MAINTAINING CONSISTENCY IN
DISTRIBUTED DATABASES

by
AW, Roscoe

Technical Monograph PRG-87
ISBN 0-902928-66-X

Qctober 1990

Oxdord University Computing Lglﬂrator.y

Programming Research Group

gxflilee()}?;?iQD ‘ £000 ,..’,._ i CATE
Eagaad " | 25 FEB 2002
» el iraaniy
OXFoR L
i

303397014V

R TGP RSN AL)

Copyright © 1990 A.W. Roscoe

Odord University Computing Laboratory
Programming Research Group

11 Keble Road

Oxdord OX1 3QD

Esgland

Electronic mail: awr®prg.oxford.ac.uk (JANET)

Maintaining Consistency in
Distributed Databases applications

A.W. Roscoe*

Abstract

We introduce, and prove corract, two novel algorithms for preserving a form
of consistency in distributed databases arranged as riugs. The first uses as
its model databases with a fixed number of fields with updates which assign
known constant values to one of these ‘slots’. The proof of this relies on a
moderately complex combinatorial argument. The second algorithm, which
can be viewed as generalising the first, takes a wider view and simply as
sumes that the set of updates have an operation analogous to the conjugation
of group theory: given any u, v we can find u¥ such that #; v = vw; u¥, which
satisfies some natural algebraic properties. lts proof relies on an algebraic
argument hased on partial orders, which may well have applicalions outside
databases, for example in the field of ‘true concurrency’. We indicate how
the algorithm can be generalised to a number of other network topologies,
and give guidelines for further generalisations. If combined with timestamp-
ing, the algorithms provide highly concurrent methods of ensuring that the
sequence of updates execnted at all nodes corresponds to the order implied
by these timestamps.

*The author gratefully acknowledges thal the work reported in this paper was
supported by the U.S. Office of Naval Research under grant NOOG14-87-G-0242.

CONTENTS

Contents

1 Introduction

2 Concurrent simple updates

3 A group-like algebra

4 Algorithm 2: algebraic updates

4.1 Varants of the algorithm; timestamping

5 More about conjugate algebras

6 Non-ring topologies

6.1 Joining rings together 0 0oL

6.2 Tree networks . .
6.3 General networks

7 Prospects

12

20
39

41

490
49
50
52

53

1 INTRGDUCTION 1

1 Introduction

Distributed databases, where multiple copies of some data are kept in differ-
ent locations, occur in a wide range of applications, varying from multiple
copies of a cache memory in shated-variable paralle] computers, through
networks of workstations sharing some commeon information, to widely dis-
tributed applications such as antomated teller machines. The multiple copies
may be kept for speed of access, for security (i.e., process P does not lose
vital data if process Q goes down), or a combination of the two.

Qur conceptual model will be of a number of processes with separate
memory, ail seeking to hold copies of the same database. The database is
changed via updates, which are circulated around the network and executed
by the processes (presumably as they arrive at each one).

An obvious problerm arises from the need to keep the various copies of a
piece of data consistent: if several processors decide at more-or-less the same
time to update it, how can we ensure that all processors, at least ultimately,
agree on its value? Given the principles (i) that any process can update any
location, and (ii} that each process should be allowed to execute, locally, its
own updates immediately (tke denial of which would lead to some interesting
programming problems), it seems inevitable that there will be times when
the various copies will not agree. We will seek 2 weaker form of consistency,
namely that whenever there are no updates circulating which affect some
portion of the database, then all copies of this portion are the same. Thus
if the network is quicscent (i.e., no updates at all are queued or circulating)
then all copies of the database are equal. A secondary but no less necessary
requirement is that, if no new updates are inserted after auy time, then the
netwaork will become quiescent in a reasonable period of time.

The author’s work on this topic began iu 1983 when he encountered a
commercial 6olution to this problem. A computer manufacturer was intre-
ducing a system to manage networked workstations, part of which required
the consistency of copies of a database stored in each node, In broad outline,
their solution was to arrange the workstations in a ring. (This, histerically,
is the reason why most of the author’s work has been based on rings, We
will see in the Section 6 that his choice of a ring topology is by no means
essential.) Their ring contains exactly one ‘token’, which either carries a
single vpdate round all the nodes or is emipty. Thus a given node can only
insert an npdate into the ring (for execation by the other processors) when
it can acquire the token, empty. Each node is allowed to execute its own
updates immediately they arise, and these are then queued for insertion into
the ring. In order to avoid the inconsistencies that potentially arise in the

1 INTRODUCTION 2

manner stated above, it was necessary to restrict the model of updates to the
assignment of a constant value to a single slot (i.e., store location). When
an apdate arrives from the ring which clashes with one(s) queued locally
{i.e., is an assignment to the same slot}, these are removed from the queue
and the wewly arrived one is executed.

This system transparently achieves the desired rorrectness, but the fact
that only one update can circulate at a time is potentially very limiting.
Imagine scaling this system: if there are N processes, then the total number
of updates generated is likely to grow proportionately with ¥, but since the
time for an npdate to circulate will also grow with ¥, the throughput will
be proportional to 1/N.

The algorithm presented in Section 2 was devised at that time, bnt the
correctness proof was not completed, and nor was the algorithm written
up. The author’s interest was revived recently when looking for natural
problems for combining 7 {a epecification language for state-based systems
such as databases) and CSP (a language and theory for reasoning about
distributed systems). The application of these methods to the problem may
be reported later. He then completed the proof given in Section 2, and
produced the generalisation presented in Section 4.

The generalised algorithm and ite proof are based on an algebra with an
associative sequential composition operator u; v and a ‘conjugation” operator
u' such that v;u¥ = v;u. By-prodncts of this work are two interesting
algebraic theory, which we term ‘conjugate algebras’ and ‘box algebras'. The
first of these is a natural generalisation of groups, and the second (though
distovered independently)} bears a close resemblance to Stark’s [S] ‘algebra
of residuals’. The proof of the generalised algorithm depends on the {new)
result that it is possible to capture the structure of any finite partial order
naturally within this second algebra. It seems possihle that this work might
find further applications in the field of ‘true concnrrency’, where process
histories come with a partial order describing the cansal dependence between
events — interestingly it is precisely this order which we have to characterise
algebraically to prove our algorithm. This was, in any case, the field which
motivated Stark’s work.

Several other algorithms for handling the database problem we address
are based on the idea of timestamping: each update is marked with time
when it was generated and these times are used by nodes to piece together
the correct order to execute updates. Timestamping is not essential in our
framework, but we show at the end of Section 4 how a priority mechanism
based on timestamps can be used to achieve attractive results.

In Section 5 we investigate some more properties of conjugate algebras

2 CONCURRENT SIMPLE UPDATES 3

and give some non-trivial examples.

In Section § we address the gquestion of how our algorithms might be
adapted to non-ring topologies. We show that they readily extend to net-
works arranged either as trees or as multiple rings interconnected as a tree.
There is some discussion of how the algebraic constructions used in the proof
of the earlier algorithms might allow us to derive algorithms for more general
networks.

Finally, in Section 7, we point to a few topics that might be worthy of
further work.

2 Concurrent simple updates

The algorithm desctibed in the introduction can be modified in a fairly
straightforward way to allow an arhitrary number of updates to circulate
concutrently without affecting correctness. As we will find, what it not
straightforward is verifying that this is in fact the case.

The modified algorithm - which will be referred to as Algorithm ! -
replaces the token ring with a more-or-less arhitrary no-overtaking risg,
which can allow as many updates to circulate as it pleases, but must neverlet
one update overtake another. The nodes on the ring are assigned arbitrary
but unigque priorities. The effect of giving a vode higher priority is that
its updates will be slightly more likely to be execnted across the network:
there may be some external reason for ordering the processes, but if zot
they must be prioritised anyway. The priority of node N; will be denoted
s and p; > p; will mean that N; has higher priority than N;.

As in the case of the algorithm described in the introduction, we will
suppose that each node N; has a queue @Q; of updates, executed locally
but not yet entered into the riug. If desired, these can now be dispensed
with, since all that would be required would be for N; to 'generate’ an
extra place actually on the ring within itselfl: whether the Q:’s are used
will depend on hardware configurations and efficiency analysis. We have
retained the possibility of them in our algorithms to demonstrate that, if
properly managed, they do not damage correctness.

Fach node N; will also have a queue E;, which will contain a list of all
updates which it has inserted into the ring and is expeeting back. This is
not dispensable.

As in the algorithm described in the introduction, onr model of updates
will be the assignment of constant values to single slots. Such an update
u can thus be written z := ¢. Notice that, given updates ¥ = z := ¢ and

2 CONCURRENT SIMPLE UPDATES 4

v = 2z’ := ¢, we either have u; v = v; u (when z and z' are distinct), or have
wo =1

We describe the algorithm in terms of the actions of an individual node
X:. (The actions within a node are assumed to he atomic, in that, once one
is started, it is completed without any others overlapping it.}

» If N; generates an update u, then u is executed locally and w is inserted
at the tail of Q.

o If @; is nonempty and there is a space availahle on the ring, then the
head of ¢, is removed and inserted into the ring, and into the tail of
E;

If an npdate u returns which was originated by N;, then it is removed
from the ring, and from the head of E;.!

¢ If an update u arrives that originated at some other N; and such
that there is no clashing update (one to the same slot) in E;, then u
is executed locally and any clashing updates in (; are deleted. u is
passed on round the ring.

« If an update u armrives that originated at N; with p; < p;, and E;
contains one(s) that clash with it, then u ig nejther executed locally,
nor is it passed round the ring. We say that it is stopped.

If an update u arrives that originated at N; with p; > p;, and E;
contains ones that clash with it, then these are removed from E; (they
are concefled}, u is executed locally and any clashing updates in Q;
are removed. u is passed on round the ring.

Clearly, we are using the regime of stopping updates and cancelling their
expected-back versions to maintain consistency in the presence of multiple
updates to the same &lot.

If we want to implement the above algorithm (and the second algorithm
described later) it iz clear that the update transported round the ring needs
to carry with it not only the operator which updates the state, but also a

'It js by no means obviona, given the details of this algerithm, that w will still be in
E, and, if it ia, whelher it will be at the head. Until we have established that the above
statement actually makes sense we will say Lhai w is removed from the ring only if it is
still expected back and, if 80, is removed from £ as well. Notice that this leaves the formal
pamibility that an update mighl pass ils origin and circle the ring indefinitely. However,
it will transpire from our later analysis of this algorithm that u will indeed be at the head
of E,, 8o that the formulation above is correct.

2 CONCURRENT SIMPLE UPDATES 5

vnique identifier from which a node ¢an identify the priority of the update,
and tel] whether it was one which the node itself generated. (The paint is
that there may be many functionally identical updates circulating at any
one time, which for our purposes need to be distinguished.) In describing
our algorithms we will describe only what happens to the fanctional part of
an update, but the reader should bear in mind that they will always cary
this unique identifier with them as well.

In order to get reasonahle behaviour of this system we have to make
some stipulations about the behaviour of the ring itself.

¢ lt must have bounded capacity. This is to ensure that no update can
malke an infinite amount of progress without getting all the way round.

¢ 1t does not indefinitely stop any update within it from makirg progress.
(This could conceivably happen either because the system can dead-
lock, or becaunse it can favour one section of the ring in preference to
others.)

» Provided enough items are removed from it, the ring will not indefi-
nitely delay accepting any update which a node wishes to insert. This
it easily achieved by, for example, reserving at ieast one space in the
ring specifically for updates generated by each node.

There are numerous methods of achieving these goals, for example a syr-
chronously clocked ring where all places (empty or full) move round in lock-
step, or a smal modification of the ring described in [R].

The chief aim of the rest of this section will be to prove the following
result.

THEOREM 2.1 Stppose initially all copies of the database are identical.
Under Algorithm 1, whenever there is no current update (one in the ring or
any €;)} to a given slot, all nodes agree on the value in that slot. Furthermore,
if after a given time ro further updates are generated for a slot, then by some
later time there will be no current update for it. 1

Our assumptions about the ring are not necessary to prove the first part
of this result, but clearly they will be vital in establishing the second.

From here on it will be useful to make three simplifying assumptions.
First, that there is actually only one slot (so that all wpdates clash), second,
that there are no @;'s, and finally, that no N; emits more than one npdate in
its history. We will justify each of these in turn. In understanding these and
later argumnents it might be helpful to bear in mind that we are never, in this
paper, interested in what coused a particular update 1o be generated. Thus,

2 CONCURRENT SIMPLE UPDATES 6

if we alter the sequence of updates executed at a given node, we can ignore
the possibility that this might change the subsequent updates it generates.
All we interested in doing is proving our consistency results in the presence
of any possible sequence of updates arising from each node.

The aseumptions we have made abont the ring mechanism mmean that
updates to one slot cannot prevent those to another getting round the ring.
Any sequence of updates to a given slot that would be possible in the pres-
ence of these to other slots is equally possible without them, and tice versa.
Por the algorithm we have sel up treals updates 10 different slots indepen-
dently: they never stop, cancel or otherwise affect each vther. Thus, to prove
the above theorem, it will be encugh to prove that it holds if updates are
reatricted to a single slol. Notice that, under this assumption, the network
is gqniescent exactly when there are no current updates for the single slot.

The effect of any sequence of updates in the algorithm with the Q,'s is,
for onr purposes, equivalent to one without them. This sequence is the one
where each node executes its owu updates only when it they are inserted
into the ring, and these events only occur for updates which, in the original
sequence, were not removed from @; before insertion. Notice that this does
not affect the contents of the E; or the updates that circulate in the ring:
both of these are at every time exactly as they were in the original. This
manipulation affects the short-term behaviour of N;’s copy of the database,
since it is not as np-to-date and may not see some locally generated values.
But it does not affect the long-term behaviour, in the sense that the final
value of each variable will be the same as in the original. For if the last up-
date 4 to be executed in the old sequeuce, at a given node N, was generated
outside &, then this will be executed in the new sequence and there will be
no later local updates executed there since any that were queued up at the
time when t arrives are deleted. Aud if it was geuerated at N then no later
update arrives to delete it and stop it being executed in the new sequence.

Suppose we have proved Theorem 2.1 for systems where each uode is
only allowed to emit one npdate. Snppose further that we have proved {as
we will) (i) that, in this case, any update is stopped if and only if it is
cancelled (i.e., the copy expected back by its originator is) and (ii) that all
stopping and cancelling takes place before an update would otherwise have
returned to ite origin. Notice that the things we are required to prove in
the theorem (for our single-slot system) are all on the assumption that the
number of updates inserted is finite. So suppose that, on a given occasion,
the number of updates inserted by each node is bounded ahove by r, We
will show that this behaviour of the system is modelled by one of the system
where (i) each N; is replaced by r adjacent nodes N;; (1 € 7 < r), limited

2 CONCURRENT SIMPLE UPDATES 7

to one update each, and (ii) the priorities of the N;; are arranged so that, if
i# ¢, then pi, < pyryr if, and only if, p; < pi» (in other words, the priorities
of the N; ; are ‘small perturhations’ of those of the N.).

The N;; are arranged on the ring so that j increases as we proceed
round the ring in the same direction as npdates are transmitied. Ni; is
given the job of transmitting the first update that N; pute into the ring,
N1 the second, and so on for as long as necessary. Since no node in the
original system is ever dealing with more than one update at a time, wecan
model its behaviour by one in the revised system where, at any one time,
the portion of the ring from N;; to N, (inclusive) never contains wore
than one update. Thnoe we will ensure that the previous update to be dealt
with bas left N, ., has been stopped, or has heen removed by its originator,
before we allow another update to be inserted by one of this sequence of
nodes or to enter N;; from the ring?. By doing this, it is clear that we
can regard the handling of an update by one of these sequences as atomic,
and directly model the bebaviour of the original system. Becanse of this
exclusion principle and the order in which they are generated, no update
generated by one member of a sequence N;(,...N;, ever stops or cancels
another. (The two facts (i) and (ii) about stopping aud cancelling stated
above are necessary to establish this.)

If we now regard the eequence of nodes Ny to N, as being, in some
sense, & unit, whose list E; of expected-back updates is those expected by
these in order (lowest index at the head), then the behaviour of the original
system can be modelled directly in the new one. The new system will stop
or cancel updates exactly as the old one did, and furthermore node ¥y, (ie.,
the last in the sequence)} sees exactly the same sequence of npdates as was
seen by N; in the original one. For each update generated by one of the
N;; ie seen there, by coustruction, and any update generated by another
node which enters the sequence will have been stopped by the time it, or
ite ‘ghost?’, reaches N;, if and only if it would have been stopped at N;.
The result for the original system now follows directly from the one we have
assumed for the new one.

*We ate not snggesting that the new ning wonld always enforce these slrange restric-
\ions, only that cach behaviour of the original ring can be madelled by one of this ring
where the restrictions happen 1o be obeyed.

We can think of a stopped npdate as leaving behind a ghost which travels ronnd Lhe
ring mntil it reaches home. or perhaps even longer. This makes sense in & no-overiaking
ring, since by atating that someihing happens before the ghost of o arrives we know Lhat 1
happens before any update that follows w arriven. It seems to be easier Lo state conditiom
like the above in terma of these imaginary ghosts rather than to formulate them accurately
in other ways

2 CONCURRENT SIMPLE UPDATES 8

From now on we will make the three simplifying assumptions. As a
very simple illustration of how the algorithm works, consider the case of a
ring of three nodes, all of which emit their update at the same time {or, at
least, before any other updates reach them). To be specific, assume that,
in the direction of the ring, their priorities are respectively 1,2,3 (3 highest)
and that the updates they emit are u;, u; and uy respectively. In this
experiment, is stopped by Nj, and uy is stopped by Na. uz cancels both
u, and uj, and is the last update seen by all three nodes. Thus they all
agree on the value assigned by uz. One point to note here is that u; is
stopped by a different node than the update that cancels it: in larger rings
the dependencies between the updates that stop and cancel a given npdate
can become long and diffuse. Notice here that, in a symmetrical situation,
the fact that uj has the highest priority has led to it ‘winning’. If, however,
we break the symmetry hy assuming that uy has passed Ny before u; and
t; are simultaneously emitted, we see that u; cancels uz, and N3 stops ug;
but 1y is neither stopped nor cancelled and is, in fact, the last update seen
by all three nodes — and so ‘wins’.

The reader might like to experiment with the algorithm on some slightly
larger rings, nnder various assumptions about the order in which updates are
transmitted. The snbtlety of the way in which the algorithm works should
become clear, as should the important fact that the overall behaviour of the
system is determined purely by the moments at which npdates are inserted
(ot, more precisely, the arrangement of other updates between nodes at the
moment when each is put into the ring}. The no-overtaking property of the
ring means that this completely determines the sequence of updates that
amive at each individual node.

The proof of correctness of the algorithm is broken into three lemmas,
the chief of which (in terms of difficulty, at least) is the first. The statements
of the lemmas are as follows; their proofs follow.

LeMMA 2.2 An opdate is cancelled if and only if it is stopped, and all
stopping and cancelling takes place before an update would have returned
toits origin (i.e., before its ghost does return).

LeEMMA 2.3 If no further updates are inserted after some time, then the
network will eventually reach a quiescent state where (a) no node expects
an update back, and (b) the last event to occur was an update returning to
its origin.

LeuMa 2.4 All nodes, in this gniescent state, agree on the valne carried
by the final update referred to in {b) above,

ProoF OF LEMMA 2.2 We prove this by induction on the number of nodes
with higher priority than (tbe one emitting) a given update. The result is

2 CONCURRENT SIMPLE UPDATES 9

trivial when there are none of these, for the update cannot then be stopped
or cancelled. So suppose it holds of all updates generated by higher-priority
nodes than Ny which emits update ug. For our result it will be enough
to show that (i) if up is stopped before ita return to Ny then it is cancelled
before its ghost returns and (ii) if tp is cancelled at ¥, before up or its ghost
returns, then ug is in fact stopped before its return. These are suffident
because if u; is stopped or cancelled then one of these must occur before it
returns {or else it returns to Ny which is expecting it, and it is removed);
the above results then mean that they both do.

Suppose, for contradiction to the first part, that up is stopped at Ny
before it retums to Np, but is not cancelled by the required time. Since
N\ has higher priority than Np, we know by induction that uy (the update
generated by Ny} is no longer expected back at ¥, after it or its ghost
returns. It follows that #; and up must be in the relation ugflu;, which
we define to mean that meither (or their ghost, if previously stopped) has
passed the other’s origin before the latter one was emitted. (For otherwise
N; could not have stopped up.) Since Ny has higher priority tban Ny, if
uy Were to reach Np it would cancel ug and satisfy the requirement of the
Lemma. Thus we may assume that u, is in its torn stopped by N3 (of yet
higher priority) such that u;||uz. (The fact that, when an update v of higher
priority than ug is stopped at a node expecting w back, then w||v, is a simple
consequence of our inductive hypothesis. We will take the fact as read in
the rest of this construction.) vz may (i) reach Ny or (i} be stopped before
it gets there by a node N3 which is expecting an update u3 back. The same
two possibilities apply to ua in the second case, and it is clear that we can
go on constructing u, ard N, of increasing priority closer and closer to ¥g
as long as option (ii} applies. Thus, eventually, option (i) applies for some
tig. [t is easy to see that this u, artives at Ny before ug's ghost, so since we
know (because we are assuming to is not cancelled on time) that u; does
not cancel up, it must actually reach Ny before ugy is emitted, or in other
words it is ahead of ug.

In fact, we will demonstrate that this situation is impossible, which will
complete the proof of this half of the main induction.

Let up be as above. It should not be hard to see that, for ¢ < k=1, if 1,
is ahead of u;;) then it is also ahead of u;. In fact, uy cannot he ahead of
ug_1, since we would then have that (i) ¥, stops uy_q and (ii}, by induction,
that ug either returns to N (removing its expectation) or is cancelled befare
its ghost would have returned: either of these lead to a contradiction to
being ahead of u3_y. To be zpecific let 0 € s < k — 1 be maximal so that
uy is ahead of u,.

2 CONCURRENT SIMPLE UPDATES 10

Suppose in general we have, so far, created a sequence (inevitably in
ascending priority} of updates ug,. .., ty,2rq1, .. - Up—1, 2 with © 2 0, and
$€ {r,....k — 2} such that:

« In moving round the ring once, Ny, Npyy, ..., Ni appear in sequence.
s Niy, stops u; for all 4,
o uy ie ahead of u,,...,u,, but not of w4y, ... 1.

(This is exactly what we have set up above with r = 0.)

Then we know u, is stopped before it can reach {and cancel before u,
gets there} N,y , by N4, say. The update w1 may or may not be ahead
ol ,4;. Ifitis, define ¥ = k+1. If not, we know that uzy; must be stopped
before it reaches ¥,,;, so we may repeat the construction. We simply go
on iterating until (as must happen eventually) we get uy, which is ahead
of upyy. In general (because of our assumptions and construction) if u is
ahead of v, with s < i < j < ¥ then it is ahead of u;. But, by exactly the
game inductive argument as applied above, u;. cannot be ahead of ugr_;.
Let 8" be maximal (among 8+ 1,... k' —2) such that uy is ahead of u,, and
let r' = 34 1. It is easy to check that the sequence u,.,...,uy and s satisly
the assnmptions we made above, and that ¥ > &.

So this construction can be carried out indefinitely. But there are only a
finite number of nodes, so we have the desired contradiction to the assump-
tion that any u; in our sequence can be ahead of u;. As stated above, this
completes the first half of the main induction, since we have shown that if
ugis stopped before reaching home then it is cancelled within the prescribed
time.

There is a rather similar direct proof of the dual result, namely that if
Y is cancelled before ug or its ghost return, then ug is stopped before this
return. This is not surprising, since in fact it can be shown to follow directly
from it by symmetry, as we argue below,

Now that we have restricted ourselves to one update per node, thereis a
lot of duality in the algorithm. Snppose for a moment that we think of the
ring ¢lots as fixed and the nodes as rotating (in the opposite direction to the
updates). Further suppose that we identify one slot (real or notional) with
each update that will ever be inserted, so that the update actually does fill
that slot when inserted. (There will certainly be at least one consistent view
of the initial arrangement of these slots on the ring to fulfil this.) Essentially
we are thinkiug of an npdate’s ‘ghost’ (referred to above) as existing for
all time when the update itself does not. Now forget which of the two

2 CONCURRENT SIMPLE UPDATES 1

rings (nodes and updates) is which by identifying live updates with updates
expected back by the nodes. It can be seen that the algorithm is completely
symmetrical in terms of the two views (in terms of insertion and removal of
updates), with stopping in one view corresponding to cancelling in the other.
Thus, the fact that we have established the stopping implies cancelling result
for up above means that we get this second half by symmetry.

This completes the proof of Lemma 2.2. []

Proor oF LEMMA 2.3 The only way the network could fail to become
quiescent would be by an update circulating for ever: necessarily after being
cancelled. Lemma 2.2 shows this to be impossible. The ouly other possible
last event other than an update returning home would be some update being
stopped at a node V. This is impossible since it would mean that the update
generated by N had been stopped but will never be cancelled. Exactly the
same argument shows that in the gniescent state there can be no updates
expected back. 1

Proor oF LEmMa 2.4 Suppose the last update u returne to its origin
N, bnt that some other node N’ {which we may assume is, among all such
nodes, the one that minimises the distance to ¥ in the direction of the ring)
sees activity after u has passed it.

The last activity of N’ cannot involve an update generated by any other
node, since (i} if that update is retransmitted then some node nearer ta
N sees it after u, and (i) if it is stopped at N’ then N’ is pecessarily left
expecting its own update back, in contradiction to Lemma 2.3. Thaus it
mnst be an update t', generated by A’ returning home. By what we know
already, neither u nor u’ can be ahead of the other. Since they have both
retnroed to their origins it follows that each has passed the other's origin
while the latter was expecting its own update. But this is imposeible, since
one has higher priority which would mean that one is stopped. |

We have now proved all that was necessary; that quiescence is reached,
that when it occurs all nodes agree on the slot's value, and that all stopping
and cancelling occurs within the necessary time. This, with our earlier
work justifying the simplifying assumptions, establishes the correctness of
the algorithm, or in other words proves Theorem 2.1.

A NOTE ON EFFICIENCY We remarked in describing the earlier algorithm
that its throughput declined as the size of the system increased. This need
not be true of the current system, since each node can at the limit be
receiving and processing updates more-or-less continuonsly however many
nodes there are on the ring; we jnst need to make sure that the ring has
enough elots. Thus the throughput (updates per unit time} is independent

J A GROUP-LIKE ALGEBRA 12

of the numher of nodes. This is perhaps not as good as we might hope,
since more nodes will generate more updates, but this imitation is inherent
in the nodes which can process one update at a time as much as jt is in the
algorithm. A greater criticism of the algorithm might be the high latency
(time from an update entering the network to it completing its trip) inherent
in the ring topology: this is proportional to the number of nodes. This issne
is discussed in more detail in Section 6, where we will see how our algorithms
tan be adapted for non-rings.

3 A group-like algebra

This section can either be read in advance of, or in conjunctior with, Section
4 where a generalised algorithwm is introduced which is based on the theory
developed here.

The algorithm analysed in the previous section had, like its predecessor,
arather restrictive view of an update: a constant assignment to a single slot.
The reason for this was that, as teems inevitablein tbe class of algorithms we
are considering, a pair of updates can reach two nodes in opposite orders. We
have seen that it is possible to resolve this conflict by discarding one of a pair
of clashing updates providing this simple model is followed; unfortunately
if the model of updates is broadened significantly this expedient no longer
works.

In the model database system described in the introductiou, where each
nede has a complete copy of the same database, it is reasonakle to expect
that the model of updates as the assignment of already cornpated constants
will be sufficient in moat cases. The exceptions that occur to the avthor are
(i) where the datahase contains some sort of references hetween variables,
or aliasing, that can be changed by update, (ii) where one does not want to
send the constant values because of their large size or for security, and (iii) in
applications auch as banking, where we would not want only one of a pair of
concurrent transactions (say deposite or withdrawals) to take effect. If one
adopted a model where not every node held all the data, and where a node
might wish to carry out an assignment such as x := 1 + 2z for a variable
it did not hold, then things wounld be diflerent. And it is posaible that
all the nodes actually hold different databases (where the word ‘databases’
might now need to be interpreted very liberally), but it is desired that the
sequences of updates performed at each of them should be equal {or, at least,
have equal effect). Thus it would certainly be of interest to try to broaden
the model of updates in our algorithm beyond the constant-assignment one.

3 A GROUP-LIKE ALGEBRA 13

The author decided to investigate what would happen if, instead of dis-
carding lower priority updates, a node could modify them to achieve consis-
tency with a node’s own update(s), taking into account the fact that some
nodes will see one first, some the cther(s). The natural equation lying behind
this idea is

u;v= vy u

or, in other words, it is possible to conjugate any update u by another v
s0 that the effect of v;u” is the same as that of u;v. The most obvious
model for this is in groups (frora which the notation is borrowed*), where
u® = o0~ Lluwy, but there is another totally different model based on the one
seen in the last section. This is of amignments of values to areas of stare:
these can be viewed as simnltaneous multiple assignments on the one hand,
and as functional over-rides on the other. If we regard these assignments as
sets of paire (z,a}, then the effect of an update u is, for all {z,a) € u, to
modify the value of in the state to ¢, and to leave all other values alone, If
u is any update, then dom(u) is the set of variables assigned by u. Sequential
composition is defined ;v = vU{{r,2) € u | z ¢ dom(v)}. There are several
tonjugation operators which satisfy the above equation in this model, the
most natural of which identifies u® with {{z,2) € u | z ¢ dom(v)}. (This
conjugation operator haa the effect of removing from v all assignmenta ta
locations which are assigned by v.) Notice that the empty set, corresponding
to an assignment to no locations, is a (left and right} identity of ; in thie
system. The updates of the last section can be thought of as singietons in
this system, and a cancelled or stopped update as the empty set {which is
the result of conjugating any singleton by a clashing one)®.

In group theory there are a number of properties that can be derived
about the conjugation operator. Since this operator is now being regarded
as primitive, some of the ones we require will now have to be stated as
axioms. Formally, we will henceforth assume that our updates are drawn
from an algebra with two binary operations: u;v and u”, which aatisfy the
following laws:

(L1) u;(nw) = (wo)jw ansociativity
2 uiv = o’ conjugation
(L3) (wso)* = (u¥)i(v*) distributivity
(L4) wit = (uv)v exponentiation

*IL was probably used there because group-theoretic conjugation, Like the operators we
will use, shares a number of algebraic praperties with exponentiation.

*Notice that this view of & stopped npdate puls at least a little flesh on the ‘ghosts’
introduced in the last seclion.

3 A GROUP-LIKE ALGEBRA 14

Using laws L1 and L2 it is easy to prove that w;{(u%;v™) = (u; v);w and
(r; w); {u¥)¥ = u;(v; w), but it is not possible to establish the actual identi-
ties expressed in [3 and L4.

We will generally take advantage of L1 by omitting bracketing from
compositions under ;. Indeed it is convenient to regard two pieces of syntax
ar equivalent if they only differ in this type of bracketing. (Tobe completely
rigorous we would have to show that all of the later definiticns we make
recursively on syntax are well-defined under this equivaleuce. These results
are all trivial and most are omitted.)

Since we have L4 we will, following the uscal mathematical convention,
understand %*” to mean u{*). This is because the alternative reading,
{u")*, is better written u¥™",

We will call an algebra which satisfies L1-I4 a conjugate algebre.

The examples mentioned above (groups and multiple assignments} both
have identity elements. It is possible (at the price of extra complexity) to
do everything we will see in this and the next section without assuming one
exists, hut since any general language of npdates is likely to contain one that
has no effect {a null update) there seems little point in paying this price,
and in any case it arguably makes for a more pleasing algebra if we have
cue. Thus we will generally assume our algebra contains a special element
1 (the identity) with the following properties:

(L5) liu=u=u;l unit
(L6) v =1

A conjugate algebra with an identity will be termed unitary. Given a non-
unitary algebra it is easy to make it into a unitary cne by adjoining an
identity element, whose action under the operators is defined by L5, L6 and
u! = u (the latter property is implied by L2 and L5: see below). From
here on we will assume our conjugate algebras are unitary unless specifically
allowed otherwise.

The reader might like to verify that all of L1-L6 hold of the multiple
assignments example.

There are, of course, numerous identities that can be derived {from these
laws. Among the most useful are

(uv)m' = (nw)u
which comes easily from L2 and L4, and

¥ =tu

3 A GROUP-LIKE ALGEBRA 15

which follows as 4! = 1;u! = u;1 = u.

Several properties that hold of conjugation in groups do not hold an-
tomatically here. A good example is ¥ = u, which does not hold in the
multiple assignments example unless u = 1.

The generalised algorithm we present later will be based on updates
drawn from a conjugate algebra, with conjugatioun taking the place of stop-
ping and cancelling. Before coming to this we will develop some properties
of our algebra and, in particular, identify some related and sub-algebras
which will be oseful in analysing the way the aigorithm works.

Another obvicus example of a conjugate algebra is any commutative
monoid (a set with a commutative, assaciative binary operation with an
identity element) with the trivial conjugation u* = u. There are further
concrete examples of conjugate algebras and discussion of how they can he
combived in Section 5.

Suppose we have a finite set G of constant symbols. Consider the set Ag
of expressions built up from these generators, together with 1. Given such
an expression it is possible to define its {frace, which is a function from G to
the natural nombers N, as follows:

tr{l)e = 0 forallee G
tr{c)d = 1 ife=d
tricyd = 0 ife#d
tr(e; fle = tr{e)e+ir(f)c
tr{eflle = tr(e)e

This function is defined above on the syntax of expressions, but in fact it
is easy to see that the trace is invariant under all of L1-L6, 50 that we can
think of it as a function on the free algebra generated by ¢ under equality as
provable using the laws. The trace of an expression records how many times
each generator appears on the ‘bottom line’, namely not in any exponent.
From row on, the nsual equality symbol = over Ag will be interpreted as
meaning ‘provably equal using the axioms’ (i.e., equality in the free algebra),
while = will mean syntactic equality, modulo the associativity of ;.

Henceforth we will restrict attention to the set 5¢ of expreseions e such
that they, and all subexpressions, satisfy tr(c/)e < 1 for all ¢ € G. In other
words, no generalor appears more than once on the bottom line, so that we
can think of the trace as a set. Note that S¢ is not closed under ;, so that
we shall have to be carefnl when forming e; f to see that trie}n tr(f) =4.

We will say that an expression e € S¢ is an atom if its trace is a singleton,
of in other words if it has the form

(. (c)e .)y

3 A GROUP-LIKE ALGEBRA 16

for some n > 0, ¢ € G and ¢),...,6, € Sg. We say that an expression
is atomie if it is the sequential composition (;} of 0 or more atoms. (The
sequential composition of no things can be identified with 1.)

Every expression in S¢ is easily proved equivalent to one in atomic form,
and it is useful to have a standard way of generating atomic equiwvalents.

af(l) = 1
atle) = ¢ if ¢is an atom
at(e; /) = ntle)iat(f) ifat(e) #1#al(f)
at(e; [) = at(e) ifat(fi=1
atle; /) = wi()) if at(e) =1
atle!) = at(e)/ if at(e) # 1
atlel) = 1 if at(e) = 1

where, if e = a;;...;a, s atomic,

el = u{;...;a;{ .
Notice that, in general, a(e) is atomic, at(e) = e and ai(e) = e if and only if
€ is atomic. The various special cases involving 1 ensure that ai{e) is eitber
1 or the sequential composition of one or more atoms. It is useful to note
that at(e) = 1 if, and ouly if, tr(e) = 0.
If ay;...;a, is atomic then an ‘atomic step’ is any one of the following
manipulations that clearly preserve its atomic nature:

(i) the substitution of any of the exponents in an a; by an equivalent (i.e.,
under '="} expression;

(i) law L4 applied to one of the a; or a subexpression of one;
{iii) law L2 applied to any consecutive pair of a;.

If e and f are atomic, and e = f is provable using atomic steps only, then
wewrite e £ f,

It is nseful to note at this point that the only type of atomic step that
does more than change the internal structure of a single atom s (iii).

[t is obvious that two atomic expressions are in this relation if, and only
if, they can be proved equal using individual applications of the laws which
preserve atomicity. It will turn out that atomic expreesions are easier to
manipulate in some ways than general ones®. This concept of equivalence
ia made important by the following result, which shows that we can restrict

*This is mainly becanse ane can carry out induction or recursion on their lengih.

3 A GROUP-LIKE ALGEBRA 17

proofs of equality of atomic expressions to manipulations within the category
of atomic expressions.
LEMMA 3.1 If e and f are atomic, then ¢ = £ if, and only if, e = f. Thus,
for general ¢ and f we have e = f if, and only if, ai(e) = e2(f).
ProoF 1t will clearly be enough to prove that, if ¢ = f is provable (for
general e and f), using one application of a law, then at(e) = oi{f). We
will deal first with the case of a law applied at the outermost level, and will
later deal inductively with ones applied in inner contexts. We will deal with
the laws one at a time.
Law L1 is trivial, since the application of associativity only changes the
association of the final atomic forms, which in any case we are ignoring.
L2 is the substantive case. We can assume, without loss of gegerality,
that e = u; v* and f = v;u, where af(n) = a1;...;a, and at(v) = by...by.
We will assume that n,m > 0; n = 0 or m = 0 heing easy special cases.
Then we have

at(e) = at{u);at{v)™
£ ot(u);at(v)i! 1)
= agj...iGn b7 L baiEe
2 gyp.. g (B ey (bR Jon
PO TEUURRT SRS - e TS = T W (2)
= byoibmiar..a, (3)
= al(f)

Here, (1) bolds because all the manipulations are in exponents, and v =
at{v). (2) comes hy applying L2 m times to commute a, through to the
right hand side, (3) follows by repeating the previous two lines n — 1 times
to mave all the other a; to tbe right of the b;s.

The rernaining laws are all simple to analyse. In the case of L3 we may
assume that e = (u;v)¥ and f = u¥;v¥. Assuming that neither at(xu) ner
at(v) is 1 (which again lead to easy special cases), we get

at(e) = (af(u);at(v))y™
= at{u)*v;at{v)™w
= at(f)
And for L4 we may assume ¢ = z** and f = (u®)¥,
at(e) = at(u))
L (at(uyry

ai(f)

3 A GROUP-LIKE ALGEBRA 18

{Once again the analysis is slightly different if at(e) = 1.) The second line
is derived from the first by a number of applications of L4 to tbe individual
atoms in the expression (each of which is an atomic atep).

The cases of the two laws L5 and L6 involving 1 are trivial. This com-
pletes our analysis of the laws applied at the outermost level. The general
case follows by structural induction il we can prove that, on the assumption
that et{u,;) £ at(yz), then all four compositions of the u, with an arbitrary
v produce results whose atomic forms are related by £. The cases where
either the u; or v have atomic form | are trivial or make no diflerence to the
analysis, and we will ignore them.

at{u;v) = ot(u;);et{v) £ ai{uz);at(v) = at{uy;v), since the atomic
ateps executed in the proof of af(u;) = af(x5) can be duplicated. The proof
of el(m;u1) £ at{v; uz) is exactly the same.

The case of v* is trivial, since at{v™) = af(v)™ = at(v)™2 = at(v*?),
the centre manipulation coming from the replacements of expanente by their
equivalents.

The only mildly difficult case is that of u?. We have assumed that there
is & proof in atomic steps of et{uy) = ei{u;), and must establish that there
is aleo one of et{u;)** = at{u;}*Y. To convert the first of these proofs into
the second, it is clearly enough to demonstrate that, if f is the result of
applying a single atomic step to the atomic expression e, then e*v = f*v.
We will deal with the different types of atomic steps individually.

The two cases of (i) a manipulation of an exponent and (i} the appli-
cation of L4 to one of the atoms are both trivial, since exactly the same
manipulations of the appropriate component of ¢*¥ will produce f*¥ in a
single atomic step.

The final case is of L2 applied to a consecutive pair of atoms. To establish
this is it sufficient to show that, for ¢ and b atoms, we have a¥; b = &7; (a®)".
This is done as follows.

av; b 2 bv; (av)b'
3 b"; avib®
2 b"; ab:u
L b(aty
This completes the proof of Lemma 3.1. []

Now suppose that there is a linear order on the set G of generators,
representing “priarity’. Cansider the subset Py of S5 with the property

3 A GROUP-LIKE ALGEBRA 19

that all occurreuces of e/ (either at the highest, or at subexpression level),
satisfy u € tr{e)Av € ir(f)} = u < v. In other words, one can only conjugate
one expression by another of uniformly higher priority. (It will later turn ont
that this notion of priority is intimately tied up with that used in the first
algorithm.) It is easy to see that at{e} € Pz if e € Pg, and that e = ale)
¢an proved using the laws without leaving Pg.

In general we will write e £ £ if the equality is provable using the laws
without leaving” Pg, and if they are in addition atomic and the proof was
entirely within the atomic members of P, we write e = f. (If an expression
ia in Pz and is atomic we will in future say that it is P-atomic.) Exactly the
same analysis as in the proof of Lemma 3.1 yields the following result since,
on the assumption that the expressions ¢ and f (equal in one application of
alaw) are both in Pg, it is easy to establish that the proof we generate of
at(e) £ az(f) is also within Pg.

LEMMA 3.2 He, fin Pg are such that e £ f, then at{e} & at(f). 1

As if one unusual algebra is not enough, we will now introduce a second
one which is derived from the earlier one, but which relates specifically to
Pr;. We will defiue an operation df on Pz for all e, f with disjoint traces.
In doing this we will consider the basic equivalence over Fg to be £ go that
we will expect, for example, operations to be well-defined ander £ but not
necessarily under =.

We will first define the operation on P-atomic expressions, recursively
in their length. This will later be extended to general members of Pg. The
unit element behaves in the same way as for the previous operation.

W=y and vU=u

If a and & are atoms, we will write & < & if the (unique) members of ther
traces are thus ordered. If a and § are atoms, we define

L= 0 ifa>b
T 1 @ otherwise (ie., b < a)

(Note that our assumption ahout disjoint traces makes it unnecessary to
deal with the case when ¢ and b have the same trace.)

TAn iuteresting question that arises from this definition i whether the retsiion £
actually different from = over Pr, ot in other worde whether there is a pair ¢, [of elements
of Pg which are provably equal under =, but where no proof is entirely within Pg. The
author does not know the answer to this question, but conjectures that the iwo relatiom
are, in fact, the game.

3 A GROUP-LIKE ALGEBRA 20

More generally, if e = eq;eg, then

=885

The varions reduction rules we have given here for computing 8 are not
disjoint, in the sense that it may be possible to apply them in several different
ways to the same expression. This is particularly true when one considers
the different (hut =-equivalent) ways in which a long atomic¢ expression can
be bracketed. However, it is a simple induction to show that this operation
is well-defined under =, so that the order in which the rules are applied does
not matter.

and, if f = fi; f3, then

H e and f are arbitrary members of P; with disjoint traces we can wow

define
dl = (at(e)
LeMMa 3.3 The operation ol is well-defined under £ or in other words,
eyfe; and fi2f imply elm-l;szL
Proor Since we already know that
at(e;) = at{es) and at{fi) E at(f2)

it is sufficient to prove that a single P-atomic step (i.e., an atormic step
applied to P-atomic e or f that preserves membership of P;) does not
affect (up to £) the value of dfl. This is obvionsly true for the first two
types of atomic steps (manipulations of exponents and applications of L4),
sinte they only affect one of the atoms in ¢ or f and can he duplicated in
the result. Thus all we have to consider is pair swaps.

We first deal with the case where f is an atom and the swap is in e.
We will assume that e = e;;a;b;e3 and prove that if & = e;;b; a% e; then
dlE e'm (The cases where either or both of e; and &3 are absent are all
easier and extremely similar.) Note that, because ¢’ € Fz, we can assume
b>a.

A little computation reveals that

D . g0 [
Al CI;J];AE;(tﬂ;

3 A GROUP-LIKE ALGEBRA 21

1t should not be hard to see that the equivalence of these two terms will he
proved if we can show, for arbitrary atoms ¢ with trace disjoint from those

of ¢ and b, that
o2, 2 4, (o

and that

it 2 et}

(¢ is playing the role of f&1 in the above expressions.) Given that we know
e < b and that traces are disjoint, there remain three possible cases for the
order of priority of a, b and ¢. We will establish the two identities ahove for
each of these.

Case 1: @ < b < ¢ In this case the second identjty is trivial, since hoth sides
equal ¢. The first becomes

a; bt 2 b (ab)c

which is easy, and which has already heen dealt with in the proof of Lemma
3.1.

Case 2: @ < ¢ < b In this case the second identity Is again easy, this time
because both sides equal ¢*. This time the first becomes

abE (ab)cb
which follows easily once one notes that (g?)(s) £ a(c) £ gle)
Case 3: ¢ < a< b This time the second identity hecomes
cu;b 2 cb;a'

which is again trivial. This time the first is trivial as well, since it hecomes
a:hE b;ab.

(1t is interesting tonote here that our restriction to P and L _equivalence
is crucial in the above section of the proof. For if we had not made it we

wounld have had to consider the case where & < ¢ < @, which would have
resulted in the first identity hecoming

a; bl = b at

which is not true in general®.)

#To see that this identity does not hold, one can either look to the example of grous
and ordinary conjugation, or to the area amsignment example: in the Iatter case consider
the example where o, b and ¢ are all assignments to the same variable.

3 A GROUP-LIKE ALGEBRA 22

We can now extend to the case where f = by;...;b, is not an atom by
an easy induction: setting f, = by;...;b,, notice that ed] and e’lz;| are both
atomic members of Pg. If we assume that they are = equivalent, then this
equivalence is proved using a number of steps of the types seen above. Since
br41 i an atom it follows from the analysis above of the case where f is an
atom that (EIE and (e'{E) are & equivalent as well, completing the
proof. We have thus dealt with the general case of manipulations to e.

Now consider the case of a manipulation to f. Once again the first two
types of atomic step are trivial, and so we can restrict attention to the case
where f = fi;a;6; fz, f' = fiibiab faand a < b

We must demonstrate the equivalence of the two expressions

(ENENE) and (D)

Since we know (i) that il is P-atomic and {ii) that our result holds for
manipulations in the e-argument it will be sufficient to prove

Jeo 22 g a®

for all P-atomic d with trace disjoint from those of a and . We already know
this when d is an atom, for that was the second identity that we proved in
cases in the earlier proof. This can be extended into an inductive proof on
the Jength (i.e., size of trace) of d as follows. If d = ¢; d* for some atom ¢,
then

Aol ; d‘

; d‘ by previous case and induction
(see below)

&
The E-equivalence of d‘ and d follows by indnction since, in

all three cases (of relative priorities), the proof of Z-equivalence of (b; a*)@
and (a; Y3 produced by our earlier proof consista of a single pair swap plus
possibly some type (i) or (ii) P-atomic actions.

This completes the proof of Lemma 3.3. 1

We have shown that the operation dl) is well-defined on Pg for tr{e) N
tr(f) = 9. The new operation is clearly related to, but is subtly different
from, the original operation /. This relationship is emphasised by the
following result, which shows what the new operation's algebraic properties
are.

I8

1

3 A GROUP-LIKE ALGEBRA 23

LeMMA 3.4 Forall e, f and g in Pz with disjoint traces, we have the
following;:

PL e AL

P2. (e; £ 2 o@; i)
P3. dfidl & (@
Pg. 1@ 2

P52,

Proor P2, P3, P4 and PS5 come more or less immediately from the def-
inition of &L, so we will concentrate an P1. It is clearly sufficient to prove
it for atornic ¢ and f.

P1 holds trivially if ¢ and f are atoms, since one has higher priarity
than the other, say ¢ < f which means both sides equal ¢; f. If f is an atom
then we can prove it by induction on the length of ¢ as follows (noting it is
trivially true for € = 1). Suppose e = ¢'; ¢, for ¢ an atom:

e /A e ()

c; f8; e@ by induction
5 cm; e by the above
fitssef@ by P2

as required, so it is true whenever f is an atom.

e Jiw (o o

We can now complete the proof by an induction on the length of f for
general £, noting again that the result holds when f = [. Suppose f = ¢; f,

then:
e fB = o(c)P
¢; g f by P2
o; el f"E by the above
afs (éﬂ)El by induction
féd
Thus P1 holds for all e and f. 1

Ibe (b le 11§

n

3 A GROUP-LIKE ALGEBRA 24

To summarise what has been done so far, we have taken one form of
algehra, examined a particular subset, Pg, of the words of the {ree algebra
over a given finite set G of generators, and shown that with a stronger notion
of equality, £, one can define a new derived operation, f which has related
properties to the first. The precise reasons for us wanting to do these curious
things will become apparent in the next section.

Qur next step will be to prove a dry-seeming technical result. This will
turn out later to be perhaps the key result in the paper, in the sense that it
ie the one that makes everything else fit together. It is a result about two
functions that one can define recursively over a finite set W of expressions
from Py with disjoint traces, which has been endowed with a partial order.
TeeorEM 3.4 Suppose W is a finite subset of Py such that (i) if € and f
are distinct elements of W then they have disjoint traces and (ii) there is
a partial order < on W. Then the pair of functions f(X) (defined for all
X C W) and g{X,a)} (defined for all X C W and a € W such that there is
nob € X with ¢ < b} which are defined:

oX,e) £ 1 fd<aforallbe X
g(X,a} £ g(X\b,a); otherwise, for b any maxi-
mal element of W which is
<-incomparable to
flx)y 2 1 HX=0
f(X) £ f(X\a); otherwise, for @ any <-maximal ele-
ment of X

(where X\a is shorthand for X\{a}) are well-defined. (This is an issue
hecause the two main clauses each select one of a class of maximal elements.
It is by no means obvious that the value of the function is independent of
which one is selected.)

ProoF Since the definition of f uses g, we will tackle ¢ first. The proof
will be by indnction on the size of X, the result being trivial for X = @,
since then g{X,a) = 1. So suppose it holds of all sets smaller than X. By
this asgurmption all the recursive calls that are made on the definition of ¢
other than the one at the highest level in computing g(X,a) are known to
be well-defined. It follows that the ounly possible source of a problem would
be the existence of maximal b, ¢ in X, each incomparable to a, such that

(X \b,a); HEEIN 2 g(X\, a); X ic:cl]

(the inductive assumption means that all these instances of ¢ are well-
defined). Note that b and ¢ are necessarily incomparable, and that b is

3 4 GROUP-LIKE ALGEBRA 25

maximal in X\c and vice versa. [t follows that the left-hand-side of the
above inequality can be shown equivalent to

X\ ¢}, a); AP, oo, by AL |

by expanding the two calls of g. P3 applied to the last term converts this

to
2(X\{b, c}, a); delX\ooch), (M&Mﬂ)mmm

Now potice that P1 is applicable to the last two terms, and converts it to
the term

Q(X\{b, c},a); déix\jb.cbb! 8 (dg X\jb.:t‘cﬁ)@

which is symmetrical to it under the exchange of b and ¢. This symmetry
{or working the original analysis hackwards with b and ¢ swapped) means
that it equals g(X\e¢,a); . the right-hand side of the inequality, a
contradiction. We can iafer that g is, indeed, well-defined.

A very similar argument now demonstrates the well-definedness of f. It
is clearly well-defined for X = 0, and so, on the assumption that f is not
well-defined, there is a smallest and non-empty X for which it fails. Much
as in the case of g, the only way this ill-definedness can arise in this mininal
X is for there to be incomparable, maximal a, b, such that

£(x\a); oeXeall 2 x\p); B

{where all the subterms are well-defined). Observe that b is maximal in X\a,
and @ in X \b. We again expand the left-hand-side, this time obtaining

£(X\fa, b} LT, s f 1) IV 21

which law P3 converts to

PO Ce DR Az oy TSR

As in the case of g, law P1 is applicable to the last twa terms to obtain

f(X\{a,b}); alégx\{a,b}.a)l; (géix\jmb[.b:l

which is symmetric with it under the interchange of a and b. As in the cae
of g, this contradicts our assemption of f’s jll-definedness, completing the
proof of the theorem. 1

3 A GROUP-LIKE ALGEBRA 2%

Up to this point we have been a little schizophrenic in our treatment of
the algebra of the hox-conjugation operator ¢®: it has simultaneonsly been
an algebra in own right, governed by the laws L1 and P1-P5, and also a way
of investigating properties of the earlier one. For the rest of thia section we
will concentrate solely on the former, and call this algebra the boz algebra.

The definitions of f and g ahove can be unwound {at least for partial
orders with many incomparable elements) in many different ways, which we
have mow proved to be equivalent. We will call one of the ways in which
f(X) or g{X, @) can be written down a presentation. Just how many there
can be is illustrated by considering the worst case, which is of the completely
flat partial order Z, with n elements, where no pair is ardered. The number,
tn, of different presentations of f{Z,) can be compnted by the recurrence

=1 g =(n+l)xt}

which leads 1o the truely formidable number

Lt

t,=n(n-1%n-2)" .22

which grows as an exponential of an exponential.

It is possible to show that the function f captures the structure of the
partial order < completely. For suppose that the set W over which we are
defining f and g is G, the set of generators®. Then, if %; and <3 are two
partial orders on G and fy, f;, 91 and gy are defined using the respective
orders, we can show that the expressions f;{G) and f;(G) are provably equal
if, and only if, the orders are in fact the same. In order to prove this we will
first establish the following.

LEMMa 3.5 ff W = (G in the above definitions of f and g, and it can
be proved using P1-P5 {plus L1) that f(X) = ¢ for any @ € X and
expressions ¢ and f, then @ is maximal in X and e, f are provably eqnal
to f(X\a) and g(X\a,a) respectively. (In other words, our definiticn of f
earlier gives all interesting ways of writing f(X) down.) Similarly, if g(X, a)
can he proved equal to e; 8 then b is maximal in X, incomparable to &,
and e, f are provably equal to g{X\b,a) and respectively.

Proor It is easy to redefine the concepts of ‘atom’ and ‘atomic expression’
in the box algebra, and to devise a standard way of reducing every expression
to atomic form. Clearly all presentations of f(X) and g{X,a) are atomic.
Essentially the same analysis as was carried out for canjugate algebras will

°In fact, for the result discussed here to hold it in snfficient that no element of W has
an empty trace. The more general argument would, however, simply complicate matters
for no real gain.

3 A GROUP-LIKE ALGEBRA 27

show that two atomic expressions of the box algebra are provably equal
if and only if they can be proved equal in atomic steps (which again are
internal manjpulations of a single atom or an adjacent pair swap, this time
using P1}. It follows that we can assume that the expressions € and f in the
statement of the Lemma are in atomic form, and that the proof of equality
with f(X) or g(X,a) is in atomic steps.

As before we will deal with the case of g first, and work by induction
on the size of X. Consider the class of L-equivalents of presentations of
g(X,a): expressions which can be obtained from such a presentation by
applying atomic steps which alter the structure of individual atoms. {The
L here stands for local.) We will clearly have established the result for X
if we can show that this class is closed under pair swap atomic steps: ihis
closure condition, in fact, will be our inductive hypothesis. The result is
trivial when X = B, so suppose it holds of all smaller sets than X. Any
member of the class clearly has the form

e;(l‘zﬂ...@

where b is incomparable to @ and maximal in X, € an L-equivalent of some
presentation of g{ X\b,a) and fi;...; fn iz equivalent to g(X\b,b). If a pair
swap does not involve the last two terms then we can appeal to induction, So
suppose it i5 a swap of the last two terms; we know that e has the form ¢’ f/
for some &' equivalent to g{X\{b,c},a}and f* equivalent to P OEAX RSP
e maximal in X\b and incomparable to a. For this swap to be possible, it
follows that f, is same as f’, which in turn means that g{ X \b, b} ia equivalent
to something of the form h;. By induction applied to the tem
g(X\b,), this is an L-equivalent of some presentation of g(X\¥,b5), and so
e must be incomparable with b as well as a. Aad A (which is equivalent to
fi;... fam1) is now also known to be equivalent to g(X\{b,c},¥). When the
pair swap has been carried out we get

e (ﬂm)[l@._ f 2=
which is L-equivalent to
G(X\{b, c}.); EPATTI, ot \{b.e}, ;42000 B]

which, since ¢ is (given what we already know about it) necessarily maximal
in X, is a presentation of ¢(X,a).

Tbe analysis of f is very similar: one again shows inductively that the
class of L-equivalents of presentations are closed under pair swaps, this time
using the above result to deal with calls of g. !

3 A GROUP-LIKE ALGEBRA 28

We are now in a position to prove the following result.

TeEEOREM 3.6 Il W = G then the value of f{(W) in the box algebra com-
pletely characterises the partial order = used to construct f. In other worde,
if fi, g1, f2 and gz are constructed using partial orders <y and =; over the
same W, then f,(W) is equivaleat to f2{W) if, and only if, 2y =x=1.
Proor The “if” of this result is trivial. We will prove that fi{W) = fo(W)
implies equality of orders by induction on the size of W. The case of |[W| =1
is trivial, so suppose it holds of all smaller W and that fi(W) = fo(W).
Consider a typical presentation of the right hand side:

f(W\a); dlzzWherel]

for & %3-maximal in W. Because we are assuming that this is provably equal
to the left hand side, and hecause of the result of Lemma 3.5, we know that
a is maximal with respect to <, alsa, that f3(W\a) equals f1({W\a) and
that g2(W\a,a) equals ¢,(W\a,a). Tnduction then tells us that the two
crders coincide on Wha. But the equality of the ¢; on (W\a,a) show that
precisely the same set of generators are less than or equal to & in the two
orders since it is easy to aee that the trace of g(W,) contains, in geueral,
precisely those elements of W which are not less than a. Since a is already
known to be maximal in both orders it follows that the two orders coincide
on the whole of W, as required, 1

Theorems 3.4 and 3.6 together show that the functions f and g in some
sense allow us to capture partial orders algebraically. It seems likely to
the author that this work will have applications beyond those on databases
described in the rest of this paper: perbaps to the partially ordered com-
putation histories found in the theory of ‘true concnrrency’. Our algebra
provides an interesting contrast to Mazurkiewicz traces [M), where a dif-
ferent monoid is used to describe each dependence relation. The free hox
algebra over a set of generators provides a single (though more complex)
structure over which any such relation can be expressed.

As discussed in the introduction, it has turned out that the concept of a
box algebra is essentially the same as that of Gene Stark’s ‘algebra of resid-
uals’ 8], which he introduced specifically to reason about true concurrency.
His results are rather different from ours, because of the way in which the
algebra arose in his work.

4 ALGORITHM 2: ALGEBRAIC UPDATES 29

4 Algorithm 2: algebraic updates

The work of the previous two sections can be put together to produce a
ring-based algorithm that works for any language of updates satis{lying laws
L1-16. The basics of the algorithm are similar: we once again base it on
a no-overtaking ring (assumed to have the same basic properties}) and give
each node queues (}; of updates executed lacally but not yet inserted into
the ring, and E; of the updates it is expecting back from the ring. And
again each node is assumed to have a unigue priority p;.

The updates that nodes generate are assumed to be drawn {rom an
algebra of the type seen at the last section. We have already seen two
examples of algebras satisfying the necessary axioms (multiple assignments
and groups), plus the trivial case of a commutative monoid. There will be
some discussion of other models in the next section. The various possible
actions of a node are described below. Notice that each update now circles
the system exactly once: conjugation takes the place of stopping, and of
cancelling teo.

Even though an update may have been altered (i.e., conjugated) since it
was originally generated, its priority never changes, always being that of its
originator.

« If V; generates an update «, then u is executed locally and u is inserted
at the tail of Q;.

o If Q. is nonempty and there is a space available on the ring, then the
head of Q; is removed and inserted into the ring, and into the tail of
E,.

« If an update v’ returns which was originated by N; as u (but may
have been altered since), then it is removed from the ring, and from
the head of E, 10

¢ If an update u arrives that originated at ¥; with p; < p;, then uBiijs
executed Jocally and uE: is passed on round the ring. E; is unaltered.

If an update u arrives that originated at N; with p; > p;, then u
is executed locally, u is passed on unaltered round the ring and E; is
replaced by E¥* (i.e., each element of E; is conjugated by u).

1%]n this algerithm it is clear thal at this moment the message now sitling at the head
of E, in what bas become of the the copy of w originally placed there when u starled iu
journey. Howeverit is by no means obvious that the two copies of u have been transformed
to the same thing. It is true though, as we shall see later. However, for now, it is perhape
beiter to state simply that «' and the head of £’ are both removed.

4 ALGORITHM 2: ALGEBRAIC UPDATES 30

The way we are nsing conjugation here is always to compenegate for different
1odes seeing updates in different orders. In replacing u by u¥ we are com-
pensating for the fact that later nodes will see u after v, even though some
others are seeing it before v. The clearest way to see this at a simple level
i# to examine what happens when two nodes inject npdates into the system
at the same time (and these are the only updates in circulation).

The careful reader might have noticed one difference with Algorithm
l, relating to our treatment of npdates in ;. In the first algorithm we
deleted updates from); where they clashed with u, while in this one we
have conjugated u by @, (i.e., the exact opposite). In fact we could have gone
either way round in either case. We took the approach we did in Algorithm
1 because it cut down the nnmber of updates in circulation, as well as for
similarity with the commercial approach. We have chosen here to do the
apposite both to illustrate that it can be done and because it seems more
natural that updates inserted later into the system should be viewed by the
system as having been executed later. And here, chosing the other option
would not cut down the number of updates to be transported.

The main theorem of this section is the following.

TaeorEM 4.1 [all copies of the database were equal initially and the
above algorithm is used for updates, then when it betomes quiescent (no
updates queued in any ; or circulating) then all copies will still be equal, Or
equivalently: when the system becomes quiescent then the updates executed
at each node are provably equivalent. |

Most of the rest of this sectjon will be devoted to proving this result.
However we will first give an example to illustrate how the algorithm works.
ExaMpLE We will illustrate the operation of the algorithm with an example
wiere there are five nodes, each generating one npdate. Suppose they are
arranged round the ring clockwise, the direction in which updates are car-
ried, in the order Ny, Ny, Ny, N5, N3, where, the lower the index, the higher
anode’s priority. The updates generated by N;,...,Ns are a,.. ., € respec-
tively. Suppose a and b are emitted at time T}, and that the other three
are emitted at time T3, by which time o has passed N, and b has passed N5
and N3. For simplicity we will suppose that no update waitsin a Q;: there
is always immediate space in the ring. No conjugation will have occurred
by time T3, since every time an update reached a node the latier’s E; was
empty. The sequence of updates seen by each node is now determined, as
are the values of the E; seen by the updates as they travel round. We can
track the progress of the algorithm as follows:

* A little later than Ty, & and then ¢ may have passed N;, becoming

4 ALGORITHM 2: ALGEBRAIC UPDATES 31

conjugated to b” and ¢® respectively. a may have passed Ng, cenjugat-
ing F; to b2, followed by d, which becomes conjugated to @*°. e may
ha ve passed N3, becoming conjugated to e,

Yet later, b* and ¢ will pass Ny, conjugating E, to d¥*}(<*), g and
d*® will pass N5, conjugating Es to e }. ¢¢ may now have passed
N, , becoming conjugated to es®,

4% will then return to Ny, cancelling Ej, so that when c® passes Ny
it is not conjugated. It does, however, coriugate Ey when it passes
to e%(8*° ¥ before returning home Lo Ny. o will pass ¥, conjugating
Ea to ¢ before returning home itsell. ¢*” will be conjugated at N
to dt*14<°) but not at Ny. €™ is conjugated at N, but not at Nz,
arriving home as the complex term geraild** i)

It is interesting to tabulate both the seqnence of updates that have been
executed at the various nodes, and to compare the values of the npdates
that return home with the valnes that were waiting for them in the E;. We
tabulate these second things first. The left-hand column contains the value
of the update that returned, the right hand one the value that was waiting.

a a

b b

e e
dtet) 43t

ecai) it ey

These are all obviously equal except for the last pair, the exponents of which
are easily proved equal by pushing ¢ through ¢ in the left hand side to get
a;¢%; (d°)" and then applying L1 to get the right hand side. Thus, in this
case at least, the updates that return are equal to those that are expected.
The updates actually executed at the nodes are as [ollows.

Nito a5t e 75
Nzt b ardied;ecel@™)
Nat b; o5t a; alokle™?

Nu apdib%; oo esmld <)

Ns: & eja;d;e”

4 ALGORITHM 2: ALGEBRAIC UPDATES 32

All of these expressions are superficially different, but a little algebra proves
them equal: expression 1 is equal to expression 3 once one applies L2 three
times to push the a three places to the right. This, in turn equals

(+) b e;c;a; dWFh(e)

by applying L2 to ¢;e®. Pushing the ¢ one place to the right in this we
obtain

b e; a;e% (d)
which L2 shows equal to expression 5. If we push e all the way through to
the right in {+) we get

b € a3 ("), gnatd™<?)

which we can manipulate to expression 2 hy pushing ¢ to the right of the a
to get
b; a; e; dlbN(); geiasld*e®)

and then applying L2. We can get expression 4 from expression 2 by pushing
a to the right of the b, getting

a; b 8" e 594)

and then applying L2 to the second and third terms. Hence they are all
equal. It is interesting to note (and this will later be significant) that in
none of the above proofs was there ever an instance of a high priority term
being conjugated by a low priority one. In the language of the last section,
all expressions were in Pg, where G = {a,b,¢,d,¢}. 1

As in the case of the first algorithm, it is useful to make some simplifying

assumptions in the preof. Firstly, we would again like to be able to assnme
that the @;s are ahsent. Secondly, we would like to be able to restrict
altention to the case where each node is limited to emitting one update.
(With our generalised concept of update it no longer makes sense to talk
about restricting to a single slot.) The justifications of these assumptions
are given in the next two lemmas (and are very similar to the corresponding
Justifications in the proof of the first algorithm).
LedMAa 4.2 In any given finite execution of a ring running Algorithm 2,
the total effect of all the updates executed at a node is the same as would be
achieved by (i) delaying the local execution of each update until its insertion
into the ring and (ii} omitting to conjugate incoming updates by & before
local execution.

4 ALGORITHM 2: ALGEBRAIC UPDATES 33

PrOOF Asin the case of Algorithm 1, this manipulation iu no way aflects
either the patiern of updates actually circulating in the ring, or the content
of the expected-back queues E;. Thus the sequence of updates which arrive
at a given node from the ring s unaffected.

Suppose the last local update generated by a node & is u. Then the
sequence of all updates executed at & in the original algorithm might be

LU R PR IS S S ST

Here, the v; are the updates executed at ¥ before u is generated. Updates w]
arrive while u is in { and are conjugated to w; before their final conjugation
by u (which is last on @ throughout this time). The ¢; are the updates
executed after u enters the ring. Under our algebra the above sequence is
eqnal to

LIPS R T HINN N TR ST A

which are exactly the updates that would have been executed if the genera-
tion of u had been delayed until its insertion into the ring. This construction
can clearly be repeated to move the generation of all of N’s updates to the
point of their insertion into the ring, and the final sequence of updates ob-
tained will be exactly the one described in the statement of the Lemma.

1

Henceforth we will restrict our attention to systems where there are no
Q-
LeEMMA 4.3 Theorem 4.1 hoids on the assumption that it holds of all sye
tems where no node emits more that one vpdate.

Proor The proof of this result is essentially the same as that for the cor-
responding assumptiou under Algorithm 1. In an execution of the syatem
where no nade emits more than r updates we can replace each node by a
sequence of r consecutive ones. As before, the ptiofities are small perturba-
tions of those of the node they replace. Exactly the same consiruction as
before works, restricting each sequence of nodes to dealing with one update
at a time. FEach update that arrives is either conjogated by the contents of
the E;; in the new system, or conjugates them, in a way exactly analogous
to what happens in the original system. {[t is important in this to note that
any update from a different sequence that arrives is either of lesser priority
than all the N;,, or of greater priority than them all). Once again, the last
member ;. of the sequence sees exactly the same sequence of updates as
is seen hy N; in the original system. 1

4 ALGORITHM 2: ALGEBRAIC UPDATES 34

It will thus be sufficient to prove Theorem 4.1 for the case of one update
per node. We can place a partial order on the updates which arise in a
given execntion (quite independently of the priority that already exists) as
follows: u < v if 4 passes the origin of v before v is emitted. The no-
overtaking nature of the ring guarantees that this is a partial order, and
that 4 < v if and only if u arrives'! at all nodes before v does. (For, if
u & v then v arrives at u’s origin before u arrives back there.) If u and v
are incomparable under < ther we write ulfv and observe that this happens
precisely when some points on the ring have u arrive first, and some have ».
{To be specific, the nodes on the ring from the one after N, to ¥, inclusive,
bave u arrive first, and the rest have v arrive first.)

Consider the free conjugate algebra over a set of generators containing
one element for each update: we will consider the operation of the algorithm
when each node, at its appointed moment, emits the appropriate generator
a its npdate. Onr objective is to prove, in the free algebra, that the effect of
the npdates artiving at each node in this situation are equal: for if we can do
this then the resnit will remain trne if the generators are replaced with the
actual values of updates drawn from any conjugate algebra. Observe that
the value of any npdate as it passes round the ring remains an atom whose
trace element is the generator it started as, and that, under our agssumptions,
each expected back list E, is either empty or contains a single atom.

Using the priority order which the updates inberit from their originators,
we can make the {ree algebra into a hox algebra as described in the last
section. The reason why this extra algebra was introduced in the last section
can now be made apparent. For recall that the operator a2 was defined for

atome:
M_] e ifa>b
Tlat Hack

Noticing that, in the simplified case we are now considering, the only conju-
gation which takes place in our algorithm is between atoms, the two central
clanses of the algorithm (which govern conjugation) can now be replaced by
the following, in which the list E of the original algorithm has been replaced
by a single valne e: 1 when E is empty, and otherwise the single element of
E. (Notice that when conjugation takes place in the algorithm, it is always
between terms with disjoint traces.)

« If an npdate u arrives, which originated elsewhere, then ¥2 is executed
and passed omn, and e is replaced hy €.

“We have nged the word ‘arrives’ with care here: we coneider the moment when an
npdate arrives at its origin to be when il returns, not when it sets off.

4 ALGORITHM 2: ALGERRAIC UPDATES 35

The beauty of this ia that the asymmetry of priority has been hidden, which
means that it is not necessary to worry in our proof about the (rn—1)! differ-
ept ways of arranging the order of priarities aronnd the ring. Forthermare,
all nodes now look exactly the same,

We now claim that, with respect to this box algebra and the partial order
= (on the set U of generators):

1. the updates executed over the run of the algorithm at each node equal
f(U),and

2. when an update (originally the generator a} arrives back at its origin
N,, both it and the expected-back version equal

]EﬂbeUin zbi,uﬂ

The first of these claims, when established, will prove Theorem 4.1. The
second justifies the claim that, when an update arrives back home, i is
removed from E. These facts show why we were so interested in the functions
f and g in the last section. As has been seen in the five-node example given
earlier, and may have been discovered by the reader in experimenting, our
algorithm can discover a wide variety of ways of writing down expressions
that are meaut to be equivalent. It turns out that the well-definedness proofs
of f and g give the ideal ways to prove that they always are equivalent.
In order ta justify these claims we will prove the following lemma, which
generalises the second claim.

LeEMMa 4.4 When an update (emitted as the generator b) arrives at a node

N, its vajue is

and, if ¥ has an expected-back update that was emitted as (the generator)
¢, then at the moment & arrives the expected-back value is

where k(b, N)= {s e U | a < bv{allbr N, € (Ny, N})} (N, is the origin of
an update a and (N, M) is the set of nodes strictly between N and M on
the ring, in the direction in which updates are transmitted.)
Proof It should not be too hard to see that the set k(b, N) consists of
those updates which arrive at N before b does. If N = N, then k(b,N)
hecomes exactly the set which appears in the second claim above.

We prove the Lemma by induction on the number of events of the form
‘update a arrives at node M which have occurred hefore the given one,

4 ALGORITHM 2: ALGEBRAIC UPDATES 36

If b has not yet visited any ‘expectant’ nodes on its travels, then its
value is still &, This is the value predicted by the Lemma since the set
{a | blla A N, € (Ny, N)} is empty, which means that k(b, N) contains only
values strictly less than b. Otherwise there is a last expectant node - Ny,
aay — which b has visited. Clearly k{8, N} = k{(b, Ng) U {d]} by construction
of k. Since d js the nearest element of {a | b|la A Na € (Ns, M)} to N, it must
be maximal in k{6, N}: if d had passed any other N for ¢ € k{b, ') before ¢
were emitted then d must also pass Ny before § is emitted - a contradiction.
We know, by induction, that when b arrived at Ny, their respective values

were
and de(:ENap.d)

go it follows that the value of b when it arrives at N is

patiis. o). by HECR) D ERG R

as required.

Now suppose N has an outstandiug update, which was originally e. If no
vpdates have arrived at N between c atising and b arriving, then its value
is still ¢ when b arrives. This is the value predicted by the Lemma, since
under this assumption all elements a of (b, ¥) (the updates that arrive at
N before b) must bave arrived at N before ¢ arose and hence satisfy a < e.

Qtherwise there was a last update, originally d, say, which arrived at
N after ¢ arose but before b arrived. Necessarily d||e. Clearly &(b,N) =
k(d, Nju{d} thanks to our characterisation of k(a, N} as the set of updates
that arrive at N before a. Furthermore, d is maximal in k(b, N') since N
sees d after all other elements of that set.

By induction, the values of d and the expected-back copy of ¢ were, just
before d arrived at N,

F FTCTEN) R, QR P EN SIS

When d arrives at ¢, the expected-back value of ¢ is thus conjugated to

ot N, oy, JRERD)

bydefinition of g and what was established above, Since this is the value that
is expected when b arrives, and is what the Lemma predicts, this completes
the proof of the Lemma. 1

4 ALGORITHM 2: ALGEBRAIC UPDATES ir

This establishes our second claim and puts ns in 2 position to establish
the first, which is a corollary to the following lemma.
LEMMA 4.5 We know that all updates in I/ are executed at all nodes ¥,
80 suppose {ay,...,a,} enumerates {/ in the order in which the updates are
executed at a given N. Then the effect of the first r updates (0 < r < n)
executed at N is precisely f{a,...,a.}.
Proor Suppose that the update emitted by N is a. {If there is no sch
update, then the proof is a trivial simplification of what follows: only case
(ii) below applies.) Observe that, when an update a, arrives at N which
originated elsewhere, then

k{a, . N)U {a} (and a € k{a,, N)) otherwise

since g is executed when first emitted, not when it arrives back.

{2, . - ra} = { k(a,, N) if @ is not then expected back

We will prove the Lemma by induction on r. (For all N simultanecusly.)
It certainly holds before any updates are executed, since f(@) = 1. So
suppose it holds for r—1. There are three cases to consider when considering
the execution of a,.
Case (i) @y = o In this case, clearly a; < @, for all i < r since all such g
necessarily pass N hefore ais emitted, It follows that g({a1,...,a—1},4,)=
1, which in turn implies that

f{aly-“var} = f{ﬂ'h- --1ar—1};nr -
This, hy induction, equals the actual sequence of updates executed up toa,
(since ¥ executes its own update unaltered at the same time as it enters
the ring).
Case (ii): a. # a and a Is 1ol expected when a, arrives In this case, as ve
have ohserved, {ay,...,a,—;} = k(a,, N), and since a, is plainly <-maximal
in {a1,..., ar} (¥ sees it last of this set), we have

f{a‘h-“;af} = f{ﬂla---sar—l};a

which, by induction and Lemma 4.4 applied to a,’s value on arrival at ¥, is
exactly the sequence of updates executed at N up to a,.

Case (iii): a, # a and a is expected when a, arrives In this last case, we
have observed that {a;,...,8,_,} = k(a,, N} U {a}, and a, a, are both «-
maximal in {a,...,0,}. For the last update to arrive at N from this set
is @, and the last cue from this set to arrive at the node after N (in the
direction of the ring) is a,. From the definition of [we get

Flaeeeer) = flays. s apoy}; cEEmer el

4 ALGORITHM 2: ALGEBRAIC UPDATES 8

which the definition of g rewrites to

lo(htae.). a0);al2E¥oar) 0]

f{ﬂl, . ..,tl,-_l};u,-

We know that, when a, arrives at N, the value of a, and the expected-back
value of a are respectjvely

Lo Fheell g
which, since the @, that arrives is conjugated before execution by the current
value of a, telle ys that, by induction, the updates executed up to a, are
equivalent to (the above expansion of} f{ay,-..,ar}, as required. [|

This completes our proof of Theorem 4.1. It is perhaps worth reflecting
briefly on our proof. What we were interested in doing was proving that,
whatever the arrangement of node priorities ronnd the ring, and whatever
the order in which the updates were inserted, the updates executed at each
node were provably equivalent. Now ‘provably equivalent’ in this context
meant the same as saying that the sequences of updates wereequal in the free
algebra where each new update was a different generator. We overcame the
complexity of the arrangement of nodes by moving to the box algebra, where
the algorithm became symmetric. Even thoungh the different nodes might
see the updates in very different orders, the orders are always consistent
with the natural partial order < which describes which pairs of updates
are ardered {rom all viewpoints. And it turned out that the symmetrised
algorithm is simply computing the function f(U) for all nodes, using the
presentations corresponding to the orders in which the various nodes see the
updates.

The well-definedness proofs of § and g break up the inductions required
(o prove the main result down inlo manageable size pieces. If one attempts
amore direct induction without using these functions, the problem suddenly
seeme much less structured.

It is interesting to note that we only managed to obtain our proofof the
fact that the expressions were provably eqaal by effectively tieing one hand
behind our back: for welimited ourselves to proofs in which all intermediate
expreseions lay in Pg (i.e., where no low-priority expression ever conjugates
a high-priority one). By doing this we managed to derive the box algebra
and its corresponding theorems, even though we were under no obligation,
given the way our algorithm was set up, to limit ourselves to proofs of this
form.

We saw earlier how Algorithm 2 generalises Algarithmm 1. (The fact that
one algorithm stops or cancels messages altogether, while ite translation

4 ALGORITHM 2: ALGEBRAIC UPDATES 39

conjogates them to 1 instead can he disregarded for our purposes, since
conjugatior by or of 1 has no effect. Qur result about the retnrning update
being the same as the one which is expected shows that an update is stopped
if and omly if cancelled, etc.) Therefore, in some way, our proof of Algorithm
2 must contain another proof of Algorithm 1. Since, stylistically, our two
proofs have been very different, it might be an interesting exercise to see
just how the proof in Section 2 and the prosf of Algorithm 1 that one can
derive relate to each other.

4.1 Variants of the algorithm; timestamping

Throughont our descriptions of Algorithms 1 and 2 we have derived the
priority of updates from (relatively) fixed node priorities. However there
is no particular reason why the priorities have to be assigned in this way,
although we do have to be a little more carefu! in our description of the
algorithm if the priority mechanism is relaxed. The key 1o seeing how the
algorithm shorld work in a more general setting, where all updates that
might be concurrent are giver distinct priorities, can be fonnd in the tech-
nique we evolved in our two proofs of splitting nodes into units which emit
one update each. For of course if this restriction is observed then we cannot
tell between our original algorithms and the ones where priorities are zot
linked to nodes. What a single node which emits several updates must dois
emulate the behaviour of a sequence of single-update nodes with the same
priorities as its updates. The main consequence is that an update which
arrives is no longer necessarily in the same relationship {i.e., higher or lower
priority) with all of the ones in E. The revised version of Algonthm 2 that
we get is detailed below, from wbich the reader shonld be able to deduce
the corresponding amendments to Algerithm 1.

The nodes keep the same state: queues §; and E;. They behave as
follows:

o If ¥; generates an update u, then u is executed locally and u is ingerted
at the tail of Q..

» If Q; is nonempty and there is a space available on the ring, then the
head of @; is removed and inserted iuto the ring, and into the tail of
E;.

¢ If an update u’ returns which was originated by N; as u (bnt may
have been altered since), then it is removed from the ring, and from
the head of £;.

4 ALGORITHM 2: ALGEBRAIC UPDATES 40

« If an update u arrives that originated at another ¥;, then for each of
the entries v in E; in turn, starting with the head (i) if « < v (i.e., v has
higher priority than «) then u is replaced by u¥ and (ii) if v < u then
v is replaced by v®. Notice that, since u is changing as this procednre
progresses, it is necessary to carry it out in this strict sequential order.
Finally, if «’ is the version of u that emerges at the end of this process,
then u’ is passed on round the ring and 49 is executed locally.

One obvious application of this generalised procedure is where the pri-
ority of updates is determined by a Jmestamp, in other words an indication
of the time when it was inserted into the ring. The later the timestamp, the
higher the priority. We would, of course, have to put in some tie-breaking
mechanism (perhaps based on node priorities) iu the case where it is possible
that two nodes can generate updates with the same timestamp,

Suppose first that updates are timestamped as they enter the ring. This
is most likely to be the case where there are no (J;. Provided that the
docks on the nodes are sufficiently close that no update u from node N ever
passes node M before M emits an update with a timestamp that precedes
u’s, then the overall effect of the algorithm is to execute, at every node, a
sequence of npdates equivalent to the npdates, as emitted from their origins,
in timestamp order.

It is snfficient to show this for the one update per node case which we
dealt with in most of the proof of Theorem 4.1. Observe that, under this
assumption and our assumption about the clocks above, the timestamp order
it consistent with the partial order < in the sense that, given auy nonempty
subset of the set I/ of updates, the one with the latest timestamp is <-
maximal. We know (by the proof of Theorem 4.1) that f(I/) is equivalent
to the set of updates executed at each node. If ¥/ = {u;,...,un}, where
i> j means that u; has the later timestamp, then f(U)} = u;;...;u,. This
is easy to prove by induction since u, is always <-maximal in {uy,...,u},

and = u, since every element of {u,...,4,_;} haslower
priority than u,.

If all nodes are keeping their own clocks and we do not want the type of
inconsistency banned in last paragraph, then an obvious way round it is for
each node, upon receiving an update from elsewhere with a later timestamp
than the time on its own clock, to advance its own clock accordingly.

Ii the nodes do keep J; and the messages are timestamped on their
generation, then the modified algorithm presented above does not keep the
right discipline of conjugation between arriving updates and updates in @;.
Clearly the @; will have their earliest updates at the head, and latest at the

5 MORE ABOUT CONJUGATE ALGEBRAS 41

tail, Some of the updates at the head of a given Q; might be timestamped
eatlier than a given u that arrives, and the remainder Iater. Intuitively we
would expect the correct thing to do would be to replace the final sentence
of the algorithm above with the following.

+ Finally, if v’ is the version of u that emerges at the end of this process,
then u’ is passed on round the ring. @; = H; T, where H coniists
of the elements of {J; with earlier timestamps than x, and T consists
of those with later timestamps, ther H is replaced by A% and 17 is
execuled locally.

The anthor conjectures that this algorithm works, in the same senze as
above, nnder the same condition - no update ever arrives at a node, which
now means the part of the node generating the updates, with later times-
tamp than a subsequent one emitted by the node itself. He believes that
the proof of this would revolve around showing that the sequence of nodes
executed at each node is f{U/}, defined with respect to a subtly different <.
This would not he the concurrency order defined on just the ring traffic, but
on the whole netwark including the paths between the ring and the parts of
nodes which generate updates. We would have u < v if and only if (a version
of) u is executed at every node before (a version of) v, or equivalently if u is
executed at v’s origin before v is generated and inserted into the appropriate
€. There will he more discussion of this point in Section 6.

5 More about conjugate algebras

In this section we will discuss some more general properties of conjugate
algebras, give some more examples of them and describe some techniques
for combining them together. It should provide a basis for those interested in
devising languages of updates that are allowable for the algotithm presented
in the last section.

As well as commutative monoids, we have already seen two rontrivial
examples of conjugate algebras: any gronp nnder its nsval conjugation op-
erator and constant assignments to areas of store. These can be reasonably
thought of as extremal: in the one case everything is fully reversible in a
very strong sense (the algebra has inverses) and in the second case practi-
cally nothing is. In this section we will see others between these extremes.
Before going into the theory we will describe one such, which generalices
botb the assignment example and a simple example of a group.

We assume that the values over which variables range are the real nnm-
bers or positive and negative integers, or some other commutative ring with

5 MORE ABOUT CONJUGATE ALGEBRAS 42

a unit. Instead of just allowing sets of assignments of the form z := c, with
¢ constant, we will now take as our model sets of assignments of the form
z := a + bz. Indeed, it i5 convenient to assume that there is an assignment
in the set for every variahle, since the absence of an assignment to a variable
z is equivalent to the presence of = := 0 + 1.2.!? The sense in which this
generalises a group is that if the valuespace is a field (e.g,, the reals) and
the constant & is always non-zero (i.e., constant assignments are specifically
excluded) then the set of npdates that arise is a group.

For simplicity in what follows we will assume that there is only one
variable, z, hut exactly the same constructions work for the general case,
with different variables being quite independent. (The general case is just
the product of simpler ones: see below.) We will denote the update x :=
@+ bz by the ordered pair (a,b). The sequential compasition of two updates
is easily computed:

{a,8);(c,d) = (c + ad, bd)

and from this it is reasonably easy to devise a conjugation operator
{0, b} = (ad + (b - 1)c,B)

which satisfies L2 (i.e., {g,4);{c, d) = {c,d}; {a, b}¢9). A little computation
teveals that this operator also satisfies L3 and L4. The unit assignment is
{0,1), which trivially satisfies all that is required of it.

Unfortunately this example does not generalise in the chvious way to
the case where, instead of the assignment to each variable being linear in its
own value, it is now linear in a combination of variahles. In the case where
there are ouly finitely many variables, and z is a list of them all, one could
write such updates in the form z := ¢ + Az for ¢ a list of constants and 4 a
square matrix. As an example to illustrate this impossibility, consider the
case of two integer vatiables with

s{z.p)= (49,0 and [=(3,y):=(z,7)

The combined effect of e; { is to assign z + y to both variables. But, since
{ forgets the value of y, there is no update ¢/ which, composed fef, can
achieve the same effect for all z and y.

1279 add a touch of credibility to this example, we conld imagine that the database
consisled of bank balances, and thal allowable sclions include clearing (zeroing) an ac-
count, adding or subtracting a constant for a deposit or withdrawal, or multiplying by a
conslant to apply int t. A banking system impl ted waing this algebra would have
auperior properties to one implemented using precompuled constani wssignments, for the
reasons discussed at the start of Section 4.

5 MORE ABOUT CONJUGATE ALGEBRAS 43

Provided the value space ia a field one can get a working algebra over
a finite list z of variables (and it worth noting that the set of all variahles
might be partitioned inte a number of self-contained classes) where every
update is either of the form

L=c+ Az

for a nonsingular A, or a constant assignment to the whole of z. The resder
might be interested to work out the details. H we think of the list g as a
unit, this and the earlier example both have the property that every update
is either well-behaved in one way or is a straight constant assignment to
the object in hand which ignores the earlier state. We will later extend this
idea into a general construction: enmikilating sum for building conjugate
algebras.

We can look at the theory of conjugate algebras from twe distinct stand-
points. One is simply to see what we can derive from the axioms, the other
is to look at how they act on sets (which corresponds to examining the func-
tional behaviour of families of updates). In what follows we will examine
both of these topics briefly, though it seems likely that there is far more to
learn about the structure and actions of the algebras than we have space for
here.

First, some obvious definitions.

DerivITiONS Given a conjugate algebra & whose identity element is 1, a
subalgebra is a subset A which contains 1 and which is closed under the op-
erations of sequential composition (;) and conjugation. A unil is an element
a with an inverse a~! such that ¢;a~! = a~';a = 1. (If an inverse exists
for aa element ¢ it is easy to show it is unique: consider z;q;y for invemes
z and y.} A subgroup is a subalgebra which is a group under ;. (This is ke
same as a subalgebra all of whose elements are anits.}

A horomorphism is a map ¢ : G — H from one algebra to another such
that ¢(1s) = 1y and both operations are preserved, namely

#la;d) = $a);(h) and $a®) = Ha)®)
The kernel of a homomorphism ¢: G — H is {a € G | e} = 1y}. Itis

trivially a subalgebra.

Given an family of conjugate algebras 7, indexed by a set A, we can
make make their cartesian product

I e

AEA

5 MORE ABOUT CONJUGATE ALGEBRAS 44

into a conjugate algebra by defining
(@yha=zawm and (&)r=zP

It is easy to check that this construction works. 1

In a general monoid, for an element a to have an inverse it is not enough
for it to have just a right inverse, namely = such that a;z = 1. The extra
structure of conjugate algebras does give ns this, however, since we have
that

a6 =a;0;7 =a;z;a° =a*
and hence
l=g;z =30 =12;a
or, in other words, z is also a left inverse for a. It i5s easy to see that this
argument also shows that any element {z) with a left inverse (a) also has it
as a right inverse.

It is worth noting that the conjugate of a unit is a unit, since if a;6 =1

then a%; 4% = 1* = 1, and that if @ is a unit and z arbitrary then

which means that z° is determined in this case by sequential composition,
aud correspouds precisely to the definition of conjugation in groups.

Indeed, comjugation by apy fixed element is always a homomorphism
from a conjugate algebra to itself, This is trivially guaranteed by the axioms,
If the element is a unit then jt is an automorphism (homomorphism that is
a bijection).

There are a number of possible definitions of what it means for a subal-
gebra IV to be normal, none of which seems to be totally satisfactory. All
are equivalent to the usual definition in the case where the overall algebra
is a group. In the following we use the notations X, aX,a;: X and X:a for
asubset X of G to mean {77 | z € X} etc.

{a) NeC Nforall ge G.
b)) g"CgNforallge G.
(¢) NsgCgsNforallge G.
It might seem a little odd that we have used C rather than = in cases

(a) and (c), for equality trivially holds in the case of a group if the inequal-
ity does. They have been phrased in this way though, to ensure that the

5 MORE ABOUT CONJUGATE ALGEBRAS 45

group of units ¥ of G is always normal: a demand that seems eminently
reasonable and which wounld rot always be satisfied with = (see annihilating
sume below). It is easy, in general, to prove that {a} implies (), and that if
N is a group then (a) implies {b) and that (b} and (c} are equivalent. The
kernel of any homomorphism i8 easily shown to satisfy (a).

The author has discovered two different ways of forming quotient spaces,
whick toincide in the case where N is a group, but which do not seem to
be especially useful in more general circumstances. The first, in the case of
N satisfying (a), is to declare @ = b if there are » and m in N such that
a;n = b; m, The second, which works for N satisfying (a) and (b), is to
declare @ =b if a; N = % N. In each case the quotient gpace defined in the
obvious way is a conjugate algebra, with the quotient map a homomorphism.
{The well-definedness of the first actually depends on the the properties of
the algebra, since if a;n = b;m and 4 p=¢; ¢, then

amp™ = bimipt = hpm=cigm

which proves transitivity.) Evea in the ¢ase where the kernel N of a homo-
morphism ¢ is a group, we unfortunately do not get the general isomorphism
theorem G/N = Im{¢). The author’s investigations suggest that there may
just not be encuvgh structure in the algebra to give 2 useful notion of ror-
mality and an isomorphism theorem of the type above. Perhaps if one had
cancellation laws something more could be done.

One type of example which makes normality constructions difficult is
where there are a lot of right zeroes in the algebra: elements such that
¢;z = z {or all g. We have seen this type of behaviour in the example at
the start of this section, where any assignment of the form z := a is a right
zero. (In the case of the area assignmeat example with a single variable, all
non-identity elements are right zeroes.) And it is always easy to introduce
such zeroes into an algebra: suppose (7 is a conjugate algebra and Z is a set
(disjoint from &) on which G acts — i.e., there is an operator z ¢ such that
zsl=zandze(gih)=(zwg)shforall z€ Z, g,h € G. Then we can
form a conjugate algebra out of GU Z — the annihilating sum — in which all
elements of Z become right zeroes, as follows. Below, 1 refers to the identity
of G, which becomes the identity of the new space.

e if g, h € G, then g; h and g* are as in G.
e a;z==zforallaec GuZand z € Z.
eng=d =zegforallge Gand z € Z.
sa"=1frallaeGUZ and z€ Z.

5 MORE ABOUT CONJUGATE ALGEBRAS 46

1t is straightforward to verify that thie satisfies all of the axioms. Consider,
for example, the case of L. If w € Z then

wv) = u "
(1))

is trivial, since both sides equal 1. Il w € &G and both u and v are in &G,
then the property is inkerited from G. So we can assume that w € & and
one or both of u and v are in Z (which in any case imply that u;v € 2).
Thos (u; v)¥ = (u; v) * w. In the cases where v € Z this equals v+ v which
in torn equals (u * ¢); (v * w) as required. if v € G then u € Z and so

(uiv)*ew = us (v;w) = us (w;vV) = ™"

which completes the proof of L3.

It is interesting to compare this example witb the example at the start
of this section wben the ring on which it is based has no zero-divisors (i.e.,
non-zero 4 and b such that ab = 0). This consists of the constant assign-
ments Z (all right zeroes) together witb a conjugate algebra of non-zeroes
(assignments of the form = := a + #z for & # 0}. This turns out to be pre-
cigely the annihilating sum under the obvious action of G on Z, except that
the definition of g* is different. This is because there is sometimes more than
one conjugation operator that will work for a given sequential composition
monoid.

It is worth noting that, in the type of examples we are looking at based
on database updates, the sequential composition operator is somehow more
fundamental in a conjugate algebra than is the conjugation operator. This
is in the sense that we are far more likely to ask the question of whether a
given monoid can be given a guitable conjugation operator, than the other
way round.

We can gain some insight into which seqnential composition monoids
can be used to form a conjugate algebra by examining their actions. Since
we are primarily interested in monoids which are sets of updates on some
set § of states, we will assume the monoid is completely determined by its
action'® on a set §, and 50 can be identified with a sub-monoid of the set of
all functions from § to itself (under composition of functions), and contains
the identity function on §. If the monoid were a group, then all jts functions
wonld be bijections, We are interested in the more general case where this is
ot the case. If v € G, we will write z =, y if u(z) = u(y). Suppose T =, y

**Whether or not the monoid is determined in this way, we can teasonably assome that
the monoid acls an the set of slates in the sense described when we discossed annihilating
amms.

5 MORE ABOUT CONJUGATE ALGEBRAS a7

and v is any other element of G. Then, assuming there is a conjugation
operator, we know that there exists w such that u;w = v;u, or, in other
words

w{u(z}) = u(v(z))

for all = € §. Tt follows that u(v(z)) = u{v(y)}, which can be re-written
v(z) =, ©(y). In other words, all the functions in G respect the equivalence
relation induced by the others. (It is interesting to note that the failure of
this property was the reason why the example discnssed earliar using general
ratber than non-singular matrices failed to work.)

It seemns likely that the above result can be taken further, and that similar
work can be done to capture just when a monoid of functions can be made
into a conjugate algebra. But that will he a topic for further work. For now
we will exploit it hy constructing a more general and elaborate example of
an algebra.

We choose our equivalence relations in advance. Suppose that the state
consists of N variahles {Zq,...,Zxn_1). We will make life a little simpler if
by assuming they all range over the same set X of values, but this is not
essential. If z is a state we will use z 1 n to denote {z,...znv_1}. The
equivalen ce relations we allow for the npdates in our monoid are =, defited

ZE e ztn=yglin

for 0 £ B < N. In other words, two states are =, equivalent if the values of
Z, to Ty 1 are the same. =g identifies only equal states and =, identifies
them ali.

What does it mean for a [unction © to have =, = =,7 It means that two
states £ and y are mapped to the same result if, andonlyif,z ta =g 1n.In
other words the result must depend only upon the appropriate final segment
of the state, and injectively upon that. « must also have the property that
it preserves all the other equivalence relations, which mean that the valueof
u(z) 1 m depends only on z 1 m for all m. In other words, the value u assigns
10 T,, is a function of 1 m for all m. Given this fact, it is useful to write ty,
as the function which describes u’s action on the last ¥ — m components: it
maps {Tm, ..., N-1) to the values of the corresponding components of all
u(z) when z has these last components,

It may be possible to deal with more general cases, but it order to keep
the example reasonably simple we will make the additional assumption that,
when =, = =, the functions up,, for m > n are all bijections. In other words,
u induces a bijection an the set of states factored by each of the equivalence
relations =, for m > n. Under this assumptjon and what we know already,

5 MORE ABOUT CONJUGATE ALGEBRAS 48

it is possible to describe the possihle structure of u completely. For each
m€ {n,,..,N — 1] there must be a function g; from (¥ — (m + 1)}-tuples
to the zet of bijections from X to X, and for each m < n there is a function
h; from (¥ — n)-tuples to X such that

[] when m 2 n, u(i)m = gm(IT (m+ 1))(3"‘1)1 al'ld
e when m < n, then u(z)n = An(z T n).

Any such system of ¢’s and A's describe an allowahle u completely.

Let I/, be the set of all 4 as above, and let I/ be the union of the U/, as
for0 < n € N. The index of u € U will be the unique n such that u € U,.
We will show that I/, with functional composition, is a moenoid and can be
made into a conjugate algebra.

Since the identity map on § is an element of U; and functional composi-
tion is always associative, to prove U/ a monoid it is enough to show that it
is closed under composition. It is easy to see that the property that u(z}1n
depends only on z T n is preserved under composition. Suppose u € U, and
v € Un,, and that g; and A; are functions constructing the components of
v as above. If m > n then u;v € U, since, for each & > m wux; v is the
composition of two bijections and hence a bijection, and for each ¥ < m
then v{u(z)} = Ax(u(z) T m) = Ae(um(z T m)) which is of the correct form.
Ifm < n then u;v e U,: the same argument as ahove applies when k > n,
and when m < k < n then v(u(g)) T ¥ = ge(u(z) T 5+ 1)((2)s), which is a
function of z T n since u(z) is. Similar considerations apply when k& < m.

If u is an element of I/, we can define a partial inverse for it, u™, which is
an element of Ug, as follows. We can describe u in terms of g; (n < i < N)
and A; (0 € i < n). Now construct functions g} for n € i < N as follows:

95(y) = (gulupy, ("

Fori < N define g;(y) = idx (the identity function). These g} clearly define
u* € Uy, and it should be clear that u} = (ug)~! for all k¥ > n. Hence u*;u
and u; u* are both elemeuts of U/, which leave the last N — = components of
the state unaflected.

These u* can be used to define a conjugation operator in the ohvious
way: v* = u*;v;u. Since v;u is only a function of {at most) the com-
ponents of the state which are inverted successfully by u”, it follows that
u; u*;viu = v;u, which is what we need to get L2. L3 holds, or in other
words w*; u; w; W* v; w = w"; u; v; w, since the only components of the state
which are needed for the final result are certainly contained in those pre-
served by w; w*. L4 corresponds to {v;w)*;u;v;w = w*;v";u; v;w. This

6 NON-RING TOPOLOGIES 49

bolds because (v; w)” and w*;v* both act identically on the components of
the state required for computing u; v;w: in particular they both act as the
inverse of (v; w),, where n is the greatest index of v, v or w.

Surprisingly, given our experience to date, law L6 does not hold (even
though L5 trivially does with the identity function as identity). This iz be-
cause, given any v ¢ Up, we find v*;v # 1. Thus this particular conjugate
algebra is not unitary. To make it unitary we can add, as indicated in Sec-
tion 3, an extra element to act as 1 (the action of 1 on the underlying set
is the samne as the identity function, but as objects in the algebra they are
distinguished). However tbe existence of a 1, while useful in performing the
manipulations which proved onr algorithm correct, plays no essential func-
tion in the algorithm itself, and adjoining a 1 does not affect the algorithm’s
operation, and the equality or otherwise of terms from the original algebra
is in no way affected by the addition of the 1. This phenomenon of algebras
which only satisfy £1-L5 is worthy of stndy. It may well prove to be the case
that this is tbe right definition: the main place where L6 has been useful to
us was in the reduction of all terms of the free algebra to atomic form.

6 Non-ring topologies

Ring topologies have several advantages for our type of system. They are
completely symmetric, in the sense that they look tbe same to all nodes, and
when ap wpdate returns to its origin the origin knows that all other nodes
have seen it. One disadvantage was indicated earlier: the maximum latency,
or time which it takes between an update entering the ring and being seen
by all nodes, is proportional to the size of the ring. It is also possible that
we might be asked to implement one of our systems on a network which ia
not a ring, and which would be inefficient to build a ring on top ol.

In the following subsections we will construct algorithms based on the
conjugate algebra model of updates. All of these contain implictly an alge-
rithm based on the model of updates used in Algorithm 1, with analogues
of stopping and cancelling. We leave the interested reader to extract these
for himself.

8.1 Joining rings together

One obvious way of creating a more general system is to glue a number
of rings together: we can create a special node which sits in two rings ang,
whep it receives an update to execute from one ring, inserts it into the other.

6 NON-RING TOPOLOGIES 50

In order to describe these special nodes it is usefnl to break up the nodes
of Algorithm 2 into two parls: a user process If which contains the local
copy of the database and generates the updates which originate at the node
{and executes them locally before releasing them), and a server process .S
which holds the queues § (which sits on its input line from the uaser} and E,
deals with the ring protocol and the necessary conjngations, and sends the
correct non-local updates to U for it to execute along an ontput channel.
Except for what is waiting on § and E, the process § never deals with more
than one update at a time. A special node simply consists of two of these
$ processes back-lo-back, one in each of the rings it is connecting. The
input line of one is connected to the output channel of the other, and vice
versa, In getting up the way these two § processes communicate, care will
be required to avoid deadlock. For example, at least one of thermn will have
to operate a @ to achieve this,

Given that our ring algorithm works it is easy to see that this special
node, joining two otherwise unconnected rings, preserves correctness. For
suppose we were to place a copy of the database on the node and execute
the updates which emerged from the two output lines in the order they
appear. (Since the two § processes can only deal with one update at a
time, they cannot swap a pair of updates simultaneously.) So far as each
ring is concerned, the sequence of updates executed at the special node is
exactly the sequence which would be executed there if the node were part
of that ring alone and it generated the updates from the other ring itself.
It follows that the sequence of updates at the special node is equivalent to
those executed at all the other nodes in the ring and, by symmetry, the
other ring.

We remarked above that the special nodes should nly he used to connect
a pair of rings at one point, I two rings are joined in more than one place,
the result would be that each update would circulate eternally.

Of course, we can use more than one special node to create any tree-
connected system of rings. Since there can be many copies of an update
circulating at one time in such a system, the latency problem can be much
reduced. However the reader may notice that a node can now never tell
from the action of the algorithm that its update has finished circulating.

8.2 Tree networks

In the systems described above, we can imagine making the rings smaller and
smaller until they just contaiued one normal node each and enongh special
nodes to connect them to adjoiuing rings. If we thought of each of these

6 NON-RING TOPOLOGIES 51

rings as a single process, joined hy the links which cornect the two halves
of each special node to its neighbours, then we would have a method of
constructing an arbitrary tree network. Notice that in this, as in any other
way of configuring a tree to send updates generated anywhere all romnd,
npdates can pass either way along the links, which was not the case in the
ring.

Tt seems rather odd to be constructing a tree in the way described in
the last paragraph, since firstly each node is actually described as a paralle]l
process and secondly one would think that a tree was fundamentally simpler
than a ring and ought to have a solution of its own. In fact it iz posgible
to describe an algorithm for operation on an arhitrary tree, though inits
actual operation it is rather close (though not identical) to the one set out
above.

Conceptually we will build our network out of two types of processes;
nodes which held copies of the database, can generate updates and receive,
execute and pass on updates from elsewhere, and processes which sit on the
links between the nodes and regulate updates queued up and passing esch
other, A node will deal with only one update at a time: either it is one
it generates itself, in which case the update is executed and passed to the
links with all neighbours, or it is one received from a link, in which case the
update is executed and passed to all other links. {Note that, iu this last
case, if there are no other links because our node is a leaf, the updateis
passed to nowhere else.)

The processes on links each keep two queues moving in opposite direc-
tions, No overtaking is allowed in either direction. When a pair of updates
1 and v pass each otber moving in opposite directions, the liuk process must
conjugate one (and only one) of them hy the other. So after u and v pass
they become either u and " or u¥ and v. There are a number of strategies
the process could use for this: it could choose on some priority basis de-
pending on the identifiers of the updates, it could always conjugate the one
moving in a particular direction, or {and this corresponds to what happens
in the case of many small rings discussed above} whenever a uew update
enters from either direction it could be moved past, and conjugated by, &l
the updates queued in the opposite direction.

In order to prove this works all we have to do is prove that the update
executed at either end of a single link are the same, since it should be
ohvious that each update visits each nade exactly once (perhaps differently
conjugated at different places). Tkis is not too hard to establish, the author’s
proof being obtained by breaking up the link up into a number of pieces not
capahle of holding more than one update each (in both directions combined).

6 NON-RING TOPOLOGIES 52

An update can pass from one to the next if the latter is empty, or if both
full they can swap and conjugate one of the two updates. The relationship
between the sequences of updates which have passed through consecntive
pietes id easy to establish, and when both are empty it is easy to show that
these sequences are eqnivalent. Any finite behaviour of the ariginal link can
be modelled by one of the latter form provided it is broken into enough
pieces.

There is an interesting contrast between the operation of this algorithm
an the ring-based ones. For in the tree case an npdate becomes conjugated
when it ‘meets’ another update (by passing it on a link), while in rings
npdates never meet each other and are conjugated by the ‘expected-back’
copies. The existence of a linear priority order which governed conjugation
was essential in the case of rings (as is easily demonstrated by examples). In
the tree case there is no such need: it is easy to construct examples of three
updates, each of which meets the other two and which conjugate each ather
cyclically (i.e., a conjugates b, b conjugates ¢ and ¢ conjugates a) withont
destroying the correctness established above. (In the tree algorithm, as in
the ring case, it is easy to see that an update will meet another one - ar its
expected back version in the case of rings — if and only if there are nodes
which disagree on their order, and that if so, they meet exactly once.)

6.3 General networks

The best hope for producing an algorithm which will work on a more general
structure would seem to be the functions f and g defined in Section 3.
These essentially give us a prescription for implementing a system, since
they tell ns exactly which are the permissible orders for updates to meet
and conjugate each other, based on some consistent notion of priority. It
seems clear that the partial order with respect to which the functions are
defined will always be the ‘causality’ one, namely u < v if 4 has been seen
at v’s origin when v was emitted, and that the routing of updates should
be sufficiently deterministic that this order coincides with the ‘concurrency’
order: u < v is all nodes see u before v.

Under these conditions the sequence of updates executed at a given node
N 5 consistent with a presentation of f, in the sense that each stccessive
update u must be either greater than, or incomparable with, each that has
preceded it at ¥. What we must ensure is that, when it is executed at ¥,
u has been conjugated in the box algebra to , where k(N,u) is,
as in Section 4, the set of updates to arrive at N before u. This worked
out very naturally in the ring case, and also in the tree case if priorities

7 PROSPECTS 53

are adhered to in carryiug out conjugation. But in cases where streams of
npdates are, for example, being merged together, it may well require more
ingenuity or, at least, a more technical algorithm, to achieve this. We leave
this as a subject for futore work.

There is a connection between this ‘general topology’ discussion and our
discussion on timestamping at the end of Section 4. For note that we were
conjecturing there that the most complex algotithm devised there worked
by reference to 2 function f defined over the concurrency/causality orderon
a more general sttucture — in that case a ring with hairs. An obvious second
connection is the qnestion of whether it is possible to extend thie work on
timestamping to mare general topologies. The author believes that in any
case where one can come up with a working algorithm, if update priorities
are based on consistent timestamps, then the algorithm will deliver the
desired result of updating all nodes by a seqnence of updates equivalent to
the original updates in timestamp order. The argument should once more
revolve arcund the function f, as in our earlier discussions of timestamps.
This is another topic for futare work.

We discussed earlier how our algebraic theory was connected with, and
might be applied to, the subject of true concnrrency. It is interesting to
note that there is another connection with this topic which appears from
the two partial orders (causality and concurrency) which we used to order
the updates going round a system. For, if we thing of the total transit of
one update as a single event which is observed by a node when it reachesit,
then these orders become ones frequently used in true concurrency. Recall
that out algorithms have all made sure that these two orders coincided.
One conld view our algorithms as working by making sure that each node
calculates, in possibly different ways, a natural algebraic invariant arising
out of a “true concurrency’ view of the way the system works. Thus, in
some way, one might view the algorithms in this paper as being a practical
application of that subject!

7 Prospects

We have discussed elsewhere possihilities for further work on the algebra in-
troduced in this paper and applications outside databases. The last section
provided a little insight into what might he required to geueralise our meth-
ods beyond the classes of network covered. In this section we will briefly
discuss a few more topice which may he profitable subjects for further work
related to the application and generalisation of our algorithms.

In Section 5 we began to see just what was and was not allowable for

7 PROSPECTS 54

a language of updates which is to he made into a conjugate algebra. It
would be interesting to take this further, both by investigating theoretical
bounds and by producing further examples. In some sense our three major
non-group exarples — area assignments, z = g + b2 and the last one with
its hierarchical equivalences — form a sequence where each more-or-Jess gen-
eralises the previous one. Do all examples follow this geueral style or are
there others which look completely different?

It is perhaps worth pointing out that the symmetric algorithm which
appeared in our proof when the box algebra replaced the conjugate algebra
is perfectly valid in its own right. If we have a language of updates and
a box-conjugation operator which satiefy axioms L1 and P1-P5 then the
symmetric algorithm may be implemented directly. (Slight modifications
are required in the management of the queues §Q;.) Quite differeut effects
can be achieved.

For example, suppose that the model of updates is constant area assign-
ments as discussed at the gtart of Section 3, but that additionally there is an
error state L, npon which no assignment has any effect, and a special update
z which sets the state to L. Clearly z is a left and right zero of sequential
compuosition. We can define a bax-conjugation operator by setting v = v
if v and v do not clash (i.e., have disjoint domaius), and ¢& = z otherwise.
@ =1 forall z, and 28 = z for all v # z. It should mot be too hard to see
that this satisfies all of P1-P5. An interpretatiou of this example is that, for
some reason, the simultaneons existence of clashing updates is an errar, and
when it occurs we want all nodes to know the error has occurred. (A system
using this algebra might be implemented as a guard against the break-down
of some other protocol which was meant to prevent concurrent updates of
the same location.)

The obviouns question that arises here is: to whal other uses can this
symmetrical algorithm be put? The algorithms we devised for other network
topologies in Section 6 can also be adapted to use the box algebra.

Acknowledgements

1 am grateful to Joy Reed and Michael Goldsmith for reawakening my in-
terest in my original database algorithm after it had slumbered for many
years. Michael, and more recently Steve Brookes, have provided a useful
sounding board for my ideas and have made a number of useful suggestions.
Samson Abramsky pointed out the connectious between my box algebra and
the work of Gene Stark.

7 PROSFECTS 35

References

[M] A. Mazurkiewicz, Trace theory, In ‘Advanced Course on Petri Neis',
GMD, Bad Honnef, September 1986.

[R] A.W. Roscoe, Routing messages through nelworks: on ezercise in
deadlock gvoidence, in Muntean ed., Programming of Transputer Bawed
Machines: Proceedings of 7Tth occam User Group Technical Meeling,
(14—16 September 1987, Grenoble, France), I0S B.V., Amsterdam.

[S] E.W. Stark, Connections between a concrete and an abstract model of
concument computation, in Proceedings of MFPS 89, Springer LNCS
442,

