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Abstract 

This thesis shows how the mathematical tbeory of Timed Communicating Sequen­
tial Processes (Timed CSP) developed by Reed and Roscoe may be applied to the 
specification and proof of complex real-time systems. A number of substantial 
additions are made to the theory, producing a powerful tool for the analysis and 
implementation of timing requirements and concurrency. 

The syntax and semantics of Timed CSP are extended to include new primjtive 
operators for timing and recursion. A language of behavioural specifications is 
formulated, together with a complete, compositional proof system. A significant 
case study is used to illustrate these developments. The language is then extended 
to include an element of broadcast concurrency. 
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Time present and time past 
Are botb perbaps present in time future 
And time future contained in time past. 
II all time is eternally present 
All time is unredeemable. 
What migbt have been is an abstraction 
Remaining a perpetual possibility 
Only in a world of speculation 
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Chapter 0 

Introduction 

As computing devices become faster and more powerful, we find ourselves ever 
more dependent upon systems which are difficult to understand and prone to 
failure. The failure of a commercial banking system, or a. company da.tabase, 
may be expensive and inconvenient. If the system is prescribing medicine, or 
landing an aircraft, then the results might be fatal. As the consequences of system 
failure become mOre severe, we must find ways to make applications of computer 
technology safer and more reliable. 

Over the past twenty years, mathematical techniques have been developed for 
the specification and implementation of transformational systems, which compute 
results from a given set of inputs. However, most of the systems in which safety is 
a primary concern are readive systems, whicb maintain a continuous interaction 
with the environment, and are often subject to complex timing constrainl'l. These 
systems cannot be viewed in a transformational setting. 

Real-time systems are reactive, and are often required to perform several tasks 
concurrently. To reason about such systems, we require a mathematical formalism 
that includes timing information as well as an effective treatment of concurrency. 
In this thesis, we explore and extend one such formalism: Timed Communicating 
Sequential Processes, first presented in [Reed & Roscoe 86]. Timed CSP is an 
extension of Hoare's CSP [Hoare 85] that allows us to reason about time-dependent 
aspects of concurrent behaviour. 

The aim of this thesis is to present a formal development method for real­
time systems, based upon the semantic models proposed by Reed a.nd Roscoe. 
Tbis method should support both formal and rigorous reasoning at every stage 
of system development-from initial specification to final implementation-and 
be applicable to systems of a realistic size. It is OUr hope that the results of the 
research described in this thesis may be used to improve the safety and reliability 
of real-time distributed systems. 



2 Specification and Proof in Rea1~tjme Systems 

The thesis begins with an introduction to the language of Timed esp, and 
the sema.ntic models presented in {Reed 88]. In chapter two, we extend this lan­
gua.ge to include primitive operators for modelling timeouts and interrupts, as well 
as alternative forms of parallel and sequential composition. These operators are 
given a "ernantics in Reed's Timed Failures model, and an intuitive explanation is 
provided for each operator in the extended language. 

In Reed and Roscoe's treatment of recursion, a strictly positive delay C is asso­
ciated with each recursive call. In chapter three, we investigate the consequences of 
dispensing with this delay. and give a sufficient condition for the validity of a recur­
sive definition. The theory is then extended to permit mutual recursion: processes 
may be defined by sets of mutually recursive equations. Semantics-preserving rules 
are established for manipulating these sets. which may be arbitrarily large. 

In the Timed Failures model, each language construct is identified with a set 
of possible behaviours. In chapter four, we show how the informal requirements 
upon a system may he captnred as behaviouraJ specifications-predicates upon an 
arbitrary system behaviour-and demonstrate that the notation of tbe semantic 
model gives rise to a simple specification language. We investigate the form of 
safety and liveness conditions in this language, and show that it may be used to 
formalise assumptions about the environment of a system. 

The notation introduced in chapter four may be used to produce a formal 
specification of a system, and the extended language described in chapters two and 
three may be used to suggest possible implementations. In chapter five, we present 
a complete proof system for relating specifications and implementations, using the 
notion of satisfaction introduced in [Hoare 85J. This system is compositioual, in 
the sense of [Hooman & de Roever 89J: 

Properties of a compound programming language construct (such as 
sequential composition and parallel composition) can be deduced from 
specifications for its constituent parts without any further information 
about the internal structure of these parts. 

This is essential if the proof system is to be employed in the development of large, 
complex systems. 

A formal specification of a real-time system will include many requirements 
that an be established without timing information. In this case, we may use the 
untimed models for CSP pTCsented in [Reed 88] to simplify our proof obligations. A 
substantial part of chapter five is devoted to a simple theory of timewise refinement, 
whichrelates uutimed safety conditions in the Timed Failures model to behavioural 
specifications in tbe untimed Traces model. The research described in this chapter 
is a continuation of research carried out jointly with Steve Schneider, some of 
which is reported in [Davies & Schneider 89J and [Schneider 89J. 



3 o Introduction 

If we wish to produce a readable specification of a large system, then we must 
take care to present our description in a clear, structured fashion. In chapter 
six, we show how the hiding operator may be used to structure specifications, and 
present a simple proof rule for abstraction which allows us to separate the concerns 
of concealment a.nd scheduling. The chapter continues with the introduction of a 
macro specification language-a first-order logic with time-which may be used 
to simplify the process of requirements capture. 

Chapter seven presents a case study in the application of Timed CSP to real­
time distributed systems. It begins with a detailed method for the specification and 
development of hierarchical protocols, based upon the proof system of chapter five. 
This method is then applied to the development of a local area network protocol. 
The specification language of chapter six is used to describe the behaviour of the 
protocol at different levels of abstraction, and the system description la.nguage of 
chapters two and three is used to suggest an implementation. 

In a description of a real-time process, it is sometimes convenient to include 
observable events that are not synchronisations: this can make it ea.'lier to describe 
and analyse certain aspects of behaviour. In chapter eight, we show how the Timed 
Failures model may be extended to include a treatment of broadcast conCllrrency, 
in wbich output events may occur without the cooperation of the environment. 
The resulting semantic model is then used to complete the implementation of the 
communications protocol presented in chapter seven. 

In the final chapter of the thesis, we discuss the remits of the research presented 
in the preceding chapters. We consider alternative approaches to the specification 
a.nd development of real-time systems, and outline directions for future work. The 
thesis ends wi th an appendix of mathematical proofs, and a. glossary of symbols. 



Chapter 1 

The Language of Timed CSP 

1.1 Communicating Sequential Processes 

In [Hoar~ 85], Hoare uses the word prOCess to denott: the beha.viour pattern of a.n 
object, ,'iewed through the occurrence Or availability of certain atomic actions, or 
events. These processes may be seen as entities which evolve and communicate 
with an environment by synchronising upon a set of such actions. An observable 
event is thus an atomic communication between a process and its environment. 

The syntax of CSP is a process algebra; the terms representing processes may 
be rewritten in accordance with certain algebraic laws. These laws are justified 
by a number of semantic models (or the language, in which each CSP term is 
associated with a set of possible behaviours. In the simplest of these models, each 
process is associated with a set of traces: sequences of observable events. The 
other models include more information in the semantic. set, and a.llow us to draw 
finer distinctions between processes. 

The syntax indndes primitive operators (or parallel composition, nondetermin· 
istic choice, nnd hiding. This makes for an elegant notation in which the problems 
o( concurrency, nondeterminism, and abstraction can be addressed separately. The 
syntax also provides constructs (or modelling deadlock, recursion, a.nd process re­
labelling: 

P :0= STOP IS/(IP Ia ~ pIp 0 pIp n pIp; pip II P I 
Pili P Ij(P) Ij-' (P) IP \ A Ip X • F(X) 

Tbe variety of operators in CSP is in contrast to other algebraic approaches to 
concurrency, in which much emphasis is placed upon obtaining a minimal set of 
opera.tors (or t.he syntax. 
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The semantic models can be used to specify the intended behaviour of a process. 
As each process is a55Qciated with a set of behaviours in the semantic model, a 
predicate on the semantic set corresponds to a requirement upon the process. For 
example, in the Traces model of esp, we may capture the requirement that process 
P never perform:> a visible action with the predicate 

'Vir E traces(P) - ir = 0 

In this model, the process STOP is associated with the singleton set {O], contain­
ing only the empty trace. We may conclude that STOP ill a process that meets 
this requirement. 

The Traces model M T is sufficient if we wish to analyse untimed safety require­
ments; these are constraints that proscribe certain events or sequences of events 
in the bistory of a process. However, if we wish to ensure that a synchronisation 
event is offered to the environment, we must include either readiness or refusal 
information in our semantic model. In the Failures model MF we associate each 
trace of a process with the set of events that may be refused afterwards. If the 
failure (tr,X) is present in the semantic set of process P, then P may perform 
trace tr and then refuse to engage in any event from X. 

In Hoare's book, a third aspect of behaviour is considered: the divtrgences 
of a process. A trace of process P is a divergence if it may be followed by an 
unbounded sequence of internal events, during which P may refuse to communicate 
with its environment. Reed's thesis [Reed 88J contains an alternative treatment of 
divergence. In his Stability model Ms , each trace of a process is associated with 
a stability value of 00 or 0, depending on whether or not the process may diverge 
after engaging jn that trace. These models form a simple hierarchy: 

MFs 

/~ 
MF Ms 

~/ Figure 1.1: Reed's models for CSP 

MT 

The Failures-Stability model MFs corresponds to the Failures-DivergenclS model 
used in [Hoare 85]. In Reed's model, processes are as5Qciated with sets of triples 
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(tr, 0, X). A stability \ralue Cf is attached to each failure; if the value is zero, 
then the process is stable after performing trace tr: it does not diverge. An 
infinite stability value indicates that internal activity may continue indefinitely. 
The arrows in the diagram correspond to projection mappings between the models; 
behavioural results established in one Thodel remain valid in models lower in the 
hierarchy. 

1.2 Timed Models 

The models of CSP presented in [Roscoe 82, Brookes 83, Hoare 85J do not inclnde 
timing information. By considering only the sequence of observable events, and 
the subsequent refusal sets, we obtain simplified semantic models with a nnmber 
of convenient algebraic Jaws. However, if the logical correctness of a design is 
dependent upon the pre('ise timing of certain events, we cannot complete our 
rea.~oning within the formalism of nntimed esp. 

If we wish to use esp to describe a real-time system, in which the precise 
timing of events is important, we must employ timed models for the language. 
The firs! timed model for esp, presented in [Jones 82], proved unsatisfactory for 
a number of technical reasons. The author suggested that a better model could be 
obtained by recording the events refnsed during the observation of a trace; this is 
a. feature of the later, more successful attempt made by Reed and Roscoe. 

Since Jones's attempt, a number of other timed models have been postu­
lated for eSP-like languages, notably in [Zwarico 86, Boucher & Gerth 87J- How­
ever, the timed model!;! presented by Reed and Roscoe in [Reed & Roscoe 86, 
Reed & Roscoe 87, Reed 88} have the foHowing advantages: 

'" the models are compatible with the existing un timed models of esp 

* infinite hiding and infinite alphabet transformations are possible 

'" deadlock and divergence may be distinguished 

• divergence may be distingnished from the possibility of divergence 

,. the models are arranged in a hierarchy 

The last consideration is all important one. In reasoning about complex systems, 
we may use the simplest semantic model that is sufficient to express the current 
requirement, safe in the knowledge that the argnment remains valid in the other 
models of the hierarchy. 

In his thesis [Reed 88J, Reed presents five timed models for esp. In each model, 
a process is associated with a set of possible timed behaviours. A typical element 
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of a semant.ic set is a tuple, the elements of which represent. different aspects of 
a possibJe behaviour. Just as the untimed models recorded trace, refusal and 
stability information, the timed models record timed traces, timed refusals, and 
timed stabilities. 

The hierarchy of models is ordered by the information content of the semantic 
sets. The models are linked by projection mappings, represented by arrow~ in the 
diagram below; the nature of these mappings ensures that results established in 
one model remain true as we move downwards. 

TMFS 

j~ 
TMFSMFS -­

/ ~'" TMF --- MF Ms ~-- TMs 

'" / 
MT 

Figure 1.2: Reed't; models 
for Timed CSP 

TMT 

The un timed models of CSP occupy the lowest positions in the hierarchy, with the 
untimed Traces model MT at the very bottom. The simplest of the timed models, 
TMT, associates a process with a set of timed traces. The Timed Failures model 
TMF, and the Timed. Failures-Stability model TMFS record the events refused by 
a process during and after the observation of each timed trace. 

The timed stability models (TMs , TMh and TMFS ), include information 
about the presence of internal activity. The stability value of a behaviour is the 
earliest time by which all internal activity is guaranteed to have ceased. In the 
Timed Failures-Stability model, each failure (s,N) of a process is associated with 
a single sta.bility value Q between 0 and 00, inclusive. If the process exhibits the 
external behaviour described by (s,N), then all internal activity must cease at or 
before time o. 
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The untimed failures-timed stability model TMFS records the set of events re­
fused after a timed trace, once the process has stabilised. This model bridges the 
gap between the Timed Stability model TMs and the Timed Failures-Stability 
model TMFS' These models are used in the theory of timewise refinement pre­
sented in [Schneider 89]; simple processes may be refined by the introduction of 
timing information and results established in the lower models give rise to corre­
sponding results in models further up the hierarchy. 

In the specification of a. real-time system, internal activity is usually of only 
secondary impOl'tance. The correctness of a design will be expressed as a set of 
constraints upon the occurrence and availability of ohservable events or external 
synchronisations. This i::. precisely the information that may be obtained from 
the Timed Failures model TMF • Furthermore, the timed models without timed 
refusals are complicated by the need to record the times at which events first 
become available, in order to give a satisfactory semantics to the hiding operator. 
For these reasons, we will restrict our attention to the Timed Failures model of 
Timed esp. 

1.3 A Model of Computation 

The models presented in [Reed 88] are compatible with the ea.rlier models of CSP 
given in [Roscoe 82, Brookes 83); as such, they share the same model of com­
putation: processes communicate by handshaking, observable events require the 
cooperation of the environment, and any behaviour of a process appears the same 
to all observers. To introduce timing information into this model of computation, 
several a.ssumptions are required: 

Real lime With the non-negative real numbers as our time domain. we have no 
lower bound on the interval between consecutive events. This allows us to model 
asynchronous processes in a satisfactory fashion, without artificial constraints upon 
the times at which jndependent events may be observed. 

Global Clock All observations are recorded with reference to an imaginary global 
clock. but this clock cannot be accessed by any part of the system being modelled. 
If a. sY6tem clock is required. it can be modelled as a simple Timed CSP process. 
Separate clocks may be modelled as separate processes, and need not keep the 
same time. 

Instantaneous Events All events have zero duration. If a system action takes a 
significant amount of time to perform, we use two events in our representation: one 
corresponding to the start of the action, another to the end. Similarly, we consider 
conununications bet ween processes to be instantaneous: delays in transmission, 
reception, and synchronisation are made explicit. 
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Tennination There is a single lenninatiQn event., .; I whose occurrence signa.ls the 
successful termination of a construct. If this constroet is followed immediately by a 
sequentia.l composition operator, then the,J event is hidden from the envirDnment, 
an.d termination occurs as soon as possible. 

Finite Speed We assume that no process can engage in infinitely many events in 
a finite time. This assumption is enforced by the axioms of our semantic mOdel, 
and leads to constraints upon the application of certain operators, e.g. indexed 
nondeterministic choice. 

Hiding and Control Observable events cannot occur without the cooperation 
of the environment. Further, if a process and its environment are both prepared 
to engage in a.n event at a particular time, then it occurs at that time. Hidden 
events do not require the cooperation of tbe environment, and occur as soon as 
they become available. 

Delay Constant We choose a strictly positive delay consta.nt 5 as a lower bound 
between consecul,ive events in a sequential process. This ensures that cause pre­
cedes effect in any observation of a process: if the occurrence of event a makes 
another event b possible, then b cannot occur at the same time as a. The cxlstence 
of such a delay greatly simplifies the analysis of sequential processes. 

1.4 Timed CSP 

In [Reed & Roscoe 86J, Reed and Roscoe present the following syntax for the lan­
guage of Timed CSP: 

P ::= 1.1 STOP ISKIP IWAlT t I 
a~PI P;P'I PDPI pnpi 

P II pip All. pIp III P I 
P\ A II(P) Ir'(p) IpX. F(X) 

This is identical to the syntax for untimed CSP presented in [Brookes 83J, but for 
the inclusion of the WAIT construct. The addition of this operator allows us to 
model most forms of timed interaction. 

To facilitate a. treatment of mutual recursion, we will consider the syntax of 
TCSP terms, ratber than processes. In chapter 2, we will add a clause (X) to the 
syntax to introduce variables from a set VAR, and write recursive ter[JJII in the 
form IJ X • P. A process will be a TCSP term with no free variables: its meaning 
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will be independent of the values of variables from VAR. However, the body of 
a recursive process will contain free variables, and it is necessary to consider Lue 

bindings of Lhese variables while reasoning about the process. 

The terms .1. and STOP correspond to the divergent and deadlocked processes, 
respectively. The process SKI? signals successful termination, and "'jUT t does 
nothing but terminate successfully after a delay DC time t. The event prefix opera­
tor a _ Pprefixes a term P with a single event a. A constant delay is a.s~ociated 

with this operation: control is not passed to P until S alter a is observed. No such 
delay is aswciated with the external and internal choice operators, nor with the 
sequential composition operator. 

The alphabet parallel operator, AHa' provides a means of synchronisation be­
tween processes. In the parallel combination P AllB Q, process P may perform 
events from set A and process Q may perform events from set B; the two pro­

cesses must cooperate on events drawn from the inters~ction of the two sets. In a 
simple parallel combination (\I), the two processes must agree on all events, while 
interleaved processes (I III run asynchrunou~ly. 

The hiding operator (\) allows us to abstract from internal events, concealing 
them from the environment of a process, and the renaming operators (f and /-1) 
allow us to relabel the events of a process. All of these operators will be discussed 
in greater detail in chapter 2, which presents a complete semantics for the langua.ge 
of Timed esp. 

1.5 Example 

We consider the user interface of a simple timed vending machine VMS. Users of 
this milChine may insert a coin and, after a short delay, press a bu Uon to release 
a drink. The machine then returns to its original state. 

The insertion of a coin is modelled by the event coin, and we allow a time 
tJra, br the coin to drop, before the event button is made a.vailable. If the tlser 
then presses the button, lhe machine will offer a drink: this corresponds to the 
availaJjlityof the event coke after a short delay of time tcotc· 

VMS == coin_ WAIT(tJrvp-o): 

button -+ WAIT (t coh - 6); 

coke - WAIT(trc...l-c); VMS 

Themi1chine takes time trm1 to prepare for another transaction. 

The machine VMS presents the user with no choice of product, so the button 
is an unnecessary feature of the interface. We may use the hiding operator to 
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conceal the event button from the user. Hidden events occur as sO<Jn "" they 
become available l so the machine VMS \ button will behave as follows: 

VMS \ button == coin - WAIT (td..", + t~,,10 - h); 

coke ~ WAIT (t~." - 0) ; (VMS \ botton) 

The delays before and after the button event are una.ffected by the hiding opera.tor. 

The process relabelling operator may be used to rename the events uf a process 
while retaining the control structure. Suppose that the vending machine is used to 
dispense a different product; we may model this change with any functiol1 { such 
that 

{(coin) == coin 

f (coke) 5:= pepsi 

which transforms the vending machine: 

f( VMS \ button) == coin - WAIT (til.."" + to"b - IS); 
pep'i ~ WAIT (t...., -0) ;f(VMS \ butt,,) 

Again, the delay times are unaffected. 

In the above example, the arguments of the delay operator WAIT are adjusted 
to take account of the constant delay of h tbat is associated with the event prefix 
operator. A more elegant description may be obta.ined using the delayed form of 
the prefix operator, introduced in the next chapter. 



Chapter 2 

The Timed Failures Model 

A timed event is a pa.ir (t, a), where time t is a. non-nega.tive real number and a 
is drawn from E, the set of all events. A timed trace is a finite sequence of timed 
events arranged in chronological order. For example, 

s " «1,a1,(3,b)) 

defines a timed trace in which eveul a is observed at time 1, and event b is observed 
at time g. The order of events in a trace depends only on the time at which they 
occur. Hmore than one event is observed at the same time, then these events may 
appear in any order in the trace. 

Timed refusals are sets of timed events. The presence of a timed event (l,a) 
in a. refusal set corresponds to the refusal of a process to participate in event a 
at time t. One of the assumptions of our computational model, that processes 
can evolve only at a finite rate, allows us to place the following constraint upon 
the construction of timed refusals: they are formed by a finite union of product 
sets j called refusal tokens. A refusal token is a cross product J x A, where J is a 
half-open finite interval within [0,00) and A is a set of events. For example, the 
timed refnsal defined by 

H " [1,2)x {a,b} 

consists of a single refusal token, and conesponds to the refusal of a process to 
participate in events a and b between time 1 and time 2. 

Timed failures are timed (trace, N'/usaI) pairs. The presence of a timed failure 
(s,NJ in the semantic set of a process indicates tha.t the process ma.y perform s 
while refusing the timed events in No There is no reason wby the same timed event 
(t. a) should not be present in both components of a timed failure. This will occur 
whenever a. process performs as many copies oC event a as it can a.t time t j and 
thus refuses to perform a further copy of a at that time. For example, the failure 

((1, a),(3, b)), [1 ,2) x {a, b)) 
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describes a behaviour in which a process engages in event a at time 1, and refuges 
to perform a second a Irom this time onwards. 

When considering the interaction of a process with its environment, we may 
view a timed trace as a result of an experiment performed upon a process: the 
environment offers timed events to the process, which the process mayor may not 
accept. The refusal set represents a partial record of these offers: our knowledge 
of the experiment. Tbe presence of a pair (t, a) in the refusal set indicates that 
the environment offered more copies of the event a at time t than the process was 
willing to perform. 

2.1 Notation 

We use TE to denote the set of all timed events, and TE, to denote the set of all 
timed traces. TINT is the set of all finite intervals within the time domain TIME, 
which is [0,00). RTOJ( is the set of aU possible refusal tokens, RSET denotes the 
set of all timed refnsals, and TF is the set of all timed failures: 

TEME x ETE '" 
TE;"; == {.s E seq TE I (t,a) precedes (ll,a') in s => t:S;; t'} 

TENT'" (Ib,') I 0 <; b <' < co} 
RTOK'" {IxAIIE TINT"AEPE} 

RSET '" {U C ICE F RTOK} 

TE' x RSETTF '" 
TSF '" P TF 

In the Timed Failures model, processes are represented by elements of TSr , the 
space of sets of timed failures. To reason abont the possible behaviours of a 
process, we will use the language of set and sequence theory. We inherit the 
following notation from [Hoare 85J: 

() the empty trace 

concatenation of traces 

in contiguous subsequence 

The predicate s/ in s£ holds precisely when trace 3/ is a contiguous subsequence of 
3£. To give a semantics to our language, and to simplify the process of reasoning 
about it, we define a variety of simple operators on timed traces, timed refusals, 
and timed failures. 
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First and Last 

The first and last operators are defined for all timed traces, returning the first and 
last events in a trace l if non-empty. If the trace is empty, they return the special 
non-event f. All that is required of £ is that £ fI- E. We also define begin and end 
operators, which yield the times of the first and lMt events: 

jirst(()) = E: I,gin(()) " 00 

jirst«(t,a))~s) = a leg;n«(I, a))~s) = I 

lastCO) = E: wd(()) = 0 

last(s~«t, a))) = a wd(s~«t, am = t 

The values chosen for the empty trace are the most convenient [Dr the subsequent 
ma.thematics: the possibility of a trace being empty will nol require special con­
sideration in OUf specifications and proofs. It proves convenient to define head and 
foot operators on traces: 

h'ad(s) = (b,gin(s),ftr>t(s)) 

/ool(s) = (wd(s),lasl(s)) 

Tirnes 

The times operator returns the set of time values that. appear in a refusal set.: 

Umes(~) = (tI3"II,a)E~) 

We ma.y use this operator to define begin a.nd end operat.ors on refusal sets: 

b,gin(~) = in/(times(~)) if ~ " {) 
;,gin({}) = 00 

,nd(~) = sup(l;mes(N)) if ~ " () 
end( {}) = 0 

For convenience, we extend the above definitions t.o t.imed failures: 

;,g;n(s,~) = min{b,gin(s), b,g;n(~)} 

wd(s,~) = max{wd(s), ,nd(~)} 
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During, Before and After 

We define the during (n, before (n, and after (1) operators on timed traces. The 
first returns the maximal subsequence of tbe trace with times drawn from set I. 
The others ret urn the parts of the trace before and after the specified time. 

OTl = 0 
(((I, a))~s) 1 I = ((I, a))~(. 1 I) ;[ 1E I 

(, 1 I) otherwise 

.tt = '1[0,1) 

.1 ='1(1,00)
' 

where I is a set of real numbers. In the case that I = it} for some time t, we 
may omit the set brackets. These operators may also be applied to timed refusals, 
with the following interpretations: 

NIt Nn([O,I)x E) 

N1 t _ Nn([I,oo) x E) 

Nl[I"t,) - Nn([I"I,)xE) 

Recalling that E denotes the set of all events, we see that these restrict a refusal 
set to events that may be refused before, during, and after the specified times. The 
definitions of before and after on refusal sets differ from those on timed traces, For 
trar.-es, s t t includes events at t; in the case of refusals, such events are e;{c1uded. 
The opposite is true of the after operator. This choice of definitions is the most 
convenient for timed failures specifications. 

Restriction 

We use the l symbol to denote the restriction of a timed trace or refusal to a set 
of events A. 

ol A = 0 
((I, a»~s l A = ((I, a)n, L A) if a E A 

s l A otherwise 

NlA = Nn([o,oo)xA) 

The hiding operator on traces may be defined as a restriction: 

• \ A = 'l (E - A) 
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Alphabets 

We define an alphabet (or event set) operator on traces and refusals, yielding the 
set of evenls present: 

0"(') " {aEEI31.«(I,a»ins) 

O"(N) " {aEEI31.(t,a)EN) 

The event set of a term P is the set of all observable events that may be performed 
by the cQrresponding process: 

alP) " {a E E 13(s,N) E TripI' a E O"(s)j 

where :FT[p] denotes the semantic set of P. 

Subtraction
 

To reason about any form of sequential composition or delay, we require a. sub­

traction operator that shifts timed traces and refusals through time:
 

()~I " () 
«(I" a))~s) ~ 1 " «(I, - I, a))~(s ~ t) if t, ;;:: t 
(((I"a))~s)~t " s~1 otherwise 

N~I" {(t,-t,a)I(I"a)ENAt,;>I) 

It proves economical to define a subtraction operator on timed failures: 

(s,N)-t " (s~t,N~I) 

Equivalence and Closure 

We define an equivalence relation upon the set of timed traces: 

u ~" ¢:} u is a permutatioll of v 

Note IlIat, as timed traces are chronologically ordered sequences, equivalent traces 
ma.y differ only in the order of a.ppearance of simultaneous events. We use this 
equivaJence to define a closure operator on sets of limed failures: 

CL.(S) " {(s,N)E TFI3(w,N)ES"",,w) 
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2.2 The Timed Failures Model 

The Timed Fa.ilures Model TM,. is defined to be those elements S of TSF which 
satisfy the following axioms: 

1. (0, {}) E S 

2. (s~w,N) E 5 => (s,N r b,gia(w)) E 5 

3. ("N)ESAs,,"w=>(w,N)E5 

4.	 (s, N) E SAt" 0 => 3 N' , R5ET • N ~ N' A (s, N') E 5 A 

(( t' '" t A (t', a) ~ N') => (s rt'~(( t', a»), N' rt') E 5) 

5. It t , [0, =) • 3 a( t) , N • (s, N) E 5 A <ad(s) '" t => #(s) '" a( t) 

6. ItN', RSET. (s, N) E 5 A N' ~ N => (s, N') E S 

The first axiom requires that the empty failure (0, {}) is a possible behaviour of 
any process. The second is a prefix closure condition: if a process may perform a 
trace s"""w while refusing ~, then it should be able to perform the prefix s, with 
the refusal set truncated accordingly. The third axiom insists that the Qrder of 
events in a timed trace depends only upon the times at which they are observed, 
no additional information about causal relationships is available. 

The fourth axiom enforces our assumption that processes may undergo only 
a. finite number of state changes in a finite time. For any failure (s, t{) lind time 
value t, there will always be a maximal refusal set l{' that captures all of tm refusal 
information for the current trace, at least until time t. Given any tim€ tl ~ t, 
every timed event (t\ a) not in l{' is a possible extension of s til. As W is a. refusal 
set, it must be a finite union of refusal tokens, and hence represents only finitely 
many changes of state. 

The fifth axiom places a similar condition upon traces. For any process S, we 
can exhibit a function n that places a bound upon the number of events observed 
before a given time. If trace s ends at or before time t, then the length of s 
must be no greCi.ter than n(t). This bounded speed condition leads to constraints 
upon the application of infinitary operators such as prefix choice and indexed 
nondeterminism. The final axiom states that if a process may refuse the whole of 
~, then it ma.y refuse any subset of R A similar condition holds in the untimed 
failures model described in [Brookes 83J. 

We define a distance metric d on TSF by considering the first time I.t which 
the clements of two sets may be distinguished. If (s,~) is a. timed failure, we define 
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a projection function on elements of TSF : 

S t t '" {(s,N) I (s,N) E S 1\ 'nd(s,N)';; t} 

If S is a element of TSF then 5 r t is the set of elements of S which do not extend 
beyond time t. We may now define the metric: 

d(S, T) '" inf({~-' I S f t = T t t}U {I}) 

This definition is equivalent to the one used in [Reed 88]. althotlgh the definition 
of Sri differs slightly. The metric will be needed when we give a semantics to 
recursive process definitions. 

2.3 A Semantic Function 

\Ve will give a semantics to a language TeSp of Timed CSP terms, defined by 

P ,,= .l ISTOP ISKIP IWAIT t IX I .tom' 

a ---+ P Ia ---.:.... pIp; P ) p ; p I sequential composition 

PDP 1P n p I a : A ~ p. I alternation 

P II pIp AUB pIp J!/ pIp ~ p I parallel composition 

P \ A If(P) )/-1 (P) I abstraction and renaming 

p~plp?plptPI timing 

Jl X • P II ~ X 0 P I(X; = Pi); recursion 

In the above syntax, clause X introduces variables from a set VAR; these are 
required for the treatment of mntual recnrsion presented in chapter 3. To give a 
semantics to this langua.ge, we require a formal treatment of varia.ble bindings. 

We define a domain of environments, ENV, consisting of all mappings from 
variables VAR to the space of all sets of timed failures TSF, and thus a semantic 
function for terms: 

ENV'" VAR ~ TS, 
:FT E TCSP ~ ENV ~ TS, 

We writ.e F T [p]p to denote the semantics of a term P in an environment p. This 
may be evaluated by associating each free variable X with its value p[X] in the 
current environment. 
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We give the following semantics to syntactic substitution: 

FdPIQ/XI!p ~ h[P)p[FdQ)p/Xj 

where p[ Y / Xl is a new environment, defined as follows: 

pry/xli Z! ~ y ;[Z=X 

plZ! otherwise 

A Timed esp process will be represented by a TCSP term with no free variables: 
its meaning will be independent of the current environment. If P is a process then 
we may infer that 

Vp,p',ENV • FT!P!p=FT!P!p' 

In this case, we may sensibly omit the environment parameter. 

2.4 Sequential Processes 

Atoms 

The divergent process .1 can perform no observable actions, but internal activity 
may continue indefinitely. In the Timed Failures model we do not record the 
possibility of internal activity, and so .1 is identified with the deadlocked process 
STOP. The only trace of either process is (), the empty trace. 

Fd.Ljp ~ HO,N) I N E RSET} 

FT[STOPjp ~ {((),N) IN E RSET} 

Both processes are capable of refusing any event from I: at any time. 

The process SKIP models successful termination in Timed esp. This is sig­
nalled by an occurrence of the special event..;, the only action that this process 
may perform: 

:Fr[s[ap)p ~ HO,N) i ~ ¢ u(N)) 
u 
H((t,~)),N) It;> 0 /\ ~ ¢ u(N rt)} 

Either no events have been observed and tbe event.; is available, or ..; has been 
observed (at some time t) and was continuously available beforehand. 
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The delay process WAIT t represents delayed successful termination, with the 
event..; becoming available at time t. It can be used to introduce an additioual de" 
lay into a sequential process, or combined with other operators to produce timeout 
and interrupt constructs. 

Fr IWAIT tIp'"	 {((),N) 1,/ l' ~(N 1t)) 
U 
{( «( t', ,(1), N) I t' ;> t A ,/ l' ~(N Tit, t'»)} 

If no events have been observed then ,f must be available continuously from time 
t onwards. Otherwise, ..; is observed at a tjrne t' ~ t and made available at all 
times between t a,nd i'. Vol'"."'" .. t(,.... A' ~ 

Prefix 
The event prefix operator is used to introduce an observable event into a process 
description; the expression a -+ P denotes a process that is prepared initially to 
engage only in event a, and then behave as process P. There is a non-zero delay 
associated with this operation, corresponding to the time taken to change from a 
state in which event a is available, to one in which it has been performed. The 
undecora.ted prefix operator is associated with a coustant delay 8. 

Tria ~ Pip'" HO,N) I a l' ~(N))
 
U
 

{«(t, a))~s, N) It;> 0 A a l' ~(N t t) A 
(" N) - (t H) E Fr IP] p} 

If no events have heen observed iu a history of a -t P, then event a cauuot 
be refused. Otherwise, il is the first event to be observed and the subsequent 
behaviour, following a delay of 8, is due to P. 

The above operator will be used only when the minimum delay following an 
event is unimportant. If we are interest.ed ill the delay following the observat.ion of 
an event a then we decorate the prefix operator with a time value: the expression 

a~P 

denotes a process which is willing to perform an event a. If a occurs, the process 
will !hen behave as process P, ouce a delay of time t has elapsed. During the 
timedday, the process behaves as WAIT, refusillg to participate in any external 
activity. This is mustrated by the equivaleuce: 

a~P =. a-t WAIT(t-8);P 
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The semantics of this operator may be derived from the equations for the delay, 
prefix and sequential composition operators. 

We retain the b constant as a lower bound on the delay associated with the 
prefix operation. This is necessary if we wilih to avoid the possibility of causally­
related simultaneous events. To see why this is a problem, postulate the existence 
of an instantaneous prefix operator --+ with the following interpretation: Lhe ex­
pression a ---+ P denote;; a process that is initially prepared to enga.ge in an event 
a; once 4 is observed, the process immediately behaves as P. If P is ready to 
perform a.n event immediately, then that event may be observed at the same time 
as a. Consider the process 

a --+ b ---+ STOP 

This process may perform b at any time t, providing tbat it performs a at (or 
before) that time. Now consider the parallel combination 

a --+ b _ STOP H b ---+ a ---+ STOP 

We expect this combination to deadlock immediately. However, both components 
may perform a and b together at any time t. Simultaneous events may appear in 
any order in a timed trace, so the parallel combination may perform traces from 
the following set: 

{()} U {, It;, 0 A , '" «t, a), (t, b)) } 

This clashes with our intuition about processes and observable events. Events a 

and b are inseparable, yet they appear separately in traces of a process. As we 
might expect, t his situation is proscribed by an axiom of the semantic model: 

(,~w,~)ES => (,,~tb,gin(w))ES 

We do not allow an effect to precede its cause in a. trace. 

Sequential Comp osition 

The expression P; Q denotes the sequential composition of processes P and Q. 
No delay is associated with this operator; the fast event of process P rr.ay occur 
at the same time as the first event from process Q. This need not conflict with 
our intuition about causal relationships and delay, as the initial state of Q is 
independent of the final state of P. A behaviour (s, N:) of P; Q may be ~ither 

1. a behaviour of P which does not correspond to successful termination, or 

2. a terminating behaviour of p. followed by some behaviour of Q 
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In the first case, s is a trace of P in which"; is not observed, a.nd would be refnsed 
if offered; this corresponds to the first component of the semantic set. In the 
second case, the trace s is obtaiued from two traces, Sp and SQ, performed by P 
and Q respectively: 

.Trip; Qlp '" ((s,H) I ~ ¢ 0"(5) II
 
\I I: TINT. (s,H U (I x {J})) E FT[PJp)
 

U
 

CL.{(.'p~so,H) I ~ ¢ O"(sp) II ('o,H) - t E FdQJp II 

('p~«(I, ~)), H r t U (10, t) x {~})) E.TT[PJp} 

If control has been transferred at time t, then the tra.ce 5p could have been extended 
with a ,j event at that time. This event is hidden from the environment by the 
sequential composition operator, and occurs as soon as it becomes available; it 
most be possible for P to refuse"; up until time t while performing trace Sp. The 
subseqnent behaviour is due to process Q. 

The above equation is complicated by the fact that both proceSSes are able to 
perform actions at time t. Simultaneous events may appear in any order in a timed 
trace, so we must ensure that our semantic set is closed under trace equivalence. 
The resulting definition is unsuitable for some applications; in chapter 5 we will 
see that it faiJs to preserve timewise refinements. Because of this, we introduce a 
delayed ~eqnential composition operator: 

P;Q '" P; WAITb;Q 

This defines a process that behaves as P until successful termination is signalled, 
then waits for an interval length 8 before behaving as Q. This delay allows us to 
separate the events of the first process from those of the second. 

Nondeterministic Choice 

The expressiou P n Q denotes the nondeterministic choice between processes P 
and Q. This operator is sometimes called internal choice, as there. is no way for 
the eJlvironment to influence the flow of coutrol at this point: 

Fr[pn QJp '" Fr[P!pUFrIQ!p 

We require only that every behaviour of a nondeterministic choice is a possible 
behaviour of at least one component. 

If wish to model arbitrary nondeterministic choice, then we must verify that 
there is a uniform bound upon the speed of the alternatives. This will ensure 
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that the resulting process can perform only a bounded number of events before 
any finite time t, in accordance with axiom 5 of section 2.2. We say that a set of 
processes {P, liE I} is uniformly bounded if there exists a function n: TIME __ N 
such that for a.ll environments p 

Vi, I; t, TIME. (s,N) E Fr[P;]p A 'nd(s) " t => #Is rt)" .It) 

This definition is due to Steve Schneider, and provides a necessary and sufficient 
condition for the following semantics to be well-defined: 

Frlnp;]p " Uh[P;]p 
JET iET 

This operator may be used to model nondeterministic delays in seqnential pro.­
cesses. We overload the delay operator 

WAIT T " n WAIT t 
«T 

to define a process that is prepared to terminate after some time t, where t is 
drawn from the set T. 

Deterministic Choice 

The expression PDQ denotes a deterministic choice between processes P and 
Q. This operator is sometimes called general choice (or external choice) as the 
environment IIlay select either P or Q by offering to engage in events which are 
initially possible for just one of the two processes. The choice is resolved by the 
first observable event that occurs. 

FrlPO Qlp "	 («),N) I IO,N) E Fr[P]pnh[Q]p} 
U 

((s,N) Is;< 0 A (s,N) E Fr[P]pUh[Q)p 
A
 
IO,N t &'9;'(S) E h[P]pnFrlQ!p]
 

Any behaviour must be a behaviour of at least one component, and any event 
refnsed before the first observable event must be refused by both prOCesses. 

We know from [Reed 88] that it is not possible to define a. deterministic choice 
operator for Timed CSP which offers a choice over an infinite set of processes. 
However, [Schneider 89J shows that we may offer a choice over an infinite set of 
events. As an example, suppose that we wish to define a prOcess that is ready to 
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accept any na.tural number vaJue on a channel c. Such a process may be modelled 
as an infinite prefix choice. The expression 

c.n: c.N~ P" 

denotes a process that is ready initially to engage in auy event c.n for n E N. If 
c.n is observed, the process delays for time t~ and then behaves as P". 

FT!.,A--"..,P.]p " {((},~)iAnd(N)=()} 

u 
{(((t,a»~s,N) I a E A A I;' 0 A 

begin(s) ~ I + t. 
An d(N t t) = {} A 
(s,N) - (I + t.) E hlp.!p} 

If no events have been observed then all of the events in set A are available. 
Otherwise some event a from A has occurred, and the subsequent behaviour is 
that of p•. As in the case of indexed nondeterministic choice, this sema.ntics IS 
well-defined if and only if the set of alternative processes is uniformly bounded. 

Relabelling 

We use process renaming functions to systematically rename the observable events 
of a. process while retaining the control structure. There are two syntactic clauses 
for relabelling processes, allowing the USe of many-to-one or one-to-many relations, 
providing that either the relation or its inverse is a, function I on ~. Suppose that 
a and b are events such that h == I( a). 

The inve7'se image of P may perform a whenever P may perform b: 

hlr'(p)]p " {(s,N) I (/(s),f(N)) E hlp]p} 

and refuse a whenever P may refuse b. 

The di7'ed image of P may perform b whenever P may perform a. As I may 
be many-to-one, the refusal of an event by process P corresponds to the refusal of 
a set of events by the image process. 

hlJ(p)]p " {(J(s),~) I (s,r'(N)) E hlp]p} 

In the above equation, the expression 1-1 (N:) denotes the set 

Itt, a) I (t,f(a)) E N} 

This is the inverse image of refusal set t{ under function I. 
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Abstraction 

The hiding operator allows us to conceal thooe events in the history of a system 
which do not require !.he cooperation of the environment. Such a structuring mech­
anism is necessary if we wish to produce readable descriptions of large, complex 
systems. The expression P \ A denotes a process that behaves as P, exc~pt that 

'" events from A happen as soon as they become available 

'" only events outside A may appear in a trace 

In our model of computation, an event occurs as soon as all of the processes 
involved are willing to cooperate. A hidden event does not require the cooperation 
of the environm~nt, and will occur as soon a.<I it becomes available. 

Events which occur as SOOD as they are made available may be continuously 
refused by the process in question: if (8, N) is a behaviour of a process P In which 
every instance of event a occurs as soon as possible, then 

("NU[O"nd("N)) x In}) 

is also a behaviour of P. This is a consequence of the fourth axiom of our semantic 
model, which asserts the existence of a maximal refusal set containing N: 

("N) E SAt;> 0 =>	 3N': RSET. N <;; N' A ("N') E S A 
«t' .;; 1 A (I', a) ¢ N') => (, rt'~(I', a»), N' fl') E S) 

Now suppose that there exists a time t < end(s, N) such that (t, a) ¢ w. By our 
choice of Nt, we may infer that (t, a) is a possible extension of the trace s i L This 
conflicts with our assumption that (s, N) is a behaviour in which every copy of a 
occurred as soon as it becomes available: .~ t t already contains as many copies of 
a as P was able to perform up to and including that time. Hence 

(NU[O,end("N))x{a))<;;N' A ("N')EFrlP] 

The result follows by the sixth axiom of the semantic model: the refusal sets 
corresponding to a trace s are closed uncler the subset relation. 

The hehaviours of P \ A may be obtained from those failures of P in which 
events from A are continuously refused: 

FT[P \ AjP '" {(, \ A, N) I (" NU (10, end(', N) x A) E FrlPJp} 

Any events from A which appear in trace s are removed by the trace concealment 
operator, defined in section 2.1 by 

'\ A '" 'l (E - A) 

where ~ denotes set restriction. 
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2.5 Parallel Processes 

Alphabet Parallel 

In [Hoare 85), each process P is associated with a set of events oP, the process 
alphabet. If P appears in a synchronised parallel combination, events from uP 
require the moperation of P. III Timed esp, the need for process alphabets is 
removed by the introduction of an alphabet parallel operator. This operator is 
parametrised by two sets of events; in the parallel combination 

P .• II B Q 

process P may perform only those events in A, process Q may perform only those 
events in B, and the two processes most cooperate on events drawn from the 
intersection of A and B. Events that are in neither A nor B are proscribed. 

If s is a. trace of this parallel combination, the restriction of s to events from 
set A yields t.he trace of events performed by process P. Similarly, restricting s to 
the set Byields the trace of events performed by Q. If these traces are Sp and sQ 

respectivdy, then s is an element of the set 

,p,iIBso " {,ETO:.lslA=,p"'IB=so"··,(AUB)=s} 

For an alphabet parallel combination to refuse an event, that event must be refused 
by one or the component processes. A typical refusaJ set is thns the union of refusal 
sets from P a.nd Q, together with any set of events from outside A U B . 

.rT!PAIIBQ!p" {("N p UN OUNR)13sp,sO' 

a(Np)<:;A"a(No)<:;B" 
a(NR) <:; 1> (A U B) " s E (sp AIIB sO) " 
(,p,Np) E .rrlP!p" (so. No) E FrlQlp} 

Simple Parallel 

The synchronised parallel operator places two processes in lockstep. In the parallel 
combina.tion P \I Q processes P and Q must cooperate on every action that is 
performed. This operator is thns a special case of alphabet parallelism 

P II Q '" poll" Q 

with &. simple derived semantics 

hlPIIQ!p " {(s,~pUNoll(s,Np)EhlpJp"(s,No)Eh!QJp) 
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Interleaving 

The interleaving parallel operator allows two processes to evolve asynchronously. 
In the parallel combination 

PIl\Q 

the two processes are independent of each other; no cooperation is required on any 
action. As a result, any t.race of the process Pili Q will be an interleaving of two 
traces, one from each component. The set of possible interleavings of two timed 
traces u and v is given by 

u III v " {" TE, I v, , TIME ° s 1 '" u 1 t~v 1 t} 

Trace s is a possible interleaving of traces u and v if, for all t, an event is in s at 
time l iff it is in 11. or v at that time. The equivalence operator ~ is required, as 
the order of simultaneous events in s may differ from the order of the same events 
in 11. or v. Note that we cannot simply require that s -== u"'v, as 11. ...... \1 need not be 
a valid timed trace. 

Fr[PIIIQ]p" {("NlI3,p,soo sE('p\l!so)A 
(,p,N) E FdP]p A 

(so,N) E FrlQJp) 

An interleaving of two processes will refuse a timed event exactly when bulh com­
ponents are unwilling to participate; any refusal set of the parallel combination 
must be common to both processes. 

Communicating Parallel 

We can define a hybrid parallel operalor which allows processes to interleave on 
aU but a given set of events; in the parallel combination 

pil Q 
c 

processes P and Q must cooperate on actions from set C, Other actions may be 
freely performed by either component, with no need for synchronisation: 

FrlP II QJc " {("N) 13'p,Np,so,No ° 'E Sp II '0 A c 
N lC=(NpUNo)lC A 

N\C=(NpnNo)\C A 
(sp,Np)EFr[P]p A 

('o,No) E FrIQlp ) 
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Events from the interface set C must be performed by both componen ts, while 
other events 1Ue interleaved: 

all. ~ {slslC~"IC~slC/ls\CE(u\Clllv\C)} 
c 

Event from C are refused jf they are refused by at least one of the components; 
other events must be refused by both components. 

The semantic set of this operator is well-defined: it satisfies the axioms of TMF 

and may be used in recursive definitions. This is a consequence of the following 
syn tactic equivalence; 

pIIQ'" c(l(P)AIIBr(Q))
C 

where the process relabelling fuuctions 1, r, and c are given by: 

I(a) 

r(a) 

-

-

a 
I.a 

a 
r.a 

if a E C 
otherwise 

if a E C 
otherwise 

cia) 

c(l.a) 
c(r.a) 

-

-
-

a 

a 
a 

if a E C 

if a rt C 
if a rt C 

and 

A ~ I(E - C) u C 

B ~ r(E - C) u C 

This equivalence is demonstrated in section A.l of the appendix. 

Indexed Parallel 

An indexed form of the alphabet parallel opera.tor can be used to define networks 
of communicating processes: 

(\L, P;) i E 1 .. 2 =- PI Al 11A 2 P: 

(II , P;) i E 1.. a ~ p. AJUA, (\IA, P,) iEl .. n-l 
A 

Each component Pi may perform only those events which lie in the corresponding 
interface set Ai. If an event a is present in more than one of these sets, then every 
process in the set {Pi I a E A,} must cooperate on every occurrence of a. 
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2.6 Tirneouts and Interrupts 

Timeout 

The expression P Do Q denotes a timeout construct, in which control is passed to 
process Q if P fails to perform any external actions before time t. A delay of fJ is 
associated with the transfer of control: 

Fr[P ~ Q]p '" {(s, N) I b,g;n(s)'; t II (s, N) E Fr [p)p} 

u 
{(s, N) I b,g;n(,);> t + IJ II ((), N r !} E Frlp), 

II 
(', N) - (t +!J) E Fr IQ] p } 

A trace s is a trace of P if an event is observed before time t, and a trace of Q 
otherwise. Any event refused before time t must be refused by P. The 6 delay 
may be removed without affecting the validity of the semantic definition, although 
its presence gives rise to a syntactic equivalence: 

P<!-Q '" g((1(P}OWATTt;'-~f(Q))\') 

where the process relabelling functions I and 9 are defined by 

fla) '" f·a 

g(1.a) '" a 

and event e is chosen such that e 1= I.a for any a in E. As in the case of t.he 
communicating parallel operator, we may use this equivalence to show that the 
semantics of PDQ is well·defined. 

Timed Interrupt 

Another useful timing construct is the timed interrupt operator. The expression 

pi Q, 
denotes a process in which control is passed from P to Q at time t, rega:-dless of 
the progress made by P. A delay of 6 is associated with the transfer of control. 

FrlPjQ]p '" {("N)lb,gin(slt);>t+!JII(,tt,Ntt)EFrIPj,
 
II (', N) - (t +!J) E Fr[Q)p }
 

Any behaviour of this process may be decomposed into behaviours of P and Q by 
considering the parts of the behaviour that occur before and after time l 
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Event Interrupt 

Although not strictly a timing construct, the event interrupt operator is easily 
modelled withiu a. timed context. The ex:pression 

P?Q 

denotes a process that behaves as P until the first occurrence of event e. Once e is 
observed, control is passed to process Q, following a small delay of 6. The delay is 
required by our intnition concerning cause and effect; an initial event from process 
Q may be enabled by f', and so cannot occur at the same time. 

FrlP'?Qlp ;0 (s,H)lq!.(s,N)~(s,N)EFriplp) 

u 
{(s,H}131.	 srq'~«I,,» ~ 

q'.(N ttl ~ 

6,g,n(s1 t»I+<5 ~ 

(s t'\"H tt)EFrlp]p ~ 
(s,N) - (I H) E Fr[Q]p} 

Any behaviour in which e has not been observed must be a behaviour of P; in this 
case, e must be available. Otherwise, e mnst be observed first at some time t; we 
may thea decompose the behaviour to obtain behaviours of P and Q. A sensible 
requirement is that e ¢ C1{P), to avoid the possibility of P interrupting itself. 

A more general form of this construct allows interrupts from a set E, with a 
corresponding choice of consequent processes: 

FdP \1 Q,]p ;0 ((s,N) I Enu(s,H) ~ {} ~ ("H) E Fr/Pjp}
,eE 

U 

{(s,H)!31;,EE. srqE~«t,,) ~ 

En u(H t I) ~ {} ~ 

6,gin(, 1 I) > 1+<5 ~ 

(stl\E,Ntt)EFr[PjP ~ 

(s,H) - (I H) E FrIQ,lp} 

In either case, the part of (5, l{) pertaining to P is obtained by taking that part of 
the behaviour that lies before time t, and removing any mention of the interrnpt 
events. There is no Heed to delete e or E from the refnsal set, as we know that 
these events are not refused before time l. 
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2.7 Interaction 

Choice and Delay 

Consider the process P defined by 

P == a --f STOP 
o 
WAIT 1 ; b ~ SKIP 

At any time before time 1, this process is prepared to engage only in event a; the 
subsequent behaviour is that oC the deadlocked process STOP. However, if one 
time unit has ela.psed since control W<L5 passed to the process, the event b is also 
available. Now consider the process Q defined by 

Q '" (a~STOP 

o 
WAIT 1); b ~ Slap 

This process also offers event a until time 1. Unlike process P, it then with­
draws the offer. At time 1, if a has not occurred, the WAIT construct offers the 
termiuation event. This event is hidden from the environment by the sequential 
composition operator and occurs immediately, resolving the deterministic choice 
and passiug control to the process 

b ~ SKIP 

If event u is offered to the process at time 1, the out.come will be nondeterministic. 

In process P, the WAIT operator simply delays the offer of e\'ent b, it does 
not affect the availa.bility of event aj the termination event that enables event b is 
hidden from the choice construct. In process Q, it acts as a timeout on tne offer of 
U; if this event does not occur at or before time 1, the choice construct tenninates 
and the offer is withdrawn. 

Interleaving and Termination 

The termination event ca.n be used to interrupt the execution of a proc~~. In the 
expression 

(a ~ b ~ STOP III WAIT 2); P 

control is passed 1.0 process P after two seconds, rega.rdless of the progres! made by 
the first component of the parallel construct. Note that the subsequent hehaviour 
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is independent of the state of the interrupted prucel;l;. The same is true of the 
interrupt constructs P.i Q and P \l Q. 

Without an explicit record of the system state, we must use some form of 
polling ifwr are to interrupt a process in a reliable way; a process must. cooperate 
on an interrupt event. For example, in the constrnct below, the interrupt event 
break is disa.bled after process P performs a lock event; the break remains disabled 
until one second after the next unlock event. 

P =- WAIT I ; lock ~ unlock ~ P 

o 
break ~ 51{!? 

The deterministic choice ensures that the environment is olTered break for a full 
second hefore lock becon!('S availCLble (again). 

Process P permits a break event only when the number of {oek events is equal 
to the number of unlock events; this condition might be a prerequisite for a safe 
term..inatlon of the pruct:'~~. The combina.tion of deterministic choice anrl delay 
provides for a simple representation of priority choice in Timed esp. 

Hiding and Synchronisation 

Consider the proCt'ss P defined by 

r '" «WAIT J; a ~ STOP) 'oJlllO,.) (I ~ S!<JPO a ~ STOP)) \ a 

For the first second of its existence, P is prepared to engage in event b and termi­
nate time 8 later. Internal event a is not yet possible, as it requires the cooperation 
of bot.h sides of the parallel combination. At time 1, if event b has nut m;curred, 
a becomes available on both sides of the parallel operator. As i\- bidden event, a 
oecms as soon as it becomes available, resolving the choice against b. 

The possible behaviotlrs of process P arc precisely those of the timtout process 

Q '" 1 ~ SI\lP I!. STOP 

If the environment oifers b at time J, the ontcome is nondeterministic. 
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2.8 Example 

We consider the definition of a sensitive vending machine SVM which beha.ves as 
VMS in section 1.5, except that it may fail to dispense a drink if kicked while 
the coin is dropping. As before, we nse the events coin and coke to represent 
the insertion of a coin and the removal of a drink, respectively. Without timing 
information, our process description is 

SVM == coin -l (PAID 0 reset -l SVM 
n 
PAID) 

PAID == coke -l SVM 

The event reset r~presents the effect of a kick on the machine; althongh the machine 
may be kicked at any time, there is no effect nnless a coin is dropping. Without 
timing information, we have no way of modelling the progress of the coin inside 
the machine. The event reset is nondeterministically available until a drink is 
collected. 

To add timing information to om description, we assume that the mechanism 
becomes sensitive to kicks at time is following the insertion of a coin. After an 
additional dela.y of time t f , the coiu has passed through the mechanism, Mid the 
machine may be kicked with impnnity: 

TSVM == coin ~ (reset ~ TSVM 

I>"
PAID) 

PAID coke ~ TSVM 

Tbe process TSVM offers the event coin to the environment. If this event is 
observed at a time t, then the event reset is available between time t +t1 and 
time t + t1 + l,2. If this event occurs, the machine returns to 1ts initial state after 
a further time t3 , without offering a drink. 

If the event re:lt:t has not occurred by the time the coin has dropped, then the 
offer of reset is ..... ithdrawn by the timeout construct, and the machine offers the 
environment a drink. The addition of timing information has eliminated the 000­

determinism present in the untimed description; the process TSVM is a timewise 
refinement of SVM, in the sense of section 5.7. 



Chapter 3 

Recursive Processes 

In [Hoare 85J, recursive definitions take the form 

P " p X • F(X) 

The expression p X • F(X) denotes a process that behaves a."j F(X), with variable 
X representing a recursive invocation of the process. In [Reed & Roscoe 86], a. 
delay of Dis associated with each recursive call. This has the advantage of making 
all syntactic recursions well-defined: any equation of the form 

P = p X. F(X) 

will admit to a unique solution in the semantic model. If we accept that some 
syntactic recursions will be invalid, we can dispense with this constant delay. 

In tbis chapter, we introduce an immediate form of the recursion operator, and 
give a sufficient condition for the validity of a recursive definition. This treatment 
of recursion is extended to permit mutual recursion: processes may be defined by 
mutually recnrsive sets of equations. These sets may be arbitrarily large. 

3.1 Constructive Terms 

The semantics of a Timed CSP term P is a function of the set of term variables 
appearing in P. For example, the term defined by 

p == a~X 

has a semantic set that is parametrised by p [Xl, the semantics of X in the current 
environment. If P appears as the body of a recursive process, then that process has 
a well-defined semantics if and only jf P corresponds to a contraction mapping in 
the semantic model TMF. For this to be true, it is sufficient that P is constructive 
for the variable bound by the recursion. 
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Definition 3.1 If P is a TCSP term, possibly including free OCCUTTenc:e6 of term 
variable X, then P is t·cansiruetive for X if 

'V t, , TIME; p , ENV • 

Fr[PJp t I, + I = h[pJplp[XJ rio/X] t 10 +' 

-0 

If term P is t-constructive for variable X, then the behaviour of P up until a time 
to +t is independent of the behaviour of X after time to- Tbe reader sbould recal1 
the over-riding notation for environments defined in section 2.3: 

p[Y/X)(Z1 ~ Y if Z = X 

P(ZJ otherwise 

Definition 3.2 We say that a term P is constructive for X if there is a strictly 
positive time t such that P is t-constructive for X. 0 

Our definition of constructive differs from the one used in [Reed 88). Reed considers 
that a term P is constructive for X iff 

'1'0 , TIME; S, T , TMF; p' ENV • 

5 rio = T rI, => (h[ PJp[S/ X]) I 10 + I = (FT[ Plp[T/ X]) I I, + I 

Our definition places a stronger condition upon P and X. 

Lemma 3.3 If term P is t-constructive for variable X, then 

'Ito' TIME; S, T , TSF; p' ENV • 

5 rio = T t to => (FT[PJp[S/Xj) t 10 +I = (h[PJp[T/ X])! td t 

Q 

From the seman tic equations for the TCSP operators we can derive a number of 
useful results1 about constructive terms. 

Lemma 3.4 For any X and t, 

1. STOP, SI<JP, .1, and WAIT to are all I-constructive for X 

2. X is O-constructive for X, and i-constructive for Y I- X 

3.	 JJ X • P is i-constructive for X 
Q 

IAn example deriva.tiQD is included in appendix A.I 
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Lemma 3.5 If P is i-constructive for X, 

1.	 a ~ P a.nd WAIT ti) ; P are (t + to )-construdive for X 

2.	 p Y. P, P\A,f(P),f- 1 (P) are all t-constfllctivefor X 

3.	 Pis i'-constructive [or X, for any t' < t 
c:> 

Lemma 3.6 If Pis trconstruetive for X and Q is t!~construetive for X, 

I.	 Po Q, PrJ Q, P; Q, Pili Q, P II Q, P .118 Q
 
are i\ll min{l,. tf}-constructive for X
 

2.	 pc,. Q and pi, Q are both min{tl,t! + tJ-construetivefof X 

3.	 P j Q and P? Q are min {t1 , tt + 6}-constrnctive for X 
c:> 

Observe that ali Timed CSP terms are O-constructive for any process variable. 

Restrained Terms 

A sequential composition of terms is also constructive if the first term is construc­
tive, and cannot terminate immediately. We say that a tenn P is t-restrained jf 
it cannot terminate within time t: 

Definition 3.7 If P is a TeSp term, then 

Pis t-restri\ined {:;o (s E traces(P) 1\ end(s) < t) =>,J ¢ q(s) 

for any instantiation of free variables in P. <> 
A Timed CSP process is t-restrained if the event,J, signalling successfnl termina­
tion, is not included in the set of events that may be observed before time i. A 
TeSp term P is i-restrained if tbis coudition holds whatever the valnes of any 
fret: variables in P. In particular, we must be able to replace these with the ter­
mination process SKiP. From the semantic eqnations of the TCSP operators, we 
can obtain a number of simple results about restrained terms. 

Lemma 3.8 For any time t, 

1.	 SKiP is O-restrained 

2.	 WAiT tis t-restrained 

3.	 STOP and .i are co-restrained 
c:> 
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Lemma 3.9 If term P is i-restrained, 

1. a ~ P and WAlT to; Pare (t + to)~restrained 

2. p Y • P, P \ A. P; x. f(Pl. and f- J (P) are a.I1 I-n",t,ainea 

3.	 P is ['-restrained, for any t' < t 
<:;J 

Lemma 3.10 If P is i,-restrained, and Q is t.,-restrained, 

1. PDQ. Pn Q, PAil. Q. and Pili Q "e a.I1 min{IJ • t, }-<e,tnuned 

2. P; Q is (t, + l1}-restrained 

3. P ~ Q and P j Q are both mini t tt + t}-restrained, 
" 

4. P'Y Q is min {tJ , tt + 6}-restrained 

5. P II Q is ma%{t"tt}-restrained 

6. ..; ¢ A U B => P A liB Q is oo-restrained 

7. ..; E An B => PAils Q is ma%{t"tt}-restrained 
<:;J 

Using the notion of a restrained term, we can add a further result to our list of 
lemmata about constructive terms: 

Lemma 3.11 If term P is t-restrained and t-constructive for X, then th.e term 
P; Q is t-constructive for X, for any [ and Q. <:;> 

3.2 Recursive Processes 

We extend our synta.x with two single fixed point recursion operators: 

P .. ~ pX.P I pX,P 

The first of these associates a delay of time 6 with each recursive call, while the 
second transfers control to a recnrsive invocation of the process immediately upon 
reaching an instance of variable X. We will refer to these operators as tl.dayed and 
immediate recursion, respectively. 

We may regard the semantics of a term P with free variable X and environment 
p as a function defined upon TSF. This function maps a set of failures S to the 
semantiC! of P evaluated in an environment (p[SjX]) obtained by ilSsociating 
variable X with the set S. 
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Definition 3.12 If P is a TCSP term, and X and Y are variables such that Y 
does nol occurfree in P, then 

M(X,P)p " ), Y o;rr[p]p[Y/X] 

<> 
To give a sema.ntics to the delayed recursion operator, we consider the composition 
of this mapping with the function W6 • 

Definition 3.13 If P it! a TCSP term, and X and Yare variables such that Y 
docs not occur free in P, then 

M,(X,P)p" W,·), Yo;rr!p]p[Y/X] 

where W6 is the mapping defined by 

W, " ), Y o;rrlWAITb;Xlp[Y/X] 

<> 
The environment parameter provides a binding for any free variables remaining in 
term P, and the definition of W5 reflects the delay associaled with this form of 
recursion---observe that W6 does not depend upon the choice of environment p. 
We may now give the semantics of the recursion operators. 

Fr[ttX 0 p]p == the unique fixed point of the ma.pping M(X, P)p 

Fr[Jl X • pJ p == the unique fixed point of the ma.pping M6(X, P)p 

Reed has shown [Reed 88) that the mapping M6(X, P)p will always have a unique 
fixed point in TMF , a.nd hence that the semantics of delayed recursion is always 
well-defined. Tbis result does not hold for the immediate recursion operator. We 
will show that the semantics of immediate recursion is well-defined if term P js 
constrlletive for variable X. 

Lemma 3.14 If term P is constructive for process variable X then the mapping 
M(X, P)p is a contraction mapping on the space of sets of failures TSF. Q 

Proof A mapping F in TSF is a contraction mapping if and only if 

3 r < 1 0 'IS, T , TSF 0 d(F(S),F(T)) " r.d(S, T) 

where d is the metric defined by 

d(S,T) " ;n/({r'ISrk~Trk}U{1}) 
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Now take any two processes Sand T in TSF • If S = T then F(S) = F( T) and 
both sides of the above inequality are zero. Else, let 

d(S, T) = e-' 

If we take F to be the mapping M(X,P)p, then 

VR, TSF • F(R) ~ Fr[P)p[R/X] 

From the definition of constructive and lemma 3.3. we know that there is 4 strictly 
positive time t such that 

S rk ~ n k => F(S) t k + t = F( T)f k + t 

{or any S and Tin TBF. From this, we obtain 

d(F(S),F(T)) " e-(t+·) = f-'.d(S, T) 

We note that 2-1 < J as t is strictly positive, and conclude that F is a contraction 
mapping iu TSF. 0 

We have established that the mapping corresponding to a constructive term is a 
contraction mapping on TBF. To establish tbat such a mapping has a unique fixed 
point, we require the following result {rom [Sutherland 75]. 

The Banach Fixed Point Theorem If (M, d) is a complete metric space and 
F : M -+ M is a contraction mapping, then F has a unique fixed point fix ( F). 
Furthermore, for all S in M, fix(F) = limll-o oo FII(S). <> 

The semantic model TMF is a subset of TBF 1 and both Me complete metric spaces 
under the metric d defined in section 2.2. A contraction mapping on TSF is 
therefore a contraction mapping on the complete subspace TMF, hence 

Lemma 3.15 If F: TSF -+ TSF is a contraction mapping which maps TMF into 
TMF, then F has a unique fixed point fix(F) in TMF. 0 

Any function derived from the semantics of a TCSP term will preserve the axioms 
of the semantic model, mapping TAfr into TMF. We may combine lel7lmata 3.14 
and 3.15 to obtain the required result: 

Theorem 3.16 If term P is constructive for variable X I then the semantics 

Fr[pXoP)p 

is well-defined for all environments p. <:I 
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The semantics of immediate recursion gives ri:<;e to the familiar equivalence 

Theorem 3.17 

p X 0 F{X) '" F{pX 0 F(X)) 

Q 

This result justifies the use of recursive equations as process definitions. For ex­
ample, a process that is willing to perform the event a at one second intervals may 
be defined by the equation 

p = a~P 

This equational definition is equivalent to the following definition of P using the 
immediate recursion operator: 

p == 1JXoa~X 

In fact, we can easily prove that 

COl"ollary 3.18 If 1J X 0 F(X) is well-defined, then 

P = F( P) if and nnly if P = p X 0 F( X) 

Q 

The equational style is more concise, especially in the case of mutual recursion. 
Indeed, we cannot rea.sonably write a.n infinite mutual recursion using I,-notation. 

It should be remembered that this result (theorem 3.17) does not hold for the 
delayed recursion operator; we have instead that 

p X • F(X) '" F( wAIn; (p X • F(X))) 

which is inconsistent with the use of equations to define recursive processes. For 
example l there is no delayed recursive process which will satisfy the recursive 
equation P = a ........ P. 
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3.3 Mutual Recursion 

We will now consider processes defined by sets of mutually recursive equations. 
The definition of constructive in section 3.1 extends in a natural way to vectors of 
terms and variables, and we are able to exhibit a sufficient condition for a syutactic 
mutual recursion to have a well-defined semantics. 

Syntax 

A TCB? term P may be defined by a vector of mntually recursive equations 

p = (Xi = P,); ; E I 

with an initial index j to indicate the starting point of the recursion. We will 
employ a simple vector notation for terms: 

E = (P"P" .. p., .. ) 

The sets used to index these vectors need not be finite. Using this notation, we 
can write our equation vectors in the form (p X 0 E). 

As an example, consider the process algebra representation of a device that 
has two states: ON and OFF. This device may produce a beep as often as once 
a second when ON. The two states correspond to the two mutually recursive 
equations below. 

ON = (beep...!.-. ON) 0 (off -'--> OFF) 

OFF = on...!..... ON 

This may he considered as a single recursive equation, on a vector of process 
variables (ON, OFF). The device is then modelled by the component of the vector 
corresponding to the initial state OFF. Alternatively, we may represent ~he device 
as a single recursive process: 

OFF = pXoon...!.-.(pYo(beep...!.-. Y)O(off...!.-.X)) 

This nested recursion defines the same process as the first component of tne mutual 
recursion above, and falls within the standard syntax for Timed CSP given in 
[Reed 88]. In practice, it will be more convenient to represent mutually recursive 
processes nsiug equation sets, particularly when the set of named states IS infinite. 
For example, consider the case of an integer store STO. Initially, the store is 
willing to input an integer value: 

STO == in?z --!..... STOr 



12 Specification and Proof in Real-time Systems 

Thereafter, it is prepared to accept another input, or output the Cllrrent value 
stored, as often as once a second: 

STOr ==	 in?y ~ STO, 

D 

out!:r -..!...... STO;& 

This is an infinite set of mutually recnrsive equations, where STO;& models the 
state of the slore containing x. 

With the delayed form of recursion, mntually recursive definitions should nol be 
written with an equality symbol, as the left- and right-hand sides do not represent 
equivalent processes. We use the reverse implication symbol, <$=, to indicate that 
there is a delay of ~ involved in the nnfolding of the recursion. The above example 
Would be written as 

STO in?x -!-. STOr 

STOr <= in?y ~ STO, 

D 

oul!:r ~ STOr 

This form of recnrsion is always valid in the semantic model. However, the im~ 

mediate recursion operator makes recnrsive definitions easier to understand, and 
allows the user to choose the point and dnration of any delay. 

Semantics 

Consider an equation set (X, = Pi)], where the indices i and j are drawn from 
set J. The semantic domain required to model a solution is TSf; this is a product 
space with one copy of the model T5r for each i E J. For any J, this domain is a 
complete metric space, with the following distance metric on vectors. 

JiLL W) " ,up{ d( v" W;) I ; E 1) 

To construct a semantic flwction for vectors of terms, we extend the use of envi­
ronments to include m<lppings from vectors of variables to vectors of processes. 

plXI " (pIX,II; E l) 

where J is the indexing set of vector X. We overload the mapping notation defined 
in section 3.2 with 
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Definition 3.19 If E a vector of reS? terms l and X. and ..r. are vectors of 
variables l all indexed by set I, and no component of..r. occurs free in E, then 

M(LE)p '" ,\X • .rr[E)p[x/Xl 

is the mapping on rsJ corresponding to X and E. <> 

Definition 3.20 If E. is a vector of reS? terIIUl, then 

.rT [(Xi ~ Pi);]p '" S, where,£ i' • fixed point of M(LE.)p 

<> 

This semantics is well-defined when a.1I fixed points of the mapping MCK, l)p agree 
on the j component. Clearly, it is enough that this mapping has a unique fixed 
point. For this to be true, it is sufficient that the vector of terms E is eonstructive 
for the vector of variables. 

Constructive Vectors 

A partial ordering ....-: on a set S is a well-ordering if and only if there are n() infinite 
descending sequences (so Ii: N) such that Vi: N. s;+J ....-: Si. We define tlte initial 
segment of an element of i in the usual way. 

Definition 3.21 If....-: is a partial ordering on I, and i is an element of I, then 
the initial segment of i in (I, -<) is defined by 

,.g(i) '" {j,/[j-<i} 

<> 

For tbe mapping M(X,E)p to have a unique fixed point, it is sufficient that the 
vector of terms E. is constructive for the vector of variables X. 

Definition 3.22 A vector of terms E is t-constructive for a vector of process 
va.riables X. if there is a well-ordering ....-: of the indexing set I such that 

vj, i : I • j ¢ seg( i) => Pi is t-constructive for X, 

<> 

Definition 3.23 A vector of terms £. is constructive for a vector of proce:9S vari­
ables X if there is a strictly positive time t such that E. is t-construct:ve for X. 

<> 
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If this condition is met then the only possible unguarded recursive calls in term P; 
correspond to variables X) where j -< i. Thus any sequence of unguarded recursive 
calls is indexed by a descending seqnence from the set I, and must therefore be 
finite. Any particnlar behaviour of the pw(",css is generated by a finite number 
of recursive calls, and an infinite nnmber of recursive calls in a finite time is 
impossible. 

In many applications, it is not necessary to identify a well-ordering of the index 
set I. If all recnrsive caBs are guarded by a single positive time t, then any well­
ordering of I will be enough to show that the vector of terms is constructive for 
the vector of variables. In this case, we say tnat the vector of terms is uniformly 
constructive. Formally, 

Definition 3.21 A vector of terms E is uniformly t-constructive for a vector of 
variable!;.x. if P, is t-constructive for all Xj. 0 

Definition 3.25 A vector of terms E is uniformly constructive for a vector of 
variables x.. if there exists a positive time t such that E is uniformly i-constructive 
fur~ 0 

Observe that any uniformly constructive vector of terms is constructive. In this 
case M(K,E)p will be a contraction mapping in the semantic model TSJ. 

We have defined constructiu for vectors in a component-wise fashion. That a 
vector of terms is constructive for a vector of variables can be established by a. case 
analysis on pairs (Xi, PJ ) in our equation set, a relatively simple procedure. We 
will show that this is a. sufficient condition for the semantics of a mutual recursion 
to be well-defined. First, we must demonstrate that our pointwise definitions arc 
enough to establish the corresponding vector results. 

Theorem 3.26 (Finite Dependency Theorem) If P is a TCSP term, possi­
bly containing free occurrences of process varia.bles drawn from the set {X. liE I}, 
and p is an environment, then 

("N)EFdPjp => 3N,FI.'1p',ENV. 

('I;, N. plX,J ~ p'[X,J) => ("N) E FdPJp' 

" 
The presence of a given behaviour (s, N) in the semantic set of a term P depends 
only upon the values of a finite set of variables N, even if the term is an infinite 
mulnal recnrsion. We may change the environment of the term without removing 
the behaviour, providing that we preserve the values of the variahles in N. A 
deta.iled proof of this theorem is presented in section A.2 of the appendix. 
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We may restate tbi8 theorem in a more applicable form, u8ing the over~riding 

notation for environments; 

Corollary 3.27 If P is a TeSp term, possibly containing free occurrences of 
proce:iS variables drawn from the set. {Xi liE I}, and p and p' are environment.s, 
then 

("NJEFrlP)p => 3N,FI.Vp'.(s,N)EFr[P)P'Ip(X;I!X;!iENJ 

" 
We say tbat a term P is i-constructive for a vector of variables X. if the !effiantics 
of P up until a time to is independent. of t.he behaviour of every component of X 
after time to_ This is a :iimple extension of definition 3.1. 

Definition 3.28 If P is a TeSp t.erm, then P is t-constructive for a vector of 
variables x.., indexed by set. I, iff 

Vlo , TIME; p' ENV. 

FrlP)p! to + I = Frlp)p[P(X;) r 'o/X; liE Ij t 1 + t0 

o 
Wit.h this definition, a simple induction upon the lengt.h of finite vector Xis enough 
to est.ablish thefotlowing lemma: 

Lemma 3.29 If P is t-constructive for each of {Xi liE N}, and N is a finite 
set, t.hen P is t-constructLve for t.he vector X indexed by N. <;I 

We may combine this result. with t.he Finite Dependency Theorem to obta.in the 
theorem below, which will allow us t.o obtain vector result.s from our pointwise 
definitions. 

Theorem 3.30 If P is t-constructive for each of {Xi liE I} then P is t­
const.ructive for tbe vector X indexed by I. <;I 

Proof To show that P is t-constructive for vector X, we must show that for any 
time to and environment p, 

Fr[p)ptto+t = Fr[P)p[p[X;) tlo/X;liEIjlto+t 

1f we take (5, N) t.o be an element of the left-hand :iide, we may apply the corollary 
to the Finite Dependency Theorem, yielding 

3N,FI.Vp' • (s,N)EFr[P)P'!P[X;)/X;liENjtldl 
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We lake p'ta be the environment 

pl(p[X;] r I,J/X; liE J A' ¢ NJ 

and appeal to lemma 3.29. We have a8sl1med that P is i-constructive for eath 
Xi, so it must be t-conslructive for the finite vector (X; liE N). E}{1Janding 
definition 3.28, we discover that 

FTlp]p'[pIX;]lX; [i E N] r t,+t	 = FrlpJp'IP(X;] t',/X; I' E NJ r ,,+t 
= Frlp]p[P(X;J rt,/X; [i E 1) r t,+t 

and hence that (8, N) is an clement of the right-hand side. A symmetric argument 
will establi5h the converse, completing the proof of the thoorem. 0 

We may use this theorem to show that any mutual recursiou in which the vector 
of terms il constructive for the vector of variables has a well-defined semantics. 

Theorem 3.31 (Unique Fixed Point Theorem) If vector of terms E is con­
structivefor vector of variables .x, then the mapping M(X,E)p has a unique fixed 
point in TSJ. 0 

Although the proof is quite involved, it is both important and instrucLive. 

Proof We begin by defining a. secondary vector of terms 9.. by transfinite recur­
sion. We show that the mapping M(X,g)p has a uniql.le fixed point. and that 
this is also a fixed point of the mapping M(X.E)p. We complete the proof by 
demomtrating that this fixed point is unique. 

The vector of TCSP terms 9.. is defined by 

Q; '" P;\Q,/X; [jE'eg(i)] 

The i component of Q is that of E.. with the following modification: we replace 
every variable with a;Tndcx lower than i with the corresponding component of 9... 

Lemma A The vector Q is well-defined. This is an instance of the following 
theQrem schema, established in lEndcrton 77J. 

Transfinite Recursion Theorem If -...; is a weU-orderiug on f. and for any func­
tion f there is a unique y such that r.,:;(f, y) is true, then there exists a unique 
fun~tion F such that 

v. ,J. 'P(F l ,eg(i), F(i)) 

and the domain of F is the whole of J. <) 
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We use this theorem to construct a function F of type I - (I - TeSP). That 
is, a function from indices to vedors of Timed. CSP terms. We choose the fonnula 
l{> carefully: 

<p(f, y) '" y = Elf(j);/X; I j E dom(f)] 

This formula hQlds of (f,y) exactly when y is the vector obtained from £ by 
replacing every occurrence of variable Xj , for every j in the domain of function J. 
Each term Xj is replaced with the j component of the vector JU). It is dear that 
this defines a uuique y for every function J. If F is the l{>-constructed function, 
then we define 

Q, '" F(i); 

yielding the required vector fl 

F(i), (l'[(F ~,eg(;))(j);/X; IJ E dom(F ~,eg(i))]), 

=> F(;), (l'[Q;/X; IJ E 'eg(i)]), 

=> Q, P,!Q;/X, IJ E 'eg(i)] 

Lemma B The mapping M(X,fl)p is a contraction mapping in TSj., ao.d hence 
has a unique fixed point. By analogy with theorem 3.16, it is enough to show that 
there exists a strictly positive time t such that 

v£,1:..: TSj. ; tQ : TIME_ 

0. t t, ~ I r t, => (M(X,g)p 0.) t t, + t = (M(X,g)p I) rt, + t 

To prove this, we will assume that £ t tQ = I.. r tQ and deduce the consequent 
above, which is equivalent to 

J'T[QJP[o./X] t I, + t = Fr[.£IplI.iX] t t, + 1 

We will employ the following result from [Enderton 77J. 

Transfinite Induction Principle If -< is a well-ordering on set I, and J is a 
subset of I with the property 

Vi:I _ seg(J)£J:::>iEJ 

then J coincides with I. <> 
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We define J to be the set 

J " (i, I I Fr!Q,jp[s'/X] I t,+ t = J"dQ,!plL/X] It, + t) 

and assume that seg(i) ~ J. We have to show that i E J. To show this, we must 
show that 

J"r1Q,IPs It, + t = FrIQ,jPT It, + t 
where 

PS " piS/Xl 
pT " pl.I:/X] 

From the definition of vector Sl., We obtain 

J"r1Q,jps	 = Frlp;[Q;/X; Ii E ",g(i)jPs 

= J"r!P,jpslJ"r!Q;!ps/X, fiE seg(i)) 

A similar a.rgumcnt applies for PT, and if we let 

p~ " ps[J"r1Q,jPs/X, Ii E 'eg(i)) 

P'r " PT!FrIQ,!PT/X, Ii E ,eg(i)] 

we reduce our proof obligation to 

J"r!P,]p's r t, + t = J"r1P'!P'T It, + t 

We asSllme that (s,N.) is an element of the left-hand side, and apply the first 
corollary to the Finite Dependency Theorem. corollary 3.27. Then there exists a 
finite set N such that 

(s,N) E J"r1P,!P'Tlp~IX,!/x, IkE N] 

We partition the set N into two sels, and give names to two useful vectors 

A :;, N n'eg(i)
 

B " N - 'eg(i)
 

Y " (J"r1Q,jpsliEI)
 
Z " (J"TIQ,!PT Ii E I)
 

and define, (or each vector 1:: in {X.,.r,z..} 

VA " (V, liE A)
 
VB " (V,liEB)
 



3.3 Mutual Recursion 49 

Our inductive hypothesis can then be re-written as 

V Ie : seg( i) • YI r to + t = Z. r to + t 

which implies that 

YA r to + t = Z.4 t to + t 

All TCSP terms are O-constructive for any variable, so by Theorem 3.30 aU TCSP 
tenns Me O-constructive for any vector. Applying this result to the terms Qj, given 
that the vectors .s.. and .I. agree up until time to, we obtain 

YB r to = ZB r to 

We recall our assumption about behaviour (s, N): 

(s,~) E Fr[p,jp'Tlp~[x.I/X.1 k E AlIp~IX,I!X,1 k E 8J 

= Fr(P,j/TIFT[Q,jPs/X, IkE AIIFr\Q,jps/X, IkE 8J 

~ FrlP;!/T! Y,/X, II YB/XB! 

Again, any TCSP term is O-constructive for any vector, so Pi is O-constructive 
for XA • Hence 

FrlP;J/T[ Y,/ X,1I YB/XB! t I, + t = Fri p;Jp'TIZ,/X,1I YB/ XB]It, + t 
Further, vector E. is t-constructive, so term Pi is i-constructive for any Xj with 
j ¢ seg(i). By Theorem 3.30, Pi is i-constructive for vector XB • Hence 

Fr[p,jp'rlZ,/XAIlYB/XB] t to+ t ~ Fr[P,jP'TIZ,/X,IIZB/X8 ] II, + t 
= FrIP,jP'T t t, + t 

Remembering that end{s, N) < to + i, we have established that 

(s,~) E FrlP;)p'T r t, + t 

The argument is symmetrical in Sand T, and hence 

FrlP,Jp~ t t, + t ~ FrlP;)P'T t t, + t 

(=> FrlQ,)ps!fo+t = FrlQ;)PTtt,+t) 

and we see that i E J. By transfinite induction 

Fr[QJp[£/X] t t, + t ~ FrlgjpIL/K] t t, + t 

We conclude that M(X,Q)p is a contraction mapping, with a unique fixed point. 
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Lemma C The uoique fixed point of M(K, Q)p is a fixed point of M(K,E)p. To 
See this, let S. be the unique fixed point of M(X, gjp, and observe that 

(M(X,E), (.£), 

(FdEjP[.£/X])'
 
(FdE]p[(M(X,g)p (S.))i/X, I j E ,<g(i)IISi/ Xi [j j! seg(i)]),
 

Fr[P,jp[(M(X,mp (.£»)i/ Xi I j E ,<g(i)IIS,/ X, I j j! segU)]
 

Fr[P,jp[Fr[Qi]P[s.!Xl/Xi I j E ,<g(i)IIS,/ Xi [j j! seg( i)J
 

Fr!p,[Q,/Xi Ij E ,<g(i)]jp[S./XJ
 

Fr[Q,]p[£/X]
 
(M(X,Q)p ('£))i
 

Si 

Hence, as this holds for every i E I, we have that 

M(X,E)p (.£) ~ .£ 

establishing that Ii.. is a fixed point of Jf(K, E.)p. 

LernmaD The above fixed pilint (£) is the only fixed point of M(X,E)p. We 
know that there is a positive time l such that E is t-comtructive for X. Let L be 
an arbitra.ry fixed point DC M(K,E)p, and define a counterexample set C 

C =0 {LII3t,.jEseg(k)""1)r(t,+t)~Sd(t,+t) 

A 
T, r(t,+t);o'S, r(t, +t) 
A 
j j! seg(k) "" T, r t, ~ S, rt, 

Then C is the set of indices k such that the two vectors S. and I.. first become 
different at component k between limes to and to + t, agree on all components 
indexed from seg(k) up until time to + t, and agree on all other components up 
until time to. We claim tbat 

c={}""S.~T.. 

To show this, we establish the contrapositiveof the result, by assuming that Ii i- I.. 
Define a. sequence of indices i" from I and a sequence of times tn such that 

i, E {i: I I S, ;0' T, A j E seg( i) "" S, ~ T,} 
to = t+sup{t'\Sio te=Tio rt'} 

i.+, E {i:IIS,rt";o'Tdt."jEseg(i)""S,rl.~T,lt.} 

l"+l = t. - t 
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Ohserve that to exists, and that to is therefore finite. We are assuming that s.. 
differs at some point from I.., and hence (as the index set J is well-ordered) there 
will be a least index to where the two vectors differ. Either i. exists foraH n : N, 
in which case 

'rIn:N.lo-nl>O 

which contradicts the fact that to is finite, or there is a. n such that 1" exists but 
i ..+1 does not. 10 this case, i .. E C and so C is not empty, as required. This 
establishes our claim. 

We have now to prove that the set C is empty. To do this, we assume for a 
contradiction that. k E C, then we know that 

3 to •	 T! t to + I :I 51. r to + t 

AjEseg(k)==> Tj tto +t=5) tto+t 

Aj¢,eg(k)=} T, r',=S, r'o 
The vector E.. is t-const.ructive for X, hence 

j ¢ seg( k) ::::} p! is I-constructive for X) 

Applying lemma 3.3 we have that, for j ¢ seg(k), 

S;T'o=T;r', =} Fdp,]p!S;/X;] t'o+t=Fdp,]p[T;/X;] r',+t 
and recalling that p! must be O-constructive for all Xi> we obtain 

IIj: I • Fdp,jp!S;/X;] T '0 +' ~ Fdp.!p[T;/X,! r '0 +' 
We may now apply Theorem 3.30. This gives us that 

Fdp,!p[£/Xl r', +' = FdP,]p[I/X) r to + t 

We have also that s.. is a fixed point of M(X,E)p. In this case 

M(X, £')p £ = £ 
=} AX. FdE)p[X/X] £ = £ 
=} Fr [E) p[£/X) = £ 
=} h[P,]p[s:!X] = s, 

a.nd a similar re;ult holds for t.he other fixed point, 1:... Hence 

St. t to = T! t to ==> S! t to + t = Tt. t to + t 

which contradicts our choice of k E C. Hence the set C is empty. By OlJr earlier 
claim, this means that the two vectors s.. and I.. are identical. Hence s.. is the only 
fixed point of M(X,E)p. 
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To summarise: the secondary ....ector Sl is well-defined, and corresponds to a. con­
traction mapping in the semantic model; the unique fixed point of this mapping 
is a fixed point of M(X,E)p, the mapping corresponding to E and Xi further, 
it is the only fixed point of this mapping. We rna)' conclude that, although the 
mapping corresponding to E.. need not be contraction mapping, it has a unique 
fixed point in TSj. 0 

From this result, we may deduce the welcome corollary: 

Corollary 3.32 If vector of terms E.. is con&tructive for vector of variables X, 
then the recursion IJ X 0 E.. is well-defined. Q 

This juslifir.5 our definition of constructive, and lays the foundation for the theory 
of recursion induction presented in chapler 5. 

3.4 Equation Sets 

Consider the following mutual recursion: 

p = a~Q 

Q = b~ P 

It should be obvious that 

p = a~b-~P 

We can derive rules that allow us to make such transformations while preserving 
the semantics of the term defined by the equation set. For example, we may wish 
to replace all free occurrences of a recursive variable: 

Rule 3.33 (Substitution) If the equation Xi = PJ: has a unique solution in 
TSF , and appears in (Xi = p.), then we may substitute jJ Xl: 0 Pi for all free 
occurrences of Xi in all equations of the equation sel. Formally, 

(X. = P;); '" (X; = Pdp x. 0 P,f X.]), 

[0 

Proof If Xl: = Pi h35 a unique solution in TJ.1F, and s... is a fixed point of 
MUL l!.). then 

Fr[P.]p[£/K][Fr[pX. 0 p,!p[5/K]/X.] = s. 
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To see this, observe that 

5, ~	 (M(X,E)p £h 
Frlp,!p[£/XI 
Fr[P.]p!£/X][S,jX,I 

Hence S~ is the fixed point of the fundion M(X" P~)p[S/XJ, and is thereflJre equal 
to 

Frlp X, 0 P,lp[s/XI = FrlP,jp[S/X][FrlpX, 0 p,Jp[s/XI 

Assuming that s.. is a fixed point of M(X,E)p, we define !I to be the vector 
obtained by substituting 11 X~ 0 P, for all free occurrences of X~ in the vector E. 

(M(X,g)p .\:)j	 Fr[Pj[pX. 0 P,/X,I]p[S/X] 

FrlP,!p[S/X][FrlpX. 0 P,!p[s/XI/X,I 
Frlp,jp[£/X][S,jX,I 
Sj 

Conversely, if .I. is a fixed point of the function M(X,gJp, then 

FrI"X, 0 P,lp[l'/Xl = T, 

To see this, observe that 

T, ~	 (M(X,i2)pIh 
FrIQ,]pi.L/Xl 
FTIP,[pX, 0 P,/X.I!p[I/X) 
Fd,'X, 0 P,lp[LlXI 

Assuming that I. is a fixed point of M(X,Q)p, we have that 

(M(X,£)p 1')j	 Fdp,lp[l'/XI 
FrlPjJp[L/X][T,/ X,I 
FdPj!p[L/X]IFT[pX.D P,!p[I/Xj/X.1 
FrIPj [" X. 0 P,jX,I! p[LIXl 
FdQ,!p[l'/X] 
Tj 

We have demonstrated that a vedor U is a fixed point of M(X,E)p if and only 
if it is a fixed point of M(X,gJp. The soundness of the rewrite rule follows 
immediately. 0 
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The presence of O-constructive terms in an equation set may mean that there 
is more than one solution to the equations. In this case, the semantics of the 
recursion is Dot well-defined. However, if the offending terms do not a.ffect the 
seman tics of the selected component, we can rewrite the equation set to eliminate 
them. For example, in the equation set 

P = a....!......P 

Q = pnQ 

recursive variable Q does not appear free in the term part of the first equation. 
We may remove the second equation from the equation set without affecting the P 
componenlof the solution. In this way, we may delete unnecessary or undesirable 
equations [roUl our equation set. We capture this result as a. proof rule: 

Rule 3.34 (Elimination) 

V; : J • 'V i : (I - J) • Xi is not free in PJ 
IkEJtdt;;J] 

(X; = P; I ; E J). " (X, = P, I ; E J). 

6 

In a set of equations indexed by I. we may elimina.te those equa.tions 

Xi = P. 

for which X, does not occur free in any of the terms PJ I j E J, where J indexes 
the set of remaining equations. This is enough to ensure that the semantics of the 
remaining components is preserved: that 

(X; ~ P, I ; E I). (X; = P, I ; E J). 

whenever k E J. 

Proof Suppo~ that s... is a fixed point of the function M(K.E)p, where E. and 
X are indexed by I. Let X' • .£.' and £.1 be the corresponding vectors indexed by 
set J. 

SJ = ~ 

f,lp;!p[.5JX] 
hlp;Jpl.2'IKl 
(M(}CE')p S'); 

Hence. any solution to the equation set (X; = Pi) gives rise to a solution of the 
set (X', = Pi;). This is enough Lo establish the soundness of the rule. 0 
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Returning to the example at the beginning of this section, we may now establish 
that	 the two definitions of P given below are equivalent: 

p == a~Q 
P	 == a~b-!.....PQ	 ~ b~P 

We begin by writing the left-hand definition in vector form; 

P '" (X, ~ a -7 X, )
XI	 = b --+ Xl I 

From h~mma 3.5, we know that b -~ XI is constructive for X" bence the second 
equation has a unique solution in TSF • Applying the rule 3.33, we obtaiD 

P = (Xl = a --; (p XI 0 b'-:"" Xl) ) 
XI = b ---t XI I 

and XI is not free in any of the right-hand terms, rule 3.34 gives us thal 

P ( X, a ~ (p XI 0 b ~ X,) ) I 

(XI = a ~ b ---.!.-. Xl ) I 

(p(X,) a (a --'...., b --'...., X,), 

pX1 0 a~ b ~Xl 

We may then apply corollary 3.18, yielding 

P = a~b~P 

as required. From this example, it is clear that the following derived rule will be 
useful:
 

Rule 3.35 Given the equation set (Xi = Pi}j, where Xj; does not o«ur free in
 
p., we ma.y substitute Pi for all free occurrences of X. in the remainingequa.tions
 
of the equa.tion set, and remove Xi = p. from the equa.tion set. Formally,
 

(X, ~ P,), = (X, = P,[p./ X, I ; of k)); 

providing that j i= k. f:; 

Proor This rule follows easily from rules 3.33 and 3.34. o 
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3.5 Examples 

Consider the limed sensitive vending machine of section 2.8: 

TSVM == coin ~ (reset ~ TSVM 

[>'.
PAID) 

PAID :2 coke ~ TVSM 

This prac5'l is defined by a set of mutually recursive equations, in which the vector 
of terms is uniformly constructive for the vector of variables. To see this, observe 
that the terms 

coin ~ (1'esei ...!!..., TSVM 

[>'. "and coke __ TVSM 

PAID) 

are both min {t1 , t4 }-construetive for any variable, by lemma 3.5. We may conclude 
that thj~ mutual recursion has a well-defined semantics. 

We may apply rule 3.35 to eliminate the second equation 

TSVM == coin"'!'!-" (reset ~ TSVM 

" [> 

coke ~ TSVM) 

and rewrite the process defiuition as a single recursion. 

As an example of a mutua.l recursion in which the term vector is constructive 
but not uniformly constructive, consider the process POINTER defined by 

POINTER " POINTER, 

POINTERo == inc1' ~ POINTER! 

POINTER..+1 == incr ~ POINTER,,+! 

n 
POINTER. 

where index n is drawn from the set oC natural numbers N. The Corm of the 
equations prevents the application oC rules 3.33 and 3.34; an infiuite number of 
substitutions would be required. 
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However, the term corresponding to POlNTER.+ 1 is 1-constructive for any 
instance of POINTER,,+m, whenever m ~ 1. With the usual ordering on the 
natural numbers, we may establish that the vector of terms is constnlCtivefot the 
vector of variahles. If X.. denotes the nth element of the variable vector, a.nd p. 
denotes the nth element of the term vector, then 

'V i,j : N • j ~ i::::} Pi is constructive for Xj 

This is precisely the condition (or E.. to be constructive for K· We conclude that 
this mutual recursion has a well-defined semantics. 



Chapter 4 

Specification 

We consider a specijical.ion of a system to be a. formal description of its intended 
behaviour. In this chapter, we show how the language of timed failures may be 
used to produce specifications of real-time systems. 

4.1 Behavioural Specifications 

m Timed esp, the semantics of a process is the set of all possible behaviours of 
that process; we may write specificatious as predicates upon these semautic sets. 
In the Timed Failures model, each behaviour is recorded as a. timed failure: a 
trace of events performed, and a set of events refused. In [Reed 88], Reed defines 
a specification A as a. mappiug from the model TMF to {true,/alse}: the space of 
truth values. This specification holds of process P if and only if 

A(J"rlp!p) = tru, 

We choose instead to define predicates upon a. typical element of the semantic set 
of a process: these are behavioural speCifications. 

In the Timed Failures model, a behavioural specification is a predica.te S( s, N), 
with free variables s and ~ representing the two components of a possible be­
haviour. We say that a term P sati.'1ies a behavioural specification S(s, N) in 
environment p if predicate S holds of every behaviour of P. Formally, 

Definition 4.1 

Psat,S(s,N) " 't"N.(s,NjE,FrlP]p=>S(s,Nj 

o 
If P is a process, then we may omit the environmmt parameter to obtain the 
familiar sat notation, employed in [Hoare 85]. 
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Definition 4.2 

PsatS("N) = Vp",N.("N)EJ"r[P]Po>S(s,N) 

¢ 

Reed's approach to specification is more powerful: for every statement of the fonn 
P 5atp B(s, N) there is a mapping As from TMF to {true,false} given by 

As(Y) = V',N. ("N) E Y. S("N) 

suc.h that the following equivalence holds 

Psat,S("N) '" A,(J"r1P]p) 

Md some of Reed's statements cannot be expressed with the sat notation. For 
example, consider the predicate A given by: 

A(Yl = 3"N.("N)E Y ~ aEd,) 

This requires that event a is a possible observation of any process represented by 
set Y in TMF. There is no behavioural specification S such that 

P sat, S(" N) '" A(J"rlPj p) 

Reed's approach permits a more detailed analysis of the process semantics; ours is 
more suitable for the capture of process requirements. A hehavioural spffification 
is satisfied only when every hehavionr of a term is acceptable. A statement of the 
form P sat S( s, N) is a guaranfee of satisfactory behaviour. 

Example 

As an example of a behavioural spec.ification, consider the following requirement 
upon a cash dispenser CASH: that it should not allow a user to make more than 
one withdrawal in any twenty-four hour period. We choose the event lLcash to 
represent a withdrawal by user 1.1., where u is drawn from a set of all possible users, 
USER. We capture this reqnirement as follows: 

CASH sat Vu: USER; I: TINT. 

length(/) > 24 0> #(, TIl u.ca,h) " 1 

Given any user 1.1., if we consider the events observed during any interval of time 
longer than twenty-four hours, then there should be no more than one occurrence 
of the event u.cash; the length of the trace 5 during interval I restrided to this 
event should be no greater than 1. 
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The number of occurrences of a given event is a useful qnantity. To simplify 
future specifications, we define a counting operator 

dA " #(dA) 

to yield the number of occurrences of events from set A in trace s. As usual, if A 
is a. singleton set, we will omit the set braces. 

Satisfiable Specifications 

We sa.y thai a behavioural specification is 8atisfiable if there exists a Timed CSP 
process that satisfies it. 

Definition 4.3 If 8(5, N) is a behavioural specification, then S is sa.tisfiable in 
the model TMF if and only if 

3 Y: TS, • Y E TM, A "',N. (s,N) E Y ~ S(s,N) 

i) 

As we shall see in chapter 9, the existing syntax of TCSP is not enough to imple­
ment all of the processes in TMF. Our definition of satisfiable allows for further 
additions to the syntax, or a strengthening of the axiom set. We may demonstrate 
that a. specification is satisfiable by exhibiting a suitable piece of synta.,,: 

Lemtna 4.4 If 5(s, N) is a behavioural specification such that 

3P: TCSP • PsalS(s,N) 

then 5(s, N) is satisfiable. (/ 

This result wiH be useful in chapter 5, when we consider the theory of recur­
sion induction. To show tha.t a recursive process meets a. satisfiable behavioural 
specification 5, we have only to show that 5 is preserved by each recursive call. 

In applying Timed CSP to the specification and developmeut of a rea.l-time 
system, we would prefer to identify specifications that are not sa.tisfiable before 
suggesting an implementation. The axioms of the semantic model give rise to 
necessary conditions [or a specification to be satisfiable. For example, 

Lern.,a 4.5 If S(s, N) is salisfiable, lben S((), IJ). <;) 

Proof From definition 4.3: 

3 Y: TS, • Y E TAl, A"(s,N). (s,N) E Y ~ S(s,~) 

From the first axiom of the semantic model gi ....en in 2.2, we have that: 

3 Y: TS, • ((),IJ) E Y A"(s,N). (s,N) E Y ~ S(s,N) 

The result follows immediately. o 
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Any satisfiable behavioural specification must be true of the empty beha.viour, 
which is a possible bebaviour of every process. As a result. such specifications 
may not insist that a certain timed event appears in a trace or refusal, without a. 
qualifying assumption. A more surprising result is: 

Lemma 4.6 If 5(s, l{) is a behavioural specification such that 

3" TE • S(',N) =} ,j!N 

then 5(s, l{) is not satisfiable.	 <:> 

ProoC Suppose for a contradiction that S( s, N) is satisfiable, and that there exists 
a timed event. e for which 

S(',N) =} ,j!N 

Let Y be a process satisfying S(s,N), and choose t and a such that e = (I,a). 

(s, N) E Y =} S(s, N) 

=} (I, aJ j! N 

From the fourth axiom of the semantic model, given in section '2.'2, we obtain 

(s,N)E Y =} 3N',RSET.N<;;N'A(',N')E YA 
((t, a) j! N' =} (, t t~«t, a)), N' t t) E YJ 

If an event a is excluded from all refusal sets at. time t, then it must be possible 
for a to occur at that time. We know that (t, a) is excluded from all refusal sets 
of process Y, hence we have that 

(s, N) E Y =}	 3 N', RSET. N <;; N' A (s, N') E Y A 

(s r t~«(t, a)), N' t t) E Y 

From the first axiom of TMF we know that the empty behaviour (0, {}) is present 
in Y. With this choice for (5, l{), the above implication yields that 

3N, RSET • lO,N) E Y A ((t,a)),N r tJ E Y 

A simple indudion wilt establish that, for any natural number n, the trace in 
which n copies of event a occur at time t is a possible trace of Y. 

3N',RSET • ((t,a))",N' tt)E Y 

However, the bounded speed axiom of the semantic model places a natural number 
bound n(t) on the number of events that may appear in any trace of Y before 
time t. 

'it, [0,00) • 3n(t)' N. ("N) E S A 'nd(s) <; t =} #(s) <; a(t) 

This forces a contradiction, and establishes the required result. o 
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It is always possible that a process will perform each observable event as soon as 
it becomes al'a.ila.ble. If process P makes n copies of event a availa.ble a.t time I, 
a.nd it is offered n + 1 copies of a, then (t, a) will appear in the refusal set. Hence 
a satisfiable behavioura.l specification may not insist that a. timed event is absent 
from the refusal set. 

The firsl lemma shows that we cannol insist that an observa.ble event occurs 
without making a. qualifying assumption. This will be an assumption about the 
environment of the process; we will discuss such assumptions in section 4.3. To­
gether, these lemmata. dictate the form of safety and liveness specifications in the 
timed failures model. 

4.2 Safety and Liveness 

We will fIJllow Lamport's informal classification of safety and liveness properties, 
[Lamport 771: a safety properly is a requirement that 'nothing bad happens', while 
a liveness property insists that 'some good thing will occur'. In eit-her case, we must 
exclude undesirable behaviours from the semantic set of the process in question. In 
our computational model, a safety property corresponds to the requirement that 
a given event may not OCClir except under certain conditions: e.g. 

'"	 event a does not occur within time t of event b; 

..	 if event a occurs, it must do so within time t of event bi 

..	 e,-ent a may occur only at specified times. 

Some sa-fety specifications H~gujre timed refusal information~we may insist that 
a giveJ1 event is not performed unless another has been offered--but most can be 
captured as predicates on traces. 

The lemmata of the previous section lead to the following restriction upon live­
ness specifications in Timed CSP; we may insist only that certain timed events 
occur or are made available. For example, the following constra.ints may be ex­
pressed as satisfiable liveness specifications: 

.. event a is possible at time 1; 

..	 if the last event observed is b at time 1, then event a is a.vaila.ble at all times 
after 1 + t; 

• if a has not occurred, then it is available. 

Liveness properties are expressed as predicates on failures. 
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Safety Specifications 

Any safety specification on process Y may be written in the form 

\I,,~ • (,,~)E Y"",~U 

where U is some set of undesirable traces. If this specification is to be satisfiable, 
then the empty trace must be an acceptable behaviour. As a result, the d~adlock 

process STOP will satisfy any satisfiable saIety specification. 

We can use the operators defined in section 2.1 to construct simple safety 
specifications. For example, we may wish to specify that the events tick and lock 
occur alterna.tely in a.ny trace of CLOCf(: 

CLOCf( sat (s 1 tick -'= 5 1 lock) V (5 1 lick = s 1 lock + 1) 

Recalling that s 1 a denotes the uumher of occurrences of event a in trace s, we 
see that the process CLOCI'; must perform a tick before every lock. 

An event precondition for event a is a predicate that describes the process state 
necessary for a to occur. In Timed CSPl any state information must be deduced 
from observable behaviours; we write event preconditions as predicates upon timed. 
failures. As an example, consider the behavioural specification S defined by 

S(s,~)" ((t,a))in,""bE~('tt-l)~a~~(~tt) 

This places the folJowiug precondition upon event a: if this event is observed at 
time t, then event b milllt be seen more than one time unit before t, and event 
a must be available up until time t. Event preconditions correspond closely to 
the notion of firing conditions in sequential state-based languages such as the Z 
notation [Woodcock 90J. 

Any event precondition upon event a can he written as a constraint upon the 
behaviour of the process up until the time at which a is observed: 

«(t, a») in, "" C((,,~) T\0, t)) 

The prefix closure property of process behaviours allows us to simplify such specifi~ 

cations. From the second axiom of the semantic model, we know that if a appears 
in a trace s of process P, then there is another behaviour of P in which a is the 
last event observed. 

L~mma 4.7 If P represents a process, then 

P sat ((I, aJ) in' "" CU" ~J )[0, I» 

if and only if 

P sat foot(,)=(t,a)""C((s,~)T[O,I)) 

"
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Proof The proof of only if is trivial. Conversely, assume that 

P sat fool(') ~ (I, a) => G((" N)T [0, I)) 

and that 

(s,~) E hiP) " ((t,a) in s 

Choose trace w such that 

,;[O,I)=wj[O,I) " sT[i,oo)2<wT[I,oo)" fool(wti)=(l,a) 

The third axiom of the semantic model (section 2.2) states that every process is 
closed under trace equivalence, so (w,N) is also present in the semantic set of P. 
From the second axiom of the semantic model we obtain: 

«(wii)~(w1 t),~)EhlpJ => (w It,N tlegin(wl i))Eh[PJ 

Applying the first of our assumptions to the failure (w r t, N r begin( w 1 t)), we 
may conclude that 

G( (w i I, N t (Iegin( w 1 I))) I [0, I)) 

By Our choice of w, and the properties of before, after and during: 

(w t t,~ t (Iegin(wl i))) 1[0,1) (w,~) I [O,t) 

(s, N) T [0, i) 

hence we have esta.blished that 

G((,,~) T[0, t) 

We ma.y conclude that the two specifications are equivalent. o 

A behavioural specification must be satisfied by all behaviours of a. process, so it is 
sufficient to consider the case in which a is the last event observed. The exclusion 
of trace information at time l is important; our intuition concerning cause and 
effed excludes information a.bout events at time t from a precondition for the 
timfd event (t, a). 
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Liveness Specifications 

In our model of computation, a process and its environment cooperate on all ob­
servable actions. The visible events of a Timed CSP process represent an interface 
with the eJlVironment. Without some knowledge of the environment, we may not 
insist that a process performs an event at a particular time. We express liveness 
conditions as requirements on the availability of events, ensuring that the process 
will perform an event if the environment should agree. 

In section 4.1, we saw that we cannot require that an event a is availahle at a 
particular time t without considering trace information. If an event occurs as soon 
a.s it becomes available, its availabil..ity may not be recorded. As a result, livenes8 
conditions may take the form 

a ¢ a(N i IJ V a E a(, i J) 

The event a is made available throughout some interval I unless it occuri during 
some interval J. 

Lemma 4.8 If the behavioura.l specification 8(8, No) defined by 

S(s,N) ~ a¢a(NIIJ V aEa(,iJ) 

is satisfiable, then I ~ J. <:;) 

Proof Suppose for a contradiction that 8 is satisfied by a process Y, a.nd that 
there exists a	 time tEl - J. We observe that 

S(s, N) => a ¢ a(N i t) V a E a(s i J) 

From our assumption that Y satisfies 8(3, l't), we may conclude that 

("N)E YAa¢a(siJ) => a¢a(Nlt) 

The fourth axiom of the semantic model states that 

(s,N)E Y => 3W:RSEToN';:WA("W1E YA 
((t, a) ¢ W => (, rt~((t, a»), W r t) E Y) 

Combining these properties, we obtain 

("N)E YAa¢a(>jJ) => 3N':RSETo(srt~((t,a)),WrtIEY 

From the first axiom of TMF we know that the empty behaviour (0, {}) is present 
in Y. With this choice for (s, l't), the above implication yields that 

3K:RSET 0 ((),N)E YA(((t,a»),Nrt)E Y 
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As in the proof of lemma. 4.6, a. simple induction will establish that for any natural 
number n: 

3W, RSET • «(t,a))",W r t) E Y 

The bounded speed axiom of the semantic model pla<:es a natural number bound 
n( I) on the Dumber of events that may appear in any trace of Y before time t. 

Vt: [0,00) • 3n(t): N. (s,N) E S A ood(s)" t => #(,) .. nit) 

Again, this forces a contradiction, and establishes the required result. o 

As an example of a liveness specification, consider the case of an electronic lock 
LOC[(. If II. key is inserted, then the lock must permit the door to be opened after 
five seconds. If open represents the act of opening the door, and key represents a 
key insertion, then this requirement may be written as follows: 

LOCI( sat «t, hy» in s => open ¢ a(N 1t + 5) 
V 

open E 0($1 t) 

For simplicity, we have assumed that the door is opened only once. 

An cpent postcondition for a is a predicate that places a constra.int upon the 
possible behaviours of a process following the observation of a. Any event post­
condition may be written in the form: 

«(t,o)) in s => C«(s,N) T (1,00)) 

When placing an event precondition on an event a, it is sufficient to consider the 
Ci1Se in which a is the last event observed. This result does not hold for event 
postconditions, even jf we restrict our attention to the last occurrence of a: 

faat(' t a) = (1,0) => C«(s,N) T(t,oo)) 

Although a useful form of specification. this is not equivalent to the event post­
condition given above; the requirement that 

a ~ "~STOP sat faal(d a) ~ (t, aj => a ¢ a(s 1 t) 

is easy to esta.blish, while the following requirement is impossible: 

a_a-+STOP sat ((t,a)) in sQa¢<r(s1t) 
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4.3 Environmental Conditions 

We may use the notation of timed failures to analyse the behaviour of a process 
under a certain set of environmental conditions. One of the assumptions of our 
computational model is maximum liveness: if a process and its environment are 
both prepaIed to engage in a particular timed event, then that event will occur. 
This postulate allows us to include assumptions about the offers made by the 
environment as preconditions in a behavioural specification. 

These preconditions may be used to reason about non-robust interfac~, where 
correct behaviour is dependent upon the cooperation of the environment. When 
specifying the behaVIour of a system component, we may assume that certain 
patterns of external communication will never be encountered. 

Assumptions 

To include an assumption about the environment in a specification of a proce::ls, 
we write the specification in the form 

P sat E(s,N) => F(s,N) 

where E is a predicate that corresponds to our assumption, and F characterises 
our requirements. This implication is vacuously true for any behaviour that does 
not meet the environmental condition; in this case, no requirement is placed upon 
the process. However, we must ensure that predicate F is true of any behaviour 
of P that meets condition E. 

It is instnlctive to consider the extreme assumptions true and false. In the first 
case, we are placing no constraint upon the environment; the following equivalence 
will hold: 

P sat (Iru, => F(s,N)) '" P sat F(s,N) 

To show that a. process P meets requirement F in any environment, we must show 
that F bolds of all the behaviours of P. If our environmental assumption is false 
then we are assuming a miraculous environment, in which any process meets every 
requirement: 

P sat (false=> F(s,N)) '" lru' 

In practice, our environmental assumptions will be more reasonable. 
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Trace Conditions 

A timed trace is a record of observable events performed by the process; each 
of these events requires the cooperation of the environment. If the environment 
never offers a timed event (t, a), then this event will DeVer be observed. Toexamine 
the resulting behaviour of the process, we restrict our attention to those failures 
which exclude this event from the trace. This may be extended to disqualify whole 
sequences of possible events. 

For example, we may wish to specify that a personaJ computer PC will behave 
according to specification SPEC(s, ~), providing that it is switched on before a 
djsk is inserted. If We use on to represent the activation of the machine, and insert 
to represent a disk insertion, then we may capture this requirement as follows: 

PC ,.t (b'9,n(, l on) < b'9in(, lin,,"')) * SPEC(s, N) 

We are assuming that the machine is activated only once. The addition of an off 
event to nur description would permit a more realistic treatment. 

An assumption about possible traces corresponds to a safety specification upon 
the environ~nt of a process. If we reqnire that 

P sat s</'U*SPEC("N) 

where ~. denotes a set of disqnalified traces, then we are assuming that the envi­
ronmen! will not offer these sequences of timed events. If the environment of P is 
another process Q such that 

Q sat , </. U 

then the behaviours of P should meet specification SPEC. 

Failure Conditions 

A timed refusal i~ a partial record of offers made by the environment of a process. 
If an event e is present in the refusal set, then we may infer that the environment 
offers more copies of e than the process is able to perform. By considerin.g only 
those failures which include e in the refusal set, we may examine the result of 
placing a process in an environment which is willing to perform as many copies of 
e as necessary. 

For example, we may require that a process P meets a specification F, providing 
that the environment is willing to accept at least one output every five time units: 

P sat E(" N) * F(s, N) 
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where E is an environmental condition defined by 

E(" N) == 'I I: TINT. 

Iength(1) " 5 =} output E 0(' ) IJ V outpu' E o(N ) I) 

If I is an interval of time longer than five time units, then there must be Some 
time during that interval at which the environment offers to participate in output. 
This corresponds to the inclusion of the event (t, output) in the trace or refusal, 
depending on whether or not the offer was accepted. 

A failure condition corresponds to a liveness specification upon the environ­
ment of a process. For example, if we wish process Q to model that part of the 
environment that accepts ontput from P, we should ensure that 

Q sat 'I I : TINT. 

l,ngfh(1) " 5 =} output E 0(' ) I) V (1 x {output]) 11: H 

Our choice of Q means that the event Qutput is concealed from the rest of the 
environment. Assuming that P and Q have no other events in common, we may 
comhine them as follows: 

(p II Q) \ output 
o1llp1l1 

As we shall see, the concealment of an eve1t corresponds to the assumption that 
all external offers are refused. The parallel combination of P and Q can refuse 
output when either process refuses. For any intervall longer than five time units, 
either P refuses Qutput at some time dllring I or Q refuses output throughout J, 
in which case output must occur. In either case, the E condition is satisfied and 
specification F must hold. 

The ahove example illustrates the dual relationship between liveness conditions 
and readiness assumptions: 

aEo(s)IJ aEo(')J) 
V V 

Jx{a]I1:N a E o(N ) J) 

If a process Q satisfies the liveness condition (on the left), then it will serve as a 
suitable environment for any process requiring tbe readiness assumption. 
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4.4 Example 

We consider a specification of the timed sensitive vending machine defined in 
section 2.8. This machine was intended to dispense a drink for every coin inserted; 
we use the events coin and coke. to represent the insertion of a coin and the 
removal of a drink, respectively. The company that operates the machine requires 
tha.t every drink is paid for in advance, so we mllst place the following safety 
specification upon TSVM: 

SAFE(s) :2: S 1 coke ~ s 1 coin 

The number of drinks dispensed is no greater than the number of coins accepted. 

For profitability, the company reqllires that the machine is ready to ac•..ept 
another c.cin within time Ii of a drink being dispensed. We place the following 
liveness specification upon the implementation: 

NEXT(s,N) '" «t,coke))ins~coin¢,,(N1'+',) 
V 

cQinEu(s1 t) 

If a drink is removed at time t, then the event coin must become available no later 
than time t + t4 . This offer is represented by the absence of the event from the 
refusal set, or the presence of the event in the trace. 

If t]le machine is kicked within time i[ of a coin being inserted, a reset event 
will ocmr, and the coin will be lost. Rather thiUJ. design a more robust mechanism, 
the manufacturers construct the machine to the following specification: 

OllAY(s,N) '" E(s,N) ~ F(s,N) 

whereF(s, N) requires that a drink is made available time ts after a coin is inserted: 

F(s,N) '" «I,coin))ins~coke¢,,(N11+t,) 

V 

coke E u(s 1t) 

and E( s, N) is an environmental condition corresponding to the assumption that 
the machine is treated gently for at least i[ after each coin is inserted: 

E(s,N) '" «I,coin))ins~reset¢,,(sT[I,t+1]) 

If t!is environmental mndition is met, then the machine guarantees to offer a drink 
at the appropriate time. 
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Proof 

Cha.pter 2 presented a algorithm.ic language for the description of real-time sys~ 

terns, aHd cha.pLer 4 showed that behavioural specifica.tions may be used to d~scribe 

the safety and Eveness properties of a such a system. In this chapter, we address 
the problem of proving that a suggested TCSP implementation satisfies a. given 
behavioural specification. 

5.1 A Proof System 

In [Brookes 83] Brookes presented a proof system for untimed esp, based upon a 
set of semantics-preserving algebraic laws. With the addition of timinginforma­
lion, many of these laws must be repealed. For example, 

(a~P)III(b~Q) t a~(PIII(b~Q)) 

o 
b ~ ((a ~ P) III Q) 

The left-hand process may engage in the two evenls a and b simultanElJusly; the 
right-hand side describes a process which is initially sequential: after performing 
the first event, a strictly positive time 6 must cla.pse before it can verforrnanother. 
We cannot change the degree of parallelism in a real-time system witheut consid­
ering the behaviours of the processes involved; there is no rule for the dimination 
of interleaving parallel operator. 

Similar problems arise when we consider the properties of the hiding operator. 
When we conceal a set of events from the environment of a process, We do more 
tha.n simply remove them from the trace: we determine the times at whi,h they are 
scheduled to occur. Although many of the equivalences presented in [.Brookes 83] 
are preserved, they serve only to illustrate desirable properties of our semantic 
model. They do not comprise a complete set of laws; there are other ejuivalences 
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that we are unable to demonstrate without reconrse to the semantic equations. 
This precludes the algebraic method of proof pioneered by Milner in [Milner 801, 
in which similar laws are used to establish that a. suggested implementation is 
equivalent to a. process already known to have the reqnired properties. 

This is no cause for alarm. We are able to produce a complete proof system 
for proofs of satisfaction in the model TMF _ If it is true that all the behaviours of 
an implementation P med a certain behavioural specification 5(6, ~), then it will 
be possible to show that 

P sat S("N) 

using the inference rules presented in this chapter. Each of these rules will take 
the following form: 

Mtecedellt 

antecedent 
[ side condition J 

wnsequent 

If we establish the truth of each antecedent, then we can be assured of the truth 
of the consequent, providing that the side condition holds. 

We wiJI present an inference rule for each clause in the syntax of TeS?, ex­
pressing the behavioural properties of a process in terms of component specifi­
cations. For compound processes, the antecedent part of the rule will consist of 
behavioural specifications for the syntactic subcomponents. For a.tomic processes, 
the rules will be without antecedents. In either ease, the consequent will be the 
strongest specification that may be inferred about the process. 

We may use the definition of satp in the previous chapter to esta.blish the 
following logical TIlles: 

Psat,S(s,N) Psat,S("N)
 
P sat, T(s, N) S(s,N) => T(s,N)
 

P sat p true P s.t, S(s, N) A T(,_ N) Psat, T("N) 

The null specification is true of any process, each goal may be addressed separately, 
and we may weaken any specification already established. 
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5.2 Sequential Processes 

Atoms 

The processes ..1 and STOP are both unwilling to participate in any externa.l 
activity. The inference rules for these operators are: 

1. sat p s = () STOP sat, • ~ 0 
Any trace of either process must be equal to the empty trace, but we can infer 
nothing about a typical refusal set: ~ may be any element of RSET. 

The process S[(IP is initially prepared to perform the termination event .f, the 
only action that this process may perform: 

SMP sa', (. ~ 0 A J 't q(~)) 

V 
(s = ((1,/)) A J 't q(~ t I) At" 0) 

Either no events have been observed and the event .f is available, or .f has been 
observed (at some time t) and was continuously available beforehand. A similar 
rule pertains to the delay process WAIT t, in which the termination event becomes 
available at time t: 

WAIT I sat, • = 0 A J 't q(~ 1I) 
V 

• = ((I', J)) A J 't q(~ I [I, I')) At' " t 

]f no events have been observed then .f must he available continuously from time 
t onwards. Otherwise,.f is observed at a time i' ;<!: t and made available at a.ll 
times between t and t'. 

We do not require a proof rule for term variables. Timed CSP processes will 
contain nO free occurrences of any variable; whenever we come to establish a 
result about a term P with a free variable X, we will be within the scope of the 
assumption 

X sat, S(.,~) 

for some behaviour...1specification S. 
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Prefix 

The undecora\ed prefix operator is associated with a constant delay of 6. From 
the semantic equation given in chapter 2, we may derive the inference rule below: 

P .at, S(" N) 

• ~ P sat, ,= 0 1\ • ¢ u(N) 
V 

,= «(I, .))~" 1\ a ¢ u(N r I)	 1\ b'g;n(,') ,,(I +a) 
1\ S«,',N) - (t +a) 

U Ilder the assumption that P meets behavioural specification S(s,~) in the currenl 
environmeut p, we may jnrer the following statements about a typical failure of 
the term a -+ P: 

* if s is empty, then the event a may not be refused, and is thereiore absent 
from the refusal set N 

• if s is non-empty, then the first event must be a. If a occurs at time t, we 
know that a is not refused before this time. 

* if a occurs at time t, then the subseqnent behaviour is that of P, following 
a delay of o. This subsequent behavionr must satisfy the predicate S. 

The inference rule for delayed prefix is a simple generalisation: 

P sat p S(s, N) 

a ---'!---Jo P satp	 5 = {} J\ a ¢ u(N)
 
V
 

,= (I', a»)~,' 1\ a ¢ u(N t I')	 1\ begin(s') " (I' + t) 
1\ S«,', N) - (t' + I)) 

In this case, if event a is observed at time t' , the subsequent behaviour is that of 
P starling at time t' + t. 

Sequential Composition 

The Inference rule for the sequential composition P; Q is complicated hy the fact 
that both terms are able to perform actions at the time of transfer of control. If 
control has not been transferred, then any trace of the composite term is a trare 
of P during which'; is not observed, and would be refnsed if offered. Otherwise, 
we may infer only that the trace is a permutation of traces Jp and 5Q, performed 
by P and Q respectively: 
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P sat, S(s, N)
 
Q satp T(s, N)
 

P;Qsat, .I¢u(s)~VIE TINToS(s,NU(I x {.I))) 
V 

.3sp ,sQ. S;:;" sp'"'sQ /I.'; ¢O"(sp) /I. begin(sQ);;<!: t 

~ S(sp~«I, .I)), N rt U [0, I) x {.I)) 
~ T«sQ, N) - t) 

The trace sp may be extended with a..l event at some time t (this event is hidden by 
the sequential composition operator). In the presence of the sequential composition 
operator, the event.; occurs as soon as it becomes available, so we know that it 
is refused at any time before t. Hence the failure 

(sp~«I, .I)), Nt I U [0, I) x {.Il) 

must be a behaviour of P, which meets specification S. The second parl of the 
trace, together with the refusals after t, forms a behaviour of Q. 

To simplify the process of reasoning about sequential composition, we exhibit 
derived inference rules for the cases in which either P or Q is a delay process. The 
expression WAIT t; P denotes a term that behaves as P, after an initial delay of 
time t: 

P sat, Sis, N) 

WAlT I; P sat, 6'9;n(s);' t ~ Sirs, N) - t) 

In the expression P; WAIT t ; Q, a delay of time t is associated with the transfer 
of control from P to Q. This delay allows us to separate the behaviours of the 
component processes: 

P satp S(s, N)
 
Q sat, T(s, N)
 

P; WAIT t; Q sa', .I ¢u(s) ~ 'II E TINT 0 S(s,NU I x {.I)) 
V 

S(s rI'~«t', .Il), N r I' U 10, I') x {.Il) 
~st(t',I'+t)~() 

~ T«s, N) - (t + I')) 

The delayed sequential composition operator; is a special case of this construct. 
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Nondeterministic Choice 

Any behaviour of the nondeterministic choice P n Q must a.rise from either P or 
Q. This gives rise to the obvious inference rule: 

P"t, S(s,N)
 
Q oat, T(s, N)
 

PnQsat, S(s,N) V T(s,N) 

The indexed form of this operator is not well-defined unless the set of alternatives is 
uniformly bounded. This requirement appears as a side-conditiou in the inference 
rule below: 

'if I: I • Pi sat p 8(5, N) 
[ {Pi liE l} is uniformly bounded 1

nel P, sat, S(s, N) 

This condition is trivially true for a choice of delay processes. The proof rule for 
nondeterministic dela.y is simply 

Psat, S(s,N) 

WAIT T; P sat, 3' , T. b,gin(s);' , A S((s, N) - t) 

We may infer that this process behaves a..'l P, starting at some time t taken from 
thesetT. 

Deterministic Choice 

As in the case of nondeterministic choice, we ma.y infer tha.t the combination Po Q 
behaves as either P or Q. We may also infer that any event refused before the 
first observable event occurs must he refused by both processes: 

P sat, Sis, N)
 
Q sat, T(s, N)
 

PDQ sat S(s, N) V T(s, N) 
A 

S«), N t begin(s) A T«), Nt b,gin(s)) 

Any behaviour of the form (0, N) must be common to both alternatives. 
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An indexed choice requires the side-condition that the set of alternatives is 
uniformly bounded: 

Va: A. P. satpS.(s,N) 
[ {p.} uniformly bouoded J 

a: A ~ p. 
satp 

, ~ () ~ An D(N) ~ {)
 
V
 

o E	 A ~,= «t,o))~,' 

~ A n D(N t t) = {) 
1\ begin(s') ;;;: t + t. 
~ S.«s',N) - (t + t.)) 

H no events have been observed, then all of the events in set A should be available. 
As a result, the intersection of A with the event set of the refusal N must be empty. 
Otherwise, if a is the first event observed, we know that a E A, and the subsequent 
behaviour is that of p•. A delay of t. is associated with the transfer of control to 
the process p ... 

Relabelling 

The inverse image of of P may engage in an event a whenever P may engage in 
the event /( a). 

P sat p Sf', N)
 

f~' (P) sat, S(f(s),J(N))
 

The direct image of P ma.y engage in an event f( a) whenever P can engage in the 
event a: 

P sat p Sf', N) 

f(P) sal, 3 s' • , = fe,') ~ S(,',J-' (N)) 

In the second inference rule above, the expression /-1 (N) denotes the set 

{(t,a) I (t,J(o)) E N} 

This is the inverse image of refusal set N under function f. 
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Abstraction 

To rcasall about a term of the form P \ A, we identify the behaviours of P in 
which events from A occur as soon as possible. In section 2.4, we saw that these 
are failures of P in which events from A may be continuously refused: 

Psat,S(s,H) 

P \ A sat, 3 s' • s ~ s' \ A A S(s', H U ([0, "d(s', H)) X A)) 

If (S, N) is 11 behaviour of P \ A, then there is a trace s' of P which matches s if 
we iguore the events from A. This trace, together with the refusal set N, must be 
a behaviour of P. Further, we may add events from A to the refusal set. We "mfer 
that the failure 

(s', HU [0, end(,', H)) x A) 

is a behaViour of P, and hence satisfies specification S. 

Although this rule is easy to derive, it is difficult to apply. In chapter 6, we 
will show how to separate the concerns of concealment and scheduling. We will 
derive a simple inference rule for hiding, and show how it may be used to structure 
timed failures specifications. 

5.3 Parallel Processes 

Alphabet Parallel 

If s is a trace of the alphi'lbet parallel combination P AIlB Q, then we know that 
the restriction of s to set A must he the trace of e.....ents performed by process P. 
Similarly, the restriction of s to set B is the trace of event.s performed by Q. We 
mayal.o infer that s couti'lins only e .....ents drawn from the union of these two sets. 
To summarise, the predicate 

35P,SQ. slA=sp/\stB=sQ/\s~(AuB)=s 

mllst hold for 5, where sp and '~Q are traces of P and Q. 

Suppose that (5, l{) is a beha.....iour of this parallel combination, and that it 
corresponds to behaviours (sp, l{p) ;md (sQ, NQ ) of components P and Q. From the 
semantic equation for this operator, we know that we can choose these component 
behaviours such that 

a(H p )'; A A a(HQ)'; B 
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Any event from set A will require the cooperation of component P, and any event 
from set B will require the cooperation of component Q, so we may infer that 

Np <;; N l A A No <; N rB 

Finally, an event (rom A u B may be refused by the parallel combination only if 
it occurs in at least one of these refusal sets. 

Paalp S("N)
 
Qsal p T("N)
 

PAil. Qsal, 3,p,Np ,'0,NO '	 S(,p,N p) A T('o,N o )
 
A
 

sp = s l A 1\ sQ = s l B 
A 
, l (A U B) = , 
A 
Np <; N l A A No <;; N l B 
A 

N llAUB)=NpUNO 

Simple Parallel 

In the parallel combination P II Q processes P and Q must cooperate on every 
action that is performed. The relative simplicity of its semantics is reflected in the 
following inference rule: 

P sat p 5(5, N) 
Q"l p T("N) 

P II Q sal, 3 Np, No • N ~ Np U NO A Sf', Np) A T(s, NO) 

Interleaving 

The interleaved parallel combination Pili Q may engage in an event a when either 
P or Q is prepared to engage in a: 

Paal p S(s,N)
 
Qaal p T(s, N)
 

Pili Q sal, 3sp,,0" E" III So A S(sp,N) A T(sO,N) 

Recall that 5p III sQ denotes the set of possible interlea.vings of Sp and sQ, 
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COInmunicating Parallel 

In the comrnu:nicating parallel combination 

pllQ
c 

processes P <Lnd Q are reqnired to cooperate on events from set C. If s is a trace 
of this process, then there must exisl traces Sp and SQ such that 

(" C = Sp l C = So ,C) A s \ C E (sp \ C III So \ C) 

Trace s re~tricted to events outside set C must be an interlea,ving of sp and SQ, 

sim.ilarly restricted, and all three traces must agree on events from set C. We 
abbreviate this requirement as s E 81' II SQ. 

c 

Psat p S(s. N.)
 
Qsat T(s,~)
p 

p II Qsatp 3 Sp, SQ, N. p , NQ • sEspllsQ
c c 

A 

K lC=(KpUKo) lC 
A 

K \ C ~ (Kp n Ko) \ C 
A 

S(sp,K p ) 

A 

T(so,KQ) 

A timl'd event (t, a) may be refused if a is in C and either process refuses to 
cooperate, or a is not in C and both pro("..esses refuse to cooperate. If C is the 
intersection of the process a.lphabets, we may simplify the consequent: 

P sat, SIs, N) 
Qsat, Tis, K) 

["(P) n u( Q) = C I 
p II Q sat, 3N p , KQ • K lC=(NpUKQ) ,C

c 
A 

K\C=(NpnKo)\C 
A 

S(s l"(P),Kp) 
A 

T(s ~"(Q),Ko) 

This form of the rnle will be sufficient for most applications. 
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5.4 Tirneouts and Interrupts 

Timeout 

In the timeou t construct P ~ Q, control is transferred to Q unless P performs an 
external action before time t. 

P sat, 5(5, N)
 
Q 'at, 1'(5, N)
 

ptQsatp be9in(s)~tI\S(s,N) 

V 

b,gin(5);' (I + 6)" S((), Nt I)" 1'«(8, N) - (I + 6)) 

The 6 delay allows us to determine which of the two components has given rise to 
the current behaviour of P ~ Q; it is a behaviour of P if it start5 at or before time 
t, and a behaviour of Q otherwi5e. 

Timed Interrupt 

In the timed interrupt construct 
plQ, 

control is passed from P to Q at time t, regardless of the progress made by P. 
Once again, a small delay of 6 is associated with the transfer of control. 

P 'at, 5(5, N)
 
Q 'at, 1'(5,N)
 

P 1 Q sat, b,gin( 51 I) ;, 1 + 6A 5(, I I, Nil) " 1'( (5, N) - (I +6)), 

No external activity is possible during transfer of control from P to Q, so 

begin(s1 t) ~ t +6 

Any activity before time l must he a possible behaviour of P; any activity after 
time t +6 must be a possible behaviour of Q. 
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Event Interrupt 

If (s, N) is a beha.viour of the construct 

P 'V Q• 
•,E 

in which no interrupt events have been observed, then the wbole of set E must be 
available. Olberwise, there is an interrupt (t, c) such that e is the only interrupt 
event at or before time t; in this case, the subsequent activity must be a possible 
behaviour of Q. 

Psat,S(,,~) 

Vt: E • Q. satp T,( s, N) 
lEn <7( P) = {} J 

P'V Q• ." 
sat p 

En<7(s,~) ~ {} A S(s,N) 
V 

31:	 TlME;e:E.s tl ~E~ ((I,e)) A 
En <7(N t I) = {} A 

bcgin(s 1 t) ~ t +C 1\ 

S(, t t \ <,N t I) A 
T,«s, N) - (I +<\)) 

Apart from tbe occurrence of the interrupt event any observation up until time t 
must be a behaviour of P. 

If Dilly one iuterrupt event is alTered, then we may eliminate one of the exis­
tential quantifiers in the consequent of the rule: 

P sat, S(" N) 
Qsat, T(s, N) 

[e¢<7(P)J 
P'V Qsat, e ¢ <7(5, N) A S(5, N)

• V 

31:TlME.stl~e=(t,e» A 

e ¢ <7(N t t) A 

begin(s1 t) ~ l+C 1\ 

S(s tt\e,N ttl A 

T«s, N) - (I +<\)) 

In either case, we include the assumption that P may not interrupt itself as a side 
condition to the rule. 
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5.5 Recursive Processes 

In chapter 3, we showed how the theory of metric spaces may be used to give a 
semantics to recursively defined processes. To reason about the propertie9 of these 
proceses, we give a simple topology to the space TMj' and establish a Lheory of 
recursion induction, in the style of [Roscoe 821. 

Recursion Induction
 

We will require the following definitions, taken from ISutherland 75J:
 

Definition 5.1 A topological space T = (A, T) consists of a non-empty set A 
together with a fixed collection T of subsets of A satisfying 

1. A, {} E T 
2. the inlersection of any two sets in T is again in T 

3.	 the union of any collection of sets in T is again in T 

<> 
We refer to the elements of T as the open sets of T. The dosed sds of T are 
given by {A - U I U E T}. A mapping between topological spaces is c6~tinuous 

if inverse images of open sets are themselves open: 

Definition 5.2 If TJ = (A 1 ,Td and T~ = (A t ,1i) are topological spaces, then 
a mapping / : Aj - A~ is continuous with respect to topologies 7j and 12 if 

U ET, => r'(U) E T, 

<> 
We may give a topology to the metric space (A, d) by defining T to be the set of 
d-open subsets of A. If we define 

Definition 5.3 If AI = (A, d) is a metric space and ( is a strictly positive real 
number, then the open (-hall neighbourhood 0/ a in At is the set 

B,(d; a) " {x: A I d(x, aj < <J 

<> 

then we may characterise the d-open sets as nnions of open balls. This Ii il conse­
qnence of the following definition: 

Definition 5.4 A subset U of a metric space M = (A,d) is d-open in M if given 
any a E U there exists (. > 0 such that B,,,(d; a) C U. <> 
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The following theorems arc taken from [Roscoe 82] and [Reed 88J: 

Theorem 5.5 Let M =: (A, d) be a complete metric space, and let TV be the 
topological space ( {lroe,jll'lse), T) where 

T " {{), {fals'), {true,!a",)J 

If F : M -.., T is continuous with respect to the d-open topology and T, and the 
set {ll E A I F(a) = true} is Iionernpty, then 

(V" A. F(x) = ',u, '" F(C(x)) = 'cu,) '" F(jix(C)) = 'ru, 

for any contradion mappillg C: At _ M. Q 

Theorem 5.6 rr F is a mapping from the complete metric ~pace (TSp , d) to TV 
such that (or any Y in TS,. 

F( Y) ~ fal" '" 3 t, TIME. V y', TS,. • Y i , ~ Y r " '" F( Y') = fal" 

then F is continuous. Q 

Recall that the metric d UpDU TSF was defined using the be/ore operator on sets 
of failures. Y r t = Y'i t. if failure sets Y and Y' agree up until time t; these 
y ' form an open ball around Y in the metric space. rr F is such that whenever 
F( Y) :::; false there is an open ball around Y whose image is {false}, then F is 
continuous. 

We identify predicates on timed failure sets with mappings from TSF to the 
spaC€ of truth values TV. 

Definition 5.7 A predicate R on elements of TSF is a mapping from the space 
of timed fajlure sets TSF lo the space of truth values TV, 

({ I,.,,!,,I,,), {{J, {fal"}, ('cu,,!alse JJ) 

We sa.y that R is a continuous predicate if it is a continuous mapping in the sense 
of defmition 5.2. 0 

Definition 5.8 A predicilte R is plalLSible if R is continuous and 

3 Y, TS,. • R(Y) ~ lcu' 

o 
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Immediate Recursion 

To establish that a plausible predicate correctly describes a well-defined recursive 
process p X 0 P, it is sufficient to show that R is preserved by the mapping 
corresponding to X and P. If P is constructive for X then the following inference 
rule is valid: 

Rule 5.9 

v Y, TSF' R(Y):> R{.Fr[PJp[Y/XIJ 
[ R plausible) 

R(.Fr [I'X 0 Pip) 

{',. 

Proof If P is constructive for X, then the mapping.\ Y • fr[P]p[YjXj is 
a contraction mapping on TSF , by lemma 3.14. If R is plausible, then it is a 
continuous mapping from TSF to TV such that the set {Y : TSF IR( Y) == true} 
is nonempty, and we have assumed that 

v Y, TSF • R(Y):> R(.FrlP]p[Y/XIJ 

We may apply theorem 5.5 and deduce that the rule is sound. o 

In our proof system, we wish to establish that a predicate holds not of a process, 
but of a typical behaviour of that process: we wish to show that a process satisfies 
a behavioural specification. In this case, our proof obligation can be simplified. 
We need only show that the specification is preserved by each recursive call: 

Rule 5.10 

Xsat p S(s,N):> Psat,S(s,N) 

pX 0 Psat p S(s,~\t) 

{',. 

Proof We recall the definition of the sat p operator 

Psat,S(s,N) '" VS,N. (s,N) E .FrlPI' S(s,N) 

We claim that any predicate of the form 

R(Y) '" Vs,N.(s,N)E Y:>S(s,N) 

is plausible in TSF. Suppose that Y E TSF and R( Y) = false, then 

3s,N.(s,N)E Y/I~S(s,N) 
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There must be a behaviour (s,t{) in }' which does not meet S. If we choose a 
time t > end(s, t{) then 

Y't t = Y t t '* (s, H) E Y' A ~ S(s, H) 

and R( Y ' ) ::: false for all Y in an open ball of radius 2-1 around Y. By theo­' 
rem 5.6, R is a continuous predicate. We know that {} E TSF , and it is easy to 
see that 

R( {}) = true 

Henc~ predicate R is plan!>ible. This reduces the proof obligation to an instance 
of rule .5.9. Hence this rule is also sound. 0 

This gives a sufficient condition for the recursive process jJ X a P to satisfy the 
specification S(s,t{) on timed failures. 

Delayed Recursion 

The delayed recursion operator a,.<;sociates a. delay of 6 with each recursive call; tbe 
mapping on T5p corresponding to a recursion jJ X • P is given by 

M.(X,P)p '" W".\ Y o FrlP!p[Y/Xj 

where the following equivalence holds for W6 : 

W." .\Yo{(s,Hllbegin(s);,6A((s,H)-6)EYj 

This mapping is a contraclion mapping on TSF for any choice of X, P; there is 
no need to establish that term P is constructive for the recursive variable. With 
an argument similar to that presented for rule 5.9, we may establish an inference 
rule for this operator: 

Rule 5.U 

'V Y: TSF 0 R(Y) '* R(Frlp!p[Ws(Y)/Xj) 
I R plausible)

R(Fd ~ X 0 pI pI 

{', 

From the proof of rule 5.1 0, .....e see that any such specification corresponds to a 
plausible predicate on elements of TSF. If we cboose R such that 

R(Y) '" 'Vs,N 0 (s,H) E Y,* S(s,H) 

then wc may derive all inference rule for behavioural specifications: 
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Rule 5.12 

vX : TSF 0 X Bat, (S«" N) - 0\) A b,gin(,) ;. 0\) => P 'at, S(" N) 

pX. PsatpS(s,~) 

t; 

Proof Similar to the proof of rule 5.10. o 

Mutual Recursion 

We restrict our attention to those recursive equation sets in which the I·ector of 
terms is constructive for the vector of variables. We wish to establish results about 
processes of the form (X, = P,),: the j component of the process vector defined 
by equation set {Xi = P;}. To do this, we will need to establish similar results 
about each component of the vector E. 

To establish that a \'edor of predicates E correctly describes the fixed point of 
M(K,E), it is sufficient to show that E is preserved by M(X, E), and that each 
R, is a plausible predicate. 

Rule 5.13 

(Vi 0 R,(Y;» => Vj 0 R,(h!P,jp[X/X.]) 
[ R; plausible, for all i 1 

E(FrlpXoEJp) 

t; 

Proof Assume that each R, is plausible, and that 

(Vi:Jon,(Y;)) => Vj:JoRi(h[Pi]P!Y/X]) 

We claim that 

(Vi:JoR;(Y,)) => Vj:JoRi(J"dQi]P[Y/X]) 

where vector .Q is as defined in the proof of the Unique Fixed Point Theorem. 
theorem 3.31: 

Q, " P,[ Qi/ Xi I j E ",gU)1 

To establish this result, we proceed by transfinite induction, with inductive set J 
defined by 

J " {k: J 0 (Vi: J 0 R,(Y;) => R.(hIQ.]p[X/X])) 
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We assume that seg(k) ~ J, and observe that 

Fr/Q,]p[l':/X] ~ Fr[PdQ,IX, II E ,eg(k)JIp[l':/XI 
= Fr[P,]p[l':/XJ[h!Q,]p[l':/XIIX,!1 E seg(k)J 

Define a sewudi1.ry vectol' Q by 

z, " Y, (I" reg(k)) 
FrlQ,]p[l':/XJ (I E 'eg(k)) 

By our inductive hypothesis, 

'ti:/oR,(Y,) => 'ti:loR,(Z;J 

Whence our original assumption about. £. yields 

('t.: 10 R,( Y;J) => R,(FrlP,Jp[Z:;XJ) 
=> R,(FrlQ.]p[l':/XJ) 

hence k E J, and the claim follows by t,ransfinite induction, From the definition 
of the metric Ji upon the product spa~e TSf, we may est.ablish that 

('9' i : I • R. plausible) ==> E plausible 

We have established that M(X, Q)p preserves 11, hence f1 must hold of the fixed 
point of this mapping, by theor~ .5.5. Bul from the proof of the Unique Fixed 
Point Theorem we learn that 

jix(M(X,Q)p) ~ jix(M(X,E)p) 

We ma.y conclude that the rule is sound. 0 

We may derive a rule for behavioural specifications by making a suitable choice 
for predicate 1J 

Rule 5.14 

('Vi: /. X;satpS,(8,~)}:::>'Vi: /. P,satpS;(s,N) 

(X, = P'}J sat p 5)(s, N) 

/::, 

The proof lbat this rule is sound, as an instance of the previous rule, is entirely 
similar to the derivation of rule 5.10 from rule 5.9. 



5.6 Soundness and Completeness 89 

5.6 Soundness and Completeness 

Our proof system has two desirable properties: 

Theorem 5.15 The set of inference rules presented in this chapter is sound with 
respect to the semantic equations given in chapter 2. The truth of each mle may 
be established from the semantic equalion for the corresponding operator, without 
recourse to the axioms of TMF • " 

Theorem 5.16 The set of inference rules presented in this chapler is complete 
with respect to the semantic equations given in chapter 2. Any property that is 
true of every behaviour of a process P may be established using these rules. 0 

Soundness 

The presentation of the proof system has been chosen to emphasise the correspon­
dence between inference rules and semantic equations. To see that each rule is 
sound, we have only to examine the defining equation for the operator in question. 
As an example. consider the rule lor simple parallel combination: 

P sat, S(s, N)
 
Qsat, T(s, N)
 

PII Qsat,3Np,N Q 0 N~NpUNQ AS(s,Np) A T(s,N Q) 

This operator was given the following semantics: 

:Fr!PIIQ]p'" {(s,NpUNQ)I(s,Np)Ehlp)pA(s,NQ)E:Fr(Q)P) 

A simple logical deductiou will suffice the establish the validity of the inference 
rule. Assume the two antecedents of the rule and suppose that (8, N) is a behaviour 
of P II Q in environment p. By the semantic equation, 

3 Np, NQ 0 (s, Np) E h [PJ p A (s, NQ) E :FdQI pAN ~ Np U ~Q 

From the antecedents, we obtain 

3Np,NQ 0 S(s,Np)AT(s,NQ)AN~NpUNQ 

We conclude that the rule is sound. 

Similar arguments may be presented for the other inference rules, with the 
exception of the recursion induction rules; soundness proofs for these rules were 
presented in section 5.5. 
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Completeness 

We claim th<it, if every behaviour of a process P meets predicate S(s, t{), then the 
inference rules given in this chapter a.re sufficient to prove that P sat S(s, ~). 

Lemma 5.17 If P E TCSP meets the requirement that each recursion is con­
structive, then we may use the inference rules to establish that 

P sat, (s,N)EFrlP!P 

for any environment p. Q 

Proof We proceed by structural induction upon the syntax TCSP. The result 
is easy to establish for bilsic processes. As an example, consider the case of the 
deadlock process. The semantic equation for this operator yields that 

(s,N)EFdSTOP]p .. s~() 

The infeJ'rnce rules 

Psat,S(s,N) 
S(s, N) => T(s, N) 

STOP sal, s ~ () Psatp T{s,N) 

are enough to establish that STOP salp (s,N) E Fr[STOP]p. 

For compound processes, we assume that the result holds for each component, 
and apply the appropriate inference rule. Consider the case of the simple parallel 
operator, which is associated with the following inference rule: 

PsatpS(s,t{)
 
Q sat, T(s, N)
 

PII Qsat,3Np,NQ .N~NpUNQA S(s,NP)A T(s,NQ) 

By our inductive hypothesis, the inference rules are enough to establish that 

P sat, (s,N)EFdp!p 

Q sat, (s,N) E FrIQ!p 

\Vitla these instantiations, we obtain the following consequent 

PIIQ sat, 3Np,NQ.N~NpUNQ A(s,Np)EFdp]p 
A (s,N Q ) E FrlQ]p 
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From the semantic equation for this operator, 

(s,N)EFr[PIIQ)p" 3Np ,NQ_N=NpUNQ II("N p)Eh[P)PII 
("NQ ) E Fr(Q)p 

We conclude that 

PIIQ sal, (s,N)EhIPIIQ]p 

may be establ ished using the inference rules of the TMF proof system. 

To see tha.t the result is true for recursive processes, recall t.hat the semantics 
of a recursive process is the unique fixed point of the corresponding mapping in 
the model TMF. For example, the semantics of the instant recursion IJ); a P is 
defined to be tbe unique fixed point of the mapping M(X, P)p, where 

M(X,P)p =0.\ Y - hlp]p[Y/Xj. 

The following inference rule may be applied if P is constructive for X: 

X sat, S(s, N) => P sal, S(s, N) 

JiX 0 P sat.., 5(3, N) 

We instantiate S with the specification (s, N) E fT [IJ X a P]p and claim that the 
antecedent holds. Observe that 

Xsal,("N)Eh[#XoP]p => PiX] ';h[~XoPJp 

The semantics of each operl'ltor is defined pointwise upon sets of timed failures. 
As a resnlt, the mapping on TAfF corresponding to any TCSP term must be 
monotonic with respect to the subset ordering. Hence 

M(X,P)p(p[X!) ,; M(X,P)p(h[~XoP]p) 

Expanding the definition of M(X, P)p, we obtain 

h!P]p[P[XIIX] ,; M(X,P)pFd~XoP]p 

=> FT\P!p ,; M(X,P)pFd~X oPJp 

=> h\PJp ,; h!~X 0 pIp 

=> P sat.., ("N)EFr[#XoP]p 

Hence the anten~dent of the rule holds for this specification; we may infer that 

#XoP sal, ("N)EFr(~XoP)p 

The result follows by structural induction. o 
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We have sho\\oTI that the inference rult's of our proof system are enough to establish 

P ,.l, (',~)E.TdpJp 

for any P in TCSP providing that the body of any recursive term is constructive 
for the corresponding term variable. If a behavioural specification 5 holds of the 
timed failures semantics of P, then 

("~) E h!Pjp => S(',N) 

The logical rule for weakening specifications (nsed in the proof of the previous 
lemma) ena.bles us to complete the proof of 

P sat, S("N) 

using on I)' the inference tules of our proof system. We conclude that the proof 
system for TA'h presented in this chapter is complete for construcli ve rewrsive 
processes, with respect to the semantic fundi on :Fr· 

5.7 Timewise Refinement 

A forma! specification of a complex system will mnRist of several behavioural 
specifications, each of which may be established separately. If we wish to prove 
that 

P sat S(',N) 1\ T("N) 

then it will sufficE' to show 

PsatS("N) 1\ PsatT("N) 

Some of these specifications 1lJ<l.y nul require the full expressive power of Timed 
Failur~s model. If this ~s the case. then we may use the hierarchy of models beneath 
TMF ~o simplify our proof obligations. 

!fa predicate upon tinted traces can be established without refusal informa~ 

lion, then we may construct a proof in the Timed Traces model TMr , The nature 
of the projection mappings ensures that this proof will be valid in TMr . Simi~ 

lady, jf a property may be established without timing information. we ma.y choose 
to construct a proof in the untimed Failures model Mr , or the untirned Traces 
model Mr. Of these models. Mr is the most useful for simplifying timed failures 
specifications; MF is often inappropriate, and timed trace requirements may be 
established using a simplified version of the TMF proof system. 
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TM, 

/~ 
TMT M, 

~/ Figure 5.1: the models beneath TM; 

MT 

The Timed Traces model is complicated by the need to record the times at 
which events become available; this informatiOfl is required for the semantics of 
hiding and sequential composition. For any event a, the notation ii denotes the 
communication of a at the first moment of availability. For example, 

TdPIl Q] (F 13,p,'Q.' = ,po'Q A 'P E hlp) A 'Q E TrlQIJ 
where Sp 05Q is a timed trace with the same timed events as Sp and SQ, such that 
the nth element of sposQ is hatted if and only if the n~h element of either Sp or Sf;} 

is hatted. For the Timed Traces model, refinemeut to timed failures is fasy, but 
proofs remain complicated. 

In the untimed failure (tr, X), the refusal set X is a set of events that may be 
refused following the observation of trace tr. ]n a timed context, X corresponds to 
the set of events that may be refused after all iuternal activity has ceased. With­
out a stability value, we have no record of internal activity; an untimed liveuess 
requirement may insist only that an event is offered eventually; this miLY prove 
inadequate in the specification of a real-time system. Nevertheless, a projection 
mapping from TMF to MF might be used to establish important properties of a 
real-time system. For example, it may be possible to establish deadlock freedom 
using the algebraic properties of uotimed esp, instead of the timed satisfaction 
relation sal. 

If a requirement can be established by reasoning within the untimed Traces 
model, then we may employ a simple synfactic abstraction from the timed synta.x 
TCBP to the notimed syntax esp. In \Schneider 89], the author develops a. theory 
of timewise refinement based upou the Timed Failures-Stability model TMFS ' In 
this section, we develop a. similar theory for TMF and exhibit a refinement proof 
rule for untimed safety specifications. We begiu by presenting a syntax for untimed 
esp, together with a semautic function for Reed's untimed Traces modeL 
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Traces Model 

We give an extended syntax CSP for a language of untimed CSP terms, to match 
the synta.x for TCSP given in chapter 2; 

P ..= STOP ISKIP \ X I atoms 

a ....... P \ P; pIp l P sequential composition 

PDP \ p n P Ia : A --t Pal alternation 

P II pIp AII8 pip III pip ~ pI pac,lIel compo'i'ion 

P\A JJ(P) \f-'(P) I abstraction and renaming 

~x. p I(Xi ~ p.); recursion 

This is anextension of the syntax presented in [Reed 88]: apart from term variables 
and the new parallel operator, we ha.ve added an unl.imed interrupt operator i 
which ffi,1.)' interrupt a process at any time during its execution, 

We define a semantic function from CSP to the Traces model MT; using envi­
ronment~ to bind term val'iables: 

TISTOPJp " (O) 

TIS[{fP!p " (O.(J)) 

Tla ~ pJp ~ {O} U {(a)~lr I tr E Tlp]p) 

TIP; QJp " (Ir I Ir E TIPJp A J ~ <7(lr)} 
U 

(trp~trQ I Irp~(~) E T!PJp A IrQ E T IQjp} 

Tip i QJp " {trp~lrQ I trp E TIPlp A trQ E TIQ]p) 

T!PO Qlp " Tlp!pUTIQjp 

Tlpn Qlp ~ T!PjpuTIQ!p 

Tla, A ~ P.jp " {(a)~tr I a E A A tr E T!P.jp) 

The untimed interrupt con.~truet P 1 Q may transfer control from P to Q after 
any sequence of events; an arbitrary tra.ce of this process may be any trace of P, 
followed by any trace of Q. 
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T[PII Q)p " T[p]pnT[Q]p 

T[P All. Q]p " {I' I" I(A U Bl ="	 II" I A ET[P]p
 
1I"IBET[Q]p}
 

TIP III Q]p ~ {tr 131rp, trQ _ tr interleaves (trp, trQ) /\ 

"p E T[P]p II "Q E TIQ]p} 

Tip II Qlp " It, 13 "p, "Q • "\ A inl"l,av" (t,p \ A, "Q \ A) II 
A ir LA = trp LA = trQ ~ A /\ 

I,p E TIP]p II "Q E TIQ]p} 

TIP\A!p" {t'\AII'ETIP]p} 

T[J(Pl]p " {J(t,) I" E T[P]p} 

T[J-'(P)]p " {I, 1/(1,) E TIP]p) 

T [p. X • P] p ==	 the unique fixed point of the mapping on MT
 
corresponding to X, P and p
 

T[(Xi = Pi),]p ~	 the pi, component of the unique fixed point
 
of the ma.pping on Mf corresponding to K,
 
E. and p 

The subsidiary relation inlerleaves is defined in (Hoare 85]: tr interleaves (trp, trQ) 
precisely wben Ir is an interleaving of trp and Irq. 

If S(tr) represents a behavioural specification on untimed traces, then we may 
define a satisfaction relation: 

P sat, 5(t,) " VI'E~'. t'ET[P]p=> 5(1,) 

The choice of free varia.ble identifies the model employed; we write tr to denote 
an arbitrary untimed trace. If the interpretation of sat is not obvious from the 
context, we will decorate it with the name of a semantic model. Using thisrelation, 
we may obtain a compositional proof system, similar to the TMF proof system 
presented earlier in this chapter: e.g. 

Psat p S(tr) 

a -----) P sat" tr = 0 V tr = (a)"""tr' /\ S(tr') 
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The inference rules for the other operators are straightforward, except in the case 
of recursion. For a recursive process to have a well-defined semantics, the body 
of the recursive definition should be guarde.d for the recursive variable; a term 
P is guard€<! for a variable X if each occurrence of X in P is prefixed by some 
observable event. If term P is guarded for X, then the following rule may he 
applied: 

XsatpS(tr)::::> PsatpS(tr) 
[STOP sat S(tr) 1 

J,lX. Psatp S(tr) 

An untimed trace specification is satisfiable iff it is satisfied by STOP; this is a 
consequence of the following axiom for Afr: 

v Y E AfT • 0 E Y 

The requirement that S is satisfiable is expressed by the side condition of the rule. 

Thi!:l proof system is considerably simpler than the proof system for TMF' If an 
untimed safety specification may be established within the untimed traces model, 
then we may remove the timing information from the syntax of the process and 
apply the inference rules for M T • 

Syntactic Abstraction 

We may define a syntactic abstraction (3 : TCSP ---+ CSP by structural induction 
upon the timed syntax: 

0(.L) " STOP 

0(STOP) " STOP 

0(SKIP) " SKIP 

0( WAIT I) " SI(]P 

0(X) " X 

We abstract away timing information, identifying any form of sequentia.l compo­
sition with the immediate transfer of control: 

0(a ~ P) " a ~ 0(P) 

0( a -.!.... P) " a ~ 0( P) 

0(P; Q) " 0(P);0(Q) 

0(P; Q) " 0(P); 0(Q) 
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The ma.pping distributes through all of the standard operators: 

8(POQ) "' 8(P)08(Q) 

8(pnQ)"' 8(p)n8(Q) 

0(a, A ~ p.) "' a, A ~ 0(P.) 

0(PII Q) "' 8(P) II 0(Q) 

8(P ,liB Q) "' 0(P) AII B0(Q) 

0(P III Q) "' 0(P) III 0(Q) 

0(P II 
, 

Q) "' 0(P) 
A 
II 0(Q) 

0(P \ A) "' 0(P) \ A
 

0(f(P)) "' {(0(P))
 

0U-'(P)) "' {-'(0(P))
 

0(1' X • P) "' p X • 0(P)
 

0(~ X 0 P) "' ~ X • 8( P)
 

0( (X, = Pi),) "' (Xi = 8( P),),
 

The timeout construct prj Q mayoIfer the user a choice between P and Q, or may 
behave as Q. depending on whether the timeout has occurred. Without timing 
information there is a nondeterministic choice between these two alternat.ives: 

0(P" Q) "' (0(P)00(Q))n0(Q) 

The timed interrupt operators are mapped to nntimed interrupts: 

0(Pj Q) "' 0(P)J 8(Q), 
0(P? Q) "' 0(P) j, -, 0(Q) 

The indexed nondeterministic choice and nondeterministic delay operators are 
mapped to t.he obvious ta.rgets: 

0(n p ,) "' n8(p,) 
lEI iEI 

0( WAIT T) "' 5MP 
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Timewise Refinement 

If a. specification 8(s) on timed traces is independent of timing information, then 
we may transform S into a. behavioural specification on untimed traces. We define 
a simple projection mapping on elements of TE~: 

Definition 5.18 

Islrip( 0) " 0 
tsl"ip«(t, a))~s) " (a)~tst,ip(s) 

¢ 

The mapping tstrip removes the time values from the trace. If the truth of a 
behavioura.l specification S is independent of these values, we say that S is a 
time-independenf specification. 

Definition 5.19	 A behavioural specification 8(5) is time-independent iff 

VSj,s,-: TE~ • tslrip(sd = tstrip(s!) '* S{sd == 8(51) 

¢ 

If 8(s) is a time-independent specification on timed traces, then it will prove 
convenient to define a corresponding condition upon untimed traces: 

Definition 5.20	 If S(5) is a timed trace specification, then 

<1>5(1') " 't., E TE(. tsl,ip(s) = t, "" S(s) 

<> 

An unlimed trace ir meets the specification ipS iff every assignment of time values 
to theevents in tr produces a timed trace tha.t meets S. RecalL that the sequence 
of time values must be non-decrea.<3ing if the result is to be a valid timed trace. 

Trace operators which do not refer to the times at which events occur ma.y 
be applied to both timed and untimed traces. For example, the restriction and 
counting operators are defined on E* by 

O,A " 0 
«a)~',) 1A "	 (a)~(I, l A) if a E A 

I, l A otherwise 

l,jA " #(1,1.4) 
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If a timed trace specification S(s) is constructed using such operators, then the 
untimed trace condition will often be a consequence of S(tr). As an example, 
consider the tiITled trace specification 

S(s) '" (last(s) = a) => sib ~ 0 

A process satisfies this specification if whenever we record a.n a event, we find that 
no b events have been recorded. It is easy to establish that 

(lasl(lr) = aJ => Ir I b = 0 => ~S(tr) 

for a.ny untimed trace ir. 

If the image of Sunder c:> is satisfied by the un timed equivalent of iI. timed 
process P, then we might expect that P satisfies S. However, jf we choose 

P '" (a ~ STOP III SKIP); b ~ STOP 

then 8(P) sa.tjsfies 4lS, where S is as defined above, but P does not satisfy S in 
TMF. With instantaneous sequential composition, events b may be observed at 
the same time as a, and so may appear first in the trace. The trace {( 0, b), (0, a)} 
is a possible observation of P, and does not meet S. 

This problem may occur whenever we use the instantaneous form of sequential 
composition. We could remove this operator from the syntax of Timed CSP and 
use only the delayed form; this is the approach taken in [Schneider 89J. Wechoose 
instead to reta.in it, for greater flexibility in process descriptions, <Uld identify the 
situations in which it may be safely applied. 

Definition 5.21 A process Pis 8-safe iff 

\ls,~ • (s,~) E hlPI => Istrip(s) E TIP] 

o 
A direct application of this definition would be impractical; fortunately, this prop­
erty may be established by a simple inspection of the process syntax. 

Definition 5.22 

•	 For any time t or set of times T, the terms STOP, S/(IP, 1., WAITt, and 
X are atl ..t-guarded. 

•	 If P and Q are both "I-guarded, then the terms a ---+ P, a --...!..... P, PDQ, 
pnQ, P; Q, PII Q, P AII 8 Q, Pili Q, P\A,f(P),f-' (P), p X • P, ~ X 0 P, 
P 6.. Q, P i Q, and P \l Qa are all "I-guarded. 

, aEA 
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•	 PII and P. are "I-guarded, for each event a E A or index i, theu the terms 

a: A ...... Pa , n'El Pt. and (Xi := Pi)j are all ,.I-guarded. 

•	 If P and Q are both J~guarded and t is strictly positive, then the terms 
WAIT t; P, P; WAIT t, and P; WAIT t ; Q ate all J-guanled. 

<) 

A term P j~ J-guardcd if every instantaneous sequential composition is accompa­
nied by a delay operator. This syntactic property j~ a sufficient condition for a 
process to be E)-safe: 

Lemma 5.23 For any P in TCSP, 

P is ,I-guarded .:::} P is E)-safe 

" 
This resdt follows directly from the semantic equations for the Timed Failures and 
untimedTraces models. We may now exhibit a refinement proof rule for untimed 
safety specifications: 

Rule 5,24 

f)(P) sat <l>S(lr) 
I P ;, f)-safe) 

P sat 5(;) 

[:, 

If we ca.n establish that the abstraction of a A-safe process P meets ¢lS, then we 
may il1fer that P also satisfies S. The antecedent of the rule is a proof obligation 
in the untimed Traces model, the consequent is a proof obligatiou in TMF • 

Proof To see tha.t this rule ;s saunn, cons;r!pr the following diagram: 

timccl process 
.at 

timed sprcificatjon 

definition of lJ0-safe 

untimed process 
.al 

untimed specification 

Figure 5.2: Timewise Refinement 

If $ is i\. timed trace of i\. 8-safe process, then Istr-ip(s) will be a trace of 8(P). 
If B(P) si\.tisfies the behavioural specifici\.tion 4>S(tr), then we may infer that S 
holds of trace s. The COUSt'quent part of the rule follows immediately. 0 



5.8 Example 101 

5.8 Example 

Consider the following implementation of a timed sensitive vending machine: 

TSVM == coin ~ (reset ~ TSVM 

[>'.
coke ~ TSVM) 

The company that operates this machine requires that every drink is pa.i~ for in 
advance, aud that the machine is ready to accept another order within a certain 
time t4• In section 4.4, we formalised these requirements as separate behavioural 
specifica.l ions: 

SAFE(s) == !i! coke <s! coin 

NEXT(s,N) '" ((t,cok,))ins=} co;n ¢a(N1 t+t,) 
V 

coin E a(s 1 t) 

The machine is supplied with the following manufacturer's: guarantee: if a coin is 
inserted al time t, then a drink is ready before time t +ts, providing that the user 
does not trigger a reset during the interval [t + tl,l + 1.1 +(fl. This requirement 
corresponds to the following behavioural specification: 

«t,coin))ins } cok, ¢ a(N 1t + t,) 
OKAY(s,N) _ A =} V 

reset ¢ a( s T[I + t l , t + ~J + t2 ]) coke E a(s 1 i) 

We would like to establish that the suggested implementation TSVM meets the 
following behavioural specification: 

SPEC(s,N) '" SAFE(s) A NEXT(s,Nj A OKAY(s,N) 

Safety 

The safety specification SAFE is independent of timing considerations. Although 
it is possible to show that TSVM satisfies this specification using the timed failures 
proof system, it will be easier to establish the result by timewise refinement. We 
observe that TSVM is ..I-guarded and hence 0-safe, and that 

iT ! coke '( IT ! coin =} ~SAFE(iT) 
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Applying the abstraction mapping e reveals that 

6( TSVM) ;0 SVM 

where SVM is the untimed vending machine of section 2.8: 

SVM == coin ---> (PAID 0 reset --+ SVM 
n 
coke __ SVM) 

An application of rule 5.24 redlJces Our proof obligatiuu to 

SVM sat tr 1 coke" tT 1 coin 

We observe that this recursion is guarded, and apply the inference rule for recursion 
in M T • We have now to prove that 

coin -t (PAID 0 reset --t X 
n satp tT! coke ~ iT ! coin 
coke __ X) 

under the assumption that 

X satp Ir 1 l'.okf'. .:::;; tr 1 coin 

This result may be established using the inference rules for event prefix, detennin­
istic choice, and nondeterministic choice in Mr -

Liveness 

The rest of the proof must be conducted within the Timed Failures model. We 
begill b)' observing Olat the body of the recursion SV[\., is constructive, providing 
that tJ > o. \\Ie may then a.pply the inference rule for recursion. reducing our 
proof obligation to 

coin ~ (resel 3!..... X 

" satp NEXT(8, N) 1\ OKA Y (8, N)C> 

coke ~ X) 

under the assumption that 

X >at, NEXT("~),, OKAY(,,~) 
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If we restrict our attention to the second of these specifications, we may apply the 
inference rule for event prefix to yield: 

reset ~ X sat I' s = 0 
V 

s = ((I, resd))~s' A O[(AY((s',~) - (t + I,)) 

Similarly, we ma.y easily establish that 

coke ~ X satp S = 0 A coke ¢ O'{N) 
V 

s = ((t, cok,))~s'	 A ,oh If- o(~ t t) 
A O[(AY((s',~)-(I+I,)) 

Applying the inference rule for the timeout operat.or, we may deduce that 

reset ~ X 

~ sat, A(s,~) V B(s,~) V C(s,~) 

coke ~ X 

where 

A(s,N) ::	 bcgin(s) ~ tl A 

s = ((t, reset)) ......s' A 
O[(AY((s',~) - (I, + I)) 

B(s,~) "	 s ~ 0 A ,ok, If- q(~ - (I, +0)) 

C(s,~) "	 s - (t, +0) = ((t, ,ok,))~s' A 

,ok'lf-q(~-(I,+o)tl) A 

O[(AY(s',~) - (I, + I)) 

An application of the rule for event prefix reduces our proof obligation to 

s = 0 
V 

s = ((t', coin))~s' A A((s'Y) ­ (t, + t')) 
V => O[(AY(s,~) 

B((s',~) - (I, + I')) 
V 

C((s',~) - (I, + 1')) 
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The spocification GJ<A Y is vacuons for the empty trace; we have only to prove 

((10, coin)) E oS 1\
 

reset ¢ a($ T[tQ + i/_ to + tl + t,l) /\
 

s ~ «t', cQin))~s' A	 A«,', N) - (I, + t')) 
V 
B«s', N) - (I, + t')) 
V 

C«s', N) - (t, + t'» 

cok' ~ a(N 1 t, + t,) 
=>	 V 

coke E a(s 1 t,) 

If t' i- 10 , then the result is ea...,ily estahlished by expanding A, B, and C. Suppose 
then tha.t tJ = to; onr assumption tha.t 

reset t/: u(s T[t' +i" t' + I J + tf ]) 

contradicts A(.;:, ~), so we have only to show that 

, ~ «t', cQin)~s' A	 B«s', N) - (I, + t'» coke ¢ I7(N 1 i' + t s ) 

V } => V 

C«s', N) - (t, + t')) coke E 0-( S 1 til 

From the definitions of Band C we obtain: 

_,' ~ () A wke ~ a(N - (Id t, + t' +6» 
V 

S' - (ll + tt + t' + 6) = ((1.", coke)) .....sfl 

The remIt follows, providing that 

is ~ if + i~ +!J 

If a coin IS insert.ed al time t. then we cannot guarantee to provjde i'l drink any 
earlier than t + t1 +t 2 +8. We must allow a delay of t1 for the coin to be inserted, 
a delay of te for the coin to drop, and a delay of at Iea..'lt 6 for control t.o be passed 
to the dispensing process. 

Tile proof of NEXT( s, ~) is similar, although an additional constraint must be 
added to ensure that this specification is preserved by each recursive call. We may 
conchde that the fnll specification is sa.tisfied: 

TSVM sat Sl'lOC(s, N) 

providing that the above condition upon is is observed. 
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Structuring Specifications 

If we wish to produce a readable specification of a large system, then we must 
take care to present our description in a clear, structured fashion. At each level of 
abstraction, we identify the interfaces between system components and conceal any 
events which are not of interest. We express our specification as a series of service 
specifications, each describing the service provided by a particular component of 
the system. In this way, we may refine a description oC the service provided by a 
system towards a satisfactory implementation_ 

6.1 Abstraction 

The hiding operator provides the mechanism for abstraction in Timed CSP; the 
expression P \ A denotes a process that behaves as P, except that 

• events from A occur as soon as they become available 

'" only events from outside A are observed 

In section 5.2 we gave an inference rule for this operator that was easy to derive, 
but difficult to apply. We can achieve a significant reduction in complexity if we 
separate the concerns of concealment and scheduling. To this end, we define a 
predicate actA which holds of any A-active behaviour: 

Definition 6.1 aotA(s,N) "" [O""d("N))xA~N <) 

A behaviour (s, N) is A-active if a.ll events from set A occur as soon as they become 
available. If we wish to estahlish that P \ A satisfies a specification S( 8, rlj, it is 
sufficient to show that 

'" S(8, N) holds for all of the A-active behaviours of P 

'" S(s,N) is unaffected by the concealment of events from A 
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The scmnd condition is satisfied jf the truth of the specification is unaffected by 
the removal of A'09 events from the trace and refusal. 

Definition 6.2 A beha.vioural specification 5(8, N) is A-independent iff 

V"TE';N,RSET. S("NU[O"nd(s))xA),*S(s\A,N) 

<> 

If 5 describes a service provided a.cross an interface that is disjoint from A, then 
S should be A~jTldependent. The folluwing abbrevia.tion will prove convenient: 

Definition 6.3 Sf"~ N) 'Il A =act,(" N) "" S(" N) <> 

This sta.les that the specifica.tion S(s,l'{) holds whenever the current behaviour is 
A-aetil'e. We may now present a simple proof rule for tbe hiding operator: 

Rule 5.4 

P sat, Sis, N) 'Il A 
[S is A-independent J 

P\Asat,S(s,N) 

f'., 

If an A-independent 5pecilkation 5 llOlds for a.1I A-active behaviours of a. term P, 
then we may infer that P \ A satisfies S(s, N). 

Example
 

Suppose that process P satisfies the following specification:
 

T("N) ~ a¢~(NlI1,2))VaE~(sT[o,2)) 

A 

«(I, a)) in s "" b ¢ ~(N 1 It + 1, t + 2)) 
V 

b E ~(, 1 It +1, t + 2)) 

In this case, the event a is available from time 1 to time 2, unless it bas already 
occurred, Further, if an a is observed at any time t, then b either occurs or is 
availa~lc during the intcn'al [t + f, t + 2). 
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If we consider only the a-active behaviours of P, then a is present for the 
dnration of refusal set N. If the behaviour (5,~) extends beyond time 1, we know 
that a mnst ocenr before time 2. We can show that 

T(s,N),"a	 " end(s,N);>1=>aEa(sl[0,2)) 
A 

((t,a)) ins => b ¢ a(N 1 [I + 1,t+ 2)) 
V 
bEa(sl[t+1,t+2)) 

and it is easy to establish that T(5,N)~ a => S(s,N)~a, where 

S(s,N) "	 3t:[0,2).b¢a(Nl[t+1,1+2)) 
V 

bEa(sl[t+1,t+2» 

It is clear that 5(s, N) is an a-independent specification, so we may apply the new 
inference rule for the hiding operator to obtain 

P\a sat 3t: [0,2)01 ¢a(Nl [t+1,t+2)) 
V 

bEa('1[t+1,t+2» 

The event b is made available, or is observed, during the interval [t + l,t + 2), 
whereO~t< 2. 

6.2 Scheduling 

The form of liveness condition employed above is bot.h awkward and inadequa.te 
if we wish to abst.rad from the events concerned. If we have that 

P sat a ¢ a(N 1 I) V a E a( s 1J) 

then we may infer only that P\ a performs event a at some time during the interval 
J. If we intend to concea.l an event /1, then any liveness specification inVQlving a 
should address the time at which a becomes availa.ble. 

Instead of requiring that an event a is offered during a fixed interval1Jnle55 it 
is observed, we may insist that a is available 1mtil it is observed. 

Definition	 6.5 

a from t (5, N) a ¢ a(N 1 [I,b,g;.(, 1 [t,oo) I a))) 

o 
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The right-hand predicate slates that event a is absent. from refusal set t{ between 
time t and the time at which the next a is observed; it is easy to see that the 
process WAIT l; a --10 STOP will satisfy this specification. 

This form of liveuess specification allo......s us to determine the precise time of 
occurrence of hidden events. If a process P satisfies the liveness condition a (rom f., 
then we may infer that the event a occurs at time I. in all a-active behaviours of 
P. If we define 

Definition 6.6 a at t (s,~) == ((t,a)) in s o 
then we obtain 

afromt(s,N) => e1/.d(s,~»t=>aatt(s,N)~a 

If a becomes available at t, and it is hidden, then it will be observed at t, if the 
currenl observation extends far enough. The above implication is a consequence 
of the following result; 

Lemma 6.7 For an}' 5(3, N), if end(s, N) > f then 

(S(s,~) V a from' (.<, N)) ~ a => (S(s,N) V a at t (s, N») ~ a 

(S(s,~) /\ a Irom t (s, ~) ~ a => (S(s,~) /\ a at I (s, N» ~ a 

Q 

Proof From the definition of~, we obtain 

([0, end( s, N)} x {a}) S; N 

Our assumption that end(s, N) > t allows us to infer that a E o(N i f). From 
definilion 6.5, we deduce that 

[I, begin(s T[I,co) l a)) ~ {} 

and hence that ((l, a)) in 8. The proof may be completed using tautologies of the 
propositional calculus. 0 

We may allow a process ~owithdr(tw the offer of an event if it has not been a.cceptf>d 
within a given period of time, or if another event has been observed. 

Definition 6.8 

alrom I until t'(s,N) " a<ta(~T[t,min{t',b,gin(sT[t,oo)la)})) 

o 
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If tbe offer of event a has not been accepted by time i', the proces8 mAy retract 
without violating the liveness specificatiou. This corresponds to a.n application of 
the timeout operator. 

WAIT 1.1 ; ((a _ STOP) g. STOP) sat a from t l until iJ + I, 

The event a is enabled at time t l and, if it has uot been performed, disabled at 
time tJ + t%. 

Definition 6.9 

afwmtuntilb(s,N) s, a¢u(N)lt,begin(,)[t,oo)l{a,b)))) 

(> 

If a process is to satisfy this specification, event a must become available at time 
t, and must remain available until either a or b is observed. We may combine this 
condition with t.he possibility of a timeout: 

Definition 6.10 

a from t until t' or b (s,~) 

a ¢ u(N) [1,min{I',begin(') [1,00) t {a,b))})) 

(> 

It is worth observing that: 

a from t until t' or I, == a from t until t' V a from t until b 

More usually, we will wish to insist that a becomes available at some time during 
a fix.ed interval I. We can capture this requirement witb a simple quantification: 

Definition 6.11 

afromI(s,N) == 3t:leafromt 

(> 

As an example, consider the pl'Ocess P defined by: 

P '" (WAlT [1,2); (a ~ STOP 0 b ~ STOP)) I!, STOP 
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We may use the timed failures proof system to show that 

P fiat a {rom {I, 2) until" or h (s,~) 

The enot a is enabled at some time between 1 and 2, and disabled at time" or 
when boccurs, whicbt:ver is the sooner. 

With another existential quantification, we may allow the offer of a to be 
withdrdwn at any time during an interval J. Further, we may require that event 
a ma.d~ available until some event from set B is observed: 

n~flni~ion 6.12 

a from I until J or D £: 3 t : I; e: J • 3 b : B • a from t until 1. 1 or b 

<> 

The foJowing equivalence confirms that existential quantification over set B has 
captured the required constraint: 

dromtuntiIBr-"N) " a¢o(NJ[t,begin(d/t,cc)L{a}UB))) 

The offer of a may be withdrawn following the occurrence of any event from set 
B. This justifies the foHowing definition: 

Definition 6.13 

A from J until Jar B .=: Iia : t1 • a from I until J or (A u B) 

<> 
If a. process is to satisfy this specification, the whole of set A must become ava.iiable 
at Some time t in J, a.nd remain available until some time t' in J, unless an event 
from ,1 U B is observed. The .~~quence of quantifiers is the most appropriate for our 
needs. the specification" A from J (8, Ny' is satisfied by any process that becomes 
read}" for every event from A at some time during J. An example might be 

WAIT [0, 1); in.m: in.M - Pm 

Thi:> process becomes ready to acr:ept any message m from set M on channel in 
a.t some time during interval [0, 1). 

A similar generalisation may be applied to the 'at' construct; we may repla.ce 
the single event and time with a set lind interval: 

Definition 6.14 A.tl("N);: 3.,A t,loo.tt("N) <> 
This condition is true if some event from set A is observed at some time during 
the interval J. 
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We may generalise the statement of lemma 6.7. If (.s, No) is an A-active be­
haviour, and every event from A is made avaiLahle at some time during interval 1, 
then some event from A must be obser....ed during I. 

Lemma 6.15 If end(s, N) > end(l) then 

(5(" N) V A Iwm I ("N)) '\I A => (5("N) V A aL I ("N)) '\I A 

(5(" N) A A Iwm I (" N)) '\I A => (5(" N) A A at I (" N)) '\I A 

Q 

Some care must be taken in the presence of an 'until' clause: jf the interval In 

which an event is enabled inlersects with the interval in which the offer may be 
withdrawn, then there is no gllarantee that the event will occur. 

Lemma 6.16 If end(s,N) > end(l) and begin(J) > end(l) then 

(5(" N) V A Iwm I until J (" N)) '\I A => (5(s, N) V A at 1(" N)) ~ A 

(5(s, N) A A [wm I unW J (s, N)) '\I A => (5("N) A A at 1(" N)) ~ A 

Q 

If the offer of events from set A may be withdrawn on the observation of an event 
from B, theu we know that some event from A U B will occur in an A-active 
behaviour. 

Lemma 6.17 If end(s, No) > end(J) then 

(5(" N) V A Imm I until B ("N)) '\I A => (5(s, N) V AU B at I (s, Nil '\I A 

(5(" N) A A Irom I until B (s, N)) '\I A => (5(" N) A A U B aL I (" Nil '\I A 

Q 

In each of these lemmata, we C,1nnot assert that any event is observed unless the 
experiment is of sufficient duration: elld(s, N) > end(l). 

The 'at' and 'from' expressions are macro l statements in our timed failures 
specification language. We may use such expressions to make our specifications 
more palatable, although it will often be necessary to expand them in the course 
of a proof. 

1 From macrose: synt{\.(".tic Sllj!;ar. 
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6.3 A Specification Language 

We may consider the macro expressions of the previous section as fu nctions defined 
upon a typical timed failure. If we lift the boolean operators to take functions as 
arguments, we ma.y obtain a. simple language for timed specifications..For example, 
the requirement that 

P sat a from t(s,N)/\""(batt (s,N)) 

may be shortened to 

P sat a from t /\..., (6 at t) 

Not only are such specifications easier to read, but also they are open to inter­
pretation in other models. This language is a first order logic with time-valued 
variables, comparable to those of [Haoman 90) and pabanian & Mok 861. 

There is no need to extend the satisfaction relation between processes and 
specifications. If F is defined upon the set of all timed fa.ilures, then 

P sat F(s,N) .. 'fs,N. (s,N) E .rr(rJ ~ F(',N) 

In the case when F is applied to the typical failure (8, N), as in the example above, 
we will omit the function argument. We may employ the inference rules of the 
timed failures proof system to estahlish results expressed in our new lallguagt. 
We may also derive laws for reasoning about higher-order objects such as 'at' and 
Ifrom' expressions. If we define 

time(s,N) == end(s,N.) 

active A (s,N) '" [O,end(s,N)) <:: N 

then lwuna G. 7 gives rise to a simple example 

aetiveA 1\ A from t A time> t ::::} A at t 

If events from set A do not rf'C]lIire the cooperation of the environment, and all 
events from A are made available at time t, then some event from A will be 
observed at time L 

In the course of chapter 7, we will require a number of functions to extract 
information from a timed trace. One such function has already beell defined, 

AatJ(s,N) '" 3a,A.aEu(s;Il 

whichre1urns a boolean expression whose value is true precisely when some eventl 
from set A is present in trace s restricted to interval 1. The remaining functionsl 
will be defined using projection mappings upon timed failures. 
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If M is a projection mapping from timed failures to time values, and i{) is a 
predicate upon time values, then 

Fl"N) "(M(,, N)) 

defines a behavioura,J specification on timed failures. A similar construction may be 
used for projection mappings whose results are timed events, sequences of events, 
or e\'en components of events. 

We will often wish to consider the sequence of data values passed along a certain 
channel c during a. particular interval I. The following projection mapping yields 
precisety this information: 

datac during I (s,l'{) == data(s l c.r: Tl) 

where data is defined by 

da'a( ()) = 0 
da'a(((t,,_a»~,) = (a)~da'a(s) 

The result is a sequence of values drawn from the datatype of values permitted on 
channel c. 

Another useful projection mapping ret.urns the last timed event from set A 
observed during int.ervi\.l I, 01' strictly before time t: 

I." A dm;ng I (s, N) = foot(' ~ A TI) 

I." A beCo,e I ("N) = foo'(, l A T[0, I)) 

Similarly, we may define a projection mapping 'count' that yields the number of 
occurrences of events from a given set during a specified interval. 

colln',ldu,-;ngI("N) = #(s~A)I) 

cOllntA beCoce' (s,N) = #(d A T[0,1)) 

Again, we may choose to count only the ('vents observed before some time t. 

It will prove con venient to give names to the projection mappings from timed 
events to times and events. 

timeof (I. a) ­

Ili\.meof(t,a) == a 

for any timed event (t, a). \Ve will add to this list of projection mappings and 
functions whenever we encounter constraints that cannot be expressed using our 
existing vocabulary. 
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6.4 Example 

Consider a simple communications network, consisting of a sender process S, a 
receiver process R, and two commnnications lIu::dia, M1 and M2. The network 
accepts messages on channel in, and delivers messages on channel out. The sender 
transmits each message t.o the receiver using either M1 or M2. The choice of 
medium may depeml IIpon message length, cnrrent loAd, or internal errors; in any 
case, the user is not informed. At this level of abstraction, the choice of medium 
is nondeterministic. 

in au' 

,1 
M1 

d 

s R 
,2 

Me 
,2 

Figure 6.1: Transmission with a choice of media 

Doth transmission media are reliable-no messages will be lost-but each is 
associded with a different nondeterministic delay. The first will transmit messages 
from channel 81 to channel r1 with a delay of between 1 and 2 seconds, while the 
other will trammit message,~ from s2 to 1.2 with a delay of between 0.1 and 0.9 
seconds. These channels are invisible to the network user. 

We require that any implementation of this network should deliver a message 
within 3 seconds of its arrival on channel in. This requirement is captured by the 
following beha'Vionral specification: 

!,IVE == £n.m at t ~ out.m from (t, j + 3) 

If a message is input at time t, it will be available on channel out at some time 
between t and t + 3. We will assume that all times are given in seconds. 

W€ assn me that all messages ate of message type M, and choose c.M to denote 
the set of communications possible on channel c, 

c.M '" {c.m I mE M} 

where c is any of 51,52, l'1, r2. 
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Each transmission medium is initia.lly ready to accept a message, and is always 
prepared to a.ccept a new message ..... ithin 0.1 seconds. If medium M1 accepts a 
message m on channel sl at time t, then it must begin to offer the communication 
r1.m at some time between t + 1 and t + 2, and become ready for a new mes­
sage before time t + 0.1. We may capture these requirements with the following 
behavioural specification upon medium M1: 

Ml sat	 al ..M from 0 

/\ 

sl.m at t => rl.m from (t + 1, t +2) 
/\
 
sl.M from (t, t + 0.1)
 

The faster medium M2 sillisfies a similar specification, undertaking to deliver a 
message after a delay of between 0.1 and O. S seconds: 

M2 sat	 82.M from 0
 

/\
 

82.m al t => r2.m from (t + 0.1, t + 0.3) 
/\ 
,2.M [,om (t, t + 0.1) 

For the purposes of this example, we have i\Ssumed that the media provide for 
Mleguate buffering of messages. Tllis issne may be addressed separalely, using 
timed safety specifications. 

The sender process S passes each input to at least one of the transmission 
media within 0.2 seconds of its arrival on channel in: 

S sat in.m at t => 81.m from (t, l + 0.2) 
V 
82.m from (t, t + 0.2) 

If we are to guarantee the successful transmission of a specific message, we must 
ensure that the sender process does not flood the transmission media with spuri­
ous messages. This requirement corresponds to the the following unLimed safety 
specification: 

5 sat "'im;M.count{sl.m,s2.m}~countin.m 

For any message m, the number of transmissions of m is less than or equal to the 
number of times 711 is accepted on ch;lllnel in. 



116 Specification and Proof in ReaI-6me Systems 

The receiver R behaves in a complementary fashion. It. is alwa.ys prepared to 
accept aneW message from either medium within 0.1 seconds. Messages are ready 
for output on channel Qut within 0.2 seconds of arrivaL 

R sat rl.MUr2.MfrornO 

A 

rl.m at 1 => ouLm from (t. t + 0.2) 
A 
d.M U r2.M {wm (t, t + 0.1) 

A 

r2.m at t => ouLm from (t, t + 0.2) 
A 
r1.M U r2.M from (t, t + 0.1) 

If a message is received on either r1 or r2 at time t, it is made available on channel 
Qut before time t + 0.2. 

We assume that the sender and receiver hd,Ve disjoint alpha.bets, and that the 
named channels are distinct. Wit.h these assumptions, we may implement the 
network as a simple parallel combination: 

NET'" (S II (MIIIIM2) II R)\{sl,s2,d,r2)
{.I,.!} {rl,r!} 

To demonstrate that this implementation meets our liveness requirement, we must 
show that 

COMMS sat LfVE~{,I,s2,rl,r2J 

where COMMS is the process 

S II (MiIIIM2) II R 
{d,82} {rJ,.t} 

From the specificat.ions of Mi and M2 and the inference rule for interleaving 
parallel combination, We ma.y deduce that 

Milll M2 sat si.M from 0 /\ s2.M from () 

A 

si.m at t => r1.m from (t + 1, t + 2) 
A 
sl.M from (t, t + 0.1) 

A 

s2.m at t => r2.m from (t + 0.1, t + 0.3) 
A 
s2.M from (I, 1+ 0.1) 



6.4 Example 117 

Using the inference rule for communic.a.ting parallel, we may establish that: 

s II (M1 III M2) ,., in.m at 1 => 81.m from (t, t + 0.3) 
{ol ,• .e} V 

82.m from (t, t + 0.3) 
A 

81.m at l:::;. rl.mfrom (t + 1,t + 2) 

A 

82.m at t :::;. r2.m from (t + 0.1, t + 0..9) 

Observe that the maximum delay between input on channel in and readiness for 
transmission includes the 0.1 seconds that may be spent waiting for the medium 
to accept the message. 

Another a.pplication of the inference rule yields that: 

COMMS sat in.m at t :::;. 81.m from (t, t + 0.9) 
V 
82.m from (t, t + 0.3) 

A 

81. m at 1 => ri. m from (t + 1, t + 2.1) 

A 

s2 mat t :::;. r2. m from (t + 0.1, l + O.n 
A 

{r1.m} U {r2.m} at t => out.m from (t, t + 0.2) 

Under the assumption that lhe set {sl , s2, r1, r2} is hidden from the environment, 
we may apply lemma 6.7 and infer that: 

COMMS sat (in.mat/:::;'out.mfrom(t+0.l,t+0.9) 
V 
oul.mfwm(l+ 1,1+2.6)) 'H,J,s2,rl,r2} 

The disjuDction corresponds to the hidden choice of media. If the message is sent 
via medium M2, there will be a delay of between 0.1 and 0.9 seconds; a different 
range of delays is introduced by the slower medium Ml. 

The above behavioural specification is {81, s2, rl, r2}-independent; we may 
apply the inference rule for the hiding operator given in section 6.1 to obtain 

NET sat in.m at t => old.m from (t + 0.1, t + 0.9) 
V 
out.m from U+ 1, t + 2.6) 
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which is enough to establish our liveness requirement: 

NET sat in.m at L ::::;. out.m from (t , t + 3) 

In the ahove proof, we have omitted the details of the functional application and 
varia.ble substitution neceSgary for the timed failures proof system. This cumber­
some process can he avojded altogether if we derive inference rules for the direct 
manipulation of higher-order specification statements. 



Chapter 7 

An Ethernet-like Protocol 

To illustrate the application of Timed CSP to the specification of real-time systems, 
we will show how the functions presented in chapter 6 may used to describe the 
behaviour of a communications protocol at two different levels of abstraction. 
Tbe protocol chosen (or this purpose is based upon the Ethernet protocol defined 
in [Xerox 80], a standard protocol for local area net works. 

The Ethernet protocol is a broadcast protocol: signals sent by one station may 
reach all of the stations upon the network. It is a carrier-sense protocol: stations 
listen for a carrier signal on the broadcast medium and act accordingly. Another 
important feature is collision detection. Each station must monitor the broadcast 
medium during transmission, and cei'lSC immediately if it becomes apparent that 
another station is also transmitting. 

The Ethernet specifici'ltion [Xerox 80] is divided into two parts, correspond­
ing to the data link and physical layers of the ISO reference model deICribed 
in [Tanenbaum 81J. This model consists of seven layers, each representing a. differ­
ent level of nhstraetion, from the hardware of the physical layer to the user software 
of the application layer. Each layer provides a service to the layer above, facilitat­
ing virtual communici'ltion bctw(.'Cn peer processes on different machines. In this 
chapter, we will concern ourselves with the bottom three layers of the model: the 
communication subnet of fignre 7.1. 

The physical layer is the lowest layer in the model bierarchy, and transmits data 
as bits between the stations, or nodes of the network. We will provide a timed 
failures description of the service provided by this layer, but we will not attempt 
to describe its internal behaviour. Such a description would require a treatment 
of broadcagt communication; our present model of computation is based upon 
synchronisation. In chapter 8, we will sec how the Timed Failures model may 
be extended to include an element of broadcast concurrency; a description of the 
physical layer will he presented as ?In example. 
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The data link layer at:cepiiS packt;t8 of data from the layer above, inserting the 
data inta frames for transmission to the physica.llayer. Each frame is transferred 
to the physical layer as a stream of bits. The data link is responsible for handling 
any errors which arise in frame transmission, provjding its client layer with an 
error-free virtual communication medium. To provide this service, the data link 
must be capable of detecting errors, retransmitting damaged reames, and sending 
acknowledgments. 

The network layer is the third layer of the ISO model. This layer converts 
messages into packets, and uses the data link to transmit them to their destination. 
We will refer to the network layer as the client layer, reserving the term network 
for the communication system as a whole. 

Client Layer Client Layer 

! ! 
l)ata Link Layer Data Link Layer 

! ! 
Physical Layer Physical Layer 

Figure 1.1: The Communication Subnet 

The data link component of the Ethernet protocol does not correspond pre­
cisely to the ISO model. The data link component of Ethernet will attempt to 
transmit each frame no more than sixteen times; if a.l1 of these attempts are inter­
rupted by collision detect signals from the physical layer, then the current frame is 
abandoned. Further, although incoming frames are checked for etrots, no fadlity is 
provided for retransmission or acknowledgment. Errors (other than those caused 
by coJli,gions) are simply reported to the client layer at the current node. 

In this chapter, we will specify the data link component of a protocol that 
differs from the one described in (Xerox 801. To simplify the presentation, we will 
assume that aJI errors are due to collisions on the broadcast medium. In this case, 
there is no need for error reporting at the destination node. We will also assume 
the existence of an implementation of the Tllndomisation strategy employed in 
Ethernet, described at the end of section 7.6. With these assumptions, we may 
address the complex timing properties of an Ethernet-like protocol within the 
framework of a. short case study. 
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7.1 A Hierarchy of Specifications 

The layers of our protocol form a service hierarchy: each layer provides a service 
to the layer above, and makes demands upon the layer below. We will use timed 
failures specifications to capture the requirements at each level of hierarchy~ and 
derive a correctness condition for any implementation of the protocoL 

Specification 

If a service is provided by layer L, it can be described in terms of the OCcurrence 
and availability of events from some set AL . We will use HL to denote the other 
actions perfonned by the layer, those hidden from the layer above. If L, is a service 
hierarchy, then we require that 

m ~ n + 2 :::} EL" n ELm = {} 

m = n + 1 :::} EL" n ELm:::: AL.. 

where E L is the alphabet of layer L. Each layer should insulate the layer above 
from the service provided by the la:rer below. In the communication subnet, the 
data link layer DL should insulate t.he client layer NL from the service provided 
by the physical layer; 

EN,n EPL 

ENL n EDL 

EDL n EPL 

~ 

= 

= 

{} 

ADL 

APL 

The data link and physical layers communicate across an interface APL• 

Each layer is associated with a service specificat.ion and a total speci~.cation. 

The first describes the service provided to the layer above, while the second de­
scribes the internal activity necessary to provide such a service. We use SL and 
TL to denote the service and total specifications of layer L, respectively. If U is 
the layer below L, then the conjunction of TL and SL' must be enough to ensure 
that the service SL is provided: 

(T, A S,,) ~ H, => S, 

The use of the ~ operator in the ahove implication corresponds to the assumption 
that the events from HL are to he concealed. We require also that SL is H L­
independent: any service specification must be independent of hidden events. 

Returning to the communication subnet, a data link implementation will sat­
isfy a total specification TDL . The service to the client layer, SDL, should be a 
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consequence of this specification, given that the physica11ayer provides a service 
SPL to th.e da.ta link: 

(3PL fI TDL) ~ HDL '* SDL 

TpL ~ l1FL '* 3PL 

The service provided by the physical layer must be a. consequence of its own internal 
activity; there is no la.yer beneath it. 

Implementation 

A protocol hierarchy may be implemented as a. parallel combina.tion of node pro­
cesse;, one for each node on the network. A node process will be the parallel 
combination of layer processes, one for each layer in the protocol: 

PROTOCOL :; II NODE, j E NODE 
E, 

NODE, :; II. LA YER" j E LAYER 
"," 

where L; is the set of possible events a.t node i, and E'J is the set of possible events 
on layer j at node i. The disjoint nature of the event sets a.llow us to rewrite the 
protocol as a combination of layers: 

PROTOCOL :; II LAYERj j E LAYER 
t, 

LAYER, :; III LAYER" i E NODE (j;>I) 

LAYER, :; II LAYER", i E NODE 
E•. o 

The lowest layer of the protocol has access to a physical communication medium; 
all of tbe others have only virtual communication, corresponding to an interleaved 
para.llel combination. 

The communication subnet is implemented as follows: 

ETHERNET :; DATALlNK II PHYSICAL 
Ape 

DATALINf( == III DL, iE NODE 

PHYSIC,lL = i E NODEIIAlL, PL, 

The data link layer is an interleaving combination of node processes; any synchro­
nisation is by virbJe of the service provided by the physical layer. The processes in 
the physical layer must agree upon certain events, corresponding to the presence 
of signals on the broadcast medium. 
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An implementation of a protocol hierarchy may be judged correct if 

PROTOCOL \ H sat SL(S, N) 

where Sc. is the service provided by the top layer, and H is the set of all internal 
events. If the protocol is implemented as a parallel combination of layers 

PROTOCOL = (L, II L,) II L.) II ... 
AD A J A. 

then by the disjoint nature of our event sets and interfaces we have that 

PROTOCOL " (((L, \ H,) II L,) \ H, II L,) \ H, II 
AD Al AR 

where H is the union of the hidden event sets HJ • 

Applying the inference rules of chapter 5, it is sufficient to show that each layer 
j satisfies the corresponding total specification, and that an adequate service is 
provided at each stage: 

S;(s ~ E;, N,) } 
Tj+1 (s ~ ~i+I' Nj+l) => SJ+l (5, N) ~ H +
N ~ Ai = (N j U NJ +1 ) ~ Ai J J 

N\ A, ~ (N, nN,+,) \ A; 

The total specification of layer j + 1, together with the service provided layer j, 
must be enough to provide the service Si+J, given that the events from set l/j+l 
are to be hidden from the environment. The instantiation of trace and refusal 
sets in the left-hand side of the predicate comes from the inference rnle for the 
communicating parallel operator. 

To establish that our example protocol is correct, we must show that 

DL sat TDL(s, N) 

PL sat TPL(s, N) 

SPL(s ~EPL,Np) } 

TDdslEDL,N D) => SDL(S,N)~HDL 
N ~ A PL ~ (Np U ND) ~ APL 

N \ An ~ (Np n ND) \ An 

TPL(s, N) => Sn(s, N) ~ HPL 

There are no layers beneath the physical layer; the service specification SPL must 
be a consequence of the total specification TDL. 
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7.2 The Data Link Service 

The data link layer accepts packets of data from the client layer at each node. It 
then a.t-tempts to tra.nsmit this da.ta to all of the other nodes, via the broadcast 
medium of the physical layer. Each packet of data is encapsulated in a frame 
before transmission, and transmitted bit by bit to the physical layer. We assume 
that collisions are the only source of data corruption; jf the data link succeeds in 
transmitting the whole frame, then the data link component of any receiving node 
will be able to pass the data to its client. 

If the data link is interrupted by a collision during the transmission of a (rame, 
it will back off and attempt to send the entire frame again. If sixteen consecutive 
transmissions are interrupted, the frame is discarded and the data link informs 
the client layer of its failure. Successful transmissions are also reported by the 
transmitter. Our assumption that collisions are the only source of corruption 
means that there is no need for error reporting at the receiver; collision-damaged 
frame fragments are simply discarded. 

The data link is always ready to receive data from the physical layer, decap· 
sulating whole frames and passing them to tbe client layer whenever the packet is 
addressed to the current node. The data link does not store packets: any buffering 
of data is the responsibility of the client layer. As a result, there is a limit on 
tbe time between the successful transmission of a frame and its delivery to the 
client layer at the destination node. There are also upper limits upon the time 
spenl waiting to start a transmission, and the time spent transmitting. These are 
determined by the time taken to transmit one bit and the cable propagation delay, 
both parameters of the system. 

Abstraction 

We must establish which of the observahle events in a possible history of the system 
are of interest. Our service specification will be expressed as a constraint on the 
occurrence and availability of these events. The data link layer is an interleaving 
of data link processes, one for each node on the network. The set of nodes in the 
network a.nd the data type of packets are parameters of the system. 

E NODE nodes in the network 

p E PKT da.ta packets 

r E REP succ 1fail 

The datatype of report:'l has two elements, representing success and failure. 
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The interfate between the data link layer a.nd the client layer at node i will 
consist of three channels: 

i.outi.in i.rep CLIENT 

DATA LINK 

Figure 7.2: the service provided by the data link layer 

Packets of data are received from the client layer at node i along channel i.in, 
aDd successful transmissiou is reported on channel i.rep. Valid frames received 
from the physical layer at node i will be decapsulated and passed as packets to 
the client layer, along channel i.out. 

Formal Specification 

The service specification of the data link will consist of constraints upon the be­
haviour at a single node-local requirements-and constraints upon the behaviour 
of the entire layer-network requirements. Each class of constraint will include 
both safety and liveness conditions. This classification is largely for the conve­
nience of the reader; in section 7.3, we will employ a more systematic approacb. 

The alphabet of the iuterface between the data link and client layers, across 
the whole network, is given by 

ADL :2 {i.in.p, i.rep.T, i.out.p Ii: NODE; r : REP; p : PKT} 

The following subsets of AnL will be useful in our service specification: 

IN, == (;.in.p I p , PKT) 

REP, ={i.rep.r I r, REP} 

OUT, ={i.ou/.p I p , PKT} 

These denote the set of all possible input events at node i, the set of possible 
reports at node i, and the set of possible output events at node i, respectively. 

The service provided by the data link layer to the client is parametrised by the 
following time constants: 

lin maximum delay between report and readiness for input 
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tTt' maximum delay between input and availability of report 

t"., client layer maximum response time for output 

tu maximum delay in preparing a frame for transmission 

t~"" length of the contention interval 

t",~ maximnm delivery delay for a successful transmission 

The length of the contention interval, te" .. , is an upper bound on the time taken to 
acquire the broa.dca:;t medium: if a node i transmits for time te"" without detecting 
a collisiDn, then we can bp sure that the other nodes will wait for i to finish before 
attempting to transmit. 

We will assume the existence of a function dest, which returns the destination 
of a packet or (rame, This will be a single node, although we could model broadcast 
packets by making the result of dest a. sel of nodes. 

Local Conditions 

\Ve wish to ensnre that the data link layer at each node alternates between accept­
ing packets and reporting on their transmission. We can capture this requirement 
as a simple specification on the tracl;'S of th~ system, by counting the occurrences 
of events from the sets IN; and REPi : 

DSJ == Vi. (count IN; = count REP; + I)V(countINi = count REP;) 

There must be an inpnt before each report, and there can be no more than one 
report following each input. 

1£ (he data tink layer at node i accepts a packet at time t, it should be prepared 
to report the success or failure of its transmission within time Inp . 

DS2 == 'Vi,t • IN, at t ~ i.rep.succfrom (t.t + t ...p ) 

V 
i.rep.jail from (t, t + tn:,) 

We also reqnire that the data link should be ready for input, unless it is currently 
attempting to transmit a packet or waiting for a report to be collected, 

DS3 == 'Vi,te IN,fromOI\(REP;atl=} IN;from(t,t+ti")) 

At each node i, the data link is willing initially to accept any valid packet on 
channel i.in. Subsequently, the data link becomes ready for a new packet on this 
channel within time tin of any report on channel i.rep. 
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Network Conditions 

If a success is reported at node i, then the last packet input at i will be safely 
delivered to its destination. 

DS4 == Vi,j,t,t'. 

i.rep.sllCC at t 1\
 

dest(p) ~j 1\
 

lastlNodming [0, t) = (t', i.in.p)
 

~ j.out.p from (t', t f -+- t",~) 

If the value succ is passed to the client layer at node i, and the last packet input at 
that node was p at time l'. with destination j, then that packet is made available 
for output at node j within time tmar ­

Without a probabilistic argument, we can gu.arantee a successful transmission 
only when no other node is entrusted with a packet for the length of the contention 
interval. If a packet is input at node i at time t, and no other node is entrusted 
with a packet during the interval (t - fro" t + t~o. + t,~), then that packet will be 
delivered safely, and a success report will be available within time tr.,. 

DS5 == Vi,p,t. 

i.in.p at t 1\ 

Vk • k I- i =}..., (INk at (t - tr~J" t + t.o• + t.,)) 

=} Lrep.succ from (t,t + ire,) 

The bonnds of the time interval ensure that all previous packets have been dealt 
with, and that no other frames are ready until the period of contention is over. 

Environmental Assumptions 

The data link cannot provide the service specified above without the cooperation 
of the client layer, in the following respect. At each node, the client layer is 
responsible for the buffering of output packets; if the data link offers a packet to 
the client layer on channel i.ou'-, the client will accept it within time tul. 

To express this en .... ironmental assumption, we define the following projection 
mapping on timed failures: 

responseA(s,~) =­
in/It I 'It', 1.1 ~ [O,end(s,~)) 1\ (I'EI => A 1: ~ 1 t') => length(!) < I} 
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This function yields the least time t such that, i£ I is an interval contained in 
[0, end(s,N)) and there is no time t' dnring J at which the whole of A is offered 
by the environment, then I must be shorter than t. Observe that 

response A < t (s,~) _ 

V1.1 £ [0, end(s, N)) 1\ length(!) ;, t ~ 3 t' E 10 A £ N1 .' 

If the response time is less than t, then the whole of A must be offered by the 
environment at least once dnring any interval of length t. 

Our assumption aboot the client layer may be expressed as (ollows: 

EA -= Vi. response OUT; < tnt 

We assume that the data link at node i never has to wait longer than lo"l for an 
offer of outpnt to be accepted. One specification of the data link service is 

SOL " EA ~ DS/ 1\ DS21\ DS31\ DS' 1\ DS5 

This is not a complete specification, by any means. We have shown that certain 
important aspects of the data link service may be rendered as timed failures spec­
ifications. In the following sections, we will see how the data link and physical 
layers interact to provide this service. 

7.3 The Data Link Specification 

The data link layer accepts pa.ckets of data from the client layer, and adds framing 
information. rr the physical layer signals that the broadcast medium is clear, then 
the data link begins transmission. Ir the physical layer signals a collision, then the 
tra.nsmission is interrnpted as SOOIl as possible. In this case, another attempt is 
made arter a random period of time has elapsed, Ir sixteen attempts have been 
made to transmit the same frame, the data link signals that the transmission has 
failed, and awaits a new packet. Ir no collision occors during the transmission of 
a frame, then thl" data link signals a success. 

Reception is less complicated. The data link receives bils of data from the 
physical layer, and stores them until the broadcast medium falls silent. When this 
occurs, the data stored is tested to see whether it corresponds to a valid frame 
intended for the cnrrent node. If this is so, then the data is stripped of its framing 
information and passed to the client layer. If not, then the data is discarded. In 
either case, the data link shonld be ready to receive new data before the inter·frame 
spacing time has elapsed. 
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Abstraction 

The dala link layer at node i accepts data packets along channel i.in, and passes 
the data to the physical layer along channel i.put as a stream of bits. Data is 
collected froITl the physical layer at node i aloug chilllnel i.get, and passed to the 
client layer along channel i.out. Reports are made available to the clienllayer on 
chanuel i.rep. 

i.out	 CLIENT 

DATA LiNK 

I.in i.rep 

DATA LINKI -- ----,- ~;~,- --T~:, t:.:~- --- ----T;~:, --- --
PHYSiCAL 

Figure 1.3: the two interfaces of the data link layer. 

The physical layer is ready to synchronise upon the event i.cs whenever the 
broadcast medium is clear at node i. Similarly, whenever a collision is detected 
at node i, the physical layer will make the event i.cd available to the data link. 
If this event is observed, then the data link has been informed that a collision is 
takiug place. The alphabet of the data link layer is thus 

EDL =- {i.in.p,i.rep.r,i.out.pli:NODE;p:PKT;r:REP} 

U 

{i.put.b, i..get.b, i.cs, i.cd 1i : NODE; b : BIT} 

where the datatype of bits is given by 

BIT ,,= 0 Ii 

Any other events considered during implementation must be bidden before tbe 
data link is cOITlbined with the physical and client layers. Such events will not 
form a part of the data link specification. 
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Fortnal Specification 

The t.otal specification of the data link must be satisfiable by the data link layer 
itself, without the cooperation of the pbysicallayer. The data link layer has only 
virtual communication between nodes, so our constraints must not require inter­
action between data link components at different nodes. All of our specifications 
will correspond t.o local requirements. 

The following subsets of EDL will be used in our specification: 

IN. " {i.in.p I p , PKT} 

PUT, " {i.put.b I b : BIT} 

GET, " {i.get.b I b, BIT} 

These denote t.he set of possible inputs at node i, the set of possible bit transmis­
sions at node i, and the set of possible bit receptions at node i, respectively. 

We abbreviate a set of functions, each of which returns the time of occurrence 
of the most recent event from a pa.rticular set. If no event from that set has been 
observed, they will return the va.lue O. 

lastin;(t) - time of last IN, before t 

lastes;( t) - time of last i.es hefore t 
/.,tcd,( t) - ti me of last i. cd befoTe t 

lastput;(I.) - time of last PUT; before t 

las/get, (t) - time of last GET, befoTe t 

and assume the existence of a function frame: PJ<T -+ seq BIT sueh tbat/rame(p) 
is the sequence of bits corresponding to packet p, together with the framing infor­
mation required for transmission. 

The following a.bbreviations will also appear in our specification: 

/aslpacket.(t) 2. name of last IN; before t 
last/rame,( t) 2. /rame( la.8tpackel;( t)) 
lasttrans,(t) 2. data i.put during (la.8tc8i(t). t) 

attempts;(t) == collnt i.cs during (lllStin;(t), t) 

These correspond to: the last packet input at node i; the last frame prepared for 
transmission at node i; the sequence of bits transmitted since the last cs signal at 
node i; the number of atteITlpts ITlade by node i to transmit the current frame. 
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Our specification of the data link layer will be parametrised by a number of time 
constants. Tbe correct operation of the protocol will depend upon the relationships 
belween these aud the constants defined in the previous section. 

tucc maximum delay between a successful transmission 
and tbe offer of a report 

lJ,ul maximum delay between a failed transmission 
and the offer of a report 

t./Ol minimum backoff delay ­ the slof time is the scheduling 
quantum for retransmission of a frame ­ 512p.s 

h4d maximum backoff delay ­ 524ms 

thil time taken to tt'ausmit one bit - lOOns 

t,nl inter-frame spacing delay ­ 9.6ps 

tm	 maximum delay betweeu reception of a valid frame 
and the offer of an output 

Each of these constants will be discussed in greater detail in section 7.5, where 
we discuss the interaction between the data link and physical layers. The values 
listed above are those given in the Ethernet specification document [Xerox BOJ. 

Inputs 

Our first constraint has already been presented as part of the data link service 
specification: 

DT! " DS! 

This stated tha.t, at any node, inputs and reports should occur in strict alternation. 
The data link layer should be able to provide this part of the service without the 
as5istance of the physical layer. This is true of another of our local conditions, 
which required that the input chaunel at any node is ready within time lin of a 
report being collected. 

DT2 " DS3 

Reports 

If a success is reported at node i, then the last packet input at that node must 
have been transmitted successfully. 

DT3 == Vi, t • i.rr.p ..succ at t ::::} lasltran.s,(t) = la.stframe;(t) 
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A success may be reported only if the sequence of Lits transmitted Bince the last 
i.cs event is equal to the last frame readied for transmission at i. Conversely, if 
t.his packet has been successfully transmitted, a report should be made available: 

DTi =: Vi,l. PUT; at t 1\ lasttransi(t) = lastframc,(t) 
::} i.rep.succ (rom (t, t + 1mc ) 

If a bit is passed along channet i.put at time t to complete the transmissiun of a 
frame, then a success will be reported on channel i. rep within time tu«o 

For a failure to be reported at node i, sixteen attempts must have been made 
to transmit the current packet. 

DT5 -= Vi, t. i.7oep.fail at t::} attempts;(t) = 16 

Conversely, if the sixteenth consecutive attempt to transmit the same packet is 
inteuupted, then the data link should report a failure: 

DT6 :2 Vi,t.i.cdat til attempts,(t) = 16 
::::} i.rep.fail from (t, t + tJI1;I) 

If the sixteenth attempt to transmit the current frame at node i is iutercupted by 
the observation of a collision at time l, then the data link should offer a failure 
report on channel i. rep within time tJI1 ,I. 

Carrier-Sense 

If the :lata link at node i requests the carrier-sense information, then either 

* a. packet has been received since the last report at node i, or 

* a. transmission ha.'i been interrupted, the minimnm backoff period has ex­
pired, and fewer than sixteen attempts have been made to transmit the 
current frame. 

Tllis requirement ma.y be expressed as follows: 

DT7 == Vi,l. i.cs at t:=} lastin;(t) > lastput;(t) 
V 

lastcd;(l) < t - t.IQt II attempts;(t) < 16 

The event i.cs may be observed only if a packet has been input since the last bit 
transmission, or time l'/Q' hiL"i elapsed since the last collision was detected. Recall 
that, in our interpretation of the protocol, carrier-sense information is requested 
onlya.'i a prelude to bit tr<l.Dsmission. 
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Conversely, the data link at each node should be ready to synchronise upon 
the cs event wi thin time ie• of receiving a packet for transmission, and within time 
l~acl; of a transmission being interrupted. 

DT8 == Vi,t.eINiatt=>i.csfrom(t,l+lc.) 
A 

i.cd at i 1\ attempts,(t) < 16 => i.cs from (t + t.lot, t + lbael:) 

If a packet is input at node j at time t, the event i.cs should be made available by 
time t + 1<A' Further, if a collision is observed at node i, and fewer than sixteen 
attempts have been made to transmit the current frame, then i.cs will be made 
available within time t~acl:. 

Collision Detection 

For a collision to be observed at node i, that node mnst be currently transmitting. 
We say that a. node j is transmitting at i if a bit. is broadcast at some time 
during the interval (i - tblh t + t!id. This constraint is captured by the following 
behavioural specification: 

DT9 == Vi,f.i.cdatt=>!asiput,(t»f-2lhi/ 

Conversely, the data link should be ready to observe a collision at any time during 
frame transmission: 

DTI0 == Vi,t. PUTi at t => i.cd from t until t + 2l6•1 

Transmission 

The data link should not pause during a transmission. If a bit is transmitted by 
node i, then either another bit was sent exactly lhit ago, or the signal i.cs was 
ohserved exactly lime ti~l ago. This constraint may be expressed as follows: 

DTI1 Vi, t. PUT. at t => lastcs;(t - 2thd > IlJstcd;(t - 2h;d 
A
 

PUT, at t - tbi/ V i.o' at t - 1;.. /
 

Note that the data link should not continue the transmission if a collision has 
occurred since the last cs event; we allow a short period of time (2tb;j) fOT trans­
mission to cease. Further, we require that 

DT12 =. Vi, t ela.~tlran.<;;(t) ~ lastframe;(t) 

The sequence of data transmitted at node i must be a prefix of the last pi\.cket 
framed at node i. 
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The dab link should be ready to transmit the first bit of a sequence time t.,.1 
after observing the cs event, and the subsequent bits at intervals of t'ih providing 
tha.t no collision is observed. 

DTJ:i == Vi, t. i.C8 at t ::} 3 b • i.put.b from t + tiRt
 

A
 
(PUT, at t A 
lastcs;(t) > lastcd;(t) 1\ 

lasttransi(t):f lastframei(t»::} 36. i.put.b from t + lbil 

The data link may stop transmitting as soon as a collision is observed, or when 
the transmission is complete. 

Reception 

The data link should be ready to receive data. within one bit time of the last bit 
arriving, unless two bit times have expired without a signal. If two bit times have 
elapsed since the last get event, then the da.ta link receiver does not need to be 
ready until time t,,,, has passed. 

DT14 == Vi, t • GET, at t * GET, {rom (t, t + thd until t + 2lbil 

A 

GET, {rom (t + 2tb." l + Ii ..,) 

The da.ta link becomes ready (or i\ bit on chaunel i.get within time lb'l of the last 
bit being received at i. The offer of GET. may be withdrawn after two bit times 
have elapsed, but must be renewed before time t'''l has elapsed; the data link must 
be re<ldy before the next frame arrives. 

Output 

For a packet to be output at a node, it must have been received as a.D intact frame 
with the correct address. Valid frames will be preceded by an inter-frame space 
of duration t,nl> and a transmission has ceased once two bit times have elapsed 
since the last get event. With these assumptions, we may identify the last frame 
fra.gment received by node i. 

la.strec;( I) 2: data i.gel during [lastspacci(t), lastgap;( t)] 

where (astspace,(l) is the endpoint of the last inter-frame space a.t node i: 

lastspacc,(t) 2: max{t' I ~' < I 1\ -, (GET, at (if - ti ,." i ' )) A GET; at t' } 
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and lastgapi( t) denot€s the beginning of the last gap of length> 2tb.J observed at 
that node before time t. 

lastgap, (t) == max{ i' I t' < t - 2lb'l 1\ ..., (GET, at (t', t'+2th'» 1\ GET, at t'} 

This marks the end of the last con~iguous bit sequence received at node i. Observe 
that both lasts pace. and lastgap, are undefmed if no data has arriv€d at the node 
i. We may complete the definitions by setting both to 0 in this case, assuming 
that predicate validframr; is defined upon the empt.y trace of data values. 

If we output a packet to the client layer, then we have rec€ived a stream of data 
on tb€ get channel that corresponds to a valid frame with the correct address. 

DT15 == Vi, t,p. i.out.p at t ~ 3 e,/. t-tiDf < t' < t 1\ 

lastra.( t') = f 1\ 

validframe(f) 1\ 

address(J) := i 1\ 

unframe(f) = p 

If a packet is output at time l, then the last bit of the corresponding frame must 
have arrived at some time during the interval (t - 2hil> t). The data link layer 
should not buffer frames or packets. 

The data link should be ready to output a valid frame within time tm of the 
last bit being received: 

DT16 == Vi, t, t''/, p • (/a,.~treci(l) = f 1\ 

validframe(J) 1\ 

1mframe(f) = p 1\ 

de.;/(p) ~ i A 

lastgap,(t) = t') 

~ i.oui.p from (t', t' + tree) until t' + ti.1 

Note that we are assuming the existence of a suitable function for testing the 
validity of a frame. 

We may now present the total specification of the data link layer. With no 
environmental assumptions to consider, it is simply the conjunction of the require­
ments specified above: 

TvL " 1\ DTn 
n:l..16 
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7.4 The Physical Service 

The physical layer provides a means of communication between distinct data link 
processee;. The data link layer at a node may pass bits to the physica.l. layer at 
at a rale of 10 megabits per second; the physical layer at that node will place a 
corresponding signal upon the broadcast medium, transmitting the data to the 
other nodes of the network. Signals received without interference are decoded and 
passed to the data link layer. 

The physical layer also provides information about the stale of the broadcast 
medium. A carrier-sense signal allows the data link layer to determine whether or 
not there is activity on the broadcast medium at the current node. Further, if a 
node i is transmitting bit signals, and interference is detected upon the broadcast 
channel, the physical layer will repol'~ that a collision is taking place. 

Abstraction 

The physical layer accepts bits from the data link layer at node i along channel 
i.put. Bit signals received from other nodes are passed to the data link along 
channel i.get. If a collision is occurring at node i, then the physical layer will 
make the event i.ed available to the data link. 

DATA LINK 

I-.edi.put i.es i.get PHYSICAL 

Figure 7.4: thf> service provided by the physical layer 

The presence of a signal upon the broadcast medium at node i will be represented 
by lbe unavailability of the event i.cs. This choice of abstraction is compatible 
with our represeutation of the data link layer; we wish to synchronise with the 
physical layer when there is no activity upon the broadcast medium, as a prelude 
to data transmission. 

The alphabet of the data link-physical interface is given by 

An == {i.put.b, i.es, i.cd, i.get.b Ii: NODE; b : BIT} 
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Formal Specification 

We present a formal description of the service provided by the physical layer , in 
tenns of the occurrence and availability of the events in the set An. To reason 
about the availability of collision detect and carrier-sense signals, we must identify 
the time at which the last signal a.rrived at a particular node. R.ecallthat laslpul.( t) 
denotes the time of the li'l5t signal transmitted at node i. We define 

lastsig;(t) == max{lasl-puIJ(t - t;J) + t;j I j : NODE} 

where tij is the time taken for a signal to travel from node i to node j on the 
broadcast medium. With this definition, lastsig;(t) is the arrival time of the last 
signal at node i before time t. 

Transmission 

The medium :'Ihould be capable of receiving bits as fast as the data link layer can 
transmit them: 

PSI == Vi,t. PUT; from 0 

/I 
PUTi at t ~ PUTi from (t, t + ibid 

At each node t, the physical layer is prepared initially to accept a bit signal. 
Further, if a bit is accepted at time I, then the physical layer must be ready for 
another before time t + lh,j. 

Carrier-Sense 

We intend that the physical and data link layers should synchronise upon the event 
i.es only when the broadci'l5t medium is silent at node i. The physical layer may 
take up to two bit times to respond to the presence of signals on the broadcast 
medium; if a synchronisation occurs, then the broadcast medium must have been 
silent less than two bit times ago. 

PSf! == Vi.t.i.c.satt~3l'.l'>t-£t·h'l 

/I 
lastsig;{t ' ) < t' - 2lhil 

If an i.es synchronisation oeellIS at time t, then there must be a time t' > 1- 2hif 
snch that the last signal before t ' arrived before t ' - £t·hit. 

The physical layer should make the event i.cs available within two hit times 
of activity ceasing on the broadci'l5t medium at node i. This offer should remain 
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open at least l..lJltiI activity resumes. 

PSS == Vi.,t,t'.la~tsj91(t)=t'l\t'<t-2t&;, 

=> i.C$ from (t', t' + 2t.,,) untill 

If the last signal to arrive at node i before time t arrives at time t', then event 
i..cs should be made available before time t' + 2t~if, and remain available at least 
until time t. 

Collision Detection 

A collision should be reported at node i onty if a signal arrives from another node 
during a transmission. 

PS4 == Vi,t.i.cdatt=>/aslput;(t»t-1!tw 
/\ 

Jastsig;(t) > t - fib;' 

If a collision is reported at time t, then the interval (t - flAIl! t) must contain a 
transmission, and the arrival of a signal from another node. Conversely, if a signal 
arrivesCrom another node during transm;ssion, then the physical layer should make 
i.cd available within two bit times. 

PS5 == Vi,te(lusfpul,(t»l-tb,1 1\ !aslsigi(t»l-tbit) 

=> i.ed from (lustcd,(t), t + !Jtbil) nntil t + Stbil 

If node i has transmitted a data bit less than time t6il ago, and another node j 
transmitted approximately time t'J ago, then i.ed should be offered to the data 
link. This signal may alrpady be available, henc,.e the lower hound of lasted,( t). 
Unless the collision continues, the offer may be withdrawn after one additional bit 
time. 

Reception 

In our idealised description of the physical layer, no hit should be received nnless 
it has previously been transmitted at the appropriate time. 

PSG == Vi, t e i.get.b at t => 3j e j.put.b at t - ti, 

For data to be received without corruption, the receiving node must synchronise 
with the incoming sequence of bits. To facilitate this synchronisation, nodes ob­
serving the protocol described in [Xerox 80] mnst transmit a fixed bit sequence as 
a preamble to each frame. This is a responsibility of the physical layer, and will 
not form part of our service specification. 
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The corresponding liveness condition is given by: 

PS7 == V i,j, t • i.puLb at t - t'l 1\ 

Vk,t ' • (k i= i 1\ PUTt at t' 1\ t' E [1- tij,t]) 

::::} t' ~ t-tii+2tbit 1\ tii: > tt) 

::::} j.gel.b from t until t + O.lt.i' 

The reception of a bit signal b at destination node j is guaranteed if any trans­
mission that occnrs during its journey takes place 

• at least two bit times after b was transmitted 

* at a node further away from j than the sender i 

Under these conditions, no signal can interfere with the reception of b. Note that 
we have assumed that the broadcast medium is reliahle, and that signals propagate 
at a constant rate. 

7.5 Combination 

We are obliged to demonstrate that the service provided hy the data link layer is. a 
conseqnence of that layer's total specification, together with the service provided 
by the physica.l layer, nnder the assumption that synchronisations from the set 
HDL are concealed from the client layer. Our proof requirement is given by: 

EpL 
TOL(S ~ Eo" No)
 
N I ApL ~ (Np UNo) ~ An => SOL(s,N) 'l, HDL
 

Sn(S ~ ,Np) } 

N\ An = (Np n ND) \ ApL 

It is sufficient to show that this result holds for each conjunct of the service spec­
ification SDL; we will provide a brief justification in each case. 

Each specification is given in terms of functions of timed failures, e.g. 'count', 
'from', and 'response'. In these specifications, the connectiv~ a.re lifted operators, 
whose actions on funclions are defined by extension: 

(fop, g) (s,N) '" f(s,N)opg(s,N) 

where 0Pr is the lifted form of connective op. The interpretation of connectives 
such as +, =, and 1\ is obvious fwm the context; we have written 0Pr as (Jp. 
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Local Safety
 

Recall the first component of the data link 5ervice specification:
 

DSl (s,~) .= (Vi.countINi=countREP,+I 
V 
countlNi = count REP; ) (s,N.) 

We are given that (IN, U REP,) ~ EDl~, and that 

DTl (s l EDL,N.o) =: (Vi. countlNi = countREPi + I 
V 
count IN. = count REP. ) (5 l EDL,~D) 

It is ea£Y to see that, for any s and ~, 

A ~ B ~ count A (s, N) = count A (5 l B,~) 

and hence that 
DTJ (, l EDL,~D) '* DSI ("~) 

Input 

The lieCond requlremeut in the data link 5pecification was 

DSE == Vi,t.INiatt:::}i.rt:p.succfrom(t,t+tr~1» 

V 
i. rep.fail from (t, t + tr~J1) 

In the total specification of the data link layer, we in5isted that no failure may he 
reported without sixteen attempts at transmission. As a result, the provision of 
this part of the data link service relies upon the following lemma: 

Lemma 7.1 At any particular node i, the data link never has to wait more than 
t/o", for a carrier-sense synchronisation i.es, where tl..., is the duration of the 
longf'St valid frame. This is I.Ems for the Ethernet protocol. 0 

Proof Suppose that the event i.cs is not available at time t. From PS3 we may 
deduce that la5t:;ig,{t) > t - 2tbih and hence that there is at least one other node 
j on the network already transmitting. There are two possibilities to consider: 

• node j transmits without contention for time teo .. , and acquires the broadcast 
channel, or 

• node j is interrupted by another node k 
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If node j tra.osmits a bit once every lAit during an interval length teo. without 
interruption, then the cs synchronisation must be unavailable at every node on 
the network. This is hecause the length of the contention interval is greater than 
the round-trip signal propagatiou time for the network: 

leo .. > 2 max{lij J i,j : NODE} 

Suppose that node j has been transmitting for le"tIo at time i l with no collisions 
observed at j thus far. Then by PSS we know that las1.3igj (t) < I - l,on, and hence 
that 

'V k • laslputd t - tJ!) < t - lj! - tc"tIo 

Recall that the data link layer at each node must satisfy the requirement 

PUT! at i => PUT. at t - t", V k.cs at t - /;,,1 

and observe that it is not possible for uode k to begin transmission after t - tjl;, as 
k.cs will not be available until time tji after j ceases transmission, by PSg. Hence 
j will not be in terrupted. 

Iu this case, DT13 guarantees that node j will continue transmission until it 
has exhausted the current frame. II must then wait at least ti., before transmitting 
another hit, because of requirement DT11. Hj transmits the last bit of the current 
frame at time t, then for each node k on the network we may assume that 

..., PUTi at (t + tjl: - t./mt , t + tjl: + lind 

where t.hoTl is the length of the shortest valid transmission; this is S7.6~8 in the 
Ethernet protocoL From this we infer that 

'V k • lastpuf.(r + tji + tind < t + tji - idorl 

It is an obvious property of the network that 

t,] - t.,! ( tj! 

and from the definition of lastjJut we may deduce that 

'Vk,tJ,tr , ts • is < tf (t1 /\ lastpu.tr(td < ts => lastputi(t!) < tj 

Recalling the definition of lasLsig we observe 
" 

lastsi9i(t + [OJ + lin.} == max{/aslp1ltr(t + ti] + tilll - t,d + t,l; I k: NODE} 
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If we ossume that i ••o .., > teoll , remembering that tUli is more than twice tij for 
any i and j, then we may combine these results to yield 

lastsigi(t + iii + t..JlI ) :s;; t + toj 

Given that tial > 2t"j, requirement PSS guarantees that the carrier-sense signal 
is made available at node i before t + t'i + fibil. Our assumption that such events 
are hidden from the client layer means that this signal will occur. 

Now consider the other possibility: that j is interrupted within te~ .. of starting 
to tra.nsmit. In this case, no node will acquire the broadcast channel during the 
current time slot, and the event es will be offered at node i within time teo .. , the 
length of the contention interval. If j is to be interrupted, then at least one other 
node k must begin transmission before signals from j reach it, by DTl1 and PS2. 
Suppose that j and k start to transmit at times t] and t*, respectively. Observe 
that these nodes cause signals to arrive at i during the interval 

(min{t; + iii, ti + t.d, max{l* + tjt + t'l' t] + tit + ii.d] 

Nodej is interrupted by k, and thus ceases transmission, at time it + tit, and vice 
versa. This follows from requirements PS5, DTJO and DTJ!. 

H the medium at i does not fall silent at or before the end of this interval, 
then another node 1 mus~ have started to transmit before signals from j or k could 
reach il. Signals from this node will cease to acrive at i before t.ime 

max{t; + tIl + til, t i + til + til} 

A brief sketch of the situation should reassure the reader that I must be further 
from node i than j or k. An inductive argument will confirm that activity on 
the medium at node i must. cease within time t,o", nnder the assumption that the 
network is finite, and tcon > 2 max {ti; I i,j: NODE}. 0 

Having justified the lemma, we may deduce that, if the data. link at node i is 
entrusted with a packet for transmission at time t, then the cs synchronisation is 
available at time t + t" , or will be offered for at least two bit times before time 
t + I~ + l/ou,. 

Vi, t • IN; at t ::::} :I t' • t + t.. < i' < t + t" + t/Q .., 

" i.es from (lastes;(t + lc_), t') untiJ t l +!!tbil 

Recall that i c• is the maximum delay between the input of a pa.cket and readiness 
for transmission, from DT8. 
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Similarly, if a transmission is interrupted and rescheduled for time t, then i.cs 
will occur within time hong, allowing another attempt to begin after the inter-frame 
spacing li"l' During the proof of the previous lemma, we established that if a node 
has been transmitting for Lime teo,,", then it will not be interrupted. The worst case 
delay for status reporting may be calculated as follows: 

t,~ preparing frame for transmission 
16 x tlo"g waiting for the channel to clear 
16 x t;"l inter-frame spacing 
15 x t,o... almost succeeding 
15 x th,i backing orr 

"Iong successful transmission 
t.m delay in reporting success to data link 

< tr,p in total, if we are to provide service SDL 

The response time may be reduced by increasing the backoff delay with each 
collision. The protocol described in [Xerox 80J insists that a node cannot delay for 
time t&"ci: unless the current frame has been interrupte.d at least nine tim~. 

Reports 

The third component of the data link service specification is more easily estab­
lished. Recall that this insisted that 

Vi, t • IN; from 0 1\ REP, at t =* INi from (t, t + tin) 

At any node i, the data link layer must iuitJally be ready to accept any packet on 
channel i.in. Further, should a report be accepted at time t, the data link will be 
ready to accept another packet before time t + t;... 

Recall that the total specification of the data link layer included precisely the 
same requirement: 

DT2 == Vi, t • Jll,l, from 0 1\ REPi at t =* IN; from (t, t + ti... ) 

We must show that, if this requirement is true of the data link layer, then it must 
remain true when the data link is pl<l.Ced in parallel combination with the physical 
layer. We may assume that 

DT2 (, ~ EDL,N D) 

IN, U REP; <; EDL 

N\APL = (~pnND)\APL 
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From the alphahet constraints, we may infer that 

Vi, t, .. a E IN, U REP, => (a ,,~(ND i t) => a" ~(N it) 
A 

«t,a))in, .. «t,a))in(s ~EDd) 

If an event from IN; U REP; is offered by the data link layer, then it must be 
offered by the parallel combination. Further, the data ljnk layer will perform an 
event {rom this set whenever the parallel combination does so. From the definitions 
of \fWIll' and 'at' given in chapter 6, we may infer that, for any time t 

IN; from t (s ~ BDL,ND) ::::> IN; from t (s,N) 

REP, al t (5 I EDL, ND) => REP, all (s,N) 

The result follows easily ffOm the laws of the predicate calculus. 

It ~'in not always he necessary to expand the definitions of functions such as 
lat' and 'from'. The timed failures proof system may be used to derive rules for 
reasoning about specifications expressed using these functions. For example, the 
proof of DS3 could have made use of the following rule: 

P sat e from t 
[,,, ~(Q), A ~ ~(P)n ~(Q)J 

PllQsatefromt 
A 

A useful library of derived inference rules like this could be built up by pursuing 
further case studies in specification with Timed esp. 

Network Considerations 

If a. success is reported at node i, then the last packet input at i will he Bafely 
delivered to its destination. 

DS4 =- 'Vi,i,t,t'. 

i.l·ep.SltCC at t 1\
 

dest(p) = i 1\
 

last IN; during [O,t) =:: (J',i.in.p)
 

=> i·out.p from (tl, (, + t",u) 

We ~tablish that the parallel combination of the data link and physical layers 
meeb this requirement with the following argument. 
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For a ~uccess to be reported at node i, the last frame input at i must have 
been transmitted to the physical layer withont interruption. Recall that 

DT3 == Vi, t • i.rep.suce at t =} lasttrans;(t) ::= IMtframe,(t) 

From requirement PS5, we know that any other transmissions would cause the 
event i.cd to be offered to the data link layer. However, requirement DTlO insists 
that the data link layer be ready to accept i.cd whenever i is transmitting, and 
DTll insists that transmission should cease if i. cd is observed. 

We may conclude that no other node k transmits before t f - tit, where t J is 
the time at which the last bit of the frame was transmitted: 

t, == last PUTi before t 

Assuming that the minimum frame length i.!I0Tl is greater than the length of the 
contention interval tco~, we may infer that node i a,cqnired the broadcast medium 
during the transmis:'3ion of the current frame. We may apply the argument used in 
the proof of lemma 7.1 to establish that no other node k can begin transmission 
before time t1 ;- t,t + tinl. Thus for any bit b of the frame in question, 

i.puLb att ::::} Vk,te(ki=-i 1\ PUTt at t' 1\ t'Elt-i.•"t]) 
=}t'~t-tlj+tint 1\ t]t>t;j 

From component PS7 of the physical layer service specification, we know that a,ny 
bit transmitted by node i is l"eceived by any node j, providing that the above 
conditiou is met: 

PS7:=: Vi,j,tei.put,batt-ti) 1\ 

Ii k, t'. (k" i A PUT, at t' A t' E [t - I'i' t]) 
::::} t' ~ t - i,j +2tbil 1\ tIt> ti) 

::::} j.geLb from t until t + O.Ubit 

We may conclude that each bit of the frame was received by the physicallayer at 
node j, and passed to the data link layer along channel j.get. 

We now appeal to the output part of the data Ii uk specification. At time t1 +iij, 
the last bit of the frame arrived at node j. We must establish that 

lastrecJ(t I + ~Ubll + tiJ) = IMtirans;( t1 ) 

The last frame fragment received at node j up to and including time t1 + til should 
be identical to the last frame fragment transmitted at i. Recall that 

lastrec)(t) == data i.get during f/aslspace,(t), lastgap) (t)] 
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where /as~pace](t} is the endpoint of the last inter-frame space at node i: 

lastspatfj(t) == max{t' I t' < 1/\.., (GET; a.t (t'- ti"C,t'» 1\ GET; at t'} 

a.nd lasl9(JPi(t) denotes the beginning of the last gap of length > 2t~il observed at 
that node before time t. 

lastgaPJ(i) ,=: max {t ' I [' < t - 2h'l 1\ ..., (GET; at (t', ['+2tJil )) 1\ GETj at t' } 

From our observations above, we know that no other node k transmits during the 
interval Ito - tib tJ + ta, + ii.l], where to is the time at which node i began to 
transmit the frame in question: 

to == tint + time of last i.es beCore t1 

If another node k had transmitted after to - lib then a collision would have been 
observed at i. From the Lounds of this interval, and requirements PS6 and PS7, 
we rna}' infer that 

lastgap] (it + lij + St6id tt + tij 

lastspaceA t j + til + Slhd =:::: to + ti) 
providing tbat I·inl > :1/~'I' We may then prove, by induction upon the length of 
the bit sequence transmitted at node i from time too onwards, that 

JastreCj(tl + :1ibil + t;})	 lasUrans;{ t l ) 

lo.stframe;(lJ) 

frame {lastpacket; (tJ )) 

The J<lSt contiguous hit sequence received at node j before time 1J + til + :116;1 is a 
valid frame containing the last packet input at node i before time tJ • 

We appeal to property DTlfJ of the data link layer: 

Vt,t',f,p. (fastrecj(t) = f 1\
 

validframe(f) A
 

lInframc(f) =: p 1\
 

dest(l') ~ j A
 

/astgo.p}(t) = L1
)
 

'* j.out.p from (L', [' + troo ) until t' + t,-", 

We know that dest(p) = i, and we may assume that the function frame always 
yields valid frames for transmission. Hence we have that 

j.out.p from (t1 + I.i). tl + tij + tT.~) until t1 + iij + Li'" 
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However, our data link service re<)uirement states that this output should re­
main available until it occurs. Fortunately, this service is provided subject to an 
environmenta.l assumption: 

EA == Vi. response OUT; < t"al 

If we assume that 

toal < l;~t - tn.~ 

tben this assllITlption allows us to infer that j out.p is observed before time t1 + 
iij + t,,,t. This is because 

•	 we have shown that this event is available until it occurs during the interval 
[t l + til + [roc, t l + tij + tint], and 

•	 we may infer from EA that the data link is seen to refuse j.out.p at some 
time during any interval of length> I.""" corresponding to our knowledge 
that the event is offered by the environment. 

We may conclude that 

j.out.[1 from (t1 + lin i 1 + ii] + I-r •• ) 

If a packet p input at time t is to be successfully transmitted by node i, then the 
successful attempt at transmission may end no later than 

t+ te_ preparing frame for transmission 

+ 16 x t/ol\g waiting for the channel to dear 
+ 16 x ti"l inter-frame spacing 
+ 15 x t<o" almost succeeding 
+ 15 x lb4et ba.cking off
 

+
 '/0"9 successful transmission of longest valid frame 

This places an upper bound upon the va.lueof t l . We conclude that this component 
of the data link service is provided if 

tm~ > ie_ + l1t/ong + tm + 151m + 16l,,,t + lSla4<t + max {tij I i,j: NODE} 

The maximum delay between input a.nd the offer of output for a successful trans­
mission will be less than lm=, providing that tm = is greater than the value of the 
expression to the right. 
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Success 

The data link fit node i guarantees to deliver a packet at time t, providing that 
no other nodes are entrusted with a. packet during the interval 

[t - tr<p. t + teorl + te.] 

The lower bound of this interval allows us to infer that no signals arrive at node i 

during the packet tra.nsmission. We know tha.t 

'rfk. • k:f:i::;"[astink(t)<t-t...P 

In the proof of requiremeut DS2, we established that no node will ever wait for 
longer than time leo .. for a chance to begin transmission. From requirement DT7, 
we know that the latest time that a carrier-sense synchronisation may be observed 
at each node k is given by 

lastin~ (t) + preparing frame for transmissiont" 
16 X waiting for the channel to clear+ t, on, 

+	 16 X i;"1 inter~frame spacing 
15 x leon almost succeeding +
 

+
 IS X lbcl backing off 

From requirement DT12, we know that the last bit sequence transmitted at node 
k must be a subsequence of the last packet framed at that node: 

v k, t • lasttrans~(t):;;;; llUltframek(t) 

From this we may infer that each node k must cease transmission before time t~, 

where il; is given by 

tk ::= lastinJ:{t) + tCI + 15tco.. + 16tinf + 15tNc~ + 17t/o.., 

No more bits may be transmitted if the current frame is exhausted, or has been 
interrupted sixteen times, by DT7, DTB, And DTll. Assuming that tre, exceeds 
the lower bound placed upon it earlier, we may infer tbat 

laslsi9;{t + teo" + tel) < t 

Appealing to the argument of lemma 7.1 yet again, we conclude tbat node i ac­
quires the broadcast medium and thus succeeds in transmitting tbe frame. The 
lower bound upon the value of tr.~ is enough to ensure that this success is reported 
before time t + t..e~' 
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This completes our semi-formal proof that the parallel combination of the data 
link and physical layers is enough to satisfy the data link service specification, 
under the following assumptions: 

t'hon > t eon 

teoR > 2 max{ t;J I i,j : NODE} 

tn, > tell + lSt. ow + 16t;"l + lSi,oc. + 17t/oR, + t,ue 

tilll > 3thj 

to•d < f iRl - tree 

1m "", > te, + lStw , + 161;,,1 + lSi,... + 17t/o.., + t roc + max{t;j I i,j: NODE} 

Similar constraints are applied ill the Ethernet specification document [Xerox 80]. 
For example, Appendix E of tha.t document states that 

It is important that data link controller implementations be able to 
receive a frame that arrives immediately after another frame has been 
transmitted or received. Here, "immediately" means 9.6/15, based on 
the minimum inter-frame spa.cing provided as recovery time for the data 
link. It is important that the data link controller be able to resume 
reception within that time. 

This particular requirement corresponds Lo the following component of the data 
link total specification: 

DT1.i =. 'r/ i, t • GETi at t ::e;. GET; from (t, t + i,id until t. + 2tb'l
 
A
 

GET; from (t + 2t"" t + ti"t) 

If a bit signal is received at any node i, then the data link should offer to accept 
another within time lb,'. This olTer may be withdrawn if no bit arrives within two 
bit times, which will be the case if a valid frame has just arrived, providing that 
the data link is ready to resume reception within time ti"j. 

7.6 Implementation 

The Xerox specification document [Xerox 801 makes no recommendation about 
the implementation of the Ethernet protocol, stating that it may consist of any 
combination of hardware, firmware, or software. However, a concurrent variant of 
the language Pascal [Brinch Hansen 75] is used to describe the behaviour of the 
data link fayer. The resulting program is presented as a definitive statement of 
the intended behaviour of the data link layer. 
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The precision of our specification language means that we have no need of an 
algorithmic description for specification purposes. However, such a description is 
useful as a guide to implementation, and as an aid to understanding the details of 
the timed failures specification. Accordingly, we represent the data link layer as a 
Timed CSP process, which must satisfy the data link total specification. 

Structure 

The data link layer at a single node will be implemented as a parallel combination 
of fOUT processes: two sending, and two receiving. The transmit data encapsulation 
process inserts a pa.cket of data into an a.ppropriate data frame and hands it to the 
transmit link ma.nager. This process connects to the physical layer at the node, 
receiving collision and carrier-sense signals, and sending bits for transmission. 

The receiver processes complement this action: the receive link manager col­
lects bits from the physical layer, and passes complete frames to the data decap­
sulation process for validation. Valid frames intended for the current node are 
stripped and passed to the client layer. 

;0 

TDE 

down 

NOp 

TLM 

put I" 

out 

il-
I R~D 

up 

RLM 

gd 

interface 

interface 

'd 

Figure 7.5: the internal structure of the data link layer. 

Tbe labelled arrows in figure 7.5 correspond to channels of communication between 
the processes, while the two lines labelled cd and cs represent synchronisations 
with the physical layer. 
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Implementation 

The data link layer is an interleaving parallel combination of data link processes, 
one for ea.cb node in the network: 

DL _ III DL, 
diODE 

At each node, there are processes to receive and transmit data. Tnere is no reason 
for the two processes to synchronise with each other in an ideal implementation. 

DL. ~ i i (TRANSMIT III RECEIVE) 

We label the processes with the appropriate NODE identifier. The process de­
scriptions below arc independent of the node identity. 

Transmission 

Data transmission is handled by two processes, connected by a single cha.nnel: 

TRANSMIT ~ (TDE II TLM) \ down 
do ..... 

The data encapsulation process accepts a packet from the client layer, frames it, 
and passes the frame to the link management process: 

TDE == in?m ~ down!!Tame{m) ~ TDE 

Once the link manager has accepted a frame for transmission, it waits for a signal 
from that the medium is clear, and then passes the frame to the physicalla.yer, bit 
by bit. lnilially the process must listen for a frame on the appropriate channel: 

TLM == down?! ~ IlOLD/,J 

The cs eveut is hidden from the layers above, so it will occur as soon as both layers 
are ready. Once cs has been observed, transmission may begin. 

HOLD, ... == cs.!E>...; (SEND, 3' HANDLE" .. ); TLM 

Recall that the data link must wait for time t..." the inter-frame spacing, before 
starting to transmit. The process HOLD" .. holds a frame! until the rs syn­
chronisation occurs, and the subsequent transmission is performed by a ?rocess 
SEND,. The second subscript to the holding process is used to record the number 
of attempl!J made to transmit the current frame, 
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The sending process transmits the bits of the (rame at intervals of tlit to the 
physical layer, terminating successfully if it should succeed in transmitting the 
entire frame. 

SENDO _ rep!suce --!i... SI<IP 

SEND ~ ~ send!z ~ SEND. 
{r) , 

Before terminating, the process informs the client layer that a successful tcaOl'imis­
sion has occurred. If the sending process terminates without being interrupted, or 
the handler terminates, then the trausmitter returns to its original slale. 

The transmission of a frame f may be interrupted at any time by the collision 
detect signal. If this occurs during the n'/o attempt to transmit the frame, then 
control is passed to the proCt'..9S HANDLE/,.... 

HANDLEj ,. " BAClIOFF.; HOLDj ,.+, if n < 16 

HANDLEJ,J6 :2: rep!fail ~ SKIP 

If fewer than sixteen attempts have been made to transmit the current frame, 
then the transmitter will wait for a certain period of time before making another 
attempt to transmit the frame. If the sixteenth attempt is interrupted, then the 
transmitter informs the client layer of its fiUlure, and terminates. 

According to our data link specification, the BA CKOFF.. process may be im­
plemented by any delay between t~II>' and tb"d:' In [Xerox gO}, it is implemented by 
a random delay process, terminating at time r* i.lol after being started, where time 
r is taken from a uniform distribution of integers in the range 1 ~ r ~ 2"'={IO,.. }, 

where n is the number of the current attempt. This allows the data link to modify 
its behaviour as the load upon the broadca.'it medium varies. 

Reception 

Data reception is handled by two process, also connected by a single channel: 

RECEIVE " (RLM II RDD) \ up., 
The receive link manager accepts from the physi.cal layer. and passes plausible 
frame fragment:5 to the data decapsulatiou process. A fragment is plausible if its 
length exceeds 64 octets, the minimum frame size. The data decapsulation passes 
valid frames intended for the current node to the client layer along cha.nnel out. 

The bit reception component of the link manager is prepa.red to accept bits 
from the physical layer at intervals of fbil. If some bits have been received and no 
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bits arrive for two bit times, control transferred to a simple validation process by 
a ti meou t operator: 

RLM - rec?x ~ LTSTEN(:t:} 

LISTEN, (ree?x ~ LISTEN...... ) ~~.t PASS. 
• (:1:) 

The length of bit sequence s determines the behaviour of PASS•. 

PASS, == if #(s) ~ 512 then up!s ~ RLM else RLM 

If the s.equence is louger than 64 octets then it is passed to the decapsulation 
process via channel up. Shorter sequences should be discarded without further 
consideration. 

If a bit sequence is p<lssed to the decapsulation process, then the address field 
is matched against the i\ddress of the current node. \Ve assume the existence of a 
function address that returns the appropriate information. If the bit sequence is 
a frame intended for the current node, then it is stripped of framing information 
and offered to the client layer. 

RDD == up?f...2... if address (f) = here 

then outhmframe(f) ~ RDD 
else RDD 

We have assumed that all errors are due to collisions, and our assumption that 
l....drl > tcan means that all collision-damaged frame fragments, which take less 
than time tw • to transmit, will be shorter than 64 octets. With this assumption, 
no error checks are required during the decapsulation process. 

By applying the inference rules of the timed failures proof system, we may 
confirm that our implementation meets the requirements of the data link tot a.! 
specification, providing that 

t l + t.'l < (, t, < ti"l 

t. < t .." + till t, < t~« 

t, < tin t, < t.l1d rt. - tc'Sl 

t, < tin 

If all the above constraint!'! are satisfied, then we have produced a satisfactory 
implementation of the data link layer. 
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7.7 Discussion 

The specification in this chapter is nol a complete description of the service pro­
vided by the Ethernet protom!. We ha.ve captured some of the most important 
aspects of this service, and suggested a. suitable implementa.tion of the data link 
component of the protocol; tbis was sufficient to demonstrate the specifica.tion and 
de8ign qua.lities of our notation. 

We can produce a more detailed study of the protocol without changing the 
method of specification employed in this chapter. 

•	 We may expand our description of the data link service by adopting a more 
systematic approach to the capture of requirements, as illustrated by the 
service specification of the physical layer. For each event a visible at the 
current level of abstraction, we considered the conditions under which a may 
oaur, and the circumstances in which it must be offered to the environment. 
The resulting conjunction of safety and liveness constraints produced a more 
deta.iled specification. 

'"	 We may address other aspects of the data link service by adding new events 
to our interface. ror example, to include error detection at receiving nodes, 
we might add a channel err to the datal ink interface: 

{i.,rr., Ii: NODE:" ERR} c ADL 

where ERR is a datatype of error reports. Alternatively, we may choose to 
consider the events on the channels in and out in greater detail, specifying 
the format of data. and addressing information in packets and frames. 

The lack of a suitable model for CSP prevents us from addressing the proba.bilistic 
aspects of the Ethernet protocol within our formal specification. However, the 
data link implementation and the physical service provide a basis Cor reMoning 
about the performance of the protocol. For example, results such as lemma 7J 
could be used to estimate the probability of a successful Crame transmission, given 
suitable probability distributions for the length of packets, and the Crequency at 
which they are submitted for transmission. 



Chapter 8 

Signals 

Wben describing the behaviour of a reaHime process, we may wish to include 
observable events that are not synchronisations. These signals may make it easier 
to describe and analyse certain aspects of behaviour, providing useful reference 
points in it history of the system. For example, an audible bell might form part 
of the TIser interface to a telephone network, even though the bell may ring with­
out the cooperation of the user. This is incompatible with our existing view of 
communication. 

In some cases, suitable environmental assumplions---discussed in section 4.3­
will allow us to describe such behaviour within the existing Timed Failures model. 
However, if we intend that these signals should be used to trigger other events 
or behaviours, then we mnst extend our semantic model to include an element of 
broadcast concurrency: some output events may occur without the coopera.tion of 
the environment. 

In our model, signal events will occnr as soon as they become available, and 
will propagate through parallel combination. A process may ignore any signal Ii 
performed by another process, unless it is waiting to perform the corresponding 
synchronisation a. If this is the case, then both a and a will occur. Of these, only 
the signal will be observed outside the parallel combination; it makes no sense to 
propagate a synchronisation. 

We will define a denotational semantic model, representing each process as 
a set of possible behaviours. Each behaviour is represented by a triple (s,N., t), 
corresponding to the knowledge that the process may perform trace s while re­
fusing synchronisations in No, if observed up until time t. The time component 
is included to simplify the semantic equations for concurrency. Two component 
bebaviours may give rise to a behaviour of a parallel combination only if they 
represent observations np until the same moment in time. 
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8.1 The Timed Signals Model 

We will represent signals as distinguished events in a. extended a.lpha.bet, a.dopting 
a hatting convention to differentiate signals from synchronisations. If we use E to 
denote the set of all signal events, then the set of aU events is given by 

E '" EUE 
}<or each synchronisation event a in E, we may add a signal event a. 

We use TE to denote the set of all timed synchronisations and signals, and 
T:E, to denote the set of all timed traces that may include signals: 

TE '" TIME x E 
Tf;, == {s E seq TE l (t, e) precedes (t', e'l in!J:::::} t ~ t'} 

Signal events may not be refused if offered, so there is no reason to include them 
in timed refusal sets: 

TINT ~ ([b, e) I 0 " b < e < oo} 
RTOI( '" {I x A I I E TINT A A E P E) 

RSET '" {U C ICE F RTOJ(} 

The set of possible refusal sets in the Timed Signals model is given by RSET, as 
before. The set of possible observations in this model is given by TF, where 

TF '" TE, x RSET x TIME 

Each possible behaviour is a triple, consisting of a. timed trace from TE" a timed 
refusaJ set, and a time value. 

We will give a new semantics to our language of Timed CSP terms, mapping 
each construct to an element of TSi' where 

TS, " P TF 

As before, we employ a domaiu of environments to record the values of term 
varia.bles, and define a semantic function for terms: 

ENV '" VAR ~ TS, 

:Fs E TCSP - ENlt - TS'j 

We write :Fs [PJp to denote the semantics of term Pin a.n environment p. As in 
the Timed Failures model, we omit the environment parameter when we give the 
semantics of a closed term. 
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The Timed Signals model TMl' is defined to be those elements S of TSF whi(:h 
satisfy a set of eight healthiness conditions, enshrined as axioms of the model: 

1. (s, N, I) E S => t ;> end(s, N) 

2. ("N,')ESAf';>t=>3s'.a(s')~l;A(s~(s'+t),N,t')ES 

3. W,{},O)ES 

4. (s""'w,N,t)ESAend(s)~t'~min{t,begin(w)}=>(.'l,N:ttf,tf)ES 

5. (s,N,I)ESAs,,"w=>(w,N,t)ES 

6. ("N, t) E S => 3N' E RSET. N ~ N' A (s,N',f) E S A 
\I t' : TIME; a : E • (t' .;; t A (f', a) ~ N') 

=> (, r f'~«(f', aJ), N' r t', t') E S 

7. \It: TIME. 3n(l) EN. (s,N,I) E S => #(s).;; nit) 

8. ("N, I) E SAN' E RSETA N' ~ N => (s,N',t) E S 

The first axiom insists that no trace or refusal information is recorded after the 
end of thc current observation. The second states that any observation can be 
extended into the futurc; thc only eveuts that must be observed are signals. The 
remaining six conditions are inherited from the underlying Timed Failures model, 
modified slightly to reITeet the possible presence of signal events in a process trac:e. 

The third axiom allows us 1.0 infer that all processes have at least one possible 
behaviour: the empty failme, observed unlit time O. The fourth axiom states that 
any behavionr of S gives rise to another if tTllncated, while the fifth states that 
the set of traces of a process should be closed under timed trace equivalence. 

The sixth axiom is a finitary condition upon refusal information. For any 
observation (s, N, t), there exists a maximal refusal set N:' such that any timed 
synchronisation (I', a) not in W is a possible extension of s rt'. The seventh axiom 
places a similar coudition upon traces, asserting the existence of an upper bound 
n(t) npon the number of signals or synchronisations that may be observed before 
time t in any behaviour of S. The remaining axiom states that if a process may 
refuse a set N:, then it may refuse any subset of N. 

For any S E TSF and t E TIME, we define 

S(l) " {(',N,t')ESlf'.;;tj 
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This yields the set of observations from S that end strictly before time i, and 
suggests a distance metric on the space TSF 

diS, T) £ in!{{2-' 1 Set) = T(t)) U (i}) 

In section A.3, we show that our model is a complete metric space under d. 

Notation 

We define a. new alpha.bet operator for timed traces, to match the synchronisation 
set operator defined in chapter 2. 

at,) " {a E f; 13t. «t,a)) in ,} 

As before, we overload the definition of this operator, 

alP) £ (a E f; 13(s,~, t) EJ's!P! • a E a(s)) 

to return the seL of signal events tha.t may be performed by a process P. 

We define an operator sync, which may be applied to a trace Or set of timed 
events. For any s E TE, or A ~ TE, 

syn,CO) = () 

syn,«(t, a)~s) " «t, a))~,yno(s) 

,yn,«(t, a))~,) «t, a))~sync(s) 

syno(A) ~ {a EEl a E A V aE A) 

This operator returns the set of synchronisation events that are mentioned in the 
set or trace, as synchronisations or signals. 

The semantiC.'l of parallel combination in the Timed Signals model will require 
a.	 new subsequence relation between timed traces: 

5J~5~ ¢:> Vl,a.((t,a))insl=>((t,a))inst 

We sa.y that a trace 51 is a subset of trace s~ if and only if each timed event in 51 

is also present in 5!. 

The failure subtraction operator may be applied to behaviours in this model: 

(s,N,t)-f' == (5-=-t',N-=-t',t-t' ) ift~t' 

CO, {j, 0) otherwise 

Subtracting time t from a behaviour discards the part of the beha.viour tbat lies 
before time t; the remaining part is shifted backwards through time. 
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8.2 Sequential Processes 

Atoms 

As in tbe Timed Failures model, the di\lergent process .L is identified with the 
deadlocked process STOP. Any trace of this process must be empty, 

Fs[STOP]p ~ ((,,~,t) I' ~ 0" I" end(~)} 

and any refusals must be recorded before the observation ends. 

The synchronising termination process SKIP is ready to perform a single in­
stance of the special event ,j at any time. 

Fs ISKIP] p ~ {((),~, t) I ,I i! a(~)" t " end(~)) 
U 

{(«( I, ,1)),~, I') I ,I i! a(~ t I) " " " maxi t, end(~)}} 

If no events have been ohserved, then ,j is available, and any refusals were recorded 
before the end of the observation. Otherwise, ,j is observed at some time t and 
was available beforeband. 

We may wish to use a signal to indicate that the successful termination of a pro­
cess. Such an event would be propagated to the environment, causing termination 
in any process that is waiting to synchronise upon ,j. We define 

FsISK/pJp ~ {((),{},a)) u (((a,J)),~,t) I" t" end(~)} 

If no events have been observed, then we have watched only until time O. If our 
observation extends beyond this time, then a termination signal will be observed. 
We also define two forms of delayed termination: 

FsIWAITI!p ~ {((),~,I')I,Ii!~11"1'"end(~)} 
U 

{( «( I", ,I)), ~, t') I I" " I " I' " max (t", end(~)} 

",I i! ~ i [I, I")} 

If the process is to synchronise upon the termination event, then ,j is made avail­
able from time t onwards. If the process is to signal termination, then the termi­
nation signal will be observed at time t. 

Fsi WATT IJp ~ {((),~.I') I end(~) <; I' <; tJ 
u 
(((I,J)),~,I') I I'" max{l,end(~)}} 

In either case, any event may be refused before time t. 
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Prefix 

The event. prefix operator transfers control to a process following the observation 
of an event. If thi5 event i5 a synchronisation, then it should be continuously 
available until it occurs: 

F s [. ~ pIp = {(O,~, t) I. ¢ u(~) A I" end(~)) 

U 

(((".))~s,~,t') I • ¢q(~ r tjA 
begin(s) ~ t +6 /\ 
I'" m..{I, end(s, ~)) A 

(s,~,")- ('+b) E F'[plp) 

If the event is a signal, then it should occur immediately. 

Fs(a~P!p '" {(O,{},O)j 
U 

(((O,.))-s,~,I) It" end(,,~) A 
bp.gln(s) > 6/\ 
(,,~,t) -b E F,[P!p) 

A delay of time 6 is a3sociated with the transfer of oontro1 to P. 

Sequential Composition 

In the sequential composition P; Q control passes from P to Q as soon as P 
offers to synchronise upon the termination event ,f. or sends a termination signaJ 
'J. In either case, there is no delay associated with the transfer of control, and the 
termination event is concealed from the environment. 

Fslp;Q]p = {(,,~,t)I.I¢q(,)A:>¢i1(,) 

A (s,~ U ([0,1) x {.f)), I) E Fs (PIp) 
U 

CL,,{(s-lV,~, I) I 
.I ¢ q(s) A:> ¢ u(,) A (lV,~, I) - t' E FsIQ)p 
A 

( (s~« t', ,f)), ~ r I' U (10, t') x {.fl), I') E F, [PIp 
V 
(s~« I', :»), ~ r I' U (10, I') x {.fl), t') E 1"s IPI p)} 

Any observation of this scqnential composition may he an observation of P in 
which no termination events occnr, or a termina.ting observation of P followed by 
an observation of Q. 
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The sequential composition operator does not distinguish between the two 
forms of the termination event. This is illustrated by the following equivalence: 

(P III WAIT I); Q :;; (P III WAlT I); Q 

In the presence of the sequential composition operator, the termination event ./ 
occurs as soon as it is made available, and is concealed from the environment. 

Choice 

The semantics of the nondeterministic choice operator is the usual union or possible 
component behaviours: 

J"slpn Q]p '" J"s[p]pUJ"s[Q]p 

and can be extended to give a meaning to indexed nondeterministic choice provided 
that the set of alternatives is uniformly bounded, in the sense of section 14. 

Ifeither of the components of a deterministic choice is ready to perform a signal 
event, then that choice will be resolved immediately. 

J"slpoQ]p '" {((),~,I)I((),~,I)EJ"s[p]pnJ"s[Q]p) 

U 

{(s,~, I) lsi () A (s,~, I) E J"s1p!pU J",[Q!p 
A 

((), ~ rb,gin(s), b,gin(s)) E J"s [P] pn J"s [Q! p} 

Any event refused by a deterministic choice before any events have been observed 
must be refused by both components, and the behaviour following the first event 
must stem from just one of the components. 

As an example, consider a process which is initially prepared to participate in 
the synchronisation fl, 

(a ~ SMP) 0 (WAlT I; b~ STOP) 

If this event occurs, the process terminates successfully. However, if fl has not 
been observed by time t, the process sends a signal b and then deadlocks. The 
occurrence of the signal event resolves the choice, and withdraws the offer of a. 
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The prefix choice operator may be used to olTer the environment an infinite 
choice of inputs to a process. Signals correspond to output events; there is no 
reasOn to include signals in a prefix choice construct. 

Fsla:A~P.]p '" {((),N,t)IAnu(N)~{}} 
u 
j«(t', al)~s, N, t) I a E A A t';;' 0 A 

Anu(N rt')~ {} A 
(s,N, t) - (t' +<5) E Fs Ip.Jp} 

We assume that the set A contains only synchronisation events, and that the set 
of alternatives {P4 I a E 11} is uniformly bounded. 

Relabelling 

The relabelling functions may be used to rename the events in a process, while 
preserving aspects of the control structure. We do not permit the use of such 
fllnctiom to transform signals into synchronisations, or vice versa. We insist that 
for any relabelling function f. 

Va:E 0 f(a)EE 

Va:E 0 [(a)EE 

With t~is restriction, the effect of applying such a function is given by 

Fs[r'(Pl]p '" {(s,N,I) I (J(s),f(N),ll E Fslp]p} 

Fs(r(P)]p '" {(J(s),N,I) I (s,r'(N),I) E Fs[P]p} 

where [-1 (N) denotes the inverse image of refusal set ~ under f. 

Abstraction 

We may conceal signal events from the environment by removing them from the 
trace. Because the process cannot stop signals occurring, the internal behaviour 
is independent of any signals performed. We extend the definition of the hiding 
operator on traces: 

0\ A '" 0 
«(t,al)~,.)\A '" s\A if a E A 

«I, a))~(s \ Al othe,wise 

«(t,ii))~sl\A '" s\A if aE A 
«I, a))~(s \ A) otherwise 
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We roay hide any combination of signals and 5ynchronisations from ~be environ­
ment of a proce55: 

Fslp\A]p "" {(s\A,N,t)!(s,NU([O,t)x(A~E)),t)EFs[Plp) 

Ob5erve that only synchronis.ations may be added to the refusal set; 5ignal events 
already occur as soon as they become available. 

Recursion 

As before, we may regard the semantics of a tenn P with free variable X as a 
function defined upon TS"F' ma.pping a set of behaviours S to the semantlC'i of P 
in an environment obtaineu by associating X with S. 

Definition 8.1 If P is a TCSP term, and X and Yare variables such that Y 
does not oeeor free in P, then 

M(X,P)p .\ y. FsIP!p[Y/Xj 

M,(X, P)p - W.·.\ Y. Fslp!p[Y/Xj 

where W5 is the mapping uefined by 

W, "" .\ Y. FsIiVAIT6;X!p[Y/Xj 

<> 

The definition of W5 refieets the delay associated with the second form of recursion 
operator. The semantics of each recursion operator is given by the fixed point of 
the eorr~ponding mapping: 

Fs[ 1J X 0 P) p == the unique fixed point of the mapping M(X, P)p 

FS[jJ X • P] p == the unique fixed point of the mapping M5(X, P)p 

The signals model TM"F is a complete metrle space under the metric d defined 
earlier in this chapter. Following the arguments of chapter 3, we can show that 
the semantics of delayed recursion is always well-defined. 

Further, the addition of signal5 to our computational model does not affect 
the notion of a constructive term. As in 5ection 3.2, we may es~ablish that the 
semantics of the immediate recur5ion 1J X • P is well-defined whenever term P is 
constructive for variable X. 
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8.3 Signals and Concurrency 

We intend that signals should be propagated through a parallel combination, and 
that available synchronisations are triggered by the corresponding signal events; if 
a signal Ii is observed, tben any process waiting to perform synchronisation a will 
be allowed to proceed. Observable synchronisations: require the participation of 
the environment, so if a signal forms part of the interface between two processes 
then the corresponding synchronisation mnst be concealed, 

It would be enongh to conceal only those synchronisations which occur at the 
same time as the corresponding signal events, allowing a process to signal and 
synchronise upon the same event. For example, we might define a process 

a -+ STOP ~ a -+ STOP 

which waits to synchronise upon event at but will send a signal a instead ir no 
progress has been made by time t. However, it can be argued that no process may 
signal and synchronise upon the same event; we obtain a simpler, more intuitive, 
semantics for concurrency if we proscribe dynamic reconfiguration of input and 
output channels. 

Accordingly, we place a simple restriction upon the sets presented as arguments 
to the alphabet parallel operator. In the parallel combination 

P ,II. Q 

the sets A and B determine which synchronisations may be performed by processes 
P and Q, respectively. By adding signals to these sets, we may also determine 
which signals are propagated. We will insist that 

An ,ync( Ant) = {}
 
B n ,ync(B n t) = {}
 

No event a may appear in the same set as a synchronisation a and a signal a. 
As lUl example, consider the following choices for A and B: 

A = {a,b,e} 

B = (ii,b,e) 

In this case, either component may broadcast signal c to the environment, and Q 
may broadcast a. If Q broadcasts a, then P may perform synchronisation a, but 
only the signal will be propagated to the environment. As before, both components 
must cooperate upon any synchronisation in An B. 
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We may now derive the scmantic equation for P Ail B Q. Suppose that the 
traces performed by components P and Q are Sp and SQ respectively. Any syn~ 

chronisation common to both scts mllst be performed by botb components: 

d EL(AnB) ~ 'P ,E~(AnB) ~ SQ ~E ~(AnB) 

and any synchronisation that is exclusive to one component will be observed if it 
is performed by tha.t component, and not hidden by a corresponding signal. If we 
identify the sets of signals 

C '" AnE
 
D '" BnE
 

then we may capture this requirement as 

,rE,(A-B) 'P ~ (E - sync(D» 

S IE LIB-A) SQ L(E-,ync(C») 

Synchronisations of P tbi'll are also signals of Q are removed from the trace, and 
can only occur when Q performs the corresponding signal: 

'p ~ (A n ,ync(D)) c:; 'ync(sQ ~ D) 
'Q r (B n sync(C)) c:; sync(sp ~ C) 

If a is such a synchronisation, then (t, a) may appear in Sp only if (t, il) appears in 
sQ. This will be true whenever (t, a) appears in the trace sync(sQ ~ D). A similar 
condition applies for synchronisations of Q. 

The pi'l,rallel combination will propagate any signals that lie in A or B and are 
performed by the corresponding process: 

s ~E E 'dClllsQ ID 

Each component may perform signals from outside these sets, but they will not be 
passed to the other components, nor to the environment of the parallel combina­
tion. Combining these conditions, we obtain that 

SESPAITasQ .. s~E~(AnB)=sp~E,(AnB)='Q~E~(AnB)/\ 

, ~ E I (A - B) = Sp ~ (E - sync(D)) /\ 

s IE ,(B-A)='Q l(E-sync(C» /\ 

Sp ~ (A n sYllc(D» 0;;;: sync(sQ) /\ 

sQ ~ (8 n sync(C)) 0;;;: sync(sp) /\ 

s ~ EE Sp ~ C III SQ ~ D /\ , ~ E ~ s (E L(A U B) 
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If P performs a signal a at time t, then the corresponding synchronisat.ion 
should be offered to component Q. We may examine the effect of such an offer by 
including (t, a) in the appropriate refusal set. If Sp and SQ are the traces performed 
by components P and Q, then we insist that for any time t' 

sync(_(sQ l D it')) S; _(N~ t A it') 

sync(_(sp (C it')) S; _(N:' l Bit') 

The synchronisations corresponding to the signals performed by Q at.. time I must. 
be offered to component P at time t, if they are contained in set A. A similar 
condition applies to signals performed by P. 

The behaviours of each component will take the following (orm: 

(sp,NpuN~,t) EFsIP]p 

(sQ,NQUN:"t) EFslQJp 

Any synchronisation from A that is refnsed by component P must be rermed by 
the parallel combination. A similar condition applies to events from B. 

NpS;NlA
 

NQ S; N l B
 

We consider only those refusals of P and Q which correspond to events from A and
 
B: any other synchronisation will be impos.~ible. Conversely, any event refused 
from Au B must be refused by at least one of the components, or concea.led by 
the inclusion of the corresponding signal in the interface set. 

N l (A U B)\ sync( CUD)) = (Np \ sync(D)) U (N Q\ sync( C)) 

For convenience, we define 

N E Np ATIB NQ .. Np S; N l A A NQ S; N l B A 
N ~(AUB)\sync(CUD)) 

~ (N p \ sync(D)) U (N Q \ sync( C)) 

We rna.y now give the sema.nt.ic equation for alphabet parallel combination in the 
signals model: 

Fs[PAIIBQJp '" {(s,N,t)13sp,Np,N~,sQ,NQ,N'Q.'It'. 

SESPATIBSQ 1\ NENpAITBN Q 1\ 

sync(_(sQ l D i 1')) S; _(N~ ,A i I') A 
sync(_(sp l C it'll S; u(WQ l Bit') A 

(sp,NpUN~,t)EFslplp A 

(sQ,NQ UN",/) E FslQ]p} 
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If the two components are to synchronise upon every event from E, then no 
signals may he propagated to the environment. The semantics of a lockstep parallel 
construct p 11 Q is thus 

FsiPIl Q]p '" {("NpUNo,lll'~'IE	 ,q"Np,I)EF,[PjP 
1\ ("NO,I) E FsIQ)p} 

No such restriction need be applied to the interleaving parallel operator: 

F,lpIIIQ]p'" {(',N,I·)13,p"OosE,plll'0	 1\(,p,N,I)EF,IP)p 
1\ ('0, N, I) E FslQjp) 

Signals and syncbronisations are simply interleaved. 

8.4 Consistency 

The Timed Signals model is an extension of the Timed Failures model. If a process 
description P does oot mention s'lgnal events, the semantics of P in TAli will be 
equivalent to the semantics of P in TMF. If we use 11" to denote the natural 
projeclioo mapping between the two models, we may assert that 

FT[P] = ~(F,[Pl) 

for any dosed term P constructed without signal events. 

Definition 8.2 A TeSp term is said to be signal-free if it contains no occurrences 
of events from t. This will be true whenever the term contains no subterms which 
match any of 

sKip, WAIT I, ii~P,o, PAIIBQ 

whe« (A U B) n f; i {}. ¢ 

With this definitjon, our consistency result is expressed by the theorem below: 

Theorem 8.3 If P is closed and signal-free, and any recursive subterms in Pare 
constructive for the corresponding variables, theu 

hip] ~ ~(F,[Pj) 

where projection mapping 11' : TMF _ TAfF is given by 

~(S) '" (("NlI3t.("N,t)ES) 

Q 
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Proof We proceed by structural induction. To show tha.t our result is trl.1e Cor 
recursively-defined processes, .....e must adopt a. slightly stronger result for our in­
ductive hypothesis. We begin by extending our definition of signal-free to semantic 
sets and environments: 

Definition 8.4 If S is an element of rsi'. we say that S is signal-free if 

\/(5,~, t) E S • <7(s) = {} 

Further, if p E ENV, we say that p is signal-free if 

vX E VAR • pIX] is signal-free 

o 
It is easy to see that the semantic set Fs (P]p will be signal-free whenever both P 
and p are signal-free. If we extend our projection mapping to environments with 

~p = {X ~ ~(p!X]) I X E VARJ 

Cor any p in ENV, we may also conclude that 

p is signal-free ::::::} 1rp E ENV 

We may now stale our indudive hypothesis: iC P is a signal-Cree term, then 

\/pEENV • pi"ignal-f,ee=>FdPI(~p)=~(Fs[P]p) 

base case It is sufficient to consider the case oC the deadlock process. For any 
environment p in ENV, we have 

FslsTOP!p = {(s,~,t) 15= 0 At" end(~)} 

whence 

~(FsISTOPI)	 ~({(s,~,,) I s = 0 A'" end(~))) 

{(s,~) Is = OJ 
Fr!STOPI 

Although tra(:e s is an element of Tt~, we know that s l t = 0, and hence that 
8 E TE;'. 

inductive step Consider the case oC the alphabet parallel operator. If the parallel 
combination PAlla Q is signal-Cree, then the same must be true oC components 
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P and Q. If Sp and sQ are the traces corresponding to each component, we may 
conclude that Sp = Sp t"L a.nd sQ = SQ t"L. Iu this case, 

S E Sp AIT. SQ ..	 S l E ~ (A n B) ~ Sp ~ (A n B) = SQ ~ (A n B) A 

S ~E "A-B)~sp\syne(D) A 
slE~(B-A)='Q\syne(C) A 

sp l (A n sYll.c(D)) ~ sync(sQ) /\
 
SQ l (B n sync( C)) ~ .~ync(sp) /\
 

S ~ t ~ () A S ~ E = s lEI (A U B)
 

From our assumption that the parallel combination is signal-free, we have that 

Ant~Bnt={} 

and hence that sets C and D ill~ empty. From this, we deduce that 

sESPATI.SQ .. s~(A-B)~spAsl(B-A)='QAs=sf(AUB) 

¢:> S ESp AilE SQ 

We may also infer that 

N E Np All. H Q .. Np <; N ~ A A NQ <; N ~ B A 

N ,(A U B) \ syne(C U D)) 
= (N p \ ,yndD)) U (N Q \ syne(C)) 

.. N/, <; N ~ A A NQ <; N ~ BAN ~ (A U B) = Np U NQ 

We may use these results to ::;implify the semantics given for alphabet parallel 
combination in the signals model: 

FslpAII.Qlp" {(s,N,f)13sp,Np ,sQ,NQ"ESP AII.sQII 
N ~ (A U B) ~ Np U NQ A 

Np <; N LA II NQ <; N ~ B A 
(,p, Np , t) E Fs IPlp A 

(sQ,NQ,1) E F,[Qjp} 

If we assume that p is signal·free, we may apply our inductive hypothesis tQ com­
ponents P and Q, yielding 

~(Fs[PAII.Q]p)	 = {(s,N)13sp,Np,'Q,NQosESPAII.'QIl 
N ~(AUB)~NpUNQ A 
Np <; N ~ A II NQ <; N ~ B II 
("p, Np) E Frlpl~p A 
(sQ,N Q) E FrlQj~p} 

- FrlP All. QI~p 
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The case of Lhe recursion operator requires the following lemma: 

Lemma 8.5 The set of sjgnal-rr~ semantic sets, 

SF = {S E TS, IS;, signal-f'''''} 

is a complete subspace of TSF under metric d. "
 The following definitions are taken from [Sutherland 75]:
 

Definition 8.6 A sequence {8n } in a metric space (M, d) is a Cauchy sequence
 
if given f > 0, there exists N such that d(S.. , S... } < (: (or any m, 11 > N. <I 

Definition 8.7 A metric space (M, d) is said to be complete iff every Cauchy 
sequence in (AI, d) converges to a point in M. <I 

Proof of lemma 8.5 [after Reed] Suppose that {S.. } is a Canchy sequence in 
metric space (SF, d), and let {n,} be a sequence of positive integers such that 

V i ~ 0 • i < no < ni+J 

V m ;: n • d(S... , S",) 

Recall that the metric d was given hy 

d(S,T) = 'n/Hr' IS(I)= T(I)}U{I))
 

where S(t) denotes the set of observations from S that end no later than time t:
 

S(I) = {(" N, I') E SIt',. I}
 

With such a metric, the limit of the Cauchy sequence S" is ('qual to 

S = uS.,(.) 
iOta 

By our choice of sequence ni we have that 

0,. I ,.. => S(I) = S.,(I) 

and eAch Sft is signal·free. Hence we may observe that 

(s,N,t) E S => (s,N,I) E S(I) 

=> 3 i. (" N, I) E S.,(I) 

::} 3i.(s,N.,t) ES.., 

=> q(,) = {} 
and conclude that the limit S is also signal-free. The set TF is thus a complete 
subspace of 1'51" o 
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The semantics of immediate recursion in the signals model is given by: 

Fs [Il X 0 P] p == the unique fixed point of the mapping M(X, P)p 

where tbe mapping M(X, P)p is given by 

M(X,P)p '" ,\ Y • .:Fs[P]p[Y/Xj 

In onr indnctive hypothesis, we have assumed that Il X 0 P and p are both signal­
free. From tbis, we dednce that 

Y is signal-free => F s [p]p( Y / Xl is signal-free 

and hence that subspace SF is closed under the mapping M( X, P)p. If we suppose 
that P is constructive for variable X, then this mapping has a unique fixed point, 
and this fixed point must lie in SF. \\'e may conclude that the semantic set 

.:Fs [" X 0 P! p 

is signal-free. 

Applying the fixed point property, we may obtain that 

.:Fs[pXoPlp M(X,P)p(.:Fs[pX 0 pIp) 

.:Fslp!p[.:Fs[pX 0 Pip/Xl 

Term P, environment p, and semantic get F S [1l X 0 P]p are all signal-fret', so we 
may apply our inductive hypothesis to yield that 

~(:rs[pX 0 Pjp)	 h[PI~(p[.:Fs[pX 0 PIp/X]) 

.:Fdp!~p[~(.:FslpX0 Plp)/XI 
M(X,P)~p(~(.:FslpX0 PIp) 

where the mapping M(X, P)7rP is as defined in chapter 3: 

M(X,P)~p ~ ,\ Y'.:FdPI~p[Y/XI 

We have shown that 7r(Fs[IlX 0 P]p) is a fixed point of this mapping, but we 
know that 

F T [Il X 0 P] 1rp = the unique fixed point of the mapping M(X, P)7rP 

so we may conclude that, provided that P is constructive for variable X, 

.(.:F,[" X 0 PI p) = .:Fd p X 0 Pl'p 
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The remaining easel for the inductive step arc comparatively simple. We con­
clude that the inductive hypothesis holds for all terms: if P is a signal-free term 
in TCSP, then 

'V p E ENV • pi' 'ignal-f'''' => FT[P] (rp) = r(Fslp!p) 

under the assumption that any recnrsive terms are constrnctive for the correspond­
ing variables. The conclusion of theorem 8.3 follows immediately; if P is dosed 
and signal-free, then 

Fr[PJ r(FsIP]) 

o 

Furthermore, it is easy to see that the defining axioms of TMF arc consistent with 
those of TMF , in the sense that 

S E TMF => r(S) E TMF 

If a set S satisfies the axioms of the Signals model, the projection 11"(5) satisfies 
those of the Timed Failures mode\. 

We conclude that the semantics given in this chapter arc consistent with the 
equations and axioms presented earlier. and hence that the Signals model may be 
regarded as an extension of the Timed Failures model. 

8.5 Example 

As an application of the Signals model, we consider a Timed CSP implementation 
of the physical layer of an Ethernet-like protocol. This layer provides a means 
of commnnication between the nodes of a local area network; data bits are ac­
cepted from the data link at each node, and passed along a broadcast medium. 
In section 7.4, we saw that the service provided by the physical layer could be 
captured as a timed failurcs specification. With the addition of signal events, we 
can produce a TCSP description to satisfy that specification. 

Tbe service provided by the physical layer was described in terms of the avail­
ability and occurrence of synchronisation events from the following set: 

ADL == {i.plIt.b, i.cs, i.cd, i.get.b j i : NODE; b : BIT} 

At each node i, the physical layer shares two channels and two simple synchroui­
sations with the data link component. The channels carry data bits between the 
two layers: bits are accepted (rom the data link layer along channel i.put, and 
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transmitted to the data link along channel i.get. The synchronisation i.es is made 
available to the data link whenever activity ceases on the broadcast medium, and 
the synchronisation i.cd j~ offered whenever a collision is taking place. 

DATA LINK 

i.put i.e!! i.cd i.get PHYSICAL 

Figure 8.1: the service provided by the physical layer at node i 

The event i.put.b models the acceptance of a data bit b by the physica1layer 
at node i. If the physical layer is to meet the specification given in chapter 7, a 
corresponding signal must be placed upon the broadcast medium. Even so, there 
is no guarantee that the data hit will be received at another node j; if other nodes 
are transmitting, then this bit signal may be lost. This behaviour is easy to model 
if we introduce a set of signal events: 

EeL "" {;.;;t.b Ii: NODE; b : BIT} 

The event j.<d.b models the arriva.l of a bit b on the broadcast medium at node j. 

Transmission 

If a data bit b is pa.~sed to tlte rhysicallayer along channel i.put, it should be 
broadc;\5t to every other node on the network. 

TRANS, == i.put.b ~ (	 TRANS,
 

III
 
III WAIT d" :j.;;t.b ~ STOP) 
d i 

We have decided that signa.l j.-:J.b should occur at a time di) + thi1 aft.er the 
input event i.put.b. The bit time fb,' is the duration of a bit transmission on the 
broadcast medium. 

The behaviour following an input eVl"nl. is an interlea.ving of two processe~. The 
first is a fresh copy of the broadcast process: the physical layer at node j is ready 
to accept a new bit for transmission once time fb" has elapsed. The second is an 
interleaving of simple transmission processes: each of these will produce a signal 
j.7J..b at t.he correct time, and then terminate. 
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Reception 

The arrival of a data bit b at node i is modelled by the signal event i.;rt.b. If the 
physical layer at node i is ready, it will synchronise upon this event, and offer data 
bit b to Lhe data link. 

LISTEN; == i.al.h: AT; ~ i.get.h ~ LISTEN; 

where 

AT; = {i.aLa, i.at.!} 

The combination of delays t1 + it must be strictly less than tijj if the physical 
layer is to function correcUy. In a valid frame sequence, a data bit is transmitted 
every /.111; the physical component must be capable of decoding a data bit signal 
and pas~jng it to the data link within this time. If the ahove process is not ready 
to observe signal i.;t.b, then data bit b will not be received. 

Carrier Sense 

If more than two bit times have elapsed since the last bit arrived at node i, then 
the synchronisation i.es should be offered to the client layer. This offer should be 
withdrawn if another event from ATi is observed. The following process will meet 
these requirements: 

SENSE, '" (i." ~ STOP) \1 NOISE;
AT, 

Once a.n at event is observed, control is passed to a. process which offers to syn­
chronise upon events from ATi • 

NOISE; '" (a' AT; ~ NOISE;) '!!:' SENSE, 

If more than two bit times have elapsed since the last at event, this process with­
draws the afTer, and passes control to a copy of the original process SENSE;. 

Collision Detection 

If a data bit arrives from another node while node i is transmitting, then syn­
chronisation i.cd should be offered to the data link layer. Accordingly, we define 
a process DETECT; which waits for i to start transmitting. 

DETECT, '" a, PUT, -"-. (MONITOR; \1 COLLISION;); DETECT,
AT, 
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Once a transmission has begun, control is passed to a monitor process. Observe 
that the delays 14 and t5 must be less than two or this process will interfere with 
frame transmission. 

MONITOR, S (a: PUT, -".<.., MONITOR,) ~C' SKIP 

This process oilers to engage in events from {i.put.O, i.put.l}, until two bit times 
elapse without a put event. When this happens, the monitor process terminates 
successfuHy. 

If a data bit arrives during a transmission, control is passed to the process 
COLLISIONi , which behaves as MONITOR;, except that it is ready to engage in 
the event i.cd. 

COLLISION, S MONITOR, III ;.od ~ STOP 

As this is an interleaved paralkl combination, it will terminate successfully when 
transmission ceases, and MONITOR, terminates. When this happens, control is 
passed to another copy of the original process. 

Combination 

The physicaltayer component at node i is the parallel combination of the processes 
defined above: 

PL, S (TRANS, II DETECT,) III SENSE, III LISTEN, 
PUT, 

The transmission and collision detect processes must agree on each occurrence of 
an event from PUTi , but no other synchronisation is required. The physical layer 
itself is a paranel combination of node processes 

PHYSICAL S II PL,
ALL, 

where ALL; is the set of all e....ents that are possible for node i: 

ALL, S PUT,UGET,UAT,U{;",;.,djU{j ..,.bljENODEAj#;} 

Only the broadcast signal events are seen by more than one node. 



Chapter 9 

Discussion 

9.1 Conclusions 

In this ,hesis, we have presented a formal method for the specification and devel­
opment of real-time systems. We have exhibited a system description language 
with a number of useful programming features. We have introduced a formal 
specification language for the description and analysis of system behaviour. We 
have presented a complete, compositional proof system for relating the two lan­
guages, and formulated techniques for simplifying the proof obligations that arise 
during the development process. Finally, we have extended the method to include 
a treatment of broadcast communication. 

A substantial case study wa.s undertaken to demonstrate the applicability of 
the development method, and proved successfuL To assess the performance of the 
method, it is necessary to consider the rolf> of forma.l methods in systems develop­
ment: initially, a set of informal requiremeuts describing the intended behaviourol 
a system are translated into an abstract formal specification; this specification is 
then gr(l.dually refined towards some fiual implemf'ntation. If each refinement step 
is formally verified, then we may be certain that any behaviour of the implemen­
tation will be consistent with the original specification. However, as [Barringer 87] 
points out: 

* the gap between informal requirements and formal specification means that 
there is no guarantee that the system performs as originally intended; 

* as soon as realistically sized systems are considered, shortcuts have to be 
taken; the number of formal proofs required is just far too la.rge. 

These are valid criticisms, and must be addressed if our development metbod is to 
be of any practica.l use. 
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The specification language formula.ted in chapters four and six is an attempt to 
answer the first of these crit.icisms. If the intended behaviour of the system may be 
described in terms of the observation and availability of some set of communi cation 
events, then this language may be used to capture the system requirements in a 
clear and cornprehensible fashion. The resulting specification may be translated 
into timed failures notation. Alternatively, we may derive inference rules which 
relate such specifications directly to the implementation language. 

Once the system requirements have been formalised, the specification language 
may be used to reason about system properties, and to communicate the details of 
the design to others. At this stage of the development, we will often deted incon­
sistencies and ambiguities in the original requirements. Even if the de"'elopment 
is then completed informally, the production of a formal specification will have 
improved the safety and reliability of the system. 

The system description language presented in chapters two and three is signif­
icantly larger than that proposed in \Reed 88J. We have extended the language 
to include process variables, primitive timing operators, and new operatQfs for se­
quential composition, parallel composition and recursion. Although the extended 
syntax is harder to reason about-there are more cases to consider--it is easier 
to reasou with. In realistic applicatious, sHch as the case study of chapter seven, 
we find that the new operators correspond more closely with our requirements, 
resulting in an elegant implementation with a simple semantics. 

The complete proof system introduced in chapter five provides a formal link 
between the specification language and the system description language. Given a 
proposed implementation of a system component, we may use the inference rules 
presented in chapter five to establish that it behaves as expected. The composi­
tional nature of the proof system supports the hierarchical development of large, 
complex systems: we may reason about the behaviour of each component in isola­
tion. The notion of environmental assumptions, introduced in chapter four, proves 
particularly useful in these circumstances. 

The second criticism is more challenging: real-time systems are complicated 
entities, aud the proof obligations generated during the development process are 
necessarily complex. The theory of timewise refinement presented in chapter five 
can be used to reduce any proof obligations which correspond to untimed safety 
conditions: if we can show that these requirements are satisfied in Reed's untimed 
Traces model, theu we may conclude that they are also satisfied in the context of 
the Timed Failures model. 

The treatment of scheduling and abstraction introduced in chapter six provides 
another method of reducing the complexity of proof obligations. By separating the 
concerns of scheduling and concealment, we are able to present our requirements 
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in a dear and structured fasbion, as illustrated by the development method for 
hierarchical protocols described at the beginning of chapter seven. 

Even with the techniques described above, when we come to apply Timed CSP 
to tbe specification and development of complex real-time systems, we find that 
the number of formal proofs required is still uncomfortably large. However, we 
may replace many of these proofs with rigorous mathematical arguments, and still 
be reasonably sure that our implementation is correct. Where doti bts remain, we 
may increase tbe degree of formality until the truth, or falsity, of the argument 
becomes apparent. 

In a description of a real-time system, it is sometimes convenient to include 
observable events that are \lot synchronisations: output events which may occor 
without the cooperation of the euvironment. In chapter eight, we showed that 
our model of computation could be extended to include a treatment of broadcast 
communication. Not only does this make it easier to describe and analyse certain 
aspects of behaviour, but it may also he used as a basis for modelling assignment 
in Our system description language. This is the subject of current research, and 
will be discussed at the end oC this chapter. 

This thesis has presented a Cor mal development method for real-time systems, 
based upon the models proposed by Reed and Roscoe. This method supports 
both [Ilrmal and rigorous reasoning at every stage of system development, and 
is applicable to systems of a realistic size. It is our hope that the results of the 
research described in this thesis may be used to improve tbe safety and reliability 
of real-time distributed systems. 

9.2 Other Approaches 

A wide variety of formal methods L have been proposed for the specification and 
development of real-time systems, ba5ed upon 

.. process algebras, such as Timed ACP [Baeten & Bergstra 89] 

• temporal logics, such as that presented in [Barringer et al. 84J 

.. programming languages, such as ESTEREL [Berry & Gonthier 88J 

Although much research ha5 been canied out into the theory of timed concurrency, 
a consensus bas yet to emerge concerning the applicability of the va.rious formalisms 
to different types of system. A successful development method is likely to involve 
somf combination of the features mentioned above. A [lOtation that is well-SUited 

J A useful review is presented in [Jo~ph &, Goswami 88]. 
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to requirements capture is unlikely to be an efficient programming language, and 
viee versa. 

The process algebras­

• sees [Milne' 83] 

• TeeS [Molie' & Tofl' 90] 

• ATP [Nicollin eI at. 90J 

• Timed LOTOS [Quemada & Fernandez 87J 

* Timed A CP IBaeten & Bergstra 89J 

• Timed CCS [Wang 90, Hennessy & Regan 90J 

-rely upon bisimulation relations to prove correctness. Two processes 
are said to he bisimilar if they exhibit the same behaviour according to the opera­
tional seman tics (or the language. To show that an implementation meets a given 
specification, we describe both as processes, and show that the two descriptions 
are bisimilar. 

This approach has proved successful in an untimed context, but is difficult to 
apply to complex real-time systems. A great deal of information is present in 
each process description: as specifications, they are difficult to understAnd and 
unsuitable for rigorous, rather t.han formal, reasoning. We do not exploit the 
algebraic properties of Timed CSP: our method of proof is quite different, and we 
employ separate languages for system description and formal specification. 

The ESTEREL programming language [Berry & Gonthier 88J is a determin­
istic language based upon a synchrony hypothesis: the outputs of a system are 
conceptually syncbronous witll its inpnts. If it can be assumed that the system 
under consideration takes no time to execute the operations required of it, then 
that system may be programmed in ESTEREL, and compiled into a language of 
finite automata. Tbe 1<l.llguage is given a semantics in terms of rewrite rules; no 
development method comparable to ours has been presented. 

More relevant to the development method outlined in this thesis is the work 
described in [Hooman & Widom 89J. In this paper, the authors present a compo­
sitional proof system relating an occam-like language to a quantitative temporal 
logic, similar to the one developed in [Koymans & de Roever 83J. Althollgh the 
system description language is somewhat limited, it is clear that quantita.tive tem­
poral logics are useful assertion langll... ges-indeed, IJackson 90J shows how such 
a logic may be employed as ... specification language for Timed CSP. lt would be 
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interesting to see the proof system applied in the development of a large, complex 
system. 

In [Shasha. et ai. 83], the authors use a quantitative temporal logic to prove 
the corredness of a carrier-sense broadcast protocol, similar to the one described 
in chapter seven. By assuming a simplified version of the service provided by the 
physical layer, and an internal specification of the data link layer, the authors 
are able to establish that certain desirable properties hold of the network. The 
sketch proof provided is similar to the rigorous justification of the data link service 
presented in chapter seven. 

In terms of complexity of specifical.ion, and support for formal reasoning, there 
is little to choose between quantitative temporal logic and the notation presented 
in this thesis. However, the structuring mechanisms of Timed esp, and the exclu­
sive treatment of communication, are of some advantage when large systems are 
considered. We have yet to see a large-scale application of qnantitative temporal 
logic to the hierarchical development of complex: real-time systems_ 

9.3 Future Work 

If the development method described in this thesis is to support formal reasoning 
at every stage of the development process, we must bridge the gap between the 
system description language and executable code. We are fortunate in that there 
exists a powerful programming language based upon esp, the occam language 
of [Irunos 88]. We propose to establish a refinement relation between a subset 
of Timed esp, corresponding to occam-implementable processes, and a subset of 
occam. To provide a formal basis for this refinement relation, we must give a 
denotational semilntics to occam in the style of the Timed Failures model. 

Towards this end, we may use the model for broadcast communication pre-­
sente<! in chapter eight to provide a basis for modelling ilSsignmen t in Timed esp. 
Instead of adding a signal event for every synchronisation, we extend the alphabet 
E with a set of assignment events r. 

E '" );ur 
r == Var x Val 

Each a:ssignmenl event is a pili!' x.o, representing the assignment of value 0 to 
variable x. If we choose ill to denote the set of possible states, 

IIr == Var -+ lral 

then we may define a semantic function 

Fs E resp -+ ill -+ TM;. 
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This function takes a language construct, and an initial state ,p, and returns a set 
of possible observations. For example, the semantics of the assignment statement 
:r := e ; P would be given by 

Fs[,,= e; PI" '" (((), {}, 0)) 
U 

((((O,x.o))~s,N,I) I 0 = "['I 1\ 
began(s) ~ 11 1\ 
,,'=>/>(JJ{,,-'o} 1\ 

(s,N, l) - 6 E Fs[PI>/>') 

We may use the state component to give a semantics to conditional statements, 
as well as input and output instructions. 

As we discovered in chapter seven, Timed CSP lacks any mechanism for rea­
soning about probabirlstic aspects of system behaviour. Such a mechanism would 
allow us to analyse the performance of communication protocols. However, a se­
mantic model which allows us to formalise statements such as the system nspQnds 
within 5 time units, with a probability of 0.5 will be complex indeed. Although 
substantial progress has been ma.de towards an nntimed probabilistic model for 
CSP [Seidel 90]. little has been done to combine probability and time. This is an 
area for future research. 

Another area for reseiLrch is the development of a simulated time model for 
CSP: a real-time model which supports an algebra of processes. If we discard the 
realism assumption of our computational model, which places a bound upon the 
rate of progress of a process, we may exhibit algebraic laws for the elimina.tion of 
concurrency. These laws may be useful in establishing the correctness of compilers 
for a language with timing constructs, which must simulate the flow of time. Such 
a model might be based upon the operational semantics for Timed CSP given 
in [Schneider 9lJ. 

The operational semantics may also be used to define an infinite Timed Failures 
model, in which process behaviours are represented hy infinite traces and infinite 
refusal sets. Such a model would support a theory of timewise refinement hased 
npon the untimed Failures model, and provide a more straightforward semanlics for 
the hiding operator: we might distiugnish an A-active behaviour by the inclusion 
of the set [0,00) x A in the timed refusaL 

Finally, if we wish Timed CSP to be adopted by industrial users, it is essential 
that the development process is supported by reliable software tools-to ma.nipu­
late formal specifications, and to assist in verification-we cannot expect methods 
to reach maturity without leaving their home environment. 
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Appendix A 

Mathematical Proofs 

A.I Lemmata 

We give deriva.tions for two of the lemmata presented without proof in the body 
of the thesis. The first result requires a proof of semantic equivalence, while the 
second is representative of a series of results about constructive terms, presented 
at the beginning of chapter 3. 

Communicating Parallel 

In chapter 2, we claimed that 

pIIQ" ,(I(P}AIIBr(QJJ
c 

where the process relahelling function!! l, TO, and c are given by: 

I( aJ - a if a E C 
I. a otherwise da) - a if a E C 

r(aJ - a if Il E C ,(I.a) ­ • if. " C 
r .• otherwise ,(r.• ) ­ • if • " C 

and 

A '" I(E - C) u C 

B '" "(E - C) u C 

and we choose I and r such that 

I(E) n C "(E)n C {} 
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We may establish this equivalence LJy demonstrating that, for any environment p 

hiP 11 Q]p ;: Fd' (I(P) .11. r(Q))]p
C 

Suppose that (5, N) is au element of FT [p nQJ p. In this case, we know that 
C 

3 Sp, Np, Sq, NQ • , E Sp 11 SQ ~ ~ l C = (~p U ~Q) l C 
c 

~~\C=(~p()~Q)\C 

~(SP,~p)Ehlp]p 

~ (.'Q. ~Q) E FdQjP 

Appealing to the semantic equation for the renaming operator, we see that the 
statement above is equivalent to 

3s~, Np,SQ' NQ • s E Sp 11 Sq 1\ Sp == [(sp) f\ Sq = r(sQ) 
C	 

~ ~p = /-, (~p) ~ ~Q = r-' (N'Q) 
~ N l C = (~p U NQ ) l C 

~~\C=(~p()~Q)\C 

~ (sp.~p) Eh(I(P)jp 
~ (sQ.NQ) E hlr(QJ], 

which is true if and Duly jf 

3l,N',sp,Np,sQ,N'Q • S E sp 11 sQ ~ s = '(s') A N = ,-' (N')
c ,

/\ sp = l(sp) /\ Sq = r(sQ) 
~ ~p = I-J (~p) ~ ~Q = r- J (WQ) 
~ ~ l C = (Np U NQ) ~ C 
~ ~ \ C = (~p () NQ ) \ C 
~ (sp, ~p) E hll(P)) p 
~ (SQ' N'Q) E hlr(Q))p 

From our choice of 51, Sp, sQ' and the definitions given for A, B, 1, T, and c, we 
may deduce that 

s E Sp II Sq ¢;> $' E sp II sQ ¢;> 8' E Sp AliB Sq
C c 

We may also deduce that 

Np <; N' l A ~ N'Q <; N' l B ~ N' ~ (A U B) = N' 
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If we recall the semantics of the alphabet parallel operator, it is clear that the 
previous existentially quantified statement is equivalent to 

3,',N' • '~c(") A~ ~ c'(~') A (s',N') E Fr[/(P) AII B r(Q)jp 

which is true if and only if 

("~) E hie (I(P) AII B r(Q))]p 

We conclude that the two terms are semantically equivalent. o 

Constructive Terms 

Section 3.1 included several lemmas ttbout constructive terms. Each of these may 
be derived from the semantic equations given in chapters 2 and 3. As an example, 
consider the first clause of lemma 3.5: 

Lemma 3.5 If P is t-constructive for X, 

1. a~P and WAITto;P are (/+lo)-constructivefor X 
(> 

Proof Term P is i-constructive for variable X if and only if 

V t', TIME; p' ENV • 

hIP!pt" +' ~ Fdp]p[p[X] r i'IX] r i' +' 

Suppose that (s,N) is an element of ..FT[a~P]pttl+ l+to. From the semantics 
of the delayed prefix operator, we may infer that end(s, N) ~ l' + I + to and 

a ~ 0 A a 1- a(~) 

V 

3s' •	 s::: (til, 11))""'5' /\ 
,If ~ 0 /\ 11 rJ a(N t ttl) 1\ 

(s',~) - ('" +',) E Fr[P]p} 

Timed traces are sequences of timed events arranged in chronological order; it is 
a simple matter to eslablish that 

end( s, N) ~ (t' + t + to) 1\ til ~ 0 1\ 5 ::: ( t", a)) ..... s' 

=> end(s', N) ~ (til + to) ( t' + t 
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From our a.ssumption that Pis t-constructive for X, we may infer that 

(s',~) - (t" + to) E FdP]p t t' + t 

=> (s',Nj-(t"+to)EFr(P]p[p[X] rl'/X) tt'+t 

By the semantics of the prefix operator, this is equivaJent to 

a = 0 A a ¢ a(N)
 
V
 

3 $'. s = «t", a)) .....s' 1\ 
t" ~ 0 1\ a ¢ a(~ r til) 1\ 

(s',N) - (t" + to) E FdPJp[p(XJ t t'IX) 

which is true if and only if 

(s,N) E Frla -'£...!p[pIX] t t'IX! 

This argument may be reversed to establish that 

Fr[P]p r t' + t + to = Fr[P]plP[XJ t t'IX] t t' + t + to 

foe any ~ime t' and environment {J. The term a ~ P is thus t + to-constructive 
for X whenever P is i-constructive for X. The proof that WAIT to; P is also 
t + to-constructive is entirely similar. 0 

A.2 The Finite Dependency Theorem 

To establish the Finite Dependency Theorem, we will establish a stronger result 
by structmal induction on the synta.x of Timed CSP. We recall the statement of 
the theorem: 

Finite Dependency Theorem If P is a TCSP term, possibly containing free 
occurrences of process variables drawn from the set {Xi liE l}, and p is an 
environment, then 

(s,~)EFdPJp => 3N,FI.'1p',ENV. 

('Ii, N. pIX,] = p'IX,J) => (s, I'll E Fr[P!P' 

I) 

It is dear that this is a consequence of the following lemma, which will be esta.b­
lished by structural induction on the syntax of Timed CSP terms: 
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Lemma A.1 If (so'~Q) is an element oC FT[P]P, then 

3M E F( VAR x TF) • PROP(M,."N"P,p) 

where 

PROP(M,so,N"P,p) = ('1(X,(s,~))EM.(s,N)ErlXl) 
A 

'I p' E ENV • ('1(X, (s, N)) EM. (s,N) E ,'IX]) 
0> (s"N,) E FrlP],' 

\7 

That is, we may find a finite set !If of (vaTlable, behaviour) pairs such tha.t the 
behaviour (so, ~a) depends only upon the elements of M. In the proof of this 
result. the following result will be useful. It states that if we can fmd a finite set 
M sucb that PROP holds for M, then we can obtain a second set At' in which 
all of the behaviours corresponding to vi'lriables for which term P is t-constructive 
end at least t before (sa, ~Q)' We esta.hlish this secondary result by showing that 
PROP holds of the subset of At obt<ljned by discarding those behaviours which 
do not meet this condition. 

Lemma A.2 If PROP is as defined in lemma A.I, then 

PROP(M, s"N"P,p) 0>	 3M'. PROP(M',s"N"P,p) 
A 

li(X, (s, l'{)) E M' It (P tx-constructive for X 

=:> wfl(s, l'{) + tx ~ end{so, l'{o)) 

\7 

To see that this is true, define 

M' == {{X, (s, ~)) E M I P lx-constructive for X =:> end(s, N) -+- l ~ end(.'io, No)} 

and observe that PROP(M', So, l'{o, P,p) holds. The first conjunct is immediate, 
as M' ~ M. To establish the second. let pi be such that 

'1(X,(s,~)) E J1!'. (,.N) E p'IXI 

Then define pIt by 

p"IX] = p'[X] u {("N) I (X,(s,N)) E M} 



192 Specification and Proof in Real-time System'l 

In this case, 

V'(X,(s,N))EM • (s,N)Ep"IX) 

and hence 

(s"N,) E Fr!p!P" 

If we choose to = end(so. No), we obtain 

(s" N,) E Fdp!P" t t, 

From this we may obtain 

(s"N,)EFrlPjp"[p"/X! tl,-lx/Xl 
=> (",N,) E Frlp!p'[p'IX] t I, - Ix/XI 
=> (s"N,) E Frlp!p' 

The final implication above follows from the definition of t-constructive. We may 
now proceed to establish lemma A.1. 

Proof of lemma A.I 

We proceed by structural induction upon the syntax of resp terms, observing 
that the result is trivially true for all closed terms or processes-these ha.ve the 
same semantics in every environment, and the empty set is a suitable choice for 
set M. The remaining base case for our induction is the variable clause: 

case X 

Suppose that (so, No) is an element of p[X], and choose M to be the singleton 
set {(X,(solNo)J). The result follows immediately. 

The inductive step is straightforward in every case except tha.t of mutual recursion; 
a typical example is the case of the parallel operator. 

casePIi Q 

Suppose tha.t (so, No) is an element of FT IP 11 Q]p. From the semantics of the 
parallel operator we obtain that 

3Np ,N Q •	 No =NpUN Q 

1\ (s"N p ) E FrlP!p 
1\ (s"N Q ) E FT[Q]p 
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By our inductive hypothesis, there exist sets Atp and MQ corresponding to (so, ~p) 

and (80, ~Q) to satisfy the propo'Sition. If we take At to be the uuion of these sets, 
then we have that 

(X,(s,N)) E M	 0> (X,(s,N)) E Mp Y (X,(s,N)) E MQ 

0> (s,N) E p[XI Y ("N) E p[XI 

wh.ich establishes that At satisfies the first requirement. Now suppose that p' is 
such that 

V(X,(s,N)), M • (s,N) E p'[X] 

then, as Mp ~ At, 

V(X,(s,N)) , Mp • (s,N) E p'[X] 

we apply the inductive hypothesi'S and deduce that (so, ~p) EFT [P] p'. Similarly, 
we rna)' deduce that (so,N Q) E FT[Q]p'. From the semantics of the parallel 
operator, we have that (so, Np U NQ ) in F T [p II Q] rI, which establishes the case. 

case (Xi = Pi), 

Consider (so, No) in FT [(Xi = P,)}] P. where the recursive equations are indexed 
by set I. Unfolding the recursion, we see thal 

(s"N,) E FrlP,]p, 

where 

p, ~ r[Fr[(X, ~ P,),jp/X. IkE I] 

Applying the inductive hypothesis to every term PI, we know that for any (SI, ~I) 

in F T[PI] p there is a corresponding set M(Sl, Nl , 1) such that 

(i) V(X,(s,N)) , M(s"N"I). (s,N) E pIX] 

(ii)	 V {I, ENV • (V(X, (s,N)) , M(s" N" I) • (" N) E p'[X]) 

0> (s"N,) E FrlP,]p' 

Applying lemma A.2, we obtain that there exists a set At'(Sl'~J'(), a subset of 
M(s/,N l ,I), satisfying (i) and (ii) above. such that 

(iii) V(X, (8, N)) E M'. P lx-constructive for X ~ end(s, \{) + tx ~ end(so. Ro) 
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We define a flLUetion m: (VAR x TF) ---. P( VAR x TF) as follows: 

m(X,(s,N)) '"	 {) if X ¢ F; liE l} 
M'( s, N, I) if X ~ X, " I E [ 

In the second case, if the variable X appears in the variable vector X, we let 
m(X, (8, N)) be the set whose existence is guaranteed by tbe inductive hypothesis 
applied to the corresponding term. We define a relation R on VAR x TF by 

(X,,(sl,N,)) R (X.,(s.,N.)) <? (X"(s,,N , )) E m(X.,(s.,N.)) 

This is a well-founded finite-ta-one relation. That is: 

1. there are no infinite chains {C.. ) such that \in. C"tl R C. 

2. for any C, the set {C' I C' R C} is finite 

The second of these requirements foHows immediately from the definition of m, 
and the first. is established as follows: 

Suppose/hat {(Xn , (5., N.)) In: N) is such a infinite chain, then ea.ch X.. must be 
an Xi for sarne i E I. for otherwise X"tl cannot exist (by tbe definitions o( Rand 
m). For each index n, let i" be the vector index such that X. = Xi". Construct 
an infinite chain of natural numbers N, by 

No == 0 
N,+I == min{n: N In> N, 1\ i. I- i,,_I) 

that is, the successor NI'+J is defined to be the least number n greater than N, 
for which the vector index i" is not beneath i... _1 in the well-ordering o( t.he vect.or 
indeXing set I. This is a good definition: if the defining set is empt.y (or N,+J , tbe 
infinite sequence {i;, I k > N,) is strictly decreasing with respect to well-order -<, 
forcing a contradiction. Let 

ti == end(s., Ni ) 

Recalling that property (iii) holds of M', which is used to define m, we have 

Vp • t'+1 ~t, 

Vp • tNp +l + t ~ tHptl-l 

hence 

vp • tH + t ::;;;; tN
pt1 p 

and thus tHp is a sequence tending to -00, contradicting the fact. that each t. is 
non·negative. Hence there can be no infinite chain C'., and the relat.ion R is indeed 
well-founded. We appeal to the following result from [Enderton 77]: 



A.2 The Finite Dependency Theorem 195 

Konig's Lemma If R is a well-founded relation such that, for all y, the set 
{z I zRy} is finite, then 

'Vy • {z I X R 1 y} is -finite 

¢ 

Applying this, the set M = {C I C RI (X" (s~, No))} is a finite set. We claim that 

PROP(M,s"H,,(X, = Pi)j,p) 

Recall that 

PROP(M,s"H"P,p) '" (\I(X,(s,H))EMo(s,H)EPIXIJ 
A 

\I p' E ENV 0 (\I(X, (s,H)) E M 0 (s,H) E p'IX]) 
=> (s"H,) E FdPlp' 

and observe that 

(X,(s,H))EM => 3X',s',Wo(X,(s,H)) Em(X',(s',W)) 
=> 3/,,',~' 0 (X,(s,~)) E M(s',W,I) 

The first conjunct of PROP(M, So, N~, (X, = P;)j,p) follows immediately from the 
corresponding result for PROP(M(s',l\'./),s',W,P1,p). To see that the second 
conjunct is true, it is enough to show that, given any (X,(s,N)) in M, 

(\I(X', (s', 1")) E m(X,(s,H)) ollYP(X',(s',H'))) => HYP(X,(,,~)) 

where 

HYP(X,(s,H)) '" (s,H) E p'[Fr[(Xi = Pi).]p'/X.J!X] 

We establish this as follows: assume the left-ha.nd side of the above implication, 
and consider the identity of variable X. If X is an element of {Xi liE l} lhen 

p'!Fr[(X, = P,).]p'/X.IIXI = p'[XI 

which contains (5, N), by the antecedent to the second conjunct of PROP. Other­
wise, let X = Xl for 1 E I. In this case, 

m(X, (s, H)) = M(s, H, I) 

and for each (X', (5', N'») in M(s, N, J), we have that 

(",W) E p'[FrI(Xi = Pih] p'/X.I IX'] 
=> (s,H) E Fdp,]p'[Fd(Xi = Pi).lp'/X.I 

=> (s,H) E Fr[(X, = P,),]p' 



196 Specification and Proof in Rea1~tjme Systems 

which establishes HYP(X, (5, ~». but then the result holds for all elements of At, 
in particular we have that 

HYP(X" (so, ~o)) 

which ~ays that 

(so,~o) E p'[FrI(X, = Pih!p'jX,!lXi ) 

finally yielding 

(so, ~o) E Frl(Xi = Pi)i)P' 

the (",oosequent of the second conjunct of PROP. This establishes the lemma, and 
hence the Finite Dependency Theorem. 0 

A.3 The Signals Model 

In section 8.1, we claimed that the signals model TMj is a complete metric space 
under metric d defined by 

d(5,T) '" inj{{r i I5(1)=T(I)}U{J}) 

where 

5(1) '" {(s, N, I') E 5 I I',; I) 

As in the proof of lemma 8.5, we take two definitions from [Sutherland 75]: 

Definition A.3 A sequence {S.. } in a metric space (M, d) is a Cauchy sequence 
if given f > 0, there exists N soch that d( S.. ,8m ) < f for any m, n > N. 0 

Definition A.4 A metric space (M, d) is said to be complete iff every Cauchy 
sequence in (M, d) converges to a point in M. 0 

and suppose that {S,,} is a. Ca.uchy sequence in metric space (TM'F' d), and let 
{n;} he a sequence of positive integers such that 

Vj~O _ i<ni<n'+1 

V m ~ n _ d(S""S".) 

Under metric d, the limit of sequcnce S" is cqual to 

s '" U 5.,(i) 
i)O 
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By our choice of sequence n, we have that 

0<; I <;, => SC') = S.,(I) 

For each axiom ax given in section 8.1, we must show that 

Vn • Sn E TAt,. => S satisfies ax 

\\'e consider the case of the second axiom: 

(s,~. t) E S /\ t' ~ t => 3 s'. (7{s') ~ E /\ (s .....(s' + t), N, t'} E S 

Suppose that 

(s,~,t)ES /\ t'~t 

If we choose i such that 

Set') ~ S.,(t') 

then we may infer that 

(s,N,n E 8"i 

and hence that 

3 5' • (7(S') ~ f: /\ (s ..... (s' + t), N, t' ) E 8". 

However 

(s~(s' + t), N, ,') E S" => (s~(s' + I), N, t') E S.,(t') 

=> (s~(s' + t),N,t') E S(t') 

=> (s~(s' + t), N, t') E S 

We may conclude that 

(s, ~, t) E 8 /\ t' ~ t => 35' • a( s'} ~ E/\ (S ......(SI + t), ~, t') E S 

and hence that the limit S satisfies the axiom. Similar reasoning allows us to 
establish that the limit satisfies the other seven axioms, and hence that the model 
TM,. is a complete metric space. 0 



Glossary 

Mathematical Symbols 

p powerset operator {} the empty set 

F set of all finite subsets of = semantic equivalence 

'eq set of all finite sequences of - defined to be equal to 

N set of natural numbers -< a partial order 

Z set of integers 'eg initial segment 

Q set of rational numbers ~ vedor v 

R set of real numbers <;) end of theorem or lemma 

m .. n integers from m to n t:, end of rule 

dam domain of a function 0 end of proof 

<a" range of a function <> end of definition 

Syntax 

.L divergence ; sequential composition 

STOP deadlock ; sequential composition 

SKIP successful termination (w;th Ii delay) 

WAIT delayed termination \ hiding 
~ prefix JiX. P delayed recursion 

~ instant prefix JiX a P immediate recursion , 
~ delayed prefix PIQ/Xl syntactic substitution 

0 deterministic choice II lockstep parallel 

n nondeterministic choice ,liB alphabet parallel 

flP) direct image III interleaving 

f-' (P) inverse image II sharing parallel, 
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mutual recursion 

untimed CSP terms 

Timed CSP terms 

syntactic abstraction 

all events 

all untimed traces 

all timed events 

all timed traces 

all timed failures 

all sets of timed failures 

timed failures model 

distance metric 

mapping for JJ X 0 P 

mapping for JJ X • P 
environment over-riding 

product space 

product model 

vector metric 

traces model 

stabilities model 

failures model 

failures-stabilities model 

timed traces model 

timed stabilities model 

timed failures model 

untimed failures-
timed stabilities model 

timed failures-
timed stabilities model 

Glossary 

, 
0­ timeout 

j untimed interrupt 

j, timed interrupt 

'V, event interrupt 

Semantics 

tr uotimed trace 

s timed ttace 

N refusal set 

0 stability value 

p environment 

S delay constant 

i termina.tion event 

non-event 

VAR process variables 

ENV environments 

TIME the time domain 10,00) 

TINT half-open time intervals 

RTO[( refusal tokens 

RSET timed refusal sets 

< 

Semantic Functions and Models 

(Xi = Pi), 

CSP 

rcsp 
e 

E
 
E'
 
TE
TE,
 
TF
 

TSF
 

TMF
 

d
 
M(X,P)
 

M,(X,P)
 

plY/X]
 

TSJ
 
TMj.
 

4 

T traces 

S stabilities 

F failures 

[ fail UTes-stabilities 

Tr timed traces 

ST timed stabilities 

FT timed failures 
[. untimed failures-T 

timed stabilities 

[T timed failures-
timed stabilities 

MT
 
Ms
 
M,
 

M,s
 
TMT
 
TMs
 

TMF
 

TM}s
 

TMFS
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Timed Failures 

0 the empty trace first first event 

catellatioll of trace5 last lASt event 

'" trace prefix begin start time 
~ time shift end end time 

time shift (failures) head. first timed event 

1 count of events fool last timed event 

t before times time values present 

i during t.skip strip time values 

1 after " events present 

1 restrict '" trace equivalence 

\ hiding CLr!!!. closure under ~ 

Specification 

sat satisfies 

sat p satisfies in environment p 

ell abstraction mapping for trace specifications 

actA active {or every event in set A 

~ whenever these events are active 

Signals Model 

• signal event E all signal events 

J termination signal E all events 

ii signals present TE all timed events 

sync possible synchronisations TEl; all timed traces 

ENY environments with signals TF all timed failures 

d metric for TMj TS, sets of timed failures 

:Fs semantic function TM, signals model 
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