COLLECTING BUTTERFLIES

by

Geraint Jones
Mary Sheeran

Technical Monograph PRG-91
ISBN 0-902928-69-4

February 1991

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX1 3QD

Copyright © 1991

Geraint Jones

Oxford University Computing Laboratory
11 Keble Road

Oxford OX1 3QD

England

Mary Sheeran

Department of Computing Science
University of Glasgow

Glasgow G12 8QQ

Scotland

Collecting butterflies

This monograph contains three papers about butterfly circuits. Circuits of this
{orm turn up in many signal processing applications, and networks of the same
shape are found in paralle] algorithms for many sorts of message-passing computers.
Unfortunately their presentation is usually bottom-up and consequently difficult to
understand. In these papers we give top-down analyses of such circuits in the style
of Ruby - a language of relations and higher-order functions in which circuits are
represented as relations on the signals which pass between them.

The first paper - The study of butterflies - introduces the algebra of the
combining forms with which butierfly circuits will be described. 1t goes on to
show that butterfly forms arise naturally when certain sorts of problem are tacked
by a divide-and-conquer strategy.

Butterfly circuits are probably most familiar from their application to the
implementation of the fast Fourier iransform. The second paper — A fast flutier by
the Fourier transform — takes the recursive equatior which describes the divide-and-
conquer calculation of the Fourier transform and shows how it can be implemented
by butterfly circuits and by various related regular layouts.

The third paper - Sorts of butterflies — shows how Ruby is used to describe
and analyse permutation and comparator networks. It explains a periodic sorting
network that is suitable for implementation on silicon.

ACKNOWLEDGMENTS The presentation of divide and conquer algorithms owes
much to several attempts to explain it to colleagues, and in particular to Richard
Bird. We ate grateful to David Murphy and Lars Rossen for many comments and
suggestions.

The study of butterflies

Geraint Jones
and

Mary Sheeran

Butterfly networks arise in many signal processing circuits and in parallel algo-
rithms for many sorts of message-passing computers. This paper attempts to
explain why this should be, and what butterfly networks are, using a new and
elegant formulation based on a language of relations.

Most of the material covered by this paper has appeared in a less tractable
form in earlier papers [16, 17]. The novelty here is in the simplicity and ¢legance of
the presentation, which derives from an appropriate choice of high-level structures.
These structures are represented hy functions which are used to compose circuits
from components, and are chosen to have simple mathematical properties.

This presentation makes it easier to explain how the design comes about, show-
ing that butterflies are natural implementations of divide-and-conquer algorithms.
We are then able to go on to explain many of the properties of butterfly netwaorks,
and of their implementations.

A language of relations

The important things in Ruby [13] are the structuring functions, and the interesting
things to know are encapsulated by the mathematical properties of those functions.
Nevertheless we will need to have some idea of what the component parts being
composed are. These are the things that model the components of a circuit, or
the nodes of a network of computers. You can think of these components as being
relations: that jis the simplest interpretation of what is happening. You should
however keep in mind that this is just one interpretation, and that the important
things to watcb are the functions that put them together and the algebra of those
functions.

The principal way of putting components together is (sequential} composition,
which we write R ; 5. If you are thinking of relations, composition of relations

5

6 THE STUDY OF BUTTERFLIES

mearns

]

z{R;5)r = Iy zsRy & yS:

but the thing to keep at the front of your mind is that it is an associative way of
pntting circuits together, (R; 8); T = R;{5;T).

In particular that means that it will make sense to talk about ‘reducing’ com-
position over a finite ordered sel of indices, and we write

s Ri = RisBa.. R,
i=1
at least in the case that n > 0, and we write B for Yoy B
The other extreme way of putting components tagether leaves them entirely
unconnected. The paralle] composition [R, 5] is defined by

(p.q) [R, 5] (t,u) = pRt & gq5u

and the thing to keep in mind is that sequential and parallel composition have the
property [P, Q| ; [R, 5] = [(P; R), (@ ; 5)] which Richard Bitd [4] calls the abides
property: that seqnential composition abides with paraliel composition.

The inverse (some people say more properly the ‘converse’) of a relation, !,
is definea by

zR'y = yRe

and we will write R™™ for (R~')" and so on. Beware of doing arithmetic in the
exponent! A relation and its inverse cannot necessarily he cancelled, so RP; R~¢
need not necessarily be the same as HP9.

Converse distzibutes over parallel composition, [R,5]! = [R™!,57"}, and in a
modified sense over sequential composition, for (R; S)' = §~'; R,

Because we will want to be using relations and their converses to translate data
from one representation to another, we will find useful the abbreviation R\ § =
S§-1; R; 8, read ‘the conjugate of R by 5.

The sum of two relations R and S (their relational sum, or their union) is a
relation R+ S for which

z(R+5)y = zRyvzSy

Most of the operations introduced so far distribute over sum, so that for example
(R4 5);T=(R;T)+(S;T). The exceptions are the operations like repeated
composition that are not linear: because

(R+5)? (R+5);(R+5)
(RiR)+ (R S)+ (S, R) +(5;9)

1

TRANSPOSING AND SHUFFLING 7

it is not generally the same as R? + 5?. Similarly the conjugation R\ § is not linear
in §, although (P + @)\ S = (P\3)+(Q\ S5).

We write R : A — B to mean that R relates things of type A to things of type
B, and by this we mean that R = A; R; B. A type is just an equivalence relation,
which is to say that it is a relation A for which A = A?* = A~! and so A = A" for
all positive and negative n. When we speak of a circuit R, we will have in mind
particular domain and range types R* and R*, for which R : R+ — A+, although
we may not make them explicit. Do not think of R+ as being some function of R,
it is just one element of a triple (R*, R, R} which we misleadingly identify with
R, on the grounds that it is usually obvious which R+ and R* i3 meant. When_
R+ = R+ we will write this as R®, which is suggestive of %, R*; R? = Rt = B,
Such an A we will call komogeneous.

On the whole we will cnly need to talk about the types of lists of a givenlength:
we write n for the type of lists of length n, meaning that xny ifand only if z = y
and has # components. There is a notational trap lurking here, for we will write
2% for the type of lists of length two-to-the-n: it should not be read as the n-times
repeated sequential composition of 2. Since 2 is a type, the latter is just 2and we
will never need to write it.

A sum R + S is disjoint if R+ ; 5+ = @ = R*; §* where @ is the unit of
relational sum. In that case both B* + S+ and R* + 5% are types as you can
check hy calculation. {The sum of two types is not in general a type.) Morecver,
since R+ S : B+ + 5+ — R* + 5*, repeated composition distributes over disjoint
sum.

Surn is associative, commutative and idempotent, so we can write T; for the
coutinued sum over any set of indices.

Transposing and shuffling

Most of this paper turns out to be about certain sorts of permutations: those that
can be understood in terms of transposition cperators. The transposition relation
trn relates two ‘rectangular’ lists of lists, in such a way that

simy = I,, =1y

You can think of it as taking a row-of-columns enumeration of a two-dimensional
array and turning it into a columnn-of-rows enumeration.

The casiest way of describing the relation halve is to say that its iuverse halve™
relates a pair of equal-length lists to the even-length list obtained by concatenating
them

1

(Io, Tyy-- -Izn—l) halve ((Tu. 3 TR In-l). (Iml‘nﬂ; o »xzn-ln

and similarly the relation pair is the converse of pair™! which relates a list of pairs

THE STUDY OF BUTTERFLIES

o

WY
AN

Figure I: layouts for 12; halve, 12; pair, and 12; nffle = {12; halve); £rn;{12; pair)~!

to the even-length list ohtained by concatenating the pairs

(330; Tyyo - 32n-1) pair {{zo,21), (22, Ia),- .. (zzu—:,fzn—l))

The reason we need halve and pair is to define

rifle = halve ; tra ; pair™!
which is a permutation of even-length lists. Think of the professional card-player’s
shuffling of a pack: the pack is divided in two, halve; the corners of the two hall-
packs are flicked together to interleave them, trn; and then the pack is straightened
up to give the same status to cards from either half-pack, pair~'. This ‘riffing’
operation is sometimes called a ‘perfect shuffle’. Tt is harder to give a convincing
account of how to unriffle a deck of cards, as described by riffle™"!

Sometimes we will need to know how wide 2 list is being permuted, particularly
because n successive rifflings of a list of length 2" will restore it to its original order,
which is to say that

so that))
2 irffler™ = 2 iriffle”!

Note that this is not directly related to an almost useless fact which any card-sharp
will know, that 52 ; riffle® = 52.

A language of homogeneous relations

Suppose Mis a length-homogeneous. circuit, that is-one which relates lists of signals-
ouly when they have the same length, so that n; R = R;n. One way of making

A LANGUAGE OF HOMOGENEQUS RELATIONS 9

R

EEERANINN

SSSN

Figure 2: an interpretation of two B as a circuit arrangement

TR 1Mok
i A AVA N\
2\ SN — Vs
-\ AR A
Mg A

Figure 3: two circuit forms suggesting two(R ; §) = two R ; two §

a bigger length-homogeneous circuit is to take two copies of R, and to divide the
inputs and outputs of the new circuit equally between the two copies.

twoR = [R, R]\ halve™

So long as we confine ourselves to length-homogeneous relations, two distributes
over composition, meaning that

two(R;S5) = twoft;two§

and so two A" = (two R)".

The restriction to length-homogeneous circuits is necessary. Consider the rela-
tion R which relates («} to both (x} and (*,}, and the relation § whichrelates ()
to {¢} and {*, <) to (}). Then R; 5 relates () to both (g} and (b}, sotwo(R ; §)
relates {x,+} to all four of {a,a), {b, a), {a, b} and (b, b). However two R relates {*, +}
only to {*,+) and (%, +,«,«), and two S relates each of these to {a,a) and (b, b}, so
two R ; two 5 is a strictly smaller relation than two(& ; 5).

A different way of making a length-homogeneous circuit from two components
of half its size is suggested by figure 4. The interleaving of two components is
defined by

ivR = (twoR)\ riffle

10 THE STUDY OF BUTTERFLIES

AR
Hry

Figure 4: two different interpretations of ilv R = two R\ riffie

T

LERARI

g

Iltlllll
11

L

s
5

2

w

TTTITFRITTITTT

f1rletd
.
o
u

iy

oy

Figure 5: two views of twoilv B = ilvtwo R

and - following from the distribution result for two — if R and 5 are both length-
homogeneous then
iv(R;8) = ivNR;ivS
What may be more surprising is that applications of two and ilv commute, for
twoilv # = ilvtwo R

This means, by an induction on the number of constructors, that any term consist-
ing of applications of 1wo and ilv to a relation is determined solely by the number
of applications of two and the number of applications of ilv, and that the order in
which they are applied is immaterial.

The meaning of the equality is suggested by figure 5, and the proof goes
something like this

halve ; [riffle™! ; halve, riffle™" ; halve]
= halve ; [pair; trn, pair ; irn]
= pair ; halve ; {trn, tra|
= pair; im ; [halve, halve| ; trm
= riffle™! ; halve ; [halve, halve] ; trn
50
twoilv i = { definitions of two and ilv and collecting terms }

(R, R), R, R\ (lhadve™ ; riffle, halve™" ; rifffe] ; hadve)

DIVIDE AND CONQUER ALGORITHMS 11

= { calculation above, taking inverses on both sides }

([[R, R],[R, R)j\ trm) \ ([halve™", halve™"]; halve™ ; riffle)
= {[(A, BL,[C, D]|\ tra = [[4.C].{B, D]| }

[[R, R],[R, R\ ([hatue™" halve™'}; halve™! ; riffle)
= { collecting terms and replacing definiticns }

ilvtwo R

The details are tedious, but we need never see them again: just remember that
twoilv B = ilv two .

Divide and conquer algorithms

Suppose you want to solve some problem by a binary divide and conguer strategy:
that is, you know how to solve {conquer) some problems by an algorithm €, and
you have a technique D for dividing up any problem that is too big to be dealt
with by C. A problem divided has then become two smaller problems that can be
tackled in the same way. The algorithm is a solution & to

& = C+(D;twod)

You can read this as an equation in which the unknown is a relation, and in which
the + sign means relational sum (union). The solution can be found by unwinding
the recursion:

P = C+D:wwod
= C+D;woC+DitwoDl;:two’ @
= C+D0;wmeC+D:itwaD;two? C+ DtwoD;two? D ;twa®d

nooi-1 3 3 n .
= 3 y two? D) stwe' C + (5 two’ D) ;two"t1 O
=0 =0 =0
and because (at least if there are no empty lists in the range of ®) the range of
two' & contains only lists of length at least 2' long, this unfolding eventwally defines
®, by

o -1
& = 3 (5 two’ D};two'C
i=0 j=0
We will suppose that C and D are length-homogeneous, and that C:k— k for
some small number &£. There is no harm in supposing that we can only conquer
stmall problems: that is of the essence of how divide-and-conquer works. Of course
there remains the problem of how to divide very large problems.

12 THE STUDY OF BUTTERFLIES

Suppose that [) can itsell be implemented by divide-and-conquer, and that
D =R+ 5;woD. If we are to make progress S had better he simple: we could
assume that S was the identity relation. In that case Il = 3" two* R and if B : k—k
as well as O, it follows that & = ¥;(two* R)' ; two' C = T; two'(R* ; C). This is nat
very interesting, because it says that & can be applied to a list of a give size just
by allocating each k-wide piece to a calculation independent of all the others.
Butterflies arise in the case where large division problems can be tackled by
interleaving smaller division algorithms, for suppose that 2 = R +ilv D, then
under the same assumptions
e =1
& = 3 (5w i R) tw' C
=0 ;=0
and if R=C -
& = S MR
=D

where M; R = twd IV* R
D

I 'ow =

2
The right-hand side of this definition suggests a way of laying out the circuit which
is illustrated in figure 8 for the case of 3 7 where R : 2 — 2. We define the
butterfly of £ hy the sum

MR = ZM;R
—

The sum is disjoint, at least if R = k for some fixed number k, an assumption
which we make in wbat follows.

(If you are comparing this paper with the discussion of butterflies in refer-
ence [16], notice that in that paper the definition is slightly different, being IR =
1+45772,M; /. The difference is unimportant, and only slightly alters the discussion
in the following section.)

Recursive decomposition of butterflies

Because we arrived at the butterfly by solving a recursion equatiou, it comes as no
surprise Llat it has a recursive decomposition. There are however a great number
of other decompasitions. Suppose p and g are at least zero, then

pHa+l

Nﬂq-{-l f = ; two' ilV(p+q+l)_'. R
i=0
P - . i -
= ; twd iIVF il R ; twoPH two' iV R

1=0 V=0

SHUFFLE NETWORKS 13

P R . q . .
3 two' iIvP iV R) ¢ 3 twol il (twoPt R)

I

i=0 iZo
= Mpilv?*' R M wwofH R (1)
and
NF‘HH']- R = ilvet! Mp R; twoPt? NqR (2)

In particular, by taking one or other of p and ¢ to be zero in each of equations 1
and 2, it follows that

Mapt B = iV RN, twoR (3)
= W' R twold, R (4)
= MailvR;two"' R (5)
= v, R;two™' R (6)

each of which suggests a layout for the implementation. The four decompositions
of M3 R, for a component R : 2 — 2 that takes pairs to pairs, are illustrated in
figures 6 to 9.

Results about the general M follow from taking sums on both sides of each of
these equations, for example from equation 3

MR

MoR + Y R

i=1
= R+ Y (Iv*'R;M;two R)
=0
= VR R® + (3 iV* R); (3 M;two R)
=0 =0
= iIMR:R" + (Y iNR); MtwoR
=1

= (iilv'R) ; (B + Mitwo R}
i=0

because the various cross-terms are empty and so disappear from the sums. In the
same way it can be shown that

MNE = (RE+MivR) ;D two' R
o
an so on.

Shuffle networks

Although the recursive decompositions of butterflies are elegant and easy to reason
about, when it comes to laying out circuits they have the disadvantage of having

THE STUDY OF BUTTERFLIES

Figure §: b, B = ilvix;, R;two? R = ilv{ilv o B ; two R) ; two® R

SHUFFLE NETWORKS

(7
0

X
N A
R

[R]
COL
7

Figure 10: &, R = ;LO two? R\ riffle?™

differently shaped wiring in different places. Even if the B components can he

15

replicated and laid out in a regular way, each column of wiring is different and
there is an amount of work about 16™ invelved in laying out the differently shaped

parts of it.

Recall that because twoilv R = ilv two R, the only thing that matters in a term
like two? ilv® R, or the equivalent ilv? two? R, is the number of applications of ilv and

two. This is encapsulated in the equality

twoPilv' R = (two™*® R) \ riffie?

which can be proved by an induction on ¢q. The case of ¢ = 0 is easy, and

two? iV R = { commuting terms

ilvtwo? ilv? R
= { definition of ilv }

(two two” iiv? R) \ riffle
= { commuting terms }

{twoP ilv? two R) \ riffle
= { inductive hypothesis }

(two*9 two R) \ (riffle? ; riffle)

= ot B\ rifflest!

W, R two’ ilv" ' R

fl

<

(two™ R\ riffle™™")
]

Haea (002 [wewd

(=]

(riffle" ™ two™ R ; riffle™)

This now suggests that the composition of terms that make up a butterfly has an
expression in terms of riffle and two™ R,

16 THE STUDY OF BUTTERFLIES

Figure 11: riffle? ; 13 R = (riffle ; two® R)?

in which the columns of Rs are all the same, but the wiring between them, as
iltustrated in figure 10, is different for each column and unnecessarily complex.

By the associativity of sequential composition one of the three parts of each
column can be carried forward to the next, and

riflet™) b, R = riffle(tl) ; (rifle™ ™ ; two™ R riffle™)

=

3 (rife** " rifle (0 two™ B) ; riffle®
i=0

';l (riffie i two™ R)
i=0
= (riffle ;two™)"

il

in which each colurnn is the same, and each is wired in the same way to its neigh-
bours, as illustrated in figure 11. This arrangement of components is commonly
known as a ‘shuffle network’.

Sinceif R : k — k, any term like two' ilv? R has width 247k, and in case k = 2,
it is immediate from its definition that X, & : 2%+1 — 2741 and the riffle™*! on
the left-hand side can be cancelled yielding

M. R = (riffle;two™ R)™*

Although there is still a great number of wire crossings in the resulting cirenit -
about 4™ in each of the n 4 1 columns - it has the advantage that each column is
the same as all of the others, so only one column’s worth of the circuit need be faid
out and replicated.

By a symmetrical argument, it is also true that

W, R = (iv"R; riffle)™!

A fast flutter by the Fourier transform

Geraint Jones

This paper explains some famliar but intricate circuit forms that are used to
implement the fast Fourier transform. They are shown to be solutions to a recursion
equation that defines the transform. An earlier paper {12} showed that theessence
of the fast Fourier transform is caplured by an equation characteristic of divide-
and-conquer algorithms. Butterfly circuits have been shown [14] to be solutions to
such equations, and in this paper solutions are derived to the particular equation
defining the fast Fourier transform.

Introduction

Twenty-five years ago Cooley and Tukey rediscovered an optimising technique
usually attributed to Gauss, who used it in hand calculation. They applied the
technique to the discrete Fourier transform, reducing an apparently O{n?) problem
ta the almost instantly ubiquitous ((n log ») ‘fast Fourier transform’ [7]. The fast
Fourier transform is not of course a different transform, but a fast implementation
of the discrete transform.

Its greatest virtue lies in that it can be executed in O(logn) time on O{n)
processors in a uniform way — which is to say that it lends itself to a low-latency
high-throughput pipelined hardware implementation. Indeed, a footnote to the
Cooley-Tukey paper records that a hardware implementation was underway as
the paper was published, specifically that a component for evaluating a four-point
transform had been ‘designed by R. E. Miller and 8. Winograd of the IBM Watson
Research Centre’.

The unfortunate disadvantage of the fast algorithm is that although the fun-
damental idea js simple, the detail of its efficient implementation is very hard to
understand. That efficiency depends on intricate permutations which rearrange
data to maximise the sharing of work done in calculating intermediate results.

17

18 A FAST FLUTTER BY THE FOURIER TRANSFORM

Presentations of the algorithm abound in mysterious artefacts hike the reversal of
bits in subscripts 1}, and the translation of paris of suhscripts from time space to
frequency space [1B]. Mote recent descriptions of implementations seem to gloss
over the problem, either referring the reader back to older presentations [21), or
apparently assuming that the algorithm — because it is well known — must be weil
understood [6].

Ag earlier paper [12] reports the derivation of the Cooley-Tukey fast Fourier
algorithm from the specification of the discrete Fourier transformm. A funciional
programming notation was used to express the discrete transform, and an equation
describing the fast algorithm calculated from it. That recursion equation shows
that the ‘fast transform’ is an application of a divide-and-conquer strategy. In this
paper we take the derivation further by finding a solution to the recursion equation,
a solution which is the well-known butterfly circuit.

The discrete Fourier transform

The discrete Fourier transform is defined in terms of the arithmetic on an integral
domain. You can think of arithmetic on complex numbers, for 2 definite example,
although there are applications where finite fields or vector spaces over integral
domains are appropriate. The derivation depends only on the algebraic properties
of the arithmetic, not on the underlying arithmetic itself, so everything said here
about the algorithm will be true for finite fields and vector spaces as well,

The discrete Fourier transform of a vector z of length n is a vector y of the
same length for which

R T
k0CkCn

where w is a principal n-th root of unity. (In the example of complex numbers,
you can think of w = &/} The result, y, is sometimes called the ‘frequency
spectrum’ of the sample z.

Even if the powers of w are pre-calculated, it would appear that O(n?) multi-
plications are required to evaluate the whole of ¥ for any z. The fast algorithm
avoids many of these by making use of the fact that w™ = 1. The discavery made
by Cooley and Tukey was thal if n is composite, the calculation can be divided
into what amounts to a number of smaller Fourier transforms. Suppose n = p x q,
then by achange of variables

w(m+b}(oc+d)1“

Ypatb = +d

a0<c<p d0<d <y

E Z (™) (wp)d(“’q)k“"“zvﬂd

c0€cCp d0<d<q

TRIANGLES 19

= Z (wp)udwbd E (wq)ktqc+d

d:0<d<q &0€e<p

Since w? is a p-th root of unity, and w? is a g-th root of unity, it is not surprising
that the above calculation leads to an implementation in which p-sized and ¢-sized
transforms appear.

In particular, if p = 2 there is an implementation involving only transforms of
size 2 - which are particularly simple ~ and a pair of transforms of size n/2. Re-
peated division by two permits of an implementation consisting solely of transforms
of size two, for any transform which has a width that is a power of two. It is however
rather difficult to see from the above calculations what these implementationsmight-
be.

In reference [12] the divide-and-conquer sirategy is revealed by a calculation in
which the expressions are algorithms, rather than data values. For this we will need
the notation from a companion paper {14] and a small amount of extra rotation
specific to this problem.

Triangles

With the constructors introduced in reference [14], any path from the domain to
the range has to go through the same number of components. In order to deal with
a wider class of circuits we introduce

one R = [id,R]\ halve™?

where id is the identity relation, the unit of sequential composition. This construc-
tor behaves very like two, for example, remembering that the variables range over
only length-homogeneous relations

one(R;5) = oneR;one§
ilvone R = oneilvR

but he careful because twoone R # onetwo R,

LIy
TTTT

R

Pl
TTTTTTT

Figure 12: circuit arrangements for two R and ane R

20 A FAST FLUTTER BY THE FOURIER TRANSFORM

AR EEY
T

AN ENEE]

TTTITTT

LARBRI

+

TITTT v

Figure 13: thw R, twothw R = thwtwo R, and onethw R = thwone

j&i

Figure 14: tri,4; R = twotr, i ; oneblock, R

Of course, you can riffle together the two halves of a one B. Define
thw B = (one R) \ riffle
for ‘through-wire’, and it should come as no surprise that

thwone . = onethw R
thwiwo # = twothw i

although in general thwilv B # ilv thw R.

There are two families of these constructors, the straighi ones: one and two,
and the shuffled ones: ilv and thw. Just as before we were able to say that the
only thing that mattered in a term made by applying ilv and two was the number
of each, so now we can say that the term is determined by the number and order
of the straight constructors, and the number and order of the shuffled ones. The
order of the constructors matters within a family, but pot the way in which the
constructors from the two families are intetleaved. The shuffled constructors pass
through the straight ones like ghosts though walls, but behave quite reasonably
with respect to each other.

You <an think of one R as a small triangular-shaped circuit, and figure 14
suggests that larger triangular-shaped circuits can be made by a recursion similar
to that for butterflies.

tiin,1 B = twotri, R ;oneblock, R
one block, R ; twotri, R
where block, = 1wa" %"

I

TRIANGLES

Hal —{r[alr]alalrli]—

R|R |R{R|R|R|R|R

IT1T
bl
o

NN

& ||
|| @
o &l
wW|lw|m|=

]

Figure 15: triz R = one two® 2 ; twoone two i ; two®one R

where this time trig # = id is the identily relation, tri; R = one R, and soon. You
can define a tri of general width and depth by

ag
MR = Z tri; R
i=0
which is again a disjoint sum in case R has a fixed width.
An iterative solution to the recursion for triangle is given by
ti, B = 3§ two' ! one two™ ¢ R¥
=1
and a layout suggested by this equation is shown in figure 15. Because each of the
coustructors in a triangle is straight, it follows that ilvtri R = triilv R so triangle
itself has straight properties. The proof goes like
ol) . . —
ivii R = i) 3 two’ " onetwo' ™" B
1=0 7=1

M [

RPN TR
-

two' ! onetwo' ! ilv R*
J

twe? ¥ one two ¥ (iiv R)*
i=03=1
= triilvR

and similarly thwtn R = trithw R.

(If you are comparing this paper with earlier presentations such as that in
reference {13], beware that this is not quite the same definition of triangle: that
paper defines a triangular constructor which assumes that the component is A :
1—1.)

[R~]
(B

A FAST FLUTTER BY THE FOURIER TRANSFORM

The fast Fourier transform

At the end of reference [12] it is suggested that, at least for certain factorisations,
the algorithm admits of an implementation which is like a butterfly network, The
substance of that claim can now be explained. In the reference it is eventually
shownthat the transform of size 2n can be implemented by two calculations of size
n by the algorithm

Fri2n = riffle;two™(Fn; 2); riffle™ s trigtni, f 5 two(Fps 5 n) 5 riffle

where the kernel operation f : 1 — 1, multiplication by a 2n-th root of unity, is
such that f™ is the identity on singletons.

The component ¢ = Fyn;2 takes two inputs to two outputs and will be assumed
ta be directly implementable. The other part, Fj2 ; n is also a Fourier transform
because (f?)" is also the identity. If n is even the division can be repeated, and in
particular if n is a power of two it can be continued until the only F components
are all g

Let &, = F;.; 2° where for each n the operation f, is such that f,¥" is the
identity,and f, = f3,,. Then at least for n > 1

B, = riffle;wo™ Vg riffle gty faor s twod, riffe
={ riffle” can be cancelled on 2"}
riﬂ?e'(”'l’ stwo™ s rffe™ s trig iy fuog stwod,_; ; rifle
={two R\ riffle = ilv R and twoilv R = ilvtwo R and then by induction }
iV* Y ; triy trig—y fuoy jtwad,, ; riffle
={ unwinding the recursion, then hy induction }

n n

-1 : . : . . .

§ e T IV iy tri s fuss) 5 twe™ T § two™ T riffle
i=1 i=2

The termin the middle can be written, rather perversely, as

two" 1o = twa I (iNC g ; trip trip fo) 5 two™ P riffle

by adding in some extra terms that happen to he identities, so

¢r\ = Bn;Sn
where
B, = § two iV @ triy tring fai) {7
=1

S, =} w2 riffle)

=1

THE BUTTERFLY 23

As in the decompositions of the butterfly, the B and & terms can be summed
sepatately, since B;;S; is empty unless ¢ = j. Let B = 72, B; and § = T2, S,
then & = 3=, ®; = B; 5. It is normal to implement the required part of 8 in a
machine, and to leave the corresponding part of § to the way that the machine is
connected to Lhe outside world.

The butterfly

The part of the decomposition of @, that looks Like a butterfly circuit is B,
which is like a butterfly - specifically, like M,.; ¢ - in which to each column.
two'~1ilv" ¥ ;o has been added a term two'~! tri; tria_; fa_;. This is made with only
straight constructors and powers of the kernel operation: in implementations it
would be turned into a single columnn of multipliers.

For example, following the development of the shuffle network for a butterfly
given in the companion paper [14], there is a shuffle network for the Fourier
transform. Each column of B, in equation 7 has the form

two 2 (ilv™ T 5 5 Ly Uiy faei)

Vvt twe T e, foi
= { unriffling the iv®~* p}

riffle =" twon? @ ; riffle™ " ; two "one trin.; fa_;
= { riffling the two'~! one R }

riffe "0 s two" o riffle” il T thwtriy g faog ; riffle™
= { riffle™ can be cancelled on 2"-lists, promoting straight operators }

riffle= two™ ™ iy, i thw £ ; riffle™

= two

but the term in the triangle
ilvi= thw f,.; ={unoriffling}
(two'™ one f,_;) \ riffe’
={ riffle can be cancelled on 2*-lists }

i—1

two' "l one f,_;

Re-assembling these columns in equation 7 and cancelling,
B. = 3 two (i o ;g i fues)
i=1

n i
3 (rifle" "7 o™ o s i, two' L one fr g riffle™)

1=1

riffle™;

I

(+iffle ; two™ 1 @ ; thia_: two' L one ;)
1

'aen

1

24 A FAST FLUTTER BY THE FOURIER TRANSFORM

Now the term in the triangle is entirely straight, in fact it is

tri,_; two'~ ' one f,,_,

R—t

= two''one two™ 0 (two' L one f,_;)"
=1
n—i -

= 3 two” onetwo™ 1t one f,
i=1

50 n
Bn = ; ("'Iﬂe ;C!)
=1

@; § two'lonetwo"?)"! one f;
=1

where C; = two™™!

The column C; is a group of 2*~! independent circuits, each of which is ¢ ; one f¥_,
for some k. It would be nice to conclude by showing this, but we have not yet
found an elegant and convincing way of doing this within the notation.

The shuffle

Returning to the remaming part of the algorithm, an induction from two R;riffle =
riffle ;ilv R will show that

n n-1
S o= 23 wo' ' rifle = 2", 5 ilv' riffle
1=1 1=0
This is just a permutation on lists of length 2", It is that very thorough shuffle
that appears mysteriously in many presentations of this algorithm: z S,y if and
only if 2 and y are both of length 2" and z; = y; where the (n-bit long) binary
representations of i and of j are each the reverse of the other.

It is its own inverse, and is closely related to the butterfly since if B : 2% — 2%
then {ilv R) \ Siy; = two{R \ &) and (twoR) \ 8141 = iIW(R\ Si), and so also
(B (RN 8\ Snur = (Ma(R™1))~". Proofs of these, and the discovery of many
other pleasant properties are left for the reader’s idle moments.

Sorts of butterflies

Mary Sheeran

This paper shows how Ruby is used to describe and analyse permutation and
comparator networks. It describes two merging networks, the bitonic merger and
the balanced merger, and shows how they are related. Both of these networks
can be used to build recursive sorters. The balanced merger is also the building
block of a periodic sorting network that is suitable for implementation en silicon.
The correctness of thjs sorter is demonstrated. As always the key to success in
understanding a circuit or algorithm is in finding suitable structuring functions
and studying their mathematical properties.

Permutation networks
As well as the wiring permutation rifffe, we will need some other permutations.
The basic building blocks are [id, ¢} and swp where (a,b} swp {b,a). The per-
mntation two" swp swaps adjacent pairs in a list of length 2"*'. For example,
{0,1,2,3,4,5,6,7) is related by two® swp to (1,0,3,2,5,4,7,6). The permutation
ilv™ swp switches the two halves of a list so that
iv*swp = 2°%1; halve ; swp | halve™ (8
For example, {0,1,2,3,4,5,6,7) is related by ilv® swp to {4,5,6,7,0,1,2,3). The
relation ilv™ swp commules with two R for any homogeneous R.
iv* swp ;two i = { equation 8 and definition two }
21 halve ; swp ; Aalve™ ; halve ; [R, R] ; halve™?
= { halve ; swp ; halve ™ ; halve = halve ; swp }
2"+ halve | swp ; [R, R ; hafve™!
= {swp ; (R, R] = [R, R ; swp~! and R homogeneous }
hatve ; (R, R); swp™ ; halve™? ; 2" H

25

26 SORTS OF BUTTERFLIES

= { reversing the above calculation }
(iw" swp ; two ™'
={ taking inverses, swp~! = swp }
two R ; iv" sup (9

For any R:2— 2, the relations two™ R and ilv® R are related by
two" R = (ilv* R) \ riffle

since 2+ ; riffle™ = 2™ ; nffle™. So we can take the rifffe conjugate of each side
of equation 9 to get

two" swp ;ilv R = ilv B two™ swp
The relation prm, for ‘permute’; defined by
prm = [id, id] + swp

relates 2 2-list to each of its two permutations (and vice versa). Since prm =
prm~1 = prm?, it is the type of unordered 2-lists.

Switching networks can be built from prm. For example, two prm relates a list of
length four to each of the four permutations that are obtained by choosing whether
or not to swap adjacent pairs. These four possibilities are shown in figure 16.
Similarly, two™ prm relates a list of length 2"+ to each of 22" permutations since
each prm can be either [id,id] or swp. Note that while two®(id, id] and two" swp
both commute with ilv R for homogeneous R, two prm does not.

The network ™, prm is an inleresting one that has been much studied. For
example, it is presented and analysed in reference [3] where it is called the omega
network, 1t has (r 4 1)2"° prm elements each of which has twe possible settings.

Comparator networks

A two-input comparator is a permuting element whose range is constrained to be
sorted. Let inc, be the identily on sorted iists of length 2 and up = ine, be the
identity on sorted two-lists. Then tne = 3, ine; is the identity on sorted lists.
Define

Cmp = prm ; 4P

i
&

X
—XZ

Figure 16: The four permutations realised by two prm

BATCHER’S BITONIC MERGER 27

Then because prm and up are both types,
pPrm; cmp = cmp = cmp ; up

so the type of cmp is prm — up which says that it relates an unordered 2-list to an
ordered one. Because up is strictly smaller than the identity, cmp < prm.

The number of pairs in a sequence that are in order (z; € z, for i <j) s a
measure of the sortedness of the sequence. The relation two™ emp increases the
sortedness of a sequence by swapping the value at index 2 with the value at index
2¢ + 1 if necessary. For example, the sequence (7,6,5,4,3,2,1,0} is related by
two? cmp to (6,7,4,5,2,3,0,1). If the sequence in the domain of two™ emp consists”
of two interleaved sorted sequences, then the related sequence in the range also
consists of two interleaved sorted sequences. We write this as

ilvine;two™ emp = ilv inc;two" cmp ;ilv inc (10)

The telation ilv inc is the identity on sequences whose even-numbered elements and
odd-numbered elements both form sorted sequences. Here we are using testricted
identities as predicates. We will say thal a sequence sqtisfies an identity if it is in
the domain of the identity. The equation Pre; B = Pre; R; Post says that if an
element in the domain of R satisfies Pre then the related element in the range of
R satisfies Post,

It can be proved that if £k < n

i1 inc ; two™ cmp = iW**? inc; two™ cmp ;ilvEt! ine {11)

from equation 10 and the properties of permutations.

Batcher’s bitonic merger

Perhaps the best known comparator network of all 1z Batcher's bitonic merger. It
is a butterfly of comparators and it sorts some but not all sequences. [nparticular,
Batcher notes that B8, = D4, cmp sorts any sequence [of length 2"*?) whose two
halves are sorted into opposite orders (see references [2, 20]). It sorts many other
sequences, but that does not matter. Knowing that it sorts sequences of that
particular form gives us the classic recursive bitenic sorter.

The interesting properties of the bitonic merger derive from the fact that it is
a butterfly. For example,

By = cmp
BN+] -IIV’"+1 Bﬁ ;tWU‘B;.
ilv 8, : two"t! B,

i

28 SORTS OF BUTTERFLIES

These are the two standard recursive decompositions often presented in the litera-
ture. The properties of 4 give us many more, including

Borgrr = i B, twoft1 B,

This isthe equation that underlies the K-way bitonic sort which is presented in [15].
It is not really a new algorithm, but another way of decomposing an old one.

We can build networks with the same behaviour as B, but with a different con-
nection pattern by putting the wiring reiation swp in front of selected comparators.
This transformation preserves behaviour since swp ; emp = ¢emp. Replacing every
¢mp by swp ; emp turns out to be uninteresting but we can replace the two® emp
in the rightmost colurnn by two™ ! one swp ; two® cmp since

1

two" ! one sup ;two" emp = two" {one swp ; twoemp)

= two""! twocmp

= two" cmp
Abbreviate two"~! ane sup to alf, and let alt = 72, alt..
B. = ilvBqy;alt,;two” cmp

We want to move the alt leftwards so that it appears as a wiring relation on the
domain. Define a pew structuring function vee by

vee R = (ilvR)\alt

We can compose alt on the left of both sides of this equation to give alt ; vee R =
ilv B alt. Now

B, = ally;veeB, _,;two" ¢mp

and by induction {using properties of vee that are discussed in the next section)

A=1 n
B, = (3 vee' alt,_;); : vee" ' two' cmp

i=0 i=0
We have shown that the bitonic merger can be rewritten as the composition of a
wiring permutation ;::01 veel glt,_, with something that looks very like a butterfly
except that it is made with vee instead of with ilv. The butterfly-like thing is
the balanced merger proposed in reference {11] as the building block of a periodic
sorter,

NETWORKS BUILT USING vee 29

Networks built using vee

The next step is to stndy the properties of vee. Assume that R and § are length-
homogeneous. Because ilv distributes over camposition, so does vee (see figure 17).

vee(R; S)=vee R vee S
Becanse aft,,, = twoall, and ilv commutes with two
twovee R = veetwo R
It is altogether more surprising to find that {for B : 2" — 27)
veeilv i =ilvilv R

Instances of these two equalities are shown in figures 18 and 19, for £:2~ 2.
If a sequence in the domain of two? cmp satisfies vee inc then the related se-
quence in the range of two® cmp satisfies ilv inc since

vee ine ; two” emp = { definition vee }
alt ;ilvinc; all ; twoP cmp
={ all ; two? emp = twoP cmp }
alt ;ilv inc ; twof cmp
= { equation 10}
alt ;ilv inc ; two? cmp | ilv inc
= [reversing the steps in the above calculation }

vee inc ; twoP cmp ; ilv fnc (12)

Each comparator ‘operates’ on one value from each of the sorted sequences in
the domain. An example of a sequence that satisfies veeinc (but not ilv inc) is
{0,4,5,1,2,6,7,3); one that satisfies ilv inc {(but not veeinc) is (0,4,1,5,2,6,3,7).
These two sequences are related by two? cmp.

We have now proved

veeilv* inc;two? emp = veeilv® ine ; twoP emp ;ilvi*! inc (13)

C ARSI > AR SO SO0
R[S [#] |5

Figure 17: vee{R; 5) and vee R;vee S

30 SORTS OF BUTTERFLIES

Figure 19: veeilv R and ilvilv R

becauseif £ = 0 it reduces to equation 12, and if k¥ > 0, since veeilv R =ilvilv R, it
reduces to equation 11.

Let rev be the relation between each sequence and the corresponding sequeuce
with the same elements in the reverse order. The relation vee™ swp reverses a
sequence of length 2n+1

vee" swp = 2"t rev

because it swaps the first and last elements, second and second last, and so or.
Simmilarly, vee” crmyp compares the first and last elements of a sequence, the second
and second last, and so on. For example, the sequence (0,4,1,5,2,6, 3,7} is related
by vee? emp to (0,3,1,2,5,6,4,7). For R :2— 2, the relations vee™ R and iv" R
are related by

vee" B = (iv" R)\ onerew (14)

If you want to think about binary representations of indices, then ilv B divides
etements of its domain and range (between iustances of R} according to the least
significant bit of the index, while two R divides according to the most significant bit.
Amazingly enough, vee divides according to the parity of the two least significant
bits! It is best to stop thinking about bits as soon as possible.

The butterfly-like structure that arose in the discussion of the bitonic merger is
defined by

vee" ' two' R
o

W. R =

Tsea

i

THE BALANCED MERGER]!

We read this as ‘veefly R’. Because vee is so much like ilv the structure has a great
many recursive decompaositions like those of the butterfly, including

Woret B = Wovee™' R W, twoPt! R
= vee? W R twoPt' W, R

and choosing p or g to be zero,

Wor B = vee" 'R W, twoR
= vee""' R twoW, R
= W,veeR;twa"*' R
= veeW, R;two"t' R

each of which suggests a layout for the netwark. The four decompaositions of W3 R
for & compouent R : 2— 2 are shown in figures 20 to 23,

The wiring permutation ;:'='0’ vee* alf,_; that arose in the discussion of the
bitonic merger is itself the inverse of a veefly.

n-1) n-1 . .
s vee'alt,; = | vee'two" '~ onesup
=0 i=0
n—-1 . :
= (§ vee" " two' one swp) !
i=0

= (W, oneswp)™?

It is also a butterfly. It can be shown by induction that

n=1 . A=l .
g vee'alt, ; = 3§ v alti
=0 i=0
L =i .
= ; ilv"~ """ twao® one swp
=0
= Wn_, one swp

We can conclude that

Bn = (Ws_;oneswp)™ ' ; W, cmp
= M,_yone swp ; W, cmp

The balanced merger

In refererrce—[11] the onginal designers of the balanced merger present it as a
modification to the bitonic metger.

SORTS OF BUTTERFLIES

Figure 23: W; R = veeW, R ; two® R = vee(vee W R ; two) ; two® R

THE BALANCED MERGER 33

We apply the permutation (nf2-1,n/2-2,...,1,0,7/2,nf2+1,...,
n — 2, n — 1), to the first phase of the bitonic merging network to obtain the
new first phase comparing elements z(0) with z(n — 1), z(1) with z(n —2),

. z(n/2 — 1) and z(n/2), where z i¢ the input vector, that is, comparing
the first element with the last one, the second with the second to last, etc.
Applyirg this permutation te the following phases of the bitonic merging
network does not change those phases. Instead, we follow the bitonic merging
network in assnming the partition of the elements into two halves of the
smaller and the larger elements and applying in the second phase the same
structure of the first phase for both halves. We continue recursively for the
consecutive phases,

The anthors write sequences of numbers z = (Zo,...,%i,...,%n-1)} to name the
permutation that takes i to z,. They also number the sequences in their diagrams
from top to bottom, so the permutation that they write as (n/2 - 1,n/2-2,._ |
1,0,n/2,n/2+1,...,n — 2,n — 1) is written n ;one rev in our notation. It reverses
the top half of a sequence of length =,

To construct the balanced merger from the bitonic merger, we transform the
first rank of comparators from iW?*! cmp to veeP*! cmp using the properties of the
permutation one rer and the fact that rev is a left-identity of the bitenic merger.

onerev ; By = { definition B}
one rev ; iv**! emp ; twa B,
= {equation 14}
vee®t! cinp ;one rev ; two BB,
={rev; 8, =8,1}

p+l .
vee? ! cmp ; two B,

The relation vee?*! cmp compares the first and last elements of a sequence, the
second and second last elements, and so on, as required.

We also want to replace each of the recursive calls of B, by onerev; By in the
same way, and so on recursively. It car be shown by induction that

P rt . .
{3 twolanerev); Bopn = 3§ vee? 1" two' cmp
i=a i=0

W1 emp

So the balanced merger, Mpyy, is just the netwark W,;1 cmp that we have already
scen, and i is related to the bitouic merger by

P
Mpyr = (§ two'one rev}; By,
i=0

3 SORTS OF BUTTERFLIES

The wiring permutation 33_ two one rev, when it operates on sequences of length

2+7% 35 it does here, is W, one swp, which we saw above.

P) .
5 two'one rew; 27*? = {rev; 27*) = vee' sup }
=0 4 . .
3 two'onevee”' sup
i=o
= {onevee R = veeone i }
P
:
)
=0

= { definition W}
W, one swp

two' vee ™ one sup

This is the permutation 7 that appears mysteriously in reference [3] when the
balanced merger 15 discussed. The natural language description of the balanced
merger quoted above is typical of the way in which networks are described in
the literature. Our formal description is much meore precise, and it captures the
designers’ intuition in a satisfying way.

Knowing that the balanced metger is a veefly of comparators gives us numerous
recursive decompositions of that network. In particular,

Mo = emp
Mupr = vee™ My two M,
= vee M, ; two"t! A,
The designers of the periodic balanced sorter show [11] that
ilvinc; M, = ilvinec; M, ; inc (18)
That is, the balanced merger sorts a sequence consisting of two interleaved sarted
sequences. Applying the function ilv® to each side of equation 15 gives

iVt ine ivE M, = IVRTY fnc s ivE My, ilvE dne (16)

To build a sorter for sequences of length 2™t', we need to relate an unsorted se-
quence (which satisfies iv"*! ine) to its sorted permutation (which satisfies ilv® inc).
We can do this by progressing through permutations that obey W™ inc, ilv"~! inc

and so on. The uetwork

i M; (17)

]

S, =

Nsea

sorts in thisway. The proof that it is a sorter is by induction on n, using equation 16.
For a given size of input, S, has the same number of comparators as the bitonic
sorter.

THE PERIODIC BALANCED SORTING NETWORK 35

The periodic balanced sorting network

What makes the balanced merger interesting is that the composition of n+1 copies
of Mg, that is AP+ s also a sorter. For a VLSI implementation, the resulting
periodic circuit is attractive because only one copy of A, need actually be laid
out and its outputs can be fed back to its inputs. Thus space, a scarce resource, is
traded off agains! time.

To prove the periodic sorter correct, we need to show that (for 0 < k < n)

Vit ine s M, = iW"line; M, ;ilvE ine (18)

because then an induction, and the fact that iv**!

of length 2"+, gives

ine is the identity oo sequences

MY = M ne

which is the desired result.
The proof of equation 18 is by induction. The base case is equation 15, which
is proved in reference [11}; we will not prove it here. For the step:

ivE+? inc; Mo
= {ilv’ R = veeilv R and definition M }

veeily*+! P+ emp

inc ; vee M, ; two
= { homogeneity }
vee(ilvi*! ine ; M,) ; twa™! emp
= { inductive hypothesis }
vee(ilv¥t! ine ; M, ;i inc) | two™t! emp
= { homogeneity and equation 13}
b

vee(ilvit! inc: M.} ; veeilvk ine ; two™*! emp ; ilv c

= { reversing the steps in the above calculation }
iV ine s Moy Ve dne

This demonstrates the correctness of the periodic sorter,

To cornpare the sizes of §, and the periodic sorter, note that we have replaced
each iv"~* M, in equation 17 by the larger M,,. In &, the ith columa of mergers
has 2*(1 4+ 1)2' = (i + 1)?" comparators while in the periodic sorter, each column
of mergers has (n + 1)2* comparators. This means that the complete periodic
sorter has roughly twice as many comparators. For such a small constant factor,
one might consider laying out the complete periodic network on silicon, instead of
the smaller but less regular S,.

36 SORTS OF BUTTERFLIES

Conclusion

The work on permutation and comparator networks is only just starting. The
approach looks promising, especially when compared with standard methods, which
tend to make obscure appeals to the binary representations of indices. Qur proof
of the periodic sorter is appealingly simple, largely because we were able to use
exactly the right recursive decomposition of the balanced merger. Qur first attempt
at the proof had the same structure as the origiaal proof in reference {11]. It
used an inappropriate recursive decomposition of the merger, and so was long and
complicated. The fact that we can express alternative recursive decompositions
easily is an important advantage of our use of structuring functions. It is to be
hoped that it will also be usefu]l in the mapping of algorithms onto structured
netwaorks,

There is clearly a whole family of structuring functions like vee waiting to be
investigated; in particular, there is the structuring function that matches vee in the
same way that two matches ilv. This will lead to a family of butterfly-like networks
for different forms of divide-and-conquer algorithms.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and andlysis of
computer algorithms, Addison-Wesley, 1974,

[2] K. E. Batcher, Sorting networks and their applications, in Proc. AFIPS Spring
Joint Comput. Conf., Vol. 32, April 1968.

[3] G. Bilardi, Merging and sorting networks with the topology of the omega
network, IEEE Transactions on Computers, Vol. 38, No. 10, October 1989.

[4] R. S. Bird, ZLectures on constructive functional programming, in [5].
(Programming Research Group technical monograph PRG-69)

[5] M. Bray (ed.), Constructive methods in computing science, NATO advanced
study institutes, Series F: Computer and systems sciences, Springer-Verlag,
1989.

[6] K. M. Chandy and J. Misra, Parallel program design — e foundation,
Addison-Wesley, 1988,

[T} J. W. Cooley and J. W. Tukey, An algorithm for the machine computation of
compler Fourier series, Mathematics of Computation, 19, pp. 297-301, 1965.

[8] G. David, R. T. Boute and B. D. Shriver (eds.), Declarative systems,
North-Holland, 1990.

(91 K. Davis and J. Hughes (eds.}, Functional programming, Glasgow 1989,
Springer Workshops in Computing, 1990.

[10] P. Denyer and D. Remshaw,- VLSI signal processing; a bit-serial approach,
Addison-Wesley, 1985.

37

38 REFERENCES

|11} M. Dowd, Y. Perl, L. Rudolph and M. Saks, The periodic balanced sorting
aetwork, Journal of the ACM, Vol. 36, No. 4, October 1989.

12] G. Jones, Deriving the fast Fourier algorithm by calculation, in [9].
g g 4
(Programming Research Group technical report PRG-TR-4-89)

[13] G. Jones and M. Sheeran, Circuit design in Ruby, in [19).
[14] G.Jones and M. Sheeran, The study of buiterflies, in this volume.

[15] T. Nakatani, 5.-T. Huang, B. W. Arden and S. T. Tripathi, K-Way Bitonic
Sort, IEEE Transactions on Computers, Vol. 38, No. 2, February 1989.

[(16] M. Sheeran, Describing hardware algorithms in Ruby, in [8]. (Revised form
appears as [17])

{17] M.Sheeran, Describing butterfly networks in Ruby, in [9)].
118] S. G. Smith, Fourier fransform machines, pp. 147-159 in [10].

[19] Jergen Staunstrup {ed.), Formal methods for VLSI design, North-Holland,
1990.

[20] H.S. Stone, Parailel processing with the perfect shuffle, IEEE Transactions
on Computers, Vol. C-20, No, 2, Fehruary 1971.

[21] 1. D. Ullman, Computational aspects of VLSI, Computer Science Press, 1954.

It may be said, therefore, that on these expanded membranes Nature writes, as on a
tablet, the story of the modifications of species, 50 truly do all changes of the organisation
register themselves thereon. Moreover the same colour pasterns of the wings generally
show, with great regularity, the degrees of blood-relationship of the species. As the laws of
nature must be the same for all beiugs, the conclusions furnished by this group of insects
must be applicable to the whole organic world; therefore, ...the study of butterflies -
creatures selected as the types of airiness and frivolity — iustead of being despised, will
some day be valued a one of the most important branches of Biological science.

W. H. Bates (1864) The Naturalist on the River Amuzons

