THE LOGIC OF B

by

P .B*H\B‘-. Gard]‘.ﬂel:
T.N. Vickers

Technical Monograph PRG-92
ISBN 0-902928-70-8

January 1991

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX1 3QD

England

Copyright © 1991 P.H.B. Gardiner, T.N. Vickers

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX1 3QD

England

Electronic mail: Paul.Gardiner@prg.oxford.ac.uk (JANET)

Contents

Introduction

A Logic for a Theorem Proving Assistant

Variable Lifting

References

28

62

2 INTRODUCTION

Introduction

The two papers collected in this monograph describe the logic that forms
the theoretical foundatioa of the proof assistant known as the B-tool. The
B-tool was designed as a computerized support for the formal development
of irnperative programs from Z-like specifications. Its prime functions are
to provide a simply-accessed database for recording program developments,
and to provide a secure environment for interactively constructing the proofs
necessary for those developments.

The style of proof encouraged by the tool is that of building up theories of
related facts which are relevant to particular applications. Complete freedom
is allowed in the order in which facts are proved. New axioms can be added
at any time; one can attempt to prove an axiom of questionable correctness
from more obviously-correct axioms at a later date. Although new axioms
and ruoles of inference can be added freely, their use in proofs is strongly
controlled, protecting the user from the common errors such as capturing free
variahles. The tool provides little automation, but concentrates on making
interactive proof construction a smooth-running and error-free process.

Proofs are conducted in a goal-oriented way, the tool suggesting rules that
match the goal, and the user controlling the proof by accepting or refusing
the suggested rules. There is also a simple tactic language which allows
some automation of proof construction. With the tactic language the user
controls the order in which the theories (i.e., sets of related rules and axioms)
are searched. Often a tactic can be chosen which causes the tool always to
find the correct rule on its first attempt. In that case the user can waive
his right to vet rules, and instead allow the proof to continue antomatically.
Typically a combination of interaction and automation is used.

The B-tool is quite flexible. Most of the syntax and many of the axioms
and inference rules are user-defined, and so tbe tool can be applied to many
problem domains, using various logics. The flexibility is due maiuly to the
expressiveness of the logical language employed by the tool. The language
is actually a meta-language for first order predicate calculus and has a form
similar to the meta-languages used informally in logic text books. In it
one can state general inference rules such as mathematical induction and
existential introduction, thus rules like these can be added as easily as can
single predicate calculus formulae. A few indispensable rules bave been

INTRODUCTION 3

built-in and these support a mixture of the natural deduction and equational
styles of reasoning.

The use made within the B-tool of its logical language is not restricted to
proof. The same language often doubles as a programming language, and
as such performs many of the administrative functions, such as reading-in
files and pretty-printing. We make no attempt to explain these serondary
features of the language; we concentrate on the logical aspects alone. [n fact,
we doubt the existence of a simple explanation of all aspects of the language,
and would recommend a strict separation of the activities of proving and
programming within the B-tool.

A Logie for a Theorem Proving Assistant is intended for users of the B-tool
and designers of proof assistants that function along the same lines. No deep
issues concerning logic are discussed and to those wishing to take the ideas
presented here further, we recommend the work of Milsted [8].

Variable Lifting presents the technique by which the B-toal delegates the
checking for variable capture to the logic. Because of its slightly vnusual
nature, we felt obliged to give a full account of its justification.

A Logic for a Theorem Proving Assistant

Paul Gardiner* Trevor Vickers!

Abatract

A detailed description of a simple logic for a theorem proving assis-
tant is presented. The approach taken is closely related to that used for
Abrial’s B-tool, and so an understanding of the behaviour of the B-tool
may be gained. The description of the logic is supported by motivation
of the logic’s design, and by an example of its use. Some issues for a
practical implementation are discussed, including a technique called
variable-lifting, which separates the concerns of pattern-matching and
variable-capture. Simplicity is the foremost goal. No deep facts con-
cerning logic are assumed or presented.

1 Introduction

The use of a variety of logics in computer science has lead to an increasing
interest in tools that allow some freedom in the choice of logic. Qur goal
has been to design a tool that not only allows this choice but also allows
one to capture proofs much as one would on paper and to express and
prove new rules of inference. Such flexibility can be achieved using a logical
framework in which various (object-} logics can be captured. Here we present
a logical framework (or meta-logic), known as BL, which provides much of
the freedom of naive mathematics, without loss of formality.

Many of the ideas presented here come from work on the B-tool [1, 11).
The developers of the B-tool fclt that, for a prototype tool, the choice of

*Programming Research Group, Oxford University, 11 Keble Rd, Oxford OX1 3QG,
U.K.

tDepartment of Computer Science, Ausiralian National University, Canberra,
Aunstralia.

Overview of BL 5

a particular logic would prematurely fix the modes of reasoning they could
consider. Sa initially the B-tocl was developed by intuition: sometimes
adding to its logical language and inference mechanism for the sake of prac-
ticality, sometimes restricting its behaviour because unsoundness had been
discovered.

In time, the tool became a useful support for the kind of proof methods
required, but with no logical basis it could not he trusted. Effort then
turned towards the search for a logic to act as a foundation for the tool.
The resulting logic is not compromised by its development in this way. As
the understanding of the logic increased, and discrepancies between the logic
and the taol’s behaviour were found, it was the program which was medified
and not the logic. The logic therefore is quite general and not restricted by
its use as the basis of B.

The following sections motivate the logic’s design, supporting the formal
definition of BL. The definition is followed by an example of BL’s use in
reasoning about logical systems. We also discuss how a tool might be based
on this Jogic, introducing techniques that simplify the avoidance of variable-
capture.

2 Overview of BL,

Working with logics necessarily involves the creation of notations for string
manipulation (i.e., 2 meta-language). Books on logic make much use of
these. For example, many predicate calculus systems have axiom schemata
that cannot be captured by a finite set of formulae. Another example is the
proving of schematic theorems. In both cases a meta-language is required.

In designing BL, we have taken advantage of the similarity one finds in the
meta-languages of a wide range of logics. Rather than work with a particular
logic, we have abstracted the parts common to most meta-languages and
formalised them. The result is a reasonably-general logical framework, in
which one reasons much as one would on paper.

The advantage of this freedom is most apparent in tools based on BL. When
one wishes to reason about a quantifier, say, not known to the tool, one can
usually write introduction and elimination rules directly in BL — far better

6 A LOGIC FOR A THEOREM PROVING ASSISTANT

than having to reprogram the tool. Of course if those rules are invalid,
unsound results may follow, and we deliberately place the onus of validity
of those rules on the user.

The way we intend exploring a mathematical theory is first to choose some
logical system that works well for that theory, and then reason about the
strings of that logical system in BL. Most importantly, we would want to
prove that certain strings are theorems of that system. The logical sys-
terns which we reason about in BL will be known as object-logics or ob ject-
languages.

Since reasoning about strings presents no special problems, the Predicate
Calculus seems a natural candidate for a meta-language — with its terms
denoting strings of the object-logic, and its formulae expressing properties
such as ‘is a theorem’ and ‘does not occur free in’. In fact BL is much like
the Predicate Calculus: it differs only in being simpler.

Simplifications are possible because we wish to assert and prove only a very
restricted set of properties of object-level strings — properties that corre-
spond to object-level inference rules and axiom schemata. These are always
of a certain form, just stating that a basic property (such as theoremhood)
of one string follows from basic properties of others. For recording such
properties, logical connectives like negation and implication are overly ex-
pressive. So the first simplification of predicate calculus is to replace the
logical connectives by a single construct — the sequent. Rules of inference
with side conditions need no special treatment: since side conditions are
also properties of strings, they appear simply as extra antecedents. Our
notation for sequents copies one often used for displaying rules of inference.
The antecedents are written above the consequent with a horizontal line
between.

Just as logical connectives are unnecessary for expressing inference rules,
so are quantifiers. Thus their removal is the second simplification to the
Predicate Calculus. We retain, however, the distinction between terms and
formulae. Note that these simplifications are not imposed on the object-
languages that BL reasons about. The object-languages may have logical
connectives and quantifiers.

By simplifying the meta-language we also simplify the task of building 2 tool.
Sequents are ideal for a goal-oriented proof style (without committing us to

Overview of BL’s use 7

that style), and the lack of quantifiers removes the possibility of variable
capture (i.e. capture of meta variables}, so that simple pattern matching
can be employed during proof construction.

3 Overview of BL’s use

The meta-languages found in logic texts are quite schematic in nature. Ax-
iom schemata are presented by writing one instance with the parts that
can vary indicated by letters of some reserved font {calligraphic say). For
example, Hilbert-style formalisations of Predicate Calewlus often have the
schema

A= (B=4)

This schematic styleis easily formalised in BL by associating a meta-langnage
fanction eymbol with each conpective of the object-langnage. In the case of
implication, the function symbol is 2-placed and its meaning is the function
that takes two strings and returns the result of concatenating them with an
implication symbol between. That is

le= 4] = [¢]=1¥]
where [] is the semantic function from meta-language to object-language.

Note that the = occurring on the right is the logical connective of Predi-
cate Calculus, whereas the one occurring on the left is the associated meta-
langnage function symbol.

The formal counterpart of the calligraphic letters are the variables of BL.
By convention, we use capital italic letters for variables. Sa the instances of
the axiom schema are exactly the denotations of the BL term

A= (B=A)

as the variables range over all object-level formulae.

The fact that each instance is an axiom implies that each is also a theorem.
It is theoremhood that we will record and reason about in BL. Theoremhood
is represented by the one-place predicate symbol | . So the BL formula

F A= (B=A4)

8 A LOGIC FOR A THEOREM PROVING ASSISTANT

formalises the axiom schema above.

There are still some flaws in our formalism, which we now address. BL’s
domain of discourse is the set of all strings of the object-language. Only
some of these are well-formed, and those that are may be members of one of
several syntactic classes. In the literature, axiom schemata are accompanied
by text that says what sort of string the calligraphic letters stand for. In
our example schema the calligraphic letters stand for formulae. We must
make the same restriction in our formalism. To achieve this, we introduce in
BL apredicate symbol for each syntactic class of the object-language. So, if
the object-language is the Predicate Calculus then we introduce one-placed
predicate symbols var, trm and frm. The meta-formula

frm ¢

is true if and only if the meta-term ¢ denotes a well-formed object-level
formaa. In a similar way, var means object-level variable and trm means
object-level term.

Now we can correctly formalise the example axiom schema with the following
BL sequent.
fim A frm B
F A= (B=>A)

So far we have a language sufficient to express, for example, most of the
Hilbert-style axiom schemata, but there are still a few we cannot. One such
is
(Vz e A(2)) = A(T)

Here A(z) stands for a formula in which a variable, z, has been singled out,
and A(r) stands for the result of replacing each occurrence of that variable
by the term 7. We could make this formal by considering A to be a function
from strings to strings, but this would complicate BL unnecessarily. Instead,
we formalise substitution in BL with a 3-place function symbol, which we
will call formal substitution, written [¢ := ¢]@. Its meaning is defined only
when ¢ denotes a variable, 1) denotes a {erm and & denotes a term or formula.
In that case [[¢ :=)8 is the result of replacing all free occurrences of [¢]
by [¥] in [f]. In all other cases its meaning is arbitrary. Using formal
substitution, the above axiom schema can be written as follows.

var X ttm T frm P
F{(VXeP)=[X:=TP

Overview of BL’s use 9

There is a danger with substitution that variables may become captured.
In the literature, capture is often avoided by enforcing side conditions like
‘r is free for z in .A’. We could represent such side conditions by predicate
symbols of BL, but there is a simpler path: substitutions can be performed
in a way that avoids capture.

If one accepts the validity of changing the names of bound variables, then
one can change all the bound variables of A, making them different from the
free variables of r. After this, the substitution can be performed withoutrisk
of capture. We choose this combinatien of alpha-conversion and substitution
(known as safe substitution) for the meaning of [_:= -] —.

Not all side conditions can be avoided. One that appears often and that we
do have to formalise is ‘does not occur free in’. This is represented in BL
by the predicate symbol ¢ \ #. Its meaning is defined only when ¢ denotes
a variable and + denotes a term or formula. In that case, ¢ \ ¢ is tme iff
[¢] does not occur free in 3]

With what we have presented so far, we can provide a meta-language for
many logics. Common practice, however, is to alternate between reasoning
schematically within the meta-language and reasoning directly in the object-
language. BL can be used for the former, but how do we achieve the latter?
The answet is quite simple. If we extend BL, so that it can refer to particular
object-level strings, then we can mirror individual object-level proofs. Little
needs to be added to BL. We already have meta-level function symbols
associated with each object-level connective. All we need do is associate a
meta-constant with each of the object-level constants and variables. That
i8, for each object-variable (z say} we have a meta-constant (also written)
such that

5] = :
Similarly, object-constants are denoted by meta-constants.

Thus, for example, theoremhood of the object-formula
m+n=nitm

is expressed by the BL sequent

Fm4n=n+m

‘10 A LOGIC FOR A THEOREM PROVING ASSISTANT

Having introduced all the main concepts, we are ready to define BL. We
show how BL is applied as a meta-language in section 5, where we use it to
describe Hilbert-style Predicate Calculus.

4 Definition of BL

In this section we define the syntax and inference mechanism of BL, forget-
ting for now that BL will be used to reason about other logics.

We said earlier that 5L is like a simple form of Predicate Calculus, with the
logical operators replaced by sequents. So, strictly speaking, BL is a sequent
calculus. Sequents are constructed in the following way.

FORMULA. ---FORMULA;

SEQUENT == FORMULA

FORMULA ::= P,(TERM,,..., TERM,)

TERM s:= Fu(TERM,,. .., TERM,)
| VARIABLE

| C

where P, stands for any n-ary predicate symbol, Fr, for any m-ary function
symbol and C for any constant symbol.

For variables we will use upper-case italic letters, sometimes subscripted by
a number. The predicate, function and constant symbols will vary according
to application.

As in the predicate calculus, theorems are derived from axioms using rules
of inference — although in BL the axioms and theorems are sequents, not
formulae. The BL rules of inference are as follows. They are not unusual
(see Scott [9)).

ASSUME _i_

rA
¢
cUT if %and %tﬁen _%

THIN i %_ then

Definition of BL 11

I
&

where ¢ and 1 are formulae, I' and A are sets of formulae, and I¥ and ¢ are
respectively I' and ¢ after application of a substitution of terms for variables.
Standard techniques can be used to show the soundness and completeness
of BL. These results are not presented here.

INSTANTIATE if _;_ then

The following example illustrates the use of these rules.

Example .
Let > be a predicate symbol. Then from

XY Y 2o
= - - 1
X Z g

we can derive
ApxB Bp C Cr D

A D

Proof
Apply INSTANTIATE to 51 to get

Ap B Bp C
- - - ¥ 2
Ap C §

and
Ap C Cp D
sy ¥ 53
Ap D

then apply THIN to 52 and 53 to get respectively

Ao B BpC Co D 54
Ap C

and
Ap B Bp C Cp D A C 55

Ap D
and finally apply CUT to 54 and S5.

As you will have noticed, the inference rules are cambersome. Sc when pre-
senting proofs we will use a different method of inference, which is justified
by the inference rules. This method works at the level of formulae rather

12 A LOGIC FOR A THEOREM PROVING ASSISTANT

than sequents. The methed consists in the construction of a set of formulae,
starting with the antecedents of the sequent to be proved, and then adding
new formulae until the consequent is present. A new formula can be added
to the set only if it is the consequent of a sequent {either an axiom or the re-
sult of INSTANTIATE applied to an axiom) whose antecedents are already

present.

Using this method of inference the example can be presented more succinctly,
as follows.

Proof
(1) A B assumption
(2) BpC assumption
3) CeD assumption
4y ApC 1,2 and 51
(5) ApD 3,4and 51
Equality

The equality relation is sufficiently domain-independent to warrant inclusion
as part of BL. We represent it by the predicate symbal ==, saving = for
equality in the object-languages. It is axiomatised by the following standard
sequents, for each function symbol F and predicate symbol P.

X=X

X == Vi Xp==Y,
F(X1,...,Xa) == F{Y1,..., Y)

Xl == Yl e Xn == Ya
P(Xi,..., Xn)
P(Y,.... 1,)

One can think of these sequents as being like the logical axioms of Pred-
icate Calculus: to reason about a particular domain of discourse they are
augmented by other domain specific axioms.

Example: Hilbert-style predicate calculus 13

The == axioms justify term rewriting, and that is how we use them. Dwring
a proof in the style of the last example, if we have derived a formula A(¢)
in which the term ¢ occurs, and we are able to derive ¢ == 1 or ¥ == ¢,
then we may also derive A(%).

This concludes the definition of BL.

5 Example: Hilbert-style predicate calculus

In this section we present a formalisation of Hilbert-style Predicate Calculus
as an example of BL’s use. We follow the description of Predicate Calculus
found in Mendelson {7] except we formalise, as BL sequents, what is stated
there in English. We will refer to that calculus as PC, and our formalisation
as PC-theory.

First we deal with the rules of inference and logical axioms of PC. To
introduce these we need to mention the following PC symbols.

vatiables a,b,e,...
predicate symbols _ = _
quantifiers Y_e_

logical operatoss =, _=> —

To record facts about these PC symhols, we will need the following BIL
symbols.

constants a,b,e,...

variables A, B,C,...

function symbols _=_,¥Y_e_, ~_, _=_, [-:=_].
predicate symbols var __, trm_—,frm_, __, + _

14 A LOGIC FOR A THEOREM PROVING ASSISTANT

When describing a logic one must present its syntax. The following sequents
can be thought of as being the AL equivalent of a syntax for the part of PC
introduced so far. They express the concept of well-formedness.

WLF

for each x drawn from a,b,¢c,...

varw™
var X trmS trm T var X fom P
trm X fmS=T fimVYXeP
frm P frm P frm

frm- P ffmP=Q

Example: Hilbert-style predicate calculus 15

In section 3 we said that _ \ _ represents non-freeness. To allow reasoning
about non-freeness in BL we introduce the following axioms.

NFR

for each pair =, p of dis-

tinct elements drawn from
T\p ab,ec,...

var X trm S trm T

X\S X\T var X frm P

X\s=rT X\YXePF

var X var ¥ frm P var X frm P
X\ P X\P
X\VYeP X\-P

var X frm P frm Q
X\P X\ Q
X\P=Q

16 A LOGIC FOR A THEOREM PROVING ASSISTANT

The following sequents axiomatise formal substitution.

SUnB
var X ttmE trm T vatr X trm £ frm P
X\T X\ P
[X:=E]T==T [X:=ElP==7P
var X trm E
[X := ElX ==

var X trm E trmS$ trm T
[X:=E|(S=T)==[X:= E\§=[X:= E]T

var X trm E var Y frm P
Y\X Y\ FE
[X:=El(VY e P)==VY o [X:=E|P

var X ttm E ftm P
[X:=FE}~P==-[X:=E|P

var X trm E frm P frm Q
[X :=FE|(P= Q)==[X:=E|P={X:=FQ

Example: Hilbert-style predicate calculus 17

Lastly we have the rules of inference and axioms of PC. PC has two rules
of inference: Modus Ponens and Generalisation. These can be written in
BL as follows.

frm P frm Q
+ P var X frm P
F P=>Q F P
—_ % MP S . — GEN
FQ FYXeP
And PC has five axiom schemata.
fim P frm Q I
FP=>{(Q=P)
frm P frm Q frm R 9

F(P=Q)=(P=>(Q=R)=(P=R))

frm P fim Q 13
FEFP=2Q)=2((-P=2-Q)=>P)

var X trm T frm P

I
F(VXeP)=[X:=T|P
var X frm P frm @
X\ P 15

FVXe P2 Q)= (P2VXe Q)

The following example illustrates how one uses PC-theory.

18 A LOGIC FOR A THEOREM PROVING ASSISTANT

Example
frm P
F PP
Proof
(1) 'rm P assumption
(2) ftmP=P 1and WLF
(3) ftmP=(P=P) 1,2 and WLF
(4) fm(P=P)=> P 1,2 and WLF
(5) imP = ((P= P)= P) 1,4 and WLF
(6) rm(P=((P=P)=P))=>(P=>P) 2,5and WLF
() F P=2(P=P) 1 and I
(8) FP=((P=>P)=>P) 1,2 and L1
9) r(P=>(P=>P)
=>{(P=>((P=P)=P))=>(P=P)) 1,2 and L2
(10} F (P=((P=>P)=P))=(P=>P) 3,6,7,9 and MP
(1) + P=P 2, 5, 8, 10 and MP

6 A proof assistant based on BL

In this section we discuss a very simple way in which BL proofs might be
constructed with machine support. We imagire a proof assistant to which
the user has added the axioms of PC-theory. Proofs are constructed in
reverse, using a goal directed approach. For example, the sequent

FYzez==2

might be proved as follows. A set of goals would be formed, initially con-
taining just the one formula - ¥z ¢ z = z. The data base of axioms would
be searched to find one whose consequent matches the goal. There are two
such,
frim P ifrm @
+ P
FP=2Q

MP
FaQ

A practical implementation 19

and
var X fom P

b P

FYXeP GEN

The user would choose one of these { GEN say). The matching process would
yield tbe instantiation, z for X and z = z for P, thus transforming GEN
ta,

varz frmzr=z

Fz=x ’
FYzezr=1z GEN

and the goal would be replaced by the antecedents of GEN'. H the user
chose MP then much the same would happen, except that only Q’s instan-
tiation would be obtained hy matching. The user would be prompted for
P’s instantiation.

The application of axioms would cqntinue, acting on new goals as for the
first, until no goals remain. The proof is then complete.

In theory, a tool with the facilities we have just described could be used
as it stands; one could type in the axioms of PC-theory, add to these the
axioms of number tbeory, and prove number theoretic results. In reality,
proof construction would be far too slow with such a tool, In the next
section we look at ways of speeding up the process.

T A practical implementation

The inefficiency of our imagined too! has two sources, One source is the
PC —theory axioms for well-formedness, non-freeness and substitution; these
have to be applied repeatedly just to perform a single substitution or derive
a single non-freeness condition. The other source is the object-logic; PC
was designed for the study of proof, not for practical use.

The problem with well-formedness, non-freeness and substitution is easily
dealt with. The axioms for these can be built in to the tool. Then the many
steps necessary to perform a substitution, say, can be presented to the user
as a single step.

There is another advantage in building in this part of PC-theory. These

20 A LOGIC FOR A THEOREM PROVING ASSISTANT

axiors occur in groups coataining one axiom per symbol of the object-
language. So when a new symbol is introduced these axioms must be sup-
plemented. With the axioms built in, the tool can be responsible for supple-
menting thern — the user having merely to specify whether a new symbol is
of the object-language, and if so, what type of symbol (e.g., constant symbol,
function symbol etc.). Building in parts of PC-theory restricts the user’s
choice of object-logic, 8o the decision to do so might not be appropriate for
all applications.

To avoid the awkwardness of PC we can use a different inference system.
The B-tool uses the language of PC, with 4 combination of Natural Deduc-
tion and Term Rewriting. Next, we outline how this is achieved in BL.

7.1 Natural deduction

To support natural deduction we need to have BL reason about theorems
under hypotheses. So we supplement the predicate symbol F _ with an
infinite family of new predicate symbols, one for each length of hypothesis

list. These are written
R
J L]

We give meaning to these new symbols by saying that

$1,...,9 b #

is true iff the following is true.

F ér= (=2 (¢ = ¥))

A practical implementation 21

This relationship can be used to justify replacing the logical axioms of PC
by the following sequents.

fron Hy---frm H, :
ud HYP 1<i<
... 0. F & =ian

frm Gy -+ frm G
frm Hy---frm H,, frm P

H,....,d, v P
G],...,G‘ + Hl
Guyees Gy F Hnm TRANS
Gi,...,Ga F P
var X frm P

frm Hy - --frm H,

A\Hh--X\H,

H,...,.H, - P EN
H],...,H, FVXeP G

var X ttm T frm'P SPEC
VXePF [X:=T|P
frm P frm Q
frm Hy:--frm H,
H,....HF,P + @ frm P frm
* DED —_— % MP
H,... . H.F P=2Q P,P=QFQ

frm P frm @ CONTRA
“P=3Q,-P=2-QF P

These axioms give shorter and more easily-constructed proofs, but they do
have one drawback: there are infinitely many of them. So some of them will
have to be built in to the proof assistant.

22 A LOGIC FOR A THEQOREM PROVING ASSISTANT

SPEC, MP and CONTRA need not be built in. They are single sequents
and therefore can be typed in when needed. HYP, GEN and DED can be
built in directly as they stand. This leaves TRANS.

TRANS is built in indirectly, 1t modifies the way in which certain sequents
are used in proofs. The sequents that are affected are those of the form

By---0,
Glreesbm b o

where f;,...,0, are well-furmedness or non-{reeness conditions. If we con-
sider how proofs are generated, we notice that a sequent of this form can
be used only when its consequent exactly matches a goal — an uncomman
occurrence. However, if we take such a sequent together with TRANS we
can derive

(51}

18,
frm ¢y -- - frm @, frm 1
frmr---frm g
Tlys+or TE F 951

Tlye-+2Th F ¢m (52)

Tise s Tk F_ '.f’
where 11,...,7s are arbitrary meta-terms.

With these sequents, a greater range of goals can be matched. A match is
possible provided the goal has F as its predicate symbol with the rightmost
argument matching 1. The traunsformation from {51) to {52) can be thought
of as aderived rule of inference.

A practical implementation 23

7.2 Term rewriting

BL already supports meta-level term rewriting, but this is of use only in
exchanging meta-terms that denote the same object-level string. What we
wish to do is reason in BL about object-level term rewriting.

We can give a simple axiomatisation in BL as follows, for each object-level
function symbol F, predicate symbol P and logical operator L.

_tmT
FT=T

trm S - trm S,
trm Ty - tem T,

S1=T1,..., 8 =Ty F F(S,---,5)=F(T1,..., Tn)
trm Sp---trm S,
trm Ty ---trm Ty

S1=T1,...,85% =T b P(&,...,5) & P(Ty,..., Ta)

frm 5 ---frm S,
frm Ty -+ frm T,
Sreq,.. SaeTak £(5, .., 5 e (N, .., T)

These axioms are not used directly. Instead, they appear implicitly as alter-
ations to the procedures for pattern matching and goal generation — much
in the way that TRANS does. The details are a little messy, and we omit
them here.

7.3 Variable lifting

The above proof system works well provided the sequents called gpon in a
proof are schematic (i.e., contain meta-variables). Thete are more problems
to solve, however, if we wish to use non-schematic sequents effectively.

Consider the following sequent.

1
Fa<be(3zeatz=10) (1)

24 A LOGIC FOR A THEOREM PROVING ASSISTANT

From tlis, we would expect to derive directly:

(2)

Fpsgt+re(@yepty=q+r)
But in fact, the derivation is anything but direct.

To see why this is so, we must take a closer look at (1), remembering that
it is a meta-language expression. The symbols &, b and z, which look as
though they are PC variables, are actually BL constants and cannot be
altered by application of the BL inference rule INSTANTIATE. Instead,
we rely on the inference rules of PC, formalised in BL. In particular, we
need generalisation and specialisation to alter ¢ and b, and alpha-conversion
to alter z.

It seems, at first sight, to be more convenient to avoid sequents like (1),
replacing them by more easily-applied ones like

var X trm A ttm B 3)
FA<B&(3XsA+X=D8)

but these are more difficult to interpret. To decide or the truth of (3) one
would have to consider the results of replacing X, A and B by all possible
object-language strings, whereas one can safely imagine that (1) is written
directly in the object-language. So sequents like (3) involve an extra level
of complexity.

Complexity can lead to error. For example, one might think (1) and (3)
interchangeable. But, whereas (1) is a legitimate defirition of <, (3) intro-
duces a contradiction. To exhibit the contradiction, apply INSTANTIATE
to (3) to obtain both

Fa<be(Ibeatb=1D)

and

Fi1<2s(3zel+z=2)
Simplify respectively to

n

A practical implementation 25

and

Fl1<2

and, from these last two seqnents, derive

F1=0

The cause of the inconsistency can be found at the very first step, where
variable capture occurred. Capture can be avoided by adding further an-
tecedents to (3), thus obtaining

var X trmA trm B
X\A X\B (4)
FA<Boe(@XeA+X=58)

But how can we tell whether inconsistency has crept in through some other
door?

Rather than leave such questions to the discretion of each user of AL, we
have systematised the generation of schematic sequents from non-schematic
ones. We include the transformation as an inference rule called VAR-lift. In
fact, (4) is the result of applying VAR-lift to (1), and thus (4) is admissible.

Looking at {4), one can see a pattern to the antecedents: var X is there
because z occurs bound in (1), trm A and trm B because a and b occur free,
X \ A and X \ B because a and b occur in the scope of z. The pattern
generalises to any sequent without antecedents, provided it is made up from
only F and symbols of the object-language.

VA R-lift alzo applies to sequents which have antecedents, and thosein which
meta-variables, substitution and non-freeness occur, But these additions
complicate the transformation and we will not cover them here. For the
general statement of VAR-lift and a proof of its validity, we refer you to
{12}.

A proof assistant wounld apply VAR-lift to every sequent entered by its user.
Both the lifted and the unlifted version would be stored. That way, the
user may enter easily-interpreted sequents like (1), and still have schematic
versions of them available during proofs of other sequents. It is probably
best if all this is hidden from the user. All that should be discernible js an
increased applicability of non-schematic sequents.

26 A LOGIC FOR A THEOREM PROVING ASSISTANT

8 Conclusions

Although BL is very simple and certainly doesn’t break any mew ground in
the study of logic, there are a few advantages we can claim for it over other
logics for proof assistants. In fact, it is the simplicity that provides most of
the advantages.

Firstly, since the use of BL does not involve any complicated coding of the
object logic, there is no need to hide BL formulae from tbe users of a tool;
formulae can be viewed directly without pretty-printing. This may seem
a trivial point but it is very important, when using interactive systems,
that man and machine share a common formalism. A disparity between
formalisms can lead to confusing machine behaviour and diminish a user’s
ability to direct a proof.

Our simple approach also works well when applied to object logics in which
variable names are significant to meaning (eg. Hoare Logic [6], Weakest
Precondition [4], Z [10]). Object logics such as these don’t have to be
treated specially in BL, because ob ject logic variables are treated explicitly.
Some other systems (e.g. the LF [2]) avoid free variables by considering
terms as functions and quantifiers as higher-order functions. That approach
deals cleanly with many object logics, but it runs into trouble with some
programming calculi where variable names are significant.

Anather advantage of BL is that it is easy for non-logicians to understand.
Anyone who has read an introductory text on formal logic should find BL
familiar. BL is, after all, just a formal version of the meta languages typically
used by such books. The popularity of the B-tool is evidence of the ease
with which BL is picked up.

Thereare a few simple extensions to BL that we have not covered here. One
extension is the use of types. Most object logics have a variety of syntactic
classes. In a typed version of BL, each syntactic class could be assigned a
type, so that object-level, syntactic correctness could be assured by meta-
level type checking. The use of types in this way is far more natural and
practical than our predicates var, trm, and frm. We avoided types, however,
to stay consistent with the B-tool. Milstead [B] takes a similar approach to
Ours, but uses types.

The use made within tbe B-tool of its logical language is not restricted to

Acknowledgements 27

proof. The same language often doubles as a programming language, and as
such performs many of the administrative functions, such as reading-in files
and pretty-printing. We have made no attempt to explain these secondary
features of the language; we concentrate on the logical aspects alone. In fact,
we doubt the existence of a simple explanation of all aspects of the language,
and would recommend a strict separation of the activities of proving and
programming within the B-tool.

Acknowledgements

Many of our initial ideas were derived from Bourbaki [3]; the presentation
of First Order Logic, contained there, is worded very precisely. The {urther
step to a completely formal meta-language was small.

The B-tool was developed by Jean-Raymond Abrial, with assistance from
Carroll Morgan, Paul Gardiner, Mike Spivey and Trevor Vickers. Each has
also made contributions to the logic of the B-tool, from which BL is detived.

Variable Lifting:

deriving schematic object-level inference rules

Trevor Vickers and Paul Gardiner

Abstract

In the context of a formal meta-logic, a process (called variable
lifting) is described which produces a completely schematic object-
level inference rule from a non-schematic {or incompletely achematic)
object-level inference rule, axiom or theotern. A full description of
variable lifting and a rigorous proof of its derivability is presented.

Variable lifting is not only important for the description and imple-
mentation of theorem proving assistants, but also justifies an informal
practice found in many logic texts.

1 Introduction

The logic BL [5] is a formal meta-langnage for theorem proving assistants,
and was originally designed to describe the behaviour of the B-tool [1].

A proof assistant based on BL encourages the user to enter non-schematic
object-level inference rules, axioms and theorems. The correctness of these
is easily verified by user interpretation, but its applicability is often re-
stricted. A process of transformation, called variable lifiing, produces a
schematic object-level inference rule from a given non-schematic (or par-
tially schematic) object-level inference rule etc. The process consists of the
replacement of variables by meta-variables while adding antecedents which
represent non-freeness properties and prevent variable capture. The resul-
tant inference rule is of general applicability.

We present here a full description of variable lifting, and prove that the
lifted sequent can be derived from the given sequent.

28

Overview of BL 29

That proof is quite complex. We reduce the complexity by introducing seme
simplifying notation and several theorems and lemmas before presentingthe
proof.

2 Overview of BL

This section presents the elements of BL essential to the understanding of
the variable lifting discussion. The remaining details can be found in {5].

BL consists of a simple meta-logic which may be extended by embedding

a chosen object-logic. All facts about the object-logic are formalized as
r

sequents, written ¢ . The metalogic is essentially the rules assume,

cut, thin, and énstantiate of the sequent calculus. There Is one given meta-

predicate symbol: P == () means P and @ are the same (objectlevel)

expression.

An object-logic extends BL by the association of BL meta-function sym-
bols with object-logic predicate and function symbols, BL meta-constants
with object-logic variables, and so on. For example, the Predicate Calculus
incluedes the following symbols.

variables e, b,c,...
quantifiers V_.e_
logical operators - _, _= _

Facts about these symbols are recorded by the following BL symbols.

constants ‘@, b0,

varables A,B,C,...

function symbols V_e_, -_, _=_, [-:=_]

predicate symbols var_, trm_, frm_, __, —,...,— F =

Note that var X, trm X, and frm X mean that X denotes an object-variable,
abject-term, and object-formula respectively. X \ P means there are no free
occurrences of X in P. [X := T]P represents the object-level substitution
of T for all free occurrences of X in P. Facts about the object-logic are
axiomatized as a set of BL sequents.

In the remainder of the paper we use the Predicate Calculus extension of

30 VARIABLE LIFTING

BL to demonstrate variable lifting. It will be clear what conditions must be
met by other object-logics for variable lifting to be applied to them.

To avoid ambiguity we often use ‘meta-variable’ to refer to variables of
the logic, reserving ‘cbject-variable’, and sometimes ‘variable’ for meta-
constants representing object-level (e.g., Predicate Calculus) variables. On
other occasions the context will indicate which is intended. We adopt similar
terms for other constructs of the object- and meta-levels.

3 Motivation

Suppose we have the following sequent:

Fn4+0=n

If wenow wish to show the theoremhood of m+0 = m, we could perform the
following steps. Each step here represents several steps in the meta-logic.

Fn+l=n

F¥nen+0=n V-introduction
F [n:=m](n4+0=n) specialization
Fm+0=m substitution

Similar steps would be performed in cases where our interest lay in object-
terms other than m. Consider the ease with which the result could be
established in the presence of the variable-lifted version of the initial sequent:

trm N
F N+0=N

Consider also tbe ease with which a mechanization of the logic could apply
the lifted rule by simple pattern matching. A single application of instantia-
tion {of N as m) yields the result. For more complex sequents the derivation
of a new sequent requires many steps, while the lifted form will still yield

Motivatior 31

tbe result in cne step, subject to the satisfaction of its antecedents. For
example, suppose we bave established,

FsCt=Vzez€8=>z€L

To establish the following, similar result is quite labarious.

F {a,b}Ck=Vyoye{abl=>yck

FsCl=VzezEs>zEL

F¥sesCt=Vzezecs=zcl V-introduction
Fs:={ab}j(sCt=VzezEs=szct) specialization
F{a,b}Ct=Vrezc{a,b}l=zct substitution
F¥te{a,b}Ct=Vzezec{a,bl=>zet V-intreductjon
b [t:=k({a,0}Ci=Vz oz {a,b}=+z€1) specialization
F {a,b}Ck=VYzerc{abdl=>zck substitution
F {a,b}Ck=Vyeyec{abdl=yck alpha-conversion

The lifted form of the given sequent is:

varX trmS tm T
X\S X\T
FSCT=VXasXeS=2XeT

Instantiations of § as {6, b}, T as k and X as y yield the result in one step
(ignoring the satisfaction of antecedents}.

The added antecedents are very important. Without the pon-freeness con-
ditions, the rule is unsound, as they prevent variable capture. Particular
instantiations would lead to the following invalid sequent.

FsC{z}=Vzeres=rzre{z}

32 VARIABLE LIFTING

While the right hand side of the equivalence is always true, that isn’t the
case for the left, for arbitrary values of s.

Of course, we could dispense with writing object-expressions altogether, and
write the already-lifted sequent down to begin with. The complexity of the
last example is convincing evidence of the difficulties to be encountered if
we hope to correctly write down such general sequents. We can be much
more confident of the correctness of the simpler, non-schematic sequent.

We informally characterize the result of variable lifting by the following.
Transliterate object-variables to their corresponding meta-variables. For
the new meta-vatiables, T, which appear as bound variables, add the side-
condition var T'; for the rest add trma T. For a new bound meta-variable, T,
in whose scope appears a new meta-variable, § (different from T, add the
side-condition T \ §. For an existing meta-variable found in the scope of
two distinet object-variables translated to X and ¥, add tbe side-condition
X\Y.

4 Issues in Lifting

In thissection we present an example in which the lifted form of 2 sequent
is derived. Our purpose is to give a glimpse of tbe complexity variable
lifting entails, and to provide intuition and understanding for the steps in
the general proof of variable lifting.

Our example is the strong induction rule,

E\P fmP
(Vkek<n=[r:=kP)=s P + P

whose lifted form we show to be,

K\P fmP varK varN K\ N
(VKeK<N=[N:=K|PY=>P F P

In order to ‘guard’ the existing meta-variable P from the substitutions to
which it will be subject, we first instantiate it to [k = k)[n* := n][k =
k"|[n := n"]P (abbreviated P). The ‘“intermediate’ variables &' and n' are

Issues in Lifting 33

distinct from &, n and each other, and do not occur free in P. The “tempo-
rary’ variables k" and n” are distinct from k,n, %', n’ and each other, and
do not occur free in P, K or N. (The construction of intermediate and tem-
porary variables within the logic is described in Section 5.4). Instaatiation
yields,

kK\P fimP
(Vkek<n=>[n:=klP)=P + P

By a combination of standard rules we introduce the substitution [k :=
k][n := n'] onto the operands of F . At the same time, by the axioms of
frm and \, we introduce that substitution onto the operand of frm, and the
substitution {n := n’] onto the second operand of \. After distributing these
substitutions where possible, the sequent is,

E\[n:=n1P frm[k:=K|[n:=n]P
(Vkek<n' = [n:=k]P) = [ki= Kl[n:=nP
b [k:=k][n:=nP

In general, the above steps will change a variable z to z’ unless z occurs
where only a variable may: for example, in [z := T|Q,orinz \ Q,oras a
bound variable in ¥z » Q. Alpha conversion deals with the last case, and
axioms of [:=] and \ deal with the others. Applied to our example, and after
some simplification, they yield,

K\ [k:= E)n:=n)P frm[k:=kK)n:= n]P
(VK o K < n' = [0 := K)([k := k[n := n]P)) = [k 1= k][n:= n')P
b [k:=#])n:=n]P

We note,

ik = K)n:= 0P
== [k := ¥'|[n := n’J[k" := k][0’ := n][k := &¥][n := n"}P
== [k := k¥"][n := n"|P

34 VARIABLE LIFTING

giving,
E\[k:= F'][n:=n"|P frm [k = k"][n := n"] P
(VE' o [0 := k)([& := &"][n := n"]P)) = [k := &"][n := n"]P
b k= B)(n =)P

To remove these substitutions on P, we introduce the substitution [£” :=
k][n" := n] onto the operands of F and frm and the second operand of
\, a8 before. This substitution distributes completely, affecting only |k :=
k"][n := n"] P, which simplifies to P. Thus we have,

F\P fmP _
(Vi ek <=0 =}kP)=P + P

Significantly, this is our initial sequent with all occurrences of k, n replaced
by k’,n’, and concludes the first phase of the derivation. The second phase
is almost identical, except we replace &' by K and n' by N. The ‘freshness’
of k',#, k", n" has enabled the dismissal of many conditions which would
have remained had we attempted simply to replace k,n by K, N.

We commence the second phase by ‘guarding’ P by instantiation to [K :=
E'I[N := n'][k := k"][n' := n"] P (abbreviated P).
F\P fmP
(Ve ok <n'=>[n":=k|P)=+P F P

The substitution [k' := K][n" := N] is introduced onto the operands of F
and frm, and {n’ := N] onto the second operand of \. At this point certain
conditions are required to maintain object-level well-formedness.

trm K trm N
K\ [0 := NP frm[k':= K][n':= N}P
(VK o k' < N = [0 := ¥]P)= [¥ := K][n':= N} P
F [:= K][n' := NP

Again we use alpha conversion and the other rules above to change &' to X
and n'to N. This requires the extra conditions var K, var N,and K \ ¥

Notation 35

below.

var K varN K\ N
K\ [k := K|[n':= N]P frm [} := K]|[n' := N]P
(YK o K < N =[N:= K|([t':= K][n' :== N]P)) = [k' := K][n' := N]P
F o[k = K)[»':= NP

We note, given K \ N,
[¥':= K][w := N]P
== [k := K][n':= N][K := V][N := n'][k' := &"}[n’ := n"|P
== [k' ;= k")in’ := n"]P
This simplification gives,
var K var N K\ N
K\ [= k")[n' := n"]P fim [}’ := k"][n" := n"]P

(VKoK < N=[N:= K|k = k]n:=n"P)) = [k == k"|[n' := n"|P
b [k = B0 := n¥P

Again these remaining substitutions are removed during simplification of

the introduced substitution [k” := &’][n” := n’], as before. This leaves the
lifted form of the initial sequent:

K\P frmP varK varN K\ N
(YKeK<N=>[N:=K|P)=>P + P

5 Notation

5.1 Well-formedness

Many of the sequents reasoned with in BL have antecedent formulae present
merely to ensure well-formedness at the object-level. That is the purpose of
frm P below.

frmrP

FP=PF

36 VARIABLE LIFTING

As these well-formedness antecedents can always be ascertained from the
rest of the sequent, we adopt the convention of not displaying them. Thus
the above sequent will be written,

F P=>P

We also omit these antecedents from our proofs. It can be shown, by analysis
of theinference rules and axioms of the meta-logic, that the omission does
not affect the validity of the proof.

5.2 Consecutive Substitution

In the proof of the derivation of the lifted sequent, we consider the consec-
utive substitution of all object-variables in the sequent. Such consecutive
substitutions can be cumbersome:

o1 :=m)]...[pa 1= n.)¢
For convenience we choose to write this ag

lP = 7?]1..-45

Occasionally we shall restrict attention to a subset of the substitutions, and
use the notation,

['7 I p = ﬂ]l..n¢

which includes the substitution {p; := n;] only if ¢ is in the set v and 1 <
i £ n. Similarly, we omit particular substitutions by,

[E | p= q]l..l¢
where 7 is the complement (with respect to the set of indices 1..n) of @, The

aboveincludes a substitution [p; := ni]only ifiis 7ot incand 1< i < n,

In many cases we shall re-order the list of substitutions to bring one in
particular to the front or rear. We can do this in a proof whenever SCp
{defined below) is among the assumptions, since the following sequent is

Notation a7

derivable.
SCP(Py 77)

[p:=n]i8 == fp:= q].¢

where u is a permutation of ¢

and where the antecedents SCp(p, 1) are as follows.

P\T
distinc{ p

Note: For the sake of brevity we write p \ #n for p; \ n; (all 4,7), and
distinel p for p; \ p; (i £ j). Elsewhere we write var p for var p; (all 1) and
0 oD.

The proof of this result is not presented, but relies on the following derivable
gequent.
X\Y X\T Y\S
[X:=8)]Y:=T|P==[Y:=T]|[X:=5]P

When the permutation result is applicable (i.e., SCp(p, %) is derivable), and
the order of substitution unimportant, we omit the subscript, writing simply

Ep:: q]P.

The following rules are derivable and are presented without proof.

5Cp(p,n) 4.1 SCp(p,n) A2
[6)p:=nl8| o= 7]8 == [o:=)6 lp:=nlpi ==n;
SCe(p,n) SCe(pyn) SCr(n,p)
P\ ¢ A3 P\ ¢ A4
[o:=nlé== lo:=1lln:= pjé ==
SCP(P- Q)
SCp(p: 1) A5 wliy w\é A6

P\le:=n]¢ w\ [p:=1lé

38 VARIABLE LIFTING

5.3 A Unifying Concept

Performing variable lifting relies on the ability to change the variables of a
formula. For simple expressions, such as t = 1 the change can be effected
through a substitution, perhaps introduced in the larger context of the ex-
pression. For quantified expressions, such as ¥z ¢ z = y, the z is changed
through alpha conversion and the y by an introduced substitution. Another
example is [z := {](z = y), in which the t and y can be changed by intro-
duced substitutions, but the r must be changed by applying the axioms of
substitution.

In searching for a common representation for all these expressions, we note
three important categories of function symbol operands: those (like z above)
which occur in a position which can only be occupied by a variable, those
(like 2=y} which refer to that r, and those (like ¢} which are not influenced
by tbe choice of z.

We use a scheme ©(f,¢,r), in which the bound variable 8 (e.g., T above),
the operand in the scope ¢ (e.g., z = y above), and those operands outside
the scope v (e.g., ¢ above) are a simple re-arrangement of the usual function
symbol operands. Ao empty category is represented by e

Everyterm has a (4, ¢,) expression. We call this the bsn representation
(for bound variable, scope, non-scope). For example, the above expressions
become ©4(¢,€,(¢,8)), @2z, z = y,€), and @3z, z = y,1).

Using this scheme for V, the standard alpha conversion rule is written as a
rule scheme below.

Y s
(X, v)==8(Y,[X = Y,

The importance of the generalization can be seen if we interpret © in that
rule as substitution [X := T]P. We then have the following.

Y\ P
IX:=T|P==[Y :=T|[X:= Y|P

This is exactly the rule needed to change the X in [X := 2']P, and it is
derivable. Similarly, we can express whole families of related and useful

Notatiop 39

tules using the bsn notation. Each can be checked by case analysis to be
derivable.

Y\¢
(X, 5, v)==0(Y,[X := Yk,v)

g

SCpip.m)
B\p B\n el
[p := nl©(8,<,v) == 0(8,[p := ns, [p := nl¥)

fel:

(X = TIO(X,<,») == O(X,5,[X := T|)

The ©(8, s, &) representation leads us to adopt the term bound variable for
any f, saying it has scope ¢. Similarly, we refer to the rule ag above, as
alpha conversion.

We need not restrict the bsn notation to terms. We can make similar group-
ings of the operands of predicate symbols, and extend the above descrip-
tions to these. Example representations are @4(¢, €, (P, Q)) for P == @,
Og(X,P,e}for X \ P, and Qg(X, ¢, ¢) for var X. The following are the rule
schemes for formulae,

Yi¢ Y\¢
o(X,¢,v) ae, B(Y,[X = Yk,») o
O(Y,[X := Y], ») 0(X,c,v)
SCplp,n)
B\p B\n
G) O(X,s5,v) (ol

e('@slp:= ﬂ]c,[}’:'_" 77]”) G(Xlﬁ[X = T]V)

40 VARIABLE LIFTING

SCP(Pv 1’)
B\p B\n
Of.lp:=nle;[p:=1lv) [0}, O X.¢.[X:=TW) fole,
0(8,¢.v) (X, q,v)
Note: [O]E is not derivable when © is representing == or F .

Again, we call the first two rules alpha conversions (introduction and elimi-
nation). Because of the link with the standard specialization rule, we refer
to the other four as specialization rules.

It should be noted that the above rules are assumed derivable by the proof
of varable lifting. When new symbols are added to a logic, if the above
rules are derivable {or that symbol, variable lifting will continue to apply to
the logic.

It is possible to further generalize the bsn representation to allow a list of
scope expressions, and perhaps a List of bound variables. For the purposes
of this paper, such generalization is unnecessary.

5.4 Variables

The process of variable lifting replaces object-variables by meta-variables
not already existing in the original sequent. We will replace a variable r by
a fresh meta-variable 7*. We say 7* is the corresponding meta-variable of 7,

and write o* for the list of meta-variables of, ..., 0%,

To atlempt the transition directly from object-variables to meta-variables
would produce conditions of the form r \ 7*, as explained in Section 4. To
avoid these unwanted conditions, we use intermediate variables, denoted by
7', whose definition ensures the derivahility of both 7 \ r and 7'\ r*. We
shall also make use of temporary variables, denoted 7, whose purpose was
demonstrated in Section 4.

The choice of fresh variables with respect to given expressions is formalized
by a family of function symbals written nvar(_,...,_), which we assume are
patt of the meta-logic. They are defined by the following axioms.

Notation 41

for 1 such that
1<i<n

var nvar(¢y, - .., éq) avar(¢y,.. ., éa) \ &

We introduce abbreviations for intermediate and temporary variables that
will be used in the proof of variable lifting. We write ¢’ for the list of nvar
expressions (which we call temperary variables) of,...,ol, and ¢” for the
list of nvar expressions (which we call inlermediale variables) of,...,cl.
The abbreviations o' and ¢” are defined as follows:

ot for wnvarlel,...,el_y,0,0")
of for war(ef,...,0f 0 a,0% 1)
where o and IT are the object-variables and meta-variables of a given sequent.

The following properties result from the above definitions, and are collec-
tively referred to as var.def.

var o’ varg”
distinct o’ distinct o”
a\o a’\ o

o.l \ o.i U” \ ai

o.f \ 0'” O'” \ I[

5.5 Scope

For a given sequent we shall be interested in the seope of its bound-like
variables. 'We define scope in terms of the set of free object-variables and
the set of mpeta-variables in the expressions involved. They are defined as
follows.

Let P be any meta-variable, and = he any object-variable. Then,

Jreevars P ={}

Sreevars z = {z}

Jreevars ©(F,¢,¥) = (freevars ¢ — {f}) U freevars v
mefavars P = {P}

metavars r ={}

metavars O(4,<,v} = melavars ¢ U metavars v

42 VARIABLE LIFTING

Let A be the set of all formulae for which scope is to be defined, and T be
the union of A and all the sub-terms of each element of A, and let z and y
be any object-variable or meta-variable. Then,

yEscopez & (I6O(z,q,v) €T ey € freevors ¢ V y € metavars)

6 Statement of Variable Lifting

Section 4 gave an indication of the process of variables lifting. The following
is a precise description of variable lifting for an arbitrary sequent. The proof
of the derivability of the lifted form is presented in Section 11,

Variable lifting applies only to sequents satisfying the following applicability
conditions. Each antecedent formula is constructed from a predicate symbol
satisfying the elimination rules of Section 5.3. The consequent formula is
constructed from a predicate symbol satisfying the introduction rules of Sec-
tion 5.3. Function symbeols used in the sequent must satisfy the equivalence
rules for terms in the same section. No meta-variable occupies the position
of a bound variable.

Given a well-formed sequent,

di1(g) ... éalo)
¥(o)

where & is a list containing all variables in the sequent, and that satisfies
the applicability conditions, the lifted form is the sequent,

5C
di(e*) ... dalo™)
P(o*)

where 5C are the added side conditions, defined as follows.

Substitution Introduction and Elimination 43

var z* for every bound variable =
trm z* for every other variable z
z*\ y= il y € scope(z) and z and y are distinet
z* \ y* if there exists a meta-variable P such that_.
P ¢ scope(z)N scope(y) and z and y are distinct

The first two conditions ensure object-level well-formedness; the last two
ensure object-level variable capture is avoided.

7 Substitution Introduction and Elimination

We have emphasized the importance of changing variables by substitutions.
The following two lemmas describe the introduction and elimination of an
arbitrary substitution on the operands of predicate symbols.

Lemma 1 Introduction onto operands.

For each farmula P(4y,...,8,), where P is any predicate symbol satisfying
the introduction rules of Section 5.3 and where #; are its operands, the
following rule is derivable.

SCp(p,1)
SCs(P(81,..-,6n))
P01, .., 0m)

P(lo = nlt1,-.-, [0 := nl0m)

where the antecedents SCs(©(f,¢,v)) are as follows.

If §is an element of p (the jth, say) then,
var 17

%5 \ [7} 1 p =l
Otherwise,

A\p -
B\n

Note: SCp is defined in Section 5.2.
O

44

Proof

Let ©(8,¢,v) be the bsn representation of P(#,..

Case: 3 is an element of p (the jth, say).
1. §Ce(p,n)
2. 8§Cs(O(pj,<,v))
3. B(pj,s,v)
4. 0(py, [2= nls, [}] p == nlv)
5. O(p;,
[GH e =1l
(G} 2= allG} p = nlv)

6. O(n;,
[} 2= allG} | 6 :=nls,
[} p:= nllGY | £ = nlv)

7. 0(n;: L :=nls,[p == nlv)

8. O(Lp := nlpis Lo := nl<, o= n}v)

Case: A is not an element of p.

1. SCP(F!’?)

2. §Cs(0(8,¢,v))

3. ©(8,¢,v)

4. O(8,Ip := nl¢,Ip = nlv)

5. (Lo := 718, [p = nls. o := n]v}

a

Lemma 2 Elimingtion from operands.

VARIABLE LIFTING

o Om).

assumplion
agsumplion
assumplion

[O]Il.la]$ 3

[0]).2. 4

agp, 2,5
Al,1,6
A2,1,7

assumption
assumption
assumption
[6]11,1,2,3

A3 1,24

For each formula P(8y,...,8,,), where P is any predicate symbol satisfying
the elimination rules of Section 5.3, and where 8; are its operands, the

following rule is derivable,

SCp(p,n)
SCs(P(th,....0m))

Plle = n]b1, .-, [0 := n]8n)

P(61,....0m)

Distribution 45

<

Proof

The proof is the reverse of the preceding proof, with elimination rules used
in place of introduction rules.

w]

8 Distribution

Lemma 3 Distribution.
For all function symbols, F, the following rule is derivable.

SCP(P)’]) SCS(}.(G_,...,C‘“))
Ip := 5lF ({1 - lm) == Fllp = 0lG, .., Lo = 1))

Note: SCp is defined in Section 5.2, and SCs is defined for Lemma 1 {Sec-
tion 7).
<o

Proof

The proof follows the same pattern as those in the preceding section, using,
for example, ag in place of ag, and ae.

a

9 Substitution

Substitutions applied to meta-constants representing object-consiants (e.g.,
0) have no effect. Thus we can safely omit these from the list of components
when writing ¢{£), and do 50 in the remainder of the paper.

9.1 Two lemmas

Our ‘specialization’ rules allow, for certain formulae, the introduction and
elimination of substitutions. These substitutions can then be distributed

46 VARIABLE LIFTING

to the components of the formula. Thus, from a particular formula we can
derive a second in which the structure of the first is preserved, and some
substitution applied to the components from which it is constructed. We
capture this with the following lemma.

Lemma 4 Introduction onto components.

For a formula ¢(£) constructed only from terms £; by application of function
symbols and those predicate symbols which satisfy the introduction rules of
Section 5.3, the following is derivable.

SCplp,n)
SCss(6(£))
#£)
#([p := nlit)

where §Css(¥) is as follows.

For each formula and its sub-terms # in the list ¢,
SCs(8)

Note: SCp i5 defined in Section 5.2, and $Cs is defined for Lemma 1 (Sec-
tion 7).
o

Proof
By structural induction: the base case is Lemma 1; the step case is Lemma 3.
o

Similarly, from a formula in which a particular substitution is fourd to
apply to all constituent components, we expect to be able to factor out
those substitutions to the predicate symbol operands, and remove them by
the appropriate specialization elimination rule. We capture this with the
following lemma.,

Lemma 5 Elimination from components.
For aformula ¢(§) constructed only from terms £; by application of function

Substitution 47

symbols and those predicate symbals which satisly the elimination rules of
Section 5.3, the following is derivable.

5Cp(p,m)
§Css(#(£D)
#(lp := nl€)
#(&)
<
Proof

By structural induction: the base case is Lemma 2; the step case is Lemma 3.
a

9.2 Substitution Theorem

Theorem 1 Subslitution.

If each ¢;(£) is constructed only from terms £ by application of function
symbols and those predicate symbols which satisfy the elimination rules of
Section 5.3, and if ¢(£) is construcled only from terms £; by application of
function symbols and those predicate symbols which satisfy the introduction
rules of Section 5.3, then from the sequent,

A
16} .. $alf)
(&)

where A is any set of formulae, it is possible to derive the sequent,

A
SCplp,n)
§Css((u(£), .-, 8a(E)))
$i(lp:=nl€) ... ¢allp:=nlé)
v(lp= nj€)

48 VARIABLE LIFTING

Proof
Let the initial sequent be called (I).
0. A assumption
0. SCp(pyn) assumption
0. SCss({do(£);---»¢x(£))) essumption
1. ¢1(fp:= n}¢) assumption
n. do{fn:= nlf) . _ assumption
n+l. () 0,0,1, Lemma 5
2n. ¢.(£) 0,0, n, Lemma 5
2n+1. ¥(€)) (1),0,n+1.2n
2n+42. P(fp:=nl6) 0,0,2n+1, Lemma 4

10 Substitution Application

During the proof of the theorem of variable lifting, we shall apply the Sub-
stitution Theorem (Theorem 1, Section 9.2) a number of times. In three
of these cases the side conditions SCss and SCp appearing in the resulting
sequent are themselves derivable, justifying their omission. In one case, a
small component of SCgs and SCp is not derivable. It is beneficial to exam-
ine these claims now, in the form of theorems, to simplify the forthcoming
argument.

This section is long and detailed. The reader may prefer to return to it after
the proof of variable lifting in Section 11.

Application of the Substitution Theotem is dealt with by Theorems 2, 3, 4
and 5below. Lemmas 8 and 9 introduce some useful simplifications.

10.1 Non-freeness

In this section we factor out the complex parts of Theorems 2 and 3 be-
low. Those parts deal with the non-freeness of a variable in a complicated
€Xpresion.

Substitution A pplication 49

If a variable does not occur free in the components of a term, then it does
not occur free in the term itself:

w\T NF.1
w ()

Given g, not in the set freevars ¢(o,II), where ¢{o,II) is constructed from
variables o and meta-variables II, it {follows that if ¢! does not occur free in
terms A, then o} does not occur free in the term ¢{o’, A):

_OI\NA (o ¢ frecvars (o, T1)) NF2
ol \ ¢{c’, A)

Both NF.1 and NF.2 are derivable. Note that the side-condition of NF.2
implies that i # j for all § such that o; € freevars ¢{0,II), and therefore
af \ o} (by var.def) for those j, which is required for its proof.

During the proof of variable lifting, meta-variables are ‘guarded’ by sub-
stitutions in such a way that certain non-freeness properties hold. Two of
these are expressed by the following lemmas.

Lemma 6
If ¢{o, X1} is the scope of o; then the following sequent is derivable.

SN[GY o = 1 s(o.oT)
where sll; is [{j | Oi € scope(sj)} | o' := 0] [o:= "] 1I;

<

Proof
L of\e var.def
2. o\ sll; (all i:II; € metavars ¢(o,1I})) A5, var.def
3. af\ <(o,sl) NF.1,1,2
4. distinet o' var.def
5. a5\ [{(7}| o := o'I<(o, sI1) A.6,3,4,var.def

50 VARIABLE LIFTING

Lemma 7
If ¢(e, 11} is the scope of o then the following sequent is derivable.

SC
NG| & = o] o(o/,)

where ¢1I; is [{j | IL; € scope(s;)} | o* := o'F1.ale’ := "L,

Note: SC is defined in Section 6.
<

Proof
Let 9= {i | (0; € freevars (v, II) V (metavars ¢(o,)N scope(ai) # { })) A
i #5}

Loef\ o var.def
2. af \ I, (all i:1I; € metavars ¢(a,1T)) A.5,var.def
3. of \¢(o',2ll) NF.1,1,2
4. of\a} (all ke g) s5C
5. of \[g| o := a*]c(o’, 1) A.6,3,4, var.def
6. e, \tIl (all m € J-{5}) A6, var.def
1. o \s(d,tl) (all m €7-{j}) NF.2,6
8. o} \ gl ¢ :=0*l[g-{i}| o' :=c*ls(o’,t) A.3,5,7,var.def
9. of \[G} 0" := o*L<(e’, 210) A1, var def

10.2 Deriving 5Css

Theorem 2

Given the well-formed sequent below, in which formulae are constructed
from the variables ¢ and expressions I, and in which a0 meta-variable
occupies a bound variable position,

(e, 8ll) ... ¢mle,)
(o, sI0)

Substitution Application 51

where sll; is [{j | II; € acope(a;j)} | o' := o] [0 := o} Ii;

the formulae §Css((#,. - ., ¢m)}) and SCp(0o, ') which result from the appli-
cation of the Substitution Theorem with substitution [o := o] are derivable.
<

Proof

We note that 28 no meta-variable occupies a bound variable position, all
bound variables are drawn from ¢. In the following, justification for deriving
the formulae on the left is given on the right. The permutability conditions
SCp are easily dismissed, as follows.

5Cp(e,0") var.def

For each formula in ¢g(o, #11),. .., $m(o, sII), and for each term in each of
those formulae, SCs must hold. For those formulae or terms €(f8,5,v) the
formulae to be derived are as follows.

B is an element of o (the jth, say),
var o} var.def
gl \ Y o=k Lemma 6

Theorem 3

Given the well-formed sequent below, in which formulae are constructed
from the wvariables ¢’ and expressions tII, and in which no meta-variable
occupies a bound variable position,

di(o’,) ... dm(a’,tII)
do(c’, tI)
where tI; is [{j | I; € scope{a})} | o* := ohh.ale’' := o”}I;
the formulae SCss((dole’, tI),. . ., #m(c’, t11))) and SCp(o’, 0*) which arise
from the application of the Substitution Theorem with the substitution

[¢’ := 6*] are derivable from SC.
< .

~

Proof
Assume SC. We note that as no meta-variable occupies a bound variable

52 VARIABLE LIFTING

position, all bound variables are drawn from ¢’. Permutability is established
as follows.

SCp(o’,0*) var.def
The formulae SCss((¢o(a’, tIT),. .., ¢m(c’, tH)) hold if SCs holds for every
formulae in ¢o(o’, t11), ..., #m(c”, tIT), and for every term of those formulae.

For each formula or term &(3,¢,v) the following are the formulae.

f is an element of ¢’ (the jth, say),
var gy SC
g\ [o' =0k Lemma 7,5C

Theorem 4
Given the well-formed sequent, in which formulae are constructed from the
variables 0’ and expressions [o := o"]II,

$(e’ fo=0"l) ... (o' [o:=0¢"]0)
do(0", [0 = o"]0)
each of the formulae §Css((#o{c’, [o := "[II),. .., ¢m(0’,[o := ¢”]I))} and
S5Cp(a", o) which arise from the application of the Substitution Theorem

with substitution [o" := of are derivable.
<o

Proof
All bound variablesin the sequent are drawn from ¢’. Therefore, by var.def,
each bound variable is distinct from each ¢*. That js, there is no index j of

o' such that ¢ is a bound variable, and so the ‘otherwise' formulae from

SCg arerelevant.

Permutability is established as follows.
S5Cp(e”,0) var.def
The formulae,

SCss((¢o(c, [o := "), . .., dm(o’, [0 := ¢"]II)))
hold if §Cg holds for every formulae of
to(o’ o = a"JI), ..., dm(¢", [o := ")

Substitution Application 53

and for each sub-term of each of those formulae. For such formulae or terms
9(8,¢,v) the following are the formulae.

B is not an element of o”,

B\ a” var.def
B\o var.def
Theorem 5

Given the well-formed sequent, in which formulae are constructed from the
variables o* and expressions [¢’ := o”}1I,

#fo* e := "]} ... ¢m(o*, [0’ :=o"])
do(e*, [0’ := ¢"]II)

each of the formulae
$Css((¢o(c™, [0" := ¢"JM},..., dm{c™, [0’ := 0"}11}), 0",)

which arise from the application of the Substitution Theorem with substi-
tution Jo* := o] are derivable.

Proof
All bound variables in the sequent are drawn from ¢*. Therefore, by var.def,
each bound variable is distinct from each ¢”. That is, there is no index j of

o such that ol is a bound variable, and so the ‘otherwise’ formulae from

SCs are relevant.

Permutability is established as follows.
SCp(c”, a) var.def
The form ulae

SCss((pole™, [¢' := " N0),...,dm(c* [0’ 1= a"J1)), 0", 0")
hold if §C5 holds for every formulae of
do(a*,[o’ := "), ..., dn{c" [0 := a"]JII)

and for each term of each of those formulae. For such formulae or terms
©(8,<,v) the following are the formulae.

54 VARIABLE LIFTING

0 is pot an element of o,
g\ e var.def
B\o var.def

10.3 Two simplifications

Lemma 8
For any set 3, the following is derivable.

o\ ¢
le:=a][s|0 :i=e] ¢ ==
<
Proof
Assume o \ ¢.
[r:=ol 1o =0l

==[s|lo=ad1[5|o:=0][5|0' :=0] ¢ A.1, var.def

==[s]o:=0]1¢ A.4, var.def

== ¢ A3, var.def
a
Lemma 9

For any set s, the following is derivable.

#\$ ot\o} (canisi)
[o'i=o*][s|0* =0 ¢ ==

<

Proof
Similar lo Lemma 8, O

Variable Lifting 55

11 Variable Lifting

Variable lifting is carried out in two almost identical stages. The first re-
places all object-variables 7 hy intermediate object-variables v (with cor-
rect non-freeness properties); the sccond replaces those variables by the final
meta-variables v*. Both stages are petformed by identical steps. Only the
replaced variable and the replacing expression changes.

In this section we present 2 rigorcus proof that from a given sequent we
can derive its lifted sequent. This is of course subject to the initial sequent
satisfying certain applicability conditions.

Applicability Conditions

Each antecedent formula ¢;(o) of the sequent is constructed from a predi-
cate symbol satisfying the elimination rule. of Section 5.3. The consequent
formula js constructed from a predicate symbol satisfying the introduction
rules of Section 5.3. No meta-variable occupies the position of 2 bound
variable.

Theorem @ Variable Lifting.
From an arbitrary sequent which satisfies the applicability conditions,

é1{o) ... ¢mla)
éo()

where all ob ject-variables are drawn from o, we can derive the lifted form,

5C
${o*) ... Im(o®)
do(o*)
Note: S5C is defined in Section 6.
<
Proof

We make explicit the meta-variables II of the sequent. Qur initial sequent
is then,

56 VARIABLE LIFTING

(o, I} ... ém(o, 1)
éo(a, 1)

It is from this sequent that we generate o' and ¢”, and which we take for
the definition of scope.

By instantiation of the meta-variables, we obtain the next sequent.

$i(0,81) ... ém(o,sl)
¢o(0, 1)

where sll, is [{j | II; € scope(o;)} jo’ i= o] [o:= 6"} II;

We note that the properties of the variables concerned allow re-ordering of
the above substitutions, justifying the lack of subscript.

Using the Substitution Theorem (Theorem 1) we impose the substitution
o := o). From Theorem 2 we know the conditions SCss are derivable
in this case, and 50 we omit SCss from the resulting sequent. Similarly,
SCp(0,0") ate derivable (by var.def).

#i([e = 'Jo.[o:=0"lsI) ... &nlloc:=d']lo,[o:= &']sll)
do([e := o']o, [:= o']sII)

We next apply the simplification [¢ := ¢']¢ == ¢’ and note from Lemma 8
that Jo := o}sIl; == [o := o"]II,.

$1(c'Jo ="M ... $mlo’,lo:= o"IW)
do(o’, o := ¢"]II)

We use the Substitution Theorem to introduce [o” := ¢], with the aim of
removing the current substitution on meta-variables. Theorem 4 has shown
that we can derive the side conditions SCgs in this case, justifying their

Variable Lifting 57

omission from the resulting sequent. Similatly, SCp(o”, o) are derivable (by
var.def).

il = o)’ " = o]l == o)

bm([" := o), [o" := o] := o"}IT)
dolle” = o7 (o = allor = ")

We note the simplification [¢* := o)’ == ¢’ and that [o" = ¢]fo :=
¢ J1; == II, follows from A.4 allowing derivation of the following sequent.

$1(o, 1) ... ém(s’10)
o(a’,IT)

This is the half-way point. We have derived a sequent in which each variable
o; of the inijtial sequent has been replaced by the intermediate variable ¢f.
The second stage performs the same steps as the first, but our goal is to
replace o' by o*. As before, we begin by instantiation of each II;. We note
carefully the absence of ¢” in the sequent, since they abbreviate a string in
which II; is present, which would complicate the instantiation.

$i(a’, ¢) ... ¢m(o’ D)
Po(a’, 111}
where t11; is [{j | I1; € scope(o;)} | 0™ := &’']y afo’ := o"JIL;

The instantiation is similar to our earlier instantiation, though we retain the
subscript on the first substitution for the moment. We introduce [o := o*]
using the Substitntion Tbeorem. Theorem 3 demonstrates that in this case,
SCss can be derived from SC. Thns we include SC in the antecedents,
resulting in the following sequent. We note SCp(a’,0*) are derivable (by
var.def).

SC
d(lo’ = o*]o' [:= o JtTl) ... dullo’:=0")o’,[o' := * D)
do(fo’ := a*]o’, [o’ := o*Jt1I}

58 VARIABLE LIFTING

From SC we note that the substitution [{j | Il; € scope{e;)} | 0* :=¢']1.4
is permutable. We note also that [¢' ;= 6*]¢’ == o* and that the result
fo' := a*ell; == [o' := ¢"]11, follows from Lemma 9.

SC
d(ox, o' :=0"lI) ... ¢p(o*, o' := ")
dolo*, [0 = "]}

As belore, we introduce a substitution to eliminate the remaining substi-
tutions on meta-variables, We introduce [¢” := o'} using the Substitution
Theorem, noting (from Theorem 3) the conditions SCss for this instance
are derivable and may therefore be omitted from the resulting sequent.
SCp(c",a’} are derivable (by var.def) also.

5C
#1([0” := a'Jo*, [o" := o'][¢’ := a”]I)

$m(fo" = o'o*, [6" := o'][o" := o"]II)
dolle” := o']o*, [¢" := ’']le’ := ¢"]T)

Applying the simplification [o" := ¢']lo* == o* and noting the result [¢" :=
o'I[o’ := "J1; == II; (from A.4) allows us to derive the following sequent.

sC
$i{o* 1) ... ém(o* 1)
$o(o*, T1)

Variable Lifting 59
12 Non-Examples

Qur purpose in this section is to discuss sequents to which the lifting pro-
cedure as described is not applicable. We intend to justify the applicability
conditions previously presented. We shall present a number of valid se-
quents, which fall outside these conditions, and demonstrate that what we
may have expected to be their lifted form is invalid.

We note the lack of a specialization elimination rule for the symbol ==,
Thus we expect problems for a sequent with an == expression in the an-
tecedent. Consider the following sequent:

frm P
[z:=ylP==P
PrVzeP

We note first that the sequent is valid: only when z is not free in P will
the antecedent be true, in which case the consequent follows. If we applied
the informal lifting procedure to this (i.e., apply the informal description of
lifting), we wonld have:

frm P
var X trm Y
[X:=YP==P
PrYXsP

By instantiating X as z, Y as z and P as £ = 1, however, we arrive at the
invalid consequence:

[z:=z)(z=1)==(z =1)
r=1tF Vzez=1

Similariy, there is no specialization elimination rule for the symbol | |,
and the following example demonstrates the danger in lifting (informally)

60 VARIABLE LIFTING

sequents in which + appears in an antecedent.

frm P
F[z:=y]P=P
F (Yze P)v(Vze-P)

The validity of this rule is established as follows. Under the assumption
[z := y|P = P, since z \ [z := y]P, we can derive each of,
[z:=y]P F {(¥z e P)
S[z:=y]P - (Vz ¢ -P)
and soderive,
F(vzeP)v(Vze-P)
The example informally lifts to:
var X trmY
F[X=Y|P=P
FVMXeP)V(VX e P)

Instantiations of X as z, ¥ as z and P as 2 = 1 yield an invalid sequent.

Fle=zl(z=1)=(z=1)
F(Vzez=1Vv(Vze-(z=1))

Next, consider the Lifting of sequents in which meta-variables occur in bound-
like positions.
var X
F3IXeX=y

We note this is valid (by cases: X is y; X is not y). [nformally, this would
be lifted to the sequent:

ttm Y
var X
F3XeX=Y

Summary 61

Instantiating X as z and ¥ as z + 1 gives the invalid sequent:

Fdzez=2z+1

All of the above problems would be removed by the addition in the ‘lifted’
forms of the extra condition X \| Y. However, unlike the conditions usually
added by the lifing procedure, there is a lack of underlying reason as to why
this condition should be added, and good intuitive reasons why it shouldnt.

For example, X \ Y in the previous ‘lifted’ sequent, wonld forbid instanti-
ation to the valid sequent,

FJzez=12z

13 Summary

The process of variable lifting is one which is informally employed in every
logic text book. The mechanization of logic reasoning requires that this
process be fully understood and shown to be sound.

Applicability of variable lifting is not limited to the use of the predicate and
function symbols described here. New symbols may be added freely. As long
as the appropriate ‘specialization’ rules hold, and in the case of quantifier-
like symbols, the appropriate ‘alpha conversion’ rule holds, variable lifting
will apply to sequents using the new symbol. As with particular predicate
symbols described here, if no elimination rule exists, the constraint of only
appearing in the consequent of a sequent to be lifted will also apply.

62 REFERENCES

References
[1] J.R. Abrial. An informal introduction to the b tool. B.P. Project
Report, Programming Research Group, Oxford University, 1986.

[2) A. Avron, F.A. Honsell, and LA. Mason. Using typed lambda calculus
to implement formal systems on a machine. Tecknical Report ECS-
LFCS-87-31, Laboratory for the Foundations of Computer Science, Ed-
inburgh University, 1987.

(3] N. Bourbaki. Theory of Sets. Hermann and Addison-Wesley, 1968.

4] EW. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
CLifls, 1976.

[5]1 P.H.B. Gardiner and T.N. Vickers. A logic for a theorem proving assis-
tant. Submitted to Science of Computer Programming, 1991,

[6] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-580, 583, October 1969,

[7] E.Mendelson. Introduction to Mathematical Logie, Van Nostrand, 1952,

[8] K. Milstead. A Framework for Describing Formal Systems. D.Phil.
thesis, University of Oxford, 1990.

[9] D.Scott. Notes on the formalization of logic. Study Aids Monograph
2 and 3, Sub-faculty of Philosophy, Oxford University, 1981.

[10] J.M. Spivey. The Z Notation: A Reference Manugl, Prentice Hall, 1989,

[11] T.N. Vickers. An overview of a theorem proving assistant. Australion
Computer Science Communications, 12(1):402-411, 1990.

12] T.N. Vickers and P.H.B. Gardiner. Variable lifting. B.P. Project Re-
4
port, Programming Research Group, Oxford University, 1989.

