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Abstract

This thesis shows how the mathematical tbeory of Timed Communicating Sequen-
tial Processes { Timed CSP) developed by Reed and Roscoe may be applied to the
apecification and proof of complex real-time systems. A number of substantial
additions are rnade Lo the theory, producing a powerful tool for the analysis and
implementation of timing requirements and concurrency.

The syntax and semantics of Timed CSP are extended to include new primijtive
operators for timing and recursion. A language of behavioural specifications is
formulated, together with a complete, compositional proof system. A significant
case study is used to illustrate these developments. The language is then extended
to include 2n element of broadcast concurrency.
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Time present and time past

Are both perhaps present in time future
And time futore contained in time past.
If all time is eternally present

All time is unredeemable.

What might have been is an abstraction
Remaining a perpetual possibility

Only in a world of speculation

T.S. ELioT
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Chapter 0

Introduction

As computing devices become faster and more powerful, we find ourselves ever
more dependent upon systems which are difficult to nnderstand and prone to
failure. The failure of a commercial barking system, or a company database,
may be expensive and inconveuient. I the system is prescribing medicine, or
landing an aircraft, then the results might be fatal. As the consequences of system
failure become more severe, we must find ways to make applications of computer
technology safer and more reliable.

Owver the past twenty years, mathematical techniques have been developed for
the specification and implementation of transformational systems, which compute
results from a given set of inputs. However, most of the systems in which safety is
a primary concern are reactive systems, which maintain a continuous interaction
with the environment, and are often subject to complex timing constrajnts. These
systemns cannot be viewed in a transformational setting.

Real-time systems are reactive, and are often required to perform several tasks
concurrently, To reason about such systems, we require a mathematical fermalism
that includes timing information as well as an effective treatment of concurrency.
In this thesis, we explore and extend one such formalism: Timed Communicating
Sequential Processes, first presented in [Reed & Roscoe 86]. Timed CSP is an
extension of Hoare’s CSP [Hoare 85] that allows us to reason about time-dependent
aspects of concurrent behaviour.

The aim of this thesis is to present a formal development method for real-
time systems, based upon the semantic models proposed by Reed and Roscoe.
Tbis method should support both formal and rigorous reasoning at every stage
of system development—from initial specification to final implementation—and
be applicable to systems of a realistic size. It is our hope that the results of the
research described in this thesis may be used to improve the safety and reliability
of real-time distributed systems.
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The thesis begins with an introduction to the language of Timed CSP, and
the semantic models presented in [Reed 88]. In chapter two, we extend this lan-
guage to include primitive operators for modelling timeouts and interrupts, as well
as alterpative forms of parallel and sequential composition. These operators are
given a semantics in Reed’s Timed Failures model, and an intuitive explanation is
provided for each operater in the extended language.

In Reed and Roscoe’s treatment of recursion, a strictly positive delay § is asso-
ciated with each recursive call. In chapler three, we investigale the consequences of
dispensing with this delay. and give a sufficient condition for the validity of a recur-
sive definition. The theory is then extended to permit mutual recursion: processes
may be defined by sets of mutually recursive equations. Semantics-preserving rules
are estahlished for manipulating these sets, which may be arbitrarily large.

In the Timed Failures model, each language construct is identified with a set
of possible bebaviours. In chapter four, we show how the informal requirements
upon a systern may bhe captnred as behavioural specifications—predicates upon an
arbitrary system behaviour—and demonstrate that the notation of the semantic
rodel gives rise Lo a simple specification language. We investigate the form of
safety and liveness conditions in this language, and show that it may be used to
formalise assumptions about the environment of a system.

The notation introduced in chapter four may be used to produce a formal
specification of a system, and the extended language described in chapters two and
three may be used to suggest possible implementations. In chapter five, we present
a complete proof system for relating specifications and implementations, using the
notion of satisfaction introduced in [Hoare 83]. This system is compositioual, in
the sense of [Hooman & de Roever 89]:

Properties of a compound programining fanguage construct {such as
sequential composition and parallel composition) can be deduced from
specifications for ils constituent parts without any further information
about the internal structure of these parts.

This isessential if the proof system is to be employed in the developrnent of large,
complex systems.

A lormal specification of a real-time system will include many requirements
that can be established without timing information. In this case, we may use the
untimed models for CSP presented in [Reed 88 to simplify our proof obligations. A
substantial part of chapter five is devoted Lo a simple theory of timewise refinement,
whichrelates uutimed safety conditions in the Timed Failures model to behavioural
specifications in tbe untimed Traces model. The research described in this chapter
is a continuation of research carried out jointly with Steve Schneider, some of
which is reported in [Davies & Schneider 89] and {Schneider §9).
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If we wish to produce a readable specification of a large system, then we must
take care to present our description in a clear, structured fashion. In chapter
six, we show how the hiding operator may be used to structure specifications, and
present a simple proof rule for abstraction which allows us to separate the concerns
of concealment and scheduling. The chapter continues with the introduction of a
macro specification language—a first-order logic with time—which may be used
to simplify the process of requirements captnre.

Chapter seven presents a case study in the application of Timed CSP to real-
time distributed systems. Tt begins with a detailed method for the specification and
development of hierarchical protocels, based upon the proof system of chapter five.
This method is then applied to the development of a local area network protocol.
The specification Janguage of chapter six is used to describe the behaviour of the
protocol at different levels of abstraction, and the system description language of
chapters two and three is used to suggest an implementation.

In a description of a real-time process, it is sometimes convenient to include
observable events that are not synchronisations: this can make it easier to describe
and analyse certain aspects of behaviour. In chapier eight, we show how the Timed
Failures model may be extended to include a treatment of broadcast concurrency,
in whbich cutput events may occur without the cooperation of the environment.
The resulting semantic model is then used to complete the implementation of the
communications protocol presented in chapter seven.

In the final chapter of the thesis, we discuss the results of the research presented
in the preceding chapters. We consider alternative approaches to the specification
and development of real-time systems, and outline directions for future work. The
thesis ends with ar appendix of mathematical proofs, and a glossary of symbols.



Chapter 1
The Language of Timed CSP

1.1 Communicating Sequential Processes

In [Hoare 85], Hoare nses the word process to denote the behaviour pattern of an
object, viewed through the occurrence or availability of certain atomic actions, or
events. These processes may be seen as entities which evolve and communicate
with an environment by synchronising upon a set of such actions. An observable
event isLthus an atomic communication belweer a process and its environment.

Thesyntax of CSP is a process algebra; the terms representing processes may
be rewntten in accordance with certain algebraic laws. These laws are justified
by a number of semantic models for the language, in which each CSP term is
associated with a set of possible behaviours. In the simplest of these models, each
process is associated with a set of fraces: sequences of observable events. The
other models include more information in the semantic set, and allow us to draw
finer distinctions between processes.

The syntax incindes primitive operators for parallel composition, nondetermin-
istic choice, and hiding. This makes for an elegant notation in which the problems
of concurrency, nondeterminism, and abstraction can be addressed separately. The
syntax alse provides constructs for modelling deadlock, recursion, and process re-
labelling:

P = STOP|SKIP|a>P|PDP|PNP|P;P|P|P|
P P|S(P)|f~"(PY| P\ A|uX o P(X)
The variety of operators in CSP is in contrast to other algebraic approaches to

concurrency, in which much emphasis 1s placed upon obtaining a minimal set of
operalors for the syntax.
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The semantic medels can be used to specify the intended behaviour of a process.
As each process is associated with a set of behaviours in the semantic model, a
predicate on the semantic set corresponds to a requirement upon the process. For
examnple, in the Traces model of CSP, we may capture the requirement that process
P never performs a visible action with the predicate

Yir € traces(P} e tr = {}

Io this model, the process STOP is associated with the singleton set {{}], contain-
ing only the ermpty trace. We may conclude that STOP is a process thal meets
this requirement.

The Traces model My is sufficient if we wish to analyse untimed safety require-
ments; these are constraints that proscribe certain events or sequences of events
in the bistory of a process. However, if we wish to ensure that a synchronisation
event 15 offered to the environment, we must include either readiness or refusal
infoermation in our semantic model. In the Failures model MFr we associate each
trace of a process with the sel of events that may be refused afterwards, If the
failure (ir, X) is present in the semantic set of process P, then P may perform
trace ¢r and then refuse to engage in any event from X.

In Hoare's book, a third aspect of behaviour is considered: the divergences
of a process. A trace of process P is a divergence if it may be followed by an
unhounded sequence of internal events, during which P may refuse to communicate
with its environment. Reed’s thesis [Reed 88] contains an alternative treatment of
divergence. In his Stability model M, each trace of a process is associated with
a stability value of 0o or 0, depending on whether or not the process may diverge
after engaging in that trace. These models form a simple hierarchy:

\ / Figure 1.1: Reed’s medels for CSP

The Failures-Stability model Mpys corresponds to the Failures-Divergences model
used in [Hoare B5]. Tn Reed’s model, processes are associated with sets of triples
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(¢r,a, X). A stability value o is attached to each failure; if the value is zero,
then the process is stable after performing trace ¢r: it does not diverge. An
infinite stabibity value indicates that internal activity may continue indefinitely.
The arrows in the diagram correspond to projection mappings between the models;
bekavioural results established in one model remain valid in models lower in the
hierarchy.

1.2 Timed Models

'The models of CSP presented in [Roscoe 82, Brookes 83, Hoare 85] do not inclnde
timing information. By considering only the sequence of observable events, and
the subsequent refusal sets, we obtain simplified semantic models with a nnmber
of convenient algehraic Jaws. However, if the logical correctness of a design is
dependent upon the precise timing of certain events, we cannot complete our
reasoning within the formalism of nntimed CSP.

If we wish to use CSP to describe a real-time system, in which the precise
timing of events is important, we must employ timed models for the language.
The first timed model for CSP, presented in [Jones 82], proved unsatisfactory for
a number of technical reasons. The author suggested that a better model could be
obtained by recording the events refnsed during the observation of a trace; this is
a feature of the later, more successful attempt made by Reed and Roscoe.

Since Jones’s atternpt, a number of other timed models have been postu-
lated for CSP-like languages, notably in [Zwarico 86, Boucher & Gerth 57). How-
ever, the timed models presented by Reed and Roscoe in [Reed & Roscoe 86,
Reed & Roscoe 87, Reed 88} have the following advantages:

* the models are compatible with the existing untimed models of CSP
+ infinjte hiding and infinite alphabet transformations are possible

= deadlock and divergence may be distinguished

* divergence may be distingnished from the possibility of divergence

# the models are arranged in a hierarchy

The last consideration is an important one. In reasening about complex systerns,
we may use the simplest semantic model that is sufficient to express the current
requirement, safe in the knowledge that the argnment remains valid in the other
models of the hierarchy.

In his thesis [Reed 88), Reed preseats five timed models for CSP. In each model,
a process is associated with a set of possible timed behaviours. A typical element
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of a semantic set is a tuple, the elements of which represent different aspects of
a possible behaviour. Just as the untimed models recorded trace, refusal and
stability information, the timed models record timed traces, timed refusals, and
timed stabilities.

The hierarchy of models is ordered by the information content of the semantic
sets. The models are linked by projection mappings, represented by arrows in the
diagram below; the nature of these mappings ensures that results established in
one model remain true as we move downwards.

TMrs
— TMFS
FS \
TMy - MF — TM;

Figure 1.2: Reed's models
for Timed CSP

The untimed models of CSP occupy the lowest positions in the hijerarchy, with the
untimed Traces model Mt at the very bottom. The simplest of the timed models,
TMr, associates a process with a set of timed traces. The Timed Failures model
TMr, and the Timed Failures-Stability model TMps record the events refused by
a process during and after the observation of each timed trace.

The timed stability models (TM;, TMpe and TMys), include information
about the presence of internal activity. The stability value of a behaviour is the
earliest time by which all internal activity is gueranteed to have ceased. In the
Timed Failures-Stability model, each failure (3, %) of a process is associated with
a single stability value e between & and oo, inclusive. If the process exhibits the
external behaviour described by (s,R), then all internal activity must cease at or
before time o.
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The untimed failures-timed stability model TM ¢ records the set of events re-
fused after a timed trace, once the process has stabilised. This model bridges the
gap between the Timed Stability model TMs and the Timed Failures-Stability
model TMgs. These models are used in the theory of timewise refinement pre-
sented in [Schneider 89]; simple processes may be refined by the introduction of
timing information and results established in the lower models give rise to corre-
sponding results in models further up the hierarchy.

In the specification of a real-time system, internal activity is usually of only
secondary importance. The correctness of a design will be expressed as a set of
constraints upon the occurrence and availability of ohservable events or external
synchronisations. This is precisely the information that may be obtained from
the Timed Failures model TMp. Furthermore, the timed models without timed
refusals are complicated by the need to record the times at which events first
become available, in order to give a satisfactory semantics to the hiding operator.
For these reasons, we will restrict our atiention to the Timed Failures model of
Timed C5P.

1.3 A Model of Computation

The models presented in [Reed 88] are compatible with the earlier models of CSP
given iz [Roscoe 82, Brookes 83); as such, they share the same model of com-
putation: processes communicate by handshaking, observable events require the
cooperation of the environment, and any behaviour of a process appears the same
to all observers. To introduce timing information into this model of computation,
several assumptions are required:

Real Time With the non-negative real numbers as our time domain, we have no
lower bound on the interval between consecutive events. This allows us to model
asynchronous processes m a satisfactory fashion, without artificial constraints upon
the times at which independent events may be observed.

Global Clock All observations are recorded with reference to an imaginary global
clock, but this clock cannot be accessed by any part of the system being modelled.
If a systemn clock is required, it can be modelled as a simple Timed CSP process.
Separate clocks may be modelled as separate processes, and need not keep the
same time,

Instantaneous Events All events have zero duration. If a system action takes a
significant amount of time to perform, we use two events in cur representation: one
corresponding to the start of the action, another to the end. Similarly, we consider
communications between processes to be instantaneous: delays in transmission,
reception, and synchronisation are made explicit.
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Termination There is a single {ermination event, v, whose occurrence signals the
successful termination of a construct. If this construct is followed immediately by a
sequential composition operator, tben the « event is hidden from the environment
and termination occuts as soon as possible.

?

Finite Speed We assume that no process can engage in infinitely many events in
a finite time. This assumption is enforced by the axioms of our semantic model,
and leads to constraints upon the application of certain operators, e.g. indexed
nondeterministic choice.

Hiding and Control Observable events cannot occur without the cooperation
of the environment. Further, if a process and its environment are both prepared
to engage in an event at a particular time, then it occurs at that time. Hidden
events do not require the cooperation of the environment, and occur as soon as
they become available.

Delay Constant We choose a strictly positive delay constant § as a lower bound
between conseculive events in a sequential process. This ensures that cause pre-
cedes effect in any observation of a process: if the occurrence of event ¢ makes
another event & possible, then & cannot occur at the same time as a. The existence
of such a delay greatly simplifies the analysis of sequential processes.

1.4 Timed CSP

In [Reed & Roscoe 86), Reed and Roscoe present the following syntax for the lan-
guage of Timed CSP:

P = 1|STOP|SKIP| WAIT¢|
a—P|P;P POP|PNP|
PIP| Pl P|PIIP|
P\A|[(PY[[7(P)|nX o F(X)

This is identical to the syntax for untimed CSP presented in [Brockes 83], but for
the inclusion of the WAIT construct. The addition of this operator allows us to
model most forms of timed interaction.

To facilitate a treatment of mutual recursion, we will consider the syntax of
TCSP terms, ratber than processes. In chapter 2, we will add a clause {X) to the
syntax to introduce variables from a set VAR, and write recursive terms in the
form 4 X » P. A process will be a TCSP term with no free variables: its meaning
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will be independent of the values of variables from VAR. However, the body of
a recursive process will contain free variables, and it is necessary to consider the
bindings of these variables while reasoning about the process.

The terms L and STOP correspond to the divergent and deadlocked processes,
respectively. The process SKTP signals successful termination, and WAIT ¢ does
nothiug bul terminate successfully alter a delay of time ¢. The event prefix opera-
tor @ — Pprefixes a term P with a single event a. A constant delay is associated
with this operation: control is not passed to P until § after a is observed. No such
delay is associated with the external and internal choice operators, nor with the
sequentialcomposition operator.

The aphabet parallel operator, )|z, provides a means of synchronisation be-
tween processes. In the parallel combination P il @, process P may perform
events from set A and process ¢ may perform events from set B; the two pro-
cesses must cooperate on events drawn from the intersection of the two sets. In a
simple paralle] combination (]|}, the two processes must agree on all events, while
interleaved processes (|||} run asynchrunously.

The hiding operator [\) allows us Lo abstract {from internal events, concealing
them from the environment of a process, and the renaming operators (f and f~*)
allow usto relabel the events of a process. All of these operaturs will be discussed
in greater detail in chapter 2, which presents a complete semantics for the language
of Timed CSP.

1.5 Example

We consider the user interface of a simple timed vending machine VMS. Users of
this machine may insert a coin and, after a short delay, press a button to release
a drink. The machine then returns to its original state.

The insertion of a coin is modelled by the event coir, and we allow a time
irep kot the coin to drop, before the event builon is made available. If the user
then presses the button, the machine will offer a drink: this corresponds to the
availwoility of the event coke after a short delay of time 1.

VMS

[}

coin — WAIT (lum, — 8}
bution — WAIT (teore — 8) 5
coke = WAIT (lrpye - 8); VMS

Thiemachine takes time 1, to prepare for another transaction.

The machine VMS presents the user with no choice of preduct, so the button
13 ap unnecessary feature of the interface. We may use the hiding operator to
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conceal the event bdution from the user. Hidden events occur as soon as they
become available, so the machine VMS | butlon will behave as follows:

VMS \ butten = coin = WAIT (Lirop + ot — 6);
coke — WAIT (1ress — 8} ; (VMS \ button)

The delays before and after the button event are unaffected by the hiding operatar.

The process relabelling operator may be used to rename the events of a process
while retaining the control structure. Suppose that the vending machine isused to
dispense a different preduct; we may modet this change with any funetion f such
that

cotn

pepst

»

f{coin)
S (eoke)

which transforms the vending machine:

1

SIVMS\ buttop) = coin — WAIT (arep + tooke — 6);
pepsi — WAIT (troeat — 8) 5 f(VMS \ butten)

Again, the delay times are unaffected,

In the above example, the arguments of the delay operator WAJIT are adjusted
to take account of the constant delay of é tbat is associated with the evert prefix
operator. A more elegant description may be obtained using the delayed form of
the prefix operator, introduced in the next chapter.




Chapter 2
The Timed Failures Model

A timed event is a pair (1, a), where time ¢ is a non-negative real number and a
is drawn from I, the set of all events. A timed trace is a finite sequence of timed
events arranged in chronelogical order. For example,

s = ({1,0),(3,b)

definesatimed trace in which event a is observed at time 1, and event b is observed
at time §. The order of events in a trace depends only on the time at which they
occur. f more than one event is obhserved at the same time, then these events may
appear in any order in the trace,

Timed refusals are sets of timed events. The presence of a timed event (¢,a)
in a refusal set corresponds to the refusal of a process to participate in event a
at time ¢. One of the assumptions of our computational model, that processes
can evolve only at a finite rate, allows us to place the following constraint upon
the construction of timed refusals: they are formed by a finite union of product
sets, called refusal tokens. A refusal token is a cross product / x A4, where J 15 a
half-open finite interval within [0, o) and A is a set of events. For exanple, the
timed refnsal defined by

R = [1,2)x {a,b]

consists of a single refusal token, and corresponds to the refusal of a process to
participate in events a and & between time ! and time 2.

Timed failures are timed (trace, refusal) pairs. The presence of a timed failure
(s,R] in the semantic set of a process indicates that the process may perform s
while refusing the timed events in ®. There is no reason wby the same timed event
(¢, a) should not be present in both components of a timed failure. This will occur
whenever a process performas as many copies ol event a as it can at time z, and
thus refuses to perform a further copy of ¢ at that time. For example, the failure

(((1,2),(3,8)},(4,2) x {a,8})
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describes a behaviour in which a process engages in event g at time I, and refuses
to perform a second a from this time onwards.

When considering the interaction of a process with its environment, we may
view a timed trace as a result of an experiment performed upon a process: the
environment offers timed events to the process, which the process may or may not
accept. The refusal set represents a partial record of these offers: our knowledge
of the experiment. The presence of a pair (¢, a) in the refusal set indicates that
the environment offered more copies of the event ¢ at time ¢ than the process was
willing to perform.

2.1 Notation

We use TE to denote the set of all timed events, and TZ% to denocte the et of all
timed traces. TINT is the set of all finite intervals within the time domain TIME,
which is [0,00). RTOK is the set of all possible refusal tokens, RSET denotes the
set of all timed refnsals, and TF is the set of all timed failures:

T = TIME XL

TEz = {s€seqTI[{ta) precedes (I',a)in s =>1 <t}
TINT = {[b,e)]|0<b<e<oo)
RTOK = {IxA|{leTINTAA€PL)
RSET = {|JC|C€FRTOK}

TF = TIj x RSET

TSg = PTF

In

In the Timed Failures model, processes are represented by elements of TSy, the
space of sets of timed failures. To reason abont the possible behaviours of a
process, we will use the language of set and sequence theory. We inberit the
following notation from [Hoare 83}:

{} the empty trace

—~

concatenation of traces
in contiguous subsequence

The predicate s, in sz holds precisely when trace s; is a contiguous subsequence of
3;. To give a semantics to our language, and to simplify the process of reasoning
about it, we define a variety of simple operators on timed traces, timed refusals,
and timed failures.
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First and Last

The first and last operators are defined for all timed traces, returning the first and
last events m a trace, if non-empty. If the trace is empty, they return the special
non-event ¢. All that is required of € is that £ € £. We also define begin and end
operators, which yield the times of the first and last events:

first(()) = ¢ begin({}) = oo
Fot(((ta)™s) = o begin(t.a)"s) = ¢
last({}}) = « end({}}) = P
last(s™{(¢,8)})}) = @ end(s™{(t,e))) = ¢

The values chosen for the emply trace are the most convernient {or the subsequent
mathematics: the possibility of a trace being empty will not require special con-
sideration in our specifications and proofs, It proves convenient to define Aead and
foat operators on traces:

head(s)
foot(s)

(begin(s), firsé(s))
(end(s), last{s)}

11>

0

Times

The times operator returns the set of time values that appear in a refusal set:
times(R) = {t|Jae(l,e) et}

We may use this operator to define begin and end operators on refusal sets:

begin(R) =  inf(times(R)} if R # {}
begin({}) = oo
end(R) = sup{limes(R}) if R £ {}
end({})) = 0

For convenience, we extend the above definitions to timed failures:

begin(s,R) = min{begm(s), begin(¥)}
end (s, R) maz{end(s), end(®)}

b
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During, Before and After

We define the durirg (1), defore (1), and after (1) operators on timed traces. The
first returns the maximal subsequence of tbe trace with times drawn from set [.
The others return the parts of the trace before and after the specified time.

pre=4Q
({(t,a))s) 1L = ((ha)) s 1) iftel
(sTh otherwise
sht = s11[0,¢
s1t 2 81 (t,00)

where [ is a set of real numbers. In the case that [ = {{} for some time ¢, we
may omit the set brackets. These operators may also be applied to timed refusals,
with the following interpretations:

Rit = Rn(e,8)=x %)

R{t = RA([00) x %)
“T“r,fg) Nﬂ({tl,t,)xz)

1B

Recalling that ¥ denoctes the set of all events, we see that these restrict a refusal
set to events that may be refused before, during, and after the specified times. The
definitions of before and agfter on refusal sets differ from those on timed traces. For
traces, 8 [ { includes events at #; in the case of refusals, such events are excluded.
The opposite is true of the after operator. This choice of definitions is the most
convenient for timed failures specifications.

Restriction

We use the | symbol to denote the resiriction of a timed trace or refusal to a set
of events A.

OlLa = §)
{(l,ay™s |l A = ((t,e))" (sl A} ifac A
s| A otherwise

RlA = RN([0,00) x A)
The hiding operator on traces may be defined as a restriction:

s\A = s|(Z-A4)
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Alphabets

‘We define a1 alphabet (or event set) operator on traces and refusals, yielding the
set of evenis present:

I

a(s)
a(R)

The eventset of a term P is the set of all observable events that may be performed
by the corresponding process:

{ae 2|3t e{{t,a)}in s}
{a€ T |Its(ta)eR)

i

o(P) = {a€%|3(s,R) € Fr[P] e aco(s))

where F7[P] denctes the semantic set of P.

Subtraction

To reason about any form of sequential composition or delay, we require a sub-
traction operator that shifts timed traces and refusals through time:

=t =0
((tra)™s) =t 2 ({4 — L, (s = 1) e >t
{(t, )y s)—t = s>t otherwise

1

Rt {{ti —t,a)}(h,a) eRAL =t}
It proves economical to define a subtraction operator on timed failures:

(8, R)—t = (st N=1)

Equivalence and Closure
We define an equivalence relation upon the set of timed traces:
Xy 4 uisapermutationof v

Note that, as timed traces are chronologically crdered sequences, equivalent traces
may differ only in the order of appearance of simultaneous events. We use this
equivalence to define a closure operator on sets of timed failures:

CLla(8) = {(s,®) € TF)I(w,R) E S 05 = w)
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2.2 The Timed Failures Model

The Timed Failures Model TM¢ is defined to be those elements S of T57 which
satisly the following axioms:

L({hes
2. (57w, R) € 5= (s,N [ begin(w)} € S

5

(s eSAs=Euw=(w,R)ES

4. (5,R)ESALZO0=> IV RSET o RO A(S,R)ESA
((Fsea(ta)gN) = (st {(ta)), Rt € 85)

5. V1[0, 00)eTn{t):Ne(5,R) €S Aend(s) <t = #(s) < r(t)

6. YR : RSET ¢ (s, R)ESAR CR = (s,X}€ S

The firat axiom requires that the empty failure ({}, {}) is a possible behaviour of
any process. The second is a prefix closure condition: if a process may perform a
trace 57w while refusing R, then it should be able to perform the prefix s, with
the refusal set truncated accordingly. The third axiom insists that the order of
events in a timed trace depends only upon the times at which they are observed,
no additional information about causal relationships is available.

The fourth axiom enforces our assumption lhat processes may undergo only
a finite number of stale changes in a finite time. For any failure (s, ) and time
value ¢, there will always be a maximal refusal set ®" that captures all of the refusal
information for the current trace, at least until time ¢. Given any time ¢’ < ¢,
every timed event (', 2) not in R’ is a possible extension of s [ . As ¥’ is a refusal
set, it must be a finite union of refusal tokens, and hence represents only finitely
many changes of state.

The fifth axiom places a similar condition upon traces. For any process §, we
can exhibit a function n that places a bound upon the number of events ohserved
before a given time. If trace s ends at or before time t, then the length of s
must be no greater than n(t). This bounded speed condition leads to constraints
upon the application of infinitary operators such as prefix choice and indexed
nondeterminism. The final axiom states that if a process may refuse the whole of
R, then it may refuse any subset of R, A similar condition holds in the untimed
fatlures model described in [Brookes 83].

We define a distance metric d on TS by considering the first time it which
the elements ol two sets may be distinguished. I (s, R) is a timed failure, ve define
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a projection function on elements of T'5f:
Ste = {{s,R)}(s,R) €5 Aend(s,R) < 1}

If 5 is a element of TSr then 5 | £ is the get of elements of § whick do not extend
beyond time ¢. We may now define the metric:

4S5, T) = inf({27'|Ste=Tre)u (L}

This definilion is equivalent to the one used in [Reed B8], although the definition
of 5 [ 1 differs slightly. The metric will be needed when we give a semantics to
recursive process definitions.

2.3 A Semantic Function
We will give a semantics to a language TCSP of Timed CSP terms, defined by
P u= L|STOP|SKIP | warr: | x| atoms

a— P ‘ a— F | PP ] Py P l sequential composition
Pop|PnpPla:a5 P, altemation
PIP|PsPiPINP|P I P | parallel composition
P\ A |f(P) lf“'(P) I abstractior and renaming
PEPIPYP PSP timing
pXeoP J;t XoP I (K= Py recursion

In the above syntax, clause X introduces variables from a set VAR; these are
required for the treatment of mntwal recnrsien presented in chapter 3. To give a
sermantics to this language, we require a formal treatment of variable bindings.

We define a domain of environments, ENV, consisting of all mappings from
variables VAR to the space of all sets of timed failures TSr, and thus a semantic
function for terms:

ENV = VAR — TSy
Fr € TCSP o+ ENV — TSp

We write Fr[P] p to denote the semantics of a term £ in an environment p. This
may be evaluated by associating each free variable X with its value p[.\’] in the
current environment.
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We give the following semantics to syntactic substitution:

FrlPIQ/Xllr = Fr[PlolFr[Q)r/X]
where p[Y /X is a new environment, defined as follows:

AYIXI[Z) 2 Y  ifZ=X
plZ] otherwise

A Timed CSP process will be represented by a TCSP term with no free variables:
its meaning will be independent of the current environment. If P is a process then
we may infer that

Vp, o't ENV e Fr{P}p = Fr[P]s

In this case, we may sensibly omit the environment parameter.

2.4 Sequential Processes

Atoms

The divergent process L can perform no observable actions, but internal activity
may continue indefinitely. In the Timed Failures model we do not record the
possibility of internal activity, and so L is identified with the deadlocked process
STOP. The only trace of either process is (), the empty trace.

1

fr[.l_l p
Fr[$TOP]p

{({},8} | R € RSET}
{{),R) | R € RSET}

i

Both processes are capable of refusing any event from ¥ at any time.

The process SKIP models successful termination in Timed CSP. This is sig-
nalled by an cccurrence of the special event v, the only action that this process
may perform:

Fr[SKiPlp = {((.R)|v ¢ o(R)}
U
(L NR) [ 12 0A v go(RT 1)}

Either no events have been observed and tbe event v is available, or v has been
observed (at some time t) and was continuously available beforehand.
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The delay process WAIT ¢ represents delayed successful termination, with the
event v becoming available at time £. [t can be used to introduce an additioual de-
lay into a sequential process, or combined with other operators to produce timeout
and interrnpt constructs.

FriwaAiT t]p = {((R) v €o(R1 1)}
u

(v [ eav gaRT 1))

Il no events have been ohserved then v must be available continuously from time
! onwards. Otherwise, v is observed at a time ¢’ 2> ¢ and made available at all
times between ¢ and . Whit -tuf X1

Prefix

The even! prefix operator is used to introduce an observable event into a process
description; the expression @ — P denotes a process that is prepared initially to
engage only in event &, and then behave as process P. There is a non-zero delay
associated with this operation, corresponding to the time taken to change frow a
state in which event a is availabie, to one in which it has been performed. The
undecorated prefix operator is associated with a coustant delay 4.

Frle = Plp = {(}.R)fag o)}
U

{({{t,a)y s, ) {L20AadaRL)A
(s,R) — (¢ + 6) € Fr [P p}

If no events have heen observed iu a history of a — P, then event a cauuot
be refused. Otherwise, a is the first event to be observed and the subsequent
behaviour, following a delay of 4, is due to P.

The above operator will be used only when the minimum delay following an
event is unimportant. If we are interested in the delay following the observation of
an event & then we decorate the prefix operator with a time value: the expression

H
a-— P

denotes a process which is willing to perform an event a. If a occurs, the process
will ther behave as process £, ouce a delay of time ¢ has elapsed. During the
time delay, the process behaves as WAIT, refusing to participate in any external
activity. This is illustrated by the equivaleuce:

a-2P = ao WAIT (1 —6); P
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The semantics of this operator may be derived from the equations for the delay,
prefix and sequential composition operators.

We retain the § constant as a lower bound on the delay associated with the
prefix operation. This is necessary if we wish to avoid the pessibility of causally-
related simultaneous events. To see why this is a problem, postulate the existence
of an instantaneaus prefix operator —+ with the following interpretation: the ex-
pression ¢ — P denotes a process that is initially prepared to engage in an event
a; once @ is observed, the process immediately behaves as P. If P is ready to
perform an event immediately, then that event may be observed at the same time
as a. Consider the process

a— b-—+ STOF

This process may perform b at any time ¢, providiog tbat jt performs « at {or
before) that time. Now consider the parallel combination

a—=b—STOP || b—a—S5TOP

We expect this combination to deadlock immediately. Howevet, both components
may perform e and b together at any time £, Simultaneous events may appear in
any order in a timed trace, so the parallel combination may perform traces from
the following set:

{QYulsl ez 0ns=((ta),(t,6))}

This clashes with our intuition about processes and observable events. Events a
and b are inseparable, yel they appear separately in traces of a process. As we
might expect, this situation is proscribed by an axiom of the semantic model:

(s"w,R) €85 = (5, R begin(uw})e S

We do not allow an effect to precede its cause in a trace.

Sequential Composition

The expression P ; Q denotes the sequential composition of processes P and ).
No delay is associated with this operator; the last event of pracess P may occur
at the same time as the first event from process @. This need not confict with
our intuition about causal relationships and delay, as the initial state of @ is
independent of the final state of P. A behaviour (s,R) of P @ may be :ither

1. a behaviour of P which does not correspond to successful termination, or

2. a terminating behaviour of P, followed by some behaviour of @
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In the first case, 5 is a trace of P in which v is not observed, and would be refnsed
if offered; this corresponds to the first component of the semantic set. In the
second case, the trace s is obtajued from two traces, sp and 3¢, performed by P
and @ respectively:

FriPidle = {(s.W) v ga(s)A
YI:TINT o (s,RU (I x {v))} € Fr[P] »}
U
CLa{(5p75q.R) | v € o(sp) A (sq,R) — t € Fr[Q@]p A
{(se~ (V)R TLU ([0, )% {v}) e Fr[P]o}

If control has heen transferred at time ¢, then the trace sp could have been extended
with a « event at that time. This event is hidden from the environment by the
sequential composition operator, and occurs as soon as it becomes available; it
mnst be possible for P to refuse v up until time ¢ while performing trace sp. The
subseqnent behaviour is due to process Q.

The above equation js complicated by the fact that both processes are able to
performactions at time £. Simultaneous events may appear in any order in a timed
trace, so we must ensure that our semantic set is closed under trace equivalence.
The resulting definition is unsuitable for some applications; in chapter 5 we will
see that it fails to preserve timewise refinements. Because of this, we introduce a
delayed seqnential composition operator:

P;Q = P:WAITS:Q

This defines a process that behaves as P until successful termination is signalled,
then waits for an interval length § before behaving as . This delay allows us to
separate the events of the first process from those of the second.

Nondeterministic Choice

The expressiou P Il (7 denotes the nondeterministic choice between processes P
and @. This operator is somelimes called internal choice, as there is no way for
the environment to influence the flow of coutrol at this point:

Fripn@ls = FrfPlour[Q)s

We require only that every behaviour of a nondeterministic choice is a possible
behariour of at least one component.

If wish to mode! arbitrary nondeterministic choice, then we must verify that
there is a uniform bound upon the speed of the alternatives. This will ensure
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that the resulting process can perform only a bounded number of events before
any finite time ¢, in accordance with axiom 5 of section 2.2. We say that a set of
processes { P, | i € I'}is uniformly bounded if there exists a function n: TIME — N
such that for all environments p

Vi:I:t: TIME » (J,H)E}'T[P;]p/\end{s]st=:~#(s[’t)..<_n(t)

This definition is due to Steve Schneider, and provides a necessary and sufficient
condition for the following semantics to be well-defined:

.'FTH—I Plp = LlfT[Pi]P

iel

This operator may be used to model nondeterministic delays in segnential pro-
cesses. We overload the delay operator

WAITT = [| WAIT¢
€T

to define a process that is prepared to terminate after some time £, where ¢ is
drawn from the set T.

Deterministic Choice

The expression P O @ denotes a deterministic choice between processes P and
Q. This operator is sometimes called general choice {(or external choice) as the
environment may select either P or @ by offering to engage in events which are
initially possible for just one of the two processes. The choice is resolved by the
first observable event that occurs.

Fr{POQly = (1, ((),®) € Fr[PlenFr[Q]e}
U
{(s.®) |5 # ) A(s,R e Fr[PlpuFr[Q]e

A
({3, R I begin(s)) € Fr{P]an Fr[Q]p)

Any behaviour must be a behaviour of at least one component, and any event
refnsed before the first observable event must be refused by both processes.

We know from [Reed 88] that it is not possible to define a deterministic choice
operator for Timed CSP which offers a choice over an infinite set of processes,
However, [Schneider 89) shows that we may offer a choice over an infinile set of
events, As an example, suppose that we wish to define a process that isready to
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accept any natural number value on a channel ¢. Such a process may be modelled
as an infinite prefix choice. The expression

cn:eN2% P,

denotes a process that is ready initially to engage in auy event c.n for » € N. If
¢.n 13 observed, the process delays for time 4, and then behaves as P,

Frlo:A-= PJp = {((1LR) [ Ana®) = (]}
U
{({(t,a)y~s, W) e e AAL20A
begin(s) 2 1 + L,
ANo® 1) ={} A
(S!R)‘U‘l'ta)ej'-'l‘ﬂpnﬂp}

If no events have been observed then all of the events in set 4 are available.
Otherwise some event a from A has occurred, and the subsequent behaviour is
that of P,. As in the case of indexed nondeterministic choice, this semantics is
well-defined if and only if the set of alternative processes is uniformly bounded.

Relabelling

We use process renaming functions to systematically rerame the observable events
ol a process while retaining the control structure. There are two syntactic clauses
for relabelling processes, allowing the use of many-to-one or one-to-many relaticns,
providirg that either the relation or its inverse is a function f on 5. Suppose that
a and b are events such that & = f(e).

The snverse image of P may perform ¢ whenever P may perform &:
FrlPe = AR (SN € Fr[P]o)
and refuse ¢ whenever P may refuse b.

The direct tmage of P may perform & whenever P may perform ¢. As [ may
be many-to-one, the refusal of an event by process I corresponds to the refusal of
a set of events by the image process.

el (P]e = (U1 | (s, /7 (W) € Fr[P] o)

In the ahove equatjon, the expression f~!{R) denotes the set

{(t;a) [ (t.f(a)} € R}

This i3 the inverse image of refusal set ® under funciion f.
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Abstraction

The hiding operator allows us to conceal those events in the history of a system
which do not require the cooperation of the environment. Such a structuring mech-
anism is necessary il we wish to produce readable descriptions of large, complex
systems. The expression P\ A denoles a process that behaves as P, except that

* events [romn A happen as soon as they become available

» only events outside A may appear in a trace

In our model of computation, an event occurs as soon as all of the processes
involved are willing to cooperate. A hidden event does not require the cooperation
of the environment, and will occur as soon as it becomes available.

Events which occur as soon as they are made available may be continuously
refused by the process in question: il (8,R) is a behaviour of a process P in which
every instance of event a occurs as soon as possible, then

(s, RU 0, end(s,R)) x {a})

is also a behaviour of P. This is a consequence of the fourth axiom of cur semantic
model, which asserts the existence of a maximal refusal set containing ®:

(5,R)eSAt20 = AR  RSETeRC W A(s,R)ESA
(<At a) gR) = (sTE{(¢, 0)), R [L) € S)
Now suppose that there exists a time ¢ < end(s,R) such that {¢,a) ¢ ®". By our
choice of ¥, we may infer that (t, a) is a possible extension of the trace s[t. This
conflicts with our assumption that (s,R) is a behaviour in which every cwpy of a

occurred as soon as it becomes available: s | t already contains as many copies of
a as P was able to perform up to and including that time. Hence

(RU[0, end(a,®)) x {e})) TR A (5,RN € fT[P]
The result follows by the sixth axiom of the semantic mode): the refusal sets
corresponding tao a trace s are closed under the subset relation.

The hehaviours of P\ A may be obtained from those failures of P in which
events from A are continuously refused:

Fr P\ Alp = {(s\AR) | (s,RU{[8,end(5,R) x A) € Fr[P]s}

Any events from A which appear in trace s are removed by the trace contealment
operator, defined in section 2.1 by

SVA 2 s|(Z-4)

where | denoctes set restriction.
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2.5 Parallel Processes

Alphabet Parallel

In [Hoare 85], each process P is associated with a set of events aP, the process
alphabet. If P appears in a synchronised parallel combination, events from oP
require the cooperation of P. In Timed CSP, the need for process alphabets is
removed by the introduction of an alphabet parallel operator. This operator is
parametrised by two sets of events; in the parallel combination

Pl @

process P may perform only those events in A, process @ may perform only those
events in B, and the two processes mnst cooperate on events drawn from the
intersection of 4 and B. Events that are in neither A nor B are proscribed.

H 5 is a trace of thig parallel combination, the restriction of s to events from
set A yields the trace of events performed by process P. Similarly, restricting s to
the set Byields the trace of evenls performed by @. If these traces are sp and sg
respectively, then s is an element of the set

spllasq = {s€TSg|slA=spAs|B=sghs|(AUB)=s}

For an alphabet parallel combination to refuse an event, that event must be refused
by one ol the component processes. A typical refusal set is thns the union of refusal
sets from P and (@, together with any set of events from outside A U B.

FrlP .lis QHP S {5 Rp URQURR) | Isp, 50 #
aRp) S AAa(Rg)C B A
o(RR) ST~ (AUB) A s € (sp 4llg sq) A
(sr7) € Fr[Plo A (sqMa) € Fr] Qo }
Simple Paralle]

The synchronised parallel operator places two processes in locksiep. In the parallel
comnbination P Y| Q processes P and  must cooperate on every action that is
performed. This operator is thns a special case of alphahet parallelism

Pl@ = Ps”ro

with a simple derived semantics

Fr{P1 Qe = {(s.RpURQ} [ (s,8p) € Fr[P]a A (s,Rq) € Fr{Q] s}
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Interleaving

The interleaving parallel operator allows two processes to evolve asynchroncusly.
In the parallel combinalion

PlilQ

the two processes are independent of each other; no cooperation is required on any
action. As a result, any trace of the process P ||| € will be an interleaving of two
traces, one from each component. The set of possible interleavings of two timed
traces ¥ and v is given by

|l = {s:TE¢|VI:TIMEesTt=ult7o 71}

Trace s is a possible interleaving of traces v and » if, for all ¢, an event isin s at
time £ iff it is in u or v at that time. The equivalence operator = is required, as
the order of sirmultaneous events in s may differ from the order of the same events
in x or v. Note that we cannol simply require that s = «" v, as ¥™v need not be
a valid timed trace.

Fr{Pmele = {(s:%)|Fsrsqe s€ (spillsg) A
(sP,N)E}'T[P]pA
(so,¥) € Fr[Q]s}

An interleaving of two processes will refuse a timed event exactly when beth com-
ponents are unwilling to participate; any refusal set of the parallel combination
must be common to both processes.

Communicating Parallel

We can define a hybrid parallel operator which allows processes to interleave on
all but a given set of events; in the parallel combination

P!LQ

processes P and { must cooperate on actions from set €. Other actions may be
freely performned by either component, with ne need for synchronisation:

.'FT{P!:]‘Q] = {(s,R) | Fap,Np,5g,Rg @ SESPI[{"SQ/\
RLC=(RpURG)LC A
R\ C=(Rp NR)\ C A
(SP,NP)EfT[P]p A
(sa.Rq) € 7z[Q]s }
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Events from the interface set C must be performed by both components, while
other eventsare interleaved:

uﬂ'v Z {s|s|C=ulC=v|CAs\Ce{u\CT[|lv\C))

Event from C are refused if they are rcfused by at least one of the components;
other events must be refused by both components.

The semantic set of this operator is well-defined: it satisfies the axioms of TM¢
and may be used in recursive definitions. This is a consequence of the following
syuntactic equivalence:

PIQ = cllP),lls (@)
where the process relabelling fuuctions I, r, and ¢ are given by:

fle) =2 a ifaeC

lL.a otherwise cla) = a HaeC
rla) & feeC cfla) = e fagC
r.a otherwise c{ra) 2 a fagC
and
A= {E-CyuC

B = rf(E-C)UC
This equivalence is demonstrated in section A.l of the appendix.

Indexed Parallel

An indexed form of the alphabet parallel operator can be used to define networks
of communicatling processes:

I

(l, Py ier..2 Pr 4,4, Pe

M, 7y iern = Polya(l,P) it n-t
Each component P; may performn only those events which lie in the corresponding

interface set 4;. If an event a is present in more than one of these sets, then every
process in the sel {P; | @ € 4,} must cooperate or every occurrence of a.
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2.6 Timeouts and Interrupts

Timeout

The expression P 5 @ denotes a timeout construct, in which control is passed to
process (@ if P fails to perform any external actions before time ¢. A delay of § is
associated with the transfer of contraol:

FrlPd Q)s = {(s.R)] begin(s) € t A (5,%) € Fr[P)o}
U
{(3,R) | begin(s) 2 t + & A ({},k } 1) € Fr[P]s

A
(5,Ry—(t +8) € Fr[Q)p }

A trace s is a trace of P if an event is observed before time ¢, and a trace of @
otherwise. Any event refused before time £ must be refused by P. The § delay
may be removed without affecting the validity of the semantic definition, although
its presence gives rise to a syntactic equivalence:

PLQ = g((f(P)OWAITt;e + f(Q))\¢)
where the process relabelling functions f and ¢ are defined by

fla}) = f.a
9{f-a)
and event e is chosen such that ¢ # f.a for any ¢ in L. As in the caw of the

communicating patallel operator, we may use this equivalence to show that the
semantics of P & @ is well-defined.

»

a

Timed Interrupt
Another useful timing construct is the timed interrupt operator. The expression
PiQ

denotes a process in which control is passed from P to @ at time ¢, regardless of
the progress made by P. A delay of 4 is associated with the transfer of control.

}'Tﬂpé Qle = {(s,R)|begin(sit)yzt+6 A(ste,0)1)eFrlP]y
Afs, Ry = (t +8) € Fr[Qlp }

Any behaviour of this process may be decomposed into behaviours of P and @ by
considering the paris of the behaviour that occur before and after time ¢,



30 Specification and Proof in Real-thme Systems

Event Interrupt

Although not strictly a timing construct, the event interrupt operator is easily
modelled within a timed context. The expression

P'\?Q

denotes a pracess that behaves as F until the first occurrence of event e. Once e is
observed, control is passed to process @, following a small delay of §. The delay is
required by our intnition concerning cause and effect; an initial event from process
& may be enabled by e, and so cannot occur at the same time.

FIPYQle 2 ((sR) | egols,®) A{s,R) € Fr{F]p}
U
{{s,R) |3te sTtle={(te) A
eda(RIt) A
begin(s1t)2t+4 A
(sti\NeRIt)EFr[P]p A
(s:8) — (t+8) e Fr[Q}n }

Any behaviour in which ¢ has not been observed must be a behaviour of P; in this
case, e must be available. Otherwise, ¢ mnsi be ohserved first at some time {; we
may then decompose the behavionr to obtain behaviours of P and . A sensible
requirement is that e & o(F), to avoid the possibility of P interrupting itself.

A more general form of this construct allows interrupts from a set F, with a
corresponding choice of consequent processes:

fT[PEE Qlr = {sR)TENa(s,8) = {} A(s,R) € Fr]P] o}
U
{(s,¥)|Tt;ecFe sft|E={(te)} A
Ena®fty={} A
begin(s 1t} 2 t+8 A
(stE\ERT e FriP)e A
(s, R) - (t+8) e FriQ]p}

In either case, the part of s, ) pertaining to P is obtained by taking that part of
the behaviour that lies before time #, and removing any mention of the interrnpt
events. There is no need to delete e or E from the refnsal set, as we know that
these events are not refused before lime (.
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2.7 Interaction

Choice and Delay
Consider the process P defined by

P = a4 STOP
a
WAIT 1 ;b — SKIP

At any time befare time I, this process is prepared to engage only in event a; the
subsequent behaviour is that of the deadlocked process STOFP. Howeve, if one
time unit has elapsed since control was passed to the process, the event b is also
avatlable. Now consider the process @ defined by

Q = (a— STOP
u}
WAIT 1) b — SKIP

This process also offers event a until time I. Unlike process P, it then with-
draws the offer. At time I, if ¢ has not occurred, the WAIT construct offers the
termiuation event. This event is hidden from the environment by the sequential
composition operator and occurs immediately, resolving the deterministic choice
and passiug control to the process

b — SKIP

If event o is offered to the process at time !, the outcome will be nondeterministic,

In process P, the WAIT operator simply delays the offer of event b, it does
not affect the availability of event a; the termination event that enables event & is
hidden from the choice construct. In process @, it acts as a timeout on the offer of
a: if this event does not occur at or before time I, the choice construct terminates
and the offer is withdrawn.

Interleaving and Termination

The termination event can be used to interrupt the execution of a ptocess. In the
expression

(a— b— STOP ||| WAIT 2); P

control is passed to process P after 1wo seconds, regardless of the progres: made by
the first component of the paraflel construct. Note that the subsequent behaviour
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is independent of the state of the interrupled process. The samc is true of the
interrupt constructs P\g Z and P ? Q.

Without an explicit record of the system state, we must use some form of
polling if we are to interrupt a process in a reliable way; a process rmust cooperate
on an interrupt event. For example, in the constrnct below, the interrupt event
break is disabled after process P performs a fock event; the break remains disabled
unti] one second alter the next unlock event.

P

1K

WAIT I lock -2+ unlock - P
a
break —» SKIP

The deterministic choice ensnres that the environment is offered break for a full
second hefore fock becomes available (again).

Process P permits a breek event only when the number of fock events is equal
to the number of unfock events; this condition might be a prerequisite for a safe
termination of the process. The combination of deterministic choice and delay
provides for a simple representation of priority choice in Timed CSP.

Hiding and Synchronisation
Consider the process P defined by

P2 ((WAIT1:a— STOP) lis) (b — SKIPOa ~ STOP)) \ a

For thefirst second of its existence, P is prepared to engage in event & and termi-
nate time & later. Internal event @ is not yet possible, as it requires the cooperation
of both sides of the paralicl combination. At time {, il event b has not occurred,
a becomes available on both sides of the paralle! operator. As a hidden event, e
occnrs as soon as it becomes available, resolving the choice against 8.

The possible behaviours of process P are precisely those of the timeout process
Q = &— SKIP L STOP

If the environment offers § at time !, the ontcome is nondeterministic.
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2.8 Example

We consider the definition of a sensitive vending machine SVM which behaves as
VMS in section 1.5, excepi that it may fail to dispense a drink if kicked while
the coin is dropping. As before, we nse the events coin and coke to represent
the insertion of a coin and the removal of a drink, respectively. Without timing
information, our process description is

SVM = coin— (PAIDOreset — SVM
il
PAID)

i

PAID coke = SVM

The event resef represents the effect of a kick on the machine; althongh the machine
may be kicked at any time, there is no effect nnless a coin is dropping. Without
timing information, we have no way of modelling the progress of the coin inside
the machine. The event reset is nondeterministically available until a drink is
collected,

To add timing information to onr description, we assume that the mechanism
becomes sensitive to kicks at time {; {ollowing the insertion of a coin. After an
additional delay of time s, the coiu has passed through the mechanism, and the
machine may be kicked with impnaity:

TSVM = coin <L (reset =2 TSVM
ip
PAID)

PAID = coke 4 TSYM

The process T.SVM offers the event coin to the environment. If this event is
observed at a time {, then the event reset is available between time ¢ +{, and
time t + #; + . If this event occurs, the machine returns to its initial state after
a further time £s, without offering a drink.

If the event reset has not occurred by the time the coin has dropped, then the
offer of reset is withdrawn by the timeout construct, and the machine offers the
environment a drink. The addition of timing information has eliminated the non-
determinism present in the untimed description; the process TSVM is a timewise
refinement of SV, in the sense of section 5.7.



Chapter 3

Recursive Processes

In [Hoare 85), recursive definitions take the form
P = puX e F(X)

The expression ¢ X  F(X) denotes a process that behaves as F{X), with variable
X representing a recursive invocation of the process. In [Reed & Roscoe 86], a
delay of { i associated with each recursive call. This has the advantage of making
all syntactic recursions well-defined: any equation of the form

P = uXerX)

will admit to a unique soluticn in the semantic model. If we accept that some
syntactic recursions will be invalid, we can dispense with this constant delay.

In this chapter, we intreduce an immediate form of the recursion operator, and
give a sufficient condition for the validity of a recursive definition. This treatment
of recursion is extended to permit mutual recursien: processes may be defined by
mutually recnrsive sets of equations. These sets may be arbitrarily large.

3.1 Constructive Terms

The semantics of a Timed CSP term P is a functior of the sel of term variables
appearing in P. For example, the term defined by

P =X

has a semantic set that is parametrised by p[ X], the semantics of X in the current
environment. If P appears as the body of a recursive process, then that process has
a well-defined semantics if and only if P corresponds to a contraction mapping in
the semantic model TMy. For this to be true, it is sufficient that P is constructive
for the variable bound by the recursion.
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Definition 3.1 If P isa TCSP term, possibly including free occurrencesof term
variable X, then P is t-construclive for X if

Vig: TIME p: ENV »
FrlPlotto+t=Fr[Plelp[X] Fta/X] L to +¢
.o

If term P is {-constructive for variable X, then the hehaviour of P up until a time
ls + t is independent of the behaviour of X after time t;. The reader sbould recall
the over-riding notation for environments defined in section 2.3:

plY/XI[Z] = ¥ HZ=X
p[Z] otherwise

Definition 3.2 We say that a term P is constructive for X if there is astrictly
positive time t such that P is t-constructive for X, &

Our definition of constructive differs from the one used in [Reed 88). Reed considers
that a term P is constructive for X iff

Yig: TIME ; 5, T:TMyp;p: ENV »
Stto= Tty = (Fr[PlelS/XD) L ta+ ¢ = (Fr[P]olT/XD Tt + ¢
Our definition places a stronger condition upon P and X.
Lemma 8.3 If term P is {-constructive for variable X, then
Vig : TIME ; §,T : TSp;p: ENV »
Stto= Tty = (Fr[PlolS/X])tto +t = (Fr[Plo[T/X]} ! ti+1t
<@

From the semantic equations for the TCSP operators we can derive a number of
useful results’ about constructive terms.

Lemma 3.4 Forany X and ¢,
1. STOP, SKIP, 1, and WAIT t; are all {-constructive for X

2. X is 0-constructive for X, and ¢ constructive for ¥ # X

3. uX e Pist-constructive for X

¥An example derivation is included in appendix A.1
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Lemma 3.5 1 P is t-constructive for X,

1. a—% Pand WAIT 4, ; P are (t 4+ tg)-constructive for X
2. uYeP, P\ A F(P), f~'(P) are all t-constructive for X
3. P ist"-constructive for X, for any t' < ¢

Q
Lemma 3.6 I P is ¢,;-constructive for X and (] is fg-constructive for X,
L Pa@ PNQ, P;Q PG PIQ P IsQ
are all min{;, s }-conslructive for X
2. PpQand Pil @ are both min{¢;,ts + 1]-constructive for X
3. P;Qand P ? @ are min{¢,, &y + §}-constrnctive for X
v

Observe that all Timed CSP terms are #-constructive for any process variable.

Restrained Terms

A sequential composition of terms is also constructive if the first term is construc-
tive, and cannot terminate immediately. We say that a term P is t-restrained if
it cannot terminate within time t:

Definition 3.7 If P is a TCSP term, then
P is t-restrained < (s € traces(P) A end(s) < t) = v € o(s)
for any instantiation of free variables in P. &

A Timed CSP process is t-restrained if the event , signalling successin| termina-
tion, is not included in the set of events that may be observed before time £. A
TCSP term P is f-restrained if tbis condition holds whatever the valnes of any
free variables in P. In particular, we musi be able to replace these with the ter-
mination process SKIP. From the semantic eqnations of the TCSP operators, we
can obtain a number of simple results about restrained terms.

Lemma 3.8 For any time ¢,
1. SKIP is O-restrained
2. WAITt is ¢t-restrained
3. STOP and L are co-restrained
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Lemma 3.8 If term P is {-restrained,

1. ¢-% P aopd WAIT 1y ; P are (i + £p)-restrained
2. uYe P, P\A P;X,f(P),and f~!(P) are all ¢-restrained

3. P is ¥-restrained, for any ¢’ < ¢

Lemma 3.10 If P is ¢;-restrained, and @ is #p-restrained,

POQ, PN@ P |y @ and P ||| @ are all mén{t,, t,]-restrained
P; @ is (4 + ty)-restrained

PE @ and P“E @ are both min{¢,t; + t}-restrained

P ? Q is min{t, s + 6}-restrained

P | @ is maz{t,, ts }-restrained

YEAUB= P ,|gQ is co-restrained

7€ AN B = P \pQis maz{l;, ts}-restrained

oo o e o

v]

Using the notion of a restrained term, we can add a further result to our list of
lemmata aboul constructive terms:

Lemma 3.11 If term P is t-restrained and i-constructive for X, then the term
P ; @ is t-constructive for X, for any ! and Q. vl

3.2 Recursive Processes
We extend our syntax with two single fixed point recursion operators:
P = pXeP pXeoP

The first of these associates a delay of time § with each recursive call, while the
second transfers control to a recnrsive invacation of the process immediately upon
reaching an instance of variable X. We will refer to these operators as delayed and
immediate recursion, respectively.

We may regard the semantics of a term P with free variable X and environrment
p a3 a function defined upon TSp. This function maps a set of failures § to the
semantics of P evaluated in an environment (p[S/X]) obtained by associating
variable X with the set S.
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Definition 3.12 If P is a TCSP term, and X and Y are variables such that ¥
does not occurfree in P, then

M(X,P)p = XY o}-T[P]p[YfX]
¢

To give a semantics to the delayed recutsion operator, we consider the composition
of this mapping with the function W;s.

Definition 3.13 If Pis a TCSP term, and X and Y are variables such that ¥
does not accur free in P, then

Ms(X,Plp = Wi- XY o Fr[P]p[Y/X]
where Wjis the mapping defined by
Wi & AY o Fr[WAIT6; X]p[Y/X]
&

The environment parameter provides a binding for any free variables remaining in
term P, and the definition of Wj reflects the delay associated with this form of
recursjon-—observe that W does not depend upon the choice of environment p.
We may now give the semantics of the recursion operators.

FT[pX o P] p = the unique fixed point of the mapping M(X, P)p
frl,uX . P]p = the unique fixed point of the mapping Ms( X, P)p
Reed has shown [Reed 88] that the mapping M;(X, P)p will always have a unique

fixed point in TMF, and hence that the semantics of delayed recursion is always
well-defined. This result does not hold for the immediate recursion operator. We
will show that the semantics of immediate recursion is weil-defined if term P is
constructive for variable X.

Lemma 3.14 If term P is constructive for process variable X then the mapping
M (X, P)p is a contraction mapping on the space of sets of failures TSr. Q

Proof A mapping F in TSr is a contraction mapping if and only if
Jr<t o VS5, T:TSred(F(S5),F(TY)<rd(S,T)
where 4 is the metric defined by
d(S,T) = inf({27H1Stk="Tlk}U{t})
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Now take any two processes S and T in TSp. If § = T then F(S) = F(T) and
both sides of the above inequality are zero. Else, let

d(§, Ty = gt
If we take F' to be the mapping M (X, P)p, then
YR:TSr o F(R)=Fr[P]olR/X]

From the definition of constructive and lemma 3.3, we know that there is a strictly
positive time ¢ such that

S1k=Ttlk = FS)Ik+t=F(T)1k+1
for any 5 and 7 in T5¢. From this, we obtain
d(F(5),F(T)) € 2°0+) = 2-'4(5 T

We note that 27! < I as t is strictly positive, and conclude that F is a contraction
mapping iu T.Sg. m]

We have established that the mapping corresponding to a constructive term is a
contraction mapping on TSr. To establish tbat such a mapping has a unique fixed
point, we require the following result from [Sutherland 74).

The Banach Fixed Point Theorem If (M, d) is a complete metric space and
F: M — M isa contraction mapping, then F has a unique fixed point fiz(F).
Furthermore, for all § in M, fiz{F) = lma_ o F*(S5). o

The semantic model TMy is a subset of T5r, and both are complele metric spaces
under the metric d defined in section 2.2. A contraction mapping on TSy is
therefore a contraction mapping on the complete subspace TMr, hence

Lemma 3.15 If F: T5r — TS5 is a contraction mapping which maps TMs into
TMy, then F has a unique fixed point fiz(F) in TMy. Q

Any function derived from the semantics of a TCSP term will preserve Lthe axioms
of the semantic model, mapping TMf into TMp. We may combine lemmata 3.14
and 3.15 to obtain the required result;

Theorem 3.16 If term P is constructive for variable X, then the semantics
FrluXoPlp

is well-defined for all environments p. v,
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The semantics of immediate recursion gives rise to the familiar equivalence
Theorem 3.17
uXoF(X) = F(luXo F(X))
<o

This result justifies the use of recursive equations as process definitions. For ex-
ample, a process that is willing to perform the event a at one second intervals may
be defined by the equation

P = a-L P

This equalioral definition is equivalent to the following definition of P using the
immmediale recursion aperator:

P = uXoab X
In fact, we can easily prove that
Corollary 3.18 If u X o F(X) is well-defined, then
P = F(P) fandonlyif P = pX o F(X)
<

The equational style is more concise, especially in the case of mutual recursion.
Indeed, we cannot reasonably write an infinite mutual recursion using g-notation.

It should be remembered that this result (theorem 3.17) does not hold for the
delayed recursion operator; we have instead that

pXeF(X) = F(WAITS; (4 X ¢ F(X)})

which is inconsistent with the use of equations to define recursive processes. For
example, there is no delayed recursive process which will satisfy the recursive
equation P =a — P.
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3.3 Mutual Recursion

We will now consider processes defined by sets of mutually recursive equations.
The definition of constructive in section 3.1 extends in a natural way to vectors of
terms and variables, and we are able to exhibit a sufficient condition for a syutactic
mutual recursion to have a well-defined semantics.

Syntax

A TCSP term P may be defined by a vector of mntually recursive equations
P = (Xi=PFR)Y iel

with an initial index j to indicate the starting point of the recursion. We will
employ a simple vector notation for terms:

P o= (PP, P, ..)
The sets used to index these vectors need not be finite. Using this notation, we
can write our equation vectors in the form (u X o P).

As an example, consider the process algebra representation of a device that
has two states: ON and OFF. This device may produce a beep as often as once
a second when ON. The two states correspond to the two mutually recursive
equations below.

ON
OFF

{beep - ONYO (off - OFF)
on s ON

This may he considered as a single recursive equation, on a vector of process
variables {ON, OFF). The device is then modelled by the component of the vector
corresponding to the initial state OFF. Alternatively, we may represent the device
as a single recursive process:

OFF = pXaon—s(u¥ o(beep 2+ Y)D(off - X))

This nested recursion defines the same process as the first component of the mutual
recursion above, and falls within the standard syntax for Timed CSFP given in
[Reed 88]. In practice, it will be more convenient to represent mutually recursive
processes nsiug equation sets, particularly when the set of named states s infinite.
For example, consider the case of an integer store STO. Initially, the store is
willing to input an integer value:

STO = it 4 STG,
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Thereafter, il is prepared to accept another input, or output the current value
stored, as often as once a second:

§TO, = in?y - STO,
o
oul'r -4 §TO,

This is an infinite set of mutually recnrsive equations, where ST, models the
stale of the store containing .

With the delayed form of recursion, mntually recursive definitions should not be
written with an equality symbol, as the left- and right-hand sides do not represent
equivalent processes. We use the reverse implication symbol, <=, to indicate that
there is a delay of § involved jn the nnfolding of the recursion. The above example
would be written as

STO in?r - STO,

il

STO, < in?y i35 STO,
a
outlz 135 870,

This form of recnrsion is always valid in the semantic model. However, the im-
medjate recursion ¢perator makes recnrsive definitions easier to understand, and
allows the user to choose the point and dnration of any delay.

Semantics

Consider an equation set (X, = F;},, where the indices { and j are drawn from
set f, The semantic domain required to model a solution is T'S¥; this is a product
space with one copy of the model TSF for each ¢ € I. For any 7, this domain is a
complete metric space, with the following distance metric on vectors.

AV, W) = sup{d(Vi, W) |i €]

To construct a semantic function for vectors of terms, we extend the use of envi-
ronments to include mappings from vectors of variables to vectors of processes.

PlX] = (fX]lien

where { is the indexing set of vector X, We overload the mapping notation defined
insection 3.2 with
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Definition 3.19 If P a vector of TCSP terms, and X and Y are vectors of
variables, all indexed by set /, and no component of ¥ occurs free in P. then

MX,P)p = AY o Fr[P]olY/X]
is the mapping on TS[ corresponding to X and P. Te)
Definition 3.20 I P is a vector of TCSP terms, then

}'Tﬂ_{X; = P.-}j]]p = 5, where § is a fixed point of M(X, P)p
&

This semantics is well-defined when all fixed points of the mapping M(X, P)p agree
on the j component. Clearly, it is enough that this mapping has a ypique fixed
point. For this to be true, it is sufficient that the vector of terms P is eonstructive
for the vector of variables.

Constructive Vectors

A partial ordering < on a set S is a well-ordering if and only if there are po infinite
descending sequences (s; | # : N} such that Vi : N e s;y; < 5;. We define the initial
segment of an element ol 1 in the usual way.

Definition 3.21 If < is a partial ordering on 7, and ¢ is an element of /, then
the initial segment of i in (f, <) is defined by

seg(i) = {j:1]j =<1}
Q@

For the mapping A(X, P)p to have a unique fixed point, it is sufficient that the
vectar of terms P is consiructive lor the vector of variables X.

Definition 3.22 A vector of terms P is !-constructive for a vector of process
variables X if there is a well-ordering < of the indexing set [ such that

¥j,i: [ ej&seg(i) = P; is t-constructive for X,
<&

Definition 3.23 A vector of terms P is conslructive for a vector of process vari-
ables X il there is a strictly positive time ¢ such that P is t-constructvefor X .

<
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If this conditior is met then the cnly possible unguarded recursive calls in term Py
correspond tovariables X, where § < i. Thus any sequence of unguarded recursive
calls is indexed by a descending seqnence {rom the set [, and must therefore be
finite. Any particnlar behaviour of the process is generated by a finite number
of recursive calls, and an infinite nnmber of recursive calls in a finite time is
impaossible.

I manyapplications, it is not necessary to identify a well-ordering of the index
set I. If all recnrsive calls are guarded by a single positive time ¢, then any well-
ordering of [ will be enough to show that the vector of terms is constructive for
the vector of variables. In this case, we say that the vector of termis is uniformiy
conatructive. Formally,

Definition 3.24 A vector of terms £ is uniformly t-constructive for a vector of
variables X if P, is t-constructive for all X;. &

Definition 3.25 A vector of terms P is uniformly constructive for a vector of
variables X if there exists a positive time ! such that P is uniformly {-constructive

for X. ¢

Observe that any uniformly constructive vector of terms is constructive. In this
case M(X,P)p will be a contraction mapping in the semantic model TSE.

We have defined constructive for vectors in a component-wise fashion. That a
vector of Lerms is constructive for a vector of variables can be established by a case
analysis on pairs (X;, P,) in our equation set, a relatively simple procedure. We
will show that this is a sufficient condition for the semantics of a mutual recursion
to be well-defined. First, we tnust demonstrate that our pointwise definitions are
enough to establish the corresponding vector results.

Theorem 3.26 {Finite Dependency Theorem) If P is a TCSP term, possi-
hly conlaining free occurrences of process variables drawn from the set { X, | i € T},
and pis an environment, then

(sR)e Fr{P]p = IN:FleVp:ENVoe
(Vi:Nep[x] =¢[X]) = (s.0) e 7o [P}y

<

The presence of a given behaviour {4, R) in the semantic set of a term P depends
only upon the values of a hnite set of variables N, even if the term is an infinite
mulnal recnrsion. We may change the environment of the term without removing
the behaviour, providing that we preserve the values of the variables in N. A
detailed proof of this theorem is presented in section A.2 of the appendix.
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We may restate tbis theorem in a more applicable form, using the aver-riding
notation for environments:

Corollary 3.27 If P is a TCSP term, possibly containing free occumences of
process variables drawn from the set {X; | i € [}, and p and ¢ are environmenis,
then

() € FrlPlp = IN:FleVg e (s € Fr[P]ole]Xi] /X li€ W)
v

We say that a term P is {-constructive for a vector of variables X if the semantics
of P up until a time ¢, is independent of the behaviour of every comporent of X
after time t,. This is a simple extension of definition 3.1.

Definition 3.28 If P is a TCSP term, then P is {-constructive for a vector of
variables X, indexed by set [, iff

Yip : TIME ;p: ENV »
Fr[Potte+t=Fr[Plele[X) M te/Xil i€t s+
<

With this definition, a simple induction upon the length of finite vector X is encugh
to establish the following lemma:

Lemma 3.29 If P is i-constructive for each of {X; | 1 € N}, and N s a finite
set, then P is t-constructive for the vector X indexed by N. v

We may combine this result with the Finite Dependency Theorem to obtain the
theorem below, which will allow us Lo obtain veclor results from our paintwise
definitions.

Theorem 3.30 K P is ¢-constructive for each of {X; | ¢ € I} then P js t-
constructive for the vector X indexed by [. Q

Proof Toshow that P is t-constructive for vectar X, we must show that for any
time #; and environment p,

FriPlotto+t = Fr[Plolp{X] 1to/X:)ie Nt e +¢

If we take (s, ) Lo be an element of the left-hand side, we may apply the corollary
to the Finite Dependency Theorem, yielding

AN:FIeVy o (5,0} € Fr]Pholo[X]/Xi i €N tto+¢
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We take p' tobe the environment

Aol X:] o)/ Xitie T AV g N

and appeal o lemma 3.28. We have assumed that P is [-constructive for each
Xi, 80 it must be {-constiructive for the finite vector {X; | { € ¥}. Expanding
definition 3.18, we discover that

It

fr{P]Ip'[p[X;E/X; i€ N][to+t frIP]p'[p[Xi] Plof/Xi|t€ N ta+t

FriPlolp[ X ttatXi| i€ N ta+i

[

and hence that (s, R) is an clement of the right-hand side. A symmetric argument
will establish the converse, completing the proof of the theorem. a}

We may use this theorem to show that any mutual recursiou in which the vector
of terms is constructive for the vector of variables has a well-defined semantics.

Theorem 3.31 (Unique Fixed Point Theorem) If vector of terms P is con-
structivefor vector of variables X, then the mapping M({X, P)p has a nnique fixed
point in TSL. v

Although the proof is quite involved, it is both important and instruclive.

Proof We begin by defining a secondary vector of terms (} by transfinite recur-
sion. We show that the mapping (X, @)p has a unique fixed point, and that
this is also a fixed point of the mapping M(X,P)p. We complete the proof by
demonstrating that this fixed point is wnique.

The vector of TCSP terms () is defined by

& = PG/ | € seg(d)]

The i component of ¢ is that of P, with the following modification: we replace
everyvariable with an index lower than { with the corresponding component of .

Lemma A The vector @ is well-defined. This is an instance of the following
theoten schema, established in {Enderton 77).

Transfinite Recursion Theorem If < is a well-orderiugon f, and for any func-
tion f there js a unique y such that (f,y} is true, then there exists a unique
fupction F such that

Vil ep(F | seg(s), F(i))
and the domain of F' is the whole of /. Lo}
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We use this t heorem to construct a function F' of type I — {I — TCSP). That
is, a function from indices to vectors of Timed CSP terms. We choose the formula
i carefully:

elfiv) = yv=LlU(})/X;|j € dom(S)]

This formula holds of (f,y) exactly when y is the vector obtained from P by
replacing every occurrence of variahle X;, for every j in the domain of function f.
Each term X; is replaced with the j component of the vector f(7). It is <lear that
this defines a unique y for every function f. If F is the yp-constructed function,
then we define

vielding the required vector @

F(i); = (PI(F | seg(i)){7);/X; | j € dom(F | seg(i))]):
= F(i)y = (BlQ/X; |7 cseg(i)));
= Qi = PlQi/X ] € seg(d)]

Lemuma B The mapping M(X, @)y is a contraction mapping in TSE, and hence
has a unique fixed point. By analogy with theorem 3.16, it is enough to show that
there exists a strictly positive time ¢ such that

V8, T:TSL ty: TIME o
Sttt=Tlte={MIELQrlt+i=(MX,@pL)tr+1?

To prove this, we will assume that S | &, = T [, and deduce the consequent
above, which 1s equivalent to

FrlQolS/ X tts+1 = Fr[QlelT/X] o+ 1
We will employ the following result from [Endeston 77).

Transfinite Induction Principle If < is a well-ordering on set [, and J is a
subset of I with the property

Vi:l o seg(i)ST=>vied

then J coincides with /. Lol
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We define J to be the set
J o= (i I | FeQYolS/X) Mo+t = Fr[Q]elZ/X) 1 1o + £}

and assume that seg(f) € J. We have 1o show that ¢ € J. To show this, we must
show that

FriQdestto+¢ = Frl@ferita+t

where

pl8/X]
plT/X]

From the definition of vector g, we obtain

FrlQdes Fr{Pi(Qi/ X; 1 € seg(i)] ps
Fri{P)oslFr[Qles/ X | 5 € seg(i))
A similar argument applies for pr, and if we let

ps[Fr[Qles/ X, | € ses(i)]
priFr[@)er/X, ) j € seg(i)]

Ps
er

Wil

il

It

r
Ps
r

fr

1

we reduce our proof obligation to
Fr{Plestto+t = FrlP]ertto+t

We assume that (s,R) is an element of the left-hand side, and apply the first
corollary to the Finite Dependency Theorem, corollary 3.27. Then there exists a
finite st N such that

{(s,8) € FriP}orles[X]/ x| k€ N]
We partition the set ¥ into two sets, and give names to two useful vectors

N nsegl(i}

N — seg(1)

(FrlQleslie D)
zZ (Fri@leriied)

and define, for each vector ¥ in {X, Y, 2}

(Vilie 4)
(Vilie B)

I v~ B
(LN | PR H

Va
Vg

{EN
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Our inductive hypothesis can then be re-written as
Vk:seg(i) o« Yifloti=2Z Mty +t
which implies that
Yoltlo+t = Zitio+1t

AWl TCSP termns are (-constructive for any variable, so by Thecrem 3.30all TCSP
terms are {J-constructive for any vector. Applying this result to the terms @, given
that the vectors S and T agree up unlil time ty, we obtain

Yelta=2ptts
We recall our assumption about behaviour {s,R):

Fr[P)orles[Xe) /X | k € Alls{Xi]/ X | k € B)
FrlP])orlFrl@)ps/Xe | k € AllFr[Qi]ps/Xi | k € B
fTIIP:']pIT[YA/XJ][Yﬂ/XBl

(8,R)

m

Again, any TCSP term is 0-constructive for any vector, so F; is f-coustructive
for X4. Hence

FrP)or[Ya/XalYs/Xsl tto+t = Fr[P)o'r[ZafXallYe/Xp] o + ¢

Further, vector P is t-constructive, so term P; is ¢-constructive for any X; with
7 & seg(1). By Theorem 3.30, F; is {-constructive for vector Xg. Hence

frﬂPiDp'r[ZA/XA][YB/XBI [ty +1 -FTl[P-]P'r[ZA/XA][ZB/Xs] Ptg + ¢
lepllprT “a +t

Remembering that esd{s,R) < &y + ¢, we have established that

(s,R) € -FT[P-']P% T +¢
The argument is symmetrical in 5 and T, and hence

FrlPlostto+t = Fr[P)optto+1i
(= Frl@)estta+t Frl@lertte+t)

and we see that { € J. By transfinite induction

FriQ}ols/ Xt to+t = FrlQlAT/X) Mo+t

We conclude that M(X, @}p is a contraction mapping, with a unique fixed point.

1
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Lemma C The unique fixed point of M{X, @)p is a fixed point of M(X, P)p. To
see this, let § be the unique fixed point of M(X, @}p, and observe that

(M{X, Py (S8}

= (Fr[P)ols/ X
(Fr{Pol(M (X, @ ())/ X, | i € seg(i)[S;/ X; | 5 ¢ seg(i)])r
Fr{PJol(M(X. @)p ($));/X; |7 € seg(i)]IS,/ X, | § & seg(i)]
FrlP)olFr[Q)elS/ X1/ X; | 5 € seg)[S,/X; | 7 & sea(d))
Fr{P1Q/X; |5 € seg(i)]] plS/X]
FriQ]els/x]
= (M(X, Q)p ()
= 5

h

Hence, as this holds for every i € [, we have that
MAPR)p(S) = S
establishing that S is a fixed point of M{X, P)p.

Lemma D The above fixed point (S) is Lhe only fixed point of M (X, P)s. We
know that there is a positive time ¢ such that P is t-constructive for X. Let T be
an arbitrary fixed point of M(X, P)p, and define a counterexample set C

C = {k:l|3tpejc€scgk) => T [ {to+1t)=5 (e + 1)
A
Tt +8)#S [t + 1)
A

JEseg(k) =2 T Mt =58 T4

Then € is the set of indices £ such that the two vectors § and T first become
different at component k between times #, and #; + ¢, agree on all components
indexed from seg(k) up until time t; + ¢, and agree on all other components up
until time {;. We claim that

C={} = S=T

To show this, we establish the contrapositive of the result, by assuming that S # T.
Defize a sequence of indices i, from I and a sequence of times £, such that

ip € {i:I1]85#Tinjesegli)= 8§ =T,
to = t4sup{t’ | S, [ t'=1T, 11}
fopr € {0 LS T #TiltanjEseg(i) =85 Tt =T, 4,}

£n+1' = i. -1
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Ohserve that 1, exists, and that i, is therefore finite,. We are assuming that §
differs at some point from T, and hence {as the index set [ is well-ordered) there
will be a least index i, where the two vectors differ. Either i, exists forall n : N,
in which case

Yn:Nef; —nt >0

which contradicts the fact that #, is finite, or there is a n such that £, exists but
tnt: does pot. In this case, i, € C and so C is not empty, as requited. This
estahlishes our claim.

We have now to prove that the set C is emply. To do this, we assume for a
contradiction that & € C, then we know that

Htg [ Tgrtg-}‘t-}éS}Ilg-l't
Ajeseglk)=T;[to+t=35 [t +!
AjEseglk)=> T, [1a =5 Tty

The vector £ is i-consiructive for X, hence
7 @ seglk) = Py is l-constructive for X,
Applying lemma 3.3 we have that, for j & seg(k),
Stto=Tilte = Fr[P]elSi/X)tte+t=Fr[P]olTii X 1 + ¢
and recalling that Pr must be g-constructive for all X;, we obtain
Vit I o Fr[P)elSi/X|tte+t=Fr[P}alT;/ X, e+t

We may now apply Theorem 3.30. This gives us that

FriPJelSiXi T+t = FrlP}all/X] 1o+t
We have also that S is a fixed point of M(X, P)p. In this case

MX DS = 3
= AYeFr[P]alY/X]S = S
= Fr[P)olS/X) = S
= FrlP)els/X] = S

and a similar result holds for the other fixed point, T. Hence
Sifte=Tilty = Silttg+it=Telts+1¢

which contradicts cur choice of k € C. Hence the set C is empty. By our earlier
claim, this means that the two vectors § and T are identical. Hence S is the only
fixed point of M(X, P}p.
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To summarise: the secondary vector @ is well-defined, and corresponds to a con-
traction mapping in the semantic model; the unique fixed point of this mapping
is a fixed point of M(X, P)p, the mapping corresponding to £ and X; further,
it is the only fixed point of this mapping. We may conclude that, although the
mapping correspending to P need not be contraction mapping, it has a unique
fixed pointin TS{. n}

From this result, we may deduce the welcome corollary:

Corollary 3.32 If vector of terms P is constructive for vector of variables X,
then the recursion u X o £ is well-defined. @

This justifies cur definition of consiructive, and lays the foundation for the theory
of recursion jnduction presented in chapter 5.

3.4 Equation Sets

Consider the following mutual recursion:

P =50
Q = b4 P
It should be obvious that
P =cc b5 p

‘We can derive rules that allow us to make such transformations while preserving
the semantics of the term defined by the equation set. For example, we may wish
to replace all free occurrences of a recursive variable:

Rule 3.33 (Substitution)} If the equation X; = Fi has a urique solution in
TSp, and appears in {X; = P,), then we may substitute g X; o P for all free
occurrences of .X; in all equations of the equation set. Formally,
X, = F); = (X = FRlpXio P /XL,
fAN

Proof If X; = P; has a unique solution in TMp, and § is a fixed point of
M(X, P), then

fr[f"k]ﬂ[i/i][fr[.“xl U] Pi]ﬂ[i/i]/‘xk] = 5
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To see this, observe that

Si (M(X,P)p Sk
Frlp)ols/X]

Fr{Pi] oS/ XH{Se/ Xa]

Hence S, is the fixed point of the function M{ Xy, Pi)p[S/X], and is therefore equal
to

1l

}'r[,u X, 0 P‘,]p[ﬁfi] = frﬂptlp[ﬂfl][frlﬂ X0 Pl]P[AS/K-]
Assuming that § is a fixed point of M(X, £)p, we define @ to be the vector
obtained by substituting g X) o F; for all free occurrences of X; in the vector P,

(M{X,pS); = FrlPluXeo Pa/Xi]]p[S/X]
Frip]ol8/ X Frl e Xe o P} oS/ X)X
Fr{P)pl3/ XSt/ X
= 5

I

Conversely, if T is a fixed point of the function M{X, (})p, then
FrlpXio Pt]p[lfl] = T,
To see this, observe that

T

I

(M(X.,Q)P I)l
Frl@]rlT/X)

FrlPelu X o Pef X))o T/ X]
FrluXi o P plT/X]

Assuming that T is a fixed point of M(X, @)p, we have that

(M(X,P)p T); = Fr[P]aT/X]

Fr[P1olT/ X1 Tei X,
Fr[PYolT/ XN Fr[ 6 X o PJp[T/X)/ X
fTﬂP,‘ [t Xs 0 P”'X;]] ol T/X]
}'T[QJ]P[I/JQ

= T

Il

Il

I

We have demonstrated that a vector U is a fixed point of M{X, P)p if and only
if it is a fixed point of M(X,(p. The soundness of the rewrite nle follows

immediately. O
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The preserce of #-constructive terms in an equation set may mean that there
is more than one solution to the equations. In this case, the semantics of the
recursion is rot well-defined, However, if the offending terms do not affect the
semantics of lhe selected component, we can rewrite the equation set to eliminate
them. For example, in the equation set

P =aLp
recursive variable (} does not appear free in the term part of the first equation.
We may remove the second equation from the equation set without affecting the P

component of the solution. In this way, we may delete unnecessary or undesirable
equations [rom our equation set. We capture this result as a proof rule:

Rule 3.34 (Elimination}
Vy:JeVi: ([ —J)eX isnot freein P,
(Li=Plielh={X,=Pliclh

[keJAJCT)

In a set of equations indexed by I, we may elimirate those equations
X; = P,

for which X, does not occur free in any of Lhe terms P, | j € J, where J indexes
the set of remaining equations. This is enough to ensure that the semantics of the
remaining components is preserved: Lhat

(X,':P.{t'ef)g = {.1’;:P,|iEJ)}

whenever k € J.

Proof Suppose that § is a fixed point of the function M{X, P)p, where P aod
X areindexed by I. Let X', P’ and 5’ be the corresponding vectors indexed by
set J.,

s =
Fr{P)ol8/ X

ALY

(M(X, P 5"

Hence, any solution te the equation set (X; = P;) gives rise to a solution of the
set {X', = P*;}. This is enough lo establish the soundness of the rule. O

i)
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Returning to the example at the beginning of this section, we may now establish
that the two definitions of P given below are equivalent:

P
d

aL;Q

b-5H P

P = atp-Lp

b 1P

We begin by writing the left-hand definition in vector form:

P = <X‘ = “T"X'>
Xg=b—’X; 1

From lemma 3.5, we know that & 1 X is constructive for X}, bence the second
equation has a unique solution in T5r. Applying the rule 3.33, we obtaiz

P (X, = aL.(pX,ob-Lx,})
X, = v Lx, ,

and X, is not free in any of the right-hand terms, rule 3.34 gives us that
P=(X =abwXiobax))

={x, = abLs- LX)

(w(Xi) 0 (e —= b~ X))

= pXioa-1b- X,

1

1

We may then apply corollary 3.18, yielding
P = a-p-Lap

as required. From this example, it is clear that the following derived rule will be
useful;

Rule 3.35 Given the equation set {X; = P;);, where X; does not occur free in
Py, we may substitute Py for all free occurrences of X, in the remaining equations
of the equation set, and remove X, = P4 from the equation set. Formally,

{(Xi=P), = (Xi=F[PJ/X | ik,
providing that j # k. Fa

Proof This rule follows easily from rules 3.33 and 3.34. m]
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3.5 Examples
Consider the timed sensitive vending machine of section 2.8:
TSYM = coin -5 {reset A, TSVM

19
>

PAID)
PAID = coke % TVSM

This proces is defined by a set of mutually recursive equations, in which the vector
of terms isuniformly constructive for the vector of vartables. To see this, observe
that the terms

coin <Ly (resel %> TSVM

i and  coke 45 TVSM
PAID)

are both min {1, t; }-constructive for any variable, by lemma 3.5. We may conclude
that this mutual recursion has a well-defined semantics.

We may apply rule 3.35 to eliminate the second equation

TSVM = coin 5 (resel -5 TSVM
iz
[>

1,
coke —3+ TSVM)
and rewrite the process defiuition as a single recursion.

Asan examnple of a mutual recursion in which the term vector is constructive
but net upiformly corstructive, consider the process POINTER defined by

POINTER = POINTER,
POINTER, = incr - POINTER,
POINTER,,, = iner = POINTER, .
N

POINTER,

where index n is drawn {rom the set of natural numbers N. The form of the
equations prevents Lhe application of rules 3.33 and 3.34; an infiuite number of
substitutions would be required.
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However, the term corresponding to POINTER.; is I-constructive for any
instance of POINTER., whenever m 2 [. With the usual ordering on the
natural numbers, we may establish that the vector of terms is constructivefor the
vector of variahles. If X, denotes the n*t element of the variable vector, and P,
denotes the n*" element of the term vector, then

Yi,j:N & jzi= P isconstructive for X;

This is precisely the condition for P to be constructive for X. We conclude that
this mutual recursion has a well-defined semantics.



Chapter 4

Specification

We consider a specification of a system to be a formal description of its intended
behaviour. In this chapter, we show how the language of timed failures may be
used to produce specifications of real-time systems.

4.1 Behavioural Specifications

In Timed CSP, the semantics of a process is the set of all possible behaviours of
that process; we may write specificatious as predicates upon these semautic sets.
In the Timed Failures model, each behaviour is recorded as a timed failure: a
trace of events performed, and a set of events refused. In {Reed 88}, Reed defines
a specificatior A as a mappiug from the model TMF to {irue, false}: the space of
truth values. This specification holds of process P if and oaly if

A(Fr ﬁP]p) = true
We choose instead to define predicates upon a typical element of the semantic set
of a process: these ate behavioural specifications.

In the Timed Failures model, a behavioural specification is a predicate 5(s, i},
with [ree variables s and ¥ representing the two components of a possible be-
havicur. We say that a term P satisfies a behavioural specification S(s,R} in
envionment g if predicate § holds of every behaviour of P. Formally,

Definition 4.1
FPsat, S(s,R) = Vs, Re(sN) EFT[P]p = §(s,R)
¢

If P is a process, then we may omit the environment parameter to obtain the
familiar sat notation, employed in [Hoare 85].
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Definition 4.2
PsatS(s,R) = Vp,s,Re(s,8) € Fr[P]p= S(s,R)
&

Reed’s approach to specification is more powerful: for every statement of the form
Psat, S(s,N) there is a mapping As from TMy to {true, false} given by

As(Y) = VYo, Re(s,R) € Y e 5(5,}1)
such that the following equivalence holds
Psat, S(s,®) = As(Fr[Plp)

and some of Reed’s statements cannot be expressed with the sat notation. For
example, consider the predicate A given by:

A(Y) 2 FaNe(s,R)€ Y neea(s)

This requires that event a is a possible observation of any process represented by
set Y in TMr. There is no behavioural specification § auch that

Psat, S(s,R) = A(Fr HP] p)

Reed’s approach permits a more detailed analysis of the process semantics; ours is
more suitable for the capture of process requirements, A hehavioural specification
is satisfied only when every hehavionr of a term is acceptable, A stalement of the
form P sat S(s,N) is a guaranfee of satisfactory behaviour.

Example

As an example of a bebavioural specification, consider the following requirernent
upon a cash dispenser CASH: that it should not allow a user to make more than
one withdrawal in any twenty-four hour period. We choose the event u.cash to
represent a withdrawal by user u, where u is drawn from a set of all possible users,
USER. We capture this reqnirement as follows:

CASH sat Yu:USER,I:TINT e
length(f) > 24 = #{s T 1 | w.cash) € I

Given any user u, if we consider the events observed during any interval of time
longer than twenty-four hours, then there should be no more than one occurrence
of the event u.cash; the length of the trace s during interval [ restricled o this
event should be no greater than 1.
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The number of occurrences of a given event is a useful gnantity. To simplify
future specifications, we define a counting operator

slA = #(s14)

to yield the number of occurrences of events from set A in trace s. As usual, if A
iz a singleton set, we will omit the set braces.

Satisfiable Specifications

We say thal a hehavioural specification is satisfiable if there exists a Timed CSP
process that satisfies it,

Definition 4.3 If .5(s, ®) is a behavioural specification, then § is satisfiable in
the model TMp if and only if

IY TS o YEeTMr A ¥s,Ra(s,R)E Y = S(s,R)
&

As we shall see in chapter 9, the existing syntax of TCSP is not enough to imple-
ment all of the processes in TAMz. Our definition of satisfiable allows for further
additions to the syntax, or a strengthening of the axiom set. We may demonstrate
that a specification is satisfiable by exhibiting a suitable piece of synlax:

Lemma 4.4 If §(s,R) is a behavioural specification such that
dP:TCSP s Psal 5(s,1t)
then 5(s, X} is satisfiable. Q

This result will be useful in chapter 5, wher we consider the theory of recur-
sion induction. To show that a recursive process meets a satisfiable behavioural
specification §, we have only to show that § is preserved by cach recursive call.

In applying Timed CSP te the specification and development of a real-time
systern, we would prefer to identify specifications that are nct satisfiable before
suggedting an implementation. The axioms of the semantic model give rise to
necessary conditions for a specification to be satisfiable. For example,

Lemma 4.5 1f 5(s,R) is satisfiable, then S((),{}). v
Proof From definition 4.3:

JY:TSr ¢« Y& TM;AV(S R)ye(s,R) € Y= 5(s,N)
From the first axiom of the semantic model given in 2.2, we have that:

AY TS o ((),{}) e Y AV(s,W)o(s,R) € Y = S(s5,R)

The result follows immediately. w]
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Any satisfiable behavioural specification must be true of the empty behaviour,
which is a possible bebaviour of every process. As a result, such specifications
may not insist that a certain timed event appears in a trace or refusal, without a
qualifying assamption. A more surprising result is:

Lemma 4.8 If 5(s,R) is a behavioural specification such that
Je:TE o S(s,R) = egR
then S{s,R) is not satisfiable. Q

Proof Suppose for a contradiction that S(s, ) is satisfiable, and that thereexists
a timed event e {or which

S(s,R) = egR
Let Y be a process satisfying 5(s,®), and choose ! and & such that e = {#,a).
(s,N)e Y = S(s,8)
= (t,a) g
From the fourth axiom of the semantic model, given in section 2.2, we obtain
(#,R)e ¥V = IR ASETeRCNA(s,N}e VA
((t,a) gW = (s [¢7((t,a)), W [t} € V)

If an event o is excluded from all refusal sets at time ¢, then it must be possible
for a to occur at that time. We know that (2, a) is excluded from all refusal sets
of process Y, hence we have that

(K€Y = IN:RSETeRCRA(s,R} eV A
(st {{t,a)), W It)e ¥ .

From the first axiom of TMyp we know that the empty behaviour {{}, {}) is present
in ¥, With this choice for (s, R), the above implication yields that

3R:RSET » ((®)eVA{{ta),R]EY

A simple induction will establish that, for any natural number n, the trace in
which n copies of event a occur at time ¢ is a possible trace of V.

AN : RSET o (((t,a))" W) e Y

However, the bounded speed axiom of the semantic model places a natural number
bound n{#} on the number of events that may appear in any trace of ¥ before
time £,

Vi:[0,00) » Ja(t):Ne (s,}) € 85 A end(s) < t = #(s} < nfl)

This forces a contradiction, and establishes the required result. ]
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It is always possible that a process will perform each observable event as soon as
it becomes available. If process P makes n copies of event a available at time ¢,
and it is offered n -+ I copies of a, then (¢, a) will appear in the refusal set. Hence
a satisfable behavioural specification may not insist that a timed event is absent
from the refusal set.

The first femma shows that we cannot insist that an observable event occurs
without making a qualifying assumpiion. This will be an assumption about the
environment of the process; we will discuss such assumptions in section 4.3. To-
gether, these lemmata dictate the form of salety and liveness specifications in the
timed failures model.

4.2 Safety and Liveness

We will fllow Lamport’s informal classification of safety and liveness properties,
[Lamport 77}): a safety properly is a requirement that ‘nothing bad happens’, while
a liveness preperty insists that ‘some good Lhing will occur’. In either case, we must
exclude undesirable behaviours from the semantic set of the process in question. In
our computational model, a salety property corresponds to the requirement that
a given event may not occur except under certain conditions: e.g.

* event @ does not occur within time ¢ of event b;
* if event a occurs, it must do so within time ¢ of event &;
+ event a may occur only at specified times.

Some safety specifications require timed refusal information—we may insist that
a given event is not performed unless another has been offered—but most can be
captured as predicates on traces,

‘The lemmata of the previous section lead to the following restriction upon live-
ness specifications in Timed CSP: we may insist only that certain timed events
occur or are made available. For example, the following constraints may be ex-
pressed as satisfiable liveness specifications:

+ event a is possible at time {;

* if the last event observed is b at time 7, then event g is available at all times
after I - t;

» if ¢ has not occurred, then it is available.

Liveness properties are expressed as predicates on failures.
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Safety Specifications

Any safety specification on process ¥ may be written in the form
vs,R o (s,R)EV =230

where {7 is some set of undesirable traces. If this specification is to be satisfiable,
then the empty trace must be an acceptable behaviour. As a result, the deadlock
process STOP will satisfy any satisfiable safety specification.

We can use the operators defined in section 2.1 to conmstruct simple safety
specifications. For example, we may wish to specily that the events tick and {ock
occur alternately in any trace of CLOCK:

CLOCK sat (s ] tick = s | tock) v (s | tick =35 | tock+ 1)
Recalling that s | a denotes the uumher of occurrences of event « in trace 3, we
see that the process CLOCK must perform a tick before every lock.

An event precondition for event a is a predicate that describes the process state
necessary for @ to occur. In Timed CSP, any state information must be deduced
from observable behaviours; we write event preconditions as predicates upon timed
failures. As an example, consider the behavioural specification 5 defined by

S(s, %) = {((t,e))ins=zbhea(s[t—NAago(R]t)

This places the followiug precondition upon event a: if this event is observed at
time {, then event § must be seen more than one time unit before ¢, and event
@ must be available up until time . Event preconditions correspond dosely to
the notion of firing cenditions in sequential state-based languages such as the Z
notation [Woodcoeck 90].

Any event precondition upon event ¢ can he written as a constraint upon the
behaviour of the process up until the time at which a is observed.

((t,a))ins = C((s,R) T[0.1))

The prefix closure property of process behaviours allows us to simplify such specifi-
cations. From the second axiom of the semantic model, we know that if c appears
in a trace 3 of process P, then there is another behaviour of P in which 2 is the
last event observed.

Lemma 4.7 If P represents a process, then
P sat ((t,a)}ins= C({s,R) T[0,1))
if and only if
P sat fooi(s) ={t,a) = C((s,R)}71[0,1))
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Proof The roof of only if is trivial. Conversely, assume that
P sat fool(s)=(t,a)=> C((s,R)} T[2,8))
and that
(s.8) € Fr[P] A {(t,a)) in s
Choose trace w such that
sT0=wT[0,) A sT{Lea)ZwT[t,o0) A foot(w [ 1) = (t,a)

The third adom of the semantic model (section 2.2) states that every process is
closed under trace equivalence, so (w,R) is also present in the semantic set of P.
From the second axiom of the semantic mode) we obtain;

(vt (w1t),R) € fT[P] = (wit,R}degin(w]t)) € Fr IIP]]

Applying the first of cur assumptions to the failure (w T #,] | begin{w | £)), we
may conclude that

C{(re [ LR [ (begin{w 1 ¢))) 1[0,1))
By our choice of w, and the properties of before, after and during:

(w b, R [ (begin{w] )} T [0,1) (v, R) 1[0,8)
(s,R)T10.8)

H

hence we have established that

Clis,R) T[0.4)
We may conclude that the two specifications are equivalent. a

A behavioural specification must be satisfied by all behaviours of a process, so it is
sufficient to consider the case in which a is the last event observed. The exclusion
of trace information at time ¢ is important; our intuition concerning cause and
effect excludes information about events at time t from a precondition for the
timed event (1, a).
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Liveness Specifications

In our model of computation, a process and its environment cooperate on all ob-
servable actions. The visible events of a Timed CSP process represent an interface
with the environment. Without some knowledge of the environment, we may not
insist that a process performs an event at a particular time. We express lveness
conditions as requitements on Lhe availability of events, ensuring that the process
will perform an event if the environment should agree.

In section 4.1, we saw that we cannol require that an event a is available at a
particular time ¢ without considering trace information. If an event occurs as soon
as it becomes available, its availability may not be recorded. As a result, iiveness
conditions may take the form

agoRTIH Vacea(sT])

The event g is made available throughout some interval [ unless it occurs during
some interval J.

Lemma 4.8 If the behavioural specification S(s, %) defined by
S(s,R) = ago®RIT)V aco(sT )
is satisftable, then [ C J. Q

Proof Suppose for a contradiction that § is salisfied by a process V), and that
there exists a time ¢t € T — J. We observe that

S(s,®) = adeRT11) V aca(sTJ)
From our assumption that Y satisfies 5(s,®), we may conclude that
(s,RVEVYAado(sT]) = ago(R]1)
The fourth axiom of the semantic model states that

(,R)EY = IN:RSETeRCNA(s,N)E YA
((t,a) g X = (s 1 £7((t,a)), R T ) € ¥)

Combining these properties, we obtain
{(s,R}E Y Aago(sTJ) = AR :RSET o (s [17{(1,a)),X [ tj€ Y

From the first axiom of TAfr we know that the empty behaviour ({), {}}is present
in Y. With this choice for (s, R}, the above implication yields that

AR RSET o (W)€ Y A({(t,a)),RT)EY
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As in the proof of lemma 4.6, a simple induction will establisk that for ary natural
number n:

IR RSET o ({(t,e))" W eV

The bounded speed axiom of the semantic model places a natural number bound
n(1} on the pumber of events that may appear in any trace of Y before time ¢.

Vi:[0,00) o Tn(t}:Ne(s,R8) €85 A end(s) €= F#(s) < nlt)
Again, this forces a contradiction, and establishes the required result. a

As an example of a liveness specification, consider the case of an electronic lock
LOCK . Ifa key is inserted, then the lock must permit the door to be opened after
five seconds. If open represents the act of opening the door, and key represents a
key insertion, then this requirement may be written as follows:

LOCK sat ((t, key))ins = open g o(R1t 4+ 5)
v
open € o(s 1)

For simplicity, we have assumed that the doer is opened only once.

An event postcondition for a is a predicate that places a constraint upon the
possible behaviours of a process following the observation of a. Any event post-
condition may be written in the form:

{{t.a)} in s = Cl(s,R) T (£,00))

When placing an event precondition on an event a, it is sufficient to consider the
case in which a is the last event observed. This result does not hold for event
postconditions, even if we restrict our attention to the last occurrence of a:

Joot(s |l a)=(t,6) = C((5,8}T(t,00))

Although a useful form of specification, this is not equivalent to the event post-
condition given above; the requirement that

a— a— STOP sat fool(s|a)=(t,a)=>aga(s1t)
is easy to establish, while the following requirement is impossible:

a— g — STOP sat {(t,a)) in s=>a goa(s]t)
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4.3 Environmental Conditions

We may use the notation of timed failures to analyse the behaviour of a process
under a certain set of environmental conditions. One of the assumptions of cur
computational model is mazimum fiveness: if a process and its environment are
both prepared to engage in a particular timed event, then that event will eccur.
This postulate allows us to include assumptions about the offers made by the
environment as preconditions in a behavioural specification.

These preconditions may be used to reason about non-robust interfaces, where
correct behaviour is dependent upon the cooperation of the environment. When
specifying the behaviour of a system component, we may assume that certain
patterns of external communication will never be encountered.

Assumptions

To include an assumption about the environment in a specification of a process,
we write the specification in the form

P sat E(s,R) = F(s,R)

where £ is a predicate that corresponds to our assumption, and F characterises
our requirements. This implication is vacuously true for any behaviour that does
not meet the environmental condition; in this case, no requirement is plated upon
the process. However, we must ensure that predicate F is true of any behaviour
of P that meets condition E.

Tt is instructive to considet the extremne assumptions true and false. In the first
case, we are placing no constraint upon the environment; the following equivalence

will hold:

P sat (true = F(s,R)) = P sat F(s,R)
To show that a process F meets requirement F in any environment, we must show
that F bolds of all the behaviours of P. If out environmental assumption is _false
then we are assuming a miraculous environment, in which any process meets every
requirement:

P sat (false =+ F(s,R)) = true

I practice, our environmental assumptions will be more reasonable.
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Trace Conditions

A timed trace is a record of observable events performed by the process; each
of these events requires the cooperation of the environment. If the environment
never offers a timed event (¢, e), then this event will never be observed. To examine
the resulting behaviour of the process, we restrict our attention to those failures
which exclude this event from the trace. This may be extended to disqualify whole
sequences of possible events.

For example, we may wish to specify that a personal computer PC will behave
according to specification SPEC(s,R), providing that it is switched on before a
disk is inserted. If we use on o represent the activation of the machine, and insert
to represent a disk insertion, then we may capture this requirement as follows:

PC sat  (begin(s | on) < begin(s | insert)) = SPEC(s,R)
We are assuming that the machine is activated only once. The addition of an off
event to sur description would permit a more realistic treatment.
An asumptior about possible traces corresponds to a safety specification upon
the environment of a process. If we reqnire that

P sat s¢g U= SPEC(s,R)

where U denotes a set of disqnalified traces, then we are assuming that the envi-
ronmen! will not offer these sequences of timed events. If the environment of P is
another process @ such that

@ sat s¢gU

then the behaviours of P should meet specification $PEC.

Failure Conditions

A timed refusal is a partial record of offers made by the environment of a process.
If anevent e is present in the refusal set, then we may infer that the environment
offers more copies of e than the pracess is able to perform. By considering only
those failures which include e in the refusal set, we may examine the result of
placing a process in an environment which is willing to perform as many copies of
€ as necessary.

For example, we may require that a process P meets a specification F, providing
that the environment is willing to accept at least one output every five time units:

P sat E(s,R) = F(s,R®)
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where E is an environmental condition defined hy

E(s,R) & VI:TINT
length(I) 2 5 = outpul € o(s 1 1) V output € o(R 1 ]}

If [ is an interval of time longer than five time units, then there must be some
time during thal interval at which the environment offers to participate in output.
This corresponds to the inclusion of the event (¢, output) in the trace or refusal,
depending on whether or not the offer was accepted.

A failure condition corresponds to a liveness specification upon the environ-
ment of a process. For example, il we wish process ¢ to model that part of the
environment that accepts output from P, we should ensure that

Q sat YVI:TINT»
length(I) 2 5 = outpul € o(s T ) V (I x {output}) € R

Qur choice of @ means that the event oulpuf is concealed from the resl of the
environment. Assuming that P and @ have no other eveats in common, we may
combhine them as follows:

(P "EL’ Q) \ outpui

As we shall see, the concealment of an evet corresponds to the assumption that
all external offers are refused. The parallel combination of P and @ can refuse
output when either process refuses. For any interval I longer than five time units,
either P refuses outpul al some time during [ or Q refuses output throughout I,
in which case oufput must occur. In either case, the E condition is satisfied and
specification F must hold.

The ahove example tllustrates the dual refationship between liveness condilions
and readiness assumptions:

aco(sti) a€o(st i)
v ~ N
Jx{a} ER ace(RTJ)

If a process () satisfies the liveness condition (on the left), then it will serve as &
suitahle envirorment for any process requiring Lthe readiness assumption.
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4.4 Example

We consider a specification of the timed sensitive vending machine defined in
section 2.8. This machine was intended to dispense a drirk for every coin inserted,;
we use the events coin and coke to represent the insertion of a coin and the
rermoval of adrink, respectively. The company that operates the machine requires
that every drink is paid for in advance, so we must place the following safety
specification upon TSVM:

SAFE(s) 2 s | coke €5 ] coin

The number of drinks dispensed is no greater than the number of coins accepted.

For profitability, the company requires that the machine is ready to accept
another ccin within time #; of a drink being dispensed. We place the following
liveness specification upon the implementation:

NEXT(s,R) = ((t,coke)dins=>coin go(R]1+1;)
v
coin €o(s1t)

If a drink is removed at lime ¢, then the event coin must become available no later
than time £ + #,. This offer is represented by the absence of the event from the
refusal set, or the presence of the event in the trace.

If the machine is kicked within time t; of a coin being inserted, a reset event
will occer, and the coin will be lost. Rather than design a more robust mechanism,
the manufacturers construct the machine to the following specification:

OKAY(s,¥) = E(s,R) = F(s,})
where F(s, R) requires that a drink is made available time 5 after a coin is inserted:
F(s,R) = {{t,coin))ins = coke a(R11+ 1)
:oke €alsl i)

and £(s,R) is an environmental condition corresponding to the assumption that
the machine is trealed gently for at least ¢; after each coin is inserted:

E(s,R) = {(t,coin))ins => reset € o(sT[t,1+ 1])

If this environmenta) condition is met, then the machine guarantees to offer a drink
at the appropriate time,




Chapter 5
Proof

Chapter 2 presented a algorithmic language for the description of real-time sys-
tems, and chapier 4 showed that behavioural specifications may be used to describe
the safety and liveness properties of a such a system. In this chapter, we address
the problem of proving that a suggested TCSF implementation satisfies a given
behavioural specification.

5.1 A Proof System

In [Brookes 83) Brookes presented a proof system for nntimed CSP, based upon a
set of semantics-preserving algebraic laws. With the addition of timinginforma-
tion, many of these laws must be repealed. For example,

(= P)[|{b—Q) # a—(FPl(b— Q)
0

b—((a— P Q)

The left-hand process may engage in the two events a and b simultaneusly; the
right-hand side describes a process which is initially sequential: after performing
the first event, a strictly positive time § must clapse before it can performanother.
We cannot change the degree of parallelism in a real-time system withet consid-
ering the behaviours of the processes involved; there is no rule for the gimination
of interleaving parallel operator.

Similar problems arise when we consider the properties of the hiding operator.
When we conceal a set of events from the environment of a process, wve do more
than simply remove them from the trace: we determine the times at which they are
scheduled to occur. Although many of the equivalences presented in [Brookes 83)
are preserved, they serve only to illustrate desirable properties of owr semantic
model. They do not comprise a complele set of laws; there are other epivalences
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that we are unable to demonstrate without reconrse to the semantic equations.
This precludes the algebraic method of proof pioneered by Milner in [Milner 80],
in which similar laws are used to establish that a suggested implementation is
equivalert to a process already known to have the reqnired properties.

This is no cause for alarm. We are able to produce a complete proof system
for proofs of satisfaction in the model TAfp. I it is true that all the bekavionrs of
an implementation P meet a certain behavioural specification S(s, ), then it will
be possible to show that

P sat S(s,R)

using the inference rules presented in this chapter. Each of these rules will take
the following form:

antecedent

antecedent o
[ side condition
congequent

If we establish the trath of each antecedent, then we can be assured of the truth
of the consequent, providing that the side condition holds.

We will present an inference rule for each clause in the syntax of T'CSP, ex-
pressing the behavioural properties of a process in terms of component specifi-
cations. For compound processes, the antecedent part of the rule will consist of
behavioural specifications for the syntactic subcomponents. For atomic processes,
the rules will be without antecedents. In either case, the consequent will be the
strongest specification that may be inferred about the process.

We may use the definition of sat, in the previous chapter to establish the
following logical rules:

P sat, S(s,R) Psat, 5(s,R)
Psat, T(s,R) S(s,R) = T(s,R)
P sat, true Psat, §(s, ) A T(s,R) Psat, T(s,R)

The null specification is true of any process, each goal may be addressed separately,
and we may weaken any specification already established.
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5.2 Sequential Processes

Atoms

The processes L and STOF are both unwilling to participate in any external
activity, The inference rules for these operators are:

Lsat,s=¢{) STOP sat, s = ()
Any trace of either process must be equal to the empty trace, but we can infer
nothing about a typical refusal set: X may be any element of RSET.

The process SKIP is initially prepared to perform the termination event v/, the
only action that this process may perform:

SKIP sat, (s =(} AV € a(X))

v
(s=({t, v AveaRIOALZD)
Either no events have been observed and the event  is available, or v has been
cbserved (at some time ¢) and was continuously available beforehand. A similar
rule pertains to the delay process WAIT t, in which the termination evenl becomes
available at time 1:

WAIT (sat, s=() Av ga(Rit)
v
s={', Y NAYEaRT[L,DAF L

1f no events have been observed then + must he available continuously from time
{ onwards. Otherwise, v is observed at a time # 2 t and made available at all
times between ¢ and #.

We do not require a proof rule for term variables, Timed CSP processes will
cantain no free occurrences of any variable; whenever we come to establish a
result about a term P with a free variable X, we will be within the scope of the
assumption

X sat, 8(s,R)

for some behavioural specification 5.
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Prefix

The undecorated prefix operator is associated with & constant delay of §. From
the semantic equation given in chapter 2, we may derive the inference rule below:

P sat, 5(s,R)
a—~Psat, s={)Aago¥)
v
s={(t,aV"s' A a Eo(RTE) Abegin(s) 2 (L + )
A S((s",R) ~ (¢ +8))

Uunder the assumnption that P meets behavioural specification S(s,R) in the current
environment p, we may infer the following statements about a typical failure of
the term a — P:

* if 515 empty, then the event a may not be refnsed, and is therefore absent
from the refusal set R

* if 3is non-empty, then the first event must be a. If @ occurs at time t, we
know that a is not refused before this time.

* if s occurs at time £, then the subsequent behaviour is that of P, following
a delay of §. This subsequent behavionr must satisfy the predicate S.

The inference rule for delayed prefix is a simple generalisation:
Psat, 5(s,R)

a5 Psat, s={}Aaga(R)
v
s={{ta})"s Aaga(RIE)Abegin(s) 2 (V' +1)
A S((s" )~ (¢4 1))

In this case, if event a is observed at time I, the subsequent behaviour is that of
P starting at time ¢" + {.

Sequential Composition

The mference rule for the sequential composition P; @ is complicated by the fact
that both terms are able to perform actions at the time of transfer of control. If
conirol has not been transferred, then any trace of the composite term is a trace
of P during which v is not observed, and would be refnsed if offered. Otberwise,
we may infer only that the trace is a permutation of traces sp and sg, performed
by P and Q respectively:
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Psat, 5{s,R)
@sat, T(s.R)
P,Qsat, vgo(s)aVIe TINT o S(s,RU(] x {¥}}}
A
Asp,sg e 5= spTsg AV € 0(sp) A begin(sg) 2 ¢
A S(sp™ (8 )L R FEU[0, 1) x {v})
A T({5¢.R)—2)

The trace sp may be extended with a «/ event at some time ¢ (this event is hidden by
the sequential composition operator). In the presence of the sequential composition
operator, the event v occurs as soon as it becomes available, so we know that it
is refused at any time before {. Hence the failure

(sp™{(, V)R ELU[B,8) x {V])
must be a behaviour of P, which meets specification S. The second part of the
trace, together with the refusals after ¢, forms a behaviour of Q.

To simplify the process of reasoning abhout sequential composition, we exhibit
derived inference rules for the cases in which either P or (@ is a delay process. The
expression WAIT ; P denotes a term that behaves as P, after an initial delay of
time ¢:

P sat, S(s,R)
WAIT t; Psat, begin(s) = t A S((s,R) — 1)

In the expression P; WAIT (; (J, a delay of Lime ¢ is associated with the transfer
of control frorn P to Q. This delay allows us to separate the behaviours of the
component processes:

Psat, 5(s.N)
@ sat, T(s, &)
Py WAITt @ sat, v €a(s)AYI € TINT ¢ 5(s,RUT x {v})
v
S{s TtV R T u(e, ) x {v])
AsT L) ={}
A T({s,R) - (t+ 1)

The delayed sequential composition operator } is a special case of this construct.
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Nondeterministic Choice

Any behaviour of the nondeterministic choice PN @ must arise from either P or
Q. This gives rise to the obvious inference rule:

Psat, S(s,¥)
Q@ sat, T(s,R)

Pn@Qsat, S(s,®) v T{s,R)

The indexed form of this operator is not well-defined unless the set of alternatives is
uniformly bounded. This requirement appears as a side-conditiou in the inference
rule below:

Yiif e P;sat, 5(5,R)
[les Puosat, S(s,R)

{ {P:i]ie€ I} is uniformly bounded ]

This condition is trivially true for a chaice of delay processes. The proof rule for
nondeterministic delay is simply

Psat, S(s,R)
WAIT T, Psat,31t: T e begin(s) 2t A S((5,8) ~ 1)

We may infer that this process behaves as P, starting at some time ¢ taken from
the set T.

Deterministic Choice

As in the case of nondeterministic choice, we may infer that the combination PDQ
behaves as either P or Q. We may also infer that any event refused before the
first observable event occurs must he refused by both processes:

P sat, S{s,N)
Qaat, T(s,R)
PO @sat S(s,R)v T(s,N)
A
S((3 R [ begin(s)) A T((}, R [ begin(s))

Any behaviour of the form ({), N) must be commen to both alternatives.
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An indexed choice requires the side-condition that the set of alternatives is
uniformly bounded:

Ya:. A P, sat, 5.(s,®)

a: A 24 P,
sat,

s= A ARG = {)

A"

ae AANs={(,a))"¢
AANa® ) ={}
Nbegin(sh 2zt + ¢,
A S.((5\R) = (2 + 1))

{ {£.} uniformly bounded ]

If no events have been observed, then all of the events in set A should be available.
As a result, the intersection of A with the event set of the refusal ¥ must be empty.
Otherwise, if a is the first event observed, we know that 2 € A, and the subsequent
behaviour is that of P,. A delay of ¢, is associated with the transfer of control to
the process P,.

Relabelling

The inverse image of of P may engage in an event a whenever P may engage in
the event f(e).

Psat, 5(s,R)

J7H{(P) sat, 5(f(s),J(®))

The direct image of P may engage in an event f(a) whenever P can engage in the
event a:

Psat, 5(s,®)
J(P)sat, 3¢ ws=f(s') A S(s" [ (R))

In the second inference rule above, the expression f~' (R} denotes the sel

{(t,a) [ (1, f(e)) e N}

This is the inverse image of refusal set ¥ under function f.
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Abstraction

To reasou about a term of the form P \ A, we identify the behaviours of P in
which eventsfrom A occur as soon as possible. In section 2.4, we saw that these
are failures of P in which events from A may be continuously refused:

Pgat, 5(s,R)

Pldsat,3s es =5\ AASE RU(0, end(s',R)) x A))

If (5,N) is a behaviour of P\ A, then there is a trace s" of P which matches s if
we iguore he events from A. This trace, together with the refusal set ¥, must be
a behavigur of P. Further, we may add events from A to the refusal set. We infer
that the falure

(s, RU [0, end(s", ®)) x A)
is a behaviour of P, and hence satisfies specification 5.

Although this rule is easy to derive, it is difficult to apply. In chapter 6, we
will show how to separate the concerns of concealment and scheduling. We will
derive a simple inference rule for hiding, and show how it may be used to structure
timed fajlures specifications.

5.3 Parallel Processes

Alphabet Parallel

If 5 is a trace of the alphabet parallel combination P .|| Q. then we know that
the restriction of s to set A must he the trace of events performed by process P.
Similarly, the restriction of s to set B is the trace of events performed by Q. We
may also infer that s coutains only events drawn from the union of these two sets.
To summarise, the predicate

Jsp,sg ® s|lA=spAs|B=sgAs|{AUB)=3s

must hold for s, where sp and sq are traces of P and .

Suppose that {s,R) is a behaviour of this parallel combination, and that it
corresponds to behaviours (sp, Rp) and (g, Rg) of components P and Q. From the
semantic equation for this operalor, we know that we can choose these component
behaviours such thal

a®p)C A A o(RQ)C B
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Any event frorn set A will require the cooperation of component P, and any event
from set B will require the cooperation of component @, so we may infer that

RpCRLA A RgERLA

Finally, an event from AU B may be refused by the parallel combination only if
it occurs in at least one of these refusal sets.

Paat, 5(s,®)
Qsat, T(s,R)

PA",B (sat, 3sp,Rp, sq,lg S(sp,Rp) A T(sg,Rq)
A
sp=8|ANsg=38.B
A
3 L(AUB):S
A
RpCRIAARQCHR | B
A
RI(AUB)=RpUNRg

Simple Parallel

In the parallel combination P || @ processes P and @ must cooperate on every
action that is performed. The relative simplicity of its semantics is reflected in the
following inference rule:

Pgat, S(s,R)
Q@sat, T(sR)

P| @ sat,INp, Ry » R =RpURg A 5(3,Rp) A T(s5,Rg)

Interleaving
The interleaved paralle! combination P ||| @ may engage in an event @ when either
P or @ is prepared to engage in a:

Psat, S(s,R)

Qsat, T(s,N)

Pll| Qsat,3sp,sq 95 €spl||sg AS(sp,R) A T(sq,1)

Recall that sp || 59 denotes the set of possible interleavings of sp and sgq.
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Communicating Parallel

In the communicating parallel combination
P
I e

processes Pand @ are regnired to cooperate an events from set €. If 5 is a trace
of this process, then there must exist traces sp and sqg such that

(51C=sp | C=501C) A s\CE(sp\C|llsag\C)

Trace s restricted to events outside set C must be an interleaving of sp and sq,
sitnilarly restricted, and all threc traces must agree on events from set C. We
abbreviate this requirement as s € sp || sq.

c

Psat, S(s, 1)
Qsat, T(s,R)

FlLiQsatpas,p,SQ,Rp.Rq % 5 € 5sp IC}-‘SQ
A
RIC=(RpURg)LC
A
R\ C = (Rp NRQ\ C
A
S(SP,NP)
A
T(sq.¥q)

A timed event (7,6) may be refused if ¢ is in C and either process refuses to
cooperate, or ¢ is not in C and both processes refuse to cooperate. If C is the
intersection of the process alphabets, we may simplify the consequent:
P sat, S(s,¥)
@ sat, T(s, 1)

Pl Qsat, Ip,Ro s N1 C=(RpURQ) | C
A

[e(P)Ne(@)=C

RV C =(RpNRI\C
A

S(sLa(P),Rp)
A
T(sla(Q),Rg)

This form of the rnle will be sufficient for most applications.
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5.4 Timeouts and Interrupts

Timeout

In the timeout construct P 5 @, control is transferred to @ unless P performs an
external action before time £,

Psat, 5(s,%)
Qsat, T(s,R)
PR @ sat, begin(s) <1 A S(s,R)
W
begin{s) 2 ({1 +8) A S, RIE)A T({s,R) — (t + &)

The & delay allows us to determine which of the two components has given rise to
the current behaviour of P} @; it is a behaviour of P il it starts at or before time
t, and a behaviour of ) otherwise.

Timed Interrupt

In the timed interrupt construct

P{Q

control is passed from P to @ at time t, regardless of the progress made by P.
Once again, a small delay of & is associated with the transfer of control.

Psat, S(s,R)
@ sat, T(s,N)

P{ Q@sat, begin(s1t) 2 t+EAS(s TN A T((5,R8) = (£ +48)

No external activity is possible during transfer of control from P to @, so
beginf{s12) 2t 4+ 6

Any activity before time ¢ must he a possible behaviour of P; any activity after
time ¢ + & must be a possible behaviour of Q.
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Event Interrupt
If (5,R) is a behaviour of the construct
P aEvE Qt

in which no intercupt events have been observed, then the whole of set E must be
available. Qtherwise, there is an interrupt ({, ¢) such that e is the only interrupt
event at or before time t; in this case, the subsequent activity must be a possible
behaviour of @,

Psat, 5(s.X)
Ye: E o (Qosat, T.(s,R)

P :?E Q(

[Ene(P)={}]

sat,

Ena(s,®)={} AS(s,N)
v
Jt:TIME ;e : Easlt | E={({t.€)) A
Ene®it)y={} A
begin(s 18y 2 1+ 8 A
S(st\e,X[t) A
T.((s,®) — (1 + 8))
Apart from the occurrence of the interrupt event any observation up until time ¢
must he a behaviour of P.
If only one interrupt event is offered, then we may eliminate one of the exis-
tential quantifiers in the consequent of the rule:

Fsat, 5(s, %}
@ sat, T(s,N)

o( P
PY Qsat, ¢ o(s,R)A S(s,R) [ego(P)]
v
et TIMEws Tt e={(te)) A

ega(R[1) A
begin(s1t} 2L+ 6 A
S(sti\e, Rt} A
T{{s, R} - (L +8))

In either case, we include the assumption that P may not interrupt itself as a side
condition teo the rule.
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5.5 Recursive Processes

In chapter 3, we showed how the theory of metric spaces may be used to give a
semantics to recursively defined processes. To reason about the properties of these
processes, we give a simple topology to the space TMp and establish a lheory of
recursion induction, in the style of [Roscoe 82].

Recursion Induction
We will require the following definitions, taken from [Sutherland 75]:

Definition 5.1 A topological space T = (A4,T) consists of a non-emply set 4
together with a fixed collection T of subsets of A satisfying

L. A{}eT
2. theintersection of any two sets in 7 is again in T
3. the union of any collection of sets in T is again in T

¢

We refer to the elements of 7 as the open sets of T. The closed sets of T are
given by {4 — U | / € T}. A mapping beiween topological spaces is continuous
if inverse images of open sets are themselves open:

Definition 5.2 I{ T, = (A4,,7;) and Ty = (A4, T;) are topological spaces, then
a mapping [ : A, — A, is continuous with respect to topologies 7; and T; if

UeT, = [(U)eT

&

We may give a topology to the metric space {A, d) by defining 7 to be the set of
d-open subsets of A. If we define

Definition 5.3 If M = (A, d) is a metric space and ¢ is a strictly positive real
number, then the open e-ball neighbourhood of a in M is the set

B(d;a) & {z:A]|d(z,a) <¢}
&

then we may characterise the d-open sets as nnions of open balls. This i a conse-
qnence of the following definition:

Definition 5.4 A subset 7 of a metric space M = (A, d) is d-open in M if given
any a € I/ there exists ¢, > @ such that B,,(d;e¢) C U. &
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The following theorems are taken from {Roscoe 82] and [Reed 88]:

Theorem 55 Let M = (A,d} be a complete metric space, and let TV be the
topological space ({!rue, false}, T} where

T = {{]v {fﬂlse}! {true,fa!'se}}

If F: M - T is continuous with respect to the d-open topology and 7, and the
set {a € A| F{a) = true} is uonempty, then

(Vi:A4 e F(z)=irue = F(C(z)) = true) = F{fiz(C)) = true
for any contraction mapping C : M — M. <

Theorem 5.6 If F is a mapping from the complete metric space (T5r,d) o TV
such that for any ¥ in TSp

F(Y)=false = F&:TIMEeYY :TSpe Y i=VY |V = F({Y')= false
then F is continuous. Vi

Recall that the metric d upou T'Sp was defined using the before operator on sets
of failures. ¥ [t = ¥Y'| ¢ if failure sets ¥ ard Y’ agree up until time {; these
Y’ form an open ball around Y in the metric space. If F is such that whenever
F(Y) = false there is an open ball around ¥ whose image is {false}, then F is
continuous.

We identify predicates on timed failure sets with mappings from TS to the
space of truth values TV,

Definition 5.7 A predicate /i on elements of T5¢ is a mapping from the space
of timed failure sets TS¢ Lo the space of truth values TV,

({true, false}, {{}, {false}, {true, faise}})

We say that R is a continucus predicate if it is a continuous mapping in the sense
of definition 5.2. ¢

Definition 5.8 A predicete R is plousible if R is continuons and

AY: TSy ¢ R(Y)=lrue
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Immediate Recursion

To establish that a plausible predicate correctly describes a well-defined recursive
process g X o P, it is sufficient to show that R is preserved by the mapping
corresponding to X and P. I P is construclive for X then the [ollowing inference
rule is valid:

Rule 5.9
VY: TSpeR(Y)= R(Fr[P]o|Y/X])
R(Fr[pX o P]p)

[ R plausible ]

Fa¥

Proof If P is constructive for X, then the mapping AY o fT{P]ip[Y/X] is
a contraction mapping on T'Sy, by lemma 3.14. If R is plausible, ther it is a
continuous mapping from TSr to TV such that theset {¥ : TSp | R(Y) = true}
is nonempty, and we have assumed that

VY TSy o R(Y)= R(Fr[PlalY/X])
We may apply thecrem 5.5 and deduce that the rule is sound. m]

In our proof system, we wish to establish that a predicate holds not of & process,
but of a typical bekaviour of that process: we wish to show that a processsatisfies
a behavioural spccification. In this case, our prool obligation can be simplified.
We need only show that the specification is preserved by each recursive call:

Rule 5.10
X sat, 5(s,R) = Psat, S(s,R)
pX o Psat, 5(s, %)

Proof We recall the definition of the sat, operator
Psat, S(s,R) = Vs Ne(s,R) € Fr{P] ¢ S(s,R)
We claim that any predicale of the form
R(Y) = Vs Re(s,R)E Y = §(s,R)
is plausible in TSp, Suppose that Y € TSy and B(Y) = false, then
Js,Ne(s,R) € Y A= 5(s,R)
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There must be a behaviour (s,%) in ¥ which does not meet 5. If we choose a
time ¢ > end(s, R} then

YIt=YIt = (s,R)€ ¥ A=5(sR)

and R(Y’) = false for all ¥' in an open ball of radius 2~' around Y. By theo-
rem 5.6, 1 is a continuous predicate. We know that {} € T'Sp, and it is easy to
see that

R{{}) = true

Hence predicate R is plausible. This reduces the proof obligation to an instance
of rule 5.9. Hence this rule is also sound. [w}

This gives a sufficient condition for lhe recursive process u X o P to salisfy the
specification S{s.R) on timed fajlures.

Delayed Recursion

The delayed recursion operator associales a detay of § with each recursive call; the
mapping on TSp correspoading to a recursion ¢ X v P is given hy

My(X,P)p = W;-AY e Fr[P]piY/X]
where the following equivalence holds for Wi:
Wy = AY e{(s,R) | begin[s) 2 A ((s,. N} -8 g ¥}

This mapping is a contraclion mapping on TSr for any choice of X, P; there is
no need to establish that term P is constructive for the recursive variable. With
an argument similar to that presented for rule 5.9, we may establish an inference
rule for this operator:

Rule 5.11
YY: TSy e R(Y) = R(Fr]P]o[Wi(Y)/X])
R{Fr{uX e Pl

| & plausible ]

A

From the proof of rulc 5.10, we sce that any such specification corresponds to a
plausible predicate on elements of TSr. 1f we choose R such that

RY) 2 Ys,Re(s,R)€ Y = S(5,8)

then we may derive an inference rule for behavioural specifications:
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Rule 5.12
YX : TS e X sat, (5((s,8) — &) A begin(s) = 6) = P sat, 5(s,R)
pX » Peat, S(s,R)

Proof Similar to the proof of rule 5.10. O

Mutual Recursion

We restrict our attention Lo those recursive equalion sets in which the vector of
terms is constructive for the vector of variables. We wish Lo establish results about
processes of the form (X, = P,},: the j component of the process vector defined
by equation set {X; = F;}. To do this, we will need to establish similar results
about each component of the vector P,

To establish that a vector of predicates K correctly describes the fixed point of
M(X, P), it is sufficient to show that R is preserved by M (X, P), and thal each
R, 1s a plausible predicate.

Rule 5.13

(Vie R(Y:))=VYjeR(Fr[P]plX/X])

[ R; plausible, foralt i
HFr (3 X0 E17) ]

Proof Assume that each R, is plausible, and that

(Yi: e (Y} = Vj:leR(Fr[P]elY/X])
We claim that

(Fi:TeR(Y)) = Yi:TeRy(Fr|[Q)elx/X])

where vector @ is as defined in the proof of the Unique Fixed Point Theorem,
theorem 3.31:

@ = P[Q/X | ] € seg(t))

To establish this result, we proceed by transfinite induction, with inductive set J
defined by

J = {k:Te¥i:TeR(Y))=> Rt(-‘FT[QL]PLK/X])}
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We assumne that seg(k} € J, and observe that

Frig]eiy/x) Fr[PQu/Xi | 1 € seg(k)]] o[ X/ X]
FrlP)plY/XIF2[Q) oY/ X1/ X0 | L € segR)]

Define a secondary vector Z by

Z = Y (I & seg(¥))
Fri@]elY/X] (e seg(k)

By our inductive hypothesis,
vi:le R{(Y) = Vi.leR(Z)
Whence sur original assumption about P yields

(Vi:Te R(Y) = Rg(fTHPk]PLrZ{"i])
= Rt(}-T[leﬂ[X/l])

hence & € J, and the claim follows by transfinite induction. From the definition
of the metric 4 upon the product space TSE, we may establish that

(¥i: e R;plausible) = I plausible

We have established that M (X, Q)p preserves R, hence £ must hold of the fixed
point of this mapping, by theorem 5.5. Bul from the proof of the Unique Fixed
Point Theorem we learn that

fir(M(X,Q)p) = fz(M(X, E)p)
We may conclude that the rule is sound. a

We wmay derive a rule for behavioural specifications by making a suitable choice
for predicate R:

Rule 5.14

(Vi: e X;sat,5(s,R))=>vi: [ e Psat, 5(s,R)
{X, = P,), sat, 5,(s,R)

A

The proof that this rule is sound, as an instance of the previous rule, is entirely
similar to the derivation of rule 5.10 from rule 5.9.
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5.6 Soundness and Completeness
Our proof system has two desirable properties:

Theorem 5.15 The set of inference tules presented in this chapter is sound with
respect to the semantic equations given in chapter 2. The truth of each le may
be established from the semantic equation for the corresponding operator, without
recourse to the axioms of TAfp. v

Theorem 5.16 The set of inference rules presented in this chapter is womplete
with respect to the semantic equations given in chapter 2. Any property that is
true of every behaviour of a process P may be established using these rules. v

Soundness

The presentation of the proof system has been chosen to emphasise the corespon-
dence between inference rules and semantic equations. To see that each rule is
sound, we have only to examine the defining equation for the operator in question.
As an example, consider the rule {or simple parallel combination:

Psat, 5(s,R)
@sat, T(s,R)

Pl @sat, IRp, R o R = Rp URg A S(s,Rp) A T(s,Rg)

This operator was given Lthe following semantics:

FriP| @r = {(s,RpURQ) | (s,Rp) € Fr[Pp A (s.8q) € F7[Q] 0}

A simple logical deductiou will suffice the establish the validity of the inference
rule. Assume the two antecedents of the rule and suppose that (s, R) is a behaviour
of P|| @ in environment p. By the semantic equation,

HRP,NQ s (5,Rp)€ fr[Plp A (s, Ng) e fTIQ]]p AR =RpUly
From the antecedents, we obtain
IRpRg e S(a,Rp) A T(s,Ng) AR=RpURyg

We conclude that the rule is sound.

Similar arguments may be presented for the other inference rules, with the
exception of the recursion induction tules; soundness proofs for these rules were
presentied in section 5.5.
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Completeness

We claim that, il every behaviour of a process P meets predicate 5(s, R}, then the
inference rules given in this chapter are sufficient to prove that P sat S(s,R}.

Lemma 5,17 If P € TCSP meets the requirement that each recursion is con-
structive, then we may use the inference rules to establish that

P sat, (s,®)eFr[P]p
for any environment p. o

Proof We proceed by structural induction upon the syntax TCSP. The result
is easy to establish for basic processes. As an example, consider the case of the
deadlock process. The semantic equation for this operator yields that

(s,8) € Fr[STOP]p & s={)

The inference rules

Psat, 5(s, %)
S(s,8) = T(s,8)

STOP sat, s = () Psat, T{s,®)

are enough to establish that STOP sat, (s,%) € Fr [STOP] p.

For compound processes, we assume that the result holds for each component,
and apply the appropriate inference rule. Consider the case of the simple parallel
operalor, which is associaled with the [ollowing inference rule:

Psat, S(s,R)
@ sat, T(s,R)

Pl @Qsat, IRp, Rg e =NpUtgA S(s,¥p)y A T(s,8g)

By our inductive hypothesis, the inference rules are enough to establish that

P sat, (s,N)E}_T[Py,ﬂ
Q sat, (S,N)E}-T[Q]P

With these instantiations, we obtain the following consequent

PlLQ sat, ARp RoeR=RpuURg A(s.Rp) e FrP]p
A(s,Rg) € Fr{Qr
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From the semantic equation for this operator,

(s, € Fr{P||Q)r & INe,RgeR=RaURgA(s,Rp) € F7[P]p A
(s,Rg) € -FT[Q]P

We conclude that
PlQ sat, (s,®)eFr[PIQ]p
may be established using the inference rules of the TMF proof system.

To see that the result is true for recursive processes, recall that the semantics
of a recursive process is the unique fixed point of the corresponding mapping in
the model TM ;. For example, the semantics of the instant recursion uX o P is
defined to be the unique fixed point of the mapping M(X, P)p, where

M(X,P)p =AY o Fr[P}o[Y/X).
The following inference rule may be applied if P is constructive for X:

X sat, S(s,X) = P sat, 5(s,R)
#X o Psat, S(s, &)

We instantiate .S with the specification (s,R) € Frlu X o P]p and claimthat the
antecedent holds. Observe that

Xsatp(s,N)EfT{pX oP]p = p[X} g_‘FT[.uXoP]p

The semanlics of each operator is defined pointwise upon sets of timed failures.
As a resnlt, the mapping on TAfy corresponding to any TCSFP term must be
monotonic with respect to the subsetl ordering. Hence

M(X, Py (p[X]) © M(X,P)a(Fr[uX o P}p)
Expanding the definition of M (X, P)p, we obtain

FriP]olefX}/x] € M(X,P)p FrluX o P]p
=> Fr[Ple € MX.PlpFrluXoFlp
= FriPle € FrluXxoPle
= P sat, (s,R) € FrluXoP]p

Hence the antecedent of the rule holds for this specification; we may infer that
p#XobP sat, {s,R)e }'—,—[,uX o Pl

The result follows by structural induction. a
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We have shown that the inference rules of our prool system are enough to establish
P sat, (s,®)€ Fr|P]p

for any P in TCSP providing that the body of any recursive term is constructive
for the corresponding term variable, If & behavioural specification § holds of the
timed failures semantics of P, then

(s,N)Efr[P]p = S{s,®)

The logical rule for weakening specifications (nsed in the proof of the previous
lemma) enables us to complete the proof of

P sat, S(s,¥)

using only the inference rules of our proof system. We conclude that the proof
system for TMy presented in this chapter is complete for constructive recursive
processes, with respect to the semantic function Fr.

5.7 Timewise Refinement

A forma specification of a complex system will consist of several behavioural
specifications, each of which may be established separately. Il we wish to prove
that

P sat S(s,®) A T(s,R)
then it wil] suffice to show
FsatS(s,®) A Psat T(s,R)

Some of these specifications niay not require the full expressive power of Timed
FFailures model. If this is the case, then we may use the hierarchy of models beneath
TMy to simplily our proof ohligations.

Ifa predicate upon tinied traces can be established without refusal informa-
tion, then we may construct a proof in the Timed Traces model TMr. The nature
of the projection mappings ensures that this prool will be valid in TMF. Simi-
larly, if a property may be cstablished without timing information, we may choose
to construct a proof in the untimed Failures model My, or the untimed Traces
mode] M. Of these models, My is the most useful for simplifying timed failures
spedfications; My is often inappropriate, and timed trace requirements may be
established using a simplified version of the TMr proof system.
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TMr

\ / Figure 5.1: the models beneath TMy

The Timed Traces model is complicated by the need to record the times at
which events become available; this information is required for the semantics of
hiding and sequential composition. For any event a, the notation & denotes the
communication of @ at the fitst moment of availability. For example,

TT[PH Q] = {s|3sp,sges=sposgAsp ETT[P] Asg € TT[QE}

where sposg is a timed trace with the same timed events as sp and sg, such that
the »'h element of sp ¢ sg is hatted if and only if the n'* element of either sp or sg
is hatted. For the Timed Traces model, refinemeut to timed failures is easy, but
proofs remain complicated.

In the untimed failure (tr, X), the refusal set X is a set of events that may be
refused following the observation of trace ir. In a timed context, X corresponds to
the set of events that may be refused after all iuternal activity has ceased. With-
out a stability value, we have no record of internal activity; an untimed liveness
regnitement may insist only that an event is offered eventually; this may prove
inadequate in the specification of a real-time system. Nevertheless, a projection
mapping ftom TMp to My might be used to establish important properties of a
real-time system. For example, it may be possible to establish deadlock freedom
using the algebraic properties of untimed CSP, instead of the timed satisfaction
relation sal.

If a requirement can be established by reasoning within the untimed Traces
model, then we may employ a simple syrtactic abstraction from the timed syntax
TCSP to the nntimed syntax CSP. In [Schneider 89], the author developsa theory
of timewise refinement based upou the Timed Failures-Stability model TMrs. In
this section, we develop a similar theory for TMr and exhibit a refinement proof
rule for untimed safety specifications. We begiu by presenting a syntax for untimed
CSP, together with a semautic function for Reed’s untimed Traces model.
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Traces Model

We give an extended syntax CSP for a language of untimed CSP terms, to match
the syntax for TCSP given in chapter 2:

P := STOP|SKIP|X | atoms
a-— P l PP | PiP sequential composition

PGP\PI‘IP[a:AﬂP‘, alternation

PP ‘ P NP l Pl P I PﬁP | parallel composition
PA\A ]f(P] 1f—'(P) | abstraction and renaming
uXeP t (Ai=P); recursion

This is anextension of the syntax presented in [Reed 88]: apart from term variables
and the new parallel operator, we have added an untimed interrupt operator §
which may interrupt a process at any time during its execution.

We define a semantic function from CSP to the Traces model Mr, using envi-
ronments to bind term variables:

T[sTOP)p = {{)}
T{sxiPle = {{),(/)}
Tle— Plp = {0}V {{a)~er{ire T]P]p}
Ti{P; Qe = LﬁrltreTﬂP]pAJgga(:r)}

{tretrg | trp™(v) € T[P)a A trg € T[Q]0)
T{Pi Qle = {tre"trg | trp e T[Plp A trg € T[Q) )
T{PogQle = T{PlpuUT[R)e

T{pnale = T{PleuT[Q]p
TIH:A—’PalP = {(a)"fr[aeAf\frET[P.}P}

The untimed interrupt construct P § Q may transfer control from P to Q after
any sequence of events; an arbitrary trace of this process may be any trace of P,
followed by any trace of Q.
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TPl @ls = TIPlo TGl
TP,y Qle = {trltr|(AUB)=tr Atr A€ T[P]p
Atr|Be T[Q]p}
TEP | Q]p = {ir | Ilrp,trg o tr interleaves (irp, trg) A
trp € T[Plo A trq e T[Q] 0}
TﬂP I Q.ﬂp = {tr|Jtre,trg e tr \ A interleaves {trp \ A, trg \ A) A
4 tr|A=trplA=trg| A A
trp € T[P]o A trg € T[Q] 0}
T[P\ Alp = {tr\A|tr e T[P]p}
TH(P)e = {fir}(tre T{P]p}
TP (Pls = {71 /tr) e T[P]p)
T[xXe® Plp = the unique fixed point of the mapping on My

corresponding to X, P and p

1

T[(X; = P.-),]p the j* component of the unique fixed point
of the mapping on M} corresponding to X,

P, and p

The subsidiary relation interleaves is defined in [Hoare 85]: tr interleaves (Irp, trg)
precisely when (r is an interleaving of frp and irg.

If 5{tr) represents a behavioural specification on untimed traces, then we may
define a satisfaction relation:

P sat, S{ir) = VirecZ o trET[P]Ip=>S[ir)

The choice of free variable identifies the model employed; we write tr 1o denote
an arbitrary untimed trace. If the interpretation of sat is not obvious from the
context, we will decorate it with the name of a semantic model. Using thisrelation,
we may obtain a compositional proof system, similar to the TMr proof system
presented earlier in this chapter: e.g.

Psat, S(ir)

a— Psatyir={} Vir={a)"tr' A 5{tr')
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The inference rules for the other operators are straight{forward, except in the case
of recursion. For a recursive process to have a well-defined semantics, the body
of the recurmive definition should be guarded for the recursive variable; a term
P is guarded for a variable X if each occurrence of X in P is prefixed by some
observable event. If term P is guarded for X, then the following rule may he
applied:

X sat, S(tr) = Psat, S(ir)

[ STOP sat S(ir) |
uX e Paat, S(tr)

An untimed trace specification is satisfiable iff it is satisfied by STOP; this is a
consequence of the following axiom for My:

VYeMr o eV

The requirement that § is satisfiable is expressed hy the side condition of the rule.

This proof system is considerably simpler than the proof system for TMp. If an
untimed safety specification may be established within the untimed traces model,
then we may remove the timing inlormation from the syntax of the process and
apply the inference rules for M.

Syntactic Abstraction

We may define a syntactic abstraction @ : TCSP — CSP by structural induction
upon the timed syntax:

o(L) = STOP
O(STOP) = STOP
O(SKIP) = SKIP

O(WAIT 1) = SKIP

o(xX) = X

We abstract away timing information, identifying any form of sequential compo-
sition with the immediate transfer of control:

Ba—P) 2 a-—8(P)

Oa-5P) =2 a—0(P)

8(P:Q) = O(P);0(Q)
e(P;Q) = 8(P);8(Q)
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The mapping distributes through all of the standard operators:

O(POQ) = B(P)DB(Q)

aPng) = e(Pyne()
a: A= P,) & a:4—-0{P,)
erPIQ) = o) e(Q)
B(P L lls @) = O(P) ,l8(9)
orllle) = e ew)
oPl Q) = o(p) le(Q)
OP\VA) = O(PI\A
a(f(P)) = f(a(P))
o(f~'(p) = fH(a(P))
uXeP) 2 pXeO(P)

BuXoP) 2 pXeB(P)
O({X, = Py,) = (X:i=8(P),),
The timeout construct Pp @ may offer Lhe user a choice between P and @, or may

behave as (), depending on whether the timeout has occurred. Without timing
information there is a nondeterministic choice between these two alternatives:

O(Ps &) = (B{P)OO(Q)NO(Q)
The timed interrupt operators ate mapped to nntimed interrupts:
OPEQ) = 0P EB(Q)
OrPYQ) = &P ie— 0(Q)

The indexed nondeterministic choice and nondeterministic delay operators are
mapped to the obvious targets:

of 1Py = [op)

el ief
SKIP

]

I

O(WAIT T)
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Timewise Refinement

If a specification 5{s) on timed traces is independent of timing information, thern
we may transform § into a behavioural specification on untimed traces. We define
a simple projection mapping on elements of TX%:

Definition 5.18

Hig

{

{a)"tstrip(s)

tstrip({)
tstrip({(t,8))"s)

I»

¢

The mapping tstrip removes the time values from the trace. If the truth of a
behavioural specification S is independent of these values, we say that § is a
time-indegenden’ specification.

Definition 5.19 A behavioural specification S(s) is time-independent iff
V5,55 : TEL w» tsirip(s;) = lstrip(ss) = 5{s;) = 5(s2)

¢

If 8(s) is a time-independent specification on timed traces, then it will prove
convenimt to define a corresponding condition upon untimed traces:

Definition 5.20 If 5(s) is a timed trace specification, then
OS(tr) = Vs e TEL o tstrip(s) = tr = 5(s)

¢

An unlimed trace ir meets the specification ®5 iff every assignment of time values
to theevents in ir produces a timed trace that meets 5. Recall that the sequence
of time values must be non-decreasing if the result is to be a valid timed trace.

Trace operators which do not refer to the times at which events occur may
be applied to both timed and untimed traces. For example, the restriction and
counting operators are defined on £* by

Gl4a =
({ey"tr} A 2 (a)7{tr | A) fa€A
tr] A otherwise
ir]A = #{r] 4)
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If a timed trace specification $(s) is constructed using such operators, Lhen the
untimed trace condition will often be a consequence of S(¢r). As an example,
consider the timed trace specification

S(s) 2 (last(s)=a)=>slb=10

A process satisfies this specification if whenever we record an ¢ event, we find that
no & events have been recorded. It is easy to establish that

(last(tr)=a) = tr L b=0 = O05(tr)

for any untimed trace ir.

If the image of S under & is satisfied by the untimed equivalent of a timed
process P, then we might expect that P salisfies 5. However, if we choose

P = (a— STOP||| SKIP); b — STOP

then @(P) satisfies 5, where S is as defined above, but P does not sakisfy S in
TMg. With instantanecus sequential composition, events b may be observed at
the same lime as a, and se may appear first in the trace. The trace {(,8),(0, a)}
is a possible observation of P, and does not meet §.

This problerm may occur whenever we use Lhe instantaneous form of sequential
composition. We could remave this operator from the syntax of Timed CSP and
use only the delayed form: this is the approach taken in [Schneider 88]. We choose
instead to retain ii, for greater flexibility in process descriptions, and identify the
situations in which it may be safely applied.

Definition 5.21 A process P is O-safe iff
Ys,N o (5,R) € Fr [P]I = tstrip(s) € T[P]
<

A direct application of this definition would be impractical; fortunately, this prop-
erty may be established by a simple inspection of the process syntax.

Definition 5.22
¢ For any time ¢ or set of times T, the terms STOP, SKIP, 1, WAIT{, and
X are all v-guarded.

e If P and Q are both v-guarded, then the terms a — P, a - P, PO Q,
PNQ,P;Q,PIQ, P,llg @, PIQ, PAA, f(P), S/ (P), s X ¢ P,y X o P,
P5Q,PiQand P ¥, Qa are all /-guarded.
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e P, and P, are v-guarded, for each event a € A or index i, then the terms
a:4- P, ﬂ_el P, and {X; = P.); are all v-guarded.

e If P apd @ are both v-guarded and { is strictly positive, then the terms
WAIT; P, P;WAIT {, and P, WAIT ¢; @ are all v-guarded. o

A term P is /-guarded if every instantaneous sequential comnpnsition is accompa-
nied by a delay operator. This syntactic property is a sufficient condition for a
process to be @-safe:

Lemma 5.23 For any P in TCSP,
Pis v-guarded = Pis Q-safe
Q@

This resut follows directly from the semantic equations for the Timed Failures and
untimed Traces models. We may now exhibit a refinement proof rule for untimed
safety specifications:

Rule 5.24
a(p t &5(t
(P) ea {tr) | Pis B-safe ]
P sat 5(s)

FAN

If we can establish that the abstraction of a &-safe process P meets 5, then we
may infer Lhat P also satisfies S. The antecedent of the rule is a proof obligation
in the untimed Traces model, the consequent is a proof obligation in TMy.

Proof To sce that this rule is sound, consider the following diagram:

timed process __L. timed specification

B-sale definition of @

untimed process untimed specification

Figure 5.2: Timewise Refinement

Il s is a timed Lrace of a B-safe process, then Istrip(s) will be a trace of ®(P).
Il @(P) satisfies the behavioural specification ®5(tr), then we may infer that §
holds of trace s. The consequent part of the rule follows immediately. o
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5.8 Example

Consider the following implementation of a timed sensitive vending machine:

TSVM = coin =4 (reset — TSVM

iz
=3

coke Ly TSVYM )

The company that operates this machine requires that every drink is paid for in
advance, aud thal the machine is ready to accept another order within acertain
time ¢;. In section 4.4, we formalised these requirements as separate behavioural
specifications:

SAFE(s) = s | ecoke €5 coin

HH

NEXT(s,R) ({1, coke)) in s = coin ga(R 1t + ;)
v

coin € a(s ] t)

The machine is supplied with the following manufacturer’s guarantee: il a coin is
inserted al time 7, then a drink is ready before time ¢ + &5, providing that the user
does not trigger a reset during the interval [t + £;,¢ + t; 4 #;]. This requirement
correspands to the following behavioural specification:

{(1, coin)}in s coke Fa(R1 14 1)
OKAY(s,R) = A } = Vv
reset € o(s T{L+ 4t + 1) +#]) ecoke € a(s 1 1)

We would like to establish that the suggested implementation TSVM meets the
following behavioural specification:

SPEC(s,X) = SAFE(s) A NEXT(s,R) A ORAY (s, %)

Safety

The safety specification SAFE is independent of timing considerations. Although
it is possible to show that TSVAS satisfies this specification using the timed failures
proof system, it will be easier to establish the result by timewise refinement. We
observe that TS VA{ is /-guarded and hence ©-safe, and that

tr | coke < tr | coin = PSAFE(tr)
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Applying the abstraction mapping € reveals that
O(TSVM) = S¥M
where S¥M is the untimed vending machine of section 2.8:

SVM = coin — (PAID O reset — SVM
n
coke — SVM)

An application of rule 5.24 reduces our proof obligation to
SVM sat ir | coke € Ir | coin

We ohserve that this recursion is guarded, and apply the inference rule for recursion
in M7. We have now to prove that

coin — (PAID O reset — X
n sat, tr [ coke € tr | coin
coke — X))

under the assumption that
X sat, fr] coke £ ir | coin

This result may be established using the inference rules for event prefix, determin-
istic choice, and nondeterministic choice in My.

Liveness

The rest of the proof must be conducted within the Timed Failures model. We
begin by chserving that the body of the recursion SVM is constructive, providing
that t; > 0. We may then apply the inference rule for recursion, reducing our
proof obligation to

ot i
coin — (reset = X
te

£ sat, NEXT(s,B)A OKAY (5 R)
coke 4+ X)
under the assumption that

X sat, NEST(s,R)A OKAY(s,R)
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If we restrict our attention to the second of these specifications, we may apply the
inference rule for event prefix to yield:

resel ~35 X sat, s={)

5= [(t,reset))"s' A OKAY ({5, R) — (1 + &)

Similarly, we may easily establish that

coke 2 X sat, 3= () A coke & a(R)
\%

s =((t,coke))"s" A coke € o(R | )
A OKAY (5", R) ~ (L + &)

Applying the inference rule for the timeout operator, we may deduce that

reset —2» X
2 sat, A(s,®)V B(s,R)V C{s,R)

coke -5 X
where

A(s,R) begin(s) <ty A
s = ((t,resel))™s" A

OKAY((5',R) — (ts + 1))

1

1]

B(s, i) s={) A coke & o(R— (14 + §))
s —(ls +8) = ((t, coke))™s' A
coke £ o(R— (L2 + 6) [ ) A
OKAY ((s',8) — (4 + ¢))

12

Cls,R)

An application of the rule for event prefix reduces our proof obligation to
s={
v

s=({t,com))y"s A A& R) = (L + 1)
v =  OKAY(s,¥)
B{(s'.®) = (t; + 1))

<

Cl(s",®) = (4 + 1))
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The specification OKAY js vacuons for the empty trace; we have only to prove

((h,coin)} €3 A
rect (s Tlte + L to + 4 + 1]} A

5= {(t, coin))™s" A A((s", W) = (1, + ') coke £ a(R Yty +1s)
v = v
B({s".R) — (& + 1) coke C o(s1 to)
v

C((s,¥) = {t + 1))

If # + f;, then the result is easily established by expanding A, B, and C. Suppose
then that ¢ = t5; onr assumption that

reset €o(s T[4+ 1, 8" +1; + 1))

contradicts A(s,R), so we have only to show that

s ={(#,coin)y™s" A B((s\R)— (i + ) coke @ a(R1 1+ t5)
\' = Vv
Cl("\ ) = (L + 1)) coke € o(s1t)

From the definitions of B and ' we obtain:
=0 A cohe do(R—-{t; +1+1'+8)
V'
s —(ty + o + £+ 8) = ({#", coke))"s"

The cesult follows, providing that

s 2 Li+la+é

If a cdn 13 inserted al time {, then we cannet guarantee to provide a drink any
earlierthan £+, 4+ 13 + 6. We must allow a delay of £; for the coin to be inserted,
a delay of ¢, for the coin to drop, and a delay of at least & for control to be passed
to the dispensing process.

The proof of NEXT(s,R) 1s simalar, although an additional constraint must be
addedto ensure that this specification is preserved by each recursive call. We may
conchde that the fnll specification is salisfied:

TSVM sat SPEC(s,R)

providing that the above condition upen t5 is observed,




Chapter 6

Structuring Specifications

H we wish to produce a readable specification of a large system, then we must
take care to present our description in a clear, structured fashion. At eachlevel of
abstraction, we identify the interfaces between system components and conceal any
events which are not of interest. We express our specification as a series of service
specifications, each describing the service provided by a particular component of
the system. In this way, we may refine a description of the service provided by a
system towards a satisfactory implementation.

6.1 Abstraction

The hiding operator provides the mechanism for abstraction in Timed CSP; the
expression P\ A denotes a process that behaves as P, except that

+ events from A occur as soon as they becomne available
+ only events from outside A are observed

In section 5.2 we gave an inference rule for this operator that was easy to derive,
but difficult to apply. We can achieve a significant reduction in complexity if we
separate the concerns of concealment and scheduling. To this end, we define a
predicate act, which holds of any A-active behaviour:

Definition 6.1  acta(s,R) = [0, end(s,R)) x A C X &

A behaviour (s, R) is A-active if all events from set 4 occur as soon as they become
available. If we wish to establish that P\ A satisfies a specification S(s,%), it is
sufficient to show that

« S{5,R) holds for all of the A-active behaviours of P

* 3(s,R) is unaffected by the concealment of events from A



106 Specification and Proof in Real-time Systems

The serond condition is satisfied ¥ the truth of the specification is unaflected by
the removal of A’s events from the trace and refusal.

Definition 6.2 A behavioural specificalion 5(s,R) is A-independent iff
Vs: TE¢;R: RSET » S(s,NU{0, end(s]) x A) = S(s |\ A,R)
1%

If S describes a service provided across an interfzce that is disjoint from A, then
& should be A-independent. The following abbreviation will prove convenient:

Definition 6.3  S(s, M) | 4 = act (s, ®) = 5(s,R) ¢

This slates that the specification 5(s, R} holds whenever the current behaviour is
A-active. We may now present a simple proof rule for the hiding operator:

Rule 6.4

Psat, 5(s,R)} A

[ § is A-independent |
P\ Asat, $(s,R)

A

If an A-independent specification § holds for all A-active behaviours of a term P,
then we may infer that P\ A satisfies $(s, ).

Example

Suppese that process P satisfies the following specification;

T(s,R) = a@o(MT(L,2))vVaca(sati0, )
A
{lyeYins = bgoRT[t+1,142)
v
bea(sT[i+1,t+2))

In this case, the event ¢ is available from time ! to time 2, unless it has already
occurred. Further, if an o 15 observed at any time ¢, then b either occurs or is
available during the interval [ + 1, ¢ + 2).
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If we consider only the a-active behaviours of P, then a is present for the
daration of refusal set ®. If the behaviour (s, R} extends beyond lime I, we know
that a mnst occor before time 2. We can show thal

T{s5,M)% e = end(5,R) 21 =>aco(s1[0,2)
A
(,a))ins=> b ga(RT{t+21,t+2)
v
beo(sT[t+1,t+2))
and it is easy to establish that T(s, R} a = S(s,X) Y\ e, where
$(s,R) = Jt:[0,2)ebgo(RT[t+1,142)
\'

bea(lsT{t+1,t+2)

It is clear that S(s, %} is an a-independent specification, so we may apply the new
inference rule for the hiding operator to obtain

P\a sat 3¢:[0,2)ebdaRT[t+1,6+2))

V'
beo(sTt+1,t+2))

The event b is made available, or is observed, during the interval [t + 1.t + 2),
where # € ¢ < 2.

6.2 Scheduling

The form of liveness condition employed above is both awkward and inadequate
if we wish to absiract from the events concerned. If we have that

P sat ado(RT[)Vaceo(sTh)

then we may infer only that P\ a performs event a at some time during theinterval
J. If we intend to conceal an event a, then any liveness specification invelving «
should address the time at which e becomes available.

Instead of requiring that an event a is offered during a fixed interval tnless it
15 observed, we may insist that g is available unti it is observed.

Definition 6.5

afromt (5,8) = aga(®R7T[begin{s T[t,00) | a}})
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The right-hand predicate states that event a is absent from refusal set ® between
time ¢ and the time at which the next a is cbserved; it is easy to see that the
process WAIT i ;a2 —+ STOP will satisfy this specification.

This form of liveuess specification allows us to determine the precise time of
occurreace of hidden events. If a process P satisfies the liveness condition a from ¢,
then we may infer that the event @ occurs at time { in all a-active behaviours of

P. If we define
Definition 6.6 e att(s,®) = ((1,a)) in s &
then we obtain

afromi (s,8) = end(s,R)>t=>aatt(s5,R)\ a

If & becomnes available at ¢, and it is hidden, then it will be observed at ¢, if the
current observalion extends far enough. The above implication is a consequence
of the lollowing result:

Lemma 8.7 For any S§[s,R), if end(s, %) > ¢ then
(S(s,¥)Vafromt (s,8)%a = (S(s.,W)vaatt(s,®)Ya

(S(s,X)Aafromt (5,R) N e = (S(s,;®)Aaati(s,R))Ya

Proof TFrom the definition of Y, we obtain
([0, end(s,R)) x {a}) T R

Qur ssumption that end(s,®) > ! allows us to infer that a € o(¥ T t). From
definilion 6.5, we deduce that

[, begin(s T [t 00) | @) = {}

and hence that {(Z, a)} in 5. The prool may be completed using tautologies of the
propesitional calculus. m]

We may allow a process Lo wilthdraw Lhe offer of an event if it has not been accepted
within a given period of time, or if another event has been observed.

Definition 6.8

afrom tuntil t' (5,R) = a ¢ a(RT [t, min{t’, begin(s T [¢,20) | a)}))
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If the offer of event a has not been accepted by time ', the process may retract
without violating the liveness specification. This corresponds to an application of
the timeout operator.

WAIT !, ;((a = STOP)E STOP) sat afrom t; untilt; + 4,

The event a is enabled at time {; and, if it has uol been performed, disabled at
time &; + ts.

Definition 6.9
a from tuntil 6 (s,8) = a @a(R7T[L, begin(s T{t, 0} | {e, b}}})
¢

If a process is to satisly this specification, event & must become available at time
t, and must rermain available until either « or b is observed. We may combine this
condition with the possibility of a timeout:

Definition 6.10

a from ¢ until " or & (5,R)

= ago(RT{t, min{t!,begin(s T {t,00) | {a,b})}))

It is worth observing that:
a from funtil # or b = @ from ¢t untilt' v a from ¢ until &

More usually, we will wish to insist that a becomes available at some time during
a fixed interval I. We can capture this requirement with a simple quantification:

Definition 6.11

afrom I (s,®) = Jt:Jeafromt

As an example, censider the process P defined bhy:

P = (WAIT[1,2);(a = STOPOb — STOP)) & STOP
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We may use the timed failurcs proof system to show that
P sat afrom ([,2) until { or & (s, ])

The event a is cnabled at some time between ! and 2, and disabled at time § or
when boccurs, whicbever is the sooner.

With another existential quantification, we may allow the offer of a to be
withdriwn at any time during an inlerval J. Further, we may require that event
@ made available until some event from set B is observed:

Definiion 8.12
aftom funtilJor B = J¢:I;t':JeIb:Beafromtuntil orb
&

The folowing equivalence confirms that existential quantification aver set B has
captured the required constraint:

¢from tuntil B (5,R) = a €o(RT[t, begin{s T |t,oc) | {a}u B)))

The offer of @ may be withdrawn following the occurrence of any event from set
B. This justifies the following definition:

Definition 8.13
Afrom Funtd Jor B = Ya:Aeafrom [ until Jor (AU B)
¢

If a process is Lo satisfy this specification, the whele of set A must become available
at some time ! in [, and remain available until some time ¢’ in J, unless an event
from AU B is observed. The sequence of quantifiers is the most appropriate for our
needs. the specification “A from I (8,R)" is satisfied by any process thal becomes
ready for every event from A at some time during I. An example might be

WAIT[0,1);inm:in.M — P,
This process becornes ready to accept any message m from set M on channel in
at scme time during interval {¢, 1).

A similar generalisation may be applied to the ‘at’ construct; we may replace
the single event and time with a set and interval:

Definition 6.14 Aat J(5,R) = Ja: A;2:Jeaatt(s,R) &

This condition is true if some event from set A is observed at some time during
the interval [.
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We may generalise the statement of lemma 6.7. If (s, R) is an A-active be-
haviour, and every event from 4 is made availahle at some time during interval J,
then some event from A must be observed during [.

Lemma 6.15 If end(s,R) > end(/) then
(S(s, ¥y v Afrom [ (s,R)) R A = (S(a¥)v AatT (s, R)\ A
(S(s.R)AAfrom [ (s, BV A = (SER)IAAat! (s, 8\ A
v

Some care must be taken in the presence of an ‘until’ clause: if the inlerval in
which an event is enabled inlersects with the interval in which the offer may be
withdrawn, then there is no guarantee that the event will eccur.

Lemma 6.16 If end(s,®) > end([) and begin(J) > end([) then
(S(a., ) v Afrom funtidJ (5, R)) W A = (S(s,)vAatl(sR)} A4
(S5(s,®) A Alfrom [funtil J (s,8)) W 4 = (S(s,X)A Aat (s, R)})} A
Q

If the offer of events from set A may be withdrawn on the observation of an event
from B, then we know that some event from 4 U B will occur in an A-active
behaviour.

Lemma 6.17 If end(s,R) > end(f) then
(S(s,®) Vv A from Funtil B (s,R))\ 4 = (S(s,R)VAUBatI{s,R)}\ 4
(S(s,R)A A from [ until B {s,8)\ A = (S(s,X)AAUBat[ (5,8} A
©

In each of these lemmata, we cannot assert that any event is observed unless the
experiment is of sufficient duration: end(s,R) > end([).

The ‘at’ and ‘from’ expressions are macro! stalements in our timed failures
specification language. We may use such expressions to make our specifications
more palatable, although it will often be necessary to expand them in the course
of a proof.

1From macrose: syntactic sugar.
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6.3 A Specification Language

We may consider the macro expressions of the previous section as functions defined
upon atypical timed failure. If we }ft the boclean operators to take functions as
arguments, we may obtain a simple language for timed specifications. Forexample,
the requirement that

P sat afromt(s,R) A ({batt(s5R))
may beshortened to
P sat alromt A-(batt)

Not only are such specifications easier to read, but also they are open to inter-
pretation in other models. This language is a first order logic with time-valued
variables, comparable to those of [Hooman 90] and [Jakanian & Mok 86|.

There is no need to extend the satisfaction relation between processes and
specifications. If F is defined upon the set of all timed failures, then
P sat F(s,8) & Vs,Re(s,R)€ Fr[P) =+ F(s,R)

In thecase when F is applied to the typical failure (s, R}, as in the example above,
we will omit the function argument. We may employ the inference rules of the
timed failures proof system to estahlish results expressed in our new language.
We may also derive laws for reasoning about higher-order ebjects such as ‘at' and
‘from’ expressions. If we define

time (5,8} = end(s,R)
active A (s, R) [0, end(s,R)) C R

I

theu lenma 6.7 gives risc to a simple example
actived A Afrom! A time>t = Aatt

If events from set A do not require the cooperatien of the environment, and all
events from A are made available at time ¢, then some event from A will be
observed at time .

In the course of chapter 7, we will require a number of functions to extract
information from a timed trace. One such function has already been defined,
Aat 7 {s,®) = 3a:Aeaco(sT]

whichreturns a boclean expression whose value is true precisely when some event|
from set A is present in trace s restricted to interval 7. The remaining [unctions
will be defined using projection mappings upon timed failnres,
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If M is a projection mapping from timed failures to time values, and v is a
predicate upon time values, then

Fls.B) = o(M(s,R))

defines a behavioural specification on timed failures. A similar construction may be
used for projection mappings whose results are timed events, sequences of events,
or even components of events.

We will often wish to consider the sequence of data values passed along a certain
channel ¢ during a particular interval J. The following projection mapping yields
precisely this information:

data ¢ during [ (s,8) = data(s{c.Z11)

where data is defined by

Iy

data({})
data({(!,c.a))"s)

0
(a) "~ data(s)

ib

The resull is a sequence of values drawn {rom the datatype of values permitted on
channel «.

Another useful projection mapping returns the last timed event from set A4
observed during interval [, or strictly before time ¢:

foot(s | A1)
Joot(s | AT[0,1))

Similarly, we may define a projection mapping ‘count’ that yields the number of
occurrences of events from a given set during a specified interval.

#slATI)
#(s | ATI[0,8)

Again, we may choose to count only the events cbserved before seme time (.

I

last A during [ (s,R)
last A before t (s,N)

13

1

count A during I (s, &)
count 4 belore ¢ (5,R)

i

It will prove corvenient Lo give names to the projecticn mappings from timed
events to times and events.

Ih

¢

4q

timeof (t,a)

I3

name of (¢, a)

for any timed event (¢,a). We will add to this list of projection mappings and
functions whenever we encounter constraints that cannot be expressed using our
existing vocabulary.
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6.4 Example

Consider a simple communications nelwork, consisting of a sender process S5, a
receiver process R, and two commnnications mmedia, M! and M2, The network
acceptsmessages on chaonel in, and delivers messages on channel out. The sender
transmits each message to the receiver using either Mf or M2. The choice of
medium may depend npon message length, enrrent load, or internal errors; in any
case, the user is not informed. At this level of abstraction, the choice of medium
i8 nondetermimstic.

out

32 A2 re

Figure 6.1: Transmission with a choice of media

Beth transmission media are reliable—no messages will be lost—but each is
associated with a different nondelerminisiie delay. The first will transmil messages
from channel 5/ to channel r! with a delay of between f and 2 seconds, while the
other will transmil messages from s2 to t2 with a delay of between 0.1 and 0.5
seconds. These channels are invisible to the network user,

We require that any implementation of this network should deliver a message
withis 3 seconds of its arrival on channel in. This requirement is captured by the
following behavionral specification:

LIVE = inmat t = ouf.m from (¢, + 3)

If a message is input al time ¢, it will be available on channel out at some time
between ¢ and ¢ + 3. We will assume thal all times are given in seconds.

We assnme that all messages are of message type M, and choose ¢. M to denote
the st of communications possible on channel ¢,

cM = {em|me M)

where ¢ is any of sf, 52, »f, r2.
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Each transmission medium is initially ready to accept a message, and is always
prepared to accept a new message within f.1 seconds. If medium M accepts a
message m on channel sI at time (, then it must begin to offer the communication
rl.m at some time between { + { and ¢ + 2, and become ready for a new mes-
sage before time ¢ + 0.1. We may capture these requirements with the following
behavioural specification upon medium MI:

M! sat sl M irom 0
A
slmatt=rimfrom(t+1,t4+2)

A
st.MIrom {t, t 4+ 0.1)

The faster medium M2 salisfies a similar specification, undertaking to deliver a
message after a delay of between 0./ and #.8 seconds:

M2 sat s2.M from 0
A
s2mati=rlmfrom(t+0.1,t4+0.3)

A
s2.Mfrom (8,1 +0.1)

For the purposes of this example, we have assumed that the media provide lor
adequate buflering of messages. This issne may be addressed separately, using
timed safety specifications.

The sender process S passes each input to at leasl one of the transmission
media within @.2 seconds of its arrival on channel in:

S sat inmat = sf.mlrom (¢ +0.2)
V'
s2.m from (¢, t 4+ 0.2)

If we are to guarantee the successful transmission of a specific message, we must
ensure that the sender process does not flood the transmission media with spuri-
ous messages. This requirement corresponds to the the following untimed safety
specification:

S sat Vm: M e count{s!.m,s2.m} < countin.m

For any message m, the number of transmissions of m is less than or equal to the
number of times m is accepted on channel in.
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The receiver R behaves in a complementary fashion. It is always prepared to
accept anew message from either medium within 0.7 seconds. Messages are ready
for output on channel out within 0.2 seconds of arrival.

R sat rI MU r2 M from @
A
rl.mat | = out.m from ({,t + 0.2)
A
ri. MU 2. M from (t,L + 0.1)
A
r2.m at t = oul.m from (¢, + 0.2)
A
ri MUr2.M from (8,1 + 0.1)

If a message is rcceived on either rf or r2 at time {, it is made available on channel
oul before time ¢t + 0. 2.

We assume that the sender and receiver have disjoint alphabets, and that the
named channels are distinct. With these assumptions, we may implement the
network as a simple parallel combination:

NET (s fll (M1l M.?){ ||2}R)\{31,s2,r1,r2}
1] rl,r

{at.a2}

i

To demonstrate that this implementation meets our liveness requirement, we must
show that

COMMS sat LIVEN {sl,s2,r1, 72}
where COMMS is the process

S MMy Il R
{s1,52} {rt ,r2}

From the specifications of A and M2 and the inference rnle for interleaving
paraliel combination, we may deduce that

M1||| M2 sat s1.Mfrom @ A s2.M from 0

A
si.matt = rimfrom(i+1,t+2)

M
st M from [t +0.1)
)
s2matt = r2mfrom{{ +0.1,t 4+ 0.3)
M
s2.M from (¢t + ¢.1)
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Usipg the inference rule for communicating parallel, we may establish that:

§ b (MI)||M2) sat in.mat!=>sl.mfrom (t,{+0.5)
{al 28} v
$2.m from (¢, ¢ + 0.3)
A
sI.mati=rlmirom{t+1,¢+2)
A
s2matt = r2.mirom(t+0.1,04+843)

Observe that the maximum delay between input on channel in and readiness for
transmission inclides the §.1 seconds that may be spent waiting Jor the medium
to accept the message.

Another application of the inference rule yields that:

COMMS sat inmati{= sl.mfrom(¢,t+0.9)
V'
s2.mfrom (L, ¢t + 0.9)
A
slomatt=rimfrom(i41{,t+2.1)
M
sZmatt=r2mirom{t +0.1,¢t4+0.4)
A
{rl.m} U {r2.m} at # = oul.m from (¢, ¢t + 0.2}

Under the assumption that Lhe set {sI, s2, #!, r2} is hidden {rom the environment,
we may apply lemma 6.7 and infer that:

COMMS sat (inmat!= out.mirom{(t+ &.1,0+0.9)
A
oul.mfrom (¢ + I,t + 2.6)) N\ {si,s2,r! 72}

The disjunction corresponds to the hidden choice of media. If the message is sent
via medium M2, there will be a delay of between §.{ and .9 seconds; a different
range of delays is introduced by the slower medium M!.

The above behavioural specification is {s!, 52, r1,72}-independent; we may
apply the inference rule for the hiding operator given in section 6.1 Lo obtain

NET sat immatt = out.mfrom(t+0.1,t4+0.9)
v
out.m from (1 + 1,1 + 2.6)



118 Specification and Proof in Real-time Systems

which isenough to establish our liveness requirement:
NET sat in.mal { = out.mfrom (2,¢ + 3)

In the sbove proof, we have omitted the details of the functional application and
variable substitulion necessary for the timed failures proof system. This cumber-
some process can he avoided altogether if we derive inference rules for the direct
manipulation of higher-order specification statements.



Chapter 7

An Fthernet-like Protocol

Toiliustrate the application of Timed CSP 1o the specification of real-time systemns,
we will show how the functions presented in chapter 6 may used to describe the
behaviour of a communications protocol at two different levels of abstraction.
The protocol chosen for this purpose is based upon the Ethernet protocol defined
in [Xerox 80], a standard protocol for local area networks.

The Ethernet protocol is a broadcast protocol: signals sent, by one station may
reach all of the stations upen the network. 1t is a carrier-sense protocol: stations
listen for a carrier signal on the broadcast medium and act accordingly. Another
important feature is colfision detection. Each station must monitor the bmadecast
mediumn during transmission, and ceasc immediately if it becomes apparent that
another station is also transmitting.

The Ethernet specification [Xerox 80] is divided into two parls, correspond-
ing to the data link and physical layers of the IS0 reference model described
in [Tanenbaum 81). This model consists of seven layers, each representing a differ-
ent level of abstraction, from the hardware of the physical laver to the user software
of the application layer. Each layer provides a service to the layer above, facilitat-
ing virtual communication between peer processes on different machines. In this
chapter, we will concern oursclves with the bottom three layers of the model: the
communicalion subnel of fignre 7.1.

The physical layer is the lowest layer in the model bierarchy, and transmits data
as bits between the stations, or nodes of the network. We will provide a timed
failures description of the service provided by this layer, but we will not attempt
to describe its internal behaviour. Such a description would require a treatment
of broadeast communication; our present model of computation is based upon
synchronisation. [n chapter 8, we will see how the Timed Failures model may
be extended to include an element of broadcast cencurrency; a description of the
physical layer will be presented as an example.
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The data link layer accepls puckets of data from the layer above, inserting the
data into frames for transmission to the physical layer. Each frame js transferred
to the physical layer as a stream of bits. The data link is responsible for handling
any errrs which arize in frame transmission, providing its client layer with an
error-free virtual communication medium, To provide this service, the data link
must becapable of detecting errors, retransmitling damaged frames, and sending
acknowlkdgments.

The network layer is the third layer of the ISQ model. This layer converts
messages into packets, and uses the data link to transmit them to their destination.
We will refer to the network layer as the client layer, reserving the term network
for the communication system as a whole.

Chienl Layer - — - = — — - - - Client Layer
! I
Data Link Layer - - - - -~ - - - Data Link Layer
I I
Physical Layer ~————— Physical Layer

Figure 7.1: The Commuuication Subnet

The data link component of the Ethernect protocol does not correspond pre-
cisely to the ISO model. The data link component of Ethernct will attempt to
transmit each frame no more than sixteen times; if all of these attempts are inter-
rupted by collision detect signals from the physical layer, then the current frame is
abandoned. Further, aithough incoming frames are checked for errors, no facility is
provided for retransmission or acknowledgment. Errors (other than those caused
by collisions) are simply reported to the client layer at the curreat node.

In this chapter, we will specify the data link component of a protocol that
differs from the one described in [Xerox 80]. To simplify the presentation, we will
agsume that all errors are due to collisions on the broadecast medium. In this case,
there is no need for error reporting at the destination node. We will also assume
the existence of an implementation of the randomisation strategy employed in
Ethernet, described at the end of section 7.6. With these assumptions, we may
address the complex timing properties of an Ethernet-like protocol within the
framework of a short case study.
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7.1 A Hierarchy of Specifications

The layers of our protocol form a service hierarchy: each layer provides a service
to the layer above, and makes demands upon the layer below. We will use timed
failures specifications to capture the requirements at each level of hierarchy, and
derive a correctness condition for any implementation of the protocol.

Specification

If a service is provided by layer L, it can be described in terms of the occurrence
and availability of events from some set A;. We will use H; to denote the other
actions performed by the layer, those hidden from the laver above. If L, is aservice
hierarchy, then we require that

mzat+l = I, N B, ={}
m=n+l = I; NI, = A
where X is the alphabet of layer L. Each layer should insulate the laye above
from the service provided by the layer below. In the communication subnet, the
data link layer DL should insulate the client layer NL [rom the service provided
by the physical layer:
ENL N Ep[, = {]
EnxcN Epr
oL Epg

1

Abi

Ape

The data link and physical layers communicate across an interface 4 pg.

Each layer is associated with a service specification and a fotal apecification.
The first describes the service provided to the layer above, while the second de-
scribes the internal activity necessary to provide such a service. We use §; and
T to denote the service and total specifications of layer L, respectively. If L’ is
the layer below L, then the conjunction of Tp, and S, must be enough toensure
that the service 5 is provided:

(ToASy )\ H = 8.

The use of the | operator in the ahove implication corresponds to the assumption
that the events from H; are to he concealed. We require also that Sp is H -
independent: any service specificalion must be independent of hidden events.

Returning to the communication subnet, a data link implementation will sat-
isfy a total specification Tpr. The service to the client layer, Spz, should be a
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consequence of Lhis specification, given that the physical layer provides a service
Spr, to the data link:

(SPL A TDL) \ Hpr = Spg
Tee W Hee = Sk

The service provided by the physical layer must be a consequence of its own internal
activily; Lhere is no layer beneath it.

Implementation

A protocol hierarchy may be implemented as a parailel combiaation of node pro-
cesses, one for each node on the network. A node process will be the parallel
combination of layer processes, one for each layer in the protocol:

PROTOCOL = || NODE i € NODE
NODE; = || LAYER:; jeLAYER

where I; is the set of possible events at node 1, and I, ; is the set of possible events
on layer j at node i. The disjoint nature of the event sets allow us to rewrite the
protoco] as a combination of layers:

PROTOCOL = || LAYER; je LAYER
LAYER, = ||| LAYER, ieNODE (iz1)
LAYER, =

||, LAYER., ieNODE
{9

The lowest layer of the protocol has access to a physical communication medium;
all of the others have only virtual communication, corresponding to an interleaved
parallel combination.

The cormmunication subnet is implemented as follows:

ETHERNET = DATALINK All PHYSICAL
PL

DATALINE ll] pL i € NODE

PHYSICAL

PL, i€ NODE

I

1

s,

The data link layer is an interleaving combination of node processes; any synchro-
nisation is hy virtve of the service provided by the physical layer. The processes in
the physical layer must agree upon certain events, corresponding to the presence
of signals on the broadcast medium.
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An implementation of a protoco! hierarchy may be judged correct if
PROTOCOL\H sat Si(s,®)

where 5y is the service provided by the top layer, and H is the set of all internal
events. If the protocol is implemented as a parallel combination of layers

PROTOCOL = ({L; ,.",, L,)JIJ L.)JI‘...

then by the disjoint nature of our event sets and interfaces we have that

PROTOCOL = (((LG\HQ)JID L\ H,y JI Ls) \ Hy Ali

where H is the union of the hidden event sets H,.
Applying the inference rules of chapter 5, it is sufficient to show that each layer

7 satisfies the corresponding total specification, and that an adequate service is
provided at each stage:

Sils | E;, %)

Tj+f(5 LEJ'H'RHJ)
R{A; =(R;UR )L 4
R\ A, = (B, NR0)\ 4

= SJ+! (51 N) \ H)+S

The total specification of layer j + 1, together with the service provided layer j,
must be enough te provide the service 5;,;, given that the events from set H;,,
are to be hidden from the environment. The instantiation of Lrace and refusal
sets in the left-hand side of the predicate comes from the inference rnle for the
communicating parallel operator.

To establish that our example prolocol is correct, we must show that

DL sat TDL(S,R)
PL sat TPL(S,N)

See(s | Zpr, Rp)
Tpr(s | Epr.Rp)
R|App = (RpURp) | ApL
R\ Ap, = (RpNRp)\ Apg

Tee{s,X) = Spi(s,R)\ Hee

= Spi(s,R) Y\ Hpr

There are no layers bencath the physical layer; the service specification 5p; must
be a consequence of the tolal specification Tpr.
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7.2 The Data Link Service

The data link layer accepts puckets of data from the client layer al each node. It
then attempts to transmit this data to all of the other nodes, via the hroadcast
medium of the physical layer. Each packet of data is encapsulated in a frame
before iransmission, and transmitted bit by bit to the physical layer. We assume
that collisions are the only source of data corruption; if the data link succeeds in
transmitting the whole frame, then the data link component of any receiving node
will be able to pass the data to its client.

If the data link is interrupted by a collision during the transmission of a frame,
it will back off and attempt to send the entire frame again. If sixteen consecutive
transmissions are interrupted, the frame is discarded and the data link informs
the client layer of its failure. Successful transmissions are also reported by the
transmitter. Qur assumption that collisions are the only scutce of corruption
means that there is no need for error reporting at the receiver; collision-darnaged
frame fragments are simply discarded.

The data link is always ready to receive data from the physical layer, decap-
sulating whole frames and passing them to tbe client layer whenever the packet is
addressed to the current node. The data link does not store packets: any huffering
of data ia the responsibility of the client layer. As a result, there is a limit on
tbe time between the successful transmission of a frame and its delivery to the
client layer at the destination node. There are also upper limits upon the time
speni waiting to start a transmission, and the time spent transmitting. These are
determined by the time taken Lo transmit one bit and the cable propagation delay,
both parameters of the system.

Abstraction

We must establish which of the observahle events in a possible history of the system
are of interest. Our service specification will be expressed as a constraint on the
occwrence and availability of these events. The data link layer is an interleaving
of data link processes, one for each node on the network. The set of nodes in the
network and the datatype of packets are parameters of the system.

i € NODE nodes in the network
p € PRT data packets
r € REP == succ)fail

The datatype of reports has two elements, representing success and f{ailure.
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The interface between the data link layer and the client layer at node i will
consist of three channels:

iin irep f.out CLIENT

DATA LINK

Figure 7.2: the service provided by the data link layer

Packets of data are received from the client layer at node { along chapnel i.in,
and successful transtnissiou is reported on channel i.rep. Valid frames received
from the physical Jayer at node i will be decapsulated and passed as packets 1o
the client layer, along channel .out.

Formal Specification

The service specification of the data link will consist of constraints upen the be-
haviour at a single node—local requirements—and constraints upon the behaviour
of the entire layer—network requirements. Each class of constraint will include
both safety and liveness conditions. This classification is largely for the conve-
nience of the reader; in section 7.3, we will employ a more systematic approach.

The alphabet of the tuterface between the data link and client layers, across
the whole network, is given by

Apr & {i.in.p,t.rep.riiout.p|i: NODE ;r: REP;p: PKT}
The following subsets of Apy will be useful in our service specification:

IN; = (sinp|p: PKT}
REP, {i.rep.r | r : REF}
OUT; {i.out.pip: PKT}

b

These denote the set of all possible input events at node %, the set of possible
reports at node 1, and the set of possible output events at node i, respectively.

The service provided by the data link layer to the client is parametrised by the
Tollowing time constants:

Lin  maximum delay between report and readiness for input
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tp maximum delay between input and availability of report

t,a client layer maximum response time for output

t., maximum delay in prepating a [rame for transmission

1., length of the contention interval

tnae maximnm delivery delay for a successful transmission
The length of the contention interval, ¢,,4, is an upper bound on the time taken to
acquirethe broadcast medium: if a node i transmits for time {,,, without detecting

a collision, then we can be sure that the other nodes will wait for ¢ to finish before
attempting to fransmit.

We will assume the existence of a function dest, which returns the destination
of a packet or frame, This will be a single node, although we could model broadcast
packels by making the result of des! a set of nodes.

Local Conditions

We wish to ensnre that the data link layer at each node alternates between accept-
ing packets and reporting on their transmission. We can capture this requirement
a3 a simple specification on the traces of the system, by counting the occurrences
of events from the sets IN; and EP;:

D81 = V¥ie[count{N: = count REF; + I}V (count [N; = count REP;)
There must be an inpnt before each report, and there can be no more than one
report following each input.

If ihe data link Jayer at node 7 accepts a packet at time ¢, it should be prepared

to report the success or lailure of its transmission within time 1,,,.

DS2 = ¥ide N at ! = irep.suce from (I, + t,.p)
v
i.rep.fail from (4,1 + 4,,,)

We also reqnire that the data link should be ready for input, unless it is cutrently
attempting to transmit a packet or waiting for a report to be collected.

I

Ds3 Vi te IN from 0 A (REP;at ! = IN; frtom (2, t 4 tja))

At each node i, the data link is willing initially lo accept any valid packet on
channel 1.7n. Subsequently, the data link becornes ready for a new packet on this
channel within time £, of any report on channel i.rep.
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Network Condttions

If a success is reported at node 1, then the last packet inpul at  will be safely
delivered to its destination.

DS = Vi hit'e
irep.succat b A

dest(p) =] A
last IN; during [8,¢) = (¥, i.in.p)

= j.oul.p from (¢, 1 + tmus)

If the value succ is passed to the client layer at node 7, and the last packetinput at
that node was p at time {’, with destination j, then that packet is made available

for output at node j within Lime fp.;.

Without a probabilistic argument, we can guarentee a successful transmission
only when no other node is entrusted with a packet for the length of the contention
interval. If a packet is input al node i at time ¢, and no other node is entrusted
with a packet during the interval (¢ — {np, ¢ + toon + L), then that packet will be
delivered safely, and a success report will be available within time ¢,,,.

D85 = Vi,p,te

in.pati A
Yhkoks£i=—(IN at (t —lpyt + boon + L))

= i.rep.suce f[rom (1, ¢ + {ep)

The bonnds of the time interval ensure that all previous packets have been dealit
with, and that no other frames are ready unlil the period of contention is over.

Environmental Assumptions

The data link cannot provide the service specified above without the cooperation
of the client layer, in the following respect. At each node, the client layer is
responsible for the buffering of output packets; if the data link offers a packet to
the client layer on channel i.oui, the client will accept it within time #,.,.

To express this environmental assumption, we define the following projection

mapping on timed failures:

response 4 (s, %) =
inf{t (VI',Jo [ C[0,end(s,W))A (el =>ATRT 'Y= length(f) <t}
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This function yields the least time ¢ such that, il J is an interval contained in
[0, end(s,®)) and there is no time ¢’ dnring J at which the whole of 4 is offered
by the environment, then J must be shorter than . Observe that

response 4 < t (s,%) =
VielC [0, end{s, W)y Alength(NN 2= cfe ACRTY

If the response time is less than ¢, then the whole of 4 must be offered by the
environment at least once during any interval of length #.

Our assumption ahont the client layer may be expressed as [ollows:
FA 2 Vi eresponse QUT; < t,u

We assume that the data link at node i never has to wail Jonger than {,, for an
offer of output to be accepted. Onr specification of the data link service is

Spr = EA = DSt ADS2ADS3ADS{NDS5

This is not a complete specification, by any means. We have shown that certain
impertant aspects of the data link service may be rendered as timed failures spec-
ifications. In the following sections, we will see how the dala link and physical
laversinteract to provide this service.

7.3 The Data Link Specification

The data link layer accepts packets of data from the client layer, and adds framing
information. If the physical layer signals that the broadcast medium is clear, then
the data link begins transmission. If the physical layer signals a collision, then the
transmission is interrnpted as soon as possible. In this case, another attempt is
made after a random period of time has elapsed. If sixteen attempts have been
made to transmit the same frame, the data link signals that the transmission has
failed, and awaits a new packet, If no collision occnrs during the transmission of
a frame, then the data link signals a success.

Reception is less complicated. The data link receives bits of data from the
physical layer, and stores them until the broadcast medium falls silent. When this
occurs, the data stored is tested to see whether it corresponds to a valid frame
intended for the enrrent node. If this is so, then the data is stripped of its framing
information and passed to the client layer. If not, then the data is discarded. In
either case, the data link shonld be ready to receive new data before the inter-frame
spacing time has elapsed.
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Abstraction

The data link layer at node i accepts data packets along channel i.in, and passes
the data te the physical layer along channel t.put as a stream of bits. Data is
collected from the physical layer at node i aloug channel ¢.get, and passed to the
¢lient layer along channel i.out. Reports are made available to the client layer on

chanuel i.rep.

110 irep i.oul CLIENT

DATA LINK

DATA LINK

1. put L.Cs icd i.get PHYSICAL

Figure 7.3: the two interfaces of the data link layer.

The physical layer is ready to synchronise upon the event i.cs whenever the
broadcast medium is clear at node i. Similarly, whenever a collision is detected
at node i, the physical layer will make the event i.cd available to the data link.
If this event is observed, then the data link has been informed that a collision is
takiug place. The alphabet of the data link layer is thus

Epr & {i.in.p,irep.r,iouvl.p|i: NODE;p: PKT ;r: REP}
U
{i.put.b,i.get.b, i.cs,i.cd)i: NODE;b: BIT}

where the datatype of bits is given by
BIT == 0|1
Any other events considered during implementation must be hidden hefore the

data link is combined with the physical and client layers. Such events will not
form a part of the data link specification.
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Formal Specification

The total specification of the data link must be satisfiable by the data link layer
itself, without the cooperation of the pbysical layer. The data link layer has only
virtual communication between nodes, so our constraints must not require inter-
action between data link components at different nodes. All of our specifications
will correspond to local requirements.

The following subsets of Zpy, will be used in our specification:

IN, = {iin.p|p: PKT}
PUT; = {iput.b]b: BIT}
GET:; = {i.get.b|b:BIT}

These denote the set of possible inputs at node 1, the set of possible bit transmis-
sions at node 1, and the set of passible bit receplions at node 1, respectively.

We abhceviate a set of functions, cach of which returns the time of occurrence
of the most recent event from a particular set. If no event from that set has been
observed, they will return the value 0.

lastin;(1) = timeol last /; before !

lastcsi(t) = tlimeof last i.cs hefore ¢
lastcd,(t) = time of last i.cd before ¢
lastpufi(1) = time of last PUT; before t
lastget;(t) = timeof last GET; before ¢

and assume the existence of a function frame: PKT — seq BIT such that frame(p)
is the sequence of bits corresponding to packet p, together with the framing infor-
mation required for transmission.

The [ollowing abbreviations will also appcar in our specification:

i

lastpackel, (1) name of last {N; before ¢
lastframe;(t} = frame(lastpacket;(t))
lasttrans,(¢) = data i.put during (lasics;(t), 1)
altempts; (1) = counti.cs during {lastin;(t), t)
These correspond to: the lasl packet input at node i; the last frame prepared for

transmission at node 1; the sequence of bits transmitied since the last cs signal at
node i; the number of attempts made by node i o transmit the current frame.
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Our specification of the data link layer will be parametrised by a number of time
constants. The correct operation of the protocol will depend upon the relationships
between these aud the constanis defined in the previous section.

yuce maximum delay between a successful transmission
and tbe offer of a report

Yaut maximum delay between a failed transmission
and the offer of a report

Lytar minimum backoff delay — the slot fime is the scheduling
quantum for retransmission of a frame — §512ps

Lhack maximum backofl delay — 52§ms

toit time taken to trausmit one bit — [@0ns

- inter-frame spacing delay — 9.6 s

beec maximum delay betweeu reception of a valid frame

and the offer of an output

Each of these constants will be discussed in greater detail in section 7.5, where
we discuss the interaction between the data link and physical layers. The values
listed above are those given in the Ethernet specification document [Xerox 80].

Inputs

Qur first constraint has already been presented as part of the data link service
specification:

DT = DSt

This stated that, at any node, inputs and reports should occur in strict alternation.
The data link layer should be able to provide this part of the service without tbe
assistance of the physical layer. This is true of another of our local conditions,
which required that the inpul chaunel at any node is ready within time I, of a
report bemng collected.

Dr?2 = DS3

Reports

If a success is reported at node 4, then the last packet input at that node must
have been transmitted successfully.

DT3? = V¥i,feirep.suceat t = laslirans, () = lastframe;(t)
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A success may be reported only if the sequence of Lits transmitted since the last
i.cs event is equal to the last frame readied for transmission at i. Conversely, if
this packet has been successfully transmilted, a report should be made available:

DTy = Vit e PUT; at t A lasitrans{t) = lastframe;(1)
= i.rep.suce from (£, + Lyec)

Il a bit is passed along channcl 1.puf at time ¢ to complete the transmission of a
frame, then a success will be reported on channel i.rep within time &,y..

For a failure to be reported at node ¢, sixteen attempts must have been made
to transmit the current packet,

DT5 = Vi,teirepfailat t = attempts;(t) = 16

Conversely, if the sixteenth consecutive attempt to transmit the same packet is
interrupted, then the data link should report a failure:

DTé = Vi, teiedatil A atlempts,(t) = 16
= i.rep.fail from (i,f + ff,,.'])

If the sixteenth atternpt to transmit the current frame at node 1 is juterrupted by
the observation of a collision at time f, then the data link should offer a failure
report on channel i.rep within time fy,.

Carrier-Sense
If thedata link at node { requests the carrier-sense inlormation, then either
* 3 packel has been received since the last report at node 1, or

+ a Lransmission has been interrupted, the minimnm backoff period has ex-
pired, and fewer than sixteen attempts have been made to transmit the
current frame.

This requirement may be expressed as follows:

DT7T = Vi teicsatt= lasting(t) > lastpul;(1)
v
lasted;(1) < t — tuo: A altempls;(t) < I6

The event ¢.cs may be observed only if a packet has been input since the last bit
trapsmission, or lime &, has elapsed since the last collision was detected. Recall
that, in our inlerpretation of the protocol, carrier-sense information is requested
only as a prelude to bit transmission.
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Conversely, the data link at each node should be ready to synchronise upon
the s event within time i, of receiving a packet for transmission, and within time
1404 Of a transmission being interrupted.

DT8 = Vi, telNatt= icsfrom(t,i+1,)
A
f.ed at L A attempts, (1) < 16 = i.c5 from (£ + tator, b+ Liger )

Il a packet is input al node 1 at time ¢, the event i.2s should be made available by
time ¢ + ¢,,. Further, if a collision is observed at node i, and fewer than sixteen
attempts have been made to transmit the current frame, then i.ce will be made
available within time fi..

Collision Detection

For a collision to be observed at node i, that node must be currently transmitting.
We say Lhat a node i is transmittiug at { if a bil is broadcast at some time
during the interval ({ — 4, # + t,). This constraint is captured by the following
behavioural specification:

DT9 2 Vi, teicdatt= lasiput(t) >t — 2y

Canversely, the data link should be ready to observe a collision at any time during
frame transmission:

DT =2 Vi te PUT;att = i.ed from ¢ until t 4 24,

Transmission

The data link shonld not pause during a transmission. IT a bitl is transmitted by
node 1, then either ancther hit was sent exactly t;;; ago, or the signal i.cs was
ohserved exactly time ;,, ago. This constraint may be expressed as follows:

DT11 = Vi te PUT, at t = lasics;(1 — 2t} > lastedi{t — 24:)
A
PUT, at t — 4y, Vicsal § — Ly,

Note that the dala link should not continue the transmission if a collision has
occurred since the last cs event; we allow a shorl period of time (24;) for trans-
mission to cease. Further, we require that

DT12 = ¥Yi,t e lastiransi(t) € lasiframe;(1)

The sequence of data transmitted at node ¢ must be a prefix of the last packet
framed at node 1.
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The data link should be ready to transmii the first bit of a sequence time &y
after observing the cs event, ard the subsequent bits at intervals of #,;,, providing
that no collision is observed.

DT13 = Yiteicsatt=3beiputbfrom?+ lin
A
(PUTiat t A
lastesi(1) > lastedi(t) A
lasttrans;(t) # lastframe;(t)) = 36 o t.put.b from ¢ + &,

The dala link may stop transmitting as soon as a collision is observed, or when
the transmission is complete.

Reception

The dala link should be ready to receive data within one bit time of the last bit
arriving, unless two bit times have expired without a signal. If two bit times have
elapsed since the last get event, then the data link receiver does not need to be
ready until time t;4; has passed.

DT14 = VYi,te GET, at t = GET, from (¢, + ;) until t + 2t
A
GET; from (¢t 4 20, b + Ling)

The data link becomes ready for a bit on chaunel i.gef within time 4, of the last
bit being received at {. The offer of GET, may be withdrawn after two bit times
haveelapsed, but must be renewed before time 4., has elapsed; the data link must
be ready before the next frame arrives.

Output

For apacket to be output at a node, it must have been received as an intact frame
with the correct address. Valid frames will be preceded by an inter-frame space
of duration #,,y, and a transmission has ceased once two bit times have elapsed
since the last ge! event. With these assumptions, we may identify the last frame
fragment received by node i.

lastrec;(t) = data i.gel during [lastspace(t), laslgap;(?)]
where fastspace,(1) is the endpoint of the last inter-frame space at node i:

lnstspace(1) = maz{t' | <t A~ (GET, st (' — by, ")) A GET; at 1’}
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and lastgap;(t) denotes the beginning of the last gap of length > 244y observed at
that node before time {.

lastgap, (1) = maz{t' |’ < 1= A - (GET, at (¥, ¢'+ 24;,)) A GET, at ¢'}

This marks the end of the last contiguous bit sequence received at node i. Observe
that both lastspace; and laslgap, are undefined if no data has arrived at the node
1. We may complete the definitions by setting both to @ in this case, assuming
that predicate validframe is defined upon the empty trace of data values.

If we output a packet to the client layer, then we have received a stream of data
on tbe get channel that corresponds to a valid frame with the carrect address.

DT15 = Vil,peioutpatt =3t fei—tu<t' <t A
lastreci(t') = f A
validframe(f) A
address{f) =1 A
unframe(f) = p

I a packet is output at time ¢, then the last bit of the corresponding frame rmust
have arrived at some time during the interval (¢ — 24, ). The data link layer
should not buffer frames or packets.

The data link should be ready to cutput a valid frame within time t,,. of the
last bit being received:

DTI16 = Yi, b t' f,p e {lastrec;(t) = A
validframe(f) A
unframe(f) =p A
dest(p) =1t A
lastgap,{t} = 1")
= t.out.p from (I, 2" + &) until &' + by

Note that we are assuming the existence of a suitable function for testing the
validity of a frame.

We may now present the tolal specification of the data link layer. With no
environmental assumptions to consider, it is simply the conjunction of the require-
menta specified above:

TDL = /\ DTR

n:l. i
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7.4 The Physical Service

The physical layer provides a means of communication between distinct data link
processes. The data link fayer at a node may pass bits to the physical layer at
at a rate of 10 megabits per second; the physical layer at that node will place a
corresponding signal upon the broadcast medium, transmitting the data to the
other nodes of the network. Signals received without interference are decoded and
passed io the data link layer.

The physical layer also provides information about the state of the broadcast
medium. A carrier-sense signal allows the data link layer to determine whether or
not there is activity on the broadcast medium at the curreut node. Further,if a
node { is transmitting bit signals, and interference is detected upon the broadcast
channel, the physical layer will report that a collision is taking place.

Abstraction

The physical layer accepts bits from the data link layer at node ¢ along channel
t.put. Bit signals received from other nodes are passed Lo the data link along
channel f.get. Il a collision is occurring at node i, then the physical layer will
make the event ¢ cd available to the data link.

DATA LINK

ipul i.cs tcd i.get PHYSICAL

Figure 7.4: the service provided by the physical layer

The presence of a signal upon the broadcast medium at node ¢ will be represented
by the unavailability of the event i.cs. This choice of abstraction is compatible
with our represeutation of the data link layer; we wish to synchronise with the
physical layer when there is no activity upon the broadcast medium, as a prelude
to data transmission.

The alphabet of the data link—phystcal interface is given by

Apr = {iput.b,ics i.cd,iget.b|i: NODE ;b4 : BIT}
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Formal Specification

We present a formal description of the service provided by the physical layer, in
terms of the occurrence and availability of the events in the set Apr. To reason
about the availability of collision detect and carrier-sense signals, we must identify
the time at which the last signal arrived at a particular node. Recall that lustpul;(¢)
denotes the time of the last signal transmitted at node i. We define

lastsig;(1) = maz{lesiput, (1 — &;)+ &; | j : NODE}

where 1;; is the time taken for a signal to travel from node i to node § on the
broadcast medium. With this definition, lastsig;(¢) is the arrival time of the last
signal at node i before time f.

Transmission

The medium should be capable of receiving bits as fast as the data link layer can
transmit them:

PSi = YitePUT; from @

A
PUT; at t = PUT; from (1,1 + ty;)

At each node 1, the physical layer is prepared initially to accept a bil signal.
Further, if a bit is accepted at time {, then the physical layer must be ready for
another before time ¢ 4 foy.

Carrier-Sense

We intend that the physical and data link layers should synchronise upon the event
i.ca only when the broadcast medium is silent at node ¢. The physical layer may
take up to two bif times to respond to Lhe presence of signals on the broadcast
mediurm; if a synchronisation occurs, then the broadeast medium must have been
silent less than two bit times ago.

PS2 = Yiteicsatt=3t'et'>t— 2,
A
lastsig;(1') < t' — 2ty

If an i.¢s synchronisation ocenrs at time ¢, then there must be a time ¢/ > | — 24,
snch that the last signal before ¢/ arrived before ¢ — 2#;,.

The physical layer should make the event i.cs available within two hit times
of activity ceasing on the broadcast medium at node ¢. This offer should remain
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open at least until activity resumes.

P53 = Vi, t'elastsig (1) ="' Al <1 — 20
= i.csfrom (¢, ¢ + 24, ) until ¢

If the last signal to arrive at node { before time { arrives at time ¢, then event
t.cs should be made available before time ¢! + 2f;, and remain available at least
until time 1.

Collision Detection

A collision should be reported al node { only if a signal arrives from another node
during a transmission.

PS{ & Viteicdatt= lasipuli(t) >t — Bty
A
lastsigi(£) > { — Bl

If 2 collision is reported at time ¢, then the interval ({ — 2i4,,1) must contain a
transmission, and the arrival of a signal from another node. Conversely, if a signal
arrives({rom another node during transmission, then the physical layer should make
i.cd available within two bit times.

PS5 = Vi, te(lastput;(t) >t — 8, A lastsigi(i) > 1 — b))
= i.cd from (lestedi(?), L + 26} mntil £ + Ity

If node i has transmitted a data bit Jess than time {y; ago, and another node j
transmitled approximately time ¢, ago, then i.cd should be offered to the data
link. This signal may alrrady be available, hence the lower bound of lasted:{¢).
Unless the collision continues, the offer may be withdrawn after one additional bit
time.

Reception

In our idealised deseription of the physical layer, no bit should be received nnless
it has previousiy been transmitted at the appropriate time.

PS6 = Viteigetbatt= Fjejputbatt—§

For data to be received without corruption, the receiving node must synchronise
with the incoming sequence of bits. To facilitate this synchronisation, nedes ob-
serving the protocol described in [Xerox 80] mnst transmit a fixed bit sequence as
a preamble to each frame. This is a responsibility of the physical layer, and will
not form part of our service specification.
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The corresponding liveness condition is given by:

PS7T = Vijteiputbati—t, A
Vi, Ve(k#i A PUT at ¥ A et —t,t)
= V22 A >t
= j.gel.b from ¢ until t + @. 714,

The reception of a bit signal b at destination node j is guaranteed if any trans-
mission that occnrs during its journey takes place

* at least two bit Limes after b was transmitied
= at a node further away from j than the sender ¢

Under these conditions, no signal can interfere with the reception of b. Note that
we have assumed that the broadcast medium is reliahle, and that signals propagale
at a constant rate.

7.5 Combination

We are obliged to demonstrate that the service provided hy the data link layer iz a
consegnence of that layer’s total specification, together with the service provided
by the physical layer, nnder the assumption that synchronisations from Lhe set
Hp,, are concealed from the client layer. Our proof requirement is given by:

Spr(s | Bpg, Bp)
Tpi(s | Zpu, ®p)
R Ape = (Rp URp) | 4pr
B Apr = (Np N Mp)\ Ape

= Spi(s,¥) Y Hopr

It is sufficient to shaw that this result holds for each conjunct of the service spec-
ification Spr; we will provide a brief justification in each case.

Each specification is given in terms of functions of timed failures, e.g. ‘count’,
‘from’, and ‘response’. In these specifications, the connectives are lified operators,
whose actions on funclions are defined by extension:

(f o g] (S»N) = f{S!R) op g(saﬁ)

where op is the lifted form of connective ep. The interpretation of connectives
such as +, =, and A is obvious from the context; we have written op; as op.
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Local Safety

Recall the first component of the data link service specification:

DSt (s,®) = (Vi e count N; = count REF; + |
A
count IN; = count REP; ) (s, N)

We are given that {IN, U REP,) € L p;, and that

DTi [s | Zp,Rp) = (Vi e count /N; = count REP; + {
v
count I¥, = count REP; } (s | Zpr.Rn)

It is easy to see that, for any s and R,
ACH = countd(s,R)=countA(s]|B,N)
and hence that
DT{ (s | Epp,Rp) = DSI (s,})
Input

The second requiremeut in the data link specification was

D52 = Vi, te [N ati=irepsuccirom(t, i+ t,.,)
v
i.rep. faif from (1,1 + trep)

In the total specification of the data link layer, we insiated that no failure may he
reported without sixieen attempts at transmission. As a result, the provision of
this part of the data link service relies upon the following lemma:

Lemma 7.1 At any particular node i, the data link never has to wait more than
Lion, for a carrier-sense synchronisation i.cs, where t,,, is the duration of the
longest valid frame. This is /.2ms for the Ethernet protocol. Q

Proof Suppose that the event i.cs is not available at time t. From P53 we may
deduce that lastsig,(¢) > § — 24, and hence that there is at least one other node
7 on the network already transmitting. There are two possibilities to consider:

¢« node 7 transmits without contention for time #.,,, and acquires the broadcast
channel, or

+ node j is interrupted by another node k
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If node j transmits a bit once every 4; during an interval length L. without
interruption, then the ¢s synchronisalion must be unavailable at every node on
the netwotk. This is hecause the length of the contention interval is greater than
the round-trip signal propagatiou time for the network:

low > 2 maz{l; 1,7 : NODE}

Suppose that node j has been transmitting for ¢, at time t, with no collisions
observed at j thus far, Then by P55 we know that lastsig; (1) < ! —t.en, and hence
that

Vi o lasipute(t — be) < b — i — Lo
Recall that the data link layer at each node must satisfy the requirement
PUTatt = PUT, at t— ty, V k.cs at ¢ — 1,

and observe that it is not possible for uode & to begin transmission aller {—#;, as
k.es will not be available until time &; afler j ceases transmission, by P52. Hence
j will not be interrupted.

Iu this case, DT13 guarantees that node j will continue transmission until it
has exhausted the current frame. [{ must then wait at least t;y, before transmitting
another hit, because of requirement DT71. If 7 transmits the last bit of the current
frame at time {, then for each node & on the network we may assume that

= PUT: at (4t — Lorty § + b + fint)

where tu, is the length of the shortest valid transmission; this is 57.6us in the
Ethernet protocol. From this we infer that

VE o lostputi(t + b + tin) < U+ Lz — Lonone
It is an obvious property of the network that
Iy~ €
and from the definition of lastpul we may deduce that
Ykt te,ts o t3<ty <4 Alastpubi (4} <15 = lastputy(ts) < t;
Recalling the definition of lastsig,, we observe

lastsig;(t + 8y, + tin) = maz{lesipule{t + &, + tine — ta) + by | & : NODE}
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If we assume that fuon > leon, remembering that ... is more than twice ¢ for
any i and 7, then we may combine these results to yield

lastsigi(t + L + bine) S+ Uy

Given that t;., > 24, requirement PS§ guarantees that the carrier-sense signal
is made available at node i before ¢ + {,; + 24;. Our assumption thatl such events
are hidden from the client layer means that this signal will occur.

Now consider the other possibility: that 1 is interrupted within .., of starting
to transmit. In this case, no node will acquire the broadcast channel during the
current time slot, and the event es will be offered at node ¢ within time 2, the
length of the contention interval. If j is to be interrupted, then at least one other
node k must begin transmission before signals from j reach it, by DTII and PS2.
Suppase that j and k start to transmit at times ¢, and 1;, respectively. (bserve
that these nodes cause signals to arrive at ¢ during the interval

[min{t,- + .‘.,J, b+ t,g}, maz{h + t,} + t.',',t_, + i+ Iu}]

Nodej is interrupted by k, and thus ceases transmission, at time # + £, and vice
versa. This follows from requirements P55, DT1J and DT11.

If the medium at i does not fal] silent at or before the end of this interval,
then another node I must have started to transmit before signals from j or k could
reachit. Signals from this node will cease to arrive at ¢ before time

mex{l + &+ b, b + bu+ ta}

A briel sketch of the situatior should reassure the reader that I must be further
from node ¢ than j or k. An inductive argument will confirm that activity on
the medium at node i must cease within time ,,,, nnder the assumption that the
network is finite, and L, > £ maz{t; | i,7 : NODE}. a

Having justified the lemma, we may deduce that, if the data link at node 1 is
entrusted with a packet for transmission at time #, then the cs synchronisation is
available at time ¢ + ¢,,, or will be offered for al least two bit times before time
Uiy + Ligng.

Vit o IN;at b= 3 e bty < 1" < L+ Loy + bomg
A
i.cs from (lastes;(t + 1,,), t') untid ¢ + 24;

Recall that 1., is the maximum delay between the input of a packet and readiness
for transmission, from DT#.
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Similarly, if a transmission 1s interrupted and rescheduled for time ¢, then i.¢s
will occur within time {1, allowing anather attempt to begin after the inter-frame
spacing . During the proof of the previous lemma, we established that if 2 node
has been transmitting for Lime ¢,,, then it will not be interrupted. The worst case
delay for status reporting may be calculated as follows:

L., preparing [rame for transmission
16 x i,  waiting [or the channel to clear
16 ¥ inter-frame spacing

15 % tim almost succeeding
15 x e  backing off
Yong  Successful transmission
twee  delay in reporting success to data link

< b i total, il we are to provide service Spr
The response time may be reduced by increasing the backoff delay with each

collision. The protocol described in [Xerox 80] insists that a node cannot delay for
time fpac¢ Unless the corrent framme has been interrupted at least nine times.

Reports

The third component of the data link service specification is more easily estab-
lished. Recall that this insisted that

Vi, & o IN;fromd A REP, at t = IN; from ({,¢ + L)

At any node 1, the data link layer must iuitially be ready to accepl any packet on
channel 1.in. Further, should a report be accepted at time ¢, the data link will be
ready to accept another packet before time ¢ + ¢;,.

Recall that the total specification of the data link ayer included precisely the
same requirement:

DT2 = Vi, teIN [rom 0 A REP; at t = IN; from (¢, 1 + 1;)

We must show that, if this requirement is true of the data link layer, then it must
remain true when the data link is placed in parallel combination with the physical
layer. We may assume that

DT2 (s | Sos,Rp)
INUREP;, C Zps
R\ Apr = (RpNRp)\ Apg



144 Specification and Proof in Real-time Systems

From the alphabet constraints, we may infer that

Yit,aea € INNUREP, = (a go[¥pTi) = ago(RT¢)
A
{(t,a))ins & {({,a))in(s | Egr))

I an event from IN; U REP; is oftered by the data link layer, then it must be
offered by the parallel combinatien. Further, the data link layer will perform an
event {rom this set whenever the parallel combination does so. From the definitions
of ‘from’ and ‘at’ given in chapter 6, we may infer that, for any time ¢

IN; from t (s | Zp1. Rp) = IN; from ¢ (s, ]}
REP;al t (s \ Sp,¥p) = REP;att(s,R)

The result follows easily from the laws of the predicate calculus.

It will not always be necessary to expand the definitions of functions such as
‘at’ and ‘from’. The timed failures praof system may be used to derive rules for
reasoning about specifications expressed using these functions. For example, the
proof of D58 could have made use of the following rule:

F sat e {rom ¢

Pl @ sat e from ¢
A

[egol(Q), A=0o(P)No(Q)]

A uselul Jibrary of derived inference rules like this could be built up by pursuing
further case studies in specification with Timed CSP.

Network Considerations

I a success is reported at node i, then the last packet input at i will he safely
delivered to its destination.
DS§ = Vi jtte

t.rep.succat A

dest(pl=37 A

last IN; during [0,¢) = ({,i.in.p)
= j.oul.p from (2, ¢ + Lpas )

We establish that the parallel combination of the data link and physical layers
meets this requirement with the following argument.
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For a success to be reported at node 1, the last frame input at i must have
been transmitted to the physical layer without interruption. Recall that

DTE = Vi,tei.rep.succat ! = lastirans;(l) = lastframe,(t)

From requirernent PS5, we know that any other transmissions would cause the
event i.cd to be offered to the data link layer. However, requirement DTI# insists
that the data link layer be ready to accept i.ed whenever i is transmilling, and
DT11 insists that transmission should cease if i.cd is observed.

We may conclude that no other uode k transmits before t; — 1;;, where t, is
the time at which the last bit of the frame was transmitted:

t; = last PUT; belore ¢

Assuming that the minimum frame length i, is greater than the length of the
contention interval {.,,, we may infer that node ¢ acquired the hroadcast medium
during the transmission of the current frame. We may apply the argument used in
the proof of lesmina 7.1 to establish that no other node k can begin transmission
before time #; + i + lip. Thus for any bit b of the [rame in question,

iput.batt = VhVe(k#i A PUTvat ' A Felt—14,,t))
="' L—tittime A Lp> iy

From component PS7 of the physical layer service specification, we know that any
bit transmitted by node i 1s received by any node j, providing that the above
conditiou is met:

P§7T = VYij,teiputbatt—t A
Vit e (ki A PUT att A '€ [t —t;,1])
> 2 f—‘,j-l-gfm A t,,|> i,',

= j.get.b from t until § + 0.1y,

We may couclude that each bit of the frame was received by the physical layer at
node 1, and passed to the data link layer along channel ;.get.

We now appeal to the output part of the data liuk specification. At timet; + 1,
the last bit of the frame arrived at node 5. We must establish that

lastrec,(t; + Flyu + t;) = lastiransi(,)

The last frame fragment received at node 7 up to and including time £; +¢;, should
be identical to the last frame fragment transmitted at {. Recall that

lastrec,(t) = data i.get during [lastspace,(t), lastgap,(t}]
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where lastspace,(t) is the endpoint of the last inter-{frame space at node i:
lastspace;(t) = max{t' |t' < { A~ (GET; at (' — tini, 1)) A GET; at t')

and lastgap; (1) denotes the beginning of the last gap of length > 24, ohserved at
that node before time ¢.

lastgap,(t) = maz{t' | 1" <t—2h, A - (GET; at (', '+ 2hi)) A GET; at t'}

From our observations above, we know that no otber node k transmits during the
inlerval (o — &, & + tu + line], where g is the time at which node i began to
{ransmit the frame in question:

lp = tbing + timeof last 1.cs before 1,

If another node k had transmitted after 1, — i, then a collision would have heen
observed at i. From the Lounds of this interval, and requirements PS6 and PS7,
we may infer that
lastgap, (¢, +4; + Stt) = L+ &
lastspuceJ(h + t"J + 3‘5,’,) = I+ t.'J
providing that t;; > 3. We may then prove, by induction upon the length of
the bit sequence transmitted at node i from time {y onwards, that
lastrec;(t) + S + &) = lasitrans{i;)
lastframei{i;)
[rame(lastpacket;(1;))

Il

It

The last contiguous bit sequence received at node 7 before time £, + &y, + Hyis is a
valid frame containing the last packet input at node i before time ¢;.

We appeal to property D16 of the data link layer:

Vit [ pe(lastree(t) = f A
validframe(f) A
unframe(f)=p A
dest{(p) =3 A
lasigap, (1) = ')
= j.out.p from (t/,t' + t...) until ¥ + &y

We know that dest(p) = j, and we may assume that the function frame always
yields valid frames for transmission. Hence we have that

Joout.pirom (& + ly b + by + £) until ¢ + £ + B
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However, our data lick service requirement states that this output should re-
rain available until it occurs. Fortunately, this service is provided subject to an
environmental assumnption:

EA = Visresponse QUT; < four
If we assume that
fowt < bint — Lree

tben this assumption allows us to infer that j.out.p is observed before time ¢; +
% + tine. This is because

+ we have shown that this event is avaifable until it occurs during the interval
[l.‘ + ti; =+ trcca tl + t:'j + tint]x Bnd

+ we may infer fron EA that the data link is seen to refuse j.oul.p at some
time during any interval of length > 1,,, corresponding to our knowledge
that the event is offered by the environment,

We may conclude that
Jooul.p from (4 + Ly, & + by + brec)

If a packet p input at time ¢ is to be successfully transmitted by node i, then the
successful attermpt at transmission may end no later than

t+ t.,  preparing frame for transmission
+ 16 x 1, waiting for the channel to clear
+ I6 %x {tym inter-frame spacing
4+ 15 x i, almost succeeding
+ 15 % 4 backing off
+ tong successful transmission of longest valid frame

This places an upper bound upon the valueof t;,. We conclude that this component
of the data link service is provided if

bnor 2 to + I’nfang + tree ¥ 13t + 1600 + 15t + mGI{t.'j ! %, N{]DE}

The maximum delay between input and the offer of output for a successful trans-
mission will be less than [, providing that {,... is greater than the valueol the
expression to the right.
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Success

The dala link at node i guaraniees to deliver a packet at time Z, providing that
no other rodes are entrusted with a packet during the interval

[t - trqn !’ + tcull + t:l]

The lower bound of this interval allows us to infer that no signals arrive at node §
during the packet transmission. We know that

Vi o k7= lastin () <t — by

In the proof of requiremeut DS2, we established that no node will ever wait for
longer than time t.,, for a chance to begin transmission. From requirement D77,
we knov that the latest time that a carrier-sense synchronisation may be observed
at eachnode k is given by

lastin. (1) + t,  preparing frame for transmission
+ 16 % lys, wailting for the channel to clear
+ 1§ x i, inter-frame spacing
+ 15 x t,, almostsucceeding
+ 15 % by backing off

From requiremnent D712, we know that the last bit sequence transmitted at node
k must be a subsequence of the last packet framed at that node:

Ykt o lasitrans (1) < lastframer(t)

From this we may infer that each node & must cease transmission before time ;,
where 1, is given by

L £ lasting(£) + ey + 158on + 16bing + 15bct + 1 Thiony

No more bits may be transmitted if the currenl frame is exhausted, or has been
interrupted sixteen times, by DT7, DT&, and DT1{. Assuming that ¢, exceeds
the lower bound placed upon it earlier, we may infer that

fasts:'_q.-(t + teon + tcl) < ¢

Appealing to the argument of lemma 7.1 yet again, we conclude that node { ac-
quires the broadcast medium and thus succeeds in transmitting the frame. The
lower bound upor the value of i, is enough to ensure that this success is reported
before Lime ¢ + trep-



7.6 Implementation 149

This completes our serni-formal proof that the parallel combination of the data
link and physical layers is enough lo satisfy the data link service specification,
under the following assumptions:

kot > leon
feon > 2 mnaz{f, |i,j: NODE}
by > loy + IS5t + 16tiag + I5tict + 1 Thiong + bunee
b > Sty
bowt < ting — frec
tmae > tes + 15tqn + 16tiny + I5tiacs + 1Thiony + bee + maz{t; | 1,7 : NODE)

Similar constraints are applied in the Ethernet specification document [Xerox 80).
For example, Appendix E of that document states that

It is important that data link controller implementations be able to
receive a frame that arrives immediately after another frame has been
transmitted or received. Here, “immediately” means 9.6pus, based on
the minimum inter-frame spacing provided as recovery time for the data
link. It is immportant that the data Iink controller be able to resume
reception within that time.

This particular requirement corresponds Lo the lollowing component of the data
link total specification:

DT1{ = Vi te GET;at 1= GET; [rom {t,t + t} until # + 2¢;,
A
GET; from (1 + Slyigy £ + ting)

If a bit signal is received at any node i, then the data link should offer to accept
another within time t,,. This offer may be withdrawn il no bit arrives within two
bit times, which will be the case if a valid frame has just arrived, providing that
the data link is ready to resume reception within time #;,,.

7.6 Implementation

The Xerox specification document [Xerox 80] makes no recommendation about
the implementation of the Ethernet protocol, stating that it may consist of any
combination of hardware, firmware, or software. However, a concurrent variant of
the language Pascal [Brinch Hansen 78] is used to describe the behaviour of the
data link layer. The resulting program is presented as a definitive statement of
the intended behaviour of the data link layer.
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The precision of our specification language means that we have no need of an
algorithmic description for specification purposes. However, such a description is
useful as a gnide to implementation, and as an aid to understanding the details of
the timed (ailures specification. Accordingly, we represent the data link layer as a
Timed CSP process, which must satisfy the data link total specification.

Structure

The data link layer at a single node will be implemented as a parallel combination
of four processes: two sending, and two receiving. The transmit data encapsulation
process inserts a packet of data into an appropriate data frame and hands it to the
transmit link manager. This process connects to the physical layer at the node,
receiving collision and carrier-sense signals, and sending bits for transmission.

The receiver processes complement this action: the receive link manager col-
lects bits from the physical layer, and passes complete frames to the data decap-
sulation process for validation. Valid frames intended for the current node are
stripped and passed to the client layer.

tn rep oul
----------------------------------------- interface
TDE RDD
down up
TLM RLM
------------------------------------------ interface

put cs cd

Figure 7.5: the internal structure of the data link layer.

The labelled arrows in figure 7.5 correspond to channels of communication between
the processes, while the two lines labelled ¢d and c¢s represent synchronisations
with the physical layer.
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Implementation

The data link layer is an interleaving parallel combination of data link processes,
one for each node in the network:

pL = ||| DL
o NODE

At each node, there are processes to receive and transmit data. There is no reason
for the two processes to synchrenise with each other in an ideal implernentation.

DL, = i:(TRANSMIT ||| RECEIVE)

We label the processes with the appropriate NODE identifier. The process de-
scriptions below are independent of the node identity.

Transmission

Data transmission is handled by two processes, connected by a single channel:

TRANSMIT = (TDE . | TLM)\ down
The data encapsulation process accepts a packet from the client layer, {tames it,
and passes the frame to the link management process:

TDE = in?m -4 down!frame(m) =, TDE

Once the link manager has accepted a frame for transmission, it waits for a signal
from that the medium is clear, and then passes the frame to the physical layer, bit
by bit. Inilially the process must listen for a frame on the appropriate channel;

TIM = down?f -5 HOLD;,

The ¢s eveut is hidden from the layers above, so it will occur as soon as both layers
are ready. Once cs has been observed, transmission may begin.

HOLD,, = cs2 (SEND, ¥ HANDLE; .} TLM

Recall that the data link must wait for time 1,5, the inter-frame spacing, belore
starting to transmit. The process HOLD;, holds a frame f until the c# syn-
chronisation occurs, and the subsequent transmission is performed by a process
SEND;. The second subscript to the holding pracess is used to record the number
of attemnpts made to transmit the current frame.
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The sending process transmits the bits of the frame at intervais of iy to the
physical layer, terminating successfully if it should succeed in transmitting the
entire frame.

I}
SENDy = replsucc —+ SKIP
SEND sendlz 24 SEND,
x »
Before terminating, the process informs the client layer that a successful transmis-
sion has occurred. If the sending process terminates without being interrupted, or
the handler terminates, then the trausmitter returns to its original state,

i

The transmission of a frame f may be interrupted at any time by the collision
detect signal. I this occurs during the n'* attempt to transmit the frame, then
control is passed to the process HANDLE; ..

BACKOFF, ; HOLD; .4, ifn < 16
rep'fail <55 SKIP

P

HANDLE,,,
HANDLEL;;

I»

If fewer than sixteen altempts have been made to transmit the current frame,
then the transmitter will wait for a certain period of time before making another
attempt to transmit the frame. 1f the sixteenth altempt is interrupted, then the
transmitter informs the client layer of its failure, and terminates.

According to our data link specification, Lthe BACKOFF, process may be im-
plemented by any delay between Lis and #ye.k- In [Xerox 80}, it is implemented by
a random delay process, terminating at time r+1,;,, afler being started, where time
r is taken from a uniform distribution of integers in the range I g r g 2mes{ron},
where 7 is the number of the current atiempt. This allows the data link to modify
its behaviour as the load upon the broadcast medium varies.

Reception

Data reception is handled by two process, also connected by a single channel:

RECEIVE = (RLM || RDD)\ up
)

The receive link manager accepls from the physical layer, and passes plausible
frame fragments to the data decapsulatiou process. A fragment is plausible if its
length exceeds 64 octets, the minimurm frame size. The data decapsulation passes
valid frames intended for the current node o the client layer along channel out.

The bit reception component of the link manager is prepared to accept bits
from the physical layer at intervais of {;. If some bits have been received and no
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bits arrive for two bit times, control transferred to a simple validation process by
a timeout operator:

RLM 2 rec?z 2% LISTEN,,

LISTEN, = (ree?z % LISTEN _ ) *" PASS,

(=}

The length of bit sequence s determines the behaviour of PASS,.
PASS, = if #(s) 2 512 then up!ls ~+ RLM else RLM

If the sequence is louger than 64 octets then it is passed to the decapsulation
process via channel up. Shorter sequcnces thould be discarded withoul further
consideration.

If a bit sequence is passed to the decapsulation process, then the address field
is matched against the address of the current node. We assume the existence of a
function address that rctums the appropriate information. If the bit sequence is
a frame intended for the current nodc, then it is stripped of framing information
and offered to the client layer.

RDD = up?f it address(f) = here
then outlunframe(f) 22, RDD
else ROD

We have assumed that all ervors are due Lo collisions, and our assumption that
tiwort > teow means that all collision-damaged frame fragments, which take less
than time ¢,,, Lo transmit, will be shorter than 64 octets. With this assumption,
no error checks are required during the decapsulation process.

By applying the inference rules of the timed failures proof system, we may
confirm that our implementation mcets the requirements of the data link total
specification, providing that

iy 4+l < t, ty < timy
e < byt b b < e
ty < tg < lport — tout
ts < Ln

If all the above constraints arc satisfied, then we have produced a satisfactory
implementation of the dala link layer.
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7.7 Discussion

The specification in this chapter is not a complete descriplion of the service pro-
vided by the Ethernet protocol. We have captured some of the most important
aspects of this service, and suggested a suitable implementation of the data link
companent of the protocol; this was sufficient to demonstrate the specification and
design qualities of our notation.

We can produce a more detailed study of the protocol without changing the
method of specification employed in this chapter.

* Wemay expand our descriplion of the data link service by adopting a more
systematic approach to the capture of requirements, as illustrated by the
service specification of the physical layer. For each event ¢ visible at the
current level of abstraction, we considered the conditions under which ¢ may
occur, and the circumstances in which it must be offered to the environment.
The resulting conjunction of safety and liveness constraints produced 2 more
detailed specification.

* We may address other aspects of the data link service by adding new events
to our intetface. For example, 1o include error detection at receiving nodes,
we might add a channel err to the datalink interface:

{i.erre |i: NODE;e: ERR} T Apg

where ERR is a datatype of error reports. Alternatively, we may choose to
consider the events on the channels in and ot in greater detail, specifying
the format of data and addressing informaticn in packets and frames,

The lack of a suitable model for CSP prevents us from addressing the probabilistic
aspecis of the Ethernet protocol within our formal specification. However, the
data link implementation and the physical service provide a basis for reasoning
aboul the performance of the protocol. For example, results such as lemma 7.1
could be used o estimate the probability of a successful frame transmission, given
suitable probability distributions for the length of packets, and the frequency at
which they are submitted for transmission.



Chapter 8

Signals

When describing the behaviour of a real-time process, we may wish to include
observable events that are not synchronisations., These signals may makeil easier
to describe and analyse certain aspects of behaviour, providing useful reference
points in a history of the system. For example, an andible bell might form part
of the nser interface to a telephone network, even though the bell may ring with-
out the cooperation of the user. This is incompatible with our existing view of
communication.

In some cases, suitable environmental assumptions—discussed in section 4,3—
will allow us Lo describe such behaviour within the existing Timed Failures model.
However, if we intend that these signals should be used to trigger other events
or behaviours, then we mnst extend our semantic model Lo include an element of
broadeast concurrency: some outpul events may occur without the cooperation of
the environment.

In our model, signal events will ocenr as soon as they become available, and
will propagate through parallel combination. A process may ignore any signal @
performed by another process, unless it is waiting to perform the corresponding
synchronisation a. If this is the case, then both & and a will occur. Of these, anly
the signal will be observed outside the paralle] combination; it makes no sense to
propagate a synchronisation.

We will define a denotational semantic model, representing each process as
a sel of possible behaviours. Each behaviour is represented by a triple (s}, ¢),
corresponding to the knowledge that the process may perform trace s while re-
fusing synchronisations in ®, if observed up until time {. The time component
1s included 1o simplify the semantic equations for concurrency. Two component
bebaviours may give rise to a behaviour of a parallel combination only If they
represent observations np until the same moment in time,
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8.1 The Timed Signals Model

‘We will represent signals as distinguished events in a extended alphabet, adopting
a hatiing convention to differentiate signals from synchronisations. If we use I to
denote the set of all signal events, ther the set of all events is given by
£ =2 tul

For each synchronisation event a in I, we may add a signal event @.

_We use TE to denote the set of all timed synchronisations and signals, and
TZ% to denote the set of all timed traces that may include signals:
TIME x £
{s €seq TE | (¢, e) precedes (I, ¢') ins = ¢t < V')

TE
TE,

b

1

Signal events may not be refused if offered, so there is no reason to include them
in timed refusal sets:

TINT = {[b,e)| 0 € b<e< oo}
RTOK = {IxA|IT€TINTAAcPL}
RSET = {|JC|C eF RTOK}

The set of possible refusal sets in the Timed Signals model is given by RSET, as
before. The set of possible observations in this model is given by TF, where

TF 2 TEI x RSET x TIME

Each possible behaviour is a triple, consisting of a timed trace from TE%, a timed
refusal set, and a time value.

We will give a new semantics to our {anguage of Timed CSP terms, mapping
each construct to an element of T5;, where

TS; = PTF

As before, we employ a domaiu of environments to record the values of term
variables, and define a semantic function for terms:

1

ERV = VAR TS;
Fs € TCSP— ENV - TS;
We write fs[P]p o denote the semantics of term P in an environment p. As in

the Timed Failures model, we omit the environment parameter when we give the
semantics of a closed term.



8.1 The Timed Signals Model 157

The Timed Signals mode! TM5 is defined to be those elements S of TS% which
satisfy a set of eight healthiness conditions, enshrined as axioms of the model:

1. (5,8, 2)e S =tz end(s,})

2. (B, 2)ESAY 2zt 35 wa(s)CEA(ST(S+ R IDES

3. ((.{}).0)eS

4. (7w, R 1) € 5 Aend(s) < V' < min{l, begin(w)} = (s, R [ ", ¥)€ 8
5 (,R)eSAsTw= (w,R)eES

6. (s,R,2)CS=3INWeRSETeRCNA(s, R, H)ESA
YU :TIME ;a:Ze (! StA(H,a) ¢ W)
= (st ES

7. Wt: TIME ¢ 3n(t) N e (s,R,1) € § = #(s) < n(t)

8. (R, )CSANERSETAN CR= (s, N 1) €S

The first axiom insists that no trace or refusal information is recorded after the
end of the current observation. The second states that any observation can be
extended inte the future; the only events that must be observed are signals. The
remaining six conditions are inherited from the underlying Timed Failures model,
modified slightly to reflect the possible presence of signal events in a process trace.

The third axiom allows us to infer that all processes have at least one possible
behaviour: the empty failure, observed until time ¢. The fourth axiom states that
any behavionr of § gives rise to another if truncated, while the fifth states that
the set of traces of a process should be closed under timed trace equivalence.

The sixth axiom is a finitary condilion upon refusal information. For any
observation (s, R,t), therc exists a maximal refusal set R such that any timed
synchronisation (!, a) not in ®' is a possible extension of s [ t". The seventh axiom
places a similar coudition upon traces, asserting the existence of an upper bound
n{t) npon the number of signals or synchronisations that may be observed before
time ¢ in any behaviour of 5. The remaining axiom states that if a process may
refuse a set ®, then it may refusc any subset of }.

For any § € TSz and t € TIME, we define

S(t) = {(a,N,)eS|t<gi)
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This yields the set of observations from § that end strictly before time {, and
suggests a distance metric on the space TS5

HS5.T) 2 inf{{2™"|S(t)=T(O}u{1})

In section A.3, we show that our model is a complete metric space under d.

Notation

We define a new alphabet operator for timed traces, to match the synchronisation
set operator defined in chapter 2.

G(s) = {aef|Fte{(t,d)ins)
As before, we overload the definition of this operator,
Py = {aef |30 10)¢€ Fs{P] «d € a(s)}
to retum the setl of signal events that may be performed by a process P.
We define an aperator syne, which may be applied to a trace or set of timed
events, For any s € TE; or AC T,
syne({))
sync({(t, 2))"s) (¢, a})"sync(s)
sync({{t, @))7s) {(t, a)) "sync(s)
sync(A) = {a€Ljac AVvicA4)

]

{

li»

1

This gperator returns the set of synchronisation events that are mentioned in the
set of trace, as synchronisations or signals.

The semantiss of parallel combination in the Timed Signals model will require
2 new subsequence relation between timed traces:

5y Css & Viae{(t,a))ins, = {{1,a))in s

We say that a trace s, is a subset of trace s, if and only if each timed event in 3,
is alw present in sp.
The failure subtraction operator may be applied to behaviours in this model:
(s B 8) 1 = (s=tR=¥{-—-t) [zl
({11}, &) otherwise

Subtracting time ¢ from a behaviour discards the part of the behaviour tbat lies
before time ; the remaining part is shifted backwards through time.



8.2 Sequential Processes 159

8.2 Sequential Processes

Atoms

As in tbe Timed Failures model, the divergeni process L is identified with the

deadlocked process STOP. Any trace of this process must be empty,
Fs[sTOPlp 2 {{s.R8)|s={) At 2 end(R))

and any refusals must be recorded before the observation ends.
The synchronising termination process SKIP is ready Lo perform a single in-
stance of the special event / at any time.

Fs[SKIP}p = {({,R 0|+ €o®) AL 2 end(R)}
U

(e MR |V (R T 1At > mazt, end(N))}

If no events have been ohserved, then / is available, and any refusals were recorded
before the end of the observation. Otherwise, v is observed at some time ¢ and
wag available beforeband.

We may wish to use a signal to indicate that the successful termination of a pro-
cess. Such an event would be propagated to the environment, causing termination
in any process that is waiting to synchronise upon v. We define

Fs[SKIP)p = {(0,{1L 0} U {((,2)), R, 8) |A 1 > end(R))

If no events have been observed, then we have watched only until time 0. If our
obsgervation extends beyond this time, then a termination signal will be chserved.
We also define two forms of delayed termination:

Fs{WAIT t]p = {(0.R, ) [V ERTEA U > end(R)}
U
(LR 1 2 0 AL 2 maz{t”, end(R)}
A ERT[LE)

If the process is to synchronise upon the termination event, then v is made avail-
able from time ¢ onwards. If the process is to signal terminaljon, then the termi-
nation signal will be observed at time {.

Fs[WAIT t]p = {({.R.1) | end(R) S ¥ € 1)
U
{({(1, )R e) | ¢ 2 maz{t, end(R))}

In either case, any event may be refused before time ¢,
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Prefix

The event prefix operator transfers control to a process following the observation
of an event. If this event is a synchronisation, then it should be continuously
available until it occurs:

Fs[o = Plp = {({1hR, 1) 1a go(R) A L2 end(R))
L

(5@ s, 0 t) | @ o] ) A
begin(s) 2t + 6 A
' > maz{t,end(s,R)} A
(s,%,6) = (t+6) € Fs [P)o)

If the event is a signal, then it should occur immediately.

Fsla—=Plp = {((:{},0))
U
{(¢0,8)7s5, R, 8) | ¢ 2 end(s,R) A
begin(s) > § A
(31H’t)_5EfS[P]P}

A delay of time § is associated with the transfer of control ta P.

Sequential Composition

In the sequential composition P ; @ control passes from P to ¢ as soon as P
offers to synchronise upon the termination event v, or sends a termination signal
/. Ineither case, there is no delay associated with the transfer of control, and the
termination event is concealed from the environment.

Fs[P:Q)r = {(s.R,0)| v gols) AT E5(s)
A (s, RU([0,0) x {v]),2) € Fs[P]p}

U
CLaf{(s™w, X, 1) |
VEo(sIAT (A (e, ) —t' € Fs[Q)pr
A
(™)) R T U0, ) x {v)), 1) € Fs[P]p
v

(™ IR P U ([0, x {v]), ¢) € Fs[P]p))

Any observation of this seqnential composition may be an observation of P in
which no termination events occnr, or a terminating observation of P followed by
an obscrvation of Q.
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The sequential composition operator does not distinguish hetween the two
forms of the termination event. This is illustrated by the following equivalence:

(Pl WAITt); Q@ = (P||| WAIT ); Q

In the presence of the sequential composition operator, the termination event v
oceurs as soon as it is made available, and is concealed from the environment.

Choice

The semantics of the nondeterministic choice operator is the usual union of possible
component behaviours:

Fs[Pn@le = Fs[PlouFs[Q]e

and can be extended to give a meaning to indexed nondeterministic choice provided
that the set of alternatives is uniformly bounded, in the sense of section 24.

H either of the components of a deterministic choice i1z ready to perform a signal
event, then that choice will be resolved immediately,

Fs[pa@le = {(0:x0 1R € Fs[Plon Fs[Q] o)
U

{(s 1) [s# (A (s, R 0) € Fs[P]lpu Fe[Q]p
A

()R I begin(s), begin(s)} € Fs[P]p 1 Fs[Q] o}

Any event refused by a deterministic choice before any events have been observed
must be refused by both components, and the behaviour following the first event
must stem {from just one of the components.

As an example, consider a process which is initially prepared to participate in
the synchronisation &,

(a = SKIP) O (WAITt;} — STOP)

If this event occurs, the process terminates successfully. However, if a has not
been observed by time !, the process sends a signal 4 and then deadlocks. The
occurrence of the signal event resolves the choice, and withdraws the offer of a.
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The prefix choice operator may be used to offer the envirenment an jnfinite
choice of inputs to a process. Signals correspond to output events; there is no
reason to include signals in a prefix choice construct.

Fsla:a— Ple = (001 [ANa(®) = {})
U

{(((t"a))ﬁs,ﬂ,i) | e CAAYZO0 A
ANo(RT#)={} A
(stot)_(t’+5) € :Fs[P.]p}

We assume that the set A contains only synchronisation events, and that the set
of alternstives { P, | a € A} is uniformly bounded.

Relabelling

The relabelling functions may be used to rename the events in a process, while
preserving aspects of the control structure. We do not permit the use of such
functions to transform signals into synchronisations, or vice versa. We insist that
for any relabelling function f.

Va:L e fla)el
va:5 o f(@)ed
With this restriction, the effect of applying such a function is given by
Fslf(P)e {(s,%, ) 1 {f (s}, /(R), 1) € Fs[P]p}
Fslf(P)p = {U(s), 0| (.07 (), ) € Fs [P p}

whete f~T(X) denotes the inverse image of refusal set ® under f.

h

1

Abstraction

We may conceal signal events from the environment by removing them from the
trace. Becanse the process canmnot stop signals occurring, the internal behaviour
is independent of any signals performed. We extend the definitien of the hiding
operator on traces:

Ova = §
{(t,e))"s)\ A = s\ A ifac A
{(t,a} (s \ A) otherwise
((LE)~)\ A = s\ 4 facA

{(t,3))"(s\ A) otherwise
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We may hide any combination of signals and synchronisations from Lhe environ-
ment of a process:

Fsfp\A)r = {{(s\ AR [(s,RU([0,1) x (4| E}),1) € Fs[P)s}

Observe that only synchronisations may be added to the refusal set; signal events
already occur as soon as they become available.

Recursion

As before, we may regard the semantics of a term P with free variable X as a
function defined upon TS;, mapping a set of behavicurs § to the semantics of P
in an envirenment obtained hy associating X with S.

Definition 8.1 1If Pis a TCSP Lerm, and X and Y are variables such that ¥
does not ocenr free in P, then

I

M(X,P)p
H&(X;P}P

XY o Fs{P]olY/X]
Ws-2Y o Fs[Plo[Y/X]

I

where W is the mapping defined by
Ws = AY o Fs[WAIT6; X]p[Y/X)

¢

The definition of W reflects the delay associated with the second form of recursion
operator. The semantics of each recursion operator i1s given by the fixed point of
the corresponding mapping:

.'Fs[,u XoP]s = the unique fixed point of the mapping M(X,P)p
fsn:;; Xa P]] p = the unique fixed point of the mapping Ms( X, P)p

The signals model TMz is a complete metric space under the metric d defined
earlier in this chapter. Following the arguments of chapter 3, we can show that
the semantics of delayed recursion is always well-defined.

Further, the addition of signals to our computational model does not affect
the notion of a constructive term. As in section 3.2, we may establish that the
scmantics of the immediate recursion g X e P is well-defined whenever term P is
constructive for variahle X.
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8.3 Signals and Concurrency

We intend that signals should be propagated through a parallel combination, and
that available synchronisations are triggered by the corresponding signal events: if
a signal 3 is observed, tben any process waiting to perform synchronisation a will
be allowed to proceed. Observable synchronisations require the participation of
the environment, so if a signal forms part of the interface between two processes
then the corresponding synchranisation mnst be concealed.

It would be enongh to conceal only those synchronisations which occur at the
same time as the corresponding signal events, allowing a process to signal and
synchronise upon the same event. For example, we might define a process

e — STOP ({ @— STOP

which waits to synchronise upon event a, but will send a signal @ instead il no
progress has been made by time ¢. However, it can be argued that no process may
signal and synchronise upon the same event; we obtain a simpler, more intuitive,
semantics for concurrency il we proscribe dynamic reconfiguration of input and
output channels.

Accordingly, we place a simple restriction upon the sets presented as arguments
to the alphabet paralle] operator. In the parailel combination

PLls@

the sets A and B determine which synchronisations may be performed by processes
P and @, respectively. By adding sigrals to these sets, we may also determine
which signals are propagated. We will insist that

AQsyne(ANE)
Bsyne(BNY)

0
t}

No event @ may appear in the same set as a synchronisation 2 and a signal &.

As an example, consider the following choices for 4 and B:

A = {a,83}
B {a, 4,2}

W

In this case, either component may broadcast signal ¢ to the environment, and @
may broadcast 3. If @ broadcasts @, then P may perform synchronisation a, but
only the signal will be propagated to the environment. As belore, both components
must cooperate upon any synchronisation in A N B.
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We may now derive the semantic equation for P .||z Q. Suppose that the
traces performed by components P and @ are sp and sg respectively. Any syn-
chronisation common to both sets must be performed by botb components:

sLSI{ANB) = sp|TL(ANB) = sg|lT|(ANB)

and any synchronisation that is exclusive 1o one component will be observed if jt
is performed by that component, and not hidden by a corresponding signal. If we
identify the sets of signals

C & AnkX

D

0
s
2
1

then we may capture this requircment as

s|Z](4-B) sp | (£ — aync(D))
sLEL(B—-A) = sq | (E—syne(C))

Synchronisations of P tbat are also signals of @ are removed from the trace, and
can only occur when @ performs the corresponding signal:

sg L (Bnaync(C)) C syne(sp | C)

sp (AN syne(D)) € sync(sq | D)

If @ is such a synchronisation, then (f, a) may appear in sp only if (¢, @) appears in
sq. This will be true whenever (¢, a) appears in the trace sync(sg | D). Asimilar
condition applies for synchronisations of (@,

The parallel combination will propagate any signals that lie in A or B and are
performed by the corresponding process:

S1E € spiClllsglD

FEach component may perform signals from oulside these sets, but they willnot be
passed to the other components, nor to the environment of the parallel combina-
tion. Combining these conditions, we ohtain that

s€spallasa # s|1T|(ANB) =3 |SL(ANBY=sg | D {ANE) A
sLE(A-B)=2p | {E—sync(D) A
e | BL(B-A)=5g | (Z—syne(C)) A
sp | {A N syne(D)) C syne(sq) A
sq L (B N syne(C)) C sync(sp) A
slE€sp | ClllsglD A s|S=s|E[{AUB)
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Il # performs a signal & at time ¢, then the corresponding synchronisation
should be offered to component ¢J. We may examine the effect of such an offer by
including(t, a) in the appropriate refusal set. If sp and s4 are the traces performed
by components P and @, then we insist that for any time 2

sync(o(sq | DY) C o(p|ATY)
sync(a(sp { CT1)) C o(Ry | BTY)
The synchronisations corresponding to the signals performed by @ at time { must

be offered to component P at time ¢, if they are contained in set A. A similar
condition applies to signals performed by P.

The behaviours of each component will take the following form:
(Sp,Np W] N‘p, t) € }-SIIP}P
(sq:Rq UG, 1) € Fs[Qfe

Any synchronisation from A that is refnsed by component P must be refused by
the parallel combination. A similar condition applies to events from B.

Rp C WA

g € ®|B
We consider only those refusals of P and @ which correspond to events from A and
B: any other synchronisation will be impossible. Conversely, any event refused

from AU B must be refused by al least one of the components, or concealed by
the inclusion of the corresponding signal in the interface set.

R (AUB)\ syne(CUD)) = (%r\sync(D))U (R \ sync(C))
For convenjence, we define
ReRpallag & Np SN[ A ARGCR|B A
N i{AuB)\ sync(C U D))
= (Rp \ sync(D)) U (Rg \ syne(C))

We may now give the semanlic equation for alphabet parallel combination in the
signals model:

Fs[P Ll Qe = {(s.8.0)] Jsp,Rp,Wp, 59, Rq, Wy e Vi'e
s€ s;:,,ﬁBSQ A Re RPAHBNQ A
sync(a(sq | DTN} S a(Rp LATE) A
sync{a(sp | CTE)) Ca(ly | BT ) A
(SP,RPUR;:,” 6?5[1’],0 A
(sg.RquU¥y, t) € Fs[Q]p )
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If the two components are to synchronise upon every event from X, then no
signals may he propagated to the environment. The semantics of a lockstep parallel
construct P )} € is thus

Fs[PIQ)r & {(s,RpUR, 1) [s =515 A(s.Rp,t) € Fs[P]»
A(s,NQ,t)Efle]p}

No such restriction need be applied to the interleaving parallel operator:

Fs[PllQ)e = {(s®,1)]3sp,5q0s€splllsg Alse, R, t) € Fs[P]p
A (50, N’ ") € Fs IQHP}

Signals and syncbronisations are simply interleaved.

8.4 Consistency

The Timed Signals model is an extension of the Timed Failures model. If aprocess
description P does not mention signal events, the semantics of P in TM;. will be
equivalent to the sernantics of P in TMp. If we use 7 to denote the natural
projeciion mapping between the two models, we may assert that

f}' EPB = T(fs HP] )
for any closed term P constructed without signal events.

Definition 8.2 A TCSP term is said to be signal-free if it contains no occurrences
of events from L. This will be true whenever the term contains no subterms which
ruateh any of

SKIP, WAIT 1, - P .ot Pl @
where (ALBYN E # {}. &
With this definition, our consistency result is expressed by the theorem below:

Theorem 8.3 If P is closed and signal-free, and any recursive subterms in P are
constructive for the corresponding variables, theu

.F]"HPB = ?F(.Fs[P])
where projection mapping 7 : TAMz — TMF is given by

m(§) = {(s.W)]| Tt e{s R, 1) €S}
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Proof We proceed by structural induction. To show that our result is true flor
recursively-defined processes, we must adopt a slightly stronger result for our in-
ductive hypothesis. We begin by extending our definition of signal-free to semantic
sets and environments:

Definition 8.4 If S is an element of T'S;, we say that § is signal-free if
Vs, 1) €S o Fs)={}
Further, if p € ENV, we say that p is signal-lree if
VX € VAR « p]X] is signal-free
<

It is easy to see that the semantic set F5[P]p will be signal-free whenever both P
and g are signal-free. Il we extend our projection mappiag to environments with

wp = {X —x(p[X])| X € VAR]
for any p in ENV, we may also conclude that
p is signal-lree = xpc ENV
We may now state our induclive hypothesis: il P is a signal-free term, then
Vp€ ENV o pissignal-free = Fr[P](np) = m(Fs [P o)
base case It is sufficient to consider the case of the deadlock process. For any
envirenment g in ENV, we have
Fs[STOP)p = {(s,R,8)|5=() At 2 end(R)}
whence

n(Fs[STOP}) = »({(s,R,1)|s={} AL 2 end(®)})

= {{s®)]s=0}
= Fr[STOP}

Although trace s is an element of TE%, we know that s | £ = (3, and hence that
s € TEL.

inductive step Consider the case of the alphabet paralle]l operator. If the parallel
combination P ,||5 @ is signal-free, then the same must be true of components
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P and @. If sp and sg are the traces corresponding to each component, we may
conclude that sp = sp | £ and 59 = s¢ | E. lu this case,

s€spallnsg & sISL{ANB)=sp [ (ANB) =3¢ | (ANB) A
s | Z(A-B)=sp\sync(D) A
s| T (B—A)=3sg\sync(C) A
sp L (AN syne(D)) C syne(sq) A
s (BN syne( C)) C sync(sp) A
slE=0 A s|E=s|T1(AUB)
From our assumption that the parallel combination is signal-free, we have thal
ANnE=BnE={}
and hence that sets ' and P are empty. From this, we deduce that
sEspallpso & sl(A—B)=spAs|(B-—Ay=sgAhs=s|(AUR)
& 5 €5p 4llg g
We may also infer that
ReWpalsRg & RpCR|AARGCRIB A
R (AU B aync(C U DY)
= (Np Y aync(D))U Ry \ symc(C))
& ReCRLAANGCRLIEB A RJ{AUB) =RpURg

We may use these results to simplify the semantics given for alphabet parallel
combination in the signals model:

Fs{P s @le = {(sR1){Fsp.Rp,50.Rg e s € 5p 4]l 5¢ A
RI(AUB)=RpURg A
RpCRIAANGCN|BA
(sp Rp, 1) € fs[P]]p A
(sq.Rq,t} € }_SEQEP}
If we assume that p is signal-free, we may apply our inductive hypothesis to com-
ponents £ and @, yielding

W(F-TI[PA“B QHP] = {(S!R)lasps“P!SQlRQ.SESPA",BSQA
Nl(AUB):NPUNQA
ReCR|AANGCR|BA
(sp‘Np)Efrl[P]IrpA
(s, Rq) € Fr[Q) o)

= ‘FTHPA”B Q]rp
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The case of Lhe recursion operator requires the following lemma:
Lemma 8.5 The set of signal-free semantic sets,
SF = {5¢& TS;|S issignal-free}
is a complete subspace of 757 under metric d. v
The following definitions are taken from [Sutherland 75):

Definition 8.6 A sequence {5,} in a metric space (M, d) is a Cauchy sequence
if givene > @, there exists N such that d(S,, 5.} < € for any m,n > N. &

Drefinition 8.7 A metric space {M,d} is said to be complete iff every Cauchy
sequence in (Af, d) converges to a point in A, &

Proof of lemms 8.5 [after Reed] Suppose that {5.} is a Cauchy sequence in
metric space (SF, d), and let {n,} be a sequence of positive integers such that

Yz o 1<n<nyy
Ymzn e d(5,,5,)
Recall that the metric d was given by
HS.T) = wf{{2]S() = T(O}U (1))
where §{t) denotes the set of observations from § that end no later than time ¢:
5(1) = {(s,R1JeS|< it}
With such a metric, the limit of the Cauchy sequence 5, is equal to

s = s.0)

Y]
By our choice of sequence n; we have that
et = S(t)=8,(1)
and each S, is signal-free. Hence we may observe that
(s,R 4] €8 = (5R1)€ S8
= Jie(s, R 1) €S, (1)
= Jiel(s,R1) €S,
= &(s)={}

and conclude that the himit S s also signal-free. The set TF is thus a complete
subspace of TS;. O
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The semantics of immediate recursion in the signals mode] is given by:
Fs [,u Xo P]p = the unique fixed point of the mapping M(X, Py
where tbe mapping M(X, P)p is given by
M{(X.P)p = XY e Fs[P)]olY/X]

In onr indnctive hypothesis, we have assumed that 4 X o P and p are both signal-
free. From tbis, we dednce that

Y is signal-free = Fs[P]p{ ¥ /X]is signal-free

and hence that subspace SF is closed under the mapping (X, P)p. If wesuppose
that P is constructive for variable X, then this mapping has a unique fixed point,
and this fixed point must lie in SF. We may conclude that the semantic set

Fs[nuXo P]] P
i signal-free.
Applying the fixed poinl property, we may obtain that

FsluXoPlp = fl?(X,P)p(fsipXoPlp)
Fe[PlplFs[uX o Pla/X]

Term P, environment p, and semantic set .7-'51[;1 Xo P]Ip are all signal-free, so we
may apply our inductive hypothesis to yield that

Fr[PYx(plFs[n X o Plo/ X))

Fr[P]rplr(Fs[{nX o Pp)/ X]
MX, Plzp(n(Fs[p X o P]p)

T Fs[nX o P}s)

]

where the mapping M(X, P)rp is as defined in chapter 3:
M{X,Pyrp = MY o Fr[P]np[Y/X]

We have shown that =(Fs[p X o P]p) is a fixed point of this mapping, but we
know that

f’rlp Xo P:ﬂ 7p = the unique fixed point of Lhe mapping M (X, P)np
so we may conclude that, provided that P is constructive for variable X,

w(fgl];x.\’oP]p) = fg-{,uXoF]rp
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The remaining cases for the inductive step are comparatively simple. We con-
clude that the inductive hypothesis holds for all terms: if P is a signal-free term
in TCSP, then

Vpe ENV  pissignal-free = Fr[P}(zp) = n(F5[P]o)

under the assumption that any recnrsive terms are constrnctive for the cotrespond-
ing variables. The conclusion of theorem 8.3 lollows immediately: il P is closed
and signal-free, then

Fr [P] = x(Fs IP])

a

Furthermore, it is easy 1o see that the defining axioms of TM; are consistent with
those of TMp, in the sense that

SeTM; = =(5)e TMy

If a set § satisfies the axioms of the Signals model, the projection x(§) satisfies
those of the Timed Failures model.

We conclude that the semantics given in this chapter are consistent with the
equations and axioms presented earlier, and hence that the Signals model may be
regarded as an extension of the Timed Failures model.

8.5 Example

As an application of the Signals mode), we consider a Timed CSP implementation
of the physical layer of an Ethernet-like protocol. This layer provides a means
of commnnication between the nodes of a local area network; data bits are ac-
cepted from the data link at each node, and passed along a broadcast medium.
In section 7.4, we saw that the service provided by the physical layer could be
captured as a timed (ailurcs specification. With the addition of signal events, we
can produce a TCSP description to satisfy that specification,

The service provided by the physical layer was described in terms of the avail-
ability and occurrence of synchronisation events from the following set:

Apr = {i.put.b,i.cs i.cd,i.get.b|i: NODE ;b : BIT}

At each node 1, the physical layer shares two channels and two simple synchroui-
sations with the data link component. The channels carry data bils between the
two layers: bits are accepted from the data link layer along channel i.put, and
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transmitied to the data link along channel i.ge¢. The synchronisation ¢.es is made
available to the data link whenever activity ceases on the broadcast medium, and
the synchronisation i.cd is offered whenever a collision is taking place.

DATA LINK

i.put i.es icd i.get PHYSICAL
Figure 8.1: the service provided by the physical layer at node §

The event i.put.b models the acceptance of a data bit & by the physical layer
at node 1. If the physical layer is to meet the specification given in chapter 7, a
corresponding signal must be placed upon the broadcast medium. Even so, there
is no guarantee that the data hit will be received at another node j; il other nodes
are lransmitting, then this bit signal may be lost. This behaviour is easy o model
if we introduce a set of signal events:

$p, = {i.alb|i: NODE;b: BIT}

The event j.af.b models the arrival of a bit b on the broadcast medium at node ;.

Transmission

If a data bit & is passed to the physical layer along channel i.put, it should be
broadcast o every other node on the network.

TRANS, = ipulb % ( TRANS,
il
[|| WAIT d, :j.a1.b — STOP)
T¥i

We have decided that signal 7.al.b should occur at a time 4, + t after the
input event i.put.b. The bit time 4, is the duration of a bit transmission on the
broadcast medium.

The behaviour following an input event is an interleaving of two processes. The
first is a fresh copy of the broadeast process: Lhe physical layer at node f isready
to accept a new bit for transniission once time #y,, has elapsed. The second is an
interieaving of simple transmission processes: each of these will produce a signal
j.fﬁ.b at the correct time, and then terminate.
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Reception

The arrival of a data bit 6 at node i is modelled by the signal event i.af.5. If the
physical layer at node 1 is ready, it will synchronise upon this event, and offer data
bit b to the data link.

LISTEN; = i.at.b: AT; =4 i.get.b -5 LISTEN,
where
AT = {i.at.0,i.al.1}

The combination of delays t; + ¢, must be strictly less than #;, if the physical
layer is to function correctly. In a valid frame sequence, a data bit is transmitted
every h,; the physical component must be capable of decoding a data bit signal
and passing it to the data link within this time. If the ahove process is not ready
to observe signal i.af.b, then data bit b will not be received.

Carrier Sense

If more than two bit times have elapsed since the last bit arrived at node i, then
the synchronisation 1.cs should be offered to the client layer. This offer should be
withdrawn if another event from AT is observed. The following process will meet
these requirements:

SENSE, = (i.cs — STOP) AVT NOISE;

Once an at event is observed, control is passed to a process which offers to syn-
chronise upon events [rom AT

NOISE; = (a.AT:; =% NOISE;)"&" SENSE,
If mote than two bit times have elapsced since the last al event, this process with-
draws the offer, and passes control to a copy of the original process SENSE;.
Collision Detection

If a data bit arrives from another node while node # is transmitting, then syn-
chrenisation i.cd should be offered to the data link layer. Accordingly, we define
a process DETECT; which waits for : to start transmitiing.

DETECT, 2 a:PUT, = (MONITOR; § COLLISION;); DETECT,
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Once a transmission has begun, control is passed to a moniter process. Observe
that the delays ; and f; must be less than i, or this process will interfere with
frame transmission.

MONITOR; = (a:PUT, %+ MONITOR,) "t SKIP

This process oflers to engage in events from {i.put.0,{.put. 1}, until two bit times
elapse without a put event. When this happens, the monitor process terminates
successfully.

If 2 data bit arrives during a transmission, control is passed to the process
COLLISION;, which behaves as MONITOR;, except that it is ready to engage in

the event 1,ed.
COLLISION, = MONITOR; || i.cd — STOP

As this is an interleaved parallel combination, it will terminate successfully when
transmission ceases, and MONITOR, tertninates, When this happens, control is
passed to another copy of the original process.

Combination

The physical layer component at node 1 is the parallel combination of the processes
defined above:

PL; = (TRANS; Pl‘.’!T DETECT;) ||| SENSE, ||| LISTEN;
The transmission and collision detect processes must agree on each occurrence of

an event from PUT;, but no other synchronisation is required. The physicat layer
itself is a parallel combination of node processes

PHYSICAL = PL;

1

where ALL; is the set of all events that are possible for node i:
ALL; & PUT,UGET,JAT, U ics,icdbU{j.alb|j € NODEAj£i}

Only the broadcast signal events are seen by more than one node,



Chapter 9

Discussion

9.1 Conclusions

In this :hesis, we have presented a formal method for the specification and devel-
opment of real-time systems. We have exhibited a system description language
with a number of useful programming features. We have introduced a formal
specification language for the description and anelysis of systern behaviour. We
have presented a complete, compositional proof system for relating the two lan-
guages, and formulated techniques for simplifying the proof obligations that arise
during the development process. Finally, we have extended the method to include
a treatment of broadcast communication.

A substantial case study was undertaken to demonstrate the applicability of
the development method, and proved successful. To assess the performance of the
method, it is necessary to consider the role of formal methods in systems develop-
ment: mitially, a set of informal requirements describing the intended behaviour of
2 system are translated into an abstract formal specification; this specification is
then gradually refined towards some fiual implementation. If each refinement step
is formally verified, then we may be certain that any behaviour of the implemen-
tation will be consistent with the original specification. However, as [Barringer 87]
points out:

= the gap between informal requirements and formal specification means that
there is no guarantee that the system performs as originally intended;

* as s00n as realistically sized systems are considered, shortcuts have to be
taken; the number of formal proofs required is just far too large.

T'hese are valid criticisms, and must be addressed il our development metbod is to
be of any practical use.
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The specification language formulated in chapters four and six is an attempt to
answer the first of these criticisms. I the intended behaviour of the system may be
described in terms of the observation and availability of some set of communication
events, then this langnage may be used to capture the system requirements in a
clear and cornprehensible fashion. The resulting specification may be translated
into timed failures nctation. Alternatively, we may derive inference rules which
relate such specifications directly to the implementation language.

Once the system requirements have been formalised, the specification language
may be used to reason about system properties, and to communicate the details of
the design to others. At this stage of the development, we will often detecl incon-
sistencies and ambiguities in the original requirernents. Even if the development
is then completed informally, the production of a formal specification will have
improved the safety and reliability of the system.

The system description language presented in chapters two and three is signif-
icantly larger than that proposed in [Reed 88]. We have extended the language
to include process variables, primitive timing operators, and new operators for se-
quential composition, paralle]l composition and recursion. Although the extended
syntax is harder to reason about—there are more cases to consider-—it is easier
to reasou with. In realistic applicatious, such as the case study of chapter seven,
we find that the new operators correspond more closely with our requirements,
resulting in an elegant implementation with a simple semantics.

The complete proof system intreduced in chapter five provides a formal link
between the specification language and the system description language. Given a
proposed implementation of a system component, we may use the inference rules
presented in chapter five to establish that it behaves as expected. The composi-
tional nature of the proof system supports the hierarchical development of large,
complex systems: we may reason about the behaviour of each component in jsola-
tion. The notion of environmential assumptions, introduced in chapter four, proves
particularly useful in these circumstances.

The second criticism is more challenging: real-time systems are complicated
entities, aud the proof abligations generated during the developmenl process are
necessarily complex. The theory of timewise refinernent presented in chapter five
can be used o reduce any proof obligations which correspond to untimed safety
conditions: if we can show that these requirements are satisfied in Reed’s untimed
Traces model, theu we may conclude that they are also satisfied in the context of
the Timed Failures model.

The treatment of scheduling and ahstraction introeduced in chapter six provides
another method of reducing the complexity of prool obligations. By separating the
concerns of scheduling and concealment, we are able to present our requirements
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in a clear and structured fasbion, as illustrated by the development method for
hierarchical protocols described at the beginning of chapler seven.

Even with the techniques described abave, when we come to apply Timed CSP
to the specification and development of complex real-time systems, we find that
the number of formal proofs required is still uncomfortabiy large. However, we
may replace many of these proofs with rigorous mathematical argurments, and still
be reasanably sure that our implementation is correct. Where doubts remain, we
may increase tbe degree of formality until the truth, or falsity, of the argument
becomes apparent.

In a description of a real-time system, it is sometimes convenient to include
observable events that are uot synchronisations: output events which may ocenr
without the cooperation of the euvironment. In chapter eight, we showed that
our model of computation could be extended to include a treatment of broadcast
communication. Not only does this make it easier to describe and analyse certain
aspects of behaviour, but it may also he used as a basis for modelling assignment
in our system description language. This is the subject of current research, and
will be discussed at the end of this chapter.

This thesis has presented a formal development method for teal-time systems,
based npon the models proposed by Reed and Roscoe. This method supports
both formal and rigorous reasoning at every stage of system development, and
is applicable to systems of a realistic size. It is our hope that the results of the
research described in this thesis may be used to improve the safety and reliability
of real-time distributed systems.

9.2 Other Approaches

A wide variety of formal irethods! have heen proposed for the specification and
development of real-time systems, based upon

* process algebras, such as Timed ACP [Baeten & Bergstra 89|
* temporal logics, such as that presented in [Barringer et al. 84]
* programming languages, such as ESTEREL [Berry & Gonthier 88]

Although much research has been carried out into the theory of timed concurrency,
a consensus bas yet to emerge concerning the applicability of the various formalisms
to different types of system. A successful development method is likely to involve
sorme combination of the features mentioned above. A notation that is well-suited

14 uselul review is presented in [Joseph & Goswami 88].
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to requirements capture is unlikely to be an efficient programming language, and
viee veTsa,

The process algebras—
* SCCS [Milner 83]
+ TCCS [Moller & Tofts 90]

-+

ATP [Nicollin et al. 90]
Timed LOTOS [Quemada & Fernandez 87]

*

+ Timed ACP |Baeten & Bergstra 89]

Timed CCS [Wang 90, Hennessy & Regan 90]

*

—rely upon bisimulation relations to prove correctness. Two processes
are said to he bisimilar if they exhibit the same behaviour according to the opera-
tional semantics for the language. To show that an implementation meets a given
specification, we describe both as processes, and show that the two descriptions
are bisimilar.

This approach has proved successful in an untimed context, but is dificult to
apply to complex real-time systems. A great deal of information is present in
each process description: as specifications, they are difficult to understand and
unsuitable for rigorous, rather than formal, reasoning. We do not exploit the
algebraic properties of Timed CSP: our method of proof is quite different, and we
employ separate languages for system description and formal specification.

The ESTEREL programming language [Berry & Gonthier 88] is a determin-
istic language based upon a synchrony hypothesis: the outputs of a system are
conceptually syncbronous with its inpnts. If it can be assumed that the system
under consideration takes no time to execute the operations required of it, then
that system may he programmed in ESTEREL, and compiled into a language of
finite automata. The language is given a semantics in terms of rewrite rules; no
development method comparable to ours has been presented.

More relevant to the development method outlined in this thesis is the work
described in [Hooman & Widom 89]. In this paper, the authors present a compo-
sitional proof system relating an occam-like language to a quantilative temporal
logic, similar to the one developed in [Koymans & de Roever 83]. Althowgh the
system description language is somewhat limited, it js clear thal quantitative tem-
poral logics are useful assertion languages—indeed, {Jackson 90] shows how such
a logic may be employed as a specification language for Timed CSP. It would be
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interesting to see the proof system applied in the development of a large, complex
system.

In [Shasha et al. 83], the authors use a quantitative temporal logic to prove
the correctness of a carrier-sense broadcast protocol, similar ta the one described
in chapter seven, By assuming a simplified version of the service provided by the
physical layer, and an internal specification of the data link layer, the authors
are able to establish that certain desirable propetties hold of the network. The
sketch proof provided is similar to the rigorous justification of the data link service
presented in chapter seven.

In terms of complexity of specificalion, and support for formal reasoning, there
iz little to choose between quantitative temporal logic and Lhe notation presented
in this thesis. However, the structuring mechanisms of Timed C5P, aud the exclu-
sive treatment of communication, are of some advantage when large systems are
considered. We have yet to see a large-scale application of qnantitative temporal
logic tothe hierarchical development of complex real-time systems.

9.3 Tuture Work

If the development method described in this thesis is to support lormal reasoning
at every stage of the development process, we must bridge the gap between the
system description language and cxecutable code. We are fortunate in that there
exists 2 powerful programming language based upon CSP, the occam language
of [lumos 88), We propose to establish a refinement refation between a subset
of Timed CSP, corresponding to occam-implementable processes, and a subset of
occam, To provide a formal basis for this refinement relation, we must give a
denotational semantics to occam in the style of the Timed Failures model.

Towards this end, we may use the model for hroadcast communication pre-
sented in chapter eight to provide a basis for modelling assignment in Timed CSP.
Instead of adding 2 signal event for every synchronisation, we extend the alphabet
T with a set of assignment events T,

= Turl

Var x Val

—

1

Each assignment event is a pair z.a, representing the assignment of value a to
variable z. If we choose ¥ to denote the set of possible states,

¥ = Ver — Val
then we may define a semantic function

Fs € TCS5P - ¥ - TM:
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This function takes a language construct, and an initial state ¢, and returns a set
of possible observations. For example, the semantics of the assignment statermnent
z ;= e; P would be given by

fslt = CQP]‘{’ = {((h{L o)
U

{({(0,2.0))"5, R, 1) | @ = $[e] A
begin(s) 2 & A
=9 {zra}l A
(s,®,0) — 6 € Fs[P]v')

We may use the state component to give a semantics to conditional statements,
as well as input and output instruetions.

As we discovered in chapter seven, Timed CSP lacks any mechanism for rea-
soning about probabilistic aspects of system behaviour. Such a mechanism would
allow us to analyse the performance of communication protocols. However, a se-
mantic model which allows us 1o formalise statements such as the system responds
within 5 time unils, with a probability of 0.5 will be complex indeed. Although
substantial progress has been made towards an nntimed probabilistic model for
CSP [Seidel 0], little has been done to combine probability and time. This is an
area for future research.

Another area for research is the development of a simulated time model for
CSP: a real-time model which supports an algebra of processes. If we discard the
realism assumption of our computational model, which places a bound upon the
rale of progress of a process, we may exhibit algebraic laws for the elimination of
concurrency. These laws may be useful in establishing the correctness of compilers
for a language with timing canstructs, which must simulate the flow of time. Such
a model might be based upon the operational semantics for Timed CSP given
in [Schneider 91].

The operational semantics may also be used to define an infinite Timed Failures
madel, in which process behaviours are represented hy infinite traces and infinite
refusal sets. Such a model would support a theory of tirmewise refinement hased
npon the untimed Failures model, and provide a more straightforward semantics for
the hiding operator: we might distiuguish an A-active behaviour by the inclusion
of the set [0,00) x A in the timed refusal.

Finally, if we wish Timed CSP to be adopted by industrial users, it is essential
that the development process is supported by reliable soltware tools—to manipu-
late formal specifications, and tc assist in verification—we cannot expect methods
to reach maturity without leaving their home environment.
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Appendix A

Mathematical Proofs

A.1 Lemmata

We give derivations for two of the lemmata presented without proof in the body
of the thesis. The first result requires a proof of semantic equivalence, %hile the
second is representative of a series of results about constructive terms, presented
at the beginning of chapter 3.

Communicating Parallel

In chapter 2, we claimed that
PIQ = <P} lly (@)
where the process relahelling functiona {, », and ¢ are given by:

Ha) = a ifeel

l.a otherwise cla) = a ifacC
r(a) 2 a ifeeC clla) = a ilagC
r.a otherwise clra) = @ ifagC
and
4 = {E-C)uC
B = rE-CYUC

and we choose { and r such thal

(SN C = fENC = {}
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We may establish this equivalence by demenstrating that, for any environment p
Frir Ll Qlp = Frlc(i(P) s r(@)]e

Suppose that (5, R) is au element of Fr {P !:lk @]~ In this case, we know that

Jsp,Bp,5q,Rg » SESPESQARLC“—-(RPURQ)LC
ARNE =(Rp NRQI\NC
A(SP,RF)E}'T[P]'U
A fsq.Rq) & Fr{Q]p

Appealing to the semantic equation for the renaming operator, we see that the
statement above is equivalent to

35p Rp,55.Ry 4 s€sp Esa A sp=1(sp) A sg = r{sq)
Alp =11 (pr) Alg = r-'(R'q)
ARLC=(RpURG) L C
ARNC =(RpNRGINC
A (sp. %) € Fr{I(P)] o
A (s Rg) € Frlr(@)]r

which is true if and ouly if

IR, sp, R, 90, Ry @ SESP!:[SQ As=c(s) AR =c(W)
Asp = 1(sp) A sy =rlsg)
ARp =11 (Rp) A Rg = r=/(Ry)
ARLC=RpURgILC
.’\N\C:(RPHNQ)\C
A (sp Rp) € Frli(Pi] e
A (s, W) € Frr(@)]e

From our choice of s, s}, sg, and the definitions given for A, B, I, r, and ¢, we
may deduce thal

sesellsg & sTespllsy & s'esh hysp
We may also deduce that

RECR[A A RGOV B A RI(AUB)=R
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If we recall the semantics of the alphabet parallel operator, it is clear that the
previous existentially quantified statement is equivalent to

3,0 e s=c(s) AR= T (RYA(SR) € FrI(P) 4llp r(Q)]p
which is true if and only if

(s,8) € Frle {I(P) 4llg r(@)]p

We conclude that the two terms are semantically equivalent. )

Constructive Terms

Section 3.1 included several lemmas about constructive terms. Each of these may
be derived from the semantic equations given in chapters 2 and 3. As an example,
consider the first clause of lemma 3.5:

Lemma 3.5 If P is t-constructive for X,

1. a-2 P and WAIT t;: P are (1 + to)-constructive for X

Proof Term P is t-construclive for variable X if and only if

YV :TIME p: ENV e
Fr[Plpt v+t =Fr[Plole[X] 1/ X] 1+t

Suppose that (s,N) is an element of }"r[a—‘"—'Pﬂp [t'+t+1ty. From the semantics
of the delayed prefix operator, we may infer that end(s, ¥} < # + {4 #; and

a={)Aada(R)

v

Is s = {{1",a))"s" A
F20Aago(® 1A
(8, 8) = (1" + 4y) € Fr[P]p}

Timed traces are sequences of timed events arranged in chronological order; it is
a simple matter to establish that

end(s, ) S{I'+1+t) A" 20 As={(1" a)}™¢
= end(s \ R) = (1" + 1) < ' +1¢
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From our assumption that P is {-constructive for X, we may infer that
(8" R) = (t"+ts) € Fr[P]ot ¥ +1¢
= (&\R) (" +t;) € FrPlele[X]) 1E/X] 1Y + ¢
By the semantics of the prefix operator, this i1s equivalent to

a=0 Aaga(})
v
Js'es={(t"a))"s A
2 0Aag (Rt A
(s, R) — (¢ + o) € Fr{P]olelX] T ¥/ X]

which is true if and only if
(s.8) € Frla D ]plp[X] He/X)
This argument may be reversed to establish that
Fr[Plot v +t+to =Fr{P)ole[X] ¥/ X] 1+t + 14

for any time ¢’ and environment p. The term & 2o, p g thus ¢ + ty-constructive
for X whenever P is i-constructive for X. The proof that WAIT 5 ; P is also
t + tp-constructive is entirely similar. u]

A.2 The Finite Dependency Theorem

To estahlish the Finite Dependency Theorem, we will establish a stronger result
by structural induction on the syntax of Timed CSP. We recall the statement of
the theorer:

Finite Dependency Theorem If P is a TC5P term, possibly containing free
occurrences of process variables drawn from the set {X; | i € 7/}, and p is an
environment, then
(s, € f',r[P],a = AN :FleWg . ENVe
(Vi:Naw qu.-] = p’[X,—l) = (s,R) € FT[P]p'

¢

It is clear that this is a consequence of the following lemma, which will be estab-
lished by structucal induction on the syntax of Timed CSP terms:
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Lemma A.1 If (sp,R;) is an element of Fp [P] p, then

aﬂ{EF[VAHX T'F) [ PROP(M,SD;NMP'»O)
where

PROP(M,s0.80, P,p) = (¥X.(5.R)) € M e (5,8) € pIX})
A
Yo € ENV o (V(X,(5,00V€ M (s,R) € p‘[X])
= (30,“0) < FTIIP],IJ’

v

That is, we may find a finite set A of (varable, behaviour) pairs such that the
behaviour {sp, Ry) depends only upon the clements of M. In the proof of this
result, the following result will be useful. Tt states that il we can find a finite set
M such that PROP holds for Af, then we can oblain a second set M’ in which
all of the behawviours corresponding to variables for which term P is f-constructive
end at least ¢ before (s4,8p). We establish this secondary result by showing that
PROP holds of the subset of A obtained by discarding those behaviours which
do not meet this condiion.

Lemma A.2 II PROP is as defined in lemma A.1, then

PROP(M, sa, W0, P,p) = FM » PROP(M’ 59, Ny, P, p)
Il
X, (s,R)) € M"» (P tx-constructive for X
= end(s,¥) + fx € end(50, ¥¢))

To see that this is true, define
M = {{X,(s,R)) € M| P ix-constructive for X = end(s, ) -+ £ < end(s,M,)}

and observe that PROP(AM', s4,R¢, P, p) holds. The first conjunct is immediate,
as M’ C M. To establish the second. let p’ be such that

WX, (5, R)) € A o (5.8) € p[X]
Then define p” by

FIX] 2 PIX) UGN ] (X () € M)
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In this case,
V(A’a (S!R)) EM a (5, N) € ,OulX]

and hence

(so,R0) € Fr[P)s"
If we choose ty = end(s0, Ro), we obtain
(s0,%s) € Frl[Ple" 1
From this we may obtain
(s0, %) € Fr[P]p"[e"[X] 1 to — tx/X]
= (se,Ro) € F[P)olo [X] 1t to — tx/X)
= {s,Wg} € -‘FT[P]P’

The final implication above follows from the definition of t-constructive. We may
now proceed to establish lemma A 1.

Proof of lemma A.1

We proceed by structural induction upon the syntax of TCSP terms, observing
that the result is trivially true for all closed terms or processes—these have the
same semanties in every environment, and the empty set i3 a suitable choice for
set M. The remaining base case for our induction is the variable clause:

case X

Suppose that (sy, ®g) i3 an element of p!Xﬂ‘ and choose M to be the singleton
set {(X,(ss,R0))}. The result follows immediately.

The inductive step is straightforward in every case except that of mutual recursion;
a typical example is the case of Lhe parallel operator.

case P || Q
Suppose that (se,®y) is an element of Fr[P || Q]». From the semantics of the
parallel operator we obtain that
INp,Re o Ry = ReURg
A (ss,®p) € Fr[P]p
A (s0.Rg) € FrQ]e
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By our inductive hypothesis, there exist sets Mp and Mg corresponding lo (50, Rp)
and (s9,Rg) to satisfy the proposition. If we take Af to be the uuion of these sets,
then we have that

(X,(s:¥eM = (X,(s,R)}€ MpV(X,(5,R)) € Mg
= (s,N)EpﬂX]V(s,R)Ep[[X]I

which establishes that Af satisfies the first requirement. Now suppose that g’ is
such that

Y(X,(s,R)): M o (s,R)ep’[X]
then, as M, C M,
VX, (5,R)): Mp o (5,R)€ p’[X]

we apply the inductive hypothesis and deduce that (s, 8p) € Fr [P] ¢ Similarly,
we may deduce Lhat (s, Ng) € Fr [[Q] g'. From the sernantics of the parallel
operator, we have that (35, URg) in Fr[P || Qﬂ £, which establishes the case.
case (X; = ),

Consider (sg, ®p) in Fr [[(X,- = P.},] », where the recursive equations are indexed
by set . Unfolding the recursion, we see that

(s0,%) € Fr[P]s
where
pi = plFe[(X, = PL]p/X: | k€T

Applying the inductive hypothesis to every term P, we know that for any {s;, R}, )
in Fr I[PJ]p there is a corresponding set Af(s,,R;, 1) such that

(1) VX, (s,R): M(s;, R0, 1) @ (5, %) € p[X]
(#) Vo ENV o (X, () : M(s.,8,, D) o (5,8) € o' [X])
= (5, %) EfTHPI]IP'

Applying lernma A.2, we obtain that there exists a set M'(s;,R;,{), a subset of
M(s;, %, 1), satisfying (i) and (i) above, such that

(1) V(X,(3,R))EM" e P tx-constructive for X = end(s,R) + {x € end(ss, Ry)



194 Specification and Proof in Real-time Systems

We define a function m : (VAR x TF) — P{VAR x TF) as follows:

m(X,(s,8)) = {} X g{X|iel}
M(s® D HX=XxnAl€el
In the second case, if the variable X appears in the variable vector X, we let

m(X,(#,})) be the sel whose existence is guaranteed by the inductive hypothesis
applied to the corresponding term. We define a relation R on VAR x TF by

(X, (80, R0)) R (Xey(52,Re)) & (X1, (5,8¢)) € m{ Xy, {52,8))
This is a well-founded finite-to-one relation. That is:
1. there are no infinite chains {C,} such that ¥n e Coy;, R C,
2. forany C, the set {C*| C' R C} is finite
The second of these requirements foilows immediately from the definition of m,

and the first is established as follows:

Suppose that {{X.,(5..R.)} | 7 : N} is such a infinite chain, then each X, must be
an X; forsome 1 € [, for otherwise X,,; cannot exist {(by the definitions of R and
m). Foreach index n, let i, be the vector index such that X, = X;,. Construct
an infinite chain of natural numbers ¥, hy

Ng = 0
Moy = min{n:N|n>N At £in )
that is, the successor V,, is defined to be the least numher n greater than ¥,
for which the vector index i, is not heneath i._, in the well-ordering of the vector
indexing set /. This is a good definition: if the defining set is empty for ¥, the

infinite sequence {4, | k¥ > N,} is strictly decreasirg with respect to well-order
forcing a contradiction. Let

ty = eﬂd(shR})
Recalling that property (4:i) holds of M', which is used to define m, we have
Vp o Ly <t
Vp o INP+1+I‘<,_1HF“_J
hence
Vp . iy - +ig t”r
and thus Iy, 18 a sequence tending to —oo, contradicting the fact that each ¢ is

non-negative. Hence there can be no infinite chain Cy, and the relation R is indeed
well-founded. We appeal to the following result from [Enderton 77):
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K3nig’s Lemnma If A is a well-founded relation such that, for all y, the set
{z | xRy} is finite, then

Yy o {z]z R'y)}isfinite
¢
Applying this, the set M = {C | C R (X,,(35,R0))} is a finile ret. We claim that
PROP(M, 35, %0,{X, = Pi};, )
Recall that
PROP(M, 50,%s, P, p)

I

(V(X,(s.R) € M o (s,}) € p[X])

A

Yo' € ENV o (V(X,(s,R)) € M o (s,8) € /{X])
= (s0,%q) € Fr[P]¥

and observe that
{(X,(s, M)} e M = FX, & NWe(X,(5R)em(X, (s N)
= JL8 K o (X, (s,8) e M ®.])

The fitst conjunct of PROP(M, sy, Wy, {X, = Pi};, p) follows immediately {from the
corresponding result for PROP(M (s, X', 1), s, W', P, p}). To see that the second
conjunct is true, it is enough to show that, given any (X, (s, %)) in M,

(V(X", (", ®)) € m(X,(s,R)) « HYP(X', (s X)) = HYP(X,(s,})
where
HYP(X (s,8)) = (s,%) € p[Fr[(Xi = Pl p'/ X [ X]

We establish this as follows: assume the left-hand side of the above implication,
and consider the identity of variable X. If X is an element of {X; | i € 7} then

IFr X = P)JAIXI[X) = #[X]

which contains (s,3), by the antecedent to the second conjunct of PROP. Other-
wise, let X = X for I € I. In this case,

m(X,(s, %) = M(s,W,]1)
and for each (X, (5, R')) in Af{s,R.!), we have that
(s W) € p(Fr{{X: = Pi)] /X1 [X]
= (s,R}e Fr [Pg]p’[f:r [(X.' = Pi)j]ﬂr/Xl]
= (s,®) € }'Tl[(,\’. = P.),]p'
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which establishes HYP{ X, (5,R)), but then the result holds for all elements of ¥,
in particular we have that
HYP(X,,(s3,%0))

which says that
(s0.R0) € pIFrf{Xi = Pn] o'/ Xl X;]
finally vielding
(s0,%0) € Frf(Xi=P);)s

the consequent of the second conjunct of PROP. This establishes the lemma, and
hence the Finite Dependency Theorem. O

A.3 The Signals Model

In section 8.1, we claimed that the signals model TMz is a complete metric space
under metric d defined by

d(s.7) = inf{{z="]S(t) = T(Hu {1}
where
S(t) = {(sR,1)eS|'<}
As in the proof of lemma 8.5, we take two definitions from [Sutherland 75):

Definition A.3 A sequence {5.} in a metric space (M, d) is a Cauchy seguence
if given € > 0, there exists N snch that d(S,,S,) < ¢ for any m,n > N. &

Definition A.4 A metric space (M, d) is said to be complete iff every Cauchy
sequence in (M, d) converges to a point in M. 4]

and suppose that {S5,} is a Cauchy sequence in metric space (TM;,H), and let
{n;) be a sequence of positive integers such that

VI}O < Ny
Ymzn ¢ d(8n.5.)

Under metric d, the limit of sequence 5, is equal to

S = [JS,()

-1
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By our choice of sequence n, we have Lhat
Bt = §(1)=35.,1(t)
For each axiomn az given in section 8.1, we must show that
VYneS, €TM; = §salisfies ar
We consider the case of the second axiom:
(6,R, ) eSAL 2t=>3eols ) CEA(s™(s'+ )R, 1) ES
Suppose that
(s, R t)ES A t'21
If we choose ¢ such Lhat
5(t') = 5, (1)
then we may infer that
(s, W, t) € 8,
and hence that
35" ¢ of{sN CEA (s +1),R, ) € S,
However
(s + ), Rt €8, = (s~ +8,Rt)es(t)
= (s7(s"+ )N, ) e S()
= (s7(s"+ )R, )€ S
We may conclude that
(5,0, ) €8N 2t =235 ea() CEA(s (s + ), R,V ES

and hence that the limit S satisfies the axiom. Similar reasoning allows us to
establish that the limit satisfies the olther seven axioms, and hence that the model
TMz is a complete metric space. @]



Glossary

Mathematical Symbols

::.o~z§'n'u

dom
ran

Syntax

STOP
SKiP
WAIT

—

powersel operator

set of all finite subsets of
set of all finite sequences of
set of natural numbers

set of integers

set of rational numbers

set of real numbers
integers from m to n
domain of a function

range of a function

divergence

deadlock

successful termination
delayed termination
prefix

instant prefix

delayed prefix
deterministic choice
nondeterministic choice
direct image

inverse jmage

—_—
——

AW

a
R

<> D> AR

-

\
gXe P

uXo P
PlQ/X]
I

alla

[
A

the empty set

semantic equivalence
defined to be equal to

a partial order

initial segment

veclor v

end of thecrem ot lemma
end of rule

end of proof

end of definition

sequential composition
sequential composition
(with § delay)
hiding
delayed recursion
immediate recursion
syntactic subgtitution
lockstep parallel
alphabet parallel
interleaving

sharing parallel
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o timeout
H untimed interrupt
‘f timed interrupt
? event interrupt
Semantics
tr untimed trace
s timed trace
it refusal set
o stability value
o environment
é delay constant
v termination event
£ non-event
VAR  process variables
ENV  environments
TIME the time domain {7, c0)
TINT half-open time intervals
RTOK refusal tokens
RSET timed refusal sets

(Xi = A
CSP
TCSP

z
E!
TE

Ty
TF
TSr
™;

d
M(X,P)
My X FP)

oY /X]
TSE
T™L

d

Semantic Functions and Models

T
S
F

traces

stabilities

failures

failures-stabilities

timed traces

timed stabilities

timed failures

vntimed failures-
timed stabilities

timed failures-
timed stabilities

Ms
Mp
Mps
TMr
TMs
TM¢
TMpe

TMrs

mutual recursion
untimed CSP terms
Timed CSP terms

syntactic abstraction

all events

all untimed traces

all timed events

all timed traces

all timed failures

all sets of timed failures
timed failures model
distance metric
mapping for u X o P
mapping for p X & P
environment over-riding
product space

product model

vector metric

traces model
stabilities model
failures model
failures-stabilities model
timed iraces model
timed stabilities model
timed failures model
untimed failures-

timed stabilities mode!l
timed failures-

timed stabilities model
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Timed Failures

() the empty trace Jirst
- calenation of traces last
g trace prefix begin
= time shift end
- time shift (failures) head
l count of events foot
! before times
T during {strip
1 after a
} restrict =1
\ hiding ClLa
Specification

sat  satisfies

sat, satisfies in environment g
¢ abstraction mapping for trace specifications

act, active far every event in set A
R whenever these events are active

Signals Model

<o

=1

sync

ENV

Fs

signal event

termination signal

signals present

possible synchronisations
cnvironments with signals
metric for TM;

semantic¢ function

[ ]

TE;

TS;

M

first event

last event

start time

end time

first timed event
last timed event
time values present
strip time values
events present
trace equivalence

closure under =

all signal events

all events

all timed events

all timed traces

all timed failures
sets of titned failures

gignals rmodel
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