!
O},.r,, S . . N
- versity Computing Leboratory

' S -
I N It
Univid OX1 5QD

Formal Aspects
of
Human-Computer Interaction

Gregory D. Abowd

Trinity College

June 1991

Thesis submitted for the degree of Doctor of Philosophy
at the University of Ozford

Formal Aspects
of
Human-Computer Interaction

Gregory D. Abowd
Trinity College, Oxford

Submitted for the degree of Doctor of Philosaphy, Trinity Term, 1991
Abstract

This thesis provides a constructive application of formal methods to the study of
human-computer interaction. Specifically, we are interested in promoting 2 prin-
cipled approach to the analysis and design of interactive systems that will accom-
pany existing henristic techniques. Previous formal approaches have concentrated
on general and abstract mathematical models of interactive systems, proving that
psychologically valid principles of interaction can be expressed in a language suit-
able for computation. These abstract models, however, are too far removed from ap
actnal design practice which is strongly influenced by common sense and liable to
break down in the face of complexity. Our efforts are focussed toward retaining the
mathematical grounding of previous formalisms while providing additional insight
and direction for design practice.

We intreduce a unifying framework for the informal description of a user, a system
and the interface that sits between them. This interaction framework provides the
context for our research and motivates the properties of interaction that we wish to
formalize. We adopt the view of an interactive system as a collection of agents based
on the stimulus-response model. We provide a mathematical model of the agent
capable of expressing interactive properties relating the goals of interaction with
the visible consequences of that interaction. We also provide a language for agents
which allows a natural expression of an agent’s internal state-based behaviour and
its external event-based behaviour. We contribute further to practical design issues
by introducing templates to relate a task analysis to a specification of a system
to support the tasks and an interface to adequately portray that functionality to
the user. Finally, we initiate the formal investigation of multiagent architectures.
This concludes the mapping of properties on abstract models of interaciive systems
down to properties on more implementation-based models.

Acknowledgments

I would like to thank my supervisor, Bernard Sufrin, for the initial inspiration on
the topic of this thesis and for directing me to the HCI Group at the University of
York for a frujtful working environmeut.

At York, I have had the opportunity to collaborate with Michael Harrizon, Alan Dix
and Russell Beale. Those collaborative efforts have resulted in several puhlications,
parts ol which have been reproduced in modified form in this thesis. The contents
of Lhis thesis represent my own work, but the thoughts and style have heen greatly
influenced and enhanced by contributions from these three individuals.

In addilion, I have also greatly benefitied from repeated conversations with fellow
students at the PRG in Oxford, students and staff at York, and colleagues on the
AMODEUS project. Research in isolation has never appealed to me and I am
grateful to those who have provided ample [ood for my thoughts and friendship for
my heart.

I amn particularly indebted to Janet Finlay, Roger Took, Paul Andrews, Chris John-
son and Victoria Miles for their helpful comments on drafts of this thesis.

Finally, | would like to acknowledge the support of the Rhodes Foundation which
funded the firsl two years of my doctoral research and the European Commission
which funded the final 18 months while I was working on the AMODEUS project.

Dedication

To Richard, Sara, John, 4nthony, James, David, Elizabeth, Marypat, Roscmary,
Michelle, Stephen, Peler, Paula, Janel, Nina, Tom, Kutie, Sara, Tom, Michnel,
Mark. Maryclaire, David, Paul, Danny, Dennis, Michele, Peter, Kristen, Joseph,
Sandy, Anne, Elizabeth, John, Philip, Paula

and

Meghan.

God created us as g family. T have Jelt your love as if we were separated by only an
arm’s length, nol thousands of miles.

i

Contents

1 Introduction

2 A Framework for Discnssing Interaction

2.1 An informal definition ., L. L Lo oL
2.1.1 The interactivecyele L.
2.1.2 The components of the franework

22 Aformaldefinition o
2.2.1 A simple definition of anagent
2.2.2 An agent description of an interactive system

23 Conclusions

3 Background and Related Work
3.1 Other interaction frameworks

3.1.1 Evaluation/Execution Cycle,
31.2 Interaction Modelling Framework
31.3 Blackboxmodels
3.1.4 Software architectural medels
3.2 A survey of researck within the framework
3.2.1 Research on arliculation
3.2.2 Research on observation,
3.2.3 Research on performance and presentation,
3.3 Conclusions e e

4 Properties of interactive systems: Part I

4.1 Properties of translations,
4.1.1 Hutchins, Hollan and Norman distances
4.1.2 Articnlation
4.1.3 Pecformanceo oL
4,1.4 Presentation
4.1.5 Observation oo
4.1.6 Assessing overall interaction L.

4.2 Formal properties of translations_ .

4.3 Correspondence between agents

44 Predictability o
45 Nondetermimism. v v v vt e e
46 Synthesis.o
47 ConsiStency o o i i e e e
4.8 Conclusions e e e e

Refining the agent model

5.1 Requirements for agents,
5.2 Internal specification
5.3 External specification oL 0 0oL
5.4 Communication L e e

3.5 Ovwerall Combination
5.6 Interpretationsof agents
5.6.1 Internal interpretation
5.6.2 External interpretation
5.7 Conclusions e
A language [or describing agents
6.1 Notations foragents
6.1.1 The standard Z notation
6.1.2 Object-oriented notationsand Z
6.1.3 Other concurrent notations
6.2 The agent language
6.2.1 A language for external specifications
6.3 Using the agent language,
631 Atoyreactor
6.3.2 Someinputdevices
633 Awindow
6.4 Conclusions e

Properties of interactive systems: Part II

7.1 Relating Display and Result
7.2 Templates e
7T.21 Agentrestriction L. oL
7.2.2 Result and display templates.
7.2.3 Equivalence and indistinguishability revisited
7.3 Predictability and Consistency
74 Synthesis.o
7.5 Result initiated interaction L0 oL
7.6 Conclusions

vi

75
6
78
88
91
94
96
96
100
101

103
104
104
109
116
116
121
124
124
127
129
135

8 Interactive system architectures
8.1 From abstract principles to concrete architectures
8.2 Multiagent models L. L

8.3 Applying formal methods to levels of abstraction

8.4 Local correspondence

8.5 Assessing the graphical ml.erfa.ce Loa. t.ext edltor e
851 Singlebuffer Lo o
852 The buffer manager
853 Deriving a description of the interface
8.54 Conclusions on the case study

86 Coaclusions
9 Conclusions
91 Summaryofthethesis

9.2 Contributions of this thesis,
33 Future work e e

Bibliography
Appendices

A Use of the Z Notation
B Some theorems on the refined agent model

C Detailed semantics for the agent language

vi

161
162
163
165
168
171
174
179
180
182
183

185
185
186
188

181

205

207
213

219

List of Figures

2.1
2.2
2.3

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

4.2
4.3
4.4
4.5

5.1
52
5.3

6.1
6.2
6.3

7.1
7.2

Four phases of interaction between User (U) and Sysfem (8) 10
The general interaction framework. 10
Translations between components 11
Relationship between Norman’s execution/evaluation cycle and the

interaction framework Lo L o oL 21
Barnard and Harrison’s interaction framework. 22
The PIEmodel. 25
The red-PIEmodel. 26
The effects space of the PIE model within the interaction framework. 26
Heuristic versus formal reasoning within HCT. 30
The Seecheim modelof a UIMS 32
The language model of UIMS within the interaction framework . . 32
The Arch/Slinky model . A & |
Relationships between levels 0[PIEs 46
Hutchins, Hollan and Norman’s distance concepts within the inter-

action frameworko 57
Agent correspondence. 63
Levels of predictability, .. 67
The user’s model of the system 67
Predictability and synthesis T
Pictorial representation of an agent, 76
Synchronous composition of independent agents T8
Interleaving composition of dependent agents R
The “onion skin” view of a windowing system 112
The object view of a windowing system 112
Window manager/window relationship 133
Thered-PIEmodel. 140
Ambiguous object selection in SuperPaint 147

7.3 Agent diagram of the paint layer 148
74 Agent diagram of the object layer 149
7.5 Agent diagram of the co-exisling paint and object layers of SuperPaint152
8.1 The Model-View-Controiler paradigm of Smalltalk 164
82 The MVC hierarchy., 165
83 ThePACmodel, 166
84 The PAC hierarchy within an interactivesystem 167
8.5 The graphical interfaceof Spy 173
86 The graphical interfaceof Ten 174
87 Agent representation of innltibuffer editor 175
8.5 Thesingle bufferagent 175
8.9 Agent representation of functional core with operations. 181
8.10 Agent representation of Spy's interface. L0 181
8.11 Agent representation of Ten’s interface. 182

Chapter 1

Introduction

It is well known that ninety-nine percent of the world's problems are not
susceptible to solution by scientific research. It is widely believed that
ninely-nine percent of scientific research is not relevant to the problems
of the real world. Yet the whole achievemnent and promise of modern
techuological society rests on the minute fraction of those scientific dis-
coveries which are both useful and true.

C. A. R, Hoare in foreword to Systematic Softwere Development Using
VDM 130).

Indeed the way that people use machines is of key importance. The
most significant advances in computer science will be those facilitating
this interaction.

From T. Winograd and F. Flores, Understanding Computers and Cogrition
[169, page 137].

The study of Humau-Computer Interaction (HCI) is a multidisciplinary one
aimed directly at providing scientific answers to the real problems of designing more
usable computer systems. We limit ourselves in this thesis to a close exanination of
the relationship between two of the major contributors to HCI research—computer
science and psychology. Each of these disciplines represent a respectable scientific
field with concerns that subsume those of HCI. However, the main goal of HCI
research is to produce methods by which the collective knowledge of psychology
and computer science can be accumulated and applied to the construcion of real
interactive systems.

In practice, we are hard-pressed to find true interdisciplinary work significant
to both fields. That which bears great psychological weight brings with it little of

1

2 CHAPTER 1. INTRODUCTION

practical significance to computer science, whereas that which emphasizes issues in
the design of computer systermns often lacks psychological validity. One reason for
such a bias is that computer science and psychology are two camps which speak
a langnage entirely unto themselves. Crucial to the symbiosis of computer science
and psychology is the development of a common language between them. We are
not so bold as to suggest the development of such a common language in this
thesis. Rather, we hope to demonstrate how a language of design in computer
science, in our case derived from the formal notations and methods familiar to
software engineering, can and should be directly influenced by the vast body of
psychological knowledge on usability.

HCI, as a discipline, has not reached sufficient maturity to enable software
engineers to predict the usability consequences of their design decisions. One of the
reasons lor the lack of applicability of HCI research to real design has been noted
by Harrison and Thimbleby [75]:

We believe that much of the early work in HCI has beeu eucumbered by
a lack of appropriate abstractness or applicability to the design process.

A formal approach enables development of software whose function can be
proved correct and reliable. The ease with which a human user can access this
funcliouality is an important non-functional requirement of the software. As with
other requirements on software, mathemalical formulation of properties which in-
crease wability would allow greater assurance of software usahility earlier in the
design process. There have been attempts in the past to show that it is possible to
formulate psychologically valid properties of an interactive system in a mathemat-
ical language, but only at au ahstract and general level [160, 48, 75, 161]. We take
the lead from these previous examples and show that it is pessible to formulate in-
lLeractive properties at a more constructive and concrete level of detail which more
readily reflects how the interactive system is built from a collection of cooperating
objects. Hence, we maintain the ability to discuss interactive properties precisely
and formally.

Someresearchers have already provided a somewhat more constructive approach
to design and analysis of interactive systems [14, 15, 158], but we would like to
enhance their work by a stronger link to a methodology linked with empirical psy-
chological evidence of how nsers perceive the tasks that computers are designed
to support. To achieve this, we describe a method of design that is motivated by
empirical psychological understanding of interaction. The bulk of HCI formalisms
which we will describe in Chapter 3 are supported by psychological theories about
how humans understand the tasks they perforin on computer. The design of future
interactive system must obey the lessons learned from past mistakes, and they must
take advantage of increased psychological evidence to make a good product even
better. In order to do that, we need a way to incorporate the psychological evidence

in the computational language of design. This ¢annot be achieved with the abstract
aud general models of interactive systems mentioned above and further discussed
in Chapter 3 because those formalisms do not lend themselves well toward a con-
struction of the interactive systems to embody the usability knowledge. We aim
to provide a constructive computational formalism and method which more read-
ily captures interactive properties and knowledge of the user at the source. The
formalism we present—the agent model—provides the means for directly captur-
ing empirical evidence, such as given by a task analysis, on interaction for some
application demnain.

The origins of formal methods are in computer science, so it is a [air criticism
that we are biased toward the systein side in our HCI research. The bias is intended,
as this thesis is to be considered first and foremost as a contribution to the field of
computer science, and, more specifically, to the subcomponent concerned with for-
mal methods and its applicatiou to the design aud analysis of interactive systems.
Indeed, it has been precisely the success of formal methods of sofltware engineering
in general that tempts us to comsider it a worthy candidate [or the establishment
ol engineering [or the user interface. Ultimate acceptance of the ideas pul forth in
this thesis, however, depends upon their validation by the community of psycholo-
gists active in HCI research and use by software engineers in the development and
analysis of interactive systems.

There are two major contributions arising from this thesis, and they are reflected
in the title. To begin with, we are interested in the promotion of formal techniques
which can be used in real desigi;. One of the major criticisms of formal techniques
arise in an industrial setling where economic forces reign supreme and rigorously
principled design practices do not provide ample benefit for the costs they incur.
There have been isolated cases where formal development has proven an economic
advantage, but for the most part, it is [air to say that formal techniques cost too
much for the benefits they are understood to provide. We aim to show that the
benefits of formal techniques have not been fully appreciated in their applicaticn
toward more nou-functional requirements.

This leads us to the second contribution of this thesis. We have chosen to
promote the benefits of a formal approach in HCI, more specifically, inthe design
and analysis ol interactive systems. In attempting to justify the use of formal
methods for design in general, we have shown its particular advantage in HCI
research where there is great need for a bridge between paychological theory and
practical design, a bridge which the [ormal approach can provide. However, it is not
only the case that formal methods can promote HCI research, for the development
of the agent language in this thesis a clear case of the converse in which HCI
knowledge has influenced the development of a formal approach.

When reading this thesis, it is important to keep in mind its dual purpose. We
are interested in formality, but not just for formality’s sake. That whici we present

4 CHAPTER 1. INTRODUCTION

formally is motivated by HCI considerations. Furthermore, we are interested in
HCI and the considerations which arise in the design of interactive systems, but
not just for the sake of HCI. Those principles which we promote 1o lncrease the
usahility of a system are ones which we can capture formally within a rigorous
soflware engineering notatton. We feel this focus is necessary to ensure that our
rescarch is, as Hoare implores, both scientifically grounded and relevant.

Overview of thesis

In orderto assess the multidisciplinary needs of HCI it is necessary to have an overall
view of interaction that is separate {from, yet sympathetic towards, both psychology
and computer science. In this thesis it is hoped that some bridge may be forged
Letween the research in hoth disciplines. A suitable introduction, therefore, should
provide an overall view of interactive system development and analysis. We refer
to this overall view as an nleraction framework, and its description is the subject
of Chapter 2.

The interaction framework provides context for assessing previous research in
HCI as well as ontr own. There have been previous attempts at defining such
context, and in Chapter 3 we will discuss these other frameworks and show how cur
interaction framework has been influenced by them and attempts to extend them.
The interaction framework also provides a systematic way of reviewing research in
HCL Ineur review of Chapter 3, we will highlight the major contributions to HCI
research. emphasizing how the psychological content has not fully crept into system
design.

Another purpose for the interaclion framework is to motivate the kinds of for-
malisms necessary to express properties of interactive systems. To this end, the
framework naturally corresponds to an agent-based modularization of components
describing the system, user and interface. Properties that affect the overall us-
ability of an interactive system can be described qualitatively as features of the
translations that occur hetween coinponeuts of the framework. A formal model of
an agent provides ammunition for a first attempt at formalizing those qualitative
features of the translations. In Chapter 4, we summarize the qualitative properties
of translations in the framework and formalize them in terms of a simple model of
the agent, given in Chapter 2.

The simple agent model is inadequate for two reasons. First, it is not rich
enough to express interactive properties which relate the goals or end results of
interaction to the more immediate perceivable information provided al the mnter-
face. Psychological formalisms essentially relate tasks that a system should sup-
port to the results that those tasks affect. The simple agent model's inability

o capture constructively result information prevents its use in an overall psycho-
logical/computational design method. Secondly, it is not a design notation. We
cannot use the simple agent model to describe complex systemns by the composition
of smaller and sirnpler subcomponents.

In order to address these twa inadequacies, we digress from the specific applica-
tion of HCI to concertrate attention in Chapters 5 and 6 on the developmentof a re-
fined agent model and associated Janguage. Chapter 5 defines the new agent model
in terms of three perspectives—the internal, stale-hased specification of the agent,
its external event-based specificatiou and a communication specification which links
internal operations to external events. The refined model is shown to obey essential
compositional properties to allow for a modular design approach. In Chapier 6 we
justifly the need for a new formal language to describe agents, which is & hybrid
notation combining a model-oriented notation similar to Z or VDM and a pro-
cess algebra notation similar to CSP or CCS, capitalizing on the familiarity and
expressiveness of each.

Armed with greater detail of the structure of an agent and a language for de-
scribing agents, we resume in Chapter 7 with the formal treatmeut of inleractive
system design. The concentration in this chapter is toward showing how notions of
result and display allow salient description of interactive properties. In addition,
the introduction of ternplates allows for a method of design specifically geared to-
wards the immediate incorporation of psychological evideuce in interactive system
descriptions. Result templates embody task analytic information which guide the
initial description of a systern’s funictional core. Display templates are thosen to
correspond to the result ternplates and satisfy some inleractive properties, such as
predictability, honesty, consistency and others.

It is easier to formally express interactive properties when we remain at the
abstract and general level. We are then able to ignore the clutter of implementatjon
detail which is not entirely relevant to the expression of the properties. However,
we cannot ignore the inevitable refinement towards executable systems. and so we
must consider interactive system architectures and how the abstract principles and
properties can be mapped into a more realistic design platform. Iu Chapter 8 we
describe the relationship hetween the abstract level of the interaction [ramework
and the more concrete multiagent architectures that bave been used lo describe
the structure of an interactive implementation. The formal agent nodel allows
us to describe more precisely the leatures of the heuristically-based multiagent
architectnres and the design methods they imply iu order to assess their value for
preserving the properties expressed at the abstract level.

We conclude in Chapter 9 with a summary of the results and contributions of
this thesis, aloug with an agenda for fulure research.

G CHAPTER 1. INTRODUCTION

In addition to the main body of this thesis, we provide three appendices. We
make extensive use of the Z notation throughout the thesis, and we will assume
familianty with the standard notation as provided by Spivey [152]. However, for
stylistic reasons we have deviated from the standard nse in some situations. In
addition, it is often the case thal we will need to introduce some special notation
to make Lhe expression of some predicate more concise. In order not to detract
from the flow in the main body of the thesis, in Appendix A we have descrilied
our stylistic conventions which deviate from standard Z, along with any rotation
that is not defined in [152]. Chapter 5 contains the most concentrated sections
of formalism in the thesis. We have relegated to Appendix B the proofs of some
theorems on the refined agent model, leaving only the outline of their proofs in the
thesis body. Finally, in Appendix C we provide greater detail on the semantics for
the agent language in terms of the agent model than was deerned appropriate for
the body of Chapter 6.

Chapter 2

A Framework for Discussing
Interaction

We present a general interaction framework which will allow the analysis of the
interactiou between a user and a system to be expressed in one, unified linguage.
Our intent in this thesis is that the system be some computerized applicaiion, but.
this assumption does not affect the iuteraction framework. [t is also a common
interpretation that by distinguishing betweeu user and system we are restricted
to single-user applications. This restriction is not an underlying assumption in
development of the framework, but rather results from one’s interpretation of what
system and user represent. The emphasis in the framework is in developing a view
of interaction from a single user’s perspective. In a multiple user applicalion, such
as a multi-party conferenciug system, from the point of view of any one user the
rest of the users form part of the system.

The interaction framework will be used as a bridging device to provide a com-
mon ground for both psychological and computational discussion of interaction and
interactive systems. Il is important thal it be understood at some level by both
psychojogists and computer scieutists. Therefore, it must be free from the jargon
of both fields and open to accurate interpretation based on common ense. By
making common sense principles explicit within the mode] we open the path to
their automatic inclusion in future design,

Overview of chapter

This chapter proceeds with an informal deseription of the major components and
translations in the iuteraction framework in Sectiou 2.1. A simple stimulus-response
model of an agent will provide a formal model for the framework in Seclion 2.2.
Both the informal and formal agent. descriptious will be used to express properties
of interaclive systems which attempt to qualify and quantify usability throughout
the remainder of this thesis.

8 CHAPTER 2. A FRAMEWORK FOR DISCUSSING INTERACTION

2.1 An informal definition

The putpose of an interactive system is to aid a user in aceomplishing goels {from
some application domain. A domain defines an area of expertise and knowledge in
some reuf-world activity. Some examples of domains are graphic design, authoring
and process control in a factory. A domain consists of concepts which highlight its
important aspects. In a graphic design domain, some of the important concepts are
geometic shapes, a drawing surface and a drawing utensil. Tusks are operations to
manipulate the concepts of a domain. A goal is the desired output from a performed
task. For example, one task within the graphic design domain is the constrnction
of a specific geometric shape with particular attributes on the drawing surface. A
related goal would be to produce a solid red triangle centred on the canvas.

Our definitions of goal, Lask and domain generally agree with the approach to
problem solving presented by Newell and Simon [115]. We will apply the general
term tesk analysis for the identification of the problem space for the user of an
interactive systemn in terms of the domain, goals and tasks. In Chapter 7, we
commit to an even more rigid definition of task analysis as a mapping from tasks
in the user’s goal strncture to a set of fealures or attributes that are intended to
represent the action of that task in the system.

Theidentification of goals and tasks in a problem space is crocial to the work of
most analytic approaches to HCI, including onr own, for they determine the starting
point for analysis of a design, as Lewis points out {101]. There are those who
object to the nse of goals and tasks as fixed starting points for analysis. Whiteside
and Wixon [166] argue that their inclusior shonld only be as dynamic reflections
of broader environmental issnes in HCI and not as static entities from which all
analysis can proceed with sound grounding. Carroll agrees, pointing out that the
usefulness of task analysis to designers is minimized without dne attention to such
contextual information, usually laeking in most theoretical approaches [35]. A more
drastic opinion is put forth by Suchman [157], who states that an nnderstanding
of social interaction, not found in existing task analysis techniques, shonld be the
driving lorce for any theory of single nser HCI.

Our belief in the context of this thesis is that an awareness of the goals and
tasks of a user in a particular domain form a crucial guide to the assessment of
the computer system designed to support the interaction. Therefore, we are not
as concerned with the overall theory of cognition and social environment which
identifies the goals and tasks as we are concerned with how a definition of task can
be used to aid the formal development of the compnter system.

Typically, the concepts used in the design of the system and the description of
the user are separate; they are considered separate components, and so we refer
to them separately as the System and the User, respectively. The System and
User each have a domain-specific language in which the concepts can be expressed.

2.1. AN INFORMAL DEFINITION 9

These languages treat both System and User as state machines with operatious
tbat can transform the underlying state. The System’s language we will refer to as
the core language and the User's language we will refer to as the task langiage.

The core language contains system attributes, describing concepts in the domain
relevant to the Sysfem slate. The task language contains psychological attributes,
describing concepts in the domain relevant to the User state. At the most ab-
stract level, both system and psychological attributes are not constrained by any
implementation details. Within a formal approach, all that is required is that these
attributes be represented by some mathemalical object. And once the domain
has been adequately captured mathematically, it can be manipulated and reasoned
about with rigour,

At the formal and abstract level it is possible to attain a close correspondence
between the descriptions of the Syster and User, especially in a user-centred design
practice which uses the psychological attributes to determine the system aitributes
of interest. This is the purpose for a task analysis method—to produce some
description of the user’s understanding of the domain so that a tool can beproperly
designed for work in the domain. Though there may be a close correspondence
between the system and psychological attributes, the User does not directly interact
with the system attribuies. Rather, the interaction is with a representation of the
system attributes thal is constrained to a far less expressive language of the physical
interface, exemplified for the most part by two-dimensional displays with primitive
sound features and limited tactile facilities.

2.1.1 The interactive cycle

The communication between the User and the System follows a cycle ofexecution
and evaluation, as explained by Norman [123, 124, 125]. The User formulates a
goal and then must decide the task to perform in order to achieve the goal. The
task is executed upon the Systern and the result of the operation is evaluated to see
if it agrees with the original goal. This gives four main phases to the inisraction—
formulation, execulion, evaluation and assessment, as shown in Figure 2.1. We
will further discuss the execution/evaluation cycle of interaction in the context of
previous HCI research in Chapter 3.

Since the result of user-centred design as described above is that the task lan-
guage of the User and the core language of the System are closely related, in-
teraction between [fser aud System is fairly straightforward, since thetranslation
between the two languages can and should be trivial. The simplicity of interaction
implied by this close correspondence between the abstract System and User—what
the User wants to do the System can do—is misleading, because it is often the
case that there is a mismatch between the User’s high-level task language and the
low-level entities of the physical interface which the User must manipulate in order

10 CHAPTER 2. A FRAMEWORK FOR DisCussING INTERACTION

evaluate

\ assess
g U

formulate

execute

Figure 2.1: Four phases of interaction between User (U) and System (S§)

to achieve the desired goal. There is also a mismatch between the task langnage
and that which the [/ser interprets from observations of the physical interface when
determining if the goal has been achieved. These two mismatches are referred to,
respectively, as the gaps of execution and evaluation by Hntchins, Hollan and Nor-
man [85].

2.1.2 The components of the framework

In order to attain a more realistic description of interaction, therefore, we break
down the interaction between user and machine into four main components, as
shown in Figure 2.2. The nades represent the four major components in an inter-

o

.

Figure 2.2; The general interaction [ramework

active system—the System, the User, the Input and the Ouiput. Each component
has its own language which is used to express its purpase in the interaction. In ad-
dition to the User’s task language and the Sysiem’s core language which we have
already introduced, there are languages for both the I'nput and Qutput components

2.1. AN INFORMAL DEFINITION 11

to represent those separate, though possibly overlapping components. Inpit and
Output together form the system interface. Note that we distinguish between the
system interface and the physical interface. The physical interface is that part of
the system which, as its name suggests, is in direct contact with the userin the
physical world. Therefore, the physical interface is viewed as a suhset of the inter-
face in our framework. The input and cutput languages do not in most cases map
very directly onte concepts in the domain. Yet, the interface’s position between
System and User mandates that it he an effective mediator for the tasks in the
domain of the application. Therein lies the major challenge in interactivesystem
design.

As the interface sits between the User and the Sysiem, there are four steps
in the interactive cycle, each corresponding to a translation from one component
to another, as shown by the labelled arcs in Figure 2.3. The User begins the

O

oucput

presentation observarion

&)

task

S

COre
performance

Figure 2.3: Translations between components

articuylation

interactive cycle with the formulaticn of a goal and task to achieve that goal. The
only way way the user can manipulate the machine is through the nput, and so
the task must be articulated within the input language. The input language is
translated into the core language as aperations to be performed by tie System.
The System then transforms itself as described by the operation translated from
the Inpuf; the execution phase of the cycle is complete and the evaluation phase
now begins. The System is in a new slale, which must now be communicated to the
User. The current values of system attributes are rendered as concepts or features
of the Output. It is then up to the User to ohserve the Quipui and assess the
results of the interaction relative to the original geal, ending the evaluation phase
and, hence, interactive cycle.

It is easiest Lo think of the interactive cycle as a true alternation between exe-
cution and evaluation, hut this is not always the case. Every action by the User
may not be followed by an evaluation, and it is very possible that the User will
he reqnired to observe changes to the System that were not directly prompted by

12 CHAPTER 2. A FRAMEWORK FOR IMSCUSSTNG INTERACTION

actions performed by the User. Therefore, a strict interpretation of the interaction
framework in terms of an alternating execution/evaluation cycle is not intended
in our presentation. However, for explanalory purposes, this interpretation is not
overly harmul.

2.2 A formal definition

In the previous section, we presented an informal introdnction to the interaction
framework. In this section, we will provide a formal defintion of the framework.
The formal model of the interaction framework provides the foundation for the
work of this thesis, motivating the formwlation of abstract properties of interaction
in Chapter 4, the agent model of Chapter 5 and the more constructive interactive
properties of Chapter 7. We view an interactive system as a collection of commnni-
cating interactive agents. This section proceeds by giving a simple lormal definition
of an agent and a description of each of the components in the interaction frame-
work in terms of agents. We then combine the different agents for a description
of a complete interactive system as suggested by the interaction framework and
translations between components suggested by Figure 2.3.

2.2.1 A simple definition of an agent

The description of an agent serves two purposes—to give its cnrrent state and to
describe how that state is transforined as ts interaction with other agents proceeds.
We make a distinction, therefore, between the state of the agent and the events in
which it participates in cooperating with other agents. We present two given sets to
represent the set of all possible states of an agent, State, and the set of ail possible
events an agent can participate in, Event.

[Stete, Event]

Further details of the state and event sets will be delayed until the refinement of
the agent model described in Chapter 5.

The link between tbe state of an agent and the events in which it participates
is given by the agent’s behaviour. An agent is based on the stimmnlns-response
model, which has been argued to form part of the nser’s and designer’s model
of an interactive system [41]. An agent participates in a stimnlus event which
triggers a2 change in the internal state. After the transition, the agent responds
with events which will affect other agents in the system. From this description, we
choose to model the agent’s behaviour as a relation between stimulus-state pairs
and response-state pairs. In a given state, receipt of a single stimnlus will result in a
new state and a sequence of observed response events. Two views of this behaviour

2.2. A FORMAL DEFINITION 13

concentrate on differents aspects of it. One view gives the state transformation
triggered by a stimulus eveut. The other view gives the pairing between stimuli
aud responses. This stimulus-response information is an external description of an
agent, whereas the state transformation mapping gives internal information on the
agent. The simple formal agent model is given by the schema Agent below

Agent
states © P State

inits ; P states

B . (Event x staies) + [seq Event x states)
transform : Event — (slales «— stales)
stimresp : Evenl — seq Even

| Vstim Eyent; resp : seq Event; s, 5" : slales
o ((stam,s),(resp,s’)) e B { (stim,(s,5") € transform
A (slim, resp) € stimresp)

We can define two interpretation relations on seqnences of stimulus events, or
programs. The first, I'™', gives the intemnal interpretation of the program, i.e., the
possible state that the agent can be in after participating in the program. Each
stimulus event in the program represents a state transition relation, and so the
overall state transition relation for the program is the sequential composition of
the individual state transition relations. Restricting the domain of this overall
transition relation to the initial states of the agent (A.inits) gives the possible
transitions for the agent.

transformExtend_ : Agent — seq Event — (State « State)

transformExtendy(sfims) = (A.inits) < (3/{stims ¢ A.transformj)
The internal interpretation function relates the program to the possible final states.

I . Agent — seq Fvenf — State

(stims,s) € I}" &
s A.inits & (slims, (s, 5)) € transformEziend,

After each input event. the agent responds with a sequence of response events,
as given by stimresp. A program of inputs, prog, is therefore related to a sequence
of responses, respobs, derived from the responses of each input event in prog. The
second interpretation relation, I°*, provides this derived overal! stimulus-respanse
hehaviour.

14 CHAPTER 2. A FRAMEWORK FOR DISCUSSING INTERACTION

‘ 1o : Agent — seq Event « seq Event
dom [{* = dom I™
(prog, respobs) € [<
Jrespseq : seqseq Event
| (#respsey = #prag
A T/ respseq = respobs)
o Yi:l #prog
o (prog(i), respseq(i)) € A.stimresp)

Note that captured in this definiticn is the assumption that all of the responses
for a given stimulus event are observed before any responses owing to snbsequent
stimuli. This assumption is nol mandatory. We could have replaced the predi-
vate 7/ respseg = respobs with one such as (respseq, respobs) € interleaves, with
interleares as defined in Appendix A, or even more sophisticated expressions, to
reflect the more general possibility that the order of responses does not fully respect
the order of the stimuli. We will disregard that possibility in this thesis, for it is
believed to bring more tedium than enlightenment.

2.2.2 An agent description of an interactive system

Ounr iuitial understanding of an interactive system suggests that it is composed of
two agents, Tepresenting the User and the Systems. In addition, there are transla-
tions between the stimuli of one and the responses of the other, which represent
the externalized aspects of the execution and evaluation phases. These translations
are formalized as relations between the stimnli and responses of the agents. The
ezecution translation is a relation between the respouses of the User agent and
the stimuli of the System agent. The evaluation translation is a relation between
the responses of the System agent and the stimuli of the ser agent. A simple
interaclive system is defined below in terms of the User and Systemn agents and the
translations between them.

—SimpleintSys

User, Systemn : Agent
execution, evaluvation : seq Event « seq Kvent

erecution € (ran [f% « dom Ig™
Uaer System

evalualion € {ran [s'::l‘m « dom IL‘EL)

The translations ezecution and evaluation are relations between event sequences,
similar to the external interpretation relation for an agent. We can tberefore re-
gard ezecution and evalualion as specifications of the overall stimulus-response be-
haviour of agents between System and User. Constraints on these translations will

2.3. CONCLUSIONS 15

be constraints that must be salisfied by the agent which manilests that specifica-
tion. Therefore, the description of a simple interaclive system contains information
on four agents, two explicit {{/ser and System)} and two implicit (ezecution and
evaluation).

The complete interaction framework builds from this simple definition by adding
the faput and Qufput agents along with translation relations labelled as those in
Figure 2.3. The arliculation and performance relatious are composed to vield the
erecuiton translation and the presenlation and observation relations are composed
to yield the evaluation tramslation. As was the case for ezecution and eviduation,
these translations provide specifications for additional implicit agents in the system.

_InteractionFramework
I SumplentSys
Input, Oulpu! : Agent
articulation, performance,

presentation, observation : seq Event - seq Fvent

execution = articulstion 3 Ii7 sperformance

evaluation = presentalion 3 I5%, ,, sobservation

articulation € (ran [, + dom If37,,)

performance € (ran 15, + dom I§],...)

presentation € (ran [l > dom J5y)

observation € (ran g, « dom I
Outpud e

2.3 Conclusions

From our above discussion, we can see that the interaction framework contains at
least partial information on eight different ageuts—the four major components of
the User, Input, System and Quipu?, and external specifications cu four agents
which represent the translations between the stimuli and responses of the major
components. Since agents are intended as a compositional and constructive mode]
for an interactive systemn, the actual agent description of a complete interactive
system will contain many separate agents. Our point in this thesis is that we can
view everything in the interactive system as an agent. Therefore, properties of
interaction which we will present in the remainder of this chapter and throughout
the thesis can be expressed as properties on agents.

The justification for our division of an interactive system into four major com-
ponents and four translations between them is the subject of the next chapter, in

16 CHAPTER 2. A FRAMEwORK FOR DISCUSSING INTERACTION

which we will use the framewark to establish the context of previous HCI research
and establish the further cantributions of this thesis for HCI.

Chapter 3

Background and Related Work

The last chapter provides context for the application of formal methods in HCI by
describing a general interaclion framework. [n this chapter, we will review previ-
ous research into establishing the general context of HCI research and formalizing
different aspects of interaction. Before launching into the review, we willhighlight
two of the major conclusions which the review supparts.

The first conclusion is that a unified framework, such as presented in Chap-
ter 2, helps determine whal psychelogical information is available to leed into de-
sign. Though there is a basic divide between the precision with which reasoning is
possible an the two sides of interaction—the human (or user) and the computer {or
system)—it iy valuable and instructive to view both within the same formal (and
informal) [ramework. The systern side deals with objects that can be quantified
and reasoned ahout mathematically. This is the premise upon which the appli-
cation of [ormal methods in software engineering is based. The system attributes
mentioned in Chapter 2 which are used to describe domain concepls are intended to
have execulable realizalions in refined versions of the system. They may iuitially
be presented as abstract concepts, but the whole purpose of refiuement work is
to realize an abstraction in concrete delail while preserving the properties of the
abstraction.

On the user side, the psychological atiribntes represent attempts to describe
phenomena whose very existence is itself a research question. Though several for-
malisms exiut which provide quantitative predictive power for analysis of the user’s
side of interaction, the conclusions they provide are questionable from both a psy-
chological and design perspective. However, empirical and theoretical psychological
evidence is able 1o support some assumptions that we can make about the human
as user which we can then incorporate into our design process. Incorperating these
assumptions aboutl the user explicitly in the design process allows their removal or
alteration if they are found to be invalid.

From the design perspective, there is a crucial symbiotic relationship between

17

18 CHAPTER 3. BACKGROUND AND RELATED WORK

system and psychological formalisms. The empirical psychological evidence for
interactive behaviour provides data which the syslem formalism can manipulate.
The interactive design method reqnires both formalisms; hence the need for one
framework which unifies the two.

A second conclusion supported is that the bridge between psychological and
computer science research is not heavily travelled by researchers in formal meth-
ods and software engineering. Though the vast majority of software developed is
interactive and could therefore be aided by a rigorous theory of interactive system
design, very few designers are engaged in such principled design. The majority of
literature in software engineering that covers interactive system development relies
on heuristic reasoning about good design. Though a major reason for this is the
lack of acceptance of formal notations in general in design practice [44], there is
little work done under the name of formal methods which gives fair notice to the
consequences of including user considerations in design or specification. We see
two reasons for this. First, most of the formalisms which have been offered come
from researchers who are mainly psychologists and not, therefore, concerned di-
rectly with the design implications of their formalisms. Second, many of the formal
techniques availahle and in nse in industry do not provide enongh descriptive power
to naturally express an interactive system in the way the designer (and the user)
perceives it. This lasl. topic is a major consideration in our development of the
agent model and its associated specification langnage in Chapters 5 and 6.

As a result of these conclusions, we can see the pnrpose of this thesis. We aim
to provide a theory of interactive system design that both makes its psychological
assumptions explicit for means of validation and is within the grasp of the software
engineering profession {or at least practitioners of formal methods within software
engineeting). By building on and extending previous research in both HCI and
formal methods, we present a method for interactive system design which unifies
previowly separated considerations abont the user, the system and the interface
which separates them.

Overview of chapter

In Section 3.1, we will relate the inleraction framework of Chapter 2 to previous
attempts to define the context of HCI research. Our interaction framework is not
the first attemnpt at breaking up the interaclion between a user and a computer
into stages, We will present some other frameworks for interaction that predate
and influence our own, explaining how our interaction framework extends their
work. In Section 3.2, we will presen! a survey of the research applied to varicus
aspects of HCI. In this section, we will describe in more detail some of the formal
and informal research which presents a more narrow focus than the frameworks
discussed in Section 3.1. We have tried to classify the different approaches according

3.1, OTHER INTERACTION FRAMEWORKS 19

to how they fit into our interaction framework.

3.1 Other interaction frameworks

We identily four major categories of general and informal theories that have inspired
our {ramework, and we will discuss each in this section. The purpose of frameworks,
such as ours, is “not to reveal dramatic new truths,” as Norman points out [123].
Rather, the purpose is to provide insight into the implications each stage within
the framework has on the design of interactive systems.

We will emphasize how each of the framewarks below compares to cw frame-
work. We hope this serves as a suitable justification for the intreduction of yet
another view of interaction which will guide the formal approach of the remainder
of this thesis.

3.1.1 Evaluation/Execution Cycle

Probably the most obvious influence on our interaction framework has come from
the execution /evaluation cycle of interaction. This view of interaction is made
explicit in much of the literature on HCI and it #s implicil in nearly everyone’s
common sense nnderstanding of the interaction between human and computer.
The human user formulates a plan of action which is then executed at thecomputer
interface. Upon completing the execution of some plan, or part thereof the user
observes the compnter interface to evaluate the result of the recently exemted plan
and to determine the further course of action. In Chapter 2, we acknowledged
the seminal work of Norman [124]. A similar division of the interaction cycle has
been made explicit hy Card, Moran and Newell [32], and we will examine theijr
contribution further in Section 3.2 as it is more detailed in the formalism which
it presents. The work by Norman which we reference is mainly qnalitative, and
s0 most resembles the presentation of our interaction framework. His views of
the iuteraction belween user and computer have heen criticized as too simplistic,
but we view the real value of his views in the direct appeal Lo common sense.
Argurmnents that it over-simplifies a complex topic fail to see its purpose 2s a readily
understandable overview of human-computer interaction accessible to those lacking
a formal psychological education. Cousequently, Norman’s model is accessible to
the computer scientist interested in designing a more usable system. Unfortunately,
Norman's model does not consider the system’s contribution to the execution and
evaluation cycle as much as the user’s coutribution. Qur interaction framework is
intended to address this disparity.

Norman initially ontlined four stages of the user's activities—intention, selec-
tion, execution and evaluation [123]. In later work [124, 125, 85], the interactive
cycle can be seen as divided into two major phases, execution and evaluation. Each

20 CHAPTER 3. BACKGROUND AND RELATED WoORK

of these phases is then subdivided further inte different stages of the interaction
that can be examined for their particnlar influence on the effectiveness of the overall
interaciion. The seven stages mentioned are [124, page 41]:

1. Establishing the Goal

2. Forming the Intention

3. Specifying the Action Seqnence

4. Executing the Action

5. Perceiviug the System State

6. Interpreting the State

7. Evaluating the System State with respect to the Goals and Intentions

These siages are further related by Norman. as he symmetrically divides the pre-
vious execution/evaluation cycle. Hence, perceiving the system state is seen to be
the evaluative equivalent of executing the action, intcrpreting the state is the eval-
uative equivalent of specifying the action sequence and evaluating the system state
with respect to the goals and intentions is the evaluative equivalent of forming the
intention.

Figure 3.1 portrays the relationship hetween the execution fevaluation cycle and
our interaction framework. The obvious comment, as we have already mentioned,
is that the execution/evaluation cycle does not consider the system beyond its in-
terface (hence the shaded left-hand side in Figure 3.1). Norman simply represents
the systemn as the world of physical activity, analysis of which stops at the phys-
ical interface. There is mnuch greater detail on the user's side of the interface, as
the translation stages from User to Input (articulation) and from Qutput to User
{obscrvation} in our framework are each further divided into three substages in
Norman's model.

Norman's model serves two purposes. It provides the first step needed to in-
troduce a computer scientist to the purpose of psychological work in assessing the
usability of interactive systems. It also provides an outline for previous and future
theorctical or empirical research by psychologists trying io describe how the user
interacls with the system and how that interaction can be assessed. This interac-
tion is divided into two phases. One is concerned with the formulation of a plan and
its performance. The other phase ts concerned with the observation of the results
of previously performed plans and their assessment with respect to the original
plan. As a rule, formal psychological research into human-computer interaction,
therciore, is divided roughly into two areas, one to address the cognitive aspects of
formulation and execution of the plan and one to address the cognitive aspects of

3.1. OTHER INTERACTION FRAMEWORKS 21

perceptlon

[interpretatisn
evalvagaich
S
s T) U
N ~ goals
action INEEnt 100 task

specification

executlon

Figure 3.1: Relationship hetween Norman's cxecution/evaluation cycle and the
interaction framework

perceiving and assessing the consequences of the execnled plan [30]. One notable
exception to this ruleis found in the research by Barnard on Interacting Cognitive
Subsystems (1CS) (17, 18], which is a model of human cognition and performance
that can address both evaluation and execution in the context of human-computer
interaction.

Qur interaction framework, therefore, is an attempt to extend Normar's model
with a necessary and complementary component which more fully addresses issues
of the system. The extension provides a first step needed to introduce a psychologist
to the needs of comnputer science in designing interactive systems. In addition it
provides a platforin for assessing previous system-based work on inleractive systems
and provides direction for future formal research on interactive system design.

Norman’s lucid acconnt of the execution/evaluation cycle provides a1 clear in-
sight into what factors affect the translation between languages between the User
and the interface {Japut and Quiput). We will discuss in Section 3.2 how Nor-
man’s qualitative account can assist in assessment of more formal acconnts of these
translations. The addition of the Sysfem and its relationship to the interface in
our interaction framework is viewed as a necessary and complementary view that
enhances Norman’s model. With proper attention focused on the system side, we
can also assess previous work on interactive system development and propose haw
a formal approach can hetter aid the precise development of more usahle systems.

3.1.2 Interaction Modelling Framework

Barnard and Harrison [20, 19] have also presented an interaction framewark but for
a different purpose than either our framework or the execution/evaluation model.
The purpose of their framework is te direct research on incorporating distinct mod-
els of the system and user, which already exist, by means of a separzle and new
interaction model. It is for this reason that we distingnish this framework from

22 CHAPTER 3. BACKGROUND AND RELATED WORK

ours by referring to the Barnard and Harrison version as an interaction modelling
[ramework. Figure 3.2 is a graphical representation of their framework, taken from

(19].
Model
Mwm*

Task

—_— J—
CS1—CS2 #L33 #CS4#CIE*CS6+CST. [)
s A
! NT P&
Y D, N
T appingl e LS
R A cT
£ D cuf—|aT
¢ @| [y [
c i D !
E OE oG
NL N
| S

MS 1= MS2 =S =S40 S50 MSE..

cycle

Figure 3.2: Barnard and Harrison's interaction framework.

Barnard and Harrison identify some major problems of system and user models
of interactive behaviour. System models make implicit psychological assumplions
about the user that can be invalid. For example, the PIE model version of pre-
dictability [54, 48], which we will discuss later, makes the assnmption that a system
designer can & priori determine what effects will be perceived and understocd by the
user in terms of their task langnage. User models make implicit assumptions about
the practice of system design that are impractical. For example, a psychelogically
valid nation of consistency of an input languages is presented by Payne and Green's
TAG notation [127, 128], but their device representation does not consider thal sys-
tem design must take into account more than jnst inpnt langnage consistency. It
is not so much a problem that the separate modelling domains make assumptions
about the other. The problem is when the modelling technigue depends on implicit
assumplions that it cannot change. In an ideal situation, each modelling domain
(via the modellers) must be able to validate the assumptions made by the other
modellng domain and also incorporate the results of the ather darmain within its

3.1 OTHER INTERACTION FRAMEWORKS 23

own wark. How can this be achieved?

In Barnard and Harrison’s view, there is 2 common feature that can be exiracted
from both models of the system and models of the user. Each can descibe its
subject in terms of a state-based machine that undergoes transitions. The system
states are machine stalcs, and the user states are cognitive stafes. Any instance
of interaction between user and system results in a sequence of transitions in both
the machine and the user. Figure 3.2 depicts these transitions by the sequence of
machine states MS1, MS2,... and cognitive states €51, C52,... There is o clear
link made between machine state M57 and cognitive state C5i. The intention of
the mappings {rom models to state transitions in Figure 3.2 is to show that the
system and user models are not wholly determiued by what they say about state
transitions. Rather, those models each say something about the hehaviour of the
machine or cognitive state of the user that can be mapped onto state tramsitions.
In turn, particular instances of the machine or user behaviour can be mapped into
the respective model for interpretation relative to abstractions within the model,
as we will discuss next.

Within a system or user model abstractions can be defined in terms of the
transitions of the machine or cogritive state. For example, there is the notion
of cycle within the sysiem mode] and the notion of task in the user model. In
trying to establisb the relationship between the abstractions made by the system
modellers and those of the user modellers. they suggest a third model, called the
interaction model. The reasening is that any relalionship between systemand user
modelling concepts would only be relevant where the two models meel, that is,
at the human-compnter interface. Therefore, a model of the interface would be
the suitable location for the cross-fertilization of the different concepts of system
and user modelling withont undue emphasis on eitber side of the interface. This
interaction model would also have an interpretation based on states, labelled by
‘interaction states’, and iustances of transitions wonld be labelled £51,i52,... as
in Figure 3.2. The interaction maodel is fed by information about system and user
models but in addition can also embody explicitly notions that are usually lacking
witbin the system and user models, such as the domain knowledge.

Finlay ef al. have attempted to apply the interaction modelling framework to
the analysis of exemplar systems, such as an automated teller machine, by making
explicit an event structure used ta link the system and cognitive models {57]. The
significance of the events used hy Finlay et al. is that they can both be handled
by the respective system and cognitive modellers. Events are labels [or operations
or state transitions. At the interface between user and computer, the same event
can be linked to operations on both the user and the system. On the system side,
events are similar to those described in Chapter 2 for the simple formal model
of an agent. On the user side, Barnard's own ICS model is used, and there is
a much less convincing connection between events and the ICS way of modelling

24 CHAPTER 3. BACKGROUND aND RELATED WORK

the user’s cognitive states and operations performed upon them. This points up
not a theoretical failing of ICS but rather ils inability in its present form of beiug
expressed in a formal notalion similar to that used on the sysiem side. More
recent work by Barnard and Harrison [22] has concentrated on providing a uniform
description of both user and system model structures.

There is a stronger similarity between the interaction modellmg framework and
the refilement of our own framework introduced in Section 2.2. In that section,
we begin to formalize the concepts of the interaction framework. Our refined inter-
action framework will address directly the problem discussed above of the linking
work done by Fiulay et al., because we will provide a common notatien for hoth
the user and system meodels. Whal would remain is to express a cognitive ruodel
such as {CS within that notation.

3.1.3 Black box models

A major difference belween how an interactive system is viewed hy a designer
as oppesed to a user is that the designer knows ahout the intricate detail of the
computer system and the user does not. A result. of this knowledge deficiency is that
the user attempis to formulate a model of liow the system works. This model is in
part determined by Lhe experience the nser has in interacting with the system. In
these inleractions, all that a nser will know about the system will come from all of
the perceivable information which the system presents. A principle of user-centred
design is that the designer ity lo match the user's perception of Lhe interaction.
This principle justifies 1o some extent why psychologists focus their analysis on only
that part of the system which is observable, since that is the only information that
the system pravides the user. But in attempting to thiuk as the user. it is often
hard for the designer to be divorced from the intricate system detail.

This knowledge discrepancy causes a problem with the principles of user-centred
design because the designer knows too much about how a system functions in order
to objectively judge such properties as predictability as the user would perceive

- therm. One solntion is to analyze the system by forgetting (temporarily) the internal
details. Essentially, a uscr views the computer system as a black boa, nolicing only
that which is presented as input to the system and that which is produced as the
effect inspired by the input. If the designer also adopted this hlack box view of the
system, then a fairer assessment of the interactive properties of the system could
then proceed,

A more important use of a black box modcl would precede a full specification
and implementation. In this case general domain-independent principles can be
used to guide the development. Dix et al.[32] show how such principles can be used
to guide the design of a small programming environment. Monk and Dix [113] use a
semi-formal black box madel to examine how action-effect rules can provide insight

3.1. OTHER INTERACTION FRAMEWORKS 25

iuto the application of general principles of predictability, simplicity, consistency
and reversibility within design.

As an aside, these approaches to specification and design suggest a revised
software lifecycle, as presented by Harrison [T1]. in which a model of interaclion, of
which a black box model is but one example, is used as a link from the requirements
phase to the specification phase.

requirements — inleraction model — speeification — implementetion

The votion of a black box is quite a coinmon one in software engineering and
system development; it appears under the narme of daia abstraction and the sbstract
data type [102] or information liiding [126]. It is also quite common in other sciences;
for example, the transfer function in control theory. The classic example of 2 black
box approach to interactive system analysis is the PIE model, first presented by
Dix and Runciman [54], and later greatly expounded upon by Dix {48, 49]. The
model cousiders user input to the system as coming from a set of programs P and
output as being from a set of effects E. The system is modelled as a black box
whose entire functionality is deseribed by an interpretation function i which takes
programs to their effects. [igure 3.3 shows the original PIE model.

1
P > K

Figure 3.3: The PIE model.

The simple PIE model can be refined to distinguish between two separate fea-
tures of the effect space-—the result and the display. The result deals with the
final end-product of the interaction between human and computer, whereas the
display deals with the intermediate and ephemeral aspects of the effects. Impor-
taut properties of the interaction can be characterized as relationships between
the display—which the user usually can perceive ditectly and continually—and the
resuit—which is of most impertance to the user bnt is not always directly nor
continually perceivable. Iu fact, one of the most common henristic guidelines for
interactive system design is termed WYSIWYG (“What you see is whal you get"),
which cau be deciphered as a comparison between the instantaneous display and
the end result of the interaction. Figure 3.4 depictls thbis refinement, aptly named
the red-PIE model. We will discuss the red-PIE model in more detail i1 Chapter 7.

An important feature of the PIE models is the flexibility of the eflect space as
given by this definition from Dix [48, p. 40]:

26 CHAPTER 3. BACKGROUND AND RELATED WORK

Fignre 3.4: The red-PIE modcl.

E - the effects space. The sel of all possible cffcets the systein can
have on the nser. This may be thought of in different ways, and
at different levels. For example. il may be regarded as the actual
display seen by the nser, or as the entire text of a document being
edited, perhaps even the entire stare of information available to
the vser.

The program set is also flexible. It may be regarded as the keystrokes and mousc
movetnents, or as mare abstract domain-specific aperations for the system or the
user. Within our interactiou framewark, this wauld mean tbat particular effect and
prograin spaces lie an a contiuuuin between Lhe System and the User, as depicted
in Figure 3.5. With such a llexible dcfinition of the effects and programs spaces,

Abstract P Abatract
Fyslem user

Figure 3.5: The effecls space of the PIE model within the interaction framewark.

it is possible to write many interactive properties and pitch them at varying levels
of geuerality. The statement of properties within the PIE model have increasing
psychological significance as both effects and programs move towards the User. Un-
fortuuately, the increased psychological significance is accompanied by a decreased
design significance, as the constrncts bear less of a resemblance to constructs which
can be represented in a real design.

3.1. OTHER INTERACTION FRAMEWORKS 27

There is a close connection hetweeu the PIE model and the simple agent model
defined in Section 2.2, We have defined the internal interpretation relation, I**,
which links sequences of stimulus events to achievable states. The sequences of
stimulus events are the basic constructs of the program set. The state description
of the agent is the definition of the effect set. Therefore, [**' is very similar to
the interpretation mapping of the PIE model. The importance of this connection
between the PIE model and agents is that we are able to incorporate all of the work
on PIE models which express interactive properties into our work with agents,
In Chapter 4, we will give examples of how some classes of abstract intcractive
properties first expressed in lerms of the PIE mode} can be expressed within the
agent model.

The PIE model demonstrates how a black box model can be used to formalize
interactive properties. It is imporlant to highlight some of the problems as well as
the advantages of the black box rmodel. The abstractness of a black box model has
several major advantages for use in iuteractive system design and analysis. It is
a very simple model that is uncluttered by the details of system implementation.
This makes it possible to express properties of interaction that are implementation
and domain independent. It can be represented mathematically, so the statements
of properties that it allows are precise and they provide a possibility for proof. As
shown by Mank and Dix [113] it can also be used as a semi-formal aid o design. An
initia! encroachment of valid psychological assumptions into the systemn modelling
practice can be achieved with the black box model. This marks the beginning of a
bridge between psychological theory and software engineering.

Most of the drawbacks of the black box model arise because it is so abstract.
Formal techniques have been eriticized for being too far removed from the practice
of software engineers designing real systems. The techniques that the black box
model present are not constructive, that is, they do not provide encugh support for
practising designers in going from an initial specification to an implementation. As
far as this criticism is concerned, the black box is a move in the wrong direction.
Nobody would waut to specily an entire system in terms of a PIE! And though a
black box model provides the ability to precisely express properties of interaction
at various levels, depending on the meaning altached to the effects space £, proof
of these properties in a real specification would be a nightmare. The black box
model has no way of managing the proof obligations of large specifications because
it makes no attempt to modularize the description, It is in order to address these
criticisrs that we provide the more coustructive theory of agents. We admit that
having provided a more coustructive theory we are stil] far away from providing a
compositional proof system as we would like. However, the refined agent model is
a move in the right direction.

But there are more serious psychological criticisms of the approach that un-
derlies models such as the PIE. A predictability property, which mathematically

28 CHAPTER 3 BACKGROUND AND RELATED WORK

states that the resull of future input to the system is determined by the current
effect preseuted to the user, claimns to capture a psychologically significant feature
of an interactive system at a very high level. But predictability is uol all that is
important for determining the usability of an interactive system. In Chapters 4
and 7, we will provide other examples of general inleractive properties relevant at
varying levels of detail as well, but the question remains as to whether a ‘complete’
set of principles extsts such that satisfaction of those principles guarantees a usable
system. Our formalisms do not address this issue of completeness.

There is skepticism that the mathematically formulated properties capture the
intent of their psychological cousins. This is a general criticismm concerning re-
quirements capture. Dix and Harrison {51] speak about the ‘formality gap’ that
exists hetween requiremnent, usually couched in natural language terms, and for-
mal specification, expressed using mathemalics, The purpose of the interaction
models, such as a black box nodel like the PIE, is Lo partially bridge this gap by
allowing a formalism specifically geared towards psychological or HCI issues that
may anse in the requirements. But the important point is that the formality gap
can never be fully bridged because there will always be a translation from natural
language to the formalism. This then demands that the translation be made as
readily understandable as possible to the one who must verify its correclness. Since
someone with psychological insight would best be snited to verify psychelogically
grounded requirements for usability, the interaction models must be geared to their
underslanding.

The black box model assumes that the relevant properties for interactive design
can be expressed from first principles for any system. This assumption is reinforced
by the placement of the interaclion modelling component in the revised lifecycle
mentioned above. There are two criticisms of Lhis assumption. First, some believe
as Carroll and Rosson [36] that design is essentially empirical ‘not because we don’t
know enough yet, but becanse in a design domain we can never know enough.’
Another somewhat related issue is that expressing general and abstract properties
at a high level of design assumes there are features of anr interactive system which
can be factored out in delermining the system’s usability. Carroll criticizes this
view by noting, along with others, that there is potentially ‘infinite detail’ at many
levels of description in an interactive system, all of which plays a critical role in
determining the usability of the system {35]. These views should not be considered
a refutation of the value of a formal ‘get it right the first time’ approach. Rather,
they should be cousidered as a warning that a formal approach alone is not. sufficient
for the design of usable interactive systems and it should be complemented by other
techniques, such as rapid prototyping and empirical evaluation {7].

There are those who believe that an iteralive approach to design with fast and
casy prototyping is the only way to create usable systems. Lewis classifies these
people in the “process is paramount” category of his partlitioning of HCI researchers

3.1. OTHER INTERACTION FRAMEWORKS 29

[L01]. However, initial design decisions (step 0 in the iterative approach) greatly
affect the final result and the number of iterations necessary to get there. So it is
advocated that some semi-forial reasoning be available to the designer in order to
make good first guesses at the design based on certain general principies.! A black
box model of interaction can aliow greater confidence in initial design decisions
because the properties it best supports are very general and most easily dealt with
at an abstract level, which is where most design begins. And placed in 3 more
formal design process, the assurances of step (design decisions can be made with
greater confidence.

In suminary, the importance of the PIE model is in its bridging of the ‘psy-
chological gap’ in HCI The PIE model formed the initial inspiration for the work
by Sufrin and He [158] in describing interactive processes in a formal notation for
subsequent analysis. This work in turn inspired the agent theory of this thesis.
Barnard and Harrison's arguments motivating an interaction modelling framework
suggests that there is no existing model of the interface and that all medelling
techniques should fit squarely into either category of system or user model. We
guestiou that assumption, since the black box model directly discusses the model
of the interface, though it does not go so far as to propose one interaction state,
preferring instead to allow levels of abstraction between the system and the user,
all of which represent some kind of interface. The very notion of an interaction
state runs counter to the intention of the black box model because it is precisely
the abstraction away from nunderlying state that produces the black box.

3.1.4 Software architectural models

The emphasis in this thesis is on the incorporation of psychologically valid claims
about human-computer interaction into the design of interactive systems, by means
of a formal approach. There is, however, another way to incorporate psychological
principles into design, and it is by far a more common apptoach. That would be by
a heuristic approach in which reasoning based on experience and empirical evidence
drives the common sense applied in the design process. Figure 3.6 demonstrates
the different reascning directions one can take in applying psychological knowledge
of HCI issues to the design of interactive systems.

We assume that both formal and informal advocates have aceess to the same
body of psychological knowledge ahout human-computer interaction. This knowl-
edge embodies information which describes what is meant by effective interaction
between user and system. The advocates of formal methods try to capture this
information in the same mathematical langnage which is used to describe the sys-
tem. The aim of this activity is to produce a mathematically constructed usable

!Lewis also makes this point, but adds that “process is paramount” people doubt the contri-
bulions that formal models can provide in attaining best first guesses.

30 CHAPTER 3. BACKGROUND AND RELATED WORK

tormal reasoning

x> I0

Formal
Methods

? better dasign practices

RS Y

Sysiemn
Archilectures

Psychelogical
nowledga ol
HCI

hauristic reasening

=
N

Interactive
syslemns

Figure 3.6: Heuristic versus formal reasoning within HCI

system which can then be refincd into an executable version which preserves the
usability properties. The greater majority of researchers and practitioners, take
a far more pragmatic approach. They use common sense in reasoning backwards
from the myriad of examples of interaclive systems to arrive at abstractions from
design that capture why it is that some systems are usahle and others are not. In
l.ewis' laxonomy, these are the “systems are paramount” researchers m HCIL

Some of the abstractions provided by pragmatists we classify as interactive
architeciures which are themselves expressions of frameworks for interaction. We
can further subdivide this class into two (somewhat overlapping) subclasses. One
subclass deals with the significant contributions of the User Interface Management
System. or UIMS. The other subclass deals with the more recent emergence of
multiagent architectures.

An important feature of both subclasses is that they are mainly concerned with

3.1. OTHER INTERACTION FRAMEWORKS 31

design of the user interface. Restriction to the details of the user interfice as-
sumes the existence of the underlying application. There is an enormous economic
argument in [avour of this approach because it recognizes that there are many com-
petent computerized systems in existence whose major failing is not in performing
functions relevant to its domain but in providing an interface through which users
can easily access that functionality. Interactive architectures have been developed
with the understanding that the user interface can and should be a separate module
of the interactive system. In practice, however, such a clean separation is not easy.
Nor is it clear that such a separation is wholly desirable,

We contrast this with the theme of this thesis, which is interactive system
development, We do not assume the existence of the underlying application in our
formal analysis. On the contrary, we depend upon a system core that bas been
properly and formally specified in accordance with a task analysis on the domain
of the application. This process ensures the possibility that nuser interaction, which
will have to occur through an interface mediatar, will be effective since the systemn
is designed to perlorm the tasks that the user will require, Despite the contrast
between our approach and thal of the restricted user interface design, there is still
good reason why we can consider it. User interface design can be viewed as a
proper subset of iuteractive system development. If we can assume the existence of
a system c¢ore which performs the tasks desired for the interactive system, then we
can proceed to the description of the user interface which should preserve the task
information it presents from the system to the user.

Unfortunately, the majority of existing systems do not adhere to our requirement
that they respect the output of a task analysis for their domain of application.
Recent work on the ESPRIT project FOCUS |58] has suggested the useof a back-
end management systemn whose purpose it is to impose a relevant task strnctnre
to existing applications for which a new user interface is desired. In theory, the
back-end manager will allow a principled design of the user interface, but there is
no clear indication that their development will always be more cost effective than
complete system development from the ground up.

The earliest work on user interface management systems dates hack to work by
Newman on the Reaction Handler [120], but it was not until many yeam later that
the term UIMS came into use [150]. A result of the Seeheim Workshop on User
Interface Management Systems was one of the first standardized architectures for
UIMS, called the Seeheim model [129], shown graphically in Figure 3.7.

The main parts of the UIMS are a presentation component, a dialogue cantroller
and an application interface. These roughly correspond to the lexical, syntactic
and semantic levels of Foley and van Dam's model [59}, which we call the language
maodel. The fourth unnamed box in the diagram recognizes that for proper semantic
feedback and efficiency reasons, it is sometimes necessary or desirable to circumvent
the dialogue component and provide direct application interface to presentation

32 CHAPTER 3 BACKGROUND AND RELATED WORK

Lexical Syntactic Semantic

. " Application
Iotended Presentation | . D3Mng -— 3| Interface |€——» Intended
Usex < 3 Composent |~ Contral 1 Modet Applicalion

]

Figure 3.7: The Seeheim model of a UIMS

rommunication. Figurc 3.8 shows how the language model fits within the interaction
framcwork. Thus we can see the the language model gives a more complete account
of the interface in our framework, but does not treat the user and system on an
cqual footing with the interface.

U

s

corm

RlIE JTTe

/"
\

Figure 3.8: The language model of TTIMS within the interaction {ramework

The Seeheim model has recently heen revised [23], as shown in Figure 3.9,
Lo include domain specific information and recognize the large nummber of toolkits
available for the design of interactive objects. This new model—referred to as either
the Arch or Slinky model—is intended to reflect the ability to capture domain
informaltion in interactive objecls that lie close to the user.

Oneol the drawbacks to a model such as the Seeheim model is that although it
does scparate tasks within the user interface to enhance portability, 1t does not pro-
vide fora modular approach to the development of each part. The designer is given
no aid to the structured development of a complex user interface by means of the
romposition of smaller and simpler interface modules, An additional model must be
superimposed on the Seeheim tnadel to facilitate a modular development scheme,

3.1. OTHER INTERACTION FRAMEWORKS 13

Dialogue
Domain .
Adapt Presentation

Domain

Al Interaction
Specific

Toolkit

Figure 3.9: The Arch/Slinky model

and many UIMS incorporate such a model for the development of each cemponent
in the UIMS. For example, Green discusses the use of recursive or augmented tran-
sition networks, BNF notation, and event handler notations as alternativenotations
for development of dialogue controllers [62). Various presentation device notations
exist, such as PGS and GKS, with which toolkits can be constructed forhandling
of logical input and output inechanisms. A more general notation based on the in-
put and output device spaces defined by Card ef al. could replace tbese [31]. Also,
the application interface can have its own notation, though its job as atranslator
from interface to application semantics strorgly urges a similar model to that used
to develop the application {if such a model exists!).

The apparent freedom of choice for models and notations within each component
in tbe UIMS model suggests another problem for the designer. One of the major
obligations of a user interface designer is to ensnre that the interface adequately
reflects the tasks of the application so that a user is free to interact with the task and
not with the jnterface. Whereas this chore is simplified by breaking the proof into
three stages representing semantic, syntactic and lexical correspondence between
application and physical interface, it is not clear that the job is at all simplified
by imposing very different madels at each layer. It is also argued that the strict
separation between layers in the Seeheim or language model doees not support. the
handling of semantic feedback [149]. Tt is for these reasons that some more recent
UIMS have utilized a siugle mode in which the various cornponents of the Seeheim
model or language model can be expressed. One such example is GWUIMS [150],
which is viewed as a UIMS based on the object-oriented model rather than an
object-oriented implementation of another UIMS model.

Models such as GWUIMS mark the move in our discussion toward the second
subclass of interactive architectures, namely muitiagent architectures. Multiagent

34 CHAPTER 3. BACKGROUND AND RELATED WORK

architeclures recognize that the key to bnilding complex interactive systems is by
use of a compositional model in which smaller, simpler modules can be created and
composed to form larger, more coinplex modules. We will only menlion some of
those in this thesis, namely GWUIMS, the MVC meodel for Smalltalk [61, 29, 96)
and Coutaz's own PAC model [39, 38, 40]. A somewhat rclated architecture has
been presented by Took, in which the interaction medium—the surface—is treated
as an independent agent with which both user and application interact {163, 162].
Like the language models, these multiagent architeclures recognize a separation
between presentation and applicalion, but there is no uniform argument in the
multiagent architectnre literature as to how this scparation should be done.

What separates these compositional multiagent models from the more gencral
compositional process models of software engineering is their emnphasis on the spe-
cial considerations of interaction in the inlended design. Que of the purposes of
the general agent model in this thesis is to demonsirale how a general and more
formal compositional model can be used to describe interactive architectures. Gur
conclnsion is that henristic and formal approaches to design are complementary and
a connection between these formerly distinct approaches is the key to an effective
design practice. This theme is continued in Chapter 8, in which we investigate the
connection between the formal agent model and multiagent architectures.

3.2 A survey of research within the framework

We will now use the interaction framework to provide a structured review of the
previous formal and informal research relevant to interactive system design. Sec-
tion 3.2.1 concentrates on work that has addressed the arficulation translation from
User to Inpul. In Section 3.2.2 we will culline the work done on the Quiput to User
translation (observation). Section 3.2.3 cliscusses work pertaining to the translation
from Imput lo System (performance) and from System to Oufput (presentation).
We combine the work on these two translations because most work on one of them
has been also applied to the other.

Much of the material in this section has been culled from state-of-the-art reviews
by Abowd et al.[6] and Abowd, Dix and Harrison [1] and in a tutorial on formal
methods in HCI by Harrison and Abowd [69]. Other good reviews on analytical
models have been prodnced by Reisner [134] and Butler et al. [30].

3.2.1 Research on articulation

The formalisms which address the translation from User to Input have been de-
veloped by either psychologisis or compnter scientists whose main interest is in
understanding user behaviour. Therefore, the emphasis in this work has been on
formulating some model of the user—a user model. By user model in this context

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 35

we mean the designer’s model of the user (see [122]), The user model is then ana-
lyzed to describe features of the interaction. This may iuvolve either an additional
description of the inpnt (as in Kieras and Polson’s CCT) or stmply be done by
nsing the input description as the user model (as is done in Reisner’s use of the
BNF notation}. A useful summary of these formalisms may be found in the paper
by Green, Schiele and Payne [63] who classify them in respect to how well they
describe the competence and performance of the user. A lask or goal is basic to
both approaches. Iu practice all the notations that deal with competence and per-
formance incorporate aspects of both to a greater or lesser degree. Quoting from
Simeon [151]):

Competence models lend to be ones that can predict legal hehavieur
sequences but generally do this without reference to whether they could
actually be executed by users. [n contrast, performance models not
only describe what the necessary behaviour sequences are but usually
describe botl what the user necds to know and how this is employed in
actual task execution.

Simon goes on to classify these notations {(and cognitive models in general)
in a 3-dimensional space, representing various trade-offs made by their designers.
We cboose a simpler classification here, partitioning the formalism into iwo main
categories:

e hierarchical representations of the user’s task and goal structure; and

» descriptions of the dialogue as a language, or formal grammar.

Goals, Operations, Methods and Selection {(GOMS)

Tlie best exarnple of the hierarclical representations is the Goals, Operatons, Meth-
ods, and Selection notation ((FOMS). based on the Mode] Human Processor and
Keystroke-Level model presented by Card, Moran and Newell [32). This assumes
the user has a hierarchical decomposition of goals into subgoals. The goal decom-
position may be deterministic or may uvolve choice among different strategies for
achieving the goal. At the leaves of the resulting goal tree are the basic operations
that the user carries out to achieve the lowesl level subgoals. Granmlirity of the
resulting analysis is given by these basic operations. So for exampleat a coarse
level edit-document may be regarded as basic, whereas for finer grained analysis
press-cursor-up-key may be terminal. Analysis of the goal structure provides
measures for determining user performance. For example, the stacking depth of
subgoals can indicate short terni memory requirernents. The models of the users’
mental processes implied by GOMS are very idealized and do not apply to error
conditions that will arise in the attempt to satisfy goals.

36 CHAPTER 3 BACKGROUND AND RELATED WORK

Formal grammars

Representative of the linguistic approach is Reisner's use of BNF notation to de-
scribe the dialogue between user and system as a formal grammar [133, 135, 134].
This views the dialogue at a purely syntactic level, ignoring the semantics of tbe
langnage. Typically, grammar rules ignore computer cutput and the emphasis for
analysis 15 on the complexity of the input. There are well known techniques [or
analysing the complexity of grammars, and these can be used to give & crude mea-
surc of the difficulty of a dialogue, however the interpretation of such measures is
severely complicated by such things as familiarity with (perhaps complex) gram-
maticalforms, clear mnode changes etc. Others have used state transitions diagrams,
most notably Jacab (89, 88], and added actions to grammar rules. which iuclude
output among the grammar’s terminals.

Task Action Grammar (TAG)

Payne and Green have developed a notation called Task Action Grammar (TAG)
(127, 128, 142] to describe the consistency of the inpnt language by describing the
user’s task structure and the action sequences that accomplish those tasks. The
task structure description conforms with the hierarchical goal structure of GOMS.
The central role of the task in this formalism is at the expense of attention to the
user. The view of the user is just as the goal structure; no consideration is given
1o how that structure may be modified hy the results of previous interactions as
observed in the output,

TAG nses parameterised grammar rules to empliasise consistency and world
knowledge (e.g., up is the oppasite of down). For example, assume the following is
an adequate description of the user’s knowledge of how to draw a graphic object,
such as a rectangle, in Apple MacDraw, as shown below.

select rectangle tool then
place mouse at one corner of the desired rectangle then
depress button then
drag to opposite corner then

release bulton.

This is represented in the TAG notation by means of task production rules. The
use of semantic features such as objectiype allows a more general description of
the task by use of user-relevant attributes, similar to the psychological attributes
discussed in Chapter 2. The [ollowing is a TAG schema rule description of tbe task
lor drawing a rectangle or square (a square is a constrained rectangle).

task[effect = add, objecltype = reclangle,
constraint = any, selecllool = any] =
selecttool[objecttype = rectangle] + draw|constraint]

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 37

draw[consiraint = yes] =
press SHIFT + place mouse . ..

draw[constraint = no] :=
place mouse . ..

Within this claimed meantal representation of the system it then becomes pos-
sible to analyse notions of consistency. Since a square is just a constrained form
of a rectangle, its creation should be consistent, or similar to, the creation of a
rectangle. This is captured above in the first task production rule by means of
the any value for the semantic feature constraint. Heuce, a desired consistency is
captured by the generic task description. Here ronsistency is related to the user’s
understanding. Consegneutly, there are clear design implications. What TAG does
not attempt is to provide any linkage between appropriate task action grammars
and possible designs.

Recent developments of the notation (by Howes and Payne (83]) include at-
tempts to make good some of the [imitations of TAG, in particular to include display
information and flow information {no state is implied by TAG). A pessimistic view
of these developments is 1that they make an already cumbersome notation worse.
The possibility of develeping informative nofions of consistency becomes even more
remote. Although this notion is purported to be a competence formalism [63], it is
clear that the breakdown of the task into action also has performance implications,
Attempts to scale TAG to substantial applications have not been satisfactory {see
for example Schiele and Green [142]).

Despite these criticisms, the methodology of TAG is extremely impottant when
considering the link between psychological and computational HCI research, The
semantic features that arc the hasis for TAG schemas are based on empirical evi-
dence of how users perceive the tasks they perform and the interfaces with which
they interact. We will take this identification of task information from the uset’s
perspective and use it as the fonndation for a uscr-centred design and analysis
method described in Chapters 7 and 8.

Command Language Grammar (CLG)

Taking the tead from linguistic theory and parsing, it is often suggested that sev-
eral levels of grammars ought to be used. Moran's Command Language Grammar
(CLG) 1114] is probably the most well known example of this. CLG uses four—
lexical, syntactic, semantic and task. It 15 more design oriented than mosl other
similar approaches, the task level being described first, obtained presumably from
a task analysis, then the semantic level, formalising the entities, before moving on
to the more concrete levels. Various rules are given for checking consislency within
and between the levels, although these are rather loose and incomplele. This ap-
proach comes closer to viewing the entire system as involved in the interaction

38 CHAPTER 3. BACKGROUND AND RELATED WORK

rather than just the surface dialogue. Unfortunately, it has been found unwieldy
to use in practice [148, 147|. and the uotation used is particularly arcane, locking
very much like LISP.

Cognitive Complexity Theory (CCT)

Cognilive Complezity Theory (CCT), first presented by Kieras and Polson [93])
combines the goal hierarchy and dialogue grammar approaches. It has two parallel
descriptions. User goals are expressed ay production rules a la GOMS. The system
gramrar is given by a generalized transition network (TN). The production rnles
are a sequence of rules of the form

if condition then action

where condition is a statement alout the contents ol working memory. If the con-
dition is true then the production is said to have fired. An action may consist of
one or more elementary actions. The user program is written In a LISP-like lan-
guage and generates actions at the keystroke level that have associated performance
characteristics. This user program can be execnted and assessed empirically and
analytically. In addition, mismatches between it and the system grammar can be
found and a dissonance measure produced. The GTNs which describe this system
grammar are in the form of diagrams representing the dialogne states with arcs
representing the possible transitions on user actions. The difference from simple
state transition diagrams is that the nodes may be hierarchically decomposed. This
system part of CCT conld be executed in the same way as a grammar to give a
crnde dialogue prototype.

Problems with goal structures aud grammars

The formation of the goal lierarchy is largely a post-hoc technique and tnns a
very real risk of being defined hy the dialogne ralher than the user. Knowles
[94] attempts to rectify this by producing a goal stzucture based on a pre-existing
mmanual procednre. She thus hopes to obtain a natural hierarchy. In addition,
she eritirizes the mechanical measures of complexity because they do not take mto
account issues snch as user knowledge.

In addition, as more display-oriented systems encourage less structured methods
for goal achievement. Instead of well defined plans, the user is seen as performing
a more exploratory task, recognizing [ruitful directions and backing out of others.
Typically, even when this exploratory style is nsed at one level we can see within it
and around it more goal-oriented methods. So for example, we might consider the
high level goal strneture below.

WRITE_LETTER ==> FIND_SIMILAR_LETTER + COPY_IT + EDIT_COPY

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 39

However, the task of finding a similar letter would be exploratory, searching through
folders and recognizing possible places may uot be well represented as a goal struc-
ture at all. Similarly, the actual editing would depend very much on non-planned
activilies. If we drop lo a Jower level again, goal hierarchies become more applica-
ble. For instance, during the editing stage we might have tbe following sub-dialogue
for deletiug a word.

delete.word = select.word + click.on.delete
select.word = move.mouse.to. werd. start + depress. mouse.builon
+move.mouse.lo.word.ead + release.mouse.button
click.on.delcte = more.mouse.to.delete.fcon + click. mouse.bulton

Thus goal hierarchies can partially cope with display oriented systems by appro-
priate choice of level, but {lie problerns do empliasize the prescriptive nature of the
cognitive models underlying them.

Gramnar techniques were initially developed to examine command-based and
keystrake dialogues. One problem in applying them Lo mouse driven window sys-
tems is determining tbe lowest level lexical structure. Pressing a cursor key is a rea-
sonable lexemie, but moving 4 mouse one pixel is less sensible. In addjtion, pointer
dialogues are more dependeut on the display. Clicking a cursor at a particular point
on the screen has a meaning depenlent on the current screen contents. This problem
can be partially resolved by regardiug operations such as select-regior-of-text
of click-on-quit-button as the terminals of the grammar. If this approach is
taken, the detailed mouse movements and parsing of mouse events in the context of
display information, such as meuubars, are abstracted away. This means that any
prototyping of the dialogue will be at a similarly abstract level or require “Wizard
of Oz” techniques to mock up the full interface.

Programmahle User Model (PUM)
Goal structures such as those provided by GOMS, TAG, CCT and CLG form rudi-

mentary user models, none of which are very good at haudling user eror. More
receut research hy Young et al. [173, 175] has investigated the possibilities of pro-
grammable user models (PUMs) which can more directly address the question of
error in order to further aid design of the interface. This research involves execiting
programs in the SOAR cognitive architecture (98] o perform seenarios—typical ex-
amples of user interaction with the machine-—to determine usability consequences of
a given system design for accomplishing given tasks. An advantage of this approach
over the others is that a detailed description of user procedures is not necessary.
Rather. a knowledge unalysis, embodying the user’s understanding of the function-
ality of the system from its intended interface, characterizes the possible behaviours
of the user. The executable cognitive architecture theu uses minimal problem solv-

40 CHAPTER 3. BACKGROUND AND RELATED WORK

ing techniques, familiar to the AI community, to highlight usability consequences
and possible behavionral errors which would result from a means-end analysis.
The PUM methodology rclies on levels of description, mueh like CCT and CLG.
Two levels of interest are the task level and the device level. The task level descrip-
tion is device independent, and problet solving in that space is usnally straight-
forward. Solutions determined al the task level are then mapped into the device
level, which is given by the knowledge analysis. The PUM provides a trace of user
actions at the device level and the goals that those actious satisfy. This trace of
user behaviour can be compared to the designer’s intended behaviour. A discrep-
ancy would indicate to the designer a possible problem that may need correction.
A simple and effective example in of this procedure in text editing is given in [173].

Graphical or diagrammatic approaches

A major criticism of formal technigues is that they are not accessible to the average
designer. On the principle that many people find graphical notations easier to use,
there have been many different notations proposed. Most of the hierarchical and
grammar notations can be given a graphical form. In addition, there are data-flow
diagrams, slate transition diagrams (of many flavours), Jackson System Develop-
ment (J5D) diagrams and simple flow diagrams. Diagrammatic notations are offen
used in conjunction with other nolations and may have automatic support. For in-
stauce, Marshall’s diagrammatic notation [105] {see below) links Harel statecharts
to VDM.

Sutcliffe [159] has nsed JSD process structure diagrams to describe tasks. He
then analyzes these in order to highlight possible problems such as memory limita-
tions (rather like GOMSs). Similarly Walsh et al[165] bave integrated task analysis
techniques with JSD. They poin! out that these notations are already heavily nsed
for the software developiment side, and therefore they form a common langnage.
JSD diagrams can be nsed quite simply as a model of the dialoguc, being a partic-
ular form of grammar.

Conclusions on arficulafion

This section has discussed Lhe diffcrent psychological and soft computer science
models of the User to Inpuf translations. All these approaches are still at the
research stage. However, the general idea that producing a description of how the
user 1s to accomplish expected tasks in parallel to the actual systern development
seems useful. It is generally agreed that the form of the modelling is uot nearly as
important as the discipline it enforces on the designer.

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 4]

3.2.2 Research on observation

In this section, we overview some of the analytical methods used to assess the trans-
lation from Cutpuf to User, the odservation translation in our framework. This is
perhaps the most imporiant translation as far as determining overall ysability of
an interactive system, and yet it is the most elusive. This is not surprising, since
at the very core of this analysis, we are Lrying to determine how individuals under-
stand that which they perceive. It is one thing to empirically test the perceptual
capabilities of an average nman user [112], and from that provide some model of
the user as an information gatherer, but it is far more to explain how that perceived
information is transformed into knowledge abont the surrounding world. This topic
is certainly beyond the scope of this thesis, but it is interesting to note that research
which has occurred in this area. Research in this area s now generally viewed as
the next major challenge [or psychological research in HCIL.

Most of the information on analytical models of perception has been taken from
the review done at the CHI'33 Workshop on Analytical Models [30], and therefore
our camments are very brief. A model not usually grouped with the analytical
models is Barnard's Interacting Cognitive Subsystemns (ICS) which we discuss here
becanse of its contrihution to visual processing and its apparent amenity witk the
agent model.

Display Analysis Program (DAP)

Tullis has produced a computer program, the Displey Analysis Program (DAP),
which takes as input the actval displays for a system aud produces & listing of
improvemnents that can be mmade in the design of the screen layout to improve the
time regnirement for location of specific text units on the display. His work ignores
the semantics and task structure of the display. He provides support for the variance
in locating textual units in terms of certain selected characteristics of the layout
and perceptual attributes that can be objectively assessed by a computer,

ANets

Just as CCT and other notations mentioned ahove use a two layer description of
goal structure and device structure to discuss the translation between the two, so
does Chechile’s approach to modelling comprehension of displays rely on a two level
description, one of real world knowledge and one of display knowledge. Each of these
descriptions are given in lerims of ANels, augmented forms of semantic networks.
The world knowledge network represents the users general knowledge about the
display format and the domain of the interactive application. This would comprise
knowledge about how concepts relevant in the domain {the psychological attributes
in our terminology) wouid be represented in the display {the display attributes).

42 CHAPTER 3. BACKGROUND AND RELATED WORK

The display knowledge represents information about actual displays as snapshaots
in the dynamic interaction.

Cognitive Environment Simulation (CES)

Roth el al. have developed a symbalic processing model of the inferencing and
evaluation procedures of nuclear power plant operators. The aim of the model
is to provide predictions of situations aud properties of the environment and the
information provided by an interactive systemn that will lead to errors in assessment
and intention formation. CES is an example of knowledge-based simulation models
of human performance whose objective is to explicitly present domain goals and
the knowledge necessary to support those goals. CES is not based on a cognitive
architecture, as ANets are.

Interacting Cognitive Subsystems (ICS)

Barnard attempts to incorporate two separate psychological traditions in describing
his cognitive architecture of Interacting Cognative Subsystems (JCS) (17, 18, 21].
One is the architectural and geueral-purpose information-pracessing approach of
Short Term Memory (STM) research. The other is the computational and rep-
reseutalional approach characteristic of psycholinguistic research and Al problem-
solving literature.

ICS provides an architecture for perception, cognition and action built up by
the coordinated activity of nine smaller subsystems, five comprising a peripheral
subsystem in contact with the physical world and four comprising a central subsys-
tem. Each of the uine subsystems is specialized for handling some aspect of external
or iuternal processing. For exainple, ane peripheral subsystem is the visual system
for deseribing what is scen in the world. An example of a central subsystem is
one for the processing of propositional information, capturing the atiributes and
identities of entities and their relatiouships with each other (a particular example
is that propesitional informatiou represents “‘knowing’ that a particular word has
four syllables, begins with ‘P’ and refers to an area in central London.”)

A suhsystern is described in teriny of its typed inputs and outputs along with
a rnemoty store for holding typed information and transformation functions for
processing the input and producing the output. So ICS can be seen to have a
natural description in terms of agents, but just how close the correspondence is
between the [CS subsystems and the agents presented iu this thesis is an interesting
questiou which, unfortunately, remaius open.

Though ICS is purported to provide a model of perception, cognition and action,
the typeof information it provides on the action side is not the same as provided by
the models for action described in our discussion of models for articulation above.
ICS is not intended to produce a description of the user in terms of sequences of

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 43

actions that are performed. ICS provides a more holistic view of the user as an in-
formation processing machine, The emphasis is in determining how easy particular
procedures of action sequences become as they are made more automatic within
the user. The lack of quantitative ontpnt from ICS makes it lese practical than the
other articulation models. However, ICS does provide competent and understand-
able analyses of how visual information is perceived and transformed by the user,
and this information provides substantial advice to designers wishing to enhance
the proceduralization of user behaviour, since proceduralized behaviour is assumed
to be less prone to error and, hence more effective.

The main purpose of [CS is not so much as a model for generating a description
of a user’s behaviour. as one views the purpose of 4 madel such as PUMS. Rather,
its purpose is as a classification method for the wealth of empirical psychological
evidence on user behaviour. Thus, we would expect ICS to perform better as a
ralionalization of user behaviour based on empirical evidence, whereas PUMS we
would expect to produce better predictive information.

Conclusions on observalion

Research on the translation from Qutput to User is not as progressed asresearch
on the translation from User to Input. This is perhaps due to a lack of empiri-
cally validated psychological theory concerning perception and understanding, or at
least a failure to apply those theories to questions of human-compnter inleraction.
Contributions from this research, however sparse, will bear a greal significance in
directing design of interactive systems.

3.2.3 Research on performance and presentation

Research in this section focnses on features of the interaction which are directly
aflected by the Sysfem and the interface (Jrput and Oulput). We have bundled
together the performance and presentolion translations becaunse most models de-
vised to deal wilh anec also deal with {he other. The work in this section fits along
a continuum from very abstract models (such as the PIE) to very constructive no-
tations (such as Alexander's SPI). We will try to present this review fron the more
abstract Lowards the constructive.

Extensions to the PIE model

We have already presented the PIE and red-PIE models in Section 3.1. In order to
study more specific arcas of interactive behaviour, further refinementsto the basic
maodel have been introduced.

44 CHAPTER 3. BACKGROUND AND RELATED WORK

Handle spaces

A client-server relationship is a common way to view the independent execution
of several programs (the clients) under one controlling program (the server). This
view can be readily extended to situatious in which a user plays the role of client
Of server,

An example of the user as client is seen in a multi-windowing system, where
different windows represent different tasks and so the user treats them as indepen-
dent inleractive systems. Each window can be treated as a red-PIE, and so the
multi-windowing system is represented as a collection of PIEs. The user is able
1o direct input Lo partieniar windows, i.e.. the uscr can select a window for input.
This selection can be modelled by giving each window as a red-PIE a hardle for
distingushing its input. Alternatively, there is au injective function from handles
to PIEs. The overall display and result functions will depend on the set of active
handles, or active windows, yielding a red-PIE description of the multi-windowing
system, Since we assume the uscr considers the separate windows as independeunt,
interference betweeu windows is uundesirable. We can therefore formulate a con-
sirainl on the collection of windaw PILs, called result independence by Dix, which
would ensure that the contribution from interaction with one window to the over-
all resull be separable from that of any other window. Handle spaces and resnlt
independence are dealt with in more detail by Dix aud Harrison. [a0, 48].

Situations in which the user is the client (and hence, there are inany users)
fall under the research theme of computer supported cooperative work (CSCW),
a topic which is outside the scope of ihis thesis. A formal methods approach to
CSCW has not yet beeu altempted, though we suspect that a treatrnent analogons
to handle spaces would be enlightening.

Nondeterminism

There are several notions of nondeterminism relevant to interactive systems. Non-
determinism arises from the loss of knowledge. either deliberate or not, of some
aspects of the whole system. The user. who for reasons of inexperience or a con-
scious decision to remain ignorant, does not know exactly what aspects of the
system determined its behavionr. It can arise that different situations which vi-
sually appear the same react differently to the same commands. So, for example,
in a graphical drawing package Lhe selection algorithm will take into account a
structural or temporal hicrarchy (into layers, perhaps) of the objects which may
not be fuly manifested in the visual presentation. If two objects appear to overlap
and the mouse cursor is placed in a location which is ‘covered’ by both objects, a
subsequent mouse click to selecl will choose one or the other object depending on
which is considered on top, or it may choose both, if the two objects have heen
grouped as one. The point is that there is usually no visual indication to aid the

3.2. A SURVEY OF RESEBARCH WITHIN THE FRAMEWORK 45

user in predicting the outcome of select; the algorithm is nondeterministic as far as
the user is concerned even though it may have a perfectly deterministic description
at some level of detail.

Dix has discussed this nondeterminism {47] in interactive systems and how it
can be modelled in a FIE. In Chapter 4 we extend Dix’s ideas in terms of agents
when we investigate this user noudeterminism with respect to predictability.

Temporal models

One featnre of an interaclive system which greatly affecls its perceived uvsabilily
is the avoidance of display Jag wherein the current display dees not adeguately
reflect the state of the systcin resulting from all prior user input. Dix [48, 49] has
discnssed display lag and whether it cau be avoided in any system. The conclusion
is that rather than chase the “myth of the infinitely fast” machine, HCI research
can concentrate on what it neans to make a system usable that wilt admit the
inevilable delays. A simple extension to the PIE mocdel in which a single null input
evenl is introduced ir the prograin language P leads to a definition of steady-state
kehaviour and the consequences on predictability of allowing buffered user input.
One of the mast important results of this work has been a formal representation of
the requirements that can be placed on a system which experiences display lag in
order to expose information that must be available to the user,

Levels of system description

As we explained in Section 3.1, a PIE analysis can be given at varyving levels of
abstraction. As Carroll has pointed oul [35] important interactive features become
apparent depending on the level of detail in the system description. Though we do
not adhere to Carroll’s further and fatalistic belief that there are an infinite number
of such levels—each of grave iinportance to the overall usability of a sysiem—and,
hence all attempts to model such properties will be hopelessly incomplete, it is
important to consider how the varying levels of detail can be related.

We can view the description of an iuteraclive systern as a collection of PIEs,
each representing the system at differeut level of abstraction and each capturing
relevant interactive properties along the way. The system description is completed
by providing mappings between the program spaces (parsers, as Dix calls them)
and effect spaces (projection or emnbeddiug mappings) of the various levels. The
result space will be associated to a more abstract level PIE as the coucrete level
PIEs usually deal with move immediate aud temporary features of theinteraction
{such as editing a command line or displaying a pop-up menu). Eath PIE will
contribute to tbe overall display. Figure 3.10 depicts these relationships in a two
level description.

46 CHarTER 3. BACKGROUND AND RELATED WORK

R

iabs
Pahs > Eahs » Dabs

parsel proj l
E

P con -

con

D

overall

g

D

<on

Y

con

Figure 3.10: Relationships between levels of PIEs

State display model

Another obvious way Lo separate into levels is by considering the interface sepa-
rately from the underlying system, as is suggested in the interaction framework.
Harrison and Dix have considered such a state display model [73] in an attempt to
formalize notions behind direct manipulatiou inter{faces. This mode] considers the
underlying system and the display as separate machines, similar to agents, The
link belween these machines is referred to as state displey conformance in which
operations performed on the display by the user are adequately mirrored by opera-
tions performed on the state. State display conformance can be used to assess the
quality of a graphical interface, as Ahowd, Dix and Harrison have shown {2]. The
theory of data refinement is close to that of state display conformance and we will
discuss this in terms of agent correspondence in Chapler 4.

Templates

One of the problems with system models is that although they describe interactive
behaviour they have no conception of how the user sees the system. We demonstrate
what we mean hy an example from [20] in the context of the predictability principle.
One way [53, 158, 9] of making a principle of predictability precise is to require that
if the effect of any twa input programs are the same, then no [uture experimentation
will betray any difference in effect between the systems. Viewing programs as
sequences of inputs, we can formalize this as below.

Ve g€ Poi(p)=i(q)=VrePeilpTry=i(g"r)

This notion stresses that the effect is sufficient to determine the equivalence of
distinct system states. From a nser’s point of view the fact that the two effects are

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 47

identical may not be sufficient. A stronger requirernent of predictability (which as
it happens may be too strong for any realistically complicated interactive system)
is that the equivalence of the effects will depend on Lhe user’s perception of whether
the effects are equivalent. If we regard the display as whatl the user perceives then
it may be more appropriate to define predictability as below.

¥p,g€ P o display{i(p)) = display(i(g)) > Vre Pei(pTr)=i{g"r)

This says that if the viewable effects are Lhe same, then the obtainable effects are
indistinguishable (though not necessarily visibly indistinguishable). By indistin-
guishable we mean that no experimentation by means of input r would betray a
difference.

We can go further than this and add structure to the model to incorporate claims
ahout, say, user attention. Certain components of the display ate more likely to be
noticed in making decisions about the pext action than others. Some parts of what
is seen of the system will be different in a way that is irrelevant to the future of the
application (e.g., more general system status infoermatiou and the time and date).

One way to add structure io the model is through the use of templates as
suggested by Harrison, Roast and Wright [74]. Instead of maintaiuing 2 single
display and result function, we can allow for many display and result mappings on
the effect space, each of which we will refer to as either a display template or a
resull template. It is beneficial to formulate properties of a design in terms of the
relationship between the ephemeral and immediate display and the end result. In
essence, that is precisely what the predictability property above is doing. Since we
have access to a result function in a red-PIE, it would probably be beneficial to
rewrite the abave predictability property including the result.

Yp, g€ P e display(i(p)) = display(i(q)) =
Yr € Peresult(i{(p ™ r)) = result(i(g " r))

This says that if the viewable effects are the same, then the obtainable end results
are indistinguishahle (though still not necessarily visibly indistinguishable).

The main use of templates by Harrison, Roast and Wright was in an investigation
of cyclic properties of a bibliographic database. A structure that is particularly
common in menu-based systems is a cycle. A main menu presents an initial set of
options, each leading to a dialogue sequence. The sequence affects some change in
the result only at its conclusion, when the main menu is redisplayed azd the cycle
is complete. Hence in the database, a select entry in the main menu will lead to
a cycle that resulls in the selection of a reference given a particular name or date
or source. Recognition of the cycle is especially useful 1o the designer if the user
understands and relies on 1t for effective interaction. 1t them becomes important
to ensure that some display template at the start and end of the cycle is clearly

48 CHAPTER 3. BACKGROUND AND RELATED WORK

significant to the nser and that whatever effect the systemn has on the associated
result template takes place at the end. The cycle is then, in some circnmstances, a
mirror of the task as it would apply in the nser model. Claims about the interaction
from a task point of view, perhaps the identification of possible error sitnations,
can then be formulated in terms of the cycle and experimentally observed through
evalnation ol actual use.

Templates are determined from empirical evidence, as were the semantic features
of TAG. The use of templates marks an initial encroachment of selid psychological
information into the system modeling compouent of HCIL. A more constructive view
of templates in terms of attributes is one of the 1nain reasons for a refinement of the
agent model in Chapter 3. Templates, therefore, form the basis for an interactive
design and analysis method described in Chapters T and 8.

Limitations and application of abstract models

The biggest danger of any formal approach is that the designer may attach meore
credence 1o it than it deserves. This is particularly trie of abstract models of the
sort described here. An unwary user of the techniques may believe that formal con-
sistency with some of the principles and models described above was syfficient for a
system lo be usable, The fallacy of this is obvious to anyone with an understanding
of HCI, but formalisms can be both seductive and blinding. It is therefore essential
to understand the limitations of the abstract techriques above.

Rather than being snfficient conditions for usability. the various formal state-
ments of principles tend to be nccessary conditions. A formalization of the familiar
slogan "what yon see is whal you get™ (WY¥SIWY() as done by Dix [48] and
Thimbleby [161] and Sufrin and He [138] says that it is possible to work out the
end result of a system by interactively examiniug it. This is essential if the system
i5 to be usable at all, but does not tell us how easy it is to work out the result,
or how visually and spatially faithful a representation of the result we see on the
screen. The latter of these probleins is perhaps easy for the designer to verify, and
mistakes will be obvions, hut the former requires a deep understanding of human
cognition that is unlikely to be formalizable to the same extent.

Some of the psychological issues are just bevond the scope of the medels, and
one cansimply note that even when the system has passed the formal tests, more
human centred analysis must be applied. Indeed, the introduction of templates was
specifically geared to marrying together the abstract principled approach with an
evaluative approach. In order to satisly the formal principle the designer would
have to give the relevant template fnnctions. These can then be wvalidated either
empirically or by a hnman factors specialist. Similarly. the strafegies by which the
user caninvestigate the sysiem state [48] are a form of nser program, and can thus be
validated against executable cognitive models. or again by direct evaluation. Often

3.2, A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 49

the simple fact that the operations and deductions that the user must perform have
been explicitly stated as part of the formal proof will be sufficient to see whether
they arc reasonable or not.

The other major non-formalisable part of the use of these models is deciding
which principles are applicable and desirable to a particular application, and also at
what degree of abstraction to apply them. A system may be understood at various
levels of abstraction, such as concrete keystrokes and mouse actions, syntactic units,
or semantic commands. The models can often be applied to the system at each
level. Some of the properties will be universally applicable to all systems at all
levels, but in general the designer will be more selective. So for instance, in a
command based operating system, one expects to have a total view of the current
command being edited, that is, it abeys a very strong visibility principle, However,
when tbe command is snbmitted (entering the carriage return key) the results of
it on the file system will be far less visible, usually requining explicit commands to
view files, directorics etc. Arguably, in this example, the semantic level could de
with being more visible too, but it is a design decision as to what degree of visibility
is required at which level.

In short, as with any method or model the domain of applicability of abstract
models must be born in mind when they are used or evaluated.

A further and related issue involves the refinement of one abstract level in order
to more closely approximate an executable system while still preserving the inter-
active properties. Having produced specifications that satisfy desirable properties,
there is no guarantee that the structures used in the specification designed to match
the user model will be well-suited to iinplementation

The major aim of the above models has been to define useful properties. There
is then the issuc of actvally building systems that satisfy them.

Having produced specifications that satisfy desirable properties, it is probable
that the specification structures designed Lo match the user model are very ill-suited
to implementation. This conflict will arise with any specification of interactive
systems. If a designer leans towards efficient impleimentation structures, then it is
likely that user requirements are badly defined, whereas if she leans towards the
user then iuefficient structures result. Hence the desire in this thesis to provide
a rore constructive approach via agents thal is at once amenable to the kind of
analysis of the abstract rnodels but also sympathetic to software engineering.

But our agents are certainly not the first constructive approach to the applica-
tion of formal methods i HCI, and we will review those now.

Dialogue specification

A problem with the use of general specification techniques is that they are too
general. The dialogue of the interaction will uot be separate in the notalion, instead

CHAPTER 3. BACKGROUND AND RELATED WoORK

h
=

it must be modelled. The dialogue eomponent may be packaged and used within the
standard notation, allowing the free mixture of interfacc and standard forms. This
gives maximum expressiveness, but at the cost of losing the dialogue/application
separation which is fregnently seen as desirable. Ir particular it makes it hard to
analyse the dialogue structure as a separate part of the system.

There have beeu various attempts to add dialogue specification components to
standard notations. These may be simply sugarings that are then translated into
the underlying notation to give them semantics, or have a separate level of semantics
given them. In either case, the actual concrete notation makes a clear separation
between the two styles of specification.

EPROL

Hekmatpour and Ince [79], for instance, have a separale user interface design com-
ponent in their wide-speetrum langunge EPROL. This interface component seems
rather disappointing however, being simply a teletype forms and menu description
snch as may be included with many data-base languages or fourth generation lan-
guages. The dialogue is apparently described entirely within the main specification
Janguage and may thns be easily obscured.

Statecharts and VDM

Marshall [105] has merged a graphical dialogue specification technique based on
Harel's statecharts [67, 68] with VDM, This includes standard constructs such as
sequence, choice and iteration in the dialogue, each terminal dialogue “box” is
related to a piece of VDM specification. She also suggests that the user’s actions
in this can be represented by a parallel diagrammatic/VDM description, but in her
examples this diagram consisls of a single hox, so the claim is not supported. This
exposes the fact that the diagrammatic notation does not support parallel activities
{such as multi-window dialogues). It would he quite easy to add such a construct
at the diagrammatic level, but the meaning when transtated into VDM semantics
would not be clear. The actual acceptance of input is handled by “shared” global
variables with the user “process” and is hardly clean. Another problem, is that each
piece of VDM works on global variables, making it difficult to trace the semantic
impact of particular user actions without analysing the pieces of VDM in detail,
which runs counter to the desires of dialogue separation.

A graphical notation has the considerable advantage that it is easier Lo com-
prehend initially. A disadvantage of a graphical nolation is that it is difficult te
formulate properties, or theorems, within a strictly graphical notation. Since our
work emphasizes the use of a formal notation for the precise expression of interac-
tive properiies that can then be used to analyze and develop an interactive system,
this latter disadvantage [ar outweighs the advantage of comprehensibility. It is a

3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 51

reasonable objective in the future to extend our agent model to include a graphical
representation.

SPI

Alexander [10, 11, 12] has designed an executable specification/prototyping lan-
guage around CSP and me-too called SFPI, {specilying and prototyping interac-
tiou). Me-too is an executable specification language based on VDM and imple-
mented uader several dialects of LISP. The CSP forms the dialogue specification
part, whereas the me-too supplies the sernantics. This is rather similar to the way
CCS and ACT-ONE are combined in LOTQS[87. 164].

SPI's dialogue compancnt is called eventCSP, it includes most CSP comstructs,
sequential action, choice, iteration, and most importantly parallel compesition.
The parallel composition makes il possible Lo express concepts such as the choice
between monse and keyboard input. The cxpression of choice is based on the oc-
currence of events and is thus more clear. It inherits drawbacks from CSP however,
such as the lack of direction in events, it is not evident iu the syntax whether an
event is due to external input, produces external output or is an internal synchro-
nisation between parallel processes. This can be confusing in dialogue design when
there is an obvious direction of control {low. However, the problem is largely miti-
gated for user 1/0 by the judicious choice of event names. It is thus eonly internal
cvents that remain confusing. The struciure of possible events is static w0o. This
would make it hard to deal with the dvnamic creation of windows for instance. This
lack of dynamie confignration (and related lack of parameterisation) is common to
many dialogue languages, it would be easy to add to most, but would typically
reduce the possibility of analysis of the dialogue structure.

The semantic part of SPI is called ezent/SL. Although it is based upon me-
too, it is intended 1o operate with various languages, in particular a C version is
available, The host language independent part consists of several elements: a clause
giving the global values needed for the event, a pre-condition expressing when the
event can occur, output and input parts. The host language part, simply describes
what updates to global values are possible. The globals used and updated are
made explicit and thus tracing the effecls of events is easier. It would be possible
to use other specification notations such as an algebraic notation or Z as the host
language, with a subsequent sacrifice in executability, a choice we consciously make
(at least initially) in designing the agent ianguage.

SPI has a prototyping tool for use when only the eventCSP dialogue description
has been produced. This allows the designer to examiue possible event traces.
Later full prototypes using the me-too version of eventISL or the C version can
be executed. One drawback with the implementations is that they do not offer
the full parallelism of the CSP. This is because the underlying languages they

52 CHarTER 3. BACKGROUND AND RELATED WORK

were built upon did not allow full multiplexed. non-blocking 1/0O. They fake the
nondelerminism as long as they can for internal events, but when one of several
choices of user input device are possible, the system makes an arbitrary choice.
Most versions of C on UNIX or PCs have system calls for non-blocking 1/0, so it
should be possible to rectify this, at the cost of some loss of portability.

Anderson’s work

Anderson has built on the claims of the PTE model with a more constructive re-
finement of it[14, 15]. He provides explictly an input language generated by a
context-free grammar, whereas the input language of the PIE model imposes no
such siructure on the dialogue, A state description is separated {rom the ontpnt,
with a meaning function mapping input constructs to state transitions and a dis-
play function mapping the resulting state to its oulpul. presentation. As such,
Anderson’s model contamns three of the components found in our own interaction
framework, though we represent both [npuf and Quiput as state machines and he
does not, The important contribution of Anderson's work is that he provides con-
crete examples of a system, a file browser. and translates the abstract properties
expressed as theorems on the specification and then proves their satisfaction.

Interactive processes in Z

The wark of this thesis is based on another constructive refinement of the PIE
model given by Sufrin and He’s description of lhe design, analysis and refinement
of iuteractive processes [158]. Ile [76, 77] and Josephs (92] independently gave
descriptious of a state-based version of CSP in which the events of the language
were coupled to transitions of an underlying state machine. Sufrin and He provided
the description of the state machine in the Z language and encapsulated a CSP-like
syntax within Z for the event specification. The importance of this work can be
seen in several ways.

The PIE model served as the motivation for the interactive processes. Oneof the
requirements for interactive processes was that they would be able to express the
same types of properties expressible with a PIE. Sufrin and He convincingly satisfied
this requirement, ultimately providing a very systematic and intriguing calegoriza-
tion of WYSIWYG-like properties in terms of the display and resnit mappings.
Qur own derivations of interactive properties ju Chaplers 4 and 7 are based on this
technigue. The link between the CSP and Z is similar to one suggested by SPl and
mentioned earlier, but this particular work showed more of the advantage of such
an approach by showing its use in formulating properties on the specification that
could then be the subject of proof and refinement.

Z is becoming increasingly familiar in both academic and industrial circles,
so the presentation of interactive processes in Z showed convincingly that HCI

3.3. CONCLUSIONS 53

concerns could be expressed in the language of software engineering, not s¢ much
as a separate and disparate module in development but as an integral component
with the software development lilecycle.

Conclusions on performance and presentation

An immediate conclusion arising from this review of system based work onformal
methods in HCT is that except for the Sufrin and He model, there has been litile
effort in the last four years on incorporating the abstract principles motivated by
the PIE model into a more concrete design practice. One aof the principal aims of
this thesis, therefore, is to investigate a further constructive formal method and its
links to interactive systemn design and analysis.

He and Josephs’ work on state-based ('SD* strongly suggests that the monolithic
presentation of interactive processes can aud should be made as compositional as
a process algebra allows. Outside of interactive system design, there has heen an
iucreasing interest in the development of model-oriented specification techniques
which more adequately address the modularization necessary for the desciiption of
large systems. In Chapter 6 we will discuss several of the attempts to extend the Z
notation to capture object-oriented technigqnes. The agent language developed in
this thesis is an altempt to address both the need for better modular specification
notations and also provide a fexible and consistent notation to express internal
state-based behaviour as well as exterual event-based behaviour. The resulting
notation will allow us lo formally express interactive properties at the task level.
This implies that the agent model can be used in an interactive design methed
which is linked to task analysis information.

3.3 Conclusions

We have seen how the interaction framework of Chapter 2 was influenced by pre-
existing general accouuts of the structure of interactive systems. The contribution
of the framewock is two-fold. It first provides a uniform language for deseribing
the three major components of an interactive system, the User, the System and
the mediating interface {in terms of mpui and Output). The vnified treatment of
these three components opens up the possibility for a cross-fertilization of research
on both the system side and user side of interactive system analysis and design.
The second contribution of the framework is that it provides contextfor research
in HCIL. Having completed this contextualization we can see where the work in this
thesis fits in the general scheme of interactive system analysis and design. We intend
to provide a constructive model of the System, Input and Output in terms of the
agent model and its associated language. This model will provide the means for
a compositional description of realistic interactive systems. We will concentrate in

54 CHAPTER 3. BACKGROUND AND RELATED WORK

our descriptions on revealing those features of the design which highlight properties
of the interactivn between the user and the system. In doing so, we will provide
formal accounts of existing interactive design heuristics which can lead to a more
principled design practice.

In the next chapter we will describe both formally and informally interactive
properties that are derived from the interaction framework. In order to relate
these properties to a design and analysis methodalogy, we will need to provide
greater detail on the structnre of agents in the refined model of Chapter 5. Having
refined the agent model, we will provide a desigu language for agents in Chapter 6
which matches more closely than the standard Z notation how a designer thinks of
describing an agent. In Chapters 7 and 8 we will link the refined agent model and
notation to a design methodology for generating descriptions of interactive systems
and analyzing existing system based on empirical evidence of how user’s understand
the tasks the system snpports.

Chapter 4

Properties of interactive systems:
Part 1

The purpese of this thesis is to provide 2 means for designing interactive systems
which can be analyzed with respect to desirable properties to enhance usability.
We liave established the contexi of this research iu the previous two chapters. In
this chapter we will investigate the kinds of properties which influence usability.

We present a catalogue of interactive properties, discussing each entry in terms
of the interaction framework and/or the simple agent model. This catalogue is
not intended to be complete in the sense that it lists every property of an inter-
active systemn ihat could possibly affect usahility. The artillery with which we are
equipped at this point is not powerful encugh and it is even doubtful thal such a
complete catalogue could be compiled. We first inspect the interaction framework
to uncover properties of the translations which affect overall usability. providing
examples within real syslems. The properties of interest for translations in the
framework concern the ease associated to the translation and the coverage of the
translation, and we can attempt to formalize those notions. Other interactive prop-
erties have becn discussed in the PIE model literature and the Sufrin and He model
which pertain to the relationship belween the Sysfem and the Input and Output
components of the framework. Assuming a compasitional model of the agent, which
we will define explicitly in Chapter 5, these properties can be defined over a single
agent,

Overview of chapter

In Section 4.1 we will give an iuformal account of properties of translalions within
the interaction {ramework. The intent of this informal section is to motivate how
the coverage and ease of a Lranslation affects usability. In Section 4.2, we begin
the formal treatment with the definition of a definedness ordering on translations.
Though this ordering directly addresses covcrage of a translation, we see jts use

50

56 CUHAPTER 4. PROPERTIES OF INTERACTIVE 5YSTEMS: Part I

mainly as the basis for a refinement ordering on the external behaviour of agents.
We do not pursue refinement of ageuts any further in this thesis. In Section 4.3, we
address the ease of a translation as a correspondence relation between agents similar
to treaiments of data refinement. The remaining sections of this chapter apply the
Sufrin and He methed for ¢lassifying interactive properties as relationships between
inpnt history and state or response history. We conclude the chapter by indicating
how the agent model mnst be altered to accommodate more salient descriptions of
interachive properties relating results and displays.

4.1 Properties of translations

Figure 2.3 depicts four separate {ranslations between the components of the inter-
action framework. Properties of those translations have consequences toward the
overall usability of the interactive system. In this section we will discuss gnalita-
tively how those translations affect usability before attempting to formalize prop-
erties of the translations in the next section.

4.1.1 Hutchins, Hollan and Norman distances

Hutchins, Hollan and Norman have used the execntion/evaluation cycle of interac-
tion as the basis for an inforinal understanding of direct manipulation [85). Crucial
to their qnalitative account of the ease of use that results from direct manipulation
interfaces are two notions of distance—semantic and erliculatory—both of which
are minimized in effective interactive systems. They classify input and output lan-
guages in the more general category of interface languages. Any expression within
an interface Janguage has both a meaning and a form. Semantic distance concerns
the translation between the user’s intentions and the meaning of the interface lan-
guage. [t is measured by the expressiveness (Is it possible to say what one wants to
say in this language?) and conciseness {Are simple task expressions translated into
complicated input expressions?) of the input language. The articulatory distance
is a measure of the correspondence between the meaning and the form. This can be
measured in terms of the link between the structure of the inpnt or output terms
and their intended meaning, For example, input 1o a graphical drawing package
will be assisted by gesture input with a mouse, or touch-sensitive screens will be
used to provide more natnral indicative jupnt {e.g., move that item to there). Mon-
itoring a variable in a process control system may be aided by output in the form
of a meter reading ar a continuous graph, iustead of a semantically equivalent table
of timestamped values.

The translation [rom user intention to user input is influenced by both the
semantic and articulatory distances associated with the input interface language,
as the user translates from the goal in the task language to the meaning of that goal

4.1 PROPERTIES OF TRANSLATIONS 57

and its subsequent form within the input interface language. Similarly, semantic
and articulatory distances aflect 1he translation {rom user-perceived system output
to user assessment. Semantic and articulatory distance measures are applied to the
execution as well as the evaluation phase of interaction. They attempt to answer
questions about the possibilities enabled by tbe translation and the ease of the
translation the user and the interface. Figure 4.1 portrays the Hutchins, Hollan
and Norman sense of articulatory and semantic distances within our interaction
framework.

distance

articulatory
dlsCance
task

interface interface
form meaning

Figure 4.1; Hutchins, Hollan and Norman's distance concepts within the isteraction
framework

Had Norman’s initial execution fevaluation cycle been more detailed on the sys-
tem side, it may have prompted Hutchins, Hollan aud Norman to have extended
the definition of articulatory and semauntic distance to the correspondence hetween
the system and the input and output lauguages of the interface.

Since Hutchins, Hollan and Norman have not provided a quantifiable metric to
these notions of articulatory and semautic distance, we feel uncomfortable referring
to them as distances. It 1s for this reason that we no longer refer to the descriptions

of properties on translations as distances, !

4.1.2 Articulation

The User's formulatiou of the desired task te achieve some goal needsio be antic-
ulated in the input language. The tasks are responses of the User and they need
to be translated to stimuli for the fupul. As pointed out above, this articulation

'In an earlier paper |3], qualilies allached to each translation in the {ramewark were referred
to as distances

58 CHAPTER 4. PROPERTIES OF INTERACTIVE 5YSTEMS: PART |

is judged in terms of the coverage from tasks to input and the relative ease with
which the translation can be accomplished. The task is phrased in terms of certain
psychological attributes that highlight the important features of the domain for
the User. If these psychological attributes map clearly onte the input language,
then articulation of the task will be made much simpler. An examiple of a poor
mapping that is common in our everyday lives occurs in a large roomn with overhead
lighting controlled by a bank of switches?. Many times it is desirable to control the
lighting such that only a certain section of the room is lit. We are then faced with
the puzzle of determining which switches control which lights. The consternation
resulting from repeated experimentations with the switches to achieve the desired
lighting effect can be traced to the difficulty of articulating a goal such as “Turn
on the lights in the front of the room” in the input lauguage, which consists of a
linear row of switclies which 1uay or may not be oriented in a manner suggestive of
their operation.

Examples iu which articulation affects the ease or possibility of interaction with a
computer systems are apparent as well. Much of the allure of virtual reality systems
is achieved by novel input devices, such as a data glove, which are specifically geared
toward easing articulation. Speech recognizers make it possible for disabled vsers
to input text when typing via a standard kevboard is impossible. Systems which
track the eyes of the user can make pointing tasks possible when input through a
mouse or {ouck are not possible.

4.1.3 Performance

At the next stage, the respenses of the Jnpu/ are translated to stimuli for the
System, Of interest in assessing this translation is whether the translated input
language can reach as many states of the System as is possible using the System
stimuli directly. This is similar to the notions of reachability defined by Dix and
Runciman (54, 48] in the PIE model. For exanple, the remote control units for
sorne compact disc players do not allow the user to turn the power off on the player
unit, hence the off state of the player cannot be reached using the remeote control’s
input language. On the panel of the compact disc player, however, there is usually
a button which controls the power. The ease with which this translation from
Input to System takes place is of less importance becanse the effort is not expended
by the user. However, there can be a real effort expended by the designer aud
programmer. In this case, the ease of the translation is viewed in terms of the cost
of implementation.

2This example comes caurtesy of Donald Norman [125]

4.1. PROPERTIES OF TRANSLATIONS 59

4.1.4 Presentation

Once a state transition has occurred within the System, the execution phase of
the interaction is complete and the evaluation phase begins. The new state of
the System must be communicated to the User, and this begins by translating
the System responses to the transition into stimuli {for the Clufpul component,
This presentation translation must preserve the relevant system attributes from the
domain in the limited expressiveness of the ontput devices. The ability to capture
the domain concepts of the System within the Quiput is a question of posibility
for this trarslation.

For example, while writing a paper with some word processing package, il is nec-
essary at times to see both the immediate surrounding text where ane is currently
composing, say the current paragraph, and a wider context. within the whole paper
that cannot be easily displayed on one screen (say the current chapter}. When
moving files between the directories in a hierarchically arranged file system, such
as Unix?, it is necessary for the user to know the current position in the directory
structure in order to use relative path names effectively.

The Information Visnalizer developed at Xerox PARC uses three dimensional
presentation techniqnes to provide more context in displaying hierarchicalinforma-
tion thal would not otherwise be possible in two dimensions [33, 138]. They give
the example of the display of the hierarchy of job positions in a large company.
A standard two dinensional display of such an organizational chart would be far
too large to display on a display screen. A thtee dimensional representation in the
form of a cone-tree allows the whole charl to appear on the display with a readable
portion on tap. The advantage of the cone-tree is that it more easily displays the
context within which a portior of 1he hierarchy is viewed. At all times it is possible
to trace the path along the hierarchy fromn a viewed portion to the root.

The importance of this translatlion is that differences between two Syslem states
be present in the Quiput. Hidden differences result in an increased burden an the
user who is trying to assess the result of previous inpul relative to a specific task
goal while also trying to predict the outcome of future interactions based on the
current output. Lack of ambignity between distinct System states and the Oulput is
al least a necessary condition for overall predictability and proper goal assessment.

4.1.5 Observation

Ultimately, the user must interpret the output to evalnate what has happened.
The response from the Qulpuf is translated to stimuli for the User which trigger
assessment. The observalion translation will address the ease and coverage of this
final translation. For example, it is difficult to tell the time accurately on an

3Unix is a registered trademark of AT&'T Laboratories,

60 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART 1

unmarked analogue clock, especially if it is not oriented properly. It is difficult in
a tly interface to determine the result of copying and moving files in a hierarchical
file system. Typesetting a report using one of the popular typeseiting programs
available today is made virtually impossible without some previewing facility which
allows rapid (and tree-saving) feedback to assess progress.

4.1.6 Assessing overall interaction

The interaction framework is presented as a means to judge the overall usability
of an eatire interactive system. In reality, all of the analysis that is snggested
by the ramework is dependent on the current task (or set of tasks) in which the
User isengaged. This is not surprising since it is only in attempting to perform a
particular task within some domain that we are able to determine if the tools we
use are adequate. In my own experience, I have found that different text editors
are better at different things. For a particular editing task, I choose the texi editor
that 1 believe is best suited for interaction relative to the task, The best editor,
if I am forced to choose ouly one, is the one that best suits the tasks that I most
frequently need to do. Therefore, it s not too disappointing tbat we cannot extend
the interaction analysis beyond the scope of a particular task.

A simple example of programming a VCR from a remote control shows that all
four translations in the interaction cycle can affect the overal! interaction. Ineffec-
tive interaction is indicated hy the user not being sure the VCR is set to record
properly. This could be because the user has pressed the keys on the remote control
unit in the wrong order; this can be classified as an articulatory problem. Or maybe
the VCR is able to record on any channel bnt the remote control lacks the ability
to select channels, indicating a coverage problem for the performanece translation.
It may be the case that the VCR display panel does not indicate that the program
has been set, a presentation problem. Or maybe the user does not interpret the
indication properly, an observational error. Any one or more of these deficiencies
would give rise to iveffective inLeraction.

Throughout this section, we have been referring to the two features of trans-
lations, the ease with which they happen and the possibilities or coverage they
provide. Witk overall interaction, we can make similar distinctions between the
ease of assessing the result of the previous interaction with the intended goal and
the ability to achieve that goal. Ii is desirable to make assessment as easy as pos-
sible. However, if attainment is difficult at the same time, then the user 15 forced
to traverse the interaclive cycle many times, and this is not desirable. The best
system would maximize ease of assessment and goal coverage.

More examples of how Lhe interaction framework can be used to assess the overall
effectiveness of interaction have been provided by Abowd and Beale [4, 5]. We will
move on now to show how coverage and ease of transiations can be formalized.

4.2. FORMAL PROPERTIES OF TRANSLATIONS 61

4.2 Formal properties of translations

A translation takes sequences of one language of events—the source language—
to sequences in another language of events—the target language. In the mterac-
tion framework, the translations of arficulalion, performance, presentation, and
observation each have their source and target languages fixed by some component.
We introduce the generic set of translations with fixed source and target langnages.

Trenslation[S, T == 8 « T

We refer to elements in the domain of a transiation as source elements and elements
in its range as targel elements. We can define properties of the translation relation
in terms of its possibility, coverage and ambiguily.

Possibility indicates how much of the sonrce language is trapslatable. A trans-
lation ! is saicl to be less partial than t' if every source element of t' is alsoa source
element of L. The source elements of a iranslation are exactly the doman of the
transiation, so possibility can be phrased as the lollowing predicate on domains:

dom ¢ C dom ¢.

Coverage indicates how much of the target language is expressible as a trans-
lation of source elements, A translation # is said to be more expressive than # if
every target element of ! 5 also a target element of {. The target elements of a
translation are exactly the range of the Lranslation. Coverage is therefore the same
as the level of surjectivily of the translation. This property can be phrased as the
following predicate on ranges:

rant’ C rant.

For a given translation, t, a source element can be translated into marny different
target elements. In that sense, the translation i1s ambiguous. If the translation is
unique for all source elements, then it is unambiguous. Two translations over the
same source and larget languages can be compared to determine if one is less
ambiguous Lhan the other. We say that ¢ is less ambignous than ' if every source
element of {* has fewer possible translations in {. We represent this as the following
predicale on image sets of source elements:

¥ es : (dom ' N dom ¢}

o t0{ es }D C £ es 1.

We can combine the properties of pessibility, coverage and ambignity to create
a partial ordering on translations which will give a comparative measure of defined-
ness {for translalions on fixed source and target languages. A translation ! is said to

62 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PantT |

be more defined than ', written ¢ moredefineds 7 ', iff ¢ provides more possible
translations of the source language, covers more of the target language and is less
ambiguous than ¢'.

moredefined : Trunslation[§, T] = Translalion[S, T}
! moredefined ' < (domt' C dom!

Arant’ Crani

AVYes:domt’

o t({ es }) C0{ es }D)

This relation is reflexive, autisymmetric and transitive, so maredefined;s 1) does
indeed induce a partial ordering on the translations between source language S
and target language T. This partial ordering relation is similar to a relational
generalization of Manna’s less-defined property of functions [104] which has beeu
discussed by Mili and Mili and Boudriga et «l. in their work on developing relational
heuristics to program refinement [108, 2G].

Definedness directly addresses the informal property of a translation’s coverage,
as discussed in Section 4.1. We can use this ordering as a comparative measure of
the agents whose external behavionr manifests some translatiou in the framework.
Everything else being the same, a morc defined translation is preferred. However,
the major use of such a definedness ordering is as a refinement ordering, which we
do not fully exploit in this thesis.

4.3 Correspondence between agents

Defineduess only indirectly addresses questions of ease of a translation. A more
direct approach is motivated by Hutchins, Hollan and Norman [85, p. 317-318):

In a system built on the model-world metaphor, the interface is itself a
world where the user can act, and which changes state in response to
user actions. The world of interest is explicitly represented and there is
nointermediary between user and world. Appropriate use of the model-
world metaphor can create the sensation in the user of acting upon the
vbjects of the task domain themselves, We call this aspect of directness
direct engagement,

The ease of a translation between components in the [ramework, therefore,
relies on a correspondence between their external stimnli and responses and the
internal states to which they are linked in their agent representations. We will now
investigate how to formalize such a correspondence between agents,

4.3. CORRESPONDENCE BETWEEN AGENTS 63

Correspondence concerns the relationship between the state and stimuli of two
agents. We assumne there is a relationship between the underlying state spaces of the
two agents and we investigate whether the operations that can be performedon one
agent are sufficiently mirrored as operations on the other agent, With respect to in-
teractive systems, a similar feature was introduced as state display conformance by
Harrisen and Dix [73] and has been further discussed by Abowd, Iiix and Harrison
[2] with respect to graphical interfaces. The notion of state display conformance is
very similar to the notion of data refinement (or data reification), which has been
treated by He et al. [78] and Coenen ef al, [37] in a general relational format. We
will use the ideas of data refinemeut in forming our definition of coerrespondence.

The purpose of data refinement is to characterize how the function of an ab-
stract description of a state machine can be adequately captured in a more concrete
representation. A concrete represeutation is supposed to he indistinguishable from
its abstract counterpart, in the seuse that an outside observer interacting with the
concrete represeutation cannot distinguish it from the akstract one. The concrete
representation is then a suitable simulation of the abstract [76, 170]. We are not
coucerned here wilh the ahstract-concrete refinement. Rather, we are concerned
with the relationship that exists hetween the System and the interface (Input along
with Output) of an interactive system. The ohserver in this case is the User, and
we want to stipulate that operations performed on the interface which the User
observes accurately reflect operations being performed on the System. In this sec-
tion, we will develop a formal definition of correspondence and in Chapter 7 we will
iuvestigate further its relevance to interactive systems.

We will describe correspondence as a constraint between two agents, say A and
B. Figure 4.2 gives a picture of the correspondence we intend to describe We want

€j-1 &
Agent A # ASH 3 AS[; ASi+l
s s e éI é E LN
H H]

AgentB =P BS .- BS -« BS"

1ri-1 trj

Figure 4.2: Agent correspondence

agent B to adequately mirror some functionality of agent A, i.e., we want operations
performed on A to be matched by operations performed on £. The matching is
done in terms of a given relationship which holds hetween the state descriptions of

64 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART |

A and B, and we will call this relation refrieve {of type B.states « A.states). This
relation determines [tom the state of B what the state of A should be, and it is
understood as the interpretation A can make of the state of B.

To define this correspondence, we begin hy asserting that the initial states of A
and B are related by the retrieve relation. Then for any state that A can attain
there must have been a way for B to attain a related state. And for any future
state that A can attain, B must be ahle to atiain a related state. Note that we
do not demand that at all times A and 8 are in related states. The transitions of
A are what determine the states that 3 must eventually attain, and not the other
way around.

The schema AgentCorr gives the formal definition motivated by the above de-
scription of correspondence.

AgentCorr
Agent!
Agent?
retricve : states? — states’

inits? x inits! C retrieve

Y(try,), (dm 7 tryysp) 2 Lghe

| (s1,585) € try g transform!

o Altry,s,), (try ™ 1,840 Ie':;n.ﬂ
| (s5,87) € lr)g transform?
o {(s1,55),(57,55)) C retrieve

We define correspond_ as a relation between agents indexed hy a retrieving relation
between their state sets. The pair of agents (D, R) is in correspond,, if agent R
corresponds to agent D as defined by the schema Agen!Corr with retrieving relation
ret.

correspond_ : (Stale & Stute) — (Agent «— Agent)

correspond,., = { AgentCorr
| retrieve = ret

e OAgent’ — 8Agent? }

We have given in this seclion a very coarse treatment of correspondence. In
Chapter 8 we will see how correspondence can be treated more constructively in the
refined agent model using templates. The purpose of the coustructive lreatment is
to formally link the empirical psychological evidence which identifies usefnl template
information with the heuristic motivation behind multiagent architectures.

4.4, PREDICTABILITY 65

4.4 Predictability

Users interact with any system in order to satisfy certain goals. Fundamental to
goal satisfaction is the ability to plan interaction which will achieve the goal. In a
graphic drawing package, the user may want to select one or more of a collection
of overlapping figures in order to perform some similar operations to them. In this
case it i3 necessary that the user be able to predict how to select the figures of inter-
est. Predictability is a property of interaction concerning the degree of confidence
with which a user can delermine the eflect snbsequent task execution will have
on the achieverment of the goal. Therefore, predictability is necessary for effective
interaction and is a crocial ineasuriug stick by which to gauge the usability of an
interactive system. (n the following, we will formalize how predictability can be
expressed on agents and characterize levels of predictability within the interaction
framework.

A formal treatment of predictability was first given with the PIE model by Dix
and Ronciman [34]. Predictability in the PIE model is defined by an unambiguous
interpretation function between programs aud effects. When two programs lead to
the same effect, then future experimentation will betray no difference between them.
Letting P represent the set of programs, E the effecls set and I the interpretation
function between programs and effects (F : P — EY), a predictable PIE satisfies the
following predicate.

Yo, qr: P I(p)=Tg)el{pTr)=1(g"r)

This says that the current effect is enough to predict future behaviour.

In terms of the agent model. predictability can be seen as an observable rela-
tionship between the stiznuli and responses. Based on the Sufrin and He approach
to classifying interactive properties as relationships between input histories and
state or response histories, we can model this predictability (and other interactive
properijes) within the simple agent model.

Viewing an agenl as another representation for a PIE, we can se: that the
sequences of stimnli are the programs and the history of responses are the effects.
From the definition of an agent we derived an external interpretation relation, I£*,
which provides a relationship between a program {sequence of stimuli) and the
resulling responses. [f™ is a relation, not a function, and so our formulation of
predictability is slightly more cumbersome than for the PIE model. One program
can produce more than one passible sequence of responses. Two different programs,
p and ¢, which yield the same possible responses are said to be externally eguivalent,

) i t
and we write this as p B q-

66 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART 1

_—: Agent — (seq Evenl ++ seq Event)

_ &, _ C (dom I{™) x {dom I™)

pEa e e = 17 ({9))

Programs that are initially externally equivalent may cease to be so after the
next stimulus event is received and the agent transforms itself and responds. If any
such experimentation on equivalent programs betrays no such difference, then the

programs are said to be externally indistinguishable, and we write p %'A q.

_— 1 Agent — (seq Fvent — seq Event}

— =4 - C (dom £§7} x {dom I{*)

ect exd
~

Ssq& VroseqEvent o (p 7T =4 (g

~

A predictable agent would be one in which all externally equivalent programs
are externally indistinguishable. Since it is trivially true that all externally indistiu-
guishable programs are externally equivalent (let 7 = { } in the definition above),

exl
predictable agents can be characterized by the equalily of the relations & 4 aud

exi
Predictable : P Agent
A € Predicteble & (L%,) =(_Z,4_)

=4

ln the same way that the PIE model can address varying levels of abstraction by
suitable definition of the program and eflects sets, we also can apply predictability
at different levels within the framework. Three levels naturally arise from the
framework, and we can investigate what predictability means at each of these levels.
Figure 4.3 depicts the various levels we will discnss.

At Lhe lowest level, we consider stimuli aud responses of the Systcm alone. Pre-
dictability at this level we call alyorithmic predictability. This is the simplest form
of predictability possible and it is a necessary condition for the remaining levels.
We assume that algorithmic predictability is satisfied so that all programs issued
to the Sysiem which are externally equivalent are also externally indistinguishable.

At the next level, we consider the physical interface. Predictability at this level
is perceivable predictability because it is here that contact with the User is possi-
ble. Perceivable predictability says that the information provided by the history
of Outpul responses is enough to determine how fnture programs received by the
Input wll affect the Output. It is therefore possible that the User could predict
the outcome of future input.

4.4. PREDICTABILITY 67

tagk

/ \ -

alkgonhme percewabie nisraciive

Figure 4.3: Levels of predictability

At the highest level. we move beyond the world of keystrokes and displays to
inelude how the User observes the Oulput and understands the Input. Inleractive
predictability means that Lhat which the User understands of the history of Oulpu?
responses is enough to determine the effect of fulure tasks. Many systems can
satisfy perceivable predictability and yet remaiu unusable because of the way the
Output responses are observed by the User.

One feature of the agent model which we rely on is its compositionality. This
will be further developed in Chapter 5. For now, we will assume that components of
the framework , which are defined as agents, and the {ranslations, which are external
descriptions of agents, can be composed to form more complex agents. If we combine
all of the components and translations of the interaction framework except for the
User we have a user’s model of the system, ar, more precisely, the designer's model
of the user’s model of the system, depicled in Fignre 4.4. The external interpretation

User's model

Is/\ U

-
cure\ / rasx

Figure 4.4: The user’s model of the system

68 CHAPTER 4. PROPERTIES OF INTERACTIVE S5YSTEMS: PART 1

rclation for this agent, which we refer to as f§%,. .. relates information at
the level of how fnput stimnli and Quiput response are nnderstood by the User.
Hutchins, Hollan and Norman refer to this level of information as the meaning of
the input and oulput interface languages[85].

A colloquial expression for this interactive predictability would be

What you have done up Lo now determines whal you will see from now
on.

There are two separate aspects of this statement to consider, what is seen aud what
is remembered. I, o4 Mmakes explicit the assumptions about what is seen and
how the /ser understands the responses from the Quiput. For example, when using
a calculator, it may be a safe assumption that nnmbers displayed are interpreted
in base 10, so imagine the surprise and consternation when the user enters 9+4 and
gets back the response D! What is remembered is important because sometimes the
order of stimuli and responses contaius information crucial for predictability. For
example, in an interactive drawing package, the order in which overlapping objects
arc crealed can determine the effect of clicking the mouse button to select objects
when the selection cursor is located in the overlapping region.

Predictability as defined above assumes both perfect memory aud equivalence
over the entire history of the interaction. This is not salisfactory since users for-
get and similarity of future responses does not depend on exact similanty of past
responses. Predictability is a feature of an interactive system which enhances the
interaclion. Formalizing what it means to be predictable highlights the cost assaci-
ated in order to realize the benefits of prediclability. Qur earlier definition has toa
high a cost, and so we would like to iuvestigate ways of reducing that cost. One
way to reduce the cost is by revising the definition of equalily so that it is not over
enlire response histories bnt over some subset and only on particular attributes
associated with the responses as well.

4.5 Nondeterminism

Predictability only cousidered the external behavionr of an agent. The responses
from an agent occur after the state transition fired by the stimnlus. There is more
information available at the state level than at the response level. We can apply
the method used for predictability on responses to formalize an internal version
of predictability. The internal interpretation relation. f}*' relates programs to the
paossible states the agent can be in after participating in the program. Internally
equivalent programs result in the same possible states. Internally indistinguishable

programs will betray no state difference.

4.5. NONDETERMINISM 69

it

o~
.,

md

_~=__: Agent — (seq Event « seq Frent)

i

_ay _ € {dom /) x (dom I™)

ind

_=4 - C (dom ") x (dom I{*)

iar .
p®a g o 0N = el
113 L Imd
? Et,, g VriseqFrente (p T r) =, (g7)

A deterministic system is internally predictable, so that internally equivalent
programs are also intemally indistinguishable.

Deterministic : P Agent
A € Determunishe & (_ :"-‘t"!,q)= (_mEr,q -)
The state holds enough information to determine future internal behaviour.

We have modelled the behaviour of an agent as a relation which reflects two
types of nondeterminism—1irue randomness or ‘don’t care’ nondeterminism. True
randomness is very rare in computers. ‘Don’t care’ nondeterminism comes [rom
abstracting away details that will be present in any implementation bul da not
matter for the purpose of the current description. Don’t care nendeterminism js
very common and encouraged in abstract specification. It is the main reason we
have modelled behaviour as a relation rather than as a function. The delinition of
deterministic above essentiallv rules out internal randomness. It does not rule out
nondeterminism that arises from abstraction.

Another form of nondeterminism arises from how the user perceives the systemn.
To a naive user even the simplest of interactive systems is nondeterministic. An
example used by Dix [48, 19] and Thimblehy [161] is of a prifne nnmber gener-
ator. Even though the algorithin for deriving the sequence of increasmg primes
is deterministic, if the user does not know that the system i1s produciag primes,
the sequence 2,3,5,7,11,... may appear somewhat random. It is only through
experience interacting with the system that the user can begin to understand its
deterministic functionalily. And this user-perceived nondeterminism arses natn-
rally even for an expert, as uncertainty about the past interactiou history leads to
uncerfainty of the current state. Therefore, even though an agent’s behaviour may
satisfy the definition of deterministic above, it can still seem nondeterministic to
its cbserver.

Equivalence was based on all state information. Only part of tbe state informa-
tion may be important for a given task, and so we may want to analyze whether the
agent was deterministic relative to that part of the state. To do this, we will need a
way to highlight specific information about the state, The simple agent model does

70 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I

not allow us to constructively define such a restricted view, and so we define the
state of the refined agent model iu Chapter 5 in terms of attribute-value mappings.
Then in Chapter 7, we define restrictions on agents by means of templates, which
are simply formed as subsets of the agent’s state attributes,

4.6 Synthesis

Fredictability assumes that the user has some knowledge of how the system works,
i.e., that the user has internalized a model of how the system works. Expert users
will have a more complete internalized madel than novices, which reflects their
greater experience. Most nsers, expert or novice, will continually be presented with
sitnations which are uew to them and for which their model is not able to provide
enough informatiou to predicl future outeomes of subsequent input. In these cases,
the user will experiment with the system by offering some input and trying to
detect the effects which result, hence building np more iuformation in their owu
model. We call this process of internaliziug input-output relationships synthesis,
Synthesis is complementary to predictability. A predictable system is one in which
it would be possible for the user to internalize a model that would be of benefit
to future interaction. Predictability is doue by reasoning forward in time based an
information available at present. Synthesis iuvolves reasoning back in Lime ju order
to deterinine how the present informaliou was achieved from the past. Figure 4.5
shows how predictability and synthesis relate to the interaction framework.

gadod
cetd AR L e, <<<<‘_c
T i
synthesis

£ IIIIIFI B
L5 T D
it P33 5
'
0,

3
&7
A

A
A8 U
N
~

core Lask
Y
LN
MR

& Predictability
%
‘L
BT 228
<. <L
Dy N R T Y

"y, s
»’*=>>>>>>>>>>>>>>>7"77,7
Figure 4.5: Predictability and synthesis
The observer of au ageut only has access to the stimulus-response behaviour

of the agent. Since the stinuli cause state transitions which in turn determine
the responses, effeclive synthesis depends on changes to the underlying state being

4.7. CONSISTENCY 71

reflected in the responses. If a program changes the underlying state, then the
subsequent responses should indicate this. In order for the observer to have the
chance of correctly synthesizing the effect of the previous input, the response should
occur before any other changes are made to the internal state. An honest agent
will satisly the property that externally equivalent programs are also internally
equivalent. A weaker property would only require that externally indistinguishable
programs be internally equivalent; such agents are deemed (rustworthy®.

Honest, Trustworthy : P Agent

gt
A€ Homest &> _ %, _C_%, _

1ad

exrd
A€ Trustwsrthy & _ =, _C._ =, .

A good example of the difference between honesty and trustworthiness can be
seen with search and replace facilities in most text editors. A single search for a
string of text followed by the replacement with another siriag of text iz honest,
for the replaced text is usually displayed on screen right where the old lext was
focated. Most global search and replace facilities do not display all of the changes
made, leaving the user to confirm the changes made by subsequent hrowsing of the
text. Global facilities such as this can only ever be as good as trustworthy.

4.7 Consistency

Consistency is prominent in the HCI and ergoromic literature [113, 142]. It is put
forth as a cause for increased learnability of a system [142, 93, 32|. In reading dif-
ferent accounts of consistency, there is clearly a debate about what exactlyis meant
by consistent at the psychological level {witness, for example the debate on consis-
tency between Grudin [64] and Reisner [136]). Such informal arguments highlight
even more the importance of a formal framework in which different formulations of
consistency can be comnpared and contrasted.

As an example of how we can formalize consistency, we will Lake a simple def-
mition. Qur informal definition of consistency is that the same inpul in similar
situations has similar effects. This is a generalization of predictability in which the
same input in the same situation has the same effect. The criteria for deciding
similarity are crucial, just as the criteria for equivalence were for predictability.
And as was done for predictability, we can discuss consistency internally and ex-
ternally. Consistency of an agent is defined with respect to the similarity ¢riterion,

4Sufrin and He originally used the names honesl and irustworthy to apply te individual pro-
grams which satisly condilions somewhal similar Lo those described here. Their definition, how-
ever, demanded that programs which were not indistinguishable internally were either not equiv-
alent. (Tor honesty)} or nat indistinguishable {for Lrustworthy) exteznally.

72 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I

which is modelled as an equivalence relation. Internal consistency depends on a
similarity relation, say ~, which is an equivalence relation on the states of the
agent. The state transition refation associated to any program must then respect
the equivalence classes of ~.

IntConsistent : P{Agent x (State — State))

(A, ~) € IntConsisten! &
(equivalence(~)
A~ C A.states x A.slales
AY p:seq Event; EL, E2: classes(~)
e FEl < (lransformErtend p) C E2

A similar definition applies for external consislency, with the only difference
being that the similarity relation is defined on the histories of responses for the
agent, The interesting question to ask now is whether for an extermnally consistent
agent 4 with respect {o response similarity criterion ~, is there a corresponding
state similarity criteriou ~’ such that A is internally consistent with respect to
~'? Within the interaction framework, it would be possible for the User to detect
the external consisteucy of the interface and it would be useful if that consistency
mapped down to some consistency internal to the System which related to the
domain of applicatiou. Likewise, the U/ser may rely on some internal consistency
of the System which would then be expected to be manifested externally at the
interface.

Whereas this definition of consistency is simpie to express, we must exercise
caution in understauding what it actually is saying. First of all, we had to assume
that there was a way to partition the state or responses by some nont rivial similarity
criterion. And we assume that this similarity criterion is relevant to the observer
for external consistency. If such similarity criteria exist, then an advantage of this
definition of consistency is that it is cumulative. By this we mean that if we have
two similarity criteria then their conjunction is also a similarity criterion {though
there again is no guarantee that it will be relevant to the observer). Therefore,
consistency as we have defined it also has many levels of applicatiou. A word of
caution. however, since compounded equivalence relations will tend to have many
more and smaller equivalence classes, until the compounded similarity criterion
gives no more information than the trivial one,

Ancther possible disadvantage of this definition 1s its application to all possible
programs. [t seems more realistic lo assume that consistency properties will be
relevant for subsets of programs. Finally, consistency is defined with respect to the
similarity eriteria. Therefore, an agent consistent by one similarity criterion may
be iuconsistent by another, suggesting a trade-off to be made during design.

We have only cousidered one formalization of consistency here. An obvious
other consistency notion would have similar input in the same situation resulting

4. 8. CONCLUSIONS 73

in similar behaviour, but we have not investigated this possibility yet.

4.8 Conclusions

Iu this chapter we have provided both qualitative and quantitative evidence for
properties of interactive system which enhance the interaction between user and
system. The qualitative accounts have appealed mainly to a common sense under-
standiug of how the various translations in the framework impact on the overall
effectiveness of interaction. Two important features of any translation were iden-
tified as its coverage or possibility of converting one language to another and the
ease with which this conversion can occur. The interaction framework provided a
mechanism for applying heuristics for effective interaction uniformly.

Though we strongly urge the use of heuristic reasoning in the design and analysis
of interactive systems, our main emphasts in this thesis is on transferring that
heuristic knowledge onto a more rigorous software engineering platform based on
formal methods. The atlempts to formalize various interactive properties in terms
of the simple agent model have shown that the formalism can capture the intended
meaning of those properties. But more importantly, by making our definitions of
the properties such as predictability and consistency formal, we can more easily see
what it is about those properties thal we have not captured in the formalism.

For example, we can see that our definition of predictability assumes we can
judge equality over camplete respouse hislories for an agent, and this seems too
stringent a requiremeut cu the observer of the agent, especially when that observer
is a user. We require a way to express predictability so that it embodies more
realistic coustraints on the observer.

Though the agent model breaks open the black box of the PIE model semewhat,
allowing expression of properties such as correspondence and honesty, it is clear that
we have not opened the box wide enough. We still have not provided an easier way
to describe the behaviour of an agent in order to accommodate proof of satisfaction
of varicus interactive properties. We have only slightly motivated the need for a
compositional agent model, and this needs further investigation.

One of the advantages of the red-PIE model and of Sufrin and He's model of
interactive processes was that they both distinguished that which is discernible by
the user (the display) from that which the user wants to achieve from the interaction
(the result). We have made light of this distinction in the simple agent model.
Displays are wnmediate and ephemeral indications from a system and we have
equated those with respouses of an agent. Results are more permanent and we
have equated them with the uuderlying state of the agent. This is not satisfactory
because displays are more like state machines than a sequence of responses would
indicate and the state of an agent may contain information that is net elevant to

CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART 1

State—ReRponqe relationship [} Interaclive Property
CZ,0=0%,0 predictability
(-= LS =1 "") deterministic
('3,{ JCi(- m) honesty
(- ‘—",{) €= m) trustworthiness

Table 4.1; Interactive properties expressed as state-response relationships

the end result from the user’s point of view. We will need a way to more faithfolly
represent these crucial notions of display and result.

We have adopted Sufrin and lle’s approach to classification of interacilive prop-
erties in terms of equivalence and indistingnishability because the structure of the
classification snggests the possible properties that can be expressed. Table 4.1 lists
the properties we have discussed in terms of equivalence and indistinguishability of
state and response (internal and external). A similar classification approach which
takes inlo account result and display information will be the subject of Chapter 7.

Thus we have sel the agenda for the remainder of this thesis, We begin with
a refinement of the agent model in Chapter 5 followed by a definition of a design
language for describing agents in Chapter 6. The state of the agent will be deseribed
in terms of attributes and so we will be able to extract partial infarmation, or
templates on the state, We will then show low tle refined agent model allows
the expression of Inrther interactive properties in Chapter 7. The intraduction
of attributes and templates will lead to a more direct treatment of Lthe resuit-
display relationships that will take a similar form to the state-response relationships.
The description of agents in the refined model is more closely linked to empirical
psychological evidence of how users understand the tasks the agents are designed
to suppoert. The interaclive properties will also be based on that task-specific
evidence, providing for a user-centred methodology for \he design and analysis of
an interactive system. In Chapters 7 and 8 we will show how the methodolegy is
implied by the description of further inleractive properties and the investigation of
heuristic multiagent architectures.

Chapter 5

Refining the agent model

In preceding chapters we have discussed au overall framework for the description
of an interactive systems and how it provides a basis for the description of general
properties of interaction expressed within a formal model. The purpose of this
chapter is to refine the model of the agent used in the previous chapters. The next
chapter then provides a design language for agents.

The agent model we present in this Lhesis is directly motivaled by the forral
presentation of the interaction framework. We desire a language that willallow the
discussion of interactive properties and with which it will be possible to describe a
complete systemn. The formal interaction framework provided a means for a precise
discussion of interactive properties, but it did not allow a realistic description of &
complex system. Whal is required is a compositional model, and this is what the
refined ageut medel is intended to provide.

The refinement of the agent model in this ehapter is a necessary digression. We
have seen the need for more detail of the structure of an agent in order to describe
interactive properties more closcly related 1o Lhe way a user perceives interaction
with respect to the goals of Lasks. The refinement is also necessary from a software
engineering point of view. To bring HCI considerations into carlier stages of design
it i3 net sufficient to merely provide an abstract mathematical model for describing
interaclive properties. The model must be expressible by some design langnage
and accompanied by some method for directing the description. In this chapter,
we address the design issue by providing a compositional agent model.

Overview of chapter

In Section 5.1 we will formulate the requiremnents placed an our agent medel for its
use in the design and analysis of interactive systems. One of the major requirements
is that the refined model supports a modular deseription of complex agents by (he
composition of smaller and stmpler agents.

75

76 CHAPTER 5. REFINING THE AGENT MODEL

The description of the refined agent model is separated into three stages repre-
senting the internal state-based specification, the external event-based specification
and the communication specification, which links events to internal operations.
Hence, the outline for the refined agent model is as below.

Agent
InternalSpee
ErternalSpec
Communicalion

In Seclions 5.2, 5.3 and 3.4 we will address separately the internal, external and
communication specifications of the refined agent madel. In each section, the model
for the particular specification will be given and theun it will be shown how separate
specifications can be composed associatively. There are two ways we will compose
ageuts, by interleaving and by synchronization. In Section 5.5, we will unite the
separale specifications and show how interleaving and synchronization are defined
between agents.

In Section 5.6, we will show how Lhe refined agent model relates to the simpler
model of Chapter 2 by defining the internal and external interpretation functions.

5.1 Requirements for agents

An agent has state and a means for communicating stitnulus and response events.
A pictonal view of an agent is given iu Figure 5.1. The stimulus and response events

outl

out2
_>

inl

Figure 5.1; Pictorial representation of an agent

are communicated along input and output channels. There are several requirements

5.1. REQUIREMENTS FOR AGENTS 7

on the refined model which motivate its development in this chapter and the next.
Here we will discuss requirements relating to compatibility with the simple agent
model and compositicnality.

We have already given a simple definition of an agent in Chapter 2 which is
adequate for expressing a variety of interactive properties at the abstrict level.
The new model must be consistent with the older model. The two most important
features of the simpler model were the derived internal and external interpretation
relations, /™ and {{*, so we must be able to derive similar relations with the
new model, IL turns out that though we can express the external interpretation
function, f§7', we will not use it in formulating properties relating result and display
in Chapter 7.

In Chapter 4, we assurned that agents could be compaosed to form morecomplex
agents. We will need to demonstrale to what degree the refined agent model allows
the construction of complex agents throngh the combination of existing agents.
Given two agents, A and B, there will be two ways of combining them to achieve
a third agent.

We may want to trecat A and B as independent agents that can oy affect
each other’s private state by means of synchronous message passing along common
communication channels. The agent derived by this synchronous compuition we
will denote by compose,,..(A, B). There are various conditions that are imposed
on A and B so that they may be synchronously composed. They must have sep-
arate state spaces with no common attributes. Any commeon channels must be an
input for one agent and an output for the other. The common channel become
synchronized, meaning that communications that occur along them mugt be par-
ticipated in by both component agents simultaueously. The synchronizet channel
is no Jenger visible outside the composed agent. Figure 5.2 is a graphic depiction
of synchronous composition.

We may want to treal A and B as dependent agents. In this case, some part
of their internal states is shared between them. Such dependent comptsition we
describe by interleaving their descriptions to obtain another agent, demoted by
composei: (A, B}. There are conditions we impose on interleaving composition as
well. The separate agent's states may be defined over common attributes and they
may have comman input or output channels. The effect of operations defined for
both agents i1s constrained such that they only alter the values of common attributes.
Figure 5.3 graphically depicts this composition by interleaving. The overlapping
circles are meant to indicate shared state information. Note that interleaved agents
canuol communicate via synchroucus channels, so an input for one agent cannot
be an output for the other agent. In this seuse, the agents are unlinked.

In Section 5.5, we present two main theorems concerning the assocativity of
synchronons and interleaving composition. The proof of these theorems is dealt
with in terms of smaller theorems on the associativity of composition for the in-

78 CHAPTER 5. REFINING THE AGENT MODEL

outl oui2
outl oul2
MPORSEe, =
SYRC
b
inl in2
inl in2

Figure 5.2: Synchrenous composition of independent agents

ternal, external aud communication specifications of the previous sections. The
associativity of composition will allow any number of agents to be composed either
all synchronously or all by interleaving without worrying about the order of the

compaosition.

5.2 Internal specification

An agent has its own private and persistent state. The possible set of states for
an agent is described by the values associated to somne finite set of attributes. We
assume a set of attribule names and a universal set of values. A state is a finite
function from attributes to values.

[AV]
State == A -w V

A slole set is a set of states, all of whose elements are defined over the same set
of attributes. In addition, the attributes of a state set have types associated with
them. A type is a nonempty subset of ¥. The valnes of an attribute are restricted

to beiugin that attribute's type.

5.2. INTERNAL SPECIFICATION

79

outl ourl
ou2
compose .,
inl inl

I outl

out2

QD

i

Figure 5.3: Interleaving compaosition of dependent agents

__ Stateset

atiribs - F A
lype : A =PV
states : P, State

atirths = dom type
¥ s states,a : allribs o s{a) € type(a)

states C (attribs — V)

The internal specification of an agent gives the state set along with operations
defined on that state set. Each operation is labelled by a message, obtaired from
a set of all possible messages. The internal specification is completed by giving the

set of initial states.

[Message]

faternulSpec

Stateset

inits : P, State

operalions : Message « [slates «+ stales)
messages : P Message

tnits < stales

messages = dom operntions

80 CHAPTER 5. REFINING THE AGENT MODEL

Combining internal specifications

Two separate internal specifications can be combined io create a new internal spec-
ification. One constraint on the combination concerns the separate state sets—they
must agree over all commeon attributes. If s, is a state of one internal specification
and s; is a state of the other internal specification, and the values of s; and s; agree
over their common attributes, i.e., s; and s; are compatible, then they define a state
in the comnbined internal specification. A simple way to express this compatibility
constraint takes advantage of the functional representation of a state and says that
two stales are compatible if overriding one by the other is equal to the functional
union of the two.

compatible : State — State
(51,52) € compatible & sy B 53 = 51 U 82

The schema JoinStatesets characterizes the combination of two state sets to
form a third state set whose elements are the union of such compatible pairs of
states. We have stipulated that the state sets are nonempty, so state sets which
are to he joined must have at least one pair of compatible states, We choose the
name join because it is suggestive of the similar cperation for relational databases.
Joining is also similar to scheina signalure combination in Z, where components
with the same name from two different sehiemnas mnst be of the same type and take
an the same values [133]. Note that the [and J are used in the following schema
1o decorate the argument state sels and ’ is used to decorate the state set resulting
from the join.

__JoinStatesets
Stateset!
Stateset’
Stateset

¥a: attribs’ N attribs? o type’ (a) = type’(a)
Is;: states!: sy : states”? o (7. 85) € compatible
attribs’ = aftribs? U attrabs?
type’ = type’ U type’

stales’ = { s; : states’; s, @ states?
| (s7,81) € rompatible
o 5y U sy }

For couvenience, we can represent the above schema clefinition as a binary oper-
ation join on Slateset. We will frequently make use of this mechanical technique

5.2, INTERNAL SPECIFICATION 81

for characterizing a combination via a schema and then converting it to a binary
operation.

joun o (Stateset x Slalesel) -+ Slatese!

join = { JoinStulesels
o (BStateset! 0Slateset?) s §5tateset’ }

As we described in Section 3.1, we will want to compose several agend descrip-
tions and we want thal composition to be associative. The proof of the associativity
of the averal] agent composition Innctions is distributed thiroughout this and the
next 1wo sections, The first theorem below shows that joining of states sets salisfies
assoclativity.

Thearem 5.1

Y 81.52,53: Slatesct
| 1 (S§1.52) € down join
A (jewn(S1,52), 53) € dom jein)
e join(join(51,52) 53) = join(51. join(52, 53))

Proor oF THEOREM 5.1:

The proof proceeds in two stages. First, noder the conditions of the hypothesis,
namely that

(51.52) € dom youn
A (Goin(S1,52),53) € dom jorn

we must show that

(52,53) € dom join
A(S1, join(S52,53)) € dom jein

After proving that (51, join (52, §3)) € dom join, we must show the equality of the
different joins. Both stages of 1his proof rely on a lemma on state compatibility
which says that if the union of two compatible states is compatihle with a third
stale, then each of those slates is compatible separately with ihe third state. Full
details of the proof of this lemina and the stages of this theorem are provided in
Appendix B.

{ END oF PROOF OF THEOREM 3.1

To complete the definition of composition of internal specifications, we must
show how the operatious of two separale internal specifications are coalesced to
derive the operations of the combined internal specification. The explanation be-
hind this derivation is relatively straightforward. The messages of the new internal

82 CHAPTER 5 REFINING THE AGENT MODEL

specification fall into one of three sets—messages nnique to one specification, or
unique to the other, or common to both. If a message is nnique to one of the
internal specifications, then it is lifted to an operation which is consistent with
the original specification and behaves like the idenlity transition elsewhere. If a
message is commeon to both internal specifications, then it is lifted to an operation
which is consistent with both of the original specifications. The derivation of the
operations set reflects the three mntually exclusive conditions on messages of the
combined internal specification, and hence is a bit large. We could have been more
concise with the description of operatioas, but this large definition mirrors the way
we regard the operalions set in the associativity proofs which follow,

The scherna Combinelni defines how two inlernal specifications can be combined
to form a third internal specification.

5.2. INTERNAL SPECIFICATION 83

— Combinelnt
InternalSpec’

InternalSpec’

InternalSpec’

JoinStatesets

sl inited s s onits? o (s, 5) € compatible

inits’ = { 1 initss & < imats? | (sg, §]) € compatible o 55 U s }
messages’ = messages! U messages”

Y m : messages’ — messages?
e operatrons'{m) =
{ s, stutes’
1 {attribs? < s, attribs! <1 8') € operations!(m)
A (atiribs’ @ 5, attribs’ < §') € id(Knotlatiribs w V))
*» s s}

¥ m : messages’ — messages!
e gperations’(m) =
{ s, : states’
| (attrids? <0 s, altnbs? <1 5') € operations? (m)
A (attribs? < s, atiribs? < s') € id(KnotJattribs +» V)

- SHS’}

¥ m : messages! N messages?
s operciions’(m) =
{ s, : states”
| (aeftribs! < s, attribs’ < s') € operations’(m)
A (attribs’ <1 s, attribs? <1 5') € operations’(m))
e« sers'}

where Knotfaliribs = allribs’ — aliribs’
KnotJattribs = attribs’ — attribs’

The first predicate stipulates that one pair of compatible states must be from
the initial states of each, to ensure that there is an initial state of the wmposed
specification. The last three predicates cover the three cases for messages of the
new internal specification.

The schema Combineln{ describes the most general combination of internal
specifications we will need. This composition can be represented as a function
derived from the schema above. Given two internal specifications, which salisfy the
constraints of Cambinelnt above, Icompose yields the unique internal specification
which is their combinalion.

84 ('HAPTER 5. RFEFINING THE AGENT MODEL

fcompose : (InternalSpec x [niernalSpec) -+ InternalSpec

leompose = { CombincInt
e (8InfernalSpec!, 8IniernalSpec?) v #internalSpec’ }

Wher interleaving agents, associativily of feompose is dependent upon how
the separate agents are defined to behave over any common messages. We stipulate
that common messages can only change the values of shared attributes. In practice,
this constraint will be satisfied because the common messages between interleaved
agents will only be cutput messages defined to be the idenlity transition on all
attributes. This general candition of message compatibility is characterized in the
following schema. We express it mathematically by saying that the operations
associated to common messages do not affect altribules not in common between
the agents.

—MessageCompatibie _
InternalSpec’

InternaiSpec’

notld : P A

notl) = (attribs’ U attribs”’) — (attribs? 0 attrbs”)

Y m : messages’ 0 messages?;
(51, 5}) : opcrations! (m);
(54, 5) : operations’(m)
o ((netl] < s;, notlJ <si) € id{noth w V)
A (notl] < s, notld < s}) € id(notld + V)

messagecompatible : InternalSpec — InterneiSpee

messagecompalible = { Message Compatible
e OinternalSpec’ — InternalSpec’ }

In the case of synchronous cornposition, associativity is satisfied because the
separate state sets are forced to be disjoint. The associativity conditions for the
composition of internal specifications are summarized in the following two theorems.
Theorem 5.2 Lreats the case for interleaving composition and Theorem 5.3 covers
the case for synchronous camposition. The proofs are only outlined; full proofs such
as those provided in Appendix B could be provided.

5.2. INTERNAL SPECIFICATION 85

Theorem 5.2 Message compatible tnlernal specifications can be composed associa-
tively, i.e.,

V11,12, I3 InternalSpec
| ((£1,72) € dom feompose
A (Teompose(I1,[2), I3) € dom fcompose
A{(I1,12),(12,13),(11,13)) C messagecompatible)
s Icompose([fcompose([), [2),I3) = leompose([], [compose(12, [3))

Proor oF THEOREM 5.2:

Theorem 3.1 allows us to prove that il the first two predicates in the hypothesis
are satisfied, then the composition cau be formed in either order and the stale sets
and initial states are eqnivalent. We examine the two cases for messages, ones that
arc not shated and ones that are.

Case 1: The message is not shared by any two of /1,72, 3.

There are three subcases to investigate, but the argument is the same for
each. Suppose, for exainple, the message belongs to I1 and not 12 or [3. We
bave the operations defined as below. We adopt a shorthand notation, so, for
example,

operetions! 110

will stand for
leampose(fcompose(/1, 12), [3). operations
The proof proceeds. For any message m : messages’!, we have

operations 1P (m) =
{ 5,9 : states’(1?3
| ((aitribs’'? q s, attribs™'? < 5') € operations!1?({m)
A (attribs!1? g 5, attribs"'? < s7)
¢ id(uttribs™ — altribs™? w V))
e s+35')

2 and since m € message’! and Theorern 5.1

By definition of operutions’!
tells ns that the state sels arc equivalent, the above set comprehension is
equivalent to the following.

{ 5,5 : states? 133

| {attribs™ s, attribs™ < 5') € operutions' (m)
A (aliribs'? q attribs™ @ s, attribs™ < attribs” a ¢')
€ id(attribs’? — attriba’t w V)
A (attribs!'? @ s, gitribs™? a &)
€ id(aseribs™ — attribs!1? s V))
e s 5}

86 CHAPTER 5. REFINING THE AGENT MODFL

And the last two predicates can be collapsed to obtain the following.

{ 5,8 : states!!®)

| ({attribs’! < s, altribs’* 9 ¢') € operations’ (m)
A {attribs™ < s, attribs™ @ s") € id{atiribs'? — attribsTt w V)

e s— 4}

This final set comprelension is sperutions’11¥3){m), as desired. A similar proof
holds in the other cases, and so we have shown Lhat the operation sets defined

are equivalent.

Case 2: The message is shared by 2 or more of [1,12,13.
Again, there are several subcases, but each is argued similarly. Assume, for
example, that m is a message for I1 and I3, but not 12. The operatlions are
defined as

eperations (113 (m) =
{ s,s": stales(12P
| ((attribs'? a s, ettribs™? a ') € operations™'3(m)
A (attribs™ < s, atiribs™ < 5") € operations™(m))

.SHS‘}

By definition of operations’? and since m € message’! and Theorem 5.1
tells us that the state sets are equivalent, the above sel comprehensicn is
equivalent ta the following.

{ 5,5 : states’1(39)
| ((ettribs’? < s, attribs™ <as') € operations™ (m)
A (attribs’® < attribs’t @ 5, attribs’ < atfribs!' < 5')
€ id(attribs’® — attribs’! w V)
A (attribs™ < 5, altribs’? Q &) € gperatrons™(m))
e 53}

By assumption, operetions’!(mj and operations™{m) have no eflect on at-
tributes not in commen, so the middle clause can be rewritten, substituting
I3 for I1, to obtain

{ 5,8 : states' 3
| ((attribs’' < s, attribs’ <9 5') € operations’H{m)
A (abtribs™ < attribs™ < s, attribs™ < attribs™ < 5')
€ id(aftribs™ — attribs’d w V)
A (attribs’® < s, altribs’® <4 5') € operations’3(m))

.SHS’}

5.2. INTERNAL SPECIFICATION 87

This, in turn can be collapsed, by the definition of operations’®,

{ 5,5 states?1®)
| { (attribs't s, attribs’* a0 5') € operations(m)
A (attribs™ < s, attribs’™ < ') € operations!*(m))

L] SHS’}

This last set comprehension is egnivalent to sperations” (3, as desired.

¢ ExD oF PROOF OF THEOREM 5.2

Theorem 5.3 Infernal specifications with no commmon attributes can be wmposed

associatively, i.e.,

V11,72, I3 : InlernalSpee
| (disjoint {{1.attribs, I2 attribs, I3.altribs)
A (T1,12) € dom Jeompose
A {feompose(11,12), I3) € dom [compose)
o [compose(leampose(I1, 12), I3) = Icompase(I1, fcompose(I2,13))

ProoF oF THEOREM 5.3:

Equivalence of state sets follows from an identical argument as above. There
arc many cases {o investigate to determine the equivalence of the operations set.
The arguments are similar for all of these cases, so we will provide one example.
Assnme that the message satisfies

m € (Il.mcssages () [3.messages) — [2.messoges.
The operation defined for that m is given by the following set comprehension.

aperations’ 0P (m) =
{ 5,5 : states™12?
I ((attribs’? as, attrihs™? a 5') € operations’?(m)
A (atiribs’™ a s, altribs’ < 5') € operalions™(m))

e s— 5}

By the dcfinition of operations™3(m), this expands to

{ 8,8 states'®
[{ (attribs?! s, aitrbe!! <94') € operations™ (m)
A (attribs’® < attribs'' @ s, attribs’? < attribs’! @ s7)
€ id(ettribs™ — attribs’t w V)
A (attribs™ < s, attribs™ < 5'} € operations’3(m))
e s s}

88 CHAPTER 5. REFINING THE AGENT MODEL

We can rewrite the middle clause because the attribute sets are disjoint.

{s,s": states™#

| ((attribs™ < s, attribs™ < s') € operations™ (m)
A (ettribs’ < attribs™ q 5, atlribs™ < ettribs’> @ 5')
€ id(attribs’? — attribs™ 4 V)
A (altribs™ < s, allribs™ <1 5') € operations'3(m))
¢ s—s'}

By the definition of aperntions??3, this cau be rewritten as follows.
{5, s states{14®
| ((attribs™' @ s, atiribs™ @ s') € operutions’ (m)
A (attribs'™ < 5, atiribs'™ @ s) € operutions?®(m))
v s3]

11(73)(

This last set comprehension 1s equal to operutions m), as desired.

¢ END OoF PROOF OF THEOREM 5.3

5.3 External specification

The internal specification mplies an ardering on the sequence of state transitions
in which an agent can participate. If a designer wants to specify the order of
operations to satisly some constraint, it is not always easy to do by means of the
internal specification. In other words, some constraints are not naturally expressible
in berms of state transitions, Thisis a similar conclusiou to Lhat reached hy Lamport
{99], Sufrin and He [158] and Took [162].

Another way to express constraiuts on the state transitions is to view the con-
straints as external, meaning that an agent has both an internal and external specifi-
cation. The agent participates in events and the external constraints are expressible
as predicates on event participation. Process algebras are specifically designed to ac-
commodate such event descriplions. The standard examples of process algebras are
Hoare's Communicating Seqnential Processes (CSP) notation [81, 82], developed
at Oxford, and Milner's Calculns for Communicating Systems (CCS) developed at
Edinburgh.

We adopt the traces model of a CSP process as the basis for the external spec-
ification as a nonempty prefix-closed set of sequences of events.

5.3, EXTERNMN AL SPECIFICATION RG

. EzternalSpee _
alphabet : P Event
truces : Pseq elphabet

{} € traces

1 prefix_closed (treces)

The definition of the predicate prefix_closed is defined in Appendix A.

It would be possible to incorporate more complex process algebra models. We
do not ignore the significant variety of process algehra models, most notably the
family of algebras derived from Milner's CCS. For the purposes of this thesis, how-
ever, a demonstration of the incorporalion of a process algebraic technique with
the model-oriented axiematic technique is all that is impertant, and in doing so we
limit ourselves to the simplest case of the CSP traces model. More sophisticated
models would allow expression of more sophisticated external constraints, Within
the traces model, only sefely constraints may be expressed, which would allow ex-
plicit expressions to rule out andesirable behaviour. Liveness constraints which
make explicit that desirable behaviour will happen, require a model such as the
failures-divergence model of CSP [28]. Some timing constraints may require even
more sophisticated process algebras that incorporate a model of time and concur-
rency beyond the interleaving semantics of the traces or failures-divergence models.
Examples in the CSP family are the various timed models of Reed [132] and Davies
and Schneider [46, 144, 43). A timed version of CCS has been provided by Moller
and Tofts [111].

Combining external specifications

One of the main features of a process algebra is its compositionality. We will dis-
cuss in a later section how that compositionality is achieved in isolated descriptions
of external specifications. Then, we will provide both a constructive trace nota-
tion, which is described in detail in Appendix C and a more implicit descriptive
technigne of a predicate calculus on traces. In this section, we will concentrate on
how to combine external specifications at the agent level, i.e., when the external
apecification is linked with an internal and commnnication specification. In this
case we have two desired combinations—independent combination by interleaving
and dependent combination by synchronization.

Interleaved combination is used to allow the behaviours of the separate external
specifications to occur in the comhiued specificatiou. The traces resulting are all
iuterleavings of pairs of traces from the two separate specifications. The description
of this interleaving is exactly the same as the interleaving of processes in CSP [82],
which we also further define in Appendix C.

90 CHAPTER 5. REFINING THE AGENT MODEL

—Interleave Ext

ExternalSpec!
EzxternalSpec’
EzlernalSpec’

alphabet' = alphabet’ U alphabet’

traces’ = { s : seq alphabet’
q aip
| 3t traces’; t': truces

- .l.-}

T w s interleaves (1,1')

We can represent this combination as a binary operation, Ecompose,,:.

Ecompose;,; : (ExternalSpec x IxternalSpec) — ErternalSpec

Feompose,,; = { Inlerleave Ext
o (0ErternalSpec’, 0 ExternalSpec!) — ExternalSpec’ }

Synchronous combination, as its name suggests, allows for the synchronizing
of events between two external specifications. Its definition is similar to that for
synchronous parallel combination in CSP, which we have also further defined in
Appendix C.

SynchronizeFzt
FEItemalSpec"
ErternalSpec’
ErternalSpec’

alphabet’ = alphabet’ U ulphabet?

traces’ = { 1 : seq alphubet’
e hoil i
| { tr elphatel’ € traees
AT alphabet? € traces)
. ! }

Sequence range restriction, ' is defined in Appendix A. It operates much like a
filter in a functional programming language. We can represent this combination as
a binary operation, Ecompose,,,..

Eecompose,yn : (ErternalSpec x ExternalSpec) — FrlernalSpec

Ecompose,yn. = { SynchronizeFrt
o (0ExternalSpec’, 8 ExternalSpec’) — ErternalSpec’ }

It is well known that both of these operators are associative [82, pp. 70,120].

5.4. COMMUNICATION al

5.4 Communication

The internal specification indnees an ordering on the state transitions of the agent
and this ordering can be represented by the message labels associated to the tran-
sitions via the fnnetion operafion. The external specification gives directly the
ordering on events that can oecne during traces of the behaviour. In the cemmuni-
cation specification for an agent, we link the messages of the internal specification
to the events of the external specification. Events are communications of messages
along channels.

To acconmodate this within the agent model, we will introduce explicit chan-
nels that are meant as point-to-point, one way, synchronous communication paths
between agents, as in the programming language occam [86, 91]. Though this is
a fairly restrictive means of communication, it has been noted that this restric-
tion makes possible tractable algebraic techniques for reasoning rigorously about
an occam program [25, 139, 140}, which we can then incorporate into the agent.
development method. We assume a set of all possible channel identifiers.

[ChannellD|

An event is a message communicated along some channel. We can represent the
refined Fvent type as a schema which indicates the channel name and the message.

Event == ChennellD x Message

We provide some shorthand netation for accessing the channel and message content
of an event.

chan : Event — ChannellD
mess : Event — Message

chan = Jst

mess = sad

A channel is associated to a set of message which can be communicated across
it. There are four kinds of channels possible. A channel can be used for the input
of messages or the output of messages. The combination of an agent which uses a
channel for input and an agent which uses the same channel for output creates a
synchronized channel. Finally, there is a completely internal channel which handles
internal communication within an agent.

We define a function events which yields the set of all possible events that can
ocenr along a channel.

events : (ChannellD x P Message) — P Event
events{c, MS)={ m: M5 e (¢, m) }

92 CHAPTER 5. REFINING THE AGENT MODEL

The communication specification gives all input, cutput and synchronized chan-
nels. These channels are all distinet. Each agent also has a special cbannel for
internal events, which is called 7. From the channel information, we can derive the
alphabel of events in which the agent can participate and the set of messages for
which operations must be defined. These two derived sets will match the corre-
sponding sets in the external and internal specifications.

— Communicalion
inpuls, cutputs, syncs : ChannelfD + P Message
internal . P Message

alphabet : P Event

messages : P Message

disjoint {dom inputs, dom outputs, dom syncs. {7}}

alphabet = events(|inputs) U eventsoulputs]) U
events(syncs|) U events(r, internal)

messages = mess(|alphabet])

Combining communication specifications

Two communication specifications are channel compotible if no synchronized chau-
nel of one is either an input, oulput or synchronized chaunel of the other.

_ ChannelCompalible
Communication’
Communication”

dom synes? N (dom inpuls’ L dom outpuls’ U dom syrcs’) = @

dom syres’ N (dom fnpuls? U dom oulpuls’ U dom syncs’) = @

Twa communication specifications are wnifnked if they are channel compatible
and no input channel of one is an cutput channel of the other.

_ Unlinked
ChannelCompatible

(dom inputs’ M dom outputs?) = @
(dom inputs? N dom ewlputs’) = @

Two communicatiou specifications which are unlinked can be combined to yield
a third communication specification. Unlinked communication specifications can

5.4. COMMUNICATION 93

share the same input channels or the same output channels, The combined spec-
thcation forms Lhe umon of the message sets assoclated to each channel identifier.
This combination of communication specifications will be used to form the inter-
leaved composition of agents.

__InterleaveComm _
Unlinked

Communication’

infernal’ = internal’ U internal’
J

synes’ = synes’ U syncs
inputs’ = { ¢ : dom inputs’ U dom inputs’
o ¢ (mputs! () U inputs?(c)) }
outputs' = { c: dom outputs’ U dom outputs’
s ¢ (outputs’(c) U outputs’(c)) }

We can represent this combination as the hinary operation, Ceompose,,,.

Ceompose,, : (Communication X Communication) — Communicalion

Ceampose, =
{ Interleave Comm
‘ s (8 Communication’ @ Communication”) v Communication’ }

Two cominunication specifications which are channel compatible and which have
no common input channels nor common cutput channels are said to be linkabie
and they can be synchronized. The commen inpnt/output channel pairs are made
synchronous channels. The messages which are allowed on the synchronized channel
are ones which are allowed as input by one agent or cutput by the other.

Linkable _
F ChannelCompatible

(dom inputs’ N dom inputs?) = B

dom outputs’ N dom outputs”) = @
P

94 CHAPTER 5 REFINING THE AGENT MODEL

__SynchronizeComm
Linkable
Communication’

internal’ = internel’ U internal’
synes’ = Syncs" u syncs"'
U { ¢: (dom inputs’ N dom eutputs”)
e ¢ {inputs’(c) U oulputs?(c)))
U { ¢: (dom inputs? N dom outputs’)
o ¢ (inputs?(c)U outputs™(c)) }

inputs’ = dom syncs’ <4 (inputs! U inputs'}

outputs’ = dom synes’' < (outpuls! U outputs’)

We can represent the synchronized eomposition of communication specifications as
the binary operation, Crompose, ;.-

Ceompose,yae : [Communication x Communicolion) -+ Communication

Ceompose, n, =
{ SynchronizeComm
o (8Communication’ 6 Communication”) — 8 Communication’ }

By arguments similar to those given to show that internal composition is associative,
we can also show that communication composition operators are also associative.

5.5 Overall Combination

Having specified the componeuts of the refined agent model and bow they are
individually composable, we cau now define two operations to compose agents,
The two composing functions will represent an interleaving composition, in which
the two agents act as one agent by interleaving their individual behaviour, and a
synchronizing composition, in which communication will be synchronized between
common channels.

Interleaving composition is specified in terms of the general internal specification
composition and the interleaved compaosition of the external and communication
specifications. We include the constraint on message compatibility defined earlier
50 that the conditions of Theorem 5.2 are upheld and the resulting composition
operalor, compose, ., Is associative.

5.5. OVERALL COMBINATION 95

_InterleaveCompose
Agent!

Agent?

Agent’
MessageCompatible
Combinelnt
Interleavelr!
InterleaveComm

The binary operation for intetleave composition is compose,

compose, © (Agent x Agenl) + Agent

COMPOSE =
{ MmterleavcCompose
s (BAgent’ 0Agent?) — O Agent’ }

Arguments in the preceding three sections lead to the proof of the associativity
of compose,n.

Theorem 5.4 [nterleaving compostiion, when defined, is associalive, i.e.,

compose,a{compose,n (AL, A2). A3) = compose,, (A, compose; (A2.A3)).

Synchronizing composition is specified in terms of the general internal specifica-
tion composition and the synchronized composition of the external and communi-
cation specifications. We add the constraint that the attribute sets of the sgents to
be composed must be disjoint. This is to ensure that the conditions of Theorem 5.3
are upheld in order that compose,yn, be associative.

__SynchronizeCompose
Agent!

Agent?

Agent’

Combinelnt
SynchronizeExt
SynchronizeComm

attribs’ N attribs? = @

The binary operation for interleave composition is compose,m.

96 CHAPTER 5 REFINING THE AGENT MODEL

compose, .t {Agenl x Agent) + Agent

COMPOSEyne =
{ SynchronizeCompose
s (fAgent! 8 Agent?) — OAgent’)

Arguments in the preceding three sections lead to the proof of the associativity
of compose,yn..

Theorem 5.5 Synchronous composition, when defined, 1s associative, i.e.,

COmpPoSsty . (compose,, (Al A2), A3) =
COMPOSseync (AL, cOMPoscya (A2, A3)).

Since these composition operators are associative. we can define operations
which compose arbitrary nonempty sequences of agents by means of the folding
operations of standard functional programming [24]. Refer to Appendix A for def-
initions of the folding operations in standard Z.

composeall,
composeall,,.. : seq, Agent + Agent

composeall,, = foldll compose,y,

composeallyyn. = foldll composegyn,

The composition operators are not mutually associative, but in practice this will
not matter. Interleaving is used to build up a specification of an agent that will
have aprivate state. Synchronization is used to connect the separate agents, i.e.,
ones which have a private state.

5.6 Interpretations of agents

The commnnication specification now provides the link necessary for combining an
internal specification and an external specification. What remains is to describe
the refinements of the internal and external interpretation reiations.

5.6.1 Internal interpretation

We want to derive the internal interpretation relation f{™ for an agent which maps
traces of events that an agent can participate in to the possible states that the agent
can bein after participating in the trace. Following the approach of Chapter 2, we
first extend the operetions mapping from the internal specification. However, since

5.6. INTERPRETATIONS OF AGENTS 97

that mapping uses messages to index the state transitions and not events, we must
also extract the message content of the event.

opEriend_; Agent — seq Event — (State « State)
opEzlend,(trace} = A.nils < (3f{trace § messjA.operations))

A difference to note from the development of Chapter 2 is that every event has
an associated state transition, instead of jnst input events. We refer to sequences
of events in this definition as traces instead of programs to alert the reader of
the difference. [t is the role of an event which distinguishes stimuli {(input) from
response (output). The domain of opEricnd manifests the constraints on event

sequencing which arise from the internal specification. The external specification is
already expressed in terms of event sequences. J;"' mnst be consistent with both.

I™ . Ageni — (seq Event ++ Stale)

(trace,s) € IM < Fs: Ainils o (trace, (0, 5)) € opExlend,
A lrace € A.lruces)

It is important to note in thiz definition, that the overall interpretation is given
as a conjunction of internal and external constraints, This was the main motivation
for the hybrid notation of the Sufrin and He model. in that formal model, however,
the external description was defined to constrain the transitions possible from the
tnternal description, but not vice versa. However, it was clearly the infenlof those
anthors to allow tlie iuternal specification to constrain the traces possible from the
external description. We mention this point as another example of how a formal
approach can uncover inconsistencies between informal requirements (the intent
mentioned above) and the deliverable (the actual formalism).

The historics of an agent, written H[A], give a recording of the events in

inil

which it can participate and are derived from the domain of .

H] -] : Agent — P(seq Event)
H[A] = dom I}

There are three properties which must be satisfied by the internal interpretation
relation and its derivatives:

s the set of histories of an agent is prefix closed, so that for an agent to partic-
ipate in a sequeuce of events it must bave participated in each prefix;

& the internal interpretation relation respects the history of interaction, so that
any state the agent can attain must have been reached from a previously
attainable state; and

98

CHAPTER 5. REFINING THE AGENT MODEL

e the internal interpretation relation is nonempty, so that every agent has some

behaviour,

We will prove each of these properties of the internal interpretation refation in tnrn
as thearems.

Theorem 5.6 The set of truces of an agent s prefiz closed, i.e.,

Y4 : Agent o prefix_closed H[A4]

PRooF oF THEOREM 5.6:

To prove this theorem, we need Lemma 5.1, which states that epFztendd obeys

a nice compositional property.

Lemma 5.1

YA Agent; 5 : A.stales; s : A.inits; hd, U : seq Event
o« (hd " tl,(s0,5)) € opEriendy &
As": A.slales
o ((hd,(se,s')) € opFrlend,
At (s, 8)) € (8 3 messgA.operations))

Proor oF LEMMA 5.1:

Becanse of layout considerations, in the following argument we have substituted

the expression Aops for the correct expression 4.operations.

[4d ™ H, {0, 5)) € opErtend, [assumption]
@ (50,5) €3/(hd ™ tl 3 messsAops) [defn. of opErtendy, s € A.inils)
& (sg,5) €8/ ((hd; messgAops) ™ (ﬂgmess;Aops)) g dist. over 7]
& (s0,5) € (3/(hd s messgdops)) 3 (3/(t 3 messp4ops)) [defn. of 3/]
& ds': A stales [defn. of 5]

* [(s0,¢) € (3/(hd 3messzdops))
A (s, s) € (3f(U 3 messgdaps)))
& 3" A.stales [defn. of opExtend)
o ((hd,(50,5")) € opExtend,
A (8, (s',)] € (13 messsAops))

¢ END oF PROOF OF LEMMA 5.1

5.6. INTERPRETATIONS OF AGENTS 99

Continuing with the proof of Theorem 5.6, let tr € X[A J and hd — ¢r, ie.,
hd ™ tl = tr. We need to show that hd € K[A4].

hd~d e Hf A [assumption]
< hd ™t € dom [V [defn. of [A])
< s A states; s Alintts [defn. of [

o { (hd "l (s.5)) € opEriend,
A hd ™t € Allraces)
Lemma 5.1

P . . Tepw
< 35’ A.states; s Aanits [prefix_clased (A.fraces)]

o { (hd,(sy,5")) € opBrtend,

A hd € A fruces
« hd € dom I}¥ [defo. of £
s hde H[A] [defm. of H[A])

¢ END oF PROOF OF THEOREM 5.6

Theorem 5.7 The internal behaviour of an agent is history-closed, i.e,

VA : Agent; (Ir,s): I
s 3s': A.stales; tr',ir" ; seq Message
| Tt = tr
o ((tr',s'yeqp
A (s, s) € {ir" 3 meas3A. operations)

ProoF oF THEOREM 5.7T:

It
-
L~

Assnme we have an agent A with (tr,s) € I and &'~ 40" = tr. I t¢'
then we can satisfy the conditions of the theorem by letting s' = s and tr" =
So assume that i7" # tr. By Lemima 5.1, we know that

—
—

35" A.states; o Ainits
o ((tr' (s, s)) € vpEztend,
A (tr”,(s',8)) € opEriendy)

Since tr € A.truces and A.lraces is prefix closed by definition, we conclude that
(tr', 5"y € 1", as desired.
¢ END oF PROOF OF THEOREM 5.7

Theorem 5.8 For uny ageni A, the internal interpretation relation is nonemply.

100 CHAPTER 5. REFINING THE AGENT MODEL

Proor oF THEOREM 5.8:

Since A.inils is nonempty, this theorem is satisfied by demonstrating that, for
all agents A and initial state so : A.inits, the element ({), s) is in [}, First, we
show that epErtend, ()} = id Stale.

opEztendy ()

= 2/((Yieq Meanage § messA.operations) [defn. of {]
= 5/{{) s1ate—statc) [defn. of 3]
= id State [defn. of g/]

Since (5, sp) € id State, we have satisfied the first predicate in the definition of 7}
because

{{). {20, %)) € opEztend,.

Finally, { } € A.traces by the definition of ErternaiSpec. Therefore, the internal
interpretation relation of an agent is never empty, since it contains {{ }, sa}-
<& END oF PROOF OF THEOREM 5.8

5.6.2 External interpretation

In Chapter 2, we also defined an external interprctation relation, £ to reflect the
overall stimulus-response behaviour of an agent. The importance of this interpre-
tation relation was twolold. It provided an external specification of an agent, so
that the translations of the interaction framework could be viewed as specifications
of agents themselves. It also was used to define some interactive properties, such
as predictability, honesty and trustworthiness.

External specification is now explicit in the agent model, but it includes more
information than the overall stimulus-response and it also includes event behaviour
that could be excluded by the internal specification. [{** is defined on the traces
of A, applying only to legal behaviours of the agent, and it filters out the input
and output events. The stimnli of an agent are the events that can occur along
the input channels. The responses are the events that can occur aloug the output
channels.

stimuli, responses : Agent — P Event
[Agenl — (seq Even! & seq Event)

stimuli(A) = events{|A.inpuis])
responses(A) = events(4.oulputs])

={1:H[4]
o i D?s.':‘muli(A) e responses(A) |

5.7. CONCLUSIONS 101

Because H[4] is prefix closed, we can show that both the domain and range
of I7* are prefix closed as well.

5.7 Conclusions

In this chapter, we have refined the model of the agent. The specification of an
agent has been split into three parts to define the internal state-based behaviour, the
external event-based behaviour and the communication specification whichlinks the
internal and external specifications. We have described two composition operators
on agents. The first correspouds to Lhe interleaved composition of dependent agents
which will aid in the gradual development of complex agents sharing attributes and
messages. The second composition is a synchronization of independent agents which
share no attribntes and communicate via synchronized message passing.

The agent model presented is good for theoretical use. We can express end prove
general interactive properties of agents using this model. In Chapter 7 we will use
the refined model as a basis for the reformulation of the interactive properties
expressed in Chapter 4 and introduce some new ones. The agent model, however,
is not a very good design notation. We will justify this claim in the next chapter
and present a language for the description of agents which can map back into the
agent model.

Chapter 6

A language for describing agents

Up to this point in the thesis, the ouly formal notation we have used has been
Z. We believe that strict adherence to Z as a design notation for agents is not
desirable. The way a designer conceptualizes an agent’s behaviour must be more
directly captured in the agent language than standard 7 allows. We will, therefore,
provide a new langnage for the description of agents. We waut the new language to
be flexible. The properties we express on an agent relate the events and lhe state,
50 it is important that we can describe the event-state behaviour. As described in
the last chapter, sometimes it is easier to describe such a desired behaviour via the
internal state description linked with a communication description and sometimes
it is easier to do directly via the external event description.

The agent language is a formal notatiou, and there are many existing formal
notations which are increasingly being used in both academic and industrial circles.
We want to take advantage of the familiarity with those existing notations. How-
ever, most of the notations are either more suited to the state-based description
or the event-based notation, and so they do not alone satisfy the expressiveness
requirement described above. Following on from Sufrin and He’s model of interac-
tive processes [158], we propose a hybrid notation which marries 2 model-oriented
descriptive technique for the internal description and a process algebraic lechnique
for the external description. Elsewhere, we have described a version of the agent
language which uses an algebraic notation for the internal description [69), but the
semantics for such a language we have not defined.

Overview of chapter

In Section 6.1, we justify the need for an agent notation different from standard
Z and we give an overview of some other agent-like notations. In Section 6.2, we
provide a lauguage for describing agents and we outline the mapping from that
syntactic domain to the semantic model, further details of which can be found in
Appendix C. The best way 1o explain how the agent language is used is by example,

103

104 CHAPTER B. A LANGUAGE FOR DESCRIBING AGENTS

and so we offer several examples in Section 6.3. We have placed a heavy emphasis
on familiarity with the new notation, which has resulted in a hybrid language
resembling established model-oriented langnages, such as Z or VDM, and process
algebra notations, such as CSP or CCS. Any language exerts an influence on its
users-—some things will be easy to express within the language and some things
will be difficult. Such an influeuce is not a bad thing, as long as we are aware of
it and we recognize the limitations it implies. At the end of this chapter we will
summarize the limitations of the agent language.

6.1 Notations for agents

Although the model presented in Chapter 5 will be adequate for deriving Lhe inter-
active properties to be discussed in Chapter 7, it does not satisfy the requirement
of natural expressiveuess. Before we present the agent language, we explore in
this seclion some other possible languages for our agenls and other ohject-oriented
formalisms.

6.1.1 The standard Z notation

We have used the Z notation to present all of the {ormalisms so far in this thesis, and
we will continue to use Z as the means for mathematical expression and reasoning
within the agent model. However, we do not favour 7 as the design notation for
agents for two main reasons.

Our first criticism of Z is the lack of modularity it provides in standard use.
Whereas in most tutorials on the Z language a modular development approach is
advocaled, any modularily in resulting specifications is left 1o the reader to extract.
The principal features of an internal specification of an agent—the state space, the
initial states, and the operations on the slate space—are separately describable in
Z. When we want to bundle these components together, it is possible in Z, but
not natural to the standard Z development. The possibility was demonstrated by
Sufrin and He [158], so to justify our argument. we will provide an example of the
specification of 2 window in a multi-windowing environment using their model of a
process, given below,

(£]

6.1. NOTATIONS FOR AGENTS 1056

— SandH Process(5)

a:PE

Trace : P(seq E)
t:PS

« =dom,@

Vs, liseqEF es™ 1€ Trace = 5 € Trace

For our purposes, we can equate the tvpe E with the type Message, and S with
State.

We will begin by giving a 7 descriptior of the functionality of the individual
window. A window has two representations, depending on whether it is open or
closed. When closed it takes the form of an icon, which is one from a set of all
possible icons, denoted JCON .

[ICON|

When open, the window covers a rectangular region on a finite coordinate plane
representing the visual display. This plane is commonly viewed as a pixel plane
with boundaries in the horizontal {x-axis} and vertical (y-axis) directions. The
type PIXEL will represent points in this finite coordinate plane.

rmaz, ymnaz : N

PIXEL ==0. rmez x0..ymar

For our purposes, a window is completely defined when we have the following
information on it:

& the icon to represent it when closed and its position in PIXEL space
¢ the position and extent of its rectangnlar region in PIXFEL space when open
¢ an indication of whether the window is open or closed

The schema type WindowState describes the state of snch a window. Each as-
pect mentioned above is represented directly by a component of the schema type
WindowState,

WindowSiate _
teent 1 ICON

ironpos, winpos, wtnsize : PIXEL

status : open | closed

106 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

We could add some conslraints on the window state. For example, we could con-
strain the size of the window such that the whole window is contained in PIXEL
space. Por simplicily, we ignore such constraints for the moment.

When a window is created, we can stipulate that it satisfies certain constraints
beyond any given as the state invariant of WindowState (had we given any). Ini-
tialization constraints are by convention detailed by the schema Window/nit, and
the purpose of this schema is to give the subset of all possible states in which a
window can be initially. This schema only contains a copy of the state after the
initialization (the window is assumed not to exist before initialization). In our
example, we will stipulate that a window begins with status epen.

_ Windowlnit —
WindowState'

status' = apen

Some of the normal operations performed upon a window waould be to open
or close it, to move it (when open or closed) or to resize it when open. We
indicate a window operation by a schema description containing the declaration
A WindowStale which contains two copies of window schema binding to represent
the window before (using undashed component names) and after (nsing dashed
component names) the operation. We can specify the operation to open a window
by requiring that the status of the window indicate that it is closed before the
operation and open afterwards. No other componeut of the window is changed. ?

OpenWindowOp
A WindowState
={ WindowStale \ {status})

status = closed

| status’ = open

This operation definition is equivalent to the following expanded schema.

'Note the use of the = convention along with schema huding (\) to give such framing con-
ditions. The hidden components are precisely those we wish the operation to be able to change;
Lhe othet remain the same. Though not widely publicized, this technique of explicitly naming Lthe
framing conditions of operations is good practice [106, 27],

6.1

NOTATIONS FOR AGENTS

107

_ OpenWindowOp
WindowState
WindowState'

stafus = closed
status' = open
icon’ = icon
iconpos’ = fconpos

winpes’ = winpos

winsize’ = winsize

Similar descriptions can describe other operations on a window, such as clesing,
moving of resizing. As an example of an operation which takes an argument,
we specify how a window is moved. Either the open window or iconified window
position can be altered, so we define the general move operation in two parts to
cover the two different cases. The overall window repositioning cperation is then
the disjunction of those twa separate operations. When the window is closed, the
argument to the repositioning operation indicates the new position for the icon.

l

Move WindowClosed

A WindowState

=(WindowState \ {iconpos}}

newpos? : PIXEL

status = closed

iconpos’ = newpos?

When the window is open, the argument indicates the new position for the
rectangular region.

TA WindowStule
=(WindowStale \ {winpos))

Move WindowOpen

newpos?T : PIXEL
stalus = open

winpos’ = newpos?

Move WindowOp = Move WindowClosed v Move WindowOpen

108 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

The window is represeuted as a process in the following manner. The state set
is given by WindowStlate and the initial states (¢) are characterized by Windowin:t.
The message set contains elements that can be linked to the schema operations
realized as relations on WindowSiale.

E:.:= open

| close

| move(PIXEL}
| resize{{ PIXEL})

Window : SendHProcess{ WindowStal¢]
Window.ao = E
Window.: = { Wirdowinit ¢ 8 Windouw' }
Wiudaw.ﬂ{open) =
{ Open WindowOp » 0 WindowState — § WindowState’ }

Vp: PIXEL
o Window.f(move(p)) =
{ Move WindowOp
| nmewpos? =g
e OWindouState — 0 WindowState' }

Sufrm and He [158], showed that it is even possible to give the external specifica-
tion within Z, and we offer [urther proof of that in Appendix C with a full semantics
for a constructive trace language based on CSP. So there is no feature of a process
(or agent) which cannot in principle be represented in Z. But this representation is
achieved through rather roundahout measures, none of which is difficnit, but all of
which seem unnecessary to the description of an agent.

Our second eriticism of Z as the agent notation again arises because Z is not
specifically geared to describe functioning entities (like an agent or process) in
isolation within a system of other entities. Z has a limited ability to express com-
munication belween schemas, sequential composition and piping operators being
defined in the schema calculus having only the [imited possibility of communicat-
ing with one other schema. The stimulus-response model dictates that the agents
be able to communicate to an arbitrary number of other agents in response to any
stimulus received. Though extensions to Z which we discnss below remedy the
€arlier problem about bundling internal information into one object, no previous
formalism adequately addresses this failing.

6.1. NOTATIONS FOR AGENTS 109

6.1.2 Object-oriented notations and Z

Onr notion of an agent is somewhat similar to that of an object in object-oriented
programming parlance. With the advent of object oriented programming languages,
there has been a change in the way many designers view the systems that they build
[43]. A system can now be naturally viewed as a collection of objects which pass
messages that cause cbanges in their neighbours, that is, designers have adopted a
stimulus-response view of their systems. In response to the increasing acceptance of
object-oriented programming notations in industry, researchers have attempted to
provide a formal notation to represent the largely informal and intuitively appealing
concepts of objects.

The toots of object-oriented programming can be traced to data abstraction
[102], in which only the means for transforming an underlying data structure, not
the procedure, are made apparent to its user. Though data abstraction within
an algebraic framework was initiated at least as far back as 1978 by Gutlag and
Horning [65] and Goguen el al{60], it has only been investigated more recently
within a model-oriented axiomatic approach. In this section we will discuss a few
of the techniques distinct from our agent model that have been offered, in aroughly
chronological order. These techniques have all influenced the development of the
agent model, though none seems to address the issues around commumication as
well as the agent model.

Promotion

The description of a window and the operations that can be performed on it is
easiest when done in isolation, that is, withont consideration of auy other windows
which may coexist. The schema definitions describe the kinds of transformations on
windows that we waut to be possible. The operation definitions describe transitions
on all possible windows; given eny element of type WindowState, the operation def-
initions provide a description of when and how that element can be traasformed to
another element in WindowState. This is snbtly different from an tuterpretation of
what operations on windows as objects in an interactive windowiug environment
represent. In that case, we create a window and that marks the beginning of its
existence as an entity (or object or process or agent). This entity has character-
istics {or components or attrihutes) which fully describe it at any point during its
existence and there are operations which can be performed on the entity to change
those characteristics bul without changing the identity of the window within the
system.

This last point is very important point because it embodies another criticism
of ¥, namely that it does not allow for identification of the cbjects in a system
so that changes to one object can be isclated. We do not feel, however, that this
criticism is valid, as the standard Z development method provides promotion as a

110 ClHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

means of objectiflying isolated specifications in order 10 incorparate them directly in
a larger global system description. The technique of promotion is common amongst
7 practitioners, being first explained by Morgan and Sufrin io their description of
the Unix fling system [117). and given a more rigorous mathematical treatment by
Woodcock [171].

A fundamental characteristic of an object is its identity. To promote the local
window description into the more global window manager level, we need a way of
identifying the different instances of windows, all of which are of the same type
WindouwSiaie. We introduce a set of window identifiers, WINID, so that the iden-
tification of individual windows is modelled as a partial function from identifiers
to the schema type WindowState. The windows that the manager “knows™ about
arc precisely those in the domain of this function. The window manager also keeps
track of the current selected window or windows, to which all future inpnt is di-
rected. The window manager may contain other information as well, but for our
present purpose we need not bother with any further detail.

(WINID]

— WindowManuger
windows : WINID —» WindowSlate '
tnoun : P WINID

selected : P WINID

known = dom windows

selected C known

We have already defined operations such as Move WindowOp on a single, isolated
window because they were more conveniently described in that context, rather than
in the context of the window manager. We can promote the local operations via
the promotion schema WindowPromote.

WindowPromote —
A WindowManager

win? : WINID

A Window

win? € known
A Window = windows win?
windows’ = windows & {win? — @ Window'}

knoun' = knouwn

{ selectcd’ = selected

6.1. NOTATIONS FOR AGENTS 111

This promotion schema will allow us to embed the local window operations
as operations of the window manager with minimal changes to their definition,
The advanlage lo this method is that in the definition of the window operations
we did not have to worry about properties of the window manager, which makes
their definitions not only simpler but more natural to express. For example, when
defining the move window operalion it should not concern the specifier what other
windows are known to the window manager. Operations on windows can be defined
directly as operations at the level of the window rmanager via tbis promotion schema.

WMOpen WindowOp =
(Open WindowOp A WindowPromole} \ A IWindowState

WMClose WindowQOp =
(Close WindowOp A WindowPromole) \ A WindowState

WMMove WindowOp =
(Move WindowOp A WindouwPromote) \ A WindowState

WM Resize WindowOp =
(MNesize WindowOp A WindowPromote) \ A WindowSlate

In our example, we did not want the global state to affect the local operations.
Though the promotion technique can cope with such interference by the global state
by suitahle parameterization of the global operations, it is more in line with the
spirit of data absiraction to avoid such interference. A limitation on promoted op-
erations is that they only affect thal part of the global state which was promoted. It
is for this reason that in tlie operation promotion schema WindowPromote that we
have explicitly stated that the known and selected components remain unchanged
because these are aspects of the global window manager state that are separate from
the individual windows. Some operations on windows are only relevant at the leve]
of the window manager. Examples of such operations are creation and destruction
of windows. Whereas the conditions for an initialized window or a terminable win-
dow were described in isolation from the window manager, the operation ol creating
and destroying a window can only be defined at the more global level. Whereas
the lone window did not exist before creation and after termination, the window
manager existence subsnmes that of any window it manages.

The main advantage of promolion is that the effects of operations can be iso-
lated to the smallest part of a complex system. This is of great advantage for
descrihing the functionality of a complex system since the specification takes on
a compositional lock. The power of promotion for layering the description of a
complex systenz is the major contribution first provided by Morgan and Sufrin. A
further advantage of promolion is given by its more formal treatment by Woodcock
in which we can see that the modularization allows for a proof management system

112 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

to prove the properties of a complex specification. Isolation of proof obligations is
also important in our agent language.

Promotion captures the ideutity of objects, but it does not address verv ade-
quately Lhe second point about object-oriented notations, that of conceptualization.
As Woodcock points out[171], promotion advocates an “onion skin” approach to
system development. The windowing system is viewed in lavers of functionality, as
shown in Figure 6.1. The innermost layer represents the single window, followed

i Physical Interface)

Aslract Interface

‘Window Manager

Iliiiiilll

\ J

Figure 6.1: The “onion skin” view of a windowing system

by the multi-windowing environment, the abstract interface (in terms of logical in-
put and output devices) and the physical interface. By contrast, an object view
of the windowing system may look like Figure 6.2. The onion skin view shows the

R Eeyboard

House

515D13YY

P R
)

Figure 6.2: The object view of a windowing system

inheritance relationship, whereas the object view shows the instance relationship
and communication.
In the next few sections, we will summarize some of the formalisms more in line

with the object view.

6.1. NOTATIONS FOR AGENTS 113

Schuman and Pitt

Schuman aud Pitt [146], first suggested in 1987 a variant on the Z notation which
was specifically designed to meet the ueeds of object-oriented system design and
conform to its “pragmatic appeal”. Schuman, Pitt and Byers [145] followed three
years later with an interpretation of classes in their earlier mode] as concurrent pro-
cesses. Though they recognized the need to relate state declaration with initializa-
tion and operations more strongly than is done with Z (or VDM), they deliberately
did not enforce that relationship syntactically, as we desire to do.

They uote that one of the prime features of a concurrent specification techniques
is the ability to reason about the behaviour of the individual processes (or objects)
and about combinations of the several processes. They take minimalist approach
to process behaviour, characterizing a process in terms of trace/implication pairs.
Traces are exactly the same as for our agents above, that is, a record of events
in which the process has participated. The events are operation names which are
defined by a pre- and postcondition semantics on the components of the state.
Implications are that information on Lhe state of a process which can be inferred as
a result of the postconditions of the operations in the trace. Communication is in
terms of data flow, so synchronization results naturally from conjunction of pre and
postconditions. They claim this Lo represent the most natural form of concurrency,
a point whicl is very debatable. An advantage of aur agents is in whal we believe to
be a more natural facility for expressiug the communication between the separate
components.

Schuman, Pitt and Byers provide two means for composing, inheritance and
instantiation. Inheritance occurs when a process € can incarporate and exiend the
process (or class) information of 4 and B to define a new process which is asubclass
of hoth A and A. Instantiation occurs when C incorporates named versisns of A
and B in its definition, The mathematical distinction between inheritance and
instantiation is that between normal union and disjoint union, and this dislinction
18 similar to the conditions for independent synchronization and interleaving in our
agent madel, though we do not need only use normal waion on attrihute/value
mappings to obtain the compaosition in both cases.

Hall’s object-oriented conventions in standard Z

Hall has used standard Z with special conventions designed specifically to deal with
object-oriented considerations in software development. The main convention is the
nse of special components in the state definition as a means of object identification.
‘This identifier is relerred to as self in the state definition. We did the same in pro-
motion for the window example hy introducing a set of window identifiers, WINID.
Hall’s convention suggests that this be performed from the start. Operalions on
the state of an object are not inlended to change its identity, and so this can be

114 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

made explicit by the addition of the predicate self’ = self for all operations.

Hall is also quick to point cut the lack of state/aperation bundling in Z, but
rather than suggest an alternative, he says that the convention is 1o assume that all
operations defined are the only ones possible for the object. This seems reasonable,
but it does not address the problem of bundling.

The semantics of ohjects are again in terms of the traces of operations in which
the object can participate. He gives examples of how a mechanical procedure can
convert a schema definition of an operation to its relational equivalent. This proce-
dure is identical to the one we showed earlier in converting the window specification
to an element in SandH Process, except that Hall uses only the input parameters as
the index to the operation. In the agent model this would be equivalent to mod-
elling the operations function as a relation between operations and state transitions
instead of a function, and this decision appears very dubious. Hall admits that this
mechanical defimition cannot he defined in Z, as we have noted, and so he calls
upon a convention to perform the mechanical conversion.

The set of conventions advocated by Hall has been used with apparent success in
the specfication of “a substantial piece” of software written in Ohjective-C. A very
interesting case study was performed using the Model-View paradigm of Smalltalk.
We willdiscuss the formalization of such interactive architectures in Chapter 8.

Object-Z

Research at Queensland has resulted in the development of Object-Z, a true ex-
tension to Spivey’s semantics for standard Z |34, 55, 56]. Object-Z introduces a
class structure whose explicit purpose is to bind together a state description with
its invariant, initialization and operations. The semantjcs of a class is given hy the
events in which the objects (variable instances) of a class participate. An event is
defined as one of the class operations along with the before and after state bindings
associaled Lo that instance of the operation applicatiou. A trace of such events is
called & history,

A relatively minor extension ta Spivey’s semantics [153) allows for the descrip-
tion of classes. One of the main features of the extension 15 the addition of roles
which are used to distinguish the use of various identifiers as either input or outpnt
arguments to an operation definition or before or after values of the state. The pre
and post roles are used to define legal histories of a class instance, since post valnes
of the state after one operation must be the pre values of the state before the next
operation.

Bevond the constraints on state transitions that are defined by the operations,
there is also the ability to express constraints on the histories of a class instance
explicitly using a temporal logic predicate language. However, this relationship
between exiernal specification over histories and the normal internal specification

6.1. NOTATIONS FORL AGENTS 115

is not completely formalized in {55]. The authors claim that this will allow the
specification of liveness properties, in which assertions can be made about what
good properties will occur in the system. Without a clear relationship between
the external and internal specifications, snch a statement is hard to back up. The
external specification may express some liveness criterion, but that behaviour could
very well be disallowed by the internal description.

Object-Z provides a simple and very useful extension to Z by the addition
of classes. What remains to be done with Object-Z is clear. Just as there 13 a
schema calculus in standard Z which allows for the manipulation and composition
of schemas, there needs to be a class caleulus in Object-Z which addresses the com-
position of, and communication between, classes. We feel Lthat our agent model
addresses some of those questions.

‘Whysall and McDermid

Whysall and McDermid have also proposed a means of adding more structure to
Z specifications to make them more amenable to object-oriented description via
data abstraction [1G7, 168]. The description of objects is split futo two parts, the
ezport and the body specifications. They make explicit, as we do, that one of the
main advantages of such structure is to allow composition of modules, both for the
pnrpose of description of large systems and for the delegation of proof obligations
for properties of the large systems. These two specifications roughly correspond to
our external and internal interpretation relations on agents.

The export specification gives the input/output trace behaviour of the cbject.
The notation provided allows for this specification in an algebraic language which is
based on observational equivalence of method traces. Observational equivalence in
this case is similar Lo external indistinguishability (— !‘=¥7) we defined in Chapler 4.
The body specification dictates how the metheds behave on the underlying state
of the object. This is similar to our internal specification. Whysall and McDer-
mid define the relationship which must hald between an object’s export and body
specifications, namely that they cannot be inconsistent with each other. Traces
of method invocations allowed hy the export specification must be allowed hy the
body specification.

Z++

Work at Oxford bas recently resulted in an object-oriented extension to Z called
Z++ [100]. A separate notation has been added which performs precisely the
bundling of state specificatior and operations. It has been shown how this notation
maps down to more conventional Z. This notation does not consider communication
at all between separate objects because it has been developed based on a three-

116 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

level design of systems in which each level uses operations of the level below, like
the “onion skin" model associated to promotion discussed earlier. Z++ is a wide
spectram language because it contains both nonexecutable specification statements
and polentiatly executable procedural statements (in UNIFORM [154}).

6.1.3 Other concurrent notations

We have explicitly incorporated a process algehra model of the external specification
of agents because it is a simple compaositional model which addresses concurrency.
Process algebras gain their simplicity and power [rom their deliberate disregard
of state information. But as Joseplis points out [92], this is not always a positive
feature in the design of comptlex systems, as the snccess of model-oriented specifica-
tion techniques such as Z and VDM has shown. Both Josephs and He [76, 77] have
developed state-based versions of communicating processes in which the transitions
on the explicit state space cefine the traces of behaviour. It was He's work which
influenced the hybrid approach of the Sufrin and He model of interactive processes
and our own extension of that model in terms of agents.

Notations for concurrency abound; an adequate review of these notations is not
within the aims and scope of this thesis. We take time here to mention the Josephs
and He models as signposts for the trend in recent years to develop decent models
of concurrency with explicit staie. Qur agent model is such an attempt which
has ariser out of the special needs to express interactive properties of a system
design. One other attempt of note is the work by Morgan and Woodcock [170] in
which a weakest precondition semantics is used to define CSP-like combinators for
a concurrent extension to Dijkstra’s gnarded command language.

6.2 The agent language

In thissection, we will describe the language for agents and outline how Lhe notation
maps to the model of agents. The agent language is as far as possible a mixture
of Z and CSP, so there is no need to give a detailed semantics for the language in
the body of this thesis. The interested reader is directed to Appendix C for further
details of the semantics for the agent language.

As we have stated, there are two ways to combine agents—by the interleav-
ing of agents which may share common events or attributes, or by the synchro-
nization of agents with disioint altribute sets. Existing agent definitions can be
combined, therefore, by interleaving tbem or synchronizing them. In addition, we
can constructively define an agent by giving the internal, external and communica-
tions specifications directly. The examples iu Section 6.3 show how and when each
methad of agent description is used.

6.2. THE AGENT LANGUAGE i17

An interactive system is a mapping from agent identifiers to the set of agents
in Agent, We introduce a set of possible agent identifiers.

[AgentID)

miSys == AgentlD « Agent

The system sernantic function, $f _], takes an existing interactive system and
an agent language expression and produces a new interactive system. The agent
language description represents either the synchrenization ar interleaving of existing
agents, inlerleaved with an additional 3-part description of a new agent {internal,
external, communication specification}, or a completely new 3-part description of
an agent. The following is a BNF-like description of the agent language syntax.
Square brackets are used io indicate an item which is optional.

AgExp »= agent AgentiD - synchronization

synchronizes AgentfDList
[with 3PartSpec]
endagent Agent/D

| agent AgentID - interleaving
interleaves Agent/DList
{with 3Par!Spec]
endagent Agent/D

| agent AgentID - 3-part specification
3ParlSpec
endagent Agent/D

The system semantic [unction S —] is defined structurally over the elements in
AgErp. For synchronized combination, the expression

agent Al
synchronizes AS
with Spec
endagent Al

maps the (fresh) agent identifier Al to the synchronous composition of the agents
indicated by the sequence of (distinct) agent identifiers AS, if such a composition is
allowed by composeall,,,,. This may then be interleaved with the agent defined by
the 3-part specification Spec, according to the semantic operator Ag[_] discussed
later.

118 CHAPTER B. A LANGUAGE FOR DESCRIBING AGENTS

Sl =1: (IntSys x AgEzp) ++ [niSys
Y Al: AgentID; AS :seq; AgentfD; p: InlSys
| (A1¢ domp
A (AS 3 p) € dom ecomposeall,,,)
agent Al
e S| | synchronizes AS |]=
endagent Al
PB{Al — composeall,,, {AS)}

YV Al: AgenlID; AS :seq, AgenlID; Spec: 3PuriSpec P : IntSys
[(Al ¢ domp
A AS ¢ p € dom composeall,,, .
A (composeall, . (AS 3 £), Agl Spec]} € dom composen)
agent Al
synchronizes 4§ 1=
with Spec -
endagent Al
PE{ALl — compose,(compostallya (AS 5 p), Agl Spec 1)}

lS[

Note that becaunse of the associativity of compose. .. (Theorem 5.5), the order of
the agent identifiers in AS does not matter.

For interleaved combination, the expression

agent A1
interleaves AS
endagent A1

maps the fresh identifier Al to the interleaved prodnct of the known agent defini-
tionsin 45 and the 3-part specification Spee, if given.

6.2.

THE AGENT LANGUAGE

119

VY Al : AgentiD; AS :seq, AgentID; p: IntSys

| (Al ¢ domp
A AS 3P € dom composeall,,,)
agent Al
interleaves AS
. S! With SPEC] = P@{Al i Composeal.!',‘,(AS ‘;P)}

endagent Al
VAl : AgentiD; AS :seq, AgentlD; Spec : 3PartSpec; p : IntSys

I { Al ¢ domp
A (ASep) ~ Agl Spec | € dom composeall, ()
agent 41
interleaves AS
sl with Spee 1=

endagent Al
PB{ AL = composeall, ((AS 32) 7 Agl Spec 1)}

Note that because of the associativity of compose,,; {Theorem 5.4), the order of the
agent identifiers in 4S5 does not matter.

A stand alone specification of an agent,

agent Al
Spec
endagent Al

maps the fresh identifier Al to the agent Ag[Spec].

¥ Al : AgentlD; Spec : 3PartSpec, p: [niSys

| (Al¢domp
A Spec € dom Ag[]}
agent Al
o ST Spee) 1 =pra{Al — Ag[Spec |}
endagent 41

The semantic fupction Ag[_] maps a 3-part description from the agent language
to its representative element in Agent. This three part description of an agent
is given by separate internal, external and communication languages. The three
part specification of an agent is given by an internal, external and communication
language.

3 PariSpec = internal [Ezrp
communication CEzrp
external EEzp

120 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

The ageat semantic operator, Ag] _1, is defined in terms of semantic operators for
each of the sublanguages. The domaiu of Ag] _] is the set of combinations of inter-
nal, communication and external expressions which yield a valid agent description
when they are mapped to their respective specificalions in the model.

Ag[-] : 3PartSpec + Agent

Il _): IEzp — InternalSpec

¢l -]: CEzp — Communication
El _1: EEzp — EzternalSpec

dom Agf _] = { [F : IEzp; CF: CEzp; EE : EEzp; Agent
I { OhiternalSpec = I] IE]
A 8Communication = [CE]
A DEzternalSpec = E[FE })
internal /E
¢ | communication CE | }
external EE

internal JE
Ag] | communication CF | | = ¢ Agent
external EE o (#internalSpec = I[IE]
A §Commaunication = O] CE]
| A 8EsternalSpec = E[EE |

The template for this part of the agent lauguage is shown below.

agent Agentll)
internal
types
typedeclaratians
attributes
altribule value bindings
invariant
predicate an state bindings
initially
predicale on state bindings
operations
opl(typed argument lst)
changes (ezplicit fruming condition)
pre precondition on slafe and arguments
post postcondilion an before/after state and arguments
op2 .-

communication

6.2. THE AGENT LANGUAGE 121

inputs typed imput channels
outputs {yped oulput channels
T internal events

external
constructive {race description
satisfying
trace predicate

endagent Agent{D

For the body of this thesis, we feel there is a strong enough intuitive link be-
tween these languages and their models to warrant passing over the detail of the
denotational semantics. We will, however, go into more depth on the external
language.

6.2.1 A language for external specifications

There is a distinction about how an external specifications can be produced-—
explicitly via a constructive language of traces, or implicitly via a predicate language
on traces. The constructive language of traces is usually what is provided in the
notation of a process algebra, such as CSP. In this language, the constructors
provide a way to build up large process specifications in terms of smaller and simpler
processes. For exainple, the construction

a— P

is supposed to represent Lhe external specification which first engages in event a
and then behaves like P. The complete constructive language is very similar to a

subset of CSP as defined by Hoare [82).

ConEEzp ::= stop{{P Event}) - deadlock
| Tun{P Event}) - the total behaviour
| skip{P Event} - successful termination
| {Event}) — ConEEzp ~ prefix composition
| ConEEzp D ConEEzp -~ choice composition
| ConEEzpj ConEEzp - sequential composition
| ConEEzp| ConEEzp — synchronous parallel composition
| ConEEzp| ConEErp — asynchronous parallel composition
[f(ConFEzp) — process relabelling
\

X : (P Event)) » F(X) - guarded recursion

These syntactic constructs are mapped to elements in the external specification
space via the semantic operator £,n[]. The function £.,.]] is defined in terms of
two functions, one which yields the alphabet of the construct, «f] and one which
vields the trace set, T] .

122 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

Eanl -} : ConEEzp — EzternalSpec
of.]: ConEEzp — P Event
T{-}: ConEEzp — P seq Event

(Eonl ES]).alphabet = o] ES 1
(Econ[ES]).traces = T[ES |

We define the prefix composition operator as follows.

—: (Event x ConEEzp) + ConEErp

dom{_— _)={ e: Event; P: ConFEzp
| eea[P]
e (e,P)}
e—Pl=of P]

Tle—=Pl=()U{t:T[P]e(e "t}

As done by Hoare [82, p. 134], we introduce some syntactic conventions to handle
input and outpnt. The expression

tm— P,

is equivalent to the choice of every possible message that can occur along channel ¢
followed by the behavicur of some predelined description given by . For example,
if there were only two messages that could occur on channel ¢, say m, and my, then
we waould have the [ollowing syniactic equivalence.

Im — Pmdg’ (c.my — Pp,

]
cmy — P,,)

For ontput, we will nse ¢!m — P as a syntactic equivalent for (e, m) —+ P. For
both input and outpnt, the arguments for messages will not be given with type
information, as it is assumed the order and types of the arguments for any given
message is as defined in the internal and commnnication specifications.

In Appendix C we give the full denotational semantics for this constructive trace
spedfication language, along with an operational semantics to aid in the intuition
behind each constructor.

The advantage of a constructive language for the external specification is that
it can lead naturally to an implementation. Whereas this is a definite advantage
if the desire i5 to produce a rapid prototyping tool from the agent language, or
even a full-blewn programming environment, it is not the only purpose of the agent
language, nor is it the primary purpose. The primmary pnrpose is to be ahle to

6.2. THE AGENT LANGUAGE 123

provide a descripiion of the components of an interactive system in such a way as
to satisfy the constraints imposed by interactive properties such as those described
in Chapter 4. With that purpose in mind, we admit that it is not always sosimple,
or possible, to describe constraints on the external behaviour using the constructive
trace language.

An example of an implicit description of an external specification wounld be by
formulation of predicates on the trace set. In CSP, these are referred to as be-
havioural specifications on the traces[46]. They are used as criteria for judging
whether a givenz CSP expression satisfies some requirement. In the external speci-
fication of agents, we will allow trace predicates to describe additional constraints
on the communication of events along with the constructive language.

Providing a very powerful predicate language, such as the modal mu-calculus
introduced by Pratt [131] and Kozen [95], is beyoud the scope of this thesis. Just as
we have given a simple example of incorporating a constructive language within the
agent model, so motivating further work on incorperating more complex languages,
we also provide a simple example of a predicate language and leave it open to
incorporate more complex languages. A trace predicate, then, is simply a set of
functions with a prefix closed domain.

ImpEEzxp . P(P Event x {seq Event — Bool))
(A, TP) € ImpEFzp < prefix_closed 4(TP(true))
Just as there was a semantic function, £,.[—], which mapped the construclive

external language to the ErfernalSpec, we will also have a function, £mf -) to
map the predicate language to an ErternalSpec element.

I Emel — 1: fmpEFrp — ExternalSpec

The overall external specification is obtained by intersecting the trace sets de-
rived from the explicit constructive language and the implicit trace predicate lan-
guage.

ESpecLanguage := ConLExp x ImpEExp

(-} : ESpecLanguage - ErternalSpec
dom £[= 1{ A : P Erent; con : ConEFzp; emp : ImpEErp
| ([afcon]=4
A fst(imp) = A)
s {con,imp) }
£l (imp, con) |.alphubet = af con |

£l (imp, con) J.traces = T con 1N iy [imp |.traces

124 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

6.3 Using the agent language

Our presentation of Lhe agent model will be aided by some examples. We would
like to demonstrate in these examples how the definition of an agent in the new
language more closely matches the way a designer understands it. The purpose of
these examples is both Lo make clearer the meaning of the language and to show
how various development techniques can be used to build up agent descriptions
incrementally. The first example is adapted from Took's thesis and involves the de-
scription of a very crude nuclear reactar. The second example involves a description
of parta of a simple windowing system.

6.3.1 A toy reactor

Took [163] describes a primitive nuclear reactor, in which there are damping rods
to control the reaction and coolant to take away the heat generated by the reaction.
There is only one relevant attribute {or the rods which indicates whether they are
up, enabling the reaction, or down, disabling the reaction. Initially, the rods are
down. Two operations cain be performed on the rods, either lifting them or dropping
them, alter which the rods are up or down, respectively. The rods respond to being
lifted or dropped by informing some other agent of the rod position after the change.
The agent definition of the rods is given below.

agent rods
internal
types
Rodpes = up | doun
attributes
postlion : Rodpos
invariant
irue
initially
position = doun
operations
ft()
changes (position)
pre irue
post position’ = up
drop()
changes (position)
pre frue
post posilion’ = doum
inform(pos : Rodpos)
pre pos = position
communication

6.3. USING THE AGENT LANGUAGE 125

inputs rodin : [ft{), drop()
outputs rodout : inform(pos : Rodpos)
L
external
5 X w ({rodin, lift()) = rodoutlinform{ pos)—
{rodin, drop{}) — rodout!inform(pos) — X}
satisfying
true
endagent rods

This simple example cau he used to explain the notation aud several convertions we
will adopt in its use. There is no state invariant {(beyond that implied by the typing
information of {he state attributes) and we have indicated this by the predirate trye
in the invariants section of the definition. The pre- and postconditions for some
operations are also listed as frve, meaning they are as weak as possible. A true
predicate in the satisfaction predicate for the external description means that there
are no further constraints on the external definition beyond those imposed by the
constructive definition and iraplied by the internal specification. In the future, we
will usually omit these sections with predicates that are frue.

The comimunication description lists the input and output channels together
with the messages that can he sent along those channels. Any internal messages
would have been listed after the internal channel identifier 7. There are no internal
messages in this description. In the future, if there are no messages assodiated to
a channel, it need not appear in the description. If there are no input o output
events for the agent, then that section can he omitted as well.

The external specification of the rods shows the hybrid nature of the agent
language. We intend to prohibit two consecntive kifts or drops of the rods. We
could have easily defined the preconditions for the operations for the ft() and
drop() messages Lo accomrnodate this. However, we chose in this example to use the
constructive trace langnage of the external specification to express this constraint.
Though it does not matter in such a simple example, there may be reasons to avotd
expressing such ordering constraints by definition of preconditions, We alse enforce
the constraint that an output message informing of the new rod position must be
performed between each input message.

The coclant for the reactor is very similar to the reds (when viewed as an agent,
that is). The coolant has only one attribute of interest which indicates the level of
the coolant as either in or out. Initially, the coolant is in. Operations are defined
to add or remove the coalant, after which the coelant is in or out, respectively. The
agent definition of the coolaut is given helow.

agent coolunl
internal
types

126 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

CoolantLevel ::= in | out
atiributes
level : CoolantLevel
initinfly
level = in
operations
add()
changes (level)
pre level = oul
post level’ = in
remouve()
changes (level)
pre level = in
post level' = aut
inform(!l : CoolaniLevel)
pre | = lewvel
communication
inputs redin : add(}, remove()
outputs rodout : inform(l: CeolantLevel)
exiernal
satisfying
Yt iruces
o (1] {rodout}) < #(¢ | {rodin}) € #(1 | {rodout}} + 1
endagent coolant

Again, no two add() or remove!) messages can be received consecutively. In this
example we have used the precondition technique to specify this constraint. The
external description need only ensure that each input event is followed by an fnform
event on the rodout channel, which is described by a satisfaction predicate on the
trace set. The lack of a constructive external description means thatl its constraint
is as weak as possible, equivalent to run,, where A is the alphabet of the agent.
The reactor agent interleaves the rod and coolant agent with the additional
constraint that. at no time can the level of the coolant be ont whilst the damping
rods are up. The interleaved combination of rods and coolani does not prohibit this,
and so we must add this in as a separate invariant of the interleaved combination.

agent reacior
interleaves {rods, coolant)
with internal
invariant
- (rods = up A level = pul)
endagent reactor

The behaviour of the agent reacfor is auy interteaving of the separate behaviours
of the rod and coolant agenls except for those which would lead to the forbidden

6.3. UsING THE AGENT LANGUAGE 127

state.

6.3.2 Some input devices

The keyboard

The keyboard is composed of a collection of buttens, ane far each labelled key. A
button is a simple transducer, couverting inputs of presses and releases by the user
to outputs of ups and downs to the window manager. Such a button is defined
below. It has one attribute of interest representing the status of the button {up or
down). Two inpul operations correspond to the press action and the release action.
After each, the new button status is sent as a response to the window manager.

agent button
internal
types
BStatus ::= up | down
attributes
bstatus : BSlatus
initially
batatus = up
operations
press{)
changes (bsieius)
pre bstolus = up
post bstalus’ = down
release()
changes (bstatus)
pre bstatus = doun
post bslatus’ = up
inform(bs : BStatus)

changes ()
pre bs = bstatus
communication

inputs butiin : press{}, release()

outputs buttout : inform(bs ; BSlatus)
external

1 X e buttin?z — bultowtlinform{b) — X
endagent button

We can define a relabelling operation on agents, so that for any agent identifier A1,
the expression

Alloldy, oldy, ... [new,, new;, . .]

128 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

is mapped to the agent identified by Al with the name old, replaced by new,
old; replaced by news, etc. We assume that the mapping from old names to new
names is injective, Furthermore, for any agent identifier A2 we will write new:A2
as shorthand for renaming all attributes and channels with the prefix new added.
The keyboard would be represented as the syrchronized combination of kevs, each
of which behaves as defined by butlon with the attribute and input and output
channels appropriately renamed. We could have chosen to either synchronize or in-
terleave in this example since they would both result in the same agent definition.
Wae choose to synchronize in this case because it corresponds with our notion of the
keys as separate entities on the keyboard. In the design space netation of Card,
Mackinlay and Robertson [31], this composition is classified as “layout composi-
tion”, referring to the collocation of two or more devices (the keys in our example)
on different places of a common pane! (the keyboard in our example).

agent keyboard
synchronizes { a:butlon, bi:button, ..)
endagent keyboard

The mouse

The mouse also makes use of the bufton agent for each of its buitons. In addition,
the mouse can transform movements in a 2-dimensional plane to values in the Pizel
plane. This transformation is an unchangeable attribute of the mouse agent, res,
and it cortesponds to what ('ard, Mackinlay and Robertson refer to as a “resolntion
function”. Below, we describe the movement portion of a mouse as the agent
MouseMove.

agent MouseMove

internal
types
mousermar, mouseymnar : N
MousePlane == {..mousermar x §..mouseymaz
atiributes

currentmove : Pirel

res : MousePlune — Pirel
operations
sweep(mdella : MousePlane)

changes {currentmove)

post currentmove’ = res(mdella)
mousemove(pdella : Pirel)

changes ()

pre pdelte = currentmove

communication

inputs gesture : sweep(mdelta : MousePlane)
outputs mouseout : mousemgve(pdelta : Pizel)

6.3. USING THE AGENT LANGUAGE 129

external
u X & gesture?s — mouseout'monsemove(pd) — X
endagent MouseMove

The mouse agent is the synchronized combination of the movement agent and the
huttons agents, of which we assume there are three.

agent Mouse
synchronizes {1,::button, 2, :bulton, 3,,::button, Mouse Move)
endagent Mouse

Card, Mackinlay and Robertson have prodnced a generative design space for
describing a large class of inpnt devices. The example of the keyboard and monse
above show how we can realize some points in that space and it wonld be an
interesting exercise to generate more of that space in the agent langnage. Our
limited experience suggests that the slightly unnatnral way of expressing stimnlos-
respense behaviour may be a limiting factor in the snccess of such an exercise.

6.3.3 A window

We can represent an individnal window in a windowing system based on the de-
scription given in Section 6.1. First we will allow some global type definitions which
will be available to all agent definitions in this section. These will allow us to talk
ahout points in the window space in terms of pixels, and images in termsof pixel
maps.

zmar,ymaz - N

Pizel == 0..zmaz x 0. .ymaz
Bit :=0]1

PireiMap == PIXEL + Bit

We will assume appropriately defined operations on elements in Pizel, such as
addition and a natural ordering <, We give an incremental description of the
window which mirrors the development method used with Z. The window state is
first, indicating the status of the window as open or closed, the icon associated to
the window when closed and its position, and the size of the window when open
and its position. Initially, the window is open, and the other attribntes are set to
some default value.

agent WindowStale
internal
types
wingizeg,y : Pizel
1eon g, blank : PizelMap
attributes

130 CHAPTER 6. A LANGUAGE FOHR DESCRIBING AGENTS

icon, contents : PirelMap
iconpos, winpos, winsize : Pirel
status : open | closed
ipvariant
winpos + winstze € (rmax, ymar)
initially
slalug = open
winpos = iconpos = (0,0)
winsize = winsizey.
fcon = icon gy
conlents = blank
operations
showwin(e : PéireliMap)
changes ()
pre slalus = open
¢ = contenlts
showicon (i : PirciMap)
changes ()
pre status = closed
i = icon
communication
ocutputs
winou! : showwin(c : PizelMap), showicon(i . PizelMap)
endagent WindowState

The agent WindowState will be able to continuously send output messages of its
blank window contents. Because the messages showwin(c) and showicon(i)} will be
used by many other agents to be defined below which interleave with WindowState,
we must show in each case that the effect on attribnles not in commmon 1s the identity
transition. In practice, the messages that are shared beiween agents represent
output responses and these are usually defined as ideutity transitions, so we will
satisfy the constraint trivially.

Opening and closing the window is described by interleaving WindowStaie with
an agent description of those operations.

agent OpenClose
interleaves (WindowStale)
with
internal
operations
open()
changes (status)
pre stalus = closed
post stalus' = open
close()

63, UsSING THE AGENT LANGUAGE

131

changes (stalus)
pre slatus = open
post status’ = closed
communication
inputs
winin : open(), close()
endagent CpenClose

Moving the window is described as a single operation. The postcondition covers

the two cases in which the window is open or closed.

agent Move
interleaves { WindowState)
with
internal
operations
mave (pos : Pirel)
changes (winpos, iconpos)
post stalus = closed = (winpos’ = pos
A iconpos’ = iconpos)
stetus = open = { iconpos’ = pos
A winpos’ = winnpos)
communication
inputs
winin : move(pos - Pizel)
endagent Mouve

Finally, resizing a window can only occur when the window is open.

agent Resize
interleaves { WindowState)
with
internal
operations
resize(s: Pirel)
changes (uinsize)
pre sialus = open
post winsize' = s
communication
inputs winin : resize(s : Pizel}
endagent Resize

All of the above agents can be combined to give an agent description of awindow.
We add the constraint overall Lhat requires each event on the winin channel to be
followed by an event on the winou! channel. The event on the output channel
either indicates the iconic form of the window or displays the contents, depending

132 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

on whether the window is closed or open. In order o guarantee this behaviour we
introduce internal events (7, #sepen()) and (r, isclesed()) to decide which view of
the window is output as a response to the last input.

agent Window
interleaves {OpenClose, Move, Resize)
with
internal
operations
isopen ()
pre stalus = oprn
tselosed()
pre stalus = elused
communiecation
r :isopen(), isclosed()
external
winout!showin(c)—
pX s (winin?z —~
{(r, 1s0pen()) — winout!'showwin(c) — X
a
(1, 15¢losed()) — winout!showieon{c) — X))
endagent Window

A window manager

Having defined the individual window, we want to investigate how to define the
window manager as an agent which synchronizes with and coordinates the activity
of theindividual windows. Figure 6.3 gives a graphical view of the agent relationship
we want to capture.

Inleraction with any window is coordinated via the window manager. In the
manager we describe here, we will assume that windows are nonoverlapping in Pizel
space and that commnands to the window manager are directed to the currently se-
lected window (if there is one). The currently selected window is determined by
the position of the mouse cursor. These assumptions have been made to make the
description simpler. We could easily relax these restrictions, but the corresponding
description of the window manager would be more complex. We will not give a
camplete description of the window manager either. Instead, we will give an exam-
ple of how it coordinates artivity by describing how the window opening command
is defined as an operatior on the window manager.

The attributes of concern for the window manager include:

s the position of the mouse cursor;

a the set of PizelMaps associated to active windows in the system;

6.3. USING THE AGENT LANGUAGE 133

@

/7\

Figure 6.3: Window manager/window relationship

® a function for delermining to which windaw a paint in Pixel space belongs;
and

e the currently selected window, which is at most one window,

Identification of windows will be by a set of window identifiers, as was proposed
by the promotion solntion discussed earlier.

[WinID]

We will not concern ourselves with initialization considerations in this desciption,
as it is not important to the example of opening windows. Below 15 the agent
description of the attributes and invariants for the window manager. The constraint
of nonoverlapping windows is embodied in the definition of pick as a functien.

agent WindowManager
internal
atiributes
mousepos : Pizel
windows : WinlD} + PizeldMap
known, seleeted . P WinlD
pick : Pizel - WinID
invariant
known = dom windows
Hselected < 1
selected C known
pick = { v : known; p : Pizel
| p € dom{windows(w)j
L] p — }
seleeted = pick{(l{ mousepos}|}

134 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS

The window manager will receive as input messages from a potential user which
can change the mouse position or open the current window. From individual
windows, the manager receives as input the showwir(c)} message that was men-
tioned earlier. The response message of importance in this example is the message
sent to the selected window to opeu it. We also describe an internal message
isselected(v © WindfD) which decides if the window lahelled by the identifier w is
the currently selected window. This internal event will allow ns to give the desired
external description of the manager’s behavionr. The following is the definition of
the operations for the window manager.

operations
movemouse(dp : Pirct)
changes {mousepos)
post mousepos’ = mousepos + dp
showwin{c : PirelMap)
changes (unndows, sefected, pick)
pre selected £ B
post windous’ = windews & { 5 : selecled ¢ 5+ ¢)
openuindow()
changes ()
pre selecied # @
open(}
changes ()
isselected (w : WiniD)
changes ()
pre w € selected

The communication specification for the window manager has one channel wmin
for input received from the user and one input channel from every window. Our
description of the window manager is statically determined, that is, all commu-
nications channels that will ever be used must be declared at once since there is
no means of adding channels.? We therefore define an input chanuel from every
window, even if that channel is never used. Likewise, we define an ontput channel
from the window manager to each window. The commnnication description for the
window manager follows.

communication
inputs
wmin | movemouse(dp = Pixel), openwindow()
Yw: WinlD e wswinoul : showwin(e : PirelMap)
outputs
Y : WinfD e wwinin : apen()
r . isseleeted(w : WiniD)

It should be possible to use Lthe agent model dynamically, allowing channels to be ¢communi-
cated as well, bul we have not investigated this as yet

6.4. CONCLUSIONS 135

The external specification of the window manager is more complicated than we
have seen previously. This is because the operations defined do not imply much
ordering information. When an openuindow() message is sent along the wmin
channel, it is meant to open the cnrrently selected window, determined by the
mouse position. The window manager determines which window is selected by the
internal event (7, isselccted{w : WinID)) which binds the value of w so that the
manager can send the openr() message along the channel w:winin, and then receive
the new pixel image for the newly opened window along the wiiwinout chanuel, as
desired. The selected window is changed by movement of the mouse. The external
specification for the the window manager is given below,

external uX e ((Oy winrp((r,isselected(w)) — OPEN,))
a
{wmin, movematuse(dp)) — X)
where
QOPEN, = ((wmin, epenwindow()) — (w::winin, open())—
{wiminoul, showwin(c)) — X)
endagent WindowManager

6.4 Conclusions

In this chapter we have presented a language for the description of agents which is
more suited to design than the rmodel notation of Chapter 5. The language we have
chosen borrows heavily from standard Z and CSP. This has two advantages. First,
the semantics of the notation is similar to the semantics for those two uctations.
Second, familiarity with those notations should increase [amiliarity with the agent
notation.

There are disadvantages, however, to our approach. The agent model is based
on a stimulus-response model, but there 13 no natural means for expressiug the
contiection between stimulus and response, which should occur at the operation
description level. Rather, we have had to describe all inputs (stimuli) and outputs
(responses) as independent messages and leave it to the pre- and postconditions of
their operation definitions or the exterral specification to describe auy relationship
between them. Since output messages usually have no effect on the internal state
of an agent (at least not in the examples we have given), the relationship between
stimulus and response is left entirely up to the external specification. A more serious
criticism is that this js not necessarily a flaw in the notation we have chosen but
an undesired bias in the agent model itself.

This Jack of stimulus-response connectedness is probably the most important
featnre of the Z language that we have lost in the agent language, Z provides a very
natural way of grouping stimulus and response behaviour with a state traosition.
Unfortunately, Z does not provide the general communication mechanism we would

136 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGQENTS

like, which is why we had to abandon it. A possibility we would like to investigate
would be the enhancement of Object-Z by provision of a more flexible facility for
expressing object to object communication.

Despile these criticisms, the agent language is useful for descriptions of realistic
interactivesystems, and its hybrid approach and the composition operators do allow
far a systematic description of complex behaviour, as desired.

Chapter 7

Properties of interactive systems:
Part 11

In this chapter we will use the refined agent model to formally express iuteractive
properties al a more concrete level than was done in Chapter 4. In that chapter,
we showed how a simple stimulus-response model could be used to formulate prop-
erties relevant to interaction with an agent. The class of properties which we could
express were very abstract, much like the properties expressible in the PIE model.
Properties such as predictability, consistency, honesty and trustworthiuess, as ex-
pressed in the simple agent model, are not very closely linked with the interactive
properties suggested by the interaction framework. The framework suggests that
the Interface (Input composed with Output), should effectively mediate between
the tasks of the User and the functions of the System.

Therefore, the task is seen as providing scope for properties which attempt to
describe how the fnferface can serve as a good mediator. We define the role of task
analysis in the reformnlation of interactive properties. We define the output of task
analysis as an identification of Sysfem and Interface attributes which are under-
stood by the User to portray the effect of a given task. The System attributes form
a resuft template of informatiou relevant to the achieved goals of the interaction.
The Interface attributes form a display femplate of visible information that the
U/ser understands in terms of how it reflects the values of attributes in the result
template. Ternplates are used to restrict access to information of an agent by any
of 1ts observers. The interactive properties we will formnlate in this chapier will
be relationships between the input histories and a result or display template value
history.

Since the properties are formulated with respect to the result and display tem-
plates, they are task-specific. Hence, we will be able to describe, for example, what
it means for a graphics package to be display predictable with respect to selection
of objects or show how a direct manipulation operatiug system interface lacks hon-

137

138 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: Part 11

esty in supporting the task of directory creation. Though we will not present any
of the examples in this chapter in complele detail, we will present enough of the
detail within the agent language so that au informal understanding of the proper-
ties can be gained with confidence that a completely formal description could also
be provided.

The reformulation of Lask-specific interactive properties and the examples justify
our claim that the refined agent model and lauguage take us one step closer towards
realizing a design practice gnided hy principled reasoning. In a design situalion,
\be task snalysis provides the result template information for each task that an
agent should support. The System agent is then specified and can be verified to
check that it satisfies certain result only properties, such as result predictability.
The duty of the designer is then to determire for each task which display templates
can be chosen and specified to satisfy the constraints iinposed by the result-display
properties, such as honesty. In analysing an existing design, the task analysis
provides the display template inforination as well as the result template information
and the design can be tested to see if it satisfies any of the interactive properties,
and if not why it fails.

The main reason we will be able to speak tnore concrelely is that the we know
more about how the agent functions. The internal structure of the agent is no
longer just a set of states about which we know nothing further. We can now look
inside that state and describe it in terins of its attributes, and these attributes can
be determined based on the level of the description necessary to address a given
task. Just as the agent view of an interactive system allows us to separate its de-
scriplion into more manageable computational units, so too does the attribute and
template view of an agent allow us to separate its description inte more manageable
perceivable umits.

Overview of chapter

We begin in Section 7.1 with a discussion of the relationship between display and
result. and how previous formalisms have treated this relationship. In Section 7.2
we defiue a template as a means of isolating aspects of the display and result and
relating them between composed agents. The rematuing sections of this chapter
relormulate the properties discussed in Chapter 4 using the display and result tem-
plate information to derive more task-relevant definitions. Several examples are
discussed along the way to make clear the use of the reformulated interactive prop-
erlies, especially in the analysis of existing designs.

7.1. RELATING DIsPLAY AND RESULT 139

7.1 Relating Display and Result

As we have said, tbe purpose of interaction between humar and computer is for the
user to attain certain goals within some application domain. Tbe results of inter-
action, then, are the achieved goals. The product of a task analysis is a description
of the user’s assumed goals, or an identificatiou of the desired results of interac-
tion. A principled, nser-centred design methodology begins with this information
and describes the system initially as an abstract machine whose state description is
well suited to the task structure of the user. Hence, there sbould be a close match
between the results as defined by the task analysis and the state of the system.

Even for systems which have not been designed initially in this way, it is possible
to reverse engineer an abstract description of the system which concentrateson task
analytic information. This is the intent behind the examples of this chapter and
the next, in which properties are exemplified by examining how they are missing in
existing interactive systexns. The inotivation for this kind of analysis comes from
the scenario methodology [174, 175}, which provides examples of user behaviour
with real systerns as a means of cross-fertilization of different modelling domains in
HCI research.

It is outside the scope of this thesis to consider any further the description of
the User. Since we assume it is possible {o produce a description of the System in
line with the results desired by the User, we will use the term result from now on
to refer to the end products of user interaction in terms of the state of the System.
The agent model and its language deal directly with building up a description of
the System state.

The user does not see the state of the system directly; rather, parts of it are
rendered in the display space. A display is the immediate and perceivable featnre
of the system from which the user must interpret the relevant features of thesystem
state. The user constructs a relationship between the perceivable information of the
display and the desired but hidden information on the result of the system. Having
established this crucial link between the display and the result, we can investigate
means for formalizing the relationship.

As mentioned in Chapter 3, the red-PIE model is an extension to the simple
PIE model which allows for an abstract discussion of the relationship between result
and display. In the red-PIE model, we introduce separate functions on the effects
space which separately extract the display and result information, as shown again
in Figure 7.1.

In the same vein, the Sufrin and He model of processes was enhanced to dis-
cuss the relationship between results and views. In that model, an interactive
process is built on top of the original process {represented by the schema type
SandHProcess[S] in Chapler 6) by including mappings from tbe state space to the
display and result spaces and events whicb trigger the calculation of the display

140 CHAPTER T PROPERTIES OF INTERACTIVE §YSTEMS: PaRT 1]

1 1"#"")\\

P — » E e

:

Figure 7.1: The red-PIE model.

and resul! from the value of the state at the tine of the event.

In the agent model, we adapt a mwore construclive approach in order to re-
late hetter with actual design. Consequently. we must be more explicit about the
display and the result than is necessary in either of the other two more abstract
models. Looking to the interaction framework, we see that the results as we have
described above are derived from Lhe System and the displays from the Inferface.
or more specifically. the Qutpuf. Relationships between display and result. then.
are relationships between ageuts. We derived one such relationship in Section 4.3,
called correspondence. The key to correspoudence earlier was the definition of a
relativaship between the state spaces of twao agents. called the retrieve relation.
The simple agent model provided no way to derive the retreive relation. Attributes
and templates will provide such a mechanism that can be derived from empiri-
cal cvidence. The atiributes used in the description of an agent are then viewed
as design decisions by the specifier and the justification for those decisions comes
[rom the templates obtained frotn task analysis. We delay a fuller treatmuent of
correspondence until the aext chapter.

Properties like prediclability, consislency and honesty were also expressible in
the simple agent model. These praperties relicd on a distinction between internal
state behaviour and external response behavienr and classified systems in terms of
the equivalence and indistinguishability of stimuli with respect to the state changes
or responses they determined. Using a similar approach n this chapter. we will be
able 10 define these properties and others iu terms of <lisplay and result templates on
agents composed as described by the interaction framework. The result templates
will highlight relevant parts of the System stale, whereas display templates will
highlight information to be prescnted potentially as channcls of eomuinunication to
the user, The advantage of this approach will be that it will be made explicit
whal assumptions an agent design makes about the user’s understanding of the
interaction, and these assumptions can then be tested 1o see if they lead 1o more
usable systems.

lu surn, the properties we are interested in expressing in this chapter deal with
the relationship between the display and the result. as indicated by the additional

7.2. TEMPLATES 141

unpamed arrow in Figure 7.1. They will be given as properties dictated by the
design of an agent-based system and they are intended as ganges for usability in
situations where the nser depends on the display to determine the underlying result
of the interaction or when the result knowledge of the user is needed to determine
the meaning of the display.

7.2 Templates

The reason for introducing attributes is to enahle restricted views of an agenl. The
restricted views are called {emplafes and were first discussed by Harrison, Roast
and Wright [74] as a means of focusing attention on parts of the result or display in
order to formalize realistic relationships between them. For example, when using
a text editor within a single window on a multi-windowing workstation, the user
does not usually care about the contents of other windows. They may not even pay
attention to some of the information in the text editor window. If a user relies upon
certain properties of the interface, such as honesty, then it is important tobe able
to narrow the scope of information in the system over which the honesty property
holds. The importance of templates in design and analysis is that they are not
generated by our formalism; rather, they are regarded as input to the formalism
which Jeads to a truly formal method of design and analysis.!

We mentioned in Chapter 4 how we can view the properties such as predictabil-
ity in terms of the demands they make on the user. For example, in a graphic
drawing package, the user must remember the order in which objects were drawn
for predicting the consequence of clicking 1o select in a region of the ‘canvas’ oc-
cupied by overlapping objects. A Macintosh user must remember the value of
the ‘items’ indicator in the top lelt-hand corner of a folder window to determine
whether clicking ou ‘New Folder’ preduced a new folder, siuce the new won may
not appear in the window [137]. In text editing, I don’t usually pay atteation to
the position of the mouse pointer when I am typing, so the mouse pointer is not in
my display template when [predict the result of inserting a character. This does
canse prohlems—the infamous ‘unselected windows' scenaric—when the mouse is
accidentally nudged and my keyboard input is suddenly directed to the wrong win-
dow. Notice how the description of each of these examples is given within the scope
of some task the user wishes to perform.

I'Most of what is commonly referced ta as fermal methods does not acwially reprsent any
method, but just a notation with a formal semautics

142 CHAPTER 7 PROPERTIES OF INTERACTIVE S5YSTEMS: ParT]I

7.2.1 Agent restriction

A template defines a restricted view of an agent by limiting the information known
about the underlying state. Since all that is known about individual points in the
state space is contained in the attribute-value mappings, we can define a template
as a nonempty, finite set of attributes.

Template == F| A

A template defines that part of the internal specification wbich is of interest; it
therefore induces a new internal specification for an agent. The attributes of the
template must all be valid attributes of the original internal specification. The types
of the templale attributes rernain the same. We only keep state information on the
altributes in the template, so states of the original internal specification which agree
on all atinbutes of the template are equated in the new internal specification. For
each message of the original internal specification, and [or each state transition
in the operation associated to that message, restricting the view of those states
to the altributes of the template yiclds a state transition for that message in the
new internal specification. A characterizatiou of template restriction on an internal
specification is given by the schema InternalResirict below, in which the original
internal specification is decorated with / and the induced internal specification is
decorated with 7.
InternalRestrict
InternalSpec’

InternalSpec’
t: Template

t C attribs!

attribs’ =

type? =t < type!
states? = { s : states’ o { a5}
messages’ = messages’

¥ m : messages”
s operations? (m) = { (s. ') : operations’ (m)
o (tas)(1Qs)])

A restriction of an agent with respect to a template of attributes is characterized
by the schema Restrict, in which the original agent is decorated with ! and the
template restricted agent is decorated with 7. The only change to the agent is to
ils internal specification, as given by Infernclflestrict. The communication and
external specifications remain the same.

7.2. TEMPLATES 143

__Hestrict
Agent!
Agent’
InternaiRestrict

8 Commaunication’ = §Communicalion”’

8 ErternalSpec’ = 8 ExternalSpec’

We write A | f for the agent induced by restrictiou of A to the template {.

U _: (Agent x Templale) + Agent
l = { Restrict o (§Agent’ t) v B Agent’ }

7.2.2 Result and display templates

We can resinict any ageni to a template of a subset of its attributes. However,
within the interaction framework, different templates take on a different purpose,
and so we distinguish them by name, Templates applied (o the System agent are
called result templates. Templates applied to the [nterface agent we call display
templates.

Attributes in the description of the User are similar to semantic fealures as
used in TAG [128] and in the knowledge analysis work of Youug and Whitting-
ton [173). A task description for the user highlights the psychological attributes
of importance. These psychological attributes are roughly equivalent to System
attributes. Therefore, given a task, we can isolate the System attributes of interest
for that task. So the output of some task or knowledge analysis, would yield a
mapping from a set of identified tasks to result templates, A designer must then
choose attributes of the [uterface, the display template, which will relate to the
result template for the task. We model the cutput of task or knowledge analysis
by funclions from some set ol tasks to the result aud display templates the tasks
require.

[TaskID)

Riemplate : Task{D} -+ Template
Diemplate : Task[D + Template

dom Rtemplate = dom Dtemplate
Riemplaie(1) C System.atiribs
DHemplate(t) C [nterface.attribs

144 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART II

From a methodological point of view, the result template information is always
provided by the task analysis. Display template information is provided for anal-
ysis of an existing system, but it is not provided for the desiga of a new system,
since Lhat is the responsibility of the designer. Hawever, since real design is an
iterative procedure and the systems users have in the past experienced influences
their understanding of the tasks they will perform with new systems, we will stick
with the assumption above that task analysis provides both the display and result
template irformation.

We can now define properties of the interactive system in terms of these task-
dependent result and display templates. This provides a principled means of iter-
ative design, because if the result and display templates defined do not satisfy the
requirements of the properties we will discuss then they will have to be altered.
Typically, the display templates will be altered, as they represent attempts by the
designer to effectively portray the result templates at the interface. However, as
the structure of tasks is seen by many HCI researchers as dynamic [157, 101, 35],
we can allow for the result tetnplate information to change as well.

7.2.3 Equivalence and indistinguishability revisited

In the latter half of Chapter 4, we introduced the notions of equivalence and indis-
tinguishability as a way of relating different program inputs for an agent. Then, we
differentiated between internal and external equivalence and indistinguishability to
show how certain cJasses of properties could be expressed as relationships between
internal behaviour and external behaviour. From a software engineering point of
view, lhe distinction between interual and external behaviour, as personified by
the interpretation relations /;* and [§¥, is satisfactory because it can he used as
the basis for a refinement calenlus on agents, similar to the way that Whysall and
McDermid use export atd body specifications of objects in their object-oriented use
ol Z [167, 168]. From an HCI point of view, this distinction is less useful because
it does not directly address the relevance of the external or internal information to
the goal-directed interaction.

The result/display distinction is directly intended to address this earlier defi-
ciency. Rather than suggest that the following formalizations of interactive prop-
erties replace the ones developed in Chapter 4, we suggest that they are comple-
wnentary, moving more toward anpalysis of HCI considerations. We point out that
the carlier properties need further investigatiou to make clear their contribution to
refinement within the agent model, but it was not the intent of this thesis to pursue
thal point. Sufrin and He [158] showed how to define refinement on processes and
proved the soundness of downward simulation along with a methed for stepwise
refinement. A similar procedure can he carried out on the agents.

Given a task ¢ : TaskID and an interactive system IS defined as a collection

7.2. TEMPLATES 145

of composed agents, we want to formalize the relationship between the tesults
and displays of [§ with respect to the task ¢. If we restrict IS to the attributes in
Rtemplate(t), we will capture the result behavionr of Lhe computer. If we restnct 1$
to the attributes in Dternplate(!), we get the display behaviour. Histories of either
restricted agent are equivalens if they lead to the same possible results or displays
and they are indistinguishable if further identical extensions to tbe histories does
not betray the result or display equivalence. Below we give the formal definitions
of result and display equivalence and indistinguishability.

_ — : (Agent x Template) -~ {seq Event « seq Event)
-z (Agen? x Templute) + (seq Event « seq Fvent)

noa

dom{— =_ _)={ A: Agent,{ : P A C Aatfrids }
domi{_ =_ _) =dom(_=~__)

P = cemp) § 8 L ({P}) = Tien, 1 4)}D
P =(atemp) § 4 Vriseq Event @ (p ™ 1) 2g pempy (7 7)

In situations where the agent is clear frem context, we will usually abbreviate
P =a,iemp) ¢ to p =iemp ¢-

We can now use these more task-oriented definitions of equivalence and indistin-
guishability to discuss interactive properties similar to Chapter 4. The introduction
of task information and the result and display templates allows us to definea scope
to the properties discussed in Chapter 4 that was not then possible. In addition,
the meanings associated to the properties wiil bear more significance toward the
interaction between (ser and Syslem, since they will be couched in terms of task
and will be focussed on leatures relevant to the task.

In addition to defining a scope for properties, attributes allow the definition of
some proof obligations. The properties we will discuss below are expresed over
histories of interaction, which includes all events in which an agenl parlicipates.
When an agent ;s restricted to a given template, some of the events in which the
agent participates have no eflect on the restricted state; their effect is confined to
attrihutes outside the template and, therefore, they are independent of the tem-
plate. Such independent events can he neglected in proofs over histories for a given
template.

independent : (Ageni x Template) + P Event
dom independent = { A : Ageni,t: Template | 1 C A.atirids }

e € independent(A.1) &
#{(A Y not_t).operations(mess(e)}) = #(A.operations(mess(¢)))

where nof_t = A.attrbs — ¢

146 CHAPTER 7. PROPERTIES OF INTERACTIVE S5YSTEMS: Pant 11

Sometimes, the user believes some events are independent of some attributes,
when in fact they are not. For example, in the ‘nnselected windows’ scenario
mentiioned earlier, the problem arises hecause keyboard events are not independent
of mouse position, though the user tends to forget this.

7.3 Predictability and Consistency

We fix on a particular instance of the task knowledge for an interactive system given
by Rtemplaie and Diemplate defined earlier. A task is resull predictable il result
equivaleat histories with respect to that task and its associated result template are
also tesult indistinguishable.

Result Predictable ; P(TaskiD}

task € ResultPredictable < (iask € dom firmplate
Al S (L=)

where rt = Rtemplaie(iask)

Technically, the above equivalence and indistinguishability should be indexed by the
parbienlar agent, say /S which represents the composition of a System and Interface
along with the translations between them. We take the liberty of omitting expliat
mention of I8 throughout this chapter.

Tt is sensible that every task of interest be result predictable. Some possible
reasons for a task whiclt is not result predictable would be the task’s dependence
on pure randomness (rare), or an incomplete task analysis (undesirable).

A lask is display predictable if display equivalent histories are also display in-
distinguishable.

| DisplayPredictable : P{ TaskiD)

task € DisplayPredictable < (losk € dom Dtemplate
A P —) - (— =it —))

where dl = Dtemplate(lask)

Display predictability is related to the original predictability properties formulated
in the PTE except that the addition of task information has confined its scope. We
can give a simple and semi-formal exarnple of the viclation of display predictability.
based on the SuperPaint graphic art package for the Macintosh [143]. SuperPaint
supports layers for the comsiruction and manipulation of pictures. These layers
are independent canvasses upon which pictures can be constructed. The two layers
in SuperPaint are the paint layer, in which freehand pictures are constrncted and
manipulated at ihe lowest level of screen detail (the pixel), and the object layer, in
which text, boxes, circles, etc. can be created and edited as whole entities.

73 PREDICTARILITY AND CONSISTENCY 137

The particular scenario of interest for display predictability involves the task of
selection. Figure 7.2 depicts the situation presented to the user. A mouse click on

& File Edit Options Windows Draw Font Size Style RS
= Untitled - 1| SFFccee——===2=——T11R

<

pl "
x
=
[yl
-
o
-t
-~
¥
0
w
m
2
5
0
=
o>
S
3
>
[f=]
o
o
w
o
o
=
-~
]
=%
=]
a
=%
£
=
Q
=
73
[+]
=
(=]
o
=
(1]
[z}
-
~

all 1 N HRN

11/
y{o[RololalOl+[>

bt 50 tam .
oo {0 X .

a3 22 YA S it

Figure 7.2: Ambiguous object selection in SuperPaint

an object will select it, so if the user knew which visual images were objects, then
it would be possible to predict from a display template consisting of the mouse
pointer position and the positions of the objects the effect of subsequent mouse
clicks. SuperPaint does not coutain in its description of the Interface atiributes
which distinguish objects from painted pictures, so the only attribute information
that je perceived via a display template by the user is the set of all visual images.
Since similar looking visual images can be crealed in either layer, selection is not
display predictable.

We can base the task analysis information for selection on the description given
iu the user’s manual [143]. We will first treat the different layers separately, and
then examine their coinbination. For the paint layer, we have an agent description

148 CRAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART 11

Syslem Interface

Prasent
Paim

Figure 7.3: Agent diagram of the paint layer

presenied graphically by Figure 7.3, The system description is contained in the
agent Paint and it contains the result juformation for selection. There is only one
image of interest and that is the wlhole painted immage on some finite coordinate
plane, called the canvas. Selection is done by dragging out some connected region
in the canvas plane, which then selecls that region for future operations. The
definition of the agent Paint for the selection task only is given below.

agent Pain!

types
canvasTmUE , canvasyrmar : N
Canvas == 0..canvasrmnar x 0..convasymar

Bit ::= black | white
CanvasMap == Canvas — By
attributes
painting : CanvasMuap
peelected - P Coneos
invariant
pselected C dom painting
operatians
selectregion(region : P Canvas)
changes {pselected)
post
pselected’ = region
boundingboz(region : P Canrus)
changes ()
pre
regton = pselectcd
communication

7.3. PREDICTABILITY AND CONSISTENCY 149

inputs paintin : seleciregion(region : P Canvas)

outputs peiriou! : boundingbor (region : P Canvas)
external

u X o ((paintin, selectregion(z}) — paintout'boundingboz(y) -» X)
endagent Paint

For the object layer, we have a very similar agent description as that for the
paint layer, and this is given graphically in Figure 7.4. The system description is

System Interface

Prasent
Objacls

Figure 7.4: Agent diagram of the object layer

contained in the agent Object, and it i1s more complicated than the description of
the agent Paini. Tt is necessary now lo identify individual graphical objects and
the structure implied by grouping of thase abjects into more complicated objects
(we will ignore the further complication of levels assaciated to overlapping objects).
We represent this struciure by a straightforward hierarchy in which any object can
be linked to at most one parent object. The selectable objects are only those which
are not linked to a parent object. The currently selected objects are some subset
of the selectable abjects. We define only one selection operation, which given some
subset of the selectable objects makes that set the currently selected objects. The
description of Object corresponding to this result template of atiributes is given
below.

agent Object

types
(ObjED]

attributes
drawn ;: P ObID
grouptng ; ObjID + QbjID
objselectalie ; P OlyID
objselected : P OU7ID

150 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART Il

invariant
drawn = dom grouping U ran grouping
objselectgble = ran grouping — dom grouping
objselected C objselectuble
operations
selectobjs(ids : P ObID)
changes (objselected)
post
obfselected’ = rrgion
showselected(ids : P ObjID)
changes ()
pre
irls = objselected
communication
inputs objectin : selectobjs(ids : P ObjiD)
ountputs painfoul : showselecled(ids : P OUID}
exlernal
1 X » ({objectin, selectabjs(+)) — pointout!showselected{y) — X)
endagent Object

The Visual agent contains a mapping from some screen coordinate space, Pizel,
to bil values, which we will restrict to simply the value black or white. The pixel map
can be lurther divided inlo regions which the user may identify as an judependent
image, so that the whole pixel map is considered as a collection of smaller, possibly
overlapping, pixel maps. There iy an indication of the current layer {object or paint)
and the current tool in that layer, both of which give the mode in which inpnt is
interpreted. The mouse cursor is also located somewhere in the screen coordinate
space, So, for Lhe task of selection, we highlight information described above as a
set of attributes describing the state space of the Visuel agent.

agent Visual

internal
types
sereenrmac, screerymar - N
Pizel == 0..screenrmar X 0. sereenymar

Bit = black | white
PizelMap == Purel — Bit
PaintLayerfcon, Gbject Layericon : PirelMap
Paint Tool, Qlject Tvol : P PizelMup
selectpainétool : Punt Tool
attributes
visible : PizelMap
images : P PizelMuap
uselected : P PirelMap
layer ; PizelMap

7.3. PREDICTABILITY AND CONSISTENCY 151

tool : Paint Tool U Object Tool
mousecursor : PirelMap

endagent Visual

Selection in both the paint and object layer are result predictable given the
result templates we have chosen for Paini and Object. Restricting for the mement
to the relationship between the agents Peint, Visual, and fapul we can see that
the attributes visible and vselected, which form a display template for the selection
task, provide enough information for selection in the paint layer to be display pre-
dictable. They adequately portray the same information as the attributes painting
and pselected, which form the result template. This assumes that we can adequately
portray the mouse position information which identifies the region of points which
will be sent as the argument for the scleciregion message, and that is the function
of the agent PickPaint in Iignre 7.3.

For the object layer, it is obviously more difficult to ensnre display predictabil-
ity since the display template has no means of portraying the hierarchical structure
in the result template (it is slightly less difficult to portray the overlapping am-
biguity, but still not trouble free). This problem could he overcome, and display
predictability satisfied, if there was a way to present the structural hierarchy in Lhe
agent Visual. Translating the region of points determined by the monse into a set
of object identifiers is performed by the agent PickObjcets in Figure 7.4, For a user
to be able to predict the outcome of selection, she must have access to as much
information as PickObjcets needs to perform that translation.

We can see that the paint layer is display predictable and the object layer is not.
Since the ease with which complicated drawings can be manipulated is enhanced
by the facilities given in the object layer, this lack of display predictability is not
enough to abandon its use. However, the layering of paint and objects onto the
same visual space makes matters even worse. In Figure 7.5 we present a graphical
representation of the two layered SnperPaint agent description. There is no visible
distinction between a painted image from the paint layer and a drawn image from
the object layer. So not only does the user have to remember the grouping structure
of the objects, she mnst also remember which images are objects and which ones
are jnst paint. It may be possible to suggest a display strategy to circumvent this
display unpredictability, bnt it seerns unnecessary to make the distinction between
the layets that has been forced hy the system description. Therefore, onr semi-
formal analysis of this system with respect to display predictability of the selection
operator has uncovered a bad design decision.

In Chapter 4, we distinguished between predictability and consistency, since
the latter was a generalization of the former in the simple agent model. In the
refined model, the informal definition of consistency that we gave—the same input

152 CHAPTER 7 PROPERTIES OF INTERACTIVE SYSTEMS: PaART 11

System Intertaca

Prasen!
Objects

Pick
Objects

Prasent
Objects

Piek
Objecls

Choose
Leyer

Figure 7.5: Agent diagram of the co-existing paint and object layers of SuperPaint

in similar situations has similar effects—is now very similar to predictability. Ear-
licr, consistency was formalized in terms of a similarity criterion on the state set
of an agent. Templates are a concrete way of formulating tbese similarity criteria.
We noted earlier that definitien of consistency did not capture task information.
Similarily based on result and display termnplates does.

7.4 Synthesis

With the simple model of tiie agent, we stated that the observer of an agent only
has access to the stimulns-response behaviour of the agent, Within the agent-based
description of the Systern and fnferface, this still applies, An agent can only par-
ticipate synchronousty in input or ontput events with auotber agent. Between the
User and the computer, it is a bit artificial to name channels of communicalion

7.4. SYNTHESIS 153

which serve as inputs to the user. Consequently, we have introduced display tem-
plates to represent the information from the computer which can be perceived by
the user.

Synthesis describes the process by which the user determines how the effect of
previous input on the result template for a particular task is observable via the
display template for that task. The computer is honest with respect to a task
if changes to the result template are immed;ately made apparent in the display
template. If two histories are display equivalent, then they are also result equivalent.
The computer is trustworthy if changes to the result template are eventually made
apparent in the display template, Two histories must be display indistinguishable
before they are considered result equivalent. Collequially, honesty is paraphrased
as the property:

If wha! you see now (display template) 15 the same, then whal you Aare
now (tesult template} is the same,

whereas a trustworthiness conforms to the weaker property:

If all you can possibly sce from now on 1s the same, then what you have
now 1s the same.

Farnally, we would represent these task-centred properties as below.
Honest, Trustworthy : P{ TaskiD)
tesk € Honest & ({osk ¢ dom Dtemplate
A (ﬁFNle —) (_: (_, Ry —])
task € Trustworthy ¢ (task € dom Dtemplate
Ale=a) S (o=, 2))
where dt = Diempiste(task)
A rt = Rtemplate(task)

We can give an example in the agent language which portrays the difference
between honesty and trustworthiness, to show how honest interfaces can be more
valuable. Our analysis will be conducted on a simplified version of a popular visual
filesystem interface—1ihe Macintosh desktop interface. We will expound on the ‘New
Folder scenario briefly mentioned above and introduced by Roast and Wright {137,
Onr description consists of a simple agent definition of a file systern and a visual
folder. The file system represents the System and the folder represents the Jaterface.
Each description will ouly provide enough detail to discuss the scenarie. We also
will not make explicit the conununication between the System aud Inierface, partly
becanse that will be covered in the next chapter and partly because we need a
definition of stable traces (also ¢overed in the next chapter) to fully formalize the
discussion.

154 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART []

The filesystem is a hierarchical arrangement of files and direclories. Morgan
and Sulrin [117] have provided a specification in Z of the Unix filing system, and
our description is a simplified version of that. Files and directories are identified by
elements in the set of all possihle lile identifiers, FileID. File identifiers are mapped
to files in the system; we give no further description of files. The hierarchical
arrangement is represented by two relations on file identifiers, ane giving the unique
parent of a file identifier and the other giving the set of children for a given file
identifier. The distinction between files and directories is that directories can have
children and files cannot. The hierarchy is acyclic and has a single reot element, of
which all other known files are descendants. At any time, oue directory is current,
We describe the filesystern as an agent below with only one operation, the creation
of a new subdirectory under the current directory.

agent Filesys
internal
types
[FilefD, File]
root : FilelD
emplydir : File
attributes
knoum : P FilelD
files : FilelD + File
parent : FilelD -+ FilclD
child : FilelD « FilelD
currentdireciory : FilelD
currentfiles : P FilelD
invariant
knouwn = dorm files
rool € knoun
dom parent = knoun — {rooi}
ran parent C kngwn
child = parent™!
child*({root}]) = knoun
currentdirectory € knoun
currentfiles = child(| currentdirecioryf)
initially
known = {root}
operations

makesubdirectory(id . FilelD)
changes (knoun, filcs, parent, child, currenifiles)
pre id ¢ knoun
post files' = files & id — emptydir
currenifiles’ = currentfiles U {1d}

7.4. SYNTHESIS 155

communication
inputs filesysin : makesubdirectory(sd : FielD),. ..
outputs ...
T

external

endagent Filesys

The description of the Interface is given (partially) by the Desktop agent. The
desktop contains folders, one of which is current. Each folder contains a set of
icons, a subset of which are visible at any time (we only describe the visible icons
for the current folder in the description below for simplicity). The current folder
also displays the number of icons it contains. The only operation we defineon the
deskiop agent is one to create a new [older icon in the current folder.

agent Visuallnterface
internal
types
[FolderiD, feon]
desktop : FolderfD
emptyfolder : Icon
attributes
foiders : P FolderiD
conlenls . FolderID + Icon
current : FolderID
visthle : P feon
invariant
folders = dam contents
eurnen! € dom conlents
desktop € folders
visible C contents(current)
initially
folders = {desktop}
operations

newfolder(fid : FolderID)
changes (folders, contents, vistble)
pre fid ¢ folders
post folders' = folders U {fid}
conlenis’ = contenlsd
current ~ (contents{current) U {emptyfolder})
visible C visible’

156 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PaRT II

communication
inputs folderin : newfolder{fid : FolideriD), ...
outputs ...
T

external

endagent Visuailnterface

For the task of creating a new folder, the user wants to know if the current
directory contains a new subdirectory, so the result template for this task is only the
attribnte currentfiles. When a new folder is created, this atiribute value cbanges,
increasing by one as Lhe result of the inclusion of the (fresh) file identifier 1d. The
display template corresponding to that result template is given by the attribute
nisible, indicating a subset of the icons which are contained in the current folder.
However, the change due to the newfolder message does not require that the new
icon be in the visible set. Macintosh users wijl be familiar with situations in which
the new folder’s icon does noi appear in the immediately visible set of icons for
the current folder. The system is not honest in this situation, requiring the nser to
browse through the current folder to observe that there is a new icon for the newly
created folder. Hence, trustworlhiness is all that can be claimed of this visual
interface.

And we might add that we would expect all tasks to be trustworthy, so the
visual interface is not gaining us much with this task over any other interface to a
hierarchical file system. Tt miglit even be said to be worse than a command-based
interface because the user of the visual interface is led to believe that if they don’t
see something change, then it hasn’t changed. The visual interface js sly—it leads
us to believe it is honest when it s not.

In defence of the Maeintosh, there is a way to salvage honesty for this task. The
visual interface provides another possible display template in the form of an items
attribute which gives the counl of the number of icons in the current folder. This
display template honestly reflects the changes in the currentfiles result template. ?
We give the revised agent description of the visual interface below.

agent Visuallnterfuce
internal
types
[FolderlD, Icon)
desktep : FoldcriD
emptyfolder : Icon
attributes
folders ; P FolderID

2Well, at least it tries to do so. [t is possible to mampulate the window of the current folder
in such a way that even this honest display template is abscured!

7.4. SYNTHESIS 157

contents : FolderlD + Icon
current : FolderID
vigible : P feon
items (N
invariant
Jolders = dom contents
current € dom conlents
desktop € folders
visible C contents(current)
items = #(conlents{current))
initially
folders = {deskiop}
pperations

newfolder{fid : FolderiD)
changes (folders, contents, visible, items)
pre fid ¢ folders
post folders' = folders U {fid}
eontents’ = contentsth
current — {contents{eurrent) U {emptyfolder }
wisible’ C visible

communication
inputs folderin : rewfolder(fid : FelderiD),. ..
outputs ...
T

external

endagent Visuallnterface

As Roast and Wright point out, even though this attribute maintains the honesty
property, there is no guarantee that it is observed by the user, i.e., the ilems may
not be used by the Macintosh user as a display template when creating new folder.

WYSIWYG

When the task is result predictable and honest, we satisfy the property:
What you can see now delermines all you will be able lo get.

This sounds very much like the popular slogan “What you see is what you get”
(WYSIWYG). A weaker, and consequently more realistic, property results from
result predictability and trustworthiness and satisfies:

158 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: Part I

All you can possibly see delermines ell you will be able to get.
These two versions of WYSIWYG are summarized below.

WESIWY Gutrongs WYSIWY Gyray P TaskiD)

task € WYSIWY Gyirony & { task € dom Dbemplate
Alema) El-=n))

lask € WYSIWY Gy < [task € dom Dtemplale
A=y) C(c=n)

where dt = Dtemplate(task)

A rt = Rtemplate(lask)

-~

That these properties formalize the popular WYSIWYG slogan is slightly mis-
leading because they only state that some desirable relationship holds between the
result and display templates. Thouglh this is a necessary condition for the interac-
tion taking advantage of WYSIWY G, it is not sufficiert since we do not guarantee
that the relationship is understood by the user. But we are even more pessimistic
than that. The formwlation of this property does not even guarantee that the de-
signer is aware of the relationship, hecause it does not have to be explicit in the
agent description. In the next chapter, we will discuss localized correspoudence as
a way lo make explicit the relationship between result and display templates.

7.5 Result initiated interaction

The properties of the last section were all display initiated, that is, equivalence
or indistinguishahility of display templates had implications toward equivalence or
indistinguishability of result templates. Properties that are result initiated reverse
the situation, so result information has implications toward display information.
We do not have names for these properties. The first property satisfies:

What you can have (or know) now defermines what you ean see now.

and is characterized by the following jmplication, assumiug result and display tem-
plates rt and dt associated to the same task.

(~ 52t) C(-=u)
If the task is display predictable, we have the stronger implication satisfying:

What you can have (or know) now delermines all you will be able fo
see.

T7.6. CONCLUSIONS 159

and characterized by
(—=a) C (—=a)
The weaker versions of the first property satisfies:

All you can possibly have for know) from now on determines what you
can see now.

and is characterized by the followiug implication.
(~=a) C(—mu-)
When coupled with display predictability, we have the property satislying:

All you can pessibly have {or know) from now on determines all you
wll be able to see from mow on.

aud s characterized by the following implication, assuming result and displsy tem-
plates v and dt associated to the same task.”

(=) C{—=a)

Since we have assumed that result Lemplates bear significance to the lask or
knowledge structure of the user, it is possible that these last fonr properties would
be considered more relevant within the user modelling domain.

7.6 Conclusions

In this chapter, we have investigated how Lhe increased structure of the refined
agent model allows the formulation of properties over collections of agents which are
relevant to the internal goals of iuteraction—the results—and the tangible evidence
of interaction—the displays. We have introduces templates as a task-centred means
of restricting the knowledge of an agent’s internal state. This provides us with
the means of more clearly defining the scope of properties, confining them to the
interactional unit of the task, justead of over the computational unit of the agent,
as was done in Chapter 4. Table 7.1 summarizes the task-dependent properties
defined in this chapter.

Templates extend the bridge between psychology and computer scienre, by fore-
ing an iterative relationship between the psychologist and the interactive system
designer. The HCI specialist provides the task analylic information, highlighting
the tasks and the psychological attributes {or semautic features) related to each

3Sufrin and He classify & version of this last property as “goal determines view”

160 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: Pant II

Result-Display relationship Interactive Property
Lmu-)Cl=g) display predictability
(e) C{o=n) result predictability
Cra) Clomn) bonesty
(c=a-)C o=y trustworthiness
(=g) C (=) WYSIWYG (weak)
C=a-)C(-=n) WYSIWYG (strong)
(—mpn =) € (—=a) result initiated interaction
=y) C (=0 -) result initiated interaction
(L= 2)C(o=a) result initiated interaction
(=4 JEC(-=a) result initiated interaction

Table 7.1: Task dependent interactive properlies expressed as result-display rela-
tionships

task. The designer uses this information to formulate the result templates for the
system. An agent description of the System can begin [rom that point. In design-
ing the Interface, appropriate display templates must he determined for each result
template in such a way as to maximize satisfaction of properties described above.
If no such display templates can be found to satisfy even the weakest properties
above, it may be the case that the task analysis was faulty, or incomplete, in which
case some of the process can be iterated. Once some set of satisfactory display tem-
plates is settled, the agent description of the fnterface the process is not complete
as the display/result relationships must be subjected to tests to see if they make
realistic demands on the user.

We realize that the relationship between display aud result implied by the prop-
erties of this chapter must be made explicit in a design situation. In the next
chapter, we will investigate how ageuts can he used to capture more exphicitly the
relalionship between display aud result.

Chapter 8

Interactive system architectures

Qur purpose in applying formal methods {o the analysis and design of interactive
systems is to provide a means of expressing user recoghizable structures in a lan-
guage more closely related to the design practice. Abstract formalisms, such as
the PIE model, and more concrete formalisms, such as the Sufrin and He model
and the agent model of this thesis, have opened up the possibility of incorporating
valid psychological assumptions of nsability as design principles in a more rigorous
software engineering enviromment. The intention is that a principled design process
will resnlt in the ability to engineer more usable systems. Currently, the major-
ity of psychological knowledge concerning the usability of interactive sysiems has
crept into design by means of common sense heuristics. We aim to show in this
chapter how the agent formalism can capture the meaning behind some beuristics
of interactive system architectnres.

Overview of chapter

In Section 8.1, we discuss the progression {rom abstract to concrete in interactive
systemn design and how principles or properties that apply at the ahstract level are
mapped down o a concrete architecture. In Section 8.2, we describe two multiagent
architectures for interactive system design, showing how they can he viewed in
terms of the interaction framework. ln Section 8.3, we discuss how the agent model
allows a formal explanation and comparison of all levels from abstraci ta concrete,
but especially at the concrete architectural level where few formalismus have been
brought to bear.

In Section 8.4, we provide an example of how the agent model can formalize
henristic properties of a multiagent architecture, specifically one role of the control
component of a PAC agent. To do this, we concentrate on the abstract propetty of
correspondence introduced in Section 4.3. We give a more constructive definition
of correspondence with the aid of template information. Correspondence provides
an architectural constraint on the relationship between collections of agents in the

161

162 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

Interface and System.

In Section 8.5, we investigate another architectural consideration in designing
an interactive systemn. We use a semi-formal approach to justify how predictability
and syanthesis can be supported by the analysis of user recognizable structures in
a graphical interface. The argument which we support in this extended example
is that the agent architecture of the System specification should lead to a natural
description of an Interface which will support the user’s understanding of the system
functionality. The particular case we examine concerns the possible arrangement
of commands in the graphical interface of a multiple file text editor. It does not
matter that our example is yet another specification of a text editor, because the
scenario we describe concerns more the support of user recognizable structures in
an interface that the text editing domain.

8.1 From abstract principles to concrete archi-
tectures

Thimbleby {160] introduced generative user-engineering principles, called gueps, as
a means of capturing colloguially understood features of usability within the design
process. A guep must satisfy the following fonr criteria.

it can be expressed formally,
it has a colloguial form that is accessible to users:
« it embodies valid psychological guidelines; and

e it is construciive, so that it indicates how the principle can be attained in
design.

It is easiest to satisfy the first three criteria at an abstract level in which irrelevant
clutter can be removed and concentration can be focussed on the essential features
of the interaction. To address the fourth criterion, concrete architectural detail is
needed. We identify three levels in the progression from abstract to concrete.

The conceptual level

The first and most abstract leve] identifies the context of an interactive system with
a gross separation between the human and the computer. In this thesis, the inter-
action framework provides this conceptual and contextual description, and it has
proved beneficial for satisfying the second and third criteria above. Measures ap-
plied to the translations within the ([ramework gauge whether a component {System,
User, Input or Quipul) can access the behaviour of another component and how
easy it is to access that behaviour.

8.2, MULTIAGENT MODELS 163

The layers level

At the second level, a finer grain of separation is introduced for both the human
and the computer side of the interaction. At this level we introduce models such
as Norman's seven stage model of the user activity and the Seeheim model of user
interface management systems, both discussed in Chapter 3. Each of these models
presents separation in terms of layers or stages of action. Norman’s model certainly
embodies valid psychological guidefines, since it was formed out of a psychelogical
model of the user. The Seeheim mode! advocates the separation of presentation
from application, whick goes part of the way toward addressing the constructive
criterion by isolating those features relevant to usahility from those features relevant
to functionality.

The architectural level

At the third and most concrete level, architectural models are iutroduced to directly
address the construction of a system. In this thesis, we are interested in multiagent
architectures, broadly defined as the class of architectures which advocates the
identification of simple, independent computational units—agents—coordinated in
order to produce complex hehaviour. Multiagent architectures have several useful
constructive features, as summarized by Coutaz [41]). They support iterative design
since an agent defines the uuit of modularity and can be altered withoul greatly
affecting the behaviour of the rest of the ageuts in the system. They support
distributed or parallel implementations. Considering the user as an agent which
can communicate with systemn agents means that multithreaded behaviour.iu which
the user is participating in more than one task concurrently, can be more naturally
expressed by assigning different agents to the different tasks of the user. In the
next section, we describe two different multiageut models.

8.2 Multiagent models

Model-View-Controller

The Model-View-Controller {#M{ V(') paradigm is the model used for the design of
most Smalltalk interactive programs [107, 29, 96, 66]. On the surface, the MVC
mode! fits very nicely with the interaction framework, as shown in Figure 8.1. An
MVC triad represents three of the four componeuts of the framewock. The model
is the object on which work in the application domain is to be performed, similar
to the Systern in our framework. The controller provides the input interface to the
user, sirmilar to tbe Input. The view provides the output interface, similar to the
QOuiput. The user, though not explicit in MV, is assumed to communicate directly
with the controller and makes observations of the view.

164 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES
[~]
/ Display

hO
\ i
sy 2
=]

Keyboard

Figure 8.1: The Model-View-Controller paradigm of Stmalltalk

At the abstract level of the interaclion framework, we were not concerned with
any further details on the decompesition of components. MVC, ont the other hand,
is imnplemented in an object-oriented language, thus providing a natural mechanism
for a hierarchical arrangement of MVC triads. Figure 8.2 shows a typical hierar-
chical arrangement of a collection of windowed interactive applications. Another
distinction between the interactjon framework and MVC can be seen by the explicit
communication fink between controller and view; there is no such explicit connec-
tion belween Inpul and Ouipul in the framework. This is anocther difference that
arises from the different levels of abstraction they are intended to address.

Presentation Abstraction Control

Coutaz bas suggested an alternative to the MVC paradigm, called the Presenta-
tion Abstraction Control—or PA(—model, shown in Figure 8.3 [38, 39, 40]. The
abstraction component corresponds to the model of MVC and the System of the
framewark. The presentation component combines both view and controller of
MVC. similar Lo the nterface of the framework. In MV, the view and controller
communicate directly with the model, and vice versa. In PAC, this communicaticn
is coordinated by the control componenl to ensure that the state of the presenta-
tion component faithfully portrays the state of the abstraction component. The
control component also coordinates cotnmunication between separate PAC agents
hierarchically arranged.

PAC is intended as a hjgh-level design notation for the description of an in-
terface. It does not have an nnderlying implementation as MV C does. However,
PAC is still intended to express a hierarchical relationship between a coltection of
interface objects. Figure 8.4 gives the relationship between a PAC hierarchy and
the other components of an interactive system. The PAC hierarchy can he seen as
the dialogue and presentation control.

8.3. APPLYING FORMAL METHODS TO LEVELS OF ABSTRACTION 165

Screen Controller
Scheduler Controller

Window
View-Controtl

Window
View-Conwrollel

Figure 8.2: The MVC hierarchy

8.3 Applying formal methods to levels of ab-
straction

Having described the three levels progressing from abstract to concrete descriptions
of an interactive system, we need to show how properties which arise at the most
abstract level are traced down to the concrete, architectural level. We have adopted
the ageut as the formal means for propagating interacijve properties. At each level
described above, the inspiration for the properties to be formalized comes from
common sense heuristics. Formality, therefore, does not replace intuition; the two
are complementary.

At the most abstract level, there are computational formal models, such as the
PIE model in which to express many gueps of interest. The agent model can express
the same properties as the PIE model by looking at its trace-state behaviour. An
example of an abstract psychological model is Norman's execution and evaluation
model, which was the primary motivation for tbe interaction framework and the
simple agent model.

At the next level, where there is more separation between components, the
formal models need to express relationships between the layers or stages. The state-

166 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

Abstraction Presentation

/!

Figure 8.3: The PAC model

display model for the system and CCT for the user are examples of such layered
formal models. There is also a need to relate properties which are expressed on
the layered models to the abstract properties given hy the PIE model, the agent
model and the interaction framework. Agents cau represent the layers or stages—
for example, the state-display model becomes the System-Interface model—and so
properties expressed as constraints between agents apply to this level.

At the architectural level, there are no existing examples of a for mal model which
captures interactive properties. The Forest project has produced an agent-based
description of the MVC model within a modal action logic (MAL) [66, 141], but
the purpose of that formal model was not to investigate the interactive properties
of MVC. This absence of formalism at the constructive stage of interactive system
design was one of the prime motivations for the refined agent model. One of the
prohlems with the multiagent models described above is that while they do address
very strong henristic notions of usability—for example, catering for multithreaded
dialogue hetween user and system so that the user is freed to direct. the interaction—
the lack of a formal model does not allow the description of desirable properties snch
as predictability, consistency, honesty, elc. that were valuable at the more abstract
levels. It is also difficult to compare different multiageut architectures when they
are expressed informally. The refined agent model allows us to formalize features
of a multiagent architecture, for a more honest comparative appraisal.

The first step formalizing a multiagent architectnre is to reject the fundamental
units of both MVC and PAC. MVC snggests that the model-view-controller triad
is the basis for the fundamental unit of juteractive system design. PAC suggests
the same for the PAC agent. In practice, however, this informal rule is continnally
broken, to the extent that the separations implied by each medel are too artificial
to be useful. View-controller pairs witbout an associated madel are common in
Smalltalk interactive systems in order to affect flow of control (for example, to
express the role of a parent window which administers the change of contro] between

8 3. APPLYING FORMAL METHODS TO LEVFLS OF ABSTRACTION 167

Application

QOverall Control
nieraction Hardware

=
z
5
=]
2
-]
&
E
2
F4
o)

Figure 8.4: The PAC hierarchy within an interactive system

subwindows [66]}). Similarly, in examples of PAC diagrams, it is not uncommon
to see PAC agents without a presentation or an abstraction component, or with
multiple presentation components. More recent medels of PAC by Nigay [121]
allow communication between (wo separate application components to bypass the
control components. While we may be surprised by such glaring Inconsisiencies, it
is not surprising that they arise. The PAC and MVC architectures are intended as
a guides for designers; tlicy are not intended to be strictly enforced as would be
demanded by a formal model.

The agent, as defined in this Lhesis, is a well-defined building block for interac-
tive system design, unlike the MVC triad or the PAC compound agent.! We can
now view the MVC and PAC models for what they are—heuristic guidelines for
the construction of agents into interactive objects. The MV triad and the PAC
compound agent can be realized as composed ageats which can address one or more
of the user’s tasks. The moadel or abstraction represents result information. The
view-controller pair or the presentation represents display information.

What was not discussed in Chapter 7 was how the relationship between the

!We use the Lerm componnd agent now te distinguish Lthe PAC unit from our fermal agent
mode].

168 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

model and its view or the abstraction and its presentation is to be maintained.
Herein lies s+ major difference between the MVC and PAC models. Correspon-
dence between model (respectively, abstraction) and view (respectively, presenta-
tion) must be maintained in MVC {respectively, PAC) in order to support the nser’s
nnderstanding of the result of interaction based on observations of the display. In
PAC, the control component makes the correspondence explicit and separate from
either presentation or abstraction. In MVC, the correspondence must be main-
tained either within the model or the view, or both, meaning that model and view
are nol asseparable as may be desired.

But how does the control component of a PAC agent maintain the correspon-
dence? Inthe following section, we will develop the formal notion of correspondence
introduced in Chapter 4 in an attempt to formalize the role of the control.

8.4 Local correspondence

Recallin the definition of correspondence [rom Section 4.3 that two agenls are said
to correspond if the operations associated with input for one is sufficiently mirrored
in theother according to some retrieve relation between their state sets. We need to
slightly revise the definition of correspondence to relate to the refined agent model.
In order for agent B to correspond to agent A, we only require that retrieve relation
hold for siable traces of the two. A stable trace is one which can only be extended
by a stimulus event, that is, the agent can only proceed by participating in some
inputevent.

stable : Agent — P(seq Event)

t € stable(A) & (tenH[Al
AVY i H[AL
| t—=tALELE
o V(#1411 € stimuli(A)

The definition for correspondence for the refined agent model is very similar to the
one given in Section 4.3 with the addition of stability conditions,

8.4 LOCAL CORRESPONDENCE 169

_ AgentCarr
Agent?
Agent!
refrieve : states’ « states!

inits? x inits? C retrieve

W(Irr se) {trp ™ try,8)) - U’:'grzﬂf:
[{ (s1,8) € (1 ; messgoperations!)
A {try, try T ary} C stable(fAgent!)
o Altry, sp). (try ™ trh, s 0‘:;m)
i ((ss,8%) € (try g messgoperations
Aty te, 7 tes) C stable(d Agent”)
o {{s5,55), (55, 57)} C retrieve

)

We define correspond_ as a relation between agents indexed by a retrievingrelation
hetween their state sets. The pair of agents (D, R) is in correspord,,. if agent R
corresponds to agent D as defined by the schema AgertCorr with retrieving relation
ret.

correspond_ : (State s State) — [Agent — Agent)

correspond,, = { AgentCorr
| refricec = rel
o OAgent’ v 8Agent’)

Within the interaction framework, we want the User’s interaction with the
Interface Lo be so mirrored by the System. Overall, we would want to salisfy the
following constraint.

3 AgentCorr
o { BAgent! = Olnterface
A OAgent? = 8System)

This means that we have to find the retrieve relation to interpret informalion of the
System within the Interfoce. Motivated by the multiagent architectures, it is de-
sirable to localize the correspondence between fnterface and System, bolh to make
il easier to satisfy the demands of correspondence and to reflect the relaticnship
between interactive objects as seen by the user and their counterparts within the
System. The display and resnlt templates introduced in Chapter 7 are useful for
such localization.

| TaskiD]

170 CHAPTER B. INTERACTIVE 5YS5TEM ARCHITECTURES

Riemplate : TasklD) + Template
Dtemplate : TaskID «++ Templute

dom Rtemplate = domn Diemplate
Rtemplate(t) C Sysiem . allribs
Dtemplate(t) C Interface.atiribs

This task information forms the basis for the local correspondence between
System and [nterface. For every lask, we require a retrieve relation between the
values of the resnlt attributes and the display attributes for that task.
laskretrieve : TaskiD} + (Stale — Staie)
dom taskretrieve = dom Riemplate
dom(taskretrieve(t)) C { s : System.states » Riemplote(t) < s }
ran({askretrieve(t)) C { s : Intrrface.stutes o Dtemplate(l) < s }

Given the result and display templates for the interactive systen, we can then
require that for any task identifier f, the System restricted by the result template

for £ corresponds to the Interface restricted to the display template for . Below
we give a formal representation of this local correspondence.

LocalCorrespondence _
|_—.Er'],rsifem, Input, Cuiput, Interface @ Agent
tasks : P TaskiD
Rtemplate : tasks — Template
DMemplute : tasks — Template
taskrefrieve : tasks —+ (Stale « Slate)

Interfuce = compose, g, (Inpul, Output)
Riemplate(t) C System.atiribs

Dtemplate(t) C Interface.attribs
! dom(taskreirieve(t)) C { s : Systern.sTates o Riemplote(t) <15 }
ran(faskretrieve(l)) C { s : Interface siutes » Diemplate(t) <1 s }

¥ i: tasks; vt Riemplate(t); dt : Diemplate(£)
o (System | i, Interface U di) € correspond,yyiveinenety)

The PAC compound agent is related to a set of tasks for the nser. Given a
task, the description of the abstraction agent supports that task in terms of the
attributes in the result template. Related attributes for the presentation agent are

8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR 171

then chosen and their values are constrained by a retrieve relation. The behaviour
of the control agent is in part specified by the local correspendence relationship that
it must maiotain for each task the PAC compound agent is meant to support. We
say in part becaunse the control component also coordinates communication between
PAC multiagents and not just between its presentation and abstraction agents.

The System 15 derived from a PAC description as the synchronized composi-
tion of all of the abstraction agents. The Interface is derived as the synchronized
composition of all of the presentation agents. Perform and Present, the agent
manifestations of the perfermance and presentation translations are derived from
the synchronized composition of all of the control agents. We car lurther divide
the control agent into a performance subagent controlling dialogue flow [rom pre-
sentation to ahstraction. a presentation subagent, controiling dialogue flow from
abstraction to presentation, and a hierarchical subagent, controlling dialogue flow
between other control agents.

In the next section, we will concentrate on an example showing how local cor-
respondence can be used to suggest a natural graphical interface to a System de-
scription.

8.5 Assessing the graphical interface to a text
editor

In this section, we usge the agenl language to motivate a semi-formal support [or
predictability and synthesis. The detail of strict formality sometimes clouds the
insight which it can support, and so scek in this example to demonstrate how the
formal properties of predictability and synthesis can be nsed to formulate keuristic
guidelines for architectural constraints for agents.

From the description of the interaction framework, we know that the presenta-
tion of the interface has great impact on the efectiveness of the interaction. Given
an agent description of the System, we can provide a realistic example of how to
increase the effectiveness of the graphical interface. The example we use extends
from work done on the ESPRIT Basic Research Action project 3066 (AMODEUS)
[13, 118] involving scenarios of interestiug wser behaviour within an inleractive
system. Within the project, scenarios are nsed to compare and contrast lhe effec-
tiveness of system and user modellers in explaining interactive phenomena. The
scenario we will describe concerns the grouping of commands in two versions of
the graphical interface to a mnltibuffer text editor. The versions of the editor are
Spy (version 9} and its direct descendant Ten (presumably short for Spy version
10). Both were developed at the Rutherford Appleton Laboratories in the United
Kingdom.

In this example, the snippet of action involves the invocation of operations

172 CHAPTER B. INTERACTIVE SYSTEM ARCHITECTURES

performed on selected text. The advantage of a multiple file, or muitibuffer, text
editor is that the nser can rapidly switch attention between different files, Changes
to the text of one file which involve text from another file—for example, the copying
of some text from one file to a specified place in the other—are readily provided for
in a multibuffer editor. In this example, the nser may have many buffers active at
once, each containing text from some file in the filesystem, but only one of those
buffers is the current bufler—the one 1o which active editing commands such as
insertion of a character are directed. Also, the user may select a contiguous regiou
of text within the current buffer. This selected text may be deleted from the buffer,
or it may be copied or moved to any of the open buflers in the editor.

The multibuffer editors on which this scenario is based have many other [eatures,
most of which are deserving of further analysis, but for the purposes of this scenario,
the functionality of the operations 1o be performed on the selected text are all that
concern us. The challenge posed to HCI modellers is to assess two options for the
arrangement in the graphical interface of the operations for deletion, copying and
moving of selected text.

The first option is represented in the editor Spy (version), and is shown in
Figure §.5. In this graphical interface, tle operations to copy and move are grouped
togetheron a pop-up menu and the delete operation is separated and appears on the
meny har associated to each buffer. The second option is represented in the editor
Ten, and is shown in Fignre 8.6. In this graphical inter{ace, all of the operations—
delete, copy and move—are grouped together on the same pop-up menu.

We begin with an agent description of the System component of the multibuffer
editor. The specification of the functionality of the multibufer editors represented
by Spy and Ten is a reverse-engineercd description. A separate specification of
Spy has been presented by Marlins exclusively in the Z notation [106]. We hope
to demonstrate that the agent language provides an equally powerful specification
technique with the advantage that it more closely refiects the object-oriented view
crucial to the relationship between the System and Interface.

After presenting a specification of the System component of the multibuffer
editor, we will move on to discuss the graphical interface. Qur assumption again is
that both Spy and Ten share a conmon System descriptiou—at least as far as this
scenario is concerned—but differ in the arrangement of the graphical interface. The
System description leads us to the suggestion of a natural graphical presentation
of the System which we could also be described in terms of agents. This natural
graphical interface can then be compared to the actual intetfaces for both Spy and
Ten.

We use the agent language to give a limited descriptiou of the functionality of
the multibuffer editor. Qur agent descripticn is limited because we will enly define
that part of the editor that concerns the scenario descrihed above, i.e., we will only
describe enough to [acilitate specification of the operations of deletion, copying and

8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR 173

topy-arve
selact oxtond

e lp options Qu Talt Eart UDU

saarch Hih Delsta Salect

L}

replace Delatn [satact

| |

axasple 5

write | Quit | delow | Seorck [Replace [6laval [Select | Ewecuts | shel?

Th1s 15 & Lukpis T1ls ta qesonstrate the differerce betusen the
graphical intarlaces ta the Spy [¥ersion 3) and Tan yditars.

In Spy. Wb oparatiang parforsed on EHIC[SH hnj s Copy, Movd

\e. Capy and Move are localed of @ POP-UP BMw. and Lhe
6%t 15 copied ur meved 10 U@ pusiTion yrdicated by the scusestwn t
he commang 13 1ssuad. Dalste 19 Tocated on the buffar senubar,
and 115 #11eCT 15 10 resdve ThT S0 4Ctod LeXT From 1he ouffer. [nougn twrs
urs sevarel Deiete buttons sppesring on Lhe separate meénubirs
a5%0c1ated 10 the current 41 1a pudlers, they 311 havs the sase
functicnal 1y,

[n Ten. the gperations performed an selegted text are again Copy, Wouw

mianpie]
write ™I fonm | searzh IRlphcl Dickal | Selsct \:mun shall

Thik i5 9 vaep e 1119 tU demunstrate the diffwrence batussn the
prapmical Interfices to the ipy (Yers1on 9) mmd Ten editors.

In Spy. the aperdtiorms periorssd on selected text wa Capy, Hove

and Dalets. Cagy and Wove oFe 10CTOd 0N 3 POp-up mefw, 9Ad A

selgctaa text 1s copted or moved te 1he poslivon [ngicated by the scusewhen 1
he command 16 ¥$tund. Delete 15 located ph the buffar wenubar,

Bnd 1ts #ffect 15 to remove the Stlected foxl froa the butfer. Though there
ara several Deleta Luliuns eppearing oo the separiis swnubers

assotiated 1o the current €11s butfprs, they all have the cumg

tunclionality,

In Ten, the nperations parforesd on sa'0V3[Ktaxt are again Copy, Move

Figure 8.5: The graphical interface of Spy

moving of selected text.

Figure 8.7 is a simple graphical representation of an agent architecture for the
multibuffer editor functional core. In Figure 8.7, we represent the /nterface as a sin-
gle agent, and the relationship between interface and functional core is represented
by the Perform and Presen! agents.

A single buffer will contain text and we will describe operations that manipulate
text both within and between buffers. Within a buffer, the usual insertion and
deletion of single characters is allowed at an insertion point which can be set to any
point within the text of the buffer. A section of text within a buffer can be selected
for subsequent deletion or it can be copied or moved to any point within the text
of any buffer. There is only one selected section of text iu the whole multibuffer
editor at any one time.

We will now give descriptions for the System agents in Figure 8.7.

174 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

select datond

m\E uarp/snoea/ exanple| scratc I

tnis 15 & seupls €120 t0 dasom3trate the differsnck briwsen the
Qraphica) 1ATWFICES to U Sy (Yersion 3) snd lan agliors.

In Spy, the OperaTions parfora€d oo selecTed text aré Copy, Move

wd Deleta. Copy and Hove are '0¢ated on 3 pop-up mnu, and the
selected taxt 13 copied or mowkd 10 TAd pasition indicaies py the
Wuss when Lhe comwand 19 Iseusd. Dalete 13 located on the putier
wonbbar, Bnd Ite wPfect 18 tq remove the selected lext froa ing butder.
Thaugh there ars sevweral Oelstd BUt10MS BPAAring on th FEparcd
mirobars RE0C121Rd 6 The current 178 Buffers, thay 311 Mve the tane
functipnality.

In Ten, the oparations perforaed on ﬁs'llnlﬂ 1exq are again Copy, Mave

Bo Dolate. A1l incug commands wre TocaTed 68 a pop-up senu. The Coamands
behave 93x1larly 1o Spy. Tne potition of 1wa saye when Dalate 18 chessn
10 Ten 18 Irrelevant &2 no position Inforastion (s required Jor Tat
oparatian

; 572/ nhowd /i

belets 15 10INLN 00 the Duffer menubmr, and Its efiect 14 to
reagvs the aslected laxt from 10 DUfter. Though thetc are

several Dflete bultans appaarifi@ ON 1he cEparats a@nubsrs BSSDCIRtad
to tre current f11a buifers, 1hey 311 have the seas functionality,

In Ten, The pperallons psrfarsed o salectad taxi ara again Copy, Mova
ng Doleie,

ATl three coswands ar s 1ecated ON @ pop-wp B9nu. The Cowwsnds behave
EiB1larly 1o Spy. et pasitign of the mouse when Deiels 1s chosen 1n
Ton 16 irrelovent a6 ng gawiLidn Information 19 rajutred for that
operation.

Figure 8.6: The graphical interface of Ten

B.5.1 Single buffer

Figure 8.8 is a graphical representation of the single buffer agent. We begin the
description of the single buffer by describing its state and how it 1s initialized. For
the purposes of this description, the only attributes of interest invoive the main text
and the selected text within the main text. We are making tbe explicit assumptions
about the the result template for these editing tasks, and are defiuing the System
as restricted by this result template. Text is a sequence of characters, chosen from a
set of all possible characters { CH). The selecled text, if it exists, is delimited by two
natural number indices within the main text. If there is no selecied text, i.e., it is of
value null, then these indices also have the value null. A non-null insertion point
indicates where subsequent characters are inserted into the text. The insertion
point is an index within the text that splits the text into two subsequences—the
texi before the insertion point and the text after the insertion point. Initially, the
contents of the buffer js empty. The agent description for this core of the buffer is

8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR

175

1

-
L 2

A \ e

Figure 8.7: Agent representation of mnltibuffer editor

managerin
no1dvurue

bufferin

Figure 8.8: The single buffer agent

given below.

agent bufferstate
internal
types
[CH]
¢ CH

null ¢ CH
Text == seq(<CH UM
Vi:Tecto(last()=M

~ W ¢ ran(front(1))

aitributes

text : Texi
before, seiected : seq CH U {null}
insertion, begsel, endsel : N U {nuil}

invariant

176 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

inseriion = null = (begsel = null
A endsel = null
A selected = null
A before = null)
tnsertion # null = (insertion € dom text
A before = 1..(insertion - 1) < lext
A begsel = insertion
A endsel 7 begsel
A selceted = begsel. endsel — 1 i tezt)
initially
tert = ()
insertion = null
operations
communication
external
endagent bufferstale

Text in the buffer is terrninated by the special end of text symbol W, which is
not in the set CH. The state invariant embodies the link between the insertion
point and the selected text. If there is no insertion point for a huffer, then there is
no selected text. In addition, we constrain the selected text to occur as a contiguous
sequence of text positioned directly after the insertion point.

We can now specify the operations which deal with selection of text. These
operations will be collectively specified in the agent bufferSelect. The first two
operations are marking the beginning of the selection of text and extending the
selection of text. These are intended 10 be initiated by the User, via the Interface.
They are specified in the agent bufferMarkSelect. After either a mark or extend
event, the bufler manager is informed of the new selected text.

agent bufferMarkSeleet
interleaves (buffersiate)
with
internal
operations
beginmark(n : N)
changes (before, selccted, Insertion, begsel, endsel)
pre
n € dom tert
post
insertion’ = n
begsel' = endsel’
extendmark{n : N)
changes (before, selected, insertion, begsel, endsel}
pre

8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR

177

n € dom lex!
insertion # null
post

n < begsel = { begsel' = n
A endsel” = endsel)

n > begsel = (begsel” = begsel
A endsel’ = n)

selectiext(t : seq CH)

changes ()
pre
1= seleeled
communication
inputs
bufferm : beginmark{n : N): exlendmark(n : W)
cutpuis
rranagerin : selectlenl{t ;seq CH)
external

w X o (bufferin’!s — managerin!sclecttezt() — X)
endagent bufferMurkSciec!

Notice how the external description of bufferMarkSelect is so struclured to make
the stimulus-response of this agent clear. We also note that this external description
would allow extending the selection before the selection has begun. You can do
a (bufferin, extendmark(n)) before a (bufferin, mark(n)) has been done, bul this
i5 disallowed by the internal description of the agent operations (specifically, the

precondition of the cztendmark operation prevents this).

The next operation, unsclecling text, is a control operation which wil be re-
quested by the buffer manager to ensure that only one of the bnffers contains

selected text. Its isolated specification is given by the agent bufferUnseleci.

agent bufferinselect
interleaves (bufferstate)
with
internal
operations
unselect()
changes (before. selected, insertion, begsel, endsel)
pre
insertian # null
post
insertion’ = null
communication
inputs
moenagrrou! : unselect()
external

178 CHAPTER B INTERACTIVE 5YSTEM ARCHITECTURES

run
endagent bufferUnselect

The final operations at the huffer level describe the insertion of text at an
arbitrary position {(used for copying and moving) and the deletion of the selected

text.

agent bufferinsDel
interleaves (buffersiate}
with
internal
operations
insert{l 1 seq CH; n:N)
changes (before, selected . inseriion, begsel, endsel, text}
pre
insertion # nuil
post
ingertion’ = n
before’ = 1..{n - 1) < text
seq seq
endsel’. .Fterl’ < text’ = n_Ftert < text
selected’ = 1
remouve()
changes (selected, endsel, text)
pre
insertion £ null
post
selected’ = ()
3ei) seq
endsel’ . #texl’ < tert’ = endsel. #lert < tezt
communication
inputs
managerout * insert{! : seq CH; n:N); remove()
external
run
endagent bufferfnsDel

We can finally combine the above Lhrce agents to arrive at a specification of
a single buffer agent with selection facilties, which we call bufferSelect. We add
the display channel at this point for communication to the Inierface. The implicit
external constraint states that every input event to the buffer is followed by an

output event to the display.
agent bufferSeleet
interleaves {bufferMarkSclect. bufferUnselect, bufferinsDel)
with
internal

8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR

179

operations
showtezt(t :seq CH: m.n:NUnull)
pre
t = lert
m = begsel
n = endsel
communication
autputs
display : showtert(t : seq CH; m,n:NUnull)
external
satisfying
¥i:iraces

o #(t | {dusplay)) < #(t | {bufferin, managerout}) < $#(t | {displag}) + 1

endagent HufferSriect

We could continue to define further behaviour of a single buffer, bul lor the
example of this scenario, the behaviour of bufferSelect is adequate, and so we can

refer to it as the buffer agent.

agent buffer
interleaves {bufferSelect)
endagent buffer

8.5.2 The buffer manager

The concurrent activity of a collection of buffers will be managed by the agent
manager. The purpose of this agent is twofold. It will ensure that only one buffer
is active, that is, only one buffer contains a non-null insertion point. It will also
provide a means by which the selected text is deleted, copied, or moved. We will
need a set of buffer labels, BUFFILD, which will serve as unique identifiers for all of
the possible buffers that could be known to the manager. The manager is initialized

internally.

agent managerSiule
internal
types
BUFFID ==PV
null ¢ RUFFID
attributes
known : P BUFFID
currend, fast - BUFFID U {nuit}
selecled : seq CH
invariant
current £ null = current € known
last # null = last € knoun

180 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES

initially
knoun = Q@
communijcation
external
endagent managerStale

We will not give the detailed description of the bnfler manager at this point.
The importance of this description is that it would contain events corresponding to
the copying and moving of selected text from one buffer to another. Input from the
User via the interface that is intended to perform these two operations on selected
text must be controlled via the manager; interaction directly with the buffer would
not be able to control the communication of selected text between buffers. In fact,
it is precisely because individual buffer agents canuot control this communication
that the buffer manager was introduced. The mauager ensures that anly one buffer
is active at a time and it keeps track of the selected text iu order to communicate
it to any buffer necessary.

It is not necessary for the buffer manager to control deletion of the selected text,
since that operation can be defined at tlic buffer level. However, a desigu decision
for these text editors has placed the delete command at the control of the buffer
manager.

8.5.3 Deriving a description of the interface

As we suggested earlier, the agent description of the functional core suggests a
natural agent description of its graphical interface. Figure 8.9 15 a more detailed
agent representation of the functional core. This figure shows how operations re-
lating to selected text are distributed in the agent hierarchy. The copy, move and
delete commands are located within the buffer manager, and the other operations
on the selected text——marking the beginning and extending the selected region—are
located at the buffer level.

Predictability, as described earlier in this thesis, centres around the future results
of Lhe interaction being determinable hased on knowledge of what the results are
currently, and likewise for the displays. Syuthesis concerned whether the user was
able to determine changes to the result based on observed changes to Lhe display. If
the result and display behaviour is predictable, then lo satisly properties associated
Lo synthesis (honesty and trustworthincss are the ones we have discussed explicitly
in this thesis), we need to ensure a correspondence between the sitructures the
user recognizes from the graphical interface and the result structures the designer
intended the display to portray.

With this in mind, we suggest that the agent description depicted in Figure 8.9,
and given formally earlier, leads to a natural description of the graphical interface
wlich corresponds to the agent description of the System. We can contrast this with

8.5. ASSESSING THE GHAPHICAL INTERFACE TO A TEXT EDITOR 181

c
Buffer 12‘3.-
Manager oelee

R

O\

)
L

mark
exiand

Figure 8.9 Agent representation of functional core with operations.

an agent description of the interfaces to Spy and Ten based on the visual appearance
of the graphical interfaces shown in Figures 8.5 and 8.6, In Figure 8.10, we give
the agent descriptlion of the Spy interface. Here it is seen that the delete operation

capy
Buller mave
Manager
o @ Bufim
L n

mark
extepd
delete

r.§

Figure 8.10: Agent representalion of Spy's interface.

is distributed to the presentation of each buffer agent. User of this system will
falsely connect the functionality of the dclete selected text operation to the buffer
containing the selected text. But experimental interaction with the interface shows
that pressing any delete bution will always delete the selected text.

In Ten (see Figure 8.11). since the delcte command has been included in the
pop-up menu with copy and move. it is no longer {alsely associated to the single
buffer. We say this becausc the pop-up menu is not connected graphically to any
individual buffer, but rather roams independently with the mouse, whose input to
the system is constrained to the region in which the editor is located.

182 CUAPTER 8. INTERACTIVE 8YSTEM ARCHITECTURES

2
Bufier rrf::
Manager delae

Ié

murk
exend

N

Figure 8.11: Agent representation of Ten's interface.

8.5.4 Conclusions on the case study

Though the graphical interface of Ten corresponds more closely to the functional
description of the text editor when restricted to the tasks of deleting, copying and
moving selected text, there still reinain guestions about its iimplementation. By
placing the delete operation on the pop-up menu, deletion was removed from its ill-
advised connection to the individual buffer. However, pop-up menus attached to the
mouse are linked with the positional information associated to the monse as well.
Whereas Lhis iuformation is necessary for the copy and move operations, because
their operations depend on positional information (the destination of the moved or
copied text}), it is nol necessary [or deletion, which is an operation independent of
the monse position. This argument leads us to suggest that the best location for
delete would have been in some overal] texi editor menu, or even attached to some
key on the keyboard. Argnments for placing deletion on the pop-up menu centre
around minimizing the motor movement and distraction of the user. Since delelion
will often take place shortly after the mouse has been used to mark and extend the
selected text, it would be easiest and least distracting to the user to allow them to
use the mouse again Lo issue the deletion command. We cannot sufficiently support
these kinds of keystroke level or atiention arguments within our formal interaction
models. As a result, we admit that our formal techniques can only truly be effective
in concert with other psychological modelling techniques which will provide decision
support for design where our models cannot.

There are several reasons why this particular multibuffer text editor provides a
very interesting case study. For the purposes of the scenario, the two versions are
fuuctionally equivalent. Their only difference lies in the arrangement of commands
in their graphical interfaces. There is a significant difference in the two graphical
interfaces, and one must ask the reason for the massive changes. Ultimately, the
changes were made in order to increase the amount of screen real estate dedicated

8.6. CONCLUSIONS 183

to the display of the buffer contents.? Our analysis has tried to trace the usahility
consegnences of this design decision.

It tnrns out for this particular of command organization, the later version (Ten)
was an improverneni ou usability. Other analysis that we have done [97] concerning
the search/replace {acility shows that Teu is indeed less usable because the corre-
spondence between result and display templates for the searching task is not as the
user anticipates. In general, thc move to greater screen real estate has meant a
sacrifice in visibility of correspondence detail that facilitates predictability.

8.6 Conclusions

In this chapter, we have imitiated an assessent of multiagent architectures with the
formal agent model. Having introduced two well-known multiagent architectures,
MVC and PAC, we identified a major difference between them iu terms of the ab-
stract property of correspondence which we desire to map down to a concrete form
in some architecture. PAC advocates the isolation of correspondence information
between Systerm and Inferface agents, whereas MVC does not. We presented local
correspondence as a more task-related form of the abstract version of cormrespon-
dence presented in Chapter 7. The formal definition led directly to a more precise
interpretation of the duties of Lhe control agent in a PAC compound agent, which
we isolated in terms of jts correspondeuce role and its hierarchical role.

Tu the case study of Spy vs. Ten, we showed how a formal development of
the Sysiem agent architecture can lead to a semi-formal heuristic for the design
of potential graphical interfaces to support properties such as predictability and
synthesis, in which the user tries to recognize structures of the fnterfaceand relate
Lhem to structures of the System.

*This information was obtained through private communication with David Duce {rom Ruther-
ford Labs.

Chapter 9

Conclusions

9.1 Summary of the thesis

Recalling the dual focus of attention in this thesis—human-computer intcraction
and software engineering—we can summarize the results which have been prescnted,

From an HCI perspective, we have provided informal, semi-formal and Tully
formal mechanisms for the design and analysis of interactive systems. Inlezmally,
we have defined an interaction framewoerk which describes the major components
in an interactive system, the user, the system and the interface, and we nsed this
framework both to contextnalize a great portion of HCI research and to motivate the
more formal treatment of interactive properties. At the more formal level, we have
provided a constructive bridge between the abstract and genetul compulational
models of interaction and the heuristic design of interactive systems. A formal
model of the agent has been nsed as the building block for interactive system
description. We have provided the beginnings of a methadology for incarperating
psychological knowledge of usecrs by demonsirating the link between task analysis
and agent description. The formulation of interactive properties on agents provides
constraints for .the design of an interactive system and a means for cvalvating
existing systems to understand user difficulties. We have provided several exaruples
of how a formal or semi-formal analysis can be nsed to explain scenarios ol user
hehaviour.

From a software engineering perspective, the agent model is a formal model of
an abject-orienied specification language. [t is the first specification language to
our knowledge with a compositional semanties that incorporates existing maodel-
oriented techniques for a description of an entity’s internal state behavieur along
with existing process algebra techniques for a description of the external event
hehavionr. The agent language answers criticisins of previous madel-oriented tech-
niques, such as Z, by providing a mechanism for describing objects. Beyond that, we
have also incorporated a means for specifying the communication between nhjects,

185

186 CHAPTER 9. CoONCLUSIONS

a facility which is not treated as gencrally in other objcct-oriented formalisms.

1t is interesting to note that the requirements for our ageut model which lead to
the development of the hybrid notation arose directly from our ueed to express a
particular class of interactive properties. Thus we have shown how due considera-
tion of nonfunctional requirements in soltware engineering can iucrease the benefits
of formal methods as well as influence the development of better formal techniques.

9.2 Contributions of this thesis

Our goal in this thesis was to provide a scientific approach to the develapruent of
more usable interactive systems. We outline now the coutrihutions of this thesis
toward that goal.

Formality rarely provides its own context; it is often necessary to provide infor-
mal motivation for the formalism. This motivation is usually culled from common
scnse about the world around us. The interaction framework is such a common
sense description of interaction in the everyday world. Its description is free of psy-
chological or computational jargen, The framework has served two major purposes
in our own work. It has provided the coutext for our research, enabling us to com-
pare and classify previous HCI research as well as our own. It has also motivated
the development of the agent formalisms used in this thesis to describe relevant
inleractive properties.

We consider interactive systems as a collection of communicating stimulus-
response agents. A simple model of an agent was described which was consistent
with theinteraction frameworh and allowed for the precise description of several in-
Leractive properties. These properties were motivated by an informal description of
Lhe translations made between the major components i an interactive system—the

Jser. System, Input and Oufput. We provided an account of how those transla-
lions affect the overall goal-directed behaviour of the human user. Some forial
descriptions were aimed at describing the ease and coverage of translations ju the
[ramework which are themselves seen as implicit ageut descriptions based on their
stimulus-response behaviour. The correspondence property was described as a rela-
tionship between two separate agents that would eventually be embodied by a third
translatiou agent. Other more abstract properties, such as predictability, syuthesis
and consistency, classified agents by the relationship between their iuput history
and their state or response history.

The problem with the simple agent model was that its near black-box descrip-
tion did not allow for a constructive discussicn of interactive properties that relate
the goals or results of the interaction with the immediate and visible information
that the user sees. At the abstract level of ihe simple agent, these properties can
only be discussed by use of mappings from the state space to the respective result
and display spaces, as is done in the red-PIE model and Sufrin aud He's madel

9.2. CONTRIBUTIONS OF TINIS THESIS 187

of interactive processes. In designiug a system, however, we need to be adle to
construct the agents {rom the result and display information of a task analysis.

So motivated by the desire to express interactive properties more constructively,
we refiued the agent model. The refinement was intended to suppert a hybrid view
of an agent, using complementary descriptious of its internal. state-based behavionr
and its external, event-based behaviour. The state of the agent was given as an
attribute-value mapping and the two complementary views were made consistent
by a communication description which linked the operations of the intcrnal ce-
scription with the events of the external description that occur on input, cutput,
synchronized and internal chaunels. We also defined two composilicn operators,
corresponding to the synchronous combination of independent agents (those wilh
no attributes in common) and the interleaved combination of dependent agents
(those with attributes in common).

The description of the refined ageut inodel was produced in the Z notation. o
we felt that Z did not provide a natural means for building the description of an
agent, i.e., Z was not a suitable design notation. We, therefore, provided a language
for ageuts which made clear the internal, external and communication descipt ions.
Oue criterion for developing this language was thal il be familiar to those with
experience in other formal notations, and so it was made to look similar to amodel-
oriented uotation, such as Z or VDM, for the internal description, and similar to a
process algebra notation, such as CSP or CCS, for the external description.

The refined agenl model aud its associaled language were then used 1o show
how interaclive properties relating result and display information eculd replace the
previous mare abstract properties on agents. Templates have been previowly used
in abstract models as a means of modelling the focus of attention of a user. We
gave a coustructive defiuition of templates for restricting the stale of an agent to
those attributes which are relevant to a particular task. Tle identification of resnlt
and display templates as task-dependeut descriptious derived from task analysis
links agent design in a more user-centred interactive system development method,
Reformulations of interaclive properties refated input to task-specific result and
display templates yielded versions of predictability. consistency, etc., that were
more relevant to the user’s understanding of the interaction.

The final contribution of this thesis was to imitiate the formal description of
multiagent architectures which have been previously used as heuristic guidelines
for interactive system development. Architectures arc realistic platforms for the
description of implementations, and it is aecessary to show how the praperties
derived in the abstract can be traced down to this more concrete level. Wediscussed
two known multiagent architectures, MVC and PAC, and highlighted a differernce
between them. PAC provides for the explicit description of correspondence betwrer)
the System (model or abstraction) and Interface {view ar presentation) agents.
whereas MVC does nol. We then showed how this feature of the control agent. in

188 CHAPTER 9. CONCLUSIONS

PAC is a manifestation of the abstract correspondence property expressed between
agents. A nore extensive case study then showed how the agent description of the
System leads to a natural agent description of the fnterface, which was then used
to analyze the actual graphical interfaces to existing interactive systems to explain
confirmed user coufusion or irritation.

9.3 Future work

Though the contributions of this thesis as stated above are significant, another
real contribution of this work is the research agenda that it motivates. We will
summarize the main aims of this agenda aud then comment on improvemnents to
the current work which are necessary based on our experience using agents.

The agent model is intended as the formal system modelling notation for the
ESPRIT Basic Research Action praject 3066 (AMODEUS) (13]. Within the project,
svstem modelling fits into a larger research scheme with very courageous aims. The
AMODELUS project is interested in assimilating different HCI modelling techniques
in order to see how they can be coordinated toward a more effective desigu practice.
The modellers {all into three main categories. There are psychologists whose main
research is in the development of models of the user. There are computer scientists
wliose main interest in in the development of modcls for system description. These
two modelling domains are linked by a third doinain concerned with how practicing
interactive systems developers document the rationale behind their design decisions,

As briefly discussed in Chapters 7 and 8, the main exercises within the project
arc based on separate analyses of scenarios of interaction between user and system.
These scenarios are used as a rmeans of eliciting information comparing and con-
trasting the utility of the different modelling domains. Earlier versions of the agent
mode] and notation have been used with relative success by the system modellers,
aud some of those examples have been provided within this thesis. Many more
scenarios have been investigated [72, 8, 42], and further are planned. Some of the
case studies address jssues in computer-supported cooperative work {CSCW) and
highly interactive display-based systems. Continued application of the agent model
to these scenarios in case studies specifically geared to test its ability to capture rel-
evant information concerning interactive behaviour will undoubtedly lead to further
refinements of the model and an increased confidence in its utility.

Werealize that the formal agent model caunet alone address all of the important
aspects of interaction, not even from the restricted viewpoint of system modelling.
For example, the agent model does not provide a way of determining the relevant
agents in the system from some requirerients specification or scenario description.
Therefore, a number of systemy modeflers are working on ways of applying design
heuristics in the form of an expert system design tool to help a designer determine
the agents and their communications connections before embarking on a formal

9.3. FUTURE WORK 189

description [TR]. We also plan to investigate the possibility of applying the agent
model more within the user modelling domain as a way of expressing the resvlts of
psychological theory in a language of design.

Refinement from specification toward implementation within the ageut model
should also he possible. Sufrin and He demonstrated how a refinement ardering
can he defined on their model of interactive processes, leading to a definition of
operational and data refinement in terms of the result and display behaviour. Wil
slight modifications, this definition of the refinement ordering can be mimicked in
the agent model, with the additional benefit that refinement can be restricted to
task, since the result and display information in the agent model is defined in terms
of task. The agent language could be augmented to wide spectrum language so
that refinement can remain within the agent model and proceed from high-level
specification to implementation, as described by Morgan’s refinement caleulus on
Dijkstra’s guarded command language [116, 113].

We mentioned in Chapter 5 that the inclusion of the simplest traces model of a
process algebra was intended as an example of how more complicated process alge-
bras could be incorporated. We have not investigated this point very thoroughly,
and it would be valuahle to see what advantages actnally arise from the use of
other process algebra models. We suspect that the inclusion of more sophisticated
models, such as the failures-divergence model of CSP, wonld not automatically in-
troduce the ability to express liveness properties because of the constraint within
the model thal both internal and external descriptions determine overall behaviour.
Whereas the external description of an agent in a failures-divergence semantics may
be shown to salisfy some liveness properties—guaranteeing that some desirable be-
haviour will happen—the corresponding internal description may prohibit the agent
from engaging in the desired property.

An interesting comment on the development of the agent model is that it was
directly influenced by two different perspectives on its behaviour, the interal and
the external. The need for a hyhrid notation arose when it was realized that the
two different perspectives corresponded to different natural notations. Hence, a
model-oriented language more naturally expressed internal hehaviour and aprocess
algebra notation more naturally expressed external behaviour. Research at York
js now investigating a classification of perspectives on system models in order to
determine how hybrid notations can be adapted to express the different perspectives
[16].

We first described the behaviour of an agent as stimulus-response. In moving
toward a concrete notation that corresponded to both Z and CSP, we lost the
ability to simply express the connection between a state transition, the stimuli that
triggered it and the responses that resulted from jt. We admit that this connection
is much more naturally expressed within standard Z by the use of decorations ? and
! to mark input and output respectively. However, the primitive communication

190 CuarTern 9. CoNCLUSIONS

operators in Z do not allow the arbitrary communication between the output of
one operation and the input to other operations, and so we abandoned the use of
Z exclusively. We are not familiar with any attempts in the Z community which
have solved this communication problem. However, it may be possible to define in
Object-Z a communication component to the object class, allowing for a calculus
of objects. We hope to pursue this point by using the agent model as an example
of how communication can be incorporated into a model-oriented uotation.

In summary, we see Lhe work of this thesis as a solid justification for the nse
of formal methods in system development to promote non-functional as well as
functional requirements. Detailed examination of the non-functional requirements
related to usability have shown that they can be addressed scientifically to answer
relevant research questions. In addition, we point out that the application of fornal
methods 1o areas such as HCI can indicate how to improve the existing formal
notations themselves.

Bibliography

(1

i3]

[4

|51

6]

(8]

G. Abowd, A. Dix, and M. Harrison. State of the art: Formal aspects of user
interfaces. Internal report, Human-Computer Interaction Group, Department
of Computer Science, University of York. Presented at Eurographics’90, May
1990.

G. Abowd, A. Dix, and M. Harrison. Formalising user recognisable structures
of graphics packages. In Proceedings of the Eurogruphics Workshop on formal
Methods in Computer Graphics, Marina di Carrara, Italy, June 1991.

G. D. Abowd. Properties of a graphical interface within a formal intetactive
system architecture. In Proceedings of the Eurographics Workshop on Fermat
Methods in Computer Graphics, Marina di Carrara, Ttaly, June 1991,

G.D. Abowd and R. Beale. A framework for the analysis and design of inter-
active systems. Technical Report Y CS (156), University of York, Department
of Computer Science, 1991,

G. D. Abowd and R. Beale, Users, systems and interfaces: a unifying frame-
work for interaction. In D. Diaper and N. Hammond, editors, HC/'9f: Us-
ability Now. British Computer Society Special Interest Group on Human-
Computer Interaction, Cambridge, 1991.

G. D. Abowd, J. Bowen, A. Dix, M. Harrison, and R. Took. User interface
lauguages: A survey of existing methods. Technical Report PRG-TR-5-89,
Oxford University Computing Laboratory Programming Research Group, Qc-
tober 1989. Also published as internal report 2487-TN-PRG-1008 ILssue 1.0
for ESPRIT project 2487 (REDO).

G. D. Abowd and M. D. Harrison, On a constructive approach to applying
formal metheds in HCI. ‘Technical Report YCS (151), University of York,
Department of Computer Science, December 1990.

G. D. Abowd and M. D. Harrison. Design scenarios for M1,5. Working paper
RP1/WP10Q, Esprit BRA project 3066 (AMODEUS), March 1991.

19

192

BIBLIOGRAPHY

(9]

(10}

(11]

(12]

13

4]

(15]

6]

(17)

18]

(19]

20]

G. D. Abowd, M. D. Harrison, and C. R. Roast. Modelling predictability
in interactive systems. Working paper RP1/WP9, Esprit BRA project 3066
{AMODEUS)}, September 1990.

H. Alexander. Executable specifications as an aid to dialogue design. In H. J.
Bullinger and B. Shackel, editors, Human-Computer Interaction — INTER-
ACT87, pages 739-744. North Helland, 1987.

H. Alexander. Formally-based techniques for desigring human-computer di-
alogues. In D. Diaper and R. Winder, editors, People and Computers [1I,
pages 201-214. Cambridge University Press, 1987.

H. Alexander. Formally-Based Tools and Technigques for Human-Compuler
Diahgues. Ellis Horwood Ltd., 1987.

AMODEUS consortium. Assimilating models of designers, users and systems.
Esprit Basic Research Action 3066, Technical Annex, 1989,

5. 0. Anderson. Proving properties of interactive systems. Technical report,
Department of Computer Science, Heriot-Watt University, 1985.

5. 0. Anderson. Proving properties of interactive systems. [n M. D. Harrison
and A. F. Monk, editors, People and Computers: Designing for Usability.
Cambridge University Press, 1986.

P. Andrews. First year report on doctoral research. Department of Computer
Science, University of York, June 1991,

P. Barnard. Interacting cognitive subsystems: A psycholinguistic approach to
short-term memory. In A. Ellis, edilor, Progress in the psychology of language,
volume 2, chapter 6. Lawrence Erlbaum, 1985.

P. Barnard. Cognitive resources and the learning of human-computer dialogs.
In J. M. Carroll, editor, Interfacing Thought: Cognitive Aspects of Human-
Computer Interaction, pages 112-158. MIT Press, 1987,

P. Barnard and M. Harrison. Towards a framework of modelling interactions.
Project deliverable D3, Esprit BRA project 3066 (AMODEUS), September
1990.

P. Barnard and M. D. Harrison. Integrating cognitive and system models in
human computer interaction. In A. G. Sutcliffe and L. A. Macauley, editors,
People and Compuiers V. Cambridge University Press, 1989.

BIBLIOGGRAFPHY 193

[21]

(22]

[23)

24]

[25]

(26]

21

[28]

[29]

(30]

[31]

[32]

P. Barnard, M. Wilson, and A. MacLean. Approximate modelling of cognitive
activity with an expert system: A theory-based strategy for developing an
interactive design tool. The Compuler Journal, 31(5):445-456, 1988.

P.J. Barpard and M. D. Harrison. Towards a framework for modelling human-
computer interaction. Working paper RP3/WP5, Esprit BRA project 3066
(AMODEUS), May 1991. Submitted to Esprit Confereuce 1991,

L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard, and
M. R. Szczur. The arch model: Seeheim revisited. User Interface Developer’s
Workshop Report, April 1991.

R. Bird and P. Wadler. [riroduction lo Functional Programming. Prentice-
Hall International, 1988.

R. Bornat. Imperative languages in distributed computing. In D. A. Duce,
editor, Distributed Compuling Systems Programme, 1EE Digital Electronics
and Compnting Services, 1984.

N. Boudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applica-
tions to a specification methodology. Internal report from Tunis University.
1590.

J. P. Bowen, R. B. Gimson, and S. Topp-Jergensen. Specifying system im-
plementations in Z. Technical Monograph PRG-63, Oxford Universiyy Com-
puting Laboratory Programming Research Group. February 1988.

S. D. Brookes. 4 Model for Communicating Sequential Processes. D.Phil.
thesis, Oxford University, 1983. Also published as Carnegie-Mellon Technical
Report CMU-CS-83-149.

S. Burbeck. How to use model-view-controller {MVC). Techuical report,
Softsmarts, Inc., 1987.

K. Butler, J. Bennetit, P. Polson, and J. Karat. Report on the workshop on
analytical models: Predicting the complexity of human-computer interaction.

SIGCHI Bulletin, 20{4):63-79, April 1989.

S. K. Card, J. D. Mackinlay, and G. G. Robertsou. The design space of
input devices. In J. C. Chew and I. Whileside, editors, Empowering People,
Proceedings of CHI’90 Conference, pages 117-124, 1990.

S.K. Card, T. P. Moran, and A. Newell. The Psychslogy of Human Computer
Interaction. Lawrence Erlbaum, 1983.

194

BIBLIOGRAFPHY

33]

[34]

[35]

i36)

{37]

(38]

[39]

140)

[41]

142)

3]

S, K. Card, G. G. Robertson, and J. D). Mackinlay. The iuformation visualizer,
an information workspace. In 8. P. Robertson, G. M. Olson, and J. 5. Olsou,
editors, Reaching Through Technolegy, Proceedings of the CHI’81 Conference.
pages 181-188. ACM Press, 199].

D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Formal
specification in Object-Z: lutroduction and case studies. Technical Report
105, Key Centre for Software Technology, Dept. of Computer Science, Uni-
versily of Queensland, July 1989.

J. M. Carroll. Infinite detail and emulation in an ontologically minimized HCL
In J, C. Chew and J. Whiteside, editors, Empowering Prople, Proceedings of
CHI'90 Conference, pages 321-327, 1990,

J. M. Carroll and M. B. Rosson. Usahility specifications as a tool in iterative
development. In R. Hartson, editor, Advances in Human-Compuler Interac-
tion Ablex, 1984.

J.Coenen, W.-P. de Roever, and J. Zwiers. Assertional data reification proofs:
Survey and perspective. In Fourth Refinement Workshop of the BCS FACS
Spectal Interest Group, January 1991,

J. Coutaz. PAC, an object oriented model for dialog design. In H. J. Bullinger
and B. Shackel, editors. Human-Computer Interaction — INTERACT’S7.
pages 431-436. North-Holland, Amsterdam, 1987,

J. Coutaz. Interface Homme.-Ordinateur: Conceplion el Réalisation. PhD
thesis, University of Grenoble, Laboratoire de Génie Informatique, December
1938,

J. Coutaz. Architecture models for interactive software. In Proc. of
ECOOP’89, 1989.

J. Coulaz. Architecture models lor interactive software: Failures and trends.
In Engineering for Human-Computer Interaetion, 1989. Proceedings of tbe
IFIP WG 2.7 cooference.

J. Coutaz, L. Nigay, M. Harrison, and G. Abowd. Design scenarios for m1.5.
Working paper RP2/WP11, Esprit BRA project 3066 (AMODEUS), March
1991.

B. J. Cox. Object-Oriented Programming: an FEvolutionary Approach.
Addison-Wesley, 1986.

BIBLIOGRAPHY 195

(44]

(4]

46]

[47]

(48]

(49]
(50]

(51]

[52]

(53]

[54]

(58]

M. Curry, A. Monk, and P. Wright. Obstacles to the use of formal notations
in software design practice. In University of York, Department of Computer
Science Technical Report, September 1990,

J. Davies. Spectfication and Proof: Real-Time Systems. D.Phil. thesis, Oxford
University, 1991,

J. Davies and §. Schneider. An introduction to timed CSP. Technical Mono-
graph PRG-75, Oxford University Computing Laboratory Programming Re-
search Group, August 1989.

A. Dix. Nondeterminism as a paradigm for understanding the user interface.
In M. D. Harrison and H. W. Thimbleby, editors, Fermal methods 1n Human-
Computer Imteractiorn, Cambrnidge Series on Human-Computer Interaction,
chapter 4. Cambridge Unijversity Press, 1990.

A.J. Dix. Formal Methods and Interactlive Systems: Principles and Practice.
D.Phil, thesis, University of York, 1987.

A. J. Dix. Formal Methods for Interactive Systems. Academic Press, 1991,

A.J. Dix and M. D. Harrison. Principles and interaction models for window
managers. In M. D. Harrison and A. F. Monk, editors, People and Computers:
Designing for usability, pages 352-366. Cambridge University Press, 1936,

A. J. Dix and M. D. Harrison. Interactive systems design and formal de-
velopment are incompatible? In J. A. McDermid, editor, Preceedings 1988
Refinement Workshop. Butterworth Scientific, 1989.

A. J. Dix, M. D. Harrison, and E. E. Miranda. Using principles to design
features of a small programming environment. In 1. Sommerville. editor,
Software Engineering Environments, pages 135-150. Peter Percgrinus, 1936,

A. J. Dix, M. D. Harrison, C. Runciman, and H. W. Thimbleby. Interaction
models and the principled design of interactive systems. In H. Nichols and
D. 5. Simpson, editors, Furopean Software Engineering Conference. pages
127-135. Springer Lecture Notes, 1987.

A. J. Dix and C. Runciman, Abstract models of interactive systems. In
P. Johnson and S. Cook, editors, People and Compulers: Designing the in-
terface, pages 13-22. Cambridge University Press, 1985.

D. Duke and R. Duke. A history model for classes in Object-Z. Technical
Report 120, Key Centre for Software Technology, Dept. of Computer Science,
University of Qneensiand, November 1989,

196

BIBLIOGRAPHY

[56]

[57

(58]

(61)

i62]

163]

(64]

(65]

[66]

[67)

R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification lan-
guage: Yersion 1. Technical Report 91-1, Key Centre for Software Technology,
Dept. of Computer Science, University of Queensland, May 1991.

J. Finlay, A. Green, P. Barnard, and M. Harrison. Linking user and system
models: an interaction structure. Working paper RPI/WP2, Esprit BRA
project 3066 (AMODEUS], January 1991.

FOCUS. Fonndations of opto-electronic computer systems, action 3180. In
Synopses of Basic Research: aclions, working groups and networks of excel-
lence, Volume &, pages 192-195, January 1991,

J. Foley and A. van Dam. Fundamentals of Interactive Computer Gruphics.
Addison Wesley, 1984,

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to
the specification, correctness aud implementation of abstract data types. In
Yeh, editor, Currenl Trends in Programming Methodology, volume IV: Data
Strncturing, pages 80-149. Prentice-Hall, 1978,

A. Goldberg. Smalltalk-80: The Iteraciive Pregramming Enviernment.
Addison- Wesley, 1983.

M. Green. The University of Alberta user interface management system.
ACM Conference of the Speeial Interest Group for Graphics, 19(3):205-214,
July 1985,

T. R. G. Green, F. Schiele, and S. J. Payne. Formalisable medels of nser
knowledge in human-compuler interaction. In G. C. vad der Veer, T. R. G.
Green, J.-M. Hoc, and D. Murray, editors, Working with Compulers: Theory
versus Outcome, Compnters and People Series, chapter 1. Academic Press.
1988.

J. Grudin. The case against user interface consistency. Communications of
the ACM, 4(3):245-264, 1989.

J. Guttag and J. Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27-52, 1978.

M. Hanlon and J. Newton. FOREST case study: The MVC. Technical report,
Advanced Techniques Group, Data Logic Limited, Queens House, Greenbhill
Way, Harrow, October 1990. 1990,

D. Harel. Statecharts: a visnal {formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

BIBLIOGRAPHY 197

[68]

[69]

(0]

i)

(72]

73]

(74]

[75]

[76]

[77)

(78]

[79]

D. Harel. On visual formalisms, Commumcations of the ACM, 31(5%:514-330,
May 1988.

M. Harrison and G. Abowd. Forinal methods in human-computer interaction:
a tutorial, Technical Report YCS 155, University of York, Department of
Computer Science, 1991. Also a tutorial presentation at CHI'91 confercnce.

M. Harrison, J. Coutaz, L. Nigay, J. E. Finlay, and G. D. Abowd. Agent
architectures ard the application of transformation rules in interactive systemn
development, Project deliverable D2, Esprit BRA project 3066 (AMODEUS),
September 1990.

M. D. Harrison. Modelling user structures within system specifications. In
Collogquium on Formal Methods in HCI: 11, sponsored by IEE Professional
Group C5 (Man-Machine Interaction}. December 1989,

M. D. Harrison, J. Coutaz, J. E. Finlay, G. D. Ahowd, and L. Nigsy. In-
teraction analysis techniques from a system modelling viewpoint. Project
deliverable D1, Esprit BRRA project 3066 (AMODEUS), September 1950.

M. D. Harrison and A. J. Dix. A state model of direct manipulation. In
M. D. Harrison and H. W. Thimhleby, editors, Formal Methods in Human
Compuler Inieraction, pages 129-151. Cambridge University Press, 1990.

M. D. Harrison, C. R. Roast, and P. C. Wright. Complementary metliods
for the iterative design of interactive systems. In G. Salvendy and M Smith,
editors, Designing and Using Human-Computer Inlerfaces and Knowledge
Based Systems, pages 651-658. Elsevier Scientific. 1989.

M. D. Harrison and H. W. Thimbleby, editors. Fermal Methods tn Human
Computer Interaction. Cambridge University Press, 1990.

J. He. Process refinement. In J. A, McDermid, editor, The Theory and
Practice of Refinement. Butterworth Scientific, 1939, Proceedings of 1988
York Refinement Workshop.

J. He. A trace-stale based approach to process specification and design. Ox-
ford University Computing Laboratory Programming Research Group, 1989.

J. He, C. Hoare, and J. Sanders. Data refinement refined. In Furopean Sym-
posium on Pragramming, volume 213 of Lecture Notes in Computer Scienee.
Springer-Verlag, 1986.

S. Hekmatponr and D. Ince. Evolutionary protatyping and the human-
computer interface. [n H.-J. Bullinger and B. Shackel, editors, Proceedings of
INTERACT 87, pages 479-484. North-Holland. 1987,

198

BIBLIOGRAPHY

(80]

(81]

(82]

(83]

84]

(85]

(86}

(87

/s8]

(89]

(90]

M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Mas-
sachusetts, 1988.

C. A. R. Hoare. Communicating sequential processes. Communicaiions af

the ACM, 21(8):666-77, 1978.

C. A.R. Hoare. Communicating Scquential Processes. Prentice-Hall Interna-
tional, London, 1985,

A. Howes and 5. J. Payne. Display-based competence: towards user models
for menu-driven interfaces. University of Lancaster.

J. Hughes. Specifying a visual file system in Z. In Formal Methods in HCI:
{II. IEE Professional Group C5 (Man-machine interaction), [989.

E. L Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation inter-
faces. Human-Compufer Inferaction, 1:331-338, 1985,

INMOS Limited. ocecam Programming Manual Prentice-Hall International,
London, 1984.

150 8807. Information processing systems—open systems interconnection —
LOT0OS—a formal technique based on the temporal ordering of observational
behaviour. Technical report, [SO Standards Authority, 1988.

R. J. K. Jacob. Survey and examples of specification techniques for user-
computer interfaces. Technical report, Naval Research Laboratory, Washing-

ton, D.C., 1983.

R.J. K. Jacob. Using formal specifications in the design of a human-computer
interface. Communications of the ACM, 26(4):259-264, 1983.

C. B. Jones. Systematic Software Development Using VOM. Prentice-Hall
International, 1986.

[91) G. Jones. Programming in occam. Prentice-Hall International, 1986.

[92] M. B. Josephs. A state-based approach to communicating processes. [is-

(93]

(94]

tributed Computing, 3, 1988.

D. E. Kieras and P. G. Polson. An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies, 22:365-394, 1985.

C. Knowles. Can cognitive complexity theary (CCT) produce an adequate
measure of system usability? In D. M. Jones and R. Winder, editors, People
and Computers IV, pages 291-307. Cambridge University Press, 1988.

BIBLIOGRAPHY 199

[95] D. Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 23, 1983,

[96] G.E. Krasner and S. T, Pope. A cookbook for using the model-view-coniroller
user interface paradigm in Smalltalk-80. JOOP, 1{3), August 1988.

[97] S. Krening. The structure of interaction. Working paper RP3/WP6, Esprit
BRA project 3066 (AMODEUS), June 1981,

{98] J. Laird, A. Newell, and P. Rosenbloom. SOAR: an architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987,

[99] L. Lammport. A simple approach to specifying concurrent systems. Cemmu-
nications of the ACM, 32(1):32-43, January 1989.

[100] K. Lano. Z**, an object-orientated extension to Z. In Procccdings of the fifth
annual 7 User Meeting, December 1990.

[161] C. H. Lewis. A research agenda for the uiueties in human-computer inlerac-
tion. Human-Compuler Interaciion, 5(2-3):125-143, 1990.

[102] B. Liskov and 5. Zilles. Programming with abstract data types. ACH SIG-
PLAN Notices, 9(4):50-59, April 1974.

[103] R. Macdonald. Z usage and abusage. Report 910003, Royal Signals and Radar
Establishment, Malvern, Worcestershire, February 1991.

[104] Z. Manna. A Mathematical Theary of Computation. McGraw Hill, 1974.

[105] L. S. Marshall. A Formal Deseription Method for User Interfaces. PhD thesis,
Unpijversity of Manchester, United Kingdom, 1986. Alsc published as technical
report UMCS-87-1-2.

[106] M. Martins. Formal specification of highly interactive text editors. Technical
Report RAL-87-093, Rutherford Appletou Laboratory, November 1987,

{107) A. Mével and T. Guéguen. Smallielk-80. Macmillan Education, 1987.

[108] F. Mili and A. Mili. Relational heuristics for programming: Advances and
perspectives. Internal report from Qakland University and Tunis, Novernber
1989.

[108] A.Milner. A Caleulus of Communicating Systems, volume 92 of Lecture Notcs
tn Compuler Science. Springer-Verlag, 1980.

[116] R. Milner. Communication and Concurrency. Prentice-Hall International,
UK, Ltd., London, 1989.

200

BIBLIOGRAPHY

[11]

[112]

[113]

[114]

[115)

[116]

[117)
[118]

[119)
{120]

121)

[122]

[123]

124]

F. Moller and C. Tofts. A temporal calculus of communicating systems. LFCS
Report Series EC5-LFC5-89-104, LFCS, Department of Computer Science,
University of Edinburgh, Decernber 1989.

A. Monk, editor. Fundamentals of Humanr-Compuler Inl¢raciion. Computers
and People Series. Academic Press, 1984,

A.F. Mook and A. J. Dix. Refining early design decisions with a black-box
model. In D. Diaper and R. Winder, editors, People and Compnters I,
HCI'87, pages 147-158. Cambridge University Press, 1987.

T. P. Moran. The command language grammar: a representation for the
user interface of interactive systems. International Journal of Man Machine
Systems, 15, 1981.

C. Morgan. Programming from Specifications. Prentice-Iall International,
1950.

C. Morgan, K. Robinson, and P. Gardiner. On the refinement calculus. Tech-
nical Monograph PRG-70, Oxford University Computing Laboratory Pro-
gramming Research Group, Oclober 1988,

C. C. Morgan and B. A. Sufrin. Specification of the Unix filing system. [EFE
Transactions on Software Engineering, 10(2):128-142, March 1934,

K.Myers and N. Hammond. Defiuition of scenarios for M1 workshop. Internal
report IR6, Esprit BRA project 3066 (AMODEUS), July 1990,

A. Newell and H. Simon. Human Problem Selving. Prentice-Hall, 1972.

W. Newman. A system for interactive graphical programming. In SJCC 1968,
pages 47-54, Washington D.C., 1968. Thompson Books.

L. Nigay. Modelisation des architectures logicielles des systems interactifs.
Master’s thesis, Institut National Polytechnique de Grenoble, Lahoratoire de
Génie informatique, June 1990.

D. Norman. Some observations on mental models. In D. Gentner and
A, Stevens, editors, Mental Models, pages T-14. Erlbaum, 1983,

D. A. Norman. Four stages of user activities. In B. Shackel, editor, Human-
Computer Interaction—INTERACT 8, pages 507-511. Elsevier Science Pub-
lishers, 1984.

D. A. Norman. Cognitive engineering. In D. A. Norman and S. Draper,
editors, User-Centered System Design, pages 31-62. Erlbaum, 1986.

BIBLIOGRAPHY 201

[125]

[126]

(127]

[128)

[129]

(130]

(131]

[132]

[133]

(134]

[135)

[136]

[137]

D. A. Norman. The Psychology of Everydey Things. Basic Books, 1983.

D. L. Parnas. A technique for sofiware module specification with examples.
Communications of the ACM, 15(5):330-, May 1972.

S. J. Payne. Task-action grammars. In B. Shackel, editor, Human-Computer
Interaction—INTERACT 84, pages 527-532. Elsevier Science Publishers,
1984.

S.). Payne and T. R. G. Green. Task-action grammars: a model of mental
representation of task languages. Human-Compuler Interaction. 2(2):93-133,
1986.

G. Pfaff and P. ten lagen, editors. Secheim Workshop on User Interface
Management Systems, Berlin, 1985. Springer-Verlag.

G. D. Piotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

V. Pratt. A decidable mu-calculus. In Proceedings of the 28nd [EFE Confer.
ence on the Foundations of Computer Science, 1981.

G. Reed. A Uniform Malhematical Theery for Real-Time Distribuied Com-
puting. D.Phil. thesis, Oxford University, 1988,

P. Reisner. Formal grammar and human factors design of an interactive
graphics system. [EEE Transactions en Software Engineering, SE-7(2):229-
240, 1981.

P. Reisner. Analytic tools for human factors of software. Research Report RJ
3808 (43605), IBM Research Laboratory, San Jose, 1983.

P. Reisner. Formal grammar as a tool for analysing ease of use: some [un-
damental concepts. In J. C. Thomas and M. L. Schneider, editors, Human
Factors in Computer Sysiems, pages 53-78. Ablex, 1983.

P. Reisner. What is inconsistency. In D. Diaper, D. Gilmore, G. Cock-
ton, and B. Shackel, editors, Human-Computer Inieractton—INTERACT 90,
pages 175-1581. Elsevier Science Publishers. 1990.

C. R. Roast and P. C. Wright. Incorporating the user’s perspective into a
system model. Technical Report YCS 148, University of York, Department
of Computer Science, 1990,

202

BIBLIOGRAPHY

(138]

[139)

[140)

[141]

[142]

[143]

[144]

[145)

[146)

[147]

(148]

G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3D
visualizations of hierarchical information. In S. P. Robertson, G. M. Olson,
and). S. Qlson, editors, Reaching Through Technology, Proceedings of lhe
CHI'Yl Conference, pages 189-194. ACM Press, 1991.

A. Roscoe. Denotational Semanties for Occam, volume 197 of Lecture Notes in
Compuier Science, pages 306-329. Springer-Verlag, 1985. July 1984 Seminar
on Concurrency.

A. Roscoe and C. Hoare. The laws of occam programming. Technical Mono-
graph PRG-53, Oxford University Computing Laboratory Programming Re-
search Group, February 1986.

M. Ryan. Developments of MAL in forest research. WPI1 (Logic and Lan-
guage) Deliverable NFR/WPL.1/1C/R/001/A, Forest Research Project, Oc-
tober 1990.

F. Schiele and T. Green. HCI formalisms and cognitie psychology: the case
of task-action grammars. In M. D. Harrison and H. W. Thimbleby, edi-
tors, Formal methods in Human-Computer Interaciion, Cambridge Series on
Human-Computer Interaction, chapter 2. Cambridge University Press, 1990.

R. L. Schnapp. SuperPgint 1.1. Silicon Beach Software, 1988. User’s manual
for Macintosh software package.

$. A. Schneider. Correciness and Communication in Real-Time Systems.
D.Phil. thesis, Oxford University, 1989.

5. Schuman, D. Pitt, and P. Byers. Object-oriented process specification.
Technical report, Department of Mathematics, University of Surrey, 1990.

S. A. Schuman and D. Pitt. Object-oriented subsystem specification. In
L. Meertens, editor, Program Specification and Transformation. Elsevier Sai-
ence Publishers, 1987.

B. D. Sharratt. The incorporation of early interface evaluation into command
language grammar specifications. In D. Diaper and R. Winder, editors, Peo-
ple and Computers I11— Proceedings of HCT'§7, Cambridge University Press,
1987,

B. D. Sharratt. Top-down interactive systems design: somne lessons learnt
from using command language grammar specifications, In H.-J. Bullinger
and B. Shackel, editors, Proceedings of INTERACT 87, pages 395-399. Nortk-
Holland, 1987.

BIBLIOGRAPHY 203

[149]

{150]

151]

152]

[153]

154]

[135)

(156)

[157]

[158]

[159]

[160]

[161]

J. L. Sibert, R. Belliardi, and A. Kamran. Some thoughts on the interface
between UIMS and application programs. In User Interface Management
Systems, pages 183-189. Springer-Verlag, 1985.

J. L. Sibert, W. D. Hurley, and T. W. Bleser. Ar object-oriented user interface
management system. In ACM SIGGRAPH 86, 1986.

T. Simon. Analysing the scope of cognitive models in human-computer inter-
action: a trade-off approach. In D. M. Jones and R. Winder, editors, People
and Computers [V, pages 79-93. Cambridge University Press, 1988.

J. M. Spivey. The Z Notation: 4 Reference Manual Preatice-Hall Interna-
tional, 1988,

1. M. Spivey. Understanding Z, a Specification Language and its Semonlics,
Cambridge University Press, 1989.

C. Stanley-Smitk and T. Cahill. UNIFORM: A language geared to system
independence. Project Document UL-TN-1002, Esprit project REDO. 1989.

C. Stirling and D. Walker. A general tablean technique for verifying temporal
properties of concurrent programs. In Semantics for Concurrency, Workshops
in Computing. Springer-Verlag, 1990. Extended abstract.

). E. Stoy. Denotational Semantics: The Scott-Strachey Approach fo Pro-
gramming Language Theory. MIT Press, 1977,

L. Suchman. Plans and Situated Aclions: The Problem of Human Machine
Interaction. Cambridge University Press, 1987,

B. Sufrin and J. He. Specification, refinement and analysis of interactive
processes. In M. D. Harrison and H. W. Thinbleby, editors, Formal meth-
ods in. Humen-Computer Interaction, Cambridge Series on Human-Computer
Interaction, chapter 6. Cambridge University Press, 1990.

A. Sutcliffe. Some experiences in integrating specification of human-computer
interaction within a structured system development method. In D. Jones and
R. Winder, editors, People and Computers IV, pages 145-160. Cambridge
University Press, 1988.

H. Thimbleby. Generative user-engineering principles for user interface design,
In B. Shackel, editor, Human-Computer Interaction—INTERACT 8], pages
661-666. Elsevier Science Publiskers, 1984,

H. Thimbleby. User Interface Design. Adison Wesley, 1990,

204

BIBLICGRAPHY

[162]

[163]

[164)

[165)

[166)

[167]

[168]

[169]

[170]

(171}

[172]

[173]

R. K. Took. Surface interaction: A paradigm model for separating application
and interface. In Procecdings of CHI '90, 1990.

R. K. Took. Surface Interaction: An Archileciure and Formal Model for
Separating Application and [nterface. D.Phil. thesis, University of York, 1990.

P.H.J. van Eijk, C. A. Vissers, and M. Diaz, editors. The Formal Description
Tecknigue LOTOS. North-Holland, Amsterdam, 1989,

P. Walsh, K. Lim, J. Long, and M. Carver. J5D and the design of user
interface software. Ergonomics, 1989,

J. Whiteside and [}. Wixon. Discussion: Improving human-computer
interaction—a quest for cognitive science. In J. Carroll, editor, Interfacing
thought: cognitive aspects of human-computer interaction. MIT press, 1987,

P. J. Whysall and J. A, McDermid. An approach to object oriented specifi-
cation using Z. In Proceedings of the fifth annual 7 User Meeting, Decerber
1990.

P.). Whysall and J. A. McDermid. Object oriented specification and re-
finement. In Fourth Refinement Workshop of the BCS FACS Special Interest

Group, January 1991.

T. Winograd and I. Flores. Understanding Computers and Cognilion.
Addison-Wesley, 1987.

J. Woodcock and C. Morgan. Refinement of state-based concurrent systems.
In D. Bjgrner, C. Hoare, and H. Langmaack, editors, VDM ’90: VDM and
Z—Formal Methods in Sofiware Development, volume 428 of Lecture Nofcs
in Computer Seience. Springer- Verlag, 1990.

J. C. Woodcock. Mathematics as a management tocl: Proof rules for pro-
motion. In Proc. 6th Annual (SR Conference on Large Software Systems,
September 1989.

P. C. Wright and C. R. loast. Abstraction and generalisation in the agalysis
of usability. In University of York, Department of Computer Science Technical
Report, September 1990.

R. Young and J. Whittington. Using a knowledge analysis to predict concep-
tual errors in text-editor usage. In J. Chew and J. Whiteside, editors, CHI'90
Conference Proceedings, pages 31-97. Addison Wesley, 1990.

BIBLIOGRAPHY 205

(174] R. M. Young and P. Barnard. The use of scenarios in human-computer inter-
action research: turbocharging the tortoise of cnmulative science, [n J. Carroll
and P. Tanner, editors, CHI and GI Conferenece Proceedings: Human Factors
in Computing Systems and Grephic Interface, pages 291-296. ACM, 1987.

[175] R. M. Young, P. Barnard, T. Simon, and J. Whittington. How would your
favourite user model cope with these scenarios? SIGCHT Bulletin, 20(4):51—
55, 1989,

Appendix A

Use of the Z Notation

We make extensive use of the Z notation in this thesis. For the most pat, we
bave adhered to the standard Z notation, as given by Spivey's standard Z reference
manua! [152]. In this appendix, we discuss some stylistic conventions that we have
adopted, and we provide definitions of operators used in the body of the thesis but
not defined there nor in the standard Z reference manual.

Function definitions

When defining a function by predicates describing its effect on arguments in its
domain, it is technically necessary that these axioms be bound by some universal
quantifier over the domain elements. For example, in the Z reference manual. the
projection functions on ordered pairs, are defined as below.

[X!Y] —_—
Jirst: X xY > X
second : X x ¥V = Y

Ya:X; y: V
o first{z, y)=z
second(z,y) =y

We have decided that in most cases the type information of the function is
enough to allow the elimination of the universal quantification, leading to aslightly
less cluttered presentation tbat is no less understandable, The projection functions
would be rewritten as below.

207

208 APPENDIX A. USE OF THE Z NOTATION

= [X,¥]
Jrsl: X xY -+ X
seond : X x ¥ - Y

first(z, y) = 2
second(z,y) = y

Formatting quantifications

Many quantifications with bonnd variables—universal, existential, set comprehen-
sions, mu-expressions and lambda expressions—are rather lengthy and it is always
a challenge Lo present with maximal clarity and minimal bracketing. In this thesis,
we have fried to present a consistent format to these gnantifications. Where one
would normally write such a nniversal gnantification as

Y Decls | P o @

we now wrile

¥ Decls
| P
. Q

allowing indentation to replace the need for some bracketing.
As mentioned by Macdonald [103], it is common in Z usage to replace existential
qnantification by a where clause to increase readability, Hence, the expression

3 Decis
+ Q

can be replace by

¢

where Decls

Operations on sequences

We will make use of some operatjons on sequences. The generic relations — (*i1s
a prefix of™), ~— (“is a snffix of”) and = (“is contained in”) represent useful op-
erations. prefixes is a function which generates the set of all prefixes of a given

209

sequence. The prefix relation prefix_closed is true if its argument is a set of se-
quences which is closed under the prefix relation, that is, the prefixes of every
sequence in the set are also in the set.

—{X]

—:seq X «— seq X

—:seq X «— seqX

=:seq X e seqX

prefixes : seq X — Pseq X
prefix_closed _ : Pseq X

3 — Y5 & Jza:seqX ewzs T zs = ys

5 — ys & Jzs:seqX es T I5 = ys

s — ys & Jzs,z5" :seqX ezs T s 28’ = ys
prefixes ys = {zs:seqX |zs — ys }
prefix_closed XS <« Vauzs': XS » prefixeszs' C XS

Technically, the definition of these operations as generic mandates thai their
use be indexed by the base set, so we would have to say zs — [Y] ys to indicate
that zs is a prefix of ys, where both are sequences from the set ¥. In practice, we
will not indicate the base set when it is clear from the context.

o/ (Distributed sequential composition)

The function §/ sequentially composes a sequence of homogeneous relatijons (rela-
tions of the form X « X) to obtain one relation.

X

(

3/ sseq(X » X) = (X & X)
() =idX

$/{R) =R

B(R) 7 rs) = Ry (3/ rs)

Sequence filtering

As described in Sufnin and He [158], we can extend the notion of domain and range
restriction to act on sequences. These operators will behave like the familiar filtering
operations in functional programming and used for trace semantics. The expression

L] . . Vo . —
N s will give & sequence consisting of the resequencing of the restriction of the

domain of s to the set of natural numbers in N. Similarly, the expression s s

210 AprpENDIX A. USE oF THE Z NOTATION

will give a sequence consisting of the resequencing of the restriction of the range of
s to the set of values in S.

= [£]
resequence : (N - X) — seq X
sort : PN — seqN
increasing : P(seqN)
3 (PN xseg &) — seqX
B {seg X x PX) —seqX
Vis:seqA; N PN; S:PX s
N 'd's = resequence(N < 5)
A s S= resequence(s > .9)
¥ N 4 X & resequence(f) = sort(dom f) 3 f
YN PN, siseqX »
ran sorl(N) =N
A sorli(N) € increasing
A 5 €increasing < Vi, :doms e i <j = s(i) < s(5)

For example,

{1,5,3,11) ' (a, b, ¢, d, e, f) = {a, c, €)

{a,b,¢,d,¢e,f} l;I;:l{c, g.a} = {g.c).

Some specific filtering on traces as suggested by Hoare [82] will be notationally
convenient. We first describe channel filtering, which gives the sequence of tessages
communicated along a channel. We write ¢ | C5 to represent the restriction of trace
¢ to evenis on channels in the set CS.

L : (seq Event x P ChannellD)) seq Event
tyC8S = tgmesssl;qC

Folding

We define general folding operations fold! and foldll with their standard definition
from functional programming (24].

211

Joldl : ((X x ¥) = X} 9 X 5 5eqY 0 X
Joldll : ((XxX)—-X)—-seqX —+ X
Voop_: (X xY)o X;a:X; y: Y, ysiseqV
o (foldlope{)=

A foldl op a y ™ ys = foldl op (a op y) ys)
V_op_: (X xX)— X, x5 185eq, X
o Jfoldll op zs = foldl op (head zs) (tail 73)

~LX, ¥) —

Similar definitions of the folding operations foldr and foldrl can be defined.

Interleaving

Interleaving of sequences is used to define some of the trace semantics for the agent

model. We here define interleaving recursively as done by Hoare[82, p. 56].

_[X]

inferleaves 1 seq X — (seq X x seq X)

[() interleaves (1,¢) & (t= () A (' = ()
s interleaves (1, ') & s inlerleaves (I, t)
((z) ™ 5) interleaves (¢, ') &

((2 #{}ANhead(t) = z A s interleaves(tml(L), ')
V(£ () Ahead(t') = z A s interleaves(?, Lait{i"))))

Equivalence relations

An equivalence relation on a lype X is relation which is reflexive, symmetric and
transitive. We define the generic predicate equivalence[.X] to he true when its

argument is an equivalence relation on the type X.

—[X]

equivatence: (X — X) — Boolean

¥~ X + X sequivalence~ &
VP"I!":X.{ p~p
A pr~g=gm~p
Alp~ghgrr)=p~r)

212 APPENDIX A. USE OF THE Z NOTATION

As usnal, in practice, we will leave out the base type indication when we use
equivalence when it is clear from the context,

The set of equivalence classes derived from an equivaleuce relation ~ on the
type X is represented by classes(~).

1X]
l=c1'a.sses (X = X)=PPX

dom elasses = {~: X + X | equivalence ~}

Vi X ¢+ X |~€ dom classes »
casses(~)={z: Xeo{z': X |d'~z}}

Appendix B

Some theorems on the refined
agent model

1n this appendix, we provide the complete proofs for some theorems expressed in
the body of this thesis. To assist in these proofs, we will need the following result.

Recall the definition of compatiblc, which relates states which agree over their
common attributes.

compatible ; State — Stale
(51,52) € compatible & 5, 5 =86 Us

The relation compatible is reflexive and commutative. A less commeon but important
property of compatible is that if two states are compatible, and a third state is
compatibie with the union of the first two, then the third state is compatible with
each of the other states. We state and prove this result as Lemma B.1.

L.emma B.1

Ys,l,u: State
| ((s,t) € compatible
A (sU L, u) € compalible)
s ((t,u)€ compatible
A (s, u) € compatible)

Proor oF LEMMA B.1:

Under the assumptions, we can pick z,t, u : Slale satisfying

(sutidu =(sUt)Uu [assumption and defn. of compatible)
S du=(sut)Uu [(5,2) € compatible]
Ssp(lPu)=sU(tUu) [accoc. of & and U]

213

214 APPENDIX B. SOME THEOREMS ON THE REFINED AGENT MODEL

By case analysis on A € A, we can satisiy the inference

(shlt=s0U1

AsE(t@u)=sU(tUn)) = (t,v) € compatible

Case 1: A =domsNdomt
Since (s,t) € compatible, s and ¢ agree on A, so
Aa(sp(teu))=4<a{tdu)
Ag(sU{tUu))=Aa(iue}
Therefore, (£, u) € compatible in this case.

Case 2: A=domt —doms

In this case, we satisfy
Ad{(sd(tDu)i=A<(tDu)
A<d{(su{tUu))=A<a(tUu,)

and so (1,u) € compatible m this case.

Case 3: A = dom s —dom ¢

In this case, we satisfy
A<d(t@u)=A<u
Ad(tuu)=AQu,

and so (t,u) € compatidle in this case.

Case 4: A=A — (doms Udom¢?)

In this case, we have

Ad{tou)=A4qu
A<a(luu)=Aau,

and so (¢, u) € compatible in this case.

Smce these cases are exhaustive, we conclude that {{,u) € compatible.

similar arguments, we can show that (s, u) € compatible.
¢ ExD oF PROOF OF LEMMA B.1

By

215

Theorem 3.1

¥ 51, 52,53 : Stateset
| { (S51,52) € dom join
A (join(51,52), 53) € dom join
* join(join(S1, §2), 53) = join(S1, join(52, 53))
Proor oF THEOREM &.1:

The hypotbesis of this theoremn ensures that join(join(S1, 52), 53) exists. The
following predicates are true under this hypothesis.

Va: Sl.attribs N 52.altribs
s« Sl.type(a) = S2.type(a)
ds, : Sl.states; sy : S2.slates
¢ (51, 5) € compatible
Va: join(S51,52).altribs 0 S3.attribs
e join(S1,52).type(a) = S3.type(a)
352 1 Join(51,52).stales; sy S3.slates
o (319, %) € compaiible
Under these assumptions, we mnst show that jein(S1, join(52, §3)) also exists
and is identical. The proof, therefore, is split into two parts.
First, to show that (51, jein(52, §3)) € dom jein, we must satisfly the following
four predicates.

Va: S2.attribs N $3.ailribs (B.1)
o S52.type(a) = S3.lype(a)

F g : 852 slaies; sz : S3.slales (B.2)
o ($,5) € compatible

Va: Sl.attribs N jorn(52, §3).attribs (B.3
o Sl.type(a) = join(52, §3).type(a)

s : Sl.stales; sy : join(52, 53).slates (B.4)

¢ {5, 503) € compalible

To prove predicate B.1, we begin with the assumption

¥a:join(51, 52).attribs N S3.attrids
e join(S1,52).type(a) = S3.type(a)

By the definition of join, this is equivalent to

¥ a: jein(51,52). attribs N S3. attribs
o (Sl.iype U S52.typed(a) = S3.type(a)

216 APPEND!X B. SOME THEOREMS ON THE REFINED AGENT MODEL

By the first condition on the definition of join, we know that S1.typc and §2.type
agree on common attributes, so the above predicate implies

¥ a:S.attribs N 5. attrids
e SLiype(a) = §3.type(a)

as desired,
To prove predicate B.2, we begiu with the assumption

As13: join(S1, §2).states; 3 : Sd.stales
* (513, %) € compalible

By the definition of join(S51,52), this implies

Js - Sl.states; sp 1 S2.slales; sy : §3.stales
e [(s,3;) € compatible
A (s U sy, 53) € compalible)
By Lemma B.1, this implies
Js;: §2.states; 55 : 5d.states
¢ (52, 53) € compatible

as desired.
To prove predicate B.3 we must satisfy V¥ a : §1.attribs N join(52, $3).altribs By
o Sl.type(a) = join(S52, $3).lype(a)
the definition of join(S52, 53), we know
join{$2, §3).atiribs = S2.attribs U $3.atéribs
join(52, §3).iype = 52.1ype U 53.lype
We have two cases Lo investigate.
Case 1: a € S§2.aitribs

Since (51, 52) € dom join, we are done because of the assurnption

¥ a: Sl.atiribs N S2.altribs
o Sl.type(a) = 52.type(a)
Case 2: a € (53.attribs — 52 attribs)
Since (join(S1, 52), 51} € domjoin, we know

Ve jein{S1,52).attribs 1 §3.altribs
s join(S1,52).type{a) = $3.type(a)

217

and by the definition of join and the assumption that ¢ ¢ S2.attribs, we have

¥a: Sl.atiribs N 53.altribs
o Sl.type(a) = 53.type(a)

as desired.

To prove predicate B.4, we can use the assumptions to satisfy

s, : Sl.states; s @ S2.5tates; 53 : 53
o ((=1, 52} € compatible
A (51U 37, 53) € compatible

which by Lemma B.1 and the definition of join gives us

s, : Sl.states; s : join(52, 53).slates
s {s,%3) € compatible

as desired.

We have now shown that join(52, 53) and join(S1,join(52,53)) are defined.
We can now show the equality required by the theorem. Equality of the attribute
sets and the type function relies on the associativity of U. To show equality of the
state sets, we hegin with

joir(join(S1,52), $3).states = { 513 : join(S1, 52).states; s : §3.stales
| (12, 53) € compatible
* spUs}

By the definition of join and Lemma B.l, this is equivalent to

jein(join(51,52),53).states = { s|.states; s; : S2.states; $3: S3.states
| ((s1,%) € compatible
A (&, 53) € compalible
A (s U 83, 8) € compatible
A (83,52 U 53) € compatible
e 5,UsUs; }

which is equivalent to join(S51, join{ 52, 53)).states, as desired.
¢ END oF PROOF OF THEOREM 5.1

Appendix C

Detailed semantics for the agent
language

In this appendix we provide a more detailed semantics for the agent language than
provided in Chapter 5. The semantics is given in parts. We first define the overall
semantic operator which takes whole agent expressions and maps them into a system
of agents. The agent language mirrors the development of the agent model, and so
we have separate sections of the language which individually treat the description
of internal, communication and external specifications. Each section will have its
own semantic operator which maps expressions of its language to specificaiions in
the agent model.

Agents in the interactive system

An interactive system is a mapping {rom agent identifiers to the set of agenls in
Agent. We introduce a sel of possible agent identifiers.

[AgentID]

InitSys == AgentiD - Agent

The system semantic function, S _], takes an existing interactive system and
an agent language expression and produces a new interactive system. The agent
language description represents either the synchronization of existing ageats, the
mnterleaving of an existing agent with a J-part description of a new agent (iternal,
external, communication specification), or a completely new 3-part descriplion of
an agent. The following is a BNF-like description of the agent language syntax.

219

220 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

Square brackets are nsed to indicate an item which is optional.

AgErp = agent Agent/D ~ synchronization

synchronizes Agent/DList
[with 3 PartSpec)
endagent AgentiD

| agent AgentiD - interleaving
interleaves Agent/DList
[with 3PartSpec)
endagent Agent/D

| agent AgentiD - 3-part specification
3PartSpec
endagent AgentfD

The system semantic function S .] is defined structurally over the elements in
AgEzp. For synchronized combination, the expression

agent Al
synchronizes AS
with Spec
endagent Al

maps the (fresh) agent identifier A1 to the synchronous composition of the agents
indicated by the sequence of (distinct) agent identifiers AS, if such a composition is
allowed by composeall,yn.. This may then he interleaved with the agent defined by
the }-part specification Spec, according to the semantic operator Agf .. | discussed
later.

221

S[-1: (IntSys x AgEzp) + IntSys
YV Al: AgentfD; AS :seq, AgentID; p: IntSys
i (Al ¢ domp
A (AS g p) € dom composealiygn.)
agent Al
¢ 5| | synchronizes AS |] =
endagent Al
2 ®{ A1 — composeall,,,.(AS 1 P)}

V AL: AgentiDy; AS :seq, AgentiD; Spec : 3PartSpec p : IntSys
| (Al ¢ domp

A AS 3 p € dom composcall, ..

A (composeall,,, (AS 5 P), Ag[Spec |} € dom campose;,,)
agent Al
synchronizes AS
with Spee
endagent Al
P@&{ Al — composcin{ compaseally,, (A5 3 p), Ag[Spec 1))

. Sﬁ 1=

Note that because of the associativity of compose,,,. (Theoremn 5.5, the order of
the agent identifiers in AS does not matter.

For interleaved combination, the expression

agent Al
interleaves 4.5
with Spec
endagent Al

maps the fresh identifier Al to the interleaved product of the known agent defini-
tions in AS and the 3-part specification Spec, if given.

222 ApPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

WV Al : AgentID; AS :seqq AgentiD; p: IntSys

| (Al ¢ domp
A AS 2 P € dom composeaily,)
agent Al
interleaves AS
o S with Spec 1= pP@{Al — composeall,,(AS 35 P)}

endagent Al
VAl : AgentiD; AS :seq, AgentiD; Spec : 3PartSpec; P IntSys

| { Al ¢ domp
A (A5 3p) ™ Ag Spec | € dom composeall,y,)
agent Al
interleaves A%
* ST| with Spee 1=

endagent Al
P&{Al — compaseall,, ((AS 3p) ™ Ag[Spec])}

Note that because of the associativily of compese,., (Theorem 5.4, the order of the
agent identifiers in AS does not matter.

A stand alone specification of an agent,

agent Al
Spec
endagent Al

maps the ({resh) identifier A1 to the agent Ag[Spec].

¥ Al : AgentlD}; Spec : 3PariSpec; p: IntSys
| (Al ¢ domp
A Spee € dom Ag[_)

agent Al
o S[| Spec 1 =r,@{Al — Ag| Spec]}
endagent Al

The three part specification of an agent is given by an internal, external and
communication langnage.

3PartSpec ::= internal [Ezp
communication CEzp
external EFzp

The agent semantic operator, Ag[-], is defined in terms of semantic operators for
cach of the sublauguages. The domain of Agf _ } is the set of combinations of inter-
nal, communication and external expressions which yield a valid agent description
when they are mapped to their respective specifications in the maodel.

223

Ag| -] : 3PartSpec ++ Agent

Il - }: {Ezp — InternalSpec
Cl-1: CEzp — Communication
£l - }: EEzp — EzternalSpec

dom Agll - J = { {E : [Ezp; CE : CExp, EE : EEzp; Agent
| (@InternalSpec =TI[(E]
A @Communication =] CF]
A 8EzrternalSpec = £[EE)
internal /£
. (cornmunication CE) }

external FE

internal /F
Agl (communication CE) 1 = u Agent
external EE o (OinternalSpec = I[IE]
A B Communication = Cf CF]
A O ExternalSpec = £[EE])

In the {ollowing subsections, we will outline the definition of the semantic operators
for each of these sublanguages.

A language for internal specifications

The internal specification language is given by the following BNF-like description.

{Speclanguage = types Decls
attributes AVmap
invariant AVPred
aperations Oplist

The semantic function T[_] can be described in terms of smaller semantic functions
on the different parts of [SpecLanguage.

Decls 1s a list of type declarations and constructions local to the agent definition.
In the declaration, we can build up type definitions from basic sets, exacily as is
done in Z. For example, we could write the type definitions for the window.

[fCON]
zmoz, ymax : N
PIXEL == (.. 2mar x 0 .. ymez

There is a semantic function which produces the sets in the valuespace V similar
to the Cerrier function in Spivey's semantics. We will also allow the definition of
global types outside the definition of any agent, as is allowed in Z.

224 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

AVmap is a list of the attributes for which each state of the agent has a value.
The AVmapis written much the same way that components declarations are written
in a standard Z schema, so we could write expressions like the following in the
attributes section of an agent.

reon : [CON
iconpes, winpes, winsize : PIXEL
status : open | closed

These state declarations are mapped by the semantic function typef _ | to obtain
the {ype information for the agent.

AVPred is a predicate on the values of the attributes which must be satisfied
by all states of the agent. We allow the same kinds of predicate expressions as
is possible in Z. The semantic function state] _] takes the attributes and the
invariants information and yields the set of possible states for the agent.

OplList is a list describing the possible transitions for the agent. The state tran-
sitions are given pre- and postcondition semantics, along with an explicit framing
conditions which lists the attributes that can be changed by the operation. Each
operation definition gives a family of state transitions indexed by a message iden-
tifier along with its typed parametets. The window moving operation for an open
window would be defined as follows.

operations
move_open(newpos : PIXEL)
changes winpos
pre slatus = open
post winpos' = newpos

The BNF description of OpList is given below. Square brackets ate used to indicate
an optional occurrence of an item.

[MessagelD]

OpList := MessagelD(TypedParams)
[changes (AttribList)}
[pre (BeforePred)]
[post (AfterPred)]
[OpList]

The operation has a name laken from the set MessegelD. A typed parameter list,
of the same form as used o declare the state attributes, lists the generic arguments
for the operation. A message is formed by instantiating each argument with an

225

actual value. For example, a message generated from the definition above would
be move_open((0,0)). The changes clause provides an explicit framing condition
for the operation definition. The precondition is a predicate on the state atiributes
and the arguments. The postcondition is a predicate on the before and after value
of state attributes and the arguments. The values of attributes before and after
the state transition are distinguished by undashed and dashed attribute identifier
names, as is the convention in Z. Together, the framing, pre- and postconditions
define a state traosition.

The sernantic function state] _] takes a list of operations in OplList and creates
the operations function for the agent. Each single operation defined as abote yields
a family of state transition relations, indexed by the possible messages.

| state[_ T: OpList — (Message - (State « State))

A language for communication specification

The communication specification is straightforward, since it simply lists the input
and output channels for the agent along with the messages that can be passed
along those channels. Synchronized channcls arise from synchronous combination
of existing agents, it is not possible Lo explicitly declare a channel as synchronized
in the notation. The burden rests with the designer to ensure channel fidelity, i.e.,
the specification cannot have the same agent using the same channel as input and
output, nor can a synchronized channel be an input or cutput channel for another
agent. The internal messages are also declared explicitly as associated to the
channel. A BNF description of the syntax for communication is given below.
CSpecLanguage == [inputs TypedChannellist]
| [outputs TypedChannellist]
| [r: Messagelist]
TypedChannellist ::= ChanrellD) : Messagelist | Typed Channellist]
Messagelist i:= MessageID(TypedParamelers) [, Messagelist]

As with the definition of operations _, the set of messages is generated by instan-
tiating all of the parameters in the TypedParameters list with values according to
their types. The semantic function ¢[_] takes an element in CSpecLanguage and
produces the cornmunications specification.

| ¢l -1: CSpecLanguage - Commanication

A language for external specifications

The external specification language is developed in two parts as described in Sec-
tion 5.3. In this section we will give the semantics for the constructive language

226 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

for generating external specifications of agents. First, we recall the definition of an
external specification as given in Chapter 5.

EzternalSpec _
aiphabet : P Event
treces : P seq alphabet

{)¢ traces
prefix_closed (traces)

The synlax for the constrnctive language follows very closely the syntax for CSP
given by Hoare [82].

ConEFzp := stop{P Event)) — deadlock
i run{{P Event)) - the total behaviour
| skip{P Event) - successful termination
| {Event)) — ConEEzp - prefix composition
I ConEEzp O ConEExp - choice composition
| ConEEzp3 ConFEErp ~ sequential composition
| ConEEzp || ConEEzp - synchronous parallel composition
| ConEFrp [| ConEEzp - asynchronous parallel composition
| f{ConEExp) -~ process refabelling
!

uX 2 (P Event)) « F(X) - guarded recursion

We can now give the definition of each of these syntactic constructions in terms
of the ecternal specification model. We will give two versions of the semantics for
each construct, The first will be a direct denctational definition in terms of the
model [or external specifications. These definitions are very close to those given by
Hoare. The mapping from the syntactic domain ConEEzrp to the semantic domain
EzternalSpec is given by the function £ -], which can be [urther broken down
into functions for the alphabet, af _] and trace set, 7[_].

Eeon[-] : ConEEzp — EzternalSpec
0[- l : COﬂEEzp — P Event
TI-): ConEEzp — P seq Event

(Econ[ES 1).aiphabet = of ES }
(Econ[ES). traces =] ES }

The second version of semantics will be an operational semantics which may
make it easier to understand the functionality of the different constructs. This
operational semaatics is given by inference rules in the manner suggested by Plotkin
[130) and is the standard semantics usually given for a process algebra in the CCS

227

family [109, 110]. We will not extend this operational semantics to shew that
it matches some intuitive equational theory on expressions in ConEEzp, as our
purpose for presenting it is only to increase understanding.

Deadlock

stop, represents deadlock in which participation in any events from the aphabet
is prohibited.

stop_: P, Fveni — ConEFEzp
af stop, | = 4
Tistop, 1=1{ ()}

There is no inference rule to describe the action of stop, since it has no action.

Total behaviour

Given a set of events A, the expression run, denotes the external specification with
alphabet A which can participate in any sequence of events from A.

run_: P, Fvent - ConEEzp

afruny, = A
‘ Tlrun, J=seq A

Operationally, runy participates in any event in A and then continues to behave
as TUn 4.

e€ A4

run, ~» rungy

Successful termination

We introduce a primitive construct, skip, to represent the successful termination
of an external specification with alphabet 4. To da this, we must also introduce a
special internal event, \/ (read “tick”) which signals the termination. This event
carries no message of significance, so we label it the null message. It occurs along
the internal channel . Furthermore, we constrain the external specifications set so
that the ./ event can only appear at the end of a trace.

228 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

null : Message
V' 1 Event
skip_: P, Even! —+ ConEExp

+.channel = 1
V.message = nyll

Y ES : ExternalSpec; t : ES.traces
o /¢ ran(front(t))

af skipy 1= AU{ /)
Tlskip, 1= { (1 (V) }

The operational semantics of skip, is given by one simple inference rule. skip,
can participate in the event ./ after which it deadlacks.

skip, LA stop,

Prefix composition
¢ -+ P first engages in the event e and then behaves like P. The constraint on this
construction is that e must already be in the alphabet of P.
-~ _: (Event x ConEEzp) + ConkFzp
dom(_— _) ={ e: Event; P: ConEFzp
| ecaf P]
o {e,F)}
afe—~P]l=a[P]
The- Pl={ () }U{t:T[P]e(c}71}

The operational semantics for prefix composition Is also covered by one simple
infereace rule.

ecal P
e—+ PSP

Choice compaosition

Choice between two external specifications, written P O @, indicates that the be-
haviour can either proceed as described by P or by @. The choice is made by

229

the first event in which P O @ participates. Hoare refers to this choice operator
as deterministic {or external) choice and distinguishes it from a nondeterministic
choice, PN Q. In deterministic choice, the choice can be resolved (externally) by
the environment which interacts with P O @, whereas in nondeterministic choice
the environment can have no effect. In the traces model, no distinction can be
made between these processes, and so we only describe external choice.

0O: (ConEEzp x ConEFEzp) — ConEEzp
a[POQ]=a[P]ua]@]
TIPOQl=T{PIUTIQ]

The operational semantics is given by two inference rules, indicating that P O @
can proceed if one of P or @ or both can proceed. In the case where both can
proceed, the choice is nondeterministic.

pSopr
rPOQ-5 P

¢~ Q
POQ-s @

Sequential composition

P @ behaves like P until successful termination, marked by participation in the
special event /. After successful termination, it behaves like . Unlike CSP, we do
not hide parlicipation iz the event / in the definjtion of the external specification.

3: (ConEEzp x ConEErp) — ConEEzp
al P3@)=al Pluc] Q]
TiP; Q1= T[P]

U

{t:TIPLY:-TIQ) Hast(t) = /ot ™1}

Operationally, if P can successfully terminate by engaging in the event /| then
P 3 @ can proceed to behave as Q.

1"—\"1;9.1',0]34l
P;Q% Q

230 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

Synchronous parallel composition

There are iwo versions of parallel composition which we allow. The first, written as
P|| @ demarnds that P and @ synchronize on participation in events of their common
alphabet. In the model description, the alphabets are combiued. The traces of
the synchronized combination are those which when filtered by the alphabet of P
(respectively, () are a legal trace of P (respectively,).

_fl~: (ConEEzp x Con£Ezp) — ConEEzp
alPlQl=af Plua[Q]
THPIQ]={t:seqel P Q]

| (tEalPleT(P]

r\]t’é“aﬂolea—wﬂ)
e !

The operational semantics for P|| @ indicates that both P and ¢ can independently
participale in events private to themselves, but both mnst evolve simultaneously
on events which they share. Three inference rules sum this behaviour up.

Phop
Pl@~PiQ
RS
Pl@~>Ple
P P
Q> ¢
Pl@~FPle

[e € alphabet P — alphabetQ |

[€ € Q.alphabet — P.alphabet

[€ € P.alphabet N Q.alphabet |

Asynchronous parallel composition

The other version of parallel composition is asynchronous, which we write as P{ Q.
Both P and @ can evolve independently, regardless of whether they share events.
The alphabet is again the union of the component alphabets, Traces are obtained
by interleaving traces of the components.

—l-:{ConEEzp x ConEEzp) — ConEEzp
af PRQ)=c] PlucafQ]

TIPEQ)={s:seqal PRQ]
| 3t:T[PP V7] Q] e s interleaves (¢, ¢')

e« s}

231

The relation tnterleaves is defined in Appendix A.
Operationally, P | @ is described by two rules similar to the first two rules of

PlQ.

PSP
PlQ~>PRE
Q4 @
Ple~5Pl¢Q

Process relabelling

Sometimes it will be convenient to identify an external specification with a previous
one with an appropriate change in the event names. The restriction on such a
relabelling is that the mapping to new event names be injective which is total
when restricted to the alphabet of the original external specification, so that each
old event name is mapped to a unique new event name. In addition, +/ must be
mapped to itself. The new external specificatiou then behaves exactly asthe old,
with the uew event names substituted for the old.

—{-) - ((Bvent =+ Event) x ConEEzp) +» ConEExp

dom_{_) = { f: Event =+ Evenl; ES : ConEEzrp
| (feal 5] Event
AV =)
» (f.ES))
e[f{iP) 1= flal P])
TIAPY]={t:T[PYwtsf}

Note thal in the definition of T| f(P)], we use the symbol 3 to repreent the
standard Z forward functional composition, not sequential composition of external
specifications.

Recursion

We will allow a simple form of recursion which is uniquely defined using a partial

order semantics (see Hoare [82, Section 2.8] and Stoy [156]). The type CinEEzp

can be considered a complete partial order using the following ordering relation.
_C _: ConEExrp — ConEEzxp

ESC ES' & (of 5] =cqf £5']
ATIES)CTLES'|)

232 APPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE

In this partial order, we can define the least upper bound (lub) of two constructed
external specifications with the same alphabet by forming the trace set from the
union of the individual trace sets. We can extend this to obtain lubs for chains of
specifications as well. Therefore, ConEEzp is a complete partial order (with respect
to the alphabet A), on which all guarded contimuous functions F : ConEEzp —
ConEFzp have a unique fixed point solution to the recursive equation u X : A »
F (X}, which is the lub of the infinite chain of successive appiications of F to
stop,, the bottom element in the complete partial order. We have purposely
designed Con£Ezp so that all of the constructors are guarded and continuous, so
the recursive equation will always have a unigne solution.

chain : P(seq ConEEzp)
lub < seq ConEEzp + ConEEzp
uX i _e_(X): (P, Event x (ConEEep — ConEEzp)) - ConLkExp

| ESS € chain & ¥i: L..(#chain — 1) » ESS(i) T ESS(J + 1)
dom fub = chain

of lub{£S5)] = of £55(1) |

T 1ub(ESS) V=, 4055 TE ESS |

aluX:AeF(X)]=A

‘ T{uX:4e F(X))=7[ub((F(stop,), F'(stop,),--)]

Though the definition of recutsion depends on the alphabet, in practice it is not
indicated when the context of use makes clear what alphabet is intended.

