. LN I fﬁr"_“:h_f Compuﬁng Laboratory
SALuitding
. ..5 Rozd
Lnivtd OX1 3Q0

FOUR PIECES ON
ERROR, TRUTH AND REALITY

by
Joseph A. Goguen

A e - . S e v it
- —

tt:‘_:l‘,.:u‘-:?\: :‘..‘ﬂu E: = fm

yd , 27 FEB 2007

[NEF

| OxFORD

w2 be s w

MiRAAR RS

3033970038

Technical Monograph PRG-89 |

Qctober 1990

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road
Oxford 0X13QD
England

e B e T -

rmint L o . T W emtimyesa e o s

Copyright (© 1990 Joseph A. Goguen

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford 0X13QD

England

Electronic mail: goguen®uk.ac.oxford.prg (JANET)
Electronic mail: goguen@prg.oxford.ac.uk (elsewhere)

Four Pieces on Error, Truth and Reality

Joseph A. Goguen!

Preface

This monograph consists of four papers an social and philosophical aspects of computing.
The first, third and fourth were written for the book Sofiware Development and Reality
Construetion, which grew out of an interdisciplinary conference held in Schlofi Eringerfeld,
Germany, in September of 1988. The second was written as a position paper for the confer-
ence Formal Methoda 89, which was held in Halifax, Nova Scotia in July of 1989.

The first paper is concerned with the role of errors in computing, and in particuar, with
the regrettable tendency within some schools of Formal Methods to claim that errors can
and should play no role at all. This paper claims on the contrary that errors are ievitable,
and that we must therefore develop ways to deal with them. It also claims that much of
software production and of individual growth and learning necessarily occur in the context
of misunderstandings and mistakes. Moreover, the necessity for dealing with errors can
actually become a pleasure.

The second paper is largely concerned with philosophical aspects of Formal Methods,
and in particular with the recent controversies about whether computing systems can be
“proved correct,” and indeed, with what we mean by “proved” and by “correct” and how
such mathematical concepts connect with the real world. Such problems are important in
the context of Safety Critical Systems, for example. In keeping with its origin as a pesition
paper, some recommendations concerning research directions are given, and there are no
references, '

The third paper goes somewhat deeper into certain philosophical problems about mean-
ing and truth. It contrasts the “modern™ formalist position of the logical pesitivists like
Carnap with the views of Heidegger and Wittgenstein. This has serious consequences for
our understanding of correctness problems in computing.

The fourth paper takes us somewhat further afield. It is an attempt to connect the
process of interpretation with the philosophy of Buddhist meditation. “Hermereutics” is the
study of interpretation, arising historically from problems in Biblical exegesis. It is relevant
to attempts to understand computational artifacts in their social and persenal contexts,
whether the artifact is software, hardware, specification, requirement or documentation.
In particular, philosophical hermeneatice are Buddhism are relevant to ethical issues in
computing, and to the understanding of creativity in computing.

*Also, SRI Ioternalional, Menlo Park CA 94025.

CONTENTS

Contents

The Denial of Error

1

2

Introduction

Science and Technology

Error-Free Programming

Software Quality

The Being of Software Development Projects

Conclusions

Formal Methods: A Position Paper

1

2

4

5

Introduction

What are Formal Methods?

2.1 Formal Methods and Mathematicsc.......

What Good are Formal Methods?

31 TheMythof Control,

Hyperprogramming

Recommendations

Truth and Meaning beyond Formalism

1

2

3

4

5

Introduction

Heidegger, Carnap and Wittgensiein on Dread and “the Nothing”
What is “the Nothing™?

What are Truth and Meaning?

Where are we?

Hermeneutics and Path

2

3

Introduction
The Paramitas

Confusion

11

11
1

12
13

14

13

18

18

21

22

24

28

28

29

CONTENTS

Hermeneutics as Path 30
Hermeneutics in the Practice of Science 30
Emptiness and Beyond 31

Colophon 32

The Denial of Error

Joseph A. Goguen

1 Imntroduction

This paper claims that the modern world has developed a kind of arrogance which is dam-
aging the very projects that it seeks to sustain: in proposing methodologies to guarantee the
absence of error, we deny the incredible richness of our own experience, in which confusion
and error are often the seeds of creation; in this way, we limit our own creativity.

This arrogance is not an isolated phenomenon that is found only in computer science.
Indeed, | claim that it arises in a natural way from our preoccupation with and immersion
in science and technology, which are strongly oriented toward conirel. The obsession of
Woestern culture with control can be seen in many different areas, including the following:

1. In myth; for example, if you know a demon’s name, then you can control its behavior
(we may relate this to the phrase “knowledge is power”).

2. In science, which is based upon the idea of the controlled experiment (this is control
of the intellectual process, rather thaa of its result).

3. In our theories of behavior; for example, the psychiatrist Ernest Becker has said that
“All social life is the obsessive ritualization of control” [4]; see also point 5. below,

4, In technology, which seeks to control nature through the application of science, as
discnssed in more detail later in this paper.

5. In our thearies of information and knowledge; for example, in the “Representational
Theory of Meaning.” which says that our minds contain representations of external
“objects,” or in current Cognitive Science theories which posit explicit goals to control
behavior, in the same way for both machines and humans (see Section 2 below).

Aspects of the viewpoint common to these items have been called “instrumentality,” “tele-
ology,” “rationalism,” “selfishness,” “objectivity,” “analysis,” “subjectivistn,” “ego,” “posi-
tivism™ and “conceptualism,” depending on the author and the context. The obsession with
control is also one aspect of what has come to be called “modernism”.

The denial of error, that is. the denial of deviation from announced goals, seems to be
closely associated with the attempt to maintain control, especially for phenomena that are
actually difficult or even impossible, to control. For example, consider the economy of a
country, especially one that is highly collectivized.

The history of science contains many instances of accidental discoveries, for example, that
of penicillin. These are often taken as surprising, embarrassing, or amusing, but they actually
point to a serious and important facet of scientific knowledge, indeed of all knowledge: its
basis is the free play of the mind against the unexpectedly rich worlds revealed within each
real situation. The following quotation from Heidegger [16] may be relevant:

2 The Denjal of Error

The area, as it were, which opens in the interwovenness of being, unconcealment,
and appearance — this area [understand as error. Appearance, deception, illu-
sion, error stand in definite essential and dynamic relations which have long been
misinterpreted by psychology and epistemology and which consequently, in our
daily lives, we have wellneigh ceased to experience and recognize as powers.

Formalism is also a form of control: it attempts to control the use of langnage, and
through that, to control behavior. The tighter and more rigorous the formalism, i.e., the more
circumscribed its syntax and semantics, the smaller the domain to which it is applicable. The
ultimate in this development may be the attempts of mathematical logic (e.g., Tarski [24])
to formally captnre the notion of Truth; yet the manipulation of uninterpreted tautologies
literally tells us nothing, about nothing (see [13] for some further discussion of meaning,
truth and logic along these lines).

Section 2 below attempts to describe the essence of modern science and technology,
loosely based on ideas of late Heidegger, and illustrated with some quotations from Bacon and
Newell. Section 3 discusses the goal of error-free programming, using some work of Dijkstra
as an example. Section 4 considers the goals of software quality, using U.S5. Department of
Defense procurement procedures as an illustration. Finally, Section 5 suggests that software
development projects could be considered holistically, using some ideas from the so-called
New Biology.

2 Science and Technology

At the dawn of modern science, Francis Bacon was ohsessed with the concept of what we
now call an experiment, using what now seem rather extreme metaphors of torture and tke
inquisition [1}:

... ifany expert Minister of Nature shall enconnter Matter by mainforce, vexing!
and urging her with intent and purpose to reduce her to nothing; she contrariwise
... being thus caught in the straits of necessity, doth change and turn herself into
diverse strange forms of things. ... the reason of which constraint or binding will
be more facile and expedite, if matter be laid hold on by Manacles, that is by
extremities.

Today, this language seems a bit shocking, and of course, no reputahle contemporary scientist
would want to sound quite so gleefully sadistic about his work. But perhaps we should give
Bacon credit for a degree of honesty that has been lost to us, as the passage of time has dulled
our sense of surprise at the methods of science and technology. For scientific experiments on
animals cau be quite gruesome, and technology has mnch to answer for in its destruction of
the environment.

The fundamental problem here is not that there are some isolated, unfortunate incidents
(e.g-, strip mining in the Brazilian rainforest), nor even that there are potential massive
dislocations looming on the horizon, such the effects of global warming and deforestation.
Rather, the fnndamental problem is that man has come to view nature as a “resource,” as
something to be used, for his convenience and comfort, or against his enemies, or to enhance
his prestige through the acquisition of knowledge. As Heidegger [17] says,

LAt the time of this translation, “vex” had much more Lhe connotation of torture, from the Latin vezare,

The Denial of Error 3

The hydroelectric plant is not huilt into the Rhine River as was the old wooden
bridge that joined bank with bank for hundreds of years. Rather, the river is
dammed vp into the power plant. What the river is now, namely, a water-
power supplier, derives from the essence of the power station. In order that we
may even remotely appreciate the monstrousness that reigns here, let ns ponder
for a moment the contrast that is spoken by the two titles: “The Rhine" as
dammed up into the power works, and “The Rhine™ as uttered by the art work,
in Holderlin's hymn by that name. But, it will be replied, the Rhine is still &
river in the landscape, is it not? Perhaps. But how? In no other way than as
an ohject on call for inspection by a tour gronp ordered there by the vacation
industry.

In this way, we lose the capacity to he in the world with a sense of harruony, joy, or wonder.

The dark edge to science, so clear in the writing of Bacon, has to do with this fundamental
alienation, that is, with man’s will to what Bacon called “Dominion over the Universe,” more
than it has to do with the subject/ohject split, or with any particular difficulties. Bacon
was as rauch the prophet of technology as he was of science. Let us listen to Heidegger [16)
again:

Today science is admonished to serve the nation, and that is a very necessary
and estimable demand?, hat it is too little and not the essential. The hidden will
10 refashion the essent into the manifestness of its being demands more. In order
to recapture the pristine knowledge that has degenerated into science, our heing.
there must attain a very different metaphysical depth. It must again achieve an
estahlished and truly built relation ta the being of the essent as a whole,

Let us now consider an example closer to home, from Artificial Intelligence. In [21], Allen
Newell proposes a theory of mind based on what he calls a “physical symbol system,” which
is essentially an automaton, that is, a {mathematical} machine, intended to model the use
of symbols. Newell claims that this notion is “the most fundamental contribution so (ar of
Artificial Intelligence and Computer Science to the joint enterprise of Cognitive Science,”
and that jt is “what. the theory of evolution is to all biology, the cell doctrire to cellular
biology, the notion of germs to the scientific concept of disease, the notion of tectonic plates
to structural geology.” namely, it is (he hypotheses) “adequate to all symbolic activity this
physical universe of ours can exhibit, and in particular to all symbaolic activities of the human
mind.” The basic definition of “symbolization™ is as follows [21]:

An entity X designates an entity ¥ relative to a process P, if, when P takes X
as input, its behavior depends on Y.

In this case, X is a symbo! for ¥. T do not wish to dwell on how this definition is too
permissive for many applications to science, nor on how it radically excludes most of the
symboligm that is important in the arts, humanities and religion, nor on the arrogance of
atternpting to reduce symbolism in general to causality, but rather, I wish to relate this
theory to the themes of control and errar which are central to the present paper. Newell
says,

Note that in this 1935 pasaage, “the natian™ refers 1o Nazi Germany!

4 ‘The Denial of Error

A general intelligent system must somehow embody aspects of what is to be
attained prior to the attainment of it, i.e., it must have goals. ...

A general intelligent system must somehow consider candidate states of affairs
(and partial states) for the solntions of these goals (leading to the familiar search
trees),

But in order to use the familiar method of search trees, one must not only have a goal that is
fixed in advance, but one must also be able to enumerate the possible solu tions. Thus, we are
dealing here with a form of top-down control that is even less flexihle than feedback control,
and less able to deal with errors. Thus, despite Newell’s desire that his ideal physical symbol
system should “behave robustly in the face of error™ and “learn from its enviornment,” it is
far from clear that it could do so with anything like human intelligence; in particalar, it is
unclear how it could devise entirely new conceptual organizations in response to its errors,
let alome learn such things as compassion.

I donot believe that rigidly mechanistic models, with top-down goal structures, are ade-
quate for explaining human cognition, nor even for explaining how to do science. Althongh
this approach is characteristic of “modern” explanations of science, from the seventeenth
century into the twentieth - the so-called “Received View" - there is an emerging “post
modern” view of science and technology which advocates more flexible organizations, less
rigid logics, and more natural control structures. Examples include the so-called New Biol-
ogy of Bateson, Maturana, Varela and others (discussed in Section 5 below), hermeneutics
and other movements in linguistics and philolophy (again, see Section 5), and fuzzy logic
and fuzzy cantrol (e.g., [9, 23]). Within computing, neural nets, highly distribnted and open
systems, and hypermedia and liyperprogramming may also fit this emerging paradigm.

3 Error-Free Programming

What we may call the “Dijkstra School” aims for error-free programming,. For example, (7]
claims that

we have ... “a calculus” for a forma] discipline - a set of rules — such that, if
applied successfully: (1) it will have derived a correct program; and (2) it will
tell us that we have reached such a goal.

From a narrow point of view, [7] achieves its aim, modulo certain technical difficulties®,
But its fundamnental difficulty is that it attempts to control the prograrnming process by
imposing a rigid top-down derivation seqnence, working backwards from the initial top leve]
specification (the “postcondition”) to the final code, in whicli each step js derived by applying
a “weakest precondition” (hereafter. “wp™) formula.

Perhaps not unexpectedly, tlis “wp calculus™ requires significant human “invention”
al exactly the most difficult points, namely the loops. And for most programs that go
much beyond the trivial, the insights needed to write the loop invariants are tantamount

3These include the following: (1) there is 2 gap in the logical foundations, in that the firat order logic used
ot expressing conditions is not actually snfficiently expressive — something like the iufinitary logic proposed by
E:rwin Engeler in the 19608 is needed; (2) many imporlant programming [eatures are mot treated, including
procedures, blocks, modules, and abjects — in general, all large graim features are omitlad; snd {3) dats
struclures, lypes, variables that range over programs, and variables that range over specifications are all
treated in a loose manner.

The Denial of Error 5

to already knowing how to write the program; moreover, these insights are more difficnlt
to ackieve in the wp context than they would be in a more operational context. Indeed,
I have seen good students who had been taught that the wp calculus was the right way
to program, betorne so discouraged over the difficulties that they experienced, that they
came to believe that they could never learn how to program and should therefore seck some
other profession! In general, such a rigid, top-down ideology inhibits experimentatior, the
exploration of tradeofls, accidental discoveries, and so on. Mareover, it can be harmful to
students, wasteful of time, reinforcing of an inflexible view of life, and inhibiting to intuition
and creativity.

But we must not get carried away with criticism: It is not that the wp calculus is
entirely mistaken or useless, but rather that claims have been made for it that do not take
adequate account of its limitations. For example, the wp calculus can be very useful in
getting initializations right (many real bugs arise at this point), as well as for simple loops,
and I have also found it useful in convincing students that coding can be treated with
mathematical precision. Moreover, Dijkstra's siyle is very elegant and careful, his examples
are very well chosen, and personally | admire and have learned [rom these qualities. However,
it seems very difficult to scale up Dijkstra’s approach beyond programs of more than a few
dozens of lines.

Let me be clear that I am not criticizing formal methods as such — in fact, I believe
that they can be very useful in practice, especially for large programs?, and have myself
done research in this area [10, 14] — rather, I am criticizing the tendency to apply formal
methods in a rigid, top-down hierarchical manner. In fact, I believe that if appropriate
formeal methods are used in a flexible, non-ideological way, they can lead to better programs,
with greater efficiency and fewer bugs.

But bugs are inevitable. [they don’t occur in coding, they will appear in design,
specification, requirements, or use; they may arise by misinterpretation of what the customer
says, by inadequate modelling of the situation in which the program must run, by inadequate
documentation or understanding of the tools being used (such as a compiler for a kigh level
language), and in many other ways. { An overview of some recent debates on the philosophical
foundations of formal metheds is given by Barwise [2].)

Of course, no one wants bugs. or wants to spend any more time than necessary on
debugging, because it is difficult and unpleasant. But nevertheless, bugs are interesting and
important in themselves: they define the boundary between what is understoed and what
is not. Hence, they show us where our weaknesses are, and they provide oppertunities for
us to learn and grow.

4 Software Quality

The Brooks Report [B] notes that the procurement process generally used by the U.S. De-
partment of Defense for large soltware systems is inappropriate for such systems (although
they might be reasonable for buying boots, hats, or even rifies): bids are invited on a con-

"This can be achieved by providing formal epecification for tbe interfoces between program components,
thus greatly enhapcing the accuracy of communication between different groups working on different compo-
uenis, and providing a “fire wall” to protect each group [rom purely internal cbanges made by other gronps.
Also, sufficiently powerful mechanisms for paramelerization and modularization can greailyimprowe the rense
of bath code and specifications.

6 The Denial of Error

tract to build a system that meets a given “requirements document,” which tends to be
excessively elaborate, specific, and optimistic. There is also a tendency for lower bids to
win, whether or not they are realistic; and once the contract is let, large cost over-runs are
COINMOL.

It is important to note that we are not talking here just ahout the processes nsed inter-
nally by a software vendor, but rather about tbe procurement pracess as a whole, including
those processes internal to the client as well as those internal to vendor(s), and of course
those processes of communication that eccur on the interfaces among them. It is convenient
to use the terminology of process models in this discnssion, even thongh it was originally
developed to describe just vendor processes (see Boehm [6] for an everview of this field).
To be more precise now, it is the government processes of requirements generation and pro-
curement that are rigidly top-down, based on assumptions formalized in the limear structore
of a so-called slagewise model, which says that a software development project begins with
requirements, which then “fall” without essential error into specifications and finally into
code. OQnce the processes internal to a vendor are reached, it is not unusual to see a more
sophisticated process models in use, at least a so-called walerfall model, which allows feed-
back between contiguous stages, and perhaps also a single (non-rapid) prototype, or even a
spiral model [6], which can be sufficiently adaptive to be considered 2 meta-process model.
(Also, nole that software pracurement is generally less rigid in the commercial sector than in
the government sector.) All this suggests that an important topic for further research might
be the development of multi-party process models, which would allow for different processes
within different parties, and for multi-stage interaction between parties.

For large, complex systems, especially if they are unlike anything previously constructed,
we can hardly expect to know what is possihle or impossible, what is adequate or inadequate,
what is expensive or inexpensive, or more generally, what are the design tradeoffs for that
class of system. Moreover, it has been found far more expensive to correct errors during the
maintenance stage than during earlier stages (by up to a factor of 100) [5].

Thus, it would seem very desirable to debug requirements until they reflect a reasonable
compromise between what users want and what is achievable within reasonable cost. The
Brooks Report [8] suggests that integrating rapid prototyping with the procurement process
might achieve this goal, and thus save vast amounts of time and money. It could also lead to
discovering useful capabilities not anticipated in the original requirements document, which
are nonetheless relatively easy to provide. It seems very reasonable to suppose that some such
wote adaptive approach could yield belter results than trying to control the entire process
of production in advance of exploring the basic pitfalls and tradeofls that are involved.

The failure of U.S. Government procnrement processes to acknowledge the possibility
of error in setting requirements is a shocking example of arrogant teleological thinking run
wild; even some crude form of leedback control would be an improvement, and it is amazing
that large Department of Defense systems come clase to working correctly as often as they
seem to.

I think it is fair to say that Software Engineering is presently more like a medieval craft
than it is like a modern engineering discipline. This is because modern technology (see [17])
involves the construction of causal calculative theaties, and we are only now beginning to
develop such theories for Seftware Engincering. In particular, the relatively neglected, and
sometimes maligned, field of formal methods is still at an early stage of development. A
promising approach, I believe, is to integrate formal metheds with software process models

The Denial of Error 7

in a way that better supports flexibility and adaptation, rather than mere competition and
control.

It may be that such revolutionary techniques as hyperprogramming [12], which involve
the multimedia exploration of program structure by visualization and explanation, based on
technology developed for formal specification and verification, can be developed to the point
where they can be used in a routine way.

What is crucial is to provide environments {or software development in which the overall
vision of the program can be clearly felt at all times, and used flexibly in organiziag the
programming task. Such a vision is not at all the same thing as a top-down hierarchically
structnred system of goals, but rather should kave an adaptive living qnality, in roughly the
sense discussed in the next section.

5 The Being of Scftware Development Projects

Anyone familiar with multi-person software development projects knows that there is a sense
in which such projects “have a life of their own”: some projects seem healthy and vibrant
from the start, and overcome even unexpected obstacles with enthusiasm and intdligence,
while others aiways seem to be disorganized and depressed, suffering, for example, from such
symptoms as nnrealistic goals, inadequate equipment, poor planning, (seemingly) insufficient
funding, faulty communication, indecisive leadership, frequent reorganizations, and/or deep
rifts between internal factions.

A software development project is not primarily a formal mathematical entity. Pethaps
it is best seen as a diclogfcal or linguistic process, an evolving organization of certain inflor-
mational structures, continually recreating itself by building, modifying, and reusing these
structures. In the language of Maturana, this might be described as “development through
mutually recursive juteractions among structunrally plastic systems” [18].

In this view, computers, printouts, compilers, editors, design tools, and evea program-
mers, can be seer as supporting substrates, just as body parts are supporting enbstrates for
a person®. Maturana and Varela [19] define an culopeietic system to be

. a network of processes of production of components that produces the com-
ponents that: (i) throngh their interactions and transformations continuously
regenerate the network of processes that produced them; and (ii) constitute it
as a concrete unity in the space in which they exist by specifying the topological
domain of its realization as such a network.

{See [3, 25, 18, 20| for more information, and see {15, 26] for some possibly ill-advised
attempts al formalization.] For example, an unhealthy project may struggle for survival
by reassigning respansibilities, redefining subprojects, and even trying to reconstrue the
conditions that define its success. On the other hand, a heaithy project may develop new
tools 1o enhance its own productivity.

Autopoietic systems are abont as far as we know haw to get [rom rigid top-down hi-
erarchical goal-driven control systems; autopoietic systems thrive on error, and reconstruct
themselves on the basis of what they learn from their mistakes. Since organizations naturally

50f course, { do nol intend these remarks ta imply that the group has morsl or spiritul priotity over the
individual, 0z that people should be viewed as campaonents of systems in anything Lke the same way that
Ada packages can be.

8 The Denial of Error

strive for their owu survival, it would seem natural to study autopoietic software process
models.

[t is interesting to notice that the discourse which is the life blood of a software project is
conducted in a variety of languages, which differ in both their level of abstraction and in their
degree of formality. Most discussions are conducted in a kind of pidgeon natural language,
infused with technical terms and technical ways of thinking. But there are also requirements
documents, designs (which may involve graphics), specifications, code, and much more.

1 believe that a promising research direction is to apply techniques from hermeneutics
to the “softer” areas of the software development process, and particularly to the so-called
“requirements acquisition” phase, in which an analyst attempts to determine what the cus-
tomer really wants. Hermeneutics is concerned with the interpretation of “texts” in a very
broad sense which can include programs, dialogues, contracts, live interaction, specifications,
history files, proofs, and so on. Another promising application of hermeneutics might be to
study the social dynamics of the entire life cycle, or of selected parts of it. See [22] for an
overview of some theoretical aspects of hermeneutics, and [11] for some further discussion
along the lines of this paper.

6 Conclusions

[mportant avenues for further progress in Software Engineeriug seem to be blocked by our
inadequate understanding of the processes involved in developing sofltware systems. It seems
that formal methods, despite their power, are uot applicable to some of the most significant
aspects of such processes. But it also seems possible that a better understanding may be
attained by using some insights from the New Biology of Bateson, Maturana, Varela and
others, and from the hermeneutics of Heidegger, Gadamer, and others. A basic step in
this direction is to recognize the important role that error plays in any process of construc-
tion. The surprisingly widespread belief that it is both desirable and possible to go from
reqairements to specification, to code, without making any errors, would seem to be a2 major
inhibiting factor to the successful application of formal methods.

Although formal methods can be very powerful when they are properly applied, they
also have definite limitations, and formal, rationalistic understanding is only one of many
approaches to understanding. Intuition and spiritual understanding are alternatives that
seem more immportant in certain ways. For erample. formal methods wil never tell ns why
the U.5. Departmeut of Defense persists in its manifestly wasteful practices. Nor will they
explain ihe success of object oriented programming.

Sorme specific propesals for further research mentioned earlier in this paper include: the
application of hermeneutic techniques to the software development process, both as a method
of siudy, and also as a specific technique for use iu the requirements acquisition phase; the
development of multi-party process models; the study of autopoietic process models; and the
integration of formal methods with such more “organic” process models, through techniques
like hyperprogramming.

By some such route, we might go further than merely recognizing the inevitability of error
— we might learn to experience our errors as a path that leads to deeper understandings
and to better relationships, We must make the programming process not merely tolerant of
error, but also able to take advanlage of the creative possibililies inherent in the interplay
between concept and perception. Uniil we acknowledge the dialectical, creative, and living

The Depial of Error 9

dimensions in programming, we shall be doomed lo participate in software processes that
are unwieldy, unpleasant, and ineffective. The denial of error is the denial of life.

Acknowledgements

1 wish to thank my wife Kathleen far assistance with preparing this paper, including reading
several drafts, undertaking some library research, and providing many helpful comments and
conversations. 1 would also like to thank bath the Naropa Institute in Boulder, Colorade, and
the Center for the Study of Language and Information at Stanford University for providing
stimulating environments in which to think about the kind of issue discussed here.

References

[1) Francis Bacon. The Wisdom of the Ancienis. Da Capo Press (Amsterdam), 1968,
Facsimile of 1619 translation by Arthur George (printed by John Bill, London).

{2] Jon Barwise. Mathematical proofs of computer systemn correctness. Technical Report
CS5L1-89-136, Center for the Study of Language and Information, Stanford University,
Angust 1989,

[3

Gregory Bateson. Mind and Nature. Bantam, 1980.

[4

Ernest Becker. The Denial of Death. Free Press, 1973.

[5]

Barry Boehm. Sofiware Engineering Ecenomies. Prentice-Hall, 1981.
[6]

Barry Boehm. A sprial mode! of program development and enhancement, Software
Engineering Notes, 11(4):14-24, 1986,

(7

Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18:453—457, 1975.

8

Frederick Brooks el al. IReport of the Defense Science Board Task Force on Military
Software. Technical Report AD-A188 561, Office of the Under Secretary of Defense for
Acquisition, Department of Defense. Washington DC 10301, September 1987.

{9] Joseph Goguen. The logic of inexact concepts. Synthese, 19:325-373, 1968-1969.

[10] Joseph Goguen. Reusing and interconnecting software components. Cornputer,
19(2):16-28, February 1986. Reprinted in Tutorigl: Software Reusability, Peter Free.
man, editor, [EEE Computer Society Press, 1987, pages 251-263.

[11] Joseph Goguen, Hermeneutjcs and path. In Reinhard Budde, Christiane Floyd, Rein-
hard Keil-Slawik, and Heinz Ziillighoven, editors, Software Development and Reaglity
Construction. Springer, 1990.

{12] Joseph Goguen. Hyperprogramming: A formal approach to software environments. In
Proceedings, Symposium on Formal Approaches to Software Environment Technology.
Joint System Development Corporatian, Tokya, Japan, January 1990,

10 The Denial of Error

[13] Joseph Goguen. Truth and meaning beyond formalism. In Reinhard Budde, Christiane
Floyd, Reinhard Keil-Slawik, and Heinz Zallighoven, editors, Software Development and
Reality Construction. Springer, 1990.

[14] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational
programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Re-
search Directions in Object-Oriented Programming, pages 417-477. MIT Press, 1987.
Preiiminary version in SIGPLAN Notices, Volume 21, Number 10, pages 153-162, Oc-
tober 1986.

[15} Joseph Goguen and Francisco Varela, Systems and Jistinctions; duality and comple-
mentarity. International Journal of General Systems, 5:31-43, 1979.

[16] Martin Heidegger. An Introduction to Metephysica. Yale University Press, 1959. Trans-
lation by Ralph Manheim; originai rom 1935.

{17] Martin Heidegger. The question concerning technology. In Basic Writings, pages 283-
217. Harper and Row, 1977. Traaslated by David Krell; original from 1953.

(18] Humberto Maturana. Biology of language: The epistemology of reality. In Psychology
and Biology of Thought and Language; Essays in Honor of Eric Lenneberg, pages 27-64.
Academic Press, 1978.

[19] Humberto Maturana and Francisco Varela. Autopoiesis and Cognition: The Realization
of the Living. Heidel, 1980.

[20] Humberto Maturana and Francisco Varela. The Tree of Knowledge. Shambhala, 1987.
[21] Allen Newell. Physical symbol systems. Cognitive Science, 4:135-183, 1980.

[22] Richard Palmer. Hermeneutics. Northwestern University Press, 1969,

[23]) Witdd Pedrycz. Fuzzy Control and Fuzzy Systems. John Wiley, 1989,

[24] Alfred Tarski. The semanlic conception of \ruth. Philos. Phenomenolagice! Research,
4:1347, 1944.

[25] William Irwin Thompson, editor. Gaia: @ Way of Knowing. Lindisfarne Press, 1987.

[26] Francisco Varela and Joseph Goguen. The arithmetic of closure. Journal of Cybernetics,
8:125MT, 1978. Also in Progress in Cyberaelics and Syslems Research, Volume 3, edited
by R. Trappl, George Klir and L. Ricciardi, Hemisphere Publishing Co., 1978.

Formal Methods: A Position Paper

Joseph A. Goguen

1 Introduction

This paper has four main parts. The first asks what formal methods are and the second
asks what they are good for, while the third describes a specific technique in formal methods
called hyperprogramnming, and the fourth presents some recommendations.

2 What are Formal Methods?

“Formal” means “having to do with forn™ and does not necessarily entail logic or proofs
of correctness. Of course, the word “formal” can also be used in many other senses, but 1
think that this may be the appropriate sense for “formal® in the phrase “formal methods.”
For example, a formal development method gives rules that restrict the allowed forms of
program development, and perhaps also the allowed forms of some texts that occur during
the process, But this does not mean that form is trivial — far [rom it. Indeed, everything we
do is done with form. And everything that computers do is formal, iu that definite syntactic
structures are manipulated according to definite rules. Usually, we don't do things just to
follow the form — we have some purpose in mind, and the formal structures that we use,
whether PERT charts, programs, parse trees, or differential equations, bave a meaning for
us.

For many people the prime example of a formal system is first order logic. This system
encodes first order madel theory with certain formal rules of deduction that are provably
sound and complete. However, our experience with theorem provers shows that it can be
difficult to work with this system. Moreover, formal systems that try to capture even higher
levels of meaning, e.g., languages for expressing requirements, tend to be even harder to work
with, and to have even less pleasant properties. (Later I will argue for a natural hierarchy
of levels of meaning, from abstract mathematical ob jects up towards concrete social values.)

In summary, formal methods are syntaclic in essence, but semantic in purpose. In
computing science, form does not embody content, but rather encodes it.

2.1 Formal Methods and Mathematics

There has been much confusion about the relationship between computing science and math-
ematics, and particularly about the relationship between computing science and logic. Unlike
numbers, computers have a real physical existence, and 50 do programs. On the other hand,
algorithms and models of computation (such as Turing machines, or term rewtiting systems)
are abstract mathematical entities. What seems problematical is the relationship between
the physical entities and the mathematical abstractions,

In my view, this relationship is the entirely familiar one that the ancient Greeks discov-
ered between bodies in the real world and abstractions in axiomatic geometry. Thus, we
can prove theorems about (abstract) points, lines, planes and pyramids, but not about the

11

12 Formal Methods

Great Pyramid of Cheops, whase edges and faces are not very regular. Although we cen
apply suitable theorems to a physical pyramid, we cannot expect the conclusions of a the
orem {o be more valid than warranted hy its assumptions. The situation is much the same
with programs and computers. We cannot prove the correctness of a real program running
©n a teal computer. But we can prove the correctness of au algorithm, and we can expect
a program on a computer to behave as we wish to the extent that the program’s execution
conforms to the algorithm.

It is an error to conflate mathematical models with the concrete realities they are sup-
posed to represent. Hence it is as much an error to claim that computing science has all the
“gaod” properties of mathematics, as it is to claim thal it has all the “bad” properties of the
real world. We may call those who make the frst error the “Dijkstra school” (everything is
provable} and those who make the second error the “Fetzer schoal” (nothing is pravable).
Perhaps the excessive optimism of the first helps to explain the excessive pessimism of the
second.

In summary, some parts of computing seience are pure mathematics (concerned with ideal
algorithms and models of computation) and some parts are applied mathematics (concerned
with applying mathematical models to real programs and computers). Later 1 will argue that
some parts are neither of these, but instead have Lo do with the social context of computing.

3 What Good are Formal Methods?

The most difficult problems do not arise in relating algorithms to programs, but rather in
evalualting how well a program (running on a computer, which I will largely ignore here-
alter) solves some real world problem, such as preventing the theft of funds or information,
detecting enemy missiles, making a profit on the stock market, or ensuring the survival of
an organism. The trouble in such examples is that the program must perform in an enviren-
ment that is enormously complex, rapidly changing, and imperfectly understood. Moreover,
the requirement for the program may also be complex, changing, and imperfectly under-
stood; in some cases, it is 50 hound up with social and for political issues that even trying to
state it with greater precision can engender 5o much debate about larger issues that general
agreement on its meaning is impossible.

The ideal of having accurate mathematical models of the real environment and the real
requirement is not achievable for many large, complex, real world problems. This means
it is inevitable that methods less than purely formal will play an impertant role in evalu-
ating real programs. In fact, many informal methods are already important in computing
science, starting at a relatively low level with communication media such as graphics, natu-
ral language documentation, animation, and aedio. Furthermore, computers are becoming
increasingly interconnected with each other and with other parts of the real world, through
networks, modems, mice, Fax macliines, digital audio chips, radar antenn ae, video cameras,
etc., and this trend seems likely to continue. And finally, how can we be sure that we have
formalized the right thing? Or formalized it the right way? Clearly, we need to get outside
the formal system in order to make such judgements.

We donot have, and perhaps we never will have, fully adequate theories of the meaning
of the information that is encoded in such complex forms as natural language. And the
prospects are even less encouraging for fully adequate theories of the significance of such
information in larger contexts. But we do have formal rules that describe the structure of

Formeal Methods 13

the data that encodes many kinds of meaning, and we also have many programs that can
manipulate such data for particular purposes. For example, we can divide a message into
words and sentences, and count the number of each; we car search for keywords, and do
various statistical analyses; and we can do spelling correction to a useful extent (but not
perfectly without human help).

There are various levels of structure that we might seek to formalize. A computer analysis
of a message can be fairly certain about words and sentences, somewhat less sure about
spelling, and quite unsure about meaning. We have formal methods that are applicable at
each level of structure, but in general, the higher the level, the more important informal
methods of analysis become. The obvious hierarchical structure has to do with whole/part
relationships: words are parts of sentences, and sentences are parts of messages. This is a
formal hierarchy, and also a hierarchy of forms. But there is an informael hierarchy that
is perhaps even more important, whose levels correspond to meanings i wider and wider
coutexts. For example, one relatively high level of meauing might concern tbe artistic merit
of a text in a certain culture.

I claim that the same is true of program correctness. We can formally verify syniax with
considerable certainty. We can formally verify semantic assertions about state with reason-
able certainty, although the effort needed seems to grow exponentially with program size.
We can hope to better understand some of the interactions of a program with components of
some larger systems of which it is a part. But current formal methods do not seem especially
useful, for example, in determining the eflectiveness of a program in achieving a business
plan, or in benefiting society as a whole.

In suramary, there is a tendency for formal methods that encode higher levels of meaning
to require greater computational resources, and perhaps even to pass into regions that we do
not know how to formalize adequately. However, there often exist some rather “syntactic”
methods which achieve a usefu]l compromise between expressive power and computational
difficulty.

3.1 The Myth of Control

Managers want to control the programming process; they wani to be sure that the product
will meet its requirements, and will be finished in time and within cost. This is entirely
reasonable, but we all know that in practice, managers often do not achieve this kind of
control: programs often don’t do exactly what they are supposed to do, and often take
much longer and cost much more than estimated. The desire for control motivates the so-
called “waterfall” models of the programming process, in which higher-level descriptions are
supposed to determine lower level descriptions, in a strict hierarchy from user requirements
down to code.

One trouble with such models is that they make no allowance for error. Clients do
not usually know exactly what they want; for they do not usually know what js poesible
or impossible, or how much the various possibilities will cost; also, they canuot foresee all
the ramifications of the various other systems with which the system that they are buying
may interact. [Of course, neither can the programmers.) Furthermore, there is no room
for the exploration of entirely new capabilities that may be revealed during the design or
construction processes. This is frustrating to the programmers, as well as to the managers
and customers.

It is my view that the total programming process should be as flexible as possible, so0

14 Formal Methods

that workers at each ievel can partiripate in a dialogue with the levels above and below. As
advocatled by the Brooks report, rapid prototyping can help to achieve this goal in some
cases. However, it is difficult to construct prototypes directly from requirements, and the
usual kinds of prototypes do not help much with manyn higher level evaluations, such as
whether the system shonld be built at all, or how it should be used and rmanaged, or how it
will intereact with other systems already in place.

It is sometimes claimed that by using formal methods we can avoid all errors in program-
ming. Even if we interpret this claim in the narrow sense of guaranteeing the satisfaction of
some formal mathematical specification (as opposed to an informal social requirement), it
is still not true in practice, because we can make mistakes; for example, we can neglect to
follow the method at some apparently trivial point, with unexpectedly serious consequences;
or we tan make a syntax error during proof, with the result that we prove a property of the
wrong function.

Even worse, attempting to enforce the rigid use of a formal method can be very damaging,
by preventing flexibility and inhibiting creativity. Rigid top-down design methodologies do
not work for large programs, and are unpleasant and stifling to use even on small programs.
In co-teaching a course at Oxford, I found that some students who believed my co-teacher’s
assertions that they should be able to get their programs right the first time by using weakest
preconditions backwards from a post-condition, lost the confidence that they could everlearn
to program at all. This is a great pity.

Under some conditions, a formal proof of correctness can be worse than useless, by
encouraging misplaced confldence that the program will meet its intuitive requirement in its
actual aperating environment, For example, if a company promotes a formally verified heart
pace-maker as infallible, physicians might neglect to provide adequate safegnards.

It is well-known that many of the most important scientific and technological discoveries
were acridental {e.g., penicillin), or arose through trial and error (e.g., the light bulb}), and
I think that we should allow for similar processes of exploration in programming. Perhaps
formal methods can help with this by providing techniques to ensure the inter-consistency of
the many differeat texts that arise in produciag large and complex systems. One approach
to this is discussed in the next secliou.

4 Hyperprogramming

Large programs have many parts whose interactions and juterconnections are under con-
stant evolution during their development. This means that the many texts associated with
the program, including its regnirements. specifications, code, documentation, accounting in-
formation, test suites, and version and configuration files, will he changing constantly, It
is highly desirable to provide support for maintaining the mutual inter-consistency of such
texts as they change. It is not practical to do this for the contents of these texts, but it
seems promising to apply formal methods at various levels of their forms. For example,
consider the manual for an operating system that is to run on several machines, and is fre-
quently corrected, augmented and ported. Then we can build programs to ensure that the
organization of the manual remains consistent, and that if part of the program is changed,
then the corresponding manual pages are re-examined to see if they also must be changed.

But perhaps we can go further. If we associate documentation to the parts of a program,
then we can assemble the manual from its parts in the same way that we assemble the

Formal Methods 15

program from its components. Furthermore, if the documentation and the program are
parameterized in the same way, then we might be able te evaluate a single interconnection
statement that would accomplish these two different purposes. In fact, we have already
developed a theory of module erpressions which can serve such a purpose. Their use in
programming is called paramelerized programming, and it can be considered a substantial
generalization of the programming-in-the-large style embodied in the UNIX make statement.
One dimension of the generalization is to provide powerful facilities for both generic modnles
and module inheritance; the former also allows us to specify semantic properties of module
interfaces.

Parameterized programming has been implemented and tested for the functional pro-
gramming language OBJ, and has also been suggested for Ada and other languages. Hyper-
programming is the extension of this approach to texts other than programs. For example,
it could be used to combine graphical illustrations with written texts, to assemble a spoken
explanation from parts and theu “execute™ it with a speech chip, to produce program ani-
mations from specifications of program parts, and perhaps even to comhine such animations
with speech to form “movies” that jllustrate program operation.

Although these consideration motivated the name “hyperprogramming,” its most im-
portant application might be the coherent integratation of the many different components
of a large software development project. Current practice does not support the integra-
tion of rapid prototyping with the evolution of specjfications and code, nor does it support
consistency checks between such texts as specifications, test suites and cade, Moreover,
accounting and management tnformation are usnally handled quite separately from code,
and documentation is ouly developed after coding is completed. Hyperprogramming could
integrate all these diverse aspects in a uuiform way that guarantees certatn important kinds
of consistency.

5% Recommendations

The suggestions in this section are based on my own experience. Of course, this means that
they are biased. But I think this should be considered a strength rather than a weakness,
as long as I clearly indicate the source. Except for the first list, these recommendations can
also serve as a summary of the preceeding discussions. 1 begin with some observations that
have to do with general funding policies:

¢ It is difficult to get funding for innovative ideas that require the development of pro-
totypes, because the funding programs with sufficient money tend to have goals that
are excessively narrow and short-term.

¢ Funding is toc unstable and subject to excessive delays. As a result, it is difficuit to
hire and keep good people.

Educational expectations are too low in computing science, and in particalar, they
are lower than in other engineering disciplines. Funding should be devoted to raising
both the mathematical preparation (especially in logic and algebra) and the practical
experience of computing science graduates, Formal methods should be tanght in the
universities.

16 Formal Methods

« Open dissemination of basic research results and of experimental systems is essential
in order to obtain the best use of research funding by maximizing the discussion of
critical issues.

Next, I list some fairly specific research topics on the border between formal and informal
methods. As previously argued, this area seems very important for software methodology.
Although short term practical results seem unlikely, [believe that important basic resulte can
be obtained by pecple who are proficient in both formal and informal! methods, The informal
{or perhaps one should say “semi-formal”) methods tbat seem most relevant come from the
social sciences, and include discourse analysis, socio-linguistics, and ethnomethodology.

» It seems likely that the dislogical processes between clients and designers that result
in requirements could be formalized to a certain extent, and that this could, at the
very least, result in more realistic expectations about what can be accomplished in
this stage of the development of complex systems.

A linguistic study of the relationship between requirements texts and the texts pro-
duced at lower levels, such as designs and specifications, might yield formal structures
that would facilitate these important transitions in the program development process.
In particular, it would be interesting to know where misunderstandings most often
occwr in the present process.

It would be interesting to study the integration of various kinds of text in various media,
to see what constraints must be satisfied to ensure that the intended relationships are
actnally perceived by users.

More generally, it would be interesting 1o study the integrated use of multiple levels of
formalization in programming environmenis. For example, it might be useful to doa
critical path analysis of the arguments that sypport a given requirement, so that the
formality of items on the critical path can be increased if desired.

Finally, I list some (relatively) specific research topics that lie entirely within the area of
formal methods and that I think could yield very substantial advances within the medium-
term time frame:

¢ The integration of specification, prototyping and theorem proving. This could be
done hy using an executable speciFcation language that is rigorously based upon logic;
indeed, every execution of a program in such a language is a proof of something, and
if the language is rich enough, it conld be a proof of something interesting. We have
done some experiments in hardware verification using the OBJI3 system which suggest
that this is a promising research direction.

The development of semantically rationalized object-criented programming languages.
For example, an integrated functional and object-oriented language could be useful
for many purposes, including sturctured verification and integration with the so-called
structured design methodologies, like those of Jackson and Yourdon,

s The development of languages that support abject-oriented design; this is related to
tbe development of rationalized semantics for object-oriented prograrnming, but would
most uefully be realized in connection with existing languages like Ada. It would also
be interesting to develop svstems that support object-oriented verification.

Formal Methods 17

¢ The development of prototype hyperprogramming systems. This might include inte-
grating the graphical conventions used in sturctured development methods. It would
also be interesting Lo study the automatic generation of graphical representations of
abstract data types from their algebraic specifications; it seems likely that this could
be extended to the automatic generation of animations.

Of course, the pursuit of these research goals will not sojve the philosophical problems
discussed in Sections 2 and 3 of this paper. However, the philosophical considerations do
lend to support the belief that such research goals may be both important and feasable.

I hope that no one will misunderstand my interest in informal metheds, my criticisms
of current methodologies, or my general philosophical positions as being critical of formal
methods. On the contrary, I believe that we may be on the threshhold of a golden age
of formal methods, provided that we ncither interpret the field too narrowly, nor expect
it to achieve the impossible. There seem to be many areas where formal methods can be
developed and/or synthesized with informal methods to solve important problems in the
development of large systems.

Truth and Meaning beyond Formalism

Joseph A. Goguen

1 Introduction

Logic and formal semantics have been enormously helpful in understanding programs and
programming languages, and in automating some aspects of the programming process.
Thetefore computer scientists have good professional reasons to be interested in truth and
meaning construed in a narrow technical sense, through symbolic logic and formal semantics.

But computer scientists also need to better understand the processes that create and
sustain sofiware, and in particular, the complex relationships between computer systems,
individuals, and societies. Moreaver, we also need to develop more humility ahaut own our
role in the scheme of things. Unfortunately, these problems raise deep questions about truth
and meaning which cannot be addressed by formal semantics.

This short paper is intended to suggest why computer scientists might be interested in
the work of Heidegger, Wittgenstein and others', and to stimulate some further thonght
about some of the guestious that they address, Although Heidegger did not write very
much thal is explicitly about formal logic, what he did write is quite pertinent, and much
of his other work is relevant to questions of meaning in the larger sense. 'Wittgenstein was
concerned with the limits of language, that is, with “what cannot be said”. We will see
that their views are fundamentally opposed to those of logical positivists such as Carnap, as
well as to the whole Anglo-American tradition of analytic philosophy, and in particular, to
Russell and Moore. We will also see some interesting parallels to Buddhist philosophy.

The end of the paper will return to consider what all this has to do with computing.

2 Heidegger, Carnap and Wittgenstein on Dread and “the
Nothing”

This section tells the story of an encounter {in print) between three of the most influential
philosophets of the early twentieth ceutury. In 1931, the logical positivist Carnap [3] took
Heidegger’s 1929 essay “What is Metaphysics?” [10] as 2 paradigmatic example of what he
called “metaphysical pseudostatements”. Carnap’s program was to develap an ideal language
based on logic, in which all words would refer to chservable sense data, experiences or
things, and iz which a “logical syntax™ would guarantee that all sentences are meaningful by
eliminating &l “nonsensical™ combinalions of words that are still permitted by grammatical
syntax. Such a language would eliminate metaphysics (and much of the rest of philosophy)
as well as all literature and poetry, in much the same way that Orwell’'s “Newspeak” in
Nineteen Eighty-Four would eliminate all language that is inconsistent with the ideology of
Big Brother, As Orwell {15] says,

! Among the attempts Lo summiarize Heidegger's philosophy that 1 have found the most useful is [16]; see
also [20] for atber indications of its relevance to compuler science, and the excellent paper by Caparro [2].
[L1] is an excellent source of background informaiion on Witigenstein.

13

Truth and Meaning 19

Newspeak was designed not to extend but to diminish the range of thought, and
this purpose was indirectly assisted by cutting the choice of words down to a
minimum.

According to Carnap {3],

The meaning of a statement lies in the method of its verification. A statement
asserts only so much as is verifiable with respect to it. Therefore a sentence can be
vsed only to assert an empirical proposition, if indeed it is used to assert anything
at all. ... Logical analysis, then, pronounces the verdict of meaninglessness on
any alleged knowledge that pretends to reach above or behind experience. ...
The (peendo)statements of metaphysics do not serve for the description of stales
of affairs, either existing ones (in that case they would be true statements) or
nonexisting ores (in that case they would be at least false statements).

Specifically, Carnap criticizes Heidegger’s use of the word “nothing” in the following assem-
blage? from [10], by showing that it violates his “logical syutax™:

What is to be investigated is being only and — nothing else; being alone and
further — nothing; solely being. and beyond being — nothing. What about this
Nothing? ... Does the Nothing erist only because the Not, i.e., the Negation,
exists? Or is it the other way around? Do Negation and the Not ezist only
because the Nothing erisis? ... We assert: the Nothing is prior {o the Not and
the Negation. ... Where do we scek the Nothing? How do we find the Nothing?
... Weknow the Nothing. ... Anriety reveals the Nothing. ... That for which and
because of which we were anxious, was ‘really’ — nothing. Indeed: the Nothing
itself — as such — was present. ... What about this Nothing? — The Nothing
iiself nothings.

As an example of Carnap’s analysis, Heidegger’s sentence “We know the notbing” is repre-
sented as “K'(no)” and then claimed meaningless because “nothing” (denoted “no™) is used
as 2 noun. But Heidegger says “The nothing is neither an object nor any being at all” [10].
Hence, Carnap is accusing Heidegger of something which Heidegger clearly says cannot be
done, namely taking “the nothing™ as “a something™.

Indeed, Heidegger anticipates precisely the sort of attack which Carnap monnts when he
says [10]:

But perhaps our confused talk already ilegenerates into z2n empty squabble over
words. Against jt science must now reassert ils seriousness and soberness of
mind, insisting that it is concerned solely with beings. The nothing — what else
can it be for science but an outrage and a phantasm? If science is right, then
only oue thing is sure: science wishes to know nothing of the nothing.

This quotation indicates that Heidegger knows he is playing with words. But in order
to explore the foundations of somerhing. it is neressary to step outside its bounds. As
Wittgenstein says (23], in direc! contradiction te Carnap.

*The italica and deletions are Carnap’s, and it is worth noting that by taking Lbesr widely scattered
sentences out of Lheir contexts, and by his selected italicization and capitalization, Carusp creates a very
distorted vicw of Heidegger's text.

20 Truth and Meaning

1 can readily understand what Heidegger means by Being and Dread. Man has
the impulse to run up against the limits of language?. Think, for example, of the
astonishment that anything exists!. This astonishment cannot be expressed in
the form of a guestion, and there is also no answer to it®. Everything which we
feel like saying can, a priori, only be nonsense ... Yet the tendency represented
by the running-up against points to something. St. Augustine already knew this
when he said: What, you wretch, so you want to avoid talking nonsense? Talk
some nonsense; it makes no difference!

(The history of this little passage is interesting. A “sanitized” version appeared in the
Philosophical Retiets in 1965 without the first sentence and without the original title, which
was On Heidegger.)

Unfortanately, Wittgenstein himself did not take St. Augustine’s advice to “talk non-
sense,” and as a result, the Tractatus is in 6ome ways very obscure. In fact, Wittgenstein was
rather systematically misunderstood, and hence distorted, by the logically oriented phileso-
phers of the Vienna Circle and the Anglo-American tradition (this is clearly explained in
(11]). Russell’s preface tothe Tractatus [21]is a good example, since it criticizes Wittgenstein
on precisely those points where his contribution was perhaps most original and significant,
namely the pages from Proposition 6.4 onward, which discuss such topics as ethics and the
“problem of life”.

It is nolable that Carnap and Wittgensiein share not only a common interest in logic,
science and language, but also in what cannot be said. However, their attitudes towards
this area were entirely different: Carnap considered that everything outside his ideal logical
language was nonsense without meaning, whereas Wittgenstein considered that everything
of the greatest value and interest was contained in this realm, In contrast, Heidegger was
not only willing to talk “nonsense”, he was willing to break the bonds of language by making
up new words, and by using old words in new, often ungrammatical or “illogical”™ ways to
indicate desper meanings which strictly speaking cannot be said at all, but only pointed at.

Carnap [3] recognized that art operates outside of the strictly verifiable, but he still
considered that the metaphysician

confuses [science and art] and produces a structure which achieves nothing for
knowledge and something inadequate for the expression of an attitude. ... The
metaphysician helieves that he travels in territory in which truth ard falsehood
are at stake. In reality, however. he has not asserted anything, but only expressed
somethiag, like an artist. ... [The stalements of metaphysicians] serve for the
erpression of the general aitilude of a person toward life, ... Metaphysicians are
musicians without musical ability.

Thas, Carnap does not jutend to ban everything that falls outside his language, but only to
label it meaningless. However, both his view of meaning, and his view of art as expressing
a general attitude toward life, are very limited. In contrast, Heidegger says “Art lets truth
originate. Art ... is the spring that leaps to the truth of beings ...> [9].

*Murray [13] explaine that this is a reference o Kierkegaard, who was the firat philosopher to give a serioua
Lrealment of analety (“Angst” in German. Lranslated “dread” in the previous sentence) before Heidegger.

“This is & teference ta the last sentence of [10], which is *Why are there beings at all, and why nol rather
nothing?” This lundamental theme of Heidegger is, for example, the central question of [6].

*Although ks is 2 criticism of Heidegger's formulalion, the last sentence of this quotatioa from Witigen-
stein suggests that Lhey may nol differ so much after all.

v

Truth aud Meaning 21

3 What is “the Nothing”?

It is no coincidence that Heidegger, Carnap and Wittgenstein collide on the issues of “the
nothing™ and anxiety. All three philosophers can be seen as advancing Kant's program to
stem the turgid tide of traditional metaphysics that still today flows on at us from out of
the Middle Ages. Ome major goal of Kant's “critical philosophy™ was to show the limits
of reason from within, that is, using the tools of reason, in order to prevent its misuse. Tn
particular, Kant wished to separate the realm of reason from that of value. For example,
Kanl wrote a treatise which denied that there could be any justification for blaming the
great Lisbon earthquake of 1775 either on the presence of a few Protestants there (as did
mauy Catholics in Lisbon) or ou the adhereance of the majority to Catholicism (as did some
English clerics).

Kant took subject centered rationalism 1o its limit, declaring that we construct objects
according to @ priori given faculties of mind, which include space, time, causality, objectness,
number, affirmation, negation and possibitity. This analysis assumes a world of “things in
themselves” and aa idealized human subject, both of whick are unknowable. Thus, Kant’s
so-called “second Copernican revolution” actually went in the opposite direction from that of
Copernicus, since it placed man in the eenier again, as the constructor of perceived objects
(the phenomenal). Since the time of Descartes, this kind of move has been seen a8 necessary
to secure a firm grounding for the objectivity of science.

Wittgenstein's Traclelus can be seen as a Kantian critical (i.e., from within) deconstruc-
tion of logical positivism, despite its significant contributions to the tecbnique of logic (e.g.,
trnth tables). In particular, Witigenstein argues that it is impossible to express the meaning
of a formal language within tlie language itself, and instead uses a “picture” theory of mean-
ing in which interpretations can be shown but cannot be said. Russell and Carnap tried to
counter this by proposing a “meta”-language in which the meaning of an “object” language
can be expressed, and even an infinite tower of meta-, meta-meta-, meta-meta-meta-, ...
Janguages. But as Russell admits in his preface to the Tractatus, Wittgenstein's argument
seems to apply just as well to such a tower of languages as it does to a single language.

Il it is impossible to express the meaning of a sentence within its langeage, then it
is necessary to move ouiside the language. This led the later Wittgenstein to investigate
the conventions which determine when and Low sentences can be nsed. He called these
flaxible rule-governed symbol using activities “language games™ (22|, They, in turn, get their
meanings from the even more flexible and larger grained patterns of symbol using activities
of which they are parts, which he called “forms of life”. This point of view is quite different
from that in the Truetatus, which kad simply assumed that the relation between language
and reality is one of “picturing” (i.e.. representation). Bul in late Wittgenstein, it is the
rules of language games which determine the Hmits of what can be said.

This whole development, starting from Kant’s clarification of the suhject centered ap-
proach of traditional metaphysics and science, and proceeding to tbe work of Heidegger,
Derrida, Barthes and other modern French thinkers, can be seen as an on-going deconstrue-
tion of the self, which is nothing other than the exploration of “the nothing” as it applies
to the knowing subject of Descartes and Kant. The inevitable conclusion is that there is no
rational basis for assuming such 2 subject. Instead, subject and object continvally emerge
and dissolve together.

Many books have been weitten in the Buddhist tradition about “the nothing,” called

22 Truth and Meaning

shunyatain Sanskrit. One of the most famons is the Mulamadhyamakakarikas of Nagarjuna,
from arcand the second century A.D.; a more recent one is Religion and Nothingness {14]
by Nishitani, considered the dean of the Kyoto School of philosophy. Buddhism says that
the experience of shunyata is egolessness, the lack of any subject, and says that egolessness
is a fundamental fact of human existence. One way that this experience can manifest is
described by the Tibetan meditation master Trungpa Rinpoche [19] as foliows:

It s a very desolate situation. It is like living among snow-capped peaks with
clovds wrapped around them and the sun and the moon starkly ehining over
them. Below, tall alpine trees are swayed by strong, howling winds and beneath
them js a thundering waterfall. From our paint of view, we may appreciate this
desdlation if we are an occasional tourist who photographs it or a mountain
climber trying to climb to the mountain top. But we do not really want to live
in those desolate places. It’s no fun. It is terrifying, terrible.

No wonder, as Heidegger says, “science wishes to know nothing of the nothing.” For
science wishes to banish dread and proceed with its objectivity firmly established in the
subjeclivity of its scientists, reducing “the nothing™ to mere negation, which is a rational
operation on beings, as opposed to the terrifying emptiness from which beings emerge into
authenticity.

However, if Heidegger and the Buddhists are right, it is the possihility of non-being which
gives beings their character of luminosity%, and hence the nothing, i.e., shunyata, is not only
priot to negation, but also to beings.

The effect of this, as Heidegger says, is ta rab logic of its claim to supremacy, and in
particular, to rob it of its claim to provide foundations for science and even for mathematics.
Indeed, we must conclude that foundations in the sense sought by logicians are simply not
possible. The judgements that we make, and in particnlar negative judgements, are neces-
sarily grounded in our being-in-the-world, and not in any pre-existing unshakahle truths, or
eternal world of ideal things.

More significantly, we may conclude that it is the finitude, limitation, or mortality of
beings which makes them luminous. The fundamental importance of finitude for Being is
expressed in the thundering series of questions which close Heidegger’s major work, Being
and Time [1}. The finitude and luminosity of beings are two of the many suggestive points
of contact between Heidegger and Buddhism. For “impermanence™ (i.e., finitude) is one of
the Three Marks of Existence (the other two are egolessness and suffering).

4 What are Truth and Meaning?

The intimate relationship between truth, meaning and being in the Western philosophical
tradition goes back to the ancient Greeks, and is extensively discussed, for example, by
Arlstotle; these three correspond (roughly) to the Greek words aletheia, logos and on.
Most attempts to explicate these notions and their relationship have taken as paradig-
malic the “eternal” sentences of mathematics (such as “2+4 2 = 4”), whose “meaning” is a
truth value that is independent of any context in which the sentence might be uttered. But

It is impossible o “define” the experience af lumirosity. But pechaps it might be some belp Lo say that
it tefers to the Bickering of beings between presence and non-presence. On the other hand, Lhis may be an
example of something which really cannot be said.

Truth and Meaning 23

euch sentences are exceedingly rare in “earthly”™ discourse, where meanings can be far more
complex than just “true” or “false,” and where context has a profound effect upon meaning.

In his essay “On the Essence of Truth™ (8], Heidegger criticizes semantic theories that
are based ou the so-called “Correspondence Theory of Trath™:

“Truth™ is not a feature of correct propositions which are asserted of an “object”
by a human “subject™ and then “are valid” somewhere, in what sphere we kaow
not; rather, truth is disclosure of beings through which an openuess essentially
unlolds.

That is, according to the Correspondence Theory, a statement is “true” just in case what
it asserts is a fact abont the world. Although the assertion is made by a (human) subject
about some object, the true stateinents themselves are ideal forms in a Platonic realm that
is only dimly perceived by humans. lustead of this, Heidegger says that truth is a process
of unfolding, of disclosure. That is, [6],

The essence of being is physis [i.e., appearing]. ... Appearing makes manifest. Al-
ready we know then that being, appearing, causes to emerge from concealment.
Since the essent” as such fs, it places itself in and stands in ¢nconceslment,
aletheia. ... The Greek essence of truth is possible only in one with the Greek
essence of being as physis. On the strength of the unique and essentjal relation-
ship between physis and alefheia, Lthe Greeks would have said: The essent is true
insofar as it is. The true as snch is essent. This means: The power that manifests
itself stands in unconcealment, In showing itseif, the unconcealed as guch comes
to stand. Truth as un-concealment is not an appendage to being.

This is a radically different notion of truth from that which we find in logic or empirical
science, It has nothing to do with operations of measurement or of verification, carried out
by some human subject. Rather, it has Lo do with authentic presence, with the power of
beings to emerge from the nothing. This approach to truth and being does not presuppose
a knowing subject, and does not reduce beings to objects of knowledge; for Heidegger and
the ancient Greeks, being and truth are pre-conceptual.

It seems clear that from this perspective. "meaning” is not an “object,” whether as part
of some formal causal theory, as an ahstract logical inlention, or as some set-theoretic entity,
The {ollowing may provide some reference poiuts in a search to understand our alternative
sense of “meaning”™

1. Meaning is ontological. All experience is inextricably bound up with Being and with
beings, i.e., with laminous appearance. [n particular, meaning arises through openness
to being, or as Heidegger says. “The essence of truth is freedom” [8].

2. Meaning is dialectical Meaning is only disclosed through engagement with beingg,
through uncertainty and questioning. through making mistakes, exploring oppositions,
and seeking roots {for some further discussion of the development of meaning, see [5];
for more on errar, see [4]}.

"The word “esent® was made up by Lhe translator Ralplh Manleim to iranslate Heidegger’s made-np
word “Seiende,” which (roughly speaking) means “something that exists,” an “existent.” In this paper, [
have mostly used the word “being” for Lhis.

24 Truth and Mearing

3. Meaning is historical. Because meaning is dialectical, it only emerges through time,
through the accumulation of questionings, encounters and revealingg, in the context of
a tradition or lineage (see [5] for some related discussion}.

Interestingly enough, recent efforts to extend formal semantics beyond mathematics and
science, for example to natural languages, can be seen as embodying (diluted versions of)
similar prnciples. In particular, recent work in philosophy and linguistics has proposed new
formalisms for complex meanings that can vary with context, and can model discourse and
other interactions. Examples include the work of Montague, using intensional logic [12], work
of Barwise, Perry and others on “situation semantics” {1}, of Strachey and Scott |17, 18] on
“denotational” semantics, and many other formalisms developed for the semantics of pro-
gramming languages. But all these theories posit abstracl entities, such as “intentions,”
“situations” or “denotations” that are quite remote from the human experience of meaning-
fulness, and it is not clear that they can tell us anything important about what it means to
be human In particular, they do not deal with truth as the unconcealment of beings.

On theother hand, it seems clear that these advances are technically useful. For example,
they may belp us to write programs that are more accurate, more general, more efficient, and
more reussble; they may also help us to write programs that can help us in programming.
They may even some day lead to machines that can understand and speak the sort of
utilitarian languages of which Carnap would approve.

5 Where are we?
The Tractatus {21] concludes with the following mysterious proposition,
What we cannot speak about we must pass over in silence.

which is pechaps intended as a summary of Wittgenstein’s arguraents that the meaning of
a language cannot be expressed in the language itself.

In a sense, this whole paper has been ahout that which cannot be said. We first pre-
sented arguments against Carnap’s narrowly dogmatic “logical syntax” and his rejection of
Heidegger as nonsense. While accepting that a line of the kind that Carnap wants to draw
can in fact be drawn, we agreed with Wittgenstein that all the most impaortant things Lie
on what Carnap would regard as the wrong side of it. On the other hand, I cannot agree
with Witigenstein that we must remain silent ahout these things. Even though they may
not make strict logical sense, they are too important not to bring into the open through
dialogue.

As an illustration, we tried to explore Heidegger’s “nothing” and why it might he prior
to negation, with some help from the later Witigenstein and Buddbist philosophy. This also
perhaps gave some insight into the foundations of logic. We next tried to follow Heidegger’s
approach to truth, beginning with Lis rejection of the Correspondence Principle, and then
moving on tc physts and aletheis, whicl reveal a completely different perspective from that
of formal semantics. We concluded with some pointers toward the meaning of meaning,
followed by a short summary of soine recent work in formal semantics.

But how does ali this relate to computing?

I think we must conclude that the techniques of computer science, such as formal se-
mantics, logic, and even simutation, cannot tell us the meanings of computer systems, in the

Truth and Meaning 25

broad human sense of “meaning”. This becomes an issue especially for so-called “embedded
compnrier systems™. For exampie, consider the guestion of what the Star Wars weapons
system really means: is it a defense system, as its proponents tend to claim, or is it really an
offensive system, intended to provide some protection after a first strike has been launched?
Such a question cannot be answered without a carefut consideration of social and political
factors, as well as a careful assessment of technical capabilities. To remain silent on such
issnes is to invite manjpulation, or even tyranny.

To address such questions, it is not necessary to be “an expert,” that is, to have every-
thing already worked out. Indeed, it is not even desirable, because genuine meaning only
arises throngh uncertainty and questioniug, even through confusion and error. It is necessary
to enter into a dialogue in order for truth to emerge from concealment.

Stmilar considerations hold for many less dramatic and more ordinary situations. For
example, suppose that we are part of a team that is producing a large business system, and
one day the customer tells us of an wmexpected change in the tax laws, which it turns out wili
require keeping much more data than had previously been anticipated; unfortunately, this
means that the system will have to run on differens hardware, because the old requirements
led to choosing hardware that cannot handle so much data. The customer has trouble
uuderstanding why his system will now cost more, and threatens to sue. The head of the
company threatens to counter-sue. Some team members panic and consider quitting.

Is there any way that formal semantics can save the day? No, there is not. We will have
to negotiate. Of course, formal semantics might play some role, for example, in revising the
specifications, but the real meaning of this situation is 2 human one, involving a conflict of
interests between the company and its customer.

Numerous other examples could he given. There are many aesthetic decisions to be made
in programming. These are nat without ireaning. If a program is elegantly designed and
coded, then it may be easier to debug, maintain, and reuse.

Also, the members aof a programming team have to work together, and the project will
only prosper if there is a spirit of {friendly cooperation, rather than, say, envy, bitterness,
or competition. Formal semantics might be used to specily a component, but anger could
cause someone Lo write it a particularly obscure way.

In ail such situations, it is vital to understand the difference between issves that can
be resolved by appeal to formal semantics {e.g., “is this code right?”) and issues which
capnot (e.g., “is this code elegant?). and it is vital to approach each kind of meaning in
an appropriate way. | would like to think that the philosophy of Witigenstein, Heidegger,
and the Buddhists might be some help in this regard, and I have tried to explain how this
might be so. But really. common sense is likely te be more valuable than philosophy here,
unless perhaps some antidote is needed against previous large doses of positivistic or analytic
philosophy. Moreaver, even this would require thinking about things that are difficult or even
impossible to say clearly, So I do not imagine that I have done more than provide a few
pointers for those who may want to pursue such issues further, and I hope that the reader
will take this paper in that light, and will enjoy looking into some of the original source
material, and thinking things through on his/lher own.

Acknowledgements

1 would like to thank my wife Kathleen and my son Healfdene for reading through several
drafts of Lhis paper and providing mauy helpful comments and conversations. 1 would also

26

Truth and Meaning

like to thank both the Naropa Institute in Boulder, Colorado, and the Center for the Study
of Language and Information at Stanford University for providing stimulating environments
in which to think about the kind of issue discussed here.

References

[1] Jon Barwise and John Perry. Situations and Atlitudes, MIT Press, 1983

{2] Rafael Capurro. Informatics and hermeneutics: Some criticisms of the Winograd /Flores
view of computer-based information systems. In Sofiware Development and Reslity
Construction. Springer, 1990.

[3] Rudelph Carnap. The overcoming of metaphysics through logical an alysis of language.
In Michael Murray. editor, Heidegger and Modern Philosophy. Yale University Press,
1978. Original in Erkenninis 2, 1931; translation by Arthur Pap.

[4] Joseph Goguen. The denial of error, In Reinhard Budde, Christiane Floyd, Reinhard
Keil-Slawik, and Heinz Ziillighoven, editors, Software Development and Reality Con-
struction, Springer, 1990.

[5] Joseph Goguen. Hermeneutics and path. In Reinhard Budde, Christiane Floyd, Rein-
hard Keil-Slawik, and Heinz Ziillighoven, editors, Seftware Development and Reality
Construction. Springer, 1990.

[6] Martin Heidegger. An Introduction io Metaphysics. Yale University Press, 1959. Trans-
lation by Ralph Manheim; original from 1935.

[7] Martin Heidegger. Bring and Time. Rlackwell, 1962, Translated by John Macquarrie
and E¢ward Robinson [rom Sein und Zeit, Niemeyer, 1927.

[8] Martin Heidegger. On the essence of truth. In Basic Writings, pages 113-141. Harper
and Row, 1977. Translated by David Krell; original from 1930.

[9] Martin Heidegger. The origin of the work of art. In Basic Writings, pages 149-187.
Harper and Row, 1977, Translated by David Krell; original from 1936.

[10] Martin Heidegger. What is metaphysics? In Basic Writings, pages 91—116. Harper and
Row, 1977. Transiated by David Krell; origiual from 1929,

[11] Allan Janik and Stephen Toulmin. Wittgenstein’s Vienna. Simon and Schuster, 1973.
[12] Richard Montague. Formal Philosophy: Seclccled Papers of Richard Montague. Yale
University Press, 1974. Edited and with an introduction by Richard Thomason.

[13] Michael Murray, editor. Heidegger and Madern Philosophy. Yale University Press, 1978.

[14] Keiji Nishitani. Religion and Nothingness. University of California Press, 1982,
[15) Gearge Orwell. Nineteen Eighty-Four. Penguin, 1989. First Edition published by Martin

(16}

Secker and Warburg, 1949.

Richard Palmer. Hermeneutics. Norlhwestern University Press, 1969.

Truth and Meaning 27

[17] Dana Scott and Christopher Strachey. Towards a mathematical semantics for computer
languages. lu Proceedings, 2ist Symposium on Computers and Aufomata, pages 14-46.
Polytechaic Institute of Brooklyn, 1971. Also Technical Morograph PRG 6, Oxford
University, Programming Research Group.

[18) Joseph Stoy. Denotational Semantics of Programmiing Languages: The Scott-Strachey
Approach to Progremming Language Theory. MIT Press, 1877,

[19) Chégyam Trungpa The Myth of Freedom. Shambhala Press, 1876,

[20] Terry Winogzad and Fernando Flores. Understanding Cemputers and Cognition.
Addison-Wesley, 1987.

[21] Lndwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul,
1922. English translation by D.F. Pears and B.F. McGuinness, with an Introduction
by Bertrand Russell; original German edition in Annalen der Naturphilosophie, 1921,

{22] Ludwig Wittgenstein. Philosophical [nvestigations. Macmillan, 1968. English transla-
tion of the Third Edition by G.E.M. Anscombe,

[23] Ludwig Wittgenstein. On [{eidegger on Being and Dread. In Michael Murray, edi-
tor, Heidegger and Modern Philosophy. Yale University Press, 1878. Translation and
commentary by Michae] Murray. The complete German text first appeared as “Zu Hej-
degger™ in Ludwig Wiligenstein und der Wiener Kreis: Gespriche, aufgereichnel von
Friednich Waismann, 1967,

Hermeneutics and Path

Joseph A. Goguen

1 Introduction

Hermenentics is the study of interpretation, particularly the interpretation of linguistic texts,
but also of human experience in general, since this can be seen as both “textual” and
“linguistic” in appropriately broad senses of these words.

The works of Heidegger |5, Gadainer [3] and others! say many interesting things abont
the nature ol interpretation and its philosophical implications, but they contain very little for
the persor who wants to learn how to do interpretation better, or for Lthe person who waats to
know how to teach others how to do it; the prectical dimension is missing from this tradition.
There is a striking difference between philoscphy, which is content to make distinctions and
debate issues, and a path which provides practices and guidelines for practice, constituting
a way forward which is nevertheless based on acknowledging where we are.

Interpretation is 2 demanding discipline, encompassing essentially everything we are and
everything that is. Its practice has the potential to open us up to what we are and what our
world is. What is missing is a set of guidefines that tell us how to deal with the problems
that inevitahly arise, and other practices that are less involved with conceptual content and
have the possibility of sharpening our general mindfulness and awareness.

Thie short paper suggests that perhaps Buddhism, and in particular Mahayana Bud-
dhism, can supply this missing practical element, (The word “mahayarta™ means “great
path” in Sanskrit, and describes the tradition from which Zen and Tibetan Buddhism have
sprung, among others.) The result is that the activity of hermenentics, that is, of interpret-
ing, can also be a path, by iuterpreting the term “hermeneutics” sufficiently broadly.

2 The Paramitas

To be a good interpreter, [believe that it kelps to be a “good person™ in roughly the same
sense expressed in Buddhism by the “six paramitas.” The word paramita means “other
shore” in Sanskrit, and refers to action which is not seifish, and which thus transcends this
shore of the river of confusion and neurosis. Some hint of this may perhaps be glimpsed in
the following brief characterizations, which have been specialized to the interpretation of a
text which you should think of as coming from your own time and place:

1. Dana, which means generasity in Sanskrit, is the joy of discovering that you don't have
to impase your own conceptions on the text, that you can afford to be open to it, that
you can give up your concepiual (and preconceptual) territory.

2. Sila, which means discipline or morality, is that you don’t have to make any special
effort, you already have (whal is called in ethnomethodology - see [12]) “member’s

"Palmer [10) gives a relatively accessible summary of Lhis tradition; see also [1].

28

Hermeneutics and Path 29

tompetence™: you are sufficiently grouuded in your own tradition and in that of the
text to begin work on it, and you are inspired to do so. There is no need for dogma,
and you can work with what is actually there.

3. Ksanti, or patience, is that you dont have to “succeed,” i.e, to satisfy your own,
or anybody else’s, expectations about the interpretation; you can therefore go at the
speed which is proper to the task, and not worry about whetber what you discover will
be “acceptable”.

4. Virya, or energy, is to work with what is given, with what you are and what the text
is (including the whole context of the text and of yourself}; you completely accept the
tradition of the text, and then you work [rom there, without, however, being bound
by ‘conventional wisdom.' You can actunally take delight and inspiration ir whatever
contradictions and difficulties may arise.

5. Dhyana, chan [in Chinese], zen [in Japanese], or meditative awareness, is to be com-
pletely absorbed in the text, without distingnishing between yourself and it, but being
fully aware of the environment of the text and of yourself. Your horizon merges with
that of the text; or perhaps there is no horizon, that is, no center and no fringe.

6. Prajna, or transcendental knowledge, is the precision of discriminatiug awareness,
which is willing and able to recognize and to cut through your preconteptions, as
well as those in the text; you can learn from mistakes without worrying about ability
or inability, superiority or inferiority. This is “stable awareness” rather than confused
awareness.

These characterizations were obtained by combining my interpretation of Trupgpa Rin-
poche’s treatment of the six paramitas in {11] with my interpretations of Heidegger, Gadamer
and others. These aspects of interpretation (or of meditation) do not necessarily arise in
strict sequential order, but there is still a sense in which they build on one ancther, so that
prajna is the fruitioa of the others.

3 Confusion

The word “confusion is used here in a somewhat technical sense, referring to mind that is
not characterized by the paramitas. This is our ordinary confased mind, which sometimes
mislays pens and papers, and is often misled by its own hopes and fears.

It is important to note that non-confused mind arises by transcending confused mind;
clatity does not come to us from some separate pure realm of its own. It arises from accepting
what actually happens to us, and working with it as it is, rather than as we wish it were,
As Heidegger [5] says.

when something ready-to-hand is found missing. though its everyday presence
kas been so obvious that we have never taken any notice of it, this makes a
break in those referential contexts in which circumscription discovers. Cur cir-
cumscription comes up against emptiness, and now sees for the first time what
the missing article was ready-to-hand with, and what it was ready-to-hand for.
The environment announces itself afresh ... {and] is thus lit up.

30 Hermeneutics and Path

In textual interpretation, this has a very practical meaning: the feelinge of confusion,
attraction, or aversion which we experience while reading a text, while not necessarily reliahle
in themselves, are the energy that we have for working with the text; they are the breaks in
the seemingly seamless seas of meanings that can help us get deeper into the world of the
text.

4 Hermeneutics as Path

Without an intimate awareness of how one’s own mind works, especially how one's emotional
and conceptnal haggage get in the way of seeing things as they are, it is difficult to transcend
one’s confusion and actually use it in textual interpretation. Such an intimate awareness
of the confused functioning of mind is difficult to obtain, and according to most Buddhist
traditions, the practice of meditation is the most effective way forward.

Indeed, most Buddhist teachers insist that it is necessary to practice meditation in order
for paramita practice to be meaningful, because it is necessary to develop the gnalities
of “mindfulness” and “awareness” first. This kind of meditation practice does not aim
to produce either a hypnotic trance state, or to ¢ontrol the restlessness of mind; it is not
concentration. Rather, mindfulness-awareness meditation takes as its subject ,omething very
simple and natural, such as breath. Mindfulness is attention to what is actually there, “one
pointed,” direct and precise. Awareness is the context, the space, within which mindfulness
happens. This is not at all a matter of calculating or of grasping for meaning. As Trungpa
Rinpoche [11] says,

Mindfulness provides some ground, some room for recognition of aggression, pas-
gion and =0 on. Mindfulness provides the topic or the terms or the words, and
awarenest is the grammar which goes around and correctly locates the terms.
Havizg experienced the precision of mindfulness, we might ask the question of
ourselves, “What should I do with that? What can I do next?™ And awareness
reassures us that we do not really have to do anything with it but can leave it in
its own natural place. It is like discovering a heautiful flower in the jungle; shall
we pick the flower and bring it home or shall we let the flower stay in the jungle?
Awareness says leave the flower in the jungle, since it is the natural place for
that plant to grow, So awareness is the willingness not to ¢ling to the discoveries
of mindfulness, and mindfulness is just precision; things are what they are.

Or in the words of Heidegger [G], “we should do nothing, but rather wait.”

In this way, one comes to see the nature of the mind; that is, medjtation is the inter-
pretation of mind. Thus, the path of hermeneutics is the path of meditation. Of course,
Buddhism is concerned with one's whole life, not just with how one interprets texts; but
because one’s life can be viewed as a text, Lthese concerns are quite closely related.

5 Hermeneutics in the Practice of Science

There are many ways that the paramitas might be relevant to the practice of science. Perhaps
the most obvious is also the most persenal: the scientist might practice meditation, and hence
change the way he relates to everything, including science. But let us consider something

Hermeneutics and Palh 3

simpler and more direct, reading a scientific text, for example [2], which is the basis for 2
course at Oxford which I have been teaching.

As it happens, Dijkstra has not been one of my favorite authors; so the first paramita,
dara or generosity, has a particularly pointed meaning here: I should drop my prejudices and
open up to the text; insofar as I succeed in this, my experieace will both be more pleasant
and more accurate; just that realization brings a sense of relie[. Of course, I must also be
aware of wbat | already know and do not know as] work with the text, and this i stfg or
discipline. Kgarti or patience means not only that ! should be willing to work through any
technical difficulties that may arise as ! read, but also that I don’t have to compete with the
author,

Virya or energy arises as I actually do all this; if I've got the first three paramitas right,
there will be ne particular pain or frustration to this process, but rather it will be natural
and self-energizing. This leads to dhyana, awareness, in which I ean be authentically engaged
with the text and its context, including other related texts and my own being. This does
not mean that I must accept everything the author says; on the contrary, I am now in a
position to appreciate it properly and fully, both its strengths and weaknesses, as well as my
own; this is prafra or discriminating awareness.

And what did I learn? The paper [2] is very concise, clearly and compellingly written,
has excellent examples, and has stoad the test of time (this can be seen by tomparison
with other CACM papers from that year, and also [rom the large literature that [2) has
inspired). However, | was irritated that the author paid no attention to logical foundations
or to model theoretic semantics, and gave na indications of the limitations of his methods;
also, 1 kept wondering how to formulate things more algebraically. Eventually, I discovered
that the issue of foundations is rather subtle (something like infinitary logic, as explored
by Engeler in the 607, is needed), that the model theoretic semantics is awkward, that the
approach works poorly for large programs (since no account is taken of medules or of data
structures), and that category theoretic formulations have already been given {for example,
by Manes and Arbib [9]). Also,] discovered that worry about all of this got in the way of my
appreciating the elegance of the language design, the beauty of the examples, the motivation
in terms of programming style, and the richness of the research that this paper opened up.
So in the end, I learned something about myselfl as well.

In discussing interpretation, we are not talking about discovering some cbjective truth
about a text. Rather, there is a very intimate relationship between the interpreter and
the interpreted, in which each is uncovered to the extent that the enterprise succeeds. As
Heidegger [5} says, “interpretation is uever a presuppositionless grasping of something given
in advance.” Indeed, it is typical that we can learn the most about onrselves from thase
texts, or parts of texts, where we have the strongest reactions.

6 Emptiness and Beyond

Buddhism might perhaps be described as a participatory phenomenological hermeneutics of
mind, leading to the experience (not just the idea) of non-duality between sell and other,
and between mind and body. In contrast, traditional science is a hermeneutics of other,
which already presupposes subject-ob ject duality.

The traditions of meditation and hermeneutics that we have been discusging are not
consistent with this classical version of science, In particular, Heidegger presents a stinging

32 Hermepeutics and Path

critique of the Western metaphysical tradition, including science and technology [8]. Hei-
degger's hermeneutics opposes the idea that there are objects already given in the world,
which are observed by subjects; it opposes the ideas of control and manipulation, whether for
material or intellectual gain; and it opposes our usual idea of idea, a pre-existing intellectnal
structure which we see only dimly. as on the walls of Plato’s cave. Similar views can be
found in Buddhisim.

Both Buddhism and science are complex evolving systems, with no ultimate commit-
ment toany particular dogma, beliel or theory; instead, each is united by its commitment
to particular methods and hy immersion iu its particolar historical tradition. Both are char.
acterized by debate, and by the growth of insight. And contemporary science may even be
developing some appreciation for the inseparability of subject and object. (See [4] for more
discussion along similar lines.)

[n Buddhism, “emptiness,” or shunyaia in Sanskrit, refers to this non-duality of self and
other, that is, of subject and object. These are our two most basic and generic concepts, and
without them, all other concepts are also empty. Shunyata is thus an opposite to Plato’s
doctrine of ideas. But shunyata is not a doctrine of nihilism. Indeed, without concepts, the
world can shine forth more brightly. For if we ask, “Are self and other the same? Or are
they different?” we find that they are neither the same nor different. For in any experience
of self and other as being the same or different, self and other necessarily arise together. As
Hayward [4] says,

as the mutual dependence [of objects] with the perceiver is felt, they shine with
a spacions but self-luminous quality that is at the same time empty of inherent
existence. This luminosity that is beyoud concept is the fullness of shunyata,

Similarly, Heidegger says in “The Origin of the Work of Art” [7], of a Greek temple set in a
vallev, that it

causes [its material] 10 come Jorth for the very first time and to come into the
Open of the work’s world. The stone comes to bear and rest and so first hecomes
stone; metals come to glitter and shimmer, colors to glow, tones to sing, the word
to speak.

7 Colophon

First of all, I thank Vidyadhara, the Venerable Choégyam Trungpa, Rinpoche for whatever
little I knowabout Buddhism. I also thank Prof. Red Burstall of the University of Edinbuargh,
Dr. José Meseguer of SRI Internalional, and my wife Kathleen, for many helpful comments
and conversations, and both Naropa Institute and the Ceuter for the Study of Language and
Information at Stanford University for partial support and for stimulating emvironments.
Special thanks to Dr. Charlotte Linde, from which I learned much of what I know about
discourse analysis and sociolinguistics.

The basic text of this piece was found buried in my computer file system; it was writ-
ten about 1976 for a course on Discourse Analysis that I taught at Naropa Institnte with
Dr. Charlotte Linde. 1t was then lightly edited at SRT in 1988 for distribution at the Confer-
ence on Software Development and Realily Construction, and was put into its present form
at Oxflord in early 1990.

Hermepeutics and Path 33

References

[1] Rafael Capurro. Informatics and hermeneutics: Some criticisms of the Winograd/Flares
view of computer-hased information systems. In Software Development und Reulity
Construction. Springer, 1990.

[2) Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18:453457, 1975.

[3] Hans-Georg Gadamer. Philosophical Hermenentics. University of California Press, 1976.
Translated and edited by David Linge.

[4] Jeremy Hayward. Shifting Worlds, Chenging Minds. Shambhala, 1987,

[5] Martin Heidegger. Being and Time. Blackwell, 1962, Translated by John Macquarrie
and Edward Robinson from Sein und Zeil, Niemeyer, 1927,

[6] Martin Heidegger. Déscourse on Thinking. Ilarper and Row, 1966. Translated by John
Anderson and Hans Freud from Gelnssenheif. Neske, 1959,

[7] Macrtin Heidegger. Poelry, Language, Thought. Harper and Row, 1971, Translations by
Albert Hofstadter.

[8] Martin Heidegger. The Question Concerning Technology end other Essays. Harper and
Row, 1977. Translations by William Lovite.

[9] Ernest Manes and Michael Arbib. Algebrnic Appraoches lo Program Semantics.
Springer, 1986.

[19) Richard Palmer. Hermeneutics. Northwestern University Press, 1969,
[11) Chogyam Trungpa. The Myih of Freedom. Shambhala Press, 1976.

[12] Roy Turmer, editor. Ethnomethodology. Penguin, 1874.

