
Specification and Proof

in

Real-Time Systems

by

Jim Davies

Technical. Monograph PRG-93
ISBN 0-902928-71-6

April 1991

Oxford University Computing Laboratory
Programming Resea.rch Group
11 Keble Road
axiom OX! 3QD
England

Oxford University
COrlpuling caboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX, 3QD
Oxford (0865) 54141

.,~

Copyright @ 1991 Jim Davies

Ox!ord University Computing T.aboratory
p'rogramrning Research Group

Ll Keble Road
Oxford OXI 3QD
England

Electronic ma.i.l: jdaviesOuk.ac.orlord.prg

ACCESSION No. DATE

SHELFMARK

~~,

III1IIIIII ~~
300581976$

Specification and Proof

in

Real-time Systems

Jim Davies

Thesis submitted for the degree of Doctor of Philosophy
at the University of Oxford, January 1991

Abstract

This thesis shows how the mathematical tbeory of Timed Communicating Sequen­
tial Processes (Timed CSP) developed by Reed and Roscoe may be applied to the
specification and proof of complex real-time systems. A number of substantial
additions are made to the theory, producing a powerful tool for the analysis and
implementation of timing requirements and concurrency.

The syntax and semantics of Timed CSP are extended to include new primjtive
operators for timing and recursion. A language of behavioural specifications is
formulated, together with a complete, compositional proof system. A significant
case study is used to illustrate these developments. The language is then extended
to include an element of broadcast concurrency.

Acknowledgments

I am indebted to my supervisor, Jim Woodcock, for his guidance, encouragement,
and good taste. Also to Steve Schneider, whose concurrent approach to the subject
has lead to many enjoyable discussions and collaborative results. The research
described in this thesis is founded upon earlier work by Mike Reed and Bill Roscoe;
1 am very grateful to them for their insight and friendship.

I would like to thank Jeremy Gibbons, Michael Goldsmith, Tony Hoare, Dave
Jackson, Alan Jeffrey, Geraint Jones, Mathai Joseph, Andrew Kay, and Joy Reed
for their friendly advice and invaluable suggestions. Finally, I wish to thank BP
International and the Science and Engineering Research Council for financial sup­
port during the course of this research.

Dedication

To my parents, for their love and support

and

to Alice, for everything

Time present and time past
Are botb perbaps present in time future
And time future contained in time past.
II all time is eternally present
All time is unredeemable.
What migbt have been is an abstraction
Remaining a perpetual possibility
Only in a world of speculation

T.S. ELIOT

ii

Contents

0 Introduction 1

1 The Language of Timed CSP 4

1.1 Communicating Sequential Processes 4

1.2 Timed Models . .. 6

1.3 A Model of Computation. 8

1.4 Timed CSP 9

1.5 Example 10

2 The Timed Failures Model 12

2.1 Notation . . 13

2.2 The Timed Failures Model 17

2.3 A Semantic Function 18

2.4 Sequential Processes 19

2.5 Parallel Processes . . 26

2.6 Timeouts and Interrupts 29

2.7 Interaction. 31

2.8 Example. 33

3 Recursive Processes 34

3.1 Constructive Terms . 34

3.2 Recursive Processes 37

3.3 Mutua.l Recursion. 41

3.4 Equation Sets 52

3.5 Examples 56

4 Specification 58

4.1 Beha.vioural Specifications 58

4.2 Safety and Liveness 62

4.3 Environmental Conditions 67

4.4 Example 70

iii

5 Proof	 71

5.] AProof System
5.2 Sequential Processes
5.3 Parallel Processes .
5.4 Timeouts and Interrnpts
5.5 Recursive Processes ..
5.6 Sl)undness and Completeness.
5.7 Tlmewise Refinement
5.8 Example

6	 Structuring Specifications
6.1 Abstraction .
6.2 Scheduling .
6.3 A Specification Langua.ge .
6.4 Example

7	 An Ethernet-like Protocol
7.1 A Hierarchy of Specifica.tions.
7.2 The Data Link Service ...
7.3 The Data Link Specification
7A The Physical Service
7.5 Combination ..
7.6 Implementation
7.7 Discussion

8	 Signals
8.1 The Timed Signals Model
8.2 Sequential Processes
8.3 Signals and Concurrency
8.4 Consistency
8.5 Example .

9	 Discussion
9.£ Conclusions
9.2 Other Approaches.
9.3 Future Work

A	 Mathematical Proofs
A.l Lemmata
A2 The Finite Dependency Theorem
A.3 The Signals Model

71

73

78

81

83

89

92

101

105

105

107

112

114

119

121

124

128

136

139

149

154

155

156

159

164

167

172

176

176

178

180

187

187

190

196

;v

Chapter 0

Introduction

As computing devices become faster and more powerful, we find ourselves ever
more dependent upon systems which are difficult to understand and prone to
failure. The failure of a commercial banking system, or a. company da.tabase,
may be expensive and inconvenient. If the system is prescribing medicine, or
landing an aircraft, then the results might be fatal. As the consequences of system
failure become mOre severe, we must find ways to make applications of computer
technology safer and more reliable.

Over the past twenty years, mathematical techniques have been developed for
the specification and implementation of transformational systems, which compute
results from a given set of inputs. However, most of the systems in which safety is
a primary concern are readive systems, whicb maintain a continuous interaction
with the environment, and are often subject to complex timing constrainl'l. These
systems cannot be viewed in a transformational setting.

Real-time systems are reactive, and are often required to perform several tasks
concurrently. To reason about such systems, we require a mathematical formalism
that includes timing information as well as an effective treatment of concurrency.
In this thesis, we explore and extend one such formalism: Timed Communicating
Sequential Processes, first presented in [Reed & Roscoe 86]. Timed CSP is an
extension of Hoare's CSP [Hoare 85] that allows us to reason about time-dependent
aspects of concurrent behaviour.

The aim of this thesis is to present a formal development method for real­
time systems, based upon the semantic models proposed by Reed a.nd Roscoe.
Tbis method should support both formal and rigorous reasoning at every stage
of system development-from initial specification to final implementation-and
be applicable to systems of a realistic size. It is OUr hope that the results of the
research described in this thesis may be used to improve the safety and reliability
of real-time distributed systems.

2 Specification and Proof in Rea1~tjme Systems

The thesis begins with an introduction to the language of Timed esp, and
the sema.ntic models presented in {Reed 88]. In chapter two, we extend this lan­
gua.ge to include primitive operators for modelling timeouts and interrupts, as well
as alternative forms of parallel and sequential composition. These operators are
given a "ernantics in Reed's Timed Failures model, and an intuitive explanation is
provided for each operator in the extended language.

In Reed and Roscoe's treatment of recursion, a strictly positive delay C is asso­
ciated with each recursive call. In chapter three, we investigate the consequences of
dispensing with this delay. and give a sufficient condition for the validity of a recur­
sive definition. The theory is then extended to permit mutual recursion: processes
may be defined by sets of mutually recursive equations. Semantics-preserving rules
are established for manipulating these sets. which may be arbitrarily large.

In the Timed Failures model, each language construct is identified with a set
of possible behaviours. In chapter four, we show how the informal requirements
upon a system may he captnred as behaviouraJ specifications-predicates upon an
arbitrary system behaviour-and demonstrate that the notation of tbe semantic
model gives rise to a simple specification language. We investigate the form of
safety and liveness conditions in this language, and show that it may be used to
formalise assumptions about the environment of a system.

The notation introduced in chapter four may be used to produce a formal
specification of a system, and the extended language described in chapters two and
three may be used to suggest possible implementations. In chapter five, we present
a complete proof system for relating specifications and implementations, using the
notion of satisfaction introduced in [Hoare 85J. This system is compositioual, in
the sense of [Hooman & de Roever 89J:

Properties of a compound programming language construct (such as
sequential composition and parallel composition) can be deduced from
specifications for its constituent parts without any further information
about the internal structure of these parts.

This is essential if the proof system is to be employed in the development of large,
complex systems.

A formal specification of a real-time system will include many requirements
that an be established without timing information. In this case, we may use the
untimed models for CSP pTCsented in [Reed 88] to simplify our proof obligations. A
substantial part of chapter five is devoted to a simple theory of timewise refinement,
whichrelates uutimed safety conditions in the Timed Failures model to behavioural
specifications in tbe untimed Traces model. The research described in this chapter
is a continuation of research carried out jointly with Steve Schneider, some of
which is reported in [Davies & Schneider 89J and [Schneider 89J.

3 o Introduction

If we wish to produce a readable specification of a large system, then we must
take care to present our description in a clear, structured fashion. In chapter
six, we show how the hiding operator may be used to structure specifications, and
present a simple proof rule for abstraction which allows us to separate the concerns
of concealment a.nd scheduling. The chapter continues with the introduction of a
macro specification language-a first-order logic with time-which may be used
to simplify the process of requirements capture.

Chapter seven presents a case study in the application of Timed CSP to real­
time distributed systems. It begins with a detailed method for the specification and
development of hierarchical protocols, based upon the proof system of chapter five.
This method is then applied to the development of a local area network protocol.
The specification language of chapter six is used to describe the behaviour of the
protocol at different levels of abstraction, and the system description la.nguage of
chapters two and three is used to suggest an implementation.

In a description of a real-time process, it is sometimes convenient to include
observable events that are not synchronisations: this can make it ea.'lier to describe
and analyse certain aspects of behaviour. In chapter eight, we show how the Timed
Failures model may be extended to include a treatment of broadcast conCllrrency,
in wbich output events may occur without the cooperation of the environment.
The resulting semantic model is then used to complete the implementation of the
communications protocol presented in chapter seven.

In the final chapter of the thesis, we discuss the remits of the research presented
in the preceding chapters. We consider alternative approaches to the specification
a.nd development of real-time systems, and outline directions for future work. The
thesis ends wi th an appendix of mathematical proofs, and a. glossary of symbols.

Chapter 1

The Language of Timed CSP

1.1 Communicating Sequential Processes

In [Hoar~ 85], Hoare uses the word prOCess to denott: the beha.viour pattern of a.n
object, ,'iewed through the occurrence Or availability of certain atomic actions, or
events. These processes may be seen as entities which evolve and communicate
with an environment by synchronising upon a set of such actions. An observable
event is thus an atomic communication between a process and its environment.

The syntax of CSP is a process algebra; the terms representing processes may
be rewritten in accordance with certain algebraic laws. These laws are justified
by a number of semantic models (or the language, in which each CSP term is
associated with a set of possible behaviours. In the simplest of these models, each
process is associated with a set of traces: sequences of observable events. The
other models include more information in the semantic. set, and a.llow us to draw
finer distinctions between processes.

The syntax indndes primitive operators (or parallel composition, nondetermin·
istic choice, nnd hiding. This makes for an elegant notation in which the problems
o(concurrency, nondeterminism, and abstraction can be addressed separately. The
syntax also provides constructs (or modelling deadlock, recursion, a.nd process re­
labelling:

P :0= STOP IS/(IP Ia ~ pIp 0 pIp n pIp; pip II P I
Pili P Ij(P) Ij-' (P) IP \ A Ip X • F(X)

Tbe variety of operators in CSP is in contrast to other algebraic approaches to
concurrency, in which much emphasis is placed upon obtaining a minimal set of
opera.tors (or t.he syntax.

1.1 Communicating Sequential Proces8eB 5

The semantic models can be used to specify the intended behaviour of a process.
As each process is a55Qciated with a set of behaviours in the semantic model, a
predicate on the semantic set corresponds to a requirement upon the process. For
example, in the Traces model of esp, we may capture the requirement that process
P never perform:> a visible action with the predicate

'Vir E traces(P) - ir = 0

In this model, the process STOP is associated with the singleton set {O], contain­
ing only the empty trace. We may conclude that STOP ill a process that meets
this requirement.

The Traces model M T is sufficient if we wish to analyse untimed safety require­
ments; these are constraints that proscribe certain events or sequences of events
in the bistory of a process. However, if we wish to ensure that a synchronisation
event is offered to the environment, we must include either readiness or refusal
information in our semantic model. In the Failures model MF we associate each
trace of a process with the set of events that may be refused afterwards. If the
failure (tr,X) is present in the semantic set of process P, then P may perform
trace tr and then refuse to engage in any event from X.

In Hoare's book, a third aspect of behaviour is considered: the divtrgences
of a process. A trace of process P is a divergence if it may be followed by an
unbounded sequence of internal events, during which P may refuse to communicate
with its environment. Reed's thesis [Reed 88J contains an alternative treatment of
divergence. In his Stability model Ms , each trace of a process is associated with
a stability value of 00 or 0, depending on whether or not the process may diverge
after engaging jn that trace. These models form a simple hierarchy:

MFs

/~
MF Ms

~/ Figure 1.1: Reed's models for CSP

MT

The Failures-Stability model MFs corresponds to the Failures-DivergenclS model
used in [Hoare 85]. In Reed's model, processes are as5Qciated with sets of triples

6 Specification and Proof in Real-lime Systems

(tr, 0, X). A stability \ralue Cf is attached to each failure; if the value is zero,
then the process is stable after performing trace tr: it does not diverge. An
infinite stability value indicates that internal activity may continue indefinitely.
The arrows in the diagram correspond to projection mappings between the models;
behavioural results established in one Thodel remain valid in models lower in the
hierarchy.

1.2 Timed Models

The models of CSP presented in [Roscoe 82, Brookes 83, Hoare 85J do not inclnde
timing information. By considering only the sequence of observable events, and
the subsequent refusal sets, we obtain simplified semantic models with a nnmber
of convenient algebraic Jaws. However, if the logical correctness of a design is
dependent upon the pre('ise timing of certain events, we cannot complete our
rea.~oning within the formalism of nntimed esp.

If we wish to use esp to describe a real-time system, in which the precise
timing of events is important, we must employ timed models for the language.
The firs! timed model for esp, presented in [Jones 82], proved unsatisfactory for
a number of technical reasons. The author suggested that a better model could be
obtained by recording the events refnsed during the observation of a trace; this is
a. feature of the later, more successful attempt made by Reed and Roscoe.

Since Jones's attempt, a number of other timed models have been postu­
lated for eSP-like languages, notably in [Zwarico 86, Boucher & Gerth 87J- How­
ever, the timed model!;! presented by Reed and Roscoe in [Reed & Roscoe 86,
Reed & Roscoe 87, Reed 88} have the foHowing advantages:

'" the models are compatible with the existing un timed models of esp

* infinite hiding and infinite alphabet transformations are possible

'" deadlock and divergence may be distinguished

• divergence may be distingnished from the possibility of divergence

,. the models are arranged in a hierarchy

The last consideration is all important one. In reasoning about complex systems,
we may use the simplest semantic model that is sufficient to express the current
requirement, safe in the knowledge that the argnment remains valid in the other
models of the hierarchy.

In his thesis [Reed 88J, Reed presents five timed models for esp. In each model,
a process is associated with a set of possible timed behaviours. A typical element

1.2 Timed Models 7

of a semant.ic set is a tuple, the elements of which represent. different aspects of
a possibJe behaviour. Just as the untimed models recorded trace, refusal and
stability information, the timed models record timed traces, timed refusals, and
timed stabilities.

The hierarchy of models is ordered by the information content of the semantic
sets. The models are linked by projection mappings, represented by arrow~ in the
diagram below; the nature of these mappings ensures that results established in
one model remain true as we move downwards.

TMFS

j~
TMFSMFS -­

/ ~'" TMF --- MF Ms ~-- TMs

'" /
MT

Figure 1.2: Reed't; models
for Timed CSP

TMT

The un timed models of CSP occupy the lowest positions in the hierarchy, with the
untimed Traces model MT at the very bottom. The simplest of the timed models,
TMT, associates a process with a set of timed traces. The Timed Failures model
TMF, and the Timed. Failures-Stability model TMFS record the events refused by
a process during and after the observation of each timed trace.

The timed stability models (TMs , TMh and TMFS), include information
about the presence of internal activity. The stability value of a behaviour is the
earliest time by which all internal activity is guaranteed to have ceased. In the
Timed Failures-Stability model, each failure (s,N) of a process is associated with
a single sta.bility value Q between 0 and 00, inclusive. If the process exhibits the
external behaviour described by (s,N), then all internal activity must cease at or
before time o.

8 Specification and Proof in Real-time Systems

The untimed failures-timed stability model TMFS records the set of events re­
fused after a timed trace, once the process has stabilised. This model bridges the
gap between the Timed Stability model TMs and the Timed Failures-Stability
model TMFS' These models are used in the theory of timewise refinement pre­
sented in [Schneider 89]; simple processes may be refined by the introduction of
timing information and results established in the lower models give rise to corre­
sponding results in models further up the hierarchy.

In the specification of a. real-time system, internal activity is usually of only
secondary impOl'tance. The correctness of a design will be expressed as a set of
constraints upon the occurrence and availability of ohservable events or external
synchronisations. This i::. precisely the information that may be obtained from
the Timed Failures model TMF • Furthermore, the timed models without timed
refusals are complicated by the need to record the times at which events first
become available, in order to give a satisfactory semantics to the hiding operator.
For these reasons, we will restrict our attention to the Timed Failures model of
Timed esp.

1.3 A Model of Computation

The models presented in [Reed 88] are compatible with the ea.rlier models of CSP
given in [Roscoe 82, Brookes 83); as such, they share the same model of com­
putation: processes communicate by handshaking, observable events require the
cooperation of the environment, and any behaviour of a process appears the same
to all observers. To introduce timing information into this model of computation,
several a.ssumptions are required:

Real lime With the non-negative real numbers as our time domain. we have no
lower bound on the interval between consecutive events. This allows us to model
asynchronous processes in a satisfactory fashion, without artificial constraints upon
the times at which jndependent events may be observed.

Global Clock All observations are recorded with reference to an imaginary global
clock. but this clock cannot be accessed by any part of the system being modelled.
If a. sY6tem clock is required. it can be modelled as a simple Timed CSP process.
Separate clocks may be modelled as separate processes, and need not keep the
same time.

Instantaneous Events All events have zero duration. If a system action takes a
significant amount of time to perform, we use two events in our representation: one
corresponding to the start of the action, another to the end. Similarly, we consider
conununications bet ween processes to be instantaneous: delays in transmission,
reception, and synchronisation are made explicit.

1.4 Timed CSP 9

Tennination There is a single lenninatiQn event., .; I whose occurrence signa.ls the
successful termination of a construct. If this constroet is followed immediately by a
sequentia.l composition operator, then the,J event is hidden from the envirDnment,
an.d termination occurs as soon as possible.

Finite Speed We assume that no process can engage in infinitely many events in
a finite time. This assumption is enforced by the axioms of our semantic mOdel,
and leads to constraints upon the application of certain operators, e.g. indexed
nondeterministic choice.

Hiding and Control Observable events cannot occur without the cooperation
of the environment. Further, if a process and its environment are both prepared
to engage in a.n event at a particular time, then it occurs at that time. Hidden
events do not require the cooperation of tbe environment, and occur as soon as
they become available.

Delay Constant We choose a strictly positive delay consta.nt 5 as a lower bound
between consecul,ive events in a sequential process. This ensures that cause pre­
cedes effect in any observation of a process: if the occurrence of event a makes
another event b possible, then b cannot occur at the same time as a. The cxlstence
of such a delay greatly simplifies the analysis of sequential processes.

1.4 Timed CSP

In [Reed & Roscoe 86J, Reed and Roscoe present the following syntax for the lan­
guage of Timed CSP:

P ::= 1.1 STOP ISKIP IWAlT t I
a~PI P;P'I PDPI pnpi

P II pip All. pIp III P I
P\ A II(P) Ir'(p) IpX. F(X)

This is identical to the syntax for untimed CSP presented in [Brookes 83J, but for
the inclusion of the WAIT construct. The addition of this operator allows us to
model most forms of timed interaction.

To facilitate a. treatment of mutual recursion, we will consider the syntax of
TCSP terms, ratber than processes. In chapter 2, we will add a clause (X) to the
syntax to introduce variables from a set VAR, and write recursive ter[JJII in the
form IJ X • P. A process will be a TCSP term with no free variables: its meaning

------10 Specification and Proof in Real-time Systems

will be independent of the values of variables from VAR. However, the body of
a recursive process will contain free variables, and it is necessary to consider Lue

bindings of Lhese variables while reasoning about the process.

The terms .1. and STOP correspond to the divergent and deadlocked processes,
respectively. The process SKI? signals successful termination, and "'jUT t does
nothing but terminate successfully after a delay DC time t. The event prefix opera­
tor a _ Pprefixes a term P with a single event a. A constant delay is a.s~ociated

with this operation: control is not passed to P until S alter a is observed. No such
delay is aswciated with the external and internal choice operators, nor with the
sequential composition operator.

The alphabet parallel operator, AHa' provides a means of synchronisation be­
tween processes. In the parallel combination P AllB Q, process P may perform
events from set A and process Q may perform events from set B; the two pro­

cesses must cooperate on events drawn from the inters~ction of the two sets. In a
simple parallel combination (\I), the two processes must agree on all events, while
interleaved processes (I III run asynchrunou~ly.

The hiding operator (\) allows us to abstract from internal events, concealing
them from the environment of a process, and the renaming operators (f and /-1)
allow us to relabel the events of a process. All of these operators will be discussed
in greater detail in chapter 2, which presents a complete semantics for the langua.ge
of Timed esp.

1.5 Example

We consider the user interface of a simple timed vending machine VMS. Users of
this milChine may insert a coin and, after a short delay, press a bu Uon to release
a drink. The machine then returns to its original state.

The insertion of a coin is modelled by the event coin, and we allow a time
tJra, br the coin to drop, before the event button is made a.vailable. If the tlser
then presses the button, lhe machine will offer a drink: this corresponds to the
availaJjlityof the event coke after a short delay of time tcotc·

VMS == coin_ WAIT(tJrvp-o):

button -+ WAIT (t coh - 6);

coke - WAIT(trc...l-c); VMS

Themi1chine takes time trm1 to prepare for another transaction.

The machine VMS presents the user with no choice of product, so the button
is an unnecessary feature of the interface. We may use the hiding operator to

1.5 Example 11

conceal the event button from the user. Hidden events occur as sO<Jn "" they
become available l so the machine VMS \ button will behave as follows:

VMS \ button == coin - WAIT (td..", + t~,,10 - h);

coke ~ WAIT (t~." - 0) ; (VMS \ botton)

The delays before and after the button event are una.ffected by the hiding opera.tor.

The process relabelling operator may be used to rename the events uf a process
while retaining the control structure. Suppose that the vending machine is used to
dispense a different product; we may model this change with any functiol1 { such
that

{(coin) == coin

f (coke) 5:= pepsi

which transforms the vending machine:

f(VMS \ button) == coin - WAIT (til.."" + to"b - IS);
pep'i ~ WAIT (t...., -0) ;f(VMS \ butt,,)

Again, the delay times are unaffected.

In the above example, the arguments of the delay operator WAIT are adjusted
to take account of the constant delay of h tbat is associated with the event prefix
operator. A more elegant description may be obta.ined using the delayed form of
the prefix operator, introduced in the next chapter.

Chapter 2

The Timed Failures Model

A timed event is a pa.ir (t, a), where time t is a. non-nega.tive real number and a
is drawn from E, the set of all events. A timed trace is a finite sequence of timed
events arranged in chronological order. For example,

s " «1,a1,(3,b))

defines a timed trace in which eveul a is observed at time 1, and event b is observed
at time g. The order of events in a trace depends only on the time at which they
occur. Hmore than one event is observed at the same time, then these events may
appear in any order in the trace.

Timed refusals are sets of timed events. The presence of a timed event (l,a)
in a. refusal set corresponds to the refusal of a process to participate in event a
at time t. One of the assumptions of our computational model, that processes
can evolve only at a finite rate, allows us to place the following constraint upon
the construction of timed refusals: they are formed by a finite union of product
sets j called refusal tokens. A refusal token is a cross product J x A, where J is a
half-open finite interval within [0,00) and A is a set of events. For example, the
timed refnsal defined by

H " [1,2)x {a,b}

consists of a single refusal token, and conesponds to the refusal of a process to
participate in events a and b between time 1 and time 2.

Timed failures are timed (trace, N'/usaI) pairs. The presence of a timed failure
(s,NJ in the semantic set of a process indicates tha.t the process ma.y perform s
while refusing the timed events in No There is no reason wby the same timed event
(t. a) should not be present in both components of a timed failure. This will occur
whenever a. process performs as many copies oC event a as it can a.t time t j and
thus refuses to perform a further copy of a at that time. For example, the failure

((1, a),(3, b)), [1 ,2) x {a, b))

2.1 Notation 13

describes a behaviour in which a process engages in event a at time 1, and refuges
to perform a second a Irom this time onwards.

When considering the interaction of a process with its environment, we may
view a timed trace as a result of an experiment performed upon a process: the
environment offers timed events to the process, which the process mayor may not
accept. The refusal set represents a partial record of these offers: our knowledge
of the experiment. Tbe presence of a pair (t, a) in the refusal set indicates that
the environment offered more copies of the event a at time t than the process was
willing to perform.

2.1 Notation

We use TE to denote the set of all timed events, and TE, to denote the set of all
timed traces. TINT is the set of all finite intervals within the time domain TIME,
which is [0,00). RTOJ(is the set of aU possible refusal tokens, RSET denotes the
set of all timed refnsals, and TF is the set of all timed failures:

TEME x ETE '"
TE;"; == {.s E seq TE I (t,a) precedes (ll,a') in s => t:S;; t'}

TENT'" (Ib,') I 0 <; b <' < co}
RTOK'" {IxAIIE TINT"AEPE}

RSET '" {U C ICE F RTOK}

TE' x RSETTF '"
TSF '" P TF

In the Timed Failures model, processes are represented by elements of TSr , the
space of sets of timed failures. To reason abont the possible behaviours of a
process, we will use the language of set and sequence theory. We inherit the
following notation from [Hoare 85J:

() the empty trace

concatenation of traces

in contiguous subsequence

The predicate s/ in s£ holds precisely when trace 3/ is a contiguous subsequence of
3£. To give a semantics to our language, and to simplify the process of reasoning
about it, we define a variety of simple operators on timed traces, timed refusals,
and timed failures.

14 Specification aIld Proof in Real-time Systems
---~ -----~"-'-"''''-'--''-=--'-'---

First and Last

The first and last operators are defined for all timed traces, returning the first and
last events in a trace l if non-empty. If the trace is empty, they return the special
non-event f. All that is required of £ is that £ fI- E. We also define begin and end
operators, which yield the times of the first and lMt events:

jirst(()) = E: I,gin(()) " 00

jirst«(t,a))~s) = a leg;n«(I, a))~s) = I

lastCO) = E: wd(()) = 0

last(s~«t, a))) = a wd(s~«t, am = t

The values chosen for the empty trace are the most convenient [Dr the subsequent
ma.thematics: the possibility of a trace being empty will nol require special con­
sideration in OUf specifications and proofs. It proves convenient to define head and
foot operators on traces:

h'ad(s) = (b,gin(s),ftr>t(s))

/ool(s) = (wd(s),lasl(s))

Tirnes

The times operator returns the set of time values that. appear in a refusal set.:

Umes(~) = (tI3"II,a)E~)

We ma.y use this operator to define begin a.nd end operat.ors on refusal sets:

b,gin(~) = in/(times(~)) if ~ " {)
;,gin({}) = 00

,nd(~) = sup(l;mes(N)) if ~ " ()
end({}) = 0

For convenience, we extend the above definitions t.o t.imed failures:

;,g;n(s,~) = min{b,gin(s), b,g;n(~)}

wd(s,~) = max{wd(s), ,nd(~)}

2.1 Notation 15

During, Before and After

We define the during (n, before (n, and after (1) operators on timed traces. The
first returns the maximal subsequence of tbe trace with times drawn from set I.
The others ret urn the parts of the trace before and after the specified time.

OTl = 0
(((I, a))~s) 1 I = ((I, a))~(. 1 I) ;[1E I

(, 1 I) otherwise

.tt = '1[0,1)

.1 ='1(1,00)
'

where I is a set of real numbers. In the case that I = it} for some time t, we
may omit the set brackets. These operators may also be applied to timed refusals,
with the following interpretations:

NIt Nn([O,I)x E)

N1 t _ Nn([I,oo) x E)

Nl[I"t,) - Nn([I"I,)xE)

Recalling that E denotes the set of all events, we see that these restrict a refusal
set to events that may be refused before, during, and after the specified times. The
definitions of before and after on refusal sets differ from those on timed traces, For
trar.-es, s t t includes events at t; in the case of refusals, such events are e;{c1uded.
The opposite is true of the after operator. This choice of definitions is the most
convenient for timed failures specifications.

Restriction

We use the l symbol to denote the restriction of a timed trace or refusal to a set
of events A.

ol A = 0
((I, a»~s l A = ((I, a)n, L A) if a E A

s l A otherwise

NlA = Nn([o,oo)xA)

The hiding operator on traces may be defined as a restriction:

• \ A = 'l (E - A)

16 Specification and Proof in Rea/-time Systems

Alphabets

We define an alphabet (or event set) operator on traces and refusals, yielding the
set of evenls present:

0"(') " {aEEI31.«(I,a»ins)

O"(N) " {aEEI31.(t,a)EN)

The event set of a term P is the set of all observable events that may be performed
by the cQrresponding process:

alP) " {a E E 13(s,N) E TripI' a E O"(s)j

where :FT[p] denotes the semantic set of P.

Subtraction

To reason about any form of sequential composition or delay, we require a. sub­

traction operator that shifts timed traces and refusals through time:

()~I " ()
«(I" a))~s) ~ 1 " «(I, - I, a))~(s ~ t) if t, ;;:: t
(((I"a))~s)~t " s~1 otherwise

N~I" {(t,-t,a)I(I"a)ENAt,;>I)

It proves economical to define a subtraction operator on timed failures:

(s,N)-t " (s~t,N~I)

Equivalence and Closure

We define an equivalence relation upon the set of timed traces:

u ~" ¢:} u is a permutatioll of v

Note IlIat, as timed traces are chronologically ordered sequences, equivalent traces
ma.y differ only in the order of a.ppearance of simultaneous events. We use this
equivaJence to define a closure operator on sets of limed failures:

CL.(S) " {(s,N)E TFI3(w,N)ES"",,w)

2.2 The Timed Failures Model	 17

2.2 The Timed Failures Model

The Timed Fa.ilures Model TM,. is defined to be those elements S of TSF which
satisfy the following axioms:

1. (0, {}) E S

2. (s~w,N) E 5 => (s,N r b,gia(w)) E 5

3. ("N)ESAs,,"w=>(w,N)E5

4.	 (s, N) E SAt" 0 => 3 N' , R5ET • N ~ N' A (s, N') E 5 A

((t' '" t A (t', a) ~ N') => (s rt'~((t', a»), N' rt') E 5)

5. It t , [0, =) • 3 a(t) , N • (s, N) E 5 A <ad(s) '" t => #(s) '" a(t)

6. ItN', RSET. (s, N) E 5 A N' ~ N => (s, N') E S

The first axiom requires that the empty failure (0, {}) is a possible behaviour of
any process. The second is a prefix closure condition: if a process may perform a
trace s"""w while refusing ~, then it should be able to perform the prefix s, with
the refusal set truncated accordingly. The third axiom insists that the Qrder of
events in a timed trace depends only upon the times at which they are observed,
no additional information about causal relationships is available.

The fourth axiom enforces our assumption that processes may undergo only
a. finite number of state changes in a finite time. For any failure (s, t{) lind time
value t, there will always be a maximal refusal set l{' that captures all of tm refusal
information for the current trace, at least until time t. Given any tim€ tl ~ t,
every timed event (t\ a) not in l{' is a possible extension of s til. As W is a. refusal
set, it must be a finite union of refusal tokens, and hence represents only finitely
many changes of state.

The fifth axiom places a similar condition upon traces. For any process S, we
can exhibit a function n that places a bound upon the number of events observed
before a given time. If trace s ends at or before time t, then the length of s
must be no greCi.ter than n(t). This bounded speed condition leads to constraints
upon the application of infinitary operators such as prefix choice and indexed
nondeterminism. The final axiom states that if a process may refuse the whole of
~, then it ma.y refuse any subset of R A similar condition holds in the untimed
failures model described in [Brookes 83J.

We define a distance metric d on TSF by considering the first time I.t which
the clements of two sets may be distinguished. If (s,~) is a. timed failure, we define

18 Specification and Proof in Real-time Systems

a projection function on elements of TSF :

S t t '" {(s,N) I (s,N) E S 1\ 'nd(s,N)';; t}

If S is a element of TSF then 5 r t is the set of elements of S which do not extend
beyond time t. We may now define the metric:

d(S, T) '" inf({~-' I S f t = T t t}U {I})

This definition is equivalent to the one used in [Reed 88]. althotlgh the definition
of Sri differs slightly. The metric will be needed when we give a semantics to
recursive process definitions.

2.3 A Semantic Function

\Ve will give a semantics to a language TeSp of Timed CSP terms, defined by

P ,,= .l ISTOP ISKIP IWAIT t IX I .tom'

a ---+ P Ia ---.:.... pIp; P) p ; p I sequential composition

PDP 1P n p I a : A ~ p. I alternation

P II pIp AUB pIp J!/ pIp ~ p I parallel composition

P \ A If(P))/-1 (P) I abstraction and renaming

p~plp?plptPI timing

Jl X • P II ~ X 0 P I(X; = Pi); recursion

In the above syntax, clause X introduces variables from a set VAR; these are
required for the treatment of mntual recnrsion presented in chapter 3. To give a
semantics to this langua.ge, we require a formal treatment of varia.ble bindings.

We define a domain of environments, ENV, consisting of all mappings from
variables VAR to the space of all sets of timed failures TSF, and thus a semantic
function for terms:

ENV'" VAR ~ TS,
:FT E TCSP ~ ENV ~ TS,

We writ.e F T [p]p to denote the semantics of a term P in an environment p. This
may be evaluated by associating each free variable X with its value p[X] in the
current environment.

2.4 SequentjaJ Processes 19

We give the following semantics to syntactic substitution:

FdPIQ/XI!p ~ h[P)p[FdQ)p/Xj

where p[Y / Xl is a new environment, defined as follows:

pry/xli Z! ~ y ;[Z=X

plZ! otherwise

A Timed esp process will be represented by a TCSP term with no free variables:
its meaning will be independent of the current environment. If P is a process then
we may infer that

Vp,p',ENV • FT!P!p=FT!P!p'

In this case, we may sensibly omit the environment parameter.

2.4 Sequential Processes

Atoms

The divergent process .1 can perform no observable actions, but internal activity
may continue indefinitely. In the Timed Failures model we do not record the
possibility of internal activity, and so .1 is identified with the deadlocked process
STOP. The only trace of either process is (), the empty trace.

Fd.Ljp ~ HO,N) I N E RSET}

FT[STOPjp ~ {((),N) IN E RSET}

Both processes are capable of refusing any event from I: at any time.

The process SKIP models successful termination in Timed esp. This is sig­
nalled by an occurrence of the special event..;, the only action that this process
may perform:

:Fr[s[ap)p ~ HO,N) i ~ ¢ u(N))
u
H((t,~)),N) It;> 0 /\ ~ ¢ u(N rt)}

Either no events have been observed and tbe event.; is available, or ..; has been
observed (at some time t) and was continuously available beforehand.

20 Specification and Proof in Real-time Systems

The delay process WAIT t represents delayed successful termination, with the
event..; becoming available at time t. It can be used to introduce an additioual de"
lay into a sequential process, or combined with other operators to produce timeout
and interrupt constructs.

Fr IWAIT tIp'"	 {((),N) 1,/ l' ~(N 1t))
U
{(«(t', ,(1), N) I t' ;> t A ,/ l' ~(N Tit, t'»)}

If no events have been observed then ,f must be available continuously from time
t onwards. Otherwise, ..; is observed at a tjrne t' ~ t and made available at all
times between t a,nd i'. Vol'"."'" .. t(,.... A' ~

Prefix
The event prefix operator is used to introduce an observable event into a process
description; the expression a -+ P denotes a process that is prepared initially to
engage only in event a, and then behave as process P. There is a non-zero delay
associated with this operation, corresponding to the time taken to change from a
state in which event a is available, to one in which it has been performed. The
undecora.ted prefix operator is associated with a coustant delay 8.

Tria ~ Pip'" HO,N) I a l' ~(N))

U

{«(t, a))~s, N) It;> 0 A a l' ~(N t t) A
(" N) - (t H) E Fr IP] p}

If no events have heen observed iu a history of a -t P, then event a cauuot
be refused. Otherwise, il is the first event to be observed and the subsequent
behaviour, following a delay of 8, is due to P.

The above operator will be used only when the minimum delay following an
event is unimportant. If we are interest.ed ill the delay following the observat.ion of
an event a then we decorate the prefix operator with a time value: the expression

a~P

denotes a process which is willing to perform an event a. If a occurs, the process
will !hen behave as process P, ouce a delay of time t has elapsed. During the
timedday, the process behaves as WAIT, refusillg to participate in any external
activity. This is mustrated by the equivaleuce:

a~P =. a-t WAIT(t-8);P

2.4 Sequential Processes 21

The semantics of this operator may be derived from the equations for the delay,
prefix and sequential composition operators.

We retain the b constant as a lower bound on the delay associated with the
prefix operation. This is necessary if we wilih to avoid the possibility of causally­
related simultaneous events. To see why this is a problem, postulate the existence
of an instantaneous prefix operator --+ with the following interpretation: Lhe ex­
pression a ---+ P denote;; a process that is initially prepared to enga.ge in an event
a; once 4 is observed, the process immediately behaves as P. If P is ready to
perform a.n event immediately, then that event may be observed at the same time
as a. Consider the process

a --+ b ---+ STOP

This process may perform b at any time t, providing tbat it performs a at (or
before) that time. Now consider the parallel combination

a --+ b _ STOP H b ---+ a ---+ STOP

We expect this combination to deadlock immediately. However, both components
may perform a and b together at any time t. Simultaneous events may appear in
any order in a timed trace, so the parallel combination may perform traces from
the following set:

{()} U {, It;, 0 A , '" «t, a), (t, b)) }

This clashes with our intuition about processes and observable events. Events a

and b are inseparable, yet they appear separately in traces of a process. As we
might expect, t his situation is proscribed by an axiom of the semantic model:

(,~w,~)ES => (,,~tb,gin(w))ES

We do not allow an effect to precede its cause in a. trace.

Sequential Comp osition

The expression P; Q denotes the sequential composition of processes P and Q.
No delay is associated with this operator; the fast event of process P rr.ay occur
at the same time as the first event from process Q. This need not conflict with
our intuition about causal relationships and delay, as the initial state of Q is
independent of the final state of P. A behaviour (s, N:) of P; Q may be ~ither

1. a behaviour of P which does not correspond to successful termination, or

2. a terminating behaviour of p. followed by some behaviour of Q

22 Specification and Proof in Rea/-time Sys!ems

In the first case, s is a trace of P in which"; is not observed, a.nd would be refnsed
if offered; this corresponds to the first component of the semantic set. In the
second case, the trace s is obtaiued from two traces, Sp and SQ, performed by P
and Q respectively:

.Trip; Qlp '" ((s,H) I ~ ¢ 0"(5) II

\I I: TINT. (s,H U (I x {J})) E FT[PJp)

U

CL.{(.'p~so,H) I ~ ¢ O"(sp) II ('o,H) - t E FdQJp II

('p~«(I, ~)), H r t U (10, t) x {~})) E.TT[PJp}

If control has been transferred at time t, then the tra.ce 5p could have been extended
with a ,j event at that time. This event is hidden from the environment by the
sequential composition operator, and occurs as soon as it becomes available; it
most be possible for P to refuse"; up until time t while performing trace Sp. The
subseqnent behaviour is due to process Q.

The above equation is complicated by the fact that both proceSSes are able to
perform actions at time t. Simultaneous events may appear in any order in a timed
trace, so we must ensure that our semantic set is closed under trace equivalence.
The resulting definition is unsuitable for some applications; in chapter 5 we will
see that it faiJs to preserve timewise refinements. Because of this, we introduce a
delayed ~eqnential composition operator:

P;Q '" P; WAITb;Q

This defines a process that behaves as P until successful termination is signalled,
then waits for an interval length 8 before behaving as Q. This delay allows us to
separate the events of the first process from those of the second.

Nondeterministic Choice

The expressiou P n Q denotes the nondeterministic choice between processes P
and Q. This operator is sometimes called internal choice, as there. is no way for
the eJlvironment to influence the flow of coutrol at this point:

Fr[pn QJp '" Fr[P!pUFrIQ!p

We require only that every behaviour of a nondeterministic choice is a possible
behaviour of at least one component.

If wish to model arbitrary nondeterministic choice, then we must verify that
there is a uniform bound upon the speed of the alternatives. This will ensure

2.4 Sequential Processes	 23

that the resulting process can perform only a bounded number of events before
any finite time t, in accordance with axiom 5 of section 2.2. We say that a set of
processes {P, liE I} is uniformly bounded if there exists a function n: TIME __ N
such that for a.ll environments p

Vi, I; t, TIME. (s,N) E Fr[P;]p A 'nd(s) " t => #Is rt)" .It)

This definition is due to Steve Schneider, and provides a necessary and sufficient
condition for the following semantics to be well-defined:

Frlnp;]p " Uh[P;]p
JET iET

This operator may be used to model nondeterministic delays in seqnential pro.­
cesses. We overload the delay operator

WAIT T " n WAIT t
«T

to define a process that is prepared to terminate after some time t, where t is
drawn from the set T.

Deterministic Choice

The expression PDQ denotes a deterministic choice between processes P and
Q. This operator is sometimes called general choice (or external choice) as the
environment IIlay select either P or Q by offering to engage in events which are
initially possible for just one of the two processes. The choice is resolved by the
first observable event that occurs.

FrlPO Qlp "	 («),N) I IO,N) E Fr[P]pnh[Q]p}
U

((s,N) Is;< 0 A (s,N) E Fr[P]pUh[Q)p
A

IO,N t &'9;'(S) E h[P]pnFrlQ!p]

Any behaviour must be a behaviour of at least one component, and any event
refnsed before the first observable event must be refused by both prOCesses.

We know from [Reed 88] that it is not possible to define a. deterministic choice
operator for Timed CSP which offers a choice over an infinite set of processes.
However, [Schneider 89J shows that we may offer a choice over an infinite set of
events. As an example, suppose that we wish to define a prOcess that is ready to

24 Specification and Proof in ReaJ~tjme Systems

accept any na.tural number vaJue on a channel c. Such a process may be modelled
as an infinite prefix choice. The expression

c.n: c.N~ P"

denotes a process that is ready initially to engage in auy event c.n for n E N. If
c.n is observed, the process delays for time t~ and then behaves as P".

FT!.,A--"..,P.]p " {((},~)iAnd(N)=()}

u
{(((t,a»~s,N) I a E A A I;' 0 A

begin(s) ~ I + t.
An d(N t t) = {} A
(s,N) - (I + t.) E hlp.!p}

If no events have been observed then all of the events in set A are available.
Otherwise some event a from A has occurred, and the subsequent behaviour is
that of p•. As in the case of indexed nondeterministic choice, this sema.ntics IS
well-defined if and only if the set of alternative processes is uniformly bounded.

Relabelling

We use process renaming functions to systematically rename the observable events
of a. process while retaining the control structure. There are two syntactic clauses
for relabelling processes, allowing the USe of many-to-one or one-to-many relations,
providing that either the relation or its inverse is a, function I on ~. Suppose that
a and b are events such that h == I(a).

The inve7'se image of P may perform a whenever P may perform b:

hlr'(p)]p " {(s,N) I (/(s),f(N)) E hlp]p}

and refuse a whenever P may refuse b.

The di7'ed image of P may perform b whenever P may perform a. As I may
be many-to-one, the refusal of an event by process P corresponds to the refusal of
a set of events by the image process.

hlJ(p)]p " {(J(s),~) I (s,r'(N)) E hlp]p}

In the above equation, the expression 1-1 (N:) denotes the set

Itt, a) I (t,f(a)) E N}

This is the inverse image of refusal set t{ under function I.

2.4 Sequential Processes	 25

Abstraction

The hiding operator allows us to conceal thooe events in the history of a system
which do not require !.he cooperation of the environment. Such a structuring mech­
anism is necessary if we wish to produce readable descriptions of large, complex
systems. The expression P \ A denotes a process that behaves as P, exc~pt that

'" events from A happen as soon as they become available

'" only events outside A may appear in a trace

In our model of computation, an event occurs as soon as all of the processes
involved are willing to cooperate. A hidden event does not require the cooperation
of the environm~nt, and will occur as soon a.<I it becomes available.

Events which occur as SOOD as they are made available may be continuously
refused by the process in question: if (8, N) is a behaviour of a process P In which
every instance of event a occurs as soon as possible, then

("NU[O"nd("N)) x In})

is also a behaviour of P. This is a consequence of the fourth axiom of our semantic
model, which asserts the existence of a maximal refusal set containing N:

("N) E SAt;> 0 =>	 3N': RSET. N <;; N' A ("N') E S A
«t' .;; 1 A (I', a) ¢ N') => (, rt'~(I', a»), N' fl') E S)

Now suppose that there exists a time t < end(s, N) such that (t, a) ¢ w. By our
choice of Nt, we may infer that (t, a) is a possible extension of the trace s i L This
conflicts with our assumption that (s, N) is a behaviour in which every copy of a
occurred as soon as it becomes available: .~ t t already contains as many copies of
a as P was able to perform up to and including that time. Hence

(NU[O,end("N))x{a))<;;N' A ("N')EFrlP]

The result follows by the sixth axiom of the semantic model: the refusal sets
corresponding to a trace s are closed uncler the subset relation.

The hehaviours of P \ A may be obtained from those failures of P in which
events from A are continuously refused:

FT[P \ AjP '" {(, \ A, N) I (" NU (10, end(', N) x A) E FrlPJp}

Any events from A which appear in trace s are removed by the trace concealment
operator, defined in section 2.1 by

'\ A '" 'l (E - A)

where ~ denotes set restriction.

26 Specification and Proof in Re~l-time S'ystem!>

2.5 Parallel Processes

Alphabet Parallel

In [Hoare 85), each process P is associated with a set of events oP, the process
alphabet. If P appears in a synchronised parallel combination, events from uP
require the moperation of P. III Timed esp, the need for process alphabets is
removed by the introduction of an alphabet parallel operator. This operator is
parametrised by two sets of events; in the parallel combination

P .• II B Q

process P may perform only those events in A, process Q may perform only those
events in B, and the two processes most cooperate on events drawn from the
intersection of A and B. Events that are in neither A nor B are proscribed.

If s is a. trace of this parallel combination, the restriction of s to events from
set A yields t.he trace of events performed by process P. Similarly, restricting s to
the set Byields the trace of events performed by Q. If these traces are Sp and sQ

respectivdy, then s is an element of the set

,p,iIBso " {,ETO:.lslA=,p"'IB=so"··,(AUB)=s}

For an alphabet parallel combination to refuse an event, that event must be refused
by one or the component processes. A typical refusaJ set is thns the union of refusal
sets from P a.nd Q, together with any set of events from outside A U B .

.rT!PAIIBQ!p" {("N p UN OUNR)13sp,sO'

a(Np)<:;A"a(No)<:;B"
a(NR) <:; 1> (A U B) " s E (sp AIIB sO) "
(,p,Np) E .rrlP!p" (so. No) E FrlQlp}

Simple Parallel

The synchronised parallel operator places two processes in lockstep. In the parallel
combina.tion P \I Q processes P and Q must cooperate on every action that is
performed. This operator is thns a special case of alphabet parallelism

P II Q '" poll" Q

with &. simple derived semantics

hlPIIQ!p " {(s,~pUNoll(s,Np)EhlpJp"(s,No)Eh!QJp)

2.5 Parallel Processes 27

Interleaving

The interleaving parallel operator allows two processes to evolve asynchronously.
In the parallel combination

PIl\Q

the two processes are independent of each other; no cooperation is required on any
action. As a result, any t.race of the process Pili Q will be an interleaving of two
traces, one from each component. The set of possible interleavings of two timed
traces u and v is given by

u III v " {" TE, I v, , TIME ° s 1 '" u 1 t~v 1 t}

Trace s is a possible interleaving of traces u and v if, for all t, an event is in s at
time l iff it is in 11. or v at that time. The equivalence operator ~ is required, as
the order of simultaneous events in s may differ from the order of the same events
in 11. or v. Note that we cannot simply require that s -== u"'v, as 11. \1 need not be
a valid timed trace.

Fr[PIIIQ]p" {("NlI3,p,soo sE('p\l!so)A
(,p,N) E FdP]p A

(so,N) E FrlQJp)

An interleaving of two processes will refuse a timed event exactly when bulh com­
ponents are unwilling to participate; any refusal set of the parallel combination
must be common to both processes.

Communicating Parallel

We can define a hybrid parallel operalor which allows processes to interleave on
aU but a given set of events; in the parallel combination

pil Q
c

processes P and Q must cooperate on actions from set C, Other actions may be
freely performed by either component, with no need for synchronisation:

FrlP II QJc " {("N) 13'p,Np,so,No ° 'E Sp II '0 A c
N lC=(NpUNo)lC A

N\C=(NpnNo)\C A
(sp,Np)EFr[P]p A

('o,No) E FrIQlp)

28 Specification and Proof in _Real-time System~

Events from the interface set C must be performed by both componen ts, while
other events 1Ue interleaved:

all. ~ {slslC~"IC~slC/ls\CE(u\Clllv\C)}
c

Event from C are refused jf they are refused by at least one of the components;
other events must be refused by both components.

The semantic set of this operator is well-defined: it satisfies the axioms of TMF

and may be used in recursive definitions. This is a consequence of the following
syn tactic equivalence;

pIIQ'" c(l(P)AIIBr(Q))
C

where the process relabelling fuuctions 1, r, and c are given by:

I(a)

r(a)

-

-

a
I.a

a
r.a

if a E C
otherwise

if a E C
otherwise

cia)

c(l.a)
c(r.a)

-

-
-

a

a
a

if a E C

if a rt C
if a rt C

and

A ~ I(E - C) u C

B ~ r(E - C) u C

This equivalence is demonstrated in section A.l of the appendix.

Indexed Parallel

An indexed form of the alphabet parallel opera.tor can be used to define networks
of communicating processes:

(\L, P;) i E 1 .. 2 =- PI Al 11A 2 P:

(II , P;) i E 1.. a ~ p. AJUA, (\IA, P,) iEl .. n-l
A

Each component Pi may perform only those events which lie in the corresponding
interface set Ai. If an event a is present in more than one of these sets, then every
process in the set {Pi I a E A,} must cooperate on every occurrence of a.

2.6 Timeouts and Interrupts 29

2.6 Tirneouts and Interrupts

Timeout

The expression P Do Q denotes a timeout construct, in which control is passed to
process Q if P fails to perform any external actions before time t. A delay of fJ is
associated with the transfer of control:

Fr[P ~ Q]p '" {(s, N) I b,g;n(s)'; t II (s, N) E Fr [p)p}

u
{(s, N) I b,g;n(,);> t + IJ II ((), N r !} E Frlp),

II
(', N) - (t +!J) E Fr IQ] p }

A trace s is a trace of P if an event is observed before time t, and a trace of Q
otherwise. Any event refused before time t must be refused by P. The 6 delay
may be removed without affecting the validity of the semantic definition, although
its presence gives rise to a syntactic equivalence:

P<!-Q '" g((1(P}OWATTt;'-~f(Q))\')

where the process relabelling functions I and 9 are defined by

fla) '" f·a

g(1.a) '" a

and event e is chosen such that e 1= I.a for any a in E. As in the case of t.he
communicating parallel operator, we may use this equivalence to show that the
semantics of PDQ is well·defined.

Timed Interrupt

Another useful timing construct is the timed interrupt operator. The expression

pi Q,
denotes a process in which control is passed from P to Q at time t, rega:-dless of
the progress made by P. A delay of 6 is associated with the transfer of control.

FrlPjQ]p '" {("N)lb,gin(slt);>t+!JII(,tt,Ntt)EFrIPj,

II (', N) - (t +!J) E Fr[Q)p }

Any behaviour of this process may be decomposed into behaviours of P and Q by
considering the parts of the behaviour that occur before and after time l

30 Specification and Proof in Real-time Systems

Event Interrupt

Although not strictly a timing construct, the event interrupt operator is easily
modelled withiu a. timed context. The ex:pression

P?Q

denotes a process that behaves as P until the first occurrence of event e. Once e is
observed, control is passed to process Q, following a small delay of 6. The delay is
required by our intnition concerning cause and effect; an initial event from process
Q may be enabled by f', and so cannot occur at the same time.

FrlP'?Qlp ;0 (s,H)lq!.(s,N)~(s,N)EFriplp)

u
{(s,H}131.	 srq'~«I,,» ~

q'.(N ttl ~

6,g,n(s1 t»I+<5 ~

(s t'\"H tt)EFrlp]p ~
(s,N) - (I H) E Fr[Q]p}

Any behaviour in which e has not been observed must be a behaviour of P; in this
case, e must be available. Otherwise, e mnst be observed first at some time t; we
may thea decompose the behaviour to obtain behaviours of P and Q. A sensible
requirement is that e ¢ C1{P), to avoid the possibility of P interrupting itself.

A more general form of this construct allows interrupts from a set E, with a
corresponding choice of consequent processes:

FdP \1 Q,]p ;0 ((s,N) I Enu(s,H) ~ {} ~ ("H) E Fr/Pjp}
,eE

U

{(s,H)!31;,EE. srqE~«t,,) ~

En u(H t I) ~ {} ~

6,gin(, 1 I) > 1+<5 ~

(stl\E,Ntt)EFr[PjP ~

(s,H) - (I H) E FrIQ,lp}

In either case, the part of (5, l{) pertaining to P is obtained by taking that part of
the behaviour that lies before time t, and removing any mention of the interrnpt
events. There is no Heed to delete e or E from the refnsal set, as we know that
these events are not refused before time l.

2.7 Interaction 31

2.7 Interaction

Choice and Delay

Consider the process P defined by

P == a --f STOP
o
WAIT 1 ; b ~ SKIP

At any time before time 1, this process is prepared to engage only in event a; the
subsequent behaviour is that oC the deadlocked process STOP. However, if one
time unit has ela.psed since control W<L5 passed to the process, the event b is also
available. Now consider the process Q defined by

Q '" (a~STOP

o
WAIT 1); b ~ Slap

This process also offers event a until time 1. Unlike process P, it then with­
draws the offer. At time 1, if a has not occurred, the WAIT construct offers the
termiuation event. This event is hidden from the environment by the sequential
composition operator and occurs immediately, resolving the deterministic choice
and passiug control to the process

b ~ SKIP

If event u is offered to the process at time 1, the out.come will be nondeterministic.

In process P, the WAIT operator simply delays the offer of e\'ent b, it does
not affect the availa.bility of event aj the termination event that enables event b is
hidden from the choice construct. In process Q, it acts as a timeout on tne offer of
U; if this event does not occur at or before time 1, the choice construct tenninates
and the offer is withdrawn.

Interleaving and Termination

The termination event ca.n be used to interrupt the execution of a proc~~. In the
expression

(a ~ b ~ STOP III WAIT 2); P

control is passed 1.0 process P after two seconds, rega.rdless of the progres! made by
the first component of the parallel construct. Note that the subsequent hehaviour

• •

32 Specification and Proof in Real-time Systems

is independent of the state of the interrupted prucel;l;. The same is true of the
interrupt constructs P.i Q and P \l Q.

Without an explicit record of the system state, we must use some form of
polling ifwr are to interrupt a process in a reliable way; a process must. cooperate
on an interrupt event. For example, in the constrnct below, the interrupt event
break is disa.bled after process P performs a lock event; the break remains disabled
until one second after the next unlock event.

P =- WAIT I ; lock ~ unlock ~ P

o
break ~ 51{!?

The deterministic choice ensures that the environment is olTered break for a full
second hefore lock becon!('S availCLble (again).

Process P permits a break event only when the number of {oek events is equal
to the number of unlock events; this condition might be a prerequisite for a safe
term..inatlon of the pruct:'~~. The combina.tion of deterministic choice anrl delay
provides for a simple representation of priority choice in Timed esp.

Hiding and Synchronisation

Consider the proCt'ss P defined by

r '" «WAIT J; a ~ STOP) 'oJlllO,.) (I ~ S!<JPO a ~ STOP)) \ a

For the first second of its existence, P is prepared to engage in event b and termi­
nate time 8 later. Internal event a is not yet possible, as it requires the cooperation
of bot.h sides of the parallel combination. At time 1, if event b has nut m;curred,
a becomes available on both sides of the parallel operator. As i\- bidden event, a
oecms as soon as it becomes available, resolving the choice against b.

The possible behaviotlrs of process P arc precisely those of the timtout process

Q '" 1 ~ SI\lP I!. STOP

If the environment oifers b at time J, the ontcome is nondeterministic.

2.8 Example 33

2.8 Example

We consider the definition of a sensitive vending machine SVM which beha.ves as
VMS in section 1.5, except that it may fail to dispense a drink if kicked while
the coin is dropping. As before, we nse the events coin and coke to represent
the insertion of a coin and the removal of a drink, respectively. Without timing
information, our process description is

SVM == coin -l (PAID 0 reset -l SVM
n
PAID)

PAID == coke -l SVM

The event reset r~presents the effect of a kick on the machine; althongh the machine
may be kicked at any time, there is no effect nnless a coin is dropping. Without
timing information, we have no way of modelling the progress of the coin inside
the machine. The event reset is nondeterministically available until a drink is
collected.

To add timing information to om description, we assume that the mechanism
becomes sensitive to kicks at time is following the insertion of a coin. After an
additional dela.y of time t f , the coiu has passed through the mechanism, Mid the
machine may be kicked with impnnity:

TSVM == coin ~ (reset ~ TSVM

I>"
PAID)

PAID coke ~ TSVM

Tbe process TSVM offers the event coin to the environment. If this event is
observed at a time t, then the event reset is available between time t +t1 and
time t + t1 + l,2. If this event occurs, the machine returns to 1ts initial state after
a further time t3 , without offering a drink.

If the event re:lt:t has not occurred by the time the coin has dropped, then the
offer of reset is ithdrawn by the timeout construct, and the machine offers the
environment a drink. The addition of timing information has eliminated the 000­

determinism present in the untimed description; the process TSVM is a timewise
refinement of SVM, in the sense of section 5.7.

Chapter 3

Recursive Processes

In [Hoare 85J, recursive definitions take the form

P " p X • F(X)

The expression p X • F(X) denotes a process that behaves a."j F(X), with variable
X representing a recursive invocation of the process. In [Reed & Roscoe 86], a.
delay of Dis associated with each recursive call. This has the advantage of making
all syntactic recursions well-defined: any equation of the form

P = p X. F(X)

will admit to a unique solution in the semantic model. If we accept that some
syntactic recursions will be invalid, we can dispense with this constant delay.

In tbis chapter, we introduce an immediate form of the recursion operator, and
give a sufficient condition for the validity of a recursive definition. This treatment
of recursion is extended to permit mutual recursion: processes may be defined by
mutually recnrsive sets of equations. These sets may be arbitrarily large.

3.1 Constructive Terms

The semantics of a Timed CSP term P is a function of the set of term variables
appearing in P. For example, the term defined by

p == a~X

has a semantic set that is parametrised by p [Xl, the semantics of X in the current
environment. If P appears as the body of a recursive process, then that process has
a well-defined semantics if and only jf P corresponds to a contraction mapping in
the semantic model TMF. For this to be true, it is sufficient that P is constructive
for the variable bound by the recursion.

3.1 Constructive Terms	 35

Definition 3.1 If P is a TCSP term, possibly including free OCCUTTenc:e6 of term
variable X, then P is t·cansiruetive for X if

'V t, , TIME; p , ENV •

Fr[PJp t I, + I = h[pJplp[XJ rio/X] t 10 +'

-0

If term P is t-constructive for variable X, then the behaviour of P up until a time
to +t is independent of the behaviour of X after time to- Tbe reader sbould recal1
the over-riding notation for environments defined in section 2.3:

p[Y/X)(Z1 ~ Y if Z = X

P(ZJ otherwise

Definition 3.2 We say that a term P is constructive for X if there is a strictly
positive time t such that P is t-constructive for X. 0

Our definition of constructive differs from the one used in [Reed 88). Reed considers
that a term P is constructive for X iff

'1'0 , TIME; S, T , TMF; p' ENV •

5 rio = T rI, => (h[PJp[S/ X]) I 10 + I = (FT[Plp[T/ X]) I I, + I

Our definition places a stronger condition upon P and X.

Lemma 3.3 If term P is t-constructive for variable X, then

'Ito' TIME; S, T , TSF; p' ENV •

5 rio = T t to => (FT[PJp[S/Xj) t 10 +I = (h[PJp[T/ X])! td t

Q

From the seman tic equations for the TCSP operators we can derive a number of
useful results1 about constructive terms.

Lemma 3.4 For any X and t,

1. STOP, SI<JP, .1, and WAIT to are all I-constructive for X

2. X is O-constructive for X, and i-constructive for Y I- X

3.	 JJ X • P is i-constructive for X
Q

IAn example deriva.tiQD is included in appendix A.I

36 Specification and Proof in Real-time Systems

Lemma 3.5 If P is i-constructive for X,

1.	 a ~ P a.nd WAIT ti) ; P are (t + to)-construdive for X

2.	 p Y. P, P\A,f(P),f- 1 (P) are all t-constfllctivefor X

3.	 Pis i'-constructive [or X, for any t' < t
c:>

Lemma 3.6 If Pis trconstruetive for X and Q is t!~construetive for X,

I.	 Po Q, PrJ Q, P; Q, Pili Q, P II Q, P .118 Q

are i\ll min{l,. tf}-constructive for X

2.	 pc,. Q and pi, Q are both min{tl,t! + tJ-construetivefof X

3.	 P j Q and P? Q are min {t1 , tt + 6}-constrnctive for X
c:>

Observe that ali Timed CSP terms are O-constructive for any process variable.

Restrained Terms

A sequential composition of terms is also constructive if the first term is construc­
tive, and cannot terminate immediately. We say that a tenn P is t-restrained jf
it cannot terminate within time t:

Definition 3.7 If P is a TeSp term, then

Pis t-restri\ined {:;o (s E traces(P) 1\ end(s) < t) =>,J ¢ q(s)

for any instantiation of free variables in P. <>
A Timed CSP process is t-restrained if the event,J, signalling successfnl termina­
tion, is not included in the set of events that may be observed before time i. A
TeSp term P is i-restrained if tbis coudition holds whatever the valnes of any
fret: variables in P. In particular, we must be able to replace these with the ter­
mination process SKiP. From the semantic eqnations of the TCSP operators, we
can obtain a number of simple results about restrained terms.

Lemma 3.8 For any time t,

1.	 SKiP is O-restrained

2.	 WAiT tis t-restrained

3.	 STOP and .i are co-restrained
c:>

3.2 Recursive Processes	 37

Lemma 3.9 If term P is i-restrained,

1. a ~ P and WAlT to; Pare (t + to)~restrained

2. p Y • P, P \ A. P; x. f(Pl. and f- J (P) are a.I1 I-n",t,ainea

3.	 P is ['-restrained, for any t' < t
<:;J

Lemma 3.10 If P is i,-restrained, and Q is t.,-restrained,

1. PDQ. Pn Q, PAil. Q. and Pili Q "e a.I1 min{IJ • t, }-<e,tnuned

2. P; Q is (t, + l1}-restrained

3. P ~ Q and P j Q are both mini t tt + t}-restrained,
"

4. P'Y Q is min {tJ , tt + 6}-restrained

5. P II Q is ma%{t"tt}-restrained

6. ..; ¢ A U B => P A liB Q is oo-restrained

7. ..; E An B => PAils Q is ma%{t"tt}-restrained
<:;J

Using the notion of a restrained term, we can add a further result to our list of
lemmata about constructive terms:

Lemma 3.11 If term P is t-restrained and t-constructive for X, then th.e term
P; Q is t-constructive for X, for any [and Q. <:;>

3.2 Recursive Processes

We extend our synta.x with two single fixed point recursion operators:

P .. ~ pX.P I pX,P

The first of these associates a delay of time 6 with each recursive call, while the
second transfers control to a recnrsive invocation of the process immediately upon
reaching an instance of variable X. We will refer to these operators as tl.dayed and
immediate recursion, respectively.

We may regard the semantics of a term P with free variable X and environment
p as a function defined upon TSF. This function maps a set of failures S to the
semantiC! of P evaluated in an environment (p[SjX]) obtained by ilSsociating
variable X with the set S.

38 Specification and Proof in Real-time Systems

Definition 3.12 If P is a TCSP term, and X and Y are variables such that Y
does nol occurfree in P, then

M(X,P)p "), Y o;rr[p]p[Y/X]

<>
To give a sema.ntics to the delayed recursion operator, we consider the composition
of this mapping with the function W6 •

Definition 3.13 If P it! a TCSP term, and X and Yare variables such that Y
docs not occur free in P, then

M,(X,P)p" W,·), Yo;rr!p]p[Y/X]

where W6 is the mapping defined by

W, "), Y o;rrlWAITb;Xlp[Y/X]

<>
The environment parameter provides a binding for any free variables remaining in
term P, and the definition of W5 reflects the delay associaled with this form of
recursion---observe that W6 does not depend upon the choice of environment p.
We may now give the semantics of the recursion operators.

Fr[ttX 0 p]p == the unique fixed point of the ma.pping M(X, P)p

Fr[Jl X • pJ p == the unique fixed point of the ma.pping M6(X, P)p

Reed has shown [Reed 88) that the mapping M6(X, P)p will always have a unique
fixed point in TMF , a.nd hence that the semantics of delayed recursion is always
well-defined. Tbis result does not hold for the immediate recursion operator. We
will show that the semantics of immediate recursion is well-defined if term P js
constrlletive for variable X.

Lemma 3.14 If term P is constructive for process variable X then the mapping
M(X, P)p is a contraction mapping on the space of sets of failures TSF. Q

Proof A mapping F in TSF is a contraction mapping if and only if

3 r < 1 0 'IS, T , TSF 0 d(F(S),F(T)) " r.d(S, T)

where d is the metric defined by

d(S,T) " ;n/({r'ISrk~Trk}U{1})

3.2 .Recursive Processes 39

Now take any two processes Sand T in TSF • If S = T then F(S) = F(T) and
both sides of the above inequality are zero. Else, let

d(S, T) = e-'

If we take F to be the mapping M(X,P)p, then

VR, TSF • F(R) ~ Fr[P)p[R/X]

From the definition of constructive and lemma 3.3. we know that there is 4 strictly
positive time t such that

S rk ~ n k => F(S) t k + t = F(T)f k + t

{or any S and Tin TBF. From this, we obtain

d(F(S),F(T)) " e-(t+·) = f-'.d(S, T)

We note that 2-1 < J as t is strictly positive, and conclude that F is a contraction
mapping iu TSF. 0

We have established that the mapping corresponding to a constructive term is a
contraction mapping on TBF. To establish tbat such a mapping has a unique fixed
point, we require the following result {rom [Sutherland 75].

The Banach Fixed Point Theorem If (M, d) is a complete metric space and
F : M -+ M is a contraction mapping, then F has a unique fixed point fix (F).
Furthermore, for all S in M, fix(F) = limll-o oo FII(S). <>

The semantic model TMF is a subset of TBF 1 and both Me complete metric spaces
under the metric d defined in section 2.2. A contraction mapping on TSF is
therefore a contraction mapping on the complete subspace TMF, hence

Lemma 3.15 If F: TSF -+ TSF is a contraction mapping which maps TMF into
TMF, then F has a unique fixed point fix(F) in TMF. 0

Any function derived from the semantics of a TCSP term will preserve the axioms
of the semantic model, mapping TAfr into TMF. We may combine lel7lmata 3.14
and 3.15 to obtain the required result:

Theorem 3.16 If term P is constructive for variable X I then the semantics

Fr[pXoP)p

is well-defined for all environments p. <:I

40 Specification and Proof in Real-time Syst~

The semantics of immediate recursion gives ri:<;e to the familiar equivalence

Theorem 3.17

p X 0 F{X) '" F{pX 0 F(X))

Q

This result justifies the use of recursive equations as process definitions. For ex­
ample, a process that is willing to perform the event a at one second intervals may
be defined by the equation

p = a~P

This equational definition is equivalent to the following definition of P using the
immediate recursion operator:

p == 1JXoa~X

In fact, we can easily prove that

COl"ollary 3.18 If 1J X 0 F(X) is well-defined, then

P = F(P) if and nnly if P = p X 0 F(X)

Q

The equational style is more concise, especially in the case of mutual recursion.
Indeed, we cannot rea.sonably write a.n infinite mutual recursion using I,-notation.

It should be remembered that this result (theorem 3.17) does not hold for the
delayed recursion operator; we have instead that

p X • F(X) '" F(wAIn; (p X • F(X)))

which is inconsistent with the use of equations to define recursive processes. For
example l there is no delayed recursive process which will satisfy the recursive
equation P = a P.

3.3 Mutual Recursion 41

3.3 Mutual Recursion

We will now consider processes defined by sets of mutually recursive equations.
The definition of constructive in section 3.1 extends in a natural way to vectors of
terms and variables, and we are able to exhibit a sufficient condition for a syutactic
mutual recursion to have a well-defined semantics.

Syntax

A TCB? term P may be defined by a vector of mntually recursive equations

p = (Xi = P,); ; E I

with an initial index j to indicate the starting point of the recursion. We will
employ a simple vector notation for terms:

E = (P"P" .. p., ..)

The sets used to index these vectors need not be finite. Using this notation, we
can write our equation vectors in the form (p X 0 E).

As an example, consider the process algebra representation of a device that
has two states: ON and OFF. This device may produce a beep as often as once
a second when ON. The two states correspond to the two mutually recursive
equations below.

ON = (beep...!.-. ON) 0 (off -'--> OFF)

OFF = on...!..... ON

This may he considered as a single recursive equation, on a vector of process
variables (ON, OFF). The device is then modelled by the component of the vector
corresponding to the initial state OFF. Alternatively, we may represent ~he device
as a single recursive process:

OFF = pXoon...!.-.(pYo(beep...!.-. Y)O(off...!.-.X))

This nested recursion defines the same process as the first component of tne mutual
recursion above, and falls within the standard syntax for Timed CSP given in
[Reed 88]. In practice, it will be more convenient to represent mutually recursive
processes nsiug equation sets, particularly when the set of named states IS infinite.
For example, consider the case of an integer store STO. Initially, the store is
willing to input an integer value:

STO == in?z --!..... STOr

12 Specification and Proof in Real-time Systems

Thereafter, it is prepared to accept another input, or output the Cllrrent value
stored, as often as once a second:

STOr ==	 in?y ~ STO,

D

out!:r -..!...... STO;&

This is an infinite set of mutually recnrsive equations, where STO;& models the
state of the slore containing x.

With the delayed form of recursion, mntually recursive definitions should nol be
written with an equality symbol, as the left- and right-hand sides do not represent
equivalent processes. We use the reverse implication symbol, <$=, to indicate that
there is a delay of ~ involved in the nnfolding of the recursion. The above example
Would be written as

STO in?x -!-. STOr

STOr <= in?y ~ STO,

D

oul!:r ~ STOr

This form of recnrsion is always valid in the semantic model. However, the im~

mediate recursion operator makes recnrsive definitions easier to understand, and
allows the user to choose the point and dnration of any delay.

Semantics

Consider an equation set (X, = Pi)], where the indices i and j are drawn from
set J. The semantic domain required to model a solution is TSf; this is a product
space with one copy of the model T5r for each i E J. For any J, this domain is a
complete metric space, with the following distance metric on vectors.

JiLL W) " ,up{ d(v" W;) I ; E 1)

To construct a semantic flwction for vectors of terms, we extend the use of envi­
ronments to include m<lppings from vectors of variables to vectors of processes.

plXI " (pIX,II; E l)

where J is the indexing set of vector X. We overload the mapping notation defined
in section 3.2 with

3.3 Mutual Recursion 43

Definition 3.19 If E a vector of reS? terms l and X. and ..r. are vectors of
variables l all indexed by set I, and no component of..r. occurs free in E, then

M(LE)p '" ,\X • .rr[E)p[x/Xl

is the mapping on rsJ corresponding to X and E. <>

Definition 3.20 If E. is a vector of reS? terIIUl, then

.rT [(Xi ~ Pi);]p '" S, where,£ i' • fixed point of M(LE.)p

<>

This semantics is well-defined when a.1I fixed points of the mapping MCK, l)p agree
on the j component. Clearly, it is enough that this mapping has a unique fixed
point. For this to be true, it is sufficient that the vector of terms E is eonstructive
for the vector of variables.

Constructive Vectors

A partial ordering-: on a set S is a well-ordering if and only if there are n() infinite
descending sequences (so Ii: N) such that Vi: N. s;+J-: Si. We define tlte initial
segment of an element of i in the usual way.

Definition 3.21 If....-: is a partial ordering on I, and i is an element of I, then
the initial segment of i in (I, -<) is defined by

,.g(i) '" {j,/[j-<i}

<>

For tbe mapping M(X,E)p to have a unique fixed point, it is sufficient that the
vector of terms E. is constructive for the vector of variables X.

Definition 3.22 A vector of terms E is t-constructive for a vector of process
va.riables X. if there is a well-ordering-: of the indexing set I such that

vj, i : I • j ¢ seg(i) => Pi is t-constructive for X,

<>

Definition 3.23 A vector of terms £. is constructive for a vector of proce:9S vari­
ables X if there is a strictly positive time t such that E. is t-construct:ve for X.

<>

44'---- _ SpecHication and Proof in Real-Lime Systems

If this condition is met then the only possible unguarded recursive calls in term P;
correspond to variables X) where j -< i. Thus any sequence of unguarded recursive
calls is indexed by a descending seqnence from the set I, and must therefore be
finite. Any particnlar behaviour of the pw(",css is generated by a finite number
of recursive calls, and an infinite nnmber of recursive calls in a finite time is
impossible.

In many applications, it is not necessary to identify a well-ordering of the index
set I. If all recnrsive caBs are guarded by a single positive time t, then any well­
ordering of I will be enough to show that the vector of terms is constructive for
the vector of variables. In this case, we say tnat the vector of terms is uniformly
constructive. Formally,

Definition 3.21 A vector of terms E is uniformly t-constructive for a vector of
variable!;.x. if P, is t-constructive for all Xj. 0

Definition 3.25 A vector of terms E is uniformly constructive for a vector of
variables x.. if there exists a positive time t such that E is uniformly i-constructive
fur~ 0

Observe that any uniformly constructive vector of terms is constructive. In this
case M(K,E)p will be a contraction mapping in the semantic model TSJ.

We have defined constructiu for vectors in a component-wise fashion. That a
vector of terms is constructive for a vector of variables can be established by a. case
analysis on pairs (Xi, PJ) in our equation set, a relatively simple procedure. We
will show that this is a. sufficient condition for the semantics of a mutual recursion
to be well-defined. First, we must demonstrate that our pointwise definitions arc
enough to establish the corresponding vector results.

Theorem 3.26 (Finite Dependency Theorem) If P is a TCSP term, possi­
bly containing free occurrences of process varia.bles drawn from the set {X. liE I},
and p is an environment, then

("N)EFdPjp => 3N,FI.'1p',ENV.

('I;, N. plX,J ~ p'[X,J) => ("N) E FdPJp'

"
The presence of a given behaviour (s, N) in the semantic set of a term P depends
only upon the values of a finite set of variables N, even if the term is an infinite
mulnal recnrsion. We may change the environment of the term without removing
the behaviour, providing that we preserve the values of the variahles in N. A
deta.iled proof of this theorem is presented in section A.2 of the appendix.

3.3 Mutual Recursion 45

We may restate tbi8 theorem in a more applicable form, u8ing the over~riding

notation for environments;

Corollary 3.27 If P is a TeSp term, possibly containing free occurrences of
proce:iS variables drawn from the set. {Xi liE I}, and p and p' are environment.s,
then

("NJEFrlP)p => 3N,FI.Vp'.(s,N)EFr[P)P'Ip(X;I!X;!iENJ

"
We say tbat a term P is i-constructive for a vector of variables X. if the !effiantics
of P up until a time to is independent. of t.he behaviour of every component of X
after time to_ This is a :iimple extension of definition 3.1.

Definition 3.28 If P is a TeSp t.erm, then P is t-constructive for a vector of
variables x.., indexed by set. I, iff

Vlo , TIME; p' ENV.

FrlP)p! to + I = Frlp)p[P(X;) r 'o/X; liE Ij t 1 + t0

o
Wit.h this definition, a simple induction upon the lengt.h of finite vector Xis enough
to est.ablish thefotlowing lemma:

Lemma 3.29 If P is t-constructive for each of {Xi liE N}, and N is a finite
set, t.hen P is t-constructLve for t.he vector X indexed by N. <;I

We may combine this result. with t.he Finite Dependency Theorem to obta.in the
theorem below, which will allow us t.o obtain vector result.s from our pointwise
definitions.

Theorem 3.30 If P is t-constructive for each of {Xi liE I} then P is t­
const.ructive for tbe vector X indexed by I. <;I

Proof To show that P is t-constructive for vector X, we must show that for any
time to and environment p,

Fr[p)ptto+t = Fr[P)p[p[X;) tlo/X;liEIjlto+t

1f we take (5, N) t.o be an element of the left-hand :iide, we may apply the corollary
to the Finite Dependency Theorem, yielding

3N,FI.Vp' • (s,N)EFr[P)P'!P[X;)/X;liENjtldl

46	 Sped/kat/on and Prool in Real-time Systems

We lake p'ta be the environment

pl(p[X;] r I,J/X; liE J A' ¢ NJ

and appeal to lemma 3.29. We have a8sl1med that P is i-constructive for eath
Xi, so it must be t-conslructive for the finite vector (X; liE N). E}{1Janding
definition 3.28, we discover that

FTlp]p'[pIX;]lX; [i E N] r t,+t	 = FrlpJp'IP(X;] t',/X; I' E NJ r ,,+t
= Frlp]p[P(X;J rt,/X; [i E 1) r t,+t

and hence that (8, N) is an clement of the right-hand side. A symmetric argument
will establi5h the converse, completing the proof of the thoorem. 0

We may use this theorem to show that any mutual recursiou in which the vector
of terms il constructive for the vector of variables has a well-defined semantics.

Theorem 3.31 (Unique Fixed Point Theorem) If vector of terms E is con­
structivefor vector of variables .x, then the mapping M(X,E)p has a unique fixed
point in TSJ. 0

Although the proof is quite involved, it is both important and instrucLive.

Proof We begin by defining a. secondary vector of terms 9.. by transfinite recur­
sion. We show that the mapping M(X,g)p has a uniql.le fixed point. and that
this is also a fixed point of the mapping M(X.E)p. We complete the proof by
demomtrating that this fixed point is unique.

The vector of TCSP terms 9.. is defined by

Q; '" P;\Q,/X; [jE'eg(i)]

The i component of Q is that of E.. with the following modification: we replace
every variable with a;Tndcx lower than i with the corresponding component of 9...

Lemma A The vector Q is well-defined. This is an instance of the following
theQrem schema, established in lEndcrton 77J.

Transfinite Recursion Theorem If -...; is a weU-orderiug on f. and for any func­
tion f there is a unique y such that r.,:;(f, y) is true, then there exists a unique
fun~tion F such that

v. ,J. 'P(F l ,eg(i), F(i))

and the domain of F is the whole of J. <)

3.3 Mutual Recursion 47

We use this theorem to construct a function F of type I - (I - TeSP). That
is, a function from indices to vedors of Timed. CSP terms. We choose the fonnula
l{> carefully:

<p(f, y) '" y = Elf(j);/X; I j E dom(f)]

This formula hQlds of (f,y) exactly when y is the vector obtained from £ by
replacing every occurrence of variable Xj , for every j in the domain of function J.
Each term Xj is replaced with the j component of the vector JU). It is dear that
this defines a uuique y for every function J. If F is the l{>-constructed function,
then we define

Q, '" F(i);

yielding the required vector fl

F(i), (l'[(F ~,eg(;))(j);/X; IJ E dom(F ~,eg(i))]),

=> F(;), (l'[Q;/X; IJ E 'eg(i)]),

=> Q, P,!Q;/X, IJ E 'eg(i)]

Lemma B The mapping M(X,fl)p is a contraction mapping in TSj., ao.d hence
has a unique fixed point. By analogy with theorem 3.16, it is enough to show that
there exists a strictly positive time t such that

v£,1:..: TSj. ; tQ : TIME_

0. t t, ~ I r t, => (M(X,g)p 0.) t t, + t = (M(X,g)p I) rt, + t

To prove this, we will assume that £ t tQ = I.. r tQ and deduce the consequent
above, which is equivalent to

J'T[QJP[o./X] t I, + t = Fr[.£IplI.iX] t t, + 1

We will employ the following result from [Enderton 77J.

Transfinite Induction Principle If -< is a well-ordering on set I, and J is a
subset of I with the property

Vi:I _ seg(J)£J:::>iEJ

then J coincides with I. <>

48 Specjlication and Proof jn Real-time Systems

We define J to be the set

J " (i, I I Fr!Q,jp[s'/X] I t,+ t = J"dQ,!plL/X] It, + t)

and assume that seg(i) ~ J. We have to show that i E J. To show this, we must
show that

J"r1Q,IPs It, + t = FrIQ,jPT It, + t
where

PS " piS/Xl
pT " pl.I:/X]

From the definition of vector Sl., We obtain

J"r1Q,jps	 = Frlp;[Q;/X; Ii E ",g(i)jPs

= J"r!P,jpslJ"r!Q;!ps/X, fiE seg(i))

A similar a.rgumcnt applies for PT, and if we let

p~ " ps[J"r1Q,jPs/X, Ii E 'eg(i))

P'r " PT!FrIQ,!PT/X, Ii E ,eg(i)]

we reduce our proof obligation to

J"r!P,]p's r t, + t = J"r1P'!P'T It, + t

We asSllme that (s,N.) is an element of the left-hand side, and apply the first
corollary to the Finite Dependency Theorem. corollary 3.27. Then there exists a
finite set N such that

(s,N) E J"r1P,!P'Tlp~IX,!/x, IkE N]

We partition the set N into two sels, and give names to two useful vectors

A :;, N n'eg(i)

B " N - 'eg(i)

Y " (J"r1Q,jpsliEI)

Z " (J"TIQ,!PT Ii E I)

and define, (or each vector 1:: in {X.,.r,z..}

VA " (V, liE A)

VB " (V,liEB)

3.3 Mutual Recursion 49

Our inductive hypothesis can then be re-written as

V Ie : seg(i) • YI r to + t = Z. r to + t

which implies that

YA r to + t = Z.4 t to + t

All TCSP terms are O-constructive for any variable, so by Theorem 3.30 aU TCSP
tenns Me O-constructive for any vector. Applying this result to the terms Qj, given
that the vectors .s.. and .I. agree up until time to, we obtain

YB r to = ZB r to

We recall our assumption about behaviour (s, N):

(s,~) E Fr[p,jp'Tlp~[x.I/X.1 k E AlIp~IX,I!X,1 k E 8J

= Fr(P,j/TIFT[Q,jPs/X, IkE AIIFr\Q,jps/X, IkE 8J

~ FrlP;!/T! Y,/X, II YB/XB!

Again, any TCSP term is O-constructive for any vector, so Pi is O-constructive
for XA • Hence

FrlP;J/T[Y,/ X,1I YB/XB! t I, + t = Fri p;Jp'TIZ,/X,1I YB/ XB]It, + t
Further, vector E. is t-constructive, so term Pi is i-constructive for any Xj with
j ¢ seg(i). By Theorem 3.30, Pi is i-constructive for vector XB • Hence

Fr[p,jp'rlZ,/XAIlYB/XB] t to+ t ~ Fr[P,jP'TIZ,/X,IIZB/X8] II, + t
= FrIP,jP'T t t, + t

Remembering that end{s, N) < to + i, we have established that

(s,~) E FrlP;)p'T r t, + t

The argument is symmetrical in Sand T, and hence

FrlP,Jp~ t t, + t ~ FrlP;)P'T t t, + t

(=> FrlQ,)ps!fo+t = FrlQ;)PTtt,+t)

and we see that i E J. By transfinite induction

Fr[QJp[£/X] t t, + t ~ FrlgjpIL/K] t t, + t

We conclude that M(X,Q)p is a contraction mapping, with a unique fixed point.

50 Specification and Proof in Real-time Systems

Lemma C The uoique fixed point of M(K, Q)p is a fixed point of M(K,E)p. To
See this, let S. be the unique fixed point of M(X, gjp, and observe that

(M(X,E), (.£),

(FdEjP[.£/X])'

(FdE]p[(M(X,g)p (S.))i/X, I j E ,<g(i)IISi/ Xi [j j! seg(i)]),

Fr[P,jp[(M(X,mp (.£»)i/ Xi I j E ,<g(i)IIS,/ X, I j j! segU)]

Fr[P,jp[Fr[Qi]P[s.!Xl/Xi I j E ,<g(i)IIS,/ Xi [j j! seg(i)J

Fr!p,[Q,/Xi Ij E ,<g(i)]jp[S./XJ

Fr[Q,]p[£/X]

(M(X,Q)p ('£))i

Si

Hence, as this holds for every i E I, we have that

M(X,E)p (.£) ~ .£

establishing that Ii.. is a fixed point of Jf(K, E.)p.

LernmaD The above fixed pilint (£) is the only fixed point of M(X,E)p. We
know that there is a positive time l such that E is t-comtructive for X. Let L be
an arbitra.ry fixed point DC M(K,E)p, and define a counterexample set C

C =0 {LII3t,.jEseg(k)""1)r(t,+t)~Sd(t,+t)

A
T, r(t,+t);o'S, r(t, +t)
A
j j! seg(k) "" T, r t, ~ S, rt,

Then C is the set of indices k such that the two vectors S. and I.. first become
different at component k between limes to and to + t, agree on all components
indexed from seg(k) up until time to + t, and agree on all other components up
until time to. We claim tbat

c={}""S.~T..

To show this, we establish the contrapositiveof the result, by assuming that Ii i- I..
Define a. sequence of indices i" from I and a sequence of times tn such that

i, E {i: I I S, ;0' T, A j E seg(i) "" S, ~ T,}
to = t+sup{t'\Sio te=Tio rt'}

i.+, E {i:IIS,rt";o'Tdt."jEseg(i)""S,rl.~T,lt.}

l"+l = t. - t

3.3 Mutual Recursjon	 51

Ohserve that to exists, and that to is therefore finite. We are assuming that s..
differs at some point from I.., and hence (as the index set J is well-ordered) there
will be a least index to where the two vectors differ. Either i. exists foraH n : N,
in which case

'rIn:N.lo-nl>O

which contradicts the fact that to is finite, or there is a. n such that 1" exists but
i ..+1 does not. 10 this case, i .. E C and so C is not empty, as required. This
establishes our claim.

We have now to prove that the set C is empty. To do this, we assume for a
contradiction that. k E C, then we know that

3 to •	 T! t to + I :I 51. r to + t

AjEseg(k)==> Tj tto +t=5) tto+t

Aj¢,eg(k)=} T, r',=S, r'o
The vector E.. is t-const.ructive for X, hence

j ¢ seg(k) ::::} p! is I-constructive for X)

Applying lemma 3.3 we have that, for j ¢ seg(k),

S;T'o=T;r', =} Fdp,]p!S;/X;] t'o+t=Fdp,]p[T;/X;] r',+t
and recalling that p! must be O-constructive for all Xi> we obtain

IIj: I • Fdp,jp!S;/X;] T '0 +' ~ Fdp.!p[T;/X,! r '0 +'
We may now apply Theorem 3.30. This gives us that

Fdp,!p[£/Xl r', +' = FdP,]p[I/X) r to + t

We have also that s.. is a fixed point of M(X,E)p. In this case

M(X, £')p £ = £
=} AX. FdE)p[X/X] £ = £
=} Fr [E) p[£/X) = £
=} h[P,]p[s:!X] = s,

a.nd a similar re;ult holds for t.he other fixed point, 1:... Hence

St. t to = T! t to ==> S! t to + t = Tt. t to + t

which contradicts our choice of k E C. Hence the set C is empty. By OlJr earlier
claim, this means that the two vectors s.. and I.. are identical. Hence s.. is the only
fixed point of M(X,E)p.

52 Specification and Proof in Real-time Systems

To summarise: the secondaryector Sl is well-defined, and corresponds to a. con­
traction mapping in the semantic model; the unique fixed point of this mapping
is a fixed point of M(X,E)p, the mapping corresponding to E and Xi further,
it is the only fixed point of this mapping. We rna)' conclude that, although the
mapping corresponding to E.. need not be contraction mapping, it has a unique
fixed point in TSj. 0

From this result, we may deduce the welcome corollary:

Corollary 3.32 If vector of terms E.. is con&tructive for vector of variables X,
then the recursion IJ X 0 E.. is well-defined. Q

This juslifir.5 our definition of constructive, and lays the foundation for the theory
of recursion induction presented in chapler 5.

3.4 Equation Sets

Consider the following mutual recursion:

p = a~Q

Q = b~ P

It should be obvious that

p = a~b-~P

We can derive rules that allow us to make such transformations while preserving
the semantics of the term defined by the equation set. For example, we may wish
to replace all free occurrences of a recursive variable:

Rule 3.33 (Substitution) If the equation Xi = PJ: has a unique solution in
TSF , and appears in (Xi = p.), then we may substitute jJ Xl: 0 Pi for all free
occurrences of Xi in all equations of the equation sel. Formally,

(X. = P;); '" (X; = Pdp x. 0 P,f X.]),

[0

Proof If Xl: = Pi h35 a unique solution in TJ.1F, and s... is a fixed point of
MUL l!.). then

Fr[P.]p[£/K][Fr[pX. 0 p,!p[5/K]/X.] = s.

3.4 Equa.tion Sets	 53

To see this, observe that

5, ~	 (M(X,E)p £h
Frlp,!p[£/XI
Fr[P.]p!£/X][S,jX,I

Hence S~ is the fixed point of the fundion M(X" P~)p[S/XJ, and is thereflJre equal
to

Frlp X, 0 P,lp[s/XI = FrlP,jp[S/X][FrlpX, 0 p,Jp[s/XI

Assuming that s.. is a fixed point of M(X,E)p, we define !I to be the vector
obtained by substituting 11 X~ 0 P, for all free occurrences of X~ in the vector E.

(M(X,g)p .\:)j	 Fr[Pj[pX. 0 P,/X,I]p[S/X]

FrlP,!p[S/X][FrlpX. 0 P,!p[s/XI/X,I
Frlp,jp[£/X][S,jX,I
Sj

Conversely, if .I. is a fixed point of the function M(X,gJp, then

FrI"X, 0 P,lp[l'/Xl = T,

To see this, observe that

T, ~	 (M(X,i2)pIh
FrIQ,]pi.L/Xl
FTIP,[pX, 0 P,/X.I!p[I/X)
Fd,'X, 0 P,lp[LlXI

Assuming that I. is a fixed point of M(X,Q)p, we have that

(M(X,£)p 1')j	 Fdp,lp[l'/XI
FrlPjJp[L/X][T,/ X,I
FdPj!p[L/X]IFT[pX.D P,!p[I/Xj/X.1
FrIPj [" X. 0 P,jX,I! p[LIXl
FdQ,!p[l'/X]
Tj

We have demonstrated that a vedor U is a fixed point of M(X,E)p if and only
if it is a fixed point of M(X,gJp. The soundness of the rewrite rule follows
immediately. 0

54 Specification and Proof in Real-time Systems

The presence of O-constructive terms in an equation set may mean that there
is more than one solution to the equations. In this case, the semantics of the
recursion is Dot well-defined. However, if the offending terms do not a.ffect the
seman tics of the selected component, we can rewrite the equation set to eliminate
them. For example, in the equation set

P = a....!......P

Q = pnQ

recursive variable Q does not appear free in the term part of the first equation.
We may remove the second equation from the equation set without affecting the P
componenlof the solution. In this way, we may delete unnecessary or undesirable
equations [roUl our equation set. We capture this result as a. proof rule:

Rule 3.34 (Elimination)

V; : J • 'V i : (I - J) • Xi is not free in PJ
IkEJtdt;;J]

(X; = P; I ; E J). " (X, = P, I ; E J).

6

In a set of equations indexed by I. we may elimina.te those equa.tions

Xi = P.

for which X, does not occur free in any of the terms PJ I j E J, where J indexes
the set of remaining equations. This is enough to ensure that the semantics of the
remaining components is preserved: that

(X; ~ P, I ; E I). (X; = P, I ; E J).

whenever k E J.

Proof Suppo~ that s... is a fixed point of the function M(K.E)p, where E. and
X are indexed by I. Let X' • .£.' and £.1 be the corresponding vectors indexed by
set J.

SJ = ~

f,lp;!p[.5JX]
hlp;Jpl.2'IKl
(M(}CE')p S');

Hence. any solution to the equation set (X; = Pi) gives rise to a solution of the
set (X', = Pi;). This is enough Lo establish the soundness of the rule. 0

3.4	 Equation Sets 55

Returning to the example at the beginning of this section, we may now establish
that	 the two definitions of P given below are equivalent:

p == a~Q
P	 == a~b-!.....PQ	 ~ b~P

We begin by writing the left-hand definition in vector form;

P '" (X, ~ a -7 X,)
XI	 = b --+ Xl I

From h~mma 3.5, we know that b -~ XI is constructive for X" bence the second
equation has a unique solution in TSF • Applying the rule 3.33, we obtaiD

P = (Xl = a --; (p XI 0 b'-:"" Xl))
XI = b ---t XI I

and XI is not free in any of the right-hand terms, rule 3.34 gives us thal

P (X, a ~ (p XI 0 b ~ X,)) I

(XI = a ~ b ---.!.-. Xl) I

(p(X,) a (a --'...., b --'...., X,),

pX1 0 a~ b ~Xl

We may then apply corollary 3.18, yielding

P = a~b~P

as required. From this example, it is clear that the following derived rule will be
useful:

Rule 3.35 Given the equation set (Xi = Pi}j, where Xj; does not o«ur free in

p., we ma.y substitute Pi for all free occurrences of X. in the remainingequa.tions

of the equa.tion set, and remove Xi = p. from the equa.tion set. Formally,

(X, ~ P,), = (X, = P,[p./ X, I ; of k));

providing that j i= k. f:;

Proor This rule follows easily from rules 3.33 and 3.34. o

56 Specification and Proof in Real-time Systems

3.5 Examples

Consider the limed sensitive vending machine of section 2.8:

TSVM == coin ~ (reset ~ TSVM

[>'.
PAID)

PAID :2 coke ~ TVSM

This prac5'l is defined by a set of mutually recursive equations, in which the vector
of terms is uniformly constructive for the vector of variables. To see this, observe
that the terms

coin ~ (1'esei ...!!..., TSVM

[>'. "and coke __ TVSM

PAID)

are both min {t1 , t4 }-construetive for any variable, by lemma 3.5. We may conclude
that thj~ mutual recursion has a well-defined semantics.

We may apply rule 3.35 to eliminate the second equation

TSVM == coin"'!'!-" (reset ~ TSVM

" [>

coke ~ TSVM)

and rewrite the process defiuition as a single recursion.

As an example of a mutua.l recursion in which the term vector is constructive
but not uniformly constructive, consider the process POINTER defined by

POINTER " POINTER,

POINTERo == inc1' ~ POINTER!

POINTER..+1 == incr ~ POINTER,,+!

n
POINTER.

where index n is drawn from the set oC natural numbers N. The Corm of the
equations prevents the application oC rules 3.33 and 3.34; an infiuite number of
substitutions would be required.

3.5 Exa.mples 57

However, the term corresponding to POlNTER.+ 1 is 1-constructive for any
instance of POINTER,,+m, whenever m ~ 1. With the usual ordering on the
natural numbers, we may establish that the vector of terms is constnlCtivefot the
vector of variahles. If X.. denotes the nth element of the variable vector, a.nd p.
denotes the nth element of the term vector, then

'V i,j : N • j ~ i::::} Pi is constructive for Xj

This is precisely the condition (or E.. to be constructive for K· We conclude that
this mutual recursion has a well-defined semantics.

Chapter 4

Specification

We consider a specijical.ion of a system to be a. formal description of its intended
behaviour. In this chapter, we show how the language of timed failures may be
used to produce specifications of real-time systems.

4.1 Behavioural Specifications

m Timed esp, the semantics of a process is the set of all possible behaviours of
that process; we may write specificatious as predicates upon these semautic sets.
In the Timed Failures model, each behaviour is recorded as a. timed failure: a
trace of events performed, and a set of events refused. In [Reed 88], Reed defines
a specification A as a. mappiug from the model TMF to {true,/alse}: the space of
truth values. This specification holds of process P if and only if

A(J"rlp!p) = tru,

We choose instead to define predicates upon a. typical element of the semantic set
of a process: these are behavioural speCifications.

In the Timed Failures model, a behavioural specification is a predica.te S(s, N),
with free variables s and ~ representing the two components of a possible be­
haviour. We say that a term P sati.'1ies a behavioural specification S(s, N) in
environment p if predicate S holds of every behaviour of P. Formally,

Definition 4.1

Psat,S(s,N) " 't"N.(s,NjE,FrlP]p=>S(s,Nj

o
If P is a process, then we may omit the environmmt parameter to obtain the
familiar sat notation, employed in [Hoare 85].

4.1 Behavioural Specifications 59

Definition 4.2

PsatS("N) = Vp",N.("N)EJ"r[P]Po>S(s,N)

¢

Reed's approach to specification is more powerful: for every statement of the fonn
P 5atp B(s, N) there is a mapping As from TMF to {true,false} given by

As(Y) = V',N. ("N) E Y. S("N)

suc.h that the following equivalence holds

Psat,S("N) '" A,(J"r1P]p)

Md some of Reed's statements cannot be expressed with the sat notation. For
example, consider the predicate A given by:

A(Yl = 3"N.("N)E Y ~ aEd,)

This requires that event a is a possible observation of any process represented by
set Y in TMF. There is no behavioural specification S such that

P sat, S(" N) '" A(J"rlPj p)

Reed's approach permits a more detailed analysis of the process semantics; ours is
more suitable for the capture of process requirements. A hehavioural spffification
is satisfied only when every hehavionr of a term is acceptable. A statement of the
form P sat S(s, N) is a guaranfee of satisfactory behaviour.

Example

As an example of a behavioural spec.ification, consider the following requirement
upon a cash dispenser CASH: that it should not allow a user to make more than
one withdrawal in any twenty-four hour period. We choose the event lLcash to
represent a withdrawal by user 1.1., where u is drawn from a set of all possible users,
USER. We capture this reqnirement as follows:

CASH sat Vu: USER; I: TINT.

length(/) > 24 0> #(, TIl u.ca,h) " 1

Given any user 1.1., if we consider the events observed during any interval of time
longer than twenty-four hours, then there should be no more than one occurrence
of the event u.cash; the length of the trace 5 during interval I restrided to this
event should be no greater than 1.

60 Specification and Proof in Real-time Systems

The number of occurrences of a given event is a useful qnantity. To simplify
future specifications, we define a counting operator

dA " #(dA)

to yield the number of occurrences of events from set A in trace s. As usual, if A
is a. singleton set, we will omit the set braces.

Satisfiable Specifications

We sa.y thai a behavioural specification is 8atisfiable if there exists a Timed CSP
process that satisfies it.

Definition 4.3 If 8(5, N) is a behavioural specification, then S is sa.tisfiable in
the model TMF if and only if

3 Y: TS, • Y E TM, A "',N. (s,N) E Y ~ S(s,N)

i)

As we shall see in chapter 9, the existing syntax of TCSP is not enough to imple­
ment all of the processes in TMF. Our definition of satisfiable allows for further
additions to the syntax, or a strengthening of the axiom set. We may demonstrate
that a. specification is satisfiable by exhibiting a suitable piece of synta.,,:

Lemtna 4.4 If 5(s, N) is a behavioural specification such that

3P: TCSP • PsalS(s,N)

then 5(s, N) is satisfiable. (/

This result wiH be useful in chapter 5, when we consider the theory of recur­
sion induction. To show tha.t a recursive process meets a. satisfiable behavioural
specification 5, we have only to show that 5 is preserved by each recursive call.

In applying Timed CSP to the specification and developmeut of a rea.l-time
system, we would prefer to identify specifications that are not sa.tisfiable before
suggesting an implementation. The axioms of the semantic model give rise to
necessary conditions [or a specification to be satisfiable. For example,

Lern.,a 4.5 If S(s, N) is salisfiable, lben S((), IJ). <;)

Proof From definition 4.3:

3 Y: TS, • Y E TAl, A"(s,N). (s,N) E Y ~ S(s,~)

From the first axiom of the semantic model gien in 2.2, we have that:

3 Y: TS, • ((),IJ) E Y A"(s,N). (s,N) E Y ~ S(s,N)

The result follows immediately. o

4.1 Behavioural 5pecificaHons	 61

Any satisfiable behavioural specification must be true of the empty beha.viour,
which is a possible bebaviour of every process. As a result. such specifications
may not insist that a certain timed event appears in a trace or refusal, without a.
qualifying assumption. A more surprising result is:

Lemma 4.6 If 5(s, l{) is a behavioural specification such that

3" TE • S(',N) =} ,j!N

then 5(s, l{) is not satisfiable.	 <:>

ProoC Suppose for a contradiction that S(s, N) is satisfiable, and that there exists
a timed event. e for which

S(',N) =} ,j!N

Let Y be a process satisfying S(s,N), and choose t and a such that e = (I,a).

(s, N) E Y =} S(s, N)

=} (I, aJ j! N

From the fourth axiom of the semantic model, given in section '2.'2, we obtain

(s,N)E Y =} 3N',RSET.N<;;N'A(',N')E YA
((t, a) j! N' =} (, t t~«t, a)), N' t t) E YJ

If an event a is excluded from all refusal sets at. time t, then it must be possible
for a to occur at that time. We know that (t, a) is excluded from all refusal sets
of process Y, hence we have that

(s, N) E Y =}	 3 N', RSET. N <;; N' A (s, N') E Y A

(s r t~«(t, a)), N' t t) E Y

From the first axiom of TMF we know that the empty behaviour (0, {}) is present
in Y. With this choice for (5, l{), the above implication yields that

3N, RSET • lO,N) E Y A ((t,a)),N r tJ E Y

A simple indudion wilt establish that, for any natural number n, the trace in
which n copies of event a occur at time t is a possible trace of Y.

3N',RSET • ((t,a))",N' tt)E Y

However, the bounded speed axiom of the semantic model places a natural number
bound n(t) on the number of events that may appear in any trace of Y before
time t.

'it, [0,00) • 3n(t)' N. ("N) E S A 'nd(s) <; t =} #(s) <; a(t)

This forces a contradiction, and establishes the required result. o

62	 Specification and Proof in Real-Ume Systems

It is always possible that a process will perform each observable event as soon as
it becomes al'a.ila.ble. If process P makes n copies of event a availa.ble a.t time I,
a.nd it is offered n + 1 copies of a, then (t, a) will appear in the refusal set. Hence
a satisfiable behavioura.l specification may not insist that a. timed event is absent
from the refusal set.

The firsl lemma shows that we cannol insist that an observa.ble event occurs
without making a. qualifying assumption. This will be an assumption about the
environment of the process; we will discuss such assumptions in section 4.3. To­
gether, these lemmata. dictate the form of safety and liveness specifications in the
timed failures model.

4.2 Safety and Liveness

We will fIJllow Lamport's informal classification of safety and liveness properties,
[Lamport 771: a safety properly is a requirement that 'nothing bad happens', while
a liveness property insists that 'some good thing will occur'. In eit-her case, we must
exclude undesirable behaviours from the semantic set of the process in question. In
our computational model, a safety property corresponds to the requirement that
a given event may not OCClir except under certain conditions: e.g.

'"	 event a does not occur within time t of event b;

..	 if event a occurs, it must do so within time t of event bi

..	 e,-ent a may occur only at specified times.

Some sa-fety specifications H~gujre timed refusal information~we may insist that
a giveJ1 event is not performed unless another has been offered--but most can be
captured as predicates on traces.

The lemmata of the previous section lead to the following restriction upon live­
ness specifications in Timed CSP; we may insist only that certain timed events
occur or are made available. For example, the following constra.ints may be ex­
pressed as satisfiable liveness specifications:

.. event a is possible at time 1;

..	 if the last event observed is b at time 1, then event a is a.vaila.ble at all times
after 1 + t;

• if a has not occurred, then it is available.

Liveness properties are expressed as predicates on failures.

4.2 Safety and LjveI1ess 63

Safety Specifications

Any safety specification on process Y may be written in the form

\I,,~ • (,,~)E Y"",~U

where U is some set of undesirable traces. If this specification is to be satisfiable,
then the empty trace must be an acceptable behaviour. As a result, the d~adlock

process STOP will satisfy any satisfiable saIety specification.

We can use the operators defined in section 2.1 to construct simple safety
specifications. For example, we may wish to specify that the events tick and lock
occur alterna.tely in a.ny trace of CLOCf(:

CLOCf(sat (s 1 tick -'= 5 1 lock) V (5 1 lick = s 1 lock + 1)

Recalling that s 1 a denotes the uumher of occurrences of event a in trace s, we
see that the process CLOCI'; must perform a tick before every lock.

An event precondition for event a is a predicate that describes the process state
necessary for a to occur. In Timed CSPl any state information must be deduced
from observable behaviours; we write event preconditions as predicates upon timed.
failures. As an example, consider the behavioural specification S defined by

S(s,~)" ((t,a))in,""bE~('tt-l)~a~~(~tt)

This places the folJowiug precondition upon event a: if this event is observed at
time t, then event b milllt be seen more than one time unit before t, and event
a must be available up until time t. Event preconditions correspond closely to
the notion of firing conditions in sequential state-based languages such as the Z
notation [Woodcock 90J.

Any event precondition upon event a can he written as a constraint upon the
behaviour of the process up until the time at which a is observed:

«(t, a») in, "" C((,,~) T\0, t))

The prefix closure property of process behaviours allows us to simplify such specifi~

cations. From the second axiom of the semantic model, we know that if a appears
in a trace s of process P, then there is another behaviour of P in which a is the
last event observed.

L~mma 4.7 If P represents a process, then

P sat ((I, aJ) in' "" CU" ~J)[0, I»

if and only if

P sat foot(,)=(t,a)""C((s,~)T[O,I))

"

64 ____~ ___"S~p~e~"~'fi~,~a.tjon and Proof in Real-time Systems

Proof The proof of only if is trivial. Conversely, assume that

P sat fool(') ~ (I, a) => G((" N)T [0, I))

and that

(s,~) E hiP) " ((t,a) in s

Choose trace w such that

,;[O,I)=wj[O,I) " sT[i,oo)2<wT[I,oo)" fool(wti)=(l,a)

The third axiom of the semantic model (section 2.2) states that every process is
closed under trace equivalence, so (w,N) is also present in the semantic set of P.
From the second axiom of the semantic model we obtain:

«(wii)~(w1 t),~)EhlpJ => (w It,N tlegin(wl i))Eh[PJ

Applying the first of our assumptions to the failure (w r t, N r begin(w 1 t)), we
may conclude that

G((w i I, N t (Iegin(w 1 I))) I [0, I))

By Our choice of w, and the properties of before, after and during:

(w t t,~ t (Iegin(wl i))) 1[0,1) (w,~) I [O,t)

(s, N) T [0, i)

hence we have esta.blished that

G((,,~) T[0, t)

We ma.y conclude that the two specifications are equivalent. o

A behavioural specification must be satisfied by all behaviours of a. process, so it is
sufficient to consider the case in which a is the last event observed. The exclusion
of trace information at time l is important; our intuition concerning cause and
effed excludes information a.bout events at time t from a precondition for the
timfd event (t, a).

4.2 Safety and Liveness	 65

Liveness Specifications

In our model of computation, a process and its environment cooperate on all ob­
servable actions. The visible events of a Timed CSP process represent an interface
with the eJlVironment. Without some knowledge of the environment, we may not
insist that a process performs an event at a particular time. We express liveness
conditions as requirements on the availability of events, ensuring that the process
will perform an event if the environment should agree.

In section 4.1, we saw that we cannot require that an event a is availahle at a
particular time t without considering trace information. If an event occurs as soon
a.s it becomes available, its availabil..ity may not be recorded. As a result, livenes8
conditions may take the form

a ¢ a(N i IJ V a E a(, i J)

The event a is made available throughout some interval I unless it occuri during
some interval J.

Lemma 4.8 If the behavioura.l specification 8(8, No) defined by

S(s,N) ~ a¢a(NIIJ V aEa(,iJ)

is satisfiable, then I ~ J. <:;)

Proof Suppose for a contradiction that 8 is satisfied by a process Y, a.nd that
there exists a	 time tEl - J. We observe that

S(s, N) => a ¢ a(N i t) V a E a(s i J)

From our assumption that Y satisfies 8(3, l't), we may conclude that

("N)E YAa¢a(siJ) => a¢a(Nlt)

The fourth axiom of the semantic model states that

(s,N)E Y => 3W:RSEToN';:WA("W1E YA
((t, a) ¢ W => (, rt~((t, a»), W r t) E Y)

Combining these properties, we obtain

("N)E YAa¢a(>jJ) => 3N':RSETo(srt~((t,a)),WrtIEY

From the first axiom of TMF we know that the empty behaviour (0, {}) is present
in Y. With this choice for (s, l't), the above implication yields that

3K:RSET 0 ((),N)E YA(((t,a»),Nrt)E Y

66 Specification and Proof in Real-lime Systems

As in the proof of lemma. 4.6, a. simple induction will establish that for any natural
number n:

3W, RSET • «(t,a))",W r t) E Y

The bounded speed axiom of the semantic model pla<:es a natural number bound
n(I) on the Dumber of events that may appear in any trace of Y before time t.

Vt: [0,00) • 3n(t): N. (s,N) E S A ood(s)" t => #(,) .. nit)

Again, this forces a contradiction, and establishes the required result. o

As an example of a liveness specification, consider the case of an electronic lock
LOC[(. If II. key is inserted, then the lock must permit the door to be opened after
five seconds. If open represents the act of opening the door, and key represents a
key insertion, then this requirement may be written as follows:

LOCI(sat «t, hy» in s => open ¢ a(N 1t + 5)
V

open E 0($1 t)

For simplicity, we have assumed that the door is opened only once.

An cpent postcondition for a is a predicate that places a constra.int upon the
possible behaviours of a process following the observation of a. Any event post­
condition may be written in the form:

«(t,o)) in s => C«(s,N) T (1,00))

When placing an event precondition on an event a, it is sufficient to consider the
Ci1Se in which a is the last event observed. This result does not hold for event
postconditions, even jf we restrict our attention to the last occurrence of a:

faat(' t a) = (1,0) => C«(s,N) T(t,oo))

Although a useful form of specification. this is not equivalent to the event post­
condition given above; the requirement that

a ~ "~STOP sat faal(d a) ~ (t, aj => a ¢ a(s 1 t)

is easy to esta.blish, while the following requirement is impossible:

a_a-+STOP sat ((t,a)) in sQa¢<r(s1t)

4.3 Environmental Conditions 67

4.3 Environmental Conditions

We may use the notation of timed failures to analyse the behaviour of a process
under a certain set of environmental conditions. One of the assumptions of our
computational model is maximum liveness: if a process and its environment are
both prepaIed to engage in a particular timed event, then that event will occur.
This postulate allows us to include assumptions about the offers made by the
environment as preconditions in a behavioural specification.

These preconditions may be used to reason about non-robust interfac~, where
correct behaviour is dependent upon the cooperation of the environment. When
specifying the behaVIour of a system component, we may assume that certain
patterns of external communication will never be encountered.

Assumptions

To include an assumption about the environment in a specification of a proce::ls,
we write the specification in the form

P sat E(s,N) => F(s,N)

where E is a predicate that corresponds to our assumption, and F characterises
our requirements. This implication is vacuously true for any behaviour that does
not meet the environmental condition; in this case, no requirement is placed upon
the process. However, we must ensure that predicate F is true of any behaviour
of P that meets condition E.

It is instnlctive to consider the extreme assumptions true and false. In the first
case, we are placing no constraint upon the environment; the following equivalence
will hold:

P sat (Iru, => F(s,N)) '" P sat F(s,N)

To show that a. process P meets requirement F in any environment, we must show
that F bolds of all the behaviours of P. If our environmental assumption is false
then we are assuming a miraculous environment, in which any process meets every
requirement:

P sat (false=> F(s,N)) '" lru'

In practice, our environmental assumptions will be more reasonable.

68 Specification and Proof in Real-time Systems

Trace Conditions

A timed trace is a record of observable events performed by the process; each
of these events requires the cooperation of the environment. If the environment
never offers a timed event (t, a), then this event will DeVer be observed. Toexamine
the resulting behaviour of the process, we restrict our attention to those failures
which exclude this event from the trace. This may be extended to disqualify whole
sequences of possible events.

For example, we may wish to specify that a personaJ computer PC will behave
according to specification SPEC(s, ~), providing that it is switched on before a
djsk is inserted. If We use on to represent the activation of the machine, and insert
to represent a disk insertion, then we may capture this requirement as follows:

PC ,.t (b'9,n(, l on) < b'9in(, lin,,"')) * SPEC(s, N)

We are assuming that the machine is activated only once. The addition of an off
event to nur description would permit a more realistic treatment.

An assumption about possible traces corresponds to a safety specification upon
the environ~nt of a process. If we reqnire that

P sat s</'U*SPEC("N)

where ~. denotes a set of disqnalified traces, then we are assuming that the envi­
ronmen! will not offer these sequences of timed events. If the environment of P is
another process Q such that

Q sat , </. U

then the behaviours of P should meet specification SPEC.

Failure Conditions

A timed refusal i~ a partial record of offers made by the environment of a process.
If an event e is present in the refusal set, then we may infer that the environment
offers more copies of e than the process is able to perform. By considerin.g only
those failures which include e in the refusal set, we may examine the result of
placing a process in an environment which is willing to perform as many copies of
e as necessary.

For example, we may require that a process P meets a specification F, providing
that the environment is willing to accept at least one output every five time units:

P sat E(" N) * F(s, N)

4.3 Environmental Conditions 69

where E is an environmental condition defined by

E(" N) == 'I I: TINT.

Iength(1) " 5 =} output E 0(') IJ V outpu' E o(N) I)

If I is an interval of time longer than five time units, then there must be Some
time during that interval at which the environment offers to participate in output.
This corresponds to the inclusion of the event (t, output) in the trace or refusal,
depending on whether or not the offer was accepted.

A failure condition corresponds to a liveness specification upon the environ­
ment of a process. For example, if we wish process Q to model that part of the
environment that accepts ontput from P, we should ensure that

Q sat 'I I : TINT.

l,ngfh(1) " 5 =} output E 0(') I) V (1 x {output]) 11: H

Our choice of Q means that the event Qutput is concealed from the rest of the
environment. Assuming that P and Q have no other events in common, we may
comhine them as follows:

(p II Q) \ output
o1llp1l1

As we shall see, the concealment of an eve1t corresponds to the assumption that
all external offers are refused. The parallel combination of P and Q can refuse
output when either process refuses. For any intervall longer than five time units,
either P refuses Qutput at some time dllring I or Q refuses output throughout J,
in which case output must occur. In either case, the E condition is satisfied and
specification F must hold.

The ahove example illustrates the dual relationship between liveness conditions
and readiness assumptions:

aEo(s)IJ aEo(')J)
V V

Jx{a]I1:N a E o(N) J)

If a process Q satisfies the liveness condition (on the left), then it will serve as a
suitable environment for any process requiring tbe readiness assumption.

70 Specification and Proof in Real-time SysteIn3

4.4 Example

We consider a specification of the timed sensitive vending machine defined in
section 2.8. This machine was intended to dispense a drink for every coin inserted;
we use the events coin and coke. to represent the insertion of a coin and the
removal of a drink, respectively. The company that operates the machine requires
tha.t every drink is paid for in advance, so we mllst place the following safety
specification upon TSVM:

SAFE(s) :2: S 1 coke ~ s 1 coin

The number of drinks dispensed is no greater than the number of coins accepted.

For profitability, the company reqllires that the machine is ready to ac•..ept
another c.cin within time Ii of a drink being dispensed. We place the following
liveness specification upon the implementation:

NEXT(s,N) '" «t,coke))ins~coin¢,,(N1'+',)
V

cQinEu(s1 t)

If a drink is removed at time t, then the event coin must become available no later
than time t + t4 . This offer is represented by the absence of the event from the
refusal set, or the presence of the event in the trace.

If t]le machine is kicked within time i[of a coin being inserted, a reset event
will ocmr, and the coin will be lost. Rather thiUJ. design a more robust mechanism,
the manufacturers construct the machine to the following specification:

OllAY(s,N) '" E(s,N) ~ F(s,N)

whereF(s, N) requires that a drink is made available time ts after a coin is inserted:

F(s,N) '" «I,coin))ins~coke¢,,(N11+t,)

V

coke E u(s 1t)

and E(s, N) is an environmental condition corresponding to the assumption that
the machine is treated gently for at least i[after each coin is inserted:

E(s,N) '" «I,coin))ins~reset¢,,(sT[I,t+1])

If t!is environmental mndition is met, then the machine guarantees to offer a drink
at the appropriate time.

Chapter 5

Proof

Cha.pter 2 presented a algorithm.ic language for the description of real-time sys~

terns, aHd cha.pLer 4 showed that behavioural specifica.tions may be used to d~scribe

the safety and Eveness properties of a such a system. In this chapter, we address
the problem of proving that a suggested TCSP implementation satisfies a. given
behavioural specification.

5.1 A Proof System

In [Brookes 83] Brookes presented a proof system for untimed esp, based upon a
set of semantics-preserving algebraic laws. With the addition of timinginforma­
lion, many of these laws must be repealed. For example,

(a~P)III(b~Q) t a~(PIII(b~Q))

o
b ~ ((a ~ P) III Q)

The left-hand process may engage in the two evenls a and b simultanElJusly; the
right-hand side describes a process which is initially sequential: after performing
the first event, a strictly positive time 6 must cla.pse before it can verforrnanother.
We cannot change the degree of parallelism in a real-time system witheut consid­
ering the behaviours of the processes involved; there is no rule for the dimination
of interleaving parallel operator.

Similar problems arise when we consider the properties of the hiding operator.
When we conceal a set of events from the environment of a process, We do more
tha.n simply remove them from the trace: we determine the times at whi,h they are
scheduled to occur. Although many of the equivalences presented in [.Brookes 83]
are preserved, they serve only to illustrate desirable properties of our semantic
model. They do not comprise a complete set of laws; there are other ejuivalences

72 Specification and Proof in Real-time Systems

that we are unable to demonstrate without reconrse to the semantic equations.
This precludes the algebraic method of proof pioneered by Milner in [Milner 801,
in which similar laws are used to establish that a. suggested implementation is
equivalent to a. process already known to have the reqnired properties.

This is no cause for alarm. We are able to produce a complete proof system
for proofs of satisfaction in the model TMF _ If it is true that all the behaviours of
an implementation P med a certain behavioural specification 5(6, ~), then it will
be possible to show that

P sat S("N)

using the inference rules presented in this chapter. Each of these rules will take
the following form:

Mtecedellt

antecedent
[side condition J

wnsequent

If we establish the truth of each antecedent, then we can be assured of the truth
of the consequent, providing that the side condition holds.

We wiJI present an inference rule for each clause in the syntax of TeS?, ex­
pressing the behavioural properties of a process in terms of component specifi­
cations. For compound processes, the antecedent part of the rule will consist of
behavioural specifications for the syntactic subcomponents. For a.tomic processes,
the rules will be without antecedents. In either ease, the consequent will be the
strongest specification that may be inferred about the process.

We may use the definition of satp in the previous chapter to esta.blish the
following logical TIlles:

Psat,S(s,N) Psat,S("N)

P sat, T(s, N) S(s,N) => T(s,N)

P sat p true P s.t, S(s, N) A T(,_ N) Psat, T("N)

The null specification is true of any process, each goal may be addressed separately,
and we may weaken any specification already established.

5.2 Sequential Processes 73

5.2 Sequential Processes

Atoms

The processes ..1 and STOP are both unwilling to participate in any externa.l
activity. The inference rules for these operators are:

1. sat p s = () STOP sat, • ~ 0
Any trace of either process must be equal to the empty trace, but we can infer
nothing about a typical refusal set: ~ may be any element of RSET.

The process S[(IP is initially prepared to perform the termination event .f, the
only action that this process may perform:

SMP sa', (. ~ 0 A J 't q(~))

V
(s = ((1,/)) A J 't q(~ t I) At" 0)

Either no events have been observed and the event .f is available, or .f has been
observed (at some time t) and was continuously available beforehand. A similar
rule pertains to the delay process WAIT t, in which the termination event becomes
available at time t:

WAIT I sat, • = 0 A J 't q(~ 1I)
V

• = ((I', J)) A J 't q(~ I [I, I')) At' " t

]f no events have been observed then .f must he available continuously from time
t onwards. Otherwise,.f is observed at a time i' ;<!: t and made available at a.ll
times between t and t'.

We do not require a proof rule for term variables. Timed CSP processes will
contain nO free occurrences of any variable; whenever we come to establish a
result about a term P with a free variable X, we will be within the scope of the
assumption

X sat, S(.,~)

for some behaviour...1specification S.

74 Specification and Proof in Real-time Systems

Prefix

The undecora\ed prefix operator is associated with a constant delay of 6. From
the semantic equation given in chapter 2, we may derive the inference rule below:

P .at, S(" N)

• ~ P sat, ,= 0 1\ • ¢ u(N)
V

,= «(I, .))~" 1\ a ¢ u(N r I)	 1\ b'g;n(,') ,,(I +a)
1\ S«,',N) - (t +a)

U Ilder the assumption that P meets behavioural specification S(s,~) in the currenl
environmeut p, we may jnrer the following statements about a typical failure of
the term a -+ P:

* if s is empty, then the event a may not be refused, and is thereiore absent
from the refusal set N

• if s is non-empty, then the first event must be a. If a occurs at time t, we
know that a is not refused before this time.

* if a occurs at time t, then the subseqnent behaviour is that of P, following
a delay of o. This subsequent behavionr must satisfy the predicate S.

The inference rule for delayed prefix is a simple generalisation:

P sat p S(s, N)

a ---'!---Jo P satp	 5 = {} J\ a ¢ u(N)

V

,= (I', a»)~,' 1\ a ¢ u(N t I')	 1\ begin(s') " (I' + t)
1\ S«,', N) - (t' + I))

In this case, if event a is observed at time t' , the subsequent behaviour is that of
P starling at time t' + t.

Sequential Composition

The Inference rule for the sequential composition P; Q is complicated hy the fact
that both terms are able to perform actions at the time of transfer of control. If
control has not been transferred, then any trace of the composite term is a trare
of P during which'; is not observed, and would be refnsed if offered. Otherwise,
we may infer only that the trace is a permutation of traces Jp and 5Q, performed
by P and Q respectively:

5.2 Sequential Processes 75

P sat, S(s, N)

Q satp T(s, N)

P;Qsat, .I¢u(s)~VIE TINToS(s,NU(I x {.I)))
V

.3sp ,sQ. S;:;" sp'"'sQ /I.'; ¢O"(sp) /I. begin(sQ);;<!: t

~ S(sp~«I, .I)), N rt U [0, I) x {.I))
~ T«sQ, N) - t)

The trace sp may be extended with a..l event at some time t (this event is hidden by
the sequential composition operator). In the presence of the sequential composition
operator, the event.; occurs as soon as it becomes available, so we know that it
is refused at any time before t. Hence the failure

(sp~«I, .I)), Nt I U [0, I) x {.Il)

must be a behaviour of P, which meets specification S. The second parl of the
trace, together with the refusals after t, forms a behaviour of Q.

To simplify the process of reasoning about sequential composition, we exhibit
derived inference rules for the cases in which either P or Q is a delay process. The
expression WAIT t; P denotes a term that behaves as P, after an initial delay of
time t:

P sat, Sis, N)

WAlT I; P sat, 6'9;n(s);' t ~ Sirs, N) - t)

In the expression P; WAIT t ; Q, a delay of time t is associated with the transfer
of control from P to Q. This delay allows us to separate the behaviours of the
component processes:

P satp S(s, N)

Q sat, T(s, N)

P; WAIT t; Q sa', .I ¢u(s) ~ 'II E TINT 0 S(s,NU I x {.I))
V

S(s rI'~«t', .Il), N r I' U 10, I') x {.Il)
~st(t',I'+t)~()

~ T«s, N) - (t + I'))

The delayed sequential composition operator; is a special case of this construct.

76 Specification and Proof in Real-time Systems

Nondeterministic Choice

Any behaviour of the nondeterministic choice P n Q must a.rise from either P or
Q. This gives rise to the obvious inference rule:

P"t, S(s,N)

Q oat, T(s, N)

PnQsat, S(s,N) V T(s,N)

The indexed form of this operator is not well-defined unless the set of alternatives is
uniformly bounded. This requirement appears as a side-conditiou in the inference
rule below:

'if I: I • Pi sat p 8(5, N)
[{Pi liE l} is uniformly bounded 1

nel P, sat, S(s, N)

This condition is trivially true for a choice of delay processes. The proof rule for
nondeterministic dela.y is simply

Psat, S(s,N)

WAIT T; P sat, 3' , T. b,gin(s);' , A S((s, N) - t)

We may infer that this process behaves a..'l P, starting at some time t taken from
thesetT.

Deterministic Choice

As in the case of nondeterministic choice, we ma.y infer tha.t the combination Po Q
behaves as either P or Q. We may also infer that any event refused before the
first observable event occurs must he refused by both processes:

P sat, Sis, N)

Q sat, T(s, N)

PDQ sat S(s, N) V T(s, N)
A

S«), N t begin(s) A T«), Nt b,gin(s))

Any behaviour of the form (0, N) must be common to both alternatives.

5.2 Sequentjal Processes	 77

An indexed choice requires the side-condition that the set of alternatives is
uniformly bounded:

Va: A. P. satpS.(s,N)
[{p.} uniformly bouoded J

a: A ~ p.
satp

, ~ () ~ An D(N) ~ {)

V

o E	 A ~,= «t,o))~,'

~ A n D(N t t) = {)
1\ begin(s') ;;;: t + t.
~ S.«s',N) - (t + t.))

H no events have been observed, then all of the events in set A should be available.
As a result, the intersection of A with the event set of the refusal N must be empty.
Otherwise, if a is the first event observed, we know that a E A, and the subsequent
behaviour is that of p•. A delay of t. is associated with the transfer of control to
the process p ...

Relabelling

The inverse image of of P may engage in an event a whenever P may engage in
the event /(a).

P sat p Sf', N)

f~' (P) sat, S(f(s),J(N))

The direct image of P ma.y engage in an event f(a) whenever P can engage in the
event a:

P sat p Sf', N)

f(P) sal, 3 s' • , = fe,') ~ S(,',J-' (N))

In the second inference rule above, the expression /-1 (N) denotes the set

{(t,a) I (t,J(o)) E N}

This is the inverse image of refusal set N under function f.

78 Specification and Proof in Real-time SysteIJ13

Abstraction

To rcasall about a term of the form P \ A, we identify the behaviours of P in
which events from A occur as soon as possible. In section 2.4, we saw that these
are failures of P in which events from A may be continuously refused:

Psat,S(s,H)

P \ A sat, 3 s' • s ~ s' \ A A S(s', H U ([0, "d(s', H)) X A))

If (S, N) is 11 behaviour of P \ A, then there is a trace s' of P which matches s if
we iguore the events from A. This trace, together with the refusal set N, must be
a behaviour of P. Further, we may add events from A to the refusal set. We "mfer
that the failure

(s', HU [0, end(,', H)) x A)

is a behaViour of P, and hence satisfies specification S.

Although this rule is easy to derive, it is difficult to apply. In chapter 6, we
will show how to separate the concerns of concealment and scheduling. We will
derive a simple inference rule for hiding, and show how it may be used to structure
timed failures specifications.

5.3 Parallel Processes

Alphabet Parallel

If s is a trace of the alphi'lbet parallel combination P AIlB Q, then we know that
the restriction of s to set A must he the trace of e.....ents performed by process P.
Similarly, the restriction of s to set B is the trace of event.s performed by Q. We
mayal.o infer that s couti'lins only eents drawn from the union of these two sets.
To summarise, the predicate

35P,SQ. slA=sp/\stB=sQ/\s~(AuB)=s

mllst hold for 5, where sp and '~Q are traces of P and Q.

Suppose that (5, l{) is a beha.....iour of this parallel combination, and that it
corresponds to behaviours (sp, l{p) ;md (sQ, NQ) of components P and Q. From the
semantic equation for this operator, we know that we can choose these component
behaviours such that

a(H p)'; A A a(HQ)'; B

5.3 Parallel Processes	 79

Any event from set A will require the cooperation of component P, and any event
from set B will require the cooperation of component Q, so we may infer that

Np <;; N l A A No <; N rB

Finally, an event (rom A u B may be refused by the parallel combination only if
it occurs in at least one of these refusal sets.

Paalp S("N)

Qsal p T("N)

PAil. Qsal, 3,p,Np ,'0,NO '	 S(,p,N p) A T('o,N o)

A

sp = s l A 1\ sQ = s l B
A
, l (A U B) = ,
A
Np <; N l A A No <;; N l B
A

N llAUB)=NpUNO

Simple Parallel

In the parallel combination P II Q processes P and Q must cooperate on every
action that is performed. The relative simplicity of its semantics is reflected in the
following inference rule:

P sat p 5(5, N)
Q"l p T("N)

P II Q sal, 3 Np, No • N ~ Np U NO A Sf', Np) A T(s, NO)

Interleaving

The interleaved parallel combination Pili Q may engage in an event a when either
P or Q is prepared to engage in a:

Paal p S(s,N)

Qaal p T(s, N)

Pili Q sal, 3sp,,0" E" III So A S(sp,N) A T(sO,N)

Recall that 5p III sQ denotes the set of possible interlea.vings of Sp and sQ,

80 Specification and Proof in Real-time Systems

COInmunicating Parallel

In the comrnu:nicating parallel combination

pllQ
c

processes P <Lnd Q are reqnired to cooperate on events from set C. If s is a trace
of this process, then there must exisl traces Sp and SQ such that

(" C = Sp l C = So ,C) A s \ C E (sp \ C III So \ C)

Trace s re~tricted to events outside set C must be an interlea,ving of sp and SQ,

sim.ilarly restricted, and all three traces must agree on events from set C. We
abbreviate this requirement as s E 81' II SQ.

c

Psat p S(s. N.)

Qsat T(s,~)
p

p II Qsatp 3 Sp, SQ, N. p , NQ • sEspllsQ
c c

A

K lC=(KpUKo) lC
A

K \ C ~ (Kp n Ko) \ C
A

S(sp,K p)

A

T(so,KQ)

A timl'd event (t, a) may be refused if a is in C and either process refuses to
cooperate, or a is not in C and both pro("..esses refuse to cooperate. If C is the
intersection of the process a.lphabets, we may simplify the consequent:

P sat, SIs, N)
Qsat, Tis, K)

["(P) n u(Q) = C I
p II Q sat, 3N p , KQ • K lC=(NpUKQ) ,C

c
A

K\C=(NpnKo)\C
A

S(s l"(P),Kp)
A

T(s ~"(Q),Ko)

This form of the rnle will be sufficient for most applications.

5A Timeouts aud Interrupts 81

5.4 Tirneouts and Interrupts

Timeout

In the timeou t construct P ~ Q, control is transferred to Q unless P performs an
external action before time t.

P sat, 5(5, N)

Q 'at, 1'(5, N)

ptQsatp be9in(s)~tI\S(s,N)

V

b,gin(5);' (I + 6)" S((), Nt I)" 1'«(8, N) - (I + 6))

The 6 delay allows us to determine which of the two components has given rise to
the current behaviour of P ~ Q; it is a behaviour of P if it start5 at or before time
t, and a behaviour of Q otherwi5e.

Timed Interrupt

In the timed interrupt construct
plQ,

control is passed from P to Q at time t, regardless of the progress made by P.
Once again, a small delay of 6 is associated with the transfer of control.

P 'at, 5(5, N)

Q 'at, 1'(5,N)

P 1 Q sat, b,gin(51 I) ;, 1 + 6A 5(, I I, Nil) " 1'((5, N) - (I +6)),

No external activity is possible during transfer of control from P to Q, so

begin(s1 t) ~ t +6

Any activity before time l must he a possible behaviour of P; any activity after
time t +6 must be a possible behaviour of Q.

82 Specifica.tion and Proof in Real-time Systems
-~~~~

Event Interrupt

If (s, N) is a beha.viour of the construct

P 'V Q•
•,E

in which no interrupt events have been observed, then the wbole of set E must be
available. Olberwise, there is an interrupt (t, c) such that e is the only interrupt
event at or before time t; in this case, the subsequent activity must be a possible
behaviour of Q.

Psat,S(,,~)

Vt: E • Q. satp T,(s, N)
lEn <7(P) = {} J

P'V Q• ."
sat p

En<7(s,~) ~ {} A S(s,N)
V

31:	 TlME;e:E.s tl ~E~ ((I,e)) A
En <7(N t I) = {} A

bcgin(s 1 t) ~ t +C 1\

S(, t t \ <,N t I) A
T,«s, N) - (I +<\))

Apart from tbe occurrence of the interrupt event any observation up until time t
must be a behaviour of P.

If Dilly one iuterrupt event is alTered, then we may eliminate one of the exis­
tential quantifiers in the consequent of the rule:

P sat, S(" N)
Qsat, T(s, N)

[e¢<7(P)J
P'V Qsat, e ¢ <7(5, N) A S(5, N)

• V

31:TlME.stl~e=(t,e» A

e ¢ <7(N t t) A

begin(s1 t) ~ l+C 1\

S(s tt\e,N ttl A

T«s, N) - (I +<\))

In either case, we include the assumption that P may not interrupt itself as a side
condition to the rule.

5.5 Recursive Processes	 83

5.5 Recursive Processes

In chapter 3, we showed how the theory of metric spaces may be used to give a
semantics to recursively defined processes. To reason about the propertie9 of these
proceses, we give a simple topology to the space TMj' and establish a Lheory of
recursion induction, in the style of [Roscoe 821.

Recursion Induction

We will require the following definitions, taken from ISutherland 75J:

Definition 5.1 A topological space T = (A, T) consists of a non-empty set A
together with a fixed collection T of subsets of A satisfying

1. A, {} E T
2. the inlersection of any two sets in T is again in T

3.	 the union of any collection of sets in T is again in T

<>
We refer to the elements of T as the open sets of T. The dosed sds of T are
given by {A - U I U E T}. A mapping between topological spaces is c6~tinuous

if inverse images of open sets are themselves open:

Definition 5.2 If TJ = (A 1 ,Td and T~ = (A t ,1i) are topological spaces, then
a mapping / : Aj - A~ is continuous with respect to topologies 7j and 12 if

U ET, => r'(U) E T,

<>
We may give a topology to the metric space (A, d) by defining T to be the set of
d-open subsets of A. If we define

Definition 5.3 If AI = (A, d) is a metric space and (is a strictly positive real
number, then the open (-hall neighbourhood 0/ a in At is the set

B,(d; a) " {x: A I d(x, aj < <J

<>

then we may characterise the d-open sets as nnions of open balls. This Ii il conse­
qnence of the following definition:

Definition 5.4 A subset U of a metric space M = (A,d) is d-open in M if given
any a E U there exists (. > 0 such that B,,,(d; a) C U. <>

84 Specification and Proof in Real-time Systems

The following theorems arc taken from [Roscoe 82] and [Reed 88J:

Theorem 5.5 Let M =: (A, d) be a complete metric space, and let TV be the
topological space ({lroe,jll'lse), T) where

T " {{), {fals'), {true,!a",)J

If F : M -.., T is continuous with respect to the d-open topology and T, and the
set {ll E A I F(a) = true} is Iionernpty, then

(V" A. F(x) = ',u, '" F(C(x)) = 'cu,) '" F(jix(C)) = 'ru,

for any contradion mappillg C: At _ M. Q

Theorem 5.6 rr F is a mapping from the complete metric ~pace (TSp , d) to TV
such that (or any Y in TS,.

F(Y) ~ fal" '" 3 t, TIME. V y', TS,. • Y i , ~ Y r " '" F(Y') = fal"

then F is continuous. Q

Recall that the metric d UpDU TSF was defined using the be/ore operator on sets
of failures. Y r t = Y'i t. if failure sets Y and Y' agree up until time t; these
y ' form an open ball around Y in the metric space. rr F is such that whenever
F(Y) :::; false there is an open ball around Y whose image is {false}, then F is
continuous.

We identify predicates on timed failure sets with mappings from TSF to the
spaC€ of truth values TV.

Definition 5.7 A predicate R on elements of TSF is a mapping from the space
of timed fajlure sets TSF lo the space of truth values TV,

({ I,.,,!,,I,,), {{J, {fal"}, ('cu,,!alse JJ)

We sa.y that R is a continuous predicate if it is a continuous mapping in the sense
of defmition 5.2. 0

Definition 5.8 A predicilte R is plalLSible if R is continuous and

3 Y, TS,. • R(Y) ~ lcu'

o

5.5 Recursjve Processes 85

Immediate Recursion

To establish that a plausible predicate correctly describes a well-defined recursive
process p X 0 P, it is sufficient to show that R is preserved by the mapping
corresponding to X and P. If P is constructive for X then the following inference
rule is valid:

Rule 5.9

v Y, TSF' R(Y):> R{.Fr[PJp[Y/XIJ
[R plausible)

R(.Fr [I'X 0 Pip)

{',.

Proof If P is constructive for X, then the mapping.\ Y • fr[P]p[YjXj is
a contraction mapping on TSF , by lemma 3.14. If R is plausible, then it is a
continuous mapping from TSF to TV such that the set {Y : TSF IR(Y) == true}
is nonempty, and we have assumed that

v Y, TSF • R(Y):> R(.FrlP]p[Y/XIJ

We may apply theorem 5.5 and deduce that the rule is sound. o

In our proof system, we wish to establish that a predicate holds not of a process,
but of a typical behaviour of that process: we wish to show that a process satisfies
a behavioural specification. In this case, our proof obligation can be simplified.
We need only show that the specification is preserved by each recursive call:

Rule 5.10

Xsat p S(s,N):> Psat,S(s,N)

pX 0 Psat p S(s,~\t)

{',.

Proof We recall the definition of the sat p operator

Psat,S(s,N) '" VS,N. (s,N) E .FrlPI' S(s,N)

We claim that any predicate of the form

R(Y) '" Vs,N.(s,N)E Y:>S(s,N)

is plausible in TSF. Suppose that Y E TSF and R(Y) = false, then

3s,N.(s,N)E Y/I~S(s,N)

86 Specification and Proof in Real-time Systems

There must be a behaviour (s,t{) in }' which does not meet S. If we choose a
time t > end(s, t{) then

Y't t = Y t t '* (s, H) E Y' A ~ S(s, H)

and R(Y ') ::: false for all Y in an open ball of radius 2-1 around Y. By theo­'
rem 5.6, R is a continuous predicate. We know that {} E TSF , and it is easy to
see that

R({}) = true

Henc~ predicate R is plan!>ible. This reduces the proof obligation to an instance
of rule .5.9. Hence this rule is also sound. 0

This gives a sufficient condition for the recursive process jJ X a P to satisfy the
specification S(s,t{) on timed failures.

Delayed Recursion

The delayed recursion operator a,.<;sociates a. delay of 6 with each recursive call; tbe
mapping on T5p corresponding to a recursion jJ X • P is given by

M.(X,P)p '" W".\ Y o FrlP!p[Y/Xj

where the following equivalence holds for W6 :

W." .\Yo{(s,Hllbegin(s);,6A((s,H)-6)EYj

This mapping is a contraclion mapping on TSF for any choice of X, P; there is
no need to establish that term P is constructive for the recursive variable. With
an argument similar to that presented for rule 5.9, we may establish an inference
rule for this operator:

Rule 5.U

'V Y: TSF 0 R(Y) '* R(Frlp!p[Ws(Y)/Xj)
I R plausible)

R(Fd ~ X 0 pI pI

{',

From the proof of rule 5.1 0,e see that any such specification corresponds to a
plausible predicate on elements of TSF. If we cboose R such that

R(Y) '" 'Vs,N 0 (s,H) E Y,* S(s,H)

then wc may derive all inference rule for behavioural specifications:

5.5 Recursive Processes 87

Rule 5.12

vX : TSF 0 X Bat, (S«" N) - 0\) A b,gin(,) ;. 0\) => P 'at, S(" N)

pX. PsatpS(s,~)

t;

Proof Similar to the proof of rule 5.10. o

Mutual Recursion

We restrict our attention to those recursive equation sets in which the I·ector of
terms is constructive for the vector of variables. We wish to establish results about
processes of the form (X, = P,),: the j component of the process vector defined
by equation set {Xi = P;}. To do this, we will need to establish similar results
about each component of the vector E.

To establish that a \'edor of predicates E correctly describes the fixed point of
M(K,E), it is sufficient to show that E is preserved by M(X, E), and that each
R, is a plausible predicate.

Rule 5.13

(Vi 0 R,(Y;» => Vj 0 R,(h!P,jp[X/X.])
[R; plausible, for all i 1

E(FrlpXoEJp)

t;

Proof Assume that each R, is plausible, and that

(Vi:Jon,(Y;)) => Vj:JoRi(h[Pi]P!Y/X])

We claim that

(Vi:JoR;(Y,)) => Vj:JoRi(J"dQi]P[Y/X])

where vector .Q is as defined in the proof of the Unique Fixed Point Theorem.
theorem 3.31:

Q, " P,[Qi/ Xi I j E ",gU)1

To establish this result, we proceed by transfinite induction, with inductive set J
defined by

J " {k: J 0 (Vi: J 0 R,(Y;) => R.(hIQ.]p[X/X]))

88 Specification and Proof jn Real-time Systems

We assume that seg(k) ~ J, and observe that

Fr/Q,]p[l':/X] ~ Fr[PdQ,IX, II E ,eg(k)JIp[l':/XI
= Fr[P,]p[l':/XJ[h!Q,]p[l':/XIIX,!1 E seg(k)J

Define a sewudi1.ry vectol' Q by

z, " Y, (I" reg(k))
FrlQ,]p[l':/XJ (I E 'eg(k))

By our inductive hypothesis,

'ti:/oR,(Y,) => 'ti:loR,(Z;J

Whence our original assumption about. £. yields

('t.: 10 R,(Y;J) => R,(FrlP,Jp[Z:;XJ)
=> R,(FrlQ.]p[l':/XJ)

hence k E J, and the claim follows by t,ransfinite induction, From the definition
of the metric Ji upon the product spa~e TSf, we may est.ablish that

('9' i : I • R. plausible) ==> E plausible

We have established that M(X, Q)p preserves 11, hence f1 must hold of the fixed
point of this mapping, by theor~ .5.5. Bul from the proof of the Unique Fixed
Point Theorem we learn that

jix(M(X,Q)p) ~ jix(M(X,E)p)

We ma.y conclude that the rule is sound. 0

We may derive a rule for behavioural specifications by making a suitable choice
for predicate 1J

Rule 5.14

('Vi: /. X;satpS,(8,~)}:::>'Vi: /. P,satpS;(s,N)

(X, = P'}J sat p 5)(s, N)

/::,

The proof lbat this rule is sound, as an instance of the previous rule, is entirely
similar to the derivation of rule 5.10 from rule 5.9.

5.6 Soundness and Completeness 89

5.6 Soundness and Completeness

Our proof system has two desirable properties:

Theorem 5.15 The set of inference rules presented in this chapter is sound with
respect to the semantic equations given in chapter 2. The truth of each mle may
be established from the semantic equalion for the corresponding operator, without
recourse to the axioms of TMF • "

Theorem 5.16 The set of inference rules presented in this chapler is complete
with respect to the semantic equations given in chapter 2. Any property that is
true of every behaviour of a process P may be established using these rules. 0

Soundness

The presentation of the proof system has been chosen to emphasise the correspon­
dence between inference rules and semantic equations. To see that each rule is
sound, we have only to examine the defining equation for the operator in question.
As an example. consider the rule lor simple parallel combination:

P sat, S(s, N)

Qsat, T(s, N)

PII Qsat,3Np,N Q 0 N~NpUNQ AS(s,Np) A T(s,N Q)

This operator was given the following semantics:

:Fr!PIIQ]p'" {(s,NpUNQ)I(s,Np)Ehlp)pA(s,NQ)E:Fr(Q)P)

A simple logical deductiou will suffice the establish the validity of the inference
rule. Assume the two antecedents of the rule and suppose that (8, N) is a behaviour
of P II Q in environment p. By the semantic equation,

3 Np, NQ 0 (s, Np) E h [PJ p A (s, NQ) E :FdQI pAN ~ Np U ~Q

From the antecedents, we obtain

3Np,NQ 0 S(s,Np)AT(s,NQ)AN~NpUNQ

We conclude that the rule is sound.

Similar arguments may be presented for the other inference rules, with the
exception of the recursion induction rules; soundness proofs for these rules were
presented in section 5.5.

90 ~ ~S~p~e~c=ili=c=a_,'~iD=n,-,a=D=d,-,P.rDD£ in Real-time Systems

Completeness

We claim th<it, if every behaviour of a process P meets predicate S(s, t{), then the
inference rules given in this chapter a.re sufficient to prove that P sat S(s, ~).

Lemma 5.17 If P E TCSP meets the requirement that each recursion is con­
structive, then we may use the inference rules to establish that

P sat, (s,N)EFrlP!P

for any environment p. Q

Proof We proceed by structural induction upon the syntax TCSP. The result
is easy to establish for bilsic processes. As an example, consider the case of the
deadlock process. The semantic equation for this operator yields that

(s,N)EFdSTOP]p .. s~()

The infeJ'rnce rules

Psat,S(s,N)
S(s, N) => T(s, N)

STOP sal, s ~ () Psatp T{s,N)

are enough to establish that STOP salp (s,N) E Fr[STOP]p.

For compound processes, we assume that the result holds for each component,
and apply the appropriate inference rule. Consider the case of the simple parallel
operator, which is associated with the following inference rule:

PsatpS(s,t{)

Q sat, T(s, N)

PII Qsat,3Np,NQ .N~NpUNQA S(s,NP)A T(s,NQ)

By our inductive hypothesis, the inference rules are enough to establish that

P sat, (s,N)EFdp!p

Q sat, (s,N) E FrIQ!p

\Vitla these instantiations, we obtain the following consequent

PIIQ sat, 3Np,NQ.N~NpUNQ A(s,Np)EFdp]p
A (s,N Q) E FrlQ]p

5.6 Soundness and Completeness 91

From the semantic equation for this operator,

(s,N)EFr[PIIQ)p" 3Np ,NQ_N=NpUNQ II("N p)Eh[P)PII
("NQ) E Fr(Q)p

We conclude that

PIIQ sal, (s,N)EhIPIIQ]p

may be establ ished using the inference rules of the TMF proof system.

To see tha.t the result is true for recursive processes, recall t.hat the semantics
of a recursive process is the unique fixed point of the corresponding mapping in
the model TMF. For example, the semantics of the instant recursion IJ); a P is
defined to be tbe unique fixed point of the mapping M(X, P)p, where

M(X,P)p =0.\ Y - hlp]p[Y/Xj.

The following inference rule may be applied if P is constructive for X:

X sat, S(s, N) => P sal, S(s, N)

JiX 0 P sat.., 5(3, N)

We instantiate S with the specification (s, N) E fT [IJ X a P]p and claim that the
antecedent holds. Observe that

Xsal,("N)Eh[#XoP]p => PiX] ';h[~XoPJp

The semantics of each operl'ltor is defined pointwise upon sets of timed failures.
As a resnlt, the mapping on TAfF corresponding to any TCSP term must be
monotonic with respect to the subset ordering. Hence

M(X,P)p(p[X!) ,; M(X,P)p(h[~XoP]p)

Expanding the definition of M(X, P)p, we obtain

h!P]p[P[XIIX] ,; M(X,P)pFd~XoP]p

=> FT\P!p ,; M(X,P)pFd~X oPJp

=> h\PJp ,; h!~X 0 pIp

=> P sat.., ("N)EFr[#XoP]p

Hence the anten~dent of the rule holds for this specification; we may infer that

#XoP sal, ("N)EFr(~XoP)p

The result follows by structural induction. o

92 Specification and Proof in Real-time Systems

We have sho\\oTI that the inference rult's of our proof system are enough to establish

P ,.l, (',~)E.TdpJp

for any P in TCSP providing that the body of any recursive term is constructive
for the corresponding term variable. If a behavioural specification 5 holds of the
timed failures semantics of P, then

("~) E h!Pjp => S(',N)

The logical rule for weakening specifications (nsed in the proof of the previous
lemma) ena.bles us to complete the proof of

P sat, S("N)

using on I)' the inference tules of our proof system. We conclude that the proof
system for TA'h presented in this chapter is complete for construcli ve rewrsive
processes, with respect to the semantic fundi on :Fr·

5.7 Timewise Refinement

A forma! specification of a complex system will mnRist of several behavioural
specifications, each of which may be established separately. If we wish to prove
that

P sat S(',N) 1\ T("N)

then it will sufficE' to show

PsatS("N) 1\ PsatT("N)

Some of these specifications 1lJ<l.y nul require the full expressive power of Timed
Failur~s model. If this ~s the case. then we may use the hierarchy of models beneath
TMF ~o simplify our proof obligations.

!fa predicate upon tinted traces can be established without refusal informa~

lion, then we may construct a proof in the Timed Traces model TMr , The nature
of the projection mappings ensures that this proof will be valid in TMr . Simi~

lady, jf a property may be established without timing information. we ma.y choose
to construct a proof in the untimed Failures model Mr , or the untirned Traces
model Mr. Of these models. Mr is the most useful for simplifying timed failures
specifications; MF is often inappropriate, and timed trace requirements may be
established using a simplified version of the TMF proof system.

5.7 Tjmewjse Refinement 93

TM,

/~
TMT M,

~/ Figure 5.1: the models beneath TM;

MT

The Timed Traces model is complicated by the need to record the times at
which events become available; this informatiOfl is required for the semantics of
hiding and sequential composition. For any event a, the notation ii denotes the
communication of a at the first moment of availability. For example,

TdPIl Q] (F 13,p,'Q.' = ,po'Q A 'P E hlp) A 'Q E TrlQIJ
where Sp 05Q is a timed trace with the same timed events as Sp and SQ, such that
the nth element of sposQ is hatted if and only if the n~h element of either Sp or Sf;}

is hatted. For the Timed Traces model, refinemeut to timed failures is fasy, but
proofs remain complicated.

In the untimed failure (tr, X), the refusal set X is a set of events that may be
refused following the observation of trace tr.]n a timed context, X corresponds to
the set of events that may be refused after all iuternal activity has ceased. With­
out a stability value, we have no record of internal activity; an untimed liveuess
requirement may insist only that an event is offered eventually; this miLY prove
inadequate in the specification of a real-time system. Nevertheless, a projection
mapping from TMF to MF might be used to establish important properties of a
real-time system. For example, it may be possible to establish deadlock freedom
using the algebraic properties of uotimed esp, instead of the timed satisfaction
relation sal.

If a requirement can be established by reasoning within the untimed Traces
model, then we may employ a simple synfactic abstraction from the timed synta.x
TCBP to the notimed syntax esp. In \Schneider 89], the author develops a. theory
of timewise refinement based upou the Timed Failures-Stability model TMFS ' In
this section, we develop a. similar theory for TMF and exhibit a refinement proof
rule for untimed safety specifications. We begiu by presenting a syntax for untimed
esp, together with a semautic function for Reed's untimed Traces modeL

94 Specification and Proof in Real-time Systems

Traces Model

We give an extended syntax CSP for a language of untimed CSP terms, to match
the synta.x for TCSP given in chapter 2;

P ..= STOP ISKIP \ X I atoms

a P \ P; pIp l P sequential composition

PDP \ p n P Ia : A --t Pal alternation

P II pIp AII8 pip III pip ~ pI pac,lIel compo'i'ion

P\A JJ(P) \f-'(P) I abstraction and renaming

~x. p I(Xi ~ p.); recursion

This is anextension of the syntax presented in [Reed 88]: apart from term variables
and the new parallel operator, we ha.ve added an unl.imed interrupt operator i
which ffi,1.)' interrupt a process at any time during its execution,

We define a semantic function from CSP to the Traces model MT; using envi­
ronment~ to bind term val'iables:

TISTOPJp " (O)

TIS[{fP!p " (O.(J))

Tla ~ pJp ~ {O} U {(a)~lr I tr E Tlp]p)

TIP; QJp " (Ir I Ir E TIPJp A J ~ <7(lr)}
U

(trp~trQ I Irp~(~) E T!PJp A IrQ E T IQjp}

Tip i QJp " {trp~lrQ I trp E TIPlp A trQ E TIQ]p)

T!PO Qlp " Tlp!pUTIQjp

Tlpn Qlp ~ T!PjpuTIQ!p

Tla, A ~ P.jp " {(a)~tr I a E A A tr E T!P.jp)

The untimed interrupt con.~truet P 1 Q may transfer control from P to Q after
any sequence of events; an arbitrary tra.ce of this process may be any trace of P,
followed by any trace of Q.

5.7 Timewise Refinement	 95

T[PII Q)p " T[p]pnT[Q]p

T[P All. Q]p " {I' I" I(A U Bl ="	 II" I A ET[P]p

1I"IBET[Q]p}

TIP III Q]p ~ {tr 131rp, trQ _ tr interleaves (trp, trQ) /\

"p E T[P]p II "Q E TIQ]p}

Tip II Qlp " It, 13 "p, "Q • "\ A inl"l,av" (t,p \ A, "Q \ A) II
A ir LA = trp LA = trQ ~ A /\

I,p E TIP]p II "Q E TIQ]p}

TIP\A!p" {t'\AII'ETIP]p}

T[J(Pl]p " {J(t,) I" E T[P]p}

T[J-'(P)]p " {I, 1/(1,) E TIP]p)

T [p. X • P] p ==	 the unique fixed point of the mapping on MT

corresponding to X, P and p

T[(Xi = Pi),]p ~	 the pi, component of the unique fixed point

of the ma.pping on Mf corresponding to K,

E. and p

The subsidiary relation inlerleaves is defined in (Hoare 85]: tr interleaves (trp, trQ)
precisely wben Ir is an interleaving of trp and Irq.

If S(tr) represents a behavioural specification on untimed traces, then we may
define a satisfaction relation:

P sat, 5(t,) " VI'E~'. t'ET[P]p=> 5(1,)

The choice of free varia.ble identifies the model employed; we write tr to denote
an arbitrary untimed trace. If the interpretation of sat is not obvious from the
context, we will decorate it with the name of a semantic model. Using thisrelation,
we may obtain a compositional proof system, similar to the TMF proof system
presented earlier in this chapter: e.g.

Psat p S(tr)

a -----) P sat" tr = 0 V tr = (a)"""tr' /\ S(tr')

96 Specification and Proof jn Real·time Systems

The inference rules for the other operators are straightforward, except in the case
of recursion. For a recursive process to have a well-defined semantics, the body
of the recursive definition should be guarde.d for the recursive variable; a term
P is guard€<! for a variable X if each occurrence of X in P is prefixed by some
observable event. If term P is guarded for X, then the following rule may he
applied:

XsatpS(tr)::::> PsatpS(tr)
[STOP sat S(tr) 1

J,lX. Psatp S(tr)

An untimed trace specification is satisfiable iff it is satisfied by STOP; this is a
consequence of the following axiom for Afr:

v Y E AfT • 0 E Y

The requirement that S is satisfiable is expressed by the side condition of the rule.

Thi!:l proof system is considerably simpler than the proof system for TMF' If an
untimed safety specification may be established within the untimed traces model,
then we may remove the timing information from the syntax of the process and
apply the inference rules for M T •

Syntactic Abstraction

We may define a syntactic abstraction (3 : TCSP ---+ CSP by structural induction
upon the timed syntax:

0(.L) " STOP

0(STOP) " STOP

0(SKIP) " SKIP

0(WAIT I) " SI(]P

0(X) " X

We abstract away timing information, identifying any form of sequentia.l compo­
sition with the immediate transfer of control:

0(a ~ P) " a ~ 0(P)

0(a -.!.... P) " a ~ 0(P)

0(P; Q) " 0(P);0(Q)

0(P; Q) " 0(P); 0(Q)

5.7 Tjmewise Refinement 97

The ma.pping distributes through all of the standard operators:

8(POQ) "' 8(P)08(Q)

8(pnQ)"' 8(p)n8(Q)

0(a, A ~ p.) "' a, A ~ 0(P.)

0(PII Q) "' 8(P) II 0(Q)

8(P ,liB Q) "' 0(P) AII B0(Q)

0(P III Q) "' 0(P) III 0(Q)

0(P II
,

Q) "' 0(P)
A
II 0(Q)

0(P \ A) "' 0(P) \ A

0(f(P)) "' {(0(P))

0U-'(P)) "' {-'(0(P))

0(1' X • P) "' p X • 0(P)

0(~ X 0 P) "' ~ X • 8(P)

0((X, = Pi),) "' (Xi = 8(P),),

The timeout construct prj Q mayoIfer the user a choice between P and Q, or may
behave as Q. depending on whether the timeout has occurred. Without timing
information there is a nondeterministic choice between these two alternat.ives:

0(P" Q) "' (0(P)00(Q))n0(Q)

The timed interrupt operators are mapped to nntimed interrupts:

0(Pj Q) "' 0(P)J 8(Q),
0(P? Q) "' 0(P) j, -, 0(Q)

The indexed nondeterministic choice and nondeterministic delay operators are
mapped to t.he obvious ta.rgets:

0(n p ,) "' n8(p,)
lEI iEI

0(WAIT T) "' 5MP

98 SpecificAtion and Proof in Real-time Systems

Timewise Refinement

If a. specification 8(s) on timed traces is independent of timing information, then
we may transform S into a. behavioural specification on untimed traces. We define
a simple projection mapping on elements of TE~:

Definition 5.18

Islrip(0) " 0
tsl"ip«(t, a))~s) " (a)~tst,ip(s)

¢

The mapping tstrip removes the time values from the trace. If the truth of a
behavioura.l specification S is independent of these values, we say that S is a
time-independenf specification.

Definition 5.19	 A behavioural specification 8(5) is time-independent iff

VSj,s,-: TE~ • tslrip(sd = tstrip(s!) '* S{sd == 8(51)

¢

If 8(s) is a time-independent specification on timed traces, then it will prove
convenient to define a corresponding condition upon untimed traces:

Definition 5.20	 If S(5) is a timed trace specification, then

<1>5(1') " 't., E TE(. tsl,ip(s) = t, "" S(s)

<>

An unlimed trace ir meets the specification ipS iff every assignment of time values
to theevents in tr produces a timed trace tha.t meets S. RecalL that the sequence
of time values must be non-decrea.<3ing if the result is to be a valid timed trace.

Trace operators which do not refer to the times at which events occur ma.y
be applied to both timed and untimed traces. For example, the restriction and
counting operators are defined on E* by

O,A " 0
«a)~',) 1A "	 (a)~(I, l A) if a E A

I, l A otherwise

l,jA " #(1,1.4)

5.7 Tjmewise Refinement	 99

If a timed trace specification S(s) is constructed using such operators, then the
untimed trace condition will often be a consequence of S(tr). As an example,
consider the tiITled trace specification

S(s) '" (last(s) = a) => sib ~ 0

A process satisfies this specification if whenever we record a.n a event, we find that
no b events have been recorded. It is easy to establish that

(lasl(lr) = aJ => Ir I b = 0 => ~S(tr)

for a.ny untimed trace ir.

If the image of Sunder c:> is satisfied by the un timed equivalent of iI. timed
process P, then we might expect that P satisfies S. However, jf we choose

P '" (a ~ STOP III SKIP); b ~ STOP

then 8(P) sa.tjsfies 4lS, where S is as defined above, but P does not satisfy S in
TMF. With instantaneous sequential composition, events b may be observed at
the same time as a, and so may appear first in the trace. The trace {(0, b), (0, a)}
is a possible observation of P, and does not meet S.

This problem may occur whenever we use the instantaneous form of sequential
composition. We could remove this operator from the syntax of Timed CSP and
use only the delayed form; this is the approach taken in [Schneider 89J. Wechoose
instead to reta.in it, for greater flexibility in process descriptions, <Uld identify the
situations in which it may be safely applied.

Definition 5.21 A process Pis 8-safe iff

\ls,~ • (s,~) E hlPI => Istrip(s) E TIP]

o
A direct application of this definition would be impractical; fortunately, this prop­
erty may be established by a simple inspection of the process syntax.

Definition 5.22

•	 For any time t or set of times T, the terms STOP, S/(IP, 1., WAITt, and
X are atl ..t-guarded.

•	 If P and Q are both "I-guarded, then the terms a ---+ P, a --...!..... P, PDQ,
pnQ, P; Q, PII Q, P AII 8 Q, Pili Q, P\A,f(P),f-' (P), p X • P, ~ X 0 P,
P 6.. Q, P i Q, and P \l Qa are all "I-guarded.

, aEA

100 Specification and Proof in Rea/-time Systems

•	 PII and P. are "I-guarded, for each event a E A or index i, theu the terms

a: A Pa , n'El Pt. and (Xi := Pi)j are all ,.I-guarded.

•	 If P and Q are both J~guarded and t is strictly positive, then the terms
WAIT t; P, P; WAIT t, and P; WAIT t ; Q ate all J-guanled.

<)

A term P j~ J-guardcd if every instantaneous sequential composition is accompa­
nied by a delay operator. This syntactic property j~ a sufficient condition for a
process to be E)-safe:

Lemma 5.23 For any P in TCSP,

P is ,I-guarded .:::} P is E)-safe

"
This resdt follows directly from the semantic equations for the Timed Failures and
untimedTraces models. We may now exhibit a refinement proof rule for untimed
safety specifications:

Rule 5,24

f)(P) sat <l>S(lr)
I P ;, f)-safe)

P sat 5(;)

[:,

If we ca.n establish that the abstraction of a A-safe process P meets ¢lS, then we
may il1fer that P also satisfies S. The antecedent of the rule is a proof obligation
in the untimed Traces model, the consequent is a proof obligatiou in TMF •

Proof To see tha.t this rule ;s saunn, cons;r!pr the following diagram:

timccl process
.at

timed sprcificatjon

definition of lJ0-safe

untimed process
.al

untimed specification

Figure 5.2: Timewise Refinement

If $ is i\. timed trace of i\. 8-safe process, then Istr-ip(s) will be a trace of 8(P).
If B(P) si\.tisfies the behavioural specifici\.tion 4>S(tr), then we may infer that S
holds of trace s. The COUSt'quent part of the rule follows immediately. 0

5.8 Example 101

5.8 Example

Consider the following implementation of a timed sensitive vending machine:

TSVM == coin ~ (reset ~ TSVM

[>'.
coke ~ TSVM)

The company that operates this machine requires that every drink is pa.i~ for in
advance, aud that the machine is ready to accept another order within a certain
time t4• In section 4.4, we formalised these requirements as separate behavioural
specifica.l ions:

SAFE(s) == !i! coke <s! coin

NEXT(s,N) '" ((t,cok,))ins=} co;n ¢a(N1 t+t,)
V

coin E a(s 1 t)

The machine is supplied with the following manufacturer's: guarantee: if a coin is
inserted al time t, then a drink is ready before time t +ts, providing that the user
does not trigger a reset during the interval [t + tl,l + 1.1 +(fl. This requirement
corresponds to the following behavioural specification:

«t,coin))ins } cok, ¢ a(N 1t + t,)
OKAY(s,N) _ A =} V

reset ¢ a(s T[I + t l , t + ~J + t2]) coke E a(s 1 i)

We would like to establish that the suggested implementation TSVM meets the
following behavioural specification:

SPEC(s,N) '" SAFE(s) A NEXT(s,Nj A OKAY(s,N)

Safety

The safety specification SAFE is independent of timing considerations. Although
it is possible to show that TSVM satisfies this specification using the timed failures
proof system, it will be easier to establish the result by timewise refinement. We
observe that TSVM is ..I-guarded and hence 0-safe, and that

iT ! coke '(IT ! coin =} ~SAFE(iT)

102 Specification and Proof in Real-time Systems

Applying the abstraction mapping e reveals that

6(TSVM) ;0 SVM

where SVM is the untimed vending machine of section 2.8:

SVM == coin ---> (PAID 0 reset --+ SVM
n
coke __ SVM)

An application of rule 5.24 redlJces Our proof obligatiuu to

SVM sat tr 1 coke" tT 1 coin

We observe that this recursion is guarded, and apply the inference rule for recursion
in M T • We have now to prove that

coin -t (PAID 0 reset --t X
n satp tT! coke ~ iT ! coin
coke __ X)

under the assumption that

X satp Ir 1 l'.okf'. .:::;; tr 1 coin

This result may be established using the inference rules for event prefix, detennin­
istic choice, and nondeterministic choice in Mr -

Liveness

The rest of the proof must be conducted within the Timed Failures model. We
begill b)' observing Olat the body of the recursion SV[\., is constructive, providing
that tJ > o. \\Ie may then a.pply the inference rule for recursion. reducing our
proof obligation to

coin ~ (resel 3!..... X

" satp NEXT(8, N) 1\ OKA Y (8, N)C>

coke ~ X)

under the assumption that

X >at, NEXT("~),, OKAY(,,~)

5.8 Example	 103

If we restrict our attention to the second of these specifications, we may apply the
inference rule for event prefix to yield:

reset ~ X sat I' s = 0
V

s = ((I, resd))~s' A O[(AY((s',~) - (t + I,))

Similarly, we ma.y easily establish that

coke ~ X satp S = 0 A coke ¢ O'{N)
V

s = ((t, cok,))~s'	 A ,oh If- o(~ t t)
A O[(AY((s',~)-(I+I,))

Applying the inference rule for the timeout operat.or, we may deduce that

reset ~ X

~ sat, A(s,~) V B(s,~) V C(s,~)

coke ~ X

where

A(s,N) ::	 bcgin(s) ~ tl A

s = ((t, reset))s' A
O[(AY((s',~) - (I, + I))

B(s,~) "	 s ~ 0 A ,ok, If- q(~ - (I, +0))

C(s,~) "	 s - (t, +0) = ((t, ,ok,))~s' A

,ok'lf-q(~-(I,+o)tl) A

O[(AY(s',~) - (I, + I))

An application of the rule for event prefix reduces our proof obligation to

s = 0
V

s = ((t', coin))~s' A A((s'Y) ­ (t, + t'))
V => O[(AY(s,~)

B((s',~) - (I, + I'))
V

C((s',~) - (I, + 1'))

104 Specification and Proof in Real-time Systems

The spocification GJ<A Y is vacuons for the empty trace; we have only to prove

((10, coin)) E oS 1\

reset ¢ a($ T[tQ + i/_ to + tl + t,l) /\

s ~ «t', cQin))~s' A	 A«,', N) - (I, + t'))
V
B«s', N) - (I, + t'))
V

C«s', N) - (t, + t'»

cok' ~ a(N 1 t, + t,)
=>	 V

coke E a(s 1 t,)

If t' i- 10 , then the result is ea...,ily estahlished by expanding A, B, and C. Suppose
then tha.t tJ = to; onr assumption tha.t

reset t/: u(s T[t' +i" t' + I J + tf])

contradicts A(.;:, ~), so we have only to show that

, ~ «t', cQin)~s' A	 B«s', N) - (I, + t'» coke ¢ I7(N 1 i' + t s)

V } => V

C«s', N) - (t, + t')) coke E 0-(S 1 til

From the definitions of Band C we obtain:

_,' ~ () A wke ~ a(N - (Id t, + t' +6»
V

S' - (ll + tt + t' + 6) = ((1.", coke))sfl

The remIt follows, providing that

is ~ if + i~ +!J

If a coin IS insert.ed al time t. then we cannot guarantee to provjde i'l drink any
earlier than t + t1 +t 2 +8. We must allow a delay of t1 for the coin to be inserted,
a delay of te for the coin to drop, and a delay of at Iea..'lt 6 for control t.o be passed
to the dispensing process.

Tile proof of NEXT(s, ~) is similar, although an additional constraint must be
added to ensure that this specification is preserved by each recursive call. We may
conchde that the fnll specification is sa.tisfied:

TSVM sat Sl'lOC(s, N)

providing that the above condition upon is is observed.

Chapter 6

Structuring Specifications

If we wish to produce a readable specification of a large system, then we must
take care to present our description in a clear, structured fashion. At each level of
abstraction, we identify the interfaces between system components and conceal any
events which are not of interest. We express our specification as a series of service
specifications, each describing the service provided by a particular component of
the system. In this way, we may refine a description oC the service provided by a
system towards a satisfactory implementation_

6.1 Abstraction

The hiding operator provides the mechanism for abstraction in Timed CSP; the
expression P \ A denotes a process that behaves as P, except that

• events from A occur as soon as they become available

'" only events from outside A are observed

In section 5.2 we gave an inference rule for this operator that was easy to derive,
but difficult to apply. We can achieve a significant reduction in complexity if we
separate the concerns of concealment and scheduling. To this end, we define a
predicate actA which holds of any A-active behaviour:

Definition 6.1 aotA(s,N) "" [O""d("N))xA~N <)

A behaviour (s, N) is A-active if a.ll events from set A occur as soon as they become
available. If we wish to estahlish that P \ A satisfies a specification S(8, rlj, it is
sufficient to show that

'" S(8, N) holds for all of the A-active behaviours of P

'" S(s,N) is unaffected by the concealment of events from A

106 Specification AIld Proof in Real-time Systems

The scmnd condition is satisfied jf the truth of the specification is unaffected by
the removal of A'09 events from the trace and refusal.

Definition 6.2 A beha.vioural specification 5(8, N) is A-independent iff

V"TE';N,RSET. S("NU[O"nd(s))xA),*S(s\A,N)

<>

If 5 describes a service provided a.cross an interface that is disjoint from A, then
S should be A~jTldependent. The folluwing abbrevia.tion will prove convenient:

Definition 6.3 Sf"~ N) 'Il A =act,(" N) "" S(" N) <>

This sta.les that the specifica.tion S(s,l'{) holds whenever the current behaviour is
A-aetil'e. We may now present a simple proof rule for tbe hiding operator:

Rule 5.4

P sat, Sis, N) 'Il A
[S is A-independent J

P\Asat,S(s,N)

f'.,

If an A-independent 5pecilkation 5 llOlds for a.1I A-active behaviours of a. term P,
then we may infer that P \ A satisfies S(s, N).

Example

Suppose that process P satisfies the following specification:

T("N) ~ a¢~(NlI1,2))VaE~(sT[o,2))

A

«(I, a)) in s "" b ¢ ~(N 1 It + 1, t + 2))
V

b E ~(, 1 It +1, t + 2))

In this case, the event a is available from time 1 to time 2, unless it bas already
occurred, Further, if an a is observed at any time t, then b either occurs or is
availa~lc during the intcn'al [t + f, t + 2).

6.2 Scheduling	 107

If we consider only the a-active behaviours of P, then a is present for the
dnration of refusal set N. If the behaviour (5,~) extends beyond time 1, we know
that a mnst ocenr before time 2. We can show that

T(s,N),"a	 " end(s,N);>1=>aEa(sl[0,2))
A

((t,a)) ins => b ¢ a(N 1 [I + 1,t+ 2))
V
bEa(sl[t+1,t+2))

and it is easy to establish that T(5,N)~ a => S(s,N)~a, where

S(s,N) "	 3t:[0,2).b¢a(Nl[t+1,1+2))
V

bEa(sl[t+1,t+2»

It is clear that 5(s, N) is an a-independent specification, so we may apply the new
inference rule for the hiding operator to obtain

P\a sat 3t: [0,2)01 ¢a(Nl [t+1,t+2))
V

bEa('1[t+1,t+2»

The event b is made available, or is observed, during the interval [t + l,t + 2),
whereO~t< 2.

6.2 Scheduling

The form of liveness condition employed above is bot.h awkward and inadequa.te
if we wish to abst.rad from the events concerned. If we have that

P sat a ¢ a(N 1 I) V a E a(s 1J)

then we may infer only that P\ a performs event a at some time during the interval
J. If we intend to concea.l an event /1, then any liveness specification inVQlving a
should address the time at which a becomes availa.ble.

Instead of requiring that an event a is offered during a fixed interval1Jnle55 it
is observed, we may insist that a is available 1mtil it is observed.

Definition	 6.5

a from t (5, N) a ¢ a(N 1 [I,b,g;.(, 1 [t,oo) I a)))

o

108 Specification and Proof in Real-time Systems

The right-hand predicate slates that event a is absent. from refusal set t{ between
time t and the time at which the next a is observed; it is easy to see that the
process WAIT l; a --10 STOP will satisfy this specification.

This form of liveuess specification allo......s us to determine the precise time of
occurrence of hidden events. If a process P satisfies the liveness condition a (rom f.,
then we may infer that the event a occurs at time I. in all a-active behaviours of
P. If we define

Definition 6.6 a at t (s,~) == ((t,a)) in s o
then we obtain

afromt(s,N) => e1/.d(s,~»t=>aatt(s,N)~a

If a becomes available at t, and it is hidden, then it will be observed at t, if the
currenl observation extends far enough. The above implication is a consequence
of the following result;

Lemma 6.7 For an}' 5(3, N), if end(s, N) > f then

(S(s,~) V a from' (.<, N)) ~ a => (S(s,N) V a at t (s, N») ~ a

(S(s,~) /\ a Irom t (s, ~) ~ a => (S(s,~) /\ a at I (s, N» ~ a

Q

Proof From the definition of~, we obtain

([0, end(s, N)} x {a}) S; N

Our assumption that end(s, N) > t allows us to infer that a E o(N i f). From
definilion 6.5, we deduce that

[I, begin(s T[I,co) l a)) ~ {}

and hence that ((l, a)) in 8. The proof may be completed using tautologies of the
propositional calculus. 0

We may allow a process ~owithdr(tw the offer of an event if it has not been a.cceptf>d
within a given period of time, or if another event has been observed.

Definition 6.8

alrom I until t'(s,N) " a<ta(~T[t,min{t',b,gin(sT[t,oo)la)}))

o

6.2 Scheduling 109

If tbe offer of event a has not been accepted by time i', the proces8 mAy retract
without violating the liveness specificatiou. This corresponds to a.n application of
the timeout operator.

WAIT 1.1 ; ((a _ STOP) g. STOP) sat a from t l until iJ + I,

The event a is enabled at time t l and, if it has uot been performed, disabled at
time tJ + t%.

Definition 6.9

afwmtuntilb(s,N) s, a¢u(N)lt,begin(,)[t,oo)l{a,b))))

(>

If a process is to satisfy this specification, event a must become available at time
t, and must remain available until either a or b is observed. We may combine this
condition with t.he possibility of a timeout:

Definition 6.10

a from t until t' or b (s,~)

a ¢ u(N) [1,min{I',begin(') [1,00) t {a,b))}))

(>

It is worth observing that:

a from t until t' or I, == a from t until t' V a from t until b

More usually, we will wish to insist that a becomes available at some time during
a fix.ed interval I. We can capture this requirement witb a simple quantification:

Definition 6.11

afromI(s,N) == 3t:leafromt

(>

As an example, consider the pl'Ocess P defined by:

P '" (WAlT [1,2); (a ~ STOP 0 b ~ STOP)) I!, STOP

no Specification and Proof in Real-time Systems

We may use the timed failures proof system to show that

P fiat a {rom {I, 2) until" or h (s,~)

The enot a is enabled at some time between 1 and 2, and disabled at time" or
when boccurs, whicbt:ver is the sooner.

With another existential quantification, we may allow the offer of a to be
withdrdwn at any time during an interval J. Further, we may require that event
a ma.d~ available until some event from set B is observed:

n~flni~ion 6.12

a from I until J or D £: 3 t : I; e: J • 3 b : B • a from t until 1. 1 or b

<>

The foJowing equivalence confirms that existential quantification over set B has
captured the required constraint:

dromtuntiIBr-"N) " a¢o(NJ[t,begin(d/t,cc)L{a}UB)))

The offer of a may be withdrawn following the occurrence of any event from set
B. This justifies the foHowing definition:

Definition 6.13

A from J until Jar B .=: Iia : t1 • a from I until J or (A u B)

<>
If a. process is to satisfy this specification, the whole of set A must become ava.iiable
at Some time t in J, a.nd remain available until some time t' in J, unless an event
from ,1 U B is observed. The .~~quence of quantifiers is the most appropriate for our
needs. the specification" A from J (8, Ny' is satisfied by any process that becomes
read}" for every event from A at some time during J. An example might be

WAIT [0, 1); in.m: in.M - Pm

Thi:> process becomes ready to acr:ept any message m from set M on channel in
a.t some time during interval [0, 1).

A similar generalisation may be applied to the 'at' construct; we may repla.ce
the single event and time with a set lind interval:

Definition 6.14 A.tl("N);: 3.,A t,loo.tt("N) <>
This condition is true if some event from set A is observed at some time during
the interval J.

6.2 Scbedl11ing 111

We may generalise the statement of lemma 6.7. If (.s, No) is an A-active be­
haviour, and every event from A is made avaiLahle at some time during interval 1,
then some event from A must be obser....ed during I.

Lemma 6.15 If end(s, N) > end(l) then

(5(" N) V A Iwm I ("N)) '\I A => (5("N) V A aL I ("N)) '\I A

(5(" N) A A Iwm I (" N)) '\I A => (5(" N) A A at I (" N)) '\I A

Q

Some care must be taken in the presence of an 'until' clause: jf the interval In

which an event is enabled inlersects with the interval in which the offer may be
withdrawn, then there is no gllarantee that the event will occur.

Lemma 6.16 If end(s,N) > end(l) and begin(J) > end(l) then

(5(" N) V A Iwm I until J (" N)) '\I A => (5(s, N) V A at 1(" N)) ~ A

(5(s, N) A A [wm I unW J (s, N)) '\I A => (5("N) A A at 1(" N)) ~ A

Q

If the offer of events from set A may be withdrawn on the observation of an event
from B, theu we know that some event from A U B will occur in an A-active
behaviour.

Lemma 6.17 If end(s, No) > end(J) then

(5(" N) V A Imm I until B ("N)) '\I A => (5(s, N) V AU B at I (s, Nil '\I A

(5(" N) A A Irom I until B (s, N)) '\I A => (5(" N) A A U B aL I (" Nil '\I A

Q

In each of these lemmata, we C,1nnot assert that any event is observed unless the
experiment is of sufficient duration: elld(s, N) > end(l).

The 'at' and 'from' expressions are macro l statements in our timed failures
specification language. We may use such expressions to make our specifications
more palatable, although it will often be necessary to expand them in the course
of a proof.

1 From macrose: synt{\.(".tic Sllj!;ar.

112 Specification and Proof in Real-tjme Systems

6.3 A Specification Language

We may consider the macro expressions of the previous section as fu nctions defined
upon a typical timed failure. If we lift the boolean operators to take functions as
arguments, we ma.y obtain a. simple language for timed specifications..For example,
the requirement that

P sat a from t(s,N)/\""(batt (s,N))

may be shortened to

P sat a from t /\..., (6 at t)

Not only are such specifications easier to read, but also they are open to inter­
pretation in other models. This language is a first order logic with time-valued
variables, comparable to those of [Haoman 90) and pabanian & Mok 861.

There is no need to extend the satisfaction relation between processes and
specifications. If F is defined upon the set of all timed fa.ilures, then

P sat F(s,N) .. 'fs,N. (s,N) E .rr(rJ ~ F(',N)

In the case when F is applied to the typical failure (8, N), as in the example above,
we will omit the function argument. We may employ the inference rules of the
timed failures proof system to estahlish results expressed in our new lallguagt.
We may also derive laws for reasoning about higher-order objects such as 'at' and
Ifrom' expressions. If we define

time(s,N) == end(s,N.)

active A (s,N) '" [O,end(s,N)) <:: N

then lwuna G. 7 gives rise to a simple example

aetiveA 1\ A from t A time> t ::::} A at t

If events from set A do not rf'C]lIire the cooperation of the environment, and all
events from A are made available at time t, then some event from A will be
observed at time L

In the course of chapter 7, we will require a number of functions to extract
information from a timed trace. One such function has already beell defined,

AatJ(s,N) '" 3a,A.aEu(s;Il

whichre1urns a boolean expression whose value is true precisely when some eventl
from set A is present in trace s restricted to interval 1. The remaining functionsl
will be defined using projection mappings upon timed failures.

6.3 A Specification Language 113

If M is a projection mapping from timed failures to time values, and i{) is a
predicate upon time values, then

Fl"N) "(M(,, N))

defines a behavioura,J specification on timed failures. A similar construction may be
used for projection mappings whose results are timed events, sequences of events,
or e\'en components of events.

We will often wish to consider the sequence of data values passed along a certain
channel c during a. particular interval I. The following projection mapping yields
precisety this information:

datac during I (s,l'{) == data(s l c.r: Tl)

where data is defined by

da'a(()) = 0
da'a(((t,,_a»~,) = (a)~da'a(s)

The result is a sequence of values drawn from the datatype of values permitted on
channel c.

Another useful projection mapping ret.urns the last timed event from set A
observed during int.ervi\.l I, 01' strictly before time t:

I." A dm;ng I (s, N) = foot(' ~ A TI)

I." A beCo,e I ("N) = foo'(, l A T[0, I))

Similarly, we may define a projection mapping 'count' that yields the number of
occurrences of events from a given set during a specified interval.

colln',ldu,-;ngI("N) = #(s~A)I)

cOllntA beCoce' (s,N) = #(d A T[0,1))

Again, we may choose to count only the ('vents observed before some time t.

It will prove con venient to give names to the projection mappings from timed
events to times and events.

timeof (I. a) ­

Ili\.meof(t,a) == a

for any timed event (t, a). \Ve will add to this list of projection mappings and
functions whenever we encounter constraints that cannot be expressed using our
existing vocabulary.

114 Specification and Proof in Real-time Systems

6.4 Example

Consider a simple communications network, consisting of a sender process S, a
receiver process R, and two commnnications lIu::dia, M1 and M2. The network
accepts messages on channel in, and delivers messages on channel out. The sender
transmits each message t.o the receiver using either M1 or M2. The choice of
medium may depeml IIpon message length, cnrrent loAd, or internal errors; in any
case, the user is not informed. At this level of abstraction, the choice of medium
is nondeterministic.

in au'

,1
M1

d

s R
,2

Me
,2

Figure 6.1: Transmission with a choice of media

Doth transmission media are reliable-no messages will be lost-but each is
associded with a different nondeterministic delay. The first will transmit messages
from channel 81 to channel r1 with a delay of between 1 and 2 seconds, while the
other will trammit message,~ from s2 to 1.2 with a delay of between 0.1 and 0.9
seconds. These channels are invisible to the network user.

We require that any implementation of this network should deliver a message
within 3 seconds of its arrival on channel in. This requirement is captured by the
following beha'Vionral specification:

!,IVE == £n.m at t ~ out.m from (t, j + 3)

If a message is input at time t, it will be available on channel out at some time
between t and t + 3. We will assume that all times are given in seconds.

W€ assn me that all messages ate of message type M, and choose c.M to denote
the set of communications possible on channel c,

c.M '" {c.m I mE M}

where c is any of 51,52, l'1, r2.

6.4 Example	 115

Each transmission medium is initia.lly ready to accept a message, and is always
prepared to a.ccept a new message ithin 0.1 seconds. If medium M1 accepts a
message m on channel sl at time t, then it must begin to offer the communication
r1.m at some time between t + 1 and t + 2, and become ready for a new mes­
sage before time t + 0.1. We may capture these requirements with the following
behavioural specification upon medium M1:

Ml sat	 al ..M from 0

/\

sl.m at t => rl.m from (t + 1, t +2)
/\

sl.M from (t, t + 0.1)

The faster medium M2 sillisfies a similar specification, undertaking to deliver a
message after a delay of between 0.1 and O. S seconds:

M2 sat	 82.M from 0

/\

82.m al t => r2.m from (t + 0.1, t + 0.3)
/\
,2.M [,om (t, t + 0.1)

For the purposes of this example, we have i\Ssumed that the media provide for
Mleguate buffering of messages. Tllis issne may be addressed separalely, using
timed safety specifications.

The sender process S passes each input to at least one of the transmission
media within 0.2 seconds of its arrival on channel in:

S sat in.m at t => 81.m from (t, l + 0.2)
V
82.m from (t, t + 0.2)

If we are to guarantee the successful transmission of a specific message, we must
ensure that the sender process does not flood the transmission media with spuri­
ous messages. This requirement corresponds to the the following unLimed safety
specification:

5 sat "'im;M.count{sl.m,s2.m}~countin.m

For any message m, the number of transmissions of m is less than or equal to the
number of times 711 is accepted on ch;lllnel in.

116 Specification and Proof in ReaI-6me Systems

The receiver R behaves in a complementary fashion. It. is alwa.ys prepared to
accept aneW message from either medium within 0.1 seconds. Messages are ready
for output on channel Qut within 0.2 seconds of arrivaL

R sat rl.MUr2.MfrornO

A

rl.m at 1 => ouLm from (t. t + 0.2)
A
d.M U r2.M {wm (t, t + 0.1)

A

r2.m at t => ouLm from (t, t + 0.2)
A
r1.M U r2.M from (t, t + 0.1)

If a message is received on either r1 or r2 at time t, it is made available on channel
Qut before time t + 0.2.

We assume that the sender and receiver hd,Ve disjoint alpha.bets, and that the
named channels are distinct. Wit.h these assumptions, we may implement the
network as a simple parallel combination:

NET'" (S II (MIIIIM2) II R)\{sl,s2,d,r2)
{.I,.!} {rl,r!}

To demonstrate that this implementation meets our liveness requirement, we must
show that

COMMS sat LfVE~{,I,s2,rl,r2J

where COMMS is the process

S II (MiIIIM2) II R
{d,82} {rJ,.t}

From the specificat.ions of Mi and M2 and the inference rule for interleaving
parallel combination, We ma.y deduce that

Milll M2 sat si.M from 0 /\ s2.M from ()

A

si.m at t => r1.m from (t + 1, t + 2)
A
sl.M from (t, t + 0.1)

A

s2.m at t => r2.m from (t + 0.1, t + 0.3)
A
s2.M from (I, 1+ 0.1)

6.4 Example 117

Using the inference rule for communic.a.ting parallel, we may establish that:

s II (M1 III M2) ,., in.m at 1 => 81.m from (t, t + 0.3)
{ol ,• .e} V

82.m from (t, t + 0.3)
A

81.m at l:::;. rl.mfrom (t + 1,t + 2)

A

82.m at t :::;. r2.m from (t + 0.1, t + 0..9)

Observe that the maximum delay between input on channel in and readiness for
transmission includes the 0.1 seconds that may be spent waiting for the medium
to accept the message.

Another a.pplication of the inference rule yields that:

COMMS sat in.m at t :::;. 81.m from (t, t + 0.9)
V
82.m from (t, t + 0.3)

A

81. m at 1 => ri. m from (t + 1, t + 2.1)

A

s2 mat t :::;. r2. m from (t + 0.1, l + O.n
A

{r1.m} U {r2.m} at t => out.m from (t, t + 0.2)

Under the assumption that lhe set {sl , s2, r1, r2} is hidden from the environment,
we may apply lemma 6.7 and infer that:

COMMS sat (in.mat/:::;'out.mfrom(t+0.l,t+0.9)
V
oul.mfwm(l+ 1,1+2.6)) 'H,J,s2,rl,r2}

The disjuDction corresponds to the hidden choice of media. If the message is sent
via medium M2, there will be a delay of between 0.1 and 0.9 seconds; a different
range of delays is introduced by the slower medium Ml.

The above behavioural specification is {81, s2, rl, r2}-independent; we may
apply the inference rule for the hiding operator given in section 6.1 to obtain

NET sat in.m at t => old.m from (t + 0.1, t + 0.9)
V
out.m from U+ 1, t + 2.6)

llS Specification and Proof in Real-time Systems

which is enough to establish our liveness requirement:

NET sat in.m at L ::::;. out.m from (t , t + 3)

In the ahove proof, we have omitted the details of the functional application and
varia.ble substitution neceSgary for the timed failures proof system. This cumber­
some process can he avojded altogether if we derive inference rules for the direct
manipulation of higher-order specification statements.

Chapter 7

An Ethernet-like Protocol

To illustrate the application of Timed CSP to the specification of real-time systems,
we will show how the functions presented in chapter 6 may used to describe the
behaviour of a communications protocol at two different levels of abstraction.
Tbe protocol chosen (or this purpose is based upon the Ethernet protocol defined
in [Xerox 80], a standard protocol for local area net works.

The Ethernet protocol is a broadcast protocol: signals sent by one station may
reach all of the stations upon the network. It is a carrier-sense protocol: stations
listen for a carrier signal on the broadcast medium and act accordingly. Another
important feature is collision detection. Each station must monitor the broadcast
medium during transmission, and cei'lSC immediately if it becomes apparent that
another station is also transmitting.

The Ethernet specifici'ltion [Xerox 80] is divided into two parts, correspond­
ing to the data link and physical layers of the ISO reference model deICribed
in [Tanenbaum 81J. This model consists of seven layers, each representing a. differ­
ent level of nhstraetion, from the hardware of the physical layer to the user software
of the application layer. Each layer provides a service to the layer above, facilitat­
ing virtual communici'ltion bctw(.'Cn peer processes on different machines. In this
chapter, we will concern ourselves with the bottom three layers of the model: the
communication subnet of fignre 7.1.

The physical layer is the lowest layer in the model bierarchy, and transmits data
as bits between the stations, or nodes of the network. We will provide a timed
failures description of the service provided by this layer, but we will not attempt
to describe its internal behaviour. Such a description would require a treatment
of broadcagt communication; our present model of computation is based upon
synchronisation. In chapter 8, we will sec how the Timed Failures model may
be extended to include an element of broadcast concurrency; a description of the
physical layer will he presented as ?In example.

120 Specification and Proof in Real-time Systems

The data link layer at:cepiiS packt;t8 of data from the layer above, inserting the
data inta frames for transmission to the physica.llayer. Each frame is transferred
to the physical layer as a stream of bits. The data link is responsible for handling
any errors which arise in frame transmission, provjding its client layer with an
error-free virtual communication medium. To provide this service, the data link
must be capable of detecting errors, retransmitting damaged reames, and sending
acknowledgments.

The network layer is the third layer of the ISO model. This layer converts
messages into packets, and uses the data link to transmit them to their destination.
We will refer to the network layer as the client layer, reserving the term network
for the communication system as a whole.

Client Layer Client Layer

! !
l)ata Link Layer Data Link Layer

! !
Physical Layer Physical Layer

Figure 1.1: The Communication Subnet

The data link component of the Ethernet protocol does not correspond pre­
cisely to the ISO model. The data link component of Ethernet will attempt to
transmit each frame no more than sixteen times; if a.l1 of these attempts are inter­
rupted by collision detect signals from the physical layer, then the current frame is
abandoned. Further, although incoming frames are checked for etrots, no fadlity is
provided for retransmission or acknowledgment. Errors (other than those caused
by coJli,gions) are simply reported to the client layer at the current node.

In this chapter, we will specify the data link component of a protocol that
differs from the one described in (Xerox 801. To simplify the presentation, we will
assume that aJI errors are due to collisions on the broadcast medium. In this case,
there is no need for error reporting at the destination node. We will also assume
the existence of an implementation of the Tllndomisation strategy employed in
Ethernet, described at the end of section 7.6. With these assumptions, we may
address the complex timing properties of an Ethernet-like protocol within the
framework of a. short case study.

7.1 A Hierarchy o[Specifications 121

7.1 A Hierarchy of Specifications

The layers of our protocol form a service hierarchy: each layer provides a service
to the layer above, and makes demands upon the layer below. We will use timed
failures specifications to capture the requirements at each level of hierarchy~ and
derive a correctness condition for any implementation of the protocoL

Specification

If a service is provided by layer L, it can be described in terms of the OCcurrence
and availability of events from some set AL . We will use HL to denote the other
actions perfonned by the layer, those hidden from the layer above. If L, is a service
hierarchy, then we require that

m ~ n + 2 :::} EL" n ELm = {}

m = n + 1 :::} EL" n ELm:::: AL..

where E L is the alphabet of layer L. Each layer should insulate the layer above
from the service provided by the la:rer below. In the communication subnet, the
data link layer DL should insulate t.he client layer NL from the service provided
by the physical layer;

EN,n EPL

ENL n EDL

EDL n EPL

~

=

=

{}

ADL

APL

The data link and physical layers communicate across an interface APL•

Each layer is associated with a service specificat.ion and a total speci~.cation.

The first describes the service provided to the layer above, while the second de­
scribes the internal activity necessary to provide such a service. We use SL and
TL to denote the service and total specifications of layer L, respectively. If U is
the layer below L, then the conjunction of TL and SL' must be enough to ensure
that the service SL is provided:

(T, A S,,) ~ H, => S,

The use of the ~ operator in the ahove implication corresponds to the assumption
that the events from HL are to he concealed. We require also that SL is H L­
independent: any service specification must be independent of hidden events.

Returning to the communication subnet, a data link implementation will sat­
isfy a total specification TDL . The service to the client layer, SDL, should be a

122 Specification and Proof in Real-time Systems

consequence of this specification, given that the physica11ayer provides a service
SPL to th.e da.ta link:

(3PL fI TDL) ~ HDL '* SDL

TpL ~ l1FL '* 3PL

The service provided by the physical layer must be a. consequence of its own internal
activity; there is no la.yer beneath it.

Implementation

A protocol hierarchy may be implemented as a. parallel combina.tion of node pro­
cesse;, one for each node on the network. A node process will be the parallel
combination of layer processes, one for each layer in the protocol:

PROTOCOL :; II NODE, j E NODE
E,

NODE, :; II. LA YER" j E LAYER
","

where L; is the set of possible events a.t node i, and E'J is the set of possible events
on layer j at node i. The disjoint nature of the event sets a.llow us to rewrite the
protocol as a combination of layers:

PROTOCOL :; II LAYERj j E LAYER
t,

LAYER, :; III LAYER" i E NODE (j;>I)

LAYER, :; II LAYER", i E NODE
E•. o

The lowest layer of the protocol has access to a physical communication medium;
all of tbe others have only virtual communication, corresponding to an interleaved
para.llel combination.

The communication subnet is implemented as follows:

ETHERNET :; DATALlNK II PHYSICAL
Ape

DATALINf(== III DL, iE NODE

PHYSIC,lL = i E NODEIIAlL, PL,

The data link layer is an interleaving combination of node processes; any synchro­
nisation is by virbJe of the service provided by the physical layer. The processes in
the physical layer must agree upon certain events, corresponding to the presence
of signals on the broadcast medium.

7.1 A Hierarchy of Specifications 123

An implementation of a protocol hierarchy may be judged correct if

PROTOCOL \ H sat SL(S, N)

where Sc. is the service provided by the top layer, and H is the set of all internal
events. If the protocol is implemented as a parallel combination of layers

PROTOCOL = (L, II L,) II L.) II ...
AD A J A.

then by the disjoint nature of our event sets and interfaces we have that

PROTOCOL " (((L, \ H,) II L,) \ H, II L,) \ H, II
AD Al AR

where H is the union of the hidden event sets HJ •

Applying the inference rules of chapter 5, it is sufficient to show that each layer
j satisfies the corresponding total specification, and that an adequate service is
provided at each stage:

S;(s ~ E;, N,) }
Tj+1 (s ~ ~i+I' Nj+l) => SJ+l (5, N) ~ H +
N ~ Ai = (N j U NJ +1) ~ Ai J J

N\ A, ~ (N, nN,+,) \ A;

The total specification of layer j + 1, together with the service provided layer j,
must be enough to provide the service Si+J, given that the events from set l/j+l
are to be hidden from the environment. The instantiation of trace and refusal
sets in the left-hand side of the predicate comes from the inference rnle for the
communicating parallel operator.

To establish that our example protocol is correct, we must show that

DL sat TDL(s, N)

PL sat TPL(s, N)

SPL(s ~EPL,Np) }

TDdslEDL,N D) => SDL(S,N)~HDL
N ~ A PL ~ (Np U ND) ~ APL

N \ An ~ (Np n ND) \ An

TPL(s, N) => Sn(s, N) ~ HPL

There are no layers beneath the physical layer; the service specification SPL must
be a consequence of the total specification TDL.

124 Specification and Proof in Real-time Systems

7.2 The Data Link Service

The data link layer accepts packets of data from the client layer at each node. It
then a.t-tempts to tra.nsmit this da.ta to all of the other nodes, via the broadcast
medium of the physical layer. Each packet of data is encapsulated in a frame
before transmission, and transmitted bit by bit to the physical layer. We assume
that collisions are the only source of data corruption; jf the data link succeeds in
transmitting the whole frame, then the data link component of any receiving node
will be able to pass the data to its client.

If the data link is interrupted by a collision during the transmission of a (rame,
it will back off and attempt to send the entire frame again. If sixteen consecutive
transmissions are interrupted, the frame is discarded and the data link informs
the client layer of its failure. Successful transmissions are also reported by the
transmitter. Our assumption that collisions are the only source of corruption
means that there is no need for error reporting at the receiver; collision-damaged
frame fragments are simply discarded.

The data link is always ready to receive data from the physical layer, decap·
sulating whole frames and passing them to tbe client layer whenever the packet is
addressed to the current node. The data link does not store packets: any buffering
of data is the responsibility of the client layer. As a result, there is a limit on
tbe time between the successful transmission of a frame and its delivery to the
client layer at the destination node. There are also upper limits upon the time
spenl waiting to start a transmission, and the time spent transmitting. These are
determined by the time taken to transmit one bit and the cable propagation delay,
both parameters of the system.

Abstraction

We must establish which of the observahle events in a possible history of the system
are of interest. Our service specification will be expressed as a constraint on the
occurrence and availability of these events. The data link layer is an interleaving
of data link processes, one for each node on the network. The set of nodes in the
network a.nd the data type of packets are parameters of the system.

E NODE nodes in the network

p E PKT da.ta packets

r E REP succ 1fail

The datatype of report:'l has two elements, representing success and failure.

7.2 The Data Link Service 125

The interfate between the data link layer a.nd the client layer at node i will
consist of three channels:

i.outi.in i.rep CLIENT

DATA LINK

Figure 7.2: the service provided by the data link layer

Packets of data are received from the client layer at node i along channel i.in,
aDd successful transmissiou is reported on channel i.rep. Valid frames received
from the physical layer at node i will be decapsulated and passed as packets to
the client layer, along channel i.out.

Formal Specification

The service specification of the data link will consist of constraints upon the be­
haviour at a single node-local requirements-and constraints upon the behaviour
of the entire layer-network requirements. Each class of constraint will include
both safety and liveness conditions. This classification is largely for the conve­
nience of the reader; in section 7.3, we will employ a more systematic approacb.

The alphabet of the iuterface between the data link and client layers, across
the whole network, is given by

ADL :2 {i.in.p, i.rep.T, i.out.p Ii: NODE; r : REP; p : PKT}

The following subsets of AnL will be useful in our service specification:

IN, == (;.in.p I p , PKT)

REP, ={i.rep.r I r, REP}

OUT, ={i.ou/.p I p , PKT}

These denote the set of all possible input events at node i, the set of possible
reports at node i, and the set of possible output events at node i, respectively.

The service provided by the data link layer to the client is parametrised by the
following time constants:

lin maximum delay between report and readiness for input

126 Specification and Proof in Real-time Systems

tTt' maximum delay between input and availability of report

t"., client layer maximum response time for output

tu maximum delay in preparing a frame for transmission

t~"" length of the contention interval

t",~ maximnm delivery delay for a successful transmission

The length of the contention interval, te" .. , is an upper bound on the time taken to
acquire the broa.dca:;t medium: if a node i transmits for time te"" without detecting
a collisiDn, then we can bp sure that the other nodes will wait for i to finish before
attempting to transmit.

We will assume the existence of a function dest, which returns the destination
of a packet or (rame, This will be a single node, although we could model broadcast
packets by making the result of dest a. sel of nodes.

Local Conditions

\Ve wish to ensnre that the data link layer at each node alternates between accept­
ing packets and reporting on their transmission. We can capture this requirement
as a simple specification on the tracl;'S of th~ system, by counting the occurrences
of events from the sets IN; and REPi :

DSJ == Vi. (count IN; = count REP; + I)V(countINi = count REP;)

There must be an inpnt before each report, and there can be no more than one
report following each input.

1£ (he data tink layer at node i accepts a packet at time t, it should be prepared
to report the success or failure of its transmission within time Inp .

DS2 == 'Vi,t • IN, at t ~ i.rep.succfrom (t.t + t ...p)

V
i.rep.jail from (t, t + tn:,)

We also reqnire that the data link should be ready for input, unless it is currently
attempting to transmit a packet or waiting for a report to be collected,

DS3 == 'Vi,te IN,fromOI\(REP;atl=} IN;from(t,t+ti"))

At each node i, the data link is willing initially to accept any valid packet on
channel i.in. Subsequently, the data link becomes ready for a new packet on this
channel within time tin of any report on channel i.rep.

7.2 The Data Link Service 127

Network Conditions

If a success is reported at node i, then the last packet input at i will be safely
delivered to its destination.

DS4 == Vi,j,t,t'.

i.rep.sllCC at t 1\

dest(p) ~j 1\

lastlNodming [0, t) = (t', i.in.p)

~ j.out.p from (t', t f -+- t",~)

If the value succ is passed to the client layer at node i, and the last packet input at
that node was p at time l'. with destination j, then that packet is made available
for output at node j within time tmar ­

Without a probabilistic argument, we can gu.arantee a successful transmission
only when no other node is entrusted with a packet for the length of the contention
interval. If a packet is input at node i at time t, and no other node is entrusted
with a packet during the interval (t - fro" t + t~o. + t,~), then that packet will be
delivered safely, and a success report will be available within time tr.,.

DS5 == Vi,p,t.

i.in.p at t 1\

Vk • k I- i =}..., (INk at (t - tr~J" t + t.o• + t.,))

=} Lrep.succ from (t,t + ire,)

The bonnds of the time interval ensure that all previous packets have been dealt
with, and that no other frames are ready until the period of contention is over.

Environmental Assumptions

The data link cannot provide the service specified above without the cooperation
of the client layer, in the following respect. At each node, the client layer is
responsible for the buffering of output packets; if the data link offers a packet to
the client layer on channel i.ou'-, the client will accept it within time tul.

To express this en ironmental assumption, we define the following projection
mapping on timed failures:

responseA(s,~) =­
in/It I 'It', 1.1 ~ [O,end(s,~)) 1\ (I'EI => A 1: ~ 1 t') => length(!) < I}

128 Specification and Proof in Real-tjme Systems

This function yields the least time t such that, i£ I is an interval contained in
[0, end(s,N)) and there is no time t' dnring J at which the whole of A is offered
by the environment, then I must be shorter than t. Observe that

response A < t (s,~) _

V1.1 £ [0, end(s, N)) 1\ length(!) ;, t ~ 3 t' E 10 A £ N1 .'

If the response time is less than t, then the whole of A must be offered by the
environment at least once dnring any interval of length t.

Our assumption aboot the client layer may be expressed as (ollows:

EA -= Vi. response OUT; < tnt

We assume that the data link at node i never has to wait longer than lo"l for an
offer of outpnt to be accepted. One specification of the data link service is

SOL " EA ~ DS/ 1\ DS21\ DS31\ DS' 1\ DS5

This is not a complete specification, by any means. We have shown that certain
important aspects of the data link service may be rendered as timed failures spec­
ifications. In the following sections, we will see how the data link and physical
layers interact to provide this service.

7.3 The Data Link Specification

The data link layer accepts pa.ckets of data from the client layer, and adds framing
information. rr the physical layer signals that the broadcast medium is clear, then
the data link begins transmission. Ir the physical layer signals a collision, then the
tra.nsmission is interrnpted as SOOIl as possible. In this case, another attempt is
made arter a random period of time has elapsed, Ir sixteen attempts have been
made to transmit the same frame, the data link signals that the transmission has
failed, and awaits a new packet. Ir no collision occors during the transmission of
a frame, then thl" data link signals a success.

Reception is less complicated. The data link receives bils of data from the
physical layer, and stores them until the broadcast medium falls silent. When this
occurs, the data stored is tested to see whether it corresponds to a valid frame
intended for the cnrrent node. If this is so, then the data is stripped of its framing
information and passed to the client layer. If not, then the data is discarded. In
either case, the data link shonld be ready to receive new data before the inter·frame
spacing time has elapsed.

1297.3 TfJe Data Link ScP'Ce=e=;=fie=a=t=;o=n=--	 :.:.~

Abstraction

The dala link layer at node i accepts data packets along channel i.in, and passes
the data to the physical layer along channel i.put as a stream of bits. Data is
collected froITl the physical layer at node i aloug chilllnel i.get, and passed to the
client layer along channel i.out. Reports are made available to the clienllayer on
chanuel i.rep.

i.out	 CLIENT

DATA LiNK

I.in i.rep

DATA LINKI -- ----,- ~;~,- --T~:, t:.:~- --- ----T;~:, --- --
PHYSiCAL

Figure 1.3: the two interfaces of the data link layer.

The physical layer is ready to synchronise upon the event i.cs whenever the
broadcast medium is clear at node i. Similarly, whenever a collision is detected
at node i, the physical layer will make the event i.cd available to the data link.
If this event is observed, then the data link has been informed that a collision is
takiug place. The alphabet of the data link layer is thus

EDL =- {i.in.p,i.rep.r,i.out.pli:NODE;p:PKT;r:REP}

U

{i.put.b, i..get.b, i.cs, i.cd 1i : NODE; b : BIT}

where the datatype of bits is given by

BIT ,,= 0 Ii

Any other events considered during implementation must be bidden before tbe
data link is cOITlbined with the physical and client layers. Such events will not
form a part of the data link specification.

130 Specification and Proof in Real-time Systems

Fortnal Specification

The t.otal specification of the data link must be satisfiable by the data link layer
itself, without the cooperation of the pbysicallayer. The data link layer has only
virtual communication between nodes, so our constraints must not require inter­
action between data link components at different nodes. All of our specifications
will correspond t.o local requirements.

The following subsets of EDL will be used in our specification:

IN. " {i.in.p I p , PKT}

PUT, " {i.put.b I b : BIT}

GET, " {i.get.b I b, BIT}

These denote t.he set of possible inputs at node i, the set of possible bit transmis­
sions at node i, and the set of possible bit receptions at node i, respectively.

We abbreviate a set of functions, each of which returns the time of occurrence
of the most recent event from a pa.rticular set. If no event from that set has been
observed, they will return the va.lue O.

lastin;(t) - time of last IN, before t

lastes;(t) - time of last i.es hefore t
/.,tcd,(t) - ti me of last i. cd befoTe t

lastput;(I.) - time of last PUT; before t

las/get, (t) - time of last GET, befoTe t

and assume the existence of a function frame: PJ<T -+ seq BIT sueh tbat/rame(p)
is the sequence of bits corresponding to packet p, together with the framing infor­
mation required for transmission.

The following a.bbreviations will also appear in our specification:

/aslpacket.(t) 2. name of last IN; before t
last/rame,(t) 2. /rame(la.8tpackel;(t))
lasttrans,(t) 2. data i.put during (la.8tc8i(t). t)

attempts;(t) == collnt i.cs during (lllStin;(t), t)

These correspond to: the last packet input at node i; the last frame prepared for
transmission at node i; the sequence of bits transmitted since the last cs signal at
node i; the number of atteITlpts ITlade by node i to transmit the current frame.

7.3 The Data Link Spedfication	 131

Our specification of the data link layer will be parametrised by a number of time
constants. Tbe correct operation of the protocol will depend upon the relationships
belween these aud the constants defined in the previous section.

tucc maximum delay between a successful transmission
and tbe offer of a report

lJ,ul maximum delay between a failed transmission
and the offer of a report

t./Ol minimum backoff delay ­ the slof time is the scheduling
quantum for retransmission of a frame ­ 512p.s

h4d maximum backoff delay ­ 524ms

thil time taken to tt'ausmit one bit - lOOns

t,nl inter-frame spacing delay ­ 9.6ps

tm	 maximum delay betweeu reception of a valid frame
and the offer of an output

Each of these constants will be discussed in greater detail in section 7.5, where
we discuss the interaction between the data link and physical layers. The values
listed above are those given in the Ethernet specification document [Xerox BOJ.

Inputs

Our first constraint has already been presented as part of the data link service
specification:

DT! " DS!

This stated tha.t, at any node, inputs and reports should occur in strict alternation.
The data link layer should be able to provide this part of the service without the
as5istance of the physical layer. This is true of another of our local conditions,
which required that the input chaunel at any node is ready within time lin of a
report being collected.

DT2 " DS3

Reports

If a success is reported at node i, then the last packet input at that node must
have been transmitted successfully.

DT3 == Vi, t • i.rr.p ..succ at t ::::} lasltran.s,(t) = la.stframe;(t)

132 Specification and Proof in Real time Systems

A success may be reported only if the sequence of Lits transmitted Bince the last
i.cs event is equal to the last frame readied for transmission at i. Conversely, if
t.his packet has been successfully transmitted, a report should be made available:

DTi =: Vi,l. PUT; at t 1\ lasttransi(t) = lastframc,(t)
::} i.rep.succ (rom (t, t + 1mc)

If a bit is passed along channet i.put at time t to complete the transmissiun of a
frame, then a success will be reported on channel i. rep within time tu«o

For a failure to be reported at node i, sixteen attempts must have been made
to transmit the current packet.

DT5 -= Vi, t. i.7oep.fail at t::} attempts;(t) = 16

Conversely, if the sixteenth consecutive attempt to transmit the same packet is
inteuupted, then the data link should report a failure:

DT6 :2 Vi,t.i.cdat til attempts,(t) = 16
::::} i.rep.fail from (t, t + tJI1;I)

If the sixteenth attempt to transmit the current frame at node i is iutercupted by
the observation of a collision at time l, then the data link should offer a failure
report on channel i. rep within time tJI1 ,I.

Carrier-Sense

If the :lata link at node i requests the carrier-sense information, then either

* a. packet has been received since the last report at node i, or

* a. transmission ha.'i been interrupted, the minimnm backoff period has ex­
pired, and fewer than sixteen attempts have been made to transmit the
current frame.

Tllis requirement ma.y be expressed as follows:

DT7 == Vi,l. i.cs at t:=} lastin;(t) > lastput;(t)
V

lastcd;(l) < t - t.IQt II attempts;(t) < 16

The event i.cs may be observed only if a packet has been input since the last bit
transmission, or time l'/Q' hiL"i elapsed since the last collision was detected. Recall
that, in our interpretation of the protocol, carrier-sense information is requested
onlya.'i a prelude to bit tr<l.Dsmission.

7.3 The Data Link Specification 133

Conversely, the data link at each node should be ready to synchronise upon
the cs event wi thin time ie• of receiving a packet for transmission, and within time
l~acl; of a transmission being interrupted.

DT8 == Vi,t.eINiatt=>i.csfrom(t,l+lc.)
A

i.cd at i 1\ attempts,(t) < 16 => i.cs from (t + t.lot, t + lbael:)

If a packet is input at node j at time t, the event i.cs should be made available by
time t + 1<A' Further, if a collision is observed at node i, and fewer than sixteen
attempts have been made to transmit the current frame, then i.cs will be made
available within time t~acl:.

Collision Detection

For a collision to be observed at node i, that node mnst be currently transmitting.
We say that a. node j is transmitting at i if a bit. is broadcast at some time
during the interval (i - tblh t + t!id. This constraint is captured by the following
behavioural specification:

DT9 == Vi,f.i.cdatt=>!asiput,(t»f-2lhi/

Conversely, the data link should be ready to observe a collision at any time during
frame transmission:

DTI0 == Vi,t. PUTi at t => i.cd from t until t + 2l6•1

Transmission

The data link should not pause during a transmission. If a bit is transmitted by
node i, then either another bit was sent exactly lhit ago, or the signal i.cs was
ohserved exactly lime ti~l ago. This constraint may be expressed as follows:

DTI1 Vi, t. PUT. at t => lastcs;(t - 2thd > IlJstcd;(t - 2h;d
A

PUT, at t - tbi/ V i.o' at t - 1;.. /

Note that the data link should not continue the transmission if a collision has
occurred since the last cs event; we allow a short period of time (2tb;j) fOT trans­
mission to cease. Further, we require that

DT12 =. Vi, t ela.~tlran.<;;(t) ~ lastframe;(t)

The sequence of data transmitted at node i must be a prefix of the last pi\.cket
framed at node i.

134 SpecificaUon and Proof in Real· time Systems

The dab link should be ready to transmit the first bit of a sequence time t.,.1
after observing the cs event, and the subsequent bits at intervals of t'ih providing
tha.t no collision is observed.

DTJ:i == Vi, t. i.C8 at t ::} 3 b • i.put.b from t + tiRt

A

(PUT, at t A
lastcs;(t) > lastcd;(t) 1\

lasttransi(t):f lastframei(t»::} 36. i.put.b from t + lbil

The data link may stop transmitting as soon as a collision is observed, or when
the transmission is complete.

Reception

The data link should be ready to receive data. within one bit time of the last bit
arriving, unless two bit times have expired without a signal. If two bit times have
elapsed since the last get event, then the da.ta link receiver does not need to be
ready until time t,,,, has passed.

DT14 == Vi, t • GET, at t * GET, {rom (t, t + thd until t + 2lbil

A

GET, {rom (t + 2tb." l + Ii ..,)

The da.ta link becomes ready (or i\ bit on chaunel i.get within time lb'l of the last
bit being received at i. The offer of GET. may be withdrawn after two bit times
have elapsed, but must be renewed before time t'''l has elapsed; the data link must
be re<ldy before the next frame arrives.

Output

For a packet to be output at a node, it must have been received as a.D intact frame
with the correct address. Valid frames will be preceded by an inter-frame space
of duration t,nl> and a transmission has ceased once two bit times have elapsed
since the last get event. With these assumptions, we may identify the last frame
fra.gment received by node i.

la.strec;(I) 2: data i.gel during [lastspacci(t), lastgap;(t)]

where (astspace,(l) is the endpoint of the last inter-frame space a.t node i:

lastspacc,(t) 2: max{t' I ~' < I 1\ -, (GET, at (if - ti ,." i ')) A GET; at t' }

7.3 The Data Link Specification 135

and lastgapi(t) denot€s the beginning of the last gap of length> 2tb.J observed at
that node before time t.

lastgap, (t) == max{ i' I t' < t - 2lb'l 1\ ..., (GET, at (t', t'+2th'» 1\ GET, at t'}

This marks the end of the last con~iguous bit sequence received at node i. Observe
that both lasts pace. and lastgap, are undefmed if no data has arriv€d at the node
i. We may complete the definitions by setting both to 0 in this case, assuming
that predicate validframr; is defined upon the empt.y trace of data values.

If we output a packet to the client layer, then we have rec€ived a stream of data
on tb€ get channel that corresponds to a valid frame with the correct address.

DT15 == Vi, t,p. i.out.p at t ~ 3 e,/. t-tiDf < t' < t 1\

lastra.(t') = f 1\

validframe(f) 1\

address(J) := i 1\

unframe(f) = p

If a packet is output at time l, then the last bit of the corresponding frame must
have arrived at some time during the interval (t - 2hil> t). The data link layer
should not buffer frames or packets.

The data link should be ready to output a valid frame within time tm of the
last bit being received:

DT16 == Vi, t, t''/, p • (/a,.~treci(l) = f 1\

validframe(J) 1\

1mframe(f) = p 1\

de.;/(p) ~ i A

lastgap,(t) = t')

~ i.oui.p from (t', t' + tree) until t' + ti.1

Note that we are assuming the existence of a suitable function for testing the
validity of a frame.

We may now present the total specification of the data link layer. With no
environmental assumptions to consider, it is simply the conjunction of the require­
ments specified above:

TvL " 1\ DTn
n:l..16

136 Specification and Proof jn Real-time Systems

7.4 The Physical Service

The physical layer provides a means of communication between distinct data link
processee;. The data link layer at a node may pass bits to the physica.l. layer at
at a rale of 10 megabits per second; the physical layer at that node will place a
corresponding signal upon the broadcast medium, transmitting the data to the
other nodes of the network. Signals received without interference are decoded and
passed to the data link layer.

The physical layer also provides information about the stale of the broadcast
medium. A carrier-sense signal allows the data link layer to determine whether or
not there is activity on the broadcast medium at the current node. Further, if a
node i is transmitting bit signals, and interference is detected upon the broadcast
channel, the physical layer will repol'~ that a collision is taking place.

Abstraction

The physical layer accepts bits from the data link layer at node i along channel
i.put. Bit signals received from other nodes are passed to the data link along
channel i.get. If a collision is occurring at node i, then the physical layer will
make the event i.ed available to the data link.

DATA LINK

I-.edi.put i.es i.get PHYSICAL

Figure 7.4: thf> service provided by the physical layer

The presence of a signal upon the broadcast medium at node i will be represented
by lbe unavailability of the event i.cs. This choice of abstraction is compatible
with our represeutation of the data link layer; we wish to synchronise with the
physical layer when there is no activity upon the broadcast medium, as a prelude
to data transmission.

The alphabet of the data link-physical interface is given by

An == {i.put.b, i.es, i.cd, i.get.b Ii: NODE; b : BIT}

7.4 The Physical Service 137

Formal Specification

We present a formal description of the service provided by the physical layer , in
tenns of the occurrence and availability of the events in the set An. To reason
about the availability of collision detect and carrier-sense signals, we must identify
the time at which the last signal a.rrived at a particular node. R.ecallthat laslpul.(t)
denotes the time of the li'l5t signal transmitted at node i. We define

lastsig;(t) == max{lasl-puIJ(t - t;J) + t;j I j : NODE}

where tij is the time taken for a signal to travel from node i to node j on the
broadcast medium. With this definition, lastsig;(t) is the arrival time of the last
signal at node i before time t.

Transmission

The medium :'Ihould be capable of receiving bits as fast as the data link layer can
transmit them:

PSI == Vi,t. PUT; from 0

/I
PUTi at t ~ PUTi from (t, t + ibid

At each node t, the physical layer is prepared initially to accept a bit signal.
Further, if a bit is accepted at time I, then the physical layer must be ready for
another before time t + lh,j.

Carrier-Sense

We intend that the physical and data link layers should synchronise upon the event
i.es only when the broadci'l5t medium is silent at node i. The physical layer may
take up to two bit times to respond to the presence of signals on the broadcast
medium; if a synchronisation occurs, then the broadcast medium must have been
silent less than two bit times ago.

PSf! == Vi.t.i.c.satt~3l'.l'>t-£t·h'l

/I
lastsig;{t ') < t' - 2lhil

If an i.es synchronisation oeellIS at time t, then there must be a time t' > 1- 2hif
snch that the last signal before t ' arrived before t ' - £t·hit.

The physical layer should make the event i.cs available within two hit times
of activity ceasing on the broadci'l5t medium at node i. This offer should remain

138 Specification and Proof in Real-time System!>

open at least l..lJltiI activity resumes.

PSS == Vi.,t,t'.la~tsj91(t)=t'l\t'<t-2t&;,

=> i.C$ from (t', t' + 2t.,,) untill

If the last signal to arrive at node i before time t arrives at time t', then event
i..cs should be made available before time t' + 2t~if, and remain available at least
until time t.

Collision Detection

A collision should be reported at node i onty if a signal arrives from another node
during a transmission.

PS4 == Vi,t.i.cdatt=>/aslput;(t»t-1!tw
/\

Jastsig;(t) > t - fib;'

If a collision is reported at time t, then the interval (t - flAIl! t) must contain a
transmission, and the arrival of a signal from another node. Conversely, if a signal
arrivesCrom another node during transm;ssion, then the physical layer should make
i.cd available within two bit times.

PS5 == Vi,te(lusfpul,(t»l-tb,1 1\ !aslsigi(t»l-tbit)

=> i.ed from (lustcd,(t), t + !Jtbil) nntil t + Stbil

If node i has transmitted a data bit less than time t6il ago, and another node j
transmitted approximately time t'J ago, then i.ed should be offered to the data
link. This signal may alrpady be available, henc,.e the lower hound of lasted,(t).
Unless the collision continues, the offer may be withdrawn after one additional bit
time.

Reception

In our idealised description of the physical layer, no hit should be received nnless
it has previously been transmitted at the appropriate time.

PSG == Vi, t e i.get.b at t => 3j e j.put.b at t - ti,

For data to be received without corruption, the receiving node must synchronise
with the incoming sequence of bits. To facilitate this synchronisation, nodes ob­
serving the protocol described in [Xerox 80] mnst transmit a fixed bit sequence as
a preamble to each frame. This is a responsibility of the physical layer, and will
not form part of our service specification.

7.5 Combination 139

The corresponding liveness condition is given by:

PS7 == V i,j, t • i.puLb at t - t'l 1\

Vk,t ' • (k i= i 1\ PUTt at t' 1\ t' E [1- tij,t])

::::} t' ~ t-tii+2tbit 1\ tii: > tt)

::::} j.gel.b from t until t + O.lt.i'

The reception of a bit signal b at destination node j is guaranteed if any trans­
mission that occnrs during its journey takes place

• at least two bit times after b was transmitted

* at a node further away from j than the sender i

Under these conditions, no signal can interfere with the reception of b. Note that
we have assumed that the broadcast medium is reliahle, and that signals propagate
at a constant rate.

7.5 Combination

We are obliged to demonstrate that the service provided hy the data link layer is. a
conseqnence of that layer's total specification, together with the service provided
by the physica.l layer, nnder the assumption that synchronisations from the set
HDL are concealed from the client layer. Our proof requirement is given by:

EpL
TOL(S ~ Eo" No)

N I ApL ~ (Np UNo) ~ An => SOL(s,N) 'l, HDL

Sn(S ~ ,Np) }

N\ An = (Np n ND) \ ApL

It is sufficient to show that this result holds for each conjunct of the service spec­
ification SDL; we will provide a brief justification in each case.

Each specification is given in terms of functions of timed failures, e.g. 'count',
'from', and 'response'. In these specifications, the connectiv~ a.re lifted operators,
whose actions on funclions are defined by extension:

(fop, g) (s,N) '" f(s,N)opg(s,N)

where 0Pr is the lifted form of connective op. The interpretation of connectives
such as +, =, and 1\ is obvious fwm the context; we have written 0Pr as (Jp.

140 Specification and Proof in Real-time Systems

Local Safety

Recall the first component of the data link 5ervice specification:

DSl (s,~) .= (Vi.countINi=countREP,+I
V
countlNi = count REP;) (s,N.)

We are given that (IN, U REP,) ~ EDl~, and that

DTl (s l EDL,N.o) =: (Vi. countlNi = countREPi + I
V
count IN. = count REP.) (5 l EDL,~D)

It is ea£Y to see that, for any s and ~,

A ~ B ~ count A (s, N) = count A (5 l B,~)

and hence that
DTJ (, l EDL,~D) '* DSI ("~)

Input

The lieCond requlremeut in the data link 5pecification was

DSE == Vi,t.INiatt:::}i.rt:p.succfrom(t,t+tr~1»

V
i. rep.fail from (t, t + tr~J1)

In the total specification of the data link layer, we in5isted that no failure may he
reported without sixteen attempts at transmission. As a result, the provision of
this part of the data link service relies upon the following lemma:

Lemma 7.1 At any particular node i, the data link never has to wait more than
t/o", for a carrier-sense synchronisation i.es, where tl..., is the duration of the
longf'St valid frame. This is I.Ems for the Ethernet protocol. 0

Proof Suppose that the event i.cs is not available at time t. From PS3 we may
deduce that la5t:;ig,{t) > t - 2tbih and hence that there is at least one other node
j on the network already transmitting. There are two possibilities to consider:

• node j transmits without contention for time teo .. , and acquires the broadcast
channel, or

• node j is interrupted by another node k

7.5 Combination 141

If node j tra.osmits a bit once every lAit during an interval length teo. without
interruption, then the cs synchronisation must be unavailable at every node on
the network. This is hecause the length of the contention interval is greater than
the round-trip signal propagatiou time for the network:

leo .. > 2 max{lij J i,j : NODE}

Suppose that node j has been transmitting for le"tIo at time i l with no collisions
observed at j thus far. Then by PSS we know that las1.3igj (t) < I - l,on, and hence
that

'V k • laslputd t - tJ!) < t - lj! - tc"tIo

Recall that the data link layer at each node must satisfy the requirement

PUT! at i => PUT. at t - t", V k.cs at t - /;,,1

and observe that it is not possible for uode k to begin transmission after t - tjl;, as
k.cs will not be available until time tji after j ceases transmission, by PSg. Hence
j will not be in terrupted.

Iu this case, DT13 guarantees that node j will continue transmission until it
has exhausted the current frame. II must then wait at least ti., before transmitting
another hit, because of requirement DT11. Hj transmits the last bit of the current
frame at time t, then for each node k on the network we may assume that

..., PUTi at (t + tjl: - t./mt , t + tjl: + lind

where t.hoTl is the length of the shortest valid transmission; this is S7.6~8 in the
Ethernet protocoL From this we infer that

'V k • lastpuf.(r + tji + tind < t + tji - idorl

It is an obvious property of the network that

t,] - t.,! (tj!

and from the definition of lastjJut we may deduce that

'Vk,tJ,tr , ts • is < tf (t1 /\ lastpu.tr(td < ts => lastputi(t!) < tj

Recalling the definition of lasLsig we observe
"

lastsi9i(t + [OJ + lin.} == max{/aslp1ltr(t + ti] + tilll - t,d + t,l; I k: NODE}

142r-­

If we ossume that i ••o .., > teoll , remembering that tUli is more than twice tij for
any i and j, then we may combine these results to yield

lastsigi(t + iii + t..JlI) :s;; t + toj

Given that tial > 2t"j, requirement PSS guarantees that the carrier-sense signal
is made available at node i before t + t'i + fibil. Our assumption that such events
are hidden from the client layer means that this signal will occur.

Now consider the other possibility: that j is interrupted within te~ .. of starting
to tra.nsmit. In this case, no node will acquire the broadcast channel during the
current time slot, and the event es will be offered at node i within time teo .. , the
length of the contention interval. If j is to be interrupted, then at least one other
node k must begin transmission before signals from j reach it, by DTl1 and PS2.
Suppose that j and k start to transmit at times t] and t*, respectively. Observe
that these nodes cause signals to arrive at i during the interval

(min{t; + iii, ti + t.d, max{l* + tjt + t'l' t] + tit + ii.d]

Nodej is interrupted by k, and thus ceases transmission, at time it + tit, and vice
versa. This follows from requirements PS5, DTJO and DTJ!.

H the medium at i does not fall silent at or before the end of this interval,
then another node 1 mus~ have started to transmit before signals from j or k could
reach il. Signals from this node will cease to acrive at i before t.ime

max{t; + tIl + til, t i + til + til}

A brief sketch of the situation should reassure the reader that I must be further
from node i than j or k. An inductive argument will confirm that activity on
the medium at node i must. cease within time t,o", nnder the assumption that the
network is finite, and tcon > 2 max {ti; I i,j: NODE}. 0

Having justified the lemma, we may deduce that, if the data. link at node i is
entrusted with a packet for transmission at time t, then the cs synchronisation is
available at time t + t" , or will be offered for at least two bit times before time
t + I~ + l/ou,.

Vi, t • IN; at t ::::} :I t' • t + t.. < i' < t + t" + t/Q ..,

" i.es from (lastes;(t + lc_), t') untiJ t l +!!tbil

Recall that i c• is the maximum delay between the input of a pa.cket and readiness
for transmission, from DT8.

7.5 Combination 143

Similarly, if a transmission is interrupted and rescheduled for time t, then i.cs
will occur within time hong, allowing another attempt to begin after the inter-frame
spacing li"l' During the proof of the previous lemma, we established that if a node
has been transmitting for Lime teo,,", then it will not be interrupted. The worst case
delay for status reporting may be calculated as follows:

t,~ preparing frame for transmission
16 x tlo"g waiting for the channel to clear
16 x t;"l inter-frame spacing
15 x t,o... almost succeeding
15 x th,i backing orr

"Iong successful transmission
t.m delay in reporting success to data link

< tr,p in total, if we are to provide service SDL

The response time may be reduced by increasing the backoff delay with each
collision. The protocol described in [Xerox 80J insists that a node cannot delay for
time t&"ci: unless the current frame has been interrupte.d at least nine tim~.

Reports

The third component of the data link service specification is more easily estab­
lished. Recall that this insisted that

Vi, t • IN; from 0 1\ REP, at t =* INi from (t, t + tin)

At any node i, the data link layer must iuitJally be ready to accept any packet on
channel i.in. Further, should a report be accepted at time t, the data link will be
ready to accept another packet before time t + t;...

Recall that the total specification of the data link layer included precisely the
same requirement:

DT2 == Vi, t • Jll,l, from 0 1\ REPi at t =* IN; from (t, t + ti...)

We must show that, if this requirement is true of the data link layer, then it must
remain true when the data link is pl<l.Ced in parallel combination with the physical
layer. We may assume that

DT2 (, ~ EDL,N D)

IN, U REP; <; EDL

N\APL = (~pnND)\APL

144 Specification and Proof in Real-time Systems

From the alphahet constraints, we may infer that

Vi, t, .. a E IN, U REP, => (a ,,~(ND i t) => a" ~(N it)
A

«t,a))in, .. «t,a))in(s ~EDd)

If an event from IN; U REP; is offered by the data link layer, then it must be
offered by the parallel combination. Further, the data ljnk layer will perform an
event {rom this set whenever the parallel combination does so. From the definitions
of \fWIll' and 'at' given in chapter 6, we may infer that, for any time t

IN; from t (s ~ BDL,ND) ::::> IN; from t (s,N)

REP, al t (5 I EDL, ND) => REP, all (s,N)

The result follows easily ffOm the laws of the predicate calculus.

It ~'in not always he necessary to expand the definitions of functions such as
lat' and 'from'. The timed failures proof system may be used to derive rules for
reasoning about specifications expressed using these functions. For example, the
proof of DS3 could have made use of the following rule:

P sat e from t
[,,, ~(Q), A ~ ~(P)n ~(Q)J

PllQsatefromt
A

A useful library of derived inference rules like this could be built up by pursuing
further case studies in specification with Timed esp.

Network Considerations

If a. success is reported at node i, then the last packet input at i will he Bafely
delivered to its destination.

DS4 =- 'Vi,i,t,t'.

i.l·ep.SltCC at t 1\

dest(p) = i 1\

last IN; during [O,t) =:: (J',i.in.p)

=> i·out.p from (tl, (, + t",u)

We ~tablish that the parallel combination of the data link and physical layers
meeb this requirement with the following argument.

7.5 Combination 145

For a ~uccess to be reported at node i, the last frame input at i must have
been transmitted to the physical layer withont interruption. Recall that

DT3 == Vi, t • i.rep.suce at t =} lasttrans;(t) ::= IMtframe,(t)

From requirement PS5, we know that any other transmissions would cause the
event i.cd to be offered to the data link layer. However, requirement DTlO insists
that the data link layer be ready to accept i.cd whenever i is transmitting, and
DTll insists that transmission should cease if i. cd is observed.

We may conclude that no other node k transmits before t f - tit, where t J is
the time at which the last bit of the frame was transmitted:

t, == last PUTi before t

Assuming that the minimum frame length i.!I0Tl is greater than the length of the
contention interval tco~, we may infer that node i a,cqnired the broadcast medium
during the transmis:'3ion of the current frame. We may apply the argument used in
the proof of lemma 7.1 to establish that no other node k can begin transmission
before time t1 ;- t,t + tinl. Thus for any bit b of the frame in question,

i.puLb att ::::} Vk,te(ki=-i 1\ PUTt at t' 1\ t'Elt-i.•"t])
=}t'~t-tlj+tint 1\ t]t>t;j

From component PS7 of the physical layer service specification, we know that a,ny
bit transmitted by node i is l"eceived by any node j, providing that the above
conditiou is met:

PS7:=: Vi,j,tei.put,batt-ti) 1\

Ii k, t'. (k" i A PUT, at t' A t' E [t - I'i' t])
::::} t' ~ t - i,j +2tbil 1\ tIt> ti)

::::} j.geLb from t until t + O.Ubit

We may conclude that each bit of the frame was received by the physicallayer at
node j, and passed to the data link layer along channel j.get.

We now appeal to the output part of the data Ii uk specification. At time t1 +iij,
the last bit of the frame arrived at node j. We must establish that

lastrecJ(t I + ~Ubll + tiJ) = IMtirans;(t1)

The last frame fragment received at node j up to and including time t1 + til should
be identical to the last frame fragment transmitted at i. Recall that

lastrec)(t) == data i.get during f/aslspace,(t), lastgap) (t)]

146 Specification and ProoF in Real~time Systems

where /as~pace](t} is the endpoint of the last inter-frame space at node i:

lastspatfj(t) == max{t' I t' < 1/\.., (GET; a.t (t'- ti"C,t'» 1\ GET; at t'}

a.nd lasl9(JPi(t) denotes the beginning of the last gap of length > 2t~il observed at
that node before time t.

lastgaPJ(i) ,=: max {t ' I [' < t - 2h'l 1\ ..., (GET; at (t', ['+2tJil)) 1\ GETj at t' }

From our observations above, we know that no other node k transmits during the
interval Ito - tib tJ + ta, + ii.l], where to is the time at which node i began to
transmit the frame in question:

to == tint + time of last i.es beCore t1

If another node k had transmitted after to - lib then a collision would have been
observed at i. From the Lounds of this interval, and requirements PS6 and PS7,
we rna}' infer that

lastgap] (it + lij + St6id tt + tij

lastspaceA t j + til + Slhd =:::: to + ti)
providing tbat I·inl > :1/~'I' We may then prove, by induction upon the length of
the bit sequence transmitted at node i from time too onwards, that

JastreCj(tl + :1ibil + t;})	 lasUrans;{ t l)

lo.stframe;(lJ)

frame {lastpacket; (tJ))

The J<lSt contiguous hit sequence received at node j before time 1J + til + :116;1 is a
valid frame containing the last packet input at node i before time tJ •

We appeal to property DTlfJ of the data link layer:

Vt,t',f,p. (fastrecj(t) = f 1\

validframe(f) A

lInframc(f) =: p 1\

dest(l') ~ j A

/astgo.p}(t) = L1
)

'* j.out.p from (L', [' + troo) until t' + t,-",

We know that dest(p) = i, and we may assume that the function frame always
yields valid frames for transmission. Hence we have that

j.out.p from (t1 + I.i). tl + tij + tT.~) until t1 + iij + Li'"

7.5 Combination	 147

However, our data link service re<)uirement states that this output should re­
main available until it occurs. Fortunately, this service is provided subject to an
environmenta.l assumption:

EA == Vi. response OUT; < t"al

If we assume that

toal < l;~t - tn.~

tben this assllITlption allows us to infer that j out.p is observed before time t1 +
iij + t,,,t. This is because

•	 we have shown that this event is available until it occurs during the interval
[t l + til + [roc, t l + tij + tint], and

•	 we may infer from EA that the data link is seen to refuse j.out.p at some
time during any interval of length> I.""" corresponding to our knowledge
that the event is offered by the environment.

We may conclude that

j.out.[1 from (t1 + lin i 1 + ii] + I-r ••)

If a packet p input at time t is to be successfully transmitted by node i, then the
successful attempt at transmission may end no later than

t+ te_ preparing frame for transmission

+ 16 x t/ol\g waiting for the channel to dear
+ 16 x ti"l inter-frame spacing
+ 15 x t<o" almost succeeding
+ 15 x lb4et ba.cking off

+
 '/0"9 successful transmission of longest valid frame

This places an upper bound upon the va.lueof t l . We conclude that this component
of the data link service is provided if

tm~ > ie_ + l1t/ong + tm + 151m + 16l,,,t + lSla4<t + max {tij I i,j: NODE}

The maximum delay between input a.nd the offer of output for a successful trans­
mission will be less than lm=, providing that tm = is greater than the value of the
expression to the right.

148 Specification and Proof in Real-time Systems

Success

The data link fit node i guarantees to deliver a packet at time t, providing that
no other nodes are entrusted with a. packet during the interval

[t - tr<p. t + teorl + te.]

The lower bound of this interval allows us to infer that no signals arrive at node i

during the packet tra.nsmission. We know tha.t

'rfk. • k:f:i::;"[astink(t)<t-t...P

In the proof of requiremeut DS2, we established that no node will ever wait for
longer than time leo .. for a chance to begin transmission. From requirement DT7,
we know that the latest time that a carrier-sense synchronisation may be observed
at each node k is given by

lastin~ (t) + preparing frame for transmissiont"
16 X waiting for the channel to clear+ t, on,

+	 16 X i;"1 inter~frame spacing
15 x leon almost succeeding +

+
 IS X lbcl backing off

From requirement DT12, we know that the last bit sequence transmitted at node
k must be a subsequence of the last packet framed at that node:

v k, t • lasttrans~(t):;;;; llUltframek(t)

From this we may infer that each node k must cease transmission before time t~,

where il; is given by

tk ::= lastinJ:{t) + tCI + 15tco.. + 16tinf + 15tNc~ + 17t/o..,

No more bits may be transmitted if the current frame is exhausted, or has been
interrupted sixteen times, by DT7, DTB, And DTll. Assuming that tre, exceeds
the lower bound placed upon it earlier, we may infer tbat

laslsi9;{t + teo" + tel) < t

Appealing to the argument of lemma 7.1 yet again, we conclude tbat node i ac­
quires the broadcast medium and thus succeeds in transmitting tbe frame. The
lower bound upon the value of tr.~ is enough to ensure that this success is reported
before time t + t..e~'

7.6 Implementation 149

This completes our semi-formal proof that the parallel combination of the data
link and physical layers is enough to satisfy the data link service specification,
under the following assumptions:

t'hon > t eon

teoR > 2 max{ t;J I i,j : NODE}

tn, > tell + lSt. ow + 16t;"l + lSi,oc. + 17t/oR, + t,ue

tilll > 3thj

to•d < f iRl - tree

1m "", > te, + lStw , + 161;,,1 + lSi,... + 17t/o.., + t roc + max{t;j I i,j: NODE}

Similar constraints are applied ill the Ethernet specification document [Xerox 80].
For example, Appendix E of tha.t document states that

It is important that data link controller implementations be able to
receive a frame that arrives immediately after another frame has been
transmitted or received. Here, "immediately" means 9.6/15, based on
the minimum inter-frame spa.cing provided as recovery time for the data
link. It is important that the data link controller be able to resume
reception within that time.

This particular requirement corresponds Lo the following component of the data
link total specification:

DT1.i =. 'r/ i, t • GETi at t ::e;. GET; from (t, t + i,id until t. + 2tb'l

A

GET; from (t + 2t"" t + ti"t)

If a bit signal is received at any node i, then the data link should offer to accept
another within time lb,'. This olTer may be withdrawn if no bit arrives within two
bit times, which will be the case if a valid frame has just arrived, providing that
the data link is ready to resume reception within time ti"j.

7.6 Implementation

The Xerox specification document [Xerox 801 makes no recommendation about
the implementation of the Ethernet protocol, stating that it may consist of any
combination of hardware, firmware, or software. However, a concurrent variant of
the language Pascal [Brinch Hansen 75] is used to describe the behaviour of the
data link fayer. The resulting program is presented as a definitive statement of
the intended behaviour of the data link layer.

150 Specification and Proof in Real-thne Systems

The precision of our specification language means that we have no need of an
algorithmic description for specification purposes. However, such a description is
useful as a guide to implementation, and as an aid to understanding the details of
the timed failures specification. Accordingly, we represent the data link layer as a
Timed CSP process, which must satisfy the data link total specification.

Structure

The data link layer at a single node will be implemented as a parallel combination
of fOUT processes: two sending, and two receiving. The transmit data encapsulation
process inserts a pa.cket of data into an a.ppropriate data frame and hands it to the
transmit link ma.nager. This process connects to the physical layer at the node,
receiving collision and carrier-sense signals, and sending bits for transmission.

The receiver processes complement this action: the receive link manager col­
lects bits from the physical layer, and passes complete frames to the data decap­
sulation process for validation. Valid frames intended for the current node are
stripped and passed to the client layer.

;0

TDE

down

NOp

TLM

put I"

out

il-
I R~D

up

RLM

gd

interface

interface

'd

Figure 7.5: the internal structure of the data link layer.

Tbe labelled arrows in figure 7.5 correspond to channels of communication between
the processes, while the two lines labelled cd and cs represent synchronisations
with the physical layer.

7.6 Implementation 151

Implementation

The data link layer is an interleaving parallel combination of data link processes,
one for ea.cb node in the network:

DL _ III DL,
diODE

At each node, there are processes to receive and transmit data. Tnere is no reason
for the two processes to synchronise with each other in an ideal implementation.

DL. ~ i i (TRANSMIT III RECEIVE)

We label the processes with the appropriate NODE identifier. The process de­
scriptions below arc independent of the node identity.

Transmission

Data transmission is handled by two processes, connected by a single cha.nnel:

TRANSMIT ~ (TDE II TLM) \ down
do

The data encapsulation process accepts a packet from the client layer, frames it,
and passes the frame to the link management process:

TDE == in?m ~ down!!Tame{m) ~ TDE

Once the link manager has accepted a frame for transmission, it waits for a signal
from that the medium is clear, and then passes the frame to the physicalla.yer, bit
by bit. lnilially the process must listen for a frame on the appropriate channel:

TLM == down?! ~ IlOLD/,J

The cs eveut is hidden from the layers above, so it will occur as soon as both layers
are ready. Once cs has been observed, transmission may begin.

HOLD, ... == cs.!E>...; (SEND, 3' HANDLE" ..); TLM

Recall that the data link must wait for time t..." the inter-frame spacing, before
starting to transmit. The process HOLD" .. holds a frame! until the rs syn­
chronisation occurs, and the subsequent transmission is performed by a ?rocess
SEND,. The second subscript to the holding process is used to record the number
of attempl!J made to transmit the current frame,

152 Specification and Proof in Real-time Systems

The sending process transmits the bits of the (rame at intervals of tlit to the
physical layer, terminating successfully if it should succeed in transmitting the
entire frame.

SENDO _ rep!suce --!i... SI<IP

SEND ~ ~ send!z ~ SEND.
{r) ,

Before terminating, the process informs the client layer that a successful tcaOl'imis­
sion has occurred. If the sending process terminates without being interrupted, or
the handler terminates, then the trausmitter returns to its original slale.

The transmission of a frame f may be interrupted at any time by the collision
detect signal. If this occurs during the n'/o attempt to transmit the frame, then
control is passed to the proCt'..9S HANDLE/,....

HANDLEj ,. " BAClIOFF.; HOLDj ,.+, if n < 16

HANDLEJ,J6 :2: rep!fail ~ SKIP

If fewer than sixteen attempts have been made to transmit the current frame,
then the transmitter will wait for a certain period of time before making another
attempt to transmit the frame. If the sixteenth attempt is interrupted, then the
transmitter informs the client layer of its fiUlure, and terminates.

According to our data link specification, the BA CKOFF.. process may be im­
plemented by any delay between t~II>' and tb"d:' In [Xerox gO}, it is implemented by
a random delay process, terminating at time r* i.lol after being started, where time
r is taken from a uniform distribution of integers in the range 1 ~ r ~ 2"'={IO,.. },

where n is the number of the current attempt. This allows the data link to modify
its behaviour as the load upon the broadca.'it medium varies.

Reception

Data reception is handled by two process, also connected by a single channel:

RECEIVE " (RLM II RDD) \ up.,
The receive link manager accepts from the physi.cal layer. and passes plausible
frame fragment:5 to the data decapsulatiou process. A fragment is plausible if its
length exceeds 64 octets, the minimum frame size. The data decapsulation passes
valid frames intended for the current node to the client layer along cha.nnel out.

The bit reception component of the link manager is prepa.red to accept bits
from the physical layer at intervals of fbil. If some bits have been received and no

7.6 Implementation 153

bits arrive for two bit times, control transferred to a simple validation process by
a ti meou t operator:

RLM - rec?x ~ LTSTEN(:t:}

LISTEN, (ree?x ~ LISTEN......) ~~.t PASS.
• (:1:)

The length of bit sequence s determines the behaviour of PASS•.

PASS, == if #(s) ~ 512 then up!s ~ RLM else RLM

If the s.equence is louger than 64 octets then it is passed to the decapsulation
process via channel up. Shorter sequences should be discarded without further
consideration.

If a bit sequence is p<lssed to the decapsulation process, then the address field
is matched against the i\ddress of the current node. \Ve assume the existence of a
function address that returns the appropriate information. If the bit sequence is
a frame intended for the current node, then it is stripped of framing information
and offered to the client layer.

RDD == up?f...2... if address (f) = here

then outhmframe(f) ~ RDD
else RDD

We have assumed that all errors are due to collisions, and our assumption that
l....drl > tcan means that all collision-damaged frame fragments, which take less
than time tw • to transmit, will be shorter than 64 octets. With this assumption,
no error checks are required during the decapsulation process.

By applying the inference rules of the timed failures proof system, we may
confirm that our implementation meets the requirements of the data link tot a.!
specification, providing that

t l + t.'l < (, t, < ti"l

t. < t .." + till t, < t~«

t, < tin t, < t.l1d rt. - tc'Sl

t, < tin

If all the above constraint!'! are satisfied, then we have produced a satisfactory
implementation of the data link layer.

154 Specification and Proof in Real·time Systems

7.7 Discussion

The specification in this chapter is nol a complete description of the service pro­
vided by the Ethernet protom!. We ha.ve captured some of the most important
aspects of this service, and suggested a. suitable implementa.tion of the data link
component of the protocol; tbis was sufficient to demonstrate the specifica.tion and
de8ign qua.lities of our notation.

We can produce a more detailed study of the protocol without changing the
method of specification employed in this chapter.

•	 We may expand our description of the data link service by adopting a more
systematic approach to the capture of requirements, as illustrated by the
service specification of the physical layer. For each event a visible at the
current level of abstraction, we considered the conditions under which a may
oaur, and the circumstances in which it must be offered to the environment.
The resulting conjunction of safety and liveness constraints produced a more
deta.iled specification.

'"	 We may address other aspects of the data link service by adding new events
to our interface. ror example, to include error detection at receiving nodes,
we might add a channel err to the datal ink interface:

{i.,rr., Ii: NODE:" ERR} c ADL

where ERR is a datatype of error reports. Alternatively, we may choose to
consider the events on the channels in and out in greater detail, specifying
the format of data. and addressing information in packets and frames.

The lack of a suitable model for CSP prevents us from addressing the proba.bilistic
aspects of the Ethernet protocol within our formal specification. However, the
data link implementation and the physical service provide a basis Cor reMoning
about the performance of the protocol. For example, results such as lemma 7J
could be used to estimate the probability of a successful Crame transmission, given
suitable probability distributions for the length of packets, and the Crequency at
which they are submitted for transmission.

Chapter 8

Signals

Wben describing the behaviour of a reaHime process, we may wish to include
observable events that are not synchronisations. These signals may make it easier
to describe and analyse certain aspects of behaviour, providing useful reference
points in it history of the system. For example, an audible bell might form part
of the TIser interface to a telephone network, even though the bell may ring with­
out the cooperation of the user. This is incompatible with our existing view of
communication.

In some cases, suitable environmental assumplions---discussed in section 4.3­
will allow us to describe such behaviour within the existing Timed Failures model.
However, if we intend that these signals should be used to trigger other events
or behaviours, then we mnst extend our semantic model to include an element of
broadcast concurrency: some output events may occur without the coopera.tion of
the environment.

In our model, signal events will occnr as soon as they become available, and
will propagate through parallel combination. A process may ignore any signal Ii
performed by another process, unless it is waiting to perform the corresponding
synchronisation a. If this is the case, then both a and a will occur. Of these, only
the signal will be observed outside the parallel combination; it makes no sense to
propagate a synchronisation.

We will define a denotational semantic model, representing each process as
a set of possible behaviours. Each behaviour is represented by a triple (s,N., t),
corresponding to the knowledge that the process may perform trace s while re­
fusing synchronisations in No, if observed up until time t. The time component
is included to simplify the semantic equations for concurrency. Two component
bebaviours may give rise to a behaviour of a parallel combination only if they
represent observations np until the same moment in time.

156 Specification and Proof in Real-time Systems

8.1 The Timed Signals Model

We will represent signals as distinguished events in a. extended a.lpha.bet, a.dopting
a hatting convention to differentiate signals from synchronisations. If we use E to
denote the set of all signal events, then the set of aU events is given by

E '" EUE
}<or each synchronisation event a in E, we may add a signal event a.

We use TE to denote the set of all timed synchronisations and signals, and
T:E, to denote the set of all timed traces that may include signals:

TE '" TIME x E
Tf;, == {s E seq TE l (t, e) precedes (t', e'l in!J:::::} t ~ t'}

Signal events may not be refused if offered, so there is no reason to include them
in timed refusal sets:

TINT ~ ([b, e) I 0 " b < e < oo}
RTOI('" {I x A I I E TINT A A E P E)

RSET '" {U C ICE F RTOJ(}

The set of possible refusal sets in the Timed Signals model is given by RSET, as
before. The set of possible observations in this model is given by TF, where

TF '" TE, x RSET x TIME

Each possible behaviour is a triple, consisting of a. timed trace from TE" a timed
refusaJ set, and a time value.

We will give a new semantics to our language of Timed CSP terms, mapping
each construct to an element of TSi' where

TS, " P TF

As before, we employ a domaiu of environments to record the values of term
varia.bles, and define a semantic function for terms:

ENV '" VAR ~ TS,

:Fs E TCSP - ENlt - TS'j

We write :Fs [PJp to denote the semantics of term Pin a.n environment p. As in
the Timed Failures model, we omit the environment parameter when we give the
semantics of a closed term.

8.1 The Timed Signals ModeJ 157

The Timed Signals model TMl' is defined to be those elements S of TSF whi(:h
satisfy a set of eight healthiness conditions, enshrined as axioms of the model:

1. (s, N, I) E S => t ;> end(s, N)

2. ("N,')ESAf';>t=>3s'.a(s')~l;A(s~(s'+t),N,t')ES

3. W,{},O)ES

4. (s""'w,N,t)ESAend(s)~t'~min{t,begin(w)}=>(.'l,N:ttf,tf)ES

5. (s,N,I)ESAs,,"w=>(w,N,t)ES

6. ("N, t) E S => 3N' E RSET. N ~ N' A (s,N',f) E S A
\I t' : TIME; a : E • (t' .;; t A (f', a) ~ N')

=> (, r f'~«(f', aJ), N' r t', t') E S

7. \It: TIME. 3n(l) EN. (s,N,I) E S => #(s).;; nit)

8. ("N, I) E SAN' E RSETA N' ~ N => (s,N',t) E S

The first axiom insists that no trace or refusal information is recorded after the
end of thc current observation. The second states that any observation can be
extended into the futurc; thc only eveuts that must be observed are signals. The
remaining six conditions are inherited from the underlying Timed Failures model,
modified slightly to reITeet the possible presence of signal events in a process trac:e.

The third axiom allows us 1.0 infer that all processes have at least one possible
behaviour: the empty failme, observed unlit time O. The fourth axiom states that
any behavionr of S gives rise to another if tTllncated, while the fifth states that
the set of traces of a process should be closed under timed trace equivalence.

The sixth axiom is a finitary condition upon refusal information. For any
observation (s, N, t), there exists a maximal refusal set N:' such that any timed
synchronisation (I', a) not in W is a possible extension of s rt'. The seventh axiom
places a similar coudition upon traces, asserting the existence of an upper bound
n(t) npon the number of signals or synchronisations that may be observed before
time t in any behaviour of S. The remaining axiom states that if a process may
refuse a set N:, then it may refuse any subset of N.

For any S E TSF and t E TIME, we define

S(l) " {(',N,t')ESlf'.;;tj

158 Specification and Proof in Real-time Systems

This yields the set of observations from S that end strictly before time i, and
suggests a distance metric on the space TSF

diS, T) £ in!{{2-' 1 Set) = T(t)) U (i})

In section A.3, we show that our model is a complete metric space under d.

Notation

We define a. new alpha.bet operator for timed traces, to match the synchronisation
set operator defined in chapter 2.

at,) " {a E f; 13t. «t,a)) in ,}

As before, we overload the definition of this operator,

alP) £ (a E f; 13(s,~, t) EJ's!P! • a E a(s))

to return the seL of signal events tha.t may be performed by a process P.

We define an operator sync, which may be applied to a trace Or set of timed
events. For any s E TE, or A ~ TE,

syn,CO) = ()

syn,«(t, a)~s) " «t, a))~,yno(s)

,yn,«(t, a))~,) «t, a))~sync(s)

syno(A) ~ {a EEl a E A V aE A)

This operator returns the set of synchronisation events that are mentioned in the
set or trace, as synchronisations or signals.

The semantiC.'l of parallel combination in the Timed Signals model will require
a.	 new subsequence relation between timed traces:

5J~5~ ¢:> Vl,a.((t,a))insl=>((t,a))inst

We sa.y that a trace 51 is a subset of trace s~ if and only if each timed event in 51

is also present in 5!.

The failure subtraction operator may be applied to behaviours in this model:

(s,N,t)-f' == (5-=-t',N-=-t',t-t') ift~t'

CO, {j, 0) otherwise

Subtracting time t from a behaviour discards the part of the beha.viour tbat lies
before time t; the remaining part is shifted backwards through time.

8.2 Sequential Processes 159

8.2 Sequential Processes

Atoms

As in tbe Timed Failures model, the di\lergent process .L is identified with the
deadlocked process STOP. Any trace of this process must be empty,

Fs[STOP]p ~ ((,,~,t) I' ~ 0" I" end(~)}

and any refusals must be recorded before the observation ends.

The synchronising termination process SKIP is ready to perform a single in­
stance of the special event ,j at any time.

Fs ISKIP] p ~ {((),~, t) I ,I i! a(~)" t " end(~))
U

{(«(I, ,1)),~, I') I ,I i! a(~ t I) " " " maxi t, end(~)}}

If no events have been ohserved, then ,j is available, and any refusals were recorded
before the end of the observation. Otherwise, ,j is observed at some time t and
was available beforeband.

We may wish to use a signal to indicate that the successful termination of a pro­
cess. Such an event would be propagated to the environment, causing termination
in any process that is waiting to synchronise upon ,j. We define

FsISK/pJp ~ {((),{},a)) u (((a,J)),~,t) I" t" end(~)}

If no events have been observed, then we have watched only until time O. If our
observation extends beyond this time, then a termination signal will be observed.
We also define two forms of delayed termination:

FsIWAITI!p ~ {((),~,I')I,Ii!~11"1'"end(~)}
U

{(«(I", ,I)), ~, t') I I" " I " I' " max (t", end(~)}

",I i! ~ i [I, I")}

If the process is to synchronise upon the termination event, then ,j is made avail­
able from time t onwards. If the process is to signal termination, then the termi­
nation signal will be observed at time t.

Fsi WATT IJp ~ {((),~.I') I end(~) <; I' <; tJ
u
(((I,J)),~,I') I I'" max{l,end(~)}}

In either case, any event may be refused before time t.

160 Specification and Proof in Real. time Systems

Prefix

The event. prefix operator transfers control to a process following the observation
of an event. If thi5 event i5 a synchronisation, then it should be continuously
available until it occurs:

F s [. ~ pIp = {(O,~, t) I. ¢ u(~) A I" end(~))

U

(((".))~s,~,t') I • ¢q(~ r tjA
begin(s) ~ t +6 /\
I'" m..{I, end(s, ~)) A

(s,~,")- ('+b) E F'[plp)

If the event is a signal, then it should occur immediately.

Fs(a~P!p '" {(O,{},O)j
U

(((O,.))-s,~,I) It" end(,,~) A
bp.gln(s) > 6/\
(,,~,t) -b E F,[P!p)

A delay of time 6 is a3sociated with the transfer of oontro1 to P.

Sequential Composition

In the sequential composition P; Q control passes from P to Q as soon as P
offers to synchronise upon the termination event ,f. or sends a termination signaJ
'J. In either case, there is no delay associated with the transfer of control, and the
termination event is concealed from the environment.

Fslp;Q]p = {(,,~,t)I.I¢q(,)A:>¢i1(,)

A (s,~ U ([0,1) x {.f)), I) E Fs (PIp)
U

CL,,{(s-lV,~, I) I
.I ¢ q(s) A:> ¢ u(,) A (lV,~, I) - t' E FsIQ)p
A

((s~« t', ,f)), ~ r I' U (10, t') x {.fl), I') E F, [PIp
V
(s~« I', :»), ~ r I' U (10, I') x {.fl), t') E 1"s IPI p)}

Any observation of this scqnential composition may he an observation of P in
which no termination events occnr, or a termina.ting observation of P followed by
an observation of Q.

8.2 Sequential Processes 161

The sequential composition operator does not distinguish between the two
forms of the termination event. This is illustrated by the following equivalence:

(P III WAIT I); Q :;; (P III WAlT I); Q

In the presence of the sequential composition operator, the termination event ./
occurs as soon as it is made available, and is concealed from the environment.

Choice

The semantics of the nondeterministic choice operator is the usual union or possible
component behaviours:

J"slpn Q]p '" J"s[p]pUJ"s[Q]p

and can be extended to give a meaning to indexed nondeterministic choice provided
that the set of alternatives is uniformly bounded, in the sense of section 14.

Ifeither of the components of a deterministic choice is ready to perform a signal
event, then that choice will be resolved immediately.

J"slpoQ]p '" {((),~,I)I((),~,I)EJ"s[p]pnJ"s[Q]p)

U

{(s,~, I) lsi () A (s,~, I) E J"s1p!pU J",[Q!p
A

((), ~ rb,gin(s), b,gin(s)) E J"s [P] pn J"s [Q! p}

Any event refused by a deterministic choice before any events have been observed
must be refused by both components, and the behaviour following the first event
must stem from just one of the components.

As an example, consider a process which is initially prepared to participate in
the synchronisation fl,

(a ~ SMP) 0 (WAlT I; b~ STOP)

If this event occurs, the process terminates successfully. However, if fl has not
been observed by time t, the process sends a signal b and then deadlocks. The
occurrence of the signal event resolves the choice, and withdraws the offer of a.

162 Specification and Proof in Real-time Systems

The prefix choice operator may be used to olTer the environment an infinite
choice of inputs to a process. Signals correspond to output events; there is no
reasOn to include signals in a prefix choice construct.

Fsla:A~P.]p '" {((),N,t)IAnu(N)~{}}
u
j«(t', al)~s, N, t) I a E A A t';;' 0 A

Anu(N rt')~ {} A
(s,N, t) - (t' +<5) E Fs Ip.Jp}

We assume that the set A contains only synchronisation events, and that the set
of alternatives {P4 I a E 11} is uniformly bounded.

Relabelling

The relabelling functions may be used to rename the events in a process, while
preserving aspects of the control structure. We do not permit the use of such
fllnctiom to transform signals into synchronisations, or vice versa. We insist that
for any relabelling function f.

Va:E 0 f(a)EE

Va:E 0 [(a)EE

With t~is restriction, the effect of applying such a function is given by

Fs[r'(Pl]p '" {(s,N,I) I (J(s),f(N),ll E Fslp]p}

Fs(r(P)]p '" {(J(s),N,I) I (s,r'(N),I) E Fs[P]p}

where [-1 (N) denotes the inverse image of refusal set ~ under f.

Abstraction

We may conceal signal events from the environment by removing them from the
trace. Because the process cannot stop signals occurring, the internal behaviour
is independent of any signals performed. We extend the definition of the hiding
operator on traces:

0\ A '" 0
«(t,al)~,.)\A '" s\A if a E A

«I, a))~(s \ Al othe,wise

«(t,ii))~sl\A '" s\A if aE A
«I, a))~(s \ A) otherwise

8.2 Sequential Processes 163

We roay hide any combination of signals and 5ynchronisations from ~be environ­
ment of a proce55:

Fslp\A]p "" {(s\A,N,t)!(s,NU([O,t)x(A~E)),t)EFs[Plp)

Ob5erve that only synchronis.ations may be added to the refusal set; 5ignal events
already occur as soon as they become available.

Recursion

As before, we may regard the semantics of a tenn P with free variable X as a
function defined upon TS"F' ma.pping a set of behaviours S to the semantlC'i of P
in an environment obtaineu by associating X with S.

Definition 8.1 If P is a TCSP term, and X and Yare variables such that Y
does not oeeor free in P, then

M(X,P)p .\ y. FsIP!p[Y/Xj

M,(X, P)p - W.·.\ Y. Fslp!p[Y/Xj

where W5 is the mapping uefined by

W, "" .\ Y. FsIiVAIT6;X!p[Y/Xj

<>

The definition of W5 refieets the delay associated with the second form of recursion
operator. The semantics of each recursion operator is given by the fixed point of
the eorr~ponding mapping:

Fs[1J X 0 P) p == the unique fixed point of the mapping M(X, P)p

FS[jJ X • P] p == the unique fixed point of the mapping M5(X, P)p

The signals model TM"F is a complete metrle space under the metric d defined
earlier in this chapter. Following the arguments of chapter 3, we can show that
the semantics of delayed recursion is always well-defined.

Further, the addition of signal5 to our computational model does not affect
the notion of a constructive term. As in 5ection 3.2, we may es~ablish that the
semantics of the immediate recur5ion 1J X • P is well-defined whenever term P is
constructive for variable X.

164 Specification and Proo! in Real-time Systems

8.3 Signals and Concurrency

We intend that signals should be propagated through a parallel combination, and
that available synchronisations are triggered by the corresponding signal events; if
a signal Ii is observed, tben any process waiting to perform synchronisation a will
be allowed to proceed. Observable synchronisations: require the participation of
the environment, so if a signal forms part of the interface between two processes
then the corresponding synchronisation mnst be concealed,

It would be enongh to conceal only those synchronisations which occur at the
same time as the corresponding signal events, allowing a process to signal and
synchronise upon the same event. For example, we might define a process

a -+ STOP ~ a -+ STOP

which waits to synchronise upon event at but will send a signal a instead ir no
progress has been made by time t. However, it can be argued that no process may
signal and synchronise upon the same event; we obtain a simpler, more intuitive,
semantics for concurrency if we proscribe dynamic reconfiguration of input and
output channels.

Accordingly, we place a simple restriction upon the sets presented as arguments
to the alphabet parallel operator. In the parallel combination

P ,II. Q

the sets A and B determine which synchronisations may be performed by processes
P and Q, respectively. By adding signals to these sets, we may also determine
which signals are propagated. We will insist that

An ,ync(Ant) = {}

B n ,ync(B n t) = {}

No event a may appear in the same set as a synchronisation a and a signal a.
As lUl example, consider the following choices for A and B:

A = {a,b,e}

B = (ii,b,e)

In this case, either component may broadcast signal c to the environment, and Q
may broadcast a. If Q broadcasts a, then P may perform synchronisation a, but
only the signal will be propagated to the environment. As before, both components
must cooperate upon any synchronisation in An B.

8.3 Signals and Concurrency 165

We may now derive the scmantic equation for P Ail B Q. Suppose that the
traces performed by components P and Q are Sp and SQ respectively. Any syn~

chronisation common to both scts mllst be performed by botb components:

d EL(AnB) ~ 'P ,E~(AnB) ~ SQ ~E ~(AnB)

and any synchronisation that is exclusive to one component will be observed if it
is performed by tha.t component, and not hidden by a corresponding signal. If we
identify the sets of signals

C '" AnE

D '" BnE

then we may capture this requirement as

,rE,(A-B) 'P ~ (E - sync(D»

S IE LIB-A) SQ L(E-,ync(C»)

Synchronisations of P tbi'll are also signals of Q are removed from the trace, and
can only occur when Q performs the corresponding signal:

'p ~ (A n ,ync(D)) c:; 'ync(sQ ~ D)
'Q r (B n sync(C)) c:; sync(sp ~ C)

If a is such a synchronisation, then (t, a) may appear in Sp only if (t, il) appears in
sQ. This will be true whenever (t, a) appears in the trace sync(sQ ~ D). A similar
condition applies for synchronisations of Q.

The pi'l,rallel combination will propagate any signals that lie in A or B and are
performed by the corresponding process:

s ~E E 'dClllsQ ID

Each component may perform signals from outside these sets, but they will not be
passed to the other components, nor to the environment of the parallel combina­
tion. Combining these conditions, we obtain that

SESPAITasQ .. s~E~(AnB)=sp~E,(AnB)='Q~E~(AnB)/\

, ~ E I (A - B) = Sp ~ (E - sync(D)) /\

s IE ,(B-A)='Q l(E-sync(C» /\

Sp ~ (A n sYllc(D» 0;;;: sync(sQ) /\

sQ ~ (8 n sync(C)) 0;;;: sync(sp) /\

s ~ EE Sp ~ C III SQ ~ D /\ , ~ E ~ s (E L(A U B)

166 Specification and Proof in Rea1~time Systems

If P performs a signal a at time t, then the corresponding synchronisat.ion
should be offered to component Q. We may examine the effect of such an offer by
including (t, a) in the appropriate refusal set. If Sp and SQ are the traces performed
by components P and Q, then we insist that for any time t'

sync(_(sQ l D it')) S; _(N~ t A it')

sync(_(sp (C it')) S; _(N:' l Bit')

The synchronisations corresponding to the signals performed by Q at.. time I must.
be offered to component P at time t, if they are contained in set A. A similar
condition applies to signals performed by P.

The behaviours of each component will take the following (orm:

(sp,NpuN~,t) EFsIP]p

(sQ,NQUN:"t) EFslQJp

Any synchronisation from A that is refnsed by component P must be rermed by
the parallel combination. A similar condition applies to events from B.

NpS;NlA

NQ S; N l B

We consider only those refusals of P and Q which correspond to events from A and

B: any other synchronisation will be impos.~ible. Conversely, any event refused
from Au B must be refused by at least one of the components, or concea.led by
the inclusion of the corresponding signal in the interface set.

N l (A U B)\ sync(CUD)) = (Np \ sync(D)) U (N Q\ sync(C))

For convenience, we define

N E Np ATIB NQ .. Np S; N l A A NQ S; N l B A
N ~(AUB)\sync(CUD))

~ (N p \ sync(D)) U (N Q \ sync(C))

We rna.y now give the sema.nt.ic equation for alphabet parallel combination in the
signals model:

Fs[PAIIBQJp '" {(s,N,t)13sp,Np,N~,sQ,NQ,N'Q.'It'.

SESPATIBSQ 1\ NENpAITBN Q 1\

sync(_(sQ l D i 1')) S; _(N~ ,A i I') A
sync(_(sp l C it'll S; u(WQ l Bit') A

(sp,NpUN~,t)EFslplp A

(sQ,NQ UN",/) E FslQ]p}

8.4 Consistency	 167

If the two components are to synchronise upon every event from E, then no
signals may he propagated to the environment. The semantics of a lockstep parallel
construct p 11 Q is thus

FsiPIl Q]p '" {("NpUNo,lll'~'IE	 ,q"Np,I)EF,[PjP
1\ ("NO,I) E FsIQ)p}

No such restriction need be applied to the interleaving parallel operator:

F,lpIIIQ]p'" {(',N,I·)13,p"OosE,plll'0	 1\(,p,N,I)EF,IP)p
1\ ('0, N, I) E FslQjp)

Signals and syncbronisations are simply interleaved.

8.4 Consistency

The Timed Signals model is an extension of the Timed Failures model. If a process
description P does oot mention s'lgnal events, the semantics of P in TAli will be
equivalent to the semantics of P in TMF. If we use 11" to denote the natural
projeclioo mapping between the two models, we may assert that

FT[P] = ~(F,[Pl)

for any dosed term P constructed without signal events.

Definition 8.2 A TeSp term is said to be signal-free if it contains no occurrences
of events from t. This will be true whenever the term contains no subterms which
match any of

sKip, WAIT I, ii~P,o, PAIIBQ

whe« (A U B) n f; i {}. ¢

With this definitjon, our consistency result is expressed by the theorem below:

Theorem 8.3 If P is closed and signal-free, and any recursive subterms in Pare
constructive for the corresponding variables, theu

hip] ~ ~(F,[Pj)

where projection mapping 11' : TMF _ TAfF is given by

~(S) '" (("NlI3t.("N,t)ES)

Q

168	 Spedfication and Proof in Real-time Systems

Proof We proceed by structural induction. To show tha.t our result is trl.1e Cor
recursively-defined processes,e must adopt a. slightly stronger result for our in­
ductive hypothesis. We begin by extending our definition of signal-free to semantic
sets and environments:

Definition 8.4 If S is an element of rsi'. we say that S is signal-free if

\/(5,~, t) E S • <7(s) = {}

Further, if p E ENV, we say that p is signal-free if

vX E VAR • pIX] is signal-free

o
It is easy to see that the semantic set Fs (P]p will be signal-free whenever both P
and p are signal-free. If we extend our projection mapping to environments with

~p = {X ~ ~(p!X]) I X E VARJ

Cor any p in ENV, we may also conclude that

p is signal-free ::::::} 1rp E ENV

We may now stale our indudive hypothesis: iC P is a signal-Cree term, then

\/pEENV • pi"ignal-f,ee=>FdPI(~p)=~(Fs[P]p)

base case It is sufficient to consider the case oC the deadlock process. For any
environment p in ENV, we have

FslsTOP!p = {(s,~,t) 15= 0 At" end(~)}

whence

~(FsISTOPI)	 ~({(s,~,,) I s = 0 A'" end(~)))

{(s,~) Is = OJ
Fr!STOPI

Although tra(:e s is an element of Tt~, we know that s l t = 0, and hence that
8 E TE;'.

inductive step Consider the case oC the alphabet parallel operator. If the parallel
combination PAlla Q is signal-Cree, then the same must be true oC components

8.4 Consistency	 169

P and Q. If Sp and sQ are the traces corresponding to each component, we may
conclude that Sp = Sp t"L a.nd sQ = SQ t"L. Iu this case,

S E Sp AIT. SQ ..	 S l E ~ (A n B) ~ Sp ~ (A n B) = SQ ~ (A n B) A

S ~E "A-B)~sp\syne(D) A
slE~(B-A)='Q\syne(C) A

sp l (A n sYll.c(D)) ~ sync(sQ) /\

SQ l (B n sync(C)) ~ .~ync(sp) /\

S ~ t ~ () A S ~ E = s lEI (A U B)

From our assumption that the parallel combination is signal-free, we have that

Ant~Bnt={}

and hence that sets C and D ill~ empty. From this, we deduce that

sESPATI.SQ .. s~(A-B)~spAsl(B-A)='QAs=sf(AUB)

¢:> S ESp AilE SQ

We may also infer that

N E Np All. H Q .. Np <; N ~ A A NQ <; N ~ B A

N ,(A U B) \ syne(C U D))
= (N p \ ,yndD)) U (N Q \ syne(C))

.. N/, <; N ~ A A NQ <; N ~ BAN ~ (A U B) = Np U NQ

We may use these results to ::;implify the semantics given for alphabet parallel
combination in the signals model:

FslpAII.Qlp" {(s,N,f)13sp,Np ,sQ,NQ"ESP AII.sQII
N ~ (A U B) ~ Np U NQ A

Np <; N LA II NQ <; N ~ B A
(,p, Np , t) E Fs IPlp A

(sQ,NQ,1) E F,[Qjp}

If we assume that p is signal·free, we may apply our inductive hypothesis tQ com­
ponents P and Q, yielding

~(Fs[PAII.Q]p)	 = {(s,N)13sp,Np,'Q,NQosESPAII.'QIl
N ~(AUB)~NpUNQ A
Np <; N ~ A II NQ <; N ~ B II
("p, Np) E Frlpl~p A
(sQ,N Q) E FrlQj~p}

- FrlP All. QI~p

170 Specification and Proof in Real-time SysternB

The case of Lhe recursion operator requires the following lemma:

Lemma 8.5 The set of sjgnal-rr~ semantic sets,

SF = {S E TS, IS;, signal-f'''''}

is a complete subspace of TSF under metric d. "
 The following definitions are taken from [Sutherland 75]:

Definition 8.6 A sequence {8n } in a metric space (M, d) is a Cauchy sequence

if given f > 0, there exists N such that d(S.. , S... } < (: (or any m, 11 > N. <I

Definition 8.7 A metric space (M, d) is said to be complete iff every Cauchy
sequence in (AI, d) converges to a point in M. <I

Proof of lemma 8.5 [after Reed] Suppose that {S.. } is a Canchy sequence in
metric space (SF, d), and let {n,} be a sequence of positive integers such that

V i ~ 0 • i < no < ni+J

V m ;: n • d(S... , S",)

Recall that the metric d was given hy

d(S,T) = 'n/Hr' IS(I)= T(I)}U{I))

where S(t) denotes the set of observations from S that end no later than time t:

S(I) = {(" N, I') E SIt',. I}

With such a metric, the limit of the Cauchy sequence S" is ('qual to

S = uS.,(.)
iOta

By our choice of sequence ni we have that

0,. I ,.. => S(I) = S.,(I)

and eAch Sft is signal·free. Hence we may observe that

(s,N,t) E S => (s,N,I) E S(I)

=> 3 i. (" N, I) E S.,(I)

::} 3i.(s,N.,t) ES..,

=> q(,) = {}
and conclude that the limit S is also signal-free. The set TF is thus a complete
subspace of 1'51" o

8.4 Consistency	 171

The semantics of immediate recursion in the signals model is given by:

Fs [Il X 0 P] p == the unique fixed point of the mapping M(X, P)p

where tbe mapping M(X, P)p is given by

M(X,P)p '" ,\ Y • .:Fs[P]p[Y/Xj

In onr indnctive hypothesis, we have assumed that Il X 0 P and p are both signal­
free. From tbis, we dednce that

Y is signal-free => F s [p]p(Y / Xl is signal-free

and hence that subspace SF is closed under the mapping M(X, P)p. If we suppose
that P is constructive for variable X, then this mapping has a unique fixed point,
and this fixed point must lie in SF. \\'e may conclude that the semantic set

.:Fs [" X 0 P! p

is signal-free.

Applying the fixed point property, we may obtain that

.:Fs[pXoPlp M(X,P)p(.:Fs[pX 0 pIp)

.:Fslp!p[.:Fs[pX 0 Pip/Xl

Term P, environment p, and semantic get F S [1l X 0 P]p are all signal-fret', so we
may apply our inductive hypothesis to yield that

~(:rs[pX 0 Pjp)	 h[PI~(p[.:Fs[pX 0 PIp/X])

.:Fdp!~p[~(.:FslpX0 Plp)/XI
M(X,P)~p(~(.:FslpX0 PIp)

where the mapping M(X, P)7rP is as defined in chapter 3:

M(X,P)~p ~ ,\ Y'.:FdPI~p[Y/XI

We have shown that 7r(Fs[IlX 0 P]p) is a fixed point of this mapping, but we
know that

F T [Il X 0 P] 1rp = the unique fixed point of the mapping M(X, P)7rP

so we may conclude that, provided that P is constructive for variable X,

.(.:F,[" X 0 PI p) = .:Fd p X 0 Pl'p

172 Specification and Proof in ReaJ-tjme Systems

The remaining easel for the inductive step arc comparatively simple. We con­
clude that the inductive hypothesis holds for all terms: if P is a signal-free term
in TCSP, then

'V p E ENV • pi' 'ignal-f'''' => FT[P] (rp) = r(Fslp!p)

under the assumption that any recnrsive terms are constrnctive for the correspond­
ing variables. The conclusion of theorem 8.3 follows immediately; if P is dosed
and signal-free, then

Fr[PJ r(FsIP])

o

Furthermore, it is easy to see that the defining axioms of TMF arc consistent with
those of TMF , in the sense that

S E TMF => r(S) E TMF

If a set S satisfies the axioms of the Signals model, the projection 11"(5) satisfies
those of the Timed Failures mode\.

We conclude that the semantics given in this chapter arc consistent with the
equations and axioms presented earlier. and hence that the Signals model may be
regarded as an extension of the Timed Failures model.

8.5 Example

As an application of the Signals model, we consider a Timed CSP implementation
of the physical layer of an Ethernet-like protocol. This layer provides a means
of commnnication between the nodes of a local area network; data bits are ac­
cepted from the data link at each node, and passed along a broadcast medium.
In section 7.4, we saw that the service provided by the physical layer could be
captured as a timed failurcs specification. With the addition of signal events, we
can produce a TCSP description to satisfy that specification.

Tbe service provided by the physical layer was described in terms of the avail­
ability and occurrence of synchronisation events from the following set:

ADL == {i.plIt.b, i.cs, i.cd, i.get.b j i : NODE; b : BIT}

At each node i, the physical layer shares two channels and two simple synchroui­
sations with the data link component. The channels carry data bits between the
two layers: bits are accepted (rom the data link layer along channel i.put, and

8.5 Example	 173

transmitted to the data link along channel i.get. The synchronisation i.es is made
available to the data link whenever activity ceases on the broadcast medium, and
the synchronisation i.cd j~ offered whenever a collision is taking place.

DATA LINK

i.put i.e!! i.cd i.get PHYSICAL

Figure 8.1: the service provided by the physical layer at node i

The event i.put.b models the acceptance of a data bit b by the physica1layer
at node i. If the physical layer is to meet the specification given in chapter 7, a
corresponding signal must be placed upon the broadcast medium. Even so, there
is no guarantee that the data hit will be received at another node j; if other nodes
are transmitting, then this bit signal may be lost. This behaviour is easy to model
if we introduce a set of signal events:

EeL "" {;.;;t.b Ii: NODE; b : BIT}

The event j.<d.b models the arriva.l of a bit b on the broadcast medium at node j.

Transmission

If a data bit b is pa.~sed to tlte rhysicallayer along channel i.put, it should be
broadc;\5t to every other node on the network.

TRANS, == i.put.b ~ (TRANS,

III

III WAIT d" :j.;;t.b ~ STOP)
d i

We have decided that signa.l j.-:J.b should occur at a time di) + thi1 aft.er the
input event i.put.b. The bit time fb,' is the duration of a bit transmission on the
broadcast medium.

The behaviour following an input eVl"nl. is an interlea.ving of two processe~. The
first is a fresh copy of the broadcast process: the physical layer at node j is ready
to accept a new bit for transmission once time fb" has elapsed. The second is an
interleaving of simple transmission processes: each of these will produce a signal
j.7J..b at t.he correct time, and then terminate.

174 Specification and Proof in Real-time Systems

Reception

The arrival of a data bit b at node i is modelled by the signal event i.;rt.b. If the
physical layer at node i is ready, it will synchronise upon this event, and offer data
bit b to Lhe data link.

LISTEN; == i.al.h: AT; ~ i.get.h ~ LISTEN;

where

AT; = {i.aLa, i.at.!}

The combination of delays t1 + it must be strictly less than tijj if the physical
layer is to function correcUy. In a valid frame sequence, a data bit is transmitted
every /.111; the physical component must be capable of decoding a data bit signal
and pas~jng it to the data link within this time. If the ahove process is not ready
to observe signal i.;t.b, then data bit b will not be received.

Carrier Sense

If more than two bit times have elapsed since the last bit arrived at node i, then
the synchronisation i.es should be offered to the client layer. This offer should be
withdrawn if another event from ATi is observed. The following process will meet
these requirements:

SENSE, '" (i." ~ STOP) \1 NOISE;
AT,

Once a.n at event is observed, control is passed to a. process which offers to syn­
chronise upon events from ATi •

NOISE; '" (a' AT; ~ NOISE;) '!!:' SENSE,

If more than two bit times have elapsed since the last at event, this process with­
draws the afTer, and passes control to a copy of the original process SENSE;.

Collision Detection

If a data bit arrives from another node while node i is transmitting, then syn­
chronisation i.cd should be offered to the data link layer. Accordingly, we define
a process DETECT; which waits for i to start transmitting.

DETECT, '" a, PUT, -"-. (MONITOR; \1 COLLISION;); DETECT,
AT,

8.5 Example 175

Once a transmission has begun, control is passed to a monitor process. Observe
that the delays 14 and t5 must be less than two or this process will interfere with
frame transmission.

MONITOR, S (a: PUT, -".<.., MONITOR,) ~C' SKIP

This process oilers to engage in events from {i.put.O, i.put.l}, until two bit times
elapse without a put event. When this happens, the monitor process terminates
successfuHy.

If a data bit arrives during a transmission, control is passed to the process
COLLISIONi , which behaves as MONITOR;, except that it is ready to engage in
the event i.cd.

COLLISION, S MONITOR, III ;.od ~ STOP

As this is an interleaved paralkl combination, it will terminate successfully when
transmission ceases, and MONITOR, terminates. When this happens, control is
passed to another copy of the original process.

Combination

The physicaltayer component at node i is the parallel combination of the processes
defined above:

PL, S (TRANS, II DETECT,) III SENSE, III LISTEN,
PUT,

The transmission and collision detect processes must agree on each occurrence of
an event from PUTi , but no other synchronisation is required. The physical layer
itself is a paranel combination of node processes

PHYSICAL S II PL,
ALL,

where ALL; is the set of all e....ents that are possible for node i:

ALL, S PUT,UGET,UAT,U{;",;.,djU{j ..,.bljENODEAj#;}

Only the broadcast signal events are seen by more than one node.

Chapter 9

Discussion

9.1 Conclusions

In this ,hesis, we have presented a formal method for the specification and devel­
opment of real-time systems. We have exhibited a system description language
with a number of useful programming features. We have introduced a formal
specification language for the description and analysis of system behaviour. We
have presented a complete, compositional proof system for relating the two lan­
guages, and formulated techniques for simplifying the proof obligations that arise
during the development process. Finally, we have extended the method to include
a treatment of broadcast communication.

A substantial case study wa.s undertaken to demonstrate the applicability of
the development method, and proved successfuL To assess the performance of the
method, it is necessary to consider the rolf> of forma.l methods in systems develop­
ment: initially, a set of informal requiremeuts describing the intended behaviourol
a system are translated into an abstract formal specification; this specification is
then gr(l.dually refined towards some fiual implemf'ntation. If each refinement step
is formally verified, then we may be certain that any behaviour of the implemen­
tation will be consistent with the original specification. However, as [Barringer 87]
points out:

* the gap between informal requirements and formal specification means that
there is no guarantee that the system performs as originally intended;

* as soon as realistically sized systems are considered, shortcuts have to be
taken; the number of formal proofs required is just far too la.rge.

These are valid criticisms, and must be addressed if our development metbod is to
be of any practica.l use.

9.1 Conclusions 177

The specification language formula.ted in chapters four and six is an attempt to
answer the first of these crit.icisms. If the intended behaviour of the system may be
described in terms of the observation and availability of some set of communi cation
events, then this language may be used to capture the system requirements in a
clear and cornprehensible fashion. The resulting specification may be translated
into timed failures notation. Alternatively, we may derive inference rules which
relate such specifications directly to the implementation language.

Once the system requirements have been formalised, the specification language
may be used to reason about system properties, and to communicate the details of
the design to others. At this stage of the development, we will often deted incon­
sistencies and ambiguities in the original requirements. Even if the de"'elopment
is then completed informally, the production of a formal specification will have
improved the safety and reliability of the system.

The system description language presented in chapters two and three is signif­
icantly larger than that proposed in \Reed 88J. We have extended the language
to include process variables, primitive timing operators, and new operatQfs for se­
quential composition, parallel composition and recursion. Although the extended
syntax is harder to reason about-there are more cases to consider--it is easier
to reasou with. In realistic applicatious, sHch as the case study of chapter seven,
we find that the new operators correspond more closely with our requirements,
resulting in an elegant implementation with a simple semantics.

The complete proof system introduced in chapter five provides a formal link
between the specification language and the system description language. Given a
proposed implementation of a system component, we may use the inference rules
presented in chapter five to establish that it behaves as expected. The composi­
tional nature of the proof system supports the hierarchical development of large,
complex systems: we may reason about the behaviour of each component in isola­
tion. The notion of environmental assumptions, introduced in chapter four, proves
particularly useful in these circumstances.

The second criticism is more challenging: real-time systems are complicated
entities, aud the proof obligations generated during the development process are
necessarily complex. The theory of timewise refinement presented in chapter five
can be used to reduce any proof obligations which correspond to untimed safety
conditions: if we can show that these requirements are satisfied in Reed's untimed
Traces model, theu we may conclude that they are also satisfied in the context of
the Timed Failures model.

The treatment of scheduling and abstraction introduced in chapter six provides
another method of reducing the complexity of proof obligations. By separating the
concerns of scheduling and concealment, we are able to present our requirements

178 Specification and Prool in Real-time Systems

in a dear and structured fasbion, as illustrated by the development method for
hierarchical protocols described at the beginning of chapter seven.

Even with the techniques described above, when we come to apply Timed CSP
to tbe specification and development of complex real-time systems, we find that
the number of formal proofs required is still uncomfortably large. However, we
may replace many of these proofs with rigorous mathematical arguments, and still
be reasonably sure that our implementation is correct. Where doti bts remain, we
may increase tbe degree of formality until the truth, or falsity, of the argument
becomes apparent.

In a description of a real-time system, it is sometimes convenient to include
observable events that are \lot synchronisations: output events which may occor
without the cooperation of the euvironment. In chapter eight, we showed that
our model of computation could be extended to include a treatment of broadcast
communication. Not only does this make it easier to describe and analyse certain
aspects of behaviour, but it may also he used as a basis for modelling assignment
in Our system description language. This is the subject of current research, and
will be discussed at the end oC this chapter.

This thesis has presented a Cor mal development method for real-time systems,
based upon the models proposed by Reed and Roscoe. This method supports
both [Ilrmal and rigorous reasoning at every stage of system development, and
is applicable to systems of a realistic size. It is our hope that the results of the
research described in this thesis may be used to improve tbe safety and reliability
of real-time distributed systems.

9.2 Other Approaches

A wide variety of formal methods L have been proposed for the specification and
development of real-time systems, ba5ed upon

.. process algebras, such as Timed ACP [Baeten & Bergstra 89]

• temporal logics, such as that presented in [Barringer et al. 84J

.. programming languages, such as ESTEREL [Berry & Gonthier 88J

Although much research ha5 been canied out into the theory of timed concurrency,
a consensus bas yet to emerge concerning the applicability of the va.rious formalisms
to different types of system. A successful development method is likely to involve
somf combination of the features mentioned above. A [lOtation that is well-SUited

J A useful review is presented in [Jo~ph &, Goswami 88].

9.2 Other Approaches 179

to requirements capture is unlikely to be an efficient programming language, and
viee versa.

The process algebras­

• sees [Milne' 83]

• TeeS [Molie' & Tofl' 90]

• ATP [Nicollin eI at. 90J

• Timed LOTOS [Quemada & Fernandez 87J

* Timed A CP IBaeten & Bergstra 89J

• Timed CCS [Wang 90, Hennessy & Regan 90J

-rely upon bisimulation relations to prove correctness. Two processes
are said to he bisimilar if they exhibit the same behaviour according to the opera­
tional seman tics (or the language. To show that an implementation meets a given
specification, we describe both as processes, and show that the two descriptions
are bisimilar.

This approach has proved successful in an untimed context, but is difficult to
apply to complex real-time systems. A great deal of information is present in
each process description: as specifications, they are difficult to understAnd and
unsuitable for rigorous, rather t.han formal, reasoning. We do not exploit the
algebraic properties of Timed CSP: our method of proof is quite different, and we
employ separate languages for system description and formal specification.

The ESTEREL programming language [Berry & Gonthier 88J is a determin­
istic language based upon a synchrony hypothesis: the outputs of a system are
conceptually syncbronous witll its inpnts. If it can be assumed that the system
under consideration takes no time to execute the operations required of it, then
that system may be programmed in ESTEREL, and compiled into a language of
finite automata. Tbe 1<l.llguage is given a semantics in terms of rewrite rules; no
development method comparable to ours has been presented.

More relevant to the development method outlined in this thesis is the work
described in [Hooman & Widom 89J. In this paper, the authors present a compo­
sitional proof system relating an occam-like language to a quantitative temporal
logic, similar to the one developed in [Koymans & de Roever 83J. Althollgh the
system description language is somewhat limited, it is clear that quantita.tive tem­
poral logics are useful assertion langll... ges-indeed, IJackson 90J shows how such
a logic may be employed as ... specification language for Timed CSP. lt would be

180 Specification and Proof in Rea1~time Systems

interesting to see the proof system applied in the development of a large, complex
system.

In [Shasha. et ai. 83], the authors use a quantitative temporal logic to prove
the corredness of a carrier-sense broadcast protocol, similar to the one described
in chapter seven. By assuming a simplified version of the service provided by the
physical layer, and an internal specification of the data link layer, the authors
are able to establish that certain desirable properties hold of the network. The
sketch proof provided is similar to the rigorous justification of the data link service
presented in chapter seven.

In terms of complexity of specifical.ion, and support for formal reasoning, there
is little to choose between quantitative temporal logic and the notation presented
in this thesis. However, the structuring mechanisms of Timed esp, and the exclu­
sive treatment of communication, are of some advantage when large systems are
considered. We have yet to see a large-scale application of qnantitative temporal
logic to the hierarchical development of complex: real-time systems_

9.3 Future Work

If the development method described in this thesis is to support formal reasoning
at every stage of the development process, we must bridge the gap between the
system description language and executable code. We are fortunate in that there
exists a powerful programming language based upon esp, the occam language
of [Irunos 88]. We propose to establish a refinement relation between a subset
of Timed esp, corresponding to occam-implementable processes, and a subset of
occam. To provide a formal basis for this refinement relation, we must give a
denotational semilntics to occam in the style of the Timed Failures model.

Towards this end, we may use the model for broadcast communication pre-­
sente<! in chapter eight to provide a basis for modelling ilSsignmen t in Timed esp.
Instead of adding a signal event for every synchronisation, we extend the alphabet
E with a set of assignment events r.

E '");ur
r == Var x Val

Each a:ssignmenl event is a pili!' x.o, representing the assignment of value 0 to
variable x. If we choose ill to denote the set of possible states,

IIr == Var -+ lral

then we may define a semantic function

Fs E resp -+ ill -+ TM;.

9.3 Future Work 181

This function takes a language construct, and an initial state ,p, and returns a set
of possible observations. For example, the semantics of the assignment statement
:r := e ; P would be given by

Fs[,,= e; PI" '" (((), {}, 0))
U

((((O,x.o))~s,N,I) I 0 = "['I 1\
began(s) ~ 11 1\
,,'=>/>(JJ{,,-'o} 1\

(s,N, l) - 6 E Fs[PI>/>')

We may use the state component to give a semantics to conditional statements,
as well as input and output instructions.

As we discovered in chapter seven, Timed CSP lacks any mechanism for rea­
soning about probabirlstic aspects of system behaviour. Such a mechanism would
allow us to analyse the performance of communication protocols. However, a se­
mantic model which allows us to formalise statements such as the system nspQnds
within 5 time units, with a probability of 0.5 will be complex indeed. Although
substantial progress has been ma.de towards an nntimed probabilistic model for
CSP [Seidel 90]. little has been done to combine probability and time. This is an
area for future research.

Another area for reseiLrch is the development of a simulated time model for
CSP: a real-time model which supports an algebra of processes. If we discard the
realism assumption of our computational model, which places a bound upon the
rate of progress of a process, we may exhibit algebraic laws for the elimina.tion of
concurrency. These laws may be useful in establishing the correctness of compilers
for a language with timing constructs, which must simulate the flow of time. Such
a model might be based upon the operational semantics for Timed CSP given
in [Schneider 9lJ.

The operational semantics may also be used to define an infinite Timed Failures
model, in which process behaviours are represented hy infinite traces and infinite
refusal sets. Such a model would support a theory of timewise refinement hased
npon the untimed Failures model, and provide a more straightforward semanlics for
the hiding operator: we might distiugnish an A-active behaviour by the inclusion
of the set [0,00) x A in the timed refusaL

Finally, if we wish Timed CSP to be adopted by industrial users, it is essential
that the development process is supported by reliable software tools-to ma.nipu­
late formal specifications, and to assist in verification-we cannot expect methods
to reach maturity without leaving their home environment.

References

[Baeten & Bergstra 89]

J.C.M. Baeten and J.A. Bergsl.ra, Real Time Process Algebra, Report P8916,
Programming Research Group, University of Amsterdam 1989.

(Barringer 87J
H. Hiltringer, The Use oj Temporal Logic in the Campo:;itional Specification
of Concurrent Systems, in Tempoml Logic$ and their Applications, Academic
Press 1987.

[Barringer et al. 84]

II. Barringer, R. Kuiper, and A. Pneuli, Now You May Compose Tempoml
[,ogie Spet:ifications, Proceedings of the Sixteenth ACM Symposium on Theory
of Computing (I984).

[Barringer el ai. 851
H. Barringer, R Kuiper, and A. PneuH, A Compositional Tt:.mpund Approach
to a CSP~like Language, in Formal Models in Programming E.J. Neuhold and
G. Chroust (eels.), NOI·th~Holland 1!J85.

[Berry & GonLhier 88J

G. Berry and G. Gonthier, The Esterel Synchronous Programming Lan~

guage: Design, Semantics, Im]Jlf'.menlation, Rapports de Recherche 842, INRIA
Sophiit.~Antipolis 1988.

[Bwy 891

G. BerrYl Real Time Programming: Special Purpose or General Purpose Lan·
gucgcs, in In/ormation Processing 89, C.X. Ritter (ed.), North-Holland 1989.

(Drooke~ 83]

S.D. Brookes, A Modd for Commu1ncal.ing Sequential Processes, Oxford Uni­
versity D.Phii thesis 1983.

182

References 183

[Bergstra & Klop 84]

J.A. Bergstra and J.W. Klop, Process Algebra for Synchronous Communication,
Information and Control 60 (1984).

[Brinch Hansen 75J

Per Brinch Hansen, ConClirrent PrLScal Report, Technical Report CIT~IS--TR­
17, California Insti tute of Technology 1975.

[Boucher & Gerth 87)

A. Boucher and R. Gerth, A Ti.med Model for ETtended Communicating Se­
quential Processes, Proceedings of ICALP '87, Springer LNCS 267 (1987).

[Davies & Scnneider 89J

J. Davies and S,A. Schneider, Facforising Proofs in Timed CSP, Proceedings
of the Fifth Conference on the 1lathematica! Foundations of Programming Se­
mantics, Springer LNCS 439 (1989).

[Enderlon 77)

H.B. Enderton, Elements of Set Theonj, Academic Press 1977.

[Hennessy & Regan 90J

M. Hennessy and T. Regan, A Temporal Proeess Algebra, Technical Report
2-90, University of Sussex 1990.

[Hoare 781
C.A.R. Hoare, Communiealing Sequential Processes, Communications of the
ACM 21-8 (1978).

[Hoare 85J
C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[Hooman & de Roever 891
J.J.M. Hooman and W.P. de R.oever, Design and verification in real-lime dis­
tributed computing: an inl.rodudion to compositional methods) Proceedings of
the Ninth International Symposium on Protocol Specification, Testing and Ver­
ification, North-Holland 1989.

[Hooma.n & Widom 89J
J.J.M. Hooma.n and J. Widom, A Temporal-Logie-Based Compositional Proof
System for Real·time Message Passing, Proceedings of PARLE 89, Springer
LNCS 366 (1989).

184 Specifica.tion and Proof in Real-time Systems

[Rooman 90J
J.J.M, Hooman, Compositional Proof Systems for Real-time Distributed Mes­
sage Passing, ESPRIT BRA-3096 (SPEC) deliverable, Eindhoven University of
Technology 1990.

[Inmo,88J

lomas Limited, Occam 2 Reference Manual, Prentice-Hall 1988.

[Jack'o,90J
D.M.Ja.ckson, A Temporal Logic/or Timed esp, Programming Research Group
Technical Report TR-5-90, Oxford Uni"'ersity 1990.

[Jahani.n & Mok 86J

F. Jahanian and A.IC Mok, Safety Analysis of Timing Propertie.s in Real-Time
Systems, IEEE Transactions on Software Engineering, 5£-12 (1986).

[Jeflcey90J

A. Jeffrey, Discrete Timed esp, Programming Methodology Group, Chalmers
University of Technology (to appear).

[Jon'" 82J
G. Jones, A Timed Model 0/ Communicating Processes, Oxford University
D.Phil thesis 1982.

(Joseph & Goswami 88]

M . .Joseph and A. Goswami, Formal Description of Real-time Systems: a review,
Research Report 129, Department of Computer Scieuce, University of Warwick
1988.

[Koymans & de Roever 83]

R Koymans and W.P. de Roever, Examples of a real~time temporallogie spee·
ification in The Analysis of ConCI,UTerd Systems, Springer LNCS 207 (1983).

ILamport 77)

L. Lamport, Proving the Correctness of Multiprocess Programs, Transactions
OIl Software Engineering 3 (1977).

[Mi1oer 80)

R Milner, A Calculus of Communicatill9 Systems, Springer LNCS 94 (1980).

[Milner 83J
R. Milner, Calculi for Synchrony arld Asynchrony, Theoretical Computer Sci­
eore 25 (1983).

References 185

IMilne,89J
R. Milner, Communication and Concurrency, Prentice-Hall 1989.

[Molle' & Toft, 90J
F. Moller and C. Tofts, A Tempoml Calcul~ of Communicating Systems, Pro­
ceeding, of CONCUR 90, Sp"ingc, LNCS 458 (1990).

[Nicollin et al. 90J

X. Nicollin, J.-L. Richier, J. Sifakis and J. Voiron, ATP: an Algebra for Timed
Processes, Proceedings of the IFIP Working Conference on Programming Con­
cepts and Methods, 1990.

[Quemada & Ferna.ndez 87J
J. Quemada and A. Ferna.ndez, Introduction of Quantitative Relative Time into
LOTOS, in Protocol Specification, Testing and Verification VII, H. Rudin and
C.H. West (eds.), North J-Iolla,nd19S7.

[Reed & Ro,coe 86J
C.M. Reed and A.W. Roscoe, A Timed Model for Communicating Sequential
P.rocesses, Proceedings of ICALP '86, Springer LNCS 226 (1986); Theoretical
Computer Science 58 (H188).

[fleed & Roscoe 87J
C.M. Reed and A.W. Roscoe. Metrie Spaces as AfodeLs for Real.time Concur­
rency, Proceedings of the Third Workshop on the Ma.thematical Foundation5
of Programming Langua.ge Sem,1ntics, LNCS 298 (1987).

[Reed 88J
C.M. Reed, A Uniform Mathematical Theory for Real-time Di.9tributtd Com­
puting, Oxford University D.Phil thesi5 1988.

[Ro'coe 82J
A.W. Roscoe, A Mathematical Theory of Communicating Processes, Oxford
University D.Phil thesis H182.

[Schneide' 89J
S.A. Schneider, Correctness and Communication in Real-time Systems, Oxford
University D.Phil thesis 1989.

[Schneider 91]

S.A. Schneider, An Opernlio'//a! Semantics for Timed CSP, Programming Re­
search Croup Technical fleport TR-1-9I, Oxford University 1991.

186 Specification and Proof in Real-time Systems

[Seidel 90]

K. Seidel, Probabilistic CSP: lYork in Progress, Programming Research Group,
Oxford University 1990.

[Shasha d al. 83]

D.E. Shasha, A. Pneuli, and W. Ewald, Temporal Verification of Carner-Sense
Local Area Network Protocols, Proceedings of the 11th ACM Symposium on the
Principles of Programming Languages (1983).

[Sutherland 751

W.A. Sutherli'lnd, Introduction fo Metric and Topological Spaas, Oxford Uni­
versity Press 1975.

[Tanenbaum 81J
A.S. Tanenbanm, Com})uter Networks, Prentice-Hall International 1981.

[Wang 90]

Wang Yi, Real-time BEhaviour of Asynchronous Agents, Proceedings of CON­
CUR 90, Sp,inger LNCS 458 (1990).

[Woodcock 90]

J.C.P. Woodcock, Using Z, Lecture Notes, Programming Research Group, Ox­
ford University 1990.

[Xe,"x 80]

The Ethernet Specification, available from the Xerox Corporation, reprinted in
ACM Computer Communication Review July 1981.

[Zw"ico 861

A.E. Zwarico, A Formal Model of Real. Time Computing, University of Penn­
sylva.nia Technical Report 1986.

Appendix A

Mathematical Proofs

A.I Lemmata

We give deriva.tions for two of the lemmata presented without proof in the body
of the thesis. The first result requires a proof of semantic equivalence, while the
second is representative of a series of results about constructive terms, presented
at the beginning of chapter 3.

Communicating Parallel

In chapter 2, we claimed that

pIIQ" ,(I(P}AIIBr(QJJ
c

where the process relahelling function!! l, TO, and c are given by:

I(aJ - a if a E C
I. a otherwise da) - a if a E C

r(aJ - a if Il E C ,(I.a) ­ • if. " C
r .• otherwise ,(r.•) ­ • if • " C

and

A '" I(E - C) u C

B '" "(E - C) u C

and we choose I and r such that

I(E) n C "(E)n C {}

188 Specification and Prool in Real-time Systems

We may establish this equivalence LJy demonstrating that, for any environment p

hiP 11 Q]p ;: Fd' (I(P) .11. r(Q))]p
C

Suppose that (5, N) is au element of FT [p nQJ p. In this case, we know that
C

3 Sp, Np, Sq, NQ • , E Sp 11 SQ ~ ~ l C = (~p U ~Q) l C
c

~~\C=(~p()~Q)\C

~(SP,~p)Ehlp]p

~ (.'Q. ~Q) E FdQjP

Appealing to the semantic equation for the renaming operator, we see that the
statement above is equivalent to

3s~, Np,SQ' NQ • s E Sp 11 Sq 1\ Sp == [(sp) f\ Sq = r(sQ)
C	

~ ~p = /-, (~p) ~ ~Q = r-' (N'Q)
~ N l C = (~p U NQ) l C

~~\C=(~p()~Q)\C

~ (sp.~p) Eh(I(P)jp
~ (sQ.NQ) E hlr(QJ],

which is true if and Duly jf

3l,N',sp,Np,sQ,N'Q • S E sp 11 sQ ~ s = '(s') A N = ,-' (N')
c ,

/\ sp = l(sp) /\ Sq = r(sQ)
~ ~p = I-J (~p) ~ ~Q = r- J (WQ)
~ ~ l C = (Np U NQ) ~ C
~ ~ \ C = (~p () NQ) \ C
~ (sp, ~p) E hll(P)) p
~ (SQ' N'Q) E hlr(Q))p

From our choice of 51, Sp, sQ' and the definitions given for A, B, 1, T, and c, we
may deduce that

s E Sp II Sq ¢;> $' E sp II sQ ¢;> 8' E Sp AliB Sq
C c

We may also deduce that

Np <; N' l A ~ N'Q <; N' l B ~ N' ~ (A U B) = N'

A.l Lemmata	 189

If we recall the semantics of the alphabet parallel operator, it is clear that the
previous existentially quantified statement is equivalent to

3,',N' • '~c(") A~ ~ c'(~') A (s',N') E Fr[/(P) AII B r(Q)jp

which is true if and only if

("~) E hie (I(P) AII B r(Q))]p

We conclude that the two terms are semantically equivalent. o

Constructive Terms

Section 3.1 included several lemmas ttbout constructive terms. Each of these may
be derived from the semantic equations given in chapters 2 and 3. As an example,
consider the first clause of lemma 3.5:

Lemma 3.5 If P is t-constructive for X,

1. a~P and WAITto;P are (/+lo)-constructivefor X
(>

Proof Term P is i-constructive for variable X if and only if

V t', TIME; p' ENV •

hIP!pt" +' ~ Fdp]p[p[X] r i'IX] r i' +'

Suppose that (s,N) is an element of ..FT[a~P]pttl+ l+to. From the semantics
of the delayed prefix operator, we may infer that end(s, N) ~ l' + I + to and

a ~ 0 A a 1- a(~)

V

3s' •	 s::: (til, 11))""'5' /\
,If ~ 0 /\ 11 rJ a(N t ttl) 1\

(s',~) - ('" +',) E Fr[P]p}

Timed traces are sequences of timed events arranged in chronological order; it is
a simple matter to eslablish that

end(s, N) ~ (t' + t + to) 1\ til ~ 0 1\ 5 ::: (t", a)) s'

=> end(s', N) ~ (til + to) (t' + t

190 Specification and Proof in Real-time Systems

From our a.ssumption that Pis t-constructive for X, we may infer that

(s',~) - (t" + to) E FdP]p t t' + t

=> (s',Nj-(t"+to)EFr(P]p[p[X] rl'/X) tt'+t

By the semantics of the prefix operator, this is equivaJent to

a = 0 A a ¢ a(N)

V

3 $'. s = «t", a))s' 1\
t" ~ 0 1\ a ¢ a(~ r til) 1\

(s',N) - (t" + to) E FdPJp[p(XJ t t'IX)

which is true if and only if

(s,N) E Frla -'£...!p[pIX] t t'IX!

This argument may be reversed to establish that

Fr[P]p r t' + t + to = Fr[P]plP[XJ t t'IX] t t' + t + to

foe any ~ime t' and environment {J. The term a ~ P is thus t + to-constructive
for X whenever P is i-constructive for X. The proof that WAIT to; P is also
t + to-constructive is entirely similar. 0

A.2 The Finite Dependency Theorem

To establish the Finite Dependency Theorem, we will establish a stronger result
by structmal induction on the synta.x of Timed CSP. We recall the statement of
the theorem:

Finite Dependency Theorem If P is a TCSP term, possibly containing free
occurrences of process variables drawn from the set {Xi liE l}, and p is an
environment, then

(s,~)EFdPJp => 3N,FI.'1p',ENV.

('Ii, N. pIX,] = p'IX,J) => (s, I'll E Fr[P!P'

I)

It is dear that this is a consequence of the following lemma, which will be esta.b­
lished by structural induction on the syntax of Timed CSP terms:

A.2 The Finite Dep~e~n~d~e~n~c~y,-,T~h~e~o~re=m~	 _ 191

Lemma A.1 If (so'~Q) is an element oC FT[P]P, then

3M E F(VAR x TF) • PROP(M,."N"P,p)

where

PROP(M,so,N"P,p) = ('1(X,(s,~))EM.(s,N)ErlXl)
A

'I p' E ENV • ('1(X, (s, N)) EM. (s,N) E ,'IX])
0> (s"N,) E FrlP],'

\7

That is, we may find a finite set !If of (vaTlable, behaviour) pairs such tha.t the
behaviour (so, ~a) depends only upon the elements of M. In the proof of this
result. the following result will be useful. It states that if we can fmd a finite set
M sucb that PROP holds for M, then we can obtain a second set At' in which
all of the behaviours corresponding to vi'lriables for which term P is t-constructive
end at least t before (sa, ~Q)' We esta.hlish this secondary result by showing that
PROP holds of the subset of At obt<ljned by discarding those behaviours which
do not meet this condition.

Lemma A.2 If PROP is as defined in lemma A.I, then

PROP(M, s"N"P,p) 0>	 3M'. PROP(M',s"N"P,p)
A

li(X, (s, l'{)) E M' It (P tx-constructive for X

=:> wfl(s, l'{) + tx ~ end{so, l'{o))

\7

To see that this is true, define

M' == {{X, (s, ~)) E M I P lx-constructive for X =:> end(s, N) -+- l ~ end(.'io, No)}

and observe that PROP(M', So, l'{o, P,p) holds. The first conjunct is immediate,
as M' ~ M. To establish the second. let pi be such that

'1(X,(s,~)) E J1!'. (,.N) E p'IXI

Then define pIt by

p"IX] = p'[X] u {("N) I (X,(s,N)) E M}

192 Specification and Proof in Real-time System'l

In this case,

V'(X,(s,N))EM • (s,N)Ep"IX)

and hence

(s"N,) E Fr!p!P"

If we choose to = end(so. No), we obtain

(s" N,) E Fdp!P" t t,

From this we may obtain

(s"N,)EFrlPjp"[p"/X! tl,-lx/Xl
=> (",N,) E Frlp!p'[p'IX] t I, - Ix/XI
=> (s"N,) E Frlp!p'

The final implication above follows from the definition of t-constructive. We may
now proceed to establish lemma A.1.

Proof of lemma A.I

We proceed by structural induction upon the syntax of resp terms, observing
that the result is trivially true for all closed terms or processes-these ha.ve the
same semantics in every environment, and the empty set is a suitable choice for
set M. The remaining base case for our induction is the variable clause:

case X

Suppose that (so, No) is an element of p[X], and choose M to be the singleton
set {(X,(solNo)J). The result follows immediately.

The inductive step is straightforward in every case except tha.t of mutual recursion;
a typical example is the case of the parallel operator.

casePIi Q

Suppose tha.t (so, No) is an element of FT IP 11 Q]p. From the semantics of the
parallel operator we obtain that

3Np ,N Q •	 No =NpUN Q

1\ (s"N p) E FrlP!p
1\ (s"N Q) E FT[Q]p

A.2 The Finite Dependency Theorem	 193

By our inductive hypothesis, there exist sets Atp and MQ corresponding to (so, ~p)

and (80, ~Q) to satisfy the propo'Sition. If we take At to be the uuion of these sets,
then we have that

(X,(s,N)) E M	 0> (X,(s,N)) E Mp Y (X,(s,N)) E MQ

0> (s,N) E p[XI Y ("N) E p[XI

wh.ich establishes that At satisfies the first requirement. Now suppose that p' is
such that

V(X,(s,N)), M • (s,N) E p'[X]

then, as Mp ~ At,

V(X,(s,N)) , Mp • (s,N) E p'[X]

we apply the inductive hypothesi'S and deduce that (so, ~p) EFT [P] p'. Similarly,
we rna)' deduce that (so,N Q) E FT[Q]p'. From the semantics of the parallel
operator, we have that (so, Np U NQ) in F T [p II Q] rI, which establishes the case.

case (Xi = Pi),

Consider (so, No) in FT [(Xi = P,)}] P. where the recursive equations are indexed
by set I. Unfolding the recursion, we see thal

(s"N,) E FrlP,]p,

where

p, ~ r[Fr[(X, ~ P,),jp/X. IkE I]

Applying the inductive hypothesis to every term PI, we know that for any (SI, ~I)

in F T[PI] p there is a corresponding set M(Sl, Nl , 1) such that

(i) V(X,(s,N)) , M(s"N"I). (s,N) E pIX]

(ii)	 V {I, ENV • (V(X, (s,N)) , M(s" N" I) • (" N) E p'[X])

0> (s"N,) E FrlP,]p'

Applying lemma A.2, we obtain that there exists a set At'(Sl'~J'(), a subset of
M(s/,N l ,I), satisfying (i) and (ii) above. such that

(iii) V(X, (8, N)) E M'. P lx-constructive for X ~ end(s, \{) + tx ~ end(so. Ro)

194 Specification and Prool in Real-time Systems

We define a flLUetion m: (VAR x TF) ---. P(VAR x TF) as follows:

m(X,(s,N)) '"	 {) if X ¢ F; liE l}
M'(s, N, I) if X ~ X, " I E [

In the second case, if the variable X appears in the variable vector X, we let
m(X, (8, N)) be the set whose existence is guaranteed by tbe inductive hypothesis
applied to the corresponding term. We define a relation R on VAR x TF by

(X,,(sl,N,)) R (X.,(s.,N.)) <? (X"(s,,N ,)) E m(X.,(s.,N.))

This is a well-founded finite-ta-one relation. That is:

1. there are no infinite chains {C..) such that \in. C"tl R C.

2. for any C, the set {C' I C' R C} is finite

The second of these requirements foHows immediately from the definition of m,
and the first. is established as follows:

Suppose/hat {(Xn , (5., N.)) In: N) is such a infinite chain, then ea.ch X.. must be
an Xi for sarne i E I. for otherwise X"tl cannot exist (by tbe definitions o(Rand
m). For each index n, let i" be the vector index such that X. = Xi". Construct
an infinite chain of natural numbers N, by

No == 0
N,+I == min{n: N In> N, 1\ i. I- i,,_I)

that is, the successor NI'+J is defined to be the least number n greater than N,
for which the vector index i" is not beneath i... _1 in the well-ordering o(t.he vect.or
indeXing set I. This is a good definition: if the defining set is empt.y (or N,+J , tbe
infinite sequence {i;, I k > N,) is strictly decreasing with respect to well-order -<,
forcing a contradiction. Let

ti == end(s., Ni)

Recalling that property (iii) holds of M', which is used to define m, we have

Vp • t'+1 ~t,

Vp • tNp +l + t ~ tHptl-l

hence

vp • tH + t ::;;;; tN
pt1 p

and thus tHp is a sequence tending to -00, contradicting the fact. that each t. is
non·negative. Hence there can be no infinite chain C'., and the relat.ion R is indeed
well-founded. We appeal to the following result from [Enderton 77]:

A.2 The Finite Dependency Theorem 195

Konig's Lemma If R is a well-founded relation such that, for all y, the set
{z I zRy} is finite, then

'Vy • {z I X R 1 y} is -finite

¢

Applying this, the set M = {C I C RI (X" (s~, No))} is a finite set. We claim that

PROP(M,s"H,,(X, = Pi)j,p)

Recall that

PROP(M,s"H"P,p) '" (\I(X,(s,H))EMo(s,H)EPIXIJ
A

\I p' E ENV 0 (\I(X, (s,H)) E M 0 (s,H) E p'IX])
=> (s"H,) E FdPlp'

and observe that

(X,(s,H))EM => 3X',s',Wo(X,(s,H)) Em(X',(s',W))
=> 3/,,',~' 0 (X,(s,~)) E M(s',W,I)

The first conjunct of PROP(M, So, N~, (X, = P;)j,p) follows immediately from the
corresponding result for PROP(M(s',l\'./),s',W,P1,p). To see that the second
conjunct is true, it is enough to show that, given any (X,(s,N)) in M,

(\I(X', (s', 1")) E m(X,(s,H)) ollYP(X',(s',H'))) => HYP(X,(,,~))

where

HYP(X,(s,H)) '" (s,H) E p'[Fr[(Xi = Pi).]p'/X.J!X]

We establish this as follows: assume the left-ha.nd side of the above implication,
and consider the identity of variable X. If X is an element of {Xi liE l} lhen

p'!Fr[(X, = P,).]p'/X.IIXI = p'[XI

which contains (5, N), by the antecedent to the second conjunct of PROP. Other­
wise, let X = Xl for 1 E I. In this case,

m(X, (s, H)) = M(s, H, I)

and for each (X', (5', N'») in M(s, N, J), we have that

(",W) E p'[FrI(Xi = Pih] p'/X.I IX']
=> (s,H) E Fdp,]p'[Fd(Xi = Pi).lp'/X.I

=> (s,H) E Fr[(X, = P,),]p'

196 Specification and Proof in Rea1~tjme Systems

which establishes HYP(X, (5, ~». but then the result holds for all elements of At,
in particular we have that

HYP(X" (so, ~o))

which ~ays that

(so,~o) E p'[FrI(X, = Pih!p'jX,!lXi)

finally yielding

(so, ~o) E Frl(Xi = Pi)i)P'

the (",oosequent of the second conjunct of PROP. This establishes the lemma, and
hence the Finite Dependency Theorem. 0

A.3 The Signals Model

In section 8.1, we claimed that the signals model TMj is a complete metric space
under metric d defined by

d(5,T) '" inj{{r i I5(1)=T(I)}U{J})

where

5(1) '" {(s, N, I') E 5 I I',; I)

As in the proof of lemma 8.5, we take two definitions from [Sutherland 75]:

Definition A.3 A sequence {S.. } in a metric space (M, d) is a Cauchy sequence
if given f > 0, there exists N soch that d(S.. ,8m) < f for any m, n > N. 0

Definition A.4 A metric space (M, d) is said to be complete iff every Cauchy
sequence in (M, d) converges to a point in M. 0

and suppose that {S,,} is a. Ca.uchy sequence in metric space (TM'F' d), and let
{n;} he a sequence of positive integers such that

Vj~O _ i<ni<n'+1

V m ~ n _ d(S""S".)

Under metric d, the limit of sequcnce S" is cqual to

s '" U 5.,(i)
i)O

A.3 The Signals ModeJ 197

By our choice of sequence n, we have that

0<; I <;, => SC') = S.,(I)

For each axiom ax given in section 8.1, we must show that

Vn • Sn E TAt,. => S satisfies ax

\\'e consider the case of the second axiom:

(s,~. t) E S /\ t' ~ t => 3 s'. (7{s') ~ E /\ (s(s' + t), N, t'} E S

Suppose that

(s,~,t)ES /\ t'~t

If we choose i such that

Set') ~ S.,(t')

then we may infer that

(s,N,n E 8"i

and hence that

3 5' • (7(S') ~ f: /\ (s (s' + t), N, t') E 8".

However

(s~(s' + t), N, ,') E S" => (s~(s' + I), N, t') E S.,(t')

=> (s~(s' + t),N,t') E S(t')

=> (s~(s' + t), N, t') E S

We may conclude that

(s, ~, t) E 8 /\ t' ~ t => 35' • a(s'} ~ E/\ (S(SI + t), ~, t') E S

and hence that the limit S satisfies the axiom. Similar reasoning allows us to
establish that the limit satisfies the other seven axioms, and hence that the model
TM,. is a complete metric space. 0

Glossary

Mathematical Symbols

p powerset operator {} the empty set

F set of all finite subsets of = semantic equivalence

'eq set of all finite sequences of - defined to be equal to

N set of natural numbers -< a partial order

Z set of integers 'eg initial segment

Q set of rational numbers ~ vedor v

R set of real numbers <;) end of theorem or lemma

m .. n integers from m to n t:, end of rule

dam domain of a function 0 end of proof

<a" range of a function <> end of definition

Syntax

.L divergence ; sequential composition

STOP deadlock ; sequential composition

SKIP successful termination (w;th Ii delay)

WAIT delayed termination \ hiding
~ prefix JiX. P delayed recursion

~ instant prefix JiX a P immediate recursion ,
~ delayed prefix PIQ/Xl syntactic substitution

0 deterministic choice II lockstep parallel

n nondeterministic choice ,liB alphabet parallel

flP) direct image III interleaving

f-' (P) inverse image II sharing parallel,

199

mutual recursion

untimed CSP terms

Timed CSP terms

syntactic abstraction

all events

all untimed traces

all timed events

all timed traces

all timed failures

all sets of timed failures

timed failures model

distance metric

mapping for JJ X 0 P

mapping for JJ X • P
environment over-riding

product space

product model

vector metric

traces model

stabilities model

failures model

failures-stabilities model

timed traces model

timed stabilities model

timed failures model

untimed failures-
timed stabilities model

timed failures-
timed stabilities model

Glossary

,
0­ timeout

j untimed interrupt

j, timed interrupt

'V, event interrupt

Semantics

tr uotimed trace

s timed ttace

N refusal set

0 stability value

p environment

S delay constant

i termina.tion event

non-event

VAR process variables

ENV environments

TIME the time domain 10,00)

TINT half-open time intervals

RTO[(refusal tokens

RSET timed refusal sets

<

Semantic Functions and Models

(Xi = Pi),

CSP

rcsp
e

E

E'

TE
TE,

TF

TSF

TMF

d

M(X,P)

M,(X,P)

plY/X]

TSJ

TMj.

4

T traces

S stabilities

F failures

[fail UTes-stabilities

Tr timed traces

ST timed stabilities

FT timed failures
[. untimed failures-T

timed stabilities

[T timed failures-
timed stabilities

MT

Ms

M,

M,s

TMT

TMs

TMF

TM}s

TMFS

200 Specification and Proof ill Real-time Systems

Timed Failures

0 the empty trace first first event

catellatioll of trace5 last lASt event

'" trace prefix begin start time
~ time shift end end time

time shift (failures) head. first timed event

1 count of events fool last timed event

t before times time values present

i during t.skip strip time values

1 after " events present

1 restrict '" trace equivalence

\ hiding CLr!!!. closure under ~

Specification

sat satisfies

sat p satisfies in environment p

ell abstraction mapping for trace specifications

actA active {or every event in set A

~ whenever these events are active

Signals Model

• signal event E all signal events

J termination signal E all events

ii signals present TE all timed events

sync possible synchronisations TEl; all timed traces

ENY environments with signals TF all timed failures

d metric for TMj TS, sets of timed failures

:Fs semantic function TM, signals model

Thanks

For inspiration, friendship. practical assistance, and legal advice during the

preparation of this thesis:

Greg Abowd. Geoff Barrett, Howard Barringer, Matthew Blakstad,

Meghan Burke, Mark Bush, Sue Charlett, Ching-Hua Chow, Peter Coesmans,

Katie Cooke, Damian eugley, Naiem Dathi, Will Davies, Kate Davis,

Vicky Elphicke, Susan Even, Mike Field, Paul Gardiner, Dave Ga.vaghan,

Jeremy Gibbons, Steve Giess, Michael Goldsmith, Malcolm Harper,

Guy Hart-Davis, Alison Harvey, Claire Henderson, Tony Hoare, John Iwnicki,

Dave Jackson, Jeremy Jacob, Alan Jeffrey, Liz Johns, Geraint Jones,

Mathai Joseph, Mike l<alougin, Andrew Kay, Steve King, Alice King-Farlow,

Nick Lawrence, Jo Leggett, Florence Maraninchi, David Mayers, Quentin Miller,

Colin Millerchip, Charlie Morcom, David Murphy, Andrew Newman,

Duncan Oliver, Monica Payne, Mike Reed, Joy Reed, Phil Richards,

Gordon Riddell, Bill Roscoe, Anne Ryan, Ib S~rensen, Elizabeth Schneider,

Steve Schneider, Jenni Scolt, Jess Search, Karen Seidel, Julie Sheppard,

Mike Spivey, Richard Stamper, Joe Stay, Bernard Sufrin, Wilson Sutherland,

Jacqui Thornton, Tim White, Rob Woiccak, Ken Wood, and Jim Woodcock.

