endsequent. Again, if 
the thinning rule were allowed, we would not be be able, in general, to re­
transmit falsifiability back to the end sequent. So, if employed in bottom-up 
search procedures, the thinning rule may result in the loss of crucial semantic 
information. 

Beth, Hintikka, Schutte and Kanger (and maybe more) independently showed, 
in the '50s, how this semantic interpretation provided a strikingly simple and 
informative proof of Godel's completeness theorem9 . Their results suggested 
that the semantic interpretation could be presented as a proof method on 
its own, in which sequents do not appear and complex formulae are progres­
sively 'analysed' into their successive components. This approach was later 
developed and perfected by Smullyan with his method of 'analytic tableaux' 
(Smu68a]. 

The construction of an analytic tableau for a sequent r I- ~ closely 
corresponds to the systematic search for a countermodel outlined above ex­

9[BeI55), [Hin55], [Soh56], [Kan57]. 
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A fI BE ~(A fI B)A fI ~E~fI 
B 

~(A V B) 
E~V AVB 

~A AfBEV 
~B 

~(A~B)
 
E~~
 A~B 

A ~E~ 
~B 

~~A 
--E~~ 

A 

Table 2.2: Propositional tableau rules for .unsigned formulae. 

cept that Smullyan's presentation uses trees of formulae instead of trees of 
sequents. The correspondence between the tableau formulation and the se­
quent formulation is illustrated in detail in Smullyan's book [Smu68a] to 
which we refer the reader Jo . The propositional tableau rules (for unsigned 
formulae) are listed in Table 2.2. 

2.3 Cut-free proofs and bivalence 

This evolution from the original LK system to Smullyan's system of 'ana­
lytic tableaux' took over thirty years but did not change Gentzen's formu­
lation significantly. However, Gentzen's rules are not the only possible way 
of analysing the classical operators and not necessarily the best for a.ll pur­
poses. The form of Gentzen's rules was influenced by considerations which 
were partly philosophical, partly technical. In the first place he wanted to set 
up a formal system which 'comes as close as possible to actual reasoning'lI. 
In this context he introduced the natural deduction calculi in which the in­
ferences are analysed essentially in a constructive way and classical logic is 

lOSee also [Smu68c] and [Sun83]
 
11 [Gen35], p. 68.
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obtained by adding the law of excluded middle in a purely external manner. 
Then he recognjzed that the special position occnpied by this law would have 
prevented him from proving the Hauptsatz in the case of classical logic. So 
he introduced the sequent calculi as a technical device in order to enunciate 
and prove the Hauptsatz in a convenient forml2 both for intuitionistic and 
classical logic. These calculi still have a strong deduction-theoretic flavour 
and Gentzen did not show any sign of considering the relationship between 
the classical calculus and the semantic notion of entailment which, at the 
time, was considered a,.g highly suspicious. 

The approach developed in the '50 1s by Deth and Hintikka was mainly 
intended to bridge the gap between classical semantics and the theory of 
formal derivability. In his 1955 paper, where he introduced the method of 
semantic tableaux, Beth thought he had reached a formal method which was 
'in complete harmony with the standpoint of [classical bivalent] semantics' 
[Bet55, p. 317]. He also claimed that this method would allow for the 'purely 
mechanical' construction of proofs which were at the same time 'remarkably 
concise' and could even be 'proved to be, in a sense: the shortest ones which 
are possible' [Bet55, p. 323]. On the other hand Hintikka, who indepen­
dently and simultaneously developed what amounts to the same approach, 
hoped that in this way he would 'obtain a semantical theory of quantifica­
tion which satisfies the highest standard of constructiveness' [Hin55, p. 21]. 
Both authors explicitly stressed the correspondence between their own rules 
and those put forward by Gentzen13 . So two apparently incompatible aims 
seemed to be achieved in the formal framework of Gentzen-type rules. 

The solution to this puzzle is that the so-called semantic interpretation of 
Gentzen's rules does not establish those 'close connections between [classical] 
semantics and derivability theory' that Beth tried to point out. In fact if 
one takes the cut-free rules as a formal representation of cla.5sicallogic, the 
situation seems odd. The rule which the Hauptsatz shows to be eli minable is 
the cut rule: 

r, A ~ ~ r ~ ~, A [CUT] 
r~~ 

If we read this rule upside-down, following the same semantic interpretation 

"[G..35], p. 69.
 
13{Bet55], p. 318 and p. 323; [Hin55], p.47.
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that we adopt for the operational rules, then what the cut rule says is: 

In all circumstances and for all propositions A, eit.her A is true 
or A is false. 

But this is the Principle of Bivalence, namely the basic principle of classical 
logic. By contrast, none of the rules of the cut-free fragment implies biva­
lence (as is shown by the three-valued semantics for thls fragment14

). The 
elimination of cuts from proofs is, so to speak, the elimination of bivalence 
from the underlying semantics15 

. 

We have, then, a rather ambiguous situation: on the one hand we have 
a complete set of rules which are usually taken as a convenient analytic rep­
resentation of classical logicj on the other hand, these rules do not assign to 
the basic feature of classical semantics - the Principle of Bivalence ~ any 
special role in the analysis of classical inferences16• We can ask ourselves two 
questions: is the elimination of bivalence (cut) necessary? Is it harmless? 

As Smullyan once remarked: 'The real importance of cut-free proofs is not 
the elimination of cuts per se, but rather that such proofs obey the subformula 
principle. 117 So, our two questions can be reformulated as follows: (1) Can 
we think of an analysis of classical inferences which gives the Principle of 
Bivalence the prominent role that it should have in a formal representation 
of clussicallogic? (2) Would such an analysis accomplish a more concise and 
efficient representation of classical proofs which preserves the most important 
property of the cut-free analysis (the subformula principle)? 

The two questions are independent, but it is only to be expected that a 
positive answer to the second will be a by-product of a good answer to the 
first. 

In the rest of this chapter we shall argue that the Principle of Biva­
lence (I.e. some form of cut) should indeed playa role in classical analytic 

14See [Gir87a), chapter 3; see also [Sch77J. 
l50f course, the fad that the cut-free rules, in the semantic interpretation, are sound 

from the standpoint of classical semantics does not necessarely mean that they are in 
'complete harmony' wit.h this standpoint. 

16Hintikka. was fully aware that in his approach he was depriving the principle of biva­
lence of any role. In fact he did it intentionally in order to pursue his qUASi-constructivist 
program. Cfr. [Hin55l, chapter Ill, pp. 24-26 

17[Smu68b, p.560J. A problem: is there any application of cut-elimination which requires 
the proofs to be cut.-free, not just t.o satisfy the subformula property? 
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deduction l8 j that the reintroduction of bivalence in the analysis not only 
does not affect the subformula principle, but also allows for much shorter 
proofs, because it eliminates a kind of redundancy which is inherent to the 
cut-free analysis. In the next section we shall discuss a typical example of 
this redundancy. 

2.4 The redundancy of cut-free proofs 

Gentzen said that the essential property of a cut-free proof is that 'it is not 
roundabout' [Gen35, p.69]. By this he meant that: 'the final result is, as it 
were, gradually built up from its constituent elements. The proof represented 
by the derivation is not roundabout in that it contains only concepts which 
recur in the final result' [Gen35, p.88]. However there is a sense in which 
cut-free proofs are roundabout. 

Let us consider, as a simple example, a cut-free proof of the sequent: 

A V B,A V~B,~AVC,~AV~CI-0 

expressing the fact that the antecedent is inconsistent. 

A minimal proof is as follows (we write the proof npside-down according to 
the interpretation of the sequent rules as rednction rules in the search for 
a counterexample; by r f- l we mean r f- 0 and consider as axioms all the 
sequent, of the form r, A, ~A 1-)): 

A V B,A V ,B"A VC, .....A V .....Cf-­

/
A,A V~B.~A VC.~A V~CI-

~ 
B.A v ~B,~A V C,~A V ~C I-

Tt T, 

Where 1i = 

1SBy this we do not mean that some form of cut should be 'thrown into' the cut-free 
system, but that some of the rules for the logical operator" should be modified to allow 
the cut rule to playa role in the analysis. 
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A,A v ~B,~A v C, ~A v ~C f­

/ ~ 
A,A V --.B,...,A,...,A V ....CI- A,A V...,B,C,-,A v..,CI­

/~ 
A,Av~B,C,~Af- A,Av~B,C,~Cf-

and 'h = 

B,A v ~B,~A v C,~A v ~C f­

/ ~ 
B, A, ~A v C,~A v ~C f- B, ~B,~A v C,~A v ~C f­

/~ 
B,A,-,A,...,A v...,CI- B,A,C,...,A v...,CI­

/~ 
B,A,C,-'A I- B,A,C,...,CI-

Such a proof is, in some sense, redundant when it is interpreted as a (failed) 
systematic search for a countermodel to the endsequent (i.e. a model of the 
antecedent): the subtree Tt encodes the information that there 117'f no coun­
tcrmodels which make A true, but this information cannot be used in other 
parts of the tree and, in fact, ~ still tries (in its left subtree) to construct a 
countermodel which makes A true, only to show again that such a counter­
model is impossible. 

Notice that (i) the proof in the example is minimal; (ii) the redundancy 
does not depend on our representation of the proof as a tree: the reader can 
easily check that all the sequents which label the nodes are different from 
each other and, as a result, the proof would have the same size if represented 
as a sequence or as a directed acyclic graph. The only way to obtain a non­
redundant proof in the form of a sequence or a directed acyclic graph of 
sequents would be by using the thinning rule: 
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(1) A,C,~A~ Axiom 
(2) A,C,~C ~ Axiom 
(3) A,C,~A V ~C ~ From (1) and (2) 
(4) A,~A,~Av ~C ~ Axiom 
(5) A,~AvC,~Av~C~ From (4) and (3) 
(6) B,A,~AvC,~Av~C~ From (5) by thinning 
(7) B, ~B, ~A V C, ~A V ~C ~ Axiom 
(8) B, A V ~B, ~A V C, ~A V ~C ~ From (6) and (7) 
(9) A,AV~B,~AVC,~AV~C~ From (5) by thinning 
(10) AVB,AV~B,~AVC,~AV~C~ From (8) and (9) 

In this case the proof obtained by employing thinning is not much shorter 
because of the simplicity of the example considered. Yet, it illustrates the 
use of thinning in direct proofs in order to eliminate redundancies. However, 
for the reasons discussed in section 2.1 the thinning rule is not suitable for 
bottom-up proof search. 

The situation is perhaps clearer if we represent the proof in the form of 
a closed tableau a la Smullyan (see Fig. 2.1). It is easy to see that such a 
tableau shows the same redundancy as the sequent proof given before. 

This intrinsic redundancy of the cut-free analysis is responsible in many 
cases for explosive growth in the size of the search tree. Moreover, it is 
essential: it does not depend on any particular proof-search procedure (it 
affects minimal proofs) but only on the use of the cut-free rules. In the rest 
of this chapter this point will be examined in detail. 

2.5 The culprit 

Can we think of a more economical way of organizing our search for a conn­
termodel? of avoiding the basic redundancy of the cut-free analysis? We 
must first identify the culprit. Our example contains a typical pattern of 
cut-free refutations which is represented in figure 2.2. Here the subtree 7i 
searches for possibile countennodels which make A true. If the search is suc~ 

cessful, the original sequent is not valid and the problem is solved. Otherwise 
there is no countermodel which makes A true (i.e. if we restrict ourselves to 
classical bivalent models, every countermodel, if any, must make A false). In 
both cases it is pointless, while building up 72, to try to construct (as we do 
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AvB 

I
 
A v~B 

I 
-.A vC 

I
 
.....Av .....C 

/~ 
A B 

/\ /\

~A c A ~B 

/\ /\

~A ~C ~AC 

/\
-.A -.C 

Figure 2.1: A closed tableau for {A V B,A V ~B, ~A V C, ~A V~C} 
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A V B is true
 

A V -,B is true
 

A 
A is true B is true 

@J~ 

Figure 2.2: A typical pattern. 

jf our search is governed by Gentzen's rules) countermodels which make A 
true, beca.use this kind of cOllutermodel is already sought in Tt. 

In general, we may have to reiterate this redundant pattern an arbitrary 
number of times, depending on the composition of our input set of formulae. 
For instance, if a branch contains n disjunctions A V B1, .. . , A V Bn wh-ich 
are aU to be analysed in order to obtain a closed subtableau, it is often the 
case that the shortest tableau has to contain higly redundant configurations 
like the one shown ill figure 2.3: where the subtree T" has to be repeated 
n times. Each copy of T· may, in turn, contain a similar pattern. It is not 
difficult to see how this may rapidly lead to a combinatorial explosion which 
is by no means related to any 'intrinsic difficulty' of the problem considered 
but only to the redundant behaviour of the cut-free rules. 

2.6 Searching for a countermodel 

The example discussed in sectious 2.4 and 2.5 suggests that, in some sense, 
analytic tableaux coustructed according to the cut-free tradition are not well­
suited to the nature of the problem they are intended to solve. Iu this section 
we shall render this claim more precise. 

Let us call a partial valuation of r, where r is a set of formulae, any partial 
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A
/\

8, 

T" / \ 
A 8, 

T" / \ 
A 8, 

T" 

Figure 2.3: Redundancy of tableau refutations. 

function v: r 1---+ {1,O} where 1 and 0 stand as usua.l for the truth-values true 
and false respectively. It is convenient for our purposes to represent partial 
functions as total functions with values in {I, 0, *} where * stands for the 
'undefined' value. Bya lotal valuation of r we shall mean a partial valuation 
which for no element of r yields the value *. For every element A of r we say 
that A is true under v if v(A) = 1, false under v if v(A) = 0 and lIndefined 
under v if u(A) = *. We say that a sequent r f- ~ is trtle under 11 jf veAl = 0 
for some A E r or v(A) ::::: 1 for some A E~. We say that it is false under v 
if v(A) = 1 for all A E rand v(A) = 0 for all A E L'.. 

Let F denote the set of all formulae of propositional logic. A boolean 
valuation, defined as usual, is regarded from this point of view as a special 
case of a partial valuation of F, namely one which is total and is faithful to 
the usual truth-table rules. 

In the no-countermodel approach to validity we start from a sequent r I-- ~ 

intended as a valuation problem and try to find a countermodel to it - at the 
propositional level a boolean valuation which falsifies it. Here the direction 
of the procedure is characteristic: one moves from complex formulae to their 
components in a typical 'analytic' way. In this context it is sufficient to 
construct some partial valuation which satisfies certain closure conditions. 
Such partial valuations have been extensively studied in the literature and 
are known nnder different names and shapes. They constitute the basic idea 
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underlying the simple completeness proofs discovered in the '50's which have 
been mentioned in the first two sections of this chapter. Following Prawitz 
[Pra74] we shall call them Isemivaluations': 

Definition 2.6.1 Let r denote the closure of the set of formulae r under the 
subformuJa. relation. A (hoolean) semivaluation of r is a partial valuation v 

of f which satisfies the following conditions, for all A, B E I': 

I. if v(A V B) = 1, then v(A) = 1 or v(B) = 1; 

2. if viA V B) = 0, then viA) = 0 and v(B) = 0; 

3. if viA /I B) = 1, then v(A) = 1 and v(B) = 1; 

4. if v(A /I B) = 0, then v(A) = 0 or v(B) = 0; 

5. ifv(A ~ B) = 1, then v(A) = 0 or v(B) = 1; 

6. if viA ~ B) = 0, then v(A) = 1 and v(B) = 0; 

7. ifv(~A) = I, then v(A) = 0; 

8. if v(~A) = 0, then v(A) = I. 

The property of semivaluations which justifies their use is that they can be 
readily extended to boolean valuations, Le. models in the traditional sense: 

Lemma 2.6.1 Every semivalualion off can be extended to a boolean valu­
ation. 

Each stage of our attempt to construct a semivaluation which falsifies a 
given sequent r I- ~ can, therefore, be described as a partial valuation 
v: r u.3. ~ {I, 0, *}. We start from the partial valuation which assigns 1 to 
all the formulae in rand 0 to a.ll the formulae in ~ and try to refine it hy 
extending step by step its domain of defini tion, taking care that the classical 
rules of truth are not infringed. If we eventually reach a partial valuation 
which is a semivaluation, we have successfully described a countermodel to 
the original sequent. Otherwise we have to ensure that no way of refining 
the initial partial valuation will ever lea.d to a semivaluation. 



27 2.6. SEARCHING FOR A COUNTERMODEL 

The search space, then, is a set of partial valuations which are naturally 
ordered by the approximation relationship (in Scott's sense [Sco70]): 

v r;; v' if and only if v(Al ~ v'(A) for all formulae A 

where ~ is the usual partial ordering over {1, 0, *}, namely 

1 0 

~ 
• 

The set of all these partial valuations, together with the approximation rela­
tionship defined above, forms a complete semilattice. It can be convenient to 
transform this semilattice into a complete lattice by adding an 'overdefined' 
element T. This 'fictitious' element of the lattice does not correspond to any 
real partial valuation and is used to provide a least upper bound for pairs of 
partial valuations which have no common refinement19• Hence We can regard 
the equation 

vU v' = T 

as meaning intuitively that v and v' are 'inconsistent. 
Having described the primitive structure of the search space, we are left 

with the problem of formulating efficient methods for exploring it. Con­
structing an analytic tableau is one method and: as we will see, certainly 
not the most efficient. This point is best seen by generalizing the basic idea 
underlying the tableau method. This is what will be done in the next two 
subsections. 

2.6.1 Expansion systems 

Vie a'3sume a O-order language defined as usual. We shall denote by X, Y, Z 
(possibly with subscripts) arbitrary signed formulae (s-formulae), i.e. expres­
sions of the form t(A) or f(A) where A is a formula. The conjugate of an 

"'Namely partial valuations v and Vi such that ror some A in their common domain of 
definition v(A) = 1 and v'(A) = O. 
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s-formulais the 'esult of changing its sign (so t(A) is the conjugate of f(A) 
and viceversa). Sets of signed formulae will he denoted. by 5, U, V (possibly 
with subscripts). We shall use the upper case greek letters r,.6., ... for sets 
of unsigned formulae. We shall often write 5, X fo' 5 U {X} and 5, U for 
S U U. Given a formula A, the set of its subformulae is defined in the usual 
way. We shall call subformulae of an s-formula s(A) (s = t, f) all the fo,­
mulae of the form t(B) or f(B) where B is a subformula of A. For instance 
t(A), t(B), f(A),f(B) will all be subfo'mulae of t(A V B). 

Definition 2.6.2 We say that an s-formula X is satisfied by a boolean val­
uation v if X = t(A) and v(A) = 1 0' X = f(A) and v(A) = O. A set 5 of 
s-formulae is satisfiable if there is a hoolean valuation v which satisfies all its 
elements. 

A set of s-formulae S is explicitly inconsistent if S contains both t(A) and 
f(A) for some formula A. If S is not explicitly inconsistent we say that it is 
surface-consistent. 

Sets of s-formulae correspond to the partial valuations of the previous section 
in the obvious way (we shall omit the adjective 'partial' from now on): given a 
surface-consistent set S of s-formulae its associated valuation is the valuation 
Vs defined As follows: 

I if t(A) E 5 
vs(A) = 0 if f(A) E 5 

{ ., otherwise 

(An explicitly inconsistent set of s-formulae is associated with the top element 
T.) Conversely, given a partial valuation v its associated set of s-formulae 
will be the set SlJ containing t(A) for every formula A such that v(A) = 1, 
and f(A) for every formula A such that v(Al = 0 (and nothing else). 

So we can always regard the s-formulae t(A) and f(A) as 'meaning' v( A) = 
1 and viA) = 0 respectively. 

The sets of s-formulae corresponding to semivaluations are known in the 
literature as Hintikka sets. 

Definition 2.6.3 A set of s~formulae S is a (propositional) Elintikka set if 
it satisfies the following conditions (for every A, B): 

1. For no variable P, t(P) and f(P) a'e both in 5. 
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2.	 II t(~A) E S, then I(A) E S. 

3.	 If I(~A) E S, then t(A) E S. 

4.	 If t(A V B) E S, then t(A) E S or t(B) E S. 

5.	 If I(A V B) E S, then I(A) E Sand I(B) E S. 

6.	 If t(A /I B) E S, then t(A) E Sand t(B) E S. 

7.	 If I(A /I B) E S, then I(A) E S or I(B) E S. 

8.	 If t(A ~ B) E S, then I(A) E S or t(B) E S. 

9.	 II I(A ~ B) E S, then t(A) E Sand I(B) E S. 

The sets of s-formulae corresponding, in a similar way, to a boolean valuation 
are often called truth sets or saturated sets. The translation of lemma 2.6.1 
is known as the (propositional) Hjntikka lemma. 

Lemma 2.6.2 (Propositional Hintikka lemma) Every propositional Hin­
tikka set is satisfiable. 

In other words, every Hintikka set can be embedded in a truth set. 
We shall now define the notion of expansion system which generalizes the 

tableau method. 

Definition 2.6.4 

1.	 An n x m expansion rule R is a relation between n-tuples of s-formulae 
and m-tuples of s-formulae, with n 2. 0 and m 2: 1. Expansion rules 
may be represented as follows: 

X, 

Xn 

VIi· . ·Ivrn 

where the Xi'S and the Vi'S are schemes of s-formulae. We say that the 
rule has n premises and m conclusions. If m = 1 we say that the rule 
is of linear type, otherwise we say that the rule is of branching type. 
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2.	 An expansion system S is a finite set of expansion rules. 

3.	 We say that 5, X is an expansion of S under an n X m rule R if there 
is an n-tuple a of elements of S such that X belongs to some m-tuple 
b in the set of the images of a under R. 

4.	 Let R be an n x m expansion rule. A set U is saturated under R or 
R-saluruled, if for every n-tuple a of elements of U and every m-tuple 
b in the set of the images of a under R, at least one element of b is also 
in U. 

5.	 A set U is S-saturated jf it is R-saturated for every rule R of S. 

The rules of an expansion system are to be read as rules which allow us to 
turn a tree of s-formulae into another such tree. Suppose we have a finite 
tree T and </> is one of its branches. Let R be an n X m expansiou rule and 
(Yi~ ... , Ym ) an image under R of some n-tuple of s-formulae occurring in <p. 
Then we can extend T by appending m immediate snccessors (ti, ... , Y~) 

(in different branches) to the end or <p. Let us call 7' the result. We say that 
T'	 results from T by an application of R. 

We also say that the application of R is analytic if it has the subformula 
properly, i.e. all the new s-formulae appended to the end of ¢ are subformulae 
of s-formulae occurring in <p. A rule R is analytic if every application of R is 
analytic (i.e. all the conclusions are subformulae of the premises). 

We can then use an expansion system S to give a recursive definition of 
the notion of (analytic) S-tree for S, where S is a finite set of s-formulae. 

Definition 2.6.5 Let S = {Xl' ... ' X n }. 

1.	 The following one branch tree is an (analytic) S-tree for S: 

Xl 
X, 

Xn 

2.	 1fT is an (analytic) S-tree for Sand T' results from T by an (analytic) 
application of an expansion rule of S, then T' is also an (analytic) S~tree 

for S. 
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3. Nothing else is an (analytic) S~tree for S. 

Let <p be a branch of an S-tree. We say that <P is closed if the set of its 
nodes is explicitly inconsistent. Otherwise it is open. A tree T is closed if 
all its branches are closed and open otherwise. We also say that a branch ¢ 
is complete if it is closed or the set of it.s nodes is S-saturated. A tree T is 
completed if all its branches are complete. 

As far as this chapter is concerned we are interested in expansion systems 
which represent (analytic) refutation systems for classical propositional logic, 
Le. systems S such that, for every finite set of s-formulae S, S is classically 
unsatisfiable if and only if there is a closed S-tree for S. 

2.6.2 Redundant trees 

Any set of rules meeting our definition of analytic refutation system can be 
considered an adequate formalization of the idea of proving validity by a 
failed attempt to construct a countermodel. Each expansion step in such as 
system reduces a problem concerning a set S (is S satisfiable?) to a finite set 
of 'easier' subproblems of the same kind concerning supersets of S. Thinking 
in terms of partial valuations, each step yields a finite set of more accurate 
approximations to the sought-for semivaluation(s). 

However, we have observed that the search space has a natural structure 
of its own. It is therefore reasouable to require that the rules we adopt in 
our systematic search reflect this structure. This can be made precise as 
follows: given an S-tree 7 we can associate with each node n of7 , the set 
of the s-formulae occurring in the path from the root to n or, equivalentlY1 
the partial valuation Vn which assigns 1 to all the formulae A such that t(A) 
occurs in the path to n, and 0 to all the formulae A such that f(A) occurs 
in the path to n (and leaves all the other formulae undefined). We can then 
require tha.t the relations between the nodes in an S-tree correspond to the 
relations between the associated partin I valuations. 

Definition 2.6.6 Let 7 be an S-tree and let -:!:.T the partial ordering defined 
by 7 on the set of its nodes (i.e. for all nodes nIl n2, nl -::!:.T n2 if an only if 1/.] 

is a predecessor of n2). We say that a refutation system S is non-redundant 
if the following condition is satisfied for every S-tree 7 and every pair 1I.h 1/.2 

of nodes of 7: 
nl ~:T n:.l ~ tlnl ~ tln2 • 
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Non-redundancy as defined above seems a very natural requirement on refu­
tation systems: we essentially ask that our refutation system generate trees 
which raUaw the structure of the approximation problems they set out to 
solve. (Notice that the iJpart of the condition is trivial, but the only-iJpart 
is not so trivial.) One corollary of non-redundancy, which justifies this choice 
of terminology! is the following: let us say that an S-tree T is redundant if for 
some pair of nodes ni, n2 belonging to different branches of T, we have that 
Un] ~ Such a tree is obviously red unclant for the reasons discussed invn2 • 

section 2.5: if Unl can he extended to a semivaluatioll, we have found a CQun­

termodello the original sequent and the problem is solved. Otherwise, if no 
extension of Vn1 is a semivaluation, the same applies to V nJ • It immediately 
follows from our definitions that: 

Corollary 2.6.1 If S is a non-redundant system, no S-tree is redundant. 

The importance of non-redundaucy for a system is both conceptual and prac­
tical. A redundant tree does not reflect the structure of the semantic space of 
partial valuations which it is supposed to explore and this very fact has disas­
trous computational consequences: redundant systems are ill-designed, from 
an algorithmic point of view, in that, in some cases, they force us to repeat 
over and over again what is essentially the same computational process. 

It is easy to see that the non-redundancy condition is not satisfied by 
the tableau method (and in general by cut-free Gentzen systems). We can 
therefore say that, in some sense, such systems are not natural for classical 
log;':>o 

20This suggest.ion may be cont.rasted with Prawitz's suggest.ion, advanced in lPra14], 
that 'Gentzen's calculus of sequents may be understood as the natural system for gener­
ating logical truths'. 



Chapter 3 

An alternative approach 

3.1 Bivalence restored 

The main feature of the tableau method and of all the variants of Gentzen's 
cut-free systems is the dose correspondence between their rules and the 
clauses of the semantic definition of semivaluation1 

. This is the reason that 
such systems are usually regarded as 'natural'. But, as we hare argued, 
the tree-structure generated by the semivaluation clauses bears a. tortuous 
relation to the structure of the space of partial valuations, i.e. the partial 
semantic objects by which we represent our successive approximations to the 
sought~for countermodel. So, our non-redundancy condition suggests that 
we should not use such clauses as rules in our search. 

Is there a simple way out? There is. We need only to take into con­
sideration that models, or countermodels, in classical logic, are bivalent. As 
seen is section 2.3, this crucial piece of semantic information is hidden by 
the cut-free Gentzen rules. So in order to establish a close correspondence 
between formal derivability and classical semantics we have to reintroduce 
the notion of bivalence in our analysis. It will transpire that this is in fact 
all we need to do. 

The non-redundancy condition given in definition 2.6.6 is automatically sat­
isfied by any refutation system S which satisfies the stronger condition that, 

IThis correspondence is discussed thoroughly in [Pra74]. 

33 
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for all S~trees T and all nodes nt, n2 

(3.1 ) nt iT n2 and nz iT nt ==} Vn ! U Vn2 = T 

i.e., any two different branches define inconsistent partial valua.tions. 
It is obvious that the only rule of the hranching type which generates 

trees with this property is a O-premise rule, corresponding to the principle of 
bivalence: 

A 
t(A) f(A) 

So our discussion strongly suggests that the principle of bivalence should be 
re-introduced in some way as a rule in the search for a countermodel and 
that, indeed, it should be the only 'branching' rule to govern this search. 

Three problems immediately arise in connection with the use of PB in a. 

refutation system: 

1.	 Are there simple analytic rules of linear type which combined with PB 
yield a refutation system for classical logic? 

2.	 Since a O-premise rule like PB can introduce arbitrary formulae, can 
we restrict ourselves to analytic applications of PB without affecting 
completeness? 

3.	 Even if the previous qnestion has a positive answer, we shall be left 
wiLh a large choice of formulae to introduce via PB. This could be a 
problem from a practical point of view. Can we further restrict this 
choice? 

The rest of this chapter will be devoted to studying an alternative approach 
based on the system KE, recently proposed in [Mon88a, Mon88bL which 
gives our three questions positive answers. 
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t(A V B) t(A V B) 

A A 
t(A) t(B) t(A) f(A) 

t(B) 

Figure 3.1: Two different analyses. 

3.2 The system KE 

Let us consider the case in which, at a cert.ain point of the search tree, 
we examine a partial function which renders a disjunction, A V B, true. 
Then, instead of applying the tableau branching rule as in the left diagram 
of figure 3.1, we apply the rule PB as in the diagram on the right2 

• Next, 
we observe that any boolean valuation which makes A V B true and A false 
must make B true. 

H we compare the result of this way of analysing the disjunction with the 
result of applying the tableau branching rule, we notice that (i) the lefthand 
branch represents the same partial valuation, but (ii) the partial valuation 
represented by the righthand branch is more defined, i.e. contains more in­
formation: precisely the information that if A is not true, it must be false; 
so jf there are no countermodels which make A true, every countermodel, if 
any, must make A false. \Ve can then use this information to exclude from 
the search space associated with the righthand branch all the partial valua­
tions which make A true, whereas such partial valuations are not excluded 
if we apply the standard tableau rule. In other words, OUf chances of closing 

:lIn this example we apply PB to the formula A. A similar configuration is obtained 
by applying PB to the formula B. We need only one of these applications. Although the 
choice of t.he formula does not affect completeness, it may affect lhe complexity of the 
resulting refut.ation. See below p. 79. 
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branches are significantly increased. 

The example suggests that we can find a set of rules of the linear type which, 
combined with PH, provides a complete refutation system for propositional 
logic. We need only to notice that the following eleven facts hold true (for 
any formulae AlB) under any boolean valuation: 

1. If A V B is true and A is false, then B is true. 

2. If A V B is true and B is false, then A is true. 

3. If A V B is false then both A and B are false. 

4. If Ai\ B is false and A is true, then B is false. 

5. If Ai\ B is false and B is true, then A is false. 

6. If Ai\ B is true then both A and B are true. 

7. If A --+ B is true and A is true, then B is true. 

8. If A -+ B is true and B is false, then A is false. 

9. If A -+ B is false, then A is true and B is false. 

10. If...,A is true, then A is false. 

11. If...,A is false, then A is true. 

These facts can irrunediately be nsed to provide a set of expansion rules of 
the linear type which, with the addition of PB, correspond to the the propo­
sitional fragment of the system KE proposed in [Mon88a, Mon88b]. The 
rules of KE are shown below. Notice that those with two s-formnlae below 
the line represent a pair of expansion rnles of the linear type, one for each 
s-formula. 

Disjunction Rules 

teA V B) teA V B) f(A V B) 
Efv 

f(A) EtVl feB) Etv2 f(A) 
t(B) teA) feB) 



37 3.2 THE SYSTEM KE 

Conjunction Rules 

I(Ai\B) I(A i\ B) t(A i\ B) 

t(A) Eli\l t(B) Eli\2 t(A) Eti\ 

I(B) I(A) t(B) 

Implication Rules 

t(A -+ B) t(A -+ B) I(A -+ B) 

t(A) Et -+1 I( B) Et -+2 t(A) EI-+ 

t(B) I(A) I(B) 

Negation Rules 

t(~A) I(~A)Eh Eh
I(A) t(A) 

Principle of Bivalence 

~PB 

The rules involving the logical operators will be called (propositional) elimi­
nation rules or E_T'ules.3 

In contrast with the tableau rules for the same logical operators, the E­
rules a.re an of the linear type and are not a complete set of rules for classical 
propositional logic. The reason is easy to sec. The E-rules, intended as 
'operational rules' which govern our use of the logica.l operators do not say 
anything about the bivalent structure of the intended models. If We add the 
rule PH as the only rule of the branching type, completeness is achieved. So 

JQuite independently, and with a different motivation, Cellucci [CeI87] formulates the 
same set of rules (although he does not use signed formulae). Surprisingly, the two-premise 
rules in the above list were already discovered by Chrysippus who claimed them to be the 
fundamental rules of reasoning ('anapodeiktoi'), except that disjunctioo was interpreted 
by him in an exclusive sense. Chrysippus also maintained that his 'anapodeiktoi' formed 
a complete set of inference ,ules ('the indemonstrables are those of which the Stoics say 
that they need no proof to be maintained. [... ] They envisage many indemonstrables but 
especially five, from which it seems all others can be deduced', See [81a70], pp.1l5-119 
and [Boc61], p.126. 
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PB is not eliminable in the system KE. 
We shall call an application of PB a PE-inference and the s-formulae 

which are the conclusions of the PB-inference PB-formulae. Finally, if t(A) 
and f(A) a.re the conclusions of a given PB-inference, we shall say that PB 
has been applied to the formula A. 

Definition 3.2.1 Let 5 = Xl X m . Then T is a KE-tree for 5 if there 
exists a finite sequence (71,72 , , Tn) such that 1i is a one-branch tree 
consisting of the seqnence of X1, ,Xm , Tn = T and for each i < n, 'Ii+l 

results from 'Ii by an application of a rule of KE (see section 2.6.1 for this 
terminology) . 

Definition 3.2.2 

1.	 Given a tree T of s-formulae, a branch <p of T is closed if for some 
atomic formula P, both t(P) and f(P) are in <p. Otherwise it is open. 

2.	 A tree T of s-formulae is closed if ea,ch branch of T is closed. Otherwise 
it is open. 

3.	 A tree T is a KE-refutation of S if T is a closed KE-tree for S. 

4.	 A tree T is a KE-proof of A from a set r of formulae if T is a KE­
refutation of {t(ElIE E f} U {f(A)). 

5.	 A is KE-provable from r if there is a KE-proof of A from r. 

6.	 A is a KE-theorem if A is KE-provable from the empty set of formulae. 

Remark: it is easy to prove that if a branch <p of T contains both t(A) 
and f(.1) for some formnla A (not necessarily atomic), <p can be extended by 
means of the E-rulEs only to a branch <P' which is closed in the sense of the 
previous definition. Hence, in what follows we shall consider a branch closed 
as soon as both t(A) and f(A) appear in it. 

As pointed out in Section 2.3, there is a close correspondence between the 
semantic rule PB and the cnt rule of the seqnent calculus. We shall return 
to this point in Section 4.5.2. 
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Disjunction Rules 

AVB AvB ~(AV B) 
~A 
B Evl 

~B 
A Ev2 

~A 

~B 

E~v 

Conjunction Rules 

~(A A B) 

A [ ..... /1.1 

~(A A B) 

B E-'1\2 
~EI\ 

A 
~B ~A B 

Implication RuJes 

A_B A-B ~(A - B) 
E~_

A ~B AE_l -.A E-2B ~B 

Negation Rule 

~~A
 
~E..,....,
 

Principle of Bivalence 

A I ~A PD 

Table 3.1: KE rules (or unsigned formulae. 

We can give a version of KE which works with unsigned formulae. The 
rules are shown in Table 3.1. [t is intended that all definitions be modified 
in the obvious way. 

We can see {rom the unsigned version that the two-premise rules corre­
spond to well-known principles of inference: modus ponensJ modus tal/ens, 
disjunctive syllogism and the dual of disjunctive syllogism. This gives KE 
a certain natural-deduction flavour (see Section 3.8). However, the classical 
operators are analysed as such and not as 'stretched' versions of the con­
structive Ones. 

In Fig. 3.2 we give a KE-refutation (using unsigned formulae) of the 
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AvB 

AV~B 

~AVC 

....,Av ......C 

A 
~A ~~A 

B C 
~B ~C 

x x 

Figure 3.2: A KE-refutation of {A V B,A V ~B, ~A V C, ~A V ~Cl 

same set for which a minimal tableau was given on p. 23; the reader can 
compare the different structure of the two refutations and the crucial use of 
(the unsigned version of) PB to eliminate the redundancy exhibited by the 
tableau refutation. 

3.3 Soundness and completeness of KE 

We shall give the proofs for KE·trees using signed fonnulae. The modifica­
tions for KE-trees using unsigned formulae are obvious. 

Proposition 3.3.1 (Soundness of KE) If there is a closed KE-tree for 
S, then S is unsatisfiable. 

Proof. The proof is essentially the same as the soundness proof for the 
tableau method. See [Smu68a, p. 25J. 

The completeness of KE can be shown in several ways. One is by proving 
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that the set of KE-theorems includes some standard set of axioms for propo~ 

sitional logic and is closed under modus ponens. Another way is by modify­
ing the traditional completeness proof for the tableau method. We shall give 
both the.";e proofs because they provide us with different kinds of information. 
(One can also obtain a proof ala Kalmar [KaI34]. See [Mon88a].) 

3.3.1 Completeness of KE: proof one
 

Theorem 3.3.1 If A is a valid formula than there is a KE-proof of A.
 

Proof. The theorem immediately follows from the following facts which at 
the same time provide examples of KE-refutations (we write just I- for I-KE ): 

Fact 3.3.1 ~ A ~ (B --> A) 

f(A--> (B --> A)) 
t(A) 
fiB --> A) 
t(B) 
f(A) 
x 

Fact 3.3.2 ~ (A --> (B --> C)) --> ((A --> B) --> (A --> C)) 

f«A --> (B --> C» --> ({A --> B) --> (A --> C))) 
t(A --> (B --> C» 
f«A --> B) --> (A --> C)) 
t(A --> B) 
f(A--> C) 
t(A) 
ftC) 
t(B --> C) 
f(B) 
t(B) 
x 
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Fact 3.3.3 f- (~B ~ ~A) ~ (A ~ B) 

f((~B ~ ~A) ~ (A ~ B))
 
t(~B ~ ~A)
 

f(A ~ B)
 
t(A) 
f(B) 

t(~B) f(~B)
 

t(~A) t(B)
 
f(A) x 
x 

Fact 3.3.4 If f- A and f- A ~ B, then f- B 

Proof. It follows from the hypothesis that there are refutations 11 and Ti 
respectively of {f(A)) and {f(A ~ B)). Then the following tree: 

f(B) 
t(A ~ B) 
f(A) 
Ti 

f(A ~ B) 
T, 

is a refutation of {f(B)).D 

This kind of proof provides a simulation of a standard axiomatic system. 
In this simulation it is essential to apply the rule PB to formulae which 
are not subformulae of the theorem to be proved. We notice that such a 
simulation cannot be directly obtained by the tableau method, since it is 
non-analytic. Are such non-analytic applications of PB necessary or can they 
be eliminated without loss of completeness? i.e. can we restrict ourselves to 
analytic applications? Let us say that a KE-tree T for r is analytic if PB 
is applied in T only to (proper) subformulae of formulae in r. Let us call 
KE* the analytic restriction of KE, i.e. the system in which the applications 
of PB are restricted to subformulae of the formulae occurring above in tbe 
same branch. So our problem becomes: is KE* complete? 

A positive answer to this question can be obtained from the second com­
pleteness proof which follows the lines traced by Beth [Bet 55] and Hintikka 
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[Hin55]. This proof not only ensures that we can restrict ourselves to analj,tic 
applications of PB so that oUr refutations will obey the suhformula principle, 
but also provides more information concerning the formulae to be considered 
in these applications. 

3.3.2 Completeness of KE: proof two 

It is convenient to use Smullyan's unifying notation in order to reduce the 
number of cases to be considered. 

\Ve usc the letter 'cr' to stand for any signed formula of one of the forms: 
t(A 1\ B), I(A V B), I(A ~ B), t(~A), I(~A). 

For every such formula cr, its components 01 and (}2 are defined as in the 
following table: 

" "1 ",
t(Af\B) t(A) t(B) 
I(A V B) I(A) I(B) 
I(A ~ B) t(A) I(B) 
t(~A) I(A) I(A) 
I( ~A) t(A) t(A) 

We use '(3' to stand for any formula of one of the forms: f(A 1\ B), t(A V B), 
t(A --. B). For every such formula f3, its components /31 and {32 are defined 
as in the following table: 

f3 f3J f3, 
I(A 1\ B) I(A) I(B) 
teA V B) t(A) t(B) 
t(A ~ B) I(A) t(B) 

So the E-rules of KE can be 'packed' into the following three rules (where 
13:, i ::::: 1,2 denotes the conjugate of 13;): 

- " Rule A 0, 
", 

f3 f3 
Rule Bl f3; Rule B2 f3;

T {3;­
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Remarks. The unifying notation can be easily adapted to unsigned formu­
lae: simply delete all the signs 't' and replace all the signs 'f' by','. The 
'packed' version of the rules then suggests a more economical version of KE 
for unsigned formulae when f3i is taken to denote the complement of f3i de­
fined as follows: the complement of an unsigned /onnula A, is equal to -,B if 
A = B and to B if A = -,B. In this version the rules EVI, EV2 and E----.2 
become: 

AvB AVB A~B
 

A' B' B'
 
B C A'
 

This version is to be preferred for practical application. Notice also that the 
Rule A represents a pair of expansion rules, one with conclusion al and the 
other with conclusion Q2­

In each application of the rules, the signed formulae a and f3 are called 
major pnmises. In each application of rules B] and B2 the sigued formulae 
/3:, i = ],2 are called minor premises (rule A has no minor premise). 

We first define a notion akin to that of a Hintikka set: 

Definition 3.3.1 Let us say that a set of s-formulae S is a propositional 
analytic set if and only if it satisfies the following conditions: 

AD: For no atomic formula P, t(P) and f(P) are both in S. 

A1 : IT ° E 5, then 01 E 5 and 02 E S. 

A,: If fJ E 5 and 13; E S, then fJ, E S. 

A3 : If fJ E Sand 13; E 5, then fJ, E S. 

An analytic set differs from a Hintikka set in that it may be the case that 
for some,B in the set neither /31 nor /32 is in the set. 

Definition 3.3.2 We say that an analytic set Sis /3-complete if for every ,B 
in S one of the following two conditions is satisfied: 

Ba : either /31 E 5 or /3~ E S; 
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Bo: either {3, E S or 13; E S. 

It is then easy to verify that: 

Fact 3.3.5 If S is a propositional analytic set and S is f3~complete, then S 
is a propositional Hintikka set. 

Let us say that a branch ¢ of a KE-tree is E-complete if the set Sol> of the 
s-formulae occurring in it is saturated under the E~rules of KE. Let us also 
say that ¢ is f3 -complete if for every formula of type {3 occurring in it and 
some i = 1,2, either f3i or f3i occurs in ¢. We say that ¢ is complete if it is 
E-complete and fJ-complete. Finally, we say that a KE-tree T is completed 
if every branch of T is either dosed or complete. Of course if ¢ is an open 
branch in a completed KE-tree, the set S", of its s-formulae is a ,G'-complete 
analytic set and, hence, a Hintikka. set. 

Thus, completeness follows from fact 3.3.5 and the propositional Hintikka 
lemma. 

Theorem 3.3.2 (Completeness Theorem) If r F A, then there is a 
closed KE-tree far {t(BlIB E r} U {f(A)). In particular every completed 
KE-tree is closed. 

3.3.3 The subformula principle 

Our proof of the completeness of KE yields the subformula principle as a 
corolla.ry. Since all the rules except PB are analytic, we need only to observe 
that the completeness proof given ahove immediately implies: 

Corollary 3.3.1 (Analytic cut property) IfS is unsatisfiable, then there 
is a closed KE-tree 7' for S such that all the applications of PE are analytic. 
EquivalentlYI the analytic restriction of KE is complete. 

A constructive proof of the subformula principle 1 which yields a procedure 
for transforming any KE-proof in an equivalent KE-proof which enjoys the 
subformula property, is given in [Mon88h]. 

Our completeness proof also gives us .some additional information. Let us 
say that a formula of type {J is analysed in a branch r/J if either {JI or {J2 
occurs in r/J. An application of PO in a branch ¢ of a KE-tree is canonical if 
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the s-formulae of this application are f3i and fJ: for some i = 1,2 and some 
non-analysed formula of type f3 occurring in ¢J. A KE-tree is canonical if it 
contains only canonical applications of PB. It follows from our completeness 
proof that 

Corollary 3.3.2 If S is unsatisfiable, then there is a closed canonical KE­
tree for S. 

In other words, OUf proof establishes the completeness of the restrictoo system 
KE' obtained by replacing the 'liberal' version of PB with one which allows 
only canonical applications. 

There are several procedures which, given a finite or denumerable set of 
signed fonnulae S, generate a completed (canonical) KE-tree. Here is one 
possibility (adapted from [Smu68a, [pp. 33-34]). Let us say that a node is 
fulfilled if (1) it is an atomic s-formula or (2) it is of type" and both "1 and 
0"2 occur in all the branches passing through the node or (3) it is of type 
f3 and for every branch cP passing through the node all the following three 
conditions are satisfied: (3a) if f3~ occurs in cP, f3-J. also occurs in cP; (3b) if f3~ 

occurs in cP, f31 also occurs in cP; (3c) for some i = 1,2 either f3i or f3i occurs 
in cP. Obviously a KE-tree is completed if and only if every node is fulfilled. 

We ca.n now describe a simple procedure to construct a completed KE­
tree for every denumerable set of s-formulae. Let S be arranged in a denu­
merable sequence XlJ X 21 •.•• Start the tree with Xl. This node constitntes 
the level 1. Then fulfiI4 the origin and append X 2 to every open branch. Call 
all the nodes so obtained nodes of level 2. At the i-th step fulfil all the nodes 
of level i-I and append Xi. to the end of each open branch. So every node 
gets fulfilled after a finite number of steps. The procedure either terminates 
with a closed KE-tree or rnns forever. (If S is finite, the procedure always 
terminates). In this case we lobtain' an infinite tree which is a completed 
KE-tree for S. Since the tree is finitely generated, by Konig's lemma it must 
contain an infinite branch which is obviously open. The set of s-formulae in 
this branch is a Hintikka set. Therefore S is satisfiable. If S is nnsatisfiable 
the procedure generates a finite tree. 

The procedure just described is a simple variant of a similar procedure 
based on the tableau method which is used to provide (among other things) 

4By 'fulfilling a node' we mean applying the KE-rules so that the node becomes fulfilled. 
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a proof of the compactness theorem. OUf adaptation is an example of how 
all the useful theoretical properties of cut-free systems can be almost imme­
diately transferred to a system like KE which is not cut-free. 

Remark. Like the tableau method, KE (with PB restricted to canonical 
applications) can be used as a method for turning arbitrary formulae into dis­
junctive normal form. However, the DNFs obtained by means of the tableau 
method may often be highly redundant and contain a number of conjunctions 
which are subsumed by other conjunctions (a conjunction C1 subsumes an­
other conjunction C'll if all the literals occurring in C1 occur also in C2 ). By 
contra.... t the DNFs obtained by means of KE are in most ca.."es remarkably 
concise. The dual versions of the rules (i.e. the rules obtained from rules A, 
B1 and B2 by swapping Ct" and {3) provide a method for turning an arbitrary 
formula into conjunctive (or 'clausal') normal form. 

~~A 7J " " 
-A- T _,_ ,,'-'­(3, ",'" ". ~ 

Table 3.2: CNF reduction rules. 

Again, the CNFs yielded by this method are in most cases much more con­
cise than those yielded by the ana.logous dual version of the tableau method 
(see [Fit90, p. 26]). It is a consequence of results in Section 4.5.2 that in the 
worst case the number of (disjunctions) conjunctions in the shortest5 normal 
form of A yielded by the (duals of the) tableau rules is not even polynomially 
related to the corresponding number of (disjunctions) conjunctions yielded 
by the (duals of the) KE rules. By contrast the (duals of the) KE rules 
never yield normal forms which are longer than those yielded by the (duals 
of the) tableau rules. 

5That is to :;;ay, we consider the non-det.erministic version of the algorithm. 
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3.4 KE and the Davis-Putnam Procedure 

The Davls-Putnam procedure was introduced in 1960 [DP60] and later re­
fined in [DLL62]. It was meant as an efficient theorem proving methodS for 
(prenex normal form) first-order logic, but it was soon recognized that it 
combined an efficient test for truth-functional validity with a wasteful search 
through the Herbrand universe7 . This situation was later remedied by the 
emergence of unification. However, at the propositional level, the procedure 
is still considered among the most efficient, and is clearly connected with the 
resolution method, so that Robinson's resolution [Rob65] can be viewed as a 
(non-deterministic) combination of the Davis-Putnam propositional module 
and unifica.tion, in a single inference rule. It is not difficnlt to see that, if 
we extend our language to deal with 'generalized' disjunctions and conjunc­
tions, the Davis-Putnam procedure (in the version of [DLL62] which is also 
the one exposed in [CL73, Section 4.6] and in Fitting's recent book [Fit90, 
Section 4.4]), can be represented as a special case of the canonical procedure 
for KE outlined in the previous section. So, from this point of view I KE 
provides a generalization of the Davis-Putnam procedure which does not re­
quire reduction in clausal form. 

We enrich our langnage to include expression of the form Al V ... V An 
and Al II ... A An' where A], . .. , An are formulae, and use the notation 
Al 0 ••. 0 An \ Ai, where 0 is V or A, i = 1, ... , n, to denote the result of 
removing Ai from Al 0 ... oAn • We then replace the rules EVi, E...,A i, i = 1,2, 
E--.V, Ell of KE with the generalized versions shown in Ta.ble 3.3 (we use 
the notation A' for the complement of A). 

We can generalize Smullyan's notation to cover the new la.nguage includ­
ing n-ary conjunctions and disjunctions: use the notation an for an n-ary 
conjundion or the negation of an n-ary disjunction, and the notation rr for 
an n-ary disjunction or the negation of an n-ary conjunction (or an n-ary 
implication Al ---t ( ••• (An _ I ---t An)···»· The components of and fii, for 
i = 1, ... , n are defined in the obvious way. The notation fJn\i., i = 1, ... , n 

6The version given in [DP60] was not in fact a completely deterministic procedure: it 
involved tile choice of which literal to eliminate at each step. 

7See [D.v83]. 
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Al V ... V An 
A'• 

(Al V ... V An) \ Ai 

~(Al V ... V An) 

~Al 

~An 

~(Al !\ ... !\ An) 
Ai 

~((Al !\ ... !\ An) \ Ai) 

Al 1\ ... 1\ An 

Al
 

An
 

Table 3.3: Generalized KE rules. 

is used as follows: 

{3n\i = {	 (A , V ... V An) \ Ai if pOl. = Al V ... V An 
~«A, V... V An) \ Ai) if {3n = ~(A, !\ ... !\ An) 

Let us consider now the procedure given in the previous section and replace 
the definition of fulfilled node as follows: let us say that a node is fulfilled 
if (1') it is a literal or (2/) it is of type an and, for every i = l, ... ,n, or 
occurs in all the branches passing through the node or (3') it is of type {3n 
and for every branch <p passing through the node all the following conditions 
are satisfied: (3'a) if {3r' occurs in if>, {3n\i also occurs in ,pj (3'b) for some 
i = 1,2, ... , neither fJi or {Ji' occurs in ¢. 

It is not difficult to see that the same procedure described in the previous 
section is complete for this extended language. Moreover, if we restrict our 
attention to formulae in CNF and add two simplification rules corresponding 
to the 'affirmative-negative' rule and to the 'subsumption rule' (see [DLL62] 
and [Fit90J), the procedure becomes equivalent to the Davis·Putnam pro­
cedure. So KE incorporates the basic idea underlying resolution theorem 
proving in a tableau-like set up. From this point of view it is somehow 
related to non-clausal resolution [Mur82, MW80]. 

We also notice that the system resulting from this generalized version of 
KE by disallowing the branching rule PB includes, as a special case, the 
restrictiou of resolution known as 'unit resolution [Cha70]. This restricted 
version of KE can then be seen as an extension of unit resolution (it is there­
fore a complete system for Horn clauses, although its scope is not confined 
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to formulae in clausal form). 

3.5 The first-order system KEQ 

[n this section we consider a standard first-order language with no functional 
symbols. We use the letters X, y, z, ... (possibly with subscripts) as individual 
variables and the letters G, b, c, ... (possibly with subscripts) as parameters. 
For any variable x and parameter G, A(x/a) will be the result of substituting 
all the free occurrences of x in A with a. Subformulae are defined in the 
usual way, so that for every parameter G, A{x/a) is a subformula of VxA(x). 

The rules of the first-order system KEQ consist of the rules of the 
propositional fragment (with the obvious assumption that the metavariables 
range over closed first-order formulae) plus the quantifier rules of the tableau 
method, namely: 

Universal Quantifier Rules 

t«Vx)A) f«Vx)A)
EtV Ef\f with a new 

t(A(x/a)) f(A(x/a)) 

Existential Quantifier Rules 

f«3x)A) Ef3 t«3x)A) Et3 with a new 
f(A(x/a)) t(A(x/a)) 

The versions for unsigned formula.e are obtained 1 as before, by changing the 
sign f into '-,' and deleting the sign t. 

We shall use Smullyan's nnifying notation for first-order formulae. For~ 

mulae of type a and j3 are defined as in the propositional case (except that 
formulae here means closed first-order formulae). In addition we use 'Y to 
denote any formula of one of the forms t(VxA(x)), f(3xA(x)), and by ,(a) 
we shall mean, respectively, t(A(x/a)), f(A(x/a)). Similarly 6 will denote 
any formula of one of the forms t(3xA(x)), f(VxA(x)) and by 6(a) we shall 
mean, respectively, t(A(x/a)), f(A(x/a)). 
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Using the unifying notation the quantifier rules are; 

RuleC ~,I..a) for any parameter a 

b
RuleD ~ 

J(a) for a. new parameter a 

3.6 Soundness and completeness of KEQ 

The first-order system KEQ is obviously sound for the same reasons as the 
tableau method. It is easy to extend the first completeness proof given for 
the propositional fragment in section 3.3.1. We just need to observe that 
the set of KEQ.theorems is closed under the standard quantifier rules of a 
first-order axioma.tic system. 

Fact 3.6.1 Ijr-KEQ A -+ B(a) and a does not occur in A, then 
I-KEQ A --; ('Ix )B(a/x) 

Fact 3.6.2 I/I-KEQ B(a) --; A and a does not occur in A, then 
I-KEQ (3x)B --; A. 

The second completeness proof given in section 3.3.2 can also be readily 
extended to the first-order system. 

We recall the notion of first-order Hintikka set. 

Definition 3.6.1 By a first-order Hintikka. set (for a universe U) We mean a 
set S of s~formulae (wjth constants in U) such that the following conditions 
are satisfied for every 0, (3, /1 fJ over U: 

No: No signed variable and its complement are both in S. 

H,: If 0 E S, then 0, E Sand 0, E S. 

H3 : If f3 E S, then /3, E S or /3, E S. 

H.: If 'Y E S, then for every a in U, f(a) E S. 

H 5 : If b E S, then for some a in U, b(a) E S. 
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The notion of first-order analytic set over U is the analogous extension of the 
propositional notion: 

Definition 3.6.2 By a first-order analytic set (for a universe U we mean a 
set S of s-formulae (with constants in U) such that the following conditions 
are satisfied for every cr, {3,'Y, 6 over U: 

.40: No signed variable and its complement are hoth in X. 

A,: If" E S, then ", E Sand ", E S. 

A,: IT fJ E Sand fJ; E S, then fJ, E S. 

A3 : If fJ E S and fJ; E S, then fJ, E S. 

A.: If 7 E S, then for every a in U, 7(a) E X. 

As: If 6 E S, then for some a in U, 6(a) E S. 

Again we observe that if S is a first-order analytic set and S is ,a-complete, 
S is a first-order Hintikka set. 

It is not difficult to define a procedure which, given a set of s-formulae S, 
generates either a (canonical) closed KEQ-tree or an open KEQ-tree such 
that for every (possibly infinite) opeu branch q;, the set Btl> of the s-formulae 
occurring in q; is an analytic set which is also ,a-complete (the only tricky 
part of such a procedure concerns condition A4 and can be dealt with as in 
[Smu68a, pp.58-60J). Thus, completeness follows from Fact 3.3.5 and Hin­
tikka's lemma for first-order logic. This completeness proof establishes the 
analogs for the first-order system of Propositions 3.3.1 and 3.3.2. In formulat­
ing a refutation procedure to be used in practical applications, Skolem func­
tions and unification can be employed exactly as with the standard tableau 
method. The reader is referred to [Fit90j on this topic. A 'naive' Prolog 
implementation of a KE-based theorem prover for classical first order logic 
has been developed by Rajev Gore [Gor90]. Comparisons with a similar im­
plementation of the tableau method given in [Fit90] (see also [Fit88J) fully 
confirm our theoretical predictions about the relative efficiency of the two 
systems. 

We have therefore shown that KEQ provides positive answers to the three 
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questions at the end of the previous section: that KEQ is complete for clas­
sical first-order logic; that we can restrict ourselves to analytic applications 
of PB; moreover, we a.re able to determine the formulae to be considered for 
these analytic applications with a degree of precision which leaves little room 
for guesswork8 . 

3.7	 A digression on direct proofs: the sys­
tem KI 

The abstract notion of expansion system outlined in Section 2.6.1 is by no 
means restricted to representing refutation systems. Nor is there any as­
sumption that the expansion rules should be elimination rules. We Can in 
fact obtain a proof system for classical propositional logic if, instead of con­
sidering the 'analytic' rules of KE, we consider the following 'synthetic' rules, 
corresponding 10 Ihose of Ihe syslem KI [Mon88d, Mon89, Mon88c): 

Disjunction Rules 

f(A) 
f(E) !fV t(A) ItVl I(E) ItV2 

f(A V E) I(A V E) I(A V E) 

Conjunction Rules 

I(A) 
I(E) 

I(A II B) 
It II f(A) 

f(A II E) 
IfIII f(E) 

f(AIIE) 
Ifll2 

Implication Rules 

I(A) 
£(E)f(B)	 If ~ f(A) It ~l 

I(A ~ E) It ~2f(A ~ E) I(A ~ E) 

SOf course there is still plenty of room for heurist.ics which help us to choose which 
formula. sbould he analysed next. 
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Negation Rules 

t(A) f(A)

f(~A) lf~ t(,A) 

It~
 

Principle of Bivalence 

t(A) I f(A) PB 

The rules involving the logical operators will be called introduction rules or 
I-rules. A KI-tree for S will be, as usual, an expansion tree regulated by 
the rules of KI starting from s-formulae in S (when S is emptYl the origin 
of the tree is labelled with 0). Closed and open branches a.re defined in the 
usual way. A KI-prooJof A from r is a KI-tree for {t(B)IB E r}, such that 
t(A) occurs in every open branch. We say that A is a KI-theorem if A is 
provable from the empty set of formulae. A version for unsigned formulae 
can be obtained, as before, by changing all f's into -., and deleting all t'5. 
Mondaclori lMon88e, Mon89] has also formulated a first-order version of the 
system which will not concern us here. 

The I·rules of KI correspond to the notion of inductive valuation (see 
[Pra74]). 

Definition 3.7.1 We shall call inductive set a set of s-formulae saturated 
under the I-rules. We shall call a set of s-formulae a base when it is used for 
the inductive definition of an inductive set. So the inductive set generated 
by a base U will be the smallest inductive set which includes U. Finally, a 
synthetic set will be an inductive set generated by a base U such that all the 
elements of U are atomic s-formulae and for no atomic formula P both t(P) 
and f(P) are in U. 

The notion of a synthetic set bears the same relation to the calculus KI as 
does the notion of an analytic set to KE. 

Our definitions make sense if, instead of considering the set E of all the 
formulae of propositional calculus, we restrict our attention to a subset which 
is closed under subformulae. If we denote by f the set of all subformulae of 
formulae in r, by a set of s-fonnulae over f we mean a set of s-fonnulae 
s(A) (s = t, f), with A E r. The related notions of a synthetic set, a truth 
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set and saluration under a rule, with reference to sets over r, are intended 
to be modified in the obvious way. For example l by saying that a set S over 
f is satura.ted under PBI we shall mean that for every formula A in r either 
t(A) E S or I(A) E S. 

It is easy to verify that: 

Proposition 3.7.1 (Inversion Principle) If S is a synthetic (analytic) 
set over f and S is saturated under PB, then S is an analytic (synthetic) set 
over f. 

Corollary 3.7.1 If S is a synthetic (analytic) set over f and S is saturated 
under PR, then S is a truth set over I'. 

The completeness of KI as well as the subformula principle follow immedi­
ately from corollary 3.7.1. 

Let us say that an application of PH is atomic if the s-formulae resulting 
from the application are t(P) and f(P) for some· atomic formula P. Let us 
denote by PD* the expansion rule resulting from restricting PH to atomic 
applications. Intuitively, it is obvious that KI is complete for classic<\l logic 
even if we replace PH with PH*. Formally, this can be seen to be <\ conse­
quence of the following lemma: 

Lemma 3.7.1 (Truth-table lemma) If S is a synthetic set ov,r r, and S 
is saturated under PB-, then S is a truth set over f. 

SO, given an <\rbitrary formula A to be tested for tautologyhood
J 

we can use 
KI as a simulation in tree form of the familiar truth-tables. However l if we 
postpone the applications of PH* until no further application of an I-rule 
(over the set of subformulae of A) is possible, we may in many cases stop 
expanding a branch before PH* has been applied to all the atomic formulae. 
This kind of procedure amounts to a 'lazy evaluation' of boolean formulae 
via partial truth~assignments. 

3.8 Analytic natural deduction 

As mentioned before, the rules of KE have a certain natural deduction 
flavour. We can make this more evident by changing the format of the 



56 CHAPTER 3. AN ALTERNATNE APPROACH 

rules (in the version for unsigned formulae). It is convenient to extend the 
language to include the constant F, standing for 'the absurd'. The natural 
deduction system KEND is characterized by the following rules: 

Disjunction Rules 

~(A V B) ~(A V B)Av B ~A AvB ~B
 

B A ~A ~B
 

Conjunction Rules 

~(A A B) A ~(A A B) B AAB AAB
 
~B ~A A B
 

Implication Rules 

A --> B A A --> B ~B ~(A --> B) ~(A --> B)
 
B ~A A ~B
 

Negation Rule 
~~A 

A 

Absurdum Rule 

A ~A 

F 

PB 

IAJ [~Al 

F F
 

F
 

Every application of PH discharges the assumptions A and -, A. A KEND­
tree is a tree of formulae regulated by the above rules. As in natural deduc­
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tion, a proof oj A from r is a KEND-tree with origin A and such that its 
undischarged assumptions are in f. 

The rules can he put in linear form by using a Fitch-style representa.tion 
or nested boxes (as in [Smu65)). In this case instead of PB we can use a 
versiou of classical Reductio ad Absurdum: 

[~Al 

F 
-A [RA] 

In this last format the rules of KEND have been independently proposed 
by Cellucci [Cel871. 

3.9 Non-classical logics 

One of the attractions of the tableau method is that it can be adapted to a 
variety of non-classical logics in a relatively simple way. In all the cases in 
which a Kripke~style characterization exists9 

, these adaptations essentially 
consist of systems for reasoning classically about Kripke models. For ex­
arnple1 in the case of intuitionistic and standard modal logics, the tableau 
rules systematically search for a Kripke model which is a countermodel of 
the alleged theorem (whereas in the case of modal logics the use of signed 
formulae is optional, in the case of intuitionistic logic it is compulsory). As 
in the classical case, a proof of A is a frustrated attempt to construct a 
Kripke model in which A is not true. Signed formulae t(B) and f(B) are 
interpreted as '8 is true in the current world' and '8 is not true in the cur­
rent world', respectively. The crucial feature of these non-classical tableaux 
is the use of 'up-dating' or 'branch modification rules' (see [Fit83]) to reflect 
the jump from one possible world to another. We just mention here that 
exactly the same devices can be used in the context of KE. The typical KE 
rule, namely PB, expresses the classical postulate that for every proposition 
A and every Kripke model M, either A is true in M or A is not true in 
M. Given the branch modification rules defined by Fitting, the KE~style 

versions of intuitionistic and analytic modal logics are obtained by means of 

9See [Fit83]. 
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trivial adaptations. Moreover, the rule PD is necessary in the context of nOll­

analytic modal logics (like 55) so that the KE-version looks, in these cases, 
less ad hoc. The sa.me redundancy of the cut-free rules pointed out in the case 
of classical logic can also be observed for these non-classical logics. Therefore 
the KE-versioDs also result in an improvement in efficiency. In Chapter 5 
we shall study a. non-dassicallogic, Belnap's four-valued logic, which has an 
interesting interpretation from a computer science viewpoint, and shall for­
mulate two new methods corresponding to both kiods of tableaux (standard 
and KE-like) which provide particularly simple characterizations of it. 



Chapter 4 

Computational complexity 

4.1 Absolute and relative complexity 

The subject of computational complexity can be seen as a refinement of the 
traditional theory of computability. The refinement, which is motivated by 
practical considerations and above all by the rapid development of compu leT 

science, consists of replacing the fundamental question, 'Is the problem P 
computationally solvable?' with the question, 'Is P solvable within bounded 
resources (time and space)?'. Workers in computational complexity agree 
in identifying the class of 'practically solvable' or 'feasible' problems with 
the class P of the problems that can be solved by a Turing machine within 
polynomial time, Le. time bounded above by a polynomial in the length of 
the input. 

Most computational problems can be viewed as language-recognition prob­
lems Le. problems which ask whether or not a word over a given alphabet is 
a member of some distinguished set of words. For instance1 the problem of 
deciding whether a fonnula of the propositional calculus is a tautology can 
be identified with the set TAUT of all the words over the alphabet of proposi­
tional calculus which express tautologies 1 and an algorithm which solves the 
problem is one which decides, given a word over the alphabet, whether or 
not it belongs to TAUT. So the class P can be described as the class of the 
languages which can be recognized in polynomial time by a Turing machine. 

The rationale of this identification of feasible problems with sets in P is 
that, as the length of the input grows, exponential time algorithms require 

59
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resources which quickly precipitate heyond any practical constraint. Need­
less to say, an exponential time algorithm may be preferable in practice to 
a polynomial time algorithm with running time, say, n 1OOO • However, the 
notion of polynomial time computability is theoretically useful because it is 
particularly robust: it is invariant under any reasonable choice of models of 
computation. In fact, there is an anaJog of the Church-Turing thesis in the 
field of computational complexity, namely the thesis that a Turing machine 
can simulate any 'reasonable' model of computation with at most a polyno­
mial increase in time and space. Moreover polynomial time computability is 
invariant under any reasonable choice of 'encoding scheme' for the problem 
under consideration. Finally, 'natural problems', i.e. problems which arise in 
practice and are not specifically constructed in order to defy the power of 
our computational devices, seem to show a tendency to be either intractable 
or solvable in time bounded by a polynomial of reasonably low degree. 

The analog of the class P, when non-deterministic models of computation 
are considered, for example non-deterministic Turing machines], is the class 
Np of the problems which a.re 'solved' in polynomial time by some non­
deterministic algorithm. The class NP can be viewed as the class of all 
languages L such that, for every word w E L, there is a 'short' proof of 
its membership in L, where 'short' means that the length of the proof is 
bounded above by some polynomial fnnction of the length of w. (See [GJ79] 
and [Sto87] for definitions in terms of non-deterministic Turing machines.) 
The central role played by propositional logic in theoretical computer science 
is related to the following well-known resnlts [Coo71, CR74]: 

1.	 There is a deterministic polynomial time algorithm for the tautology 
problem if and only if P = NP. 

2.	 There is a non-deterministic polynomial time algorithm for the tautol­
ogy problem if and only if NP is closed under complementation. 

As far as the first result is concerned, the theory of NP-completeness2 is 
providing growing evidence for the conjecture that P i- NP, which wonld 
imply that no proof procedure can be uniformly feasible for the whole class 
of tautologies (it can of course be feasible for a number of infinite subclasses 
of t his class). 

'See [GJ79) and [SI087).
 
2We refer the reader to [GJ7l:l],
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The second result involves the notion of a proof system rather than the 
notion of a proof procedure. The following definitions are due to Cook and 
Rechow [CR74) (E'" denotes the set of all finite strings or 'words' over the 
alphabet E): 

Definition 4.1.1 If LeE*, a proof system for L is a function f : E~ L1-+ 

for some alphabet Ell where f E £. (the class of functions computa.ble in 
polynomial time). 

The condition that f E £. is intended to ensure that there is a feasible way, 
when given a string over E1 , of checking whether it represents a proof and 
what it is a proof of So, for example, a proof system S is associated with a 
function f such that f(x) = A if x is a string of symbols which represents a 
legitimate proof of A in S. If x does not represent a proof in 5, then f(:r;) is 
taken to denote some fixed tautology in L. 

Definition 4.1.2 A proof system f is polynomially bounded if there is a 
polynomial pen) such that for all yELl there is an :r; E Ei such that 
y = f(x) and Ixl :s p(ly/), where Izi is the length of the string z. 

This definition captures the idea of a. proof system in which, for every element 
of L, there exists a 'short 1 proof of its membership in L. If a proof system is 
polynomially bounded, this does not imply (unless P = AlP) tbat there is a 
proof procedure based on it (namely a deterministic version) which is poly­
nomially bounded. On the other hand if a proof system is not polynomially 
bounded, a fortiori there is no polynomially bounded proof procedure based 
on it. 

The question of whether a proof system is polynomially bounded or not 
is one concerning its absolute complexity. As we will see, most conventional 
proof systems for propositional logic have been sbown not to be polynomially 
bounded by exhibiting for each system some infinite class of 'hard examples' 
which have no polynomial size proofs. One consequence of these results 
(which will be reviewed later), as far as the use of proof systems for automated 
deduction is concerned, is that we should not expect a complete proof system 
to be feasible and should be prepared either to give up completeness and 
restrict our language in order to attain feasibility (this is the line chosen for 
most of the resolution~basedapplications), or to appeal to suitable heuristics, 
namely fallible 'strategies' to guide our proofs. In fact the results mentioned 
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above imply that heuristics alone is not sufficient if we want to be ahle to 
obtain proofs expressible as formal derivations in some couveutional system. 
So we should be prepared to use heuristics and give up completeness. 

However the importance of the complexity analysis of proof systems is by 
no means restricted to the P versus N'P question. Nor should we conclude 
that all conventional systems are to be regarded as equivaleut and that the 
only difference is caused by the heuristics that we lise. Besides the questions 
concerning the absolute complexity of proof systems, there are many inter­
esting ones concerning their relative complexity which are computationally 
significant even when the systems have been proved intractable. As far as 
automated deduction is concerned, such questions of relative complexity are 
relevant, before any heuristic considerations, to the choice of an appropriate 
formal system to start with. 

4.2 Relative complexity and simulations 

Let S be a proof system for propositional logic. We write 

n 

r f-s A 

to mean that there is a proof 71" of A from r in the system S such that 
111'"1 ::; n (where 171"1 denotes as usual the length of 11'" intended as a string of 
symbols over the alphabet of S). 

Suppose that, given two systems Sand SI, there is a fuuctiou 9 such that 
for all r, A: 

n yen) 
(4.1 ) r f-s' A = r f-s A 

we are interested in the rate of growth of 9 for particular systems Sand S'. 
Positive results about the above relat.ion are usually obtained by means of 
simulation procedures: 

Definition 4.2.1 If II : ri 1-+ Laud 12 : r; ~ L are proof systems for 
L, a simulation of 11 in 12 is a comput.able function h : :Ei 1---+ r; such that 
f,(h(x)) = J,(x) for all x E L. 

Negative results consist of lower bou.nds for the function g. 
An important special case of the relation in (4.1) occurs when g(n) is 

a polynomial in n. This can be shown by exhibiting a simulation function 
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(as in definition 4.2.1) h such that for some polynomial p(n), h(.,) S p(lxl) 
for all x. In this case S is said to pofynomially simulate3 

, or shortly p­
simulate,S'. A p-simulation is theu a mapping from proofs in 5' to proofs 
in S which preserves feasibility: if 51 is a polynomially bounded system for 
L, so is S (where L can be any infinite subset of TAUT). The p-simulation 
is obviously a partial ordering and its symmetric closure is an equivalence 
relation. We can therefore order proof systems and put them into equivalence 
classes with respect to their relative complexity. Systems belonging to the 
same equivalence class can be considered as having lessentially' (i.e. up to 
a polynomial) the same complexity. Ou the other hand if S p-simulates 
5', but there is no p-simulation in the reverse directioll , we can say that 5 
is essentially more efficient than 5' - 5 is polynomially bounded for every 
L C TAUT for which 5' is polynomially bounded but the opposite is not 
true; therefore 5 has a larger 'practical' scope than 51. 

The study of the relative complexity of proof systems was started by 
Cook and Rechow [CR74, CR79]. Later on, some open questions were settled 
and new ones have been raised. In section 4.5 we shall analyse the relative 
complexity of KE and KI with respE"ct to other proof systems. First, in the 
next section, we shall briefly review the most importaut results concerning 
the absolute and relative complexity of conventional proof systems. 

4.3 An overview 

In this section we shall use the notation 5':S:p S, where 5 and 51 are proposi­
tional proof systems for '5' is p-reducible to 5' or equivalently '5 p--simulates 
5". The notations 5'<p Sand S/=p 5 are used in the obvious way. 

The tableau method was among the first systems to be recognized as 
intractable for fairly simple examples [CR74]. Cook and Rechow remarked 
that their hard examples had easy (linear) resolution proofs, i.e. 

(4.2) Tableau method lp Resolution4 
• 

30ur definition of p-sirnulation is slightly different from the original one given, for 
instance, in [CR79]. However it is easy to see that it sen'es exactly the same purposes as 
far as the study of the relati"'e complexity of proof system:> is concerned. Our definition 
is the sa.rne as the one used in [Bus87]. 

4Because resolution is restricted to clausal form any comparison with other proof sys­
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The intractability of the tableau method obviously implies the intractability 
of the Gentzen cut-free system in tree form (with or without thinning), given 
the easy correspondence between tableau refutations and cut-free proofs in 
tree form. A rigorous proof of the latter result, llsing a different class of hard 
examples, is contained in [Sta78]. Statman remarked that his examples had 
polynomial size proofs in the Gentzen system with cut. Hence 

(4.3) Cut-free Gentzen (tree) i., Gentzeu with cut (tree) 

Since it is obvious that 

(4.4) Gentzell with cut (tree)~, Cut-free Gentzen (tree) 

Statman's result showed that the system with cut is strictJy more powerful 
than the cut-free system, even at the propositional level. The intractability 
of the cut-free Gentzen system without thinning, when proofs are arranged 
as sequences or directed acyclic graphs Cd.a.g. 's) of sequeuts instead of trees, 
was proved by Cook and Rackoff [Co078] using a class of tautologies known as 
the 'pigeonhole principle' encoding the so-called 'occupancy problem' studied 
hy Cook and Karp'­

In [CR79] the authors consider families of proof systems which geueralize 
the traditional Gentzen system with cut, Natural Deduction and the Hilbert­
style axiomatic systems (called 'Frege systems'), aud show that p-slmulation 
is possible between any two members of each family. Moreover, they show 
that all three families are in the same complexity class, namely: 

(4.5) Gentzen with cut (d.a.g.) =, Natural Deduction (d.a.g.) 

(4.6) =, Frege systems 

An exponential lower bonnd for cut-free Gentzen systems had been proved 
by Tseitin in [Tse68] (the first paper on the topic), with the proviso that 
proofs are regular, i.e. (moving from the root to the leaves) a formula which 
has been eliminated in a branch cannot be reintroduced in the same branch. 
Urquhart has recently proved an exponential lower bound for unrestricted 

telll8 is int.ended to be made in the domain of formula.e in clausal form (or some suitable 
syntactica.l vari&nt). 

5See (Coo7l] and [Kar72]. See also [DH76], in which the authors give a decision proce­
dure to solve this problem efficiently. 
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cut-free Gentzen systems (with proofs defined as sequences or directed acyclic 
graphs of sequents) using a class of exa.mples involving the bicondit.ional 
operator [Urq89]. Again Urquhartls examples have polynomial size proofs if 
cut is allowed. Hence 

(4.7) Cut-free Gentzen (d.a.g.) lp Gentzen with cut (d.a.g.) 

whereas there is a trivial p-simulation in the opposite direction. Therdore: 

(4.8) Cut-free Gentzen (d.a.g.) <p Gentzen with cut (d.a.g.), 

It then follows from (4.5) and (4.6) that 

(4.9) Cut-free Gentzen (d.a.g.) <p Natural Deduction (d.a.g.) 

(4.10) <p Frege systems. 

As far dS resolution is concerned6
, an early intractability result W3$ proved 

by Tseitin [Tse68j, a.gain under the assumption that derivations are regu­
lar (a literal cannot be eliminated a.nd reintroduced on the same path), and 
la.ter refined by Galil [GaIn]. The intra.ctability of unrestricted resolution 
has been proved by Hacken [Hac85J and Urquhart [Urq87]. Hacken's proof 
also uses 'the pigeonhole principle' and provides a lower bound on the com­
plexity of resolution proofs of this class of tautologies which is expouential 
on the cube root of the input size. Hacken's technique has been extended 
by Buss and Turan to give an exponential lower bound for resolution proofs 
of the generalized pigoonhole principle [BG88]. Urquhart '5 proof is based on 
a different construction which evolves from a,n idea used by Tseitiu [Tse68] 
in order to prove a.n exponential lower bound for regular resolution, and it 
provides a lower bound which is exponential in the input size. Urquhart 
explicitly notices that his examples have polynomial size proofs in Frege sys­
tems. Since Fregc systems can p-simulate resolution (see [CR74]), Urquhart's 
result implies 
(4.11) Resolution <p Frege systems 

which in turn, by (4.5) and (4.6) implies 

(4.12) Resolution <p Natural deduction (d.a.g.) 

(4.13) Resolution <p Gentzen with cut (d.a.g.) 

5See footnote 4. 
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Hacken's and Urquhart's results show that there are families of tautologies 
which have no feasible resolution proofs. A recently result by Chvatal and 
Szemeredi [CS88] shows that these are not isolated examples. Using a prob­
abilistic analysis they prove tbat randomly generated sparse sets of clauses 
are very likely to be 'hard' for resolution. 

Cook a.nd Rechow [CR79] had considered the pigeonhole principle in re­
lation to Frege systems (as the Hilbert-style axiomatic systems are known in 
the complexity literature) and had conjectured that there were no polyno­
mial size proofs. This conjecture has been recently disproved by Duss [Bns87] 
who has exhibited polynomial size Frege proofs of this class of tautologies} 
so establishing (4.11) in a different way. However Ajtai has more recently 
proved that no such polynomial size proofs are possible if the depth (that is 
the number of alternations of V and A) of the formulae is bounded [Ajt88J. 

This series of negative results leaves, among the conventional proof systems1 
, 

only unrestricted Frege systems and natural deduction as well as Gentzen 
systems with cut, as possible candidates for a polynomially bounded system. 
However Ajtai's theorem offers little hope for any reasonable restriction of 
the search space which is compatible with the eXlstence of polynomial-size 
proofs of the entire class of tautologies, not to mention that even if such a 
restricted system were possible, the widespread conjecture that P #- }/P 
would imply, if true, that we would not be able to formulate a polynomial 
time proof procedure based on it. 

As said before, the fact that the existence of a polynomially bounded 
proof system seems to be higly improbable does not decrease our interest in 
the relative efficiency of alternative formalizations. Indeed, considerations of 
relative efficiency a.re now even more important because intractable systems 
may have quite different 'practical scopes" i.e. may differ cousiderably with 

'We have not ment.ioQed eztenrlerl systems, which involve the introduction of new vari­
ables as abbreviations of fonnulae. This device was first introduced and used by Tseitin 
[Tse68] in the context of resolution. Cook and Rechow [CR79] defined extended Fr-e.ge sys­
tems in a similac way aDd showed that. the pigeonhole priuciple has polynomial size proofs 
in such systems. It. is open whetber or not conventional Frege systems can polynomially 
simulate extended Frege systems. In the cited paper Cook and R.echow had conjectured 
that the pigeonhole principle provided a class of examples sufficient to establish a separa­
tion result. But BUS9 has recently shown that the two families are not discriminated by 
this class of examples, since there are polynomial size proofs in conventional Frege systems 
as well. 
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respect to the extension and the type of the subsets of TAUT for which they 
are polynomially bounded. From this point of view a minimal requirement 
for a proof system seems to be that its practical scope properly include lhat 
of the truth-table method which consists of using the very semantic definition 
of tautology (combined with the semantic definitions of the logical operators) 
as a proof system. In the next section we shall see that this requirement is 
not as trivial as is usually assumed. 

4.4	 Are tableaux an improvement on truth­
tables? 

The truth-table method, introduced by WiUgenstein in his Traetutus Logico­
Philosophi.cus, provides a decision procedure for propositional logic which 
is immediately implementable on a machine. However, in the literature on 
Automated Deduction, this time-honoured method is usually mentioned, only 
to be immediately dismissed because of its incurable inefficiency. Here is a 
typical quotation from a recent textbook On this topic 8: 

Is there a better way of testing whether a proposition A is a tau­
tology than computing its truth table (which requires computing 
at least 2n entries where n is the number of proposition symbols 
occurring in A)? One possibility is to work backwards, trying to 
find a truth assignment which makes the proposition false. In 
this way, one may detect failnre much earlier. This is the essence 
of Gentzen [cut-free] systems ... 

Similarly, in another recent textbook in which the anthor advocates the use 
of Smullyan's semantic tableaux, we find the remark that 'tableau proofs can 
be very much shorter than truth-table verifications'9. Beth himself, who was 
(in the '50's) one of the inventors of tableaux, also stressed that they 'may be 
considered in the first place as a more convenient presentation of the familiar 
truth-table analysis l10 Richard Jeffrey, in his well-known book Formal Logic, 
takes over this point and says: 

'[Gal86, pag'" 44-45].
 
9[Fit90, page 39].
 

lO[Bet58, page 82].
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The truth-table test is straightforward but needlessly laborious 
when statement letters are numerous, for the number of cases 
to be searched doubles with each additional letter (so that, e.g., 
with 10 letters there are over 1,000 cases). The truth-tree [i.e. 
tableau] test [... ] is equally straightforward but saves labor by 
searching whole blocks of cases at oncell . 

This appraisal of the relative efficiency of tableau proofs with respect to 
truth-table verifications, however, may turn out to be rather unfair. In fact, 
the situation is not nearly as c1ear~cut as it appears. It is, of course, true that 
a complete truth-table always requires the computation of a number of rows 
which grows exponentially with the number of variables in the expression to 
be decided, and also that in some cases a tableau proof can be much shorter, 
However, what usually goes unnoticed is that in other cases tableau proofs 
can be much longer than truth-table verifications, Tbe reason is simple: the 
complexity of tableau proofs depends essentially on the length of the formula 
to be decided, whereas the complexity of truth-tables depends essentially 
on the number of distinct propositional variables which occur in it. If an 
expression is lfat '12, i,e. its length is large compared to the number of distinct 
variables in it, the number of branches generated by its tableau analysis 
may be large compared to the number of rows in its truth-table. One can 
easily find fat expressions for which this is the case. If we consider the 
asymptotic behaviour of the two systems, we can observe that if there is an 
infinite sequence S of expressions for which the shortest tableau proofs are 
exponential in the input size, and the input size is kC for some c 2: 2, the 
truth-table method would perform essentially better, even asymptotically, 
over this sequence than the tableau method: the complexity of the truth~ 

table verifications would be 0(2,1: . kC
) = O(2,1:+clog,l:). So, in this case, the 

size of the tableau proofs would not even be polynomially related to the 
size of the truth-tables. Moreover, if S is an infinite sequence of Itruly fat' 
expressions of length 2,1:, where k 1s the number of va.riables involved, any 
tableau-based refutation procedure is very likely to be ridiculed by the old 
truth-la.ble method: if f(n) is a function expressing a. lower bound on the 
number of branches in a closed tableau for an expression of length n, then 
the fastest possible procedure based on the tableau method will generate, 

11 [JefSl , page 18].
 
12This rather fancy terminology is used in [DH76J.
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for each element of 5, at least j(2Jc 
) branches, whereas the 'slow' truth-table 

method will always require 2Jc rows. The faster fen) grows, the worse for the 
tableau-based procedure13 

. 

An extreme example is represented by the sequence of truly fat expres­
sioos in conjunctive normal form, defined as follows: given a sequence of k 
atomic variables Pl.." 1 Pk, consider aU the possible clauses containing as 
members, for each i = 1,2, ... I k, either Pi or """P1 and no other member. 
There are 2Jc of such clauses. Let Hp1, ... ,P. denote the conjunction of these 2k 

clauses. The expression Hp1, ... ,PJe is un satisfiable. For instance, HpJ,P1 is the 
following expression in CNF: 

PI V P, 1\ P, V ~P, 1\ ~P, V P, 1\ ~P, V ~P, 

Notice that in this case the truth-table procedure contains as many rows as 
clauses in the expre..ssions, namely 2..\:. In other words, this class of expressions 
is not 'hard' for the truth-table method. However we claim that it is hard 
for the tahleau methodH , and therefore: 

Claim 4.4.1 The tableau method cannot p-sirnuJate the truth-table method. 

The nature of these considerations is not only technical but also conceptual. 
They confirm that there is something inadequate about the tableau (and the 
cut-free) analysis of classical inferences. It seems that, in order to pursue 
the 'ideal of purity of methods' the cut-free tradition has sacrificed aspects 
(bivalence, cut) that are compatible with this ideal and, indeed, essential 
to establish a close connection betwe€D (analytic) formal derivability and 
classical semantics. After all, truth-tables are nothing bnt a literally-minded 
implementation of the classical definition of logical truth (or falsity) as truth 
(or falsity) in all possible worlds (or under all possible truth-assignments to 
use a less suggestive terminology) combined with the classical definition of 
the logical operators. In general, given a decidable logic L which admits of 
characterization by means of m-valued truth-tables, the complexity of the 
semantic decision procedure for L is essentially O(n . mk ) wbere n is the 

'''In most interesting ca&es f(n) grows at least linearly with n and so does the number 
of nodes in each branch, therefore for such a sequence the truth-table method is uniformly 
more efficient than the tableau method. 

141n a recent personal communication Alasdalr Urquhart has suggested a. way of proving 
our claim. 
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length of the input Cannula and k is the number of distinct variables iu it. 
This is an upper bound which can be derived immediately from the semantic 
characterization of L. In the case of classical logic, in which m = 2, this 
upper bound is essentially O(n· 2'"). This can be taken as a 'na.tural' upper 
bound on every proof system for c1a.ssicallogic. In other words, it is odd for 
a classical proof system to generate proofs which, in some simple cases, are 
much more complex than the direct, unimaginative, computation based on 
classical semantics. This applies especially to the tableau method which is 
usually claimed to be a direct translation of the semantics of classical logic 
into a formal system (this aspect was certainly one of the motivations for its 
inventors 1 in pa.rticular for Beth). So the point we are making may also be 
considered as an argument against this claim. 

If we take the upper bound for the truth-table computation as a 'natural' 
upper bound on the tautology problem, we can turn our considerations into 
a precise requ\rement on a 'natural' proof system for classical logic: 

A (natural' proof system for classical logic should never generate 
proofs whose complezity (significantly) exceeds the complexity of 
the cOJTesponding troth-tables. 

The example given above shows that the tableau method does not satisfy 
this requirement. As suggested before, its poor performance is related to the 
way in which the tableau rules analyse classical inferences and unfold the 
information content of the formulae. As we have shown in Chapter 2, the 
tableau rules 'hide' a considerable amount of information which is contained 
in the input formulae and this is indeed the origin of their odd (and some­
times monstrous) computational behaviour: they hide all the information 
pertaining to the 'bivalent' structure of classical logic. 

So our negative considerations raise a positive problem. Are there proof 
systems which can be considered as a real (uniform) improvement on the 
truth-lable method (and on the tableau method)? 

Let us say that a proof system is standard if its complexity is O(n . 2'") 
where n is the length of the input formula and k the number of distinct vari­
able occurring in it. It is not difficult to show that the analytic restrictionstS 

•.... My 'analytic restriction' or KE aJld KI we mean t.he systems obtained by restricting 
the applications or PD in a proor or A rtom r t.o subrormulae or A or of formulae in ['. 
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of both KE and KI are standard proof systems. This is obvious in the case 
of KI: as seen in Section 3.7 KI can be viewed as a uniform improvement of 
the truth-table method. For KE it will appear as a corollary of the fact that 
this system can linearly simulate KI, to be shown in the next section. 

4.5 The relative complexity of KE and KI 

In this section we compare the propositional fragments of the systems KE 
and KI with the propositional fragments of other well-known proof systems. 
All the proof systems we shall consider here enjoy the so-called (weak) sub­
formula propertYl that is: to prove a formula A one only needs to consider 
its weak subformulae, where a weak snbformula of A is either a subformula 
of A or the negation of a subformula of A. We call a proof analytic if it en­
joys this property. Some systems of deduction (like the tableau method and 
Gentzen's sequent calculus without cut) yield only analytic proofs. Others 
(like Natural Deduction, Gentzen's sequent calculus with cut, KE and KI) 
allow for a more general notiou of proof which includes non-analytic proofs, 
although in all these cases the systems obtained by restricting the rules to 
analytic applications are still complete. Since we are interested, for theoret­
ical and practical reasons, in analytic proofs, we shall pay special attention 
to simulation procedures which preserve the subformula property. 

Definition 4.5.1 The length of a proof 7l'", denoted by 17l'"1 is the total number 
of symbols occurring in 1t" (intended as a string). 

The A-complexity, of 1t", denoted by A(7l'"), is the number of lines in the 
proof 1t" (each 'line' being a sequent, a formula, or any other expression asso­
ciated with an inference step, depending on the system under consideration). 
Finally the p-comptexityof"., denoted by p(".) is the length (total number of 
symbols) of a line of maximal length occurring in 7l'". 

Our complexity measures are obviously connected by the relation 

1".1 :s A(",)· p(".). 

Now, observe that the A-measure is sufficient to establish negative results 
about the simulation relation in 4.1, but is not sufficient in general for positive 
results. It may, however, be adequate also for positive results whenever one 
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can show that the p-measure (the length of lines) is not significantly increased 
by the simulation procedure under consideration. All the procedures that we 
shall consider in tbe sequel will be of this kind. So we shaJl forget about the 
p-measure a.nd restrict our attention to the A-measnre. 

As said before, we are interested in the complexity not of proofs in gen­
eral but of analytic proofs. We shall then appeal to tbe notion of analytic 
restriction of a system: let S be a system which enjoys the subformula prop­
erty. We ca.n take S as defined not by its inference rules, but extensionally, 
by the set of proofs wbich it recognizes as sound. Then we can denote by 
S'" its analytic T'fstriction, i.e. the subset of S consisting of the proofs which 
enjoy the subformula property. All the notions defined for proof systems can 
be extended to analytic restrictions in it natural way. 

We sh",11 consider the versions of KE and KI which use unsigned formulae. 

4.5.1 KE versus KI 

We start by showing that proofs in KE and KI have essentially the same 
complexity: 

Theorem 4.5.1 KE and KI can linearly t/imulate each other. Moreover, 
the simulation preserves the subforrnula property. 

Proof. First, observe that the rules of KI can be simulated in KE as follows 
(we show tbe procedure only for the rules I/\ and I....,v, the other cases being 
similar): 

A ~A 

B ~B 

1/1 A I~V A 
AAB ~(A /I B) AVB ~(A V B) 

~B B 

x x 
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where x marks a closed branch. 
Now, if T is a KI-tree with assumptions r, then repla.ce each application 

of a KI-rule with its KE-simulalion (the applications of PH can be left un­
changed since PH is also a rule of KE). The result is a KE-tree T' containing 
at most .-\(T) + c· A(T) nodes, where c is the maximum number of addit.ional 
nodes generated by a KE-simulation of a. KI-rule (namely 2). Thus, if T is 
a KI-proof of A from r, 7' is a KE·tree such that all its open branches have 
A as terminal node. Moreover, A(T') S 3..\(7) and 7' does not contain any 
formulae which do not occur in T. Simply adding ...,A to the assumptions 
will provide a. closed KE-tree for f, -,A. 

The inference rules of KE can be easily simulated in KI as follows (we 
show the procedure only for the rules EVI and E-.Al, the other cases being 
similar): 

~A A 

AvB ~(A t- B) 

EVI A E~M A 
B ~B B ~B 

~(A V B) At-B 

x x 

Now, if 7 is a KE- tree with assumptions r, ...,A, then replace each application 
of a KE-rule with its KI·simulation (the applications of PB can be left 
unchanged since PB is also a rule of KI). The result is a KI-tree T' containing 
at most ),(7)+ c· ),(7) nodes, where c is the maximum number of additional 
nodes generated by a KI-simulation of a KE-rule (namely 2). Thus, if 7 is 
a closed KE-tree for f, ...,A, then 7/ is a closed KI-tree for r I ...,A. Moreover, 
),(7') ~ 3),(7) and 7' does not contain any formula which does not occur 
in 7. Hence, by applying PB to A. one obtains the required KI-proof of A 
from r.D 

Let us say tha.t a KI~tree is atomic if PB is applied to atomic formulae 
only. 
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Proposition 4.5.1 If A is a tautology of length n and containing k distinct 
variables, there is an atomic KI-proofT of A with .\(7) :s n . 2 k 

. 

Proof. Trivial. (See above, Section 3.7.) 

Theorem 4.5.2 KE and KI are standard proof systems, i.e. for every tau­
tology A of length n and containing k distinct variables, there is a KI-proof 
T of A and a KE-refutation T of ~A with '(T) = 0('(7)) = O(n· 2') 

The theorem is obvious for KI (see above Section 3.7). For KE it is an 
immediate corollary of theorem 4.5.1. 

4.5.2 KE versus the tableau method 

First we notice that, given a tableau refutation T of r we can effectively 
construct an analytic KE-refutation 7 1 of r which is not essentially longer. 

n 'n 
Theorem 4.5.3 r rTM A =} r rKE' A 

Proof. Observe that the connective rules of KE, combined with PB, can 
easily simulate the branching rules of the tableau method, as is shown below 
in the case of the branching rule for eliminating disjunctions (all the other 
cases are similar): 

A 
AvE 

E ~E 

A 

Such a simulation lengthens the original tableau by one node for each appli. 
cation of a branching rule. Since the linear rules of the tableau method are 
also rules of KE, it folJows that there is a KE·refutation T' of r such that 
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A(T) S A(T) + k, where k is the number of applications of branching rules 
in T. Since k is obviously S A(T), then A(T) S 2A(T).0 

We have seen that in spite of their similarity, KE and the tableau method 
appear to be separated with respect to their complexity. This fact is already 
suggested by Claim 4.4.1, and Theorems 4.5.2 and 4.5.3, and will later be 
proved as a consequence of a result in [CR74]. In accordance with Theo­
rem 4.5.2, the 'hard examples' on which Claim 4.4.1 was based (see Above 
Section 4.4) can be seen to have short KE-refutations. Figure 4.1 shows a 
KE-refutation of the set of clauses Hp"p~,PJ' It is apparent that, in general, 
the number of branches in the KE-tree for Hp1, ...,P•• constructed according 
to the same pattern, is exactly 24- 1 (which is the number of clauses in the 
expression divided 2) and that the refutation trees have size O(k . 2"). 

While all the tableau rules can be easily simulated by means of KE-rules, 
KE includes a rule, namely PB, which cannot be easily simulated by means 
of the tableau rules. Although it is well-known that the addition of this rule 
to the tableau rules does not increase the stock of inferences that can be 
shown valid (since PB is classically valid and the tableau method is classi­
cally complete), its absence, in some cases, is responsible for an explosive 
growth in the size of tableau proofs. In chapter 2 we have given a semantic 
explanation of this combinatorial explosion. The syntactic counterpart to 
that semantic argument can be expressed in tenns of 'analytic cut'. Suppose 
there is a tableau proof of A from r, i.e. a closed tableau 11 for r, -,A (where 
A is assumed to be atomic for the sake of simplicity) and a tableau proof 
of B from ~,A, i.e. a dosed tableau Ti for li, A, ....,B; then it follows from 
the elimination tbeorem (see [Smu68a]) that there is also a closed tableau for 
r, li, ,E. This fact can be seen as a typical 'cut' inference: 

r r A 
6,A r B 
r,6 r B 

where 'I-' stands for the tableau derivability relation. When a rule like PB 
is available, simulating this kind of 'cut' inference is relatively inexpensive in 
terms of proof size as is shown by the diagram below: 
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Hpl,P3,P3 

/"'"
~P,P, 

I
 
P2 V P3 

I 
P'jV ..... P3 

I
 
.....P2 V P3 

I
 
...... P, V ..,P3 

/\
 
~ ""P'J 

I I
 
P3 P3 

I I
 
~P3 ~P3 

x x 

I
 
P, V P3 

I 
P2 V....,P3 

I 
..... P2 V P3 

I
 
...... p., V ...,P3 

/\

P2 ...,P2 

I I
 
P3 P3 

I I
 
~P3 ~P3 

x x 

Figure 4.1: A KE~refutation of Hpl,P2,P3' 



77 4.5. THE RELATIVE COMPLEXITY OF KE AND KI 

r 
~ 

~B 

A 
A ~A
 

T, T,
 

But if PB is not in our stock of rules, reproducing the cut inference may be 
much more expensive. Let us assume, for instance, that ..,A is used more than 
once, say n times, in Tt to dose a branch, so that Ti contains n occurrences 
of A in distinct branches which will be left open if .A is removed from the 
assumptions. Similarly, let A be used more than once, say m times, in T; to 
close a branch, so that T2 contains m occurrences of..,A in distinct branches 
which will be left open if A is removed from the assumptions. Then, in 
some cases, the shortest tableau refuta.tion of r,~, ...... B will have one of the 
following two forms: 

r r 
~ ~ 

~B ~B 

T, T, 

A A 
... . .. A A ~A ~A 

T, T, T, T, 

where the subrefutation 1; is repeated n times in the lefthand tree and the 
subrefutation T;. is repeated m times in the rightband tree. The reader should 
notice that in this case the 'elimination of cuts' from the tableau proof does 
not remove 'impure' inferences, because A is assumed to be a snbformula of 
formulae in r, 6.. So the cut proof is analytic. 
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Because of this intrinsically inefficient way of dealing with analytic cut in­
ferences, examples can be found which require a great deal of duplication in 
the construetlon of a dosed. tableau. We have already given a class of 'bard 
examples' for the tableau method which are easy not only for (the analytic 
restrictions of) KE and KI but also for the truth-table method. Another 
class of hard examples is described in [CR74]: Let 

Hm = {±A' V ±A~ V ±A~± V ... V A±'. .±} 

where +A means A and -A means ...,A, and the snbscript of Ai is a string of 
i -1 +'sor -'s corresponding to the sequence of signs of the preceding Ai, 
j < i. Thus Hm contains 2m disjunctions and 2m - 1 distinct atomic letters. 
For instance H2 = {AI VA~JAI V -.A~,..,AI V A~,..,AI V -,A~J. 

In [CR74] Cook and Rechow report without proof a lower bound of 2,om on 
the number of nodes of a dosed tableau for the conjunction of all dIsjunctions 
in Hm . Moreover, since there are 2m 

-
1 distinct atomic letters, this class 

of examples is hard also for the truth-table method. In contrast, we can 
show tha.t there is an 'easy' analytic KE-refntation of Hm which contains 
2m + 2mm - 2 nodes. Such a refutation has the following form: start with 
Hm . This will be a set containing n(= 2m ) disjunctions of which n/2 start 
with Al and the remaining n/2 with its negation. Then apply PB to ...... A I

• 

This creates a branching with -.AI in one branch and ..., ...... A 1 in the other. 
Now, on the first branch, by means of n/2 applications of the rule EVI we 
obtain a. set of fonnulae which is of the same form as H m _ i . Similarly on 
the second branch we obtain another set of the same form as Hm _ l . By 
reiterating the same procedure we eventually produce a closed tree for the 
original set Hm . It is easy to see that the number of nodes generated by the 
refutation can be calculated as follows (where n is the number of formulae 
in Hm , namely 2m ): 

logn-l 1 _ 21o«n-1 
,l(T) = n + L 2' + n n + 2· + n· (logn - I)

1-2 
i=1 

= n +nlogn - 2. 

This is sufficient to establish: 

Theorem 4.5.4 The tableau method cannot p-simulate the analytic restric­
tion olKE (and KI). 
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This result also shows that the truth-tables cannot p-simulate KE (and KI) 
in non-trivial cases 16. Figure 4.2 shows the KE-refutation in the case m = 
3. This class of examples also illustrates an interesting phenomenon: while 
the complexity of KE-refutations is not sensitive to the order in which the 
elimination rules a.re applied, it can be, in certain cases, highly sensitive to the 
choice of the PH formulae. If we make the 'wrong' choices, a combinatorial 
explosion may result when 'short' refutations are possible by making different 
choices. 1f1 in Cook and Rechow's examples, the rule PH is applied always 
to the 'wrong' atomic va.riable, namely to the last one in each clause, it is 
not difficult to see that the size of the tree becomes exponentiaL To avoid 
tb.is phenomenon an obvious criterion suggests itself from the study of this 
example: apply PB to a. formula which has a large number of occurrences in 
the branch under consideration. So, as far as proof search is concerned, we 
need some further information about the composition of the formulae in the 
branch to guide our choice of the PB formulae. We expect that some variant 
of Bibel's connection method ([Bib82], see also [WaI90]) will prove nseful in 
this context. 

In any case, our discussion shows that analytic cuts are sometimes essen­
tial for the existence of short refutations with the subformula properttl7 

. 

4.5.3 KE versus Natural Deduction 

It can also be shown that KE can linearly simulate natural deduction (in 
tree form). Moreover the simulation procedure preserves the subformula 

16We mean that the exponential behaviour of the truth-tables in this case does not 
depend only on the large number of variables bllt also on the logical structure of the 
expressions. So these examples are es~ntially different from the examples which are 
usually employed in textbooks to show that the truth-tables are intractable (a favourite 
one is the ~quence of expressions A V ...,A where A contains an increa."iing number of 
varia.bles). 

17This can be taken as furtber evidence in support of Booloo' plea for not eliminating cut 
[Boo84]. In that paper he gives a natural example of a. class of first order inference schemata 
which are 'hard' for the tableau method while admitting of 'easy' (non-analytic) natural 
deduction proofs. Boolas' example is a particularly clear illustration of the well-known 
fact that the elimination of cuts from proofs in a system in which cuts are eliminable can 
greatly increase the complexity of proofs. (For a related technical result see [Sta78].) KE 
and KI provide an elegant solution to Boolos' problem by making cut non-eliminable while 
preserving tbe subformula property of proofs. Our discussion also shows that eliminating 
analytic cuts can result in a combinatoria.l explooion. 
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H3 

/ ~ 
A' ~A' 

I I
 
A~ VA~+ A~ V A~+ 

I I
 
A~ V...,A~+ A~ V ...,A~+ 

I I
 
.A~ V A:_ ....A~ V A~_ 

I I 
""A~ V--,A~_ ....,A~ V...,A~_ 

/ \ / \
 
A: ...,A~ A'+ ""A~ 

I I I I 
A3 

-+ A:_ A3 
+- At+ 

I I I I
 
~A3--.A:+ --.A:_ -,At++­

x x x x 

Figure 4.2: A KE-refutation of H3 ­
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property. We shall sketch this procedure for the natural deduction system 
given in [Pra65L the procedure being similar for other formulations. 

We want to give an effeetil,re proof of the following theorem (where ND 
stands for Natural Deduction): 

Theorem 4.5.5 IJ there ;., an ND-prooJ 7 oj A from r, then there is a 
KE-prooJ 7' oj A from r such that >'(7') 5 3>.(7) and 7' contains only 
formulae A such that A occurs in T, 

Proof. By induction on >.(7).
 
If >'(T) = 1, then the ND-tree consists of only one node which is an assump­

tion, say C. The corresponding KE-tree is the dosed sequence C 1 --.C.
 
If ,\(T) ::::: k, with k > I, then there are several cases depending on which
 
rule has been a.pplied in the last inference of T. We shall consider only the
 
cases in which the rule is elimination of conjunction (EI\) and elimination of
 
disjunction (EV), and leave the others to the reader. If the last rule applied
 
in T is EA 1 then T has the form:
 

t;,. 

7,
7= 

AIIB 
A 

By inductive hypothesis there is a KE-refutation T{ of ~,-.(A /\ B) such 
that >'(7n 5 3>.(7;). Then the following KE-tree: 

t;,. 

~A 

T'= A 
AIIB ~(A II B) 

A 7,'
I 

x 

is the required KE-proof and it is easy to verify that >'(7') 5 3>.(7). 
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If the last rule applied in T is the rule of elimination of disjunction, then T 
has the form: 

~I ~,,[AJ ~3,[BJ 

7= 
T, 

AVB 
7, 
C 

73 

C 
C 

By inductive hypothesis there are KE-refutations T{ of .6.1, -..(A V B), T{ of 
~" A, ~C, and 7; of ~3' B, ~C, such that .:1(7;') :S 3.:1(7;), i = 1,2,3. Then 
the following KE-tree: 

~I 

~, 

~3 

A 
~C 

T'= 
AVB ~(A V B) 

A 
7.'I 

A ~A 

7/, B 
T'3 

is the required proof and it is easy to verify that .:1(7') :S 3.:1(7).0 

In [Cel88] Cellucci has proposed a new form of natural deduction which he 
has shown in several examples to produce shorter proofs than Prawitz's style 
natural deduction. In Cellucci's system, as in natural deductjon, assumptions 
are introduced which may subsequently be discharged; however the inference 
rules involve sequents ra.ther than single formulae. The rules of the propo­
sitional fragment are shown in table 4.1. (~and A represents sequences of 
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I
 Strudural rules
 

~,A,B, A IP"m] ~,A,A IConl)~[Th;n] 
~,A ~,B,A,A ~,A 

Logical rules 

~,A A, B [A~ ~,A AB [AB-1] ~,A A B [AB-2] 
~,A,AAB ~,A ~,B 

~,A,B [v~ ~,AvB [VEl
 
~,A vB ~,A,B
 

[AJ 
~,B ~,A A,A ~ B [~E]
 

~,A~B [~I]
 .6..,A,B 

[A] 
~ ~,A A,~A [~E]

--[~IJa,...,A ~,A J 
Table 4.1: A sequent-conclusion natural deduction system. 

formulae, not sets. If they are taken to represent sets, the rules Perm and 
Cont become redundant.) According to Cellucci, derivations in his system 
are 'significantly simpler (Le. contain fewer symbols) than in [Prawitz's style] 
system'18. It. is not difficult to show, by means of an argument analogous to 
the one given above for Prawitz's style natural deduct.ion, that~ 

Theorem 4.5.6 If the1'e is a pmoj 1r in Cellucci's system of the sequent ~ 

from assumptions r, then thcr'e is a KE-refutation 'If' of f, 6., wher'e ~ is 
,qual to {~B I BELl.}, such that .\(,,') :S 3.\(,,). Moreover, the simulation 
preserves the sUbformula property. 

"[CeIS8, p29]. 
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4.5.4 KE and resolution 

The relationship between KE and resolution-like methods bas been discussed 
in Section 3.4. We can easily adapt the KE-rules to deal with formulae in 
clausal form and, once this has been done, the system is seen to incorporate 
the basic idea underlying resolution theorem proving as a special case. As 
far as the relative complexity of KE and ~olution is concerned, within the 
domain of clausal form logic, it depends on how refutations are represented. 
If propositional resolution is represented as in [DLL62], i.e. as a combination 
of unit resolution and the splitting rule, its complexity is the same as that 
of the clausal fonn fragment of KE. This way of representing resolution is 
much clearer and appears to be more convenient from a practical point of 
view, in that it seems to reduce the generation of redundant clauses. 1£ the 
resolution rule is defined in the more usual way as a single rule, and refuta­
tions are represented as sequences or directed acyclic graphs of clauses, it is 
easy to see that KE can linearly simulate resolution with a procedure which 
involves only subformulae of the formulae occurring in the given resolution 
refutation. Such a refutation will be, strictly speaking, non-analytic because 
the resolution rule does not have the subfonnula property. An open question 
is whether or not the analytic restriction of KE ca.n efficiently simulate the 

19standard version of resolution. We conjecture that it can • 

4.6 A more general view 

As seen in section 4.5.2, the speed-up of KE over the tableau method can he 
traced to the fact that KE, unlike the tableau method, can easily simulate 
inferellce steps based on 'cuts', like the example on p.77. In other words, 
KE allows a uniform method for grafting proofs of subsidiary conclusions, or 
lemmata, in the proof of a theorem. However, the existence of such a uniform 
method is by no means sufficient. In Natural Deduction, for instance, replac­
ing every occu7lence of an assumption A with its proof provides an obvious 
grafting method which, though very perspicuous, is highly inefficient, leading 
to much unwanted duplication in the resulting proof-tree. We should then 
require that the method be also efficient. A way of making this requirement 

191{ resolution refutations are represenLed in tree form, it is not difficult to gee that snch 
a simlllation is possible. 
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precise is to ask that the following condition be satisfied by a proof system 
s: 
(C)	 Let IT) be a proof of A from r and let 11'"2 be a proof of B from.1., A, then 

there is a uniform method for constructing from 11"1 and 11'"2 a proof 11"3 

of B from r, Ll. sucb that ~(rr,) :s ~(rr.) + ~(rr,) + c for some constant 
c. 

It can be easily seen that condition (C) is satisfied by KE and KI, the 
required method being the one described on p,77. In contrast, the standard 
way of grafting proofs of subsidiary conclusions iu Natural Deduction proofs, 
though providing a uniform method, does not satisfy the further condition 
on the complexity of the resulting proof. The rules of Natural Deduction, 
however I permit us to bypass this difficulty a.nd produce a method satisfying 
the whole of condition (C). Consider the rule of Non-Constructive Dilemma 
(NeD): 

r,[AI Ll., [~AJ 

B B
 
B
 

This is a. derived rule in Prawitz's style Natural Deduction which yields 
classical logic if added to the intuitionistica.lly valid rules (see [Ten78, section 
4.5]). We can show Natura.l Deduction to satisfy condition (C) by means of 
the following construction: 

Ll. 

r,[A] A [~AI 

F' 
B 13 

B 

Notice that the construction does not depend 011 the number of occurrences 
of the assumption A in the subproof of B from r l A. 

In analogy to condition (C) we can formulate a condition requiring a proof 
system to simulate efficiently another form of cut which holds for classical 
systems and is closely related to the rule PB: 
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(C*) Let 11"1 be a proof of B from r,.4. and 71"2 be a proof of B from 11, -,A. 
Then there is a uniform method for constructing from 11'1 and 'l'l"2 a proof 
1rJ of Bfeam f,11 such that '\(7["3) S ){lrd+A(7l"2)+C for some constant 
c. 

Similarly. the next condition requires that proof systems can efficiently sim­
ulate the ex falso inference scheme: 

(XF) Let '1 be a proof of A from rand ", be a proof of ~A from Ll. Then 
there is a uniform method for constructing from 1l"1 and 11"2 a proof 11"3 

of B from r, Ll, for any B, such that '\("3) S '\("1) +.\(",) + c for some 
constant c. 

So, let us say that a. classical proof system is a classical cut system if 
it satisfies conditions (C*) and (XF). It is easy to show that every classical 
cut system satisfies also condition (C) above and, therefore, allows for an 
efficient implementation of the transitivity property of natural proofs. The 
next theorem shows that every classical cut system can simulate KE withont 
a significant increase in proof complexity and with a procedure which pre­
serves the subformula property20. This clearly shows tha.t it is only the use 
of (analytic) cut and not the form of the operational rules which is crucial 
from a complexity viewpoint (this will be further discussed in chapter 6.). 

Theorem 4.6.1 If S is a classical cut system, then S can linearly simulate 
KE (and KI) with a procedure which preserves the subformula property. 

To prove the theorem it is convenient to assume that om language includes 
a O-ary operator F (Falsum) and that the proof systems include suitable 
rules to deal with it 21 

. For KE this involves only adding the obvious rule 
which allows us to append F to a.ny branch containing both A and ...,A for 
some formula A, so that every closed branch in a KE-tree ends with a node 
labelled with F. The a.'lsumption is made only for convenience's sake and 
can be dropped. without consequence. Moreover we shall make the obvious 
assumption that, for every system S, the complexity of a proof of A from A 
in S is equal to 1. 

:lOIn this chapter we are rest.ricting ourselves to analytic proof systems, i.e. proof systems 
which enjoy the subCormula property. 

21 SystemB which are not already defined over a language containing F can usualty be 
redefined over such an extended language without difficult.y. 
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Let T( 11'") denote the number of nodes generated by a KE-refutation 1r of 
r (i.e. the assumptions are not counted)22. Let S be a. classical cut system. 
If S is complete, then for every rule r of KE there is an S-proof 7!"r of the 
conclusion of r from its premises. Let b1 = Max r(.\(7rr )) and let ~ and b:J be 
the constants representing, respectively, the .\-cost of simulating classical cut 
in S - associated with condition (C*) above - and the '\-cost of simulating 
the ex falso inference scheme in S - associated with condition (XF) above. 
As mentioned before, every classical cut system satisfies also condition (e) 
and it is easy to verify that the constant associated with this condition, 
representing the .\-cost of simulating 'absolute' cut in 5, is :-:; ~ + ~ +1. We 
set c = b, + b, + b:, + 1. 

The theorem is an immediate consequence of the following Lemma: 

Lemma 4.6.1 For every classical cut system 5, if there is a KE-rt/utation 
or off, then there is an S-proofor' of F from f with ),(or') S c· r(or). 

Proof. The proof is by induction on TC7!"), where 11'" is a KE-refutation of 
f. 

1"(11'") = 1. Then r is explicitly inconsistent, i.e. contains a pair of com­
plementary formulae, say Band ...,B , and the only node generated by the 
refutation is P, which is obtained by means of an application of the KE-rule 
for F to B and --B. Since there is an S-proof of the KE-rule for F , we can 
obtain an S-proof 1f' of the particular application contained in 11'" simply by 
performing the ~iUitable substitutions and .\(7!"') ~ I>t. < c. 

r(".) > 1. Case 1. The KE-refutation or has the form: 

r 
c 
T, 

where C follows from premises in r by means of an E-rule. So there is a KE­
refutation 11"1 of f,C such that T('7!") = T(1l'"l) + 1. By inductive hypothesis, 

22Tbe reader should be awa.re that our T-measure applies to KE-refutations and not 
to trees: the same tree can represent different reFuta.tions yielding different values of the 
T-measure. 
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there is an S~proof 1l'"~ of F from r t C such that >'(1l'"D .:s c· T( 11'"1)' Moreover, 
there is an S-proof 11'"2 of C from the premises from which it is inferred in 
1l'" such that >'(11'"2) .:5 bl . So, from the hypothesis that S is a classical cut 
system, it follows that there is an S-proof 1r' of F from r such that 

A( ,,') $ c· T(".) + b, + b, + b, + 1 

$ C·T(".)+C 

$ c'(T(",)+I) 
$ c· T(") 

Case 2. 7r has the following form: 

A
r 

C ~C 

T, T, 

So there are KE-refutations 11'"1 and 11'"2 of r, C and r 1 -,C respectively such 
that T«) = T(",) + T(",) + 2. Now, hy inductive hypothesis there is an 
S-proof 'Ir~ of F from r 1 C and an S-proof 11"~ of F from r,'c with >'(1l'D .:5 
C· T( 11'";), i = 1,2. Since S is a classical cut system, it follows that there is an 
S-proof 1r' of F from r such that 

A(,,')	 $ C'T(",)+C'T(",)+b, 
< c· T("Il +C • T( <,) +C 

< C'(T(",)+T(",)+2) 

< C'T(") 

o 
It follows from Theorem 4.6.1 and Theorem 4.5.2 that: 

Corollary 4.6.1 Every analytic cut system is a standard proof system) i.e. 
for every tautDIDgy A of length n and containing k distinct variables there is 
a proof", with A(") = O(n· 2'). 
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Moreover, Theorem 4.6.1, Theorem 4.5.3 and Theorem 4.5.4 imply that: 

Corollary 4.6.2 Every analytic cut system can linearly simulate the tableau 
method) but the tableau method cannot p-simulate any analytic cut system. 

Since (the classica.l version of) Prawitz's style natural deduction is a classical 
cut system, it follows that it can linearly simulate KE. The same holds also 
for Cellucci's system and for the 'natural deduction I variant of KE described 
in Section 3.8 under the name KEND. Moreover, for all these systems, the 
simulation preserves the subformula property (i.e. it maps analytic proofs to 
analytic proofs). Therefore Theorem 4.6.1, together with Theorems 4.5.1, 
4.5.5 and 4.5.6, imply that Prawitz's style natural deduction, Cellucci's nat­
ural deduction, KE, KEND and KI can linearly simulate each other with 
a procedure which preserves the subformula property. Corollary 4.2 implies 
that all these systems are essentiaHy more efficient than the tableau method, 
even if we restrict our attention to analytic proofs (the tableau method can­
not p~simulate a.ny analytic cut system). Finally Corollary 4.6.1 implies that, 
unlike the tableau method, aU these systems are standard proof systems, i.e. 
have the same upper bound as the truth-table method. 



Chapter 5 

Belnap's four valued logic 

5.1 Introduction 

The study of first-degree entailment occupies a special position in the field of 
relevance logics: it can be seen either as the study of the validity of formulae 
of the form A ---+ B, where --+ is Andersou and Belnap l s relevant implica­
tion and A, B are implication-free formulae, or as the study of the notion 
of relevant deducibility between standard formulae built-up from the usual 
connectives. In the latter interpretation it is associated with the problem­
well-known to computer scientists who work in the area of Automated Deduc­
tion - of obtaining sound information from possibly inconsistent datahases1 

. 

An interesting semantic characterization of first-degree entailment was given 
by Belnap in [Bel??] who also empha.sized its connections with the problem of 
'how a computer should think'[BeI76]. In [Dun76] Dunn presented a tableau 
system based on a modificatiou of Jeffrey's method of 'coupled trees' [Jef81]. 
In this chapter we study the consequence relation associated with Belnap's 
semantics and produce two different calculi which are sound and complete 
for it. Unlike Dunn's 'coupled tree' calculus, our calculi use one tree only. 
This simplification allows us to exploit fully the formal analogy with the cor­
responding classical calculi, and to obtain simple extensions to a first order 
version of Belnap's logic (ueither Jeffrey nor Dunn explain how the method 
of 'coupled trees' can be exteuded to deal with quantifiers). 

I For recent contributions in this area and in the related one of logic programming, see 
[DCHL590] and [B589J. 

90 
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In sections 5.2 and 5.3 we briefly discuss the background problem and 
illustrate Belnap's semantics. In section 5.4 we formulate a tableau method 
which produces 'single' instead of lcoupled' tableaux, and prove it sound and 
complete for (the first-order version of) the consequence relation associated 
with Belnap's semantics. Then, in section .5.5, we define another calculus 
based on the classical systems KE which has been studied in Chapter 3. 

5.2 'How a computer should think' 

Deductive Reasoning is often described as a process of revealing'hidden 1 in­
formation from explicit data and, as such, it is a basic tool in the area of 
'intelligent' database management or question-answering systems. Unfortu­
nately, the most time-honoured and well-developed framework for deductive 
reasoning - classical logic - is unsuitable to this purpose. The reason is that 
databases, especially large ones. have a great propensity to become inconsis­
tcnt: first, the information stored is usually obtained from different sources 
which might conflict with each other; second, the information obtained from 
each source, even if it is not obviously inconsistent, may 'hide' contradictions. 
But it is well-known that classical two-valued logic is oversensitive to contra­
dictions: if r is an inconsistent set of sentences, then -~ according lo classical 
logic ~- any sentence follows from r. This does not imply, of course, that 
classical logic is incorrect, but only suggests that there are circumstances in 
which it is highly recommendable to abandon it and use another. A radical 
solution to this problem would be to require any database to be consistent be­

fore starting deductive processing. But, for practical reasons, this 'solution' 
is no better than the original problem: first, contradictions do not always 
lie on the surface, and the only way to detect such implicit contradictions 
is to apply deductive reasoning itselfj second, even explicit contradictions 
may not be removable because they originate in conflicting data fed into the 
computer by different and equally reliable sources. 

But if dassicallogic is not to be recommended for application in deductive 
database management, what kind of logic is the one with which a computer 
should 'think'? 
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5.3 Belnap's four-valued model 

In this chapter we shall make use of the approach developed by Belnap [BeI77, 
Be176] on the basis of a work of Dunn [Dun76]. Let. 4 denot.e the set {T, F, 
Both, None}. The elements of 4 are called truth·values. Belnap calls them 
'told values' to emphasize their epistemic character. We may think of them 
as the fouf possible ways in which an atomic sentence P can belong to the 
'present slate of information' : (1) the computer is told that P is true (and 
is not told that P is false); (2) the computer is told that P is false (and is 
not told that P is true); (3) the computer is t.old t.hat P is both true and 
false (perhaps from different sources, or in different instants of time); (4) the 
computer is not told anything about the t.ruth value of P. 

The values of complex sentences are obt.ained by Belnap by means of 
monotony considerations, based on Scott's approximation lattices, resulting 
in the following tables: 

None F T Both 

~ None T F Both 

II None F T Both 

None None F None F 

F F F F F 

T None F T Both 

Both F F Both Both 

V None F T Both 

None None None T T 

F None F T Both 

T T T T T 

Both T Both T Both 
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These tables represent a lattice which is called L4: 

T 

None Both 

F 

\Ve define a set-up as a, mapping of atomic formulae into 4. Using the truth­
tables given above, every set-up can be extended to a. mapping of all formulae 
into 4 in the usual inductive way. We shall call such an extended mapping a 
4-valuation . 

Definition 5.3.1 Vie say that A entails B, and write A --+ B, if for all 4­
valuations V, v(A) j v(E), where ~ is the partial ordering associated with 
the lattice L4. We also say that a non empty set of formulae r entails A, 
and write r r-- A, if the conjunction of all formulae in r entails A. 

Notice that the relation t- mentioned in DeL 5.3.1 is a monotonic consequence 
relation. 

The logic characterized by Belnap's semantics corresponds to the logic of 
first-degree entailment (see [AB75 , section 15.2J). This system admits of the 
following Hilbert-style formulation: 

Axioms: 

(5.1 ) AflB A 

(5.2) AflB B 

(5.3) A AV B 

(5.4) B AV B 

(5.5) A fI (C V B) ..... (A fI B) V C 
(5.6) A --+ ...,....,A 

(5.7) ...,...,A --+ A 
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Rules: 

(5.8) A~B,B~C f- A~C 

(5.9) A~ B,A ~C f- A~BAC 

(5.10) A~C,B~C f- Av B~C 

(5.11) A~B f- oB --t -.A 

Let us now introdu<:e some useful terminology: 

Definition 5.3.2 Let us say, given a 4-valuation v, that a formula A is: 

1. at least true under v if v(A) = T or v(A) = Both. 

2. non-true under v if v(A) = F or v(A) = None. 

3. at least false under v if v(A) = For v(A) = Both. 

4. non-false under v if v(A) = T or v(A) = None. 

It is not difficult to see that the defiuition of r I- A given in Definition 5.3.1 
is equivalent to the foHowing one: 

Definition 5.3.3 r I- A if and only if for every 4~valuation v, (i) if all the 
elements of r are at least true under v, then A is at least true under v and 
(ii) if all the elements of r are non-false under v, then A is non-false under 
v_ 

5.4 Semantic tableaux for Belnap's logic 

In thi~ section we suggest a ta.bleau method which, unlike Dunu's one, uses 
only one tree. The resultjng ta.bleaux are binary trees and are identical to 
classical tableaux of signed formulae except that they contain four types of 
s-formulae instead of two. 

5.4.1 Propositional tableaux 

Signed For·mulae. We introduce the symbols t, f, t*, f* and define a signed 
formula as an expression of the form t(A), f(A), t'(A} or f·(A). where A is 
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'(A" B) 
~ 

'(B) 

"(A" B) 
"(A) 
"(B) 

f(A V B) 
----r(A) 

f(B) 

f'(A V B) 
f'(A) 
f'(B) 

f(A" B) 
f(A) I f(B) 

f'(A" B) 
("(A) If"TB) 

'(A V B) 
'(AfT'lB) 

"(A V B) 
"(A) I "(8) 

'(~A) 

f"(A) 
"(~A) 

f(A) 
f(~A) 

t'(A) 
f'(~A) 

l(A) 

Table 5.1: Propositional tableau rules for Belnap's four valued logic. 

an unsigned formula. Intuitively we interpret 't(A)' as 'A is at least true', 
'f(A)' as 'A is non-true', 't*(Ar as 'A is non-false' and 'f"(A)' as 'A is at 
least false'. 

The conjugate of an s-fonnula s(A) is: 

f(A) if s = t 

teA) ifs=f 
f'(A) if s = t' 
1'(A) if s = f' 

The converse of an s-formula s(A) is: 

t'(A) ifs=t 
teA) ifs=l' 
f'(A) ifs=f 
f(A) ifs=f' 

We are now in a position to formulate our tableau rules which are given in 
Table 5.1. The reader will notice the formal analogy with the classical rules. 

It may be useful to extend Srnullyan's unifying notation to cover the new 
types of 5- formulae which OCCur in OUr language. 

We use the letter 'n' to stand for any s-formula of one of the forms: 
t(AAB), l'(AAB), f(AVE), f'(AVE), l(~A), t'(~A), f(~A) andf'(~A). For 
every such formula Q, its components Q, and Q;2 are defined as in Table 5.2. 
We use (/3' to stand for any formula of one of the forms: f( A AB)l f*( A AB)l 
t(A V B) or t*(A V B). For every such formula /3, its components /31 and /3'1 
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0 0, 0, 

teA A B) teA) t(B) 
t'(A A B) t'(A) t"(B) 
f(A V B) f(A) feB) 
f'CA V B) f'(A) f'CB) 
t(~A) f'(A) PiA) 
t'(~A) f(A) f(A) 
f(~A) t'(A) toeA) 
f'(~A) tCA) t(A) 

Table 5.2: Formulae of type o. 

{3 (3, {3, 
f(AAB) f(A) fiB) 
f'(A A B) f'CA) f"(B) 
teA V B) t(A) t(B) 
toeA V B) tOeA) t'(B) 

Table 5.3: Formulae of type (3. 

are defined as in the Table 5.3. So our tableau rules cau be 'packed' into the 
following two rules: 

o 
(3

Rule A ~ RuieB ~ 
0, 

We say that a branch ¢ of a tableau is closed if it contains both an s-formula 
and its conjugate. Otherwise we say that 1> is open. A tableau is closed if all 
its branches are closed. Otherwise it is open. A formula A is provable from 
the set of formulae r if and only if there is a closed tableau for {t(B)IB E 
r] U{f(A)}. 

An example of a closed tableau representing a proof of «A V B) 1\ ...,A) --+ 
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t«A v B) /\ ~A) 

f(B V (A /\ ~A)) 

t(A V B) 
t(~A) 

f"(A)
 
f(B)
 

f(A /\ ~A)
 

A
 
f(A) f( ~A) 

A 
t(A) t(B) t>(A) 

Figure 5.1: A proof of ((A V B) /\ ~A) --> (B V (A /\ ~A)) 

(BV (AI\-.A» is given in Fig. 5.1. A fa.iled attempt a.t proving the disjunctive 
syllogism is shown in Fig. 5.2. 

Soundness.
 

Definition 5.4.1 Let us say that a 4-valuation v realizes s(A) if
 

1. s(A) = t(A) and A is at least true under v. 

2. siAl = f(A) and A is non·true under v. 

3. s(A) = t"(A) and A is non·false under v 

4. s(A) = f>(A) and A is at least false under v. 
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I((A V B) A ~A)
 

fiB)
 
I(A V B)
 
I(~A) 

f'(A) 

A 
I(A) I(B) 

Figure 5.2: A fa.iled attempt to prove the disjunctive syllogism 

A set U of s-formulae is said to be realizable if there is a 4-valuation v which 
realizes every element of U. 

In order to prove soundness we need the following lemma: 

Lemma 5.4.1 If T is a closed tableau for U, where U is a set of signed 
formulae, then the tableau 7' obtained from T by replacing e1J€ry (occurrence 
of an) s-formula with (an occurrence 0/) its converse is a closed tableau for 
the sel U" of the converses of the s-/onnulae in U. 

The proof is a straightforward induction on the number of nodes in a closed 
tableau. 

Now, it is easy to verify that our tableau rule..s are correct in the sense 
that every 4-valuation which realizes the premise of the rule A realizes also 
both the conclusions of the rule, and every 4-valuation which realizes the 
premise of the rule B realizes also at least one of the conclusions of the 
rule. Therefore it follows, by an elementary inductive argument, that if a 
4-valuation v realizes all the initial s-formulae of a tableau T, then there is 
at least one branch 4> of T such that v realizes all the s-formulae occurring 



99 5.4. SEMANTIC TABLEAUX FOR BELNAP'S LOGIC 

in,p. But, of course, no 44valuation can realize two conjugate s-formuJae 
simultaneously. Therefore ifT is a a closed tableau, no 4-valuation can realize 
all tbe initial s-formul"" of T. So, if T is a closed tableau for {t(B)IB E 
f} U {f(A)}, it follows that for every 4~valuation v, A is at least true in v 
whenever all formulae in r are. Moreover it follows from lemma 5.4.l that 
no 4-valuation can Tt'alize the converses of all the initial signed formulae of 
T, i.e. no 4-valuation can realize {t'(B)IB E f) U {f·(All. Hence for every 
4-valuation V , A is non-false in v whenever all the formulae in r are. So, by 
def. 5.3.3, f r A. This concludes the proof. 

Completeness. Let us say that a branch ¢ of a tableau T is eomplete if (i) 
for every a in ¢ both 0'1 and 0"2 occur in ¢ and (ii) for every f3 in ¢ at least 
one of /311 f32 occurs in,p. Let us also say that a tableau T is completed when 
every branch of T is complete. We have the following theorem: 

Theorem 5.4.1 Every complete open branch of any tableau is realizable. 

We shall first define the analog of Hintikka sets within our framework. The 
theorem will then immediately follow from the analog of Hintikka's lemma. 

Definition 5.4.2 Let us say that a set of signed formulae U is an R·Hinlikka 
set if and only if it satisfie...s the following conditions: 

Ho: No signed variable and its conjugate are both in U. 

HI: IfaE U, then 0'1 E U and 01 E U. 

H,: If f3 E U, then f3, E U or j3, E U. 

It follows from our definitions that the set of s-formulae in a complete open 
branch of any tableau is an R-Hintikka set. Then the theorem is an immediate 
consequence of the following lemma: 

Lemma 5.4.2 Every R-Hinlikka set is realizable. 

Proof Let U be an R~Hintikkka set. Let ns assign to each variable P which 
occurs in at least an element of U a value in 4 as follows: 

(I) If t(P) E U, and f'(P) </. U, give P the value T. 
(2) If t(P) E U, and f'(P) E [I, give P the value Both. 
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(3) If f(P) E U, and t·(P) if. U, give P the value F. 
(4) If f(P) E U, and t·(P) E U, give P the value None. 
(5) if t·(P) E U, and f(P) if. U, give P the value T. 
(6) if f·(P) E U, and t(P) if. U, give P the value F. 

Now it is obvious that the 4-valuation induced by this assignment realizes 
all t he signed variables occurring in U. Then we only need to observe that 

(i) If a 4-valuation realizes both a1 and a2, then it realizes also a. 

(ii) If a 4-valuation realizes at least onc of f31,{32 then it realizes also {3. 

The lemma then follows from an easy induction on the complexity of the 
s-formulae in U. 

Theorem 5.4.1 implies 

Theorem 5.4.2 (Completeness Theorem) Iff f- A then there is a closed 
tableau for (t(B)IB E f) U (C(A)}. 

5.4.2 Detecting inconsistencies 

Although we do not want inconsistencies to have the catastrophic effect that 
they have in classical logic, it would be desirable to be able to check our 
databases for consistency. After all, we do not want to 'glorify' contradic­
tions. On the contrary we usually want to remove them. 

Fortunately, consistency checks are quite easy to carry ou t without mod­
ifying our framework. We shall show that 1 in fact, our tableaux 'contain' 
their cla.ssical version: to obtain classical tableaux we only need to modify 
the closure condition on a, branch. 

Definition 5.4.3 The weak conjugate of an s-formula is defined as in the 
following table: 

ISigned formula I Weak conjugate I 
t(A) f·(A) 
f(A) t·(A) 
t·(A) f(A) 
f"(A) t(A) 
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We say that a branch cP of a tableau T is weakly closed if <P contains an 
a-formula and its wwk conjugate. The tableau T is weakly closed if all its 
branches are weakly dosed. 

Let us use s as a variable ranging over signs, i.e. over the symbols {tJ, to, f·}. 
By s we mean: 

f if s = t 
t if s=f 
fo if s = t· 
to if s = f" 

By s· se mean: 

t· if s = t 
fo if s = f 
t if s = t-
f if s=f" 

We have the foHowing lemma: 

Lemma 5.4.3 Let us say that a set of s-formulae S is homogeneous if all 
the s-formulae in it have the same sign s. Then if S is a homogeneous set 
of s-formulae) every tableau T for S contains only s-foNnulae with sign s or 
s" . 

Proof: By inspection of the rules and induction on the rank of the s-formulae 
occurring in T. 

The following theorem states the connection between classical and relevant 
derivability: 

Theorem 5.4.3 r is a (classically) unsatisjiable set of formulae if and only 
if there is a weakly closed tableau for {t(Bl IB E rj. Therefore A is classically 
deducible from r if and only if there is 0 weakly closed tableau/or {t(BlIB E 
rj u {t(,An. 

Proof: If r is classically unsatisfiable, there is a closed classical tableau for 
{t(BlIB E f). It is easy to see that the tableau obtained from it by replacing 
eacb sign f with f' is a weakly closed tableau for {t(B)IB E f). 
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Suppose there is a weakly-closed tableau T for {t(B)IB E f). By 
Lemma. 5.4.3 this tableau can contain only formulae signed with t or f·. 
Therefore every weakly-closed brauch contains t(A) and f"(A) for some A. It 
follows that every 4-valuation which realizes the initial formulae, must realize 
both t(A) and f«A) for some A, i.e. it must assign Both to A for some A. 
Hence there is no boolean valuation which satisfies f. 

As we said before, the Dotjon of weakly dosed tableau is useful in that a 
weakly closed tableau shows an inconsistency in our database and, there­
fore, the need for revision. So our tableaux are sensitive to contradictions 
like classical tableaux; unlike classical tableaux, however, when they detect 
a contradiction they do not panic but keep on making 'sensible' deductions. 

We observe that, in our approach) an initial formula of the form f(A) al­
ways represents a 'query', whereas data are represented by initial formulae of 
the form t(A). So, checking our data for consistency aud answering questions 
on the base of our data are formally distiuet tasks. 

5.4.3 First-order tableaux 

Another advantage of our single-tableau formulation is in the treatment of 
quantifiers. These are dealt with by means of rules obtained, as in the case 
of the binary connective rules. by taking over the standard classical rules 
(for s-formulae) and supplementing them with their 'starred' versions. By 
contrast, the suitable quantifier rules for the first-order version of the method 
of coupled-trees are not so straightforward. 

We consider a standard first-order language with no functional symbols. 
We use the letters x, y, z, ... (possibly with subscripts) as individual variables 
and the letters a, b, c, ... (possibly with subscripts) as parameters. For any 
variable:x and parameter a, A(.r/a) will be the result of substituting all the 
free occurrences of x in A with a. Subformulae are defined in the usual way, 
so that for every parameter a, A(x/a) is a subformula of VxA(x). 

An obvious way of extending Belnap's semantics to formulae containing 
quantifiers is the foHowing: 

Let U be a non-empty universe. We assume a set U of constants naming 
the elements of U (of course neither U nor U need to be denumerable). 
By a V-formula we mean a formula built up from the logical operators, the 
relation symbols, the individual variables and the constants in U. (Thus a U­



103 5.4. SEMANTIC TABLEAUX FOR BELNAP'S LOGIC 

formula is like a formula with parameters but with elements of U in place of 
parameters.) Let pu be the set of dosed U-formulae. A fir8t~order valuation 
over U is defined as a mapping v of all elements of pu into 4 such that (i) v 
is a 4-valuation (see above p. 93) and (ii) v satisfies the following additional 
conditions for quantifiers (where nv and UV denote, respectively, the g.l.h. 
and the l.u.b. of the set V in L4): 

v(Vx(A(x)) n{v(A(k/x))lk E U} 

v(3x(A(x)) = U{v(A(k/x))lk E U} 

The first-order consequence relation associated with this extended semantics 
is then: 

Definition 5.4.4 r r A if and only if for every universe U and all first-order 
valuations v OVer V, (i) if all elements of r are at least true under v, then A 
is at least true under v and (ii) if all the elements of r are non-false under v, 
then A is non-false under v. 

The quantifier rules are the expected ones: 

t(VxA(x)) 
t(A(a/x)) 

for all a 
t'(VxA(x)) 
t'(A(a/x)) 

f(VxA(x)) 
f(A(a/x)) 

with a new 
f'(VxA(x )) 
f'(A(a/x)) 

t(3xA(x)) 
tiAra/x)) 

with a new 
t'(3xA(x)) 
t'(A(a/x)) 

f(3xA(x)) 
f(A(a/x)) 

for all a 
f'(3xA(x) ) 
f«A(a/x)) 

It is convenient to use 5mullyan's notation for quantified formulae. 50 "t 
will denote any formula of one of the four forms t(V'xA(x)), t'(V'xA(x)), 
f(3xA(x)), f'(3xA(x)) and by ,,(a) we shall mean, respectively, t(A(x/a)), 
t«A(x/a)), f(A(x/a)), f·(A(x/a)). Similarly b will denote any formula of 
one of the fOUT forms t(3xA(x)), t'(3xA(x)), f(lIxA(x)), f'(lIxA(x)) and 
and by b(a) we shall mean, respectively, t(A(x/a)), t'(A(x/a)), f(A(x/a)), 
f·(A(x/a)). 
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Thus, our first-order rules can be succintly expressed by the following two 
rules: 

RUleC~),(<l for any parameter a
 

5

RuleD - ­

b'(a) for a new parameter a 

Soundness and completeness of this first-order system can be proved - ­
given the corresponding proofs for the propositional fragment -- by means 
of straightforward adaptations of the standard proofs for classical tableaux 
(as given in [Smu68aJ). In fact, in OUf framework, quantifiers do not involve 
any non-standard notion which does not arise already at the propositional 
level. For instance, in order to prove completeness, we define the first-order 
analog of a. complete tableau (where, of course, a complete branch may be 
infinite) and a procedure whkh generates a complete tableau for a set U of 
s-formulae. We can then define first-order R-Hintikka sets (over a universe 
U) by adding to the clauses in definition 5.4.2 the fonowing two clauses: 

H 3 : If, E U, then for eve'1l k in U, ,(k) E U. 

H,: If 0 E U, then for some k in U, o(k) E U. 

It is easy to see that the set of s-formulae occurring in every open branch of 
a complete tableau is an R-Hintikka set. Then l completeness follows from 
the lemma: 

Lemma 5.4.4 Every R-Hinf1:Ha set for a universe U is realizable. 

Theprevious discussion about the completeness of the first-order systems 
shows the heuristic advantage of this approach. The proofs of the analogs of 
most of the theorems which hold for the classical version can simply be carrIed 
over to the non-standard version with minor modifications. In fact this is true 
of most of the theorem.. included in [Smu68aJ. We just mention here that the 
proofs of the compactness theorem and of the analog of Lowenheirn- Skolem 
theorem require virtually no modification. Moreover, any implementation 
of a classical tableau-based theorem prover can be ea.sily adapted to our 
framework, so providing a theorem prover for Belnap's logic and cla.ssicallogic 
(via tne notion of 'weak closure') simultaneously. A 'naive' implementation 
in Prolog, adapted from a program by Fitting, is given in [Gor90j 
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'(A" B) '"(A"B) f(A" B) f(A" B) 
'(A) '"(A) '(A) '(B) 
'(B) '"(B) f(B) f(A) 

f"(A" B) f"(A" B) f(A V B) f"(A V B) 
t"(A) '"(B) f(A) f"(A) 
forB) f"(A) f(B) f"(B) 
I(A V B) '(A V B) '"(A V B) '"(A V B) 
f(A) f(B) f"(AI f"(B) 
t(B) '(A) '"(A) '"(A) 
'(~A) f(~A) t"(~A) f"(~A) 

f'(A) t"'(A) f(A) '(A) 

t(A) I f(A) '"(A) I fOrA) 

Table 5.4: The rules of REfd,' 

5.5 An efficient alternative 

Another simple tree method for first-degree entailment is obtained by adapt­
ing the rules of the system KE (see above, Chapter 3). The system so 
obtained will be baptised RErde . The propositional rules of RECdt are given 
in Table 5.4. The quantifier rules are the same as the rules for the tableau 
method given in the previous section. 

Again, the logical rules can be expressed in a succint form by means of our 
extended use of Smullyan '5 notation (where 13:, i = 1, 2 denotes the conjugate 
of {3,): 

" Rule A ~ 

"2 

.8 {3 
Rule Bl 8; Rule B2 8; 

---p; T 

RuleC _1_
1(a) for any parameter a 
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6
RuleD 
~ for a new parameter a 

In each application of the rules, the s-formulae a, {3, 1 and ~ are called major 
premises. In each application of rules HI a.nd B2 the s-formulae 13:, i = 1,2 
are called minor premises (rules A, C and D have no minor premises). 

In the system REcde all the logical rules have a linear format. However, 
they are not sufficient for completeness: our 'cut-rules', PH and P B* 1 are not 
eliminahle. 

Definition 5.5.1 An RErd~·tree for U, where U is a set of s-formulae, is a 
tree of s-forrnulae constructed in accordance with the rules above starting 
from s~formulae in U. A branch of an REcde-tree is closed when it contains 
a signed formula and its conjugate. Otherwise it is open. The tree itself is 
said to be closed when all its branches are closed. 

An s-formula occurring in a REfde~tree is said to be analysed if it has 
been used a.t least once as major premise of one of the rules. 

In Fig. 5.3 we give an REfde-proof of the same example of which a tableau 
proof was given in Fig. 5.1. The reader can compare the structure of proofs in 
the two methods. Notice that the RErde-tree contains no branching. Indeed, 
the system REcde is more efficient than the tableau method formulated in 
the previous section for much the same reason as the classical system KE 
is more efficient than the classical tableau method (see Chapters 2 and 4 
above): the use of PB and PB* - our 'cut rules l

- allow us to avoid many 
redundant branchings in the refutation tree. 

A lemma analogous to Lemma 5.4.1 holds: 

Lemma 5.5.1 IJ'T is an REcde-tree Jor U I where U is a set oj signed Jor~ 

mulae, then the tree 7 1 obta£ned from 7 by replacing every (occurrence oj 
an) s-Jormula with (an occurrence oj) its converse is an REfde-tree Jor the 
set U· oj the converses oj the s-Jormulae in U. 

Soundness. The proof is strictly analogous to the one given for the tableau 
method. 

Completeness. We define a notion akin to the notion of R-Hintikka set: 
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t«A VB) /I ~A) 

f(B V(A /I ~A») 

t(A V B) 
t(~A) 

f'(A) 
f(B) 

f(A /I ~A) 

t(A) 
f(~A) 

t'( A) 

Figure 5.3: An RErd,-proo[ of «A V B) /I ~A) ~ (B V (A /I ~A)) 

Definition 5.5.2 Let us say that a set of signed formulae U is an R-analytic 
set if and only if it satisfies the following conditions: 

Ao: No signed variable and its conjugate are both in U. 

AI: If a E U, then 01 E U and 0'2 E U. 

A,: If f3 E U and f3; E U, then f3, E U.
 

A,: If f3 E U and f3; E U, then f31 E U.
 

A,: If, E U, then for every k in U, ,(k) E U.
 

As: If 5 E U, then for some k in U, 5(k) E U.
 

An R~analytic set differs from a R-Hintikka set in that it may be the case 
that for some 13 in the set neither /31 nor {32 are in the set. 

Definition 5.5.3 We say that an R-ana.Iytic set is l3-complete if for every 13 
in U either of the following two conditions is satisfied: 

l. either f31 E U or f3; E U: 
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2. either fJ, E U or fJ; E U; 

It is then easy to verify that: 

Fact 5.5.1 If U is an R-analytic set and U is {)~complete, then U is an 
R-Hinlikka set. 

It is not difficult to define a procedure which, given a set of s-formulae U
J 

generates either a closed REfdc-tree or an open RErde-tree such that for every 
(possibly infinite) open branch <p the set of all the s-forffiulae occurring in 
<p is a R-analytic set which is also .a-complete (the only tricky part of such 
a procedure concerns conditjon A. and can be dealt with as in [Smu68a, 
pp.58-60J). Thus, completeness follows from fact 5.5.1 and lemma 5.4.4. 

We can define the notions of weakly closed branch and weakly closed tree in 
exactly the same way as we did for the tableau method discussed in the pre~ 

vious section. Again the relation between classical and relevant deducibility 
is the same mutatis mutandis. 

Our proof of the completeness of RE'de yields the subformula principle 
as a corollary: 

Corollary 5.5.1 (Analytic Cut Property) If there is a closedREcd.-tree 
T for UJ then there is a dosed RE,de-tree 7' for U such that the rules PB 
and PB* are applied only to Subfomlulae of s-foNnulae in U. 

In fact, the proof shows that. when applying PB or PB*, we need to 
consider only the immediate signed subformulae of signed formulae of type 
f3 occurring above in the same branch and which have not been already 
'analysed', Since all the logical rules preserve the subformula property, we 
have: 

Corollary 5.5.2 (Subformula Principle) If there is a closed RErdo-tree 
T for V, then there is a closed REcde-tree 7 ' for U such that every s-fomlula 
occumng in T' is a signed SUbfoNnula of s-formulae in U 

A constructive proof of the subformula principle, which yields a procedure 
for transforming any REfde-proof in an equivalent REfde-proof which enjoys 
the subformula property, can be obtained by adapting the proof given by 
Mond.dori for the system KE [Mon88b]. 

The completeness of the (propositional fragment of the) system REcde can 
also be proved by showing that all the axioms of the Hilbert-style formulation 
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(given on p. 93) are theorems of REfde and REfde-derivability is closed under 
the rules (8)-(11). All these facts are shown below. 

In what follows I-- stands for I-RErd.,­

Fact 5.5.2 A II B f- A 

(1) teA II B) Assumption 
(2) f(A) Assumption 
(3) teA) Etll (I) 
(4) t.(B) Etll (I) 

Fact 5.5.3 A II B f- B 

Proof as above. 

Fact 5.5.4 A f- A V B 

(I) teA) Assumption 
(2) f(A VB) Assumption 
(3) f(A) Efv (2) 
(4) feB) Efv (2) 

Fact 5.5.5 Bf-AvB 

Proof as above. 

Fact 5.5.6 A II (B V C) f- (A II B) V C 

(I) t( A t\ (B V CJ) Assumption 
(2) fiCA t\ B) V C) Assumption 
(3) teA) Et.lI (I) 
(4) t(B V C) Et.lI (I) 
(5) f(A II B) Efv (2) 
(6) ftC) Efv (2) 
(7) t(B) Et. V 2 (4,6) 
(8) fiB) Ef III (5,3) 

Fact 5.5.7 A f- ~~A 

(1) teA) Assumption 
(2) f( ~~A) Assumption 
(3) 1.-(~A) Eh (2) 
(4) f(A) Et.-~ (3) 
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Fact 5.5.8 ~,A r A 

(1) t(~~A) Assumption 
(2) f(A) Assumption 
(3) fO( ~A) Ef~ (1) 
(4) t(A) Efo~ (3) 

Fact 5.5.9 If ArB and B r C, then ArC 

It follows from the hypothesis that there are closed trees Tt and 72 for 
{t( A), f( B)} and (t(B), f( C)} respectively. Therefore the following is a closed 
tree for (t(A), f(C)}: 

t(A) 
f(C) 

t(B} I f(B) 
7, ~ 

Fact 5.5.10 If ArB and ArC, then ArB 1\ C 

It follows from the hypothesis that there are closed trees 7 1 and T'l for 
{t(A), fiB)) and {t(A), f( C)} respectively. Therefore the following is a closed 
tree for {I(A), fiB 1\ C)}: 

t(A)
 
fiB 1\ C)
 

t(B) I fiB)
 
f(C) ~ 

T, 

Fact 5.5.11 If ArC and B r C, then A vB r C 

It follows from the hypothesis that there are closed trees 11 and 72 for 
(t(A), flC)) and (t(B), f(C)} respectively. Therefore the following is a closed 
tree for (t(A V B), f(C)): 

t(A V B) 
ftC) 

t(A) I f(A) 
~ t(B) 

7, 
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Fact 5.5.12 If A I-- B, then ~B I-- ~A. 

By hypothesis there is a dosed trees T for {t(A),f(B)). It follows from 
Lemma 5.5.1 that there is a dosed tree T' for{t'(A), f·(B)). Therefore the 
following is a dosed tree for {t(~B),f(~A)}: 

t(~B) 

[(~A) 

['(B) 
t'(A) 

T' 

We conclude by mentioning that a 'naive' implementation in Prolog of the 
system RE cde has been developed by Rajev Gore [Gor90]. 



Chapter 6 

A generalization: cut systems 

6.1 Proper derived rules 

We want to address the following problem: 

WHAT IS A DERlVED RULE? 

As background for our investigation we assume the Gentzen-style formaliza­
tion which uses sequents, i.e. expressions of the form: 

(6.1 ) Ao, AI, ... 1 An f- Bo, Bll ···, Em 

with the usual meaning: if all of the Ai'S hold, then at least one of the Bi's 
holds. It is convenient to treat the antecedent and the succedent as sets 
instead of sequences. 

Bya Gentzen ru.le R we mean a schematic figure for passing from several 
sequents to another sequent, a typical example being the rule of A.fodus Po­
nens: 

ff-A Llf-A~B
(MP) 

f,Llf-B 

A finite set of Gentzen rnles defines a Gentzen system. Given a Gentzen 
system 5, there are at least three natural ways of representing proofs in it: 
as trees, as directed acyclic graphs or as sequences of sequents generated in 
accordance with the rules of S. Whereas there is no difference in complexity 
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between a proof in the form of directed acyclic graph (or 'd,a.g.') and a 
proof in the form of a sequence of seqnents, it is well~known that represent. 
ing proofs in tree-form may introduce a great deal of redundancy, because 
identic~l subtrees may appear many times. However, we shall observe in the 
sequel that the format in which proofs are represented seems to be significant 
only in some special cases. 

The paradigmatic Gentzen system is the calculus of sequents. There are other 
systems, like Natural Deduction, which can also be represented as Gentzen 
systems, though their original formulil,tion is not in terms of sequents. In 
this chapter we restrict our attention to classical systems. 

Definition 6.1.1 We say that a sequent is correct for a Gentzen system S 
if and only if it is provable in S. A rule R is corn:et for S if and only if the 
conclusion of R is correct for S whenever all the premises are correct for S. 

The notion of correctness of a sequent (and of a rule) makes sense even for 
systems which are not formulated in terms of sequents. Given a sequent 
r I- .6., with .6. = {AI"'" An}, by a single-conclusion sequent assoc£ated 
with r I- .6. we mean auy sequent: 

r,--,Al, ... ,--,Aj_l,--,Ai_H' ... ,.....,An I- Ai 

for i = 1, ... ,n. In dassicallogic, every sequellt is equivaJent to every single­
conclusion sequent associated with it. So, given an arbHrary proof system 
S (not necessarily formulated in term of sequents), we take as a proof of a 
multiple-conclusion sequent any proof of a single-conclusion sequent associ­
ated with it, that is a proof of the single formula in the succedent from the 
formulae in the antecedent. 

Let us go back to our initial problem: what is a. derived rule? A first (as we 
shall argue, unsatisfactory) answer is the following: 

(1) A rule R is a derived rule of a system S if and only if R is correct for S. 

Incidentally, this answer is a.<isumed in many logic textbooks. It is motivated 
by the fact that when a rule is correct for a system S its addition to S does 
not increase the stock of provable sequents. 
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If we accept such a definition of derived rule, then saying that R is a 
derived rule of S means only that the relatiou I- is closed under R (there is 
a proof of the sequent below the inference line whenever there are proofs of 
the sequents a.bove the inference line). 

From a proof-theoretical point of view, however, we are not interested in 
the mere existence of a proof of the conclusion of a rule R, but in an effective 
procedure for constructing such a proof from proofs of the premises. This 
leads us to a differen t notion of derived rule: 

(2)	 A rule R is a derived rule of S if and only if there is an effective proce­
dure for constructing a proof of the conclusion of R from proofs of its 
premi~es. 

But, if we are interested in the complexity of proofs, we should also require 
that the procedure be efficient. A natural requirement, for instance, is that 
the complexity of the resulting proof does not exceed the sum of the com­
plexities of the component proofs plus a constant c. To make this further 
requirement precise we can use the A-measure used in Chapter 4: 

Definition 6.1.2 The complerityof a. proof 11" 1 denoted by A( 11"), is the num· 
ber of lines in 11" (each 'line' being a sequent, a formula, or any other ex­
pression associated with an inference step, depending on the system under 
consideration ). 

We are now ready to give a definition of derived rule which takes into account 
the complexity of the procedure associated with it: 

(3)	 An n-premise rule R is a derived rule of 5 if and only if there is an 
effective procedure, consisting of applications of the primitive rules of 5, 
for constructing a proof 11" of the conclusion of R from proofs 7rI, ••. ,1fn 

of its premises, such that .\(11") :s .\(,,) + ... + .\(11"n) + c for some 
constant c. 

Weshall call a derived rule satisfying (3) proper derived rule. 

We suggest that this notion of proper derived rule can be useful for the 
analysis of the relative complexity of formal proofs. In the rest of this chapter 
we shall illustrate this claim in a few simple examples. 
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Again, we point out that the .A-measure is sufficient to establish negative 
results, but is not sufficient in general for positive results. ]t may, however I 
be adequate also for positive results whenever one can show that the length 
of lines is not significantly increased. by the simulation procedure under con­
sideration. All the procedures that we shall cousider in the sequel wiU be of 
this kind. We assume the notions of simulation and p-simulatioD as defined 
in Chapter 4. 

Definition 6.1.3 Let us say that 5' linearly simulates S if and only if there 
is a constant c such that for every S-proof 1r of A from r there is an S/-proof 
,,' of A from r such that -,(,,') :S c· -'(,,). 

In other words -,(,,') =0(,\(,,)). 

The following proposition is a straightforward consequence of our definitions: 

Proposition 6.1.1 Let 5 be a Gentzen system in tree form and 5' be an 
arbitrary proof system. If all the rules of S are proper derived 1'1Lles of 5', 
then 5' linearly simulates 5. 

Among all the possible rules a special role is played by four rules which 
are correct for an important class of logics (including, of course, the topic of 
this chapter: classical logic). 
The rule of reflexivi.ty; 

(REFL) f ~ A whenever A E r 

the rule of monotonicity 

f ~ Ll
(MONO) 

f, f' ~ Ll, Ll' 

the rule of substitutivity 

(SUBST) 
r~Ll 

sf ~ sLl 
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for any substitution function s (~r for a. set r is den.n<--'d in the obvious way), 
and the rule of transitivity or cut 

r~A,Ll. r',A~Ll.'
(CUT) r, f' f- ~,6.' 

These rules will be called common rules. They are, of course, correct for 
all classical systems. Since it is difficult to imagine a sensible proof system 
in which REFL, MONO and SUBST afe not proper derived rules, we shall 
restrict our attention to systems in which they are proper derived rules and 
shall assume, for simplicity's sake, that the constant c, representing the ).­
complexity of the derivation of the rule, is equal to O. On the other hand, 
there are well-known proof systems in which CUT, though being obviously 
a correct rule (that is a 'derjved rule' in the wea.k sense), is not a proper 
derived rule. Since CUT expresses the basic transitivity property of proofs, 
these systems can hardly claim to represent a realistic model of the notion 
of classical proof. 

6.2 Cut systems 

It is somewhat surprising how far one can go by assuming only that cut is 
a proper derived rule of a system. The next proposition, for example, states 
that any such system is as powerful (from the point of view of complexity) 
as any Frege system (another denomination of Hilbert-style proof systems). 

Proposition 6.2.1 If cut is a proper derived rule of5, S linearly simulates 
any FTf;ge system. 

Proof A Frege proof 11" is a sequence of formulae All"" An' where An is 
the theorem and Ai, i = 1"., ,n is either an axiom or follows from previous 
lines by means of a rule. We shall consider axioms as rules with 0 premises. 
Since 5 is complete, then for each rule R = B I , .. " Bm/C, m 2': 0, there is 
an S-proof tr'R of C from Bt."., Bm , Let c = max(..\(1I"R)) for R ranging over 
the set of rules of the Frege system. Let An follow from A jl , •.. , A jk , with 
ji S n-l. Then, there is an S-proof of An from Ajl, ... l A Jk and, by MONO, 
from AI," "An _ t with A-complexity less than or equal to c. Now, let An _ 1 

follow from Apt •.. " Apq , with pi s: n - 2. Then there is an S-proof of An_I 
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from ApI!-" 1 A pq and, by MONO, from A}, ••. , An _ l with A-complexity less 
than or equal to c. Since CUT is a proper derived rule of 5, there is a proof 
of An from All" . 1 A n_2 with complexity less than or equal to 2c + d, where 
d is the constant associated with the simulation of CUT in S. It is easy to 
verify that by repeating this procedure we eventually obtain an S-proof 1(' of 
An with A( ~') ::: c· A(~) + d· (A( ~) - 1). 0 

Remarks: It follows from results in [CR79] that Frege systems can poly­
nomially simulate all natural deduction systems and all Gentzen systems. 
More recently Buss [Bus87] and Urquhart [Urq87] have shown that resolu­
tion cannot polynomially simulate Frege systems. Urquhart has also shown 
[Urq89] that the cut-free sequent calculus in d.a.g. form cannot p-simulate 
the sequent calculus with cut. Thus Proposition 6.2.1 above implies t.hat nei­
ther resolution nor the cut-free sequent calculus can p-simulate any system 
in which cut is a proper derived rule. 

Notice that our definition of proper derived rule does not make any as­
sumption about the format in which proofs are represented. In particu­
lar there are many systems in tree form (including Natural Deduction and 
Gentzen's sequent calculus with cut) in which cut is a proper derived rule 
(or can be rendered such by means of minor transformations, see chapter 4). 
The proposition above then implies that neither resolution nOr the cut-free 
sequent calculus in d.a.g. form can p--simulate any system in tree form in 
which cut is a proper derived rule. 

Finally notice that the assumption that the system is classical does not 
play any role in the proof. Therefore it can be extended to any logical system 
in which the common rules and cut are proper derived rules. 

The rule of CUT we have given above is completely general and does not in­
volve any logical constant. Auother form of CUT which is typical of classical 
systems is the following: 

r,A ~ ~ f',~A ~ ~' 
(CUT') [, [' f- il,6,' 

This form of cut involves the negation operator and implies that it behaves 
in a classical way. In classical logic the behaviour of negation is captured by 
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two basic rules. The first one is also correct in inluitionistic logic: 

n-t.,A
(h) 

r,~Af-t. 

The second one is peculiar to classical logic: 

r,~Af-t. 
(E~) 

r f- A, t. 

It is easy to verify that (i) if CUT* and I...., are proper derived rules of a 
system 8, so are CUT and E-" and (ii) if CUT and E..., are proper derived 
rules of 5, so are CUT* and !...,. 

Definition 6.2.1 Say that a system S is a classical eut system or simply a 
cut system if both CUT* and I..., are proper derived rules of S or 1 equivalently, 
if both CUT and E ..... are proper derived rules of S. 

We have already considered cut systems in relation to KE in chapter 4. 
The definition adopted there was slightly different, but can be easily proved 
equivalent to the present one under the assumption that the common rules 
are proper derived. rules. IncidentallYI this is an illustration of how the notion 
of cut system is robust under reasonable changes of definition. The following 
proposition states a property of cut systems: 

Proposition 6.2.2 IfS is a cut system, then all the rules of Gentzen's naf~ 

ural deduction and sequent calculus in tree form are proper derived rules of 
S. Morwver, ifS enjoys the subformul(l. property, the derivation of eaeh rule 
involves only formulae which are (weak) subformulae of formulae occurring 
in the premises or in the conclusion of the rule. 

The proof is left to the reader. 

6.3	 Analytic cut systems versus cut-free sys­
tems 

The appeal of some well-known systems in which CUT is not a proper derived 
rule, like Gentzen's sequent calculus without cut or the tableau method I is 
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mainly due to the fact that these systems yield proofs with the subformuJa. 
property (SFP). In contrast, a system in which CUT is a primitive or a proper 
derived rule allows for proofs without the subformula property. However l it 
may well be that such 'non-analytic' proofs are not necessary for complete­
ness, i.e. that the existence of a proof with the SFP is always guaranteed. 
This is trivially true of all systems in which CUT is eliminable. On the other 
hand, it is obvious that we do not need to eliminate CUT in order to obtain 
proofs with the subformula property: it is sufficient to restrict ourselves to 
'analytic cuts', Le. to cut inferences in which the cut formula is a subfonnula 
of the assumptions or of the conclusion. It is well-known that the elimina­
tion of cuts can greatly increase the complexity of proofs. But we have seen 
in Chapter 4 that - if we consider proofs in tree-form - proofs including 
\analytic cuts' can be essentially shorter than any equivalent cut~fIee proof 
while still enjoying the SFP. In particular, we have seen in Section 4.6 that 
any analytic cut system is essentially more efficient than the tableau method. 
For the reader's convenience we restate this result here in a different form: 

Proposition 6.3.1 Let S be any analytic cut system. Then the analytic 
restriction of S linearly simulates Gentzen's sequent calculus without cut (in 
tree form). But Gentzen's sequent calculus without cut (in tree form) cannot 
p-simulate the analytic restriction of S. 

Sketch of the proof. The positive part follows from Proposition 6.1.1 and 
Proposition 6.2.2. The negative part follows from Theorem 4.5.4 and Theo­
rem 4.6.1. 

The interest of these results lies mainly in the fact that the cut-free sequent 
calculus in tree-Corm (or the tableau method) seems to lend itself well to 
computer search. The tree-form, in this case, is more natural. Moreover, 
as far as the cut-free sequent calculus is concerned, it seems that one can 
find relatively short proofs in d.a.g. or linear form only by employing the 
Thinning rule (for some results see [Urq90bJ). However, as argued in Sec­
tion 2.1, this rule does not suit the usual 'bottom-up' search procedures used 
in automa.ted deduction, essentially because it is not invertible. On the other 
hand there are analytic cut systems, like our KE, which are as suitable for 
automa.tion as cut-free Gentzen systems but are essentially more efficient. 
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Conclusions 

Our discussion shows that KE constitutes a refutation system which lends 
itself well to computer search, We propose it as an alternative both to the 
tableau method and resolution which combines features of both systems and 
remedies some of their drawbacks. [t is sufficiently similar to the tableau 
method to share all its 'desirable' fcatures: it does not require reduction to 
any normal form, obeys the subformula principle, works in the 'analytic' (or 
'bottom~up') direction, is 'natural'. easy to implement and can he adapted 
to a wide variety of non-classical logics. On the other hand it avoids the 
basic redundancy of cut-free methods and establishes a closer connection 
with classical semantics as a result of the crucial role played by the rule PB 
in the anaJysis of the formulae of the 'disjunctive' ({3) type. We have ex­
plicitly stressed the connection between this kind of analysis and that the 
Davis-Putnam procedure which is, in turn, closely related to resolution. So, 
from this point of view l KE can be seen as an extension of a resolution-style 
a,na.lysis to the domain of full first-order logic. Our semantic-oriented argu­
ment, presented in Chapter 2, is sufficient to ensure that this kind of analysis 
represeuts a uniform improvement over the traditional cut-free analysis, at 
least as far as the complexity of proofs is concerned. The results contained 
in Chapter 4 confirm and strengthen this argument in the more conventional 
framework of complexity theory: the KE analysis stands with the cut-free 
in a relation of dominance with respect to p-simulatioD (KE linearly simu­
lates the tableau method but the tableau method cannot p-simulate KE). 
Whether or not such considerations of complexity be relevant to the choice 
of a formaJ representation for purposes other than the practicaJ ones, is a 
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matter which is still to be explored. OUf discnssion in Chapter 2, however, 
strongly suggests that the tableau method is not a 'natnral' formalization of 
the notion of a classical refutation and goes near to characterizing KE as the 
natural one. 

From the vantage-point of KE cut-free systems are seen as too ~strieted, 

in a way which is not justified by their own purposes (subformula property 
and easy proof-search). Similarly, resolution is too restricted from the syn­
tactical point of view: efficient classical refutations can be obtained without 
confining ourselves to the domain of formnlae in clausal form. There are, in 
fact, connections between KE and non-clausal resolution [Mur82, MW80]. 
However KE represents refutations in a completely different way: its rules 
are genuine inference rules, in the sense that they formalize traditional in­
ference principles. We have also emphasized (in Section 3.8) that KE can 
be represented as a kind of 'natnral deduction' system. Moreover, the pres­
enc.e of a rule like PB, which can be used in a non~analytic way, makes it 
possible to use KE to formalize non-analytic argnments as well as analytic 
ones. This should be considered as an advantage from many points of view. 
First, as Dana Scott pointed out [Sco73), analytic logics, i.e. logics which ad­
mit of formal representations that obey the subformula principle, are more 
an exception than the rule. Therefore KE provides a logical framework 
which can be extended in a natural way to non-classical logics for which 
a cut-free representation is impossible. Second, even within the domain of 
classical logic, the possibility of representing non-analytic proofs can be an 
advantage. For example, it has been known since the earliest work on auto­
mated theorem proving (see for instance [Wan60]) that biconditionals tend to 
cause combinatorial explosion in proof search procednres based on a cut-free 
Gentzen system. R.ecent resnlts by Urqnhart [Urq89, Urq90b] have not only 
proved that this phenomenon is unavoidable, but also tha.t the use of ana­
lytic cut cannot help as far as pure biconditional expressions are concerned 
(see Theorem 6.1 in [Urq90bJ). In this case, non-analytic methods are defi­
nitely more efficient. This is one example of the well-known fact that using 
non-analytic, 'external', lemmata can considerably shorten proofs. Boolos 
[Boo84] has illustrated this fact strikingly by exhibiting a natural class of 
first-order schemata which have no feasible tablean proofs but do have short 
natural deduction proofs. He traced the fact that natural deduction methods 
are essentially more efficient than the tableau method to the fact that' modus 
ponens, or cut, is obvionsly a valid derived rule of standard natural deduc­
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tion systems, but not obviously a valid derived rule of the method of trees,l , 
and adds that 'the most significant feature possessed by natural deduction 
methods but not by the tree method, a feature that can easily seem like a 
virtue, is [... ] that it permits the development and the utilization within 
derivations of subsidiary conclusions'2. OUf notions of 'proper derived rule' 
and 'cut-system" defined and used in Chapter 6, were also meant to formalize 
some of the intuitions underlying Boalas' remark. 

So, there are many contexts in which purely analytic methods are hope­
lessly inefficient. As Boolas himself pointed out, there is a trivial solution 
to this problem: simply add cut to the cut-free rules. But this move would 
not eliminate the redundancy of the cut-free rules that we have pointed out 
in Chapter 2. Moreover, the cut rule would be, so to speak, 'thrown into' 
the cut-free system in a purely external way, and we would be left with no 
obvious criteria concerning its application. We claim that KE represeuts a 
natural and elegant solution to this problem: it does not employ any rule 
which generates redundancy in the sense of Chapter 2; the cut rule comes 
into play only when the operational rules cannot be further applied; although 
its applications can be restricted to analytic ones, the unrestricted system 
can be used to simulate efficiently all the conventional non-analytic proof 
systems and therefore any algorithm based on them. 

Given our previous considerations, some future directions of reasearch 
suggest themselves. One ("Alncerns the development of efficien t proof search 
procedures for classical logic based on KE. We expect that, for analytic pro­
cedures, some variant of Bibel's connectiou method ([Bib82J; see also the 
exposition in [Wal90]), should prove useful. Similar proof~search procedures 
for non-classical logics could be developed by adapting Wallen's metbods 
[Wa190]. Moreover, as suggested above, we expect KE to be useful in for~ 

mulating non-analytic proof~search algorithms both for classical and non­
classical logjcs, especially when non-analytic methods are the only efficient 
ones, or eveD, in the case of some non-classical logics, the only possible ones. 

'[BooM], p.373.
 
'[BooM], p.377.
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