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Maintaining Consistency in
 
Distributed Databases applications
 

A.W. Roscoe 

Abstract 

We introduce, and prove correct, two novel algorithms for preserving a (orm 
of consistency in distributed databases arranged as riugs. The first uses a.s 
its model databases with a fixed number of fields with updates which assign 
knQwn constant values to one of these 'slots'. The proof of this reliell on a 
moderately complex combinatorial argument. The second algorithm, which 
can be viewed as generalising the first, tues a wider view and simply as­
sumes that the set of updates have an operation a.nalogous to the conjugation 
of group theory: given any u, 11 we can find uti such that u; 11 = 11; uti, which 
satisfies some natural algebraic properties. Its proof relies on an algebraic 
argument ha..aed on partial orders, which may well have applicalions outside 
databases, for example in the field of 'true concurrency'. We indicate how 
the algorithm can be generalised to a number of other network topologies, 
and give guidelines (or further generalisations. If combined with timestamp­
ing, the algorithms provide highly concurrent methods o( ensuring that the 
sequence o( updates executed at all nodes corresponds to the order implied 
by these timestamps. 

"The author gratefully acknowledges that the work N!parted in this paper Wall 

supported by the U.S. Office o(Neva.! Research under grant NOOOI4-B7-G~0242. 
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INTRODUCTION 

Introduction 

Distributed databases, where multiple copies of some data are kept in differ­
ent locations, occur in a wide range of applications, varying from multiple 
copies of a ca.c.he memory in sha.red·vWable parallel computers, through 
networks of workstations sharing some common information, to widely dis­
tributed applicatioDuuch asantomated tellerma.chines. The multiple copies 
may be kept for speed of access, for security (Le., procest; P does not lose 
... ita! data if process Q goes down), or a combination of the two. 

Our conceptual model will be of a number of processes with separate 
memory, all seeking to hold copies of the same database. The database is 
changed via updates, which are circulated around the network and executed 
by the processes (presumably at; they arrive at each one). 

An obvious problem arises from the need to keep the various copies of a 
piece of data consistent: if several processors decide at more-or-Iess the same 
time to update it, how can we ensure that all processors, at least ultimately, 
agree on its value? Given the principles (i) that any process can update any 
location, and (ti) that each process should be allowed to execute, locally, its 
own updates immediately (the denial of which would lead to some interesting 
programming problems), it seems inevitable that there will be times when 
the various copies will not agt@e. We will seek a weaker form of consistency, 
namely that whenever there are no updates circulating which affect some 
portion of the database, then all copies of this portion are the same. ThUB 
if the network is quiescent (i.e., no updates at all are queued or circulating) 
then all copies of the database are equal. A secondary but no less necessary 
requirement is that, if no new updates are inserted after auy time, then the 
network will become quiescent in a reasonable period of time. 

The author's work on this topic began iu 1983 when he encountered a. 
commercial solution to this problem. A compnter manufacturer was intro­
ducing a system to manage networked workstations, part of which required 
the consistency of copies of a database stored in each node. In broad outline, 
their solution was to arra.nge the workstations in a ring. (This, historically, 
is the reason why most of the author's work has been based on rings. We 
will see in the Section 6 that his choice of a ring topology is by no mea.ns 
essential.) Their ring contains exactly one 'token', which either carries " 
single update round all the nodes or is empty. Thus a. given node can only 
insert an update into the ring (for execution by the other processors) when 
it can acquire the token, empty. Each node is allowed to execute its own 
updates immediately they arise, and these are then queued for insertion into 
the ring. In order to avoid the inconsistencies that potentially arise in the 
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manner stated above, it was necessary to restrict the model ofupdate& to the 
assignment of a constant value to a single alot (Le., store location). When 
aD npdate llJTives from the ring which clashes with one(s) queued locaJ.ly 
(i.e., is an assignment to the same slot), these are removed from the queue 
and the newly arrived one is executed. 

This system transparently achieves the desired correctness, but the fact 
that only one update can circulate at a time is potentially very limiting. 
Imagine scaling this system: if there are N processes, then the total number 
of updates generated is likely to grow proportionately with N. but since the 
time for an npdate to circulate will also grow with N. the throughput will 
be proportional to 1/N. 

The algorithm presented in Section 2 was devised at that time, bot the 
correctness proof was Dot completed, and nor was the algorithm written 
np. The author's interest was revived recently when looking for natural 
problems for combining Z (a specification language for state-based systems 
IUch as databases) and CSP (a language and theory for reasoning about 
wstributed systems). The application of these methods to the problem may 
be reported later. He then completed the proof given in Section 2, and 
produced the generalisation presented in Section 4. 

The generalised algorithm and its proof are based. on an algebra with an 
aBliociative sequential composition operator Vi v and a 'conjugation ~ operator 
u" such that ViU" = v;u. By-prodncts of this work are two intere&ting 
algebraic theory, which we term 'conjugate algebras' and 'box algebras!' The 
first of these is a natural generalisation of groups, and the second (though 
discovered independently) bears a close resemblance to Stark's [5] 'algebra 
of residuals'. The proof of the generalised algorithm depends on the (new) 
result that it is poesible to capture the structure of any finite partial order 
na.turally within this second algebra. It seems p06sihle that this work might 
find further appliea.tions in the field of 'true concnrrency', where proces5 
histeriel come with a partial order describing the cansal dependence between 
events - interes.ting.ly it is pref:isely this order which we have to characterise 
algebraically to prove our algorithm. This was, in any case, the field which 
motivated Stark's work. 

Several other algorithms for handling the database problem we address 
are based. on the idea of timeatamping: each update is marked with time 
when it was generated and these time& are used by nodes to piece together 
the correct order to execute updates.. Timesta.mping is not esseutial in our 
framework, but we show at the end of Sef:tion 4 how a priority mechanism 
based on timestamps can be used to achieve attractive results. 

In Section 5 we investigate some more properties of conjugate algebras 
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and give some non-trivial examples. 

In Se<:tion 6 we address the question of bow our algorithms might be 
adapted to non-ring topologies. We show that they readily extend to net· 
works arranged either as trees or as multiple rings interconnected as a tree. 
There is some discussion of how the algebraic conRtructions used in the prool 
of the ea.rlier i1.1gorithms might allow us to derive algorithms for more general 
networks. 

Finally, in Section 7, we point to a few topics that migbt be worthy oC 
further work. 

Concurrent simple updates 

The algorithm described in the introduction can be modified in a fairly 
straightforward way to allow an a.rhitrary number of updates to circulate 
concurrently without affecting correctness. As we will find, what it not 
straightforward is verifying that this is in Cact the case. 

The modified algorithm - which wiU be reCerred to as Algorithm 1­
replaces the token ring with a more-or-les5 arhitra.ry no-overtaking ring, 
which can allow as many updates to circulate as it pleases, but must neverlet 
one upda.te overtake another. The nodes on the ring a.re assigned a.rbitruy 
but unique priorities. The effect oC giving a node higher priority is that 
its updates will be slightly more likely to be execnted across the network: 
there may be some external reason Cor ordering the processes, but if not 
they must be prioritised anyway. The priority oC node N. will be denoted 
P;, aJld Pi > P; will mean that N; has higber priority thM Nj. 

As in the case of the algorithm described in the introduction, we will 
suppose that each node Ni has a queue Qi oC updates, executed loca.lly 
but not yet entered into the riug. H desired, these can now be dispensed 
with, since all that would be required would be Cor Ni to 'generate' a.n 
extra place actually on t.he ring within itself: whether the Q;'s a.re U500 
will depend on ha.rdwa.re configurations Md efficiency analysie.. We have 
retained the possibility of them in our algorithms to demonstrate that, if 
properly managed, they do not damage correctness. 

Each node N; will also have a. queue Ei' which will contain a list oC all 
updates which it has inserted into the ring and is expecting back. Thie. is 
not dispensa.ble. 

As in the algorithm descrihed in the introduction, onr model of updates 
will be the assignment of constant valuee. to single slots. Sucb an update 
u can thus be written % := c. Notice that, given updates u == % := c and 
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" == Z' := r!. we either have u; v = tI; u (when z and z' are di&linct), or have 
tljV =17. 

We describe the algorithm in terms of the actions of an individual node 
No. (The actions within a node are assumed to he atomic. in that, once one 
is started, it is completed without any others overlapping it.) 

•	 IT Ni generates an update ti, then u is executed locally and u is inserted 
at the tail of Qi. 

•	 IT Qi is nonernpty and there is a space availahle on the ring, then tbe 
head of Qi is removed and inserted into the ring, and into the tail of 
Ei . 

•	 If an npdate u returns which was originated by Ni' then it is removed 
from the ring, and from the head of Ei. I 

•	 If an update u arrives that originated at some other N j and such 
that there is no dashing update (one to the same slot) in E i , then u 
is executed locaJ.1y and any clashing updates in Qi are deleted. u is 
passed on round the ring. 

•	 If an update u arrives that originated at Nj with Pj < Pi, aud Eo 
contains one(s) that clash with it, then u is neither executed locally, 
Dor is it p~sed round the ring. We say that it is stopped. 

•	 If an npdate u arrives that originated at Nj with Pj > Pi, and Eo 
contains ones that clash with it, then theiie are removed froID E i (they 
are cancelled), u is ex~uted locally and any clashing updates in Qo 
are removed. u is passed on round the ring. 

Clearly, we are using the regime oC stopping updates and cancelling their 
expected-back versions to maintain consistency in the presence of multiple 
updates to the same !!Jot. 

If we want to implement the above algorithm (and the second algorithm 
described later) it is clear that the update traDf;ported round the ring needs 
to carry with it not only the operator which updates the state, but a.l5o a 

'IL II by 110 meaJI~ obvioua, given tbe delail~ of thi~ algorithm, that • .,ill 'till be in 
E, Uld, if it is, .,hdher it will be at the head. Until"e have eIItlblilhed tha.t the above 
stl.iement actually makee !IeIIBe .,e w:ill. 8&Y thaI. • i. removed from the ring only if it ill 
still expected back aJld, if 10, il removed from E IIlII .,ell. Nodce that thi.leaveEl the Formal 
pcIIIlibility that IUl update might pUll illJ origin and circle the ring indefinitely. However, 
it wiIJ. transpire from our later analysis of this algorithm that" .,ill indeed be at the head 
of E" 10 that the formulatiOh above is correct. 
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unique identifier from which a node can identify the priority of the update, 
a.nd tell whether it was one wroch the node itself generated. (The paint is 
that there may be many functionally identical updates circulating at any 
Doe tjme, which for our purposes need to be distingui&hed.) In descrihing 
our algorithms we will describe only what happens to the functionaJ. part of 
an update, but the reader should hear in mind that they will alway! cury 
this unique identifier with them as well. 

In order to get reasonable behaviour of this system we have to make 
some stipulations about tbe behaviour of the ring itself. 

•	 It mast have bounded capacity. Thi.s is to ensure that no npdate can 
make a.n infinite amount of progress without getting aU tbe way round. 

•	 It does not indefinitely stop any update within it from malting progJ't'Ss. 
(This could conceivably happen either hecause the system can dea.d­
Jock, or because it can favour one section of the ring in preference to 
others.) 

•	 Provided enough items are removed from it, the ring will not indefi­
nitely delay accepting 8.1\y update which a node wir;hes to insert. Tb.i, 
jl'i easily achieved by, fOr example, reserving at least one space in the 
ring specifically for updMes generated byea.c.h node. 

There ace numerous methods of achieving these goa.ls, for example a S)lI­

chronously clocked ring where all places (empty or fuU) move round in loa­
step, or a small modification of the ring described in [RJ. 

The chief aim of the rest of this section will be to prove the foUowibg 
result.
 

THEOREM 2.1 Suppose initially all copies of the database are identical.
 
Under Algorithm 1, whenever there is no current update (one in the ring ar
 
any Q.. ) to a given slot, all nodes agree on the value in that slot. Furthermore,
 
if after a given time no further updates are generated for a slot, then by !lOme
 
Jater time there wiU be no current update for it. I
 

Our assumptions about the ring are not necessary to prove the first part 
of thie reeult, but clearly they will be vital in establishing the second. 

From here ou it will be useful to make three simplifying assumptiom. 
First, that there is actually only one slot (eo that all updates clash), second, 
tbat there are no Q;'s, and finally, that no N; emite more than one npdate in 
its history, We will justify each of thelle in turn. In understanding these and 
later a.rguments it might be helpful to bear in mind that we are never, in this 
paper, intereBted in what caused a partkular update to be generated. Thus, 
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if we alter the sequence of updates executed at a given node, we can ignore 
the possibility that this .might change the subsequent updates it generates. 
Al] we interel!ited in doing is proving our consistency results in the presence 
of any possible sequence of updates arising from each node. 

The assumptions we have made about the ring mel:ha.nisrn mean tha.t 
updates to one slot cannot prevent those to another getting round the ring. 
Any Bequeuee of updates to a given 810t tha.t would be possible in the pres· 
ente of those to other slots is equally possible without them. and vice versa. 
For the algorithm we have set up treats updates to different slots indepen­
dently: they never slop, cancel or otherwise aBed each ..>ther. Thus, to prove 
the above theorem, it will be enough to prove that it holds if updates are 
relltricted to a single slot. Notice that, under this assumption, the network 
i8 qnieficent exactly when there are no CUTrent updates for the single slot. 

The effect of any sequence of updates in the algorithm with the Qo's is, 
for our purposes, equ.ivaJent to one without them. This sequence is the one 
IIIbere each node executes ils owu updates only when it they a.re inserted 
into the ring, and these events only occur for updates which, in the original 
sequence, were not removed from Qi before in6ertion. Notice that this does 
not affect the contents of the Ei or the updates that circulate in the ring: 
both of these are at every time exactly as they were in the original. This 
m.mipulation affeds the short-term behaviour of Ni'S copy of the database, 
since it is not as np-ta-date and may not see rome locally generated values. 
But it does not affect the long-tenn behaviour, in the sense tha.t the final 
value of each variable will be the same as in the original. For ifthe last up­
da.te u to be execnted in the old sequeuce, at a given node N, was generated 
outside N, then this will be executed in the new sequence and there will be 
no later local updates executed there since any that were queued up at the 
time when U arTivefi are deleted. Aud if it was geuerated at N then no later 
update arrives to delete it and stop it being executed in the new sequence. 

Suppose we have proved Theorem 2.1 for systems where each uode is 
only allowed to emit one npdate. Snppose further that we have proved (as 
we will) (i) that, in this case, any update is stopped if and only if it is 
cancelled (i.e., the copy expected back by its originator is) and (ii) that all 
stopping and cancelling takes place before an update would otherwise have 
returned to its origin. Notice that the things we are required to prove in 
the theorem (for our single-slot system) are all on the M8umption that the 
number of updates inserted is finite. So suppose that, on a given occasion, 
the number of updates inserted by each node is bounded ahove by". We 
wil1show that this behaviour of the system is modelled by one of the system 
where 0) each N, is replaced by T adjacent nodes N,,j (l ~ i ~ r), limited 
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to one update each, and (ii) the priorities of the N.,J· are arra.nged so tha.t, if 
i to- i', theD Pi" < Pi'';' if, and only if, Pi < Pi' (in other words, the priorities 
of the Ni,i are 'small perturbations' of those of the N;). 

The NiJ are arranged on the ring so that j increases as we proceed 
round the ring in the same direction as npdates are transmitted. Ni,l is 
given the job of transmitting the first update that Ni pUb into the ring, 
Ni,'l the second, and so on for as long as Deces8a.ry. Since no node in the 
original &YBtem is ever dealing with more than one update at a time, we can 
model its behaviour by one in the revised system wben!, at any ODe time, 
the portion of the ring from Hi,l to Ni ,.,. (inclusive) never conta.in.s more 
than one update. Thos we will ensure that the previous update to be dealt 
with bas left Ni,.,., has been stopped, or has been removed by its originator, 
before we allow another update to be inserted by one of this sequence of 
nodes or to enter Ni,l from the ring1 • By doing this, it is clear that we 
can regard the handling of an update by one of these sequences as atomic, 
and directly model the behaviour of the origjnal system. Becanse of this 
exclusion principle and the order in which they are generated, no upda.te 
generated by one member of a sequence Nj,L. ... Ni., ever stops or cancels 
another. (The two facts (i) a.nd (ii) about stopping aud cancelling staled 
above are necessary to establish this.) 

If we now regard the sequence of nodes Ni,l to Ni" as being, in some 
sense, a unit, wbose list E, of expected-back updates is those expected by 
these in order (lowest index at the head), then the behaviour of the original 
system can be modelled directly in the new one. The new system will stop 
or cancel updates exactly as tbeold one did. and furthermore node Ni" (I.e., 
the last in the sequence) sees exactly the same sequence of updates as W&ll 

seen by Ni in the original one. For each update generated by one of the 
NiJ is seen there, by construction. and any update generated by another 
node which enters the sequence will have been stopped by the time it, or 
its 'ghost3 '. reaches Ni" if a.nd only if it would have been stopped at Ni. 
The result (or the original system now follows directly from the one we have 
assumed for the new one. 

1We Me not Iluggeating that lhe new ring ""onld al""ay. enforce these slJange re8trk­
tions, only that each behaviClur oC the original ring can be modelled by one of tbi. ring 
""bere the restrictions happen to be obeyed. 

3We CIUl. think oC a Iltopped npcb.te u leaving behind a gha.' ...bich truela ronnd the 
rinl nntil it reache hClme. or perbpa even lClnger. Thill makes sen~ in a no-ovenaking 
ring. since by Idating tbat IIOmdhing happenll before the ghM of II unVeil ...e kIlo"" that it 
happel1ll beCClre any update that fClilowB • amVe8. IlI11eem8 to be e&Aier to IltaLe coadiliolll 
like the above in term. ClC these imaginary ghOlI.8 rather thaa to CClrmulate them acCDU.td, 
in other "'1." 
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From now on we will make the three simplifying assumptions. As a 
very simple illustration of how the algorithm works, consider the case of a 
ring of three nodes, all of whicb emit their update at the same time (or, a.t 
Ifast, before any other updates reach them). To be specific, assume that, 
in the direction of the ring, their priorities are respectively 1,2,3 (3 highest) 
lknd that the updates they emit are Ult U2 and U3 respectively. In this 
experiment, 1£1 is I5tOpped by N2, and U2 is stopped by N3 • U3 ca.ncels both 
VI and u,. and il'i the last update seen by all three nodes. Thus they all 
agree on the value assigned by U3_ One point to note here is that Ul is 
stopped by a different node than the update that cancels it: in larger rings 
the dependencies between the updates that stop and cancel a given npdate 
can become long and diffuse. Notice here that, in a symmetrical situation, 
the fact that U3 has the highest priority has led to it 'winning'. If, however, 
we break the symmetry hy assuming that "3 has Pallaed NI before 1£1 and 
112 are simultaneously emitted. we see that "3 cance.ls U,h and N3 stops U:I; 

but Ul is neither stopped nor cancelled and is, in fac:t, the last update seen 
by all three nodes - and so 'wins'. 

The reader might like to experiment with the algorithm on some slightly 
larger rings, nnder various allsumptionl5 about the order in which updates are 
transmitted. The snbtlety of the way in which the algorithm works should 
become dear, as should the important fac:t that the overall behaviour of the 
system is determined pmely by the moments at which npdates are inserted 
(or, more precisely, the arrangement of other updates between nodes at the 
moment when eacb is put into the ring). The no-overtaking propert}' of the 
ring means that this completely determines the sequence of updates that 
arrive at each individual node. 

The proof of correctness of the algorithm js broken into three lemmas, 
the chief of which (in terms of difficulty, at least) is the first. The stAtements 
of the lemmas are as follows; their proofs follow. 

LEMMA 2.2 An npdate is cancelled if and only if it is stopped. and all 
stopping and cancelling takes plac:e before an update would have returned 
to its origin (i.e., before its ghost does return). 

LEMMA 2.3 If no further updates are inserted after some time. then tbe 
network will eventually reach a quiescent state where (a) no node expects 
M update back, and (b) the last event to occur was an update returning to 
its origin. 

LEMMA 2.4 AU nodes, in this qniescent state, agree on the value carried 
by the final update refer~d to in (b) above. 

Ploor or LEMMA 2.2 We prove this by induction on the number of nodes 
with higher priority thM (tbe one emitting) a given update. The result is 
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trivial when there are none of these, for the update cannot theu be stopped 
or cancelled. So suppose it holds of All updates generated by higher-priority 
nodes than No which emits update UQ. For our result it wiD be enough 
to show that (i) if 1£0 is stopped before its return to No then it is cancelled 
before its ghost returns and (ii) if Uo is cancelled at No before Uo or its ghOlit 
reltuDs, then Uo is in fact stopped before its return. These are sllfficient 
because if tic i6 stopped or cancelled then one of these must occur bero:re it 
returns (or else it returns to No which is expecting it. and it is remowd); 
the above results then mean that they both do. 

Suppose, fot contradiction to the first part, that Uo is stopped at N} 
before it returns to No, but is not cancelled by the required time. Since 
N L ha.!l higher priority than No, we know by induction that Ul (the update 
generated by N1 ) is no longer expected back at N1 after it or its ghOfit 
returns. It follows that Ul and Uo must be in the relation Uollulo wbich 
we define to mean that neither (or their ghost, if previou8ly stopped) has 
passed the other's origin before the latter one was emitted. (For otberwise 
N 1 could not have stopped Uo.) Since N1 has higher priority tban No, if 
U1 were to reach No it would cancel Uo and .satisfy the l"equjrement of the 
Lemma. Thus we may assume that Ul is in its tqm stopped by N'J (of yet 
higher priorHy) such that ulllu'j. (The fad that, when an update v of higber 
priority than Uo is stopped at a node expecting w back, then wllv, is a simple 
consequence of our inductire hypothesis. We will take the fact as read in 
the rest of this construction.) U'J may 0) reach No or (ii) be stopped before 
it gets there by a node N3 which i.s expecting an update U3 back. The same 
two possibilities apply to U3 in the second case, and it is clear that we can 
go on constructing u'l and N'l ofincrea&lng priorHy closer and closer to No 
as long as option (ii) applies. Thus, eventually, option (i) applies for .flame 
Uk. It is easy to see that this Ua, arrives at No before 1£o's ghost, so since we 
know (because we are assuming 1£0 is not can~lled on time) that 'nil does 
not cancel Uo, it must actually reach No before 1£0 is emitted, or in other 
words it is ahead of uo. 

In fact, we will demonstrate that this situation is impossible, which will 
complete the proof of this half of the rolLin induction. 

Let ua, be as above. It should not be hard to see that, for i < Ie - 1, if Uk 

is ahead of U;+! then it is also ahead of Uj. ln fact, Ua, cannot be ahead of 
Ua,_l, since we would then have that (i) Na, stops Ua,_l and (ii), by induction, 
that Uk either returns to Nil (r@movingitsexpectation)or is can~lled befon! 
its ghost would have returned: @ither of th@se lead to a contra.diction to 'n-" 
being ah@ad of UII_1' To be specific }@t 0 :s ~ < Ie - 1 be maximal so th.at 
Ua, is ahead of u•. 
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Suppose in general we have, so (ar, created a sequence (inevitably in 
ascending priority) of update! 110, .. " Ur, Ur+l, ..• Uk_I. Uk with r 2: 0, and 
sE {r, ... ,k-2} such that: 

• In moving round the ring once, Hr , Hr+l •... , HI< appear in sequence. 

• N;+l stops U; for all i. 

• Uk is ahead of u.. , ... , u., but Dot of U,+h'" Uk_I. 

(This is exactly what we have liet up above with r =0.) 

Then we know u. is stopped before it can reach (and cancel before u, 
~t5 there) N'+l, by N,I;+I, say. The update Uk+t mayor may not be ahead 
of uHI' If it is, define It:' = 1:+ 1. If not, we know that uA+l must be stopped 
before it reaches N,+!> so we may repeat the conl'itruction. We simply go 
011 iterating until (as must happen eventu1llly) we get u., which is ahead 
of UI+)' In general (because of OUf assumptions and construction) if Uk' is 
ahead of uJ with 8 < j < i < k" then it is aheM of 11;. But, by exactly the 
S&IIle inductive argument as applied abo...e, Ulf' cannot be ahead of Ulf'_l' 

Let. s' be rnaximill (among It +1, ... 1:' - 2) such that u".. is ahead of U'" and 
lei r' = 8 +1. It is ea.sy to check that the sequence U.. ' •... , U.' and s'satisfy 
the assnmptions we made abo...e, and that k" > 1:. 

So this construction can be carried out indefinitely. But there are only a 
finite number of nodes, so we have the desired contradiction to the a.ssump· 
tion that any UA; in our sequence can be ahead of 110. As stated abo...e, this 
completes the first half of the main induction, since we ha...e shown that if 
"0 is stopped before reaching home then it is cancelled within the prescribed. 
time. 

There is a rather similar direct proof of the dual result, namely that if 
UQ is cancelled before 110 or its ghost return, then Uo is stopped before this 
relurn. This is not surprising, since in fact it can be shown to follow directly 
from it by symmetry, as we argue below. 

Now that we have restricted oursel...es to one update per node, there is a 
lot of duality in the algorithm. Snppose for a moment that we think of the 
ring slots as fixed and the nodes as rotating (in the opposite direction to the 
updates). Further suppose that we identify one slot (real or notional) with 
each update that will e...er be inserted, 150 that the update actually does fill 
that slot when inserted. (There will certainly be at lea.st one consistent view 
oCthe initial <UT&ngement of these slots on the ring to fulfil this.) EssentiaJIy 
we are thinkiug of an npdate's 'ghost' (referred to abo...e) as existing for 
all time when the update itself does not. Now forget which of the two 
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rings (nodes and updates) is which by identifying Uve updates with upda.tes 
expected back by the nodes. It caD be seen that the algorithm is completely 
symmetrical in terms of the two views (in terms of insertion and reman! of 
upda.tes). with stopping in one view corresponding to cancelling in the other. 
Thus, the fact that we have established the stopping implies cancelling result 
for Uo above means that we get this second half by symmetry. 

This completes the proof of Lemma. 2.2. I 

PR.OOF OF LEMMA 2.3 The only way the network could fail to become 
quiescent would be by an update circulating for ever: necessarily after being 
cancf>l1ed. Lemma 2.2 shows this to be impossible. The only other possible 
Ja.at event other than an update returning home would be Borne update being 
stopped at a node N. This is impossible since it would mean that the update 
genera.ted by N had been stoppoo but will never be cancelled. Exactly the 
sa.me argument shows that in the qniescent state there can be no updates 
expected back. I 

PaOOF OF LEMMA 2.4 Suppose the last update u returns to its origin 
N, bnt that some other node N' (which we ma.y assume is, among all such 
nodes, the one that minimises the distance to N in the direction of the ring) 
&ee6 activity after u has pa.ssed it. 

The last activity of N' Call not involve an update generated by any other 
node, since (i) if that update is retraru;mittoo then some node neater to 
N &ee6 it after u, and (U) if it is stoppoo at N' then N' is necessarily left 
expecting its own update back, in contradiction to Lemma 2.3. Tbus it 
mnst be a.n update u' , generatoo by N', returning home. By wha1; we know 
already, neither u nor u' Call be ahead of the other. Since they have both 
retnrned to their origins it follows that each has passed the other's origin 
while the latter was expecting its own update. But this is impossible, since 
one has higher priority which would mea.n that one is stopped. I 

We ha.ve now proved aJJ that wa.s necessary: that quiescence is reached, 
that when it occurs aJJ nodes agree on the slot's value, and that aJJ stopping 
and cancelling occurs within the necessary time. This, with our earlier 
work justifying the simplifying assumptions, establishes the correctness of 
the algorithm, or in other words proves Theorem 2.1. 

A NOTE ON EFFICIENCY We remarked in describing the earlier algorithm 
that its throughput declined a.s the size of the system increased. This need 
not be true of the current system, since each node can at the limit be 
receiving and processing updates more-or-less continuollsly however many 
nodes there are on the ring; we jnst need to make sure that the ring has 
enough slots. Thus the throughput (updates per unit time) is independent 
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of the number of nodes. This is perhaps not as good as we :m.ight hope, 
since more nodes will generate more updates, but this limitation is inherent 
in the nodes which can process one update at a time as much as it is in the 
algorithm. A greater criticism of the algorithm might be the hjgh latency 
(time from All update entering the network to it completing its trip) inherent 
in the ring topology: this is proportional to the number of nodes. This issue 
is discussed. in more detiUl in Section 6, where we will see how our algorithms 
un be adapted for non-rings. 

3 A group-like algebra 

This BeetiOD can either be read in advance of, or in conjunction with, Section 
4 where a generalised algorithm is introduced which is based on the theory 
developed here. 

The algorithm analysed in the previous section bad, like its pr@deces8or, 
a. rather restrictive view of an update: a wn!;tant a86ignment to a. single slot. 
The reason for this WM that, M seems inevitable in tbe dal!ls of algorithms we 
are considering, a pair of updates CAD. reach two nodes in oppOElite orden;. We 
bve seen that it is possible to resolve this conRict by discarding one of a pair 
of clashing updatea providing this simple model is followed; unfortunately 
if the model of updatea is broadened significantly this expedi1lnt no longer 
works. 

In the model database system described in the introduction, where each 
node has a complete copy of the same databaJ>e, it is reasonable to expect 
tha.t the model of updates .1l.8 the aBAignment of already compnted con6tanta 
will be l!Iufficient in rn08t C.1l.8eS. The exceptions that occur to the author are 
(i) where the databaJ>e contains 60me 60rt of references betw~n variablell, 
orallasing, that can be changed by update, (ii) where one does not want to 
8l!D.d the constant values because of their large size or for 6eoCurity, and (iii) in 
applications such .1l.8 banking, where we would not want only one of a pair of 
COD.current transactions (say deposits or withdrawals) to take effect. If one 
adopted a model where not every node held all the data, and where a node 
might wish to carry out an assignment such as z: := 1 + 2z: for a variable 
it did not hold, then things would be different. And it is possible that 
all the nodell actually hold different databases (where the word 'databases' 
might now need to be interpreted very liberally), but it is deaired that the 
sequences of updates performed at each of them should be equal (or, at least, 
have equal effect). Thus it would certainly be of interest to try to broaden 
the model of updates in our algorithm beyond the constant-assignment one. 
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The author decided to investigate what would happen if, instead of dis· 
cardjng lower priority updates, a node could modify them to uhieve cOllais· 
teney with a node's own update(s). taking into uconnt the fad that some 
nodes will see one first, some the other(s), The natural equation lying behind 
this idea is 

u;v=v;u" 

or, in other words, it is possible to conjugate any update u by another v 
so that the effect of Vi u" is the same as that of u; v. The most ob.... ious 
model for this is in groups (from which the notation is borrowed4), where 
U V = v-·uv, but there is another totally different model based on the one 
seen in the last section. This is of aaBignments of values to areas of store: 
these ca.n be viewed as simnltaneous multiple assignments on the one hand, 
and as functional over-rides on the other. IT we regard these assignments as 
sets of pairs (:t,a), then the effect of an update u is, for all (:t,o) E 1£, to 
modify the value of:t in the state to at and to leave all other values alone. If 
u is any update, then domeu) is the set of variables assigned by u. Sequenlial 
composition is defined u; v = vU{{:t, a) E 1£ I :t ~ domev)}. There are several. 
conjugation operators which satisfy the above equation in this model, the 
most natural of which identifies u'" with ({z,a) E 1£ I x i- dom(v)). (Tills 
conjugation operator haa the effect of removing from 1£ all assignments to 
locations which are assigned by v.) Notice that the empty set, corresponding 
to an aaflignment to no locations, is a (left and right) identity of ; in this 
system. The updates of the last section can be thought of as singletons in 
this system, and a cancelled or stopped update as the empty set (which is 
the result of conjugating any singleton by a dashing one)s. 

In group theory there are a number of properties that can be derived 
about the conjugation operator. Since this operator is now being regarded 
as primitive, some of the ones we require will now have to be stated as 
axioms. Formally, we will henceforth assume that our updates are drawn 
from an algebra with two binary operations: u; v and u". which II&tisfy the 
following laws: 

(Ll) u;(v;w) = (u;v);w associativity
 
(L2) u;v = v;u'" conjugation
 
( L3) (u; vl'" = (UW); (v") dlstributivity
 

u",:tu 
~(L4) (1£"')'" exponentiation 

til wu proba.tt1y used there be.:aulle group-theordic conjugation. lib the o~r.ton ~ 

will use, IIhuee • rlumbe. of ;lIgebu.ic properliell >rith exponentiatioll. 
~Notice that thi. view of a stopped npda.te pul.6 .t lellSt • little fteth on the 'ghasta' 

introduced in the lut __tion. 
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Using Ia.ws Ll and L2 it is easy to prove that w;(uVl;v"') = (u; V)iUl And 
(tr; w);(U")VI = u; (Vi w), but it is not possible to establish the actual identi­
ties expresSol"d in L3 and L4.. 

We will generally take advantage of Ll by omitting bracketing from 
compootions under ;. Indeed it is convenient to regard two pieces of syntax 
Il.'I equivalent if they only differ in this type of bracketing. (To be completely 
rigorous we would have to show that all of the later definitions we make 
r«ursively on syntu are weU-defined under thia equi'o7l.1ence. These results 
are all trivial and mOit a.re omitted.) 

Since we have L4 we will, following the uaual mathematical convention, 
nnderstand uti'" to mean u1v·). This is because the alternative reading, 
(IlV)"', is hetter written uti;.... 

We wiD call an algebra which satisfies LI-L4 a conjugate algebra. 

The examples mentioned above (groups and multiple assignments) both 
have identity elements. It is possible (at the price of extra complexity) to 
do everything we will see in this and the next section without assuming one 
exists, hut since any general language of npdates is likely to contain oue that 
has no effect (a null update) there seems little point in paying this price, 
and in any case it arguably makes for a more pleasing algebra if we have 
oue. Thus we will generally assume our algebra contains a special element 
1 (the identity) with the following properties: 

(L5) 1;11.=11.=11.;1 unit 
(L6) I" = I 

A conjugate algebra with an identity will be termed uniturv. Given a noo­
unitary algebra it is easy to make it into a unitary one by adjoining an 
identity element, whose a.ction under the operators is defined by L5, L6 and 
11.' = 11. (the la.tter property is implied by L2 and L5: see below). From 
here on we will assume our conjuga.te algebras are unitary unless specifica.1ly 
aJ.lowed otherwise. 

The reader might like to verify that aU of LI-L6 hold of the multiple 
assignments example. 

There are, of course, numerous identities that can be derived from these 
laws. Among the mos~ useful are 

(11. 11 )'11- = (11."')11 

which comes easily from L2 and L4, and 

u1 =11. 
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which follows as u1 = 1; u l =u; 1 =u. 

Several properties that hold of conjugation in groups do Dot hold an· 
I.omatically here. A good example is u" = u, which does not hold in the 
multiple assignments example unless 11 = l. 

The generalised algorithm we present later will be based aD updates 
drawn (rom a conjugate algebra, with conjugation taking tl«! place of stop­
ping and canceJling. Before coming to this we will develop some properties 
of our algebra and, in particular. identify some Nlated and sub-algebras 
which will be nl>efulin a.nalysing the way the algorithm work8. 

Another obvious example of a conjugate algebra is any commutative 
monoid (a. set with a. commutative, associative bina.ry operation with an 
identity element) with the trivial conjugation u'" = u. There are further 
concrete examples of conjugate algebras a.nd discussion of how Ihey caD he 
combiued in Section 5. 

Suppose we have a finite set G of COnstant symbols. Consider the set AG 
of expressions built up from these generatoTIl, together with 1. Given such 
an expression it is possible to define its trace, which is a function from G to 
the natural numbers N, as follows: 

tr(l)c o foralJcEG 
tr(e)d 
tr(e)d 

1 
o 

if c = d 
if c '# d 

rr(e; J)c tr(e)e + tr(f)e 
tr(ef)c tr(e)c 

This function is defined above on the syntax of expressions. but in fact it 
is easy to see that the trace is invariant under all of LI-L6. &0 that we can 
think of it as a function on the free algebra generated by G uuder equality as 
provable using the laws. l'he trace of an expression records how many tilbe5 
each generator a.ppears on the 'bottom line', namely not in any exponent. 
From DOW aD, the DSUal equality symbol =over AG will be interpreted as 
mea.ning 'provably equal using the axioms' (Le., equality in the free algebra.), 
while == will mean syntactic equality, modulo the associativity of ;. 

Henceforth we will restrict attentiou to the set SG of expressions e such 
that they, and all subexpre6sions, satisfy tr(c' )c:5 1 for all c E G. In other 
words, no generator appears more than once on the bottom line, so that we 
can think of the trace as a set. Note that SG is not dosed under ;, 80 tha.t 
we shall have to be carefnl when forming e; I to see that tr(e) n tr(f) =0. 

We will say that an expre6sion e E SG is an atom jfits trace is a singleton, 
or in other words if it has the form 

(... (C~I)el··fn 
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for some n 2: 0, c E G and el ••••• e.. E Sa. We say that an expression 
is atomic if it is the sequential composition (j) of 0 or more atoms. (The 
sequential composition of no things can be identifi~ with 1.) 

Every expression in Sa is easily prov~ equivalent to one in atomic form, 
a.nd it is ulIo(!(u] to have a 6tandard way of generating atomic equivalents . 

• '(1) " 
at(c) == (' if (' 16 an atom 

.t(e; J) " .t(e); .t(f) if .'(e) ;, 1 ;, .'(f) 

.t(e; J) " .,(e) if .'(f) " 1 

.t(e; J) " .'(f) if (I~(e) == 1 
••(e1) " .'(e)"1 if .'(e) ;, 1 
.'(e1) " 1 ifat(e) =1 

where, jf e == 01; .•. ; G.ot is atomic, 

e-J :; a{; ... ;o!. 

Notice that, in general, al(e) is atomic, al(e) = e and at(e) == e if and only if 
e is atomic. The various special caaea involving 1 ensure that at(e) is either 
1 or the seqnential comp05ition of one or mote atoms. ]t is useful to note 
that atee) == 1 if, and only if, tr( e) = 0. 

H O}; ••• ; ~ is atomic then an 'atomic step' is anyone of the following 
manipulations that clearly preserve its atomic natnre: 

(i)	 the substitution of any of the exponents in an 0i by an equivalent (i.e., 
under '=') expression; 

(ii) law L4 appli~ to one of the 0.,: or a subexpression of one; 

(iii) law L2 appli~ to any consecutive pair of 0.,:. 

If e and / are atomic, and e = / is provable using atomic steps only, then 
we write e ~ f. 

It is nseful to note at this point that the only type of atomic step that 
does more than chuge the internal. structure of a single atom is (iii). 

[t is obvious that two atomic expressions are in this relation if, and only 
if, they can be prov~ equal. using individual applications of the la.ws which 
preserve atomicity. It will tum out that atomic expre6Sions are easier to 
manipulate in some ways thu general. ones6 • This concept of equivalence 
i8 made important by the following result, which shows that we can restrict 

"Tlue ia maltl.ly bec&aae ane CUI. carry alit illdnctioa ar rer;1Ir&ian all lheir lenglh. 
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proofs of equality of atomic expres&i.oDs to manipulation.s within the category 
of atomic exprllSsions.
 

LEMMA 3.1 If e and / are atomic, then e = f if, and only if, e ~ f. Thus.,
 
for general e and f we have e = / if, and only if, at(e) ~ atU).
 

PROOF It will dearly be enough to proVe that, if e = / is provable (for
 
general. e and n, using one application of a law, then at(e) ~ atU). We
 
win deal first with the case of a law applied at the outermost level, and will
 
later dea.l inductively with ones applied in inner contexts. We will deal with
 
the laws one at a time.
 

Law Ll is trivial, since the application of associativity only changes ~he 

association of the final. atomic fonns, which in any case we are ignoring. 

L2 is the substantive case. We can assume, without loss of generality, 
that e == U; VV and / == v; u, where al(u) == al; ... ;an. and a1(v) =b1... hm. 
We win assume that n, m > 0; n ::= 0 or m = 0 heing easy special c.aM!:S. 

Then we have 

.t(, ) - .'(ti);.t(v)""· at(u); ate vt"I('" (1) 

= ali ... ; an.; b~I"'-:""; ... ;b:ri' .. ;11 .. · 01; ... ; an; (b~l"";,""-I )""; ... ; (~, ... ;I1.._1 )'"" 

~ al; ... ; an._1; b~I;"';"'''-I; ... ; b::;·..;I1,,-I; an 

· b1;.·.;bm ;al;.·.;an. 

(2) 
(3) 

- .'U) 

Rere, (1) holds because all the manipulations are in exponents, and v = 
at(v). (2) Comes hy applying L2 m times to commute an. through to the 
right hand side. (3) follows by repeating the previous two lines n - 1 times 
to move all the other ai to the right of the biB. 

The rem,a;ning laws are all simple to analyse. In the case of L3 we may 
assume tha.t e =: (u;v}W aDd f == u1U;v.... Assuming that neither at(u) nor 
at(v) is 1 (which again lead to easy special cases), we get 

.t(,) "	 (.'(ti);.t(v))~ 

== at(u)""';at(v)­

" .'(1) 

And for L4 we may assume e == U";1II and f =: (UU)w • .,(,) =0	 al(ut("'w) 

(••(a)")·· 
= .'(1) 
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(Once again the analysis is slightly dlfferent if a~(e) == 1.) The second line 
is derived from the first by a number of applica.tioD8 of L4 to the individual 
atoms in the expression (each of which is an atomic step). 

The cases of the two laws L5 and L6 involving 1 are trivial. This com· 
p1ete:s our analysis of the laws a.pplied a.t the outermost level. The general 
case fonows by structural induction iC we can prove that, on the assumption 
that at(ul} ~ aC(u1), then aU four composition8 of the tI, with an arbitrary 
v produce results whose atomic forms are related by~. The cases where 
either the fl.j or v have atomic form 1 ilA! trivial or make no difference to the 
analysis, and we will ignore them. 

at(Ut;v) == at(u);at(v) ~ al(u1)jot(V) == at(u2;v), t;ioce the atomic 
steps executed in the proof of at( tit) ~ ate 11.2) ca.n be duplicated. The proof 
of at( t1; UI) ~ at( v; U3) is exactly the stmle. 

ThE' case of V V; ill trivia], since at(v"') == at(v)·'" ,g, at(v)-"-2 == at(vU2 ), 
the centre manipulation coming from the replacements of exponen t8 by their 
equivalents. 

The only mildly difficult CAlle is tht of ur. We have asi';umed that there 
js II. proof in atomic steps of at(u) = at(u2), and must establish that there 
is also one of at(uJt" = at(u2)*'" To convert the first of these proofs into 
the second, it is dearly enough to demonstrate that, j( / is the result of 
applying a single atomic step to the atomic expression e, then e-" ~ f*". 
We will deal with the different types of atomic steps individually. 

The two cases of (i) a manipulation of an exponent and (il) the appli­
cation of L4 to one of the atoms are both trivial, since exactly the same 
manipulations of the appropriate component of e*" will produce f*" in a 
single atomic step. 

The final case is of L2 applied to a consecutive pair of atoms. To establish 
this is it t;ufficient to show that, for a and b atoms, we have a"; b" ~ b"; (06)". 

This is done as follows. 

a"jb" 
. b"j (4")6­
g, b"j 0,,;6­.
 

b"ja6;" 

g, 6b"j (0 )" 

Th.is completes the proof of Lemma 3.1. I 

Now suppose that tbere is a linear order on the set G of generators, 
repre&enting ·priority'. Consider the subset Po of So with the property 
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that all occurreuces of e f (either at the highest, or at subexpression level), 
satidy u E tr(e)I\V E tr(/)::::;. 11 < D. In other words,one Ca.n only conjugate 
one expression by another of uniformly higher priority. (It will later turn DDt 

that th.is notion of priority is intimately tied up with that used in the first 
algorithm.) It is e3.6Y to see that at{e) E Pa if e EPa, and that e = a1(e) 
can proved using the laws without leaving Pa. 

In general we will write e ! f if the equality is provable using the bws 
without leaving7 Pa, and if they are in addition atomic and the proof was 
entirely within the atomic members of Pa. we write e ~ j. (If an expression 
is in Pa a.nd is atomic we will in Cuture say that it is P-atomic.) Exactly the 
same analysis as in the proof of Lemma 3.1 yields the following result since, 
on tbe allt:mmption tbat the expressions e and / (equal in one application of 
a law) are both in Pa, it is eatiy to establish that the proof we generate of 
at(e) g, at(f) is also within Pc. 

LEMMA 3.2 If e, / in Pa are such that e g. f, then at(e) ~ at(f). I 

As if one unusual algebra is not enough, we will now introduce a second 
one which is derived (rom the earlier one, but which relates specifically to 
Pc. We will defiue an operation eIlI on Pa for all e, / with disjoint tratefJ. 
In doing this we will consider the batiic equiv:alence over Pa to be ~, 60 tha.t 
we will expect, (or example, operations to be weD-defined ttnder ~ but not 
necessarily under =. 

We will first define the operation on P-atomic expressions, recursively 
in their length. This will later be extended to general members o( Pa. The 
unit element behaves in the same way as (or the previous operation. 

liJ ==]liil :; u and u u 

If a and b are atoms, we will write a < b if tbe (unique) members o( their 
traces are thus ordered. If a and b are atoms, we define 

if a> ba~= { ; otherwise (Le., b < a) 

(Note that our a.s&umption about disjoint traces makes it unnecessary to 
deal with the case when a and b have the same trace.) 

'An iutere:!lting queation that Ari_ hom this definition ifI ....hether the rela.tion ~ If 

Il.Ctu&!ly difl'eren~ {rom 0: over Pa , or in other werda .... bether thfie is a. pair t, f of elemeal.l 
of Pa wbich lU'e pronbly equ&! under 0:, bat .... here no proof ie entirely within Pa. The 
anthor dOell not kno.... the 8.n'....er to lhis qneatioa, but conjectures that the two relations 
are, in ract. the ll&J[Je. 
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More generally, if e == el; e41, then 

.m".m,)~1 
a.nd, if f == II; h, then 

.m " (JliJ)IliI. 
The va.rious reduction rules we ha.ve given here for computing eIlI are not 

disjoint, in the sense that it ma.y be possible to apply them in several different 
ways to the sa.me expression. This is particularly true when one considers 
the different (hut =~equival.ent) ways in which a long atomic expression can 
be bracketed. However, it is a simple induction to show that this operation 
is well-defined under =, 80 tha.t the order in which the rules a.re applied does 
not matter. 

If e and f a.re arbitrary members of PG with disjoint traces we can now 
define 

.m" (a'(e)fi!WI 

LEMMA 3.3 The opera.tion eIZI is well-defined under ~, or in other words, 

et ~ e:l and /1 ~ h imply J!i1 £: JPI. 
Paool' Since we already know that 

at(ed ~ at(e2) a.nd atUtl ~ at(h) 

it is sufficient to prove that a single P-atomic step (i.e., an atomic step 
applied to P-atomic e or f that preserves membership of Pa) does not 
affect (up to ,g) the value of ellI. This is obvionsly true for the first two 
t)'peS of atomic steps (manipulations of exponents and applications of L4), 
since they only affect one of the atoms in e or f and can he dupliuted in 
the result. Thus all we have to consider is pair swaps. 

We first deal with the case where f is an atom and the swa.p is in e. 
We will assume that e = e1 ja; b; e2 and prove that if e' == e1; bj a b; e~ then 

JlI ~ ern. (The cases where either or both of el and e2 are absent are all 
easier and extremely similar.) Note that, because e' E PG, we can assume 
b) a. 

A little computation reveals that 

.m " P.J.~. r=J r;r.;;-;;;n
l' ,~~ 

,;(l] " P.J.,J!!II. ( ,.r:r.:7bII. ~ .' ,a~,~ 
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It should not be hard to see that the equivalence of these two terms will be 
proved if we can show, for arbitrary a.toms c with trace disjoint from lhose 
of a and b, that 

al<!; ~ ~ ""; (ab)Q!!J 

and tha.t 
~~£l 

(c is pla.yjng the role of jI!iJ in the above expressions.) Given tht we know 
a < b and that traces are disjoint, there remain three p088ible cases (or the 
order of priority of a, b and c. We will Cl'Itablish the two identities above for 
each of these. 

Case 1: a < b < c In this case the second identity i6 trivial, since hoth sides 
equal c. The first becomes 

aC;bC£, bC;(aby 

which is easy, and which has already heen dealt with in the proof of Lemma 
3.1. 

Case 2: a < c < b In this case the second identity is aga.in easy, this time 
because both .sides equal c!>. Thi8 time the first beromes 

aC; b! 0; (aby:b 

hwhich follows easily once one notes tbat (ab)(e ) g, a(b;cI') £:. a(c;b) 

Case 3: c < a < 6 This time the second identity becomes 

C";b £:. cb;o' 

which is a.gain trivial. This time the first is trivial as well, since it becomes 
a;b~ b;ab• 

(It is interesting to note here lhat our restriction to Pa and ~-equiva.lence 
is crucial in the above section of the proof. For if we had not made it we 
would bave had to consider the case where b < c < a, wbich would bave 
resulted in the first identity becoming 

a; 6{c") = bC; ab 

which is nol true in general8 .) 

'To eee that this identity doe!; not hold, one can eith~r look to the eJ(ampl~ of groupe 
and ordinary conjugt.tion, or to th~ area lUlI!ligJIm~nt eJ:ampl~; in the latter C~ ct:la.lli.der 
th~ ~xall'lple wh~re 0, " and c are all all8ignm~n~ to the sa.m~ yariable. 
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We can now extend to the case where f == b); ••• ; bn is not an atom by 

an easy induction: setting Ir =: hI; ... ;br , notice that eIkl and em are both 
a.tomic members of PG • If we assume that they are ~ equivalent, tben this 
equ.ivalence is proved using a numberofsteps ofthe types seen above. Since 
b.+ l is a.n atom it follows (rom the analysis above of the case where f is a.n 

a.tom that (eIlJ)W and (e.tW)W are ~ equivalent as well, completing the 
proof. We have thus dealt with the general case of manipulations to e. 

Now consider the case of a ma.nipulation to f. Once again the first two 
types of atomic step are trivial, and so we can restrict attention to the ea.se 
where f == h; .z;b; h., !' == h;b;abj h. and a < b. 

We must demonstrate the equivalence of the two expretiSiODS 

((.Jl!J)Oill)llil and ((JiiJ)i!2l;l1il 

Since we know (i) that eILJ is P-atomic and (ii) that our result holds for 
ma.n..ipulations in the e-argument it wiU be sufficient to prove 

~~~ 

for all P-atomic d with trace disjoinf from tho&e of a and b. We already know 
this when d is an atom, for that was the second identity that we proved in 
CiUeS in the earlier proof. This can be extended into an inductive proof on 
the length (Le., size of trace) of d as follows. If d == c; d· fot some atom c, 
then 

M == cM;d.~ 
~ ~;d·~ by previous case and induction 

(see below) 

==~ 

The !.equiv.aJ.ence of d·~ and d~ follows by indnction since, in 
all three ca.ses (of relative priorities), the proof of £-equiva.lence of (b; abPJ 
and (aj bya produced by our earlier proof consists of a single pair swap plus 
possibly some type (i) or (ii) P-atomic actions. 

This completes tbe proof of Lemma 3.3. I 

We have shown that the operation tID is well· defined on Pc fOT tr(e) n 
tr(f) = 0. The new operation is clearly related to, but is subtly different 
from, the original operation eJ . This relationship is emphasised by the 
following result, which shows what the new operation's algebraic properties 
are· 
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L"MMA 3.4 For all e, / and 9 in Pa with disjoint tr(l.(;es, we have the 
following: 

PI. e; J'" ~ f; 1iJ 

P2_ (e;f)lil~~;~ 

P3. ,ILii ~ (liJ)Iil 

P4. 11£1 g. 1 

P5. eGl g. c 

PROOf P2 P3, P4 and P5 come more or less immediately from the def· 
inition of :m, so we will concentrate OD PI. It is clearly sufficient to prove 
it for atomic e and /. 

PI holds trivially j{ e and / are atoms, since one has higher priority 
thn the other, say e < / which means hoth sides equal t; f. If / is a.n atom 
then we can prove it by induction on the length of e as {oUows (noting it is 
trivially true for e:== 1). Suppose e == e';c, for c an atom: 

e; FJ ~ c; el; (ra)12I 

~ c;Jffi;e~ by induction 

~ f;liJ;e~ by the above 

~ !i(c;e'fiJ. by P2 

as required, so it is true whenever / is an atom. 

We can now complete the proof by an induction on the length of / ror 
general e, noting again that the result holds when' =1. SuppoRe' =c;t'. 
then: 

e; fil " e; (c; /'fJ 
~ ej cl'l; ,..1m by 1'2 
~ e·,I'I· f,i;i1]]. , by the above 

~ e; /'; (,I'IJIL'I by induction 

" f;liJ 

Thus Pl holds for all e and ,. 
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To summarise what hall been done 60 far, we have taken one form of 
algebra, examined a particular subset, Po, of the words of the free algebra 
over a given finite set G of generators, and shown that with a stronger notion 
of equality, ,g, one can define a new derived operation, Jll which has related 
properties to the first. The precise reasons for us wanting to do these curious 
things wiD become apparent in tbe next section. 

OUf next step will be to prove a dry-seeming technical result. This wiD 
turn out later to be perhaps the key result in the paper, in the sense that it 
is the one that makes everything else fit together. It js a result about two 
functions that one can define recursively over a finite set W of expressions 
from Po with disjoint traces, which has been endowed with a partial order. 

THEOREM 3.4 Suppose W is a finite subset of Po such that (i) if e and f 
&re distinct elements of W then they have disjoint traces and (ii) there is 
a partial order ~ on W. Then the pair of functions f(X) (defined for all 
X ~ W) and g(X,a) (defined for all X ~ Wand a E W such that there is 
nob E X with a ~ b) which are defined: 

,(X, a) 

,(X, a) 

£ 
£ 

1 

g(X\b,a);~ 
if b ~ a for all bE X 
otherwise, for b any maxi­
mal element of W which is 
~-incomparable to a 

I(X) 
I(X) 

£ 
£ 

1 

I(X\a);~ 
;{ X =0 
otherwise, for a any ~-maxima.l ele­
ment of X 

(where X\a is shorthand for X\{a}) are well-defined. (This is an issue 
heca.uae the two main clauses each select one of a elaBS of maximal elements. 
It is by no means obvious that the value of the function is independent of 
which one is selected.) 

PROOF Since the definition of fuses g, we will tackle 9 first. The proof 
will be by indnction on tbe size of X, tbe result bejng trivial for X = 0, 
since then g(X, a) = 1. So suppose it holds of all &ets smaller than X. By 
tb.is assumption all the recursive calls that are made on the definition of 9 

other than the one at the highest level in computing g(X,a) are known to 
be well-defined. It follows tbat the ouly possible source of a problem would 
be the existence of maximal b, c in X, each incomparable to a, such that 

g(X\b,a);~jlg(X\c,a);~ 

(the inductive assumption means that all these instances of 9 are well­
defined). Note that b and c are necessarily incomparable, and that b is 
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maximal in X\c and vice versa. It follow! that the left-hand-side or the 
above inequality can be shown equivalent to 

g( X\ {b, c}, a); dl1(X\i6.c}, ell; Jg(X\fh,c}, h}; Jg(X\{6,c}, dll 
by expanding the two calls of g. P3 applied to the last term convertjlj this 
10 

g( X\ {h, c}, a); dg(X\fb,c}, ell; (tkeXHb,c},blIPI/{X \{6,e},c)ij 

Now Dotice that PI is applicable to the last two terms, and converts it to 
the term 

g(X\ {b, e}, al; ~g(X\{b,c},bll; (dg(X\{b.c},cll;~~i 

which is symmetrical to it under the exchange of b and c. This symmetry 
(or working the original analysis backwards with band c swapped) means 

that it equals g{X\c,a);d9IX\c,c1I, the right-hand side of the inequality, a 
contradiction. We can infer that 9 is, indeed, well-defined. 

A very similar argument now demonstrates the well-definedness of j. It 
is clearly wel1-defined for X = 0, and frO, on the assumption that J is not 
well-defined, there is a smallest and non-empty X for which it fails. Much 
as in the case of g, the only way this ill·definedness can arise in this minimal 
X is for there to be incomparable, maximal a, b, such that 

{(Xla);~~f(Xlb);~ 

(wheTe all the subterms are well-defined). Observe that b is maximal in X\a, 
and a in X\b. We again expand the left-hand-side, this time obtaining 

1Jg { 1 I I 1 !9(X\I<I~f(X\{a,b})i(X\ 0,6 ,6) jQ9(X\{<I,b ,a);! 

which law P3 converts to 

f(X \ {a, b}); tJ9(X\{o,bPlI j (aI9(X \{o,bl,o)l)lJ!l(X\fa,n,1I111 

As in the case of g, law PI is applicable to the last two terms to obtain 

{(XI{a, b)); o'IX\{o,b),oH; (~'IX\lo,b),bli}J'IX\{.,b},b1l1 

which ifr symmetric with it under the interchange of a and b. As in the case 
of g, this contradicts our assumption of /,s ill-definedncss, completing the 
proof of the theorem. I 
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Up to this point we ha.ve been a little schizophrenic in 01lf treatment of 
tke algebra. of the hox-conjugation operator .fiI: it has simulta.n.eonsly been 
an algebra in own right, governed by the laws Ll and PI-PS, and abo a way 
of jnvestigating properties of tbe earlier one. For the rest of this section we 
will concentrate 901ely on the former, and caU this algebra the boz algebra. 

The definitions of / and 9 above can be unwound (at least for partial 
orders with many incomparable elements) in many different ways. which we 
have now proved to be equivalent. We will caU one of the ways in which 
f(X) or g(X, a) can be written down a presentation. Just how many there 
CAIl be is illustrated by considering the worst case, which is of the completely 
fla.t partial order Zn with n elements, where DO pa.ir is ordered. The number, 
I.. , of different presentations of I( Z.. ) can be compnted by the recurrence 

t1 = 1 tl'l+l = (n+ 1) x t~ 

which leads to the truely formidable number 

t.. = n(n - l)~(n - 2)4 ... 2~"-~ 

which grows as an exponential of an exponential. 

It is possible to show that the function I captures the strucl ure of the 
partial order ::i completely. For suppose that the set W over which we are 
defining I and 9 is G, the set of generators9 • Then, if:h and ~~ are two 
partial orders on G aJld !I, 13, gl and g2 are defined using the respective 
orders, we can show that the expressions h(G) and h.(G) are provably equal 
if, and only if, the orders are in fact the same. In order to prove this we will 
first estahlish the following. 

LEMMA 3.5 ff W = G in the above definitions oU and g, and it can 
be proved using P1-PS (plus LI) that I(X) = e;aI1l for any a E X and 
expressions e and I, then a is maximal in X and e, I are prova..bly eqnal 
to I(X\a) and g(X\a,a) respectively. (In other words, our definition of I 
earlier gives all interesting ways of writing I(X) down.) Similarly, jfg(X,a) 
ca.n be proved equal to ej lllI then b is maximal in X, incompa.ra.ble to a, 

and e, I are provably equal to g(X\b,a) and ~ respectively. 

PROOI' It is easy to redefine the conceph of 'atom' and 'atomic expression' 
in the box algebra, and to devise a standard way of reducing every expression 
to a.tomic fonn. Clearly all presentations of I(X) and y(X,a) are atomic. 
Essentially the sa.me analysis as was carried out for conjugate algebras will 

9In fact. for the resuh diBrullRd ~re to hold it iB Bnfficient thal no element. of W hae 
lUI. elQply baa. The mOle gener&! .I.lgument would, howeYft, simply complicate mattere 
for DO real. gain. 
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show that two atomic expressions DC Che box algebra are provably equal 
if and only if they can be proved equal in atomic steps (which again a.re 
internal manipulations of a single atom or an adj~ent pair swap, this time 
using PI). It follows that we can assume that the expressions e and / ill the 
statement of the Lemma. are in atomic Corm, and that the proof of equality 
with I(X) or g(X,a) is in atomic steps. 

As befoN! we will deal with the case of 9 first, and work by induction 
on the size of X. Consider the class of L-equivalents of presentations of 
g(X,a): expressions which ca.n be obtained from such a presentation by 
applying atomic steps which alter the structure of individual atoms. (The 
L here stands for local.) We will clearly have established the result for X 
if we can show that this class is closed under pair swap atomic steps: this 
closure condition, in fact, will be our inductive hypothesis. The resulc is 
trivial when X = 0, so suppose it holds of all smaller sets than X. Any 
member of the class clearly has the form 

,; (1JllI ...p;;I 
where b is incomparable to a alld maximal in X, e all L-equivalent of some 
presentation of g(X\b,a) a.nd h; .. .;In ill equivalent to g(X\b, b). If a pair 
swap does not involve the last two terms then we can appeal to induction. So 
suppose it is a swa.p of the last two terms; we know that e has the form e; f' 
for some c equivalent to g(X\ {b,c}, a) and I' equivalent to d!J/X\fb,cl.c)! for 
~ maxjma.l in X\b and incomparable to a. For this swap to be possible, it 
follows that I" is same as f', which in turn meana tha.t g(X\b, b)ia equivalent 
to something of the fonn h; ,J9/X\{b,cl,clL By induction applied to the term 
g(X\b, b). this is a.n L-equ.ivalent of some presentation of g(X\b, b), and so 
~ must be incompa.rable witb bas weil as a, And h (wbich is equivalent to 
h; , .. 1,,_1) is now also known to be equivalent to g(X\ {b.c},b). When the 
pa.i.r swap has been carried out we get 

<'; (1JllI ...~ /J(lJIilH.g;;;JJ 
which is L-equivalent to 

g(X \ {b, c}, a); t.!iex\fb,c}, bJl; d9lX\fb,cl, c); J9{X\{b, c),b)~ 

which, since ~ is (given what we already know about it) necessarily maximal 
in X, is a presentation of g(X,a). 

Tbe analysis of I is very similar: one again shows inductively that the 
class of L-equivalents of presentations are closed under pair swaps, this time 
using the above result to deal with calls of g. I 
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We are now in a position to prOve the following result. 

THEOREM. 3.6 H W =G then the value of feW) in the box algebra com­
pletely characterises the partial order ":5 used to construct f. In other worda, 
if fl. 9', hand 9' are constructed using partial orders ":51 and ~'l over the 
same W, then heW) is equivalent to heW) if, and only if, ":51 =:;:<;,. 
PROOF The 'Wof this result is trivial. We will prove that fJ(W) = heW) 
implies equality of orders by induction on the si~ ofW. The case of IWI = 1 
is trivial, so suppoae it holds of all 5maller W and that heW) = heW). 
Consider a typical presentation of the right hand side: 

h(W\a); nIV\l(W\G,GJI 

for a ":5,-mwmaJ in W. Because we are assuming that this is provably equal 
to the left hand side, and because of the result of Lemma 3.5, we know that 
4 is maximal with respect to ":51 also, that !:J(W\a) eqnals J.(W\a) and 
that 92(W\a,a) equals 9j(W\a,a). Induction then tells us that the two 
orders coindde on W\a. But the equality of the g; on (W\a,a) show that 
precisely the same set of generators are less than or equal to a jn the two 
orders since it is eallY to see that the trace of g(W,a) contains. jn general, 
precisely those elements of W which are not less than a. Since a is already 
known to be maximal in both orders it follows that the two orders coincide 
on the wbole of W. all required. I 

Theorems 3.4 and 3.6 together show that the functions f and 9 in some 
sense allow us to captnre partial orders algebraicaJ1y. It seems likely to 
the author that this work will have applications beyond those on databa.ees 
described in the rest of this paper: perhaps to the partially ordered com­
putation histories found in the theory of 'true concurrency'. Our algebra 
provides an interesting contrast to Mazurkiewicz traces (M], where a dif­
ferent monoid is used to describe each dependence relation. The free box 
algebra over a set of generators provides a single (though more complex) 
structure over which any such relation ea.n be expressed. 

As discussed in the introduction, it has turned out that the concept of a 
box algebra is essentiaJ1y the same as that of Gene Stark's 'algebra of resid­
uals' [S], which he introduced specifically to reason about true concnrrency. 
His results are rather different from ours, because of the way in which the 
algebra arose in his work. 
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4 Algorithm 2: algebraic updates 

The work of the previous two sections can be put together to produce a. 
ring-baaed ;Jgorithm that works for any la.nguage of updates satisfying \11."'''' 
Ll·L6. The basics of the algorithm are similar: we once again base II on 
a, no-overtaking ring (assumed to have the same basic properties) and give 
each node queues Qo' of updates executed locally but not yet inserted into 
the ring, atId E. of the updates it is expecting back from the ring. And 
again each node is assumed to have a unique priority Pi. 

The updat.es that nodes generate are assumed to be drawn from an 
algebra of the type seen at the last Retion. We have already seen two 
examples of algebras satisfying the necessary axioms (multiple assignments 
a.nd group8), plus the trivial Ca&! of a cOmmutative monoid. Tbere will be 
some discussion of other models in the next section. The various possible 
actions of a node are described below. Notice that each update now circles 
the system exactJy once: conjugation takes the place of stopping, and of 
cancelling too. 

Even though an update may have been altered (Le., conjugated) since it 
"as originally generated, its priority never changes, always being that o(its 
origina,tor. 

•	 If Ni generates an update u, then u is executed loc:ally and u is inser1ed 
at the tail of Qj. 

•	 If Qi is nonempty and there i" a space available on the ring, then the 
head of qi i" removed and im;erted into the ring, and into the tail of 
Ei. 

•	 If an update u' returns which was originated by N; as u (but ma.y 
have been altered since), then it is removed from the ring, and from 
the head of E,.10 

•	 If an update u arriVe! that originated at Nj with Pi < Pi, then uE,;Q, is 
executed locally and uE• is pas"ed on round the ring. E; is unaltered. 

•	 If an urdate u arriVe! that originated at Nj with Pi > Pi, then uQ, 

is executed locally, u j" passed on unaltered round the ring and Ei is 
replaced by Er (i.e., each element of Eo is conjugated by u). 

lOin this a.Igorilhm It IS deu thaL at LhiB moment the message now BiUing at the helld 
of £, is wha.t ball bealme of the the copy o( • originally placed there when. stuLed ill 
journey. BOWleVetit is by no mellM ohvious that the twocopiell of II have been tra.p.sformed 
Lo the UlIle thing. It is hue though, all "e ahall _later. However, for DOW, it ill perhape 
Miter to stAte limply tbat .' a.p.d the head of E' are both removed. 
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The way we are nsing conjugation here is always to compensate for different 
nodes seeing updates in different orders. In replacing u by U V we are com­
pensating for the fact that later nodes will see u after v, even though some 
ethers are seeing it before tI. The clearest way to see this at a simple level 
i. to examine what happens when two nodes inject npdates into the system 
at the same time (a.nd these are the only updates in circulation). 

The careful reader might have noticed ODe difference with Algorithm 
I, relating to our treatment of npdates in Qi. In the first algorithm we 
deleted updates from Qi where they dashed with u, while in this one we 
have conjugated u by G, (i.e., the exact opposite), In fact we cQu/dhave gone 
either way fQund in either case. We took the approach we did in Algorithm 
1 because it cut down the nomber of updates in circulation, as well as for 
similarity with the commercial a.pproach. We have chosen here to do the 
opposite both to illustrate that it can be done and because it seems more 
nfl.tural that updates inserted later into the system should be vie'Wed by the 
system as having been executed later. And here, chosing the other option 
would not cut down the number of updates to be transported. 

The main theorem of this section is the following. 

THEOR.EM 4.1 If all copies of the database were equal initially and the 
above algorithm is used for updates, then when it becomes quiescent (no 
updates queued in any Q. or circulating) then all copies will still be equal. Or 
equivalently: when the system becomes quiescent then the updates executed 
at each node are provably equivalent. • 

Most of the rest of this section will be devoted to proving this result. 
However we will first give an example to iIlustra.te how the algorithm works. 

EXAMPLE We will illustra.te the opera.tion of the algorithm with an example 
wbere there are five nodes, each generating one npdate. Suppose they a.re 

arranged round the ring clockwise, the direction in which upda.tes are car­
ried, in the order N I , Ne, N2• Ns• N3 , where, the lower the index, the higher 
a node's priority. The updates generated by NI> ... , N s an a, ...• e respec­
tively. Suppose a and b are emitted at time Tit and that the other three 
are emitted at time T2 , by which time a has passed Ne and b has passed Ns 
and N3 . For simplicity we will suppose that no update waits in a Q,.: there 
is iIlways immediate space in the ring. No conjugation will have occurred 
by time T2 , since every time an update reached a node the latter's Ei was 
empty. The sequence of updates seen by ea.c:h node is now determined, as 
are the values of the E; seen by the upda.tes as they travel round, We ca.n 
track the progress of the algorithm as follows: 

• A little later tha.n T2 , b and then c may have passed Nt. becoming 
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conjugated to bll and c" respectively. a may have passed N'J. conjugat­
ing E1 to 6", followed by d, which become5 conjugated to d'lI. e may 
ha.ve passed Ha, becoming conjugated to eC 

• 

•	 Yet later, b" and c"" will paJ>8 N4 , conjugating E4 to ci<b");(c">. a a.nd 

db" wilt pass Nr.. conjugating Es to e<l;/,iI''l. eC may now have paa&ed. 
NI, becoming conjugated to eC

;" • 

bll•	 will then return to N2 , ca.nceUing E'l.' so that when e" passes N'J 
it is not conjugated. It does, however, coJljugate E~ when it passes 
to e";W");c" before returning home to N:t. a will pass N3 , conjugating 
E3 to c" before returning home itseIr. ,r will be conjugated at N3 
to dW);{c<ll, but not at Nt. eC;" is conjugated at N4 hut not at N'J' 
arriving home as the complex term eC;";(dC~");(c"»). 

It is interesting to tabulate both the seqnence of updates that have been 
executed at the varioul'I nodes, and to compare the values of the npdateB 
that return home with the valnes that wel"@ waiting for them in the E,. We 
tabulate these second things first. The left-hand column contains the value 
of the update that returned, the rigbt hand one the value that was waiting. 

a a 
b" b" 
C' C' 

ci<b");Ic"1 d(b");(ta 
) 

ec:;,,;(.l.b"j;(c"l) e";db";(<:,,) 

These are all obviously equal except for the last pair, the exponents of whieh 
are easily proved equal by pushing C through a in the left hand side to gd 
a; c"; (db")c" a.nd then applying L1 to get the right hand side. Thus, in this 
r:ase a.t least, the updates tha.t return are equal to tholie that are expected. 
The upda.tes actually executed a.t the nodes are as rollows. 

Nt: a;b";c"je";";d(b");(taj 

N'J~ b; a: db"; c"; e";";(db".<") 

N3: b; c; et ; a; d(b");(t"} 

N 4: a;d;b";c"jet;<l;(d"";C") 

N s: b; e;a;c:t6";c" 
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AU of these expressions are superficially different, but a little algebra proves 
them equal: expression 1 is equal to expression 3 once one applies L2 three 
times to push the a three places to the right. This, in turu equals 

(*) b;e;eja;~b");(e"') 

by applying L2 to c; eC
• Pushing the c one place to the right in this we 

obtain 
b; e; OJ c"; ("''')C

a 

which L2 shows equal to expression 5. If we push e all the way through to 
the right in (.) we get 

abi c; OJ ~6");(c"); ec;a;(db";C ) 

which we can manipulate to expression 2 by pushing c to the right of the a 
to get 

h; Oj~; ~b");(ca); ec;a;(db";C
G

) 

and then applying L2. We can get expression 4 from expression 2 by pushing 
a to the right of the b, getting 

0; b"j If"; e"; ec;a;(dbG,C") 

and then applying L2 to the second and third terms. Hence they are all 
equal. It is interesting to note (and this will later be significant) that in 
none of the above proofs was there ever an instance of a high priority term 
being conjugated by a low priorHy one. In the language of the last section, 
all expressions were in PG , where G = {a, b, e, d, c}. I 

As in the case of the first algorithm, it is useful to make some simplifying 
assumptions in the proof. Firstly, we would again like to be able to assume 
that the Qi'S are absent. Secondly, we would like to be able to restrict 
attention to the case where each node is limited to emitting one update. 
(With our generalised concept of update H no longer makes sense to talk 
about restricting to a single slot.) The justifications of these assumptions 
are given in the next two lemmas (and are very similar to the corresponding 
justifications in the proof of the first algorithm). 

LEMMA 4.2 In any given filLite execution of a ring running Algorithm 2, 
the total effect of all the updates executed at a node is the same as would be 
achieved by (i) delaying the local execution of each update until its insertion 
into the ring and (ii) omitting to conjugate incoming updates by Q before 
local execution. 



4 ALGORITHM 2, ALGEBRAIC UPDATES 33 

PB.OOf As in the ca.se of Algorithm I, this manipulation in no way affects 
either the pattern of updates aLtually circulating in the ring, or the content 
of the expeded·ba.ck queues Ej. Thull the sequence of updates which arrive 
at a given node from the ring is unaffected, 

Suppose the last local update generated by a node N is u. Then the 
sequence of all updates ex~uted at N in tbe original algorithm might be 

ttl; ... ; V,l:;Uj wj; ... ; W:;~l;" .jtm 

Hel'@, the 11i lLre the updates executed at N before u is generated. Updatell wi 
arrive while u is in Qand are conjugated to Wi before their final conjugation 
by u (whkh is last on Q throughout this time). The ti are the updates 
executed a.fter u enters the ring. Under our algebra the above sequence is 
eqnal to 

Vo; •.• j 11.1:; UlI;"'; W Ilo ; Uitl; ... ;tm 

which are exadly the llpdates that would have heen execnted if the genera­
tion of u had been delayed until its insertion into the ring. This construction 
can clearly be repeated to move the generation of all of N's updates to the 
point of their insertion into the ring, and the final sequence of updates ob· 
tained \ViII be exactly the one described in the 6latement of the Lemma. 

I 

Henceforth we will restrict our attention to systems where there are no 
Q;. 

LEMMA. 4.3 Theorem 4.1 holds on the assumption that it holds of all sys­
tems where no node emits mare that one update. 

PH.QOf The proof of this result is essentially the same as that for the l:or· 
responding a56umptiou under Algorithm 1. In an execution of the sy61em 
where no node emits more than r updates we ean replace each node by a 
sequence of r consecutive ones. As before, the priorities are small pertnrba­
tions of those of the node they replace. Exactly the same l:onstruction aa 
before war ks, restricting each sequence of nodes to dea.ling with one update 
at a time. Each update that arrives is either conjugated by the l:ontents of 
the E;J in the new system, or conjugates them, in a way exa.ctly analogous 
to what happens in the original system. (It is important in thill to note that 
any update from a different sequence that arrives is either of lesser priority 
than all the Ni,J' or of greater priority than them all). Qnl:e again, the last 
member Ni,T of the sequence sees exa.ctly the same sequence of updates aa 
is seen by N; in the original system. I 
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It will thus be sufficient to prove Theorem 4.1 for the CiI:!le of one update 
per node. We can place a partial order on the updates which a.rise in a 
given execntion (quite independently of the priority that already exists) at! 

follows: 1.1 -< v if 1.1 passes the origin of t.I' before 1) is emitted. The no­
overtaking nature of the ring guarantees that thioS is a partial order, and 
llJ.at 1.1 -< v if and only if 1.1 anivesll at all nodes hefore v does. (For, if 
u f. v then t7 arrives at u's origin before 1.1 arrives back there.) If 1.1 atId v 
are incomparable under -< then we write ullv and observe that this happens 
precisely when some points on the ring have 1.1 arrive first. and some have '17. 

(To be specjfic, the nodes on the ring from the one after N,. to Nv • inclusive, 
have 1.1 arrive first, and the rest have v arrive first.) 

Consider the free conjugate algebra over a set of generators containing 
£In.e element for each update: we will consider the operation of the algorithm 
when each node, at its appojnted moment, emits the appropriate generator 
&8 its npdate. Onr objective is to prove, in the free algebra, that the effect of 
the npdates arriving at each node in this situation are equal: for if we can do 
this then the resnlt will remain trne if the generators are replaced with the 
actual values of updates drawn from any conjugate algebra. Observe that 
the value of any npdate as it passes round the ring remains an a.tom whose 
trace element is the generator it sta.rted as, and that, under our assumptions, 
each expected back list E, is either empty or contains a single atom. 

Using the priority order which the updates inberit from their originators, 
we can make the free algebra into a box algebra as described in the last 
section. The reason why this extra algebra Wa:l introduced in the last sectjon 
can now be made apparent. For rer:all that the operator a~ was defined for 
atCtms: 

Iil_{a ifa>b 
a - ab ifa<b 

Noticing that, in the simplified case we are now considering, the only conju­
gation which takes place in our algorithm is between atoms, the two central 
clanses of the algorithm (which govern conjugation) Ca.tl now be replaced by 
the following, in which the list E of the original algorithm has been replaced 
by a single valne e: 1 when E is empty, and otherwise the single element of 
E. (Notice that when conjugation takes place in the algorithm, it is always 
between terms with etisjoint traces.) 

•	 If an npdate 1.1 arrives, which originated elsewhere, then uI£l is executed 
and pa:lsed on, and e is replaced by eli'l. 

llWe hAve nsed the word 'ArnYell' with ca.re here' we CODBlder ~he momeol. when Il.D. 

DpCAle urivu at ita origin to be when it rel.uro6, not when it selll all'. 
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The beauty of this is that the asymmetry of priority has been hidden, which 
means that it is not necessary to worry in our proof about the (n-l)! differ· 
eDt ways of arranging the order of priorities around the ring. Fnrthermore, 
aJJ nodes now look exactly the same. 

We now claim that, with respect to this box algebra and the partial order 
....; (on the set U of generators): 

1.	 the updates exe.cuted over the run of the algorithm at each node eqoal 
feU), and 

2.	 when an npdate (originally the generator a) arrives back at its origin 
Na.. bolh it and the expected-back version equal 

a~t>~ 

The first of these claims, when established, will prove Theorem 4.1. The 
second justifies the claim that, when an update arrives back home, it is 
removed (rom E. These facts show why we were so interested in the functions 
f a.nd 9 in the lad section. As has been seeD in the five-node example given 
earlier, and may have been discovered by the reader in experimenting, our 
algorithm can dillCQver a wide variety of ways of writing down expressioDs 
that are meant to be equivaleut. It turns out that the well-definedness proofs 
of f and 9 give the ideal ways to prove that they always lLTe equivalent. 
In order to justify these claims we will prove the following lemma, which 
generalises the 8econd claim. 

LEMMA 4.4 When an update (emitted as the generator b) arrives at a node 
N, its value is 

,will,H),b)1 

and, if N has an expected-back update that was emitted as (the generator) 
c, then at the moment b arrives the expected-back value is 

Jq(.I:lb,H),c)! 

whe.. k(b, N) = {o E U 10 -< b V(oUbA N. E (N"N))) (N. is the ..igin of 
an update a and (N,M) is the set of nodes strictly between N and M on 
the ring, in the direction in which updates are transmitted.) 

PROOF It should not be too hard to see that the set k(b, N) consists or 
those upda.tes which arrive at N before b does. UN = Nb then k(b,N) 
becomes exac:t1y the set which appears in the second claim above. 

We prove the Lemma by induction on the number of events of the form 
'update a arrives at node M' which have occurred before the given one. 
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If b has not yet visited any 'expectant' nodes on its travel6, then its 
value is still b. This is the value predicted by the Lemma. since the set 
{a I blla 1\ Na E (Nb, N)} is empty, which means that 4:(6, ti) contains only 
nlue:s strictly le5l!i than b. Otherwise there is a last expecta.nt node - Nr/.' 
say - wlUch b hall visited. Clearly k(6, N) = k(6, N,j) U {d} by construction 
of k. Since d is the nearest element of {a Iblla 1\ Ng, E (Nb. N)} to N. it must 
be maximal in k(6, N): if d had passed any other Ne for c E 4:(6, N) before c 
were entitted then d mUllt also pass Nb before b is emitted - a contradiction. 
We know, by induction, that when b arrived at Nd , their refipective valUeB 

were 
~dJ.b)l ..Jg(.(~Nd),d)1.nd 

BO it (ollows that the value of b when it arrives at N is 

th1c£b,Nd),b); h(k(6,Nd),d>l1 ::: ,pfk(b,Nl,b)1 

as required. 

Now suppose N has an outstandiug update, which was origin.ally c. IT no 
updates have arrived at N between c arising and b arriving, then its value 
1s still c when b arrives. This is the value predicted by the Lemma, since 
under tbis assumption all elements a of k(b,N) (the updates tha.t arrive at 
N before b) must bave arrived at IV before c arose and hence satisfy a --< c. 

Otherwise there was a last update, originally d, say, which arrived at 
N after c arose but before b arrived. Necessarily dllc. Clearly k(b, N) = 
k(d, N) U{d} thanks to our characterisation of k(a, N) as the set of updates 
tha.t arrive at N before a. Furthermore, d is maximal in k(b,N) since N 
sees d aiter all other elements of that set. 

By induction, the values of d and the expected- back copy of ~ were, just 
before d arrived at N, 

,li[Jr(d,N),dll ,JglJr(d,NWand 

When d arriVe!! at c, the expected-ba.c.k value of c is thus conjugated to 

)9IJr(d, N), c); klJrld.Nl,dlll = dg (1:16.N),cll 

by definition of 9 and what was established above. Since this is the value that 
it! upected when b a.rrive!!, and is what the Lemma predicts, this complete!! 
the proof of the Lemma. I 
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This esb,blillhes our second claim and puts os in a. position to esta.blish 
the fint. which is a. corollary to the following lemma..
 

LEMMA 4.5 We know that all updates in U are executed at all nodes N,
 
eo suppose {at. ... ,aft} enumerates U in the order in which the updateli a.re
 
exectlted at a given N. Then the effect of tbe first r updates (0 .$ r '$ n)
 
executed at N is precisely f{aI, ..•• ar}.
 

PR.OOf Suppose that the update emitted by N is o. (If there is DO roth 
update, then the proof is a trivial simplification of what follows: only CaBe 

(ii) below applies.) Observe that, when an update 6 r arrives at N which 
originated elsewhere, then 

k(a"N) if a is not then expected back 
la" .. . ,a,_d = { k(a"N)u laJ (and a f k(a,.,N)) otherwise 

since a is executed when fiI'llt emitted, not when it arrives back. 

We will prove the Lemma by induction on r. (For all N simultaneously.) 
It certainly holds before any u.pdates are executed. since /(0) :: 1. So 
suppose it holds for r- L There are three cases to consider when considering
 
the execution of ar.
 

Case (i): a r = a In this case, clearly ai -< ar for aJ1 i < r since aJ.l such a;
 
necessarily pass N hefore a is emitted. It follows that g( {al, .. " ar_l},a,.) =
 
1, which in turn implies that
 

/{at, ... ,a,.}:: /{at, ... ,ar_t}iar. 

This, hy induction, equals the actual sequence of updates executed up to a,. 
(since N executes its own update unaltered at the same time as it enters 
the ring). 

Case (ii): a r '#' a and a is not expected when ar arrives In this case. as we 
have ohserved, {at, ... , ar_l} k(ar, N), and since ar is plainly -<-maximal. 
in {a1'.'" ar} (N &ees it last of this set), we have 

""(."HI.•,)I!Iab.··,ar} = !Ial1 ... ,ar_1 };ar 

which, by induction and Lemma 4.4 applied to ar's value on arrival at N, is 
exactly the sequence of updates executed at N up to a,.. 

Case (iii): a r '#' a and a is expected when a,. arrives In this last case, we 
have observed that {at. ... ,a,.-d - k(an N) V {a}. and a, ar are both ..(. 
maximal in {al' ...• ar}. For the last update to arrive at N from this sd 

is a, and the last ou.e from this set to arrive at the node after N (in the 
direc:tion of the ring) is ar _ From the definition of / we get 

I,U d.·.11!Ial,··.,a,.} =!Ial •.. ·'ar _l }iltr 



4 ALGORITHM 2, ALGEBRAIC UPDATES 38 

which the definition of 9 rewrites to 

Ig(,,(,,~, N),4r»),c.IN, tip ),<1111
!{alo···,tlr_.}iar 

We know that, when tl r arrives at N. the value of 4,. and the expected-bad: 
value of a are respectively 

Ig(lr(ar, N),arl] {!~l,a}land 

which, since the a.. that arrives is conjugated before execution by the current 
value of a, tells Ull that, by induction, the updates executed up to tl.. are 
equivalent to (the above expansion of) /{al, ...• tlr}, as required. I 

Tmg completes our proof of Theorem 4.1. It is perhaps worth reflecting 
briefly on our proof. What we were interested in doing was proving that, 
whatever the arrangement of node priorities ronnd the ring, and whatever 
the order in which the updates were inserted, the updates executed at each 
node wen! provably equivalent. Now 'provably equivalent' in this context 
meant the same as saying that the sequences of updates were equal in the free 
algebra where each new update was a different generator. We overcame the 
complexity of the arrangement of nodes by moving to the box algebra, where 
the algorithm be<:ame symmetric. Even thongh the different nodes might 
see the updates in very different orders, the orders are always consistent 
with the natural partial order ...( which describes which pairs of updates 
are ordered from all viewpoints. And it turned out that the symrnetrjsed 
algorithm is simply computing the function f(U) for all nodes, wing the 
presentations corresponding to the orders in which the various nodes see the 
updates. 

The well-definedness proofs of f and 9 break up the inductions required 
to prove the main result down into manageable size pie<:es. If one attempts 
a more direct induction without using these functions, the problem suddenly 
seems much less structured. 

It is interesting to note that we only ma.naged to obtain our proof of the 
fact that the expressions were provably equal by effedively tieing one hand 
behind our back: for we limited ourselves to proofs in which all intermediate 
expressions lay in Po (Le., where no Jow-priority expression ever conjugates 
a high-priority one). By doing this we managed to derive the box algebra 
and its corresponding theorems, even though we were under no obligation, 
given the way our algorithm was set up, to limit ourselves to proofs of this 
form. 

We saw earlier how AJgorithm 2 generi\l.ises Algorithm 1. (Tbe fact that 
one algorithm stops or cancels messages altogether, while its translation 
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conjugates them to 1 instead can be disregarded for our purposes, since 
conjugation by or of 1 haa DO effect. Our result about the retnrning upda.te 
being the same as the one which is expected fihows that a.n update is stopped 
if and only if cancf'lled, etc.) Therefore. in some way, our proof of Algorithm 
2 must contain another proof of Algorithm 1. Since. stylistically, our two 
proofs haw been very different, it might he an intete6ting exercise to !lee 

just how the proof in Section 2 and the proof of Algorithm 1 that One can 
derive relate to each other. 

4.1 Variants of the algorithmj timestamping 

Thronghont our descriptions of Algorithms 1 a.nd 2 we have derived the 
priority of updates from (relatively) fixed node priorities. However tbere 
is DO pa.rticular reason why the priorities have to be assigned in this way. 
although we do have to be a little Jnore careful in our description of the 
algorithm if the priority mecha.nism is relaxed. The key to seeing how tbe 
algorithm shonld work in a more general setting, where all updatel5 1ha.t 
might be concurrent are given distinct priorities, can be fonnd in the tech­
nique we evolved in our two proofs of splitting nodes into units which emit 
one upda.te each. For of course if this restriction is observed then we cannot 
tell between our original algorithms and the ones where priorities are not 
linked to node,;. What a single node which emits several updates must do is 
emulate the behaviour of a sequence of single-update nodes with the same 
priorities as its updates. Tbe main consequence is that an update whith 
arrives is no longer necessarily In the same relationship (i.e., higher or lower 
priority) with all of the ones in E. The revised veI1lion of Algoritbm 2 that 
we get is detailed below. from wbich the reMer shonld be able to deduce 
the corresponding amendments to Algorithm 1­

The nodes keep the same sta.te: queues Qj and Eo. They behave as 
follows: 

•	 If N i generates an update u. then u is executed locally and u is inserted 
at the tail of Qi. 

•	 If Qi is nonempty and there is a space available on the ring, then tbe 
head of Qi is removed and inserted into the ring, and into the tail of 
E j • 

•	 If an upda.te u' returns which was originated by Ni as u (bnt may 
have been altered since), then it is removed from the ring, and from 
the head of Ei. 



40 , ALGORITHM 2, ALGEBRAIC UPDATES 

tI	 IT an upda.te u arrives that originated a.t another Nj, then for each of 
the entries tl in E; in turn, starting with the bead (i) if u < v (i.e., tl has 
higher priority than u) then u is replaced by u" and (ii) if v < u then 
tI is replaced by tI". Notice that, since u js changing as this procednre 
progresses, it is necessary to carry it out in this strict sequential order. 
Finally, if u' is the ver8ion of u that emerges at the end of this process, 
then u' is passed on round the ring and u,Q, is executed locally. 

One obvious application of this generali!ied procedure is where the pri· 
ority of updates is determined by a timestamp, in other words an indication 
of the time when it Wa.!i inserted into the ring. The latf'T the timestamp, the 
higher the priority. We would, of course, have to put .in some tie-breaking 
mechanism (perhaps based on node priorities) in the case where it is possible 
that two nodes can generate updates with the same timestamp. 

Snppoee first that updates are timestamped as they enter the ring. This 
is most likely to be the c3Se where there are no G;. Provided that the 
clocks on the nodes are sufficiently dose that no update h from node Never 
passes node M before M emits an update with a timestamp that precedes 
II'S, tben the overall effed of the algorithm is to execute, at every node, a 
sequence of npdates equivalent to the updatell, as emitted from their origins, 
in timestamp order. 

It is snffident to show this for the one update per node case which we 
deaJt with in most of the proof of Theorem 4.1. Observe that, under this 
Msumption and our assumption about the docks above, the timel!ltamp order 
is consistent with the partial order --( in the sense that, given any nonempty 
subset of the set U of updates, the one with the latellt timestamp is --(. 
maximal. We know (by the proof of Theorem 4.1) that f(U) is equivalent 
to the set of updates executed at each node. If U = {hi"'" 'Un}, where 
i> j means that hi has the later timestamp, then f(U) := hI; .. ,; Un' This 
is easy to prove by induction since h,. is always --(·maximal in {'Ulo .. " ur}, 

I.lIH..I, ... , .. ,._I}, .....lJ. I f { } b Iand Ui u,. slnct'everyeement0 ht, ..• ,Ur_t as ower 
priority than u,.. 

IT all nodes are keeping thejr own docks and we do not want the type of 
inconsistency banned in last paragraph, then an obvious way round it is for 
each node, upon receiving an update from elsewhere with a later timestamp 
than the time 011 its own dock, to advance its own dock accordingly. 

If the nodes do keep Gi and the messagell are timestamped on their 
generatjon, then the modified algorithm presented above does not keep the 
right discipline of conjugation between arriving updates CLnd updates in Go. 
Clearly the G; will have their earliest updatell at the head, and latest at the 
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tai!' Some of the upda.tE's at the head of a given Qi might be timestamped 
earlier than a given u that arrives, and the remainder later. Intuitiwly we 
would expect the correct thing to do would be to replace the final sentence 
of the algorithm above with the following• 

•	 Finally, if u' is the version of u that emerges at the end of this prote8s. 
then u' is passed on round the ring. IT Q, =H; T, where H con.ists 
of the elements of 'I; with earlier timestamps than u, and T consists 
of thOM! with later timestamps, then H is replaced by HVo and 'IT is 
executed locally. 

The anthor conjectrne8 that this algorithm works, in the same sense as 
above, under the same condition - no update ever arrives at a node, which 
DOW means the part of tbe node generating the updates, with later times­
tamp than a subsequent one emitted by the node itself. He believer> that 
the proof of this would revolve around showing that the sequence of nodes 
executed at each node is !(U), defined with r~pect to a subtly different-<. 
This would not he the concurrency order defined on just the ring traffic, but 
on the whole network including the paths between the ring and the parts of 
nodes which generate updates. We would have u -< v if and only if (a ven.ion 
of) u is executed at every node before (a vers.ion of) v, or equivalently if u is 
executed at v's origin before v is generated and inserted into the appropriate 
Qt. There will he more discussion of this point in Section 6. 

5 More about conjugate algebras 

In this section we will discuss sOme more general properties of conjupte 
algebras, give some mare examples of them and describe some techniqnes 
for combining them together. It should provide a basis for those interested in 
devising languages: of updates that are allowable for the algorithm presented 
in the last section. 

As wen as commutative monoids, we have already seen two nontrivial 
examples of conjugate algebras: any gronp onder its nsual conjugation op­
erator and consta.nt ass.ignments to areas of store. These can be reasonably 
thought of as extremal: in the one case everything is fully reversible in a 
very strong sen5e (the algebra has inverses) and in the second case prad.i­
cally nothing is. In this section we will see others between these extremes. 
Before going into the theory we will describe one such, which generali&eB 
botb the assignment example and a simple example of a group. 

We as5ume that the values over which v1l.liables range are the real nnm­
bers or positive and negative integers, or some other commutatiw ring wilh 
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a unit. Instead of just allowing sets of assignments of the fonn :t ;= c, with 
c constant, we will now take as our model sets of assignments of the form 
% :>= 4 + b:z:. Indeed, it is convenient to assume that there is an assignment 
in the aet for every varjahle, since the a.bsence of an assignment to a variable 
% is equivalent to the presence of % := 0 + 1.3:. 11 The sense in which this 
generalises a group is that if the value-space is a field (e.g., the Teals) and 
the constant b is always non-zero (Le., constant assignments are specifically 
excluded) then the set of npdates that arise is a group. 

For simplicity in what follows we will assume that there is only one 
variable, %, hut exactly the same constructions work fOT the genera! case, 
with differ@nt variables being quite independent. (The general case is just 
the produd of simpler ones: see below.) We will denote the update % := 
a+b% by the ordered pair (a, b). The sequentiaJ composition of two updates 
is easHy computed: 

(a, b); «, d) = « + ad, bd) 

and from this it is reasonably easy to devise a conjugation operator 

(a,b)lo"1 = (ad + (b-1)<,6) 

which satisfies L2 (Le., (a, b); (c, d) = (c, d); (a, b)(c,d)). A little computation 
revea.1& that this operator aJso satisfies L3 and L4. The unit assignment is 
(O,l), which triviaJly satisfies a.ll that is required of it. 

Unfortunately this example does not generalise in the ohvious way to 
the case where, instea.a. of the as8ignment to each variable being linear in its 
own vaJue, it is now linear in a combination of variahles. In the case where 
there are ouly finitely many variablefi, and;. is a list of them all, one could 
write such updates in the form .i. := ,+ A~ for" a list of constants and A a 
square m.a.trix. As an example to illustrate this impossibility, consider the 
case of two integer variables with 

<=«,0)'=«+0,0) and !=«,O),=«,<) 

The combined effect of e; J is to assign z + 1/ to both variables. But, since 
J forgets the value of 1/, there is no update ef which, composed J; ef , can 
achieve the same effect for a.ll % and 1/. 

nTo add " ~ouch of credibili~y to thi, e:u.rnple, we conld imagine tha.t the database 
CGllIIiB~ed of bank balancelI, and ~haL allOWl.hle .cLiol\8 incll,lde deMing (zeroing) aD ac­
count, adding or Bnbtr.cting "constant for a deposiL or wjthdn.wal. or multiplying by a 
conBLaDt to apply interest. A banking BYB\em implemented using thiB algebra would ban 
BUperior propertiell to one implemented using precomputed coft!U..Ill ass.igumenL8, for the 
rtlS80ns diJcuti!Jed at the 8t&l\ of Section 4. 
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Provided the value space is ilL field one can get a working algebra. over 
a finite list.l. of variables (and it worth noting that the set of all vari1b.les 
might be partitioned into a number of self-contained classes) where every 
update is either of the form 

:.;:: ~+ AI. 

for a nonsingular A, or a constant assignment to the whole of~. The reader 
might be intetefited to work out the detaJls. IT we think of the list ~ iil6 a. 
unit, this and the earlier example both have the property that every npdate 
is either well-behaved in one way or is a stra.ight constant MlIignment to 
the object in ha.nd which ignores the earlier state. We will later extend this 
idea into a general construction: anni1l.ilating sum for building conjugate 
algebras. 

We ca,n look at the theory of conjngate algebras from two distinct stand­
points. One is simply to see what we ca.n derive from the axioms, the other 
is to look at how they act on sets (which corresponds to examining the func­
tional behaviour of families of updates). In what follows we will examine 
both of these topics briefly, though it seems likely that there is far more to 
learn about the structure and actions ofthe algebras than we have space for 
here. 

First, some obvious definitions. 

DEFINITIONS Given a conjugate algebra G whose identity element is 1, a 
subalgebra is a sub5et H which contains 1 and which is closed under the op­
erations of sequential comp08ition (j) and conjugation. A unit is an element 
Q. with an inverse a-I such that aja- I = a-1jo = 1. (If an inverse exists 
for an element a it is easy to show it is unique: consider %j aj y for inverses 
% and y.) A subgroup is a subalgebra which is a group under ;. (This is the 
sa.me al5 a subalgebra all of whose elements are units.) 

A homomorphi.sm is a map ~ : G -+ H from one algebra to a.nother such 
that !P(1G) = IH and both operations are preserved, namely 

~(a;b) = <l>(a);~(b) and <1>(0') = <l>(a)-I') 

The kernelofahomomorphism q,:G-+ H is {a E G I ,p(a) = Iff}. his 
trivially a subalgebra. 

Given an family of conjuga.te algebras G>. indexed by a set A, we can 
make make their carteliian product 

fiG, 
'€A 
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into a conjugate algebra. by defining 

(it; lh = %~; y~ and (;tlh. := %~). 

It is easy to check that tms construction works. I 

In a general monoid, for a.n element a to have an inverse it is not enough 
for it to have just a right inverse, namely x such that OJ x = 1. The extra 
structure of conjugate algebras does give os this, however, since we have 
that 

a =o;o;%'= o;%;a~ = as' 

and hence 
1 = OJ%':= :r;a"':= :ria 

or, in other words, x is also a left inverse for o. It is easy to see that this 
argument also shows that any element (:t') with a left inverse (a) also has it 
as a right inverse. 

It is worth noting that tbe conjugate of a unit is a unit, since if OJ b := 1 
then a:;/r:= p: = 1, and that if a is a unit and x arbitrary then 

ZOO =0- 1;0;%0 = a-1;z;o 

which meaos that ZO is determined in this case by sequential composition, 
and correspoudti precisely to the definition of conjugation in groups. 

Indeed, conjugation by any fixed element is always a homomorphism 
from a conjugate algebra to itself. This is trivially guaranteed by the a.xioms. 
If the element is a unit then it is an automorphism (homomorphism that is 
a bijection). 

There are a. number of possible definitions of what it means for a subal· 
gebra N to be nonnal, none of which seems to be totally satisfactory. All 
are equivalent to the usual defin.ition in the case where the overall algebra 
is a group. In the following we use the notations X", aX, a; X and X; a for 
a subset X ofG to mean {zoO I x E X} etc. 

(a) Nfl ~ N for all 9 E G. 

(b) gN <;; g;N 1o, all 9 E G. 

(e) N;g<;;g;Nlo"JlgEG. 

It might seem a. little odd that we have used ~ rather tha.n = in Ca5ell 

(a.) and (c), for equa.lity trivially holds in the case of a gronp if the inequal­
ity doe":. They have been phrased in this way though. to ensure tbat the 
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group of units U of G is always normal: a demand that seems eminently 
reasona.ble and which would not always be satisfied with = (see annihilating 
sums below). It is easy, in general, to prove that (a) implies (el, and that if 
N is a group then (a) implies (b) and that (b) and (c) are equivalent. The 
kernel of any homomorphism is easily shown to satisfy (a). 

The author has discovered two different ways of fonning quotient spaces, 
which coincide in the case where N is a group, but which do not seem to 
be especially useful in more general circumstances. The first, in the case of 
N satisfying (a), is to declare a == b if there are n and min N such that 
Gin = b; m, The second, which works for N satisfying (a) and (b), is to 
declare a == b if a; N =b; N. In each case the quotient space defined in the 
obvious way is a conjugate algebra, with the quotient map a homomorphism. 
(The well-definedness of the first actually depends on the the propertiE8 of 
the algebra, since if a; n =: b; m and b; p =: Cj 9, then 

a;n;pm = b; mjplTl = bjp; m = c;q;m 

which proves transitivity.) Even in the case where the kernel N of a homo­
morphism 4> is a group, we unfortunately do not get the general isomorphism 
theorem GIN e!! Im(¢). The author's investigations suggest that there may 
just not be enough structure in the algebra to give a useful notion of nor· 
mality and an isomorphism theorem of the type above. Perhaps if one had 
cancellation laws something more could be done. 

One type of example which makes normality constructions difficult is 
where there are a lot of right zeroes in the algebra: elements sucb tb.t 
g; z =: Z for all g. We have seen this type of behaviour in the exa.mple at 
the start of this section, where any assignment of the form 1;:= a is a right 
zero. (In the case of the a.rea assignment exa.mple with a single variable, all 
non-identity elements a.re right zeroes.) And it is always easy to introduce 
such zeroes into an algebra: suppose G is a conjugate algebra and Z is a set 
(disjoint from G) on which G acts - i.e., there is aJl operator z. 9 such that 
z.l = z and z.(gih) = (z.g).h for aU z E Z, g,h E G. Then weca.n 
form a conjugate algebra out of G u Z - tbe annihilating sum - in which all 
elements of Z become right zeroes, as follows. Below, 1 refers to the identity 
of G, which becomes the identity of the new space. 

• if g, hE G, then g; hand g" are as in G. 

• a; z =: : for all a E G U Z and z E Z. 

• Zj 9 = Zl = Z • 9 for all 9 E G and z E Z. 

• a· =: 1 for aU a E G U Z and z E Z. 
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It is straightforward to verify that this satisfies all of the axioms. Consider, 
for example, the case of L3. If w E Z then 

(u;v}W = UWiV1ll 

is trivial, since both sides equal 1. If w E G and both" and v are in G, 
then the property is inherited from G. So we caD lWISume that wE G and 
one or both of u and v are jn Z (which in any case imply that tI.;t1 E Z). 
Thll8 (u;v)'" = (Uit7).W. In the cases wheretl E Z thisequ3.ls u. w which 
in torn equals (u.t7);(v.w) as required. Ifv E G then u E Z and 80 

(u;v). w = U. (ViW) =u. (w;v"') = utll;v"" 

which completes the proof of L3. 

It is interesting to compare this example witb the example at the start 
of this section when the ring on which it is based has no zero-divisors (Le., 
non-zero a and b such that ab = 0). This consists of the constant assign­
ments Z (aU right zeroes) together with a conjugate algebra G of non·zeroes 
(assignments of the form. := a +b. for b i- 0). This turns out to be pre­
cisely the annihilating sum under the obvious action of G on Z, except tbat 
the definition of g. is different. This is beeau.&e there is sometimes more than 
one conjugation operator that will work for a given sequential composition 
monoid. 

It is worth noting that, in the type of examples we are looking at based 
on database updates, the sequential composition operator is somehow more 
fundamental in a conjugate algebra than is the conjugation operator. This 
is in the sense that we are far more likely to ask the question of whether a 
given monoid can be given a suitable conjugation operator, than the other 
way round. 

We can gain some insight into which seqnential composition mORoids 
can be used to form a conjugate algebra by examining their actions. Since 
we are primarily interested in monoids whic.h are sets of updates on some 
set S of states, we will assume the monoid is completely determined by its 
action l3 on a set S, and so can be identified with a sub-monoid of the set of 
all functions from S to itself (under composition of functions), and contains 
the identity function on S. If the monoid were a group, then all its functions 
woold be bijections. We are interested in the more general case where this is 
not the case. If U E G, we will write. =.. y if u(.) = u(y). Suppose. =.. y 

--Whether or not the monoid ill determined in this ",ay, we can reuonably _nme that 
the monoid uu on the set of 8tates in the lIePBe de:llCribed when we dilOC1ltsed annihilating 
8110\8. 
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and tI is any other element of G. Then, assuming there is a conjugation 
operator. we know that there exists w sucb that U; w = Vi u, or, in other 
words 

",(_(z)) = _(v(z)) 

(or all z E S. It follows that u(v(z» = u(v(lt)). which can be re-writlen 
v(:t) =,. v(y). In other words, all the (unctioRs in G reaped the equ.ivalence 
relation induced by the others. (It is interesting to note that the failure of 
this property was the feuon why the examplediscDssed earlier using general 
ratber than non-singular matrices failed to work.) 

It seems likely that the above result can be taken further. and that eimlla.r 
work can be done to capture jullt when a monoid of functioRs caD be made 
into a conjugate algebra. But that will he a topic for further work. For now 

we wiU exploit it by constructing a more general alld elaborate example of 
an algebra. 

We choose our equivalence relations in advance. Suppose that the litate 
consish; of N variahles (zo, ... , zN-d. We will make life a little liimpler if 
by assuming they all range over the same liet X of values, but this is not 
essential. If ~ is a state we will use ~ 1 n to denote {z...... ZN_l}. The 
equivalence relations we allow for the npdates in our monoid are =.. defined 

it=nll¢>;,l n =,ln 

for 0 :S n ~ N. In other words, two states are =n equivalent if 1;he values of 
z ... to ZN_I are the same. =0 identifies only equal states and =n identifies 
them all. 

What does it mean for a function u to have =~ ==..? It means that two 
states j[ and r are mapped to the same result if, a.nd only if, l. 1 n = 1£1 n. In 
other words the result must depend only upon the appropriat.e final segment 
of the state, and injectively upon that. u must also have the property that 
it preserves all the other equivalence relations, which mean that the value of 
u(;,) 1 m depends only on,l. 1 m for all m. In other words, the value u assigns 
to Zm is a function of s 1 m for all m. Given this fact, it is useful to write 11... 

as the function which describes u's action on the last N - m components: it 
maps (zm • ... ,ZN_l) to the values of the corresponding components of all 
u(j[) when ,;[ has these la,st components. 

It may be pOMible to deal with more general cases, but it order t.o k~ 

the example reasonably simple we will make the additional assumption that, 
when =~ = =...,the functions Um for m ~ n are all bijections. In other words, 
u induces a bijection on the set of states factored by each of the equi valence 
relat.ions Ern for m ~ n. Under this assumption and what we know already, 
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it is possible to describe the possible structure of u completely. For each 
mE {n, .•. ,N -l} there must be a. fundion go from (N - (m + I»-tuples 
to the set of bijections (rom X to X, and for each m < n there is a function 
h; from (N - n)-tuples to X such that 

• when m ~ n, u(.l)", =g",(~ T(m + 1»(xm), and 

• when m < n, then u(~)", = h",(~ To). 

Any sucb system of 9'8 and h's describe an allowable u completely. 

Let Un be the set of all u as above, and let U be the union of the Un as 
for 0 $ n 'S N. The index of u E U will be the unique n such that u E Un' 
We will show that U, with functional composition, is a monoid and can be 
made into a conjugate algebra. 

Since the identity map on S is an element of Vo and functional composi­
tion is always associative, to prove U a monoid it js enough to show that it 
is closed under composition. It is ea.sy to see that the property that u(~) 1 n 
depends only on ~ 1 n is preserved under composition. Suppose U E Un and 
V E U... , and that gi and h; Me functions constructing the components of 
v as above. If m 2: n then U; v E Um since, for each k 2: m u..,; V,l: is the 
composition of two bijections and hence a bijection, and for each k < m 
then v(u(~» = h,l:(u(.;.) 1 m) = h.\;(urn.(~ 1 m)} which is of the correct form. 
If m < n then Ui v E V",: the same argument as above applies when k 2: n, 
and when m:$ k < n then v(u(;.»)l k = g,l:(u(~)l k +1)(u(~h). which is a 
function of ~ 1 n since u(~) is. Similar considerations apply when k:$ m. 

II u is an element of Vn we can define a partial inverse for it, u·, which is 
an element of Uo, as follows. We can describe u in terms of gi (n :$ i < N) 
and hi (0:$ i < n). Now construct functions g: for n:$ i < N as follows: 

g,(u) = (g,(u'~I(U))J-I. 

For i < N define g;(~) = idx (the identity function). These g~ clearly define 
u· E Yo. and it should be clear that u; = (u.\;)-l for all k 2: n. Hence U·iU 
and u; u· are both elements of Un which leave tbe la.st N - n components of 
the state unaffected. 

These u· can be used to define a conjugation operator in the ohvious 
way: v.. = u·; Vi u. Since Vi u is only a function of (at most) the com­
ponents of the state which are inverted successfully by u·, it follows that 
u; u·; v; u = v; u, which is what we need to get L2. L3 holds, or in other 
words W·i ui Wi w·; Vi W = w'"; u; Vi w, since the only components of the state 
which are n~ed for the final result are certainly contained in those pre­
served by w; w'". L4 corresponds to (v; wti u; Vi W = W'"i V'"i u; 'V; w. This 
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holds because (Vi w)"' and w'"; v.. both act identically on the components of 
the state required for computing u; v; 10: in particular they both act as tbe 
inverse of (v; 10)", where n is the greatest index of u, v or w. 

Surprilingly, given our experience to date, law L6 does not hold (even 
though L5 trivially does with the identity function a.ti identity). This il be­
cause, given any v ¢ Uo, we find .,"i v ::F 1. Thu8 this particular conjugate 
algebra is not unitary. To make it unitary we can add, ali indicated in Sec­
tion 3, an extra element to act as 1 (the action DC 1 on the underlying set 
is the sa.me as the identity function, but 88 objects in the algebra they are 
distinguished). However tbe existence of a 1, while useful in performing the 
manipulations which proved oor algorithm correct. plays no essential (unc­
tiOD in the algorithm itself, and adjoining a 1 does not affect the algoritbm's 
operation. a.nd the equaJjty or otherwi&e o( terms (rom the original algebra 
is in no way affected by the addition o( the 1. This phenomenon of algebras 
which only satisCy L1-L5 is worthy o( stndy. It may well prove to be the Calle 
that this is tbe right definition: the main place where L6 has been useful to 
us was in the reduction o( all terms of the free algebra to atomic form. 

6 Non-ring topologies 

Ring topologies have several advantages for our type of system. They are 
completely symmetric, in the &ense that they look tbe same to all nodes, and 
when an update returns to its origin the origin knows that all other nodes 
have seen it. One disadvantage was indicated ea.rlier: the maximum latency. 
or time which it tak".s between an update entering the ring and being seen 
by all nodes, is proportional to the llize of the ring. It is also possible that 
we might be asked to implement one of our systems on a network which is 
not a ring, and which would be inefficient to build a ring on top of. 

In the (allowing subsections we will construct algorithms based on (he 
conjugate algebra model of upda.tes. All of these contain implicitly an al~ 

rithm based on the model of updates used in Algorithm I, with analogues 
of stopping and cancelling. We leave the interested reader to extract these 
for himself. 

6.1 Joining rings together 

One obvious way of creating a more general system is to glue a number 
of rings together: we can create a special node which sits in two rings and, 
when it receh'es an update to execute from one ring, in&erts it into the other. 
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Iu order to describe these special nodes it is usefnl to break up the nodes 
of Algorithm 2 into two parts: a user process U which contains the local 
copy of the database and generates the updates which originate a.t the node 
(and executes them locally before releasing them), ud a server process S 
which holds the queues Q (which sits on its input line from the user) and E, 
deals with the ring protocol and the necessary conjngations, and sends the 
correct non·loc::al updates to U for it to execute along an output channel. 
Except for what is waiting on Q and E, the process S never deals with more 
than one update at a time. A special node simply consists of two of these 
S processes back· to-back. one in each of the rings it is connecting. The 
input line of one is ronnected to the output channel of the other, and vice 
versa. In setting up the way these two S processefl communica.te, care will 
be required ~o avoid deadlock. For example, at least one of them will have 
to operate a Q to achieve this. 

Given that our ring algorithm works it is easy to Bee that this special 
node, joining two otherwise unconnected rings, preflerves correctness. For 
BUppose we were to place a copy of the database on the node and execute 
the updates which emerged from the two output lines in the order they 
appear. (Since the two S processes can only deal with one update at a 
time, they cannot swap a pair of updatefl simultaneously.) So far as each 
ring is concerned, the sequence of updates executed at the special node is 
exactly the sequence which would be executed there if the node were part 
of that ring alone and it generated the uydates from the other ring itself. 
It follows that the sequence of uydates at the special node is equivalent to 
thet&e executed at all the other nodefl in the ring and, by symmetry, the 
other ring. 

We rema.rked above that the special nodes should nly he used to connect 
a yair of rings at one point. If two rings are joined in more than one place, 
the result would be that each uydate would circulate eternally. 

Of course, we can use more than one special node to create any tree­
connected system of rings. Since there can be many copies of an uydate 
circulating at one time in such a system, the latency yroblem can be much 
reduced. However the reader may notice that a node can now never tell 
from the action of the algorithm that its update has finished circula.ting. 

6.2 Tree networks 

In the systems d~cribed above, we can imagine making the rings smaller and 
smaller until they just contaiued one normal node each and enough special 
nodes to connect them to adjoiuing rings. If we thought of each of these 
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rings as a single process, joined by the links which connect the two halves 
of each special. node to its neighbours, then we would have a method of 
constructing an arbitrary tree network. Notice that in this, as in any other 
way of configuring a tree to send updates generated anywhere all round, 
npdates CAR pailS either way along the links, which was not the Ca.&e in the 
ring. 

It seems rather odd to be constructing a tree in the way described in 
the lut paragraph, since firstly each node is actually described as a panllel 
process and secondly one would think that a tree was fundamentally simpler 
than a ring a.nd ought to have a solution of its own. In fact it is poesible 
to describe an algorithm for operation on an arbitrary tree, though in its 
actual operation it is rather close (though not identical) to the one set out 
above. 

Conceptually we will build our network out of two types of processes: 
nodes which hold copies of the database, can generate updates and receive, 
execute and pa.ss on updates from elsewhere, and processes which sit on tILe 
links between the nodes and regulate updates queued up and passing each 
other. A node will deal with only one update at a time: either it is one 
it generates itself, in which case the update is executed and passed to tILe 
links with all neighbours, or it is one received from a link, in which ca.se the 
update is executed and paBEled to all other links. (Note that, iu this last 
case, if there are no other links because our node is a leaf, the update is 
passed to nowhere else.) 

The pTOc.esses on links each keep two queues moving in oppOfiite direc­
tions. No overtaking is allowed in either direction. When a pair of update5 
u and v pass each otber moving in opposite directions, tbe liuk process m1l&t 
conjugate one (and only one) of them hy the otber. So after U aDd v pClll8 
they become either u and VU or u... and v. There are a number of strategies 
the process could use for this: it could cbOOlie on some priority basis de­
pending on tlte identifiers of the updates, it could always conjugate the Obe 
moving in a particular direction, or (and tms corresponds to what happens 
in the ca.se of many small rings discussed above) whenever a uew update 
enters from either direction it could be moved past, and conjugated by, all 
the updatet5 queued in the opposite direction. 

In order to prove this works all we have to do is prove that the updates 
executed at either end of a single link are tbe same, since it should be 
obvious that each update visits each node exactly once (perhaps differently 
conjugated at different places). This is not too hard to establish, the author's 
proof being obtained by breaking np the link up into a number of pieces not 
capable of holding more than one update each (in both directions combined). 
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An update can paEiS from one to the next if the latter is empty, or if both 
full they can swap and conjugate ODe of tbe two updates. The relationship 
between the sequences of updates which have PaEised through consecntive 
pieces is easy to establish, and when both are empty it i8 easy to show that 
these sequences are eqnivalent. Any finite behaviour of the original link can 
be modelled by one of the latter form provided it is broken into enough 
pieces. 

There is an interesting contrast between the operation of this algorithm 
an the ring-based ones. For in the tree CMe a.n npdate becomes conjugated 
when it 'meets' another update (by passing it on a. link), while in rings 
npdates never meet each other and are conjugated by the "expected-back' 
copies. The existence of a linear priority order which governed conjugation 
was essential in the case of rings (as is easily demonstrated by examples). In 
the tree case there is no such need: it is easy to construct examples of three 
updates, each of which meets the other two a.nd which conjugate each other 
cyclically (Le., a conjugates b, b conjugates c and c conjugates 0) withont 
destroying the correctness established above. (In the tree algorithm, as in 
the ring case, it is easy to see that an update will meet another one - or its 
expected back version in the case of rings - if and only if there are nodes 
which disagree on their order, cmd that if so, they meet exactly once.) 

6.3 General networks 

The best hope for producing an algorithm which will work on a more general 
stmcture would 6eem to be the functions f and 9 defined in Section 3. 
These essentially give us a prescription for implementing a system, since 
they tell ns exactly which are the permissible ordei8 for updates to meet 
and conjugate each other, based on some coJ\sistent notion of priority. It 
seems clear that the partial order with respect to which the functions are 
defined will always be the 'causality' one, namely 11 -< v if u has been seen 
at v's origin when v was emitted, and that the routing of updates should 
be 81Jfficiently deterministic that this order coincides with the 'concurrency' 
order: u -< v is all nodes see u before v. 

Under these conditions the sequence of1Jpdates exec1Jted at a given node 
N is consident with a presentation of f. in the sense that each successive 
update u must be either greater than. or incomparable with, each that has 
preceded it at N. What we must ensure is that. when it is executed at N, 
11 has been conjugated in the box algebra to ulg{I:(N.u),ull, where k(N,u) is, 
as in Section 4, the set of updates to arrive at N before u. This worked 
out very naturally in the ring case, and also in the tree case if priorities 
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a.re adhered to in carrying out conjugation. But in cases where streams of 
npdates are, for example, being merged together, it may well req\lire more 
ingenuity or, at least, a. more technical algorithm, to achieve thilL We leave 
this as a 811bject for futnre work. 

There i! a connection between this 1general topology' discussion audoor 
discussion on timestamping at tbe end of Section 4. For note tha.t we 'Were 
conjechuing there that the most complex algorithm devised there worled 
by reference to a. function f defined over the concurrency!causaJity order on 
8. more genera.l structure - in that case a. ring with hain;. An obvious second 
connection is the qner;tjon of whether it is possible to extend this worlon 
timestamping to more general topologies. The author beliews tha.t in any 
case where one can come up with a working algorithm, if update priorities 
are bi\&ed on consistent timestamps, tben the algorithm will deliver the 
desired r~ult of updating all nodes by a seqnence of updates equivalenl to 
the original updates in timestamp order. The argument should once more 
revolve around the function f, all in our earlier di5cussionll of timesta.mps. 
This is anotber topic for futnre work. 

We discussed earlier how our algebraic tbeory was connected with, a.nd 
might be applied to, the subject of true concnrrency. It is interesting to 
note that there is another connection with this topic wlUch appears from 
the two partia.l orders (caullality and concurrency) which we used to order 
tbe updates going round a system. For, if we th.ing of the total tranllit of 
one update as a single event which is observed by a node when it rea.chesit, 
then these orders berome ones frequently used in true concurrency. Recall 
that our aJ~rithms have all made sure that tbese two orders coincided. 
One could view our algorithms al5 working by ma.ki.ng 5ure tbat each node 
calcula.tes, in possibly different ways, a natural algebraic invariant aziaiog 
out of a ~true concurrency' view of the way tbe system works. Thus, in 
some way, one might view the algorithms in tbis paper as being a pradicaJ. 
application of tha.t subject! 

7 Prospects 

We ha.ve disCQ5sed elsewhere possibilities for further work on tbe al~bra in­
troduced in this paper and applications outside databa.ses. The lal5t section 
provided a Httle insight into what might be required to generalise our meth­
od5 beyond lhe classes of network covered. In this section we will briefly 
discuss a few more topics wh.ich may he profitable 8\1bjects for further WOTl 

related to thi' application and generalisation of our algorithms. 

In Section 5 we began to see just what was and was not allowa.ble for 
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a language of updates which is to he m&de into a conjugate algebra. It 
would be interesting to take this rurther, both by investigating theoretkal. 
bounds i\Ild by producing further examples. In some sense our three major 
non-group examples - area assignments, :r := a +b: and the lut ODe with 
its hierarchical equivalences - form a. sequence where each more-Of-less gen­
eralises the previous one. Do all examples follow this general style or are 
there others which look completely different? 

It is perhaps worth pointing out that the symmetric algorithm which 
appeared in our proof when the box algebra replaced the conjugate algebra. 
is perfectly valid in its own right. If we have a language of updates and 
a box-conjugation operator which satisfy axioms Ll and PI-PS then the 
symmetric algorithm may be implemented directly. (Slight modifications 
aN I'@<1uired in 'he management of the queues Q;.) Quite differeut effects 
can be achieved. 

For example, sUppa&e that the model of updates is consti\Ilt area assign­
ments as discussed at the start of Section 3, but that additioually there is an 
error state 1., upon which no assignment has any effect, aud a special update 
z which sets the state to 1.. Clearly z is a left and right zero of sequential 
composition. We can define a box-conjugation operator by tieUing ~ = tl 

if u and tt do not clash (Le., have disjoint domaius), and vfiiJ = z o'herwise. 
Jil = I for all z, and zCil = z for all tl -::f. z. h should no' be too hard to see 
that this satisfies all of PI·PS. An interpretatiou of this ex:ample is that, for 
some reason, the simultaneons existence of clashing updates is an error, i\Ild 
when it occurs we want all nodes to know the error has occurred. (A system 
using this algebra might be implemented as a guard against the break·down 
of some other protocol which was meant to prevent concurrent updates of 
the same loca'ion.) 

The obvious question that arises here is: to what other uses can this 
symmetrical algorithm be put? The algorithms we devised for other network 
topologies in Section 6 can also be adapted to use the box a1gebra. 
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