
r,.
" ",,,,,;~! Computing Laboratory

_,j LL!:::::ng
,,~ F;oc;d

CJAiU'.J OXl 300-"

FOUR PIECES ON

ERROR, TRUTH AND REALITY

by

Joseph A. Goguen

t.:',."::,,,.'_'" ,',' [> ,-:-E

/' I 22 FEB 2002

.:... j ._,. C:_"

()KFO~

III~IIIIIIIII

3033870038

Technical Monogra.ph PRG-89 I

October 1990-. '-, .._,--~--_.

Oxford University Computing La.borAtory
Programming Research Group
11 Keble Road
OxfOM OXl 3QD
England

Copyright @ 1990 Joseph A. Goguen

Oxford University Computing Laboratory
Programming Research Group
11 Keble Road
Oxfmd OX! 3QD
England

Electronic mail: goguenOUi.ac . oxford. prg (JANET)
Electronic mail: goguenClprg.oxford.ac . uk (elsewhere)

Four Pieces on Error, Truth and Reality

Joseph A. Goguen l

Preface

This monograph consists of Cour papers on social and philosophical aspects of computing.
The first, third and fourth were written for the book SoftUJO,Tf!. Df.tH!lopment and Reality
Construction, which grew out of an interdisciplin<l.l"y conference held in Sch.lolJ Eriugerleld,
Germany, in September of 1988. The second was written aB a position paper for the confer­
ence Formal MethodA 89, which was held in Halifax, Nova Scotia in July of 1989.

The first paper is concerned with the role of errors in computing, and in parlicuhu, with
the regrettable tendency within some schools of Formal Methods to claim that etrol'S ca.n
and should play no role at all. This paper claims on the contrary that errors are iDevitable,
and that we must therefore develop ways to deal with them. It also claims that much of
software production and of individual growth and learning necessarily occur in the context
of misunderstandings a.nd mistakes. Moreover, the necessity for dealing with errors can
actually become a pleasure.

The second paper is largely concerned with philosophical aspects of Formal Methods,
and in particular with the recent controversies about whether computing systems can be
"proved correct," and indeed, with what we mean by "proved" and by "correct," and how
such mathematical concepts connect with the real world. Such problems are irnportant in
the context of Safety Critical Systems, for example. In keeping with its origin as a position
paper, some recommendations concerning research directions are given, and there ace no
references.

The third paper goes somewhat deeper into certain philosophical problems about mean­
ing and truth: It contrasts the "modern" formalist position of the logical positivists like
Ca.rnap with the views of Heidegger and Wittgenstein. This haa serious consequences for
our understanding of correctness problems in computing.

The fourth paper takes us somewhat further afield. It is an attempt to connect the
process of interpretation with the philosophy of Buddhist meditation. "Hermelleuticsn is the
study of interpretation, arising historically from problems in Biblical exegesis. It is relevant
to attempts to understand computational artifacts in their social and personal contexts,
whether the artifact is software, hardware, specification, requirement or documentation.
In particular, philosophical hermeneutics are Buddhism are relevant to etb.ical issues in
computing, and to the understanding of creativity in computing.

'ALso, SRlIDternaLionill, Menlo Park CA 94025.

CONTENTS

Contents

The Denial of Error

1 Introduction 1

2: Science and Technology 2

3 Error-Free Programming 4

4 Software Quality 5

5 The Being of Software Development Projects T

6 Conc:lusions 8

Formal Methods: A Position Paper

1 Introduction 11

2 What are Formal Methods'! 11

2.1 Fo.rmal Methods and Mathematics 11

3 What Good are Formal Methods? 12

3.1 The Myth of Control 13

4 Hyperprogramn;.ing 14

5 Recommendations
 15

Truth and Meaning beyond Formalism

Introduction 18

2: Heidegger, Car-nap and Wittgenstein on Dread and "the Nothing" 18

3 What is "the Nothing"? 21

4 What are Truth Bod Meaning? 22

5 Where are we? 24

Hermeneutics and Path

Introduction
 28

2 ThE! Paramitas
 28

3 Con!u9ion
 29

...
"

'"
..

C'l

0 .­ ".. 0 •

t'1
 e ~ ;0 ~ • • 0 "­ til

0 " 0 0 "­

:I:

0 " ~ 0 0 ~

0° • ;0

~ .. 0 ."
 "

:I:

0 9 0 0 0 ~

0° • g ."

!\. ..
~ n°

0 0 ~

 '" n iio

0 n 0

1

The Denial of Error

Joseph A. Goguen

Introduction

This pa.per claims tha.t the modern world has developed a kind of arrogance which is dam..
aging the very projects that it seeks to sustain: in proposing methodologies to gUala.lltee the
absence of error, we deny the incredible richness of our own experience. in which confusion
and error are often the se€ds of creation; in this way, we limit our own creativity.

This arrogance is not a.n isolated phenomenon that is found only in computer science.
Indeed, I claim that it arises in a natural way from our preoccupation with and immersion
in science and technology, which are strongly oriented toward control. The oblle5sion of
Western culture with control can be seen in many different areas, including the follOWing:

L	 In myth; for example, if you know a demon's name, then you can control its behavior
(we may relate this to the phri\..~e "knowledge IS power").

2.	 In science, which is based upon the idea of the controlled experiment (this is control
of the intellectual process, rather than of its result).

3.	 In our theories of behauior; for example, the psychiatrist Ernest Becker has said tha.t
"All sodallife is the obsessive ritualiza.tion of control" (41; see also point 5, below.

4.	 In technology, which seeks to control na~ure through the application of science, as
discnssed in more detail later in this paper.

5.	 In our tbearies of information and knowledge; for exa.mple, in the "Representational
Theory of Meaning." which says that our minds conta.in representations of external
"objects," or in current Cognitive Science theories which posit explicit goals to control
behavior, in the same way for both machines and humans (see Section 2 below).

Aspects of the viewpoint common to these items have been called "instrumentality," "tele­
ology," "rationalism," "selfishness," "objectivity," "analysis," "SUbjectivism," "ego," "posi­
tivism" and "conceptualism," depending on the author and the context. The obsession with
control is also one aspect of what has come to be called "modernism".

The denial of error, tha.t is. the denial of deviation from announced goals, seems to be
closely associated with the attempt to maintain control, especially for phenomena. that an
actually difficult or even impossible, to control. For example, consider the economy of a
country, especiaJly one that i.'J highly collectivized.

The history of science contains many instances of accidental discoveries, for example, tha.t
of penicillin. These are often taken as surprising, embarrassing, or amusing, but they actually
point to a serious and importa.ut facet of scientific knowledge, indeed of all knowledge: its
basis is the free play of the mind against the unexpectedly rich worlds revealed within each
real situation. The following quotation from Heidegger {16J may be relevant:

2 The Denial of Ector

The area., as it were, which opens in the interwovenness of being, unconceaJ.ment,
and a.ppearance - this area I understand aa el"T'Or. Appea.ra.nce, deception, illu­
won, error stand in definite e6sential and dynamlc relations which have long been
ttLisinterpreted by psychology and epistemology and which consequently, in our
dally lives, we have well neigh ceased to experience and recognize as powers.

Formalism is also a (orm of control: it attempts to control the use oC J.a.nguage, and
through that, to control behavior. The tighter and more rigorous the formalism, Le., the more
circumscribed its syntax and semantics, the smaller the domain to which it is applicable. The
ultimate in this development may be the attempts of mathematical logic (e.g., Tarski [24])
to formally captore the notion of Troth; yet the manipulation of uninterpreted tautologies
literally tells us nothing, about nothing (s~ [13] for some further discussion of meaning,
truth and logic along these lines).

Section 2 below attempts to describe the essence of modern science and technology,
loosely based on ideas oOate Heidegger, and illustrated with some quotations from Bacon and
Newell. Section 3 discusses the goal of error-free programming, using some work of Dijkstra
as an example. Section 4 considers the goals of software quality, using U.S. Department of
Defense procurement procedures as an illustration. Finally, Section 5 suggests that software
development projects could be considered holistically, using some ideas from the so-ca.lled
New Biology.

2 Science and Technology

At the dawn of modem science, Francis Bacon was ohsessed with the concept of what we
now call a.n experiment, using what now seem rather extreme metaphors of torture and the
inquisition [1]:

... if any expert Minister of Nature shall encounter Matter by mainforce, vexingl
and urging her with intent a.nd purpose to reduce her to nothing; she contrariwise
... being thus caught in the straits of necessity, doth cha.nge and turn herself into
diverse strange forms of things.... the reason of which constraint or binding will
be more facile and expedite. if matter be laid hold on by Manacle6, that is by
extremities.

Today, this language seems a bit shod.;ing, and of course, no reputahle contemporary scientist
would want to sound quite so gleefully sa.distic about his work. But perhaps we should give
Bacon credit for a degree of honesty that has bee[] tost to us, as the passage of time has dulled
our sense of surprise at the methods of science and technology. For scientiflc experiments on
animals can be quite gruesome, and technology has mnch to answer for in its d@l!ltruction of
the environment.

The fundamental problem here is not that there are some isolated, unfortunate incidents
(e.g., strip mining in the Brazilian rainforest), nor even that there are potential massive
dislocations looming on the horizon, such the effects of global warming and deforestation.
Rather, the fnndamental problem is that man has come to view nature as a "'r@l!lource," as
something ~o be used, for his convenience and comfort, or against his enemies, or to enhance
his prestige through the acquisition of knowledge. As Heidegger [17] says,

·I\t tile time o[~hi8 tra.n:5I11.tion, MYex~ had much more the connotation o[torture, from the La.liD I:I~~.

3 The DegjaJ of Error

The hydroelectric plant is not huilt into the Rhine River as was the old wooden
bridge thiLt joined bank with biLnk for hundreds of yeiLrs. RiLther, the river is
dammed up into the power pliLnt. WhiLt the river is now, uamely, iL wiLter­
power supplier, derives from the essence of the power stiLtion. In order thiLt we
may even remotely iLppreciiLte the monstrousness that reigns here, let ns ponder
for a moment the contrast that is spoken by the two titles: "The Rhine" as
dammed up into the power works, alld "The Rhine" as uttered by the art work,
in Hiilderlin's hymn by that name. But, it will be replied, the Rhine is still a.
river in the landscape, is i1 not? Perhaps. But how? In no other way than as
an ohject on call for inspection by a tour gronp ordered there by the vacation
industry.

In this way, we lose the ciLpacity to he in the world with a sense of harmony, joy, or wonder.
The dark edge to science, so cleiLr in the writing of Bacon, has to do with this funda.mental

alienation, that is, with man's will to whiLt Bacon called "Dominion over the Universe," more
than it has to do whh the subject/ohject split, or with any piLrticular djfficultiell. Bacon
was as much the prophet of technology as he was of science. Let us listen to Heidrgger [16]
again:

Today Kience is admonished to serve the niLtion, and thiLt is a very necessa.ry
and estimable demand:;!, hut it is too little and not the essential. The hidden will
\0 refashion the essent into the manifestness of its being demands more. In order
to recapture the pristine knowledge that has degenerated into science, our heing­
there must attain a very different metiLphysical depth. It must again Mhiere an
estahlished and truly built relation to the being of the essent as iL whole.

Let us now consider an example closer to home, from Artificial Intelligence. In [2l}, Allen
Newell proposes iL theory of mind based on what he caUs iL "physical symbol system," which
is essentially an automaton, thiLt is, a (mathematical) machine, intended to model the us.e
of symbols. Newell claims that lhis notion is "the most fundamental contribution so fu of
Artificial Intelligence and Computer Science to the joint enterprise of Cognitive Science,"
and that it is "what. the theory of evolution is to all biology, the cell doctrine to cellulu
biology, the notion of germs to the scientific concept of disease, the notion of tectonic plates
to structural geology," namely, it is (he hypotheses) "a.d.equate to all symbolic activity this
physical univers.e of ours can exhibit, alld in particular to all symbolic activities of the human
mind." The basic definition of "symbolintion" is as follows [21]:

An entity X designates an entity Y relative to a process P, if, when P takes X
as input, its behiLvior depends on Y.

In this case, X is iL symbol for Y. I do not wish to dwell on how this definition is too
permissive for ma.ny applications to science, nor on how it ra.d.ically excludes most of the
symbolism thiLt is important in the arts, humanities alld religion, nor on the arrogance of
attempting to reduce symbolism in general to causality, but rather, I wisb. to relate this
theory to the themes oC control and error which are central to the present piLper. Newell
SiLYS.

1Note th&t iQ this 1935 pll.SSll.8e. ~lhe nll.lioll" refeu to Nui GermAIIY!

4 The Denial of Error

A general. intelligent system must sDmehow emhody aspects of what is to be
attained prior to the attainment of it, Le., it must have goals. ...
A general intelligent system must somehow consider candidate states of affairs
(and partial states) for the solntions of these goals (leadlng to the familiar 8e&rch

'''''5).

But in order to use the familiar method of search trees, one must not only have a goal that is
fixed in advance, but one must also be able to enumerate the possible solu tions. ThllS, we are
dealing here with a form of top-down control that is even le~s flexible tha.n feedba.c:k control,
and leu able to deal with errors. Thus, despite Newell's desire that his ideal physic.a.J. symbol
system should '"behave robustly in the face of error" and "learn from its enviomment, n it is
far from cleM that it could do so with a.nythlng like human intelligence; in particular, it is
unclear how it could devise entirely new conceptual organizations in response to its errors,
let alone learn such things as compassion.

I do not believe that rigidly mechanistic models, with top-down goal structures, are ade­
quate for explaining human cognition, nor even for explaining how to do science. Althongh
this approach is characteristic of "modern" explanations of science, from the seventeenth
century into the twentieth - the so-called "Received View" - there is an emerging "post
modern" view of science a.nd tedlllology which advocates more flexible organizations, leas
rigid logics. and more natural control structures. Examples include the so-called New Biol­
ogy of Ba.teaon, Maturana, Varela and others (discussed in Section 5 below), hermeneutics
and other movements in linguistics and philolophy (again, see Section 5), and fuzzy logic
and {UZ2Y control (e.g., [9,23]). Within computing, neural nets, highly distribnted and open
systems, a.nd hypermedia and llyperprogramming may also fit this emerging paradigm.

3 Error-Free Programming

What we may call tile "Dijkstra School" aims for error· free programming. For example, (71
claims tha.t

we have ... "a calculus" for a formal discipline - a set of rules - such that, if
applied successfully: (1) it will have derived a correct program; and (2) it will
tell us that we have reached such a goal.

From a narrow point of view, [71 achieves its aim, modulo certain technical difliculties3 .

But its fundamental difficulty is that it attempts to control the programming process by
imposing a. rigid top-down derivation seqnence, working backwards from the initial top level
specification (the "p06tcondition") to the final code, in whicll each step is derived by applying
a "weakest precondition" (hereafter. "wp") formula.

Perha.ps not unexpectedly, l.11is "wp ca!cuJm;" reqllires significant human "invention"
at exactly the most difficult point.s, namel,v t.he loops. And for most programs that go
much beyond the trivial, the insignts needed to write the loop invariants are tantamount

~The8e include the following, (J) there i8 all:ap in the logicll.l foundations. in that the lird order logic used
ror ellpre88iog conditions is not actull.lly .nfficiently expressive - something like the iufini1.ary logic proposed by
Erwin Engeler in the 1960s is needed; (2) many importanL programming realures are not Lrealed, incJudiD8
procedures, blocks, modlll~, and obje<:~s _ in generll.l, Il.II luge gr<o..in features are om.itted; lI.Dd (3) dal6
l5lruclureli. lypes. variables that range O"er programs, and vllriable& that range over Ilpecificl.tioDI are all
treated in a.LQos.e manner.

5 The Dwal of Error

to already knowing how to write the program; moreover, these insights are more difficnlt
to achieve in the wp context than they would be in a more operational context. Indeed,
I have seen good students who had been taught that the wp calculus was the right way
to program, become so discouraged over the difficulties that they experienced, that they
came to believe tbat they could never learn how to program and should therefore seek &Ome
other profession! In general, such a rigid, top-down ideology inhibits experimentatiOll, the
exploration of tradeoff's, accidental discoveries, and so on. Moreover, it can be harmful to
students, wasteful of time, reinforcing of an inflexible view of life, and inhibiting to intuition
and creativity.

But we must not get carried away with criticism: It is not that the wp calculus is
entirely mistaken or useless, but rather that claims have been made for it that do not take
adequate account of its limitations. For example, the wp calculus can be very useful in
getting initializations right (many reaJ. bugs arise at this point), as well as for simple loops,
and I have also found it useful in convincing students that coding can be treated with
mathematical precision. Moreover, Dijkstra '6 style is very elegant and careful, his examples
are very well chosen, and personally I admire and have learned from these qualitjes. However,
it seems very difficult to scale up Dijkstra's approdch beyond programs of more tha.n a few
dozens of lines.

Let me be clear that J am not criticizing formal methods as such - in fact, I believe
that they can be very useful in practice, especially for large programs'" and have myself
done research in this area [10, 14] - rather, I am criticizing the tendency to apply formal
methods in a rigid, top-down hierarchicaJ. manner. In fact, I believe that jf appropriate
formal methods are used in a 8exible, non-ideological way, they can lead to better programs,
with greater efficiency and fewer bugs.

But bugs are inevitable. If they don't occur in coding, they will appear in design,
specification, requirements, or use; they may arise by misinterpretation of what the customer
says, by inadequate modelling of the situation in which the program must run, by inadequat.<e
documentation or understanding of the tools being used (such as a compHer for ill.igh level
language), and in mallY other wa.y.!>. (An Q\'erview of some recent debates on the philoaophical
foundations of formal methods is given by Barwise [2].)

Of course, no one wants bugs. or wants to spend any more time tha.n necessary on
debugging, because it is difficult and unpleasant. But neverthele6s, bugs are interesting and
important in themselves: they define the boundary between what is understood and what
is not. Hence, they show us where our weaknesses are, and they provide opportunities for
us to learn and grow.

4 Software Quality

The Brooks Report 18) notes that the procurement process generally used by the U.S. De­
partment of Defense for large software systems is inappropriate for such systems (although
they might be reasonable for buying boots, hats, or even rifles): bids are imited on a coo­

'TIwl <:an be acllle\led by providing [ormallp«ifi<:aLiOn for tbe inlerfacel between proJIun componenta,
~b"u greatly enhancing the accuracy of communication between different groups working on different compo­
DenLs, and pro\liding a "fire wul" to proLect each. group (rom purely internu cbanges made by other groll.p9.
Also, sufficiently powerful mecbanism5 for parameterization and modulari;ation Call grealll improve the reU8e
o(both code and specification'J.

6 The Denial of Error

trad to build a. system that meels a given "requirements document," which tends to be
excessively ela.borate, specific, and optimistic. There is also a. tendency for lower bids to
win, whether or not they are realistic; and once the contra.ct is let, large C06t over-runs are
common.

It is important to note that we a.re not taJking here just about the processes nsed inter­
nally by a. software vendor, but rather about tbe procurement process as a whole, including
those processes internal to the client as weD as those internal to vendor(s), and of course
those processes of communication that occur on the interfaces among them. It is convenient
to use the terminology of process models in this discnssion, even though it was originally
developed to descrih just vendor processes (see Boehm [6] for an overview of trus field).
To be more precise now, it is the government processes of requirements generation <Llld pro­
curement that a.re rigidly top-down, based on assumptions formalized in the linear structnre
of a so-called stagewise model, which says that a software development project begins with
requirements, which then "fall" without essential error into specifications <Llld finally into
code. Once the proC€sses internal to a vendor are reached, it is not unusual to see a more
sophisticated process models in use, at least a so-called water/all model, which allows feed­
back between contiguous stages, and perhaps also a single (non-rapid) prototype, or even a
spiral model 16], which can be sufficiently adaptive to be considered a meta.-process model.
(Also, note that software procurement is generally less rigid in the commercial sector than in
the government sector.) All this suggests that an importa.nt topic for further research might
be the development of multi.party process models, which would allow for different processes
within different parties. a.nd for multi· stage interaction between parties.

For large, complex systems, especially if they are unlike anything previously constructed,
we can hardly expect to know what is possihle or impossible, wha.t is a.dequa.te or inadequate,
what is expensive or inexpensive, or more generally, what are the design tradeoffs for that
class of system. Moreover, it has been found far more expensive to correct errors during the
maintenance stage than during earlier stages (by up to OJ. factor of 100) [5].

Tbus, it would seem very desirable to debug requirem('nts until they reflect a reasonable
compromise between what users want and what is achievable within reasonable cost. The
Brooks Report IS] suggests that integrating rapid prototyping with the procurement process
might achieve this goal, and thus save vast amounts of time and money. It could also lead to
discovering useful capabilities not anticipated in the original requirements document, which
(l.Te nonetheless relatively easy to provide. It seems very reasonable to suppose that some such
wore adaptive approach could yield beLter results than trying to control the entire proCes.6
of production in advance of exploring the basic pitfalls and tradeoifs that are involved.

The failure of U.S. Government procnrement processes to acknowledge the possibility
of error in setting requirements is a shocking example of arrogant teleological thinking run
wild; even some crude form of feedback control would be an improvement~ and it is amazing
that large Department of Defense systems come dose to working correctly as often a.s they
seem to.

I think it is fair to say that Software Engineering is presently more like a medieval craft
than it is like a modern engineering discipline. This is because modern technology (see (17])
involves the construction of causal calculative theories, and we are only now beginning to
develop such theories for Softwar(' Enginc:erillg. In particular, the relatively neglected, and
sometimes maligned, field of formal methods is still at an early stage of development. A
promising approach, I believe. is to integrate formal methods with software process models

The DeniaJ of Error 7

in a way that better supports flexibility and <l.daptation, rather than mere competition and
control.

It may be that such revolutionary techniques a.<; h)'perprogramming [12], wltich involve
the multimedia exploratjoD of program structure by visualization and explanation, based on
technology developed for formal specification and verifil:ation, can be developed to the point
where they can be lISed in a routine way.

What is crucial is to provide environments for soft\l.'are development in which the overall
rrisiQn of the program can be clearly felt at all limes, and used flexibly in organizing the
programming task. Such a vision is not at all the same thing as a top-down hierarchically
structnred system of goals, but rather should have an adaptive Hving qnality, in roughly the
sense discussed in the next section.

5 The Being of Software Development Projects

Anyone familiar with multi-person software development projects knows that there is a sense
in which such projects "'have a life of their own": some projects seem healthy and vibrant
from the start. and overcome even unexpected obstacles with enthusiasm and intelligence,
while others always seem to be disorganized and depressed, suffering, for example, from such
symptoms as nnrealistic goals, inadequate equipment, poor planning, (seemingly) insufficient
funding, faulty communication, indecisive leadership, frequent reorganizations, a.nd/or deep
rifts between internal factions.

A software development project is not primarily a formal mathematical entity. Perhaps
it is best seen as a dialogical or Ijn9ui~lic process, an evolving organization of certain infor­
mational structures, continually recreating itself by building, modifying, and ren~ing these
structures. In the language of Maturana, this might be described as "development through
mutually recursive iuteractions amon~ structuraJly plastic systems" [I8].

In this view, computers, printoufs, compilers, editors, design tools, and even program­
mers, can be seen as supporting substrates, just a.<; body parts are supporting snbstrates for
a persons. Maturana and Varela [19] define an autopoietic ~ystem to be

," a network of processes of production of components that produces the com­
ponents that: (i) through their interactions and transformations continuously
regenerate the network of processes that produced them; and (ii) constilute it
as a concrete unity in the space in which they exist by specifying the topological
domain of its realization as such a network.

(See [3. 25, 18, 20] for more informatiou, and see [15, 26] for some possibly ill-adVised
a.ttempts at formalization.) for example, all unhealthy project may struggle for survival
by reassigning responsibilities, redefining subprojects, and even trying to reconstrue the
conditions that define its SUCCess. On the olher hand, a healthy project may develop new
tools to enhance its own productivity.

Autopoietic systems are abonl as far as we know how to get from rigid top-down hi­
erarchical goal. driven control systems; autopoietic systems thrive On error, and reconstruct
themselves on the basis of what they learn from their mistakes. Since organizations naturally

~UI couno:, J do nol inlend ~heR I~mll.lks to imply lhat lhe group hu moral or ~piritUlJ prioritJ" over the
individual, or that people ~hould b~ viewed as cOlrlpOnen15 of systems in anylbing like lhe u.me 'Way that
Ada packages Can be.

8 The Denial of Error

strive for their owu survival, it would seem natural to study autopoietic software proce8B
models.

It is interesting to notice that the discouttie which is the life blood of a software project is
conducted in a variety of languages. which differ in both their level of abstraction and in their
degree of formality. Most discussions are conducted in a kind of pidgeon natural language,
infused with technical terms and technical ways of thinking. But there are also requirements
documents, designs (which may involve graphics), specifications, code. and much more.

I believe that a promising research direction is to apply techniques from hermeneutics
to the "softer" areas of the software development process, and particularly to the so-called
"requirements acquisition" phase, in which an analyst attempts to determine what the CU8­

tomer really wants. Hermeneutics is concerned with the interpretation of "texts" in a very
broad sense wh.ich can include programs, dialogues, contracts,live intera.A:tion, specifications,
history files, proofs, and so on. Another promising application of hermeneutics might be to
study the social dynamics of the entire life cyde, or of selected parts of it. See [22] for a.n
overview of some theoretical aspects of hermeneutics, and [llJ for some further discussion
along the lines of th.is paper.

6 Conclusions

Important avenues for further progress in Software Engineeriug seem to be blocked by our
inadequate understanding of the processes involved in developing software systems. It seems
that formal method5, despite their power, are uot applicable to some of the most significant
aspects of such processes. But it also seems possible that a better understanding may be
attained by us.ing some insights from the New Biology of Bateson, Maturana, Varela and
others, and from the hermeneutics of Heidegger, Gadamer, and others. A basic step in
this direction is to recognize the important role that error plays in any process of construc­
tion. The surprisingly Widespread belief that it is both desirable and possible to go from
reqnirements to specification, to code, without making any errors, would seem to be a major
inhibiting factor to the successful application of formal methods.

Although formal methods can be very powerful when they are properly applied, they
also have definite limitations, and formal, rationalistic understanding is only one of many
approaches to understanding. Intuition and spiritual understanding are alternatives that
s~m mOTe important in certain ways. For eYample. formal methods wiH never telll1s wh:'
the U.S. Departmeut of Defense persist~ in its manifestly wasteful practices. Nor wiU they
explain the success of object oriented programming.

Some specific proposals for further research mentioned earlier in this paper include: the
application of hermeneutic techniques to the ~oft.ware development process, both a:5 a method
of study, wd also as a specific technique for use iu the requirements acquisition phase; the
de.. elopment of multi-party process model~; the study of autopoietic process models; and the
integration of formal methods with such more "organic" process models, through techniques
like hyperprogramming.

By some such route, we might go further than merely recogni~ing the inevitability of error
- we mlght learn to experience our errors as a path that leads 10 deeper understandings
and to better relationships. We must make the programming process not merely tolerant of
error, but also able to tlJke ad1Jtm/agf of thf' ffNl.tive possibililies inherent in the interplay
between concept and perception. l.;n1.iJ Wf' (l,cknowledge thf' dialec1ical, cTeative, and living

9 The DewaJ of Error

dimensions in programming. We shall be doomed to participate in software processes that
are unwieldy, unpleasant, and ineffective. The denial of error is the denial of life.

Acknowledgements

] wish to thank my wife Kathleen far .assista.nce with preparing this paper, including reading
several. drafts. undertaking some library research. and providing many helpful comments and
conversations. I would also like to thank both the Naropa Institute in Boulder, Colorado, a.nd
the Center for the Study of Language and [nformation at Stanford University for providing
stimulating environments in which to think about the kind of issue discussed here.

References

[IJ	 Fra.ncis Bacon. The Wisdom of the Ancients. Da Capo Press (Amsterdam), 1968.
Facsimile of 1619 translation by Arthur George (printed by John Bill. London).

{2]	 Jon Barwise. Mathematical proofs of computer system correctness. Technical Report
CSLI-89-136, Center for the Study of Language and Information, Stanford University,
Angust 1989.

[3J	 Gregory Bateson. Mind and Nature. Bantam. 1980.

[4]	 Ernest Becker. The Denial of Death. Free Press. 1973.

[5]	 Barry Boehm. Software Engineering Economies. Prentice-Hall, 1981.

[6]	 Barry Boehm. A sprial model of program development and enha.ncemeot. Software
Engineering Notes. 11(4): 14-24. 1986.

[7]	 Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro­
grams. Communications oflhe ACM. 18:453--457, 1975.

[8)	 Frederick Brooks et at. Report of the Defense Science Doard Task Force on Military
Software. Technical Reporl AD-AI88 561, Office of the Under Secretary of Defense for
Acquisition, Department of Defense. W.asllington DC 10301, September 1987.

[9]	 Joseph Goguen. The logic of inexact concepts. Synthese, 19:325-373, 1968-1969.

[10]	 Joseph Goguen. Reusing and interconnecting software components. Compuur,
19(2):16-28, February 1986. Reprinted in Tutorial: Software Reusabilitg, Peter Free.­
man. editor. IEEE Computer Society Press. 1987, pages 251-263.

[11]	 Joseph Goguen. Hermeneutics and path. In Reinhard Budde. ChristianE Floyd, Rein­
hard Keil-Slawik, a.nd Heinz ZiilUghoven, editors, SQftwaN! Development and Reality
Construction. Springer. 1990.

{12]	 Joseph Goguen. Hyperprogramming: A formal. approach to software environments. In
Proceedings, Symposium on Formal Approoche6 to Software Entn'ronment Technology.
Joint System Development Corpora.tion, Tokyo, Japan, January 1990.

10 The Denial of Error

[13]	 Joseph Goguen. Truth and meaning beyond formalism. In Reinhard Budde, Christiane
Floyd, Reinhard Keil-Slawik, and Heinz Ziillighoven, editors, Software Development and
Reality Constrodion. Springer, 1990.

[14]	 JOSl!ph Goguen and Jose Meseguer. Unifying functional, object-oriented and relational
programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Re­
soorch Directions in Object-Oriented Programming, pages 417-477. MIT Press, 1987.
Preliminary version in SIGPLAN Notices, Volume 21, Number 1O~ pages 153-162, Oc­
tober 1986.

[151	 Joseph Goguen and Francisco Varela. Systems and Jistinetions; duality and comple­
mentarity. lntemational Journal of General Systems, 5:31-43, 1979.

/16]	 Martin Heidegger. An IntrOl:luction to Metaphysics. Yale University Press, 1959. Trans­
lation by RaJph Manheim; original rrom 1935.

[17]	 Martin Heidegger. The question concerning technology. In Basic Writings, pages 283­
217. Harper and Row, 1977. Translated by David Krell; original from 1953.

(18]	 Humberto Maturana. Biology oC language: The epistemology oC reality. In Psychology
and Biology of Thought and Language: Essays in Honor of Eric Lenneberg, pages 27-64.
Academic Press, 1978.

[19]	 Humberto Maturana and Francisco Varela. Autopoiesis and Cognition: The Renlization
of the Living. Reidel, 1980.

[20]	 Humberto Maturana and Francisco Varela. The Tree of J{rwwledge. Shambhala, 1987.

[21]	 Allen Newell. Physical symbol systems. Cognitive Science, 4:135-183, 1980.

[22]	 Richard Palmer. Hermeneutics. Northweslern University Pre5s, 1969.

[23]	 Witold Pedrycz. Fu;zy Control and Fuzzy Systems. John Wiley, 1989.

[24J	 Alfred Tarski. The semantic concepLion of truth. Phil08. PhenomenologimJ Research,
4:13-47,1944.

[25]	 William Irwin Thomp50n, editor. Gaia: a Way of [(nowing. Lindisfarne Pnss, 1987.

[261	 Fr<LIIcisco Varela and Joseph Goguen. The arithmetic of closure. Journal of Cybernetics,
8:125ff. 1978. Also ill Progrr:I;.~in Cybernetics and Systems Resenrch, Volume 3, edited
by R. Trapp!, George Klir and L. Ricciardi, Hemisphere Publishing Co., 1978.

Formal Methods: A Position Paper

Joseph A. Goguen

1 Introduction

Tills pa.per has fOUf main parts. The first asks what fonnal methods are and the serond
asks what they a.re good (or, wh.ile the third describes a specific technique in fonnal mdhods
called hyperprogmmming, and the fourth presents some recommendations.

2 What are Formal Methods?

"Formal" means "having to do with (orm" and does not necessarily entail logic or proofs
of correctness. or course, the word "formal" Ci1·n also be used in many other senlSEll, but I
think that th.is may be the appropriate sense for "formal" in the phrase "formal methods."
For e,,=a.mple, a Cormal development method gives rules that restrict the allowed fOrms of
program development, and perhaps also the aUowed (orms of some texts that occur during
the process. But this does not mean that (orm is trivial- far from it. Indeed, everything we
do is done with form. And everything that computers do is formal, iu that definite synta.ctic
structures axe manipulated according to definite rules. Usually, we don't do thinga just to
follow the form - we have 50me purpose in mind, and the formal structures that we nse,
whether PERT charts, program~, parse trees, or differential equations, have a meaning for
",.

For ma..ny people the prime example of a formal system is first order logic. TlUs system
encodes first order model theory with certain formal rules of deduction that are provably
sound and complete. However, our experience with theorem provers shows that it can be
difficult to work with tMI'; system. Moreover, formal systems that try to capture tven higher
levels of meaning, e.g., languages for expressing requirements, tend to he even harder to work
with, and to have even less pleasant properties. (Later I will argue for a natural hiera.rchy
of levels of meaning, from abstract matllematical ohjects up towards concrete social values.)

In summary, formal methods are syntactic in essence, but semantic in plirpOse. [n
computing science, form does not embody content, hut rather encodes it.

2.1 Formal Methods and Mathematics

There has been much confusion about the reh.tionship between computing science a.nd math­
ematics, and particula.rly ahout the relationship between computing science and logic. Unlike
numbers, computers have a real physical existence, a.nd so do programs. On the other hand,
algorithms and models of computation (such as 'ruring machines, or tenn rewriting systems)
are abstract mathematical entities. What seems problema.tical is the relationship between
the physical entities and the mathematical abstractions.

in my view. this relationship is the entirely familiar one that the ancient Greeks discov+
ered between bodies in the real world and abstractions in axiomatic geometry. Thus, we
ca..n prove theorems about (abstract) points, lines, planes and pyramids, but not about the

11

12 Formal Methods

Great Pyramid of Cheops, whose edges and faces are not very regular. Although we can
apply suitable theorems to a physical pyramid, we cannot expect the conclusions of a. the­
orem to be more valid than warranted hy its assumptions. The situation is much the same
with programs and computers. We cannot proye the correctness of a real program run..n.ing
on a reaJ computer. But we can prove the correctness of au algorithm, and we can expect
a program on a computer to behave as we wish to the extent that the program's execution
COnfOTmB to the algorithm.

It is an error to confiate mathematical models with the concrete realities they are sup­
posed to represent. Hence it is 88 much an error to claim that computing science has all the
"good" properties of mathematics, as it is to claim thaL it ha." all the "bad" properties of the
real world. We may call those who make the first error the l4Dijkstra school" (everything is
provable) and those who make the second error the "Fetz:er school" (nothing is provable).
Perhaps the excessive optimism of the first helps to explain the excessi ve pessimism of the
second.

In summary, some parts ofcomputing science Me pure mathematics (concerned with ideal
algorithms and models of computation) alld some parts are applied mathematics (concerned
with applying mathematical models to real programs and computers). Later 1 will argue that
some parts are neither of these, but instead have to do with the social context of computing.

3 What Good are Formal Methods?

The most difficult problems do not arise in relating algorithms to programs, but rather in
evaluating bow well a program (running on a computer, which I will largely ignore here­
after) sCllves some real world problem, such as preventing the theft of funds or information,
detecting enemy misr;iles, making a profit on the stock market, or ensuring the survival of
an organism. The trouble in such examples is that the program must perform in an environ­
ment that is enormously complex, rapidly changillg, and imperfectly understood. Moreover,
the requirement for the program may also be complex, changing, and imperfectly under­
stood; in some C88es, it is so bound up with social and/or political issues that even trying to
state it with greater precision can engender so much debate about larger issues that general
agreement on its meaning is impossible.

The ideal of having accurate 'mathematical models of the real environment and the real
requirement is not achievable for many large, complex, real world problems. This mean.s
it is inevitable that methods less lhan purely formal will play an important role in evalu­
ating real programs. In fact, many illformal methods are already important in computing
science, starting at a relatively low level witll communication media such as graphics, natu­
ral language documentation, animat.ion, alld audio. Furthermore, computers are becoming
increasingly interconnected with each other and with other parts of the real world, through
networks, modems, mice, Fax machines, digital audio chips, radar antennae, video cameras,
etc., and this trend seems likely to continue. And finally, how can we be sure that we have
fonnalized the right thing? Or formalized it the right way? Clearly, we need to get outside
the formal system in order to make such judgements.

We do not have, and perhaps we never will have, fully adequate theories of the meaning
of the information that is encoded in such complex forms as natural la.nguage, And tbe
prospects are even less encouraging for fully adequate theories of the significance of such
information in larger context.s. But we do ha\'e formal rules that describe the structure of

13 Formal Methods

the data that encodes many kinds of mei'lning, and we also have many programs that can
manipulate such data for pa.rticular purposes. For example, we can divide a message into
words and sentences, and count the number of each; we can search for keywords, and do
various statistical analyses; and we can do spelling correction to a useful extent (bul not
perfectly without human help).

There are various leve~ of structure that we migh~ seek to formalize. A computer anaJysis
of a message can be fairly certain about words and sentences, somewhat less sure about
spelling, and quite unsure about meaning. We have Cormal methods that are applicable at
each level of structure, but in general, the higher the level, the more important informal
methods of analY5is become. The obvious hierarchical structure has to do with whole/part
reJationships: words are parts of sentences, and sentences are parts of messages. This is a
fonnal hierarchy, and also a hierarchy of forms. But there is an informal hierarchy that
is perhaps even more important, whose levels correspond to mean·lOgs in wider and wider
coutexts. For example, one relatively high level of meauing might concern tbe artistic merit
of a text in a certain culture.

I claim that the same is true of program correctness. We can formally verify synla.x with
considerable certainty. We can forma.\ly verify semantic assertions about state with reason­
able certainty, although the effort needed seems to grow exponentially with program size.
We can hope to better understand some of the interactions of a program with components of
some larger systems of which it is a part. But current formal methods do not seem especially
useful, for example, in determining the effectiveness of a program in achieving a business
plan, or in benefiting society as a whole.

In summary, there is a tendency for formal methods that encode higher levels of meaning
to require greater computatIonal resources, and perllaps even to pass into regions that we do
not know how to formalize adequately. However, there often exist some rather "iyntactk"
methods which achieve a useful compromise between expressive power and computational
difficulty.

3.1 The Myth or Control

Managers want to control the programming process; lhey wanl to be sure that the product
will meet its requirements, and will be flIlished in time and within cost. This is entirely
reasonable, but we all know that in practice, managers often do not achieve this kind of
control: programs often don't do exactly what they are supposed to do, and often take
much longer and cost much more than estimated. The desire Cor control motivates the so.
called "waterfall" models of the programming process, in which higher-level descriptions are
supposed to determine lower level descriptions, in a strict hierarchy from user requirements
down to code.

One trouble with such models is that they make no allowance for error. Clients do
not usually know exactly '4·hat they want; for they do not usually know wbat is possible
or impossible, or how much the various possibilities will cost; also, they cannot foresee all
the ramifications of the various other systems with which the system that they are buying
may interact. (Of course. neither ~an the programmers.) Furthermore, there is no room
for the exploration of entirely new capabilities that may be revealed during the df!Sign or
construction processes. This is frustrating to the programmers, as well as to the managers
and customers.

It is my view that the total programming process shouJd be ali flexible M possible, so

14 Formal Methods

that workers at each level can partiripate in a dialogue with the le....els above and below. As
advocated by the Brooks report, rapid prototyping c;\n help to ach.ieve this goal in some
cases. However, it is difficult to construct prototypes directly from requirements, and the
usual kinds of prototypes do not hf'lp mur:h with rna-nyn higher level evaluations, such as
whether the system shonld be built at all, or how it should be used and managed, or how it
will intereact with other systems already in place.

It is sometimes claimed that by llsing formal methods we can avoid all errors in program­
ming. Even if we interpret this claim in the narrow sense of guaranteeing the satisfaction of
some formal mathematical specificatiOll (as opposed to an informal soda.! requin.!roent), it
is still not true in practice, becaus(' we cau make mistakes; for example, we can neglect to
follow the method at some apparently trivial point, with unexpectedly serious consequences;
or we can make a syntax error during proof, with the result that we prove a property of the
wrong function.

Even worse, attempting to enforce the rigid lIse of a formal method can be very damaging.
by preventing flexibility and inhibiting creativity. Rigid top-down design methodologies do
not work for large programs, and are unpleasant and stifling to use even on small programS.
In co-teaching a course at Oxford, I found that some students who believed my co. teacher's
assertions that they should be able to get their programs right the first time by using weakest
preconditions backwards from a post-condition, lost the confidence that they could ever learn
to program at all. This is a great pity.

Under some conditions, a formal proof of correctness can be worse than useless, by
encoura.ging misplaced confidence that the program will meet its intuitive requirement in its
actnal operating environment. For example, if a company promotes a form!'l-JJy verified heart
pace-ma.ker as infallible, physicians might neglect to provide adequate sa.feguards.

It is well-known that many of the most important scientific and technological discoveries
were accidental (e.g., penicillin), or arose through trial and error (e.g., the light bulb), and
I think that we should allow for similar processes of exploration in programming. Perhaps
formal methods can help with this by providing techniqu~ to ensure the inter-consistency of
tbe many different texts that arise ill producing large 3IId complex systems. One approach
to this is discussed in the next secLioLi.

4 Hyperprogramming

Large programs have many parts whose interactions and interconnections are under con­
stant e....olution during their development. Tllis means that the many texts associated with
the program, including its requirements. spi>cifications, code, documenta.tion, accounting in­
formation, test suites, and version and configuration files. will he changing constantly. It
is highly desirable to provide support for maintaining the mutual inter-consistency of such
texts as they change. It is not practic<\l to do this for the contents or these texts, but it
seems promising to apply formal ml'thorls <\t variou!; levi>ls of their forms. For example,
consider the manual for an operating system that is to run on several ma.c:hines, and is fre­
quently corrected, augmented and ported. Then we can build programs to ensure that the
organiza~ion of the manual remains r.onsislent, and that if part of the program is changed,
then the corresponding manuaJ pages Me rl"-examinerl to see if they also must be changed.

But perhaps we can go further. If we a.c;sociate documi>ntatiou to the parts of a program,
then we can assemble the manual from its parts in the same wa.y tha.t we assemble the

Formal Methods	 15

program (rom its components. Furtllermore, i{ the documentation and the program are
parameterized. in the ea.me way, then we might be able to evaluate a single interconnection
statement that would accomplisll these two different purposes. In fact, we have wea.dy
developed a. theory of module expressions which call serve such a purpose. Their use in
programming is called parameterized progmmming, and it can be considered. a substantial
generalization of the programming-in. the-large style embodied in the UNIX make statement.
One dimension o(the generalization is to provide powerful facilities for both generic modules
and module inheritance; the former also allows us to specify semantic properties of module
interfaces.

Parameterized programming has been implemented and tested for the functional pro­
gramming language OBJ, and has also bet'!n suggested for Ada and other languages. Hyper­
progmmming is the extension of this approach to texts other than programs. For example,
it could be used to combine graphical illnstrations with written texts, to assemble a spoken
explanation {rom parts and theu ·'exe.cute'" it with a spet'!ch chip, to produce program ani­
mations from specifications of program parts, a.nd perhaps even to combine such animations
with spet'!ch to (onn "'movies" that illustrate program operation.

Although these consideration motivated the name "hyperprogramming," its most im­
portant application might be the collerent integratation of the ma.ny different components
of a large software development project. Current practice does not support the integra.­
tion of rapid prototyping with the evolution of specifications and code, nor does it support
consistency checks between such texts a.~ specifications, test suites and code. Moreover,
accounting and management in{ormiltion are usually handled quite separately from code,
and documentation is ouly developed after coding is completed. Hyperprogramm.ing could
integrate a.Il these diverse aspects in a. uuHorm wa.y that guarantees certa,jn important kinds
of consistency.

5 Recommendations

The suggestions in this section are based on my own experience. Of course, this means that
they are biased. But I think this should be considered a strength rather than a weakness,
as long as r cleal'1y innirate thf' sonrre. Except for the first list. these recommendations can
also serve as a summary of the prcrN'ning discllssions. , begin with some observations that
have to do with general funding policies:

•	 It is difficult to get fundiug for innovative ideas that require the development of pro­
totypes, because the funding programs with sufficient money tend to have goals that
are excessively narrow ann sllOrl-term.

•	 Funding is too unstable and subject to excessi"e delays. As a result, it is difficult to
hire and keep good people.

•	 Educational expectations ue too low in computing science, and in pa.rticular, they
are lower thall in other engineering diSCiplines. Funding should be devoted. to raising
both the mathematical preparation (especiillly in logic and algebra) and the practical
experience of computing science graduates. Formal methods should be tanght in the
universities.

16 Formal Methods

•	 Open dissemination of basic research results and of experimental eysteIILl> is essential
in order to obtain the best use of research funding by maximizing the discussion of
critital issues.

Next, I list some fairly specific research topics on the border between formal and informal
methods. As previously argued, this a.rea seems very important for software methodology.
Although !hort term practical results seem unlikely, [believe that important basic resu1tll c.a.n
be obtained by people who are proficient in both (ormal and informal methods. The informal
(or perhap£ one should say "semi-fomlal") methods tbat SeE!m most relevant come from the
socia! sdences, and include discourse analysis, socio-linguistics, and ethnomethodology.

•	 It seems likely that the dialogical processes between clients and designers that result
in requirements could be formalized to a certain el(tent, and that this could, at the
very least, result in more realistic el(pectations about what can be accomplished in
this 5tage of the development of complex systems.

•	 A linguistic study of the relationship betw~n requirements texts and the texts pro­
duced at lower levels, such as designs and specifications, might yield formal structures
that would facilitate these important transitions in the program development process.
In particular, it would be interesting to know where misunderstandings most often
occur in the present process.

•	 It would be interesting to study the integration of various kinds of text in various media.,
to see what constraints must be satisfied to ensure that the intended relationships are
actually perceived by users.

•	 More generally, it would be interesting to study the integrated use of multiple levelll of
formalhation in programming environments. For enmple, it might be ulleful to do a
critical. path analysis of the arguments that support a given requirement, so that the
formality of items on the critica.! path can be increased if desired.

Finally, I list some (relatively) specific research topics that lie entirely within the area of
fonna.! methods and that I think could yield very substantial advances within the medium­
term time frame:

•	 The integration of specification. protot)'ping and theorem proving. This could be
done hy using an el(ecutable specifcation language that is rigorously based upon logic;
ind~, every execution of a program in such a language is a proof of llomething, and
if the language is rich enough, il could be a proof of something interesting. We have
done !\Orne experiments in hardwa,re verification using the OBJ3 system which suggest
that this is a. promising research direction.

•	 The development of semantically rationalized object-oriented programming languages.
For eXiUDple, an integrated functional and object-oriented language could be useful
for many purposes, including sturctured verification and integration with the so-called
structured design methodologies, like those of Jackson and Yourdon.

•	 The development of langua.ges that support object-oriented design; this is related to
tbe development of rationalized semantics for object-oriented programm.ing, but would
most u!E!fully be realized ill connectiol1 with existing languages like Ada. It would also
be interesting to develop systems that support object-oriented verification.

17 Formal Methods

•	 The development of prototype h.yperprogra.mming systems. This might include inte­
grating the graphical conventions used in stufctured development methods. It would
also be interesting to study the al.ltornatic generation of graphical representa.tions of
abBtract da.ta types from their algebraic specifications; it seems likely that this could
be extended to the automatic generation of animations.

Of course, the pllrsuit of these research goals will not solve the philosophical problems
discussed in Sections 2 and 3 of tllis paper. However, the philosophical considerations do
lend to support the belief that such research goals may be both important ud Ceasable.

I hope tha.t no one will misunderst<',nd my interest in informal methods, my criticisms
oC current methodologi~, or my general philosophical positions as being critical of formal
methods. On the contrary, I believe tha.I we may be on the threshhold of a golden age
of formal methods, provided that we neither interpret the field too narrowly, nor expect
it to achieve the impossible. Ther~ seem to be many areas where formal methods can be
developed and/or synthesized with informal metbods to solve important problems in the
development of large sylitems.

Truth and Meaning beyond Formalism

Joseph A. Goguen

1	 Introduction

Logic aDd formal semantics have been enormously helpful in understandjng programs a.nd
programming languages, and in automating some aspects of the programming process.
Therefore computer scientists have good professional reasons to be interested in 'truth and
meaning construed in a narrow technical sense, through symbolic logic and formal semantics.

But computer scientists also Deed to better understand the processes that crea.te and
sustain software, and in particular, the complex relationships between computer systems,
individuals, aDd societies. Moreover, we also need to develop more humility about own our
role in the 5cheme of things. Unfortunately, these problems ra.ise deep questions about truth
and meaning which cannot be addressed by formal semantics.

This short paper is intended to suggest why computer scientists might be interested in
the work of Heidegger, Wittgenstein and others l , and to stimulate some further thonght
about lO0me of the questious that they address. Although Heidegger did not write very
much that is explicitly about formal logic, what he did write is quite pertinent. and much
of his other work is relevant to questions of meaning in the larger sense. WingeolOtein WalS

concerned with the limits of language, that is, with "what cannot be said". We will see
tha.t their views are funda.mentally opposed to those of logica.l positivists such alS Carnap, as
well as to the whole Anglo-American tradition of ana.lytic philosophy, and in particular, to
Russell and Moore. We will also see som(' interesting parallels to Buddhist philosophy.

The end of the paper will return to consider what all this has to do with computing.

2	 Heidegger, Carnap and Wittgenstein on Dread and "the
Nothing"

This sfftion tells the story of an encounter (in print) between three of the most influential
philosophers of the early twentieth ceutury. In 1931, the logical positivist Carnap [3] took
Heidegger's 1929 essay "What is Metaphysics?" [10] as a paradigmatic example of what he
called "metaphysical pseudostatements". Carnap's program was to develop an ideal language
based on logic, in which all words would refN to observable sense data., experiences or
things, and in wh.ich a "logical syntAX" would guarantee that all sentences axe meaningful by
elimina.ting aU "nonsensical'" combinations of words that are still permitted by grammatical
syntax. Such a language WOllld eliminatl.' mefaphysics (and much of the rest of philosophy)
as well as all literature and poetry, in mud I the same way that Orwell's "Newspeak" in
Nineteen Eighty-Four would eliminate all language that is inconsistent with the ideology of
Big Brother. As Orwell {IS] says,

IAmong ~h~ &l~empL~ Lo sllmmaril~ IkiJeggcr'" philosophy lhaL I have found lhe most. u~ful is (16]; see
"Joo ['20] for athln indications of iLs r",h,vance lO COm pUler lICience, and the 1:'r.£l:'lIent paper by Capano ['2].
[111 i!; an excellent &ource of background iJirorm~lion on Willgenstein.

18

19 Truth and Meaning

Newspeak was designed not to extend but to diminish the range of thought, and
this purpose was indirf'ctly <l-ssisted by cutting the choice o(words down to a.
minlmum.

According to Ca.rnap (3},

The meaning of a statement lies in the method of its verification. A statement
asserts only so much ali is verifiable with respect to it. Therefore a sentence can be
used only to assert a.n empirical proposition, if indeed it is used to assert anything
at all.... Logical analysis, then, pronounces the verdict o(meaninglessness on
any alleged knowledge that pretends to reach above c.r behind experience....
The (pseudo)statements o(metaphysics do not serve for the description of states
of affairs, either existing 'ones (in that case they would be true statements) or
nonexisting ones (in that case they would be at least false statements).

Specifically, Carnap criticizes Heidegger's use of the word "'nothing" in the following assem­
blage" from [10], by showing that it violates his "logical syutax":

What is to be investigated is being only and - nothing else; being alone and
further - nothing; solely being. and beyond being - nothing. What about this
Nolhmg'l Does the. Nothmg e.xist anly becclU."c the NOl, i.e., the Ne.gaJion,
erist3? Or is it the other way around? Do Negation and the Not erist oraly
because. the NOihing exists? We assert: the Nothing is prior to the Not and
the Ne.gahon. ... Where do we s(,('k lhl." NOlhing? How do we find the Nothing?
... We know the Nothing.... Anxiety reveals the Nothing. ... That for which and
because 'of which we were a.nxious, IVa5 'really' - nothing. Indeed: the Nothing
itself - as such - was present. ... What about this Nothing'? - The Nothing
itself nothings.

As an example of Carnap's analysis, Heidegger's sentence "We know the nothing" is repre­
sented as "K(no)" a,nd then claimed mea.ningless bl!'Cause "nothing" (denoted "no") is used
as a noun. But Heidegger says "The nothing is neither an object nor any being at all" [10].
Hence, Carnap is accusing Heidegger of sometJling which Heidegger dearly says cannot be
done, namely taking "the nothing'" as "a something".

Indeed, Heidegger anticipates precisely the sort of attack which Carnap mounts when he
says [10]:

But perhaps our confused talk alreany degenerates into an empty squabble over
words. Agajnst it science must now reassert its seriousness and soberness o(
mind, insisting that it is concerned solely with beings. The noth..ing-what else
can it be for science but an outrage and a phantasm? If science is right, then
only oue thing is sure: science wishes to know nothing of the nothing.

This quotation indjcate~ that H<>id('Ut'r knows lle is praying with words. But in order
to explore the (oundations of sOnlNhing. it is nert'ssaJ'Y t.o st.ep outside its bounds. As
Wittgenslein says [231, in direcl Conlra{lict.ion lo Carna.p.

,_.
- lne IlI.lICll an<t <teleliolls a[~ Carna.p't, lind il- i~ WOrth Ilotinl! thlll by takinl!. lht'!il~ widely 8catteNd

IIelltena'S out 01 their eonlexlfi, lind by hi~ ~I~eted ihlidlillion and eapitaliZll.tioll, Carnllp ereatell II "ery
dialort.ed riew of Reidegger'8 teXI.

20 Truth aDd Meaning

1 can readily understand what Heidegger means by Being and Dread. Man bas
the impulse to run up aga.inst the limits of language3 . Think, for ex&JIlple, of the
astonishment that anything exists4

• This astonishment cannot be expressed in
the form of a question, and there is also no answer to its. Everything which we
feel like saying ca.n, a priori, only be nonsense ... Yet the tendency represented
by the running-up against points to something. St. Augustine already knew this
whea he said: What, you wretch, so you want to avoid talking nOD6eDse? Talk
some nonsense; it makes no difference!

(The history of this little passage IS interesting. A "sanitized" version appeared in the
Philosophical Review in 1965 without the first sentence and without the original title, which
was On Hddegger.)

Unfortunately, Wittgenstein himself did not take St. Augustine's advice to "talk non­
sense," and as a result, the Tmctatus is in some ways very obscure. In fact. Wittgenstein was
rather systematically misunderstood. and hence distorted, by the logically oriented philoso­
phers of the Vienna Circle and the Anglo-Am{'rican tradition (thi5 is clearly expla.ined in
[11]). Russell's preface to the Trodatlls [21J is a good example, since it criticize& Wittgenstein
on precisely those points where his contribution was perhaps most original and significant,
namely the pages from Proposition 6.4 ollward, which discuss such topics as ethics and the
"problem of life".

It is noiable that Car nap and Wittgenstein share not only a common interest in logic,
science &lid language, but also in what cannot be said. However, their attitudes towards
this area were entirely different: Carnap considered that everything outside his ideal logical
language was nonsense without meaning, whereas Wittgenstein considered that everything
of the greatest value and interest was contained in this realm. In contrast, Heidegger was
not only willing to talk "nonsense", he was willing to break the bonds of language by making
up new words, and by using old words in new, often ungrammatical or "illogical" ways to
indicate deeper meanings which strictly speaking cannot be said at all, but only pointed at.

Carnap [3] recognized that art operates outside of the strictly verifiable. but he still
con5idered that the metaphysician

confuses [science and art] and produces a structure which achieves nothing for
knowledge and something inadequate for the expression of an attitude.... The
metaphysician believes that lie travels in territory in which truth and falsehood
are at stake. In reality, how{'y('[. he has nol a.~scrted anything, but only expressed
somethiag. like an artist. [The st.atements of meta,physicians! serve for the
erprenion of the geneml utti/llde of t1 per~on tOlLlard life Metaphysjcians are
musicians without musical ability.

Thus, Carnap does not iutend to ban {'\'erything that falls outside his language, but only to
label it meaningless. However, both his view of meaning, and his view of art as expressing
a general attilude toward Hfe, are very limited. In COJltrast, Heidegger says "'Art lets truth
originate. Art ... is the spring that leaps to the lruth of beings [9] .

• Muruy 113Juplai.... that this is a rl'f,nl'nc~ to I\ierkeg;nrd, who was the fit3\ philOllopher w give a RriOWl
treatment DC anudy ("Ang,l" in German. Lr,u.slAled "dread~ in th~ p~yious 5IelItence) before Beideo&Aer.

'Thill is .. ~Il'rence to the (alit 8el1teuce of [10], which j~ ~\\'hy Ilre there beings aL all, and why not rdher
nolhing?" This fUlldamenl.altheme of Heidegger ill, for e:umple, the central question 01 [61­

~ Although this i5 Il criLici5m of Heidegger's formulaLion, the la.st sentence of this quotatjoll Crom WiUgen­
stein sUSlJetlU ~hat they may not differ so much after all.

Trutb and Meaning 21

3 What is "the Nothing"?

It is no coincidence that Heidegger, Carnap and Wittgenstein collide on the issues of "the
nothing" a.nd anxiety. All three philosophers can be seen as advancing Kant's program to
stem the turgid tide of traditional metaphysics that still today flows on at us from out of
the Middle Ages. One major goal of Kant's "critical philosophy" was to show the limits
of reason from within, that is, using the tools of reason, in order to prevent its mi511se. In
particular, Kant wished to separate the realm of reason from that of value. Far example,
Kant wrote a treatise which denied that there could be any justification for blaming tbe
great Lisbon earthquake of 1775 either on the presence of a few Protestants there (as did
many Catholics in Lisbon) or ou the adhereance of the majority to Catholicism (as did some
English clerics).

Kant took subject centered rationalism 10 ils limit, declaring that we construct objects
according to a priori given faculties of mind, which include space, time, causality, objectness,
number, affirmation, negation and possibility. This analysis assumes a world of "things in
tbemselves" and an idealized human subject, both of which a.re unknowable. Thus, Ka.nt's
50-Called "second Copernican revolution" actually went in the opposite direction from that of
Copernicus, since it placed man in the center again, as the constructor of perceived objects
(the phenomenal). Since the ~ime of Descartes, this kind of move has been seen 3lI necessary
to secure a firm gronnding for the objeclivity of science.

Wittgenstein's Tmdatus can be seen as a Kantian critical (i.e., from witWn) deconstruc­
tion of logical positivism, despite it~ significant contributions to the tecbnique of logic (e.g.,
trnth tables)_ In particular, Wittgenstein argues that it is impossible to expreM the meaning
of a. formal language within Lhe language itself, ant! instead uses a "picture" theory of mean­
ing in which interpretations can be shown but cannot be said. Russell and Carnap tried to
counter this by proposing a "meta"-language in which the meaning of an "object" language
can be expressed, and even an infinite tower of meta·, meta-meta-, meta-meta-meta-, ...
languages. But as Russell admits in his preface to tIle Ttuctatus, Wittgenstein's argument
seems to apply just as well to such a tower of languages as it does to a single language.

If it is impossible to express the meaning of a sentence within its language, then it
is necessary to move outside the language. This led the later Wittgenstein to investigate
the conventions which determine when and how sentences can be nsed. He called these
flexible- rule-governed symbol using activities "language games" [22]. They, in turn, get their
meanings from the even more flexible and larger grained patterns of symbol using activities
of which they are parts, Wllich he called "forms of tife". This point of view is quite different
from that in the Tmclalus, which had simply assumed that the relation between language
and reality is one of "picturing" (i.e., representation). BUl in late Wittgenstein, it is the
rules of language games which determine the limits of what can be said.

This whole development, sta.rting from Kant's clarification of the subject centered ap­
proach of traditional metapllYsics and science, and proceeding to tbe work of Heidewr,
Dereida, Barthes and other modern French tllinkers, can be seen as an on·going deconstruc_
tion of the self, which is nothing other tha.n the exploration of "the nothing" as it applies
to tbe knowing subject of Descartes and Kanl. The inevitable conclusion is that there is no
rational basis for assuming such a subject. Instead, subjec.t and object continually emerge
and dissolve together.

Many books have been written in the lluddhist tradition about "the nothing," called

22 Tl'uth and Meaning

shunyaLain Sanskrit. One ofthe most famons is the Mulamadhyamakakarikas of Nagarjuna.,
from aronnd the second century A.D.; a more recent one is Religion and NothingnuB [14]
by NiBhita.ni, considered the dean of the Kyoto School of philosopby. Buddhism says that
the expeTience of shunYflta is egolessness, the lack of any subject, and sa.ys that egolessoess
is a fundil.lllentaJ fad of huma.n eristence. One way that this experience can manifest is
described by the Tibetan meditation master TruTlgpa Rinpoche [19} as follows:

It is a very desolate situation. It is like living among snow-capped peaks with
clouds wrapped around them and the sun and the moon starkly shining over
them. Below, tall alpine trees are swayed by strong, howling winds and beneath
them is a thundering waterfall. From our point of view, we may appreciate this
de&olation if we are an occasional tourist who photographs it or a mountain
climber trying to climb to the mountain top. But we do not really want to live
in those desolate places. It's no fun. It is terrifying, terrible.

No wonder, as Heidegger says, "science wish~s to know nothing of the nothing." For
science wi~hes to banish dread and proceed wit.h its objectivity firmly e6tablished in the
subjectivity of its scientists, reducing "the nothing" to mere negation, which is a rational
operation on beings, a.s opposed to the terrifying emptiness from which beings emerge into
authenticity.

However, if Heidegger and the Buddhists are right, it is the possibility of non-being which
gives beings their character of]urniuositl, and hence the nothing, i.e., shllnyaia, is not only
prior to negation, but also to beings.

The effect of this, as Heidegger says, is to rob logic of its claim to 6upremacy, and in
particular, to rob it of its claim to provide foundations for science and even for mathematics.
Indeed, we must conclude that fOllndatioll5 in the sense sought by logician6 are simply not
possible. The judgements that we make, and in particnlar negative judgements, are neces­
sarily grounded in our being-in-the-world, and not in any pre-e:usting unsh.akable truths, or
eternaJ. world of ideal things.

More significantly, we may conclude that it is the finitude, limitation, or mortality of
beings which mikes them luminous. The fundamental importance of finitude for Being is
expressed in the thundering series of questions which close Heidegger's major work, Being
and Time [7J. The finitude and luminosity of beings are two of the many suggestive points
of contact between Heidegger and Buddhism. For "impermanence" (Le., finitude) is one of
the Three Marks of Existence (the other two ('Ire egoleMness and suffering).

4 What are Truth and Meaning?

The intimatf relationship between truth, meaning and being in the Western philosophical
tradition goes back to the ancient Greeks, and is extensively discussed, for exa.mple, by
Aristotle; these three correspond (roughly) to the Greek words afetheia, logQ~ <d on.

Most attempts to explicate these notions and their relationship have taken a.s para.dig­
matic the "eternal" sentences of mathematics (such as "2 + 2 = 4"), whose "meaning" is a
truth value that is independent of any context in which the sentence might be uttered. But

- Jl l!j. Imp06Sll)le 10 ~defin"~ th" "xper;"n"," o(luminosity. But perhaps it, might be some belp lo say that
it refen to the Bickering or bejn~ between I'Te>;ence .wel non_presence. On the other han.d, lbis ma.y be a.n
example of something which ruJly canna! b.. sa.iel.

23 Truth and Meaning

such sentences are exceedingly rare in "earthly" discourse, where meanings can be far more
complex tban just "'true" or "false," and where context has a profound effect upon meaning.

In his essay "On the Essence of Truth" {8J, Heidegger criticizes S€mantic theories that
are based au the so-collie<! "Correspondence Theory of Truth":

"Truth" i6 not a feature of correct propositions which are asserted of an "object"
by a hum<ul "subject" and then "are valid" somewhere, in what sphere we how
not; rather, truth is disclosure of beings through which an openness e8.Sentially
unfolds.

That is, according to the Correspondence Theory, a statement is "true" just in c.aBe what
it asserts is a fact about the world. Although the assertion is made by a (human) subject
about some object, the true statements them$elves are ideal forms in a Platonic realm that
is only dimly perceived by humans. lusteil,d of this, Heidegger says that truth is a proce.!iS
of unfolding, of disclosure. That is, [6J,

The essence of being is phYll~ [i.e., appearing] Appearing makes manifest. Al·
ready we know then that being, appearing, causes to emerge from concealment.
Since the essent? as such is, it places itself in and stands in tmconeealment,
aietheia. _.. The Greek essence of truth is pOlisible only in one with the Greek
essence of being as physis. On the strength of the unique and essential relation­
ship between physis and alelheia, the Greeks would have said: The essent is true
insofar as it is. The true as snch is essent. This means: The power that manifests
itself stands in unconcealment. In showing jtself, the unconcealed a.s such comes
to stand. Truth as un-concealment is not an appendage to being.

This is a radically different notion of truth from that which we nnd in logic or empirical
science. It has nothing to do with operations of measurement or of verification, eacried out
by some human subject. Rather, it has to do with authentic presence, with the power of
beings to emerge from the nothing_ This approa.ch to truth and being does not presuppose
a knowing subject, and does not reduce beings to objects of knowledge; for Heidegger and
the ancient Greeks, being and trulh are pre-conceptual.

It seems dear that from this perspective. "meaning" is not &n "object," Whether as part
of some formal causal theory, as iI,n ahstract logical inlention, or as some set.-theoretic entity.
The following may provide some reference poiuls in a search to understand our alterna.tive
sense of "meaning":

1.	 Meaning is ontological. All experience is ine:c:tricably bound up with Being and with
beings, i.e., with luminous a.ppea.tance. In particular, meaning arises through openness
to being, or as Heidegger says. "The essence of truth is freedom" [8].

2.	 Meaning is dialectical. Meaning is only disclosed through engagement .with beings,
through uncertainty and questiolling. through making mista.kes, exploring oppotlitions,
and seeking roots (for some further discussion of the development of meaning, see [5];
for more on error, see [4]).

l The wOl"d "etsoent" w&s made up by the 1u.llsJuor Ralph MAnlleim to hallllA\e Heidegger'lI madoe-np
word "Seiende," wh..icli (roughly speAking) meAns ~SQme1hin8 LhAl eltisLB," &II ~1I1;tistenl." III this papoer, t
have meetl,. Ulled thll1 word "being" (Qr Lhw.

24	 Truth and Meaning

3.	 Meaning is historical. Because meaning is dialectical, it only emerges through time,
through the accumula.tion of questionings, encounters and revealings, in the context of
a. tradition or lineage (see [5J for some related discussion).

Intemotingly enough, recent efforts to extend formal semantics beyond mathematics and
science, for example to natural languages, can be seen as embodying (diluted versions of)
similar principles. In particular, recent work in philosophy and linguistics has proposed new
formalisms for complex meanings that caD vary with context, and can model discourse and
other interactions. Examples include the work of Montague, using intensional logic [12), work
of Barwi6@, Perry and others on "situa.tion semantics" [1], of Stra-chey and Scott 111, 18J on
"denotational" semantics, and many other formalisms developed for the semantics of pro­
gramming languages. But all these theories posit abstract entities, such as "intentions,"
"situations" or "denotations" that a.re quite remote from the human experience of meaning­
fulness, and it is not dear that they can tell us anything important about what it means to
be human. In particular, they do not deal with truth as the unconcealment of beings.

On the other hand, it seems clear that these advances are t.echnically useful. ForexampLe,
they may help us to write programs that are more accurate, more general, more efficient, and
more reusable; they ma.y also help. us to write programs that can. help us in programming.
They may even some day lead to machines that can understand and speak the sort of
u~ilitaria.n languages of which Carnap would approve.

5 Where are we?

The TractlltUll 121J concludes with the following mysterious proposition,

What we cannot speak about we must pass over in silence.

which is perhaps intended as a summary of \Vittgenstein's arguments that the meaning of
a language cannot be expressed in the language itself.

In a sense, this whole paper has been ahout that which cannot be said. We first pre­
sented arguments against Carnap's narrowly dogmatic "logical syntax" and his rejection of
Heidegger as nonsense. While a,ccepting that a line of tIle kind that Carnap wants to draw
can in fact be drawn, we agreed with Wiltgenstein that all the most important things lie
on what Caruap would regard as the wrong side of it. On the other hand, I cannot agree
with Wittgenstein that we must remain silent ahout these things. Even though they may
not make strict logical sense, they are too important not to bring into the open through
dialogue.

As an illustration, we tried to explore Heidegger's "nothing" and why it might he prior
to nega.tion, with some help from the later Wittgenstein and Buddbist philosophy. This also
perhaps gave some insight into the foundations of logic. We lIext tried to follow Heidegger's
ap.proach to truth, beginlling wilh hi:> rejeclion of the Correspondence Principle, and then
moving on to physis and aletheiu, whicli reveal a completely different perspective from that
of fonnal semantics. We concluded with some pointers toward the meaning of meaning,
followed by a short summary of some recellt work in formal semantics.

But how does all this relate to computing?
I think we must conclude that the techniques of computer science, such as formal Be­

mantia, logic, and even simulation, cannot tell us the meanings of computer sy&temB, in the

25 Truth and Meaning

broad human sense of "meaning". This becomes an issue especially for so-c.alled "embedded
compnter systems". For example, consider the question of what the Star Wars wea.pons
system really means: is it a defense system, as its proponents tend to claim, or is it really an
offensive system, intended to provide some protection after a fir5t strike has been launched?
Such a question cannot be answered without a careful consideration of social and political
fa<:tors, as well as a careful assessment of technical capabilities. To remain silent on such
issnes is to invite manipulation, or even tyranny.

To address such qu~tions, it is not necessary to be "an expert," that is, to have every­
thing already worked out. Indeed, it is not even d~irable, because genuine mf'..aolng only
arises throngh uncertainty and questioning, even through confusion and error. It is necessary
to enter iBto a dialogue in order for truth to emerge from concealment.

Similar considerations hold for many less dramatic and more ordinary situations. For
example, suppose that we are pa,rt of a team that is producing a large business system, and
one day the customer tells tiS of a,n llllexperted change in the tax laws, which it turus out will
require keeping milch more data thaI! had previonsly been anticipated; unfortullll.tely, this
means that the system will have to rUlI on different hardware, because the old requirements
led to choosing hardware that cannot handle so much data. The customer haB trouble
understanding why his system will now cost more, and threatens to sue. The head of the
company threatens to counter-sue. Some team members panic and consider quitting.

Is there any way that Cormal semantics can save the day? No, there is not. We will have
to negotiate. Of course, formal semantics might play some role, for example, in revising the
specifications, but the real mea,ning of this situation is a human one, involving a oon:ftict of
interests between the company and its clIst.omer.

Numerous other examples could b(' giv('n. Th('re a,re many aesthetic decisions to be made
in progra.mming. These are not withOllL meaning. If a. program is elegantly designed and
coded, then it may be easier to debug. maintain, and reuse.

Also, the members of a programming team IIave to work together, and the project will
only prosper if there is a spirit of friendly cooperation. rather than, say, envy, bitterness,
or competitioll. Formal semantics might be used to specify a component, but anger could
cause someone to write it a particularly obscure way.

In all such situations, it is vital to understand the difference between issues tha.t can
be resolved by appeal to formal sema,ntics (e.g., "is this code right?") and is&ues which
cannot (e.g., "is this code elegant?"). and it is vital to approach each kind of meaning in
an appropriate way. I would like to think thal the philosophy of Wittgenstein, Heidegger,
and the Buddhists might be sOlne help ill this regard. and 1 have tried to explain how this
might be so. But really. common !';('Ilse is likely to be more valuable than philosophy here,
unless perhaps ~Olne ant.idote i5 l1N'ded a,gain51 pr('violls la,rge doses of positivistic or analytic
philosophy. Moreover, even this would require thinking about things that are difficwt or even
impossible to say clearly. So I do not imagine that I have done more than provide l\ few
pointers for those who may want to pursue such issues further, and I hope that the reader
will take this paper in that light, a,nd will enjoy looking into some of the original source
material, and thinking things through on his/her own.

Acknowledgements

I would like to thank my wife KathleelL <lnd my son Healfdene for reading through several
drafts of this paper iUld providing many helphll comments and conversations. I wowd also

26 'll'utb and Meanjng

like to thank both the Naropa Institute in Boulder, Colorado, and the Center for the Study
of Language and Information at Stanford University for providing stimula.ting environments
in which to think about the kind of issue discussed here.

References

[11	 Jon Barwise and John Perry. Situations and Attitudes. MIT Press, 1983.

(2)	 Rafael Capurro. Informatics and hermeneutics: Some criticisms of the Winograd/Flores
view of cOillputer-based inforrnati0n systems. In Software Development and Rrolity
Construction. Springer, 1990.

[3] Rudolph C:unap. The oVE'fcoming of metaphYsics through logical a.nalysis of language.
In Michael Murray, editor, Heidegger and Modern Philosophy. Yale University Press,
1978. Original in Erkenntnis 2,1931; translation by Arthur Pa.p.

[4] Joseph Goguen.	 The denial of error. In Reinhard Budde, Christiane Floyd, Reinhard
Keil-Slawik, and Heinz Ziillighoven, editors, Software Devdopment and Realify Con­
struction. Springer, 1990.

[5]	 Joseph. Goguen. Hermeneutics and path. In Reinhard Budde, Christjane Floyd, Rein­
hard Keil-Slawik, and Heinz Ziillighoven, editors, Software Development and Reolity
Corutruction. Springer, 1990.

[6J	 Martin Heidegger. An Introduction to Metaphysics. Yale University Press, 1959. Trans­
lation by Ralph Manheim; original from 1935.

[7]	 Martin Heidegger. Being and TimL Blackwell, 1962. Translated by John Macquarrie
and Edward Robinson from Setn Imd ZPI1. Niemeyer, 1927.

[8]	 Martin Heidegger. On the essence of truth. In Basic Writings, pages 113---141. Harper
and Row, 1977. Translated by David Krell; originl\\ from 1930.

[9]	 Martin Heidegger. The origin of the work of art. In BaBic Writings, pages 149--187.
Harper 1IJld Row, 1977. Translated by David Krell; original from 1936.

[101	 Martin Heidegger. What is metaphysjcs'~ Tn Basic Writings, pages 91-116. Harper a.nd
Row, 1977. Translated by David Krell; origiual from 1929.

[11\	 Allan Janik and Stephen Toulmin. Wittgenstein',~ Vienna. Simon and Schuster, 1973.

[12]	 Richard Montague. Formal Philofwphy: Selected Papers of Richard Montague. Yale
University Press, 1974. Edited and with an introduction by Richard Thomason.

(13]	 Michael Murray, editor. Ileidegger and Modern Philosophy. Yale University Press, 1978.

[14]	 Keiji Nishitani. Religion and Nothingness. University of California Press, 1982.

[15]	 GeorgeOrwell. Nineteen Eighty-Four. Penguin, 1989. First Edition published by Martin
Seeker and Warburg, 1949.

[16]	 Richard Palmer. HenJle1le1tti('.~. Norl.hw('stNn University Press, 1969.

27 Trutb and Mea.ning

[17]	 Dana Scott and Christopher Slrachey. Towards a mathematical semantics for computer
languages. Iu Proceedings, 21st Symposium on Computers and Automata, pages 19-46.
Poly1echn.ic Institute oC Brooklyn, 1971. Also Technical Monograph PRG 6, Oxford
University, Programming Research Group.

[18]	 Joseph Stay. Denotational Semantics of prOgrumming Languages: The ScoU-Struchey
Approach to Programming Language Theory. MIT Press, 1977.

[19) ChOgyarn Trungpa. The Mylh of Fre£dom. ShambhaJa Press, 1976.

(20]	 Terry Winograd and Fernando Flores. Understanding Computers and Cognition.
Addison-Wesley, 1987.

/21]	 Lndwig Wittgenstein. Tmctahls Logico_Philosophicu.s. Routledge and Kegan Paul,
1922. English translation hy D."'. Pea.n; a.nd B.F. McGuinness, with an Introduction
by Bertrand Russell; originaJ German edition in Annalen der Nalurphi/osopnie, 1921.

(22]	 Ludwig Wittgenstein. Philosophical Investigations. Macmilla.n, 1968. EngliBh transla.­
tion of the Third Edition by G.E.tI-1. Anscombe.

[23]	 Ludwig Wittgenstein. On Heideggcr on Being and Dread. In Michael Murray, edi.
tor, Heidegger and Modern Philomphy. Yale University PresE, 1978. Translation and
commenta.ry by Michael Murray. The complete Gennan text first appeaced as "Zu Hei­
degger" in Ludwig l-Viltgenstein tmd der Wiener Kreis: Gespriiche, aufge:eichnet ron
Friedrich Waismann, 1967.

Hermeneutics and Path

Joseph A. Goguen

1 Introduction

HermeneQtiCli is the study of interprel.jIItion, particularly the interpretation oflioguistir: texts,
but also of human experience in general, since this can be seen as both "textua.l" and
"linguistic" in appropriately broad senses of these words.

The works of Heidegger [oj, G<ldamer [3] and others l say many interesting things a.bont
the natureof interpretation and it!> philosophical implications, but they contain very little for
the person who wants to learn how to do interpretation better, or for the person who wants to
know how to teach others how to do it; the IJroctical dimension is missing from this tradjtion.
There is a striking difference between philosophy. which is content to make distinctions and
debate iS8Ues, and a path which provides practices and guidelines for pra.c.tice, constituting
a way forward which is nevertheless based on acknowledging where we are.

Interpretation is a demanding disc.ipline, encompassing essentially everything we are and
everything that is. Its practice has tile potential to open us up to wh.at we are and what our
world is. What is missing is a set of guidelinf!i that tell us how to deal with the problems
that inevita.hly arise, and other practices that Me less involved with conceptual content and
have the p0fi8ibility of sharpening our general mindfulness and awareness.

This short paper suggests that perhaps Buddhism, and in particula.r Maha.yana Bud­
dhi8m, can supply this missing practical element. (The word "mahayana" means "great
path" in Sanskrit, and describes the tradition from which Zen and Tibetan Buddhism have
sprung, among others.) The result is that the activity of hermeneutics, that is, of interpret­
ing, can also be a path, by iuterpreting the term "hermeneutics" sufficiently broadly.

2 The Paramitas

To be a good interpreter, [believe that it helps to be a "good per:;on" in roughly the same
sense expressed in Buddhism by the "six parll.milas." The word paramita means "other
shore" in Sanskrit, and refers to action which is not selfish, and which thus transcends this
shore of the river of confusion and neurosis. Some hint of this may perhaps be glimpsed in
the following brief characterizations, which have been specialized to the interpretation of a
text which you should til ink of as coming from your own time and place:

1.	 Dana, which mean&generosity in SlI,nskrit, is the joy of discovering that you don't have
to impose your own ronceptions on the text, that you ran afford to be open to it, that
you ran give up your conrept.uaJ (and preconreptual) territory.

2.	 Sila, whirh means discipline or morality. is that you don't have to make any special
effort, you aJrea.dy have (wllal is railed in ethnomethodology ~ see [12]) "member's

1Palmer (10) gives a relatively ;u:cessible ~UnLmllry of Lhis uadil.ioH: lI<:e abo [IJ.

28

Hermeneutks and Path	 29

competence"; you are sufficiently groullded in your own tradition and in that of the
text to begin work on it, and you are inspired to do so. There is no need for dogma.,
and you can \lriork with what is actually there.

3.	 Ksanti, or patience, is that you don't ha...e to ~succeed," Le, to satisfy your owIl"
or anybody else's, expectations about the interpretation; you can therefore go at the
speed which is proper to the task, and not worry a.bout whetber what you discover will
be "acceptable".

4.	 Virya, or energy, is to work with what is given, with what you are and woat the text
is (including the whole context of the text and of yourself); you completely accept the
tradition of the text, and then you work from there, without, however, being bound
by 'conventional wisdom.' You can actually take delight a.nd inspiration in whatever
contradictions and difficulties may arise.

5.	 DhyaruJ, chan [in Chinese], zen [in Japanese), or meditative aWaleness, is to be com_
pletely absorbed in. the text, without distinguishing between yourself and it, out being
fully aware of the environment of lhe text and of yourself. Your horizon merges with
that of the text; or perhaps there is no horizon, that is, no center and no fringe.

6.	 PmjfUl, or tramcendenLllJ knowlf'dgE'. jr; th(' [If('CISlon of discriminating awareness,
which is willing and able to recognize and to cut through your preconteptions, as
well as those in the text; you can learn from mistakes without worrying about ability
or inability, superiority or inferiority. This is "stable awareness" rather than confused
awa.reness.

These characterizations were obtained by combining my interpretation of Trungpa Rin­
poche's treatment of the six pllramitas in [11] with my interpretations of Heidegger, Gada.m.er
and others. These aspects of interpretatiOII (or of meditation) do not neceSliwy arise in
strict sequential order, but there is still a sense in which they build on one another, so that
pmjna is the fruition of the others.

3 Confusion

The word "confusion is used here in a somewhat technical sense, referring 10 mind that is
not charact.erized by the paramitas. This is our ordinllJ"y confused mind, which sometimes
mislays pens and papers, a.nd is often misled by its own hopes and fears.

It is importa.nt to note that non-confused mind arises by transcending confused mind;
clarity does not come to us from same separate pure realm of its own. It arises from accepting
what actually happens to us, and working with it as it is, rather than 3JI we wish i~ were.
As Heidegger (5] says.

when 60melhing ready-to-hand ;~ found mir;~jng. ,hough its everyday presence
has been so obvious that we have never takf.n any notice of it, this ma.kes a
break in those referential contexts in which circumscriptioll discoveTll. Our cir­
cumscription comes up against E'mptiness, and now sees for the firse time wha'
the missing article was ready-tn-hand with, and what it was ready-to-hand for.
The environmellt announces itself afresh ,,' land] is thus lit up.

30 Hermeneutia a.nd Path

In textual interpretation, this has a very practical meaning: the feelings of confusion,
attraction, or aversion which we experience while reading a text, while not necessarily reliable
in themselves, are the energy that we have for working with the text; they are the breaks jn
the seemingly seamless seas of meanings that can help us get deeper into the world of the
text.

4 Hermeneutics as Path

Without an intimate awareness of how one's own mind works, elpedally how one's emotional
and conceptual haggage get in the way of seeing things as they are, it is difficult to transcend
one's contusion and actually use it in textual interpretation. Such an intimate awareness
of the confused functioning of mind is difficult to obtain. and according to moat Buddhist
traditions, the practice of meditation is the most effective way forward.

Indeed, most Buddhist teachers insist that it is necessary to practice meditation in order
for paramita practice to be meaningful, because it is necessary to develop the qnalities
of '"mindfulness" and "awareness" first. This kind of meditation practice does not aim
to produce either a hypnotic trance state, or to control the restlessness of mind; it is not
concentration. Rather, mindfulness-awareness meditation takes as its subject something very
simple and natural, such as breat.h. Mindfulness is attention to what is a.ctually there, "one
pointed," direct and precise. Awareness is the context, the space, within which mindfnlness
happens. This is not at all a matter of calculating or of grasping for meaning. As Trungpa
Rinpoche [11] says,

Mindfulness provides some ground, soml' room for recognition of aggreuion, pas­
sion Ul.d so on. Mindfulness provides the topic or the terms or the words, and
awanne5S is the grammar which goes around and correctly locates the terms.
Having experienced the precision of mindfulness, we might ask the question of
ourselves, "What 5hould I do with that? What can I do next?" And awareness
reassures us that we do not really have to do anything with it but can leave it in
its own natural place. It is like discovering a heautiful flower in the jungle; shall
we pick the flower and bring it home or shall we let the flower stay in the jungle?
Awareness says leave the flower in the jungle. since it is the natural place for
that plant to grow. So awareness is the willingness not to cling to the discoveries
of mindfulness, and mindfuilless is just precision; things are what they are.

Or in the words of Heidegger [6]. "we should do nothing, but rather wait."
In this way, one comes to see the na.ture of the mind; that is, meditation is the inter­

pretation of mind. Thus, the path of hermeneutics is the path of meditation. Of course,
Buddhism is concerned with one's whole life. not just with how one interprets texts; but
because one's life can be viewed as a text, these concerns are quite closely related.

5 Hermeneutics in the Practice of Science

There are many ways that the paramila.~ nligh l be relevant to the practice of science. Perhaps
the most obvious is also the most personal: the scientist might practice meditation, and hence
change the way he relates to everytlling. including science. But let us consider something

Hermelleutics and Path 31

simpler and more direct, readillg a scientific text, for example 12j, which is the basis (or a
course at Oxford which I have been teaching.

As it happens, Dijkstra has not been one of my faVorite authors; so the first paramita,
dana or genef06ity~ has a particula.rly pointed meaning here; I should drop my prepulices and
open up to the text; insofar as I succeed in this, my experience will both be more pleasant
and more accurate; just tl\at realization brings a sense of reBeL Of coune, I must also be
aware of wbat I already know and do not know as] work with the text, and this is sila or
discipline. K84nti or patience means not only that I should be willing to work through a.ny
technical difficulties that may arise as 1 read, but also that I don't have to compete with the
author.

Virya or energy arises as I actuaJly do aJl this; if I've gat the first three paramitas right,
there will be no particular pa;n or frustration to this process, but rather it will he natural
and self-energizing. This leads to dhyana, awareness, in which] can be authentically engaged
with the text and its context, including other related texts and my own being. This does
not mean that I must accept everything the author says; on the contrary, I am now in a
position to appreciate it properly and fully, both its strengths and weaknesses, as well as my
own; this is prnjna or discriminating awareness.

And what did] learn? The paper IZ] is very concise, clearly and compellingly vmtten,
has excellent examples, and has stood the test of lime (this can be seen by compiU'ison
with other CACM papers from that year, and a.lso from the large literature that [21 has
inspired). However, I was irritated that the author paid no attention to logical foundations
or to model theoretic &emantics, and gave no indications of the limitations of his methods;
also, 1 kept wonderjng how to formulate things more algebraically. EventuaJlY,1 discovered
that the iasue of foundations is rather subtle (something like infinltary logic, as explored
by Engeler in the 60's, is needed), that the model theoretic semantics is awkward, that the
approach works poorly for large programs (since no account is taken of modules or of data
structures), a.nd that category theoretic fonnulations have already been given (for example,
by Manes and Arbib [9]). Also, 1 discovered that worry about all of this got in the way of my
appreciating the elegance of the language design, the he81lty of the examples, the motivation
in terms of programming style, and the richness of the research that this paper opened up.
So in the end, I learned something about myself as well.

In discussing interpretation, we are not talking about discovering some objective truth
about a text. Rather, there is a very intimate relationship between the interpreter and
the interpreted, in which each is unco\'ered to the extent that the enterprise succeeds. As
Heidegger l5} says, "interpretation is llever a presuppositionless grasping of something given
in advance," Indeed, it is typical that we can learn the most about onrselves from those
texts, or parts of texts, where we have the strongest reactions.

6 Emptiness and Beyond

Buddhism might perha.ps be describeo as a parlicipatory phenomenological hermeneutics of
mind, leading to the experience (not jllst the idea) of non-duality between self and other,
and between mind and body. In contrast, traditional science is a hermeneutics of other,
which already presupposes subject.object duality.

The traditions of meditation and hermeneutics tliat we have been di&Cllssing are not
consistent with this classical version of science. In particular, Heidegger presents a stinging

32 Hermeaeucia &lid Path

critique of the Western metaphysical tradition, including science and technology [8]. Hei­
degger's hermeneutics opposes the idea that there are objects already given in the world,
which are observed by subjects; it opposes the ideas of control and manipulation, whether for
material or intellectual gain; and it opposes our usual idea of idea, a pre-existing intellectna!
structure which we see only diml.... a.s on the walls of Plato's cave. Simila.r views can be
found in Buddhism.

Both Buddhism and science are complex evolving systems, with no ultimate commit­
ment to illy particular dogma, belief or theory; instead, each is united by its commitment
to pa.:rticnlu methods and by immersion iu its particular historical tradition. Both are cha.r·
acterized by debate, and by thfl growth of iIl6ight. And contemporary science may even be
developing some appreciation for the inseparability of subject and object. (See [4J for more
discussion along similar lines.)

rn Buddhism, "emptiness," or shlmyoto in Sanskrit, refers to this non-duality of self and
other, tha.t is, of subject and object. These are our two mO&t basic and generic concepts, and
without tkern, all other concepts are also empty. ShlJ.nyota is thus an opposite to Plato's
doctrine of ideaa. But shunyata is not a doctrine of nihilism. Indeed, without concepts, the
world can shine forth more brightly. For if we ask, "Are self and other the same? Or are
they different?" we find that they are neither the same nor different. For in any experience
of self and other as being the same or different, self and other necessarily arise together. As
Hayward [4) says,

as the mutual dependence [of objects] with the perceiver is felt, they shine with
a spacious but self-luminous quality that is at thfl same time empty of inherent
existence. This luminosity that is beyoud concept is the fullness of shunyata.

Similarly, Heidegger says in "The Origin or I he Wor\.; of Art'" [7), of a Greek temple set in a
vall<.)J, that it

CAUr.es (its material] to come fonll for the very first time and to come into the
Open of tbe work's world. The stone comes to bear and rest and so first hecomes
stone; metals come to glitter and shimmer, colors to glow, tones to sing, the word
to speak.

1 Colophon

First of alJ, I thank Vidyadhara, the Venerahle Chogyam Trungpa. Rinpoche for whatever
little I know about Buddhism. I also t.hank Prof. Rod Burstall of the University of Edinbnrgh,
Dr. Jose Meseguer of SRI Internalional, anu my wife Kathleen, for many helpful comments
and conversa.tions, and both Naropa Institute and the Ceuter for the Study of Language and
rnforrnation at Stanford University for partial support and for stimulating environments.
Special thanks to Dr. Charlotte Linde, from which I learned much of what I know about
discourse analysis and sociolinguistics.

The basic text of this pieceas founu burieu in my computer file system; it was writ­
ten about 1976 for a course on Discourse Analysis that I taught at Naropa lnstitnte witb
Dr. Charlotte Linde. It was then lightly cc1itNI at SRI in 1988 for distribution at the Confer­
ence on Software Developmfnl find !l(nlily ('oll.~lnlr-ti(m. and was put into its present form
at Oxford in early 1990.

33 Hermeneutics and Path

References

1I]	 Rafael Capurro. Informatics and hermeneutics: Some criticisms of the Winograd/Flores
view of computer-based informa.tion systems. In SoftlQare Developrnerd and Rwlity
Construction. Springer, 1990.

['ll	 Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro­
grams. Communications oj Ihe A CM, 18:453--457, 1975.

[3]	 Hans-Georg Gadamer. Philosophical HermenetlJics. Un.ivenity of California PrelS, 1976.
TrlUlsla.ted and edited by David tinge.

[4]	 Jeremy Hayward. Shifting Worlds, Changing Minds. Shmbhala, 1987.

(51	 Mutin H~idegger. Being anti Time. Ala.ckwell, 1962. Translated by John Ma.cquarrie
and Edward Robinson from S('in lind 7,61, Nicmpyer, 1927.

{6j	 Martin Heidegger. Discourse (Ill Thillking. liar per and Row,1966. Translated by John
Anderson and Ha.m Freud froll] G'dflS$f'nhf'it NeRk~, 1959.

[7J	 Martin Heidegger. Poetry, LllnyllfJge, Thollght. Harper and Row, 1971. Translations by
Albert Hofstadter.

[8]	 Martin Heidegger. The Quution Concerning Technologl/ llnd othe" Eua1l8. DUper and
Row. 1977. Translations by William Lovitt.

[9]	 ECUC5t Manes and Mich~l Arbib. Algebruic App,.aoc!tes to Progmm Snnantirs.
Springer. 1986.

[101 Richa.rd Palmer. Henneneulics. Northwestern University Press, 1969.

[l1J Chagyam Trungpa. The MI/lli oj Freedum. Shambhala Press, 1976.

{12] Roy Turner. editor. Efhnomethodu/O!JI/' Penguin, 1974.

