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Abstract 

Visual texture is a fertile source of information about the pbysical environment. Texture 
models should form rich but accessible descriptions of image composit.ion and appear­
ance. Markovian representations make explicit the variabilit.y of natural textures, but 
manipulation of current models is computationally demanding. This practical limita­
tion enforces approximations and use of tbe simplified auto-normal form. 

We propose two novel frameworks for Markovian texture analysis, and illustrate and 
quantify their ad vantages by adopting Bayesian classification of 33 Brodatz textures as 
a bencbmark. 

1.	 Simple spatially-parallel image filtering is computationally aLtract.ive, but our 
experiments demonstrate tLte limitations of segmentation algorithms responding 
to first-order differences of Gabor amplitude. We harness the efficiency of Gabor 
filtering witbin a hybrid Ga.bor-Markov framework by describing arrangements of 
local image features with random field models. 

2.	 Our experimental appraisal of Gabor-Markov models established the importance 
of prp.-processing image data prior to statistical analysis. Vie propose two fami. 
lies of Sampled-Markov models employing concise representations derived directly 
from tLte image data. 

Both paradigms are more efficient and robust tban a conventional Markovian analysis. 
Without reducing classifier accuracy, computational load was decreased by 88% using 
Gahor-Markov, and by 96% using Sampled-Markov models. Despite the improvements 
achieved by Gabor-Markov models, Smooth-Sampled Markov models perfonn better 
and have acLtieved 100% accuracy in our tests. We explain their superior performance by 
showing a strong correlation between classification accuracy and fidelity of the statistical 
modelling. 
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Introd uction
 

Visual texture provides a fertile source of information about the nature of physical ob­
jects and surfaces, but is noL exploited fully by current machine vision systems. Two 
maiu obstacles have retarded progress in this area: the failure of texture models Lo 
provide rich but accessible descriptions of image structure; and the prohibitively high 
computational requirements of many algorithms operating on these representations. 
One source of modelling difficulty is t.he ill-defiued and variable naLure of real textures, 
whose hierarchical organisation may encompass milny levels of structure, for which a 
traditional analysis is not appropriate. Probabilistic representations using Milrkov ran­
dom field models acknowledge st.ochastic character and the influence of spatial context, 
but are unwieldy and insufficiently abstract.. 

Our approach is to develop novel representations of texture retaining the descriptive 
powe( of conventional Ma(kov models but with increased computational efficiency, ro­
bustness, and level of abstraction. We propose a hybrid Gabor-Markov framework for 
texture analysis, drawing on the attractive theoretical and practical properties of Ga­
bor filters. We also propose two families of Sampled-Markov models, employing concise 
representations derived directly from the image data. Bayesian text.ure dassification 
bencbmarks demonstrate that both these paradigms out-perform conventional Marko­
vian approaches, meeLing our stated objectives. For the same accuracy as a conventional 
Markov cla.9sifier) computational load was decreased by 88% using our Gabor-Markov 
composit..-feature model, and by 96% using Smooth-Sampled Markov models. Despite 
tbe enhancements achieved by Gabor-Markov models, Smooth-Sampled Markov models 
are preferred, a.nd have achieved 100% accuracy in our trials. Accordingl.y, we suggest 
that a conventional Markovian analysis should be retained only for very small image 
regions, which Gabor-Markov or Sampled-Markov models do not describe reliably. 

We introduce the concept of visual texture alld the basis for current ilpproaches in 
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ouler: #77 canv... (b) "21 Frencb can;... (c) "22 reptile .kin(a) 
Inner: "84 raffia "&5 straw rna.\tmg #28 be""b sand 

FIGURE].l: Brodatz texture montages. Images formed by overlaying 
portions of Rrodatz textures (Figure 1.6), the boundary forming a. diamond 
or a circle. 

this Chapter, and briefly summarise the layout of this thesis. Reviews of models of 
human visual processing (Chapter 2) and of previous approaches to texture analysis 
(Chapter 3) further motivate our approach. 

1.1 Visual Texture 

Visual texture ;s concerned with spatial patterns and arrangements, and is a funda­
mental property of physical objects. Intuitively, ~texture" refers to local image context, 
describing relationships between nearby spatial components, although no formal defi­
nition has prove<! entirely adequate. Models of visual texture aceordingly contain two 
components; primitive elements, or microte:z:tu.re; and their spatial arrangement, or 
macrQlezllLre. Single pixels! fonn the simplest microtextures, hut our concept of tex­
tllre may be expanded recursively, with macrotexture at one level forming microtexture 
at the next, t.o represent complex structured. spabal arrangements. Natural textures are 
often observed to have a hierarchical organisation of this type, possessing quite different 
characteristics at different resolutions (AhUja & Rosenfeld, 1981; Marc, 1976). 

Three examples of images containing visual texture are shown in Figure 1.1, formed 
by combining portions of textures from the celebrated Brodatz alhum (Brodatz, 1966). 
These particular textures are fairly regular, and suitable divisions into micro and macro­
texture may seem obvious. Not.e, however, that straw loops in matting (#55)1 or raffia 
(#84) may be seen as textures in their own right, and hence form a hierarchy. This 
point is further illustrated by herringbone weave ('17; Figure 1.6): the maierial con­
tains bands arising from different orientat.ions of the weave, but. each band also forrm a 
valid image texture. Another facet of texture is illustrated by beach sand ('28) or by 
clouds (.90); tbese textures are amorphous, and do not decompose readily into distinct 
"micro~ and ~macro" components. Nontheless, all these images, and I.he remainder of 

1 A pixel is a single elemenl in an image array, whose: value represents inLcnsiL.y. 
'The notation "66 ....fe... to the plate numb<'r of 8 Brodat. Lextn .... shown in Figu .... 1.6 (page) 1). 
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our Brodatz set (Figure L.6), are valid examples of the phenomenon of spatial varia­
tion called "texture". General-purpose texture analyse.rs seek to manipulate images of 
this type - recognising, classifying, segmenting, locating, and restoring them - in a 
manner that is computationally efficient but robust to image corruption and noise. 

1.2 Analysis of Visual Texture 

Vision is the most powerful of our five senses, allowing us to perceive the world about 
us: to observe meaningful physical objects, and deduce their spatial relations; 1.0 track 
sequences of events, and make fine discriminations. Visual texture lies behind many 
of these abilities, and camouflage reduces the completeness with which we perceive otlr 
environment. In view of the subjective ease with which many tasks may he facilitated 
"just by looking", it might have been tempting to assume that machine vision systems 
would soon enjoy capabilities quantitatively similar to our own, but this has not proved 
to be the case. Early wholistic or "Gestalt" approaches made Ii ttle headway, aud it 
ha.~ proved more profitable to examine separate visual modules in isolation (stereopsis, 
motion, colour, etc.), each processing different aspects of the image data witbout task­
specific knowledge (Drady, 1981). Together, these modules form low-level vision. 

1.2.1 Links with Human Vision 

Some complex visual tasks appear very straighlforward to us - discriminating the tex­
tures shown in Figure 1.1, or recognising our grand-mother in a crowd - but other 
visual judgements seem more difficult, and require detailed scrul.iny. Conl,rolled ex­
periments confirm the preseuce of both "serial" and "parallel" proCCilses in low-level 
human vision, although the dichotomy is less distinct than the conventional 'attentive" 
a.nd "pre-attentive" labels for these paradigms may suggest (Treisman & Sato, 1990). 
Current psychological models propose that an early pre-attentive process first locates 
potentially "significant" image locations by performing rudimentary filtering, and lhat 
t.hese are subseqnently examined attentively in greater detail, selectively and sequen­
tially (Wolfe &: Cave, 1990). Only the efficiency of pre-attentive guidance allows the 
illusion of immediate and complete perception 1.0 be sustained. 

Unfortunately, psychological models are often expressed in ambiguous verhal terms, 
and cannot be subjected lo computational analysis or exploited directly by machine 
vision systems (Broadbent, 1987; Winder, 1988b). Prompled by these ideas, however, 
analysis of the complexity of visual search has suggested thal complete analysis of the 
image may he infeasible, and hence that selective interpretation is required (Gurari &: 
Wechsler, 1982; Tsotsos, 1987). Heurislic assumptions about the nature of t.he physical 
environment may guide this choice (Marr, 1982). 

1.2.2 Structural and Statistical Approaches 

Texture analysis has a dual purpose: 1.0 locate boundaries; and to characterise regions. 
Assumpt.ions of spatial and boundary coherence suggest that image texture provides 
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oU(er: tl77 canvas (b) '21 French canv... (c) tl22 reptile skin
(a) ,nner: tl84 raffia '55 stra'" mattlllg tl28 beach sand 

FIGURE 1.2: Intensity edge segments detected in Brodatz montages. 
Edge segments found by tne Canny (1983) edge-detector in our Brod...tz mono 
tages (figu re 1.1). Although these edges correctly refleel mierotexture s'-ruc· 
ture, they have failed to respond to lhe border bet"'..,n different texture types. 
The C ...nny scale paranwt.er was 2 pixels, and nysl.e·resis threshold r...tio 6: 2. 

a useful indication of the properties of physical objects prellenl. iu ... scene, which are 
of ultimate interest (Marr, 1982). Historically, discontinuities in image strudllcc have 
been modelled by one-dimensioual changes in first-order properties, and located by 
"edge-detectors~_ First-order image properties are strongly influenced by the image­
a.cquisition environment, by variation in lighting or camera parameters, in addition 
to intrinsic surface texture, and hence are unreliable indicators of physical slmct.ure. 
Higher-order properties defined over an image neighbourhood, or "texture", form a more 
robust guide to physical surfaces and t.heir discontinu.ities. Approaches to visual texture 
are commonly divided into "structural" and "statistical~ models, and this separation 
is belpful in captnring the major aspects of texture analysis, but there is no rigid 
distinction between them (Haralick, 1919). 

A nalysi3 of Tezture Stru.clure 

Canuy's (1983) "optimal" intensity edge-detector enjoys high popularity and performs 
well for noisy images, but edge segments detected in our Brodatz mont.ages illustrat.e 
some drawbacks of a first-order approach to texture analysis (Figure 1.2). Although 
these edges form a reasonable description of local image structure, tbey do not defin'" a 
clear texture boundary b",cause differences in loca] intensity reflect only mirrotexture. 
When different image textnres have the sa.me mean intensity, their macro texture bound­
ary cannot be detected directly by this method. In order to segment images into differ­
ent textnred regions, it is first necessary to construct macrotexture models by piecing 
togetber loul edge segments. Wbile this approacb is feasible for regular textures or the 
sort we have illustrated (Figure 1.1 a,b and '22), if time-consuming and error-prone, it. 
breaks down for more amorphous textures of the type to which human vision adapts so 
easily (e.g. '28, a90; Figure 1.6). 
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F1GlJRf; 1.3: Texture boundaries detected in Brodatz images by Ga­
bor filtering. Each image was filtered with two luned CaboT kernels, and 
blurred wi th a space-constanl of five pixels. The superimposed border marks 
locations where the dominant. response changes. (0) colton canvas-raffia 
montage, l28xl28 pixels (Figure 1.10); (b) French canvas-straw matling 
montage, 128xl28 pixels (Figure 1.Ib); (c) herringbone image, 256x256 pix­
els (117; Figure l.6). C abor edges reflect. lexture bounda.ries Talher (ban 
microtexture detail (compare Figure 1.2). This simple method was nol suc­
cessful with our reptile-sand montage (Figure l.le). 

A nalY3is of Texture Stat13tic3 

An alternative "st.atistical" approacb3 to texture is to create more complex image 
models, a.nd hence deduce filters responding directly to Jextured rather tban inten­
sity edges. Tex tures are characterised indirectly by simple derived properties, or local 
"features", with tbe expectation that distinct textures possess different features, leading 
to first-order differences in tbe filtered image. Texture processing requires analysis of 
a spatially-varying signal coupled wit.b accurate boundary localisation: Gabor filtering 
offers the best compromise between tbese con Aiding requirements (Cabor, 1946). Ac­
ceptable segmentations of two of our Brodatz montages (Figure 1.1 a,b) and herringbone 
weave ('17) were achieved with only ligbt computational effort by detecting first-order 
differences in Gabor filter output (Figure l.3). Algoritbms responding to differences in 
Ga.bor filter output offer capabilities qualitatively similar to pre-attentive human vision, 
but failed to locate an acceptable border witb our reptile-sand montage (Figure 1.1 c; 
data not shown), Furlber examples are presented in Chapler 4 (e.g. Figure 4.14 on 
pa.ge 78). 

:lIn t.his con~xL, "'s1..siisUc'" refers to Oil deri ... ed property or feo.Lure, and docs not nece5iSl.'.rily lmply 
.stoch0-5lic modelling. 
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A second difficulty for statistical approacbes is that an inappropriate choice of fea­
tures may lead to many false boundaries occurring within a texture of a single type 
since spatial varia-tion is an intrinsic characteristic. These inherent limitations imply 
tbat statistical approaches to texture analysis are not completely reliahle, and may be 
considered analogous to pre-attentive human vision. In this role, they form an ini­
tial rudimentary image representation, marking approximate texture boundaries and 
regions suitable for further processing. 

1.3 Markovian Analysis of Texture 

Structural models descrihe texture by regular tessellations of the image plane, coloured 
by an alphabet of microtexture primitives; statistical models assume t.hat derived t.ex­
ture "features" a.re spatially homogeneous. Neither of these approacbes make.~ explicit 
a fuudamental property of real textures: va.riability. Extraneous variation arises from 
distortious and noise introduced by the image acquisition system, and cannot be fully 
eliminated; but the chief source of image variety arises from the inherently variable 
nature of real textures. Notions of variability, optimality, and hypotbesis-te;ting are 
central t.o statistical-stochastical study" and bence this forms a natural Framework 
within which these effects may be modelled. This route is available t.o both "struc­
I.ural" and "statistical" descriptions, but much of tbe literature has concentrated ou the 
subject of stat.istical pat.tern recognition (Devijvcr & Kittler, 1982). 

Operating witbin a statistical-stochastical framework, Ma.rkov random field models 
address an important weakness by making explicit the influence of spatia.l context. 
Textures are cbaracterised by the marginal probability density of each pixel conditioued 
on its image neighbourhood, modifying pixel beuaviour according to image context. 
/\. statistical Ufigure of merit" for the complete texture is formed hy computing t.he 
joint likelibood of aJl image pixels according to the Markov model, allowing competing 
hypotheses to be compared. The joint distrihution may be sampled to form synthetic 
l.el(l.ures (Figure 104), but liote that synthe;is is a stochastic and hence unrepeatable 
process, and that no valid point-to-point comparisons with the original texl,ures may 
be made. Visual comparison of synthetic textures wit.h the o rigina.l is nootheless an 
attractive method for assessing the quality of the model. Pressed-cork (t4), French 
canvas ('21) and cotton canvas (.77; Figure 1.6) are bomogeneous textures, and are 
visually similar to their syuthetic counterparts (Figure 1.4 a-c), but tbe reverse is true 
for reptile skin ('26), straw matting ('55), and raffia (#84), which all display a higber 
level of structure (Figure lAd-f). Markov models operate successfully when tbere is no 
clear distinction between micro and macrotexture, and can discriminate almost. all tbe 
l('xtures in our Brodatz set.s They have been successfully applied to a varicl.y of classic 
image-processing problems, including classification, segment.ation and restoration. 

One deficiency of Markov representations is apparent in Figure 104 d-f: syn t.actic 
structure or texture grammar is treated poorly, despite the influence of spatial context, 
hecause the same stochastic model applies to all image locations. This weakness is 

.ltBr ""Sta.Listica.]-st~haslicaJ" l we do mean Lo Imply modelling of random behavjour. 

sConventional M3rkov models classiCy image quar1.ers wiLh an error rat.e or 6%. falling lo Jc:ss 
lhan 10/c aner the modifications propo5C'd in this thesis. 
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FIGURE 1.4: Synthetic Brodatz textures derived from Markov models. Synthetic 
imag·es Cormed fWilI fifth-order true-likelihood Markov random field models ofnalura.l Bro­
datz textures (Figure 1.6), L92x 168 pixels. (a-c) visual similarity is strong when the origi­
nal texture is homogeneous; (d-f) these models have failed to capture the structure of the 
origina.l textures. 
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partially allayed by hierarchical ra.ndom field models, which form a richer description 
of image stmclure. Conventional Markov models operate at a very low level, describ­
ing the spatial arrangement of individual pixds, and this Ia;;:k of abstraction makes 
them seositive to imaging parameters such as rotation and magnification. Exhaustive 
evaluation of all possible hypotheses is feasible during texture classification hecause 
the number of texture classes is not excessively large. This optimal approach is not 
pradical during image segmentation because t.he number of possible scene partitions 
rises exponentially with image size (Tsolsos, 1987). Heuristic assumptions or approxi­
mations ease the computational burden, but these detraet from the "optimal" na.ture 
of the statistical framework. High computational appetite is a faclor corIUnon to all 
Markov texlure algorithms, particularly for hierarchical models, and forms a significant. 
restriction on their wider application for image analysis. 

1.4 Thesis Overview 

The chief objective of this thesis is to propose novel texture models combining computa­
tional efficiency with the opl.imal statistical framework and superior descriptive power 
offered by Markov random fields. Our approa;;:h is to modify conventional Markov 
models to: 

• raise their computational efficiency; 

• improve their robustness with respect to image noise and blur; 

• increase t.heir level of abstra;;:tion, so they are less sensitive to imaging para.meters. 

Chapters 2, 3 and 5 consist mainly of review and aualysis of relevant. literature and 
theoretical foundations. Most of the novdty of our contribut.ion lies in Chapters 4, 
6 and 7, with suggestions for further research in Chapter 8. In t.he remainder of this 
Chapter, we describe our thesis in great.er detail. 

Models of human vision have provided many insights into the nature of visual infor­
mation processing, at both theoretical and practical levels. Psychologists report that 
the major feature of low-level human vision is an apparent dichotomy hetween "at­
tentive" and "pre-at.tentive" processing, but t.he precise computat.ional form of these 
paradigms has sO far eluded empirical r('.search (Chapter 2). A similar division is 
often drawn for texture analysis in machine vision, into "structural" and "st.a.tistical" 
approa;;:hes, and we review the main characlerist.ics of current techniques (Chapter 3). 
The hierarchical nature of visual texture is made explicit by structural approaches, 
which seek to form separate desaiptions for micro and macro-structure, and are most. 
often used in conjunction wit.h stochastic models. Statistical approaches decompose the 
image iota local derived properties or "features", whose selection is often motivated by 
models of pre-attentive human vision. Local image features may oft.en be computed 
very efficiently, but cannot mat.ch the richness of struetural representations. 

Texture analysis is ultimately concerned with observing physical objects, and hence 
demands simultaneous measurement of spatial and spectral image properties. Optimal 
compromises of these conflicting requirements are achieved uniqnely by Gabor kernels, 
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) outer: #77 canvas b) ouLcr: #21 French caM'" 
(a inner:.84 ra.ffia ( ioner: '5& gnaw maLling 

PIGURE 1.5: Gabor features extracted from Brodatz montages. Fea­
ture vectors were estimated from Brodat~ OIonta.ges (Figure l.Ja,b) using our 
Resultant method (§4.6), and Si\tllpled every four pixels. Needle inlensil.y 
represents "error", and length is proportional to "contrast". 

which have recently found application in low-level vision. Our experimenl.s wilh natural 
and synthetic textures demonstrate the potential of Gabor filtering for image analysis, 
and confirm that simple efficient algorithms responding to first-order differences in filter 
output segment suitahly-constra.ined image:; adequately (Chapter 4). Limitat.ions of 
this approach arise from over-simplified text.ure models, which assume thal text.ures 
contain few significant spectral components, and residual spat.ial variability lui/hiT> each 
filtered region interferes wit.h aHempt.s to extract texture boundaries. 

We propose to upla'il rather than suppress fluct.uations in filt.er output, describing 
the spatial arrangement of Gabor "features" witb Markov random fields to form hier­
archical Gabor-MarkoD models. The role of our Gabor-filtering stage is t.o assist t.he 
formation of sensitive and concise representations of image texture, producing sparse 
feature arrays (Figure 1.5). Unlike previous haphazard procedures, we adopt principled 
strategies for combiniug measurements from many filter channels, based on response mlr 
ments and parameterised Gabor signatures, and propose two efficient feature-extraction 
algorithms (Chapter 4). Both ada.pt easily to adjustments of filter cbaraderislics, and 
offer the pot.entia~ for elementary a.bstract.ion of imaging parameters. 

Real textures a·re inherently variable, and their stocbastic behaviour is described 
conveniently by random field models. The influence of spatial context is acknowledged 
explicitly by Markov models, which are specified by tbe probability density of each pixel 
conditional on its local image neighbourhood (Chapter 5). We review the tbeoretical 
basis of this approach, discuss manipulation of Markov models and their application 
to image prOcessing, and conc.!ude that auto-normal models have particularly attrac­
t.ive properties. Our proposals for a hybrid Gabor-Markov framework address several 
limitations of conventional approache:;. 

Comput.ational considerations often dictate the use of auto-normal Markov models 
in practice, and we adopt this form for our experimental inve:;tigation. Orientation 
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is an important texture feature but deviates significantly from tbe nonna! modeJ, and 
we propose angular field models to overcome this disparity (Chapter 6). In order 
to compare the performance of Gabor-Markov models witb a conventional an.lysis, 
we adopt empirical classification accuracy as a bencbmark, applied to a selection of 
Brodatz textures (Figure 1.6). Similar accuracy is obtained with botb paradigms, hut 
Gabor-Markov classifiers are more rohust to image noise and blur, and less compu­
tationally demanding. Our experimental appraisal of Gahor-Markov models leads us 
to propose two fa.milies of Sampled-Markov models, employing concise representations 
derived directly from the image data. These enjoy greater robustness and higber com­
putational efficiency than eitber Gahor-Markov Or conventional approacbes. Smootb­
Sampled Markov models achieve highest accuracy in our tests, and are the preferred 
choice. 

Classification accuracy correlates strongly with the level of correspondence between 
image data and the auto-normal model, and our explanations for observed performance 
trends are founded on this relationship (Chapter 7). This link establishes the impor­
tance of appropr iate pre-processing of image data prior to statistical analysis. :\s'essing 
[he significance of this thesis, we conclude tbat both Sampled-Markov and Gahor­
Markov models meet our research objectives (page 8), and offer significant practical 
benefits compared to current approaches (Chapter 8). Our suggestions {or fnrther 
improvemeuts may enhance the advantages of these novel representations, and we com­
ment briefly on their potential for practical applications. 
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'2: fieldstone ~: pressed corl< '6: expanded mica 'Il: grass lawn 
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#38: -water '64: beach pebbles ~o: straw malting '07: handmade paper 

'63' European marble '65: bandwoven rattan '68: wood gy..in '70' wood grain 

FIG URI; 1.6: Our Brodatz image set. (COfl,t1nued overleaf) 
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#73: wap bubbles '77: cotton canvaa '78: .traw cloth a82' .traw doth 
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'100: ice cryslals 

FIGU R8 1.6 (Continued): Our Brodatz image set. Each image i. 256x255 pixels and 
was digilised from [he Brodatz (1966) album. 



Models of Visual Attention:
 
Serial and Parallel Paradigms
 

Human vision has heen studied by psychologists for over a century, during which time 
many empirical theories have been proposed, refined, and ultimately discarded. Sys­
temat.ic manipulation of artificial display parameters has allowed interact.ions he tween 
perception and image organisation to be studied by series of psychophysiral experi­
ments. While some aspeds of human visual processing arc controversial, ii, has long 
heen recognised that. low-level vision is aptly described by an attenliv<;-pre-attentive 
dichotomy employing serial and parallel processing paradigms. Current models propose 
tbat rndimentary pr(~aHelltive analysis guides selective and seqnential scrutiny of lo­
cal image regions, marking locations corresponding to first.-order difference< in simple 
image "feat.ures". This operation corresponds closely with texture segmentalion (Chap­
ler 3). We discuss lea.ding psychological theories and review important aspect.s of the 
eJo.:perimentai data which they describe. 

Unfort.unately, comput.at-ional analysis of loose verbal theories is not pradicable, and 
empirical patterns of hehaviollr cannot directly influence the developmenl of machine 
vision systems. An appropriate computational strategy and the natnre of suitable 
image representations may, however, be suggested by informal analysis: visual attention 
arises as a consequence of the requirement for selective processing; and dual-paradigm 
processing refleds the application of abstrad. design principles. Proposals for many 
rnachinevision systems have been influenced by these conclusions, and first·order fcature 
differences and dual-paradigm processing are now pervasive (Chapters 3 and 4). 
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2.1 Low-Level Human Visual Processing 

Despite enormous progress in the last deca.de, computer vision still lags human vision 
by a large margin, particularly in respect of robustness, to image variability and degra­
dation from noise, and speed of operation. Computer hardware is fast and reliable, and 
special-purpose designs may be produced to meet specific requirements. By contrast, 
biological components are slow and unreliable, and cannot be reaAlily redesigned to fit 
a particular environment. Despite this, the buman visual system not only displa)'s su­
perior competence but often accomplishes in realtime' what machine vision can hardly 
achieve at all. 

A major distinction between biological and machine vision syst.ems is the degree of 
parallelism. Human brains contain very many processing elements (perLaps JO ll

) and 
yeL more communicat.ion channels (10 14 

; Barlow, 1986). Simple calculations comparing 
r~act.ion times with neural t.ransmission delays confirm that extensive parallelism is 
essential for a significant proportion of the brain to influence responses. By fOntrast, 
many computers are parallel only to a tiny degree, and it is possible to argue that the 
advent of suitable massively-parallel hardware will enable the attaiument of levels of 
performance comparable Lo biological vision systems, at least in the temporal domain. 

Contrary to this simplistic argument., psychologists claim that while low-level per· 
ception usually appears subjectively to be immediate and complete, human vision often 
performs sequential processing, "attending" to image areas sequentially (Julesz, 1981; 
Treismau & Gelade, 1980). This has become known as the atlen/;ue-prc-atlmliue di­
chotomy (§2.J.l). Further doubt is cast on the supremacy of parallelism hy theoretical 
arguments that it is infeasible t.o accomplish generic visual tasks by purely parallel 
processing (Gurari & Wechsler, 1982; Tsot6oS, 1987). Although parallelism is certainly 
important, it cannot compensate for a poor understanding of the computational nature 
of the prohlem, and is not a panacca. Human vision appears to 3chie\'e instantaneously 
what is theoretically not computable by making implicit assumptions and approxima­
l.ions. These may be observed by their failures, taking the form of visual illusions or 
sequential processing. 

In I.his Chapter, we review empirical evidence and psychological models of human 
visual processing. There is general agreement. that a virt.ually knowledge-free spatially­
parallel ~tage ("pre-attentive vision") guides the allocation of more sequent.ial ("atten­
tive") analysis. 2 Reg;ons wLich are homogeneous with respect to a particular image 
property may be treated as a whole, despite possessiug hierarcbical structure (§2.3.4). 
Study of the human visual system suggests the nature of heuristic constraints that 
might be employed to guide selective processing, aDd some properties of thdocal image 
features used to form early image representations. Empirical models of human vision 
have often motivated approaches to machine vision (Chapter 3), aud suggesl. reasonable 
objectives. 

IGeneraHy ta.ken La mea.n monitor ~frf"Sh Ta~e: 25 Hl. 
2It is noL helpful Lo define abt-tf"B.ct terms such as Iolconsc iousness," Or "'awareness:", and 'We rcfer 

to "aitenLronD in a purely ))el"'Ceptual sense. 
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2.1.1 Evidence for an Attentive-Pre-Attentive Dichotomy 

Tbe distinction between an early "parallel" and a subsequent "sequentia.J" stage In 

visual information processing has long been accepted by psychologists, and neither the 
existence of parallel processing at near-retinal levels nor the expression of a response as 
a sequence of motor actions is coutroversial. Although anisotropy of the retina cou.ld 

lead to serial processing stage!! accompanied by shifts in fixation, allocation of attention 
may be decoupled from eye movements, breaking this putative link (Eriksen & Murphy, 
1987). Direct observation of parallel or sequential operation is clearly impossible, and 
tbese attributes must be deduced from indirect evidence, supported where possible by 
theoretical justification. Given the nature of the implementatiou technology, "parallel" 
and "sequential" can at best be approximate descriptions but are useful in reasoning 
abou t processing strategy and performauce. 

Visual perception has attracted prolonged research int.erest, and literature abounds 
On the subject. Differences of iuterpretation remain, but recently broad convergence on 
the major features of a model for low-level human visual processing has been reached 
(§2.4.1). We introduce these below (§2.2), without attempting to distinguish ca.refully 
the minor differences whicb exist hetween a number of similar theories. Refinements 
have been proposed over time; in order to pursue the argument, we first introdnce each 
theory in the forOl in which it was originally proposed. 

Behavioral evidence for an attentive dichotomy has heen gathered using I,wo main 
paradigms: texture segregnl-ion and visu.al seareh. In the former case, an artificial dis­
play is partil,ioned between two or more texture types, ea.ch formed from wcll·scparated 
discrete elements. In the context of our earlier discussion (Chapter 1), these images 
decompose easily into micro- and milcro-texture. When a difference in a "basic" image 
I'roperl.y3 occurs across the boundary, the two textures are segregated immediately and 
effortlessly: the boundary appears l.o "pop out" of the display. Conver-sely, when tex­
tures possess more subtle differences, they may be discriminated only by slow, careful 
scrutiny, even though their iudividual elements may be quite distinguishable in isola­
tion. Properties mediating immedi~t.e discrimination include; colour, brigbtness, size, 
orientation, motion aud stereoscopic disparity (Beck, 1983; Julesz, 1981, 1984; Treisman & 
Gelade, 1980). Each of the models discussed below assumes a slightly differen! alphabet 
but. all generate essentially similar predictions (§2.2). 

Visual search tasks have also beeu widely used. Su bjects are presented with a 
multi-element display similar t.o those used for texture segregation (e.g. Figure 2.5), 
and are asked to decide whether a target element is present or absent. When the target 
possesses a basic feature not present among the other display elements ("distractors"), 
its presence may be detennined in a time almost independent of the total number 
of elements ("display size"). Informally, it appears again to pop-out of Ihe display 
(Treisman &. Gela.de, 1980). If no such description of tbe target is pOSSible, perhaps 
because all it" basic features are also held in different combinations by the distractors, 
then search is slow and effortful, and reaction lime (RT) increases linearly with display 
size (Figure 2.1). Whilst it is commonly assumed that increasing RT is caused by 
additional proc.essing stages, this need not necessarily he the case, and could result from 

3Chara.(:terisL~c:s of lhcse I<ba.sic properties" arE' discus..'ied in ~2,3, but t.helr compulal.iona.l form 
has never been eluC':ldaLed. 
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RT RT 

TargeL 
Ab..OL 

Target 
Present 

Display size 

__________ TargeL 
Present 

Display size 

(a) "P arallet" (b) ·'5.,iar· 

FJGull.~ 2.1: Schematic attentive and pre-attentive response curves. 
Ideal dichotomy between attent.ive and pre-attentive search of artificial multi 
element displays. R.eact.ion time (RT) is shown as a function of the number oC 
elements. (a) when the target is distinguished by a unique feat.ure, it "pops 
oul" after ~" int.erval independent. of the number of distract.in!'; rlem~nts. 

(b) the target is discovered only by a serial sCan of the display, and response 
time increases linearly with the number of dist.ractors. Ta.rget-presenl. and 
t.arget-absent slopes are in the ra.l.io I: 2. 

"noise" or interactions with visual memory (Broadbent, 1987). One set of image features 
is sufficient to describe performance in bolh \~sual search and texture segregatioD tasks. 

2.2 Models of Pre-Attentive Human Vision 

Many theories have been advanced to explain the attentive---pre-aUentive dichotomy, 
from behavioral, tbeoretical ~nd physiological viewpoint.s. A common failing is their 
definition in ambiguous verba! t.erms: different interpretat.ions may lead to conflicting 
predictions (Broadbent, 1987). There is oft,eu a tendency to be rather simplistic, defining 
a procedure suitable for processing an artificial mult.i-element display bul which is 
inappropriate for the fnll complexity of arbitrary scenes. [n particular, display elements 
and t.heir propcrties are often a..sllmed to be discrete whereas in practice neither is true, 
and it is not cleaT how such models could operate robustly with irregular or varia.hle 
textures. Vague verbal theories may be ~oo wea.k to generate testable predictions, 
instead forming a rcdcscription of existing empirical results, but. these short.-cornings 
are avoided by a truly computational theory (Winder, 1988b, 1990). 

Perceptual theories may be divided broadly into two groups. Early·selection models 
holti that c.omparalively liW" is achieved by the "parallel" stage, and that linear rc­
sponse functions ob~crved for more complicated displays reflect sequential "aHentive" 
processing of the field (Treisman & Gelade, 1980). "Perception" is achieved only for a 
small proportion of the scene at a time. Conversely, late-selcction theorist; argue that 
the parallel "pre-atteulive" stage should more correctly be termed "pre-conscious", and 
does in fact build a complete representation, possibly c.ontaining minor inaccuracies. 
The serial bottleneck occurs only during (he exchange of informat.ion wit.h conscious or 
motor processes - it is almost. as if the visual syst.cm had been designed in isolation. 
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inteIfares to other functions beiug added as an after-tbougbt (Duncan & Humphreys. 
1989). Despite their apparently opposing viewpoints, botb sets of tbeories seek to ex­
plain tbe same set of experiment.al data, and as this has grown, the differences between 
them bave diminished to tbe point wbere convergence bas almost been reached (§2.4. I). 

Pre-attentive proc~sjng is assumed to be data-driven, lit.tle affected by higber.level 
knowledge or expectation, and its primary purpose is to form a representation of the 
image at a primi tive level of abstraction. Purely linear transformations of tbe retinal 
response preserve its information content but are invertible and hence do not process 
tbe data. A number of inAuentialtheories bave been developed proposing similar forms 
for the pre-attentive representation, and hence broadly similar goals for pre-attentive 
processing. They are introduced below in their original form; some revisions have since 
occurred. Despite appearing to operate within an artificial framework, the principles 
guiding tbese models are very similar to those addressed by texture segmentation algo­
ritbms in ma,chine vision systems (Chapter 3). 

2.2.1 Texton Theory 

Julesz (1980, 1981, 1981) proposed that visual input is repre,enled in terms of an alphabet 
of texture primitives, which he called texlons. These are detected at each point in 
the visual field by a spatially-parallel pre-attentive system which eomputes their local 
density. Differences in t.exton density are recorded in the pre-at.tentive representation, 
effedivdy forming a primitive image segmentation. Texton t.beory may be surrunarised 
by two heuristics: 

1.	 Huma.n vision operates in two distinct modes: pre-attentive and at.l.entive. ]n the 
former, the visual field is processed instantaneously, in parallel, independent of 
the number of element.s Or complexity of the scene, over a wide visual area. Dy 
cont.rast, attent.ive processing is slow, sequential and efforlful; and operates only 
within a restricted apert.ure. 

2.	 The pre-attentive sy,tem evaluat.es spatial texton densit.y and directs attentive 
vision to local.ions where differences of t.exton densit.y occur. All ot.her functions 
are performed hy {,he attentive visual system. 

Textons must be selected carefully: too many, and demands for attenlive scrut.iny arise 
frequently, overloa.ding the system; too few, and pre-attentive figure-ground ~egregation 

is acbieved only rarely. Proposed or accepted t.extons include: colour, angular orienta­
lion, widt.h, lengt.h, biuocular disparity, motion disparity, flicker rat.e, brightness, line 
terminators and line crossings. It. is possible tbat different sets are appropriate for 
human and robol. vision, or for different visual environments (Julesz & Bergen, 1983). 

Textons of each type are processed independently by a modular pre-attentive system, 
whicb preserves only l.heir density. Even tbe relative positions of t.extons of the same 
type are lost, unless some chance alignment gives rise to a new texton property (Beck 
el al., 1983; Treisman & Pa.terson, 1984), confirmed by psychophysical experiments (Fig­
ure 2.2; Julesz & Bergen, 1983). The prc-atl,entive representation is a primilive boundary 
map (Sagi &. Julesz, 198-1, 1985), and when this alone provides sufficient evidence for a 
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FIGUIlE: 2.2: Search elements with similar textons. Performance at de­
tecting one element Crom e~h pair among 35 distractots of the other type ;s 
correctly predicted by differences in textou density (Julesz & Bergen, 1983). 
(0.,6) pairs of elements differ only in spatial arrangement, not in texton den­
sity: serial search is required. (c) these elements possess different textons: 
the target pops out pre·attentively. 

response in an experimental judgement, or when it.s efficiency at directing attention to 
tbe critical location approaches 100%, "parallel" behaviour is observed. Texton theory 
is concerned mainly with the capabilities of the pre-attentive system: t.he rolr of at­
tention is not clearly stated. Note that texlon theory shares mallY characteristics with 
"slatistical" approaches to texture analysis (§1.2), and bas motivated the development. 
of macbine vision systems of this lype (Chapt.er 3). 

2.2.2 Primal Sketch 

Texton tbeory shares many components with Marr's "primal sketch' lbeory of visual 
information processing. Neither is a comput.ational theory, bul some aspects of the pri­
ma) ,ketch are described mOre precisely. A symbolic retinotopic description of lhe scene 
is produced by simple filtering operations in a data-driven manner (Marr & Hildreth, 
1980). Marr proposed parameterised primiti ves similar to tbose accepted as lex tons: 
edges, lines, bars and "blobs", cbosen partly for their projection-invariant qualities 
(Marr, 1976, 1982). A retinotopic representation called tbe primal sketch is preferred t.o 
more abstract organisations on the grounds that many of tbe processes which nperate 
On it are local, due ultimat.ely to spatial coberence of natural scenes. Text.on t.heory is 
rather vague about the interaction of tbe pre-att.entive representation with higher-level 
processing, whereas the primal sketch forms a complete intermediate rE>prcsentation 
from whicb all subseqnent information is derived. 

Marr proposed that pre-attentive texture discriminat.ion occurs as a result of firsL­
order feature differences (Marr, 1976), similar to texton tbeory. The raw primal sketch 
is a primitive abstraction of the image and cannot provide access to bigher-order infor­
mation in the form in which it is required. A hierarcby of representations sits above the 
ralV sketch, eacb at a higher level of abstraclion, transforming a large and unwieldy col­
lection of data into a compact and relevant form. Successive abstractions are computed 
from more primitive representations, but do not refer back to tbe image data directly 
(Figure 2.3; Marr, 1976). Grouping adjacent image regions wit.h compatible features is 
an important part of tbis process (32.3.4). 

2.2.3 Feature-Integration Theory 

In a series of papers published over the past decade, Treisman has expounded the 
Ufnature-integration~theory of human visual atl.ention (Treisman & Gelade, 1080; Treis­
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(0) "Explicit" (b) "lrnpliciL" 

FIGURE 2.3: Distinction between implicit and explicit grouping. 
Groups may be formed in the primal sketch impLicilly by spatial-frequency 
fiLters or explicitly by symbolic grouping. (a) two blobs may be linked explic· 
itly because of their proximity and similarity; (6) or implicitly by the action 
of a large-scale bar detector. Man (1976) proposes the former. 

man & Gormican, 1988). Most of the experimental support for this model bas been 
derived from a.rtificial visual search tasks. The definition of feature-integration the­
ory is conched largely '10 the language of psychology, forming a loose framework rath(!r 
than a testable theory. Key components are the automatic extraction and independent. 
processing of elementary features (Figure 2.4), and feature-integration tbeory may be 
summarised by two assertions: 

1.	 Tbe retinal image is first processed in parallel along separable feat.ure dimensions 
by independent perceptual a.nalyser•. Among the image properties extracted at 
this stage are: orient.ation, colour, brightness, direction of motion, aDd spatial 
contrast.; and each at.tribute is represented in an independent feature space. This 
first stage is automatic, operates oYer a wide visual area, and hilS been identified 
as "pre-att.entive". 

2.	 In order to perceive physical objects as unitary forms, primary features must be 
synthesised into conjutlctions.4 Attent.ion is required for correct identification and 
conjnnction of an object's features. This is a serial process which operates over a 
restricted visual area. 

A further task of the pre-attent.ive stage is to mark feature boundaries In a ret.ina­
topic "map of locations" (Figure 2.4), corresponding t.o the primitive boundary maps 
envisaged elsewhere (§2.2.1). The novclty of feature-integration t.heory !Jes in it.s ex­
plicit identification of a role for attention: it adds deta.il to the regions marked by 
the pre-attentive st.age, a.nd det.ects higher-order propert.ies. This is essenl.ial hecause 
boundaries marked in the Map of Locat.ions are not tagged with the identity of the fea­
ture whose gradient they mark. A further facet of the model is t.he "Pooled Response", 
which permits a global measurern<:nt of the level of activity within ea.ch feature space 
to be obtained quickly without the need t.o attend each display locat.ion sequent.ially. 

2.2.4 Experimental Verification of Proposed Models 

Each of t.he models described above (§§2.2.l-2.2.3) attempts to explain tbe same body 
of e>.:perimentaJ dat.a, and hence it is not surprising that similar predictions are made. 
Unfortunately, the verbal exposition of the theories means tbat their predict.ions are 

4For exa.mple. colour and orientation arr ~PaI'll~ realures, a.nd hence a blue vertical line is 
rcpre:sented by & conjunction of "'blue" anti "'Vertical". 
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FICUR£ 2.4: Schematic diagram of feature-integration theory. The 
ima.ge is decomposed independenl.ly in parallel along primitive feature dimen· 
sions. These mark feature discontinuities in the Map of Locatio05, forming 
a. primitive boundary map. Attention is guided to these sites. A "pooled 
response" output is also formed, mea.suring the average level of adivation of 
each feature. Adapted from Treisman (1985). 

qualitative rather than quantitative, but we wiU attempt to circumvent this failure hy 
restricl.ing our commcllts to the most definite trends. Feature·integration theory is a 
little more explicit about the purpose of attention, and hence makes more detailed 
predictions, but we sha.1I treat all three theories as a whole. 

Visual Search 

Visual search is a popular paradigm with psychologists: trials are straightforward to 
conduct, displays may be constructed easily, a.nd a quantita.tive performance measure 
is obtained. Each model predicts that a targeL defined by a unique feature pops-out of 
the display (search time virtually independent of the number of distractors) in accord 
with the central dichotomy (§2.1.1), consistent with observed behaviour (Trei,ltlan & 
Gelade, 1980; Treisrnan & Gormican, 1988). For example, a single blue letLer was found 
among hrown and green letters with a response slopeS of only 3 ms per dislracLor, and 
similar responses are observed when a. numher of targets are present. Displays must he 
present for at least a minimum "initialisation" interval before anything may be perceived 
reliably, but a display duration of only 30-45 rns is sufficient ~o detect a vertical line 
alTIong 35 horizontal lines (Bergen & J ulesz, 1983). Perceptual pop-out is robust: reaction 

~Re&CLion tirnes on.en follow t.h", pattern iill..l5tra.Led in Figure 2.1) and arc charadedsed by 8 

"rcspons<:: slope", commonly ml"a."ured In ms per dislrac.Lor. 
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FIGURE 2.5: Artificial target-present displays used to demonstrate
 
search asymmetry. A feature is most effective at causing the target to
 
"pop-out~ when it is present in the target but not in the distra.ctors (Treisma8 
& Souther, 1985). (a) the target possesses a unique feature and pops oul; 
(0) the target is defined ooty by the "bseoce of the line segment, a.od is 
detected after a serial sean. 

timc is rarely complet,ely independent of display sire but tbe slope is typically a few ms 
per item, an order of magnitude less than "serial" responses. A feature differenc<o is 
most effective when present in tbe target but absent from the distra.doTs (Treisman & 
Celade, 1980; Treisman 8< Souther, 1985), illustrate<! by Figure 2.5. 

A very different trend emerges [or conjunct.ively-defined targets, where no first-order 

difference discriminates t.arget from distradors. Finding T"""" among equal numbers 
o[ T bro..... and Xg=n required 28 ms per distractnr (Treisman & Gelade, ]980). Search 
for an L among Ts is serial, whereas a slanted T pops out (Figure 2.6). All aspects 
of spatial relations demand serial processing (Treisman & Cormican, 1988) including the 
binding of textons to particular objects (Julesz, 1984; Treisman & Gelade, 1980). "Serial" 

processing is assnmed when the response slope exceeds 10 ms per item. Pooling data 
from ma.ny sources, Treisman and Cormican (1988) found tba.t 99% of the response 
variation was linear, with a target present-ahsent search ra.tio of 0·53: strong evidence 
for tbe operation of a serial self-terminating search strategy,S 

Tezture Discrimination 

Texture discrimination tasks require subjects to detect a regioTl rath<or than a single 

item, for example they may be for,£d to choose wbether a bounda.ry runs horizontally 
or vertically. As notro above (§2.I .1), tbe boundary is immediately apparent when 
adjacent regions have differing fealure densit.ies (Beck eI al., 1983; J ulesz, 1981; Treismau, 
1985). By contrast., if they do not have disjoint features, or have tbe same texton density, 

the boundary may only be traced out one element at a time (Treisman & Gelade, 1980), 
even if individnal texture elements may be discriminated easily in isolation(JII1~sz, L981). 
When a texture difference arises purely bC'Cause of spatial relations, such as Rand 51, 
individual scrutiny is always required (Figure 2.2). 

6Ea.ch drsph~y element i~ cned;ed in tum, until the larget is found or none 'remain. ]f search 
is UJldirecled, balI ~ rnSl1Y :>Lep9 are required, on average, ¥lhen the La.rge( is prcsmL ralher than 
absent.. 
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F,GURE 2.6: Artificial search displays. Search displays of t.he lype used by 
Be<:k and Ambler (1972). The L in the display on the left i. found only after 
checking each element whilst the sla.nted· T on the right pops-out immediately. 

Ezperimental Procedure 

Experimental procedure for both visual search and texture segregation paradigms must 
be designed carefully to ensure I.hat differences in performance do indeed arise because 
of Ihe influence of display CQuditions rat.her than some unintended effect. Iu order to 
eliminate eye movements from consideration, it is common to expose the display for 
a brief instant., typically 100 ms, during which time saccades canuot occur (Bergen & 
J,,]esz, 1983; Sagi & Jnlesz, 1985). Acuity variation (Anstis, 1974) may also be fadored out 
by the use of a circular display (Beck & Ambler, L972). A pre-cue may affect performance 
considerably, even if it contains nO useful information for tbe task (Eriksen & Murphy, 
1987). Display elements are usually selected purely for their perceptual properties, and 
let.ters are a poor choice because of uncertain differences in their physical appearance 
and associat,ions (Gilmore, 1985). Despite these complications, the serial-pa,rallel trends 
noted here have been observed by many researchers using different experimental proce­
dures, and are beyond dispute. 

2.3 Characteristics of Human Texture Primitives 

ldeutification of the "basic image properties" of pre-at.tentive vision is required before a 
computationa.l analysis may be CQnducted. Several attempts bave been made to isolate 
definitions for Beck's (1983) "local image properties" and Julesz's (1981) "textons" in 
order to underst.and hetter the process of texture decomposition. More formal specifi­
cation would also he helpful to provide guidance for the design of robot vision systems 
hecause the vagueness of verbal theories is not amenable to comput.ational analysis 
(Broadbent, 1987). 

One study attempted to match computalional definitions to six verbal t.erms de­
scribing seemingly important visual properlies for texture discriminat.ion: coarseness, 
contrasl, directionality, line-likeness, regularit.y, and roughness; but was only partially 
successful in modelling human performance (Tamura et al., 1978). A more promising 
level of enquiry has been to abandon the search for detectors corresponding directly 
to high-level verbal quantities, and Lo seek families of simple linear filters consistent, 
with the characteristics of simple cells. A generic three-stage region-growing algorithm 
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was proposed by Caelli (1985). He suggested: linear convolution followed by a point 
non-linearity to extract features; linear smootbing or local averagiug to improve the 
reliability of feature estimates; and regioll formation by feature clustering and refine­
ment. Coggins and Jain (1985) proposed a combination of oriented and isotropic filters, 
and claimed good performance witb Brodatz textures. Their system was not fully anto­
matic, and required prior knowledge of the number of texture types. Malik and Perona 
(1990) usc linear DOOG T filtering and non-linear inhibition to collect image properties, 
and detect boundaries by Laplacian of Gaussian filtering of feature responses. Their 
model successfully ranks textures with ambiguous texton statistics iu the Same order of 
diseriminabilityas human subjects, but is not fully automatic and cannot predict some 
important perceptua.! effects (e.g. search asymmetry). 

Recent.ly, it has been noted tbat receptive field properties of simple visual cortical 
cells are consistent with Gabor filters (Dallgman, 1985), prompting suggp.stions that 
many low-level visual effects migbt be explained by initial filt.ering with Gabor kernels 
(Fogel & Sagi, 1989; SuIter eL al., 1989). Gabor filtering models appear to overcome some 
current. anomalies of texton theory (Nothdurft, 1990), and the attractive properties of 
Gabor kernels have also aroused interest from the machine· vision communit.y. We shall 
post.pone discussion of our experiments witb Gabor filters until Chapter 4. 

2.3.1 Image Features are Local 

It is important to note that each of tbe above models proposes tbat pre-atten(ive vision 
is a local process (§§2.2.1-2.2.3). Texture primitives are compact (e.g. "line crossing~) 

and only local feature differences are computed, rendering global processing unneces­
sary. Direct evidence for short.-range compul.ation of feature differences comes from 
a. textured Cra.ik-O'Brien-Cornsweet. illusion (MuUer, 1986): ease of perception of a 
boundary between regions of different line orientation depends primarily on the dif­
fcrence in slope at tbe boundary rather than tbe difference between the regions as a 
whole. Hybrid region--edge algorithms may also be llsed (Mumford el al., 1987). Tex­
tons capture only local spatial arrangement, and graded differeuces in texton properties 
are det.ected more efficiently when they are nearby (sag; & Julesz, 1984). Anisotropic 
stretching a.Jters local texton density (Figure 2.7), and discrimination performance is 
affected accorningly (Enns, j986; Julesz, 1986). 

2.3.2 Original Julesz Conjecture: Second-Order Statistics 

In a precursor to texton theory, Julesz (1962) originally proposed that spontaueous 
te"inre segregation is mediated by differences in first or second-order ~I.atistics. At 

first, the tbeory seemed snccessful, and perception of text.ure bouudaries in synthetic 
Ma.rkov text.ures was predicted correctly. Weak count.er-examples were later found by 
synthesising textures from pairs of "iso-dipole" primitives, and Julesz (1975, page 40) 
acknowledged that "it. would be going too far to believe t.bat texture discrimination 
depends entirely on the statistical properties of textures alone". Pratt, Faugeras and 
Gagalowicz (1978) developed autoregressive texture models that permillcd control of 

70ifference or Oriented. Gaussians: simllar lo ani~lroplc Laplacian of Gaussii:tn. 
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FIGURE 2.7: Effect or anisotropic stretching on texton density_ Tex­
tured displa.ys were formed by embedding a region consisting of one type 
of element within a background formed from the other. (a,d) original tex­
ture pairs: pair (a) segregate pre-attentively but (d) do not. (b,c) after 
anisotropic stretching by a factor 5: J, the position is reversed: pajr (b) seg· 
regate pre-attentively but (c) do not. Affine l.ran.formation does nol chall!\< 
the textoo count for each element but does affect the computation of texton 
density (Julesz, J986). 

tbe statistical properties of more realistic textures than the binary dot, arrays used by 
Jnlesz (§3.2.5), They ooted that Julesz had omitted to define the degree of dis-similarity 
thaL conld be percei ....ed, and found this to be quite large for first-order properties. They 
concluded, however, that "the sufficiency of Julesz's conjecture is confirmed lor fields 
possessing spatial correlatioo" (Pratt el aI., 1978, page 801), and later confirmed this 
belief for "non-contrived" textures (Faugeras &. PraLL, J980). 

Increasing numbers of exceptions were later discovered, however, and Julesz even­
tually admitted that the iso-dipole requirement was inadequate (Julesz et 01., 1978). 
He initially supplemented his model by local "bar" and "tenninator" detectors (Julesz, 
J980), designed to accommodate evidence that some iso-dipole textures may bcdiscrim­
inated effortlessly, An alternative explanation is that the "exceptions" were caused by 
the non-ergodicity of random fields used t.o synthesise test images, so they differed in 
local second-order statistics. A model based on local spatial averages of second-order 
statistics was proposed to reflect this possibility (GagaJowicz &. Ma., 1985). 

Julesz later abandoned the iso-dipole conjecture entirely in favour of texton theory, 
as stated in §2.2.1. Nontheless, many experiments performed by Julesz and others 
show that dipole statistics are able to capture mudL important texture information, 
and this has motivated the development of many robot vision systems (§3.2). A furt.her 
advaotage of fiTst and se.::ond-order statistics is their theoretical and computational 
simplicity. 

2.3.3 Importance of Spatial Location 

Each of the models discussed above (§2.2) proposes that image information is initially 
rcpTesented topographic.ally, and it is implicitly implied that attenUon is mediated spa­
tially. Several lines of evidence provide support for this possibility. 
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Visual Orienting 

One of the simplest visual tasks is to respond to tbe presence of a single bright dot 
against a blan k field. Surprisingly, deted-ion of dot onset is influenced by a spilti.l pre­
cue giving advance warning of its location, and an inval..id cue depresses performance 
(Posner, 1980; Posner et al., 1980). Once an image location bas been "attended to', it is 
temporarily inhibited, and detect.ion of a second target at tbe same site is slowet than 
elsewhere (Posner & Presti, 1987). A variety of experiment.s bave been devised to probe 
tbis effect more closely, tracking the allocat.ion of at.Leution across the visual field (see 
Winder, 1988b). 

Effect of Advance Cue on Visual Search 

According to tbe theories mentioned above (§2.2), a spat.ial pre-cue should llal'e little 
benefit during a pop-out search because the location of the target (if present) sho"kl al­
ready be marked pre-al.l.enlively, and tbis predict.ion has beeu confirmed experimentally 
(Ambler &: Finklea, 1976; Treisman, 1985). There was a small benefit on target-absent 
trials, perhaps because subjects are less inclined to perform a serial check before re­
spondiug negatively. By contrast, conjunctive targets were detected much more easily 
after a spatial pre-cue, consistent witb failure of tbe pre-attentive system to mark the 
target location adequat.ely. Further experiments using similar paradigms confirmed the 
importance of image location to conjunctive but. not. single-feat.ure t.argets (Nissen, 1985; 
Treisman & Gelade, 1980). No evidence was found that attention could be confined t.o a 
single property (e.g. red), rather tban location. 

Wben subjects were unable to process tbe display fuBy because of tim~ pressure, 
they sometimes reported "illusory conjunctions" - percept.ion of the correct features 
but in tbe wrong combinations (Trei6man &: GeJade, 1980). This motivated speculation 
t.hat feature spaces migbt communicate only under the influence of attention, perhaps 
beca.use tbey had parametric internal representations (Ballard, 1984), but experiments 
of this type are unreliable because pureLy perceptual effects cannot be isolated. 

Detection and Identification 

Furtber suggestive evidence for tbe topograpbic organisation of early pre-attentive rep­
resentations follows from a distinction between detection and identification of a target. 
According to tbeory (§§2.2.1-2.2.3), subjects may rapidly detect locations of feature 
discontinuity, but may only identify tbe elements responsible after attending to the 
marked locations. Tbis pattern of behaviour is indeed observed in practice, using dis­
pLays of the type sbown in Figure 2.8 (Sagi & J ulesz, 1984). Wben tbe distractors are 
tbemselves non-uniform, but do not share features witb the target, visual search and 
texture segregation both become more difficult (Callaghan el al., 1986; Pa!hler, 1988). 

The experiments reported here, togetber with numerous otbers (Winder, 1988b), 
suggest tbat image locations of feature differences are of key importanre in the early 
parallel representation, in accord witb texton and feature-integration theories. Real 
scencs generally have a more complex structure than artificial displays, and may not be 
decomposed unambiguously into independent elements, or micro- and nlacro-structure 
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FIGUR.E 2.8: Mixed-target display used in combined counting­

identification task. Subject, were required lo counl the number of non· 
dislraclor lines and identify ~heirorientalion (Sagi & Jules., 1984). DeleclioJl 
and counting of the odd elements could be achieved in a '·OIlSI.anl period 
whereas idenlifying l.hem ,,"ccUfal.ely required a serial check. 

(§J.2). In the next section, we uote some modifications to the monolilhic pr,,·allentive 
representation designed to al;commodate hierarchical image structure. 

2.3.4 Hierarchical Representations and Perceptual Grollping 

Artificial displa.ys usually consist of weJl·separated dement.s, and structure is present 
only at a single level (for example, Figure 2.6). In pract.ice, real scenes may be much 
more complex, with ill-defined Or contradictory borders (Figure Lion page 2). Prim­
itive elements a.t one level may be grouped together to form a. meta-primitive at the 
next, and ma.ny levels of structure may be represented by a bierarchy. Re-examination 
of Figure 2.6 shows that it also possesses two levels of structure, app"a.ring at (he bigher 
level of a.bsl.radion as two adjacent circles. Texture segregation demands a high-level 
description in terms of homogeneous regions rather than individual primit.iveclements. 

When we search artificial displays having a clear hierarchical structure, as shown in 
Figure 2.9, we are able to break I.he image into distinct groups pre-attentively. R.eaction 
times are lin('..a.r in the number of groups rather than elements, suggestive of semi-serial 
search: each group may be checked in parallel using the pre-atLentive mechanism, but 
only one group a.t a time (Treismi\.n, 1982). Vatid percept.ual groups may only be formed 
from contiguous regions sharing a common feature. 

Spatial Frequency Grouping 

A very simple explanation for the phenomenon of hierarchical grouping is a coarse-to­
fine image scan involving the use of tuned spatial-frequency channels (Wilson, L983). 

An example of how this might operate is shown in Figure 2.10: tbe two groups emerge 
immediately after filtering wit.b a Gaussian kernel. lucreasingly detailed examination 
requires the use of filt.ers with smaHer space-const.ants, and the MIRAGF. model proposes 
non-linear summat.ion to avoid loss of resolution (Wall, 1988). It has been suggested t.hat. 
output. of simple linear fill.ers could underlie texlure segregat.ion (Bergen & AMison, 1988) 
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FIGURE 2.9, Artificial image with two levels of structure. (a) hi· 
erarchical decomposition of this image is slraightforw..rd. (b,c) these odd 
elements are often missed in (a) ..I first glance but "re salient within each 
sub-group iu isolation. 

and Gesta.lt grouping (Reed & Wechsler, 1900). Perceptual groups are still effort.lessly 
perceived in displays similar Lo Figure 2.LO after filtering to eliminate low spatial­
frequencies (H.nez, J084; Julesz & Krase, 1988), and SO t.his must be at most a partial 
effect. Many grouping strategies are possible, ranging fron' implicit grouping by linear 
filleriug to explicit symbolic linking (Beck, 198:1); furt.her Jiscnssion appears in Winder 
(1990). 

Attentiue-Pre-Atlentive Continuum 

Multiple-resolution image representations blllr the distinction between attenlive and 
pre-attentive vision. An initial "parallel" st.age partitions the display into a Dumber of 
regions, each of which may be selected ("serial") and further decomposed. Algorithms of 
this type are semi-serial, consisting of a sequence of paraUel operations. It. is suggested 
that the size and sbape of these regions may vary (Erik.ell & 51. James, 1086; Trcisman 
& Gelade, 1980) but that they must be spatially contiguous (Crassini, 1986). This is the 
renned description offered by feature-integration t.heory (Treisman & Gormican, 1988), 

which also predicts an enhanced role for the Pooled Response (Fignre 2.4). A similar 
st.rucl.nre has now been proposed for texton theory, suggesting tbat. finer discrimination 
is possible when attention is connued to a smaller area (Bergen & Julesz, 1983; Julesz, 
1086). Dennit.ions of "texture" aud "texture element" were revised t.o makelhem scale­
iudependeut, so t.ha.t texton properties could be ext.racted at many resolutions. 

\Vb.,reas texton and fealore-integration t.heory suggest lhat an initially· coarse rep­
resentat.ion is progr/'ssivcly renned, Marr's (1982) primal sketch involves a recursive syn­

thesis. Starting with tbe complete raw primal sketch, representa.tions are [armed at suc­
cessively great.er levels of a.bstraction, reBecting higher-order and ultimately viewpoint­
invariant propert.ies. This st.rategy is more akill to st.ructural analysis (§1.2), but the 
distiuction is DOt as great. as may be first thought, because it is still sensible to scan 
l,he primal sketeb in a predominantly coarse-to-fine direct.ion. With eilher method, t,he 
use of mult.iple-resolution represent.at.ions allows greater benefit to be derived from the 
"parallel" stage when the sr.eue bas a favourable spatial organisation. 
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(a) structured image ~ (b) blurred image 

F[GUR~ 2.10: Formation o( perceptual groups by spatial filtering. 
(a) an artificial image, containing two perceptual groups. (b) convolution 
with a Gaussian kernel (space constant as shown) has successfully picked out 
the two groups. 

2.4 Origins of Dual Paradigm Processing 

Having reviewed the main features of tbe atlentive-pre-attentive dichotomy, and the 
models which seek to describe it, we now tum t.o causes for this behaviour, and discuss 
implications for machine vision. We conclude that visual attention implies a selective 
analysis of image data, and hence that di"'ision into parallel and serial paradigrru; reflects 
good design principles. 

2.4.1 Guided Search Model 

Recent experiments bave shown that certain comb'inall:ons of features (OT coniunct.ious) 
may be detected in parallel, for example Or«! among Og=n and X,.,j, contrary to the 
dichotomy stated above (§2.1.1). Increasing numbers of special cases to Ihe th'-ory 
were proposed in the form of unified conjullction-detectors, until it was shown that 
most conjunctions were able to mediate parallel detection under suitable circumstances 
(Treisman & $ato, 1990; Wolfe et aI., 1989). Exceptions occur when the two features 
[onning the conjunction are of the same type, such as pad·red part-green (Wolfe et aI., 

1990). 

This result is an embarrassment for the bottom-up models stated in §2.2, but the 
circumstance~ under which parallel detection of conjunctions is possible are limited, 
and two conditions must be satisfied. Firstly, display elements must be very highly 
discriminable, so that "noise" is insignificant. Apparently, colours use<! in early tachis­
toscopic displays were insufficiently saturated to meet this condition (Troisman & Sato, 
1990). Secondly, subjects must know in advance tbe exact feature composition of the 
target(s), and may only scan for conjunctions of a single type at a ti me. 

A simple extension to the pre-attelltiw, models given in §2,1.1 is suffici('nl to cexplain 
this result. Ea.ch feature-space marks locations of fealure discontiuuity in a bottom-up 
fasbion, as before, but also compares local sceue properties with l.hose of the target 
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using top-down knowledge, and tbe sum of these signals is written into the boundary 
map. We might suppose that candidate locations are ranked and scanned in turJl, and 
hence tbe correct target is present at tbe fiI>t location to be attended to when noise 
is insignificant. If advance knowledge is imprecisc or absent., the bottom-up procedure 
applies. Top-down selection is not very efficient, and may easily be overcome by "ooisen 

or imprecise spedfication of t.he target, or target--distractor similarity. 

This modified framework is called Guided Search (Wolfe &. Cave, 1990). A fast 
spatially-parallel "pre-attentive" stage forms a primitive segmentation, using both 
bott.om up and top-down information, to which each featme space contributes inde­
peJl den tly. The purpose of this rather inflexible and simple-minded stage is to guide 
a spatially-restricted, slower, more sophisticated "attentive" processor to localions of 
poteutial importance efficiently. Effective guidance hides the serial natnre of the aUen­
tive process (Hoffman, 1979). Qnalitative predictions of the model have been fanned by 
computer simulation (Cave &. Wolfe, 1990), and are essentially the same as those made 
by late-selection models (Dunca.n & Humphreys, 1989). 

2.4.2 Visual Physiology 

Only a very brief ment.ion of the anatomy and physiology of the human visual system 
lie within the scope of this th"sis, bnt physiological approach,·,s are ill1portilul because 
tbey may motivat.e developments at cognitive or computat.ionallevels. Visuai areas of 
the human (and relalcd) brain are not amorphous bnt consist of largely independent 
functional units. Cowey (1985) mentions 12 different visual aTeaS in monkey, and notes 
that new areas are discovered "... at a rate of about One every two years". Cortical 
maps usually follow a topographic layout, so that cells responding to adjacent image 
locations are nearby. Several functionally-specialised pathways run in pilralld, often 
physically segregated from each other (Zeki & Shipp, 1988). Similar speciali.<at.ion is 
inferred in the human brain from the sckctive loss of functio" snffered by ,troke vic­
lims. The brain is, of cour~c, very poorly understood. and it wonld be foolhardy to 
base a visual theory npon a few isolat.ed neurophysiological observations. Neverthe­
less, Livingstone and Hubel (1987) ha.d sufficient wnfidencc in the 'ignifkancc of their 
own observations of separate processiug channds to predicL qualitative performance in 
a series of simple psychophysical experiments. Receptive field profiles of ,irnple cells 
indicate what infonnal.ion has been extracted at the lowest level (PoUen & Ronner, 1981; 
Wilson, 1983), from which performance at threshold discrimination tasks has been pre­
dicted. Different representations may be used at higher levels, and wider conclu,ions 
should be approached with caution (Marr, 1982). 

Single-cell recordings permit observations of a working brain, although it is not 
operating uuder normal condit.ions. Neural responses are found to be grcaLly attenu­
ated when attent.ion is directed elsewhere in the visnal field (Moran & Desimone, 1985). 
Increasing the amouu!. of attention directed at a stimulns can enhance botl, the respon­
siveness and 5ClecLivity of neurons that process it (Spit""r et al., 1988). Thcseresults from 
monkey canIi rm the spatially-selective nature of attention. Actions of single neurons 
may he tenuously related to the computational task, however, aod wider conclusions 
are speculative. For similar rpasoos, artificial u<~ural network models of visual attention 
are often inappropriatr (Winder, 1989). 



30 CHAPTER TWO: Models of Visual Attention 

2.4.3 Justification for Seria] and Parallel Paradigms 

Empirical investigation by psychologists has established some major features of the 
human visual system: a partial dichotomy between parallel and serial modcs; local image 
"features"; functional specialisation; and selection by image location. Competitive 
evolutionary pressure has probably resulted in human vision adopting a form ~h"t is 
at least locally optimal, assuming Nature is not unduly capricious, and hence Lh"se 
observations may be relevant to the design of machine vision systems. Simply designing 
systems with similar external characteristics is not a helpful way to proceed because 
this merely redescribes tbe psychological data; of greater relevance is the computatioIlal 
logic whicb lies behind these external manifestaLions. 

These questioDs were addressed by Ma.rr in the construction of his primal sketch 
model (Marr, 1976, 1982). Marr's background was iu physiology, and Lhe operations 
he proposes are motivated, at least in part, by empirical studies of the visual cortex. 
He realised, bowever, that it was necessary to exercise "extreme caution in making 
inferences £rom neurophysiological findings about the algorithms and representations 
being used ... " (Marr, 1982, page 26). Of central importance is the in-fOrTnation thilt 
needs to be represeuted and the prOCes.9 that needs to be implemented. Perceptuill 
information processing may be addressed at three levels (Marr, 1982, page 25): 

1.	 Computational theory; What is the goal of the computation, why is it appropri­
ate, and what is the Jogic of the strategy by which it can be carried out I 

2.	 Representation and algorithm: How can this computational theory be imple­
mented? In particular, what is the representation for the iupnl and outpuL, and 
what is the algorithm for the transformation? 

3.	 Hardware implementation: How can the representation and algorithm be re­
alised physically? 

Understanding the computational level is of central importauce, as tbis defines I.he ends 
to whicb levels 2 and 3 provide the means. Human and machine vision systems must 
operate in similar visual environments, a.nd employ analogous physical optics,and hen("e 
may address comparable information-processing requirements. 

Assuming reasouable spatial and gray-level resolut.ion (say 1000 x 1000x256), the 
number of possible visual stimuli is extremely large (> 10200(000

), even when tbe influ­
ence of context or other factors are ignored, and precludes a brute-force approach to the 
generation of suitable responses. It has bren suggested tbat the pervasive perceptual 
tasks of visual search and image segmentation are computationally intractable (Gurari 
& Wechsler, 1982; Tsotsos, 1987). This limit cannot be circumvent.ed by clever implemen­
tation techniques or parallel bardware, and applies equally to biological and machine 
vision systems. It implies tbat visual infonnation must be pro("essed selecl'Dely. 

Selection of Appropriate Computational Paradigm 

Several design principles have been proposed to guide appropriate choices [or operations 
to he conducted by a sequential analysis. The maximum power-minimum cost principle 
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seeks to maximise an abstract performance metric, and those of least commitment and 
gra.ceful degradation address the variable nature of the pbysical world (Marr, 1982; Tsot· 
sos, 1987). Operations performed in a spatially· parallel fashion incur a greater hardware 
cost hecause suitable processors must be replicated for each sub· image location, wbiLe 
sequent.ial processing receives a temporal penalty. An ideal system with unlimit.ed ca­
pacity would compute in all entirely parallel fashion, but it is inefficient in praC1.ice to 
devote limited resources to providing parallel processors to support operations which are 
rarely invoked. For example, it is entirely reasonable to re,.ognise one's grand-l1other, 
but perhaps more cost-effective Lo selectively apply a single detector responding to the 
ahstract property of "grand-motherness", rather than have a bank of processors dedi­
c".t.~d to this infrequ~nt operation. Generic "ioLcrc,t operators" are strong candidat.es 
for parallel processing, since it is essential for selective image analysis to be targeted 
efficiently. Since physical objects are of ult.imate interest, it is sensible to seleel. "inter­
est oper".I,ors" corresponding to putative physical boundaries, Assuming the world to 
be composed mainly of smoot.h surfaces and ,ollections of similar objects, detection of 
local feature differences a.nd grouping image parts are key operations, whereas computa­
tion of spatial or abstract. relations may be deferred until a selective sequential anaJysi, 
(Ullman, 1984). 

To some extent, the ,hoice of which perceptual tasks are conducted "in parallel" 
depends on how efficiently they may be implemented. Simple local computations which 
are hardly influenced by loeal data may be performed very efficiently by dat.•.·parallel 
processors, whereas data-dependent or irregular computation is better support.ed by the 
more costly task- parallel paradigm (§A.l), Both variants are required for image analysis, 
prompting the development, of a du.aJ-pamdigm parallel processor, the DisPuter (§J\.1.3). 
The high efficiency of local data-parallel processing prohahly lies behind the a.pparent 
importance of image location in pre-attentive human vision and the restricted 'nfluence 
of top-down knowledge. Domain-independent "features" may be deduced from unusual 
image events or "suspicious coincidences" (Barlow, 1986; Lowe, 1987), and mult.iple­
rc.<olution or hierarchieal representations further maximise performance (Terzopoulos, 
(986). Note that nO advant.age of a dual-paradigm strategy accrues if the "pre·attentive" 
representation is iuterpreted completely by sequential analysis - tbis would merely 
tracie exponential spa.ce for exponent.ial1.ime. Following the principle of modular design 
(Marr, 1976), little has been said about processes operat.ing during seleclive sequential 
image interpretation because these are very task specific. 

2.4.4	 Conclusions: Local Feature Differences Guide Selective 
Processing 

Extensive behavioral evidence shows that low-level human vision displays a dichotomy 
bet.ween "attentive~ and "pre-attentive" processing. Pre-attentive vision o~erates over 
a wide image area whereas attention is selective and spatially localised, allhough this 
distinction is less sharp for hierarchical displays. No benefit may be derived from 
simply replicating thc<e characteristics in machine vision syst.ems, but. aspects of the 
computationa.! strategy employed may be inferred by informal analysis. Current models 
propose t.hat t he role of pre-attentive vision is to gnide ~eleclitle attention to important 
or "salient" image loo.[ions by rudimentary pro,,~sil\g of local image properties (Wolfe 
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& Cave, 1990). Attempts to find computational definitions for these "features" have 
failed, but their precise form is probably less important than their general nature. Our 
suhjective experience of immediate and effortless perception reflects the efficiency of 
this dual-paradigm approach. 

Computational analysis suggests that it is infeasible to pro<;ess image data com­
pletely, and hence that selective interpretation is imperative (Curari & Wechsler, 1982; 
Tsotsos, 1987). Vision is ultimately concemed with perceiving physical objects, and 
heuristic assumptions about their nature confirm that fin;t-order differences in local 
image statistics form an appropriate pre-attentive representation. Abstract design prin­
ci.ples dictate that available resources should be divided between elementary "parallel" 
guidance and detailed "sequential" analysis, the latter paradigm being more suitable 
for unusual or irregular cnmputation. Proposals for machine vision systems are often 
influenced by similar reasoning (Chapter 3). 



Approaches to the 
Representation and Analysis of 
Visua I Textu re 

Visual texture is concerned with spatial composition and appearance, and is an inherent 
charactnistic of physica.l surfaces. Texture analysis has several goals, but we shall re­
strict our main discussion to the location of texture edges (segmentation), and character­
isation of images regions (c1a.'1sification). Classifieation is often the more straight.forward 
task, having more con,trained results, hut. requires texture samples to be homogeneous 
and to have been previously segmented from the remainder of the image. 

Representations of visllal texture are commonly divided into structural and statis­
tical models (§1.2), analogous with the attentive-pre-attentive dichotomy in low-level 
human vision (Chapter 2). This correspondence is more than superficial, ~nd models 
of pre-attentive vision have often influenced approaches to texture analysis (and vice 
·versa). Statistical models share many characteristics with pre· attentive vision: they 
represent texture indirectly by simple local statistics; and corn'spond nalurally with 
the data-parallel para.digm (§A.I). Texture features are often derived from second­
order image statistics, and first-order feature differeuces used to locate hypothctiC3J 
texture boundaries (§3.2). Conversely, st.ructural models frequent.ly reqnire irregu­
la.r data-dependent processing, but seek to describe hierarchical struct.ure more com­
pletely (§3.3). 

Characteristics of both paradigms may be adjusted to suit the application: segmen­
tation requires features to represent local image properties (§3.5), whereas it is often 
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more appropriate during classification to describe the image as a whole (§3.4). Gabor fil­
ters achieve an optimal compromise between these conflicting requirements (Chapler 4). 
Texture variability and the probabilistic influence of spatial context are represented ex­
plicitly by Gibbs-Markov random field models (Chapter 5). Building on psychological 
models of low-level human vision (Chapter 2) and the discussion of current approaches 
to texture presented in this Chapter, we propose a hybrid Gabor·-Markov framework 
for texture analysis (Chapter 5), combining the best aspects of statistical and struc­
tural models. In this context, Gabor filtering may be de;cribed as "pre-attentive", and 
Markovian analysis as "attentiven processing. 

3.1 Introduction: Texture Representations 

Texture analysis is an important component of low-level vision, providing information 
about t.he nature and three-c1imensional shape of physical surfaces. Image analysis is 
ultimately concerned with propert.ies of the .<ewe, and visual textnre has man." ad'·an· 
t.ages in this regard: it is a fundamental property of physical object.s; is t.ransformoo 
predictably by a ehange of viewpoint; and is robust to cha.nges in lighting or other 
external influences. Despite its practical importa.nce, an acceptable formal definition of 
"texture" does not exist (Ahuja & Rosenfeld, 1981; H~ralick, 1979). The Oxford Handy 
Dictionaryl offers "arrangement of threads in textile fabric, quality of a surface or sub· 
stance when looked atn (page 942), giving two complementary alternatives. When the 
former is generalised, so that texture is represented by its primitive elements ~nd their 
spatial arrangement, tbese definitions reflect the division into structural and s/"Ii.,tic,,[ 
approaches noted above (§ 1.2). Descriptions of visual texture are commonly classified 
according to this dichotomy, which successfully characterises the major aspects of tex­
ture analysis, but the dist.inction is becoming increasingly blurred as more complex 
models are developed (Haralick, 1979). 

"Structural" approaches to texture are concerned with its hierarchical n~ture, and 
make explicit the dist.inclion between micro/,x/ute and mar:rot.exture. Microtexture 
refers to the fine-scale residual variation present in each texture primitive, and macro­
texture to tbeir spatial arrangement. The hierarchy may he expanded recursively, with 
macrotexture at one level forming microtexture at the next, and very complex spa­
tial arrangements may be represented, possessing structured organisation similar to 
that observed in many natural textures (Ahuja & Rosenfeld, 1981; Marr, 1976). Struc­
tural descriptions are most appropriate for regular textures, such as reptile skiu ('22) 
and handwoven rattan ('65; Figure 1.6 on page 11), but are awkward for represent­
ing more amorphous structure, such as beach sand ('28) or clouds ('90). A further 
disadvantage is that analysis of many different textur.. primitives is computat.ionally 
demanding, as il.lustrated above (Figure 1.2 on page 4). We justified the existence of an 
apparent dichotomy in low-level human vision by the requirement for selective image 
analysis (§2.4), and similar r...a.soning applies to machine vision, suggesting that it it 
preferable to process a single texture ratber thau many individual elements (Marr, 1982). 
"Statistical" descriptions of texture adopt this more econonUcal approach, represen ting 

'Sixlh Edition, Cbancellor Press, London. 
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patterns of spatial variation indirectly by derived properties or ~features". In Ihis re­
spect, the partition into "structural" and "st.atist.i<:a1" approaches is analogous to the 
human attentive-pre-attentive dichotomy (Chapter 2), and is often characterist.,] aptly 
by "serial" a.nd uparaHel" processing. 

Both structural and s\.atistical approaches represent visual texture <:oncisely by 
higher-order properties or "feat.ures", the most appropriate form for which is innut'nc"d 
by the application. We shaH be concerned mainly with classification and segment.ation, 
commenting in passing on image synthesis and restoration techniques. We describe 
the5e important operations briel1y in l.he remainder of this section in order to motivate 
the selection of sui table feature properties during our review of stat.istical and structural 
approaches (§§3.2-3.3). Texture classificat.ion and image segment.atiou algorilhms are 
discussed in more detail helow (§§3.4·-3.5). 

3.1.1 Appropriate Features for Texture Classification 

Classification of a textured image involves assigning it to a part.icular class, each of which 
is represented by a small number of "features" derived from appropriat.e t.rainiog data. 
When each class contains only a single object, this process corresponds to recoguition. 
Images are usually assumed to be homogeneous, containing text.nre of a single lype, and 
a single set of features is used (.0 represent the entire image, enforcing globaJ2 comparison 
between the unidentified "test." image and known "training set.s" to establish the correct 
cla..,s label. Abst.raction away from raw pixel intensity allows accurate classification to 

be achieved without. precise duplication of viewpoint or ilOaging condition, (§3.1.3). It. is 
convenient to collect texture parameters into a feat.ure vect.or, and to view the training 
phase as forming a partition of multi-dimensional feature space (Devijver & Kittler, 
1982). Whilst the use of global features may simplify classifier design, it implies that 
a hypothetical object may be classified only after a separat.e process has sc-gmented it 
from its image surroundings. Feature extraction and classification are logically distinct, 
and we shall treat t.hem separately, discussing classification algoritbms in §3.4. 

3.1.2 Appropriate Features for Image Segmentation 

Segmentation of an image into homogeneous textured regions suit.able for classification 
necc-ssarily involves t.he use of local features. When an image varies unpredictably, fea­
ture estimates can be improved by ext.ending the area over which they are collect.ed, but 
this reduces the precision with which a texture boundary may be localised. This trade­
off is a manifestation of the uncert.ainty prin<:iple of information (Wilson & Granlund, 
1984), and bighlights a potential conAic!. when tbe Same features are used [or both 
classification and segmentation. 

Partitioning an image into regions which are homogeneous with respect to some 
propert.y is usually insufficient. by iLsdf Lo form a good segmrcutation. A narrow in­
terpret.ation of this description could involve clustering pixels sharing a common gray 

2)n t.his contexL, "global" implies a. lack or spaLiallocalis.ation within each lmage. 
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level, even if tbey a.re distributed in small clumps across the image: fragmented bound­
aries would result, with no apparent overall structure (Rosenfeld & Kak, 1982). A good 
segmentation makes explicit the arrangement of pbysical objects which gave rise lo tbe 
image, rather than re-expressing image-related information. This concept lay behind 
Barrow and Tenenbaum's intrinsic images, which seek to represent object-related prop­
erties such as surface deptb and orientation (Barrow & Tenenbaum, 1981). Ideally, this 
additional informa.tion would be available to assist tbe segmentation process, but in 
practice segmentation may contribut.e to thefonnalion of intrinsic images, and no prior 
information may be assumed. As with pre-attentive human vision, heuristic assump­
tions about the scene suggest that first-order differences in simple local image features 
are appropriate indicators for hypothetical object boundaries (§2.4). 

Segmentation is a difficult problem because tbe number of possible scene partitions 
grows exponentia.lly with image diuleusions (Gurari & Wechsler, 1982). Textur" variation 
within each region confounds t.he charact<'ristic image defining t.be de.sired partition, and 
this effect has been likened to the modulation of a carrier signal (Clark el al., 1987). In 
human vision, this complexity is apparently overcome by an attentive-pre-att.entive 
dichotomy invo] ving scrutiny of sclecied image regions. Automatic sp.grnentalion re­
quires accurate borders to be found in the absence of additional prior knowledge about 
the scene: segmentation and texture description must proceed simultaneously. Ap­
proximate boundaries may somet.imes be located fairly quickly, but refinement involves 
intense local scrutiny and is very slow (Blan. & Reinhardt, 1981). As described in §3.5, 
edge detection and region growing are tbe major approaches to this problem (Ballard 
& Brown, I B82), altbough many practical systems require additional information in tbe 
form of texture or scene parameters provided by human intervention. 

3.1.3 Invariant Texture Features 

Textnre variation is confounded by viewpoint, lighting, surface shape, and other ex­
trinsic factors. fdeally, these would be eliminated prior to texture analysis, but t.his is 
seldom possible and it may inst.ead be neces",ry to estimate these parameters. Features 
may be designed to be in variant to certain transforms in order t.bat. reliable classifica­
tion and ~egmentation may be obtained. For example, circularly-symmet.ric features 
are clearly rotation invariant, although they fail to capture the full ~truct.ure of oriented 
textnres (Kashyap & Khotanza.d, 1986; Vickers & Modestino, 1982), and rri\clal features 
are somewhat scale invariant (Peleg et 01., 1984). An alternative is to employ param­
eterised texture models which allow viewpoint. parameters to be estimated from the 
image (Cohen et al., 1991). 

Variation in lighting or surface geometry may give rise to smooth changes in first­
order statistics which do not. reAect intrinsic properties of the texture, and hence dif­
ferences in first-order propertie3 cannot be relied upon to discriminate texl·W'es. When 
these elfeds are global to the test image, they may be eliminated by bistogram equalisa­
tion (Hsiao & Sawchuk, 1989; Pietikainen et al., 1983; We.zka et oJ., 1976) or normalisation 
(Faugeras & Pratt, 1980; TomiLa et 01., 1982); and local variations produced by shadowing 
may be reduced by logarithmic pre-processing (Mitchell et al., 1977; Voorhees & Poggio, 
1987). 
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3.2 Statistical Approaches to Texture Analysis 

Statistical approaches to texture analysis follow the second form of the dennition on 
page 34, and seek to represent. text.ure indirectly by properties or features derived from 
its spatial distribution of gray levels. No attempt is made to under'tand tbe hierarchical 
structuff' of the texture; only properties derived direct.ly from pixel values ale used 
(Ahuja & Rosenfeld, 1981). The justification for this approach is the observed variability 
of natural texture, snch as beach sand (#28) or European marble (/1.63), whifh oHen 
makes any division iuto microtexture and macrotexture somewhat arbit.rary (Tamura 
et ul., 1978). 

Suitable image features may oft.en be extracted very efficienlly by simple local pro­
cc.'Sing, and hence may be computed by data-parallel architectllres (§A.1.3}. Statistical 
approacbes are analogous to the role proposed for pre-attent.ive humau vision: the com­
mon objective is to compute an elementary represenl,atioo in which first,-order differences 
reflect object boundaries or "texture edges" present in the scene (§2.4), Models of pre­
attelltive buman vision have influenced the design of tbese systems, and bave suggested 
suitable charact.eristics for t.he alphabet of primit.ive texture feat.ures. It. is essential for 
these to reflect sceue boundaries accurately, because it. is not possihle t.o compensate 
su bsequently for a loss of informat.ion al this stage, Botb the power spect.rum and co­
occurrence methods employ second-order image statistics gat.hered from a wide area t.o 
increase reliability (§3_2.2; §3.2.3), and are often applied to textnre classification. Image 
filtering generates local features more suitable for segmentation algorit,hms (§3.2.4), and 
tbe Gabor energy measllres discussed in Cbapter 'I are of tbis type. Texture variabil­
ity is acknowledged by random field models (§3_2,5), including Gibbs-Markov model, 
discussed io Cbapter 5, 

3.2.1 First-Order Image Statistics 

Pixel intensity is tbe simplest image property that can be employed as a texture fea­
ture, and provides sufficient informatiou to segmeut simple struclured scenes such as 
single cells (Blanz & Reinhardt, 1981), Intensity distributions of adjacent textured re­
gioos may have considerable overlap, and first-order properLi", are not reliable texture 
features because they are defined without reference to image cont,ext, and are strongly 
influenced by the image acquisition system (§3.1.3). Other first-order properties are 
similarly confounded, and it is therefore necessary to seek features sensitive (0 the spa­
tial arrangement of the texture, modifying their response t.o ca.ch pixel according to it.s 
cont.ext. 

Optimal edge detectors have been developed to respond to local variatinn in pixel 
intensity, markiug boundaries accurately even in noisy images (CanDY, 1983; Spacek. 
1986). Local edges reflecl bigber-order image properties, and are relatively unaJ1ect.ed 
by smootb cbanges in surface orientation, and bence are a more robust texture charac­
teristic. Textnres are spatially varying, and conventional edge-finders respond to many 
internal microedgcs in addition to the desired macroedges wheu adjac.enl, textures do 
not differ significantly in mean lumiuance (Figure 1.2 on page 4}. An attempt t,o classify 
each edge segment by assuming a particular texture model was only partially successful: 
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some microedges were filtered out but many spurious edge segments remained (£Om &; 

Kashyap, 1990). 

3.2.2 Global Image Statistics 

First-order properties represent image location precisely but are insensitive to ~patjal 

context; at the other extreme, power spectra capture aspects of spatial variation but 
are illseusitive to image location. Power spectra are too bulky to be used directly 
as texture features, and such an arrangement would also be insufficient.ly abstract, 
but may be employed indirectly by deriving features from tbem to represent heuristic 
perceptual properties such as "coarseness" and "directionality" (Ballard &; Brown, 1982). 
Another metbod uses gray-level run-Iengt.h statistics at various orient.ations, whicb are 
again collected iDto matri<:e5 and represented indirecLly by beuristic features (Conners 
& Harlow, 1980; Haralick, \979). 

Both tbese methods "re "ble to discriminat.e some varieties of natural texture, but 
"re less reliable t.han other features reported below (Conners & Harlow. 1980: Weszka et al., 

1976). They are still defined at "n insufficiently abstract level, and are sensitive to noise 
and monotonic changes in gray level (Haralick, 1979). Whilst their inherently global 
nature is suitable for image classification, it is less appropriate for accurate boundary 
localisation. 

3.2.3 Second-Order Co-Occurrence Matrices 

Julesz's (1962, 1975) conject.ure that pre-attentive buman vision is sensitive only to first 
and second-order statistics has been extremely inauential in motivating the search for 
reliable generic texture features (§2.3.2). Althougb tbe buman visual system certainly 
does not perform perfect.ly, it is attractive as a baseline, and controlled experiments 
show tbat. differencel in second-order image st.atistics correlate closely with pre-attentive 
texture discriminability. Second-order stat.ist.ics are defined for pairs of pixels, and hence 
are the simplest properties affected by spatial context. 

Second·order st.atist.ics may be operated on conveniently by collecting them into a 
co-occurrence matn.x (TIara.lick el al., 1973). For a given offset vector 6, matrix elemen t.s 
r~present tbe number of tim~ each pair of gray levels occurs in the image at. separation 6, 
and form au estimate of tbe second-order transition probabilities on normalisation. 
[t is usual to restrict 6 to cardinal directions and integer pixel ,t.<'ps, and it may be 
represented as (d, 0). The rank of tbe co-occurrence matrix 4l( d, IJ) matches the number 
of allowable gray levels. K. Symmet.ry is implied: 

4I(d,lJ) ;= 4I(d,1J +"l. 
An intermediate set of matrices is defined along principal direct.ions. 

S(d,lJ) =: H41(d,lJ) + 4I(d,1J + 11')],0 = 0,1r/2,1I',311'/2 (3·1 ) 

Circula.r symmetry may be enforced by summing over aU oriental.ions. 

Sed) = L S(d,lJ) (3·2) 
8 
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Co-occurrence matrices are too unwieldy to use directly, particularly for large g, and 
may exceed the dimensions of the image I Tbey are often condens"d into more compact. 
features, achieving graceful degradation when the matrix is sparsely populated. Four­
teen features have been selected heuristically to express significant variation (Haralick 
et al., 1973), of which the five most commonly used are (Ballard & Brown, 1982; Conners 
& Harlow, 1980; Haralick, 1979): 

K-\

Energy: E(d,lI) L [S.,,(d,II)]' 
1.)::0 

K-I 

Entropy: H(d,li) - "2: S,.](d,II)logS,Ad,lI) 
1,)=0 

I K-I 

Correlation: C(d, Ii) - "2: (, - x)(j - y)S,,;(d, II) 
~x.jv 1,)=0 

K-J "L .o,)H)Homogeneity: L(d,O)
 
,~~o 1 + (i - jj2
 
K-I

Inertia: J(d,O) L(i - j)2S'.;(d,0) (3·3) 
l,j=O 

where 

K-I K-I 

X == "2:i "2:Si,J(d,li) 
1=0 )=Q 

K-I K-I 

s; == "2:(i -:if "2: S••J(d,O) 
1=0 j~O 

and similarly for y and s~. It is not practical to compute these features for many 
offset lengt.hs, a.nd often a single value is selected (e.g. d = j). Haralick (1979) has 
suggested that there tend to be natural constraiuts between co-occurrence probabilitics 
at One spat.ial dist.ance with those at another, but ability to discriminate some textures 
depends critically on t.he choice of d (Modestino et al., 1981). At a largf' sf'l'aration, 
individual pixels tend t.o be weakly correlated, and the resulting stati,lics arc noisy 
(Wcszka et al., 1976). If gray levels are compared between local neighbourhoods rather 
than individual pixels, t.o form modified co-occurrence matrices, t.his effect iselirninat.ed. 
Unfortunately, the arbit.rary feature definit.ions (3·3) fail t.o capt.ure all significant tex­
tore structure (Conners & Harlow, 1980; Modestino et al., 1981), and have no obvious 
perceptual correlates (Tamura el al., 1978). 

Despite tbese reserval.ions, empirical and theoretical comparative sl. udies have shown 
that co-occurrence met.hods arc successful at discriminating natural tf'xtn:es (Conners 
& Harlow, 1980; Weszka el al., 1976). Classification accuracy was significantly higher 
than power spect.rum Or run-length met.hods witb Brodalz textures, aerial imagery, 
and synthetic images, consistC'nt. with the Julesz conjecture that s('('ond-ordcr statistics 
capture most. important (,('xtore variation (§2.3.2). Local co-occurrence statistics may 
be collected oyer small or irregular regions, and benchmark studies have shown that 
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reasonable localisation accuracy is achieved during image segmentation (du Bur eI al., 
1990). 

Concise Representations: Co-Occurrence Histograms 

Co-occurrence methods suffer from two main disadvantages: a large volume of interme­
diate data must. be processed; and tbe beuristic features (3·3) are arbitrary and lossy. 
Re-qnantising t.he image to a smaller number of gray levels reduces the rank of inter­
mediate mat.rices, decreasing computational reqnirements, and bas negligible impact On 
accnracy provided a reasonable number of gray levels remain (K = 64; du Bur fl. al., 
1090; Vickers & Modestino, 1982). Greater efficiency improvements are obt.ained by com­
pressing tbe KxK co-occurrence matrix into a single K-element bistogram. Weszka el 

al. (1976) suggested the use of absolute gray-level difference to index this histogram, and 
proposed definitions for f":alures analogous to tbose used with full co-occurrence mat.ri­
ces. Empirical classificat.ion accuraF:Y with their histogram feal.ures was about. equal to 
that achieved with features defined from tbe full co-occurrence matrix, bllt. achieved a 
considerable compntat.ional saving. Conners and Harlow (1980) suggested thi, apparent 
equality might refled tbe inability of common co-occurrence feat.ures (3·3) to capture 
all tbe information present in t.be matrix rather tban a deeper equivalence. 

Unser (1986) noted thai tbe covariance matrix CXlI of a pair of random variables, 
x and lJ, may be diagonalised by taking their sum and difference: 

CXlI 
~ (1 p)

O'x'Y P J 

(~) ~O -~)(~) 
Cu.y 2 (I+P

O'XlI 0 
0 )

1 + P . 

After an approximation, tbis just.ifies tbe use of SDm and difference histograms to rep­
resent second-order stal.ist.ics in place of bulky co-occnrrence matrices. Unser proposed 
anotber set of beuristic feat.ures for use wit.b t.bese bisl.ogra.ms; in nine out of fourteen 
cases tbey were identical to tbose proposed earlier by Haralick et al. (1973). Empirical 
c1assiflcation result.s suggested tbat Unser's histogram features were almost all accurate 
as tbose obtained from tbe full co-occnrrence matrices, confirming the inadequacy of 
the latter. 

Improved Co-Occurrence Features: Stochastic Models 

Histograms and matrices of second-order image statistics are both dependent. on the 
use of heuristic features to express their information more succinctly, leading to arbi­
trary approximations. An alternative approacb is to apply a stochastic model to all 
t.he entries, ma.king explicit t.he \'ariability of natural textures, and parameters may 
be selected and weighted approprii'.tely by maximum-likelihood methods. Vickers and 
Modestino (1982) assume the co-occurrence matrix is drawn from a multinomial distri­
bulion, witb independent entries, but note that accurate parameter eslima.(ion requires 
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a large amount. of training data. If this is not available, they suggest additional con­
straints could be pt:Ovided by assuming a random field model for the texture (S3.2.5). 
Good empirical results were reported on Brodatz classification, but a thorough analysis 
was not conducted and some of their assumptions seem questionable. The multino­
mial distribution was also used hy t:nser (1986) to model the components of his sum 
and difference histograms. Whilst these methods avoid the use of arbitrary alld lossy 
features, and have the advantage of statistical techniques, they are dependent on thc 
appropriateness of the assumed stochastic model. 

3.2.4 Local Texture Properties 

Representing texture by global statistics is appropriate during classification because 
('acb image contains a homogeneous texture sample, but local properties may be morc 
reli_ble because they are Jess affected by smooth changes arising from the image ac­
quisition environment. Local features arc also preferred during segmentation, when 
the regions over which statistics must be collected may be small or irregular (§3.1.2). 
Exploitation of local image properties is consisteut with texton theory (Jules7., 1981), 
which marks texture boundaries where there is a differeuee in first-order feature statis­
tics (§2.2.!). Compactness and spatial localisat.ion are important characteristics of 
primitive features apparently employed by the human visual system, and our just.ifica­
tion for the observed dual-paradigm structure requires that they may be extracted by 
simple data· parallel processiug (§2.3). Data-independent transformations are discussed 
in this section: their ohjective is to allow texture edges to be located in the filtered 
image by "standa.rd" first-order techniques (Figure 1.3 on page 5). Methods operating 
at a slightly higher level are discussed below (§3.3.3). 

A system for segmenting images by thresholding the value of a. local ima.ge property 
was described by Zucker, Rosenfeld and Davis (1975). This relied on a global histogram 
of the transformed image being bimodal when two texture t.ypes were present, one peak 
corresponding \.0 each texture. Image stat.i.t.ics were extracted after convolul.ion with 
"spot detector" kernels, whose spot. size was adjusted automatically, but. non-maximal 
snppression was required to form clear peaks in the histogram. Such a simple operator 
has only limited discriminating power but could be extended by a larger set. of local 
properties (Zucker el al., 1975). 

Pnrely linear filtering is invertible and heuce cannot extract information, but. linear 
cOllvolution is comput.ationally attractive a.nd a common techuique is to eompose it 
with a point non-linearity such as squaring or absolute value (Ca.elli, 1985). Linear 
averaging may be used to overcome spatial variability a.nd "noise" in feature output, 
bnt this can incorrectly eliminate small regions and mislocate boundarie;, and non­
linear met.hods may perrorm bett.er (§3.5.3). Particular care is required in the vicinity 
of texture boundaries because the region of support of the feature detcct.or may span 
more t.han one texture type, witb unpredictable results, but. techniques derived from 
edge-preserving smoothing may be employed to reduce errors of this type (Hsiao & 
Sawchuk, 1989). 
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Te:l:ture Energy MeMU7"eS 

Many filter kernels have been proposed for use in conjunction with Caelli\ (1985) frame­
work. A set of standard masks, designed to respond strongly to heuristic spatial features 
such as bars and rings, was proposed by Laws (Ballard & Brown, 1982; Hsiao & Sawchuk, 
1989; Pielikainen et al., 1983), and similar kernels were proposed as edge or spot detec­
tors (Caelli, 1988; Zucker el a{., 1975). Precise numerical values appear less important 
I-han the kernel's general form (Pielikiiinen el al., 1983). Indirectly, these filters measure 
the local spatial frequencies present in an image, discarding phase, and are known as 
lezlure energy measures. Empirical classification result.s with Brodatz texl-ures suggest 
that La.ws' kernels a.c1Jieve higher accuracy than second-order co-occurrence statistics 
(Pietika.illen et ai., 1983). 

Spatial/spatial-frequency dependence may be made more explicit hy the use of the 
Wigner representation (Reed & Wechsler, 1990), effect.ively a spaLially-resf.ricled Fourier 
transform. Recently, tunable Gabor kernels have att.racted much interest because they 
achieve optimal joint resolution in the spatial and spectral domains (Daugman, 19R5; 
Gabor, 1946). This theoretical advantage is reinforced by empirical studies which have 
fouud Gabor kernels suitable [or distinguishing many natural and synthetic lextures 
(Bovik el aL, 1990; Tan, 1988). We discuss the attradive properties of these fill-ers in 
more detail in Chapter 4, then review some previous applications to image analysis 
before describing our experiments and proposals [or novel Gabor texture features. 

Tex:lure energy measures may he computed quickly and easily, and do nol require 
data-dependent processing. These characteristics are similar to those observed (or pre­
attentive human vision, and imply analogous computational benefits (§2.4). Unlike 
features collected [rom global histograms, the simplicity of ener~ mea.sures a.llows the 
formation of complete filtered images, assigning a feature value to each site, and this is 
particularly advantageous during segmentation (§3.1.2). F".aLures are robust. to smooth 
changes in texture parameters because they are collected locally, a·nd sophisticated 
feature-reduction metbods have been proposed to identify whicb members of the filter 
family contribute most strongly 1-0 texture discrimination (Caelli, 1988; Unser & E.<Jen, 
1989). 

3.2.5 Random Field Models 

None of the texture models described in this Chapter is in perfect agreement with 
real image data. Even disregarding variability arisillg from ext.ernal sonrces, such as 
surface geometry, ligbting, and camera paramet.ers, correspondence between abstract 
models and real t.extures is inexact. Disparities arise because the representations we 
have discussed ignore an important and fundamenl-al characteristic o[ natural texture: 
it.s variability (§1.3). Whilst random variation can never be predicted exactly, it. may 
be described, analysed and expected behaviour predicted by stochastic modelling, which 
forms probabilistic descriptions. This framework captures complex random variation 
in a small number of parameters, and allows models (0 be manipulated by opt.imal 
maximum-likelihood techniques (De~ijver & Kittler, 1982). Random field models may 
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be used to describe both microle>,ture and macrotcxtllre, but. we sball postpone discus­
sion of tbe latter application nnt.il §3.3.3 although the distinction between tbe;e fonns 
sometimes vanishes. 

Raudom field models describe the image by a multivariate probability distribu tion, 
specifying the rna rginal distributiou for each pixel. Within a cbosen famil} of dis­
tribution [unctions, eacb textnre class may be descrihed hy selecting an appropriate 
set of parameter valnes, wbich determine pixel mean, variauce, and correlation struc­
tnre. Optimal maximum-likelihood tecbniques operating on tbe joint likelihood o[ all 
image pixels may be nsed to geuerate parameter estimates, classify textures, and seg­
ment images. Ergodicity is often assumed, implying that similar stochastic beb.aviour 
is observed within and between texture samples, although t.his sometimes br""ks down 
(Gagalowicz & Ma, 1985). Ouce appropriate feature vectors have been oOtain~d, they 
may be operated on in the same way as ot.her derived statistics (Kholanlad ;:., eben, 198'); 

Maojunalh & Chellappa, 1991). Provided that real kriures vary in a similar m?.nner to 
the parameterised random field models, tbis approach bas the advantage that no loss 
of information occurs by the use o[ heuristic features. Ideally, the joint distribution 
would be estimated without the need to assume a parametric form, but phenomenal 
amounts of training data would be required to form accurate estimates able to operate 
at a sufficiently abstract. level. 

Simultaneous Autoregressive and Gibbs-Maf>ko"T1 Models 

Motivated by the original Julesz conjecture (§2.3.2), Pratt, Faugcras and Gagalowicz 
(1978) devised a method to synthesise random fields wiLh specified secoud-order prop­
erties. A field of white noise 'V = {'Vi liE L} was couvolved with a local kernel, to 
synthesise field x: 

x, = fl-i+ I::.BJ -.(X,-p.,)+II" 'tiEL (3·4) 

wuere {3 is the convolution kernel and I.t the pixel meau. Fields of [his Lype are known 
as simullancou-5 anloNgl'cssive (SAR), and are convenient Lo manipulate because of 
their local linear neighboorhood structure (Besag, 1974). Parameter estimation may be 
achieved by computing a "whitening transform" that transforms x back to" (Fallgeras 
& Prall, 1980). 

Autoregressive models axe computat.ionally simple, but. fail to capture tbe full st.ruc­
ture of natural textnres. Second-order stat.istics of SAR fields may be modelled exactly 
by Gibbs-Markov models, alld correspondence is exact for mult.ivariate normal distribu­
tions. The converse is not. true, and Gibbs-Markov models effectively form asuperseL of 
SAR models having greater flexibility to model natural textures (Chellappa & Kashyap, 
1982). Gibbs-Markov random fields are popular texture models, and arc the subject 
of Chapter 5. They are defined by conditional probahility distributions operat.ing on a 
local neigbbourhood, making explicit the role of image context, and are most suitable 
for modelling amorphous textures not possessing long-rauge struelure. 

Random field models capture the structure of a wide variety of uat.ural text.ures 
in a concise parameter set, the success of which may be verified conveniently by syn­
thesis (Figure 1 A on page 7; KholallzaO & Kashyap, 1987). Complltat.ional difficult.ies 
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orlen dictate the use of simplified models, such as the auto>normal Gibbs-Markov ran­
dom field (§5.1.5). One general criticism of global statistics is tbeir inability to reflect 
smooth changes in texture parameters, but non· stationary random field models address 
this problem (Silverman & Cooper, 1988). A more serious concern is that random field 
models do not operate at a sufficiently abstract level: they effectively perform stochastic 
template-ma.tching on I.he image array, and accordingly are sensitive to any distortion 
of the texture. Image structure, of the type discussed in §3.3, cannot easily be incorpo­
rated into pixel·based random field models. QUI proposals for hybrid Gabor-Markov 
models overcome many of these current limitations (§5.7). 

3.3 Structural Approaches to Texture Analysis 

Our definition of texture (page 34.) offered a description at two levels, in terms of: (il the 
spatial arrangement of primitive elements; and (ii) the properties they give rise t.o. 
R.ather than representing textures indirectly by associated statistics, structura.l models 
seek to represent their hierarchical organisation directly (Ra.ralick, 1979). Statistical 
models refer to the a.rrangement of pixels to form a m,:crotexture; structural models to 
the arrangement of texture primitives to form a mocrotexture (§1.2). 

Regular textures may be described mathematically by gra.mmars which specify tes­
seUations of the plane (Ballard & Drown, 1982), but texture primitives must be of regular 
size and shape, and bave a precise spatial arrangement for this model to be accurate. 
All equivalent texture elements possess a common property but it is not specified by 
t.he structural model - it is often taken to be a region of near-constant intensity, but 
could be any of the microtextures described above (§3.2). "Strong" texture models 
are rigid, and do not permit spatial interaction hetween microtextures, but only syn­
thetic textures arc perfectly regular, and inflexible deterministic models of this type 
are seldom used (Haralick, 1979). We shall discuss "weak" t.exture models, which do 
allow probabilistic spatial interaction (Haralick, 1979). Note that when a t.exture primi· 
t.ive consists of a single pixel, structural and statistical models are virtually equivalent 
(Ahuja & Rosenfeld, 1981). 

ldeaUy, structural models are estimated by segmenting individual texture elemeuts 
and noting their spatial arrangement and interaction (§1.2). This is similar to the 
method proposed by Marr (1976), and suggests a strong link between esticHation of 
structural texture features and image segmentation (§3.5). In practice, this approach 
may be ill-specified for natural textures because the variahility of both microtexture and 
macrotexture means there is no clear distinction between t.hem (Tamura el al., 1978). 
For computational reasons, it is preferable to manipulate a single texture rather than 
a collection of elements, and hence structural models are most appropriate to perform 
fine discrimination on regions located by a "pre-attentive" statistical analysis, or when 
the statistical approach has failed altogel.her. 

Structural allalysis is feasible for regular textures, snch as straw ('15) alld reptile 
skin ('22; Figure 1.6), because these decompose unambiguously into micro and mo.crQ­

texture. Weak models of these particular Brodat.z textures were formed by extracting 
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and grouping regions of near-homogeneous intensity (Tocnila el 01., 1982). Several prim­
itive textnre types were identified and chara.cterised by a number of simple parameters, 
such as brightuess, size, and repeat vector (including level of va.riability), determined 
by examining global histograms. Reconstruction of the texture was possible using in­
t.erading placement rules, aud classification was achieved by comparing feature vectors. 

A weakness of t his approach was the use of global histograms to determille text.ure 
behaviour, because this implicitly assumes that training images are homogeneous and 
not subject to perspective or other distortion, whereas both assumptions hold only 
under ideal conditions. This limitation may be overcome by a purely local approach 
(Hawey & Kanade, 1989), or by assuming particular scene geometry to guide tbe selec­
tion of texture primitives (Blostein & Ahuja, 1987). Systematic variations in mtensity 
across an image are finnessed by the use of more abstract feature-derived primitives, 
such as edges (Vilnroner et 01., 1936). One "lndy charact.erised Brodalz lextnres by 
average ",paralion between oriented edge segments and claimed superior accuracy to 
co-occum,ncc or text.ure energy method~ (Kjell & Dyer, 1985). Another took inten­
sity extrema as primitives and achieved similar classification accuracy to co-occnrrcnce 
methods, but with much less computational effort (Mitchell el "I., J977). 

3.3.1 Generalised Co-Occurrence Matrices 

Spatial arrangements of texture primitives may he subjected to a similar second-order 
co-occurrence analysis to that employed above for pixels (§3.2.3), formalised by the 
use of ger>eraiised co-occurrence matrices (Davis el 01., 19(9). Direct representation of 
relati"e locations of features of a given value is not advantageous beca.use lbe resulL­
jng matrix is very sparse and fails to captnre the full spaiial properties of tbe texture, 
and hence indirect spalial constraint predicates are preferred. Heuristic features similar 
to those proposed above (3·3) were defined on these generalised ma.trices, i\,1d an em­
pirical study suggested they could lead to more accurate classification than gray-level 
co-occurrence matrices (Davis el al., 1981). Feature-based represeutations have the ad­
vantage of greater abstraction, and hence may be more immune to irrelevant, intensit.y 
variation. 

3.3.2 Statistics of Local Image Regions or "Blobs" 

1\-lethods described above make explicit the spatial arrangemeul of texture primitives, 
but structural models may also make use of other properties. The texlon t.heory of 
pre-attentive humau vision predicts that texlures may be distinguished ou the basis 
of differences in first-order "blob" stalistics (§2.2.l), and was cited by Voorh..es as 
the motivation for his texture segrneutal,iou program (Voorhees & Poggio, 1987). Sma.1l 
blobs were detect.ed by Laplacian of Gaussian filtering (Ma.rr & Hildreth, 1980), simple 
statistics computed from them, and image boundaries marked between reijions whose 
blob attributes differed. Performance of Voorhees' algorithm, which was not plausible 
as a biological model, was demonstrated only for favourable images (Voorhees, J987; 
Voorhees & roggio, 1987). An int.eresting extensiou of this approach is to characterise 
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textnres by their fractal dimension, measured by observing the rate of variation of blob 
attributes as a Cnnction of spatial resolution (Peleg et al., (984). 

3.3.3 Random Mosaic Models 

Random mosaic models tessellate the plane nondetermiuistically to represent texture 
structme, and share many of the advantages noted above for st.ochastic micrmexture 
models (§3.2.5). An additional factor is their ability to describe the physical generat­
ing process directly in some cases, obtaining a deeper correspondent:,", with tbe lexture 
origin (Ahuja & Rosenfeld, 1981). Mosaic models may be divided into two categories: 
(i) cell structure models tessellate the plane by defining bouudary lines; (.:i) coverage 
models hy randomly distributing particular geometric shapes. Texture primitives in­
teract according to an assnmed probability distributiou, for which paramC'«,rs may be 
estimated (Ahuja & Rosenfeld, 1981; Modestino el al., 1981). 

As with other structural models, suitable microtextures must also be estimat.ed to 
describe texture primitives, but regions of constant gray level were found iu"dequate 
to model Brodatz texture.;: (Modestino cI al., 1981). More realism may be obtained by 
nsing a random field to define both macrotexture and microtexture, combining the ad­
vantages of stochastic models at two levels (Cohen & Cooper, 1987; Derin & Eltiott, 1987). 
Structural random fields may be used to impose spatial coherence heuristics, and Gibbs 
random fields are particularly suitable for this purpose (§5.1.3). Hierarchical random 
field models are discnssed in §5.6.2 - one significant drawback is t.heir computational 
appetite. 

3.4 Texture Classification Algorithms 

Textnre classification involves selecting a class label that best describes au unidentified 
"test" image by comparing it with sets of known "training" images (§3.1.1). Direct 
comparison is uuwieldy and insufficiently abstract, therefore training image. or texture 
classes are represented indirectly by feature vectors. Images are usually assumed to 
contain homogeneous texture samples, even though this may not be true, and a single 
feature vector describes the entire image. It is possible to compare the kst image with 
class featmes directly, but it is often preferable to represent it by a "test' feature vector 
and perform indired comparison. Errors will, of course, result if the images are not 
bomogeneons and feature vectors are insufficiently abstract to finesse thi~ (53.1.3), or 
if the choice of texture features is inappropriate. 

Which classification strategy should be followed depends in part. on how much infor­
mation about the feature distribution is available. Bayes classification is opl.imal when 
the joint probability density of image features is known, or a suitable parallietric form 
may be assumed (§3.4.1); bnt often this is not the case, and simplified classifiers are 
mOre appropriate. We use Bayesian classification to compare the performance of our 
proposed Sampled-Markov and Gabor-Markov frameworks with a conventional text.ure 
analysis (Chapter 6). 
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3.4.1 Optimal Bayes Classifiers 

Bayes classification selects the optimal class label by maximum likelibood techniques. 
Let us assumc tha.t we bave estimated feature sets corresponding t.o C different texture 
classes, and have to decide to which class a previously unseen trial texture x belongs. 
We assume that the a pn"ori class probabilities 1l"; for the classes WI, ... ,we are known, 
E,1l"; = 1, and that all mis-classification errors incur the same penalty. We shall 
suspeud judgement on tbe trial texture if it doesn't appear to fit easily into any of 
the classes by adopting a rejection thresbold A (Devijver &. Kittler, 1982). Tbe Bayes 
classifier wforms the class a pos/erion" probability P{Wj Ixl: 

'T>{ I } = P{x IwJ1l") 
r w) 

(3·5)X P{x} 

where P{x} is the unconditional density of x (effectively a normalising constant). We 
select. the class with highest probability: 

IT ma>-:P{w) I x} 
) 

W;, P{w, I x} = n ~ 1 - Aw(x) (3·6){ wo, J - A> n 
forming the maximum a pos/en"ori (MAP) class estimate w. If tbere is a tic between 
two or more classes, anyone of tbem is chosen. Wben .A ~ eel, the reject option Wo is 
unavailable. 

Random field models assume that image pixels follow a particular distribution pa­
rameterised by the class vectors, and in this context a lossy intermediate representation 
may be avoided by representing the test image by its pixel array or pat.tern vector, 
x in (3·6). Classification t.hen reduces to the simple task of evaluat.ing a posterioti 
likclihoods. 

An alternative approach is to represent the test. image by another parameter vec­
tor, x. Maximum likelihood methods may still be used provided the joint density of 
feature coefficients is known, and in practice these are oft.en assumed t.o follow a par­
ticular distribution, muHinomial and multivariate Gaussian dist.ributions having bcen 
used for I.bis purpose (t: nser, 1986; Vickers & Modestino, 1982). 

Classification of feature vectors is a classicaltbeme in statistical pattern recognition, 
and many approaches are available (Devijver & Kittler, 1982). It is usual to view feature 
vectors as points in a parameter space, which is partitioned between the various text.ure 
classes during training, possibly including a reject option, so that test vectors may be 
assigned the correct class label quickly. In general, the nature of the class boundary or 
discriminant function is arbitrary, but for lbe special case of a two-class problem, whcn 
feature vectors are normally distributed with cOHunon covariance .r: and meaus I-Lj, the 
decision bounda.ry is a hyperplane:3 

xT:r:-'(I-Ll-I-L2) = HI-LI+I-L2)T.r:-'(I-LI-I-L2)+JOg(1l"2/1l"d (3·7) 

where 1l"; are the a ptioti probabilities (Devijver & Kittler, 1982, page 40). Effectively, 
this plane defines the direcf.ion whicb rna.>:imally discriminates two classes, along which 
tbe test vector is projected. 

JThis special case is known B.S the Anderwn discrtminanl plane. 
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3.4.2 Probabilistic Distance Measures 

Our Bayesian classification rule (3·6) does not suggest how reliably two classes may be 
discriminated, and Ba.yes error cannot usually be evaluated exactly because it requires 
a complicated integration ovcr the entire feature space, 6. More tractable probabilistic 
distance measures may be used to bound it, of which two are of particular interest: the 
Bhatlacharyya coefficient IB, and Mahala11.obis distance Cl.M. 

IB -log l-./p{X IWI} P{x IW2} dx (H) 

Cl.M (1-'1 -1-'2)T(1I"l I:, +1I"2I:2)-1(1l1 - 112) (3·9) 

The Bbattacharyya coefficient IB gives a better estimate for the Bayes error tban 
tbe Mahalanobis distance, but cannot be evaluated except in special cases; for exam­
ple, when feature vectors are drawn from a multivariate normal distribution G(I-';, L,) 
(Faugeras & Pratt, 1980): 

Is = ~ (11, - 1l2)T (Ll + I:2t ' (111 _ 1-'2) + ~ log (I~(LI + L2) I) (3·]0) 
2 JIL,IIL11' 

[n the case of equal covariance matrices and a priori probabilities, I:, = L1 and "I = 
"2, tbe Bbattacharyya and Mahalanobis measures are equal. Probabilistic distance 
measures indicate the distinctiveness of pairs of texture classes, and are useful to assess 
the performance of feature sets independently of subjective criteria or classification 
algorit.hm (§3.6.1), and in determining whicb regions t.o merge during agglomerative 
clustering (§3.5). 

3.4.3 Sub-Optimal DisCl"iminant Functions 

A linear decision boundary is optimal for multivariate nonnal distributions witL com­
mon covariance matrix, but in practice is often applied under other circum,tances as 
well because of its computational simplicity. For two classes with arbitrary feature 
distributions, we may project tbe test feature vector onto the direction:' 

(I:, + I:2t'(111 - 112) (HI) 

wbich maximises tbe ratio of belween-da.~s and within-class variation (Dedjver & Kit­
tler, 1982). It reduces to the maximum-likelihood discriminant pla.ne wbeJ1 the above 
conditions are satisfied, and may be extended to multiclass discrimination by comput­
ing: 

do == (I-', - x)T I:~I(I-'; - x) 

and maximising d, with respect to tbe class label i (Weszka d. aL, 1976). 

In practice, tbere may be insufficient feature measurements defining eAch class to 
estimate covariance matrices reliably, and a furtLer approximation may be t.aken by 
assuming that they are diagonal (Chellappa &. Chatterjee, 1985; Kashyap & Khotanzaa, 

<lKnown 8.5 the Flsher linear discriminant. 
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1986). This implies features are independent, whicb is unrealistic, but does allow the 
variability of each feature to he taken into account (Coleman & Andrews, 19(9). Sim­
ilarity with (3·10) has led some researcbers 1.0 refer optimistically to this normalised 

Euclidean distance as the Bhattacharyya distance (Chellappa & Chatterjee, 1985). 

When even the diagonal elements of the covariance matrix are unavailable, perhaps 
because each class is defined by a single vector, there is limited scope for sLatistical 
rigour. One popular measure is the weighted Euclidean distance (Manjnnath & Chellappa, 
1991): 

6.w = (x_y)TW-l(X_y) (3·12) 

where Wk,( = (xi + yD6~,l, but this is sensitive to a translation of feature origin. Alter­
natively, the Euclidean distance may be used directly, following the nearest-neighbour 
rule (Devijver & KitHe', 1982; Mitchell el al., 1977). This form is dimeusionally inhomo­
geneous, and shou Id be considered as a last resort. 

3.4.4 Optimal Feature Selection 

We have a.<sumed above that the logically distinct operations of feature extradion and 
classification are indeed performed separately, but this need not be tbe casco When 
feature extraction or model matching carries a high computational cost, it is advan­
tageous to structnre the classification as a decision tree (Tomita et al., 1982; Vilnrotter 
el al., 1986). Features with greatest discriminating power are placed near the root of 
the tree, and direct subsequent processing accordingly. 

Similar principles guide l.he selection of an optimal feature set. Feature vectors 
are sometimes generated by an entire family of filters, many memben; of which have 
little resolving power. A feature extractor matrix transforms the current feature set 
into a smaller vector whilst optimising a probabilistic distance criterion (Devijvcr & 
Kittler, 1982). Compression a4;orithms may be used to identify the most significant 
components within each region, hut. these do not always pick good discriminants (Unser 
& Eden, 1989). Orthogonal feat.ures may he selected by comparison of "oue-at-a-time" 
Bhattacharyya coefficients (Coleman & Andrews, 1979; du Bur et ai" 1990). 

3.5 Image Segmentation Algorithms 

Segmentation algorithms partition an image into disjoint regions, each homogeneous 
with respect to some property. Automatic segmentatiou algorithms do not require 
prior knowledge or the numher or type of textured regions, but estimate these from the 
scene without external intervention. Additional constraints must be provided to specify 
segmentation fully, either in the form of heuristics reflecting the continuity and spatial 
coherence of physical objects, or a parameterised image model. Similar comtraints arc 
suggested by models of human vision (Chapter 2), and seek to express ex--peclation about 
the nature of the physical world (Marr, 1982; Tsot50S, (987): boundaries are smooth and 
continuous, and regions do not contain many boles or small pockets. Henristics may 
drive l.he segmentation from the start, or can be applied during post-processing (§3.5.3). 
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Smoothness and homogeneity constraints apply principaUy to the underlying physical 
object and may not be fully reflected in the image. When the image is modeUe<l by 
random fields, maximum-likelihood segmentation may be achieved by extremi,ing a 
cost function. 

SegJnentation reqnires analysis of both spatial and statistical properties, leading to 
a conflict hecause image features are estimated accurately from large areas but spatial 
properties from smail regions (Wilson &: Granlund, 1984). Even when aU texture pa­
rameters are known a priori, segmentation is an extremely difficult. problem because 
hypothetical bonndaries increase expooentiaUy with the number of parameters, and ex­
haustive search is infeasible (Curari &: Wechsler, 1982). Approximate solutions may be 
obtained by directed loca.! search, fuUy evaluating only a small proportion of possible 
segmentation hy potheses. Following the central dichotomy of low· level human vision 
(Chavter 2), this may take the form of a two-stage process: "pre-attentively" defining 
a region of interest 1.0 establish the vicinity of the border; and "attentive" refinement to 
locate it accurately (Bla~z &. Reinhardt, 198J). IL may be more efficient. to use a process of 
continual refinement rather than a two-stage algorithm, supported by multi-resolution 
representations (Sher &: Rosenreld, 1989; Spann &: Wilson, 1985). Experimental segmen­
tation of synthetic textures and Brodatz montages lIsing Gabor filtering is described in 
Chapter 4. 

3.5.1 Merging and Splitting Image Regions 

The two main approacbes to establishing distinct image regions are merging and split­
ting (Dallard &: Brown, 1982). U texture parameters are unknown a priori, they may be 
estimated reliably from large regions of a single texture type - but these are only avail­
able after the segmentation is complete I A compromise is to impose a grid structure on 
the image, and to estimate parameters within each of the regions it defines. The size of 
these regions should be su fficient for parameters to be estimated with some confidence 
but small enough for most regions to contain a single texture type. Adjacent regions 
with compatible parameters are merged, and their parameters re-estimated, making 
explicit the application of both spatial and stat.istical constraints. Agglomerative clus­
tering continues until: a given number of regions remain (Coggins & hin, 1985), an 
arbitrary threshold is reached (Caclli, 1985), or according to a statistical criterion (Sil­
verman &. Cooper, 1988); but the resulting border still reSects the imposed grid structure, 
and derIDes the a.pproxima.te location of the true houndary. Small errors rna)' occur be' 
cause flawed merging decisions may not he reversed by this algorithm, and some initial 
regions may straddle texture boundaries, but segmentation of non-stationary images is 
facilitated by using local properties. 

Splitting algorithms proceed in the opposite direction, from coarse to fine resolu­
tion, and recursively decompose image regions. Purely statistical approaches apply a 
threshold derived from a bimodat fea.ture histogram to segment regions (Zllcker et 01., 

1975), but per-pixel classifica.tion does not take futl account of spatial context, ~eading 

to ragged boundaries and clnmps of isolated pixels. Spatial coherence may be imposed 
by a post·processing step (C"~Jlj, 1985). 
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Spatial constraints may be employed direct.]y by computing features over Image re­
gions, leading to more reliable feature estimates. A qnad-tree strucLure (Spann & Wilson, 
1985) or resolntion pyramid (Burt & Adelson, 1983) is useful to represent the image a.t 
several levels of spatial resolution, and may contain image or feature information (Sher 
& Rosenfeld, 1989). Nodes near the apex project to many "children" near the base, and 
a coordinate grid is imposed within each layer. Per-pixel classification near the top of 
the pyramid defi nes approximate locations of texture boundaries, and these estimates 
are refined at finer resolution by reclassifying pixels in their vicinity, terminating at. the 
base of the pyramid. As with region merging, t.he boundary is approximat.e: errors can­
not be recovered from, and the imposed grid st.ructure may lead to fragmentation; but 
tbis is addressed by a combiued split-and-merge algorithm (Ballard & l3rown, 1932; Chen 
& Pavlidis, 1983). Defining approximal.e image boundaries at each resolution seledively 
targets expensive local search to key image locations, achieving accurate segmentation 
with bigh efficiency. 

3.5.2 Detection of Texture Edges 

Splitting and merging algorithms apply to image regions, and a·re suitable when texture 
features may only be computed at grid points; for example, it is inefficient to ext.ract 
a feature vector for each image location when tbey are derived from histograms or co­
oCCurrence matrices (§3.2.3). Other features, such as texture energy mea.sures, may 
readily be compu ted loca.lly, and allow the use of first-order edge-detectors 10 locate 
image boundaries (Figure 1.3 on page 5). Texture-edge detectors respond only to local 
changes, and offer greater robustness when image boundaries are confounded by noise 
and smooth texture variation (Nabi & .JahanshaJli, 1977). Anotber advantage is that 
small bnt distinct regions possess clear image boundaries, but may fail to generate 
distinguishable peaks in global histograms and bence he overlooked by region-based 
algoritbms (Bhanu & Parvin, 1987). Ideally, combined edge and region processes should 
be used (Geman & Gernan, 1984). 

Multiple resolution representations are useful in refining the location of image bor­
ders efficiently. Putative texture edges are first detected near the apex of the pyramid, 
and are located conservatively: the width of the border region is a const.a[t number 
of pixels, bnt projects into a smaller area in the image at successivcly finer resolut.ion 
(Spann & Wilson, 1985). Pyramidal processing is driveu by the principle that expensive 
high-resolution processing is guided by approximate results computed at 10lVer resolu­
tion, in accord with the Guided Search model of pre-attentive buman vision (§2.4.1)_ A 
clear dicbotomy bet.ween serial and parallel processing does not emerge because there 
is a gra.ded distinction between "coarse" and "fine" det.ail. 

3.5.3 Refinement of Approximate Texture Boundaries 

Region merging leads to jaggy texture boundaries, reRecting the imposed coordinate 
structure; feature clustering Lo ragged and noisy boundaries because spat.ial continuity 
constraints have not been fully expressed; and texture edges may be fragmented or 
incomplete, forming a partial segmentation. In each case, acceptable segmentation 
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accuracy may be achieved hy carefully adjusting boundary position according to selected 
optimisation criteria. It is often acceptable to restrict analysis to local changes of the 
existing approximate segmentation boundaries, perhaps by using dynamic programming 
(Derin & Elliott, 1987). 

Relaxation labelling processes impose many local constraints simultaneously inorder 
to achieve a globally consistent SCene interpretation (Kittler & llhngworth, 1985). Each 
node communicates only witb its local neighbours, adjusting its state according 10 local 
criteria, hnt constraints propagate Over the network allowing an acceptable sub-optimal 
solution to he found. Relaxation algorithms are inherent.ly para.lIe! and are a popular 
model for simultaneous expression of many local constraints (Ca.elli, 1985), but careful 
control is required in order to ensure termination wbilst allowing many avenues to be 
explored. "Greedy" update rules, which always select the optimal loca.1 state, enSUre 
convergence bnt do not explore the space of solut.ions very thoroughly. Relaxation 
algorithms benefit from mnltiple-resolution representations because the rate of conver­
gence is increased (Kittler & lliingworth, 1985; Tcrzopoulos, 1986). When the objective 
is to refine an approximate initial boundary, greedy optimisation at successively finer 
resolution is an efficient approach (Bouman & Liu, 1991). 

Relaxation algorithms may be nsed in conjunction with recursive splitting, magnify­
ing local image contrast to encourage the global feature histogram to become bimodal 
(Dhanu & Parvin, 1987), and are inflnenced by spatial organisat.ion without requiring 
arbitrary partitioning of the image. Added emphasis on local context diminishes the 
influence of smooth va.riations of texture properties across the image. Probabilistic 
relaxation allows a wider range of possible solutions to be explored but often at consid­
erahly increased computational cost (Geman & Geman, 1984; Hsia.:> & Sawchuk, 1989). 

3.6 Discussion of Current Approaches 

Ma.ny of the approaches to texture manipulation discussed in this Chapter arose from 
heuristic proposals rather tha.n dispassionate alla.lysis of information-processing require­
ments. Before outlining our approach to t.he development of imprOVed texture repre­
sentations (§3.6_2), we first discnss how competing models may be evaluated. 

3.6.1 Evaluation of Feature-Extraction Methods 

Comparison between feature extraction methods is desirable in order to discover wbich 
featnre set performs best in wbat circumst.ances, and why. A number of approaches 
have been used, with varying degrees of objectivity and generality. By far the most 
commonly used protocol is "classificat.ion result comparison", in which known texture 
samples are classified by a single algorithm with different feat.ure sets and performance 
is determined quantitatively by tbe proportion of textures identified correctly (Conners 
& Harlow, 1980). This methodology has been used to support many c1a.irns of the 
snperiority of one feature extra.dion method over anot.ber, ort.en using textures from 
the Brodatz albnm (e.g. PictiU.incn et al., 1983; Unser, 1986; Weszka eI al., 1976). We 
adopt this approach to compare the performance of OUr proposed Sampled- Markov 
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and Gabor-Markov frameworks witb a conventional Markovian analysis using optimal 
Bayesian classification (Chapter 6). 

Empirical classification accuracy is straightforward to measure and gives a quanti­
tative comparison, but suffers from a numher of drawbacks. Purely as a performance 
measure, it is not independent of the t.ype of images used or the classification algorithm 
itselL In order to have high confidenc.e in the verdict as a general result, sLatistics 
would have to be collected for a huge variety of images types (medical, aerial, thermal, 
outdoor scenes, noise-corrupted images, de.), using several classification algorithms. A 
further drawback of empirical classification accuracy is that it. fails to identify why one 
feaLure set performs bet.ter than another. 

Synthesis of an artificial image from mt'.asured feature set.s followed by visual Com­
parison with the original is effective in checking t.hat major texture characlerisl.ics have 
becn captured, and this method has been used to guide feaLure selecLion (KhOl.anzad & 
Ka.shyap, 1987). Knowledge of some statisticaJ properties, such as those obtained from 
co-occurrence matrices, does not suggest a manner by which a texture may be synthe­
sised. Although it is often straightforward t.o generate arLificial teXl.ures possessing the 
layout characteristics of structural models, it may still be impossible to synthesise their 
microtext.ure component, jf I.bis is defined by statistical properties (Ahuja & Rosenfeld, 
1981; Tomita et at., 1982). In one case, comparison with the original texture prompt.ed 
an admission that the proposed model was inadequat.e (Modestino et al., 1981). One 
great advantage of random field models is that synthesis is always possible. allowing 
the in.fluence of parameter sets and extraction methods to be compared easily (Cross 
& Jain, 1983). Artificia.l text.ures are readily synthesised from Gibbs-Markov models 
using techuiques discussed in Chapter 5 (Figure 1.4 on page 7), and further examplcs 
are presented in Chapl.er 6. 

A more objective evaluation of feat.ure performance is obtained by determining the 
ideal classification error with a given set of feature measurements, independenL of classi­
fication algorithm. Bayes error cannot easily he computed exactly but is closely bound 
hy the Bhattacha.ryya distance (§3.4.2), which has been used for t.his purpose although 
it is still tied to a. particular set of test data (Coleman & Andrews, 1979; F"ngera.< & Pratt, 
1980). Another restriction is that it is necessary in praet.ice to assume that the fealure 
vect.or is multivariate Gaussian in order for evaluation of tbe Bhattacbaryyacoefficient 
to be feasible, even when this is clearly false (Davis et al., 1981). 

Recently, it has been argued that global statistics of t.his type are inappropriate 
criteria when features are to be used for image segmentation because contradictions may 
arise between stat.istical and spatial accuracy (dn Buf et al., 1990; Wilson & Granlund, 
1981). Disagreement also exists over whether comparisons should be made with natural 
or synthetic textures: the former have the advantage of natural variability rather than 
following a prescribed model; but image parameters may be more closely controlled 
with synthetic image text.ures. 

A further improvement of relevance to practical systems would be to as.<eSS perfor­
manc.e in conjunction with the amount. of computation required. For a given abstract 
architecture, for example, performauce of different feature extraction and processing 
algorithms could be compared as a function of permitted CPU t.ime. Fealures which 
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may be processed by data-parallel machines are potentially much more efficient than 
tbose requiring local data.-dependent analysis (§A.1). 

3.6.2 Summary: Major Aspects of Current Texture Models 

Approaches to texture analysis are commonly divided into statistical and structural 
models, analogous with the attentive dichotomy in low-level human vision (Chapter 2). 
Structural analysis seeks to identify individual texture elements, describing the image 
iu t.erms of their properties and spatial arrangement (§3.3). Although texture hierarchy 
and generat.ing processes may be represented explicitly, structural approaches arc oft.en 
comput.ationaUy demanding, and do not fit the data-parallel paradigm (§A.J). 

By contrast., statist.ical approaches do not attempt. to form complete image rep­
resentations, but describe textures indirectly by simple derived properties or features 
which may be extracted and manipulated efficiently, and require lit.tle data-depcndent 
processing (§3.2). Texture features are often computed from second-order image statis· 
tic-_, then first-order feature differences used to locate hypothet.ical text.ure boundaries. 
consistent with models of pre-att.entive human vision (§2.2). St.ructural models have 
been less thoroughly st.udied, perhaps because of their requiremcnt for greater com­
putational resources, but. form a superset of statistical represent.ations and hence are 
potentially superior (Ahuja & Rosenfeld, 1981). Random field models expliciLly describe 
texture variability, and hence are suitable for representing irregular natural t.extures, 
but hierarchical random field models are very computationally demanding. 

Our objective is to combine the comput.ational efficiency and convenience of statisti­
cal models with the superior descriptive power of structural approaches, while acknowl­
edging random texture variability. We have identified Gabor filtering as an atLractive 
means of extra.cting statistical features, and Gibbs-Markov random fields as particu­
larly appropriate for expressing the probabilistic influence of spatial context, and we 
examine these paradigms in more detail in Chapters 4. and 5, motivating our proposed 
Gabor-Markov framework for texture analysis. 



Ga bor Segmentation 

Experi ments and Featu re 

Extraction Algorithms 

Useful physical information from several sources is bound up in the gra.y·lere] image, 
and early vision algorithms seek to recover it by making heuristic a.ssumptions about 
the spatial properties of the scene. Segmenting the image into different textured re­
gions is an important component of the transition from image (0 object properties, and 
many solutions to this problem have been proposed. Our review of current approaches 
to texture classification and segmentation in Chapter 3 identified texture energy fi]­
tering as a proITlising technique, offering good performance iu empirical compara.tive 
studies but amenable to efficient parallel implementation hecause processiug is largely 
data-iudependent (§A.l). The texture energy algorithms we discussed previously em­
ploy heuristic filter kernels, designed for practical rather than theoretical convenience. 
Examination of physical objects requires simultaneous analysis of spatia.l and spectra.l 
properties, which Gabor filters uniquely achieve with minimum uncertainty (§4.1), and 
therefore we anticipate that the performauce of texture segmentation algorithms using 
Gabor filters should be comparable or superior to those reported previously. Gabor fil­
t.ering has aho be",n suggested as a mechanism to support perceptual theories of huma.n 
vision, motivated partly by experimental physiological data. (Chapter 2). In this Chap­
ter, we study Ga bor filters in greater detail, and suggest how they may be exploited in 
a novel framework for texture analysis. 

Previous applications, reviewed briefly in §4.3, have concentrated both on the per­
formance of Cabor filters in their own right and as models of human visual processing. 
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Building on these results, our experiments with natural and synthetic textures confinn 
that simple algorithms exploiting Gabor energy are able to segment suitably-consLrained 
images, offering levels of performance qualitatively similar to those of pre-attentive hu­
man vision, and demonstrate the potential of Gabor filtering for image analysis. The 
two major difficulties with this approach are: firstly, residual variability within each 
textured region after Gabor filtering, which interferes with attempts to extract valid 
image boundaries and must be suppressed by post-processing; and secondly, the lack of 
a principled strategy to combine respouses from many Gabor channels, most of which 
contribute little useful information to the segmentation process. 

Our approach is to describe texture by hierarchical models wbich exploit rather than 
suppress fluctuations in Gabor chaunels, describing the spatial arrangement of Gabor 
features by random fields (Cbapter 5). Observed response spectra are matched against 
parameterised Gabor signatures by efficient optimisation algorithms in a novel feature­
extraction framework (§4.6), producing a sensitive and compact representation suitable 
for subsequent modelling. We adopt two approaches to the difficult task of feature 
estimation, aud demonstrat.e that these generate acceptable feAt.ure vedors from real 
textures (§4.6.4). Suitable random field models are discussed in Chapt.er 5, and we 
apply our novel Gabor-Markov models to the analysis of real textures in Chapt.er 6. 

4.1 Theoretical Properties of Gabor Filters 

Gabor originally proposed the class of filters which bears his name in the context of 
communication tbeory (Gabor, 1946). He had become convinced that the maximum 
amount of information which a signal could convey was proportional to boLh its duo 
rat.ion and frequency bandwidth. Gabor proposed a "diagram of information", with 
time and temporal frequency axes, in which quanta of information were represented by 
cells. As a communicat.ions engineer, his goal was to identify the element.ary signals Or 
"logons" wbich could represent information most efficiently wit.h the smallest possible 
area. A fundamental conflict between simultaneous localisation along both dimensions, 
predicted by analogy with quantum theory, prevents this area being reduced to a poinl.. 
A signal located exactly in the frequency domain, a sinusoid, simultaneously occupies 
the entire time axis because there is no concept of "varying frequency", and similarly a 
a-function pulse occupies a single point on the temporal axis but is dispersed across all 
spatial frequencies. The uncertainty principle predicts the minimum area in Gabor's 
diagram of information whicb any signal may occupy:' 

6ft>! ~ -.!... (4·[ )
41r 

where C!.t and C!.f represent uncertainty along the temporal and temporal-frequency 
axes, respectively, in measurements derived from linear filters. The elementary signals 
sought by Gabor achieve equality in (4·1), and may be written as the product of a 
Gaussian envelope with a sinusoid (Gabor. 1946). 

'C..bo, (1946) included .. r""\.Or of .,j2; in his defin.i~ion. or ~i ""d Ci.!, re""hing lhe equal.ion: 
~t~! ~ 1/2. 
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The dicbotomy between temporal aud temporal-frequency decomposition is mirrored 
in image processing, wbere tbe relevant quantities are space and spatial frequency (in 
one or two dimensions). Fourier methods, discussed briefly in §3.2.2, seek to identify 
a pattern by its spedral components alone, discarding all spatial (pbase) information. 
By contrast, tbe location of a single pixel is known exactly, but it does not describe 
spatial pattern and bardly provides sufficient information to recognise an object. As 
noted in §3.5, visual processing demands simultaneous identification and localisation of 
physical objects appearing in an image, but tbe uncertainty principle implies (bat this 
may be achieved only by compromising botb the bandwidth and spat.ial extent of the 
filtering kernel (Wilson & Granlund, 1984). In tbis case, the motivation is to cbaractcrise 
signals with minimum joint uncertainty. In two dimensions, similar relat.ions Lo (4·1) 
hold independently along eacb axis (§A.2.1): 

6.r 6.u t~ 
16.y6.v > .-;;	 (42) 

wbere u and v are spatial frequencies along the rand y directions, respect.ively (Daug. 
man, 1985; Wilson &. Granlund, 1984). These may be combined i11\.O a single relation: 

1 
6.x 6.u 6.y 6.u > 16lr1	 (4·3) 

but (4·2) always takes precedence. Relat.ion (4·3) defines the minimum volume each 
filter may sample in an information byperspace. Members of the Gabor family arc 
unique in achieving minimum joint uncertainty, shown by equalit.y in (4·2) and (4·3). 

4.1.1	 Specification of Gabor Kernels 

It is convenient to represent the amplitude and pbase of a signal by complex numbers. 
In the most general form, a 2-D Gabor kernel q(r, y) of type R1 -+ C is given hy: 

q(x, y) = exp[-(Ar2 + Bry + Cy 2 + Dr + Ey + F)] (4A) 

where B1 < <lAC and D, E and F are complex (Daugman, 1985). This function may 
be written as the product of an envelope with a sinusoid, and we shall restrict our 
attention to the case when these are aligned along a common axis because fillers of this 
type correspond to more intuitive image features. Tbe resulting expression is simplified 
by rotating the coordinate system by an angle () to align il. with this axis; 

I ( (y' 2 ) x' 2 ) qe(x,y)	 = ---exp --1 exp --2 exp(jwr') (4,5)
2n"z<1v 'l<1r 2<1. 

,	 -.. ''-,,-' 

en velope C5i n080id 

wbere2 

x' = Rax. 

Note tbat () is measured clockwise from vertical. Effectively, filtering with this kernel 
(4·5) performs a one-dimensional Fourier transform under a Gaussian envelope. The 
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FIGURE 4.1: Typical Gabor kernel. Real and imaginary parls of the 
Gabor filter are in approximate quadrature. The origin lies at the cenlre of 
each plot. (a) cosine phase (real), viewed from above (only posit.ive value; 
are shown). (b) sine phase (imaginary). Filter parameters are: (T = 14·2 
pixels, B'/2 = 1,681/, = tr/6, 8 = "./18; (7 = 8 pixels, w = 0·44, ;. = v'3), 
using the notation described on page 69. 

spatial form of a Ga.bor kernel is sbown in Figure 4.1: it is clear that the parameter (J 

determines the orientation to whicb qo(x, y) responds most strongly, by defining the 
axis along which the frequency analysis is condude<!. Interaction with tbe C..ussian 
envelope meanS that tbe two phase components (real and imaginary) are no longer in 
perfect quadrature. Note tbat the Fourier and Gaussian kernels are special cases of the 
Gabor family, obtained by selting a -+ <Xl and w =0 respectively. Gabor fundions are 
unique in maintaining the joint uncertainty limit for all intermediate cases. 

It is convenient to name the eccentricity of the Ganssian envelope explicitly and to 
recognise the cos a.nd sin pha.ses by writing"\' = ar/ay and q = qc + jq,; 

,.\. (Xl') (yn;.,)qc("\',O,x,y) = --,exp --, exp --- cos(wx' )2"a 2a 2a' 
,.\. (Xl ,) (yl 2,.\.2)

q,(,.I.,O,x,y) = --, exp -~ exp ---2- sin(wx') (1·6)
2"a 2a 2a 

where a = a•. 

The freqnency response Qo(u, v) of Lbe Gabor filler qo(x, y) is also expressed conve­
niently in rotated coordinates: 

Qo(u, v) = exp[-~(2"u' - w)'a') exp[-H2trl/a / ,.1.)2] (4-7) 

where u' = Rou. Q9 is simply a Ganssian with aspect ratio 1/"\', displace<! according to 

the spatial frequency Uo = i;R;' (w, O)T. The frequency response of a Lypical (complex) 
filter is shown in Figure 4.2 - note thaL it is often drawn for tbe scp.ratc phase 
components, qc a..nd q" wbicb have lobes at ±uo. 

qc(w) [q(w)+q(-w)] 

q,(w) [q(w) - q(-w)) 

- SinO)'The matrix R. rotates a,:o,,, c10clcwise by an angle B: R. = ( ~~: .cosB 
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vL I ~ 
/I 

FIGURE 4.2: Fourier transform of typical Gabor kernel. The frequency 
response of a complex Gabor kernel is a Gaussian displaced according 1.0 

filter frequency and orientation. The frequency origin lies at the centre of 
each pial., Fourier transforms of separa.!.e phase components have two lobes 
placed symmetrically ..bout the origin. Filler parameters are: (T = 14·2 
pixels, Bl/2 = 1, e:.81/~ = ?r/6, 8 = rr/18: (J = 8 pixels, W = 0,44, ). = ,.13), 
using the notation described on page 69. This filter was shown in Figure 4,1. 

Symmetry of (4-2) implies that we may exchange qe and Qe, corre8ponding 1.0 spatial 
filtering with a displaced Gaussian, but this is not of pradical interest. 

4.1.2 Suitable Parameterisation of Filter Kernels 

In the form expressed in (4·6}, a Gabor kernel has four paramet.ers: q(A, r7,W, (}). Of 
these, only wand () directly reflect image propertie8, namely oriental.ion and spatial 
frequency, and consequently alternative parameterisations are mOre appropriate. We 
may derive expressions for orientation and principle spatial-frequency bandwidths and 
use these to characterise the filter (§A.2.2}: 

60112 = arctan (:~) 
:06Wl/1 a./r7 

I (aw+a.)B,/~ = og; --- (48)
trw - a 

where a. ",.IIn4. We shall use half-peak bandwidths thronghout: 6w1/2 (radians pef:0 

pixel) is the half-peak angular spatial-frequency handwidth measured along lhe x'-axis: 
B1/~ (dimensionless) is the same quantil,y bUL measured in frequency octaves; 60 1/ 7 

(radians) is the half·peak orient.ation bandwidth (Bovik et al., 1990). Taking bandwidths 
as primary characteristics, we may parameterise the filter kernel as: q(w, BI /1, (:,.(}l/2' O} 
or q(T, B,/2 , 681/2 , OJ, where T =2rr /w. With this form, appropriate sampling int.ervals 
of 0 and ware easily obtained, and typically we may choose: 60,/2 = 'J[ /6 and 8 111 = I; 
from (4·8) tbis gives A= /3 and aw = 3oe, as shown in Figures 4.1 and 4.2, 

Parameters for continuous filters may be chosen at will, because optimal joint res­
olution is a.chieved by any member of the Gabor family, but discrete convolution is 
employed in practice and a.ccepta.ble parameter sets are dici.ated by the rcqlliremcnt 
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to restrict aliasing errors. Some aliasing is inevitable because tbe kernel Q9(X, y) (4·5) 
is noL band-limited. Since tbe sinusoid is always aligned with the x'-axis, we may 
safely assume tha.t the critical sampling density lies in this dire<:tion, and conduct a 
one-dimensional a.nalysis to determine tbe relative error ( (§A.2.3): 

~b(1- ~)J
( = 

~(-r) 
(49) 

wbere 

"'( = 
2

8
." + 1

cr../2 28'{1 _ J 

and ~(. ) is tbe cumulative normal distribution. Iu all cases, the sampling \.heorem 
dictates tbaL the image must be sampled at least twice wit bin eacb sinusoid period 
(Rosenfeld & Kak, 1982). Radial anisotropy of the rectangular pixel grid forces the image 
to be sampled a.. litLle more densely than this along the coordinate axes, to ensure that 
t.he condition is met in aU directions. 

w < r./../2 
T > 2../2 (4010) 

Tbe level of error (m"" deemed to be acceptahle dictates bow closely tbese absolute 
limits may be a.pproached (§A.2.3). 

4.1.3 Image Filtering 

Our intention is to apply Gabor kernels to image analysis. lmages are filtered by linear 
oollvolution forming complex output R: 

~nlinuo",,(X,y) 1:1: 1(x + (, y + '7) q((, '7) d( d'7 

RJ~,.(x,y) 1_q (4·11) 

where * represents discrete linear convolution, 1 t.he image and q the Gabor kernel. 
Discrete convolution is used for rea.! applicat.ions. Trunca.tion of the kernel and quan­
tisation of coefficients botb form additional sources of error but may be controlled and 
will be assumed negligible. The ext,ent of the kernel required to avoid severe truncation 
error may be selected with reference to the space constant of the Gaussian envelope. 

Our convolution equations (4·11) do not specify what adjustments should be made 
at image borders, where pixels have a reduced neighbourbood, and it is often helpful to 
approximate tbe image boundary as periodic in order to reduce spurious edge effects. 
Filter outpnt. is unreliable when the kernel exl.ends over textures of more t.han one type, 
however, and should ideally be disregarded in these circumstances (Hsiao & Sawchuk, 
1989). 

Gabor filter output is composed of real and imaginary parts, contributed by the two 
phases of the kernel: R = He + j R•. These may be "demodulated" to give amplitude 
and pbase envelopes: 

A(x,y) JR; + R~
 
4>(x,y) arctan(R./He). (412)
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It should be borne in mind, however, tbat q. and qc are not true quadrature fillers, and 
hence tlJat "amplituden and "phasen are approximate descriptions. We shall make use 
of the texture energy R: 

R(x,y) = R~ + R~. (4 ·13) 

Although derived from linear convolution, it is important to note that. A, Rand <P are 
not themselves linear, and hence linear superposition does not apply. Image filtering 
must be non-linear in order to extract information because linear transformalions Me 
ill verti ble (Ca.elli, 1985). 

Efficient Convolution 

Conventional sequential computers are not well-suit.ed t.o performing linear convolu­
tiOl1- Parallel machines achieve higher bandwidth and lower unit cost, and translational 
symmetry is exploited conveniently by a data-parallel architecture (§A.l.I). Special­
purpose hardware may be mOre appropriate than general'pnrpo;Hl computers for a well­
constrained task, further improving the price-performance ralio. It is reasonable to 
assume that a suitable parallel machine would be able to filter images in real time, 
and our applications of Gabor filtering have assumed the convolution overhead to be 
negligible. 

At a developmental stage, however, special-purpose hardware is unavailable, and 
convolution must he performed on a general-purpose computer. Filtering an image of 
dimensions nxn pixels with a kernel of size mxm. (usually m < n) requires O(n2 m 2 ) 

operations. Con volut.ion must be repeated for each set of filt.er parameters. imposing a 
heavy computa.tional burden. Separahilit.y of Gabor kernels along x' and y'·axes ma.y 
be exploited to reduce this (Heeger, 1987): 

I (Xl 2 ) >. (y' 2>,2 ) q(x, y) = -- exp -- exp(jwx') .--exp --- . 
,(7"j2; :(72 , ,(7"ffi • 2(72 , 

We may replace the full 2-D convolution hy two I-D convolutions, reducing the com­
plexity to O(n 2 m). 

A more promising approach is to replace convolution in the spatial domain by mul­
tiplication in the frequency domain: 

F(I * q) = F(I)· F(q) (4 ·14) 

where F( . ) denotes Fourier transform. Using the FFT algorithm, convolutioD may now 
be achieved in C)(n' logn) operations in the best case - this is still large, but is a 
considerable improvement. on naive convolution. The filt.er transform Q = F(q) may 
be computed direcLly from (4·7). Use of discrete Fourier transforms implies toroidal 
boundary conditions. 



62 CHAPTER FOUR: G~bor Filters 

4.1.4 Gabor Image Representations 

Once the existence of elementary functions conveying information with maximum effi· 
ciency had been established, it was natural for Gabor (1946) to question whether they 
defined a basis on which an arbitrary signal could be represented, in order to achieve 
his goal of compr-essed transmission and reconstruction of audio signals. In the con­
text of image processing, the objective is to form a compact representation to facilitate 
subsequent analysis. 

An arhitrary image l(x,'1) may be represented exactly by the sum: 

I(x, y) =' L lm,n(r,.,)q(x - rT•.%,y - ST"y,Wm,n,IIm,n) (4·15) 
r..t,I"lI,nEN 

for the parameterisat.ion q(x,'1,w, II), where 

nCOS IIm ,n sin IIm . ) (wm '>I) tnJ.,.JS%) 
( - sUlllm,n cos 11m ,. 0 ( nws,'Y 

provided 

WS.rTS.E = 211'" 

WSt!lfTs'IJ 271". (4·16) 

Note that in this expansion, the shape of the Gaussian envelope, determined by <T 

and .\, does not change. The image I is represented by clusters of coefficients {L} 
at grid points wit.b separat.ion vector (T,.." T.,y)T; when sampling is isot.ropic, we may 
write T•.., =' T•.v = 7;.. Unfort.unately, Gabor functions are not orthogonal, and exact 
determination of {l} is somewhat involved (Poral & ~vi, (988), but they may be 
determined to a good approximation by convolution when the frequency overlap betwocn 
adjacent filters is not large (Bovik el 01., 1990; Daugman, 1985): 

l~,n(r,s) ~ l(x,'1) * q(x - rT•.."'1 - sT"y,w~,",O""n)' (4.17) 

In practice, manipulation of infinite sets nf coefficients is clearly infeasible, and the 
series is truncated aft.er a few terms t.o form an approximate represent.ation. When the 
image is band-limited, the series is finite in any case. 

Since all Gabor functions achieve optimal joint un cert.aint.y, there is no need t.o 
sample isotcopically wit.h a single kernel: Porat and Zeevi (1988) descrihe a generalised 
Gabor representation in which w. and T, vary as a function of position (or e1:cenlricit.y). 
Their product remains constant., as (4·16), and SO a loss-less representation is still 
possible. In any Gabor representation, the Gaussian envelope retains a consta.nt shape 
while the sinusoid frequency varies. 

Links with the Wavelet TroMform 

As discussed in §3.5, multi-resolution representations have many advantages for visual 
information processing because they allow regions of interest to he locat.ed approxi­
mat.ely at coarse resolut.ion with little comput.atioual effort., in order to guide a more 
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FIG URf; 4,3: Information diagram for Gabor and wavelet image rep­
resentations. Ellipses represent the region sampled by ea<:h Cabor kernel, 
and all have the same area, and x and 'U represenl one·dimensional space and 
spatial.frequency axes. (a) original Cabor transform: isotropic sa.mpling. 
(b) generalised Cabor lransform: the tessellation is complelt' hul anisotropic. 
(c) wavelet Lransform: spa.tia) accuracy decreases with scale. Each transform 
may use Gabor kernels, and is complete if sufficient sample. are taken. 

detailed selective analysis. The wavelet transform is a popular method for construct­
ing a representation at many scales (Mallal, 1989). A given kernel ,p, satisfying weak 
conditions, is convolved with the image for several valnes of a scale parameter s: 

¢.(x,y) == VS,p(sx,sy). (4-18) 

Note that all components of the kernel are scaled in proportion, unlike the Gabor 
transfonn (4·15) where the shape of the Gaussian envelope does not change. According 
to the effect of the uncertainty principle (4.2), the effed of this "dilation" of the kernel is 
to adjust the speelral and spatial resolutions such that their product remaim constant. 
Large s corresponds to a compact kernel, achieving high spat.ial buL poor spectral 
accuracy; the position is reversed for small s. 

Wavc1"t transforms are interesting in the present discussion because Gabor functions 
are acceptable wavelet kernels. Three transforms, all based on linear convolution with 
Gabor kernels, need to be distinguished. The original Gabor transform s.mples the 
image with fixed resolution in space and spatiat frequency (Bovik et al., 1990). The 
generalised Gabor transform varies the balance between spatial and spectral resolution 
as a function of eccentricity, achieving higher spatial accuracy near the "fovea" (Porat 
& Zeevi, 1988). A u'(ll·elel transform varies resolution as a function of spatial frequency, 
such that the locations of signals composed of high spatial frequencies are determined 
accurately (Mallal, 1989). These three alternatives are illustrated in Figure 4.3. In all 
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cases, use of a Gabor kernel ensures that complete representation of an arbitrary signal 
is possible if the required sampling density (4.16) is observed. 

Examination of our parameterisation (4·8) shows that (Y" and w vary inversely wben 
frequency and orientation bandwidths remain cOnstant, consistent witb a unirorm scal­
ing of the Gabor k"ruel. This shows that a decomposition along tbe lines We have 
proposed is a wavelet rather than a Gabor transform (Perry & Lowe, 1989). In practice, 
only a rew terms in the serie:s arc taken and the represen tation is not complete. 

4.2 Relation to Other Texture Measures 

Numerous approache:s to texture analysis involve spatial filtering to some degree, as 
discussed in Chapter 3. The ultimate goal is to deduce object rather than image prop­
erties. Physical objects are spatially localised, bnL cannot be segmented Or recognised 
reliably by inspection or first-order properties alone because these statistics may be 
con rounded hy variations in lighting and other extrinsic factors (§3.1). Consequently, 
image analysis demands examination of both spectral and spatial properties. 

Some of the simplest textnre methods we reviewed (§3.2.4 on page 41) detect image 
"features" with local isotropic mask profiles (Coggins & Jain, 1985; Zucker eI .1., 1975). 

These filter kernels perform a rudiment.ary spatial-freqneucy analysis, bnt are sub· 
optimal because joint uncertainty (4·2) is not minimised. Gaussian kernels are an 
exception to this trend (Marr & Hildreth, 1980) but these are simply an isot.ropic special 
ca~e of Gabor functions. Methods based on the power spectrum alone (§3.2.2) may also 
be viewed as a special case of Gabor filtering. 

Orientation is an important cue for visual perceptiou (Zucker, 1983), perhaps be<::ause 
arrangements of oriented line segments can be projectively invariant (Lowe, 1987; Marr, 
1976). Gabor filters are suitahle for extracting oriented features because orientation 
tuning and bandwidth (4·8) may he adjusted explicitly. Texture energy filters proposed 
by Laws (Ballard & Bro""Il, 1982) may be viewed as discrete approximations or Gabor 
kernels (Bovik el al., ]990). Similarly, the filters proposed by Coggins and Jain (1985) are 
sensitive to both orientation and spat.ial frequency but lack optimal joint. 10calis"tion. 
Good empirical performance was, however, reported ror these texture energ,v measures 
(§3.2.4), which bodes well for tbe success of Gabor filtering. 

One further theme developed in Cbapter 3 was t.he use of multiple.resolution rep­
resentations to facilitate efficient analysis. Since Gabor filters bave tunable spat.ial­
frequency characteristics, they are also suitable for this purpose, as in tbe Cabor pyra­
mid (Porat & Zeevi, 1988). It is a pity that Gabor kernels are not ort.hogonal because 
this complicates the determination of coefficients: orthogonal wavelet transforms, for 
example, aUow coefficient.s to he computed exactly by linear convolution (Mallal, L989). 
This practical a.dvantage is not great, bowever, because approximate Gabor coefficients 
may still be found by convolulion (4.17). 

In summary, image analysis often requires simultaneous evalnation of spatial and 
spectral properties in order to draw reliable conclusions "bout the physical environment. 
Various approaches have been proposed to perform local analyses (Chapter 3), but. 
Gabor illters have unique advantages for this purpose, achieving optimal joint resolution 
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in space and spati al frequency, a.nd fonn a complete basis so that arbitrary signals may 
he represented by Ga.bor coefficient.s. Following extension of Gabor's (1946) (heory to 
two dimensions (Daugrnan, 1985), both human and machine vision communities have 
appreciated their polential for image processing. 

4.3 Applications of Gabor Filtering: A Review 

Texture energy measures (§3.2.4) may be implemented hy simple data-independent 
processing, a.Howing approximate segmentation of many classes of image to be performed 
quickly. In this section, we review previous applications of Gabor filters io image 
segmentation, before describing our own experiments in §4.4. 

4.3.1 Models of Pre-Attentive Human Vision 

Psychologists often use artificial multi·clement displays to examine the performance 
of the human visual system because their properties may be more closely-controlled 
than natural textures (§2.2.4). 10 this section, we review the use of Gahor filtering 1.0 

mimic human vision with images of this type. We broaden the discussion to include 
segmentation of natural textures below (§4.3.2). 

The attentive-pre-attent.ive dichotomy described by psychologists (Chapler 2) is 
consistent with selective scrutiny of image locations under the guidance of a spatially­
parallel filtering stage (§2.4.1). II. is now recognised that efficient multi-resolution rep­
resentations may blur the distinction between "parallel" and "serial" modes, but it is 
common to model pre-attentive human vision largely by data· independent processing. 
Psychological theories often fail to generate quantitative predictions becau~c of their 
vague verbal specification (Broadbent, 1987), and unfort.unately definitions for t.he prim­
itive texture elements on which pre-aHentive human vision is believed t.o operate are 
of this type (§2.2). Recently, it has been claimed that receptive fi"ld profile:; of simple 
visual cells are described well by Gahor functions, which has motivated speculation 
that t.hese may be the primitive currency of human vision (Daugman, 1985). Any proof 
of th.is hyp<:>thesis is clearly impossible, and it is unlikely that receptive field profiles 
possess sufficien t precision to allow meaningful discrimination between similar kernels, 
but this notion has drawn attention to the theoretical advantages of Gabor filters. 

Pre-attentive vision is concerned with locating image boundaries rather than ohject 
recognition. Texton tbeory states that pre·al.tentive vision operates by detecting and 
marking first-order differences in local image properties or "features" (§2.2.l; Julesz, 
1981, 1984), and, building on previous att.empts (§2.3), Gabor filt.ering is reen as an 
attractive model for the ext,raclion of tbese statistics (Fogel & Sagi, 1989; Tllrner, 1986). 
Tbe implied ima.ge model is that different le:dures map into differeut Gabor features, 
such that there is smooth variation within a single filtered texture but sharp variation 
at texture boundaries. Texture edges may theu be located in the filtered image by 
conventional first-order edge detection. Banks of Gabor filters tuned to differrot combi­
nations of orientation and spatial frequency are commonly employed to cover parameter 
spa~.e evenly bcca.nse huma.n vision ean hardly know in advance which text un;:; will be 
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present. Raw "modulated" filter output computed by (4·11) contains phase variation 
not consistent with the assumed model (Clark eI 01., 1987), and this is usually removed 
by computing the Gabor energy (4·13) or amplitude (4·12). This non-linearity also 
permits output from different linear frequency channels to be combined meaningfully, 
according to CaeUi's (1985) framework. 

In the absence o[ any principled strategy t.o combine filter output, Turner sununed 
Gabor amplitudes [rom 32 channels (4 orientations x 4 frequencies x 2 phase;) com­
puted at grid points (Turner, 1986). When applied to artificial displays of the lype 
designed to verify texton theory (§2.2.1) and .Jnlesz's original conjecture (§2.3.2), 
this model was adequate to form first-order differences between kxtured regions pre­
attentively discriminable by humans. A high degree of variability remained witllin each 
region, however, and Turner did not allemplto extract a boundary, suggesting that re­
cursive application of Gabor filteriug might be necessary to distinguish textured regions 
reliahly. High variahility of the response within a single texture limits the accuracy with 
which boundaries may be loca.l.ed, but is always present to some degree when features 
are derived from local image regions. A quantita.tive model of the effects of element 
jitter and patterns of shape variation on the homogeneity of filter output had some 
success at predicting human texture discrimination performance and search asymmetry 
(Rubenstein &; Sagi, 1990). 

A second stage of filtering to smooth feature output, SO that only large-scale variation 
remains, was proposed by Caclli (1985), and may be effective when filtered textures 
differ in their mean values, rather than in their variances as noted by TurIler (L986). 
Smoothing and boundary detection may be combined by Laplacian-of-Ga.ussian filtering 
(Marr &; RildreLh, 1980), and this approacb was adopted by the GGL algorithm, wbich 
operated on demodulat.ed Gabor energy from 32 filters (Fogel & Sagi, 1989). The space 
constant of tbe Gaussian was large, in the range 6-18 pixels, and caused dis(ort.ion of 
the bound ary shape but even after such heavy blurring, spurious noise regions remained 
in the "segmented" image, and were removed by non-maxima.) suppression. 

Beck's "complex channels" model required two stages of Gabor filtering (Deck et aI., 
1989; Sutter et aI., 1989), as suggested hy Turner (1986). Instead of demodulating fil­
ter output, a local "standard deviation" was computed from the even (cosine) phase 
alone, for 39 filters (13 frequencies x 3 orientations). Differences in filter standard 
deviations for a pair of textures were combined by a weighted sum to estimate texture 
discriminahility but, although some qualitative effects were predicted correctly, system­
alic discrepancies with human performance were noled, and it was later concluded that 
the model failed to account adequately for hnman texture segregation capahilities (Beck 
et 01., 1989). 

These simple Gabor models were partially successful in modelling human texture 
discri.mination. In mOre general terms, they bave suggested some deficiencies of this ap­
proach, namely the requirement for many different filter kernels, and variability within 
as well as between te>..-tured regions after filtering. No principled method for the com­
bination of information from different channels to form a single boundary map was 
proposed, and heuristic smoothing and post-processing was required to form an ac­
ceptable border. These difficnlties may arise from the use of artificial multi-element 



displays, from arbitrary modelling decisions, or from inherent limitations of the Gabor 
approach. 

4.3.2 Segmentation of Natural Textures 

The algorithms described above were intended to model human visual proces,ing, and 
were constrained by notions of "biological plausibility". No such restrictions apply in 
this section: eacb architecture may be optimised to raise efficiency and functionality. 
One such improvement involves parameter selection - previous models were obliged to 
sample the image with a large number of filters to ensure a reasonably even coverage 
of parameter space. Since the images with which performance was gauged contained 
only two t.extures, it is very doubt.ful whether many of t.hese filters contributed usefully 
In the segmentation process. Having a fairly complete representation after the initia.l 
filtering stage was of little a<lvantage, because there was uo intuition about how different 
chaunels should be combined. 

Clark, Bovik and Giesler (1987) proposed a much simpler image model, aUowing 
mosl of this complexity to be dispensed with. Eacb texture type present in an image 
is assumed to possess at least one range of frequencies uniquely, so that the presence 
of energy in this band acts as an indicat.or function. Effectively, each texture is mod­
elled by a single spectral component, aud may be thought of as a gray-level modulating 
fuuctiou. This model is clearly insufficient for recognition of textured regions, but may 
he suitable for "spontaneous" texture discrimination, and is perhaps no more unreason­
able in the context of textured-edge detection thau the ideal step-edge often a"sumed 
by convent.ional edge-finding algorit.hms (Bovik et aJ., 1990). The frequency bands which 
characterise each texture may be located by searching for pe.aks in the global image 
power spectrum. Bovik, Clark and Giesler (1990) take the rather extreme view that. all 
images may be broken into only two texture types, and choose two sets of parameters 
corresponding to the two largest spect.ral peaks (unless human intervention suggests 
otherwise !). Tan's (1988) algorithm is a little more flexible, and selects parameters cor­
responding to all ~significant" peaks. Note that this procedure is very similar 1.0 feature 
clustering algori thms described a.bove (§3.5.l), and is liable t.o fail when t.he dominant 
energy modes do not discriminate texture types, or when a t.exture does not have a 
dominant frequency. These restridions are reminiscent of trends observed in human 
vision (§2.2.4; Treisman & Souther, 1985). Split.ting algorithms may also fail to det.ect 
the presence of smaller regions, and are susceptible to noise (Ehanu & Par..it,,1987). 

An image containing strong frequency hands and its power spectrum are shown in 
Figure 4.4: the disl.inct spectral peaks seen here facilitate the estimat.ion of appropriate 
parameters. Note that power spectra display conjugal.e symmetry3 because of redun­
dancy arising from the loss of phase information. Care must be taken to eliminate 
DC and low-frequency components, such as intensity gradients, as these may ot.herwise 
dominate t.he spectrum (§A.2.4). Peak locat.ion defines filt.er frequency a.nd orientation; 
its shape may be used to select bandwidths. 

3Throughout this th~is, we have sampled power specLra {or display pu'"poses, and hence symmetry 
may nol be completely reflect..cd in our Figures. 
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FIGURE 4.4: Zebra image and power spectrum. Suitable Gabor fil­
ler paramelers may be deduced from the frequency coordinales of peaks III 

lhe image power spectrum. Clear peaks emerge in this spectrum (aft.er DC· 
correction), corresponding to the large diagonal stripes in the zebra's neck. 
Power spectra display conjugate symmetry. 

The difficult problem of channel combination is largely avoided when only a Lew 
filters are used. It is possible to perform a per-pixel classification, comparing indicator 
functions to determine which texture is present at each site (Bovik et al., 1990; Clark 
et al., 1987): 

(r,y) E:R,., if A(un,x,y) = m~x[A(ui'X,y)] (4·19) 

where Ui denotes the frequency band of the i-th filter, mapping into region:R,. We 
shall refer to tltis process as "modal fillering". As with other per-pixel clas;ificat.ions 
(§3.5.1), the resulting segmentation is noisy but this may be overcome by blurring 
the texture energy prior to classification in order to eliminate small-scale fluctuations: 
cleaner boundaries are obtained but there is an accompanying risk of degradation. Ar­
tificial and natura.l Brodatz textures were segmented successfully by this simple method 
(Bovik et al., 1990; Clark et ai., 1987), but it was only demonstrated for periodic textures, 
and boundaries were sometimes distorted. Generally, modal fillering employs a very 
simple texture model which may easily break down. Pbase disconlinuit.ies weredet.ected 
by an extension to the algorithm, allowing texture boundaries t.o be located when the 
dominant frequency mode did not alter (llovik el al., 1990). 

Some of the disadvantages of region processes are overcome by computing edges 
(§3.5.2), and this approach was adopted hy Tan (1988), who computed a feature gradi­
ent Lor each channel. After combination by a weighted sum, thresholding and thinning, 
accurate connected boundaries were obtained from several synthetic and natural Bro­
datz textures. These textures appear to have been chosen carefully to be favourable to 
tb" algorithm, however, and were mainly periodic with few spectral componellt." and 
sufficient area was covered by each texture t.ype to ensure it formed a clear peak in the 
power spectrum (Tan, 1988). 

No real measure of significance is assigned to feature boundaries by the above meth­
ods, perbaps because so few channels were chosen, but there is iD general a danger 
that filters capable of discriminating textures accurately will be masked hy variability 
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in other channels. Perry and Lowe (1989) proposed retaining only a compa.cl feature 
vector, reflecting the maximum response at each site, and normalising variabilit.y in 
each channel by a local standard deviation in order Lo reduce tbe impact of Unoisy" fil­
ters. A relaxation algorithm seeded at the most reliable feature points completed their 
segmentation algorithm, from which impressive results were reported with coUages of 
natural textures. 

Our brief review has suggested that simple algorithms may be found to segment 
some types of t.extured images by Gabor filtering but that success is only likely uuder 
constrained circumstances, when textures may be treated by very simple models. This 
Lype of analysis is valuable to form a preliminary indication of image organisation but. is 
easily confused by t"xtures which do not obey the assumed model. In tbe next section, 
we descrihe some experiments which confirm these impressions. 

4.4 Gabor Segmentation Experiments 

Despite the attra-clive theoretical properties of Gabor filters (§4.1), result.s reported 
in the literature suggest that simple texture·energy algorithms may be inadequate to 
segment images reliably, unless they are described accurately by elementaly models 
(§4.3.2). Problems arise becausc many filters are required to cover paramet.er space 
adequately, but few have a bell"flcial inBu~llce on boundary detection, and significant 
variation of texture energy is observed within as well as between textured regions. 
Iu this section, we report our own experiments on Gabor segmentation, and confirm 
that although Gabor energy filtering is adequat.e for locat.ing approximate boundaries 
between simple textures, additional complexity is required to segment more complicat.ed 
images. 

Most experimeut.s were conducted with the simple artificial displays shown in Fig­
ure 4.5, dc;;igned to test "Segregat.ion" (SEC) and upop-out" (POP) ability (§2.1.1). 
Although highly unrealistic, they allow aspects of segmentation performanc~ to be ex­
amined closely. Some real images were also used; all were quanti sed to 256 gray levels, 
but no histogram equalisation or normalisation was performed. Filtering was achieved 
by a mixture of convolulion and FFT techniques (page 61), adopting toroidal boundary 
conditions. The local image mean was adjusted to zero by pre-processing (§A.2.4), in 
order to ensure that h;xture energy is not perturbed by the small response to a uniform 
field generated by all Gabor filters other than pure sine phase. 

Notation for specification of filter parameters 

Sets of filters covering several orientations are described by the sinusoid period T 
(pixels), half-height octave spatial-frequency bandwidth B I!2, spacing between orienta­
tions e, and half-height orientation bandwidth t::J.O I !1' From these may be derived the 
sinusoid frequency w = 1'1r (1/pixel units), space constant of Gaussian window 0" (pixel 
units), and window aspect ratio >., as described in §4.1. Individual filt.ers are specifipd 
additionally by their orient.ation tuning 8, which we restrict 1.0 the range 0 ~ 0 < 11 
because filters q( 0) and q(0+11) are equ ivaleut up to a change of sign (4·6 on page 58). 
Channel outputs were combined from severa.! orientations but a single freqnency. 
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4.4.1 Modal Filtering: A Simple Segmentation Algorithm 

Our artificial "Segmentation" and ~Pop-out" images (Figure 4.5) are composed of iden­
tical line elements which have a thickness of one pixel. In order to respond to these fea­
tures, we selected a high-frequency filter with a narrow orientation bandwidth: (T "" 3·5 
pixels, 8 1/ 2 "" 0·4, f),Ol/2 = .,,/8; a = 4·76 pixels). The sine phase and demodulaled am­
plitude envelope for the "Pop-out" image are shown in Figure 4.6 for the two principal 
directions along whicb line elements lie, 0 "" .,,/4 and 0 "" 3." /4: amplitude demodu­
lation (4.12) has successfully removed the high-frequency phase information, and the 
location of the singleton element is clearly marked. Filter responses at both tbese ori­
eutations have a high level of residual background variation, but this is eliminated if 
the line segITlents are positioned on a regular grid rather than being randomly jittered 
(data not shown). R.esponses from filters tuned to orientations 0 = 0 and 0 =1:/2 were 
of low amplitude, suggesting that our filters had been successfully tuned to the diagonal 
line elemen ts. 

Gabor amplitude filtering cannot segment images without further processing, and 
we computed the mode response (4·19; Bovik et 01., 1990) to our artificial images us­
ing the filter kernels employed in the previous paragraph at four orientations (O;} "" 
{O, "/., '/2, 3'/.}, with separation 0 = 1T/4. Taking more filters did not significantly 
affect the pattern of the results. The effect of modal ji./lering is shown in Fi~urcs 4.7 
and 4.8: although the singleton element and texture boundary have been detected and 
successfully chara.cterised, there is some "noise". This is a feaLure of many G.bor seg­
meutation programs (Bovik et 01., 1990; Fogel & Sagi, 1989; Tnrner, 1986), as noted above 
(§4.3). Smoothing with an isotropic Gaussian 9(,) eliminates most of the spmious weak 
responses but the parameter, must be chosen carefully: <; = 2 pixels gives I,he best 
result for our "Segregation" image (Figure 4.7) but tbis would completely obliterate the 
target element in the "Pop-ouL" image, for which a smaller value, =1 pixel is optimal 
(Figure 4.8). A fixed choice of, does not seem appropriate, perhaps even within a single 
image, and some algorithms require this parameter to be adjusted by human interven­
tion (Bovik et 01., 1990). Low-pass filtering is a popular t.echnique for textured displays 
(e.g. Bovik et 01., 1990; Malik & Perona, 1990; Perry & Lowe, 1989; Sagi & Rubenstein, 
1990) because it tends to make t.he boundaries smoother and to remove isolated weak 
responses, but is also liable to destroy important detail. Qur artificial images high­
light. some of the deficiencies of modal filtering: it is insensitive and unreliable; may 
require human in tervention to set the smoothing parameter '; and potentially destroys 
image detail and introduces artifactual bouudaries. Simple relaxation algorithms may 
be used instead of smoothiug to regularise the texture boundary, but suffer from similar 
limitations (Caclli, 1988; Hsiao & Sawchuk, 1989; Reed & Wechsler, 1990). 

4.4.2 Appraisal of Feature Contrast Operator 

Good discriminant functions have a high level of variation between regions rat.her than 
uecessarily the highest re<;ponse within a region (§3.4.4). Failure to acknowledge this 
fact was one reason behind the uncertain performance of the power spectrum para meter­
selection method (§4.3.2). In order to accentuate relative variations in filter response, we 
shall introduce the concept of feature C()nlrast, formed by weighting amplitudevariation. 
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r,GURI: 4..5: Ar-ti6cial "Segr-egation" and "Pop-out" images. Simple imai\<S designed 
to test texture segment.ation algorithms, both 70 x 70 pixels. Line elemenl.s arc jiltered 
randomly on a regular grid. 
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~..,~,~~~.'~~~ .."~~ 
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A A 

POP filLered aL 9 = ,,/4 POP filtered at 9 = 3,,/4 

FIG URI: 4..6: Raw and demodulated Gabor filter output from "Pop-au I" image. 
Sine phase R, (positive values only) and demodulated amplitude A obtained from our "Pop­
out." image (Figure 4.5) by Gabor filtering at. key orientations. Before scaling, the maximum 
amplitudes were 1: 1·88. Demodulation has slII:ccssflJlly removed the high·fre'1"enry phase 
information, and the location of the diagonal singleton element is clearly marked. Filter 
parameters: (T = 3·5 pixels, 8 112 0·4, t:,.9'/2 =0 "/8; <7 = 4· 76 pixels), using lhe nola.lion=0 

described on page 69. 
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(a) original (b) smoothed 

fIGURE 1.7: "Segregation" image after modal filtering. Our "Segregation" ',mage 
(Fil';urc 4.5) Was fillered with Gabor kernels at four orientations and labelled ...ccording to the 
maximum amplitude response (§4.:J.2). Whit.e represents zerO response a.t all orienl.a.(.ions~ 

light. grey 0 = 0 dominant, up to black for 0 = :1,,/4 dominant. (a) wit.houl. smoothing; 
(b) after smoothing with spue-constant 2 pixels prior to matching: this gives a "deaner" 
boundary. Filter parameters: (T = 3·5 pixels, 8 1/ 2 =0·4. t!,,01/2 = ,,/8, 0 = ,,/'1; (J =4·76 
pixels), using l.he notation described on page 69. 

(a) original (b) .Jhool.hed 

FIGl'RE 4.8: "Pop-out" image after modal filtering. Our ~Pop-out" image (Figure 4.5) 
was filtered wit.h Gabor kernels at four oriental.ions and labelled according to the maximum 
amplitude response (§4.:1.2). White represents zero response at all orieutatiolls. light grey 
0= 0 dominant, up to black for 0 = 3,,/4 dominant. (a) without smoothing: (b) after 
smoothing with space·constant. 1 pixel prior to matching: this remove. most but not all the 
"noise", but smoothing with a larger spacc·ronslallt also removes lhe true boundary. Filter 
p",allleters: (T = :1·5 pixels, B I/2 =0·4, t:;.01/2 =,,/8, 0 =,,/1; (f =4·76 pixels), using the 
notation descri bed on page 69. 



(0)8=,,/4 (b) max 

FIGURE 4.9: Effect of contrast operator on filtered Upop-out n image. 
Feature contrast. was computed for our "Pop-out" imagc (Figure 4.5) afler 
filtering to extrad Cabor amplitude. Untreated output is shown in Figure 4.6. 
(a) contrast found by (4·20) at orientation I} = "'/4; (6) overall feature 
contrast found by (4·21) from four orientations: spurious variation within lhe 
background re190n remains. Filter parameter" (T = 3·5 pixels, 8 1/2 = 0·4, 
t:J.B1/2 = '" /S, El = "'/4; rT = 4· 76 pixels), using the notation described on 
page 69. 

with the intention lhat places of high coutrast gradient map into houndaries. We define 
contrast c(O, x,y) for each channel as: 

A({I,x,y) - A(O)
c(lI,x,y) = (4·20)

A(O) 

finding t.his form slight.ly superior to (A - A)/(A +A), where A denotes a global average 
response. 

As expected, the singleton target in our "Pop-out" image gives high contrast accord­
ing to (4.20) in the channel tuned to its orientation, 0 = 7C/4 (Figure 4.9a), confirming 
t.he potential of our conlrast operator. Channels are combined by selecting maximum 
cont.rast C(x, y) al each position in the display: 

C(x,y) = m~xc(O"x,y) (421) 

where i ranges over all channels. The result of applying this maximum-conlrast oper­
alor to our "Pop-out" image is shown in Figure 4.9b: the singleton elemenl correctly 
generales the highest. contrast in the filtered image, but unfortunately fluctuations or 
"Iloisp" in low-amplit.ude channels are also mapped into high contrast. by the contrast 
opera lor (4·20), and a "criss-cross" pattern arises from low-amplitude varialioll in the 
0=0 and {I = r. /2 chanuels. The singleton element in lbe "Pop-out" image is of suffi­
cient prominence to remain apparent. in the global contrast map, but peak contrast is 
lower for our "Segregatiou" image and the texture boundary is hiddeu by "noise" (data 
not shown). It. would be possible to add a threshold t.o the contrast operator (4·20) to 
eliminate low-amplitude effects, but this is unlikely to prove satisfadory and may be 
sdf-defeating if t.hese convey useful information. At tb.e root or tb.e problem lies the 
uneven filter response to apparently bomogeneous textures: any model which does not 
allow for t.his is liable to run into difficulty. 
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(0)9=:</4 (b) 9 = 3.,../4 

FIGURE 4.10: Effect of gradient operator on filtered "Pop-out" irn­
a.ge. Gabor amplitudes of channels tuned to the indicated orient.at·,ons, fil· 
tered by Laplacian-oC-Gaussian edge detection with a space-constant of 4 pix­
els. The original image is shown in Figure 4.5, and untreated output in 
Figure 4.6. (a) channel tuned to the 'ingletan element, fi:= .,../4; (b) chamel 
tuned to the background dements, fi := 3..,../4. Spurious background va.riation 
in (0) remains, and interferes with at.tempts to extract a texture boundary. 
Filter parameters: (T:= 3·5 pixels, 8[{2 := 0·4, !:>.fi /2 := .,../8; <7 := 4·76 pixels), 
using the notation described on page 60. ' 

4.4.3 Appraisal of Feature Gradient Operator 

Modal filtering is a region-based process, labelling each image neighbourhood according 
to its dominant frequency component. Edge-based processes are a suita.ble .Itemative 
(§3.5), and we may locate image sites with high feature gradient because these ma.p 
naturally into texture bonndaries (Tan, 1988). Given I.he problems with uneven filter 
response, we have cbogen to take the gradient after convolution wit,h a Gaussian kernel: 

r(O,x,y) := IIVg(p)* [J(x,y) * q(lI)l II (422) 

where the space constant p may be adjusted to control the degree of smoothing. Our 
feature-gradient operator (4,22) is potentially more sensitive to texlure houndaries t.han 
modal filtering be<;ause the requirement that the dominant frequency component must 
cha.nge has been relaxed, and each pulative boundary has an associated strength or 
level of confidence wh.ich may be used to eliminate weak responses. 

A difficulty with the Gabor energy filter output we obtained previously w.s t.he high 
level of variability within a region of apparently homogeneous texture (Figure4.6), with 
fluctuations in amplitude sometimes causing a local drop to a. near-7..ero response. These 
effects still appear in maps of feature gradient after smoothing (p := 4 pixels), as shown 
at key orientations for our "Pop-out" image (figure 4.10): although high gradient. was 
detected in the channel tuned to the or;enta(.ion of the singleton element (II := ,,/4), 
spurious edges in the orthogonal direction (0:= 3..,../4) interfere with atLempts t.o extract. 
a valid bounda.ry. Tan (1988) showed that feature gradient is an allractive Cllf' for image 
segmeutation, but the problem of fluctuating filter response must first be understood 
and either overcome or dimirrished. 



4.4.4 Selection of Filter Parameters and Phase Effects 

A consistent problem with the attempt.s to segment. Our art.ificial images reported in 
this section has been the bigh level of non-uniformit.y of filter r~ponse to an appar­
ently uomogeneous texture, and it becomes particularly acute for our "Pop-out" image 
(Figure 4.5) where heavy corrective smoot.hing cannot. be employed withou\ dest.roy­
ing det.ai!. Ampli tude variation arises because adjacent texture e1ement.s may add out. 
of phase, int.erfering destructively to cause a local drop in response amplitude (Fig­
ure4.11). These e/fects are very sensitive to line-spacing and the ftlter period T, perhaps 
explainiog the irregular fluctuations of Gabor amplitude. 

Int.erference between adjacent parts of an image may be reduced by sr.lecting a 
more local filter (smaller Gaussian envelope). Figure 4.12 shows the response of the 
filter (T = 3·5 pixels, B 1/ 2 = 2, t::,J}J/2 = 1r/4; =' 1·1 pixels) to tbe same lmages­(T 

previously we used (B1/ 2 = 0·4, a = 4·76 pixels). The new output contrasts rather 
sharply with the previons response (Figure 4.6): the general level of variation is much 
reduced but instead there are local feature "blips" around each texture elemen(. Clearly. 
the more local filter is responding to individual texture elements rather tb~n to the 
texture arrangement, but an additional processing step is required in order io join lhe 
elements to form composite regions and segment tbe image. This is contrary to the goals 
of this approach, which seeks to usc spat.ially-parallel data-independent. processing. 

When we processed mOre uniform versions of the artificial "Segregation" .nd "Pop­
ant" images, with line segments arranged on a regular grid without jilLer, ~mplit.ude 

fluctuations almost disappeared (data not shown) because phase e/feet.s were constant. 
a.cross the image. This result confirms Our explanation for the source of Gabor amplitude 
variation within a regioo of a single texture t.ype. It was fortuitolls thaI. botb natural and 
synthetic textures segmented by the algorithms described in the literature a.nd above 
(94.3.2) did not display irregnlar local varjat.ion of this t.ype unless heavy smoothi ng 
could he tolerated to correct a "noisy" boundary (Bovik et al., 1990; Tan, 1988). Although 
the feature contrast or fealure gradient. tecbniques described above (§94.4.2-4.L3) might 
permit texture borders to be obtained a litt.le more sensitively, it is the lirrutations or 
the basic texture model adopted by all t.bese approaches which ultimately const.rain 
performance. 

4.4.5 Segmentation of Real Textures 

Simple artificial tcxt.ures specifically designed t.o expose limitat.ions of segmentation 
a.ccuracy were employed in t.he experiment.s described above (994.4.1-4.4.4). We found 
that these images were not. segmented well by previous Gabor texture-energy algorithms 
becanse local variations in phase caused fluctuations in Gabor amplitude sufficient t.o 
interfere with attempts to extract valid boundaries. Alt.hough useful to probe the 
restrictions of this approach, our "Segregat.ion" and "Pop·out" images (Figure 4.5) are 
very unrealist.ic, and it is doubtful wbetber sucb patterns of variability occur Irequent.ly 
in pra.clic('. In this section, we apply t.he modal filtering segmentation algorilhm (Bovik 
el. al., 1990; Clark et al., 1987) to some rea) text.ures, whicb may obey its simple image 
model more closely. 
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FIG eRE 4.1 J: Phase effects with Gabor filters. The Gabor lUt.er iLlustraled by the 
background i. luned t.o the correct frequency and orientation but records low a.mplitude 
because tbe 1.....0 Ii ne segments are out of phase and inlerfere destructively. 
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Filtere<l at 6 = "/4 filtered at 8 = 311"/4 

FIGURE 4.12: Artificial images after filtering with a local kernel. Demodulated 
Gabor amplitude from "Segregation" and "Pop·out" images (Figure 4.5) obtained wit.h a 
local kernel (space constant J·l pixels). Texture boundaries are evident bul post.processing 
is required to exlracl them because of the high level of non-uniformity ..... ithin ebeh display 
(compare Figure 4.6). Filter paramet.ers: (T == 3·5 pixels, 8 1/2 =2,0, 601/~ ="/4; (J = 1·1 
pixels), using the notalion described on page 69. 
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(oj denim collage (b) ,;"gnwnl.<<! image 

FIG URE 4.13: Denim image after modal filtering. DClIlodulaf.ed Gabor 
"mplitude was obtained from the denim collage by Lhe method described 
in §4.3.2. (a) denim collage, formed by rotating the central di.c by 9D'. 
(b) segmentat.ion produced by modal filtering ""ith Cabor kernels luned La 
four orien tations and blurring with parameter ( =2·8 pixel•. Texture contrasl 
is strong enough to overcome thi. degree of blur. Filler paramdc", (T = :1·5 
pixels, 8 1 / 2 =1·5, t1fi111 =1(/4, 0 = 1(/4; (J = [·4 pixel.), using the nola!.ion 
d""cri bed on p"ge 69. 

Tlte moda.l filtering algorithm (§4.3.2) assumes that each texture conl.ains a unique 
domina-nt frequency component, so that Gabor cbannels t.uned to these critical wave­
ba-nds may a.ct as indicator functions and segmeut. the image (Bovik ct al., 1990; Tan, 
1988). Suhjectively, the denim texture shown in Figure 4.13a appe<l-rs similar to a si­
nusoid, confirmed by the presence of a single sharp peak in the power spectrum of the 
original texture (data not shown), and hence should be in close correspondence with l.his 
texture model. Our collage was formed by rotating the central disc clockwise by 90° so 
tuat tue diagonal patterns of the material are orthogonal. Both the smooth boundary 
shape and good separation of texture frequencies are favourable 10 the segmentation 
algorithm. We filtered the denim collage with four high· frequency Gabor kernels, and 
blurred the demodulated channel amplitude prior to extracting bOundaries. As shown 
in Figure 4.13b, the regions extracted have the correct form and general shape, and the 
estimated boundary lies close to tue true contour, although the parameter of the blur 
kernel "'as adjusted carefully to get this result (, = 2·8 pixels). 

Filtering at a. single frequency and fixed orientations ma.y be appropriate for images 
composed of a single base texture (such as Figure 4.13) but is less suitable for discrim­
inating arhitrary textures. The power spectrum paramctcr-."Ieclion method (Bovik 
el al., 1990; Tan, 1988) is more flexible and often suggests better discriminant.'. and we 
adopted this procedure in order to segment the texture montages shown in Figures 1.14 
a.nd 4. IS, formed by superimposing a patch of one texture over another so thallhe true 
boundary was a circle or a diamond (see also Figure l.3 on page 5). Apart from the 
denim image used previonsly, textures were obtained from our Brodatz image set (Fig­
ure 1.6 on page 11). These textures often have peak energies at similar frequl't'cies, with 
periods in the range 5--10 pixels, and are discriminated most dfl,ctivdy if they differ in 
orieutation. All the montages shown in Figure 4.14 are of this type, and were ~egmented 
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OULf':[. denim ouLer: #11 c.oll.on canvas outer: ''21 French Ca.nvas
(a) (b)	 (c) 

inlier: d(-'nim inner: :84 raffia. inner: '68 wood grain 

(d)	 outer: #15 straw (e) 
outer: .78 sl,r.w cloth (f) outer: #17 herringbone weave 

Inner: #15 stra.w inner: .68 wood grain inner: #21 French canvas 

fIG URE 4,14: Successful Gabor energy segmentations. Each montage image was 
filtered with tuned Ga.bor kernels, two for (a-e) and three for (n, with pa.rameterS'uggested 
by the power spectrum method (§4.3.2), and blurred with a space const .."t of five pixels, The 
superimposed border ma.rks locations where the dominant response changes, ..nd should form 
a. circle Dr a diamond. (a) denim image, 108x106 pixels; (b-j) Brodatz im..ges (Figure 1.6 
on page 11). 128x 128 pixels. The segmenta.tion t..kes the correct form in es.ch case, .Ithough 
boundary shape is sometimes distorted (see also Figure 1.3 on page 5). Filter paramet.ers 
for (a-e) a,n: shown below, using the notation described on page 69, 

outer inner 
(J(J (;;.01/ 2 Tim3{;e T /:}(J1I281/28 1 / 2 

51° 141°\-0 25 5·2(a) 5·2 25\·0 
4,5 0° 86°1·0 25 1· 7(b) 8·5 40 

10,5 5°93° 1-07-1 25 \·5 25(c) 
),4j·4 79°169° 35(d) 6·0 356-0 

10,62° )·0 95°25(e) 4-4 004 10 
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well. First-order properties were lIot normalised but these are not exploited by our al· 
gorithm. One Gabor kernel WaS tuned to each texture patch except '17 (herringbone) 
where two orientations were used (Figure 4.141): this is one case where thedominant 
frequency model breaks down becanse t'Wo frequency bands were required to represent 
this texture. For all these montages, Gabor amplitude was smoothed with a Gaussian 
of space-constant 5 pixels in order to eliminate small "noise" regions from the labelling 
procedure (4·19 on page 68). As can be seen from Figure 4.14, this technique was 
sncce"sflll at foeming a single cOfllwrled boundary but has tended to distort its shape. 
Border accuracy could have been improved by adjusting the smoothing parameter for 
each image. 

Some images fOJ' which the scglll"ntal.ion algorithm is less succe<sful are showu in 
Figure 4.15. Failure wa.s caused by: (a) similar frequencies and orientations being cho­
sen to represent each texture, so that they were poorly discriminated; (b,c) textures 
not Po"scssing a dominant frequency band; (d) texture inholllogeneity. AHhough some 
improvement might follow [rom cOI1lbining amplitudes from a larger number of chan­
nels, or examining feature gradiemLs (Tan. 1988), these [ailures arise [rom fundament.al 
weaknesses o[ the model and cannot be overcome entirely. In fairness, some of the 
texlures in Figure 4.15 are also difficult for humans to dist.inguish quickly. 

4.4.6 Conclusions: Limitations of Gabor Energy Filtering 

Gabor filtering can only be the first step in an image segmentation algorithm beeanse 
Gabor representations are complete and heuce re-express image data rather than pro­
cessing it. Simple image segmentation algorithms suggested in the literat.ure (§4.3) 
were studied in this sect.ion, based on an idealised texture model and demanding only a 
small number of tuned Gabor channels (Dovik et al., 1990; Tan, 1988). Performance was 
measured for synthet.ic aud real textures, but only partial succe" was achieved with 
both image types. Jitter in our artificial multi-element displays (Figure <l.5 on page 71) 
led to local variations in filter phase, causing large Aucl.uation~ in Gabor amplitude 
which obstructed attempts 1.0 locate I.exture boundaries. The simplistic texture model 
predict.s that each channel has a constant. response wit.hin ca.eh textured relPon. Some 
of the fluctuations noted above nlay be reduced by smootliinF; to agree with this a.s­
sumpt.ion more closely, hut lhi~ proc"" also tends to distort boundary shape, and may 
destroy usefnl infonnation. 

\Vhcn suitable filter parameters were chosen, high segmentation accuracy was 
achieved with morrtages of natural textures provided these were in dose agreement. 
with tue assnmed textnre model. All these texture types werc spontaneonsly discrim­
inable by humans, and resemble those employed previously to demonst.rat.e t.he pot.ential 
of this segmentation met.hod (Bovik el al., 1990; Tan, 1988). Poor segmentation accuracy 
wa.s obtained wben the texture model broke down, which could happen for ~veral rea­
sons (Figure 4.15). Failure to segment these images accurately does not arIse from a 
lack of available information because the algorithms developed in Chapter 6 distinguish 
all these textures reliably, and is not a consequence of ins"nsil.ive filters since Gabor 
kernels achieve optimal resolution (§4.1). Poor perfonnance is caused by an incomplel.e 
segmentation algorithm arising from an over-simplified texture model. 
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outer: "'16 sLra,w oUln. #63 Eu ropean marble 
(a) (b)

Itiner' ...68 wood grain inner: #90 clouds 

outer: .73 soap bubbles outer: .9& brick waU
(c) (d)inner: #12 bark of tree inner: #15 Slraw 

FLGURE 4.15: Unsuccessful Gabor energy segmentations. Ea<:h Broda!.. montage, 
derived from Figure 1.6, was filtered wit.h t.wo tuned Gabor kernels with parameter.1 suggested 
by the power-spectrum method (§4.3.2), and blurred. Tbe superimposed border marks 
location. where the dominant response change.s, and should form a circle or • diamond. 
(a-c) blur space constant five pixels. (d) blur space constant one pixel. The algorit.hm has 
become confused becau.e the textures lack a unique frequency band. Filter parameters are 
shown below, using the notation described on page 69. 

oUler inner 

image T (J B 1/2 60 1/2 T ° B1I2 6°1/2 

(al 10-8 169· 1·0 30 10·5 5· 1-0 25 
(b) 13·4 32· 2-0 40 15·0 144· 2·0 40 
(c) 15-7 1500 2·0 40 5·8 50 1-0 30 
(d) 25·1 169· 2-0 45 6-0 79° 2·0 45 
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4.5	 Gabor Signatures: Parameterised Image 
Models 

OUl experiments with botb artificial and Brodatz textures reported in §4.4 confirmed 
impressions gained from the literature (§4.3): Gabor amplitude filtering provides a fast 
and efficient method for obtaining approximate boundaries from suitably constrained 
images, but is unable to segment unconstrained images reliably. Drawing an analogy 
with Cbapter 2, we may think of Gabor filtering as performing a pre-attentive analysis: 
spatial.ly-paraUel and efficient, but used only to guide allocation of more sophisticated 
processes. Perhaps it is not surprising that simple semi-automatic algoritluns using 
linear filtering are unable to distinguisb reliably the complex spatial arrangements we 
call "texture". Given their superior theoretical properties (§4.1), we believe that Gabor 
filters perform at least as well in the role of linear feature-extractor as any similar 
metbod reviewed in Chapter 3. 

Limitations of Gabor filtering algorithms arise from over-simplified texture models: 
textures are commonly assumed to fonn regions of constant Or slowly-varying Gabor 
amplitude, but considerable \'ariatioll was observed within filtered textures in practice. 
Some authors suggested recursive application of Gabor filters in an at temp! to make 
text.ure boundaries more distinct (Turner, 1986; Beck et al., 1989), but this is a rather 
haphazard procedure. We adopt an alternative approach which seeks to exploit rather 
than suppress spatial variation in Gabor amplitude, descriLing spatial arrangements of 
Gabor features by random fields: our hierarchical model allows us to exploit. the speed 
and Bexibility of Gabor filtering combined with the rigorous approach to stochastic 
spatial dependence offered by random field models. We anticipate that our new model 
will be more sensitive and r~lii\hle than Gabor filtering alone, but more computationally 
attractive than many structural approaches to texture analy~is (§3.3). 

4.5.1 Objectives: Concise Feature Representations 

Our objectives for the remainder of this Chapter are to convert voluminous Gabor 
amplitude obtained by image filtering and demodulation into a compact fonn which 
may be described conveni~ntly and efficiently by random fields, without. .evere loss 
of information. We intend to hide details of Gabor filtering from the random field 
models, providing a. degree of abstraction, by pooling informat.ion from several Gabor 
channels and re-expressing it in terms of a few local images "features". Unlike some 
previous approaches described above (§4.3), we intend to derive t.his transfonnation in 
a principled manner. A degree of dat.a compression is required. hence it is inappropriate 
to use a complete Gabor represent.a.tion (§4.1.4). 

Our approach is to paramderise Gabor filter output according to simple local im­
age primitives, described ill §4.5.2. AI. each image site, feature parameters which best 
describe the observed Gabor signature' are estimated, forming a compact Tepresenta­
tion of activity in local channels. Several approaches to tit.. ""t.imation proc.edure are 

"'The :!"igna.r,urc of a texture prlmitivf> is iLs response spect.rum a.c.tOS.:!i Gabor filler channels. 
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described below (§4 .6; §A.3) .. A residual errOr is computed at each sitc, enabling a level 
of confidence Lo be attacbed to eacb feature vector. 

Several filter measurements are required in order to estimate feature parameters reli­
ably. Families of filter kernels may be developed in two ways: varying either orientation 
or spatial frequency (§4.1.2). Orientation is thougbt to be a key feature in low-level 
vision (Zucker, 1983), and in order to ensure it is represented accurately, we filter the 
image witb kernels tuned to several orientations {O.}, where (J, - (Ji_1 = 0. Filtering 
at many spatial sca.les is computationally attractive, but is not currently implemented 
- some advantages of an extension to multiple scales are discussed in Chapter 8. It is 
also possible to ta.ke advantage of spatial coherence by pooling filter ontput from a local 
neighbourhood, in order to form more reliable feature vectors (Kass & Witkin, 1985), but 
this approacb is inappropriate in the present context because we wisb to pres"'''e local 
spatial variation for analysis hy t.he random field model. 

4.5.2 Parameterised Image Primitives 

Previous approaches have combined output from several channels in an expcdient man­
ner, without any particular image model (§4.3). We take a more principled view: mea­
sured channel outputs form an observed Gabor "signature", which is matchcd against 
that of parameterised image primitives. The parameter 'sd which brings these int.o 
closest correspondence is used as a feature vector to represent the response at that 
sitc. This approa.ch bas the advantage that it operates independently of tbe number or 
nature of chanuels used, since the features obt.ained take a similar form in e4ch case. 
Care must be taken in designing image primitives: tbey sbould bave sufficient variation 
to capture important local structure but must be described by only a small nlJmber of 
parameters, in order that these may be estimated efficienl.ly and reliably. 

Currently, we have two primitives, LINE and SINU: 

fUNdx, y) c5(xU 
- d) (4·23) 

fSlJlu(x,y) csin(t;:1x" +,p) (4 ·24) 

where the xU-axis is roLated clockwise by an angle (Jo from tbe x-axis (ht·"cc x" = 
x rosOo - y sin ( 0 ), Onr LINE primitive is a line of vanishing thickness, impul,e c, and 
orientaLion 00' sited a distance d from the coordinate origin. The SINU primitive is 
a sinusoid of con tra..~t c, orientat.ion (Jo, angular frequency t;:1, and phase v· Three 
parameters describe L1NF.; four describe SINU. Botb these image primitives have infinite 
spatial ext.ent. but are suitable for describing local features becall,e of the windowing 
errect of the Gabor kernel (§4.1.1). 

The response to these primitives of a Gabor filter q(,I., 0, <7, w), paramet.erised as (4. ·6) 
on page 58, is derived in §A.2.5. 
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LINE: 

R, c).. ().2J1) . [wd).2 cos(Oo - 0)] [w2a1sin 2(00 - 0)]
lJa,J2; exp - 2a21J2 Sin 1J2 exp - 21J2 

(4·25) 
2

c).. ().2J1 ) [Wd).2 cos(Oo - 0)] [ w a 2 sin 2 (Oo - 0)]
lie --e.>.:p --- cos exp ­2 2lJa..,f'I; 2172v v 2v2 

(4·26) 
2().2 J1 ) [ w a 2 sin 2(00 - 0)]2)..2R --exp -- exp (427)

211" 1J2 0-2 a 21J2 1J2
 

Wd).2 CD8 (1)0 ­ 0)]
tan .p tan v 2 

(4·28)
[ 

SINU: 

a2v2r;;;2)
R, ccos1jJexp -~ exp(-a2w2 /2)sinh(wwa2 cos(00-0)J (4·29)(
 

a21J2r;;;2)

Re csin 1jJ exp -2V exp(-a2w2 /2) cosh (wwa 2 cos(Oo - 0)] (4·30)( 

2 a21J2r;;;2) 2 { }R c exp --).-,- exp(_a2w ) sin 2 ·,p+sinh2 (wwa 2 cos(1)0-0)! (431 )( 

tan ep cot.p tan h [wtva 2 cos(00 - 0)] (4·32) 

Where: 

1J2 := sin2 (00 - O} + ). 2 cos2 (00 - OJ, (4·33) 

and R:= Rc+jR. is the complex channel output (4'11), R the demodulated Gabor 
energy (4·13), and ep the phase (4.12). Any of these quantities may be used during 
feature estimation but they are all ultimately derived from t.h" chanllel response R. 

Signature of LINE primitive 

Gabor signatures of the LINE primitive are parameterised by: lin" olf~et d, orieotat.ion 00 , 

and cont.rast c (4·25--4·28). Typical LINE response curves are shown in Figures 4.16 
aod 4.17, and response surfaces in Figure 4.18. Gabor output RUNt i~ symmetric for 
orientation tuning either side of the true value, I) := 1)0. If the sign of t.he line offset d 
is changed, sine phase R. is negated but cosine phase R., is unaffected: for d --+ -d, 
R --+ W. As orientation error fJ := 00 - 0 varies, 1J2(0) (4·33) changes ooly a little for a 
nearly circular Gahor envelope, aspect ratio ). ~ 1, and the major sources of variation 
of response R with fJ are the terms in sin'!? and cos,'} (4·25-4·26). When line offset 
and Gabor period are comparable (d > T/4), R, and R., ltIay oscillitte mildly with ,'}, 
but oscillation with line offset d is sharp, as connrmed by Figures 4.17 and U8a. As 
this oscillation is mainly due to a variation in phase, Gabor energy R is little affected 
(Figure 4.18b). Further discussion appears in §A.3.1. Channel output R scales linearly 
with line contrast c. 
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R 

FICUR.E 4.16: Gabo(" signature of untranslated LINE pdmitive. Cosine phase Rc (or 
the response to a LINE primitive (4·23 on page 82) coinciding with filter orir;in, and relative 
orientation ,J (degrees), for typical filter kernels. (a) high orientation-banJwidth, 6(}1!1 = 
1</4; (b) low frequc1I9-bandwidth, B 1/ 2 = 1; (c) high frequency-bandw;,hh, BI!~ - 2; 
(d) low frequency, 'T = 5 pixels. Except where otherwise staled above, filler parameters Me: 

(T = 3·5 pixels, Bin = 2, t:J.(}1/1 cc ,,/8), using the notahon described on page 69. The sine 
phase 15 zero in a.ll ca.ses, 

R 

B 
" 0.06.. '-'" A 

'. 

C u L ir;. 'S: --­ _3 /_,-::z.;;zr, 60 80 >, {} 

B 

FIGURE 4.17: Gabo(" signature oft("anslated LINE primitive. Cosine phase R. (dotted) 
and sille phase R. (solid) response to a LINE primitive (4·23 on page 82) translated by d pixels 
from the filter origin, and relative orientation ,J (degrees), for typical kernels. (a) high 
frequency-bandwidth, (T = 3·5 pixels, B1!2 = 2; d = 2 pixels); (b) narrow (reqllency­
bandwidth, (T = 3 pixels, B I /1 " Ihi d = 2·5 pixels), using the nOlation de"'ribed on 
page 69. Orientation bandwidth was 1</8 fO[ both filters. 
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Signature of SINU primitive 

Gabor signatures of the SINU primitive are parameterised by: grating frequency c:r, 
orientation 00, contrast c, and phase!/J (4·29-4·32). The response Rs",u is symmetric [or 
filters tuned either side of t.he correct orientation 00 • The phase of the grating t/; affect.s 
both the phase and amplitude of t.he channel response, applying a small correction to 
Gahor energy. Unlike the response to the LINE primitive, RslNU does not oscillate: bot h 
R. and Rc take the same sign everywhere, and their amplitude reaches a maximum when 
the filter is perfectly tuned, to t.he correct frequency r;;] = wand orientatiou 0 = 00, 
with rougbly exponential decay when mis-tuned (Figure 4.19). Apart from a scaling 
factor, R. and ~ vary in a very similar way, and the Gabor phase tan 9 (4·32) is nearly 
constant for 0 :::::: 00 - when its argument becomes large, tanh(wr;;]qZcosO) ~ 1, and 
hence tan 9 ~ cot VJ· Channel output R scales linearly with cont.rast c. 

4.5.3 Least-Squares Feature Extraction 

Our iutention is to combine measured responses from several Gabor channels, repre­
senting them wiLh a small numher of feature parameters. These will usnally be over­
constrained by equations (4·25-4·28) for LINE and (4.29-4·32) for STNU primitives. Ex­
act inversion of these equat.ions is not feasible in practice, and would also f"il to [arm 
the "best" estimate from "noisy" measurements; least-squares paramct.er estimation is a 
suitable technique to a.pply in these circumstances (PapouIiB, 1990, Chapter II). Unfortu­
nately, the response equat.ions for both LINE and SINU primitives are too complicated for 
us to obtain a closed-form soluLion by this method, even after simplifying assumptions 
discussed helow, and we currently employ the sub-optimal feature-extraction techniques 
described in §4.6. 

Let us write the measured and model responses from all channels at each image sit.e 
as complex vectors M and R, respectively, one element corresponding to each filt.er. 
We may then seek to minimise the error <: between measured and response vectors:s 

<: = 11M - RI1 2 
• (4·31) 

For the LINE primitive, <: is minimised with respect to t.he free parameter.; RUNE = 
R( 00, c, d) to generate three equations: 

8<: &<: 8e 
(4-35)aoo = 8c = 8d = O. 

In principle, these are S<Jlved as simultaueous equations to obt.ain t.he mat.ched parame­
ters 00, Cand ,1, and to give Cmin' Uufortunately, the complicat.ed nature of the variat.ion 
of RUNE with 00 (1·25-4·26) means that a closed-form solution is not. possible. and even 
if the equations are simplified by assuming that t.he line coincides with the fill,er kernel, 

'Where IIAII denot... the Euclidea.n norm: IIAII' '= L' IA.I'. 
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(a) .ioe phase R. (b) energy 1<. 

FIGURE 4.18: Response surfaces for the LINE primitive. Cabor signalure forl.he LIN ..: 

primitive (4·23 on pa.ge 82) as a function of orienlalion Luning iJ and line offset d (pix",b), 
in the rauges 0 ~ {} ~ ,,/2 and 0 ~ d ~ 15. (a) sine phase R. oscillates rapidly with d 
small; (b) Cabor energy n varies smoothly. Filler parameC.ers: (T = 3·5 pixels, B I/2 == 0·5, 
1:;.01/ 2 = rr/6; ~ = 3·8 pixels), using the notation described on page 69. 
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(a) sme phase R, (b) an gular phase N" 
FIGU RE 4.19: Gabor signature of the SINU primitive. Response to the SINU primitive 
(4·24 on page 82). (a) response surface for sine pha.se R" as a function of orientation 
tuning {} and sinusoid frequency c::J, in the ranges 0 ~ iJ ~ rr/2 a.nd 0'15w ~ c::J ~ 2w, and 
for grating phase 4' = O. Maximum response is reached when the filter is correctly tunpJ. 
(b) Cabor phase ¢ for several combinations of filler and SINU para.meters, as a functiorl 
of orienla.lion tuning {} (degrees): (A) c::J = "', phase'" = 0·9"; (8) B1/2 = 2; '" = w/2, 
4' = 0'9rr; (el 8 1/ 2 = 0·5; "" = 2w, ..p = ]·2rr. Filler pa.rameters: (T = 5 pixels, 8 l / 2 = 1, 
1:;.01/ 2 = rr/6; <7 = 2·8 pixels), except where Slated otherwise above, using tho notation 
described on page 69. 
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d = 0, we reach a pair of very unwieldy simultaneous equatiolls: 

"Me, [W2
<12Sin

2
(Oo-II;)]" " L- -5' exp - 2 sin(IID - ei ) cos(lIo - e;) [(I - >!)II~ +W2

<1
2,\2] 

, [I.' 211. , 

~~sin(Oo-II;)cos(Oo-II,) [w2 /72 Sin2(Oo-e,)][( \2) 2 22']L- 6 exp 2 I - A II· +W /7 ).
ay£'1rIF Vi ViI l 

~Mci [w2 <1'Sin2(Oo-II,)] C). ~exp[-w2<1'sin2(Oo-II;)11I21 
L- -;:- exp 211? = /7.J2i L- II' '(4·36) 
, " 

where 

II; = sin 2(Oo - II;) + >! cos2(Oo - 0;) (1,37) 

and summation for i extends over all cbannels. NoLe that bec.a.use the sine phase of 
the model signature R. is identically zero, estimated features (4·36) depend solely on 
measured cosine phase {Me.;}. Exact solution for Cand eo is not practical. Tb.e above 
form assumes that all filter parameters except orientation (that is, w, <1 and ).) are 
common, a.nd this was true for our experiments, but this rest.rinion need nol apply. 

Inversion of the responses to the SIN U primitive (1·29-4·30) is just as difficult, even 
if less importan t parameters are dropped to simplify the problem. Consequently, we 
rejected simultaneous least.-squares estimation of all parameters as infeasible in prac­
tice. In §4.6, we describe a sub-optimal estimator based on response moments which 
generates acceptable feat.ures without invoking the full complexity of our parameterised 
signatures: this is our preferred method. Some alLernative approaches are discussed 
in §A.3. 

4.6 Feature Estimation using Response Moments 

Least-squares estirnal.ion of feat.ure parameters from measured responses of several chan­
nels using the parameterised Gabor signatures RLlNE (4·25-4·26) and RsINU (4·29-4·30) is 
not feasible in practice because the equations involved are extremely unwieldy (§4.5.3). 
10 this section, we develop alternative sub-optimal parameter estimators by exploiting 
response moments. Our Profile and Resultant methods are sbown to generaLe accept­
able features efficiently, and both are employed below in conjunction with our hybrid 
Gahor- Markov texture models (Chapter 6). Some further approaches and our rea.qOns 
for having rejected them are discussed in §A.3. 

4.6.1 Response Moments 

From the form of the model response equations for both LINE (4.27) and SINU (4·31) 
primitives, it is clear that Gabor energy 'R(B) is symmetric and decreasing about the 
orientation of the image primitive 00 (except possibly for very ill-tuned lilters) , a., 
confirmerl for the LINE primitive by Figures 4.16 and 4.17. We may exploit this simple 
anguliU' variation by setting the estimated orientation feature eo to the angle at which 
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the angular moment of tbe observed response energies is a minimum. This may be 
expressed. as a least-squares estimate by minimising the lengths of projections onto the 
appropriate axis, writing: 

l = 2: M, sin2(00 - 0,) (4·38) 

and minimising c' witb respect to the free parameter, 00 . This approach is equivalent 
to treating R(O) as an angular distribution and computing its mean (K3SS & Witkin. 
1985). We map R(O) around tbe unit circle, writing: 

= f'i R(O) (sin 20) dO (4·39)
J.J 1- • cos 20-, 

where tbe direction of J.J defines t.he resultant mean, B=00, as expected from symmetry 
of R(O). This is true for both LINE and SIX\; primitives, and for any other image 
primitive possessing appropriate symmetry. 

ln order to estimate 00, we may compute tbe angula.r mean (4·39) using the measured 
Gabor energies M(O,). Replacing integration by discrete summation, we have 

2:, M, sin 200
tau 20o = (4040)2:. M, cos 20, 

where sununation for i extends over all channels. For this t.o be accurat.e, it is helpful 
for the channels to be regularly spaced around the circle, and for their responses to 
overlap somewhat. This may be arranged by selecting appropriate filter orientations 
and orientation bandwidths. One further way of expressing the est.imat.or ,s by t.he 
direction of the eigenvectors of the matrix: 

cos2 0; sin 0, COSO;) M;. 
~ ( sin 0, cosO; sin2 0; 

Oot.h 00 and 80 + ~h are solutions: we choose the value that minimises E' (4·38). This 
form for 0o is much more convenient than aHempts to use least-squares estimation 
(§4.5.3) because it is readily evaluated, and the same equation holds for both LINE and 
STNU primitives. 

Our equation for t.he estimated orient.ation feature 00 (4·40) does not refer directly 
to the model energy response R, although the general form of R was applied mdirectly 
in selecting the moment method. Consequently, our estimated orientation is not nec­
essarily an optimal solution to the overall feature estimation problem (4·35). We have 
dealt with orientation in this way because it was tbe feature with the least. prospect. of 
being obtained from the observed Gabor signatures by analytic methods. 

Note tbat because R = RR", we are effectively computing a second moment of the 
linear cbannel response. It is Lempting to ask whether higher-order moments could 
lead to estimators for furtber parameters, but unfortunately the integration r('(juired to 
compute model responses against which observed values are compared, is intract.able, 
aud it. is also likely that "noise" would become a serious factor. 
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4.6.2 Profile Feature Extraction Method 

Once the orientation feature 00 has been obtained by the moment estimator (4,40), we 
may again consider least-squares estimation to recover the remaining featurlS (§4.5.3). 
This will, in general, form a sub-optimal feature vector compared with solulion of the 
complete least-squares equation (4'35), but may still be a good approximalion. Esti­
mation of all remaining feature parameters is still infeasible, but we may simplify the 
problem by accepting a partial solution. Orientation features for LINE and SIN U primi­
tives are identical because they are hoth obtained by the moment estimator (4·40), but 
different treatmenLs are appropriate to extract the remaining features using parame­
terised Gabor signatures. 

Feature Estimation u.sing the LINE primitive 

Even with the orientation feature 00 givcn independently by (4·40). it is still inpractical 
to write down a least-squares solution for both remaining features, line contlast c and 
offset d (§A.3.1). Instead. we choose to set d = 0 and to disregard the phase of the 
observed response M, effectively assuming the image line intersects the fil\er origin: 
this is justified because any matcb away from d '" 0 will have low amplitude and high 
error. We may now WTit.e a least-squares contrast estimator ;2 in terms of observed 
Gabor energies M;: 

2: [M.-1?;]2E: (4-41 ) 
; 6M. 

6M '" 2.JM6,.., 
where tJ.M reprcs~nts the standard deviation of M, and we have assum~ that the 
measured responses have equal standard deviations: tJ.MG = tJ.M, = tJ.M. fach term 
is normalised by its estimated standard deviation in order to give equal weiglt to each 
measured quanti ty. We use Gabor energy ratber than the separate phases be:a.use this 
degrades more gracefully when modelling assnmptions a.re inexact, but is ins(nsitive to 
the sign of the line contrast c, which is consequently not determined by this method. 
Minimisation of c with resped to <? gives: 

- 2"'(72 L:. exp [_W2(72 sin2 (Oo - O,)/IIt]/V?
ctu<£ = -- [ . (4·42) 

.),2 L:. exp -2w2(72 sin 2 (Oo - O;)/v?]/(vt M i ) 

plus the trivial solution c = O. When the true line feature does lie somc cist.ance d 
from the ccntre of the filter, apparent contrast 2 decays roughly 1'5: eXP1-({1/(72), 
under the influence of the Gabor envelope, as is apparent in Figure 4.21 on page 93. 
Non-maximal suppression or "lateral inhibitionn (Malik & Perona, 1990) couU perha.ps 
be employed to sharpen the response, but this would probably also remove vdid detail 
and is not currently implemented. The residual least-squarcs error c.,,;., olXained by 
minimising (4 ·41), represents the level of agreement achieved hetween mea.<ured and 
model Gabor energy signa.tures. M and 'R.(Oo, 2). and is used to define all "error" 
feature hun: 

GaUni? (4-43) 
IIMII 2 
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where 0 ,;;; € ,;;; 1. 

Fea.ture E8tima.tion u.sing the SINU primitive 

Similar difficulties are experienced with the SINU primltlve, where it is necessary to 
assume the filter and grating frequencies are equal: tv 0: Wi and convenient to set the 
grating phase to zero: r/J O. We may then write a lea.st-squares estimator for grating0: 

contrast, using the same approach as above (4·41): 

~ _ (2 2) r;, exp(-w2cr2v?/>?)sinh2[w2cr2 cos(Oo - 0.)]
C;ltlU - exp W 4[ - 1 . (4·44)(T r;, exp( _2w2cr 2v,2 / ,).2) sinh w2cr 2 cos(Oo - 0,) / Jvf, 

When filter and grilting freqll"ncies differ, tv '" w, apparent contrast, ~ again falls orr 
approximately exponentially, as: exp[-cr2(w - tv)1), under the inAuence of tbe Gabor 
envelope. We define €SIHU as above (4·43). 

4.6.3 Resultant FeatuTe ExtTaction Method 

Profile feature extraction (§4.6.2) uses our moment estimator (§4.6.1) to obtain the 
orientation feature only: other features are ohtained (in principle, at least) by least­
sqnares Gabor signature matching, which also generates a residual error or level of 
conlidence 1;. An alternative approach is to ahandon LINE and SINU primitives entirely, 
and derive all features directly from ohserved cha.nnel responses without referenr.e to 
image primitives: we call this the Resultant feature-extraction method. II has the 
advantage that features may be computed more simply than above, from (4.42) or 
(4·44). 

The R.csultan t orientation feature 00 is computed exactly as above (4·40); only con­
trast and residual error are treated differently. VVe define the Resultant "contrast" 
feature to be the length of the resultant vector formed in (4.40): 

L: Jvf; (sin20')11 . (4·45)~E'~ = II'" cos 20; 

Unlike previous estimators, which respond mainly to variations in image properties (4·42 
and 4·44), this definition is sensitive to changes in filter parameterisation (cr, '" and >.), 
but this does not matter in pradice because we hold these parameters constant, varying 
only filter orientation IJ, and because the spatial arrangement of derived fealures is of 
more importance than their first·order properties. Note that we have defined contrast 
(4·45) relative to the orientation axis 80 rather than taking the absolute measure IIMII 1 , 

to reduce the effects of noise. Unlike the Profile feature-extraction method, Resultant 
fealures are not tied to a particular image primitive, and hence there are not separate 
features for LINE and SINU primitives. 

[n a similar spirit, we define a Resultant "error" feature €RES: 

~ 
€RES = 1 - IIMII2 ' (4·46) 
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This measures the extent to which Gabor energy projects in a coherent direction, and 
varies in a similar manner to the Profile residual error (4·43). Our definition (4·46) 
is agaiu imperfect because! approaches zero only in exceptional circumstances, but it 
does permit an indication of response coberence to be computed quickly. 

4.6.4 Examples of Features Extracted from Real Textures 

Natnral textures are too ill-constrained for any theoretical model to be entirely accu­
rate, and empirical verification of performance is often appropriate. We obtained feature 
sets from a selection of textures in order to assess the success of our signature-matching 
framework in fulfilling our objectives (§4.5.1), and to compare the performance of dif­
ferent estimators. Each feature vector has three components: orientation, apparent 
COntrast and residual modelling ('rror, as described above. Since these cannot be repre­
sented directly, we show feal.ures only at fixed grid points, nsing small needles aligned 
with the orientation feature; contrast is represented by line length and residual error 
by intensity (black corresponds to zero error), both on a linear scale. Toroidal bound­
ary conditions were assumed, and hence feature vectors immediately adjacent. to image 
bounnaries are unreliable. 

Each image was filtered at several orientations (usually four) but at only a single 
spatial frequency, and consequently the feature sets do oot represent the full hierarchi­
cal strudure of the texture but only a single layer of it. Effectively, microtexture is 
captured at only a single scale - extension to filtering at multiple scales is discussed in 
Chapter 8. Features are displayed at fixed grid points, without non·maximal suppres­
sion or hysteresis, a.nd hence do not bave as much freedom to follow image contours as 
typical edge-detector outpnt (e.g. Canny, 1983). For our application, it is more appro­
priate that filters should respoud to reg;or1.8 than boundaries, providing information on 
the spatial st.rncture of the texture for analysis by random field models. 

Both our Profile and Resultant feature-extraction methods (§§4.6.2-4.6.3) rely on 
response moments to derive the orientation feature (§4.6.1), and hence the ability of 
this estimator (4 ·40 on page 88) to respond sensitively to local image structure is of 
paramount importance. Using neeelles of unit length and intensity, we show the orien­
tation feature map extracted from the herringbone-canvas montage (Figure 4.14j on 
page 78) in isolatioD in Figure 4.20a, baving deduced suitable filter parameters by the 
power-spectrum method (§4.3.2). Comparison with the origioal texture confirms that 
small variations in the orientation feature accurately reflect local text.ure structure, 
following small irregularities in the weave in this case. Successful segmentation of this 
montage (Figure 4.14J) confirmed that Gabor features are suitable for ddermininggross 
texture structure; this new result suggests that they are also sensitive to fine variation. 
Similar conclnsions may be drawn from otber examples described below. 

Contrast and error f",.atures extracted by Profile (LINE aod SINU) a.nd Resultant es· 
timators are shown in Figure 4.20h-d; in each case, the orientation is the same as that 
represented in (a). These features again respond to local texture structure, appear­
ing fainter (low confidence) when evidence for the selected orientation is inconclusive, 
notably near Lexture boundaries. Small differences between the t.hree sets of f",.atures 



(a) ..tima ted orien tatioll 

'" ·'II.II//'~" '1:"\IIIII/II~\' 
11"'11/111/1""""'1/111"1'\
",-,~////, "'\\\f////////:"\\ 

~~~~~~~~~~~:\\~~~~~~j~~~/~~~~~~~ 
""'II/lllt"""",//////·""
",\JII///I"""".!//////I\'\'
""'//////""\\\"111111/'\'"
I l\" "/////1\""""//////·""
,,' "///11"" '~--'///////"'" 
'\\·'1//111"'-----·////11/1\"\ 
1\\"'/1/1/'" ----~"III//I·"" 
'\\111111"/1-------,11///1"'"
I"\I//I/I/t~---_.__ ~//,///t\\\, 

.",1//////1---------'//1/ 11 "',
,\\\"//111'----------1/111""\
",,'/////1·----------,////·\\\\
.,,'//////1'---------'1/11/:\\\\ 
·,'~,I/////I~-------',////I~"', 
",,//////I~-------I/I////l\'" 

'\\'/1///1/' ,. ------'111/1//\\\\\\\///////'" '---~';IIII/I:~'" 
'\\"////1//1\ \---,. '/11/11"'" 
~'" "I/////"'~~\\'III///I"'" 
"'\lll/IIII~"""/IIIIII/"'" 
\""I/////I"""'~'I/////I"'\ 
~""//II/I"""\\·'II////""· 
"\II//II/I","""}I//!.II/\\\l
.".1//////"\\\\\\·,,//1/11\,,,
'\\"1111/1/\\"""'/11/111""""I/IIIIII ... "",,},!/I//,,\\\.
,,\/////11/1"':'\"'//////1\\1' 

(c) SIN U fealllle6 

'\., 11/'/.11/',\\ /1"'1/11111',"
I I,· • 1//111 J \""", '11//11 - • I' \
,\,.,,//.//, "\\\\'1///1/11"'\' 

~~~~;~~~~~j:\~\~~~\~~~~~~~~~~~~~ 
1""'//11/1\"""'//////1"'"
"'\~/II///I"\\"'fl/I//I/I\'" 
""'//////"'\'\'\'//////11\",
l\\,'fl////r\\""-'I//I/I/~',,\ 
'" '1//1/11"""-11///111"'"
1\"'1//111"'·----'111/1//'\\',
1\\,,1/////,\,-----,'111111"'"
"'1111/1111'-------,11//11"'"
1"'I////llr'---~·--.. ////I/t\\\\
",,'////1/ 1 ---------///1111"',
\ \ \ , , , / //1 ( , - - - - .. - - - - / / 1// ; '" \ 
"',1111111.---------- 1 /111-"\\
.'''1//////.---- ----'11//1'\\"
"'·'1////11- .. ------"11/11 " ... 
. "'I//////'--------II/IIIIJ " ... 
1\\1/1///111 \,·-----./11/1//\\\\
· " . /111// /" , . - - - - .. // / II/ ( \", 
J \ \ , , 11111/ I , \ \ - - - . , , 1111/1 , '" \ 
~"I ·////z// .... \\~-" J 1/1//// ... '" ... 
"'\II//////\', ........"'/I/!lllt"',

", ,///////)"","1///1111"" 
", I//!.///" ....""" J 11///1/;,,\:
~~~:~~~~~~~~~~\\\~~~~~~~~!~~~~~! 
, \ \ / , 1/1./././11 \,"', . , 111111 I \ " , 

~~~;~~~~~~~~~~~~~~~:~~~~~llll~~: 
(b) Ll~>: foat.ures 

",'tllll.//''''''I('''/IIII/I,''''\
I \ , •• ) II/III \ \",." . , , / / /11 ' , 1\\ 
" ... , I///Y.., ,",\'\\\1////1/1/ ,,'\ 
\ \ , , I 1/1/11 . ,' ...., ....",1/1//11 I \ \ \ \ 
I ~, , , , / / /1 / , \ \ \\ \ \ I 1/1/1/11 . '" \ 
,""'//////1""",////111,'.... '\
,\,-.. 1/11/1'",\"''''' il///I/"", 
· . " , 1///1/· '" \ \ , , , / 1/ /111' \,,'\ ~" , / / I / / / J \ \ \ ........... , / / / 111/ '\ '\ '\ \
 
",,,'///1//,,,,,··· -////1// "" 
1\,' , 11/III'" -- -- - /11/11 /I \ \ \, 
1\\ ////////\\·----·'lllll/' ... '" 
'\'''I//lllf. ------'11//11"", 
I~~,~~~~~~::::=:::::~~~~~~~~~~~ 
'\\ \ "~/IJ ,----------//01'"',
, \ ,. 111//11' - - - - - - - - - - I I I/(, \ \ \ 
, , , . , / /1// / • - - - - - - - - - , 1/ / II r \ \ , , 
, ...... "1111/ / , . ~ - - - - - - " , / / /1 / ... '\ '\ ...
." ·'//1//11. · '11/1//""
I\\j/I/I/I/): .• ---- '1/1/1//\\\\
-"·1111///'''·_--- 11///11\'"
1\\ ,,//////11\1-- ",II/If"'"

".... . /;' / ///;' .... \ • ~ ... \ I I 11/ /1/ "'\ '\ ... 
"," UIIII/I·"·'" '111111:'",
~""'I///////.,\,,~, ~///I/I",,\ 
", .. ~///I/.//"'~'\'" I III//I/~"\. 
"\;IIIIIII'\""','}I/IIIII\\\ , 
· , 11/%%",'\\\\\,"11111)\"
l\\i//I /. 1/:'\\""'/////11"" . 
. ,'~// Il/.l ""', 1/1111./1\\\
"1'1//1/11"'\'" ,. -1///1/11\\· 

(d) I!,('sult.anl f.,.lures 

FIGURE 4.20: Gabor features extracted from herringbon_c:anvas montage. Using 
parameters suggested by the power-speet.rum method (§'1.3.2), G.t,or I"alure "or.:ors were 
eslimated for the man tage showll in Figure 4.14/ on page 78, and sampl,,<i every 10"' pixels. 
:\!ccdle intensity represen Is Uerror", and length is proportional to "contrast". (a) orientation 
leature eslimated by our moment estimator (common 10 ea<:h feature set); (b) Profile 1.1P'': 

leatures; (c) Profile SINV features; (d) Resultant leature,;. Only .>mall dirrNellce, mo.,' be 
<iistinguished. Filter parameters: (T = 7·2 pixels, BI /1 = 0·7, !:l(J'/l :; 7f/6, 0 :; 7f/4; 
u:; 5·7 pixels), using the llotation described on page 69. 
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(0) high-frequency tilter (b) low-frequency finer 

FIGURE 4.21: Gabor features extracted from "Pop-out" image. fea­
ture vectors were estimated from the "Po!>"out" image (figure 4.5 on page 71) 
using the Profile LINE method. Needle intensity represents "error", and length 
is proportional to "contrest". (a) high-frequency filter: (T = 3·5 pixels; 
q = 1·1 pixels); (6) low.frequency filler: (T = 7 pixels; q = 2·2 pixels). 
Feature blurring becomes more pronounced at lower spatial frequencies but 
may be partially offset by s..mpliug. Otber filter parameLers: (8 L/ 1 = 2, 
!lIJ1/ 2 = 7r/~, 0 = ,,/4), using tbe notation described on page 69. 

may be distinguished, particularly in lbe central (canvas) region, but they are remark­
ably similar given Lhat different modelling .....umptions apply in each case. Only small 
differences between feature sets were observed for otber images (data not shown), and 
hence only Profile LINE features are sbown below. 

It is very important to select suitable filt.er parameters because our Gabor kernels 
respond only to a band of orientations and spatial frequeneies (§A.2.2): ill-tuned filters 
will not respond Lo major texture structure, and tbe feature representation may be 
entirely different when the filter tuning is cbanged (Ahuja &. Rosenfeld, 1981; Marr, 1976). 
Our artificial "Pop-out" image (Figure 4.5 on page 71) consisls of line elements of width 
ODe pixel, and consequently contains a range of spatial frequencies. Wben Gabor filters 
are tuned to a high spatial-frequency (T = 3·5 pixels), the Gabor envelope is tigbtly 
localised (0' = 1-1 pixel) and a small amount of fealure "blur" is apparent (Figure 4.21), 
but this beromes mucb more noticeable when tbe filter period is doubled (T =7 pixels; 
q = 2·2 pixels) a.Ithongh this is offset to some extent by tbe potential for sparse sampling 
(§4.1A). These results confirm our prediction (page 89) tbat apparent contrast decays 
exponentially either side of the true image feature: c1 (d) ~ c6exp(-.fl/0'2). Stripes in 
t.he zebra image cont.a.in energy at many spatial frequencies, but the sharp peak in lhe 
power spectrum confirms tbat one band predominates (Figure 4.4 on page 68). When 
filter frequency was set to this value (T = 7·8 pixels), the diagonal stripes of the neck 
were picked out clearly (Figure 4.22a), bnt tbe nose was almosl invisible; reducing the 
filter period to T = 3·5 pixels gives a more even respouse (b). For tbe herringbone 
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texture (Figure 4.23), a high-frequency filter (T = 4 pixels) shown in (b) responds to 
the fine structure of the material, but at a lower spatial frequency (T = 8 pixels), the 
coarse-scale organisation is much more apparent (c). 

Spatial-frequency tuning again influenCe<! features extracted from the Westminster 
image (Figure 4.24): a filter period of 9·5 pixels, suggested by the power-spectrum 
method, captures much of the ornate structure of the columns and windows but is 
insensitive to the high spatial-frequency horizontal slats running across the windows. 
Similarly with the table- mat image, a filter period T = 32 pixels picks up the straw 
loops hut is insensitive to the ring structure (Figure 4.25). Spatial frequency tuning 
is compatible with our objectives (§4.5. L), and allows spatial variation to be recorded 
for analysis by the structural layer in our hierarchical model. Different chara.cteristiC3 
would be more a.ppropriate for forming a "cartoon" of the image, since this seeks to 
represent "significant" structure at all spatial scales. We have found lit lie effect of 
increasing the number of orientations at whirh the image is filtered, usually selectillg 
four (0 = ,,/4), and ensure that the orieutatiou baud width is wide enougb to cover the 
spectrum even Iy. 

Filter parameters for our final set of feature maps were again selected by the power­
spectrum method (§4.3.2); original Brodatz textures are shown in Figure 1.6 on page L1, 
montages iu Figures 4.14 and 4.15 on pages 78 and 80, and feature representiitions in 
Figure 4.26 on page 98 (see also Figure 1.5 on page 9). Our features successfully danac­
terise the semi-regular structured textures from which the montages are composed (a-c), 
hut also capture the more intricate patterns shown in (d-J). Previous experiments have 
shown that Gabor filtering is useful at one level to segment textures into coarse-scale 
regions with simple energy algorithms (§4.4); this result confirms that theya.re also 
snitable at another, for extracting mOre detailed local structure, and shows that the 
approximations taken in the derivation of our Profile and Resultant feature-extraction 
methods do not ad versely affect performance. 

4.7 Conclusions 

Low-level vision demands analysis of hoth spatial and spectral properties because phys­
ical objects are localised yet may he ident.ified reliably only by examining an image 
neighbourhood. There is a fundamental conflict between these two requirements such 
that complete detennination of spatial and spectral propert.ies is not possible, but partial 
a.ccuracy may be achieved along both dimensions according to the uncertainty princi­
ple for information (Wilson & Gra.nlnnd, 1984). Only Gabor kernels allow signals to 
be measured with minimum joint uncertainty, and hence enjoy unique advantages for 
image processing as with other forms of communication (Daugman, 1985; Gabor, (946). 
In this context, Gabor filtering has been proposed both in its own right in conjunction 
with texture energy filtering (Chapter 3), and as a model of low-level human visual 
processing (Chapter 2). 

Texture energy models assume that the filtered image varies smoothly within each 
textured region but sharply at texture boundaries, and we reviewed simple algorithms 
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(a) low-frequency filter (b) high-frequency filter 

FIGURE 4.22, Gabor feature. extracted from zebra image. Feature vectors were 
estimated from the zebra image (Figure 4.4 on page 68) using the Profile LINE method, and 
sampled every four pixels. Needle intensity represents "error", and length is proponionaJ to 
"contrastr.. (a) low-frequency filter (T = 7·8 pixels, B l/2 = 0,5, D.0 l / 2 = ",/9,0 = ",/6; 
(J = 8·5 pixels); (h) high-frequency tilter (T = 3·:; pixels, E I /2 = 2, D.O l / 2 = ",/6,0 = "'/4; 
(J = 1·1 pixels), using the notation described on page 69. Filter (0) is tuned selectively to 
low-frequency stripes in the neck; (b) detects more detailed structure. 

I ~ - ~_-__ •• ..._. ;t l 
,~-" ...... , .. , ----~. " 
~ ~ ~ ~I , _, ._.' .. ~ ~ "" ,"'-- "~"" ., -, ....... .,.,-...-.. .. -, __
..... ~~,( ':". .l/'·¥_..........,.,~
 

\,.'''_~'''''''' ~~:;::::;:~:~L\J/~:;~:~~~~~~ .. - ... _-_ ...~' ""'.Ilto-" -, ~ ~.~, ..,,---_~••.."./\ .. _,---~/-" ..I f' ''I ~:;::=~~.:~:~(~~:="(l~~~~:
J -·_1 J :-._-,-", ... ''\.'' _ , I ,-----... -,Ell , ~"'. .' '0/ ;, ': ...._-" .. , " .......-.-,. -' .. ""
---",. , _--- , \\\\ 

~I11III __ ., .. , _-- , ,., 
__ ' ....... ,. __........ \\' '\1­

~_~,1 '''''~' ".' '~' '~" ;. .'. 1~~t::t;~;~~~~li~~~:5~i~1}__ : I,,· , .. I \',_ 
'4 • \ .,.,. 1 • -... \ I, _.__... , ._._;. \,_ 

II' ~.. jim'" ..,~' _. I "~.J - ..... : - .._-_. , ....... -. '=

1~~; J~~~=~~~~~~;~i~~ ~~~ :~ ~:: ;~7':; ;;:;~: ... :::: 

'. '. lo\>' >1 ' .. ",...., ••, 
1~~~~~:;:~:;:~7'.~~~:;~ .: j ~::::::.:::::::; .::::~~~~ 
. ~ ".;- -_~ ,,, \ - I , \ 1,..........- ... " ·1 ,~ ~_, .... _,. '~_
~' ~< .~' ".~:"", "':' ..._-­ ~. ~ _--_~-

~ ,..;.:.:~:.::::::.:!~::: ~:~~::~~ ~;.::; ------ , _-_ ..• , .... •,_,.,f .....':'~ ........--,-- ... .. \ \ ... _/ ... ,--_. -... • ____....... .• "l\"__ '~
 

... -......' ...- .... -!, ......... , I-'~"-",,,, .- -----",-, ,\.- --- .... ,
 
___" ... , '\1 , •• ­'" ~-~' _~. Ii ~.l ~"''''' 

~., 

~"'-"'\"''''--'''-

-" ": .. -, ~ ~:.~;?:~!; ~ ~; ~ ;::2-~:=:j;:~ -
____ 1 

,,_
... • 

:.. 
~"" 

'-----1"'_4""_ - _, .. ..- .. , 1 ~ ~, 

. ~r .... _ \ •• I' .......... ~~~ I, 
_____ , ~__ , •• 11.i~;:::~:~; ~: ,::::~~I~~~~!::~: 
___ . \ \ , •• I - .... ....... \ I , , : I
m ~::~: ~ =~":"':;':~:::~:":'~:}~~-J..: ~ - ...... , I , • - --- ~, , --- ~ ... ( , 

(a) herringbone (b) bigh-frcqneocy filter (c) low-frequency filler 

FIGURE 4.23: Gabor features extracted from herringbone image. Feature vedors 
were estimated using the Profile LINE method, and sampled evcry four pixels. Needle intcn­
sity represents "error", and length is proportional to "contrast". (/I) herringbone texlure, 
l04x122 pixels; (6) high-frequency filter (T = 4 pixels; (J = 1·6 pixels); (c) low-frequency 
filler (T = 8 pixels; (J = 3·1 pixels). Fine delail i. more clear in (b) and the structure of 
the wea"", in (c). Other filter parameters' (8'/2 = 1·5, D.O {2 = ,,/6, e = ",/6), using the 
notation described all page 69. ' 
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(.) WestlTlinster image (b) Gabor features 

FlGtlRE 4.24: Gabor featu~6 extracted from Westminster image. Feature vectors 
were estimated using the Profile LINE method, and sampled every lhree pixels. (0) West. 
minster image, 156x328 pixel •. (b) Gabor features: needle intensity represents "error", 
and length is proportional to ·contrast". Filter parameters: (1' = 9·5 pixels, B112 "" 1·5, 
t>O'(2 = rr/4, e = .,,/6; (j "" 3·7 pixels), using the notation descrihed on page 69. 
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F1GUR~ 4.25: Gabor features extracted from mat image. Feature vectors were esti­
ma.ted by the Profile LINE method, and sampled every five pixels. (a) ma.t image, 240x 160 
pixels. (b) Gabor features: needle intensity represents "error", and length is proportional 
to "contrast". Filter parameters: (T =32 pixels, 8 1/ 1 = 1, t:;.1J111 = 2rr/9, El = 1(/4; a = L8 
pixels), using the notation described on page 69. 
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FIG URE 4.26; Gabor features extracted f1'Om Brodatz images. (Continued wer/eaf) 
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FIGURE 4.26 (Continued): Gabor features extracted from BrodaLz 
images. Feature vedors ",ere eslimated for Ihese Brodatz montages (Figures 
4.14 and 4.15 on pages 78 and 80) and origioa.ltextures (Figure 1.6 00 page 11) 
using the Profile LINE method with filter parameters suggested by the power· 
spectrum method (§4.3.2), and sampled every four pixels. Needle intcnsilY 
represents "error~, and length is proportional 10 "contrast". (<1) canvas­
raffia: (T = 4·5 pixels, B'/2 = 0·7, t'..91/2 = rr/6, e = rr/4; (j = 3·5 pixels); 
(b) wa.ll-straw: (T = 6 pixels, BI/2 = 1, 1::.9'/2 = 2rr/9, 0 = rr/4; (j = 3·4 
pixels); (e) straw-straw: (T = 7·3 pixels, B I/2 = 1, t'..8l/2 = rr/6, e = rr/6; 
(J = 4·[ pixels); (d) pte..ed cork: (T = 5·5 pixels, B I/2 = 0·5, t'..91/ 2 =rr/6, 
e = rr/4; (7 =6·0 pixels); (e) replile skin: (T = 6 pixels, B I /2 = 1, t'..01/2 = 
21f/9, 0 = 1f/4; (J = 3·4 pixels); (I) ",ater: (T = 4-4 pixels, B'/2 = I, 
1::.91/2 = rr /6, e = rr/4; (J = 2·5 pixels), using the notation described on 
page 69. 

exploiting this expeded behaviour. Our own experiments with artificial t.extures con­
firmed some reservatious expressed in the literat.ure: variability is often observed wi/.hin 
each filtered texture, and post-processing used to suppress it has the side-effe.;t of re­
ducing the a.ccuracy with which texture boundaries may be determined. None of the 
approaches we reviewed could entirely overcome this problem, and we argued that il was 
unavoidable except for regular textures. Despite these limitations, we found tbat Gabor 
energy filtering was sufficient to segment many Brodatz. montages botb accurately and 
efficiently, attaining levels of performance qualitatively similar to pre-attentive human 
vision and offering scope for parallel processing. Performance deteriorated when the 
image did not obey the severe constraints imposed by the simple texture model, and 
We identified several circumst.ances in which these could be violated. These dnwbacks, 
caused by deficiencies in tbe texture energy algorithms rather than wit.1J Gabor filtering 
per se, limit the scope of simple Gabor energy filtering for image analY3i3. 

Accepting tbat spatial Auctuations in Gabor amplitude arise a3 unavoidable conse­
quences of t.exture variabilit.y, our a.pproach is to construct hierarchical texture mod­
els in which the spatial arrangement of Gabor features is described explicitly. Unlike 
previous hapbazard procedures, we proposed a principled method for combining mea· 
suremeuls from several Gabor channels, estimating features by minimising lhe error 
between obsef\'cd spectra and parameterised Gabor signatures. Having considered a 
number of alternatives, we proposed two efficient algorithms allowing features to be 
extracted without excessive computational e/fort. By testing this procedure with real 
textures, we demoDstrat.ed that our feal.ure sets give a sensitive and compact description 
of texture variability suitable for use with our proposed hierarcbical model (Chapter 5). 

4.7.1 Summary of Achievements 

In this Chapl.er, we bave: 

•	 explored the applicability of Gabor energy filtering for texture s<:gmentation using 
synthetic and nat.ural textures, and identified causes for observed constraints on 
performance; 
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•	 formed a principled strat.e~ for the extract.ion of local Gabor features by signature 
matching; 

•	 proposed efficient algorithms to extract Gabor fcatures llsing the above procedure, 
and demonstrated that fealures obt.ained from nat ural le>;tures form a scns:tiw~ 

and compact representation suitable for use wilh our nov(~1 fJierarchical framework. 



Texture Analysis with Gibbs­
Markov Random Field Models 

Simple spatially-parallel operations are computationally attractive because tbey may 
be executed very efficiently by suitahle architectures, and it is therefore desirable to 
employ this paradigm for texture analysis (Chapters 2 and 3). Our experiments with 
natural and synthetic textures demonstrated the potential of Gabor filt.ering in Lhis role, 
and confirmed that simple image:! are segment.ed efficiently by algorithms responding to 
first-order differences in filter output (Chapter 4). Post-processing is often required Lo 
refine these rudimentary segmentations, hut this can destroy important detail, leading 
to distorted or missing boundaries, and it is easy to construct textures for which Gahor 
energy methods fail altoget.ber. 

Real textures are inherently variable, hut this is not accommodated easily by simple 
filtering algorithffi:l, which tend to suppress spatial fluctuations. Notions of optimality, 
hypotbesis testing, and random variation are central to statistical study, and hence 
stocbastic models are popular toob for texture analysis. We consider representations 
employing Gibbs-Markov random fields in this Chapter, which make explicit the proh­
abilistic influence of spatial context wiLhin an optimal statistical framework. Ma.IlY of 
tbe image-processing algorithms which apply these models are at least partially serial in 
nature, and are often computationally intense. This is particularly true for hierarchical 
random field models, which describe spveral levels of image structure. Nevertheless, 
tbeir flexibility and adaptive qualities facilitate automatic segmentation of images con­
taining scenes composed of highly-irregular textures. 

In order to establish the statistical framework within whicb Gibhs-Markov mod­
els reside, we first develop tbe theory or one-dimensional stochastic processes (§5.1). 
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Auto-normal models are introduced as an important special case whose linear correla­
tion structure greatly simplifies the evaluation of competing statistical hypotheses. We 
comment on approaches to the estimation of suitable modelling parameters to describe 
real texture sa.mples (§5.2), and briefly review some applications of Gibbs-Markov mod­
els to classic problems in tbe literature (§§5.3-S.6). Among the deficiencies of current 
Gibbs-Markov representations are their heavy computational requirement and insuffi­
cient level of ahstraction. We propose a novel Gabor-Marleov framework which addresses 
these concerns by blending the descriptive power offered by Markov random fields with 
the computa.tional efficiency of Gabor filtering (§5.i). The performance benefits of this 
new paradigm are demonstrated in Chapter 6. 

5.1 Foundations of Gibbs-Markov Random Fields 

The probabilistic spatial structure of variable natural textures is made explicit by rep­
resentations employing Gibbs-Markov random fields, which may operate within an op­
timal statistical framework. In order t.o provide a solid foundat.ion for the manipulation 
and applical,ion of Gibhs-Markov texture models (§§S.2-5.6), we establish their theo­
retical basis in this section. We briefly review properties oC one-dimensional stochastic 
processes and their statistics, in order to establish a f,heorel.ical framework (§5.J.l). 
This extends readily to homogeneous two-dimensional random fields, which describe 
the bebaviour and interaction of lattice sites by probability distributions. 

Markov random fields possess a simplified correlation structure, and are specified 
by the distribution of each lattice site conditional on a collection of other sites, known 
as its Markov neighbourhood (§5.1.2). The Hammersley-Clifford theorem establishes 
tbe formal equivalence between Gibhs and Markov random field models, and the two 
forms may be used interchangeably (§5.1.3). Statistical manipulation of Markov random 
field models requires tbe joint probability distribution of all sites to be computed from 
the local conditional densities, but. this is often computationally arduous, requiring 
summation over a very large state space. We introduce the special case of auto-normal 
random fields, whose analysis is greatly simplified because lattice sites interact. linearly, 
and we develop a matrix notation used extensively below (§5.1.5). The reader already 
familiar with the concept, of random fields may prefer to omit §5.1.1, and proceed 
directly to discussion of l.he Markov property (§5.1.2) or of auto-normal fields (§5.1.5). 

5.1.1 Theory of Stochastic Processes and Fields 

A random variable x assumes a particular value x according to the outcome of a non­
deterministic selection procedure. Random quantities wiu be shown in a dilferent font 
to distinguish them from ordinary values, as in the previous sentence. The not.ation 
{x ~ x} refers to tue set of possible experimental outcomes {C,} such that X(Ci) ~ x, 
and is called an "event". The probability of each event P {x ~ x} may he determined 
by reference Lo the underlying experimental out.eomes (Papoulia, 1990). 
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A stochastic process represents a small extension U> this concept: each outcome (. 
lS coupled with a junction x(I,(;). Single-parameter functions are conventionally de­
scribed as ~time" varying, while two-parameter functions are called "fields", and may 
be written x(x, y) or x(r). In hoth cases, the hehaviour of thi: function is determinisl.ic 
for a particular experimental outcome (, and it may be treated as an ordinary random 
variable for known parameters I or r. We shall estahlish the basic results in terms of a 
one-dimensional process x(l) for the sake of clarity, but extension to two dimensions is 
obvious. 

For a specific I, the process x(t) has distribution function F and density J; 

F(x,t)	 P{x(l) ~ x} 
8F(x,l)

j(z,l)	 (5-1)
~ 

and the link between F(x, t) and x(l) will he made explicit when nccp,sary by writing 
Fx(z,t) or even Fx(t)(x,t'). We shall use the notation P{x} for P{x ~ z} where the 
context is unambiguous. 

As we now have more than one random variable, corresponding to different param­
eter values, their joiut (1I.-th order) statistics are relevant: 

F(Xl' ... I Xn; tll ... I in) P {x(ll) ~ XI, "', x(I.) ~ x"} 
onF 

J(x!, ... ,xn,;i h "'1iy\)	 (5·2)
8z,· "Ozn' 

Stat..,tical Properties of One-Dimensional Proces8e8 

The mean and variance of a stochastic process are defined in the usual way, but in 
general they will be fundious of the parameter t: 

Jlx(t)	 [{X(I)}1: zj(z; I) dz 

O'~(t)	 [{x(t)X"(I)} - IJx(t)I'~(t). (5·3) 

We shall also use the correlation Rx y and covariance CXy for two processes X.(I) and 
yet): 

R><y(t1 .11 ) [ {x(ltly"(12)} 

n;x(t2,ltl	 (5,4) 

C><y(l b 12 ) Rxy(lb 12 ) - I'x(I, )1'~(12) (5·5) 

and because x(t) is a function, its autocorrelation and aul.ocovariance are similarly 
defined. Note that the aut.ocorrelation Ru(l, I) is non-negative at any inst.ant I: 

Rxx(t,t)	 = [{lx(tW} 
~ O. (5,6) 
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In general, for any function a(t):


1:1: a(tt)Rxx(tt, t2)a"(t2) dt, dt2 = 1:1: £ {a{lt)x(id a"(t2)X"U2») dJ, dt 2
 

{!1°O 12}
£ I -00 a(l)x(i) dt: 

~ 0 (5·7) 

with equaoty holding only if Lhe functions xii) are linearly dependent, and hr.nce 
Rxx(ti,lj) is non-negative definite. This property has important consequences in the 
next Chapter. 

It is convenient. t.o make use of the -<put"n} properties of the process, which are 
defiued in the usual way: 

X(w) == 1: x(l)e- j 
"" dt (5·8) 

and we shall use the notation X(w) ... X(/) to signify a transform pair. The autocorre­
lation Rxx of a process x may be related to that of its transform, Rxx : 

RXX (Wt, W2) £ {X(wIlX"(w2))1:1: R XX (tI,t2)exp[-j(wltt - W2 t2)] dt l dt 2 

r xx(WI' -W2) (5,9) 

where rxx is tbe Fourier transform of R xx : rXX (W"W2) "'" RXX (t il i 2 ). The change 
of sign occurs in (5·9) because of the complex conjugate in tbe definition of au­
tocorrelation, and our definition for r xx follows (Papoulis, 1991) rather tban (Pa­
poulis, 1984). This problem does not arise for a real process, wben we may write: 

RXX (Wl,W2) "'" Rxx (i),12)' 

Stationary and Homogeneo1.U Processes 

A stochastic process is s/nct-sense siaiionary if its statistical properties are invariant 
to a shirt of tbe parameter origin, implying that the processes xii) and X(I +T) have 
identical n-th order distributions: 

F(xl, ... ,xn;t), ... ltn) F(x], ... ,xn;i, +T,'" ,In +T), '<IT. (5·10) 

In particular, (5·10) implies: 

f(x;/) f(x) (5'11) 

f(x]; i] I X,; itl f(x21 x,; I] -IIl, '<11],/]. (5·12) 

A homogeneous process may not have a stationary first-order density, and only satisfies 
the laUer relation (5·12). The influence of boundary conditions means thaL most finite 
processes are homogeneous rather than stat.ionary. 
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One consequence of (5·10) is that the time-dependence of the above statistical prop­
erties is confined to an interoal r: 

I'x( t) J.lx 

<7;(t) (7'x 
RXy(t,t- T ) Rxy(T). (5·13) 

A wide-sense stationary process satisfies (5·13) but not (5·10). 

We shall be concerned with the spectral-density of stationary processes: Sxx(w) """ 
Rxx(r). When x is stationary, f xx is diagonal: 

fxx(w,w-n) ;= Rxx(t,t-T)1: Rxx(T)e-i",r dT 1:e-'O, dt 

Sxx(w)s(n) (5·14) 

implying that X(w) is non-stat.ionary white noise with average power Sxx(w). This 
conclusion follows because white noise -vet) is uncorrelated: 

C",,(tl,l,) = <T~(ttlS(11 - (2 ), (5·15) 

If -v( t) is also stationary zero-mean: 

R-"" (r) (7~S(T) 

S",,(w) <7'
" 

RNN(W) <7~8(r) (516) 

implying that the transform N(w) ;= -vet) is also stationary white noise. In general, the 
processes defined by (5·15) and (5,16) may assume complex values. 

Let us take a stationary process fit) and transform it, by a linear point-spread 
function hit) and additive zero-mean stationary white noise -vet): 

get) fit) * h(t) +-vet) 
Rg9 (r) Rrr(r) * her) * hO( -T) +(7~8(T) 

Sgg(W) Sff(W) IH(w)I' +S",,(w) (5·17) 

where H(w) ;= h(I). These important results may be obtained by algebraic manipu­
lation (R.oBenfeld & Kak, 1982). 

Di.screte- Time Processes 

We shall be concerned mainly with real discrete-time processes in the following Chap­
t.ers, aud it is convenient to represent these using vector (x) and matrix (R) notation. 

Rxx = [{xxI} 
det Rxx ~ 0 (5·18) 

if the field x is homogeueous, its autocorrelation matrix Rxx is Toeplitz: 

Rxxlk,eJ = Rxx(P, q], if k - e=p - q. (5·19) 
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For a finite sequence x of length n, tbe autocorrelation matrix R", has rank 71, and 
if x is treated as a segment of a periodic process, Rxx is circulant. The discrete Fou.rier 
transform may then be taken to obtain rxx = Rxx , wbicb is diagonal for stationary x: 

r xx = :TRxx:T t (5·20) 

where:T is the Fourier matrix. A diagonal r xx is mucb easier to manipulate than Rxx 
directly, and we sbalL make use of the substitution 

Rxx = :T'rxx:T (5·21) 

below. This is particularly convenient. because :T is unitary. 

Generali5ation to Two Dimensions: Random Fields 

Results obtained previously in this section for one-dimensional stochastic processes 
generalise easily to t.wo-dimensioual random fields. Corre;pondence is part.icularly clos" 
for fiuitc random fields, whicl1 we shaU represent by suitably ordered }'fxN veciOTS and 
treat as above. Tbe aut.ocorrelation matrix Rxx is block-Toeplitz for a homogeneous 
field x, and block-circnlant for stationary X. A linear trausformal.ion may also be 
represented as a matrix equation, following (5·17): 

9 Hf + 'Y 

Rgg HRrrHt + <i~1 

r gg (:TH:Tt)r rr(:TH:Tt)t + <i~1 (522) 

where H is a block-Toeplitz matrix of rank MN, f and 9 are the original and trans­
formed fields, respectively, and 'Y is wbite noise. Matrix manipulatiou becomes very 
computationaUy demanding for large field size, if not infeasible, but this may he avoided 
if f is periodic since r If is then diagonal. For this reasou, it is common to take the 
approximation of a periodic field hy assuming toroidal houndary conditions (Rosenfeld 
& Kak, 1982). 

5.1.2 Markov Random Fields 

Natural textures are described conveniently by Markov random field (MRF) models, 
which represent inherent variability and the influence of spatial context l In this sec­
tion, we develop MRF theory from the preceding analysis (§5.1.1) by introducing the 
Markov property, and establish the simplified correlation structure it implies. The val­
ues taken hy a Markov random field x defined on a discrete lattice L at different sites n 

are conditionally independent provided certain conditions are met. Each element x" 

possesses a Markov neighbourhood set N. c L. If values taken by all sites within 
this region are known, ~hen x" is conditionally independent of I.be remaining surround 
fl. '" L\{n}, where x E 6. 

J (x." I fl.) J(x." INn) (5-23) 

[{x." Inn} £{x." INn} (5-24) 

lDespite a comment Lhat "... Markov proc~ a.re inherently one--dimensionalll (Julesz, 197'5. 
pa.ge 3&)! 
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FIGURE 5.1: Markov neighbourhood structure. A nOD-causa! MRF 

neighbourhood of order l' contains all sites labelled l' or below. For on 
auto-normal model (§5.\.5), the neighbourhood coefficients display conjugate 
sym metry, so only the unshaded part needs to be given. This corresponds to 
a unilateral neighbourhood. No models or greater than ninl.h order were used. 

Although any neighbourhood set N n <; fln is formally possible, it is usual for it to 
contain sites symmetrically plar...d around and irrunediately adjacent to the "ceutre~ 

pixd n. We again use a flexible notation here: by f(x" 1 N n ) we imply f(x." I x, = 
x" '<Ii E N n ). The size of the neighbourhood set Ny is characterised by the order of the 
process, P. Each successive increment. in order adds to N n all sites which are equally 
spaced from and closest to n but which are currently not m..mbers, and we shall as,urne 
the neighbourhood set takes the same form across the lattice. For a one-dimensional 
process, the ordering is obvious: 

NY,n {n + i : 0 < In - il ~ T} (5·25) 

and we shall w rite Ny = N y.o. The position is a little more complicated in two­
dimensions, as illustrated by Figure 5.1: Ny cont.ains all sites labelled P or less. A 
site is alwa),s excluded from its own neighbourhood set. When a two-dimensional field 
is ordered as a vector, adjacent sites are no longer necessarily represented as adjacent 
elements but this is of no consequence. An MRF of order P is sometimes referred to as 
Markov-P. 

When the neighbourhood set. is synunetrical, the process isnon-cau.sal (as in Fig­
ure 5.1). if only half the surrounding plane is retained, preserving symmetry along 
one axis, the process is unilaleral with neighbourhood set N;, represented by the un­
shaded part of Figure 5.1. Simplifying further to retain only a quarter plane gives a. 
cau.saJ process, with neighbourhood N;. It is easier to manipulate models with directed 
neighbourhood sets, but they are often poor approximations when the structure of the 
data is genuinely non-causal. 

Wide-Se113e Marleou Processes 

The conditional density equation (5·23) defines a strict-sense Markov process. Most 
properties of interest. stem from (5·24), which is obeyed by a wide-sense Markov process 
when tbe expected value is replaced by a least-squares estimate x: 

in 9n [Nn] 

9" [fl n ] (526) 
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represented by the function 9n. As above (5·24), 2: is not affected by the wider sur­
round once neighbouring values are known. The MRF predictor-error u" is equal to the 
difference between the estimated and true pixel values, and lies at the heart of Markov 
models. 

Un x..-i" 
£(u,,) o (5·27) 

From the least-squares orthogonality principle, 

£{Unh(x",)} = 0, m f. n	 (5·28) 

where h( . ) is an arbitrary function (Papoulis,1990), and hence the error terms Un and u.", 

are correlated only when they lie within a neighbonrhood NT .n . 

£{x." u.;;,)	 Ruu(n, 7l)o~n 

{ ~uu(n,m) mE NT,n£{u"u;")	 (5·29) 
m 1. NT.n 

From the symmetry of neighbourhood sets, this relation (5·29) is unambiguous: 

mE Nn <=> n E Nm ·	 (5·30) 

The autocorrela.tion function R uu depends on the particular distribution Cundion of 
the process x.". 

Homogeneous processes are of particular importance. Since the autocorrelation Ruu 
depends on second-order density, (5·29) may be replaced by: 

,,~ n = m
£{x."u.;;,) = { o otherwise 

,,2 n = m 

£ {Unu.;;,) = R:u(n - m) n - m E NT (5·31)
{ o 7l-m ~ NT 

where ,,~ is the M RF variance. We shall be concerned only with homogeneous processes 
below. 

Discrete-State Markov Processes 

When the range of the Markov process x.n is restricted to a finite set of valucs, a, E V, 
the density function may be replaced by a probability vector p, and the conditional 
density by a probability matrix n. A one-dimensional discrete-state process is called a 
Markov chain, and for a homogeneous chain x.[nJ: 

p;[nJ P{x.[71J=O,) 
D;J[m] P {x.[71 + m] = 0, Ix.[n] = ad 

n[n+k) (5·32)nn+<. 

If x.[n] is stationary, p is an eigenvecLor of n. 

np = p	 (5·33) 
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5.1.3 Gibbs Random Fields 

We present the basic definitions of Gibbs distributions in tbis section, wbicb are rele­
vant because Gi bbs and Markov random ·fields are equivalent. In some circumstances, 
the Gibbs formulation is more convenient to manipulate, and can take more intuitive 
parameters. 

Gibbs Dutributions 

A Gibbs distribution <B-(x) is an exponential distribution formed from an energy func­
tion Vex): 

<5(x) == 1'{x=x} 

.!.. e-U(x) (5·34)
Z 

Z I: e-U(x)== 
xES 

where Z is the normalising constant, or partition function, formed by summing over aU 
possible states x E 6. The origin of Gibbs distributions lies in pbysical systems, and it 
is usual to add a "temperature" paramet.er, writing: 

1 -U(x)/T
<5(x, T) == Z(T) e . (5·35) 

The effect of increasing T is to decrease t.he distinction between different states, and 
tlie physical analogue is clear. As shown in the next section, the energy function Vex) 
may be defined to construct a Gibbs random field. 

Gibbs-Markov Equivalence 

The Hammersley-Clifford t.heorem (Desag, 1974) established the equivalence between 
Markov and Gibbs random fields. We will surrunarise this briefly, and introduce a full 
definition for Gibbs random fields. 

We start with a Markov random field x, assumed homogeneous and discrete-state, 
defined on a lattice £. of size n: x.; E V, 6 == vn. The Markov form (5·23) establishes the 
conditional probability distribution for the i-tb pixel, condit.ioned on its surround /1/" 
but we seek the )oinl distribution P(x): 

p,(Xi) l' {x.; == x, I no} 

l' {x, I/I/,} (5·36) 

P(x) 1'{x:=x} 

1'{X1 == x" "',X" == In}. (5·37) 

From repeated application of the chain rule (Papoulis, 1990), we may express the relative 
joint likelihoods of two configurations x and y. 

P(x) == II l' {x., I XI> ... , Xi_I, Y'+1' ... , Yn} 
(5·38)

Ply) ;EC 1'{Y; lx" ···,x.;-1,1I,+" ···,1In) 
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(a) fir"L order (b) second order 

FIGURE: 5.2: Gibbs random fleld clique types. A potential function must 
he defined for each clique. (IJ) first order; (b) second order. Each clique must 
be conta.ined within the corresponding neighbonrhood system (Figure 5.1). 

This expression is always valid if P(y) > 0 for each combination of possible pixel 
va.lues P{y;} i 0, known as the positivity condition. In order to compare different 
distributious Xi, we may assume an arbitrary "referencen distribntion 0: 

Q(x) '= In[P(x)fP(O)J. 

The Hammersley-Clifford theorem (Besag, 1974) gives a unique expansion [or Q(x): 

Q(x) ::= L xiGi(Xi) + L xix,Gi.j{Xi,xi) +... +X"" xnGI ....•·n(x" .. .,xn) 
iE.c iEC 

j<i (5·39) 

and tbe expansion for the conditional distribution qi(X.) follows a similar form. The G 
{unctions may be chosen arbitrarily, except t.hat Gs :=: 0 unless all memhers of set S 
are neighbours, in which case S is a elique: 

GsiO => JVy U{0}2{i-j:i,jES}. (5·40) 

Valid cliqne types for first and second-order processes are sbown in Figure 5.2. Since 
each clique must he coutained witbin the extended neighbourhood set JV'J',. U {i}, the 
order of the process influences how many terms of the expansion (5·39) apply. 

When the energy function U(x) is formed by summing pot.entials for each clique, 
our earlier definition for a Gibbs distribution (5·34) defines a Gibbs random field: 

U(x) ::= L v.,(x) (5·41) 
<EC 

where C is the set of cliqUe:!, and Yc(x) is an arbitrary potential function associated 
with clique C that depends only on tbe valnes taken by the members of c. When the 
field 15 is stationary, so are its potentials v.,. ill order to specify I!) fully, we must give v., 
for each possible combination of inputs. Tabulation is manageable for simple processes, 
bnt rapidly becomes unwieldy when the number of allowable pixel stat.e;; is increased, 
and Yc may he specified as a true function when the process is continuous-slate. 

Under the Hammersley-Clifford restrictions (5·40) and (5·41), the Gibbsand Markov 
formulations are equivaleut.: 15(x) '= P(x), although it is possible for one GRF to cor­
respond to many MRFs.2 An MRF is establisbed in t.erms of it.s local density st.ructure 

'We adopt the nolalion GRF for Gibbs mndom field, MRF for Markov random field .•nd GMRF for 
Gibbs-Markov random field. 
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whereas a GRF is inunediately suggestive of global structure, but nonnalisation i8 usu­
ally computationally-infeasible in both cases. Summation is requi.red over all possible 
configurations but tbis space grows explosively with field size and number of available 
states. 

LP(x) = 
"E6 

Relative likelihoods of two states may be obtained with much less computational effort, 
and this is more straigbtforward with the Gihbs formulation in general, since all that 
is required is summation of the affected clique potentials. 

5.1.4 Auto Models 

A restricted class of Gibbs-Markov random fields was proposed by llesag (197-1), limiting 
tbe Hammersley-Clifford expansion (5·39) to the first two summations and thereby 
allowing cliques to contain at most. two sites. 

Q(x) = L XiG,(X;) + L Xix,G;u(x" x,) (5·42) 
lEe iEC 

)(1 

Distributions baving this property and an exponential conditional probability distribu­
tiou are called a"Uto models. Under these assumptions, (5·42) may be simplified further: 

Q(x) = LXiGi(X;) + L{3;jX,Xj (5·43) 
i€C iEC 

,<, 

Pixel interaction is linear, corresponding to a linear form for the Markov estimator go 
(5·26), and these equations simplify further if" is homogeneous. The simplest auto­
distribntion is auto-binary, since we may write G;(x;) = ai. Auto-models are attractive 
because a linear neighbouruood function makes their analysis tractable, aDd it also 
implies tbat I.hey are only sensitive to first and second-order statistics. 

5.1.5 Auto-Normal Models 

Both Markov and Gibbs random fields can be difficult to analyse because the expres­
sions involved are often extremely unwieldy. With the Markov formulation, tbe problem 
is obtaining an expression for the joint like!iuood in terms of (,he (known) conditional 
probability distributions because the normalising constant is elusive, requiring summa­
tion over a very large state space. 

Markov FONnulation of Auto-Norrrwl Model 

The issue of computational tractability is largely solved by the bomogenEOus auto­
normal model: 

p;(X;) G (x;+ 1'" (12)

1 [1
,/27f(12 exp - 2(12 (x, - 1', - Xi)2] (5-44) 
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where P,(Xi) is the probability of site i conditioned on its surround, as above. Auto­
normal models ba.ve two key advantages. Firstly, tbe joint distribution of norm&l vari­
ables may immediately be written down (Papoulis, 1991): 

I
J(X., ... ,xrv;ll, ... ,/}/) = v(21'f/CI exp [-Hx - I£)TC-1(x - 1£)] (5·45) 

and is fully specified by the mean 1£ and covariance matrix C, assuming a particularly 
straightforward form when Xi are uncorrelated (C diagonal). Secondly, the least·squares 
neighbourbood function gn (5·26) is linear in tbe general case (Papoutis, 1991). Any 
multivariate normal process is tberefore aULo-normal, and bence a linear neighbourhood 
function may be assumed without approximation: 

in == 1: {3i,.X; (5·46) 
lEN,., 

wbere {3"n are the neigh bourhood coefficients, and (3n,n == 0 siuce each pixel is excluded 
from its own neighbourhood set. We shall assume that the field x is homogeneous, and 
bence may follow (5,31) to write down its correlation structure: 

"n 1: (3,x,,+. +Un (5·47) 
iEJI 

<7~ n = m
£ {x"u;:'} { o otherwise 

<7~ n == m 
£ {Unu;:,} -(T~f3m-n n - m E N'J' (5·48)

{ o n - m rt N'J' 

wbere u is the MRF predictor error (5·27), and (T~ its variance. We noted abo"e that an 
autocorrelation function is positive definite (5·6) and bermitian (5·4); and from (5·48) 
this implies; 

deL Ruu > 0 

(3, = (3:; (5·49) 

or {3, == f3-, for a real process. We sball group tbese neigbbonrhood coefficients into a 
vector /3, and the terms tlIey multiply into TI, so tbat. (5,47) may now be writ.ten in 
vect.or form: 

Xn /3TlJn +Un (5·50) 

x,,+l +x,,-l ] 
lJ. "n+1 ~ x,,-1 (5·51)

[ 

taking as many terms ror lJn as necessary, but dropping elements for which (3k == O. 
Expressed in this form, only distinct coefficients are cont.ained within /3, since (3, is 
defined only for i > O. 
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Finite Auto-Norm-al Field8 

Real applications require the analysis of ohserved data, for wbich finite fields are mOre 
appropriate. As above (page 106), we shall write the finite two-dimensional field as 
a vector, using raster-ordering, and express the linear equation (5·47) using matrix 
a1gehra: 

x 6x+u (5·52) 

for lliJ = fJ,-,; alternatively: 

x := B- 1u (5·53) 

where B =1 - n. Tbe coefficient matrix B is hermitian block-Toeplitz, with elements 
Bi.i := 1 and B,.i = -{3i-,; and u is coloured noise. From (5·22) and (5,48): 

Ruu /1~B 
B-'RuuB-1
 

O'~B-l (554)
 

Rxx 

where Rxx and R uu are autocorrelation matrices for the field and predictor-error, re­
spectively. Hence, from (5·45) the joint likelihood P(x) is given by: 

IBI ] [ TP(x) := (27T0'2)MN exp (x -~) B(x ~)] (5,55)[ 2/12 

where ~ is an arbitrary mean vector, which we shall drop in order to enhance clarity. 
Note that we also require the coefficient mat.rix B to be positive definite because it 
defines the autocorrelation structure. Inspection of (5·54) shows that the CDrrelation 
matrix Rxx may be written: 

Rxx = J0'2B- 1 1(J/12B-1 Y (5,56) 

implying that the field x may he expressed as a linear transformation of rera-mean 
unit-variance white noise "', since Ry'V := 1: 

x J0'2B-' ",+B-1 b 

v'Bx I1'V + b' (5,57) 

where band b' reflect contrihutions from the bouudary conditions. It is tbererore 
possible to ohtain a realisation of x directly once ~ is known (Woods, 1972), but the 
difficulty with tbis approach lies in fonning JB=1 from the known coefficient I'ector f3 
because B has rank M N (large). 

T01"Oidai Boundary ConditioM 

A popular approximation with a finite field x is to assume a periodic exteu,ion of the 
lattice over the plane, and it has only a slight impact for lattices of moderate size despite 
appearing to be very artificial (Cohen et al., 1991; Chellappa & Kashyap, 1982). Under 
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these conditions, with x stationary (~ = 1"1), the coefficient matrix B is block-circulant, 
having a sub-matrix Bi for each column of the M xN image: 

...Bo 6 1 BN 
_, ]B _

N 1 6 0 6 N - 2
6 = I . (5,58) 

6 1 6 2 Bo 

where B; are circulant aDd have rank M. Following (5·21), B may be diagonalised by 
the Fourier matrix: 

6 '.1" t1\'.1" (5,59) 

1\ r uu/f7~ (560) 

where 1\ is diagonal with elements Ai = Suu.;/f7~, and has rank MN . 

..\m+nM = 1 - 2 L 13'+l5 cos [2?r (';; + ~) ] (5,61) 
(k,l)EJf+ 

The double subscripts on Am+nM and 13k+15 reflect raster-ordering of the array: the 
field lattice J: has width M, and the causal neighbourhood N< has span S. Wliere the 
context is obvious, we shall instead write Ai or fl., and use the two forms interchangeably 
below.3 Effectively, the finite relation (5·57) has been re-written as a convolution. 

X* (0 - 13) = U 

We shall also write 

Ai = 1- Bi (5·62) 

noting from (5·61) that B is the cosine transform of ~:' 

Bno+nM = 2 L {Jk+l5 cos [21r (mk + nf)] . (5·63) 
(k,()EJf+ M N 

Using the diagonal form [or 6, and noting that: l'.1"tl\'.1" I= IT, Ai; we may write dO\\"lI 
the joint likelihood of a periodic field x: 

1'.1" tA'.1" I ] X T '.1"t1\'.1" x)P(x) exp 2 2[ (21rf7~)MN ( 
O"u 

II (~)1/2exp(_IXlA.) (5,64) 
'Ee 21rf7u 2f7~ 

2L(x) = L log A, - M N 10g(21rf7~) _ L IXd 
2 

Ai (5·65) 
;E£'. iE[. o~ 

)Spalia~ and spect.rallattice co-ordinates pTe nol equlva.lent as. we have implied, and we inLl'oduce 
thf~ (4~pcclr~1 mapping foncLion" ,n §7 2. 

"Not.e t.ha~ B is 8. coefficient matrix derived rrom the vector IJ (5·53), and lhat. B is the cosine 
tr"'nsform of {3, wit.h elements B; (5.63). \Ve shall not rerer again lo individua.l clements of B. 
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where X =1-'x, sununation for i extends over the image lattice £, and L(x) = 10gP(x). 
Symmetry of Rxx is reflected by A; being real; positive-definiteness implies Ai positive: 

A, > 0, Vi E L (5·66) 

This condition 00 the neighbourhood coefficient vector f3 is clearly satisfied hy: 

L {3i(Z; +z-i) < 1, Vz E C : Izi = 1 (5·67) 
iE)/+ 

but this is more restrictive than necessary, and (5·66) suffices for finite fields. Whether f3 
represents a valid stationary field depends on the range of summation i E £, and 
hence on field size. The relation (5·66) is universal, and since it was derived under 
the assumption that the field was homogeneous, we small name it the homogeneity 
CQnstminl. It has important consequences for MRF parameter·estimation methods, since 
approximations may lead 1.0 invalid parameter sets which violate t.his constraint (§5.2). 

Ignoring houndary conditions, the relation (5·57) may now he written: 

x = 01-'1 R 1-'-v (5·68) 

but the Fourier t.ransform of unit-variance zero-mean white noise -v ,~ unit-variance 
zero-mean white noise (5·16), giving the distribution for X: 

X; ~ G(O,02jA,). (5·69) 

Tbe field x is usually real, and hence its complex spect.rum X displays conjugate sym­
metry. 

Causal Representation 

An alternative simplification is available for finite linea,r fields hy rewriting (5·52) as: 

x = Lx +-v (5·70) 

where L is lower-triangular with zero leading diagonal (Sl.uUer & Kurz, 1976). This is 
a causal representation, which often makes analysis easier. For a Markov-T field and 
a lattice of size NxN, the order of the new field is N'Y - this may be very large in 
practice, and we prefer to take advantage of the toroidal boundary approximation. A 
cansal process is driven by white noise -v: 

x" = L {3;X.n -i +-vn (5·71) 
l€.N~ 

where If- denotes the causal neighbourbood. 

Gibbs Formulation of A uta-Normal Model 

Following the Hanunersley-Clifford tbeorem (§5.1.3), the auto-nonna) MRF may also be 
expressed as a Gibhs random field. From (5·43), this t.akes a particularly simple fonn: 
cliques contain at most two pixels, reRecting the linear neighbourhood function. The 
weighting given to single-pixel cliques, G,(x,j, delermines the nonnal form. 
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5.1.6 SumIIl.ary: Properties of Gibbs-Markov Random Fields 

Markov random fields are stochastic processes having a simplified autocorrelation struc­
ture. In this section, we have iutroduced the properties and definitions that are of use 
below in the application of Gibbs-Markov random fields to image analysis (§§5.2-S.6). 
Uncler certain conditions, Gibbs and Markov random fields are equivalent. (§5.1.3), and 
either or hoth forms may be used in a particular application. Determination of the 
joint likelihood of all lattice sites is computationally arduous in general, but is greatly 
simplified by the use of aut<rmodels, and by the auto-nonnal model in particular. Mani­
pulation of auto-normal models is often far more convenient than other Gibbs-Markov 
forms because pixels interact linearly, and there is no tractable alternative in 'ome 
cases. This simplification has great practical significance, and it. is common to adopt 
auto-normal model. [or practical applications. 

5.2	 Estimation of Parameters for Gibbs-Markov 
Models 

If Gibbs-Markov ra.nclom fields are to be used as models of nalural textures, it is es­
sential to be able to estimate a parameter set to characterise each texture type given 
suitable sample images. Optimal parameter estimates are obtained by maximising 
the likelihood of the observed training data with respect t.o t.he parameterised Gibbs­
Markov model, but this is orten infeasible because the joint. likelihood of all image 
pixels can not be found in closed form (§S.2.1). Code and pseudo-likelihood estima­
tion methods substitute an approximate function that can usually be maximised with 
only moderate computational effort, leading to acceptable but sub-optimal parame­
ter estimates (§S.2.2j §5.2.3). Heuristic approximations are also required to estimate 
parameters for the Gibbs formulation (§S.2.4). ~oue of these rest.rictions applies to 
auto-normal model., whose simplified correlation structure leads to a closed form for 
the joint likelihood (§.5.2.5). This must still be maximised numerically, but pseudo­
likelihood estimates are available analytically and are sometimes preferred. 

Situations do arise where no suitable training data is available: modelling scene 
layout is a common example. Without particular prior knowledge, the requirement is 
to describe how an arbitrary image is partitioned between different textured regions, 
and a general assumption of spatial coherence is often used to bias the model in favour 
of homogeneous clumps of texture. Attempting to estimate a parameter set is inap­
propriate in these circumstauces, but it is straightforward to design a Gibbs random 
fIeld with the correct form (Derin & Cole, 1986; Geman & Cernan, 19$4; Hansen & Elliott, 
1982). 

5.2.1 MRF True-Likelihood Estimation 

Let us assume that we have au MRF with a given conditional density distribution and 
ueighbourhood size, and wish to select a parameter seL tbat most-closely mal.ches some 
training data. Maximum-likelihood estimation takes a realisation x and model .1:, and 
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seeks to maximise their joint likelihood P{x, X} or log-likelihood L(x, X). Suppose 
X = 3:(8) where (J = {Ool;=l are the parameters to be estimated: 

0, i = l..n;~ lo,=e, 
i X(8) (5·72) 

where 6 is the true-likelihood parameter sel. When several realisations {x,} ue avail· 
able, their joint likelihood is maximised. Unfortunately, the joint likelihood of a 
field P(x) is difficult to compute in general, for the reasons outlined in §5.1.3, and 
computation of true maximum-likelihood estimat.es is therefore often infea.'libJe in prac­
tice. 

5.2.2 MRF Code Estimation 

An alternative approximate method is available because the conditional densi'jcs p,(x;) 
are known. If the sites were independent, we could easily comhine couditionallikelihoods 
to form the joint likelihood: 

p.(x) = II Pi(Xi) 
.EQ(') 

L.(x) = In P.(x) 

I: Inp,(x,) (5·73) 
.EQ(k) 

Q. = {i E .c : Q. n N i = 0} (5.7-1) 

where x is defined On the lattice.c. From the Markov assumption, sites are only 
correlated out to a certain distance, and hence the joint distribution of well-separated 
sites may indeed be written as (5·73). This approach is called coding (Besag, 1974); 
each sel of well-separated elements Q. is a code. In effect, we are maximising the 
joint likelihood for each code conditional on the rest of the image. It is usual, but not 
essential, to make each code as large as possible within the constraint (5· 74) so that 
each estimate is as efficient as possible, and minimising the number of codes < required 
to cover the lat.tice. 

.c = UQ. 
,=1 

Q,n QJ 0, Vi of j (5·75) 

Coding is an effective way of overcoming the intractable partition function required 
by true-likelihood estimabon, but thre seems to be no seIlsible way of combining 
parameters from each code other than an arithmetic average. This is unfortunate 
because tbey are not independent, but they are often numerically similar. Coding makes 
rather an inefficient use of the training data because each code uses only a subset of 
the field, and this problem becomes particularly acute for fields of high MRf order. The 
coding method does not depend on a particular form for the conditional distribution 
fundion p;(x;), and has b..'Cn successfully applied with several model variants (Besa.g, 
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1974; Cm.<s &. Jain, 1983). Code likelihoods L k (5·73) must be maximised numerically 
in general, and there is unfortunately no guarantee that the final parameter set will be 
consistent with respect to the homogeneity constraint (5·66). 

5.2.3 MRF Pseudo-Likelihood Estimation 

The chief disadvantage of the coding method is the rather inefficient use of training 
data, particularly for fields of large order. For example, third-order neighbourhoods 
contain twelve sites, so eacb code uses only 71/.% of the data directly. A simple way 
of increasing this is to extend tbe range of summation in (5·74) to all pixels of a given 
texture type (other than houndary pixels, if any): 

?(x) = II p,(x;) 
i€t. 

L(x) = I: In Pi(X;) (5'76) 
;e£ 

where I:- is the entire image lattice. The quantities ?(x) and L(x) are not true likelihood 
functions but the product of conditional likelihoods, and lead to approximate parameter 
estimates, {} Or B. Advantages of the pseudo-likelihood are: it is easy to compute, even 
over an irregularly-shaped region; it is more efficient than the coding metbod; and 
it generates acceptable parameter estimates in practice (Besag, 1986; Cohen &Cooper, 
1987; Denn &. Elliott, 1987). It is usual for more questionable approximations to be taken 
at otber stages of image analysis, and hence sub-optimal pseudo-likelihood parameter 
estimates may be acceptable. They do suffer from MRr consistency problems because 
the bomogeneity constraint (5,66) is not always observed, but these may somcl.imes be 
compensated for (Cohen &. Cooper, 1987), and pseudo-likelihood estimation i, poplliar 
because of its computational simplicity. 

5.2.4 GRF Histogram Parameter-Estimation Method 

The above methods estimate Markov parameters, and suffer from the disadvautage that 
the estimated parameters may not obey the restrictions for a valid MRr: tbe field is 
often assumed to be stationary, but the homogeneity constraint (5·66) may be violated. 
This consistency problem is avoided by using the alternative Gibbs formulalion, but 
true maximum-likelihood estimation is no more tractable than above (§5.2.1) beca.use 
of the difficulty in calculating the normausing const.aut Z (5·34). 

Tbe "histogram method" is an approximat.ion to true ma.ximum-likelihood that over­
comes this practical difficulty (Derin &. Ell iolt , 1987). We define V; to he the sum of 
pol.ential fund-ions for all cliques c containing the pixel i: 

v. = I: Y,,(x) (5· 77) 
cECaEc 

where Vi may be written as a product between the (column) paramet.er vector (} and a 
suitable neighbourhood function ¢. 

Vi = ¢T(} (5·78) 
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The number or terms in ¢ a.od 8 depends on the symmetry and the order of the GRf, 

but auto-models have rewer parameters than general fields (§5.1.4), a.od are suitable for 
use with this method. From the Gibbs-Markov equivalence (§5.1.3), it follows that: 

P {x,;o x I n;} P{x IN i };0 

P{x,N;} 
P (.N;} 

ex expl-\I;(x,N;)] (5·79) 

In [P{II IN. ;= X;}] - \I;(x" X,) + II;(x2' X;)
P{X2 INo -= X,} 

[¢(X2,X,) - ¢(Xl> X,)]T 8 (580) 

whereN is the Markov neighbourhood. Ir the LIIS or (.5·80) is known, this vectorrelation 
may be solved as linear equations in the unknown paran .... ters 8 and neighbourhood 
runction ¢. In gent"ral, 8 is over ,peeified provided the number of gray-levels is smaB, 
the diqnes have low order, or simplifying assumptions are made, and least-squares 
solutions may be sou/(ht. The probabilities P{x I N} may be estimated by rorming a 
h.istogram ror all observed combinations or neighbourhood and centre pixel. The law of 
large numbers: 

P{AJ == nAln, n large 

may be invoked to rorm the estimat.es. A large amount of trial data is needed to 
estimate these probabilities accurat.ely ror all f-lixd combinations, particularly for fidds 
or moderate order or for many pixel valnes, when the nnmber of permutations o[ I,N 
is large. llowever, since t.he desired parameter vector 8 is usually over·speclfied, it is 
not necessary to evaluate every term. An advantage of (,ht" histogram method is that it. 
is free o[ ('Ousist.ency problems, and is straightrorward to implement. A disad"antag" is 
that it requires a large amount o[ training data, although this is also true of the coding 
method, and its formal properties have not been t.horoughly analysed. 

5.2.5 Estimation of Auto-Normal Parameters 

True-Likelihood Parameter Estimation 

For tbe general cases considered above, it was necessary (0 use approximate methods to 
locate the besL parameter estimates becanse the joint likelihood P(x) was unavailable 
(§§5.2.2-5.2.4). This is no longer an obstacle for homo/(cneous aulo-normal models, 
when Pix) may be "valuated comparatively easily (§5.1.5). 

True-likelihood estimation demands maximisation of L(x,:r) with respect to the 
parameter set X = {Ii, ",2, )3}, where the neighbourhood coefficient vector )3 also deter­
mines the coefficient mat.rix B. For an image of size n, from (.5·55) and (5·72): 

_ xTSx 
",2 = -n- (5,81) 

and the maximum likelihood estimate B minimises 

nln(xTBx) -InIBI 
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from whicb B and hence rj may be obtained by Newton-Raphson iteration (Besag, 
1974). Tbe toroidal boundary approximation allows B to be diagona.lised (5·64), and 
tbe estimaLe to be found more easily, but a closed-form solution for rj does not exist 
in general (Kashyap & Chellappa, 1983). In practice, tbe requirement for numerical 
optimisation is a drawback of true-likelibood estimation - it bas even been described a.s 
"cumbersome and unreliable" (Derin & Elliott, 1987). Approximate closed-form solutions 
are free from tbis uncertainty. 

Pseudo-Likelihood Pa:mmeler Estimation 

True-likelihood methods require numerical techniques to locate tbe best parameter es­
timate, and this may require more CPU time tban is available. A popular alternative 
is pseudo-likelihood estimation (§5.2.3), wbich obtains inferior parameter estimates but 
requires a predictable and much-reduced amount of computation, and is usually pre­
ferred to tbe coding method (§5.2.2). 

From definitions for the local conditional probability distribution (5·44) and pseudo­
likelibood function (5·76), and dropping the mean: 

• ( aT 2 
2L(x) '= M N log(2?ra 2 ) _ L X; - ~ fJ;) (5,82) 

iEC a 

where tbe image is defined on a lattice.c of size MxN. Maximisation according to (5·72) 
gives: 

1 

!J '= [L fJifJ/rL fJ;xi 
lee ~eC 

-2 1 (-T )2
a '= MN -1 L Xi - {3 fJ; (5·83) 

,ec 

where fJ is the neighbourhood vector (5·50. Because L(x) is Dot a true likelihood, t.here 
is a danger t.bat the interaction matrix B estimated from it will not be posit.ive defi­
nite, and bence that the homogeneity constraint (5·66) will not always hold. Whether 
this is a serious deficiency clearly depends on t.be precise application of the estimated 
parameter set, hut true-likelihood methods are preferred if parameter estimation may 
be performed off-line. In this case, tbe pseudo-likelihood function (5·82) may still be 
used in subsequent analysis. For auto-normal models, pseudo-likelihood estimation is 
asymptotically more efficient than c.oding estimat.es (Kashyap & CheUappa, 1983). 

5.2.6 Verification of Parameter Sets 

Having obtained a parameLer estimaLe, it is often desirable to lest whether il describes 
tbe training data adequately (§3.6.1). Discrepancies may arise because of approximation 
errors in estimation, hecause of unjustified assumptions made about the field, or simply 
because of the variation inherent in a stochastic process. One simple aud effective but 
subjective verificat.ion method is to reconstruct. an image with the estimated parameters 
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a.od to compare it visually witb tbe original (Cross & Jaio, 1983; Kashya.p cl .1., 1982). 
Field synthesis methods are discussed in §5.3. 

A more scientific test may be made by forming a goodness-of-fit bypothesis. When 
the number of configurations is reasonably small, the Pearson statistic may be used, 
leading to a x2-test (Besag, 1974; Cross & Jain, 1983). This involves comparing actual and 
expected frequcncies for each neighbourhood situation, and only gives reliable results 
if the observations are not sparse. When the pixel values are (almost) continuous and 
nonnal, analysis of variance leading to an F-test is more appropriate (Besa.g, 1974). 

An approximate Bayesian statistic has been proposed to select the correct neighbour­
bood structure, providing a more objective and quantitative lest than visual inspedion 
(Kashyap & Chellappa., 1983). Selection of the best neighbourhood is complir.ated be­
cause a model with more parameters always has greater freedom 1.0 model (hc data 
more closely, and residual error is always a decreasing function of model order. 

5.3 Text ure Synthesis from Gibbs-Markov Models 

An attractive qualitative method of demonstrating that important texture charaderis­
tic; are represen ted by a measured parameter set is to generate an artificial texlure from 
it (§5.2.6). A discussion of approaches to texture synthesis allows us to introduce some 
geueric techniques for manipulating Gibbs-Markov models, which have a.lso been used 
for more concrete applications (§§5.5-5.6). Ideally, field synthesis is straightforward: 
all that is required is to sample the joint distribution. Complications arise because 
the joint likelihood is generally nnavailable, with the exception of homogenoous auto­
normal fields when synthesis is indeed straightforward (§5.3.5). Usually, only the local 
conditional density p,(Xi) is known, either directly from the MRF formulal.ion, or from 
snmming and comparing local GRF clique potentials. 

Probabilistic methods may be used to move from local conditional to joint distribu­
tion, and have wider application than field synthesis (§§5.5-5.6). Performa~ce of this 
technique is not guaranteed for a particular realisation because of its non·dctmninistic 
nature, but it can be shown that the expected result has the correct form. Relaxation 
algorithms seek to refine the initial state iteratively until its distribution takes the de­
sired form, and are usua.lly computationally demanding. Some approaches (0 parallel 
implementation are discussed in §5.6.6. 

5.3.1 Monte Carlo Algorithm 

In essence, a Monte Carlo (or Metropolis) a.lgorithm assnlTIf'S the field takes state 3(t) 
and perturbs it to generate S(l + 1) in such a way that as t -+ 00 the distribution of S 
tends to that of the required joint distribution. Each perturbation involves changing the 
state of at most two sites, and bence computation of local conditional probabilities is 
sufficient to calculate the change in the joint distrihution. Each time step has aSSQciated 
with it a transition 'T, which may be either accepted or rejected according to tbe change 
in joint likelihood it effects. With the "flip" algorithm, the state of a single site is set 
to a new value; for the "excbange" variant, a pair of sites may be exchanged. Clearly, 
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the first·order distribution is unaffected by the exchange procedure, freezing in pixel 
values in the same proportion as the initial state. It is usually desirable to minimise 
the importance of the starting state, because this may have been chosen in an ad hoc 
manner. 

At the core of the algorithm lies the selection of wbich transitions are allowed to 
proceed. 

1" = x.-.x 
P'J P(x)jP(x) (5·84-) 

For simplicity, let us assume a "flip" model, with a possible transition 'J at sitei. Both 
i and 1" sbould be generated to ensure possible field configurations are sampled evenly. 
Relative likelihoods of the two global states x and X are obtained from known condi­
tional densities according to the Hammersley-Clifford t.heorem (5·38), and summation 
need only extend over those sites whose neighbourhood contains .j: 

p;(xi} IT P {Xk I Xk , x;}. 
PT,MItr = p(x) . P{x.IX.,x.} 

I r lteCa€NII 

Similarly, PT,GRr is computed by summing potentials V, for aU cliques containing i, since 
other cliques do not change. 

pT,GRr = exp[v,(x" X,) - V;(x;,Xi )] 

As with determinist.ic greedy algorithms, the transition 1" is a.lways accepted when 
P7 ~ 1, but it may also he accepted when it causes a decrease in the joint likelihood. 

" {P7 ~ I ACCEPT .. (5·85)ACTION = P7 < 1 ACCEPT witb probabllit.y P7 

UConvergence~ may be determined by monitoring t.be statistics of the field" compared 
with their ant.icipated values, or by count.ing tbe proportion of transitions which are 
accepted. There is no clear end-point. because equilibrium around t.he final state is dy­
namic, as the algorithm continually samples the required distribution. The sequence of 
states S. is a Markov chain (§5.J .2), whose ergodicit.y aHows a proof t.hat t.he synthesised 
field" has a distribution corresponding to the limiting state of tbe chain, which is the 
eigenvector of its transition matrix (5·33). This distribution is only approached once 
transients caused by the choice of initial state have died away, 

As described here, t.he a.lgorit.hm operates at a single resolution and hence changes 
in state propagate across the field slowly. Recovery from a poor choice of initial state 
may take many i t.erations a.lthougb the limiting distribution is unaffected. Only a single 
transition is considered at each iteration, and so this algorithm is not very SUitable when 
each pixel may assume many possible va.lues. It has been used successfully wit.h the 
binomial dist.ribut.ion for up to 32 gray levels altbougb this required many minut.es' CPU 

time per image (Cross & Jain, 1983). 



5.3.2 Gibbs Sampler 

Another stocbastic relaxation algorithm closely related to tbe ahove is the "Gibhs sam­
pler" (Geman & Geman, 1984). Transitions are not restricted to fixed candidates hut 
are generated directly from the local conditional distribution at each iteration. Let us 
assume a homogeneous field x defined on a lattice £. of size n, for x E ('5 = V". At each 
time pulse t the state of a single site X; may be updated, and its proposed ne~' state xi 
is drawn directly from the conditional density distribution p,(x;), conditioned on the 
unchanged surround X;. This process is repeated across the lattice using any sensible 
ordering (which need not be deterministic). Unlike the Monte Carlo algodhm, the 
Gibbs sampler considers all possible values at site i and disregards the present state. 

Much of the novelty of the Gibbs sampler lies in tbe use of the "temperature" 
parameter T, whicb effectively forms the Gibbs-Boltzmann distribution (§5.1.J). From 
(5·35): 

_1_ e-U(Xl/T~(x,T) 
Z(T) 

P'('''i) <X exp[-l!;(xi,X.)IT). (586) 

where Z(T) is the partition fuuction. For very large T, the clique potent.ials \1;(.".) have 
comparatively little effect on P,(Xi), and as T -+ <Xl, the new state is chosen at chance: 
p, (Xi) -+ lIn. Convecsely, T = 0 is equivalent to a deterministic greedy algorithm, 
which always selects the state with the largest local probability. An "annealing sched­
ule" dictates how temperature T varies as a function of I.ime t. Large-scale changes may 
occur much more rapidly for large T because intecmediate states with low likelihood 
may be accepted more easily, and hence T should be large near the start, since this 
diminisbes the influence of the initial state. As T is reduced, the scope for large-scale 
change diminishes and fewer transitions are expected. The sequence of states S; again 
forms a Markov chain, witb a limiting distribution equal to the desired joint likelihood, 
reached at T = 1. It is possible to set T = 1 from the start and dispense with an an­
nealing schedule, simplifying the algorithm marginally, but this incr..ases the influence 
of t.he start.ing state and hence more iterations may be re<]uired before transients decay 
and the desired distribution is reacbed (Hassner &. Sklansky, 1980). In order \0 reflect 
the importance of image "features", a dual region~boundary structure may be adopted 
(Geman &. Geman, 1984). 

When t.be objective is to maximise rat.her tban sample the likelihood, T = 0 is 
appropriate as the dest.ination temperature. Zero temperature during synthf'is would 
always select the state corresponding to the mode of tbe joint likelihood ralher than 
sampling it fairly. In practice, a.<:ceptable synthesis of an image of size 128xl28 pixels 
from a very simple model with no annealing scbedule requires about 200 iterat.ions 
(Geman & Geman, 1984). Fewer iterations are required when t.he field size is smaller, 
but a much larger numher of it.erations is needed to produce r~.alistic images (Derin &. 
Cole, 1986; Derin & Elliott, 1987). 

The st.rengths of tbe Gibbs samplec lie in its abiuty to consider many new st.at.es 
simult.aneously, both at a single sit.e and across a code. The temperature schedule 
allows approximate convergence to be reached much more rapidly than would otherwise 
be t.he case, and diminisbes tbe influence of the starting sta.te. The Gibbs sampler has 
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found application outside field synthesis, notably in image restoration and segmentation 
(§§5.5-5.6), but bas beavy computational requirements. 

5.3.3 Deterxninistic Greedy Relaxation 

As we bave noted (§S.3.1; §5.3.2), stochastic relaxation has the advantage of being able 
to switch between distant states despite the poor fil of inlermediate configurations. 
A determiuistic greedy algorithm allows the fit to be improved locally at eaclJ time 
step, a.nd terminates after fewer iterations, but tbere is a strong danger that the true 
minimum will not be found and inferior images may result. 

A deterministic algoritbm was proposed by Gagalowicz and Ma (198.~), who defined 
feature vectors corresponding to desired and present image statistics. Each change of 
state reduces the distance between the feature vectors, and the texture model need not. 
be Markov since the feature vedor defines the required attributes. Synthetic copies of 
natural textures were produced, hut the dimension of the feature vector was unfortu­
nately excessive, often comparable with field size, and only 8 gray levels were atLempted. 
[n essence, this algorithm is similar to the Gibbs sampler (§5.3.2) at T = O. 

5.3.4 Synt hesis of Causal Fields 

When a Markov random field has a causal neighbourbood, it is straightforward to 
generate a field from given boundary conditions by appucation of (5·71). As noted on 
page 115, a causal form is available for all linear two-dimensional processes although the 
order of the causal neigbbourhood is usually much larger than that of tbe corresponding 
non-causal field. Another route is simply to adopt a causal approximation because it is 
much easier to generate, but this does not generally lead to acceptable results (Hansen 
& Elliott, 1982). 

5.3.5 Synthesis of Auto-Normal Fields 

We bave hinted above how realisations of homogeneous auto-normal fields may be syn­
thesised (§5.I.S), and this procedure is far quicker than stochastic relaxat.ion methods 
because tbe joint distribution may be sampled directly. Under the toroidal bound­
ary approximation, we have shown that the transform of the field X .... x is coloured 
Gaussian noise (S·69): 

X; - G (0, 1 ~2BJ (S·87) 

where B, is the cosine tra.nsform of the coefficient vector 13 (5·62). A pradical synthesis 
met bod is to manufacture the required form from a field of unit-variance white noise y 

(Cohen et 01., 1991; Kashyap & Chellappa, 1983; Woods, 1972). 

tTY,
X, = (5·88)

JI-8; 
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Complex multi-parameter models may be synthesised with this method in only a few 
seconds of CPU time, often generatin,g images very similar to natural textures (Cohen 
el 01., 1991; Kashyap & Chellappa, 1983). Examples of synthetic Brodatz textures formed 
by this method are shown in Figure 1.4 (page 7) and Figure 6.2 (page 142). Alter­
natively, the field may be synthesised as a matrix equation (5·57), or by invoking the 
causal form (5·71). All these methods are very fast compared with those which do not 
depend on explicit computation of the joint likelihood. 

5.4 Gibbs-Markov Texture Classification 

Several approacbes to texture classification were discussed in §3.4: test images are 
usuaUy assumed to contain a homogeneous sample of a single texture type, and tbe 
most suitable classification method is influenced by how much information is available 
from class feature vectors. Since Gibbs· Markov models fully specify the joint distri­
bution, optimal Bayesian classification is feasible (§3.4.1). Given a GMRF m0del 9, 
from class Wi, it is necessary to compute the joint likelihood of tbe observed pixel data 
P{x I 9;} = Pi(x). This is straightforward in some special cases, such as an auto­
normal GMRF, but is difficult in general unless an approximation is taken (§5.2). If it is 
impossible to compute Pi(x) directly, some other method should be considered, either 
approximating the Bayes form or adopting a sub-optima:! classification method (§3.4.3). 
We adopt Bayesian classification as a benchmark to compare our proposed frameworks 
with a conventional Markovian analysis (Chapter 6), and suhsequently suggest designs 
for modified classifiers to improve robustness with respect to image degradation (Chap­
ter 7). 

5.4.1 Modified Bayes Classifiers 

It is often desirable to represent each class more flexibly hya parameterised model 9;, 
as this may increase classifier robustness or level of abstraction. 10 this case (he miss­
ing parameters (J may be estimated from the observed data (Cohen et 01., 1991). The 
modified Bayes c1assjfier suhstitutes a maximum-likelihood estimate for (J and proceeds 
as ahove: 

'P{Wi I xl max 'P{Wi I x, Or 
81, ... ,81\ 

'P{Wi I x,O} (5·89) 

where 0 is the maximum-likelihood estimate of tbe missing parameters. Major restric­
tions on the wider use of GMRF texture models are their scale and rotation va.riance, but 
both were partially overcome by a modified Bayesian classifier taking these quantities 
as free parameters (Cohen et aI., 1991). This was feasible because tbe spe<Lrum of a 
homogeneous auto-normal model varies predictably with thes€ projection parameters, 
allowing reliable estimates to be made, High accuracy was reported, but the classifier 
was only tested with synthetic images which exactly matched the model di~Lribution. 

Our experience suggests that results obtained with synthetic textures may be unrepeat­
ahle with real images (Chapter 6). A more straightforward procedure suffices Lo protect 
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the classifier from image-wide changes in hrightness, wbich influence the MRf variance. 
Pixel and MRF variances are altere<! by the same proportion and hence their ratio is 
invariant, and should be recorde<! as a more robust parameter (Kashyap et ai., 1982). 

5.5 Restoration of Degraded Images 

Restoration is concerned with recovering a true copy of a picture that has been degraded, 
and is a classic image-processing application. We hriefly review the use of MR. models 
for this purpose in order to establish the credentials of Markovian metbods for image 
aualysis, and to indicate possible applications for our novel frameworks. Many sources 
of degradation occur in practice (Rosenfeld & Kale, 1982); we shall make the simplifying 
assumption that the transformation is linear and hence may be expressed as a matrix 
equation similar to the form considered above (5·22): 

9 = Hf +v (5·90) 

where f is the original field, 9 is the observed degraded image, and v is while noise. 
When the transform is deterministic and has a known form, the original irn~ge may 
be recovered exactly: f = H-1g. This is not usually the case, and the algorithm must 
produce the hest estimate for the original image that is availahle. Estimation of the 
transform parameters from the degraded image requires assumptions to be made about 
both the image and transformation. 

5.5.1 Maximum a posteriori Restoration 

Bayesian maximum a posteriori (MAP) restoration demands that the conditiooallikeli­
hood of the true image f given the degrade<! copy g, is maximised. 

P{flg} C( P{glf}P(f} (5·91 ) 

The two components of the RHS of (5·91) correspond to the transformation and im­
age likelihoods, respectively, and are generally assumed independent (Rosenf,ld & Kak, 
1982). Commonly, a particular form is assumed for the true image f, for example it 
is often modelled by a Gibhs random field. The transform is parameterised 30 that it 
may be evaluated for specific cases, and restoration reduces to maximising the posterior 
distribution P{ fig} with respect to the field f and transform parameters. Tbis condi­
tional density also follows a Gibhs distrihution in practice, and the problem iscquivalent 
to minimising a cost function (Geman & Geman, 1984). It is not always necessary to 
estimate a parameter set Sf to describe tbe true image: an assumption of spatial co­
herence allows suitable paramete~ to be manufactured without clirect reference to the 
image (§5.2). With more complicated images, MAP restoration is not always suitable 
because the search space is enormous and effective maximisation presents a formidable 
chaUenge. 



Application of the Gibbs Sample,.. to Image RestoNltion 

Image restoration demands that a good but not necessarily optimal solution sbould be 
selected from a vast number of alternatives. As noted in §5.3.2, the Gibbs sampler is 
well-suited to tb.is type of problem, exploring the vast solution space effectively without 
explicit computation of the joint likelihood. Exhaustive search is computationally­
infeasible because the numher of permitted configurations grows explosively with field 
size and number of gray levels (Gurari & Wechsler, 1982). When it is desired to maximise 
rather than sample the likelihood, the temperature parameter T should be reduced 
gradually to zero. In practice, T is lowered faster than is consistent with locating 
the optimal minimum because of computational considerations. Despite this, excellent 
results have been reported for natural and synthetic images, often at very high noise 
levels (Geman & Geman, 1984). The main disadvantage of the Gibbs san1plcr is its 
requirement for very large amounts of computation, upon which parallel implementation 
h"" only limited impact (§5.6.6). 

ICM RestoNltion Algorithm 

Besag's (1986) ICM algorithm is a variant of the Gibbs sampler that seeks 1.0 reduce 
the amount of computation at the expense of sub-optimal solutions, and adopts a 
similar basic approach. Aware that locating the true maximum of the joint. posterior 
density is computationally demanding, Besag proposed iterative maximisation of the 
local conditional densities, exactly equivalent. to t.he Gihhs sampler at T = O. Although 
successful results were reported (Besag, 1986), and l.he computational demands are lower 
than for the full Gibhs sampler, there is no proteelion against becoming trapped in a 
poor local-maximum state. 

5.5.2 Wiener Filtering 

The full complexity of the posterior distrihution may be avoided by approxim•.le meth­
ods, and Wiener filtering minimises the expected least-squares error between the origi­
nal and restored image (R.osenfeld & Kak, 1982). If the image joint likelihood is normal, 
the least-squares function is linear, greatly simplifying the calculations. Assuming the 
degradation transformation again follows t.he form (5·90): 

• T( T 2)-1f = C((H HC((H + 0" I g (5·92) 

where f is the estimate of the original image given the degraded copy g. Brute-force 
computation is possihle but undesirahle because of the dimension of Crr. If an MRF 

parameter set is assumed for f, (5·22) gives: 

Cff HCggHT + 0" 
21 

f W' (C gg - 0"21)C;~ g. (5·93) 

The purpose of this assumption is to allow the covariance matrices to be mmipulated 
easily, and further simplification follows under the toroidal boundary approximation 
(CheUappa & Kashyap, 1982). 
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5.6 Segmentation of Textured Images 

Unsupervised image segmentation algorithms partition an image into disjoint tenured 
regions, about which little or nothing is known a priori (§3.5). This problem is ill-posed 
in general, and addiLional information or consLraints are required, often in the form of 
heuristic approximations reflecting the nature of the physical environment (§2.4). In 
this section, we briefly discuss tbe use of Gibbs-Markov models to describe image com­
position, and review some previoll5 approa.<;hes to segmentation. Markovian models are 
capable of represen ting natural textures sensitively, but drastic approximations are usu­
ally taken in a bid to reduce the computational load, detracting from the quality of the 
resulting segmentations. It is normal, for example, to adopt homogeneous se<:ond-order 
models and pseudo-likelihood manipulation, or even tbe simultaneous autoregressive 
form (§3.2.5). Our proposed Gabor-Markov framework and Sampled-Markov models 
may be used with many of the algorithms dL"Scribed bere, bnt have several important 
advantages which should strongly reduce the computational burden whilst inr.reasing 
segmentation quality (§5.7). 

5.6.1 Simple Gray-Scale Textures 

We shall first consider a class of very simple text.ures, each taking a constant gray level. 
Segmentation is non-trivial because of the addition of large amounts of independent 
random noise, and is virtually identical t.o rest.oration in this case. If the noise is white, 
each texture may be modelled by an M RY of order zero. 

Optimal maximum a posteriori estimal.ion is appropriate for this type of problem. 
As above, we sball assume that a «degraded" or textured image g is available. and the 
goal is a partition f corresponding to the scene layout (5·90), derived from the posterior 
density, P{f I g} (5·91). Maximisation may proceed using the te<:hniques out.lined 
above (§5.5), if «noise" or texture parameters are known (Hansen & Elliott, 1982). The 
arrangement of textured regions is not usually known accurately, bnt may be described 
adequately by a clustering GRY. Without this influence of spatial context, a per-pixel 
MAP estimate would give very noisy results which would require smoothing or some 
other form of post-processing (§3.5.3). 

In general, noise parameters are unknown, and may be inhomogeneous. All t.he 
estimation methods discussed above (§5.2) require access to a contiguous region formed 
from a single texture type, hut this is not generally available until the segmentation has 
been completed. In order to overcome this, a more complex image model is required. 

5.6.2 Hierarchical Random Field Representations 

A monolithic model is sufficien t to capture the structure of the heavily-simplified tex­
tures described above (§5.6.l), when the complete image may he viewed as being com­
posed of a single meta-texture. In effect, we have descrihed a random mosa.ic model, 
each texture primitive having constant intensil.y (§3.3.3). Image structure i, generally 
much more complex and may take different forms at different, levels of description (Marr, 
1982), for which a hierarchical model is required. We shall limit ourselves to two levels of 



structure, correspouding to a model for euh individual texture and for the arraJlgement 
in which they appear in the scene (§3.1). An example of this type of decomposition 
was ~hown in Figure 4.13 (page 77). We have shown above that Gibbs-Markov random 
fields provide suitahle models for single textures; this extension allows their use for more 
realistic images. It is not necessary for modds at both levels to be Gibbs-Markov bu t 
this is convenient and is often done. 

Given an observed image y, the goal is to compute an estimate of the scene parti­
tion, x. Of course, x cannot be observed directly, hut a MAP estimate is obtained by 
maximising the posterior density: 

L(x Iy) = L(x) + L(y Ix) (5,94) 

droppiug constant terms. This maximisation problem is very similar to that encoun­
tered during image restoration, with the added difficulty that model parameters for 
ea.ch texture type are unknown. Use of a scene model to bias segmentations towards 
"reasonable" partitions gives superior results to data-independent techniques such as 
median filtering, although the latter is much faster (Hamen &. Ellioll, 1982). 

5.6.3 Non-Adaptive Segmentation Algorithms 

Parameters for both scene and texture models are known or assumed in advance by 
non-adaptive segmentation algorithms, or estimated independently. The crux of these 
methods lies in the computational problem of minimising the posterior likelihood (5·94), 
for which exhaustive searcb is computationally infeasihle (§3.5). 

Two-Stage Region Splitting A 19onthm 

An ingenious two-stage algorithm was propose<! by Cohen and Cooper (t987), who 
used second-order auto-nonnal texture models and an auto-binary scene model. Tbeir 
approa.ch is of the region-splitting variety described above (§3.5), and the image is 
initially decomposed over a pyramidal grid following a quad-tree pattern. Eadl block is 
initially assumed to contain a single texture type and is classified accordingly against 
known parameter sets (§5.4), at successively finer resolution. Errors are most likely near 
the start of the process when tbe blocks are large and are unlikely to contain a single 
homogeneous texture. Some pixel values from adjaoent blocks are required in order to 
complete the neighbourhood sets of pixels near the border, and a difficulty arises when 
the required sites arc occupied by a different texture type because the likelihood function 
tben assumes a different form. This is overcome by temporarily repla.cing such pixels 
by tbe field mean, and proceeding as before. Termination follows when the size of the 
blocks approa.d1es pixel dimensions. Noting tbat most of tbe difficult.y in computing 
the likelibood (5·55) lies in the determinant, Cohen and Cooper (1987) used the the 
toroidal form (5-64) for this term whilst retaining the true neighbourhood structure for 
the remainder of the expression. 

Tbe segmentation produced hy the first stage is coarse with jaggy boundaries created 
as artifa.cts of the quad-tree structure, and no a.ccount is taJcen of the scene model in 
its formation. A detenninistic greedy restoration algorithm refines it during the second 
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stage (§3.5.3), except that the state is pertLUbed and ascent re-started on convergence, 
as a saCeguard against poor local maxima. 

Dynamic Programming Algorithm 

An alternative approach to an essentially computational problem employs dynamic 
programming (Derin &. Elliott, 1987). Pixel interaction is assumed to be predominantly 
local, and correlation between pixels separated in the image by more t.han a cert.ain 
distance is assumed negligible. Exploiting this, tbe optimal scene configuratioo within a 
narrow strip may be calculated exhaustively, conditioned on the previously-segmented 
bordering ball-plane. The line oC pixels adjacent to this plane is classified 3«ording 
1.0 this local maximum state, and the algorithm advances by one row. The image is 
processed semi-sequentially, discarding intermediate results at each stage as thecontext 
is enlarged. Even when the widtb oC the strip and the number of texture types are small, 
th.is algorithm is computationally-demanding. A second-order G RF was used lor both 
texture and scene models. 

A mild relaxation oC the condition that all image parameters must be given a priori 
was offered by Lakshmanan and Derin (1989): texture parameters are still fixed, but 
tbe scene layout parameters may be adapted. The algoritbm initially proceeds as Cor 
the non-adaptive version, but scene parameters are periodically re-estimated from the 
current segmentation, and the relaxation re-started, eventually terminating after a fixed 
number oC iterations. Although high accuracy was reported with some artificial textures 
(La.kshmanan &. Denn, 1989), the algorithm is computationally intense and the degree oC 
adaptability is ve ry small. 

5.6.4 Adaptive Segmentation Algorithms 

Each oC the ahove algorithms demands that all texture parameters are known in advance 
and that no degradation occurs, hut both condiLions are unreasonable in practice. A 
clustering algorithm which overcomes these restrictions was proposed hy Silverman and 
Cooper (1988), who initially divide the image into small blocks (§3.5.1). Each is assumed 
to contain a single texture type, Cor which a second-order auto-normal pseudo-likelihood 
parameter set is estimated. Using a Mahalanobis distance criterion (§3.4.2j, adjacent 
blocks witb compatible parameter sets are merged using a greedy algorithm, building 
up a coarse segmentation oC the image. Common manuCactured objects bave smooth 
su rCaces, and these were described more closely by adopting a non-stationary Markov 
model, whose field mean varied according to a low-order polynomial. Estimation oC 
the polynomial coefficients complicates extraction oC other MRF parameters as the two 
processes are not independent. The coarse nature oC the segmentation resulting from 
agglomerative cl ustering means that a second pass Lo ~restore~ it is desirable (§3.5.3), 
but even when this is done, real and artificial scenes may be segmented without excessive 
amounts of computation (Manjunath & Chellappa, 1991). 
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5.6.5 Multiple-Resolution Segmentation Algorithms 

All the segmentation algorithms described above suffer from a requirement for large 
amounts of computation, despite approximations taken to reduce this load. Multiple­
resolution algorithms a.ddress this weakness by obtaining initial coarse estimates across 
an image block a.nd subsequently refining tbem at the pixel level (§3.5). Multi-grid 
algoritbms extend this approach by conducting the relaxation at several scale< simulta­
neously (Terzopoulos, 1986), and this was tbe basis of the multiple-resolution a.daptive 
segmentation algorithm proposed by Bouman and Liu (1991). An initial coarse segmen­
tation is ohtained after decomposition of the image into small blocks as above (§5.6.4). 
and the reslllting scene is used as the initial state for a greedy reo:>nstrllclion algoritbm 
which is applied successively at each resolution. After each change, parameters are re­
estimated and the algorithm re-started. Segmentation accuracy is intermediate between 
the Gibbs sampler and reM algoritbm (§5.5.1). but less computation is reqnired than 
either, representing an acceptable compromise. 

5.6.6 Approaches to Parallel Implementation 

A common feature of many algorithms described in this Chapter is tbe requirement for 
la.rge amounts of computation, somet.imes leading to excessively long execution times 
on conventional sequential processors. Parallel implementation appears to present an 
attractive means of addressing this concern (§A.l), but exact solution remains infeasible 
(Gurari & Wechsler, 1982; Tsotsos, 1987), and we COli sider parallel approaches to efficient 
sub-optimal algorithms. A classic example is the Gihbs sampler (§5.3.2), claimed by its 
authors to be parallel although their implementation was sequential (Geman k Geman, 
1984). The state of each pixel is iteratively updated by a relaxation process according 
to the value taken by other pixels witbin its Markov neigbbourhood (§5.1.2), and con­
sequently image codes must be processed sequentially but pixels within each rode may 
he updated in parallel (§5.2.2). During image restoration, processing requirements are 
local, regular, and possess translational symmetry; and bence may be met efficiently by 
data-parallel architectures (Derio & Won, 1987; Murray et al., 1986). 

Image segmentation algorithms are necessarily less homogeneous, and beocemap less 
naturally onto data-parallel hardware (§A.l.l). This is particularly true for adaptive 
algorithms, which combine parameter estimation from irregular regions with boundary 
localisation, and their more loosely-constrained processing requirements are supported 
flexibly by task-parallel bardware (§A.1.2). Both these approaches exploit spatial par­
allelism to some degree, but are partially sequential in one sense because very many 
iterations are usually required at each processor. 

5.7 Motivation for Gabor-Markov Framework 

Nat.ural textures often exhibit random spatial variation. and the stochastic influence of 
local image context is made explicit by Markovian representations which descTihe each 
pixel by a conditional prohability distribution. A~orithms manipulating Gibbs-Markov 
models generate competing statistical hypotbeses about image composition or layout, 
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whicb may be formally compared by evaluating tbeir respective joint likeliboods. This 
is computationally burdensome in general, but is more straightforward for bomogeneous 
auto-normal models wbich are frequently adopted for this reason, often in conjunction 
witb tbe toroidal boundary approximation. Explicit calculation of tbe joint likelihood 
is not imperative, but stocbastic algorithms whicb manipulate only the conditional 
likelibood are often very computationally demand..ing. 

The descriptive power of Gibbs-Markov models was establisbed by reviewing some 
previous applications in the literature, often involving tbe manipulation of ill-constrained 
natural textures. Computational concerns frequently motivated tbe use of low-order 
models, able to describe only very local spatial correlation. Sub-optimal pseudo­
likelihood parameter Bets were frequently adopted for the same reason, detracting from 
the "optimal" statistical framework. Hierarchical random field models describe the 
image more ricbly by representing structure at severalleveJs, but are even morecompu­
tationallyexacting. Despite these concerns, Gibbs-Markov models bave been success­
fully employed in a variety of demanding applications, including image restoralion and 
unsupervised segmentation. 

5.7.1 Drawbacks of Gibbs-Markov Models 

Despite the apparent success of Gibbs-Markov models in the applications reviewed 
above, they suffer from a number of limitations whicb restrict their wider use for texture 
analysis. 

I.	 A major disadvantage of Gibhs-Markov models is their computational appetite. 
Even approximate solutions ohtained with low-order models and pseudo-likelihood 
parameter sets cannot be achieved in real time. Tbis is in contrast to spatially­
parallel algorithms, wbich may be executed extremely efficiently by suitable ar­
chitectures (§3.2). 

2.	 Raw Gihbs-Markov models perform stochastic template-matching on lheobserved 
image data, and hence alterations of viewpoint, lighting, texture mapping, or 
the image acquisition environment all require appropriate adjustment of model 
parameters. While it is often desirable to detect these changes, it is seldom useful 
for tbem to create distinct textures. 

3.	 None of the papers reviewed in this Chapter attempted to assess the robustness 
of Gibbs-Markov models to image degradation by blur or noise; all apart from 
the simple gray-scale textures (§5.6.l) were assumed to be noise-free, but this is 
hardly realistic in practice. Our experiments show that raw Gibbs-Markov models 
are very sensitive to these artifacts, particularly wben using pseudo-likelihood 
parameter sets (Chapter 6). 

4.	 Multi-resolution algorithms seek to arrive quickly at a coarse solution and thell 
refine it to achieve higher accuracy. Despite recent developments 05.6.5), this 
strategy has not been fully exploited and most algorithms operate solely at the 
pixel level. 
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5.1.2 Proposed Improvements: Gabor-Markov Framework 

Our objective is to retain the descriptive power offered by conventional Markovian 
analysis, but to raise computational efficiency, robustness, and level of abstraction 
(Chapter 1). Motivated by the apparent success of simple local image "feaLures" in 
pre-attentive hwnan vision (Chapter 2), and the computational efficiency of "statisti ­
cal" approaches (Chapter 3), we a.ssessed eKperimentally the potential of Gabor nlters 
for image analysis (Chapter 4). Suitably constrained images were segmented accurately 
by locating nrst-order differences in Gabor amplitude, but this approach is ~nreliable 

because considerahle variation is often observed within as well a.s between teKtured 
regions. Ratber than attempting to suppress this by heuristic post-processing, our ap­
proach is to describe the spatial variation of Gabor features with \1arkov random fields, 
forming a hybrid Gabor~Markov framework for texture analysis. We ant.icipate tbat 
this dual paradigm analysis will allow us to combine tbe best aspects of "statistical" and 
"structural" approaches in a similar manner to the pre-attentive dicbotomy observed 
in low-level buman vision. In particular, Ga.hor-:'vfa.rkov models aJdress the concerns 
noted above (§5. 7.1). 

1.	 Feature values have a bigber information conteut than pixels, allowing the feature 
array to be sub-sampled without. significant loss of information. A reduction in 
t.he effective image size immediately leads to computationa.J benefits, allowing 
execution times to be reduced or models of a higber order to be used. 

2.	 Our Profile and R.esultant feature-extraction algoritbms generate sensil,ive and 
compact descriptions of real textures, but require only simple data-par.lIel pro­
cessing and hence may be implemented very efficiently on suitable archltect-mes. 
Straigbtforward enbancements would allow them to adapt to observed image cbar­
acteristics, providing a welcome degree of abstraction so that feature representa­
tions always assume a standard form. 

3.	 Eacb feature vector has a region of support much larger than a single pixel alld 
hence should be less affected by image degradation, suggestillg tbat a feature-based 
model should be more robust. 

4.	 Gabor filtering may be used to derive an approximate image segmentation for low 
computational cost (§4.4), which can he used to guide selectively a more e,pensive 
Markovian analysis. 

We propose specinc Gabor-Markov models in Chapter 6, and compare tbeir perfor­
mance with a conventional Markovian analysis by adopting Bayesian classification as a 
henchmark. 



Markovian Texture 

Classification: A Comparison of 

Novel and Conventional Models 

Gahor filtering is a powerful tool for texture analysis. It is a promising member of the 
class of texlure energy measures, which may he comput.ed in a data-parallel [ash ion 
with a local region of support (§3.2). In Chapter 4, we described the implement,alion of 
a simple spatially-parallel image segmentation algorithm based directly on Gabor filler 
amplitude. Performance was adequate for simple images, but a number of deficiencies 
that limiled its scope were noted. Only first-order slatistics of Gabor amplitude were 
used by this method - spatial context was neglected. In praclice, Gabor filtering often 
failed to eliminate variation within textured regions, and these residual f1udualions 
complicated the process of boundary extractiou. We developed models for Gabor filter 
output in terms of response signatures of simple image prim.itives, and proposed two 
efficient feature-extraction algorithms. 

One factor which limits the applicability of simple spatial-filtering algorithms for 
texture analysis is their fa.ilure to acknowledge an inherent charact.eristic of reallextures; 
variability. This attribute is represented explicitly by Markov l random field (MRF) 

models. Each pixel is described by a conditional probability distribution, expressing the 
stochastic influence of spatial context (Chapter 5). Markov models have been employed 
successfully in a variety of demanding applications, including image restoration and 
unsupervised segmentation, and their descriptive power is well-established. Their main 

'Whilst .d::nowledging the Gibbs-Markov equiva.lence U5.1.J), we .ha.ll only make use of the 
Mar1cov Formulation in this Chapter. 



~36 CHAPTER SIX: Markovian Texture Classiflcarlon 

drawbacks arise from heavy computational requirements, which ca..n.not be metlully by 
parallel implementation, and an insufficient level of abstraction. 

In this Chapter, we combine Gabor filters with Markov fields to form a new method 
for texture analysis. Arrays of Gabor features obta.ined by our extraction algorithms are 
represented hy Markov random fields to form the new class of Gabor-Markov models. 
This hiera.rchical arrangement should allow uS to exploit the spatial variability or Gabor 
amplitude noted. a.bove. Different modelling assumptions lead to the implementation 
of several members of this hybrid framework. We hope to retain some of t~e speed 
and flexibility of ra.w Gabor filtering coupled with the superior scope and performance 
offered hy MiUkov models. The efficacy of this approach is measured by comparing the 
performance of our proposed Gabor-Markov method with a conventional Markovian 
analysis. Texture classification accnracy was chosen as a suitable benchmark. Despite 
some criticism of its generality (§3.6.1), empirical classification accuracy gives a simple 
quantitative measure of performance, may <>.<ISily he repeated for different parameters, 
and does'not require excessive amounts of computation. 

Relative classification accuracy of the Gahor-Markov and conventional MRF models 
is assessed using 33 textures chosen from the popular Brodatz album, divided into 
132 images. Performance gains anticipated for our new Gabor-MiUkov method are 
observed in practice: image dimensions may be reduced by a faetor 16 without loss of 
accuracy; noise tolerance is improved by a factor of up to 45; blur tolerance is increased 
considerably (§6.5). 

Our appraisal of Gabor-Markov models leads to a greater appreciation of tbe impor­
tance of suitable pre-processing. We propose a Sampled-Markov framework, employing 
concise representa.tions derived directly from tbe image data (§6.6). Performance with 
this paradigm further improves upon a conventional Markovian analysis. Image dimen­
sions may be reduced by a faclor 25 without loss of accuracy, and noise tolerance is 
improved by a fa.ctor of up to 200. Smooth-Sampled Markov models are preferred, and 
achieve 100% accuracy in oUI tests. 

These results are of considerable practica.l interest. The superior performance of 
Sampled-Markov classifiers is particularly remarkable. We investigate pOSSible causes 
for tlJese trends in Chapter 7. Finally in Chapter 8, we propose modifications which 
should further enhance the performance of hoth Sampled- and Gabor-Markovclassifiers, 
and discuss potential applications. 

6.1 Choice of Auto-Normal MRF Model 

From the results given in the previous Chapter, it is clear that auto-normal Markov 
random fields a.re particularly convenient to manipulate in practice, compared to other 
forms of MRF. It is feasible to evaluate the joint Likelihood; the conditional probability 
distribution assumes a simple for:rn, with alinea.r neighbourhood function; and analysis 
is often possible using analytical rather than stochastic numerical techniques. Hom<r 
geneous a.ut<rnormal models are therefore very much favoured candidates for image 
description, and their benefits are so overwhelming that we have confined our attention 
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excJ usively t;o this form. Whetber this choice is appropriate depends on the balance be­
tween computational tractability and tbe descriptive power o[ the model. Assumptions 
that images are multivariate normal are common (Bouman & Liu, 1991; Chen & PavLidis, 
1983), and have wme empirical support (Hunt & Cannon, 1976). 

In the context of a pixel image, a number of approximations are inherent in Lhe choice 
of an auto-normal MRY: the normal distribution is continuous and unbounded whereas 
the image is discrete and bounded, taking integer gray-levels in the range 0-255, and 
some further inconsistencies are described helow (§7.1.1). Despite this, auLo-nonnal 
models are popular in the literature and have been shown to be effective pradica] tools, 
if the approximations are not taken to extremes (Chellappa & Chatterjee, 1985; Cohen & 
Cooper, 1987). 

We shall also take the approximation of toroidal boundary conditions (§5.l.5). Each 
pixel possesses a surrounding neighbourhood set, whose values are required to form its 
conditional gray-level distribution, but some of these values are missing when the centre 
pixel lies near an image boundary. Dimensions of the images considered below are very 
large compared to those of the neighbourhood set, and hence the toroidal boundary 
approximation introduces negligible error. We chose it because it is more convenient 
than the free boundary condition, particularly when using discrete Fourier transforms. 
Since our images are all rectangular, no difficulty arises with an irregular boundary 
shape. We further assume that fields are stationary: their mean does not vary as a 
function of lattice sit.e. 

6.1.1 Other Possible MRF Models 

Experiments with other distribution functions have been limited in the literature be­
cause of the attractiveness of auto-nonnal models. The binomial distribution is discrete 
and bounded, and has been employed to model pixel images (Cross & Jain, 1983), but 
computational difficulties forced the use of only 8 gray levels rather than the U3Ual 256. 
Other discrete models also suffer from this restriction (Gagalowicz & Ma, 1985), which 
drastically reduces their descriptive power. 

6.2 Pixel Images: Conventional Analysis 

The main set of images used with the classifier was digitised from the Brodal.z album. 
Camera and lighting parameters were usually adjusted to ensure that the dynamic range 
was well used but some images have heen re-normalised. No corrections were made for 
camera transfer characteristics. Unless stated to the contrary, the original images were 
256x256 pixels (Figure 1.6 on page 11). 
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6.2.1 Estim.ation of MRF Parameters 

As discussed in §5.2, several parameter estimation methods are available. Two were 
used here: maximisation of the true PIx) and pseudo PIx) likelihoods. 

IBI ] exp [ (x - p)TB(x - P)]PIx) [(21!'0'~)MN 20'~ 

1 ) MN/1 [ 1 2]p(x) ( 211'a~ exp -2a2 L (x, - j' - (3T(Tj, - 2p)) (6·1) 
,ec 

Our notation is as used previously (Chapter 5): x image data defined on lattice £, 
ordered as an M x N vector; J.' = j,l mean vector; {3 MRF neighbourhood codliciellts, 
ordered as a column vector; B a block-circulant matrix formed by rotating {3; TJ, the 
neighbourhood vector for point i, defined by (5·51) on page 112; P lrue image like­
lihood; P image pseudo-likelihood; O'~ MRF predictor variance; S = {j" a~ ,~} M RF 

parameter set. Maximum-likelihood parameter estimates are obtained by maximising 
the appropriate likelihood function (6·1) with respect to the free parameters, S(§5.2.1). 
In order to improve clarity, the mean will be dropped from now on. The corresponding 
log-likelihood functions L(x) and L(x) are mOre convenient theoretically and practically. 

When using the Group method (§6.4.3), simultaneous parameter estimalion from 
several images is required. Taking these images to be independent, the new joint like­
lihood may be writteu as the product of those for each image. 

n-I
P (x (0) ,x(ll, ... ,x(n-I)) II p(x1il ) 

i=O 
n-I 

L (x(O) ,X(I), ... , x(n-I)) LL(x(i)) (6·2) 
1::;;;0 

The notation xl') refers to the dh image. 

Pseudo-Likelih.ood Parameter Estima.tion 

For an auto-normal MRF, the pseudo-likelihood parameter estimate is the same as the 
least-squares estimate, and is relatively straightforward to evaluate (§5.2.i'\~1. Group 
estimates for n M x N images are: 

1 .-1 

j' nMN LL:t~J) 
J=O ie£

[I:L iJ!j)Jj~})T] -1 I:L Jj~j) i:~})iJ 
)=0 _E.G }=o lEe 

n-1 

0'2 nM~ _ 1 L L (x!J) _{3TiJ!})f (6,3) 
}=o lEe 

where the notation xrefers to a centered process, formed by subtracting the appropriate 
mean from x. Unless the context requires the use of this notation, we will otherwise 
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assume that tbe field has heen centered. The largest neighbourhood size used was 
ninth order, which require<! the inversion of a 24x24 matrix. This presents no practical 
difficuJ tie:!. 

Altbough the pseudo-likelihood estimate is an approximal.ion, it is often able to 
capture much of tbe character of an image at relatively modest computational cost. 
One significant disadvantage is that the parameter estimate need not correspond to a 
homogeneous texture (8 not positive definite), and often the homogeneity constraint 
(5·66 on page 115) does not hold. Whenever homogeneity is assumed (as in the synthesis 
procedure descri be<! below, §6.2.2), a contradiction occurs. 

True-Likelihood Parameter Estimation 

True maximum-likelihood parameter estimates are superior to pseudo-likelihood esti­
mates but are generally available only at considerably increase<! computational cost. 
Unfortunately, no analytic expression for tbe optimal parameter vedor is available, and 
tbe likelihood must be maximised mainly hy numerical techuicl'ws (page 119)2 

L (x lO), ... , X(·-I») 
n nM N 
-log 181- --Jog(21r~)
2 2 

-
I .-1 T 

- '"'x(·) Bxl')
2~~ 

1:::0 

;;2 
,,-I 

_1_ L xli) T Bx(i)
nMN-I.

,=0 

(6.4) 

Su bstitute for ;;'2. 

L (x lO), ... ,x(n-I)) ~ [lOg IBI- MNlog(21rL:7':;; x(·)TBX('») _ nMN -1]
nMN -1 n 

(6·5) 

Under toroidal boundary conditions, the coefficient matrix B is block-circulant, and 
hence (6·5) may be simplified considerahly. Dropping constant terms, the expression to 
be maximised is: 

L (X(D) , ... ,x(n-l») = ~logA. - MNJOg[~Ai(~ IX;(j)r)] (6·6) 

where (5-61) 

>'~+nM = 1 - 2 L PHtS cos [21r (mk + nl)] . 
(k,t)eN+ M N 

Summation for i extends over the image lattice £; S repc<'Sellts the span of the MRF 

neighbourhood JV+. Power spectra and cosine terms may be pre· computed, and summa­
tion over the image may he re<!uced by balf hy taking advantage of conjugate symmetry. 

20ne degTee of rreedom i. subLn.ded rrom the expression for lhe eoLimaLed variance;;o be<:ause Lhe 
field rne..o '" ..1,., determined empirically (P.pouliB, 1990, page 222). Thi.> ensures thai th. "'Limat.or 
is consistent: C{~} = a":l. 
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0.7'J 0.71 0.72 0.73 0.74 0.62 0.63 0.64 0.65 0.66 

FIGURE 6.1: Shape of the true-likelihood function near the maxi­
mum. A ninth-order model was estimated from the pre.sed cork image ('4: 
Figure 1.6 on page 11). The effect on the log-likelihood L of perturbing the 
first two elements of t3 around their estimated values is shown. CoeRicienls 
mesh together so that t.he scope for independent variation is small, because 
of the reqnirement to observe the homogeneity constraint (5·66: page 115). 
Wben this is broken, the likelihood becomes zero (L ..... -00), sbown by dolted 
lines. 

Partial gradients of (6·6) with respect to (3 are easily computed and may be used in 
a Newton gradient-ascent algorithm. We have found this process to yield satisfactory 
parameter estimates. 

Two prohlems remain: the first is that the gradient-ascent algorithm sometimes 
attempts to evaluate (6·6) at a point where the homogeneity constraint Ai > 0(5·66 on 
page 115) does not hold. Since this parameter set is inadmissible, one potent.ral action 
is to trap the numerical exception and to set L = -00. Unfortunately, no gradient can 
tben be computed, and the algorithm fails. A second problem is that the algorithm will 
probably converge to a local maximum, and there is no practical method for comparing 
this with the true maximum. Stochastic methods may be used to perform a thorough 
probahilistic search, but this is very slow (Geman & Geman, 1984; Kirkpatrick etol., 1983). 

Both these difficulties are overcome by the use of an appropriate seed point. Since 
the pseudo-likelihood estimate fJ is acceptable and fairly cheap to compute, t.his is used 
to generate an initial estimate {30· When necessary, fJ is scaled uniformly 10 ensure 
that {30 satisfies the homogeneity constraint (5·66). Under these conditions, we have 
found that the Newton algorithm converge<; to an acceptahle estimate, usuaUy taking 
no more than two minutes per image, sometimes 'nuch lc:;s.3 

The parameter estimation algorithm was checked in several ways. Firstly, parame­
ters re-estimated from synthesised images were always very close to the original values. 
Secondly, when the algorithm was restarted from a random initial point ten tilIles, in no 
case was a superior maximum found. As final confirmation, the likelihood function (6·6) 
was plotted as a function of parameter values (Figure 6.1). Each was perturbed around 
its "maximum" value to assess how local this extremum was. Unfortunately, this proved 
to be a weak test because tbe homogeneity constraint. (5·66) imposes a very light limit 

3Thi~ figure )5 for estimaLion or ninth-order pa.nunelers from an image of .5i:te ) 28x128 pjx:elsJ 
running on a Sun SPARe a",hite<:lure. For comparison, pseud<rlikelihood estimation takes only 
l5 """onds. 
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on the values which each coefficient may assume, such that the scope for individual 
variation is very small. 

6.2.2 Texture Synthesis from Measured Parameter Sets 

As a final quali talive check, images were synthesised with the estimated parameters 
and compared visually with the originals. The Fourier transform synthesis method was 
used (§5.3.5), again taking advantage of toroidal houndary conditions. In order to allow 
the approximate visualisation of pseudo-likelihood paramet.er estimates whicb do not 
ohey the homogeneity constraint (5·66), the spectral-density coefficients Ai were forced 
to he non-negati ve. 

-"",+.1>1 = 11 - 2 2::: PHiS cos [2lr (mk + ni)] I (67) 
(k.l)EN< M N 

Altbough this alters the appearance of the image, the effect is usually small when 
only a few terms are affected. Unfortunately, the transform of the synthetic image is 
proportional to R and hence is very sensitive t.o small perturhations around Ai ~ O. 
Each synthesised image is quantised and its range restricted to [0,255J hy c1ippiJl,l; at 
the extremes. 

Examples of some ninth-order synthetic Brodatz textures are shown in Figure 6.2; 
the originals are in Figure 1.6 on page 11. In all cases, no valid point-to-point com~ 

parisons can be made between original and synthetic textures. When the real texture 
appears homogeneous, the true-likelihood synthetic texture is often a very good likeness 
(e.g. #4, '24, '38, .70). Similar trends were noted in the fifth-order synthetic Brodatz 
textures shown earlier (Figure 1.4 on page 7). If the original possesses significant struc­
ture extending over a region larger than the MRF neighhourhood, however, tbis is not 
reflected in the synthetic texture, which is instead dominated by rnicrotexture(e.g. '15, 
'17, '65, '95). In these cases, it is not surprising that the model has failed to cap­
ture the inhomogeneity of the real texture. This failure is only partial, howe\Oer, as the 
microtexture may still provide sufficient information for accurate discrimination. 

Banding in some syntbetic pseudo-likelihood textures is caused hy the partial re­

covery by the synthesis algorithm from an inhomogeneous model. The spectral-density 
coefficient Ai has hecome very small, and possibly negative, at the offending frequen­
cies, causing these to dominal.e the synthetic image. An alternative (hut more costly) 
synthesis proced ure could reduce or enminate these artifacts. Our main goal is classi­
fication rather than synthesis, however, during which a different method (page 147) is 
used to overcome violations of the homogeneity constraint. 

6.3 Feature Images: Gabor-Markov Models 

Texture analysis is often divided into statistical and structural approacbes: the fonner 
represent a texture indirectly by a derived property; the latter hy the spatial arra.nge­
ment of primitive elements. From our review of current texture methods in Chapter 3, 
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«: pressed cork liS: .traw 

117: berringbone weave '24: pressed c.alf leather 

.38: waler .as: ha.ndwoven raLtan 

'70, wood graio '96: brick waU 

FIGURE 6.2: Synthetic Brodatz images. Ninth-order copies oC natura' Brodab textures, 
256x256 pixels, formed by the MRF method described in §6.2.2: left-true likelihood; righl­
pseudo likelihood. No point-to-point comparison with the originals in Figure 1.6 on page 11 
is possible. The auto-normal MRf model usually characterises the texture well unless its 
structure extends over a region greater than the MRF neighbourhood. Textures Cormed with 
true-likelihood para-mete,." are consistenlly more convincing. 
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we concluded that statistical approaches have the a..dvantage of computational simplicity 
whilst structural tecbniques are more sensitive to the hierarchical nature of nal,ural tex­
tures, but often require large amounts of computation. A hybrid stochastic-itructural 
model was proposed to combiue the attractive properties of both approaches. Gabor 
filtering and Markov random fields were identified as particularly promising tochniques, 
and were examined in detail in Chapters 4 and 5, respectively. We are nol\' able to 
propose bow our hybrid model should be implemented. 

Our objective is to represent arrays of Gabor features extracted by the filteting meth­
ods proposed in Chapter 4, by Markov random fields, fonning Gabor-Ma.rko. models. 
As with pixel data., using an auto-normal MRF is almost obligatory on compntational 
grounds. Features convey more information t.han individual pixel values, and we antic­
ipate that computational benefits will arise from sparse sampling (§5.7). Conventional 
Markov models operat.e at a very low level, and may suffer from a lack of absl.ract.ion. 
Describing tbe spa.tial arrangement of features rather than pixds addresses this con­
cern, and may bring similar advantages to those claimed for generalised co-occurrence 
matrices (§3.3.1; Davis et al., 1981). In particular, aspects of performance me<.sured in 
this Chapter are: computational efficiency, det.ermined by the degree of sampling; and 
robustness to image corruption by noise and blur. 

Several features are produced by both Profile and Resultant extract.ion algorithms 
(§4.6). One possibility is to assume feat.ures are independent. 

P(6,c,~) = P9(6)Pc(c)Pc(~) (6,8) 

In practice, the error field ~ is not used. Independence has the a..dyantage that the 
contribution for each t.erm may be analysed in isolation, and features with litt.le diag­
uostic information may he dropped. For example, if the orient.at.ion field 8 Were found 
to be the most reliable discriminant, we could use P(8) alone. This approximation also 
facilitates modelling with independent \1 RFs. Feature arrays are lIot truly independent., 
however, and this approach is not always appropriate. 

6.3.1 Angular Field Models 

Our goal is to model an angular pat.tern a by means of an aut.o-normal MRF. The Gabor 
orientation feature obtained according to §4.6 is continuous but its range is restricted 
to 0 ~ 0 < ro. This may easily be extended to cover any segment. of size 21l' by a 
simple transform, and we sball assume that this has been done for the remainder of this 
section (6.3). 

Direct Normal Model 

As with the pixel images, tbe simplest use of the auter normal MRF is to model the image 
data directly, but the fit to an angular pattern is unfortunat.ely very poor. Figure 6.3 
shows representations of the original and ninth-order true-likdihood reconstructed an­
gular components of the Resultant. orientation field extracted from the pressed cork 
image ('4; Figure 1.6 on page II). It. is not. surprising t.hat t.be fit. is poor, because the 
normal model ignores the periodic nature of the data: whereas -". and ".- should be 
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FIGURE 6,3: Comparison of Gabor-Markov angular field models. Ga.bor fea.tures 
for the pressed cork ima.ge (_4; Figure 1.6 on pa.ge 11) were extracted by lhe methods 
described in §4.6. White represenl. (J =0 up to black for (J =11'. (a) unsa.mpled orienta.tion 
field, (b) needle diagram for (a), (c-c) true· likelihood ninlh·order synthetic copies of (a), 
(f) needle diagram for (e), The orienla.lion field synthesised according to the composite­
fea.lure model is most simila.r to the origina.1. 
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adjacent points, they are instead treated as extremes. This distorts the structure of the 
pattern, and means that the direct auto-normal approximation is of no practical use. 
The synthetic angulax field shown in Figure 6.3c is displayed using the same gray-scale 
as for the original. Values exc~'Cding the normal pixel range were clipped at the limit 
rather tban being wrapped. around. 

A possible alternative is to apply a periodic transformation: 

T = tan(8/2). (6·9) 

This solves the range problem but -". and ".- are still treated as poles. 

Orth.ogonal NormtJ.l Fields Model 

Most of the advant.ages of the auto-normal distribution may be retained whilst ac­
knowledging the periodicit.y oC the data if orientation is represent.ed by the direction of 
a vector. The resolutes of t.he vector along the principal axes may then be modelled 
as nonna\. Since only the direction of the vector has any significance, there are no 
restrictions on the range of its components. 

Let the two orthogonal components he"p and q. We theu have: 

8 = arctan(p/ q) (6·10) 

for -". < 8 ~ ".. Effectively (6·10) is a partial transformat.ion to polar co-ordinates. 
The marginal distribution fe(O) is derived in §A.4, and a graph of this function for the 
case O"p = O"q is shown in Figure A.7 (page 268). This appears to have greater potential 
for describing the angular distribution than the direct normal model although this must 
be verified empirically. 

Pseudo· inversion of (6·10) Cor a given 0 gives: 

p sin 0 

q cosO (611) 

implying that -1 ~ p, q ~ 1 and p2 + q2 = 1. This relation (6·11) is used to Conn the 
training data p and q, but. is incompatible with them heing normal and independent. 
Ambiguity about the scaling for p and q occurs since only their ra.tio is spl'Cified by 
(6·10). 

Because the fields p and q are assumed normal and independent, their MRF pa­
rameters mi!.)' be estimated Crom the training data given by (6·11) using the l:lethod of 
§6.2.1. As they are estimated in isolation, the two parameter sets have Creedom to be 
completely different, but are similar in practice. Following the same argument, an an­
gular image may be synthesised by generating p and q fields as in §5.3 and application 
of (6·10). 

An angular image and its reconstruct.ion according t.o t.his met.hod are shown in 
Figure 6.3. The synthetic angular field (d) certainly appears more similar t.o t.heoriginal 
than for the direct nonnal model (c) but is still nol lotally convincing. In parlicular, 
it appears more broken up than the origina.l. 
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In order to model an angular field successfully, it appears that eitber a more compli­
cated structure is required, Or the auto· normal distribution must be discarded. Given 
the qualitative differences between model and data, this is inconvenient but perhaps 
not surprising. Below, we discuss a more viable alternative that is presently .sed. 

6.3.2 Composite Feature Model 

We shall relinquish the idea that features are independent (6·8) and attempt to model 
their joint distribution P(8,e). The partial polar transform (6,10) may nowhe com­
pleted. 

x = csin e
 
11 c cos e (612)
 

Although the couvenience of being able to treat the Cabor feat.ures as independent, 
and hence of easily assessing their relative diagnostic effectiveness, has been lost, it is 
still possible to consider the random variables x and 11 independent. This asumption 
is likely to be a better approximation than for the orthogonal. normal components p 
and q because normalisation implied by (6·11} is avoided. We "gain use tbe estimation 
method of §6.2.1, finding 5~ and 5v separately. Synthesis of new images proceeds as 
above, inversion of (6·12) is straightforward, and the structure of the Resultantsynthetic 
field is now much more similar to the actual data (Figure 6.3). This is also true even 
when the generating texture does not have a strong directional component Similar 
trends arc observed with Profile features (data not shown}. 

6.4 Implementation of the Classifier 

Bayes classification (§3.4.1} is used to identify texture samples, with no reject option. 
Each class is assumed to be equally likely a priori, reducing the task of thf classifier 
to selecting the dass with the highest. likelihood. In fact, the numerical value of the 
likelihood is usually extremely "malJ, and it is more convenient to manipulale the log­
likelihood. This has no effect on tbe result because log is a monot.onically increasing 
function. 

True-Likelihood Tezture Classification 

During classification, it is convenient to exploit the toroidal boundary approximation 
in a similar way to parameter estimation (§6.2.1): 

1
"" I (e) IX 1 \ (e)

2L,(x) L OgA. - MNlog(27fd;} -"" -'-";- (6·13) 
lEe L-- 0

2 
iEC C 

A(e) I_2 "" ale) [2 (mk ne)]
rnt-l\l\f L 1'<+lSCOS 11" - +­

«.l)EN+ M N 
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where >.le) are spectral density coefficients computed from the parameter vector (3(e), 
and IX,I2 are components of the test ima.ge power spectrum. The likelihood Le is 
evaluated with parameters drawn from the M RF ge for each class in tum. As explained 
on page 149, the field mean is sometimes unreliable and is not always used during 
classification. When used, the MRF field mean may be subtracted from x to centre the 
data; otherwise, the sample mean j; is used to remove the DC offset. True-likelihood 
classification is relatively fast under the toroidal boundary approximation because the 
image power spectrum Ixi and cosine t.erms used to form >'i, may be pre-computed if 
sufficient memory is available - this is particularly valuable when matching one sample 
texture against many classes. Further advantage follows from the conjugate symmetry 
of power spectra, and the complexity of the true-likelihood classifier is no larger than 
for the FIT: O(MN log M). 

The form of (6·13) clearly implies that >., > O. This breaks down if the homogene­
ity constraint is violated, which is often the case for parameter sets obtained by the 
pseudo-likelihood method (§5.2.3). In these circumstances, it is possible to drop the 
factor 181 from the likelihood because this appears in (6·13) as Li log >'i, producing an 
approximate likelihood L~(x) (Cohen & Cooper, 1987). 

IX 12 >.Ce)
2L~(x) b -MNlog(21l"0-~) - L -'-2-'- (6,14) 

tEe ere 

Compare (6·13); L~ also has the advautage of being faster to compute. However, this 
a.pproximation is not taken further; we instead use the pseudo-likelihood cla.ssiF.cr (6·15) 
which is unaffected by inhomogeneous parameter sets. Note tha.t P(x) is a probability 
density function because the model for x is continuous. It is therefore quite possible to 
find P(x) > 1 and hence L(x) > O. 

PseuM-Lilcelihood Te:l:ture Classifkation 

There is no direct advantage of exploiting toroidal boundary condit.ions in the pseudo­
likelihood function, which must be evaluated directly. 

- MN ( 2 1 '"' ( (3T)2Le(x) = --log 2"o-e) - 20-2 L- Xi - e fJi (6·15) 
2 e iEC 

This usually takes longer than for the true-likelihood classifier and has complexity 
O(MN#{3). 

6.4.1 Sub-Optimal Classification Strategies 

One may question whether the effort involved in evaluating t.he full Bayesian likelihood 
function for each possible texture class is wortbwbile or whether a faster procedure 
would still give acceptable results. A number of approacbes were discussed in §3.4: 
rather than comparing the test image with all class M RFs, it. is possible to describe the 
image by its own MRF parameters and then to compare paramet.er sets. The simplest 
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way to compare sets of parameter:l is to treat them as vectors and compute the weighted 
Euclidean distance between them (§3.4.3; Manjunath & Chellappa., 1991). 

c:" (9 X) = ~ (9j - Xj)2 (6·16) 
w, L; 9~ +XJ 

We compared the accuracy of this method with true-likelihood Bayesian classification. 
With a ninth-order model, the weighted Euclidean classifier gave 44·7% errOl against 
6·1 %for Bayes. This increase is far too large to be tolerated, and the weighted Euclidean 
classifier was not used further. 

More sophistication may be added to (6·16) hy normalising the dilferencebetween 
each pair of parameters with a parameter variance (§3.4.3). This expression approxi­
mates the Bhatta.cbaryya and Mahalanobis distance measures (3·8-3·10), equality hold­
ing if the parameters are normal and independent. It reportedly gives good res~lts with 
Brodatz textures (Chellappa & Ch.atterjee, 1985; Kashyap el 01., 1982), but is inappropri­
at.e in the present circumstances: reliable estimates of the mean and covariance:; of tbe 
parameters must be available, but we have only a few training textures in e.eb class, 
and so the required variances are not obtainable. Experience shows tbat the p"r;\Ineters 
covary strongly, which perhaps explains the failure of the weighted Euclidean classifier. 
Further, obtaining a true-likelihood parameter estimate for the test image is a relatively 
slow process, and could take as long as computing all the Bayesian likelihoods. This 
means that this method is potent.ially advantageous only when usiug pseudo-likelihood 
parameter estimates, which themselves introduce another SOurce of error. 

6.4.2 Classification using Gabor-Markov Models 

When a single MRF is used to represent the feature array, as in the "dired normal 
modeln (page 1<13), no special trea.tment is required. When two MRFs are netded, the 
overall log-likelihood is the sum of t.he parts: 

L(x, y) =: L(x) + L(y). (6·17) 

This simple form arises because I.he constituent fields and the corresponding sample 
dal.a are assumed t.o be independent. 

Feature images were classified using the orientation field alone, under the olihogona~­
normal model, or using both orientation and contrast features wilh the compooite fea­
ture model. Different results may be obtained with the Profile or Resultanl feature­
extraction methods, and some sets of results have been duplicated using both types. 

E~traetion of Gabor Features 

Arrays of Gabor features were estimated rrom each image using eitber our Profile or 
Resultant extraction methods (§4.6), as indicated by the context. Ouly the liNE prim­
itive was employed to extract Profile reatun~. Botb methods estimate o,ientat.ion, 
contrast, and error features, but. the lat.ter were not used in this study (§6.3). Our 
experience guided the selection of a fixed set of Gabor filter parameters whid was em­
ployed throughout. Following the notation of Chapt.er 4 (page 69), these parameters 
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were: (T = 4 pixels, B = 1, t>Jl l /1 = .,.,/6, El = .,.,/6; (7 = 2·25 pixels, ,A = J3); hence 
each image was filtered at six orientations, two phases, and a single spatial frequency. 
Possible extensions to allow adaptive selection of filter parameters are discussed in §8.2. 

6.4.3 Classification Procedure 

Tbe raw image ma~erial was 33 Brodatz images (Figure 1.6 on page 11), wmch were 
divided into quarters to give 132 independent gray-s<:ale images of size 128x 128 pix­
els. Not all tbe textures appeared very distinct to a human observer (e.g. 14+-+'9, 
'5+-+'28). and some of the photograpby could have been improved upon. No images 
were discarded, however, since these factors cannot always be controlled in practice, and 
the variation was taken to be representative. No pre-processing of the type described 
in §3.1.3 was performed. 

Two variants on the "Ieave-one-out" procedure were used to generate texture classes. 
Under tbe All-Quarters method, a separate MRF was estimated for each or the 132 
images. During classification, each image was then matched against the MRFs of the 
remaining 131 images. The result was a "success" if the match was with another quarter 
of the same parent iTllilge. This method is potentially susceptible to inhomogeneities in 
the image, since one errant quarter may indeed be more similar to part of another parent 
texture I The more conventional Group method was to fonn 33 separate MRfS, taking 
all quarters of one parent together. During classification, each sample was matched 
against the 32 classes to whicb it did not belong, and against a new MRF estimated 
from the remaining three quarters of the same parent. Consequently, test and training 
image quarters were always disjoint. 

Both our methods derive a texture class from a single parent image. The number of 
classes is larger than tbat nocm.aJly considered (e.g. Chellappa & Chatterjee, 1985; Cohen 
et al., 1991; Vickers & Modeslino, 1982), making correct classification more difficult. 

Treatment of Field Mean 

Classification was performed both with and without the MRf mean. In the latter ca.se, 
the test image was simply adjusted to have zero mean. Making use of the mean for a 
pixel image may be thought of as "cheating", since it exploits atypical consistency in 
our imaging environment. Lighting and camera parameters may normally be expected 
to vary for different exposures, making this information unreliable. In any C6Se, these 
parameters bad been adjusted to make good use of the dynamic range offered by the 
camera, so the pixel means were very similar. The first step in extracting Gabor features 
from an image is to eliminate the DC component (§A.2A), and so the jeatuN. mean is 
not covered by the above comments: it is a valid texture property. Both sets of results 
are given below (with and without mean), but a fair comparison is between the pixel 
classifier without mean and the feature classifier with mean. 

Pixel variance is another first-order statistic, and is 5imilarly unreliable (§3.1). 
Changes of illumination a!Teet the absolute variability of the texture, which is reflected 
in tbe MRF varia-nee u 2

, but the relative variability is unchanged. Global changes in 
illumination could have been compensated for by scaling the MRF variance (KashY"P 
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FIGURE 6.4: Classification procedure. Images are classified according 
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conventional pixel c1a.ssifier. 

el al., 1982), or by a modified classifier (§5.4); local changes by logarithmic filtering 
(Voorhees & Poggio, 1987). Neither procedure was adopted in our experiments. 

Evaluation of C~sifier Robustness 

When assessing the tolerance of tbe classifier to image corruption, only the test im­
ages were altered: the same training data were used. Robustness is impoTlant in a 
practical environment since imaging parameters cannot always be fully controUed. The 
procedure for pixel and feature classifiers is illustrated in Figure 6.4. Zero-mran white 
random noise was a.dded to the image before processing. Pixel values were qualltiscd 
and clipped to the permitted ra.nge. This implies that noise and image data were not 
fully independent; for example, noise cannot decrease tbe intensity of a fully-black pixel. 
The noise-generator was non-deterministic and hence classification a.ccuracy may differ 
slightly for different runs. 4 The amount of noise is characterised by its variance p2, 

measured in gray-level units squared. 

Blur was modelled ra.ther ideally hy convolution of the image with a ClTcnlarly­
symmetric normalised Gaussian kernel. No anti·aliasing was done, causing lh" filter 
10 have virtually no effect when the intended amount of blur was very small. Clip­
ping could not occur, but the process was irreversible bec<l.use tbe blurred image was 
quanti sed to pixel units. The amount of blur was characterised by the space-constant 

~This "'-as a minor effect, howev('r, and did not disguise the trends noted below. 
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of the Ga.ussian, b, measured in pixel units. Additive noise and blur were Dot applied 
simultaneously.s 

6.5 Performance of Texture Classifiers 

Several aspects of classifier performance are of interest. The chief comparison is between 
conventional pixel models a.nd our new Gabor-Markov feaLure models: we wish to 
compare trade-oft's between a.ccuracy, speed, a.nd robustness; and to see whetber either 
type of model is better suited to a particular class of images. In order to make a 
fair comparison, we investigated the influence of model order, and the use of true or 
pseudo likelihoods. For the feature models, there is the furt.her question of what level 
of sampling may be tolerated and which feature-extraction and modelling procedures 
should be used. Texture classification gi ves a simple quantitative performance measure 
for ea.ch comhination. 

In order to assist comparison between different sets of results, graphs oj classifier 
a.ccura.cy are collected together at the end of this Chapter (pages 165-173). 

6.5.1 Basic Results 

Accuracy of Conventional Pi~el Classifier 

True-likelihood classification was performed using the All-Quarters method (§6.4.3) 
with MRF parameter sets of order 1-9. The first-order model has a tiny ueighbourhood 
set containing only four pixels (Figure 5.1 on page 107), and this is clearly insufficient 
to capture the structure of the different textures (Figure 6.10 on page 165). A third­
order model has only seven parameters, yet the mis-classification rate is onl)' 7%. As 
neighbourhood size is increased further, there is only a marginal further improvement 
in accuracy: a ni nth-order model with 25 parameters achieves a 6% error r~t.e. This 
difference is hardly significant. and the addit.ional complllahonal effort does not seem 
wortLwhile. Including the MRF mean has a marginal heneficial influence on classification 
accuracy but, as discussed above (page 149), this paramet.er is unreliahle in general. 

Using the Group method gives a very similar pattern of results. Accuracy is slightly 
impaired: the error rate rises from 7% (All-Quarters) to 8% (Group) for a JiIth-order 
model ignoring field mean. The distinction between different classification metbods seen 
in Figure 6.10 is repeated for most other image conditions. In order to enhance clarity, 
only the AIl-Qua.rters results, without field mean, are shown graphi<-.ally in mOiSt cases. 

Pseudo-likelihood dassificat,ion is less accurate (Figure 6.11), achieving a minimum 
error rate of 17·4% without field mean - this rale was reached with a third-order model. 
Increasing the model complexity furt.her tends 10 decrease a.ccuracy. There is a sharp 
jump in error rate for a second-order model, for which we do nol have a convincing 
explanation. The effects of field mean and classifier design are similar to those for the 
true-likelihood classifier. Generally, the pseudo-likelihood cbssifier is inferior: there is 

SSome quantisation noise arises when the image is blurred. howevEr. 
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no speed advantage when the toroidal boundary approximatiou is fully exploited and 
when parameter estimation is excluded, and accuracy is reduced. Accordingly, we have 
concentrated our resources on true-likelihood classification, noting compa.n!Ons with 
pseudc>-likelihood where appropriate. 

Accuracy of Gabor-Marlcof1 Classifiers 

A putative advantage of using features to represent the image data is that they can 

be sampled more sparsely than the pixel array. therehy decreasing the computational 
reqillrement (§5.7). In a complete Gabor representation (§4.1.4; Poral & Zetvi, 1988), 
the sampling period T. is the same as the period of the trigonometric envelO?€' of the 
filter kernel (4·16 on page 62). For our filter parameters (§6.4 .2), this gives T. = 4 pixels, 
allowing the quantity of data to be reduced by 93% from 128 x 128 to 32x32 pixels. It is 
likely tbat the ima.ge will have to be sampled more densely than this, howeveT, because 
we took only one layer of the Gabor pyramid and hence cannot achieve a loss-less 
representation. 

This comparison is not entirely fair because the present implementation lepresents 
Gabor features using floating-point (4 bytes) compared to I byte for pixel data. This 
extra precision is not necessary, however, and a scaled single byte per reature would 
suffice. An unsampled two-feature represent.ation would then require twice as much 
storage as the original image, dropping to 12·5% aller sampling. 

Our Brodatz image set was classified using both orthogonal-normal and composite­
feature models, for Profile and Resultant features. Accuracy using the orientation field 
alone, with the orthogonal-normal model, is shown in Figure 6.12 as a function of 
sampling period s for a fifth-order modeL Using the field mean improves accuracy 
considerably, as would be expected, but there is surprisingly little effect of tne degree 
of sub-sampling. Error rates for this method are higher than for the pixel classifier. 

The sampling period again has liltle effect on accuracy when using the composite­
feature model and Resultant ext.raction met.hod (Figure 6.13). When the field mean 
is used, accuracy rises as the sampling period is increased. Model order has only a 
small impact (Figure 6.14); highest accuracy is obtaineu for a model of int.,rmediate 
complexit.y. For the most favourable choice of parameters, accuracy is virlually the 
same as for the pixel classifier (6·0% against 5·3% error) but this is achiewd with a 
field reduced to one-sixteenth of it.s original Mea. When t.he field mean is not used, 
error rates are considerably higber, exceeding those obtained by the pixel cl2lisifier. 

A similar pattern is observed for the Profile extraction method (Figure 6.15). Max­
imum accuracy is acilleved for a sampling period or three pixels with t.he All-Quarters 
method, and for a. greater period with the Group classifIer. There is virtually no varia­
t.ion of accuracy with model order between second and ninth order (data not shown ). 

The composite feature model uses both orientation and contrast feature, and is 
consistently more accurate t.han tbe orthogonal-normal model derived from orientation 
alone. Since two random fields Me used to represent bot.h models) there is no signifi­
cant computational penalty for using the composite-feature model. We shall be chiefly 
concerned with this model below, commeut.iug on the orthogonal-normal model only in 
passing. 



§6.5 Performance of Texture ClassIfiers ~53 

There is no clear choice bet.ween the Profile and Resultant feature-extraction meth­
ods: they require similar amounts of computation and offer similar performance. We 
shall concentrate on the Resultant method because it appears to bave slightly higher 
accuracy for unsampled and heavily-sampled fields, and is marginally faster ~o ca.lcu­
late. Our discussions below of the "feature classifier" will refer to this model, using 
true likelihood. Preliminary investigations of the use of pseudo likelihood with feature 
data suggested a similar pattern to that achieved for pixel data, classification accuracy 
being far less accurate than with true-likelihood parameter sets. 

6.5.2 Classification of Noisy Images 

Noise is unavoidable in real images. Our noise model (page 150) is idealised hu~ is valid 
for comparative purposes, giving a measure of the relative robustness of classifier types. 
The classification task ensures t.hat models which are either too specific or too imprecise 
are penalised. 

Accuracy of Conventional Pizel Clas3ifier 

Additive random noise was applied t.o the image set prior to classification, as described 
in §6.4.3. The variance of the noise is measured in gray-level units squared. As may be 
seen inunediately from Figure 6.16, the pixel classifier is extremely sensit.ive to noise, 
particularly for models with many parameters. Even noise of variance p2 =' 3 causes 
the error rate to triple for a fifth-order model; for noise of variance 20 or grealer, more 
than half the corrupted text.ures are incorrectly classified, compared to an original 
error rate of 6%. This surprisingly sharp drop in performance undermines the utility 
of this classifier. As can he seen from the sequence in Figure 6.5, the l.exture is still 
visually easily recognisable after the addition of much larger amounts of noise than this, 
suggesting that the classifier is making poor use of the available information. 

Another trend present in the results is for a classifier of larger order to be more 
seriously affected by noise. This reverses the ranking for uncorrupted images. It might 
have been supposed that the larger neighbourhood size of the model of higber order 
would he more effective in suppressing the noise, but this is clearly not the case. A 
third-order model gives highest accuracy with most noise levels. Possible causes for this 
effect are discussed in §7.3. As before, Group classification shows a similar trend but 
accuracy is marginally reduced (data not shown); using the field mean gives a slight 
improvement. Noise is even more destructive for the pseudo-likelihood classifier. A 
fifth-order model achieves 17·4% error for no noise, rising sharply to 78·0% for p2 =' 3 
(data not shown). Such high error rates mean this classifier is virtually unusable for 
noisy images. 

There is no direct precursor to these results in the literature. When noise is con­
sidered, it is in conjunction with regions of constant luminance rather than & random 
texture (Geman &: Gernan, 1984; Hansen &: Elliott, 1982; Lak.hmanan &: Derin, 1989). This 
is a qualitatively different problem to that faced bere - classification is not re.llly an is­
sue with these primitive textures, since the hest available estimate is computed directly 
from the sample mean. 
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(a)'4 plus noise (p' =100) (b) '4 plU8 blur (b =0·5) 

FIGURE 6.5: Effect of noise and blur on Brodatz image. The pres,ed 
cork image (a4; Figure 1.6 On page 11), 256x 256 pixels, was corrupted by the 
methods used to test classifier robustness (page 150). (a) addition of white 
noise, variance p1 = 100 gray-level units squared. (b) blur with paramele, 
b = 0·5 pixel units. In both cases, the original texture is still sufficiently 
discernible to ident.ify it vlslJally. This suggests that high error rates (rom lhe 
pixel classifier are caused by a poor use of the available information. 

Accuracy of Gabor-Markov Clas8ifiers 

Given that Gabor filters have a region of support extending over surrouudigg pixels, 
we would expect features to be less affected by noise than the pixel values themselves. 
COllsequenlly, the perfonnance of the feature classifier should improve relatil'e to that 
of tbe pixel classifier as tbe level of noise is increased. This supposilion is strongly sup· 
ported by our results (Figure 6.17): the All-Quarters fifth-order model with asampling 
period of 4 pixels achieves an error rate of 7·5% for no noise, increasing to 8·3% for 
p2 '" 20. Tbis compares favourably to error rates of 6·8% and 52·4% for the conven­
tional fifth-order pixel classifier. A roughly linear increaBe in error witb noise variance 
is seen in hoth cases but the slope is lower by a factor 45 for 1.he composite-feature clas­
sifier. The accuracy of the feature classifier declines only gradually with higher noise 
levels, and also receives the computational benefits of sub-sampling. As may be seen in 
Figure 6.17, sampling more heavily decreases both the slope and intercept, as well as 
reducing the computational load. 

When the feature mean is ignored, the error rales are a little higher but lhe trend 
is the same (data not shown). Unlike the pixel MRF, the order of Lhe featllre model 
has only a weak influence on accuracy between tbird and ninth order. In both cases, 
the additional complexity of implementing a full ninth-order model is not justified: 
fifth order is a better choice. Error rates with the orthogonal-normal clil.lSifier are 
consistently bigher tban for composiLe features (data not shown). 
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6.5.3 Classification of Blurred Images 

Camera blur and pixel leakage is anotber pervasive potential source of image corruption. 
We model tbis by Gaussian blur with parameter b, measured in pixel units (page 150). 
Only very small values of b were taken, and bence the actual effect on the image is 
somewbat complicated by aliasing. Pixel and feature cla.ssifi~rs receive the same treated 
images, bowever, and SO their comparative performance is still valid. 

The pixel classifier wa.s hardly affected by a small amount of blur (b = 0·25 pixel), 
possibly because of ahasing, but was virtually destroyed by i\ larger amount (b = 0·5), 
the error rate exceeding 80% (Figure 6.18). There is httle effect of model order - this 
is surprising because a larger neighbourhood may have been expected to respond on the 
basis of remaining medium-scale structure. Tbe pixel-hased classifier is almostunusahle 
with blurred images, because its error rate is only a little bet.l.er than chance (97·7%). 

Blur is less detrimental to the feature classifier (Figure 6.19): the fifLh-order 
composite-feature metbod gives an error rate of 54% for b = 0·5 against 84% with 
the pixel classifier. Botb the baseline error and rate of incre;,-,<~ are lower for increased 
sampling period. It is not meaningful to quantify tbis difference in terms of a change of 
slope because too few points are available. Tbere is a mild effect of model order (data 
not shown) favou ring more complcx models; a "fifth-order marld is a good cornpromise. 
Errors are higber if tbe field m('au is discarded or if the Group classifier is used (data 
not shown). 

In view of its inferior noise tolerance, a surprising result is that the orthogonal­
normal orientation classifier is less sensitive to blur than the composite-feature method. 
Both sets of data are sbown in Figure 6.19. With 8 sampling period of four pixels, the 
error rate for the fiflh-order orientation classifier after blur wit.!. parameter 0·5 was only 
17·4%. It appears that the orientalion feature is virtually Ulli\ffect.~c1 by this amount of 
image blur. The orientation fleld extracted from the pressed cork ima.ge (14; Figure 1.6 
ou page: 11) does indeed appear to be slowly-varying (Figure 6.3). Unfortunalely, tbe 
orientation classifier is more sensitive to noise and has a higher baseline error, and so 
the composite feature classifier is still the best choice overa']J. 

6.5.4 Comments and Conclusions 

It is clear [rom the above results that many of the anticipated benefits of a switch from 
pixel- to feature-based classification rlo occur in practice: 

•	 the feature a.rray may be sampled to '/16 of its original area, briuging considerable 
computational benefits, witbout loss of accnracy; 

•	 the composite-feature model is up to 45 times more noise-tolerant than tbe pixel 
classifier; 

•	 blur tolerance is also increased, particularly with the orthogonal fields n:odel. 

ThNe is no subset of our Brodalz images for whicb either method is particularly well­
suited: errON; are similarly distributed. Tbis is illustrated by the confusion matrices 
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FICURE 6.6: Scatter matrices for pixel and composite-feature clas'i­
fiers. Our Brodatz image set was c1ass'l1led using true-likelihood parameter 
sets by the AII.Quarterll method. Matrix order follows the numerical labelling 
of the images (Figure 1.6). Correctly classified images lie along the leadLDg 
diagonal. Intensity is proportional to frequency. Ca) pixel classifier for moc,ls 
of order 2-5, 7 and 9. (6) Resultant composite-feature classifier for mod"s 
of order 2, 5 and 9. Almost all errOrll oCCur with the same images for both 
classifier types. 

shown in Figure 6.6. MiBclassification errors, shown by oIT·diagonal entries, usually 
nccur on the same row for both pixel and feature classifiers. Equal accuracy isobtaincd 
by the two methods for uncorrupted image!!. The greater robustness of the feature 
method is important as it may not always be possible in practice to obtain Images of 
high quality. 

With both classifier types, it is clear that a ninth·order model does not offer suf­
ficiently improved performance relative to the more economical fifth-order model to 
justify its use, and in many cases the ninth-order classifier was less aceurate. A second­
order model is too small t.o distillguish textures reliably, and thc ideal choice lie between 
third and fifth order. A sampling period of four pixels is most advantageous with the 
composite-feature method, tending to reduce both computational load and error rate. 
Unless blur is a particularly serious hazard, the composite-feature model, denved from 
both contrast and orientation features, is superior to the usr of orientation alone. 

Our conclusions are based mainly on observations of accuracy using the AII·Quarters 
method. Very similar trends are observed with more convcntiollal Group classifica­
tion, however, confirming that our results are genuine. Inilial results with the pseudo­
likelihood classifier suggest tbat it is even more sensif.ive to noise than true 1kelihood. 
When used with the pseudo-likelihood function, the sampled feature classi~er again 
achieves comparable accuracy to the pixel classifier with uncorrupted image!! (dat.a not 
siJown). in these circumstances, greater immunity to image corruption may be more 
valuable than with true-likelihood classifkation. 

\-Vith the current serial implcOlcntatiou, there is a significant computation,l cost in· 
valved in representing the image by Gabor feature!!. Mainly simple local comp.ltation is 
required, however, and a suitable parallel mach.ine or special-purpose architeClure could 
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s;: 2 pixels s =3 pixels s =4 pixel. 

FIGUR~ 6.7: Sub-sampled Brodalz image. Sulrsampled ven;ions of Ihe 
pre1lsed cork im.-ge ('4; Figure 1.6 on page 11) formed by taking every second, 
third and fourth pixel, respectively. Pixel sj~e has been adjusted so that ePoCh 
printed image occupies the .ame area. When used with the pixel classifier, 
a sampling period of two or t.hrec pixels leads to higher accuracy than with 
unsampled images. 

easily be constructed to perform this task (§4.1). Using this method, the processing 
time of the featu re extraction stage could be made small compared to classification or 
parameter estima.tion. 

6.6 Performance of Sampled-Markov Classifiers 

The twin advantages of using Gabor features are robustness and sparse sampling. From 
the experiments of the previous section, it is not clear whether these are conferred by 
the nature of the Gabor features themselves, or simply because of an incre~ area of 
support for each feature point. Sub-sampling has a strong influence on comput.ational 
requirements, achieving a reduction of an order of magnitude, and is therefore of imme­
diate practical in terest. In order to assess the influence of increased region of support 
and of sub-sampling on the feature classifier, we investigated the effect of building them 
into a modified pixel-based classifier. 

6.6.1 Classification using Sub-Sampled Markov Models 

Sampling with period 5 pixels was achieved by retaining only the first pixel from each 
5X5 block in the image - this immediately reduced the volume of data by a factor 
5-2. Missing parts of boxes were ignored. Only integer 5 was used, but sampling with 
a suitable weighting to avoid aliasing could easily OverCOme this restriction (\8.3). No 
attempt was made to control aliasing errors. This crude sampling method mirrors that 
used to sample the output of tbe feature detector. Since the structure of the sampled 
images differed from their unsampled counterparts, fresh sets of MRF paramelm were 
obtained. The visual effect of sampling is illustrated by Figure 6.7: there is surprising 
resilience for a sa.mpling period of two pixels but image quality declines significantly 
thereafter. 
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FIGURE 6_8: Comparison of original and sampled Markov neighbour­
hoods. Illustration of MRf neighbourhood structures, centre pixel mark'd. 
( .. ) unsarnpled ninth-order (Figure ."i. I on page 107); (b) sampled second­
order, period 2 pixels; (c) smoolh-sampled second·order, period 2 pix"s. 
Both sam pled neighbourhoods project into a smaller image ~ootprinl" than 
the original ninth-order model. 

Classification of Uncorrupted Images 

The effect of su b-sampling is shown in Figure 6.20. Remarkably, discardiug most of 
the daLa by sub-sampling 7't'duces the error rat.e - from around 6% for ~he dense 
image to 0·7% when .5 = 2 I Accuracy is raised for models of all order ",hen the 
sampling period is two or three pixels but declines for heavier sampling. A period of 
two pixels gives minimum error. Given the perceived decrease in image quality produced 
by sampling, this improvement in accuracy is startling. It seems highly count.er·intuitive 
that discarding nearly 90% of the data should improve classifier performance l 

There are several possible explanations for this effect: 

1.	 smaller image';ze leads to a less-complicated likelihood function, allowinggrarli"Ilt 
ascent to find a better maximum; 

2.	 when projected back into Ihe dense image, the span of the MRF ueighbourhood is 
increased, allowing the model Lo reflect larger-scale correlation; 

3.	 tbe sampled image achieves a closer fit to t.he auto-nonnal model, thereby increas­
ing efficiency. 

Failure of the parameter estimation algorithm appears not to he t.he cause, r~ling out 
our first suggestion. This conclusion is supported by the appearance of similar trends 
for both true and pseudo-likelihood classifiers, even though the latter is unaffected by 
local likelihood maxima. The second possible cause is due to increase in the image 
ar"" covered hy the neighbourhood set of the sub-sampled model when tills is projected 
back onto tbe original. Although only some of the values within this neighhourhood 
are pre.<>en1, it could be suggested that tbis is more than offset by the avai;abili1y of 
louger-range information. This hypothesis is not confinned by the data. The?rojected 
neighbourbood of the sub-sampled second-order model (5 = 2 pixels) is contaired within 
luat of the full ninth-order model (Figure 6.8), yet i1 still achieves illgher accUiacy. The 
third suggestion is more intriguing; we return to this below (§7.1.3). 
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Just as tbe coding estimate is inefficient because it uses only a small proportion 
of tbe available data. tbe sub-sampled classifier appears to be very wast.eful (Bel;ag. 
1974; Cross & Jain. 1983). Another similarity with codes is that a shift in the arbitrary 
sampling origin yields a different set of data. We have not sought to compare or combine 
tbr:sc separate estimatee (preferring instead 1.0 usc the smooth-sampling method, §6.6.2). 
Whereas a code retains the whole image but uses only part of the conditional probability 
structure, sub-sampling discards most of the data entirely. 

As has previously been the trend. classification accuracy was marginally improved 
by using the pixel mean. and reduced a little by the Group method (data not shown). 
but similar patterns of results were obtained. Increasing t.he order of the MRf model 
beyond fiftb-order did not conlley any real benefit to classification performance. We 
sba.lI present tne results for corrupted images for a fifth-order model. ThiS level of 
complexity acbieves a reasonable compromise between speed and accuracy, and the 
results follow a typical pattern. 

Classification of Noisy Images 

Sub-sampling cannot counteract noise directly because there is no pooling of data from 
neighbouring pixels. One would predict the sub-sampled classifier to be no more noise­
tolerant than the original, and possibly less so. because a reduction in effective image 
size diminishes scope for cancelling out random fluctuations. 

It is immediately clear from the results for a fifth-order MRF (Figure 6.21) lhat this 
is not tbe case: the sub-sampled classifier is ma.ssively more tolerant to noise than 
tbe original version (shown dotted). Whereas t.he error rate for the full pixel classifier 
exceeds 50% for noise of variance p2 > 20. the sub·sampled classifier wit.h sampling 
period 5 = 3 pixels has an error rate of only 5% for noise of variance p2 =20 rising 
t.o 11 % for p2 = 50. Increasing the degree of sampling decreases the noise-error slope 
further. 

These results are highly count.er-int.uitive. A fifth-order MRF was di,CI"''') above 
as a good compromise between speed and efficiency, but the same pat.tern is observed 
for models of different order (data not shown). It is easy to construct quit.e different 
text.ures that would be difficult. to distinguish on tills basis but our image set was 
chosen without any covert selection criteria and presumably does not contain any of 
these patbological cases. 

Tbe familial: advant.age of using the pixel mean and disadvantage of using the Group 
method were again observed (dat.a not shown). They did not appear to interad greatly 
with tbe varianoe of the noise. Unlike the full classifier (Figure 6.16), accuracy did not 
appear to decline for models of higher order for the moderate noise levels examined. 
reaching a plateau bet.ween third and fifth order. 

Classification of Blurred Images 

Even a small degree of blur was sufficient to destroy the performance of the unsam­
pled pixel classifier. Although blur does still have a serious adverse impad on the 
sub-sampled classifier. this is less severe than before (Figure 6.22). The infomlabon 
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conveyed by tbe pixel mean is very helpful for large amounts of blur (b = 0·5 pixels) 
but even witbout tbis, an error rate of 26% is acbieved with a sampling period of 3 pix­
els compared to 84% previously. We observed a sma.I1 increase in accuracy for higher 
order; this trend could also be seen for tbe Group classifier (data not shown). 

[t is clear from Figure 6.22 that the rate of error increase with blur is (;(Insistently 
reduced for heavier sampling. This iuteraction is similar to that observed for additive 
noise. Very beavy sampling leads to an increase in baseline error (no noise or blur) 
suggesting that the best classification metbod should be chosen with regard to the 
anticipated level of image contamination. 

Summary of Results using Sub-Sampled Marlcou Models 

Tbere is a strong computational incentive for reducing the amount of data used to 
represent eacb image but one would expect this to be balanced by a performance peILalty. 
Remarkably, however, sub-sampling increases c1assificat.ion accuracy: a sampling period 
of two Or three pixels gives fewer errors than the dense classifier with uncorrupted 
images. Noise and blur tolerance were increased, errors rising mOre slowly Ihe larger 
the sampling period. Minimum error for uncorrupted images was seen with asampJing 
period of two pixels, SO a trade-off does operate between baseline accurac[ against 
robustness and computational efficiency. Unsampled fields achieve a very poor balance, 
offering low baseline accuracy, minimum robustness and minimum efficiency. The best 
compromise is a fifth-order model with a sampling period of two or three pi~ls. 

6.6.2 Classification using Smooth-Sampled Markov Models 

Tbe large perfonnance increases seen in the previous section are even more surprising 
when one considers the drastic aliasing effects of the primitive sub-sampling method. 
Although still far from optimal, an improved technique is to average the pixels in each 
box (Meer et QI., 1987); no weighting was used, aud the boxes did not overlap. We char­
acterise this smooth-sampling by the factor by which the side of the image is reduced; 
hence a sampling frequency f = 0·5 reduces the area by 75%. The resulting image is 
expressed in gray-level units, rounding any fraction, and any remaining rradions of a 
box are discarded. Only integer values of r- 1 were used. In the discussion, weiball take 
"5" to imply sub-sampling and Of" smooth-sampling. Full anti-aliasing, which a.Ilows 
the original texture to be reconstructed from the sampled data, is discussed in §8.3. 

All the data is used in this type of sampling, suggesting that efficiency ~ltouJd be 
higher than sub-sampling a.Ione. Shifting the sampling origin still changes Lhesampled 
image, but aligning t.he sampling box with the image borders is t.he most natunl choice. 

Cla..ssification of Uncorrupted Images 

Smex>th sampling reduces the error rate for uncorrupted images below that oflhe sub­
sampled classifier (Figure 6.23). At r= 0·5, a fifth-order classifier achieves an extremely 
low misclassification rate of 0·7%, falling fur~her to 0% if the pixel mean is Uled. This 
compares witb 1·5% (0·7%) for ~he corresponding suh-sampled classifier (5' =2pixels), 
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F1GUR.E 6.9: Smooth-sampled Brodatz image. Smooth-sampled ve",ions 
of the pressed cork image ('4; Figure 1.6 On p..ge 11) formed by aver..ging over 
a box of size: (a) 2x2 pixels, (b) 3x3 pixels, (c) 5x5 pixels; and samp~og 

with frequency f (l/pixel units). Pixel size bas been adjusted so th ..t e:.cb 
printed image occupies tbe s..me ..re... When used with the pixel classifier, 
e..ch of these sampling periods gives bigher accuriiCY th ..n with tbe uns ..mpled 
image set. 

and 6·8% (6·8%) by the original method. Smooth sampling is consistently more accurate 

than sub-sampling when the same volume of data is retained. A high degree 01 sampling 
is possible - the classifier for sampling frequency J= 0·2 achieves an error rate of 4·5% 

(3·7%) with a set of data rednced to 4% of its original size. Minimum error is achieved 
with a sampling period of two pixels (only integer values were tested). When the 

sampling period was increased to five pixels (I = 0·2), accuracy is comparable to that 

[or the dense image. 

A graph of accuracy against MRF order is again L-shaped, reaching a plateau be­

tween third and fifth order (Figure 6.23). The single error at t = 0·5 at firth Or seventh 

order occurs when a quarter of .2 (fieldstone) is classified as #73 (soap bubbles). For 

the same parameters, the Group classifier makes five errors. Given the fine variation 
present in the original textures, it seems remarkable that good accuracy can beachieved 

after spatial averaging. Smoothly-sampled versions of .4 (pressed cork) are shown in 

Figute 6.9: averaging has reduced the dynamic range noticeably (compare also Fig­

ure 6.7 on page 157). Both sets conld be made more faithful to lhe original by better 

anti-aliasing hut this might jeopardise accuracy improvements. 

Sampling also improves the accuracy of the pseudo-likelihood classifier although it 

is still less reliable than true likelihood. A fifth-order pseudo-likelihood model sampled 

every two pixels has an error rate of 5·3% after sub-sampling, and 6·8% afler smooth­

sampling, compared to 17·4% for the dense image. Unlike the true-likelihood classifier, 
averaging appears to decrease accnracy. 

CIQ.8sification of No~'J Iffl4g€8 

We would expect the smooth-sampled classifier to have good noise-tolerance because 

it pools data from a region, thereby redncing the effective noise variance by a factor 
21 . For very small t, this effect rails because the remaining data will be insufficient to 
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characterise the texture. Because the sampled image is not re-normalised to use the full 
pixel range, the amount of information diminishes faster than the size of the ~'roC<'~"cd 

image. 

Cla.-.sification accuracy for various levels of noise variance p2 and degrees of iampling 
are shown in Figure6.24; f = 1 (dotted) corresponds to the un-processed image. There is 
a dramatic difference in noise tolerance: the rate of increase of error with noisevariance 
is approximately 200. times smaller with the smooth-sa.mpled classifier compared to 
the original unsa.rrJpled method. An error of only 8% is achieved for noise of variance 
/ = 200 and smooth-sampling &equency f = 0·2. Model order has a very weak,nfluelLce 
on classifier accuracy hetween third and ninth order, hut this was difficult ~o judge 
accurately hecause error rales were so low. 

This pattern of results is very similar to the suh-sampled classifier: a substantial 
improvement in noise-tolerance compared to the original method, with a reduced slop~ 

hut higher intercept for larger sampling period. The smooth·sampled classifier is more 
accurate: for noise p2 = 50 and sampling period 2 piXelS, it. achieves aH emr of 3% 
compared with 20·4% for a corresponding degree of suh.sampling. Similar trends are 
agailL observed for the Group classifier, and when the field mean is used (data not 
shown). 

Classification of Blurred Images 

As predicted from the large area of support for the smoo,thly-sampled image, the effect. of 
hlur is reduced as the sampling period is increased. In all cases shown, t,he new classifier 
out-performs the conventional unsampled classifier (Figure 6.25): for moder.te hlur, 
It =0·5 pixels, the old method achieved an error of 84·0% (83·3% with mean) compareel 
to 5·3% (4·5%) for smooth-sampling at f = 0·2. 

Contrary to the trend for additive noise, models of larger order are moreaccurate 
for ulLsampled blurred images (§6.5.3), and this is also true after sampling. Accuracy 
is improved when tbe field mean is used, hut is lower for tbe Group classifier.ltbougb 
similar trends were ohserved (data not shown). 

Summary of Results u.sing Smooth-Sampled MarkotJ Model" 

Smooth-sampling witb a flat window function provides a degree of anti-aliAsing but 
is far from ideal in this respect. Nontheless, performance advantages of tbe primitive 
sub-sampled classifier (§6.6.1) were extended furtber. Using the window funcLion and 
a sampling period of two pixels, ext.remely bigb accuracy is acbieved: zero error when 
the ficld mean is used. This compares with 6% for tbe dense classifier. To'~rance to 
noise and hlur were both extended, surpassing tbe levels achieved by Gabol-Markov 
classifiers. A trade-off was noted: a sampling period of two pixels gives higbesl baseline 
accurac.y hut heavier sampling offers greater robustness and computational <'fficiency. 
The dense classifier scores poorly witb this price-performance equation, giving IDinimum 
reward for maximum cost. A fiftb-order model with a sampling period of tw~ Or three 
pixels is a good general cboice, but a larger sampling period should be considered if 
processing time is critical and an adequate volume of data is available. 
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6.7 Comparison of Texture Models 

Building on Cbapters 4 and 5, we proposed a novel method of texture analysis, modelling 
the spatial distribution of Gabor featur~s witb Markoy random IIdds. Several members 
of the new class of Gabor-Markov modds were proposed. We abo proposed aSampled­
Markov framework, which employs r"llresenta~iolls derived frolll sampled images. For 
r(',,-,OUs of comput.ational tractability, we adopted tbe auto-normal MRF for convention"l, 
Sampled-Markov and Gabor-Markov models. Usiug Bayesian texture classification a.s 
a helichmark, we compared the performance of vur new Gab()'r-~larkov melhod with 
that of the (Convent.ional MRF treatment. Our lliotivation ill proposing tbe Gabor ­
Markov model was t.o seek enhanced robustness through greater abstraction, and higher 
computational .. rriciency. Both objectives were ac.]'ieved: si.m11M accuracy was aLtained 
by Cabor-MiHkov and conv('utional c1as"iflers for uncorrupt.ed images, with" minimum 
E'rror rate of 6'){" but, our new modd dE'rives cfliciency betlcfits from a rcduction of 
,,!fective image area of up to 94% (Figure 6.26). Tolerauce to noise was increa.sed by a 
factor of up to 15, and thc orientation classifier WilS vi£tually unaffected by blur. Since 
blur and noise are unavoidable properties of real images, thp.s;;: robustness illlpltlVements 
an< of practical irnportauce. There wa.s little distinction in atcllracy betw(.-en tbe Profile 
and Resultant feature-ext.raction met.hods (§4.6), and similar trends were scc~ for 1\11­
Quarters and Group classifiers, and for true and pseudo likelihoods. 

Our experiments with the conventional MRF algorithm led to propos.al:; for Sampled·' 
Markov models. Pixel selection occurs immediately for the Sub-Sampled classifier; 
aft.er first smoot.hing with a simple window function for t.he Smooth-Sampled version. 
Primitive sub-sampling was not. exped.rxl to be a good way of reducing imag, area.: it 
discards important high spatial-frequencies and is prone t.o alill_,ing error. In the present. 
context, these objections could be overcome by iustead taking a smaller cvntiguous 
patch of the texture since the image is assumed to be homogmpous_ We found, however, 
that sampling has a far more beneficial effect than we had inil.ia.lly supposed. 

Image sampling improves classifier accuracy, reliability and efficiency. The great.est 
benefit.s are seen with the Smooth-Sampled classifier: this achieves the highest accuracy 
of any classifier for uncorrupted image" with a misclassificalion rate of tess ~han 1%. 
TolNance to noise is increased relalivE' to the lllt'ampled images by " faclor of up 
to 200, and is also superior to the feature classifier (Figure 6.26); blur tolerance is con­
siderably higher t han for dense images, and again exceeds that of the feat.ure classifier 
(Figure 6.27). These performance improvements are obtained in conjunction with the 
computational benefits of sampling, giving the sTllooth-samp!,-d classifier ol'l.:mal per­
formance in aU respecl.s. Preferred parameters are: fifth-order, t.rue likelihood, with a 
sampling period of between two and three pixels. A sampled classifier is inappropriate 
whell the image are.a is alre.ady small because too few pixels would remain after sam­
pling to characterise the texture reliably. The feature classifier is similarly affected, and 
the dense pixel classifier should be used in these circumstances. 

These results are of immediate practical int.erest. because they suggest that both 
Gabor-Markov and Sampled-Markov methods offer improved perlonnance at lower 
computational cost than a conventional Markovian analysis. Our experiments were per­
formed on natural textuCC9 drawn from the popular Brodatz album. Performance trends 
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are derived from over 110000 classification results, and appear sufficiently clear-cut to 
suggest their wider validity. The success o[ Sampled-Markov classifiers is ttmarkable 
beca.use tbey ini tially appear to make very inefflrient use of the available infomation. In 
Chapter 7, we assess factors influeucing classification accuracy, discuss possi:,le causes 
for the observed trends, and propose modifications leading to further impro.~ments in 
accuracy and ro bust.ness. 

6.7.1 Sumlllary of Achievements 

In this Chapt.er, we have: 

•	 proposed several members of 6 new class of hybrid Gabor-Markov models; 

•	 used texture classification accuracy as a benchmark to demonstrate sUi'orior per­
formance of our novel approach compared with cOllventional Markorian tech­
niques, inc:luding - reduction of effective image Mea by a fad.or 16 without loss 
of accuracy, improvement of noise tolerance by up to 45 times, considerable im­
provement of blur tolerance; 

•	 proposed a new family of Sampled-Markov models, and shown that they out­
perform conventional dense models by all even grealer margin, including - op­
timal error rate of less than J%, reducl.ion of image area by a fador 25, noise 
tolerance increased by up to 200, vast· increase in blur tolerance. 
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FlGUR8 6.10: Accuracy of unsampled pixel classifier. Error rate ag"inst MRF order 
for the unsampled uncorrupted trne-likl'lihood pixel classifier. 1:32 Brodat' ima~e quarters 
were c1assined as described in §6A.3, using All-Quarters and Group methods. 
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FIGURE 6.1L Accuracy of unsampled pseudo-likelihood pixel c1assiller. Error ra.te 
against MRF order for the unsampled uncorrupted pseudo-likelihood pixel classifier. 132 Bro­
datz image quarters were cla.ssified as described in §6.4.3, using All-Quarters aDd Group 
methods. True-likelihood c1assific"tion is more accurate (Figure 6.10). The low "rot-rate 
for the nrst.order model is unexplained. 
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F1GURE 6.12: Accu..acy of Gabo..-Ma.-kov orthogonal-no..mal orientation classi­
fier. Error rate ...gainst sampling period 9 (pixel units) for the fift.h·order AII·Qu ..... ters 
uncorrupted orthogona.l-normal orientation classifier. 132 Brodatz image quarters were clas­
sified &S described in §6A.3. Error rates arc higher than for the pixel or COml'oslle-fealure 
c1",,,ifiers (Figures 6.10 and 6.13). 
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FIGURE 6.13: Accuracy of Gabor-Markov Resultant composite-feature dassi1ler. 
Error rate against sa,npling period 9 (pixel units) for the fifth-order uncorrupted 1esultant 
composite-feature cl&Ssifier. 132 Brodatz irna.ge quarters were classified as describedm §6.4.3, 
using All-Quarters (AQ) and Group methods. When the field mean is used, a<fura.cy is 
similar to the uns ...mpled pixel classifier (Figure 6.10). 
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FIGI'RE 6.14: Accuracy of Gabor-Markov Resultant composite-feature classifier. 
Error rate against MRf order for the All· Quarters uncorrupled Resultant composite·feature 
classifier. 132 Brodatz image quart.ers were classified as described in §6.4.3, using field mean. 
Sampling period g is measured in pixel units. 
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F1GI:R.E 6.15: Accuracy of Gabo.....Markov Profile composite-feature classifier. 
Error rate against sampling period s (pixel units) [or the fifth.order uncorrupted Profile 
composite·fealure classifier. 132 Brodatz image qua.rters were classified as described in §6.4.3, 
using All· Quarters and Group methods. When the field mean is used, accuracy is similar to 
the unsampled pixel c1a.""ifier (Figure 6.10). 



1.68 CHAPTER SIX: Ma rkovian Texture Classifica tion 

e",or(% 

70 

60 

50 2
Q=O 

FIGUR.E 6.16: Accuracy of unsamp1ed pixel c1assi:fier with noise. Error ..le against. 
MRf order for the unsampled All-Quarters true-likelihood pixel classifier wil,h a.ddilive noise. 
)32 Brodatz image quarters were classified as described in §6.4.3, ignoring field JIlean. No 
noise is shown dotted; increased noise variance p2 (gray-level units squa.red) corresponds to 
increasing error. Similar trends were found using the field mean or Group classifier. 
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FIGURE 6.17: Accuracy of Gabor-Markov Resultant composite-featureclassi:fier 
with noise. Error rate against noise variance (gray-level units squared) for the 6fth-order 
Result ..nt composite-feature classifier. 132 Brodatz image quarters were cl ...si6ed as de­
scribed in §6.4.3, using field mean, by All-Qua.rters and Group methods. Accura,!, is higher 
for ' ..rger sampling period ~ (pixel units) hut reduced when the field mean is ignored_ With 
a sampling p~riod of four pixels, the feal-ure classifier is approximately 45 t.imes Ie" sensitive 
to noise tban'r.he unsampled pixel classifier (Figure 6.16). 
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F,GUR.E 6.18: Accuracy of unsampled pixel classiller with blur. Error rate against 
MR.F order for the unsampled All-Quarters true-likelihood pixel classifier with blur. 132 
Brodatz image quart.ers were classified"" described in §6.4.3, ignoring field mean. No blur 
is shown dotted; increasing blur parameter b (pixel units) corresponds to rapidly· increasing 
errOr. Simila.t trends were found using the field mean or Group classifier. 
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FIGUR.E 6.19: Accuracy of Gabor-Markov feature c1assillers with blu,. Error rate 
against blur parametet (pixel units) for fifth-order classifiers. 132 Brodatz image quarters 
were classified .... described in §6.4.3, using field mean. Solid: Resultant composite-feature 
classifier. Dotted: orthogonal· normal orientation classifier. Accuracy is reduced when the 
field mean is ignored. Blur is less destruct.ive for a large sampling period s (pixel unil'). Both 
feature classifiers a.re Ie.<s sensitive to blur than the unsampJed pixel c1assifiet (Fig",e 6.18). 
The orientation classifier is particularly res'']ient to blur but does less well with noisy or 
uncorrupted images. 
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FIGURE 6.20: Accuracy of Sub-Sampled Markov classifier. Error rate agl.inst MRF 

order for the sampled All-Quarters true-likelihood pixel classifier. 132 Brodatz i""ge quar­
Lers were classified as described in §6.4.3, ignoring field mean, for several sampling periods 5 

(pixel units). No s ..mpling (9 =' I) is showu dotted; moderate sampling in.,.,.eas<s~curacy. 

Similar trends were found using the field mean Or Group c1assiGer. 
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f1ClRE 6.21: Accuracy of Sub-Sampled Markov classifier with noise. Error rate 
a!\ainst noise variance (gray-level units squared) for t.he sampled fifth·order AII·Quarters 
true-likelihood pixel classifier. 132 Brodatz image quarters were classified as de~cribed in 
§6..1.3, ignoring field me..n, for several sampling periods 5 (pixel units). No samp'ing (5 = 
J) is shown dotted; moderate sampling greatly increases accuracy, slope decreasi:,~ as the 
saJnpling period is increased. Similar t.rends were fouud using the field mean, GrollJlclassilier 
or different MRF order. 
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FIGURE 6.22: Accuracy of Sub-Sampled Markov classifier vvith blur. Error rate 
against blur parameter (pixel unit.s) [or the sampled fifth·order ;'..Ii-Quarters t.rue·likelihood 
pixel classifier. 132 Brodat2 image quartern were dassified as described in §6.4.J, ignoring 
field mean, for several sampling periods s (pixel units). No sampling (s = 1) is shown dotted; 
moderate sampling greatly intreases blur tolera.nce, slope decrea>ing as the sampling period 
is increased. Simita.r trends were found using the field mean, Group classifier or different 
MRF order. 
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FIGURE 6.23: Accuracy of Smooth-Sampled Markoy classifier. Error rOll.• against 
MRF order for the s.nooth-sampled All-Quarters true likelihood pixel classifier. 132 Brodat2 
image quarters were d .....ified as described in §6.4.3, ignoring field mean, [or several sampling 
frequencies f (l/pixel units). No sampling (l = 1) is shown dotted; moder..te sampling 
increases accuracy. Similar trends were round using the field mea.n or Group <1assifier. 
Smooth-sampling is more accurate tha.n .ub-sampling of the same degree (Figure 6.20). 
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FIGURE 6.24: Accuracy of Smooth-Sampled Markoy classifier with noise. Error 
rat.e against noise variance (gray-level units squared) for the smooth.sampled 6fth-order 
All· Quarters true-likelihood pixel classifier. 132 Brodal' image quarters were cl .. sified as 
describ<.d ;n §6.4.3, ignoring field mean, for several sampling frequencies f (ljpiJel units). 
No sampling (f =: I) is 5hown dott.ed; moderate sampling greatly increases accuney, 5lope 
decreasing for lower sampling frequenc)'. Wilh a sampli ng period of five pixels (f = ij·2), slope 
is reduced relative to the unsampled pixel classifier by a factor 200 (Figure 6.16). Simila.r 
trend5 were found using the field mean, Group classifier or different MRF order. 
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FIGURE 6.25: Accuracy oC Smooth-Sampled Markoy classifier with blur. Error 
rate again5t blur parameter (pixel units) for t.he smooth-sampled fifth-order All·Quarters 
true-likelihood pixel classifier. 132 Brodatz image quarters were rl1l.5sificd as described ;n 
§6.4.3, ignoring field mean, for several 5ampling frequencies f (Ijpixel unit.). No sam pIing 
(j = 1) is shown dotted; moderate ....mpling greatly increases accuracy, slope decrtasing as 
t.he .ampling period is increased. Similar trends were found using the field mean, Group 
classifier or different MRF order. 
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FIGURE 6.26: Comparative accuracy o! Gabor-Markov, Sampled-Markov and 
conventional classifiers with noise. Error rate against noise variance (gray-level units 
squared) ror firth-order c1assi~ers. Dotted: conventional classifier without ~eld meaD. Solid; 
Resultant composite-feature classifier with field mean, sampling period 4 pixels. Da~hed: 

Smooth-Sampled classifier wil.hout. field mean, sampling period 3 pixels. 132 Brodatz image 
quarters were classifled as described in §6.4.3, using All-Quarters and Group methods. The 
Gabor-Markov classifier achieves similar b""ic accuracy to the conventional cl",,,i6er and is 
much more noise-tolerant, but tbe Smooth-Sampled Markov classifier achieves bol.h higher 
accuracy aud greater uoise-tolerance than Gabor-Markov. 
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FIGURE 6.27: Comparative accuracy o!Gabor-Markov, Sampled-Markov and con­
ventional classifiers witb blur. Error rate against blur parameter (pixel unit.s) ror fifth­
order All-Quarters classifiers. Dotted: conventional classifier without field mean. Solid: 
Resultant composite-reature and orthogonal-normal orientation classifiers with field means, 
sampling period 4 pixels. Dll.3hed: Smooth-Sampled Markov classifier without field mean, 
sampling period 5 pixels. 132 Brodatz image quarters were c1assi~ed .... described in §6.4.3. 
The composite-reature classifier achieves similar b....ic accuracy to the conventional da"ifier 
but is more blur-tolerant.; greal.er blur-tolerance is displayed by the orientation classifier but 
this h"" a higher initial errOr rate. The Smooth-Sampled Markov classifier offers both higher 
accuracy and greater noi.e-tolrrance than either Gabor-Markov method. 



Consequences of Adopting 

Auto-Normal Models 

The merits of our proposed Gabor-Markov and Sampled-Markov models were rampared 
with those of a conventional Markovian analysis in Chapter 6 by adopting texture clas­
sification accuracy as a benchmark. Given t.he enhanced descriptive power available 
to hierarchical models (Chapter 3), and the att.radive theoretical propcrties of Gabor 
filters (Chapter 4), we anticipated that our hybrid Gabor-Markov modcis would offer 
superior performance and computational efficiency. Evidence for both trends was pre­
sented in Chapter 6: Gabor-Markov models are up to 45 times more robust than the 
conventional approach, and may he sampled h{'.avily without loss of accuracy. 

Our appraisal of the Gabor-Markov framework led to the discovery of Sampled­
Mark09 models possessing cven more favourable attributes. These new represCillations 
are obtained simply by sampling the t.est image, and alTer greater robustness and effi­
ciency than Gabor-Markov models, achieving 100% classification accuracy in rome cir­
cumstances. Our results have important practical consequences because there appears 
to be little reason to retain conventional unsampled pixd models except in special cases. 

In this Chapter, we investigate possible causes for the success of Sampled-Markov 
and Gabor-Markov models, commenting on the inflnence of the imposed auto-normal 
structure. The level of correspondence betwe~n model and data correlall;s closely with 
classifier performanr.e: unsi\mpled pixel models show moderat.e agreement, which de­
teriorat<;>-s rapidly when tbe image is corrupted; but Sampled-MarkM models describe 
the experimental data closely. Sampled Gabor-Markov models are intermediate be­
tween the'" two extremes, but we suggest improvements which bring them ini.o closer 
harmony with the experimental data. ThC5e observat.ions establish t.he imparlance of 



pre-processing image data prior to statistical a.nalysis. Examination of the ioterac­
tiou between image corruption and the auto-normal model allows us to predict trends 
in misclassification error, aud we demonstrate that this behaviour is consi,tent with 
Our classification results. By investigatiug the effect of sampling on the im.ge power 
spectrum, we suggest origins for the superior performance of Sampled-Markov models, 
concluding tbat it stems from close agreement betweeu model and data. 

7.1	 Relation between Classifier Accuracy and 
Fidelity of our Statistical Model 

Markov raudom field models used by a.II the classifiers st.udied in Chapter 6, repre­
s<'uting botb pixel and Gabor-Markov data, were assumed to be auto-uorllli,: (§5.1.5). 
Several approximations are known t.o be implicit in l.his choice, for cxamplr' pixel data 
are di,;<:rete and bounded while the normal distribution is continuous and uJlbouuded, 
but it is almost compulsory to adopt. the auto-normal form for computatJonal rea­
sons (§6.1). Attempting to explaiu I.he remarkably good performance of our sampled 
classifiers (§6.6), we suggested au page 158 that image sampling mightlea.d to acloser fit 
with the auto-normal nlodel, thereby raising classifier efficiency. In this section, we test 
this hypothesis by investigating tbe level of agreement between our imposed statistical 
model and tbe empirical distributions of measured data, and assess the extent to which 
this correlates with classifier accuracy aud robust.ness. Haviug iocnt.ified parameters 
which influence the degree of correspondence, we propose positive measures to iucrease 
c1assificatiou accuracy in §§7.2-7.4. 

7.1.1 Modelling Error for Unsampled Pixel Images 

Pixel images are commonly assumed to be multivariate normal, and have been modelled 
successfully by aut.o-normal MRFs (§6.1). Ouly if the fit to the normal distnbution is 
very poor will a more cumbersome model be of greater practical use. In order t.o 
assess the acceptability of the fit, we examined tbe local conditional error distribution, 
J(u) :: J(x - 2:), where, for each image site, x represents the gray-level pileI value, 
i the value predicted from the MRF neighbourhood structure, and u (gray-level units) 
is the MRF predictor·error (5·27 on page lOS). For a true auto-normal distribution, 
we expect the predictor-error to be normaUy-disl.ributed, u ~ G(0,0'2), and we shaH 
compare the observed distributions with this form. Visual comparison is snfficient to 
obtain a qualitative measure of the fit and is helpful in suggesting bow it might be 
improved. A more formal goodness-of-fit analysis is only able to confirm or deny the 
identity bypothesis (e.g. Besag, 1974). Note that t.he MRF predictor-error 11 bas zero 
mean (§5.1.2), and t.hat by "larger predictor-error" we mean a larger variance, O'~. 

We investigated the MRF predictor-error distribution for models estimated from our 
Brodatz set (Figure 1.6 on page 11) and some additional images used in C',apter 4, 
taking severa) values for MRF oroer and using botb true and pseudo likelihood. Typi­
caHy, the general form of the observed MRF predictor-error distribution is carted, but 
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agreement with the normal curve is far from exact, irrespective of whether the Bro­
datz texture appears homogeneous. Error distributions feu) for two representative 
images are shown in Figure 7.1; histogram hin size was adjusted to avoid excessive 
noise but there a.re sufficient pixels in these images for it to appear contiouous. The 
MRF model variance chosen by the pseudo-Likelihood estimation method is oecessarily 
the same as the empirical predictor-error variance s~ (§6.2.l), and can mean that the 
pseudo-likelihood histogram appears to follow the expected form more elosely than for 
true-likelihood estimation. In the latter case, the likelihood is weighted according to the 
joint. probability distribution (6·4 on page 139), and bence the model and experimental 
predictor-error variances may differ. It bas been snggested that typical spatial variation 
o( gray-level ima.ges is described more aptly by the Laplacian rather tban Lhe normal 
distribution, but we did not pursue this possibility (Trussell & Kruger, 1978). 

By comparison with the poor agreement obtained (or real images, the fit to a 
synthetic image, produced by the Fourier transform method (§5.3.5), is excellent 
(Figure 7.2a). When the synthetic image is expressed in gray-level units rather than in 
Boating point, agreement is a little less exact, with a trend to larger absolute error and 
uoticeahle "tails" (data not shown), hnt is st.ill far superior to that o( real images (Fig­
ure 7.1). Despite this, the auto-normal model usually describes real images sufficiently 
well to distinguislJ mis-matches (Figure 7.2b). 

Possible Cau.ses of Modelling Error 

Imperfect agreement of the type noted above for real textures occurs with Lhe exact 
image used for parameter estimation, and hence represents modelling error ralber than 
a lack of robustuess. Several factors may contribute to the poor fit, iududing: 

• poor choice of MRF distribution function (data not auto-normal); 

• failure of the parameter-estimation methodj 

• wrong order for MRF; 

• error int.roduced by toroidal boundary approximation; 

• quantisation error; 

• clipping to pixel units; 

• "noise"; 

• image not homogeneous; 

• image or camera blur. 

All of these probably have some effect. The imperfect. fit for unsampled puel data 
(Figure 7.t) could certainly be blamed on the wrong choice of MRF model, hu: this is 
really only a re-descriptiou of the result. More interesting questions are why classifier 
performance is improved by sampling, and how modelling error may be reduced Or 
overcome. Modelling error represents a failure of the image representat.ion because 



(a) 14 true (b) « pseudo 

(e) 'M true 

."...,./ 

15 20" -a> -15 -10 -6 

(d) 'M pseudo 

0 5 
" 
10 15 20" 

-10 -6 o 5 10 " -10 10" 

~78 CHAPTER SEVEN: Fidelity of Avto-Norroal Model 

FIGURE 7.1: Agr-eement with auto-normal model of un sampled Brodatz images. 
l.Tistograms of observed (solid) and expected (do~led) distributions fOr ninth-Older MRF" 

prediclor-error'u (gray-level "nits), to different vertical scales, using the analysis described in 
§6.2. (a) pressed-cork image (.4; Figure 1.6 on page 11), true-likelihood parameten; (b) '4, 
pseudo-likelihood parameters. (c) raffia image (.84; Figure \.6), lrue-likelihood paJameters; 
(d) '84, pseudo-likelihood parameters. These results are typical: in no case is agreement 
close despite apparent homogeneity of the original textures. 
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FIGURE 7.2: Agr-eement with auto-normal model of synthetic and mis-matched 
textures. Histograms of observed (solid) and expecLed (dotted) disLributions for ninlh-order 
!.rue-likelihood MRF predictor-error u (gray-level uuits), to different vertical scale,;, using the 
analysis described in §6.2. (a) synthetic pressed-cork image (14; Figure 6.2 on p'ge 142) 
evaluated with correct parameter sel; (b) genuine expanded mica image ('5; Figure 1.6 on 
page II) evaluated with parameter set for 14. 
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an image should be definitive once it has been recorded, irrespective of the physical 
processes giving rise to the observed texture. 

In order to ass"'s the relative influence of each poteutial source of error in isolation, 
we took a synthetic image, which initially displays perfect agreement (Figure 7.2)' mod­
ified it appropriately, re-estimated new MRF parameters, and examined the resulting nt. 
This procedure ensures that only mnddling error is introduced because the descriptive 
accuracy of each MRF parameter set is evaluated with the exact image from which it 
was derived. The ninth-order true-likelihood synthetic image used for this purpose is 
shown in Figure 6.2 on page 142; its Brodatz parenL 14 "pressed corkn in Figure 1.6 on 
page J I. True-likelihood manipulation was llsed throughout. 

Failu.re of the Parameter-Estimation Method 

True-likelihood parameter estimation is uot straightforward because the likelihood func­
tion is mult.i-dimensional and may have many local maxima. No analytical estimate is 
possible for t.he optimal parameter set, and there is a. cleil.f danger that th" gradient· 
ascent algorithm we employ (page 139) will become trapped in a local maximum. Hav­
ing a large image may exacerbate this problem because there is potential for the likeli· 
hood function to be eveu marc uneven, and improved performance observed {rom t.he 
Sarnpled-Ylarkov clas"ifiers is consist.ent with this possibility (§6.6). 

We argued in §6.2.1 (page 139) that failure of Lhe parameter-estima.tion algorithm 
does not introduce siguificant error in practice, having found t.hat repeatro gradient 
ascent from differeut initial points was unable to improve the parameter estimate. This 
coutention is further streugthened because advantages of sampling are also observed 
for pseudo· likelihood parameters, which are not obtained by gradient ascent. In order 
to coufirm this conclusion, we compared the empirical fit tn an enLire Brodat.z image 
with that obtained from a single quarter. If image size does iuteract witL pa.rameter 
es1.imaLion in t.he way we hypothesised above, agreement wilh the quart.er-image should 
be superior to the whole, but no significant improvemeut was found (data uot shown), 
consistent with our belief that this is indeed a negligible source of error. 

Incorrect MRF Neighbou.rhood Size 

Wben the neighbourhood size of t.he Markov random field model is jucreased, the new 
parameter space contains the old, and hence it is always possible to obtain agreement 
at least as good as before. When the MarkovianiLy of the data is only approximate, 
iucreasing the MRF neighbourhood size always leads to a better description of the dat.a. 
Closer agreement is demonstrated by the MRF predictor being more accurate, leading to 
a lower variance, and by the predictor-error distribution being approximately normal. 
As expeet~, tbe average MRF variance of true-likelihood parameter sets estimated from 
all Our 132 Brodatz image segments is a decreasing function of MRF order (Figure 7.3). 
For unsampl~ images, the variance decreases by a faclor 5·7 between third and ninth 
order. 

Tbe importance of having t.he correct order for the model is demonstrat~ in a more 
controll~ way by modelliug a ninth-order syut.het.ic image with a reduced parameter 
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FIG UR~ 7.3: Influence of sampling period and MRF order on variance 
of pixel models. Avera.ge MRF variance (gray-Icvel unils squared) from true­

likelihood para.meter sets eSlimaled from Our 132 Brodal. image quarters, 
against MRF order. Sa.mpling was done with a period of 2 pixels. In "aih 
case, model variance is a de<:reasing function of MRF order. 

set (Figure 7.4a,b). Note that because of the inter-dependence of MRF coeffiCLents, the 
new parameter vectors are uot. simply truncated versions of the old. The degree of 
error caused by simplifying the MRF neighbourhood strudure clearly depends on the 
nature of the original Markov random field, but significant error occurs in 'his case, 
which is typic• .!, caused by the iuability of the reduced model to follow the ,h.pe of the 
image power spectrum closely. Agreement with the seventh-order model (Figure 7.4b) 
is closer than for fifth order (a), and when MRf neighbourhood size is inCleased to 
the correct value, correspondence is almost exact (Figure 7.2). This transition is more 
gradual for real images (data not shown), but our observations suggest that aD increase 
in MRr neighbourhood size is always beneficial. In practice, however, illcrea;ing MRF 

order beyond third-order had very little impact. on classifier performance, and larger 
order led to less accurate classification in some cases (§6.5). Most sampled models of 
low MRF order achieve good classification and modelling accuracy (§6.6; §7.1.3), and 
although error rates are high for ve11J small neighbourhood size, it does not appear that 
the order of the MRF is generally of paramount importance. 

Toroidal Boundary Conditio~ 

It appears Ilnlikely that the toroidal boundary approximalion is a significant >ource of 
error beca.lIse the image dimensions are much larger thau the extent. of the MRF neigh­
bourhood. This was confirmed by comparing the fit under toroidal and free boundary 
conditions for real and synthetic textures. As expl'Cted, there wa..' little difference be­
t.ween I,hem (data not shown). 
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FIG URB 7.4: Agreement wit h auto-normal model or pert urbed synthetic textures. " 
Histograms or observed (solid) and expected (dotted) distributioIls for MRF predidor'erroru 
(gray. level units), using the analysis described in §6.2, and a 256x256 .ynthetic pressed· cork 
image (114). (a) ninth·order image (Figure 6.2 on page 142) and fifth-order parameter set; 
(b) ninth·order im"l5e and seventh-order parameter set; (c) nilllh·order image quanUsed to 
5 bil.s (32 gray levels) and ninth-order parameter .el; (d) ninth-order image clipp"d to gray­
level range (32,223] and ninth-order parameter .el; (e) fifth-order image (Figure J,,4n 011 

page 7) with added noise of variance 20 gray-level units squared, and fifth-order parameter 
set; (1) fifth-order image blurred with parameter 0·5 pixels, and fifth-order parameler set. 
Errors are introduced when the model has insufficient parameters, by clipping, and by blur, 
but moderate levels of quanl.isalion Or Gaussian noise have little effect. 
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Quanti3ation Error 

Pixel images are normally represented using 8 bits, giving 2.56 (unsigned) gray levels. 
This is a potential source of error because image data is assumed to be continuou. by the 
auto-normal model. In order to test whether quantisation error has a significantimpact, 
we re-estimated parameters for the ninth-order t.rue-likelihood synthdic pressed-cork 
image (114; Figure 6.2) qU3lltised to only .5 bits (32 gray levds). Agrccment between the 
observed MRF predictor-error distribution and the normal curve is very good, suggesting 
that quantisation error is, at most, a very minor effect (Figure 7.4c). Note Lhal this fit 
was for MRF parameters re-estimated from cue quantised image rather than theoriginal 
set; correspondence wit.h tue latter was ITIuch poorer (data not shown). 

Clipping Error' 

The range of tUe normal dist.ribut.ion is unbounded, whereas pixel images are bounded 
above and below. Imaging parameters were adjusted La make good apparent use of t.he 
available dynamic range when OUr t.exLnres were photographed, but t.his was nolchecked 
quantitatively. It is possible that clipping at one extreme could cause skew 'Oithin the 
distribution, and clipping certainly dist.orts t.he Markov property by disrupt.ing the 
correlation structure. 

In order to test these effects, the synthet,ic pressed· cork image was clipped artifi­
cially, its MRF paramet.ers re-estimated, and the new MRF predictor-error distribution 
compared to the normal curve (Figure 7.4d). Modelling error is modest, but is larger 
if the order of the model is decreased, and it does not appear to matter whether or 
not clipping is syrrllnet.rical (data not shown). Agreement may be improved ~ little hy 
describing the range-rest.ricted synthetic image by a model of higher MRf order than 
the original. The extent to which an image is clipped is de>termined by the camera alJd 
post-processing paramet.ers, which may be controllable. Our results show that clipping 
does interfere with texture modelling, perhaps t.o a greater extent than quantisation 
effeds, suggesting that the image acqnisition environment. 5hould be adjusted carefully. 

Additive Noi3e Error 

The noise parameters of our imaging system are unknown but it is likely that noise 
depends on the image data whereas our simple model assumes it to be white, Gaussian, 
additive and independent of the image (§6.4). It could be argued that once t.he image 
has been taken, any noise should be rega.rded a.s an intrinsic part of the text.ure rather 
t.han due to some external influenCe>. 

In practice, small amounts of a.dditive white noise, applied according \.0 i.he classi­
fication procedure given in §6.4.3, appear not to cause the model any difficulty (Fig­
ure 7.4e). Our original teA1:ure in tbis case was a fiftb-order synthetic pressed-cork 
image (Figure 1.4a. on page 7), with model and pixel variances of 80 and 2750 gray­
level units squared, respectively. The lit shown is after addition of noise of variance 20 

I Clipping occurs when a signal exceeds the dynami<:: ra.nge or the measuring uevlc:e 8{ld is recorded 
al Lhe nearest avaibbJe value. 
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- tbis is sufficient to ca.nsc a nine-fold increase in errors with the dense pixel classifier 

wben using genuiue Brodatz textures (§6.5.2). 

InhomogeneoWl Te:l:ture Samples 

Large inhomogeneiti"s in the I.ext.ure will certainly prevent it. bein~ describ",J accllTalely 
by a homogeneous model. However, no significant differenc(' was ohservcd between 
agreement obtained with apparently-homogeneous a.nd apparent.ly inhomogeneous Bro­
cl",tL: images (data not sbown). Although none of our images is p"rfcdly homogeneous, 
the lac.k or any obvious relationship does suggest that the primary cause he> ebewherc. 

Jt has been suggest.ed that non-stationary or <'coloured" Ga.ussiau MRFs may provide 
a closer description of real irnagps than the form we have used (§6.1), allowing the 

fidd mean \.0 ,'ary with image location (Hunt &'. Cannon, J976; Silverman II. Cooper, 
L98S). When image mean varies smoothly wil,h position, it may be estimated by a 
local weighted average, and bence a zero-mean field recovered by convolving the image 
with a blur kernel and subtranillg it from the original (Hnnl & Cannon, 1976). We us'c 
this procecJme t.o eliminate the local field nlcan duriug GabO!' filtering (§A.24). Whcn 
our Brodatz image set was processed in this fashion aud the classification exercise 
repeated with a conventional ninth-order true·likelihood classifier, the errOr rate was 
hardly afrc(tel~ (6·8% agaiIlst G·] % prcvioI:sly), cOJlfinning that. our textures ore largely 
homog<-,nrous wit h respect to field mean. 

Image Blur 

Several types of blur are possible, including opt.ical hlur and camera leakage. but blur 
may also be a valid property of the text.ure (water ripples, for exalllpk). The act.ual 
natnre of the "blur" transformation is complex, but we adopt. nniform Gaussian blur as 
a simple model (§6.4). As with noise, once a photograph has been taken, t.he blur may 

be considered t.o be an int.rinsic part of t.he resulting image. 

We assessed the import.ance of image blur by comparing the MIl.F predict.or-error dis­
t.ributions obtained from blurred synthetic images with the normal curve (figure 7.4j), 
and found that the new MRF models were unable to describe the structure of t.he blurred 
images adequat.ely, [ailing in a very similar way to the mis·fit seen for Brodatz orig. 
inals (Figure 7.J). It. appears tbat. a hlurred image is no longer well-described by an 
auto-normal MRF. Visually, the blurred texture is still quite recognisable (figure 6.5 
on page 154), and so errors appear 1.0 be caused hy a failure of the model, for wbich 

possible causes are discussed in §7.2.1. 

Summary of the CaU3e,s of Modelling EN'Or 

Of tbe effects listed ahove, blur introduces the largest modelling errors, followed by 

clipping; both are difficnlt, to eliminate entirely from real images. The degree o[ blur 
required to introduce significant modelling error (and also a significant increase in clas­
sification error) was small, space-constant b == 0·5 pixels. Unless great care is taken, or 
computationally-ex pensive re:ltoration employed, blur is likely to represent a significant 
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FIGURE 7.5: Agreement with auto-normal model of corrupted syn· 
thetic images. Histograms of observed (solid) and expected (dotted) dis· 
tribut.ions for fifth-order MRF predic:tor-error " (gray· level units), to diffNenl 
vertical scales, using the analy,is described in §6.2. Agreement with thp un· 
corrupted fifth-order 256x256 "Yl\lhdic pressed-cork image ('4; Figure 1.-1 oJ 
is excellent; we corrupt.ed this image before matching it against. t.he origi. 
nal parameter set. (a) after a<Jdition of noise, variance 20 gray· level unil; 
squared; (b) afler blur, paramder 0·5 pixels. 

source of errOr for real images, and we suggest in §7.2.3 how it.s destruelive influence 
can be diminished. Distortion was also observed when t.he model had insufficlent pa­
rameters, but ou r experience with the classifier suggests that increasing the order of t.he 
model beyond a reasonable minimum level on,en fails to improve accuracy (§6.5.1). 

7.1.2 Robustness of Unsampled Pixel Models 

Two sonrces of error are present in the classifier resnlts: failure to model t.he original 
data closely, and distortion caused hy image corruption (§6..5). Only the former was 
investigated a.bove because fresh parameter sets were re-estimated for each perturbed 
image. In t.his section, we examine t.he impact of image corruption on the level of 
agreement obt.aiued wit.h the original model. 

In order t.o isolate the effects of modelling and perturhation error, we again used 
a synt.betic texture which initially agreed wit.h the model precisely, choosing a fifth­
order copy of the pressed-cork image (J4; Figure 1.4a). Addition of noise of variance 
20 gray-level units squared introduced signific".nt disagreement between the normal 
and ohserved distributions (Figure 7.5a): MRF predictor-errors were higher than antic­
ipated. This is consistent with our intuition that noise rednces the accuracy orthe MRF 

predictor. Noise of this magnitude increased the error rate of the fifth-order classifier 
from 6·8% to 52·2% when using genuine Brodatz textures (§6.5.2). 

Blnr has an even mOre powerful effeel (Figure 7.5b): MRf predictor-errors are tightly 
bunched around zero, confirming that blur reduces sudden image variation. The di~tri­
bution shown wa.s for a moderate amount of blur, parameter b= 0·5 pixel, sufficient to 
increase tbe error rate of the fifth-order classifier from 6·8% to 84% (§6.5.3). Such low 
accuracy is not hard to understand given the high level of disagreement. seen here. 

All images show a similar pattern but the rate of degradation varies, and the noise­
tolerance of the pressed· cork image is a lit,tle higher lhan average. It is important to 
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distingnish these results from those of the previous section: modelhog errOr relates 
primarily to the level of classificatioo error for uncorrupted images; wbereas the rate at 
wbich the model degrades wheo the image is corrupted determines classifier robustness. 
Whilst a model which is ioitiaUy in good agreement with tbe data may aL<o lead to a 
more robnst classifier, the two effects oeed not vary in a. similar way. 

7.1.3 Descriptive Accuracy of Sampled-Markov Models 

We have shown above tbat dense pixel models do not. fully capture image structure 
(§7.1.1), and are sensitive to smaU image perturbations (§7.1.2). Tbese deficiencies are 
reflected io classifier performaoce as a bigh error basehne and poor robustness (§6.S). 
The puzzle is how t.hese problems are overCome by sampling, whieh leads to both higher 
accura.cy and great.er robustness (§6.6). 

Modelling Error 

As with uusa.mpled models (§7.1.1), we shall investigat.e modelling error by evaluat­
ing MRF parameter sets in conjunction with the exact. image from which Ihey were 
estimated. Histograms of nioth·order true-likelihood MRP predictor-error distributions 
flu) for sub-sampled I3rodatz images are shown in Figure 7.6 for the same te.\lures ex­
amined previously witb lin sampled models (compare with Figure 7.1), 14 pressed-cork 
and #84 raffia (Figure 1.6 on page 11). For botb images, sampling has t.ransformed the 
level of agreement from poor to very good, despit.e the residual effect of the fi\.Ctors listed 
on page 177. Even closer agr,,-ement is obtained by the corresponding Smooth·Sampled 
models, a.nd modelling error is virtually ehminated (Figure 7.7). This was confirmed 
by looking at tbe MRP predictor-error field U, which appeared more homogeneous after 
sampling and ha.d highest magnitude for the Sub-Sampled Markov models (data not. 
sbown). The MRF variance is bigher for Smooth·Sampl"d Markov than conl'eotional 
models, and for Su b-Sampled models it is higher still, although t.he proportion;;! change 
between third and ninth order is greatest with unsampled models (Figure 7.3). To some 
erlent, the reduced variance for a smooth-sampled image refleds a reduct.ion io pixel 
variallce caused by compression of the dynamic range. 

Following the procedure outlined iu §7.1.1, we attempt.ed to isolate the elfects of 
particular types of modeHing error by using synthetic images. The deose image was 
perturbed and sampled, and a new parameter estimate obtained. For the range of 
parameters used previously, no significant error was introduced (data not shown), in 
strong contrast to unsampled models (Figure 7.5). 

Model Robu.stness 

In order to assess the robustness to image noise aod blur of tbe dose-correspondcnce ob­
served between experimental aod normal MRP predictor-error distributions, we adopted 
a similar technique to tbat described above (§7.1.2). A 256 x256 pixel image was syn· 
tbesised from an unsampled fifth-order true-likelihood MRF pararnckr set (Figure IAa), 
derived as previously from the pressed-cork image (114), and fresh parameter sets were 



l86 CHAPTER SEVEN: Fideliry of Autr>-Normal Model 

estimated after appropriate image sampling. We corrupted the unsampled image using 
the same techniques as above (§6.4), and compared the new level of agreement bel.ween 
the original parameter sets and the corrupted image after appropriate sampling. Sim· 
ilar trends to tuose observed for den~e images Were found: a sbift towards higher MRF 

predictor-error for noisy images, and towards lower predictor-error after blur, bul sam· 
piing reduced the ext.ent of hoth effects. Fifth-order MRF predictor·error distributions 
obtained from a corrupted synthetic image show only limited dist.ortion (Figure 7.8), 
contrasting with the same image, noise and hlur parameters used previously without 
sarnpliug (Figure 7.5). Blur has a stronger effect [or lower sampling period, and Affects 
sub-sampled models more than smootu-sampled, but agreement is always superior 1.0 
that obtained without sampling. 

Su.mmary: FideLity of Sampled-Markov Models 

Sampled MRF models display good agreement with real textures and are resilierl ill the 
face of image corruption. These propert.ies are reflected in the improved accuracy and 
robustness of the sampled classifiers. Smooth-sampled models have a lower variance 
than sub-sampled, and achieve a better fit to the data in some cases. 

7.1.4 Descriptive Accuracy of Gabor-Markov Models 

As with conventional and Sampled-Markov models, computatioual concerns led US to 
implement Ga..bor-Markov classifiers using auto-normal MRfs. Three types of Gabor­
Markov model were proposed in §6.3, describing arrays of Gabor features directly, Or 
after t.he orthogonal fields or composite-feature transformations. By its nature as a 
windowed linear filter, the Gabor kernel introduces blur into it.s output (§4.l). Conse­
quently the shortcomings seen with blurred pixel images (91.1.1) are also expected in 
dense feature images, perhaps to a greater degree reflecting the larger space constant 
("'Cabo, = 2·25 pixels). 

Direct Nor-rnal Model 

Under the direct normal model (§6.3.1), the orientation feature 0 is assumed normally 
distributed, ignoring periodicity. Correspondence between the observed MRT predictor­
error and normal distributions is extremely poor (Figure 7.9a): the trend seen above 
for unsampled images towards a large central peak and long tails bas been exaggerated, 
cousistcnt with the influence of blur (§7.1.1). Sub·sa.mpling has a dramatic effect" 
eliminating tbe central peak, but the fit is very strained because of skew (Figure 7.10a). 

One way to reflect the periodicity of the data is to apply a trigonorncl.ric transfor­
mation (§6.3.1), hut taking the tangent of the measured orientation makes the fit worse 
(Figure 7.9b). The predicted distributiou is indistinguishable from tbe axis because the 
model variance is very large, presumahly because tan is insufficiently localised around 
the origin. Sub-sa.mpling improves the fit a little, but. it is still very poor (data not 
shown). 
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FIGURE 7.5: Agreement with auto-normal model or sub-sampled Brodatz lIn­
ages. Histograms of observed (solid) and expected (dolled) distributions for ninth·order 
MRF predictor· error u (gray· level u!lit.), to different vertical scales, using the analysis de· 
scribed in §6.2. (a) pressed corle irnage(H; Figure l.6011 page Il). sampling period 2 pixels; 
(b) raffia image (.84; Figure 1.6), sampling period 3 pixels. In bOlh cases, agreemenl is far 
better lhau without sa.mpling (compare Figure 7.1). 
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FIGURE 7.7: Agreement with auto-normal model of smooth-sampled Brodatz im­
ages. Histograms of observed (solid) and expected (dotted) distributions for ninth·order 
MRF predictor·error u (gray-level unils), l.o different vertical s,a.les, u.ing the ahalysis de­
scribed in §6.2. (a) pre.sed-cork image ('4; Figure 1.6 on page 11), sampling period 2 pixels; 
(b) raffia image (.84; Figure 1.6), sampling period 3 pixels. In both cases, agreement is far 
better than without sampling (compare Figure 7.1). Nol,e the decre....ed variance compared 
wilh the c.orrespondiog su!>.sampled models (Figure 7.6)_ 
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FIGURE 7.8; Agreement with auto-normal model or sampled corrupted synthetic: 
textures. Histogra,";. of observed (solid) aud expected (doned) distributions for fiftb· 
order MRF predictor-error u (gray· level units), to differenl vertical scales, using the .n•.Iysis 
described in §6.2. Agreement with the uncorrupled sampled fifth-order aynthctic pressed-cork 
('4; Figure 1.4a) image i. excellenl.. We corrupt thi. image, sample it, and malch it against 
the original parameter set. (a) after addition of noise, variance 20 gray-level unil', and 
su!>.sampling, period of 2 pixels; (b) after blur, parameter 0·5 pixels, and smooth-sampling, 
period 3 pixels. Agre..ment is far superior to that obtained ""it.hout sampling (Fig\lrc 7.5). 
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F'GURE 7_9: Agreement between auto-normal and Gabor-Markov models_ IJis­
tograms of observed (solin) a.nd expect.ed (dotted) distributions for ninth-order MRF' 

predictor-error u (arbitrary units), to different vertical scales, using the analysi, described in 
§6_3_ Gabor feat-ures were obtained from the pressed-cork image (.4; Figure 1.6 on page 11) 
by the Resultant method_ (a) orientation feature 8 and direct normal model; (b) T == t,an 8 
and direct normal model; (e,d) orthogonal normal fields model; (e,J) compo'ite-featute 
model; (g) contrast feature c a.nd direct normal model. In no case is agreemfnl. !;ood. 
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FIGURE 7.l0: Agreement between auto-normal and sampled Gabor-Markov mod­' 
els. Histograms or observed (solid) and expected (dotted) distributions ror ninth-order MRF 

predictor.error" (arbitrary units), Lo differ-enL vertical scales, using the analysis described in 
§6.3. Gahor reaLures were obtained rrom the pressed· cork image (14; Figure 1.6 on poge 11) 
hy the Result".nl. method, a.nd sa.mplcd ..... il.h a period of 4 pixels. (a) orientation fe.Lure 0 
and direct nonnal model; (b) ronl.rasl fc"-1.ure e and direct normal model; (c,d) orthogon ...1 
normaI fields model; (e,f) composite·reat-nre model. Agrroment is bel-ter tha.n for uns.mpl~d 

f~atllr~s (compare Fip;ure 7.9), hut (11) and (c.d) show pronounced ske...... 
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Compared to the angular fields, the fit for the coutrast feature is reasonable (Fig­
Ure 7.9g), similar to that seen for pixel images (Figure 7.1). Sampli ng again improves 
the fit but also makes skew more apparent (Figure 7.JOb). Resultant fea~ures were used 
here (§4.6), bnt a similar pattern is observed with the Profile LINE and SINU methods 
(dat.a not shown). 

Orthogonal NorTrl.{l/ Fields Model 

Our assumptions of normauty and independence for the components of the orthogonal­
normal model were somewhat questionable (§6.3. n, and the observed fit is ag.in poor 
(Fignre 7.9c,d). Note that the orthogonal normal fields model nses two Markov random 
fields, p and q, to describe the spatial variation of the data (§6.3.1). A large cenl.ral peak 
is a.gain prominent in nnsampled fields, and when this is eliminated by sub.sampling, 
skew becomes apparent (Figure 7.10c,d). These results are similar to those obt.ined [or 
the direct normal model. The amount of skew varies from image t.o image but tends to 
have an opposite sign for the orthogonal components. Below (§7.J.5), we suggest how 
the skew conld be rednced in an improved model. 

Composite Feature Model 

There is a little more snpport (§A.4.2) for both the normality and independence of 
t.he components of the composite feature model (§6.3.2) compa.red with the orthogonal. 
normal model (§6.3.1). Note that two Markov random fields are employed, x and lJ. 
Corresponden<',e between the unsampled experimental MRF predictor-error di~tribut.ions 

a.nd tbe normal cnrve is still poor, but improves upon previous results for angular 
fields (Figure 7.9). When Gahor features are sub-sampled, as was our origin.1 intention 
(§5.7), modelling accnracy is much improved, attaining an acceptable level ofagreement. 
(Figure 7.10eJ). ]n t.his respect, the composite-feature model is superior to the direcL 
norma! model, and iL achieves the best fit for any of the Gabor feat.ure data. Agreement 
is good fOr both random field component.s of t.he composiLe-feaLure model (x and \I), 
witb no significant skew. 

We Lested the robnst.ness of the composite-feature classifier by examining the COr­
respondence beLween the troe pa.rameter set a.od Gabor features e),i,rarlrd from a 
corrupted image. Noise of Yariance 20 gray-level units squared poses lit/.le d.ifTiC:lI~ty, 

but after moderate blur (parameter 0·5 pixels), the familiar shift towards lower MRF 

predictor-error is observed (Figure 7.11). BoLh the raw fit and tolera.nce to corruption 
of t.he sampled composite-featnre model are snperior Lo those of dense pixel models but 
do not match those of sampled pixel models. This is reRected in t.he performance of the 
classifier (§6.7). 

7.1.5 Improved Gabor-Markov Models 

A common factor in the observed Gabor-Markoy predictor·error distribnt.ions for un­
sampled feature data is the presence of a large central peak with long tails (Figure 7.9). 
The position is improved by sub-sampling bnt skew emerges as a neW error [or all except 
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FIGnltE 7.11: Agreement between auto-normal and sampled Gabor--­
Mal"koy models with corruption. Histograms of observed (solid) and 
expected (dolted) distributions for ninth-order MR, predictor·error u (.rbi­
trary units), to differen( verbcal scales, using the analysis described in \6.3. 
Gabor features were obtained from the preosed-cork image (14; Figure 1.60n 
page 11) by the Resultant method, with a sampling period of 4 pixels, and 
processed using the composite-feature model. Field x is shown (y is simi­
lar), and agreement with features extrac(ed from the uncorrupted image ..as 
good (Figure 7.10). (a) after addition of noise, "aria.nce 20 gray-level uDits 
squared; (b) arter blur, para.mel.er 0·5 pixels. Correspondence with the COr­
rup1.ed image is far superior to that obtained by the unsampled pixel model 
(Figure 7.5) but less good than that of the sampled pixel models (Figure 7.8). 

the composite-feature model (Figure 7.10), hecause or interaction between the imposed 
nOffilal model and the periodicity of angular data. Errors are introduced when i>djacent 

values are insteAd treated as extremes, and the extent t.o which this causes skew depends 

on the spread of the angular data across its principal segment. This is iIluslra.ted Ior 

the orient.ation feature in Figure 7.12: in (a), the modal (peak) orient-ation occurs well 

to one side of the segment, leading to skew on truncation. Much less skew is inlroduced 

in (b) because tbe peak lies near the cenlre of the region and t.he sprea.d is roughly 

symmetrical. Similar arguments apply to the direct and orthogonal normal models: 

skew is introduced unless the truncated distribution is symmetrical. Both models could 

be improved by shifting t.he angular component. so that its modal value lies at 0= "h, 
in the middle of tbe principal region. 2 Skew cannot be eliminated completely un!ess the 

distribntion abou t the mean happens t.o be symmetrical, as shown in an ideali"~d rorm 

in Figure 7.12, but can be snbsta.ntially reduced. 

When the mean of the orient.ation features is adjusted in this fasbion, it also affects 

derived fields used by the orthogonal-normal and composite-feature models. Corre­

spondence between the MRF predict.or-error distribution and the normal curve I, much 

improved for modified feature data after sampling, as sbown for ninth-order R.esul­

tanto featnres extracted from the pressed-cork image (14) in Figure 7.13. Agreement 

is acceptable, even Ior images which do uot have a predominant orientation (dat.a not 
shown). A tall central peak remains in the MRF predictor-error distribution from un­
sampled features, similar to Figure 7.9, but is llOW sited exactly at tbe origin (dala not 

shown). 

The improvement for the direct normal model is such t.hat one may question whether 

:?Not~ lhal inllially 0 ~ 6 < ro, bllt. iLS ra.nge is doubled. to 2:r by the Gabor-Markov mHdels Lo 
ma~ch lh. periodicity or trigonometric runctions (§6.J.l). 
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(0) asymmetrical (b) modified 

FIGURE 7.12: Illustration of improved Gabor-Markov models. His­
togram. of Gabor orientation feature 8. (a) typical asymmetric distribution, 
le..ding to skew wben periodicity of the data is ignored. (b) modified sym· 
metric distribution: mean orientation has been shifted to the centre of the 
principle segment, and skew is much reduced. \\'e propose transforming f.he 
orientation feature in this manner to form improved Gabor-Markov models. 

the additional complexity of t.he orthogonal model is worthwhile. When the angular 
data is shifted to Cree the sin component 11 from skew, it simnltancously introduces 
maximnm skew in tbe cos field. We could similarly improve agreement with tbe cosine 
component q by rotating the mean of the orientation features to 0 = 7':/4, but t.his 
makes one component rpdundanf.. Both fields were originally necessary to emure that 
tbe full range of the data was covered with uniform sensitivity but it appears that one 
component may suffice when the data is shifted to coincide with the most sensit.ive 
region of the sinusoid. 

Rotating the orientation field has no significant effect. on the composite-feature 
model, with which most of our resnlts were obtained, and which alr('.ady agrees closely 
with experimental data. No improvement. occnrs in the direct fit to l.he contrast feature 
since this has no angular component, bnt some skew is apparent (Figure 7.10b). If pixel 
values are themselves normally distributed, as appears to hold to a good approxima­
tion, we would expect local contrast to follow a normal cnrve. Our extract.ion methods 
(§4.6) fail to obtain tbe sign. of the contra..st because the contrast feature r. is derived 
from the Gabor energy R. (R. ~ c2 

), and the positive square root is t.aken. Skew is 
introduced when cont.rast c is model1ed by a normal density, hut this doe; not occur 
with the composite-feature model which is itself derived from c2 

. 

7.1.6 Summary of Correspondence with Experimental Data 

Poor correspondence was fonud between dense pixel images and the an to-normal MRF: 

in all cases, tbe experimental MRF predictor-error distribution ha.d a tallercent.ral peak 
and longer tails than t.he normal model, bnt differences between the fit for the correct 
and incorrect model were still usnaUy noticeable (§7.1.1). We found that major sources 
of modelling error are: blur, clipping, and insufficient MRF order. Conveul,ional models 
arc fragile: descriptive a.ccuracy deteriorat.es quickly 'If the image is corrupted by noise 
or blur. 

In contrast to the above, the descriptive accnracy of Sampled-Markov models is 
very high, and remains good aft.er corrnpf.ion by noise or blur. These dil1ercnces arp 
reflccted in the superior accnracy and robustness of the Sampled-Markov classifiers 
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FIGURE 7.13: Agreement between auto-normal and improved Gabor-Markov 
models. Histograms of observed (solid) and expected (dotted) distribut.ions for nint.h·order 
MRf predictor-error" (arbit.rary units), to differenl vertical scales, using the ana.lysis de­
scribed in §6.3 and improved in §7.1.5. Cabor feaLures were oblained from the pressed-cork 
im"ge ('4; Figure 1.6 on page 11) by the Resultant method, a.nd sampled .";lh a period 
of 4 pixels. Orientation features were rotated to set their mean to 1f/2. (0) orienlation 
feature 8 and direct nortnal model; (b,c) orthogonal normal fields model; (d,.) composite­
(earure model. Agreement in (<I,b) is much inlproved compared La the original orientation 
fealures (Figure 7.10), (d,c) are hardly changed, and (e) is much worse because the new 
mean fa.vours sine rather than cosine. 

2 
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(§6.7). Sampled models have a higher MRP variance because some information is lost 
on sampling. Model specificity declines as the sampling period is increased. 

Similar trends were observed witb MRf predictor-error distributions obtained Crom 
unsampled Gabor--Markov models: agreement with the normal curve was poor because 
the experimental distrihution had a tall central peak and long tails, consistent with 
the effects of image blur. Skew was initially a problem [or sampled angular fields 
but may be substantially reduced by a modified modelling t.echnique (§7.1.5). With 
this procedure, correspondence between the auto-normal and sampLed Gabor-Markov 
models is much improved, comparable to thal achieved by sampled pixel modeLs. Closest 
agreement was obtained with the composite-feature model, and this was also robust to 
image corruption. Strong correlation was observed between modelling and c1asslficalion 
accuracy, but this Link may be broken because very heavy sampling increases tbe Level 
of agrel'ment with ""perinwntal data but reduces specificity. 

7.2 Comments on the Influence of Image Blur 

Image blur has a strong detriment.a.l effect on classifier accuracy (Chapter 6), and was 
shown above to decrease the correspondence between the auto-normal MRP model and 
real data, but its impact is diminished by both the types of sub·sampling we empLoyed 
ahove (§6.6). The purpose of this section is to e"plain these effects, commenting mainly 
on true-likelihood cla.~sificat.ion, and to seek a way of reducing misc1assification errors 
introduced by blur. 

BLnr distorts the image power spectrum, introducing high·contrast peaks which give 
rise to modelling inaccuracy (§7.2.1). The usual balance between Bayesian penalty and 
bias terms is upset, prejudicing the classifier towards classes described by models with 
low MRP variance (§7.2.2). Modified Bayes classifiers have vasLly improved robustness 
with respect to image blur (§7.2.3). 

7.2.1 Modelling Error Arising from Image Blur 

At first, it seems slrange that image blur should introduce modelling error: blur 
produces strong correlation bet ween adjacent pixels by attenuating high frequencies, 
but correlation between nel\rby pixeLs lies at the heart. of Markov random field mod­
els (§5.1.2). FoUowing our classification procedure (§6.4.3), we shall model blur by a 
Gaussia.n kernel, and will ignore discretisation effects. Let. US take an MRf X and hIm 
it with the kernel g(b): 

~; -.c,. g,(b)
 

Yi X;G,(b) (7·1 )
 

gm+nJ,4(b) _1_ exp [_~ (m2 + n 2 )] 
2r./il 2/il 

Gm+~M(b) exp 1-2,,-2b2[;:?(m/M) + :=?(n/N))) (7·2) 
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wbere 

f if f ~ 1/2::::(f) = (7'3){ I - f otherwise 

and tbe subscripts m + nM reflect raster-ordering of the image array. We introduce the 
"spectral mapping function~ ::::( . ) to convert from lattice to frequency co-ordinales at 
wbich tbe transformed kernel G """ 9 is evaluated. Our aim is to express tbe new field 1,1 

as an auto-normal MRF. If this may be done, tbe expected power spectrum £{IYI7} 
will assume tbe usual form over the image lattice £: 

£{Iy,n £ {1X;17 G?(b)) 

~G~(b) 
1- Bx ., 

2)
~,ViE£ (7-4)
1 - By,. 

wbere we take (0-7 
),. to refer to the m.odel variance for parameter set 9., and B x 

refers to the cosine transform of the MRF parameter vector f3,. (5·63), and similarly for 
(0- 2

),., and B-y. This e'luation may be solved trivially for (0- 2 
),. =0 (constant field) hut 

does Dot otberwise give 9\1 of finite order. Perhaps this is not surprising with reference 
to the Markov property (§5.1.2), because blur has distributed the necessary pixel values 
over a larger area so that the required neighbourhood set is no longer given. Only if the 
entire field is known can this information be recovered. Gaussian blur is nol. spalially 
limited but a similar result is obtained for a finite kernel. Our conclusion is that after 
applying blur, a non-trivial auto-norma.1 MRF is no longer an autO-Dormal M~r of finite 
order.3 

Whereas the blurred field may not be represented ezaclly as an auto-normal MRF, 

this is not of crucial importance in practical cases because Markovianity of (.he original 
field is itself only approximate, and it is certainly possible to estimate MRF parameters 
from a blurred image. Power spectra of blurred images tend to be heavily concentrated 
in tbe low frequencies around tbe origiu because higher frequencies are attenuated. Tbe 
model spectrl1m is formed from the reciprocal of periodic components: 

2E{IX.,,+nMn 0- />'m+nM
 

0-2
 

(7·5) 
1 - 2 L(k.ljEJ,rt /3k+lS cos (2r.(mk/ M +ne/ tV)] 

where >'i are spectral density coefficients, and S represents the span of the MRr neigh. 
bourhood N+. In order t,o obtain the peak near the origin, it is necessary for >'i to 
approach zero, but often>" becomes so close to zero that any small change in aoy ele­
ment of tbe MRF parameter vector f3 is sufficient to break the homogeneity constraint 
(5·66 OD page 115; Figure 6.1 on page 140), giving >'i ~ 0 for some frequency. ill prac­
tice, the freedom for variation of the coefficients is so small that full l.~figure decimal 
accuracy must be preserved. Tbe model is very unstable, since 1/>.; is dearly sensitive 

3We have not atLempled to obt.a.in a strongt"r version of this result. 3.S our prlm.e.ry conCern is with 
Lhe auto-normal MRF. 
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to numerical error when '\i :: 0, and there is reouced freedom of choice to fit the data 
closely when the neighbourhood coefficients f3 are meshed together so closely. 

A further praclical difficulty is fclt by the parameter estimation algorithm. The 
pseudo-likelihood parameter vector (J is used to fonn an initial estimate of the true­
likelihood parameter vector fJo used to seed our gradient-ascent parameter-estimation 
algorithm (§6.2.1). The seed point /30 almost always has to be revised, however, because 
the true likelihood maximum li"s very close 1.0 a forbidden (inhomogeneous) region, into 
which ~ usually falls. Once a valid starting point has been found, gradient ascent may 
only proceed extremely slowly becanse parameters can only change by a tiny amount 
at each itera.tion without leaving the permitted region. Estimating the MRF parameters 
from a blurred image may take 50 or more times as long as for the original image· 

Blur is not unique in cansing modelling difficulty: any transformation causing the 
power spectrum to contaiu large peaks will similarly affect the parameter estimates. It. 
is particularly easy to introduce hlur, however, and we have shown that eVen a small 
amount. can have drastic practical consequences (§6.5). 

7.2.2 Classification Error Arising from Image Blur 

Whatever the effect of blur on modelling, it certainly has a strongly aoverseeffect on 
classification accuracy (§6.5.3): even a moderate amount of blur, space-consl.ant 6 =0·5 
pixels, is sufficient to incrf'....'e the error rate of the fiftb-order dense pixel classifier from 
6·8% to 84%. In order to explain this, we shall consider the effect of image blur on the 
true log-likelihood function, Lb : 

2Lb (x*g(6») ~ L log).i-MNlog(27r0'2)- L,X.,2GI(b).. (7-6) 
iE! je£ U 

where summation for i extends over t.he dimensions of the image l"ttice I:- (compare 6,13 
on page 146). The Gaussian kernel C(b) was given in (7·2), and sat.isfies: G(b) ,,; ]. 
The fIrst two terms of (7·6) are unaffected by blur, and t.he third term, which contains 
all the image infonnation, is always made less negative. lIenee, ~he effect of blur is 
always to incrcase t.he likelihood Lh . In the limit as the blur space-constaot increases 
to infinity (6 -. 00), the blnrred image assumes the same value everywhere, and the 
likelihood reaches its maximum equal to t.he sum of the first two t.enns or (7'6), and is 
independent of the original texture: 

2£""", = L log'\, - M N 10g(21r0'2) 
iEe 

L IX,12G~(b»',
2Lb ,X (7.7)

2 
lee a 

where Lb = L nuu - Lb,X' The effect. of blur is to introduce bias towards t.he class for 
which Lm"" is the largest, and t.his term is often dominated by the MRF variance, 0'2. 

4B~t.ilt)at;on of ninth-order tTue--likelihood pafiUTleLcnl r'rOOl t.he pressed.-cork image (1-4.) required 
302 iterations or the gradienr.-1lS<"enl algorithm. When the image "'as first blurred by convolut.ion 
with a Gaussian, space-constant 1 pixel, lhis increased lo 96·0 iLcrntious. a ra.ctor or 32. 
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Usually, a large MR. variance results in a small bias term L=u, which is balanced by a 
smaller image error penalty term Lb.J( (since this is divided by ,,(2). Similarly, a model 
with low variance usually has a larger bias term but also a correspondingly grea.ter 
image penalty terTII. Dlur always reduces the image penalty term Lb.J(, predisposing 
tbe classifier towards classes with a large bias term L~ and hence a small MRF variance. 
As tbe amount of blur is increased, so the influence of tbe original data diminishes. 

In terms of empirical classification arcnracy, we predict that blurred images whose 
true texture model bas a high MRF variance wiU be misclassified, and that models 
with low MRF variance will generate false·positives. On comparing confusion mat.rices 
for uncorrupted and blurred images (Figures 7.14 and 7.15), both of wbich have been 
sorted hy MRF variance (Fignre 7.16), we find tbat all rnisclassification errors involve a 
shift lo lower variance. appearing below the leading diagonal, consistent witb the above 
prediction. The degree of blur (parameter b = 0·5 pixels) wa...' small enough for the image 
data. to rdain some influence, and mosl errors were from large to medium variance, but 
bias towards models of smaHer variance becomes stronger as tbe blur parameter is 
increased (data not sbown). Note that becanse tbe Sampled· Markov classifiers achieve 
acceptable error rates using blurred images (§6.6), there is not a problem o[ insufficient 
information (see also Figure 6.5 on page 154). 

The rate at wbich blur distorts an image in practice clearly varies with I.be image 
itself. We shall consider the expected effect of blur on pixel and error variance terms 
[or a true MRF evaluated witb the correct parameter set (§A.5.1): 

2
17

MN L(l- B;)G?(b)Vb(U) = 
,Et: 

Vb(X) = 
".2 GHb) 

MNLU-B) 
lEe t 

2Lb,X = L G?(b) (7,8) 
'Et: 

where Vb(u) and Vb(x) represent variances of tbe MR. predictor-error and pixel data 
respectively, Lb.J( is the likelihood penally term introduced by (7·7), and summation 
for; exteuds over the dimensions of the image lattice £. (M x N pixels). Typically for our 
Brodatz images, the spectral density coefficient Ai = 1- B; is very small ncar the origin 
(~O·OOl), suggesting tbat MRF predici.or-error variance Vb(u) will decrease very rapidly 
for blurred images because tbe high freqnencies wbich cont.ribnte most to this term are 
heavily attenuated. Pixel variance Vb(x) is less affected becanse it. receives the greater 
contribution from low spat.ial freqnencies which are relatively unaffected by blur. The 
penalty term Lb.J( used by the true-likelihood classifier (7·7) is intermediate between 
these two cases when the field is consistent with the MIlF para.meter set. and when 
the blur parameter b is large enongh for aliasiug to be insignificanl. (§A.5.1), Lb.J( <X 

{4rrb2)-1. The effect of blur is more complicated when the model dOe5 oot accurately 
describe the field. In particular, an image dominated by bigh spatia.! frequencies or a 
model dominated by low spatial frequencies will be affected more rapidly than (7·8). 
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FIGURE 7.14: Scatter matrices for uncorrupted pixel classifiers. Our uncorrupted 
Brodatz image set was classified by the AII-Qua.rters method, described in §6.4.3. The 
matrices have been ordered by increasing MRF variance (3.1 classes) and are pooled from 
models of order 1-5, 7 and 9. CorrecLly classified images lie along t.he leading diagonal, 
and intensity is proportiona.l to frequency. (a) true-likelihood; (b) pseudo-likelihood. No 
obvious bias towards higher Or lower varianc.e is present. 
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FIGURE 7.15: Scatter matrice6 for pixel classifiers with blur. Our Brod.t. ima.ge set 
Was blurred with parameter 0-5 pixels and classified using true-likelihood parameier sets by 
Lhe AlI-Quariers method, described in §6.4.3. The matrices have been ordered b)' increasing 
MRF variance. Correctly classified images lie along t.he leading diagonal, a.nd intensity is 
proportional to frequency_ (a) fifth-order classifier; (b) classifiers of order 2, 3, 5 and 9. In 
both cases, every misclassifica.lion is caused by t.he selection of a model of 1000er variance, 
appea.ring here as a. shifi below lhe diagonal. 
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varianoe 
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FIG URE 7.Hi: Histograms of MRF variance for uosampJed pixel mod­
els. Parameter sets Were estimated from our Brodatz image set using true­
Likelihood estimation (§6.2.1)_ Sorted cumuLative histograms of MR.F vari"llrc 
(gray-level units squared) are shown. Solid: fifth order; Dotu,d: ninth order. 
Average model variance is a decreasing function of MR, order (Figure Ll). 

7.2.3 Measures to Counteract Image Blur 

Image Restorotion 

Tbe classical approa.ch to image restoration is Wiener filtering (§5 ..,),2). The given image 
y, assumed degraded by blur, is effectively de-convolved by dividing out the transform 
spectrum: 

x, = Y,jG,(b) (7-9) 

where X is the Fourier transform of tbe restored image (Rosenfeld &: Kak, 1982). This 
metbod can be effective but steps must usually be taken to ensure that noise does not 
dominate for frequencies where the blur kernel G(b) is small, and the blur parameter b 
must. be known in advance, 

Modified Bayes Classifier 

Our ma-in objective is to obt.a-in a measure of immunity from classification error by 
increasing robustness. It is tempting to seek to modify tbe data to fit tIl" model by 
dividing out. the blur spectrum, forming a modified penalty term L~: 

t ? ~ 1 ~ lX.11 
Ai

2L;'(x; b) =:: Llog Ai - MN log(ho- ) - L o-1G'J(b) (7·10) 
lEe lEe 1 

wbere the original form for L b is given by (7·7). We might hope to maximise L~(x;b) 

witb respect to b to undo tbe transformation and simultaneously estimate the blur 
parameter. Unfortunately, just as blurring the image always increases the likelibood, 
de-blurring it will always decrease it, causing this approach to fa-il. 
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A more profitable approach is to use a modified Baye.l classifier (§5.4.1), wbere the 
model is adjusted to fit tbe data, forming tbe new likelibood function P~: 

1 )1 [I" IX;!' ]P~(:x;b) ~ n(21rSx"C?(b) exp -'2 ~ Sx ...~(b) (7'11) 

where Sx,i ~ u'Ai1, and summation for i extends over the dimensions of the image lat­
tice L (compare 5·64 ou page 114). Tbe modified likelihood P~(x; b) may now salely be 
maximised witb respect to b to overcome the effect ol the blur transform. Classification 
is based on these maximum likelihoods, TIJ : 

TIJ mfx'P{wJ I x,b} 

w(x) w" if TI, = m~ TI j (7·12) 
J 

alld an estimate b is also obtained lor the degree of blur. A similar approach has recently 
been applied to other viewing parameters (Cohen et al., ]991), and a simpler technique 
was suggested to accommodate global changes in illumination (Kashyap el ot., 1982). 

As was mentioned above (§7.2.1), t.he blurred MRf no longer bas finite order, but 
this is of no practical consequence since the use of spectra avoids the need lor direct 
convolution, The modified likelihood (7,11) is easily decomposed: 

, "IX,11A.
2L~(:x; b) Llog [A;G;l(b)] - MNlog(21ru ) - L u 1G1(b) 

'EL Ie!. 

aLb _ 41r'b (1 - '" IX;!' Ai) " =.'(m/M) + ="(71 / N) (7·13)ab - L u'C'(b) L 
;EI: ' (m,o)EI: 

where L{, is the log-likelihood derived from (7·11), and =.(.) is the spectral mapping 
function (7·3). Unfortunately, applying the usual criterion 8Lb/8b = 0 does not usually 
lead to an analytic form for b; but because Ai > 0, the gradient is a decreasing function 
of b, and a numerical algorithm converges ra.pidly. If aL\,/8bl~~o ~ 0, it is immediately 
clear tbat b= O. 

This approach is somewhat idealised because we have taken no account of aliasing, 
quantisation error or other noise effects. It does not depend on tbe blur being Ganssian, 
although this is convenient, since any spectrum may be substituted for C(b), and a 
different model would be preferred if more realistic transformation parameters were 
known. Noise becomes a problem when the blur space-constant b is large, and in 
these circumstances it might be sensible Lo consider only the low-frequency part of the 
spectrum, to cap C;'(b), or to adopt other corrective measures (Rnsenfeld Ii Kak, 1982). 

Preliminary Results with Modified Cla.3sifier 

Early results with tbe modified classifier described above bave been encouraging. When 
we used it to estimate tbe (known) amount of blur present. in two syntbetic images, 
blurred according to §6.4.3, tbe blur parameter was e.ltimated accurately (Table 7.1). 
Interestingly, the classifier also recorded the presence of blur in our original Brodatz 
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estimated blur parameter b 
blur parameter b t4 pressed cork denim 

0·0 0·00 0·00 
0·2 0·00 0·07 

0·4 0·35 0-38 
0·6 0·59 0·61 

0·8 0·81 0·82 
1·0 ] ·01 1·02 
1·2 1·22 1·22 
1·4 1·27 1·26 

TA6LE 7.1: Image blur estimated by tbe modified classifier. Ninth· 
order 256 X 256 .ynthetic textures for lhe pressed· cork and denim images (orig· 
inals in Figures 6.2 and 4.13) were blnrred wilb parameter b (piXel units). 
Except for b large or small, when noise and aliasing are most significant, Lbe 
estimated blur parameter obtained by the modified classifier is very close Lo 
the true va.lue. 

images (data not sbown), coosisteot with their poor correspondence witb tbe auto· 
normal model (Figure 7.1). A possible exteosion would be to allow blur as a free 
parameter during the original parameter-estimation stage as this would permit the 
underlying texture variation to be captured more closely. II the modified classifier is 
used to classify images degraded other than by blur, errOrs may result. 

Using the modified classifier, we repeated the classification exercise for Brodatz 
images corrupted by moderate synthetic blur (parameter b == 0·5 pixels) using true­
likelihood fifth-order parameter set.s. The error rate fell dramatically from 84% with 
the original classifier (§6.5.3) to 9·8%, witb estimates for the blur parameter bunched 
tightly around 0·5 (b == 0·505 ± 0·06 pixels). Altbough the synt.hetic blur applied 
bere was close to the form assumed by the model, this is a significant. improvement in 
classification accuracy with real images which confirms the validity of the approach. 

7.3 Comments on the Influence of Additive Noise 

Our classification resnlts show that the addition of a small amouot of noise compared 
to the inherent variatioo of each pixel has a strongly adverse effect on umampled pixel 
models (§6.5.2), affecting Gabor-Markov and sampled pixel models t.o a lesser degree 
(§6.6). It is surprising at first that additive raodom noise should cause problems for 
an MRY model since it is built, around the ra.ndom variation of each pixel. Our goal is 
to examine the interaction of a.dditive noise with the aut.o-normal model, and hence to 
suggest ways of restrictiog its unwelcome consequences. As above, we sha.1l distinguish 
between modelling and cla-ssifiution error, and show that noise prejudices the classifier 
towards classes described hy models with high MRY variance (§7.3.2). We propose a 
modified classifier which may arrest this trend (§7.3.3). 
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7.3.1 Modelling Error Arising from Additive Noise 

Modelling error refers to the extent of disagreement betwe€n a parameter set and the 
image from which it was estimated. In §7.1.1, we found experimentally that an image 
to which white noise hw be€u added, following our simple noise model (§6.4.3), WM no 
longcr described accurately by an auto-nonnal MRF. In order to isolate modelling error 
attrihutahle to additive noise, let US consider taking an MRF and adding independent 
white noise of variance p1, forming the field" ;=: X: 

ITx. == -y V~ + p-v'	 (7·14) 

where -y and -y' are independent zero-mean unit-variance nonnal random variables. 
and B is the cosi ne lransform of the MRf parameter veclor f3 (5·63). We may combine 
lhe terms by adding variances: 

Xi := -y	 (7'15)C:2B• +P2). 
We may now attempt to find an MRf 9x which gives the corred form for the expected 
power specl.rum of the new field: 

0"'
£{Ix.n I-B, +/ 

(0"1)x
""l=EJ' "Ii E l- (7·J6) 

x,, 

where we again use (er')x to denote the model variance for paramet.er set 9x· Unfortu­
nately, just M when the image is corrupted by blur (§7.2. t), this has no general solution 
except in trivial cases. This is again consistent with the idea of the Markov neighbour­
hood: uow that these values are no longer known exactly, addilional in[orm~.tion may 
be obtaincd from the wider surround. It is possible to ignore this and obtain the best 
estimate possible with the given number of parameters. The amounts of noise used 
in our experiments were much less than the pixel variance, and hence noise WM not a 
somet' of modelling error of practical concern. 

7.3.2 Classification Error Arising from Additive Noise 

Noise has a strong adverse impact on classification accuracy (§6.5.2), particularly for 
unsampled models. We shall examine the expected effect on the likelihood function of 
corruption by additive noise, evaluating the true likelihood with the original parameter 
set 9x hut the noisy field x + pv: 

2L,,(x + pv) ==	 L tog A, - N M log(2J1"er') _ :L (IX;!' ~ p')A. 
lEe ,ee ~ 

2L(x) - /:L A./er' 
,ee 

2L(x) - M N p' /0"' (7·17) 
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FIGUR£ 7.17; Scatter matrices Cor pixel elassiflen with noise. Our 
Brodatz image set Was classified nsing true·likelibood parameter sets by the 
AIl·Quarters meLhod (§6.4.3) after addition of noise of variance 20 gray-Ie",,] 
units squared. The matrices have been ordered by increasing MRF variance. 
Correctly classified images lie along t.he leading diagonal, and intensity is 
proportion al to freq ueney. (a) fifth-order c1assi fier; (b) c1a.ssi fie rs of order I, 
3,5, 7 and 9.."Jmost. all misclassificat.ion errors are cansed by the seJection 
of a model of higher variance, appearing here as a shift above the diagonal. 

where L(x) is the original log-likelihood (no noise), given by (6·13) on page 146. An 
extra term appears, and since >.; > 0, its effect is always to decrease the likelihood. 
As above (§7.2.2), we shall separate bias and penalty terms, writing: La =0 L""", ­
L.,x. We may compare the expected impact. of noise on MRF predict.or-error and pixel 
variances (§A.5.1): 

Vn(U) a~ +i(1 + 211f311 2 
) 

Vn(x) a~+i 
2Ln ,x MN (I + p2/a 2) (7·18) 

where a~ and a~ refer to the original predictor-error and pixel variances, respectively. 
The pixel variance V.(x) inCreases linearly with noise variance, but the predictor-error 
variance V.(ll) increases more rapidly, and proportionally by a much higher rate (since 
a~ < a;). Further, the incre<l.se will probably be larger for models of uiguer order 
because of the weighting from 11f3\1 2 

. The classifier penalty term Ln,x increases at a 
proportionately greater rate for small MRF variance a2 

, upsetting the balance between 
bias and penalty terms in a similar manner to image blur (§7.2.2), and prejudicing the 
classifier. In this case, the trend is towards models of higher MRF variance, confirmed 
by the scat.ter matrix shown in Figure 7.17, where almost all misclassifications involve 
the selection of a model of higher variance. This appears as a shift above the leading 
diagonal (rompare unrorrupted images in Figure 7.14), and is the opposite effect to 
blur (Figure 7.15). A clear trend in the results for the dense classifier was for the error 
rate under noise to increase for models of larger order (Figure 6.lG on page 168), and 
we may now explain this rounter-intnitive effect. When the model order is large, the 

2M RF predictor-error variance a is small (Figure 7.3), increasing the impact of external 
noise ~cording to the factor / /a 2 in (7·18). 



204 CHAPTER SEVEN: Fidelity of Auto-Normal Model 

7.3.3 Measures to Counteract Noise 

Image Restoration 

Noise is not deterministic, and so restoration cannot hope to restore the original image 
exactly, but instead seeks to remove the expected effect of the noise. [n the case of the 
Wiener filler (§5.5.2), noise adds a constant amount to the power spectrum and so this 
is simply subtracted to give the restored image: 

5", .• - 1'2 Y.Xi = (7·19)
SY,I I 

where Y is the Fourier transform of the degra.ded image y, and Xis the tramform of 
the restored image (Rosenfeld & Kak, 1982). This method requires I.he noise vanance 1'2 

to be known in a.dvance. In our case, the form of the rest.ored image may be assumed, 
Sx., '" a 2/>", and this may he substitut.ed into (7·19): 

~ 1 2 Y,. (7,20)
Xi = 1 +>.,p2/a 

Maximum a postenori (MA.P) restoration is more flexihle and is generally preferable. 
We maximise the likelihood of the original image x given t.he observed degraded copy y: 

P(x Iy) ex P(y I x)P(x) 

P(ylx) IIG(x, - Yi, 1'2). (7·21) 
,eC 

In this case, the form of P(x) is assumed known. The likelihood must usually be 
maximised numerically to find x. 

Modified Bayell Clo.ssifier 

Following the approach taken in §7.2.3, we may design a modified classifier that contains 
the amount of added noise as a free paramder. It is again tempting to modify the data 
to fit the model, forming the new likelihood p~ (from 5·64 on page 114): 

P~(x; 1') ;, n (21r~ ) i exp [_~ L IX,~ - 1'2] (7·22) 
ieC X,I iE' X,I 

but subtracting noise from an image in this way always increases the likelihood and so 
it is impossible to maximise P~(x;p) to ohtain an estimate p. The solution is again to 
modify the model to fit the data: 

1 )i [1 IXI'] (7·23)P~(x;p) = n(211'(5'+1'2) exp-"2LSx.i+1'2
lEe X,E lee 

forming a modified Bayes classifier (§5A.I). It is again of no practical comequcnce thaI, 
this equation nO longer represents an MRF of finit.e order. The modified log-~kelihood L~ 
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arising from (7·23) is easily decomposed: 

2 
2L~(x;p) Llog'\;- Llog(0-2+ p2,\,)- L IX,1 .Aj 

iei: ,ei: iei: 0-
2 + p2 )., 

2
aL~ " >.;(>.;JXd 2 

- 0- _ p2 >.,) 
PL.. (2 2 17iP jei: p >., + 0- ) 

au I = 0 (7·24)
apn p=p 

but the noise estimate p can only be found numerically, apart from the trivial solution 
p'" O. This procedure has not currently been implemented. 

7.4 COIDlllents on the Influence of Image Sampling 

Sub.sampling of both types (selection and averaging) improves classification accuracy 
for corrupted and uncorrupted data (§6.6). Tbis pbenomenon is of practical importance, 
and several aspects of sampling are investigated in this section. Only the power spec­
trum of tbe test image is used during true-likelihood classification (§6.4), and hence any 
explanation demands consideration of tbe effect of su b'sampling on the image spectrum. 
For clarity, some of tbe results below are given for a I·D signal but they extend easily 
int.o t.wo dimensions. We contend that the increased modelling accuracy of Sampled­
Markov models arises from changes in tbe morphology of the image spectrum (§7.4.2). 
A reduction in the contrast of spectral peaks brings tbe data into closer correspondence 
witb our assumed st"tistical model. Sampling reduces the effective magnitude of botb 
image noise and blur, enhancing classifier robustness (§7.4.3; §7.4.4). 

7.4.1 Spatial-Frequency Spectra and Aliasing 

Unsampled images are necessarily band-limited, -11" < W .,;;; 71", since they are already 
expressed as a discrete array, but aliasing still occurs on sampling (§A.5.21. Tbis is 
visualised for a sampling period 5" '" 1·5 pixels in Figure 7.18: the conteots of the 
heavy box form the spectrum of the sampled image, wbich is contaminated by aliasing 
in the shaded regions wbere adjacent copies of the spectrum overlap. Aliasing causes 
unpredictable distortion of the signal according to the phase, and can be a significant 
source of error. Smooth-sampling reduces aliasing error by partially attenuating bigh 
frequencies: adja.cent copies of the frequency spectrum still overlap to tbe same degree, 
but tbe alia.sed regions contaill a lower proportion of the image energy. Our simple 
window function is far from being an ideal band-pass filter (Meer et al., 1987) because 
its transfer function is insufficiently abrupt at the cut-off frequency (Figure A.9b on 
page 273). The effect or anti-aliasing filters is discussed further below (§S.3). 

According to tbe diagram shown in Figure 7.1S, sampling magnifies the proportion of 
the image spectrum occupied by the energy formerly concentrated in the low·frequency 
ban ...\' Coupled with the effects of aliasing, this tends to even out the distribution of 
energy across spatial frequencies in the sampled image. Power .pectra of the dense and 
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FIG URE 7.18: Illustration offrequency aliasing arising from sampling. 
Eadl box represents the range of spatia.l frequencies occupied. by a discrete 
two-dimensiona.l image with the origin, shown here by a dot, at its centre. 

(a) 

(a) uns..mpJed image: no aliasing. Gopies of the spectrum effectively abu~ 

but. do not overlap. (b) sampled image, period 1·5 pixels; adjacent copi", 
o[ the spectrum overlap (shaded regions), causing frequency aliasing. The 
smaller heavy box represents the spectrum o[ the sampled image. Energy at 
high frequencies in the original image is mapped to new frequencies in the 
...mpled ima.ge. 

sampled pressed-cork image (#4; Figure 1.6 on page ll) are sbown in Figure. 7.19: a 
dominant feature of t.he unsampled spectrum is a large peak near the origin, shown 
here at. any corner of the array, reflecting tbe strong contribution from loll' spatial 
freqnencies. Peak contrast is lower in sampled images reflecting both truncation of l.he 
frequency range and aliasiug effects (b-d). As shown by comparison of (b) and (c), this 
change is more gradual after smootb-sampling because the window kerneltraosmits the 
low-frequency band wlIich usually coul.ains the peak, but attenuates higher frequencies. 
Wben the s..mpling period is too large, the spectrum becomes unrecognisable (d), due 
to trnncation of the frequency range and severe aliasing. 

7.4.2 Effects of Sampling Uncorrupted Images 

In §7.2, we argued that tlIe presence of bigh-contrast peaks in the power spectrum 
created both theoretical and practical difficulty for the MRF model, and the ubiquity of 
these (eatures in our Brodatz set is illustrated by the pressed-cork image (Figure 7.19). 
Sub-sampling reduces the contrast of the spectral peak, and bence should improve 
modelliug accuracy: exactly the trend noted in §7.1.3, and consist.ent, with a lower 
ba:!dine error for sub-sampled images (§6.6). A conflict exists: too much sampling, and 
the spectrum will be easy 1.0 model accurately but wi]] contain insufficient information 
to discriminate texture classes reliably; too little, and the necessary in(ormation will 
be present but a badly-fitting model will be unable to make full use of it. Our current 
sampling techniques cause aliasing error, which ha:! an unpredictable effect on t.he shape 
of the power spectrum but increases io magnitnde for larger sampling period. 

Tbe tendency of su b-sampling to reduce tbe spectrum peak cont,rast is demonstrated 
more quantitatively by Figure 7.20: we examined the minimum value of the spectral 
density coefficient Amin using a fifth-order classifier, averaged across all our 132 Brodatz 
images. As predicted, Amin is very small for tbe unsampled image set (sampling period 
s = t pixel), corresponding t.o large peaks in the power spectrum, wbich arc proportional 
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(0) dense image (b) sub-sampled, period 2 pixel. 

(c) smooth-sampled, period 2 puels (d) sub-sampled, period 4 pilei. 

FIG t; Rl: 7.19; Power spectra of dense and sam.pled Brodatz images_ Horizontal axes 
represent spatial frequency, with the origin at any corner, and height represents image energy. 
(a) power spectrum of the pressed-cork image (a4; Figure 1.6); note lhe concentration of 
energ..y at low spa.tial frequencies. (b,c) afler sampling and smooth·sampling, nspectively, 
wil.h a period of two pixels. In both cases, the spectral peaks are relatively broader and have 
reduced contrast. (d) after sampling with a period of four pixels. 
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F1GIJRE 7.20: Effect of sampling on contrast of spectral peak. Mine 
mum spectral density coefficient A.,un, shown to a loglo scale, averaged aerms 
Our 132 Brodalz image sel for a fifth-order lrue-likelihood classifier. Solid: 
pixel classifier, smooth- and snb-sa.mpled; Dotted: sub-sampled Resultanl 
composite-feature classifier. When A",;" is small, high peak contrast rcsulls, 
causing d;fficulty [or parameter estimation a.lgori1.hms. 

to 1/ Amin. As the sampling period is increased, peak contrast progressively diminishes 
althougb the central pea.k remains (shown here to a loglo scale). Smooth-sampled 
spectra tend to have a somewhat taller peak than for selection sampling, consistent 
with tbe effect of tbe window fnndlon in preserving peak contrast, but this appears to 
be more than offset in tcrms of c1aSRinca.tion accuracy by a rednction in aliasing error. 

It is difficult to predict the general elTect of snb-sampling on classification accu­
racy because it is closely influenced by the actnal spectra. If tbe dense image fits the 
MRF model closely, sub-sampling is liable to rednce the amonnt o[ information and 
add a.liasing error without any clear theoretical benefit, but. if OIl( experience is typical, 
sub-sampling has mnch to offer in practice, hoth in terms of fidelit.y of representation 
and compntational efficiency. Redncing the dimensions of the image by a factor n de­
creases tbe computational rrquirement by a factor greater than n 2 during classification. 
Parameter estimation benefits to a greater degree hecause the relative absence of mesh­
ing of coefficients means that far [ewer iterations are required for the gradient·ascent 
algorithm (§7.2.1).· 

The expected power spectrum corresponding to a particular paramet.er set may be 
computed by taking the cosine transform of MRF neighbourhood coefficients (7·5 on 
page 195). Note that (,his procedure is distinct from measuring the power spectrum of a 
texture syntbesised from these parameters because random fluctuations are eliminated_ 
Compare real power spectra (Figure 7.l9a,b) with tbose derived from ninth-order true­
likdihood parameter sets (Figure 7.2\), bot.h obtained from the pressed-cork image (#4~ 

Figure 1.6), and shown from the same "viewpoint" but to different. vertiCAl scales. Su­
perncia.l1y, the model spectrum of tbe unsampled image (Figure 7.21a) bas the correct. 

3Estimation of ninth-order true-likelihood parame1.er-s from ~he unsanlpled pressed..-cork ~mkge (.-4) 
r('(juiced 302 iterations, railing to 169 aft"r sampling with a period of 2 pixels, and furlh", to 104 it ­
r.rations Cor a period of 4 pixels. 
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(a) dense field (b) sub-sampled, period 2 pixel> 

FIGURE 7.21: Model power spectra of dense and sampled Brodatz 
image•. Expect.ed power spectra corresponding to ninth·order true-likelihood 
MRF pa.rameter sets estimated from the pressed-cork image (14; Figure 1.6). 
Horizontal axes represent spatial frequency, with the origin at any corner, 
and heignl. represents image energy. (a) unsampled model; (b) sub·sampled. 
period 2 pixels. Compare the real speclra (Figure 7.19a,b). 

form, conl,aining peaks at low frequencies and a central plateau. We believe that as­
suming this general form imposes strain on the model, so that there is little remaining 
freedom to follow tbe contours of lhe real spectrum closely. After sampling (period 
2 pixels), the fonn of the spectrum is more undulating (Figure 7.21 b), and is mOre 
compatible with the cosine varialion Crom which it is derived (7·5). In tbis case, the 
limit imposed by the homogeneity constraint (5·66 on page 115) is not approacbed, and 
the model forms a more sensitive descriplion of the real spectrum. 

We constru cled scatter matrices to represen t misclassification errors made by both 
types of sampled pixel classifier with uncorrupted images (data not shown) No bias 
was observed, but tbe number of errors was so small that it. was difficult to draw firm 
conclusions. Smootb-sampling reduces aliasing error and provides better protection 
against noise. It is unclear wbether modelling improvements derive mainly from a 
reduction in the contrast of spectral peak. or an increase in peak width. 

7.4.3 Effects of Sampling Blurred Images 

Blur attenuates higb spatial-frequencies, reducing the amount of aliasing that occnrs 
wheu lbe image is sampled. For large amounts of blur, the image is effectively band­
pass filtered, sO that subsequent sub-sampling does not cause much loss of information. 
In this case, the Del. effect of blur and sampling is to apply a lower amounL of blur 
to the sub-sampled image, reduced by the same r",etor as the image dimen~ions. Sub­
sampling doe.~ not change the fact that bl Ur distorts the spectrum, but bas reduced 
the effective amount of blur. Our prediction that misclassification errOrs would favour 
models with a lower variance is still valid (§7.2.2). After the 33 image classe:; have been 
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FIGURE 7_22: Scatter matrices for Sampled-Markov classifiers witb 
corruption_ Our Brodatz image set was classified using true-likelihood pa­
rameter sets by the All-Quarters method arter sampling with a period of two 
pixels (§6.4_3). The ma.trices have been ordered by increasing MRF variance 
(33 classes)_ Correctly classified images lie along Lhe leading diagonal, a.nd in­
tensity is proportional to frequency. (a) smooth-sa.mpled c1."sifierwitb noise, 
variance 100 gray-level units squared, orders 2,5,7 and 9; (b) sub-sampled 
classifier with blur, parameter 0·5 pixels, orders 3, 5 and 9. High levels of COt· 

ruption have less effect than for the unsampled pixel c1assiner (Figures 7.15 
and 7.17) but the trends t.owards higber va.ria.nce (noise) and lower varia.nce 
(blur) remain. 

sorted by MRf variance (Figure 7.16), misciassificaLion errors of t.his type a,w marked 
helow the leading diagonal of the scatter matrix, a,nd this type of error prcdominat.es 
(Figure 7.22a). Compare these results with those for the unsampled pixel classifier 
(Figure 7.15): the trends are similar, but t.he magniLude of the effect is smaller after 
sampling, and reduces further when t.he sampling period is increased (data not shown). 

7.4.4 Effects of Sampling Noisy Images 

Sub-Sampled Images 

The expected effect of uncorrelat.ed additive white noise is La add a consta,nt to the image 
power spectrum, and this remains the c&Se after sub-sampling with integer period 5 

because a.liasing still gives a Rat noise spectrum_ Consequently, d&Ssific;ation errors 
should now show a trend in favour o[ models with a high M/l.f variance (§7.3.2), and 
this effect is observed in prll.cl. ice. The critica.l raLio which determines the rn"gnit.ude of 
this effect is: p2/a 2 (§7.3.2). 

From this argumen t., it could be thought tha.t sub-sampling would have no effect On 
noise-immunity because noise has a similar effect on the spectra of dense and sampled 
images. Examinalion of Figure 6.21 on page 170 disproves this view: the sub-sampled 
cl&Ssifiers have greatly-increased noise loleranee. This is because the MRf variance of 
sub-sampled models tends to he much higher than [or dense images (Figure 7.3), and 
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bence the magnit ude of the noise has effectively been reduced by t.he ratio p2/0', tend­
ing to be masked by the inherent variability of tbe pattern. Informally, the increased 
variance may be taken as a reflection of the loss of information caused by sampling: 
the MR.f predictor i: is very accurate for a dense image, giving a low prediclor-error 
variance (j2, but sampling inevitably reduces accuracy and causes tbe prediclor-error 
variance to rise. Unlike unsampled models, tbe varia.nce cbanges by only a small pro­
portion for different MRf order, explaining wby an interaction between noise level and 
model order was virtually absent from OUr results (§6.6i data not shown). 

Smooth-Sampled Images 

On first glance, tbe smooth-sampled classifier bas a big advantage over other pixel 
c1assiflers because the window function reduces the variance of the additive noise in the 
'ampled image by a factor j 2: 

var(f 
2 I>.) ,4 L var"" 

,eN 'EN 
f2p2 (7·25) 

wbere f is the sampling frequency, and the range of summation for i extends oYer tbe 
window neigb bour hood N. A few moments consideration show that the variance of the 
field is liable to be reduced by tbe same faetor, nullifying this advantage. In practice, 
tbis does not. bappen because the field is usually dominated by low frequencies, wbich 
are hardly affected by the windowing function. By contrast, t.he noise is proportionately 
greatest at precisely the higher spatial frequeneies whicb are most heavily aUenuated, 
and its effect is reduced accordingly. Smooth-sampling with a period of 2 pixels reduces 
the average model variance by a factor 1·8 (Figure 7.3), but tbe variance o[ additive 
noise by a factor 4, leading to a two-fold increase in signal-to-noise ratio. For beavy 
sampling (small n, even large amouuts of additive noise hardly affect dassifier accu racy 
(§6.6.2; Figure 6.24 on page 172), but significant loss of information occur.; at higb 
levels of sampling and t.he error rate for uncorrupted images starts to rise. Despite this, 
tbe enOr rate for no added noise was still Lower than for the dense classifier for the 
range of values we examined (§6.6.2). Seatter matrices confirm the expected prejudice 
for texture classes with high MR.f variance (Figure 7.226). 

7.4.5 Improved Robustness: Modified Classifiers 

Although the noise and blur-tolerance orthe sub-sampled classifiers is mucb greater than 
with the dense image, it is possible to improve it further by using a modified classifier, 
similar to those suggested above (§7.2.3i §7.3.3). Frequency aliasing complicates this 
approacb because it is not possible to predict what proportion of the spectral energy 
is caused by this effect.. Aliasing may be ignored, effectively assuming that the original 
image was band-limited and that all energy observed in the samp~edspectrum is genuine. 
The success of tbis approximation clearly depends on tbe particular image. It allows 
tbe previous blur-toleranl classifier to be used witbout further modification (§7.2.3), 
because the shape of t.he blur kernel is unchanged. 
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Additive noise presents less of a problem because its (expected) effect on the sp~­
trum is known, aod it is straightforward to correct for the effect of the window funeLioo 
in the case of the smooth-sampled classifier. Whether the no;se-loleran t classifier gen­
erates useful results depends on the validity of our simple noise model, and should be 
verified experimentally. Neither of these approaches has currently been implemented. 

7.4.6	 Sampled Gabor-Markov Models 

Convolution with a Gabor kernel performs a windowed transform, effeetively blurring 
the image with a space-constant <70abor (§4.1). The filter parameters we usp.d imply that 
<7Gobor == 2·25 pixels (§6.4.2), and hence it is not surprising that agreement between 
the unsampled data and auto-normal model is poor, given that a much smaller blur 
parameter, b = 0·5 pixels, was sufficient to cause difficulty for the pixel classifier (§6.5.3). 
High spatial-frequencies are heavily reduced by this amount of blur, creating a spectral 
peak of very high contrast. Figure 7.20 shows how close to zcro the average minimum 
spectral density coefficient ),utin becomes for the composit.e-feature model, leading to 
higher spectral contrast than for pixel models. Only aft,er a greater degree of sampling 
does the peak contrast decline to more familiar levels. The band-limited nature of the 
spectrum means that paramet.er sets are difficult to estimate a.nd have a strong risk 
of numerical instability (page 196), but implies that very litt.le information is lost On 
sub-sampling. Note that feature arrays are sampled for Gabor-Markov models raLher 
than the original image (§6.4). 

Blur inherent in the Gabor kernel t.ends La dominate the powrr sprctrum, meaning 
that tbere is little to dist.inguish the shape of speeLra from different. textures, and the 
magnitude of the response and the meau of the feature array assume greater importance. 
Including the feature mean leads t.o a significant improvement in c1as.,iflcatjo~ accuracy 
(§6.5.1; Figure 6,13 on page 166), and this trend accelerates as the sampling period 
is increased. When the feature mean is included, the error rate is still falling for the 
composite-feature classifier at a sampling period of four pixels whereas the rate for the 
pixel classifier has then started to rise (§6,6). Tbis is perhaps explained by the peak 
in the feature spectrum being steeper, reducing tbe effect of aliasing (compare Figures 
7.19 and 7.23). 

7.5	 Conclusions: Modelling Accuracy Determines 
Classifier Performance 

Texture classification henchmarks show that our hybrid Gabor-Markov models perform 
hetter than a conventional pixel analysis, achieving superior robustness to image blur 
and noise combined with greater computational efficiency. Our propmed Sampled­
Markov models have even more attractive propcrli"s, and achieved t.he best results in 
our tests (Chapter 6). In this Chapter, we examined the level of agreement between the 
imposed auto-normal model and experiment,al data, and found this correlat.ed strongly 
with classifier performance. IJnsampled pixel data was in moderate agreement. with the 
model, and we identified image blur as a possible cause of modelling error. Synthetic 
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(a) dense field (b) sub-sampled, period 4 pixel5 

FIGURE 7.23: Power spectra of dense and sampled Gabor-Markov 
features. Horizont3.1 "x~ represent sp"ti,,1 frequency, with t.he origiu at "ny 
corner, "nd height represents image energy. Result"nl features were extracted 
from the pressed·cork iUl3.ge (.4; Figure 1.6). (a) power spectrum of the 
X field of the composite-feature model: energy is conceutrated at low sp"ti,,1 
frequencies. (b) as (a), after sampling with" period 4 pixels: tbe spectrulll 
is more even, but without the very high degree of ali3sing seen for sampled 
pixel spectra (Figure 7.19)_ 

textures fit the model exactly, but agreement soon deteriorates when the image is 
corrupted by noise or blur, consist.ent with poor robusLness of the unsa.mplcd pixel 
classifier. By contrast, sampled pixel models were in close correspondence with I.he data, 
and this fit declined only gradually when the image was corrupted. Unsampled Gabor­
Markov features show poor correspondence with the auto-normal model, and a.lt.hough 
this was substantially improved by sampling, 3kew was a problem for angular features. 
We proposed a modification to overcome this, forming improved Gabor-Markov models, 
and demonstrated that tbe3e were in significantly closer correspondence with t.he auto­
normal model. From these ob3erva.tions, we conclude t.hat classification accuracy is 
strongly correlated with the fidelity of 3tatistical modelling. It is not sufficient to rely 
on the statistica.] framework to make best use of the data: pre-processing to ensure high 
descriptive accuracy affects performance considerably. 

By examining the effects of image corruption on t.he true-likelihood funcLion, we 
predicted trends in misclassification error arising from noise and blur, and demonstrated 
that our results followed this patteru. Blur biases the classifier towards models of lower 
MRF variance; noise towards Illgher variance. In both cases, we suggested modified 
classifiers having the Bexibility to resist these predispositions, and demonslraLed that 
classification accuracy could be improved substantially by this approach. 

Images in nuence the likelihood function only through their power spectrum, and we 
sought to explain the consequences of image sampling by a spatial-frequenty analysis. 
We suggested that t.he presence of a high-contrast peak in the image spectrum causes 
modelling difficulty, and hence leads to poor cl~%ifier performance. Tall peaks usually 
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occur in ~he power spectra of our Brodatz textures, but peak contrast is reduced by 
sampling, leading to better agreement wi~h the model and improved classifier accuracy. 
This conjecture should be understood as a heuristic argument supported byexperimen­
tal data ratber than a proof. When ~aken to extreme>, sampling produces data which 
may be modelled very accurately but conta.ins little remaining information. This limit 
was not approached by the parameters used in Chap~er 6, and our results show that 
performance of all types of classifier correlates closely with the level of corresponden.ce 
with the auto-normal model. 



Conclusions, and Suggestions 

for Further Work 

This thesis appertains principally to t.he efficient analysis of visual texture. Blending 
the computational efficiency of Gabor filtering with the descriptive power of hierarchi­
cal Gibbs-Markov models, we have proposed a statistical Gabor-Markov framework 
for texture analysis in ~ow-lcvel vision. Our experiment.al appraisal of t.his framework 
led ns to propose families of Sampled-Markov models. Adopting texl.ure classification 
accuracy as a benchmark, we showed that both model types combine improved effi­
cil'ncy with greater accuracy and robustness t.han a convenl.ional Markovian analysis. 
Tbese perfonnance trends were e>,:plained by examining interactions between image data 
and the auto-normal Markov model: there is a strong correlation between accuracy of 
classification and fidelit.y of the statistical modelling. 

In this final Chapter, we restate our main objectives, summarise how we have sought 
to meet them, a.nd draw conclusions from our achievements. We suggest seveTal avenues 
for further research arising from extensions and refinements of our work. Gabor-Markov 
models are potentially more flexihle than conventional Markovian approaches to t.exture, 
but this was not exploited fully by the prototype modeL; we employed. Enhancing the 
range of features and image primitives coupled with automatic spatial-freqllency tuning 
should remedy this omission. [mage sampling lies at t.he heart of Our mosl successful 
Sampled-Markov t.exture classifiers, and we propose investigating the influence of anti­
aliasing to test whether their superiority may be further increased. Finally, we mention 
ideas for additional texture classification and segment.ation experiments, and comment 
on approaches to the implementation of Gahor-Markov models on parallel hardware. 
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8.1 Markovian Analysis of Texture: Conclusions 

Subjectively, buman visual perception appears to be immediate and spontaneous,alJow­
ing us to sense our surroundings completely and effortlessly, but controlled experiments 
demonstrate tbe existence of both serial and parallel paradigms (Cbapter 2). Current 
psychological models of low-level human vision employ a t.wo-st.age hierarchy: simple 
spatially-parallel Upre-attentive" filtering guides the allocation of more complex but 
spatially-restricted "attentive" processing across the visual field. Similarly in rna.chine 
vision, it is possible to analyse texture either in terms of derived properties or st.listics, 
many of whicb may be obtained by simple local processing; or in greater depth hut with 
more difficulty, by characterising its hierarchical structure (Chapter 3). This thesis is 
about serial and parallel paradigms in low-level vision. 

Derived text.ure statistics are usually incomplete, and hence fail to reprelen t. each tex­
ture unambiguously, but are computationally attractive because local data-independent. 
processing maps easily onto special-purpose parallel hardware (in both biological and 
machine vision)_ We b~ve examined Gabor filt.ers in this thesis because of their unique 
theoretical advantages for signal processing, namely minimisation of joint uncertainty 
according to the uncertainty principle for information (Chapter 4). Despite these at­
tractive properties of Gabor kernels, simple image segmentation algorithms derived 
from idealised texture models gave mixed resuJts_ Suitably-constrained textures were 
segmented accurately and efficiently, attainiug levels of performance qualita lively sim­
ilar to pre-~Hentive human vision. Performance deteriorated for text.ures violating I..be 
assumed model, and borders were detected with low accuracy or m.issed alto~elher. 

Natural textures often display random rather thau regular spatial vari.lion, and 
may possess different structure at differ~nt spatial scales (Ahuja & Rosenfeld, 1981; Marr, 
1976). Notions of optimality, hypothesis-testing and inherent variability are central to 
statistical study, and we adopt Gibbs-Markov random field models because they make 
e>.:plicit tb~ influence o[ local spat.ial context withiu a statistical framework (Chap­
ter 5). Raw random field models operate at a low level, describing arrangements of 
individual pixels, and it is common to describe more complex texture structure by hier­
archical models. Unfortunately, algorithms to manipulate these structural models are 
often computationally intense, and several approximations must be t.aken (0 simplify 
the analysis, diminishing the benefits arising from an optimal statistical Ira.mework. 
Gibbs-Markov models have been successfully applied to many classic image-processing 
problems, including image restoration and unsupervised segmentation. 

8.1.1 Our Approach and Objectives 

The chief objective of this thesis is to propose new models for textnre Analysis combin­
ing the computational efficiency of Gabor filtering with the superior descriptive power 
and optimal statistical framework available to hierarchical Gibbs-Markov models. Lim­
it~tions of current Gabor-filtering algorithms arise from over-simplifi~d image models: 
lextures are assumed to coniain few significant spectral components and t.o generate 
constant or smoothly-varying Gabor amplitude wben filtered (Bovik et 01.,1990; Tan, 
1988). In practice, the spectral composition of adjacent textures may nol be disjoint, 
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and Gabor amplitude shows considerable variation within each textured region (Chap­
ter 4). Some authors have sougbt to suppress these fluctuations by employing heuristic 
post-processing, but this leads to distorted or missing texture boundaries (e.g. Fogel & 
Sagi, 1989). Our approach is to exploit ratber than suppress spatial vanation in Gabor 
amplitude within an optimal statistical framework, describing the spatial arrangement 
of Gabor "features" wiLh Markov random fields to form hierarchical Gabor-Markov 
models. 

Gabor feature arrays are expressed in standard forms in order to hide details of low­
level filtering from higher-level models, and to provide a degree of abstraction (Chap­
Ler 4). Unlike previous expedient strategies for combining measurements from many 
Gabor channels, we propose two feature-extraction meLhods based on sound principles. 
Our Profile algorit.hms determine local image leatures by matching observed channel 
responses to ideal Gabor signatures generated by parameterised image primitives, se­
lect.ing the feature vector that brings tbese into doses!. correspondence. In an alternative 
procedure, Resultant features are obtained directly lrom Gabor channel outputs by ex­
ploiting response moments. Both methods generate sensil.ive and compact descript.ions 
of real tcxtnres, and may be enhanced by t.he improvements suggested below (§S.2). 

Markov random fields are specified by local conditional probability densities arising 
from pixel interactions witbin a small image neigbbourhood (Chapter 5). Hypot.hesis­
testing and manipulat.ion ol t.hese models often requires the joint probabilil,y of all 
pixels to be cornjJuted, but this is intractable except in special cases. We adopt auto­
normal Markov models for this reason, assuming that pixels have a normal marginal 
probability density and interact linearly. Orientation is an import.ant. visual cue and 
a key Gabor feature, but is periodic whereas the normal dist.ribution is aperiodic and 
unbounded. We proposed angular field models to overcome this disparity. 

[n order to compare the performance of our proposed Gabor-Markov models with a 
conventional Markovian analysis, we adopted texture-classifieation accllracy as a bench­
mark (Chapter 6). True and pseudo-likelihood classifiers were implemented for both 
paradigms, and we tested their robustness by adopting ideal models for image noise 
and blur. Fixed nlter parameters were used to extract Gabor features from each imar;e, 
but automatic spatial lreqneney-tuning methods proposed below should lead to more 
sensitive and flexible representations (§8.2). 

8.1.2 Experimental Results and Discussion 

Similar accuracy was obtained by Gabor-Markov and conventional pixel classifiers with 
uncorrupted images, achieving a minimum error rate of 6% (Chapter 6). Our Gabor­
Markov analysis WaS much more robust, increasing noise-tolerance by a factor of up 
to 45, and derives computational benefits from a reduction of effective image area 
of up to 94%. Little distinction was observed between performance with Profile and 
Resultant feature vectors, but true-likelihood paramet.er sets were cOllsistent.:)' superior 
to pseudo likelihood. Further investigation led 1.0 the diseovery of Sampled-Markov 
classifiers: these enjoy greater robustness and bigher computational efficiency than 
botb conventiona.l and Gabor-Markov classifiers, and have an opl.imal error ral.e ol 0%. 
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Altbough we expected Gabor-Markov classifiers to perform well, the success o[ 
Sampled-Markov classifiers is remarkable. Classification accuracy shows strong cor­
relation with the level o[ correspondence between image data and the assumed auto­
normal model, and our results may be explained by this effect (Chapler 7). Parameler 
sets for conventional pixel models show poor agreement with the image data £rom 
wLich tbey were estimated, possibly due to image blur. By contrast., Sampled. and 
Gabor-Markov models both fit experimental data closely, particularly after proposed 
improvements (§7.1.5; §8.3). We believe that the pre5ence of high-contrast peaks in the 
image power spectrum leads to inaccurate modelling by a conventional analysis, and 
demonstrated that p".ak coatrast is reduced by sampling, but further investigation of 
this effect is proposed below (§8.3.1). Trends in misclassification error are predict.ed 
correctly by examining the interaction of image blur and noise terms with tbe auto­
normal likelihood function, and modified classifiers were proposed t.o compensate for 
these types o[ image degradation. 

8.1.3 Summary of Achievements 

In this thesis, we have: 

• explored the applicability of Gabor euergy filtering to visual texture segmentation, 
aud identified causes for observed performance limitations. Variabilit.y is orten 
observed within each filtered texture, but this is not accommodated by algorithms 
responding to first-order differences o[ Gabor amplitude. 

•	 devised sensitive and efficient algoritbms Lo extract Gabor features £rom textured 
images, and proposed a bybrid Gabor-Markov framework for texture analysis. 

• discovered	 new families of Sampled-Markov t.ext.ure models possessing attractive 
descriptive and computa.tional attributes. 

•	 adopted texture classification accuracy a.s a benchmark t.o compare our novel 
frameworks with a conventional Markovian analysis. 

Gabor-Markov: without reducing classifier accuracy, computational load was re­
duced by 88%, and robustness to image noise increased by a faclor of up 
to 45. 

Sampled-Markov: comput.ational load was reduced by 96% and robuslness to im­
age noise increased by a factor of up to 200. Smooth-Sampled models a,hie_'ed 
100% 3ccuracy in our tests, compared witL 94% witb a couventional analysis, 
and are t.he preferred choice. 

•	 explained observed performance treads by investigating interactions with t.he as­
sumed auto-normal Marko~ model. Classification accuracy correlales strongly 
witb the descripti~e accuracy our models, e5tablishing the importance of appro­
priate pre-processing of image data prior to statistical analysis. 

Our classification resulLs demonstrate tbe superiority of both Sampled· Markov and 
Gabor-Markov models compared to a conventional Markovian analysis. Accordingly, 
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we conclude that the conventional approach sbould be discarded except for analysis 
of very small image regions, when there is insufficient data for Sampled- or Gabor­
Markov models to operate reliably. Furlher work suggested below can only widen the 
performance gap between our proposed models and current methods, strengthening this 
conclusion. Highest classification accuracy with our Brodat.z image set was achieved 
with a fifth-order trmdikelihood Smooth-Sampled Markov classifier, sampling period 
2 pixels, and we recommend these model parameters. Gabor-Markov approaches are 
potentially more flexible than Sampled-Markov models, and could become the preferred 
paradigm if the improvements and further work suggested below are successful. 

8.2 Improved Gabor Feature Representations 

Our novel Gabor-Markov models achieved superior performance to a conventional pixd 
analysis in the texture classification benchmarks reported in Chapter 6, suggesling that 
textures are cha.racterised adequately by arrays of Gabor features extracted by Ollr 
proposed methods (§4.6). Despite this success, several aspects of the feal.ure-exLraction 
process could be improved, leading to increased flexibility, better performance, and 
greater computational efficiency. With these enhancements, Gabor-Markov models 
may surpass the excellent results obtaiued with Sampled-Markov models_ 

8.2.1 Additional Features and Image Primitives 

Om proposed Profile feature-extraction method combines measurements from many 
Gabor channels by matching observed responses to Gabor siguatures produced by pa­
rameterised image primitives (§4.6.2). This procedure is flexible because additional 
Gabor channels or alternative filter parameterisations may be accommodated easily, 
yet the representation always assumes a standard form. Such an arra.ngement is conve­
nient for a hierarchical model, as it hides low-level operational details from the high-level 
model (our Markov random fields). We noted in §4.5.2 that the success of ihis approach 
is conditional on the selection of appropriate image primitives and paramderisations. 
Two primitives were discussed above, LINE and SINU, corresponding to an ideal line 
and a sinusoid grating, respectively. Other primit.ives may provide a more appropriate 
description of the observed Gabor responses in some ca.ses, and we have (oTI,idered 
STEP and RAMP, corresponding to a step-edge and int.ensit.y ramp: 

if x < 0
fSTEP(X, lI) (8,1){-~ if x> 0 

fR_MP(X,lI) ex (8·2) 

where both prim.itives may be rot.ated about. the origin, and possibly translated. With 
an extended range of image primitives, it may be appropriate to select the signature 
which most-closely matches the ob$erved response at each image location, perhaps using 
"primitive typen as an additional image feal.ure. 

No ima.ge primitives are required for R<'Suttant feature extraction: obscn'ed Gabor 
responses are described directly (§4.6.3). Similar perfonnance was obtained with Profile 
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and Resultant features in conjnnct.ion with Gabor-Markov texture c1~gifiers (§6.5), but 
tbis was using filters tnned \.0 a single spatial frequency. Two denciencies of Resultant 
feature extraction may be addressed by a simple extension to the procedures described 
in §4.6, by estimating a local Gabor "phase" feat.ure.~. Firstly, the current method 
does not measure the sign of local contrast c, because both contrast and orienl,ation 
features are extracted from measnred Gabor energies, wbicb are insensitive to t.his pa­
rameter (n ex c2). Tbis is probably tbe canse of skew present in direct MRF modds of 
image contrast (e.g. Figure 7.10b On page 189). Secondly, it is not possible at present to 
reconstruct textures from tbeir Gabor feat.ures because tbese do not capture sufficient 
information. Texture synthesis is desirable to verify that feature sets represent visua,l 
properties of tbe texture adequately. and often suggests how improvements may be 
made (§3.6.1). We conld, for example. compare text.ures synthesised from their Gabor 
and MRF parameter sets, and ultimately also from Gabor-Markov parameters. Approx­
imate reconst.rnclion is possible if local phase is known. and phas" also det.ermines the 
sign of local image cont.rast. 

We bave tentatively den ned Om Gabor "phase" feature 1> in a similar manner to 
other Resultant features: 

L:~ M~.l
tan~ (8'3)L:,Mc.i 

where snmmation for; extends over all channels, M, and Me are the sine and co­
sine pbases of observed channel responses (orientation spacing assumed equal), and 
-7r < 1> ~ 7r. Examples of phase nelds extracted from two of the imilgcs used previ­
ously are shown in Figure 8.1: whilst we bave not attempt.ed to classify t.ext.ures based 
011 tbese k.a,tures, they do appear t.o bave potential for image description, and phase dis­
continuities may be used \.0 locate texture boundaries (Bovik el al.. HHlO). Phase could 
easily be added to the Gabor-Markov models described in Chapt.er 6, eitber as an "in­
dependent" additional featnre, or by modifying an existing model, perhaps fanning a 
complex-valued Markov random fleld. 

8.2.2 Selection of Gabor Filter Parameters 

Fixed Gabor filter parameters were used to extrad featnres nsed by the Gabor-Markov 
classifiers report.ed in Chapter 6: each image was filtered at six orient.ations, two pha.ses. 
and a single spatial frequency (§6.4.2). Natural t.extures often have a hierarchical (rather 
tban a fractal) structure, and may generat.e quite different feature arrays at different. spa­
tial scales (Ahuja &. Rosenfeld, 1981; Marr, 1976). Doth our feature-extradion met bods, 
Profile and Resnltanl., could easily be extended t.o accommodat.e variable or multiple 
spatial·frequency tuning, allowing l,he higher-level Markov random field component of 
our hierarehical models to operat.e at a more abstract level. Our Gabor segment.ation 
experiments connrmed that fixed fllt.er parameters are not always suitable for texture 
discriminat.ion (§4.4), and we suggest lwo alternative procedures below. 

Automatic Selection of Spatial-Frequency Parameter 

When tbe objective is t.o represent the most signincant component of a texture, or 
t.o charad~rise it approximat.e1y using only a few fill.er channels, the power·spectrum 
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(.) .17: herringbone weave (b) zebra image 

FIGURE 8.1: Examples of proposed Gabor "phase" feature. Cabor 
·phase" reature ¢ drawn to a linear s,.ale (white: ¢ =' -11"; black: <P =' ".). 

(a) herringbone image ('17; Figure 1.6 on pa.ge 11), 256x256 pixels, filter 
parameters: (T := 7·3 pixels, 8 1/ 2 = 0·7, ~(Jl/2 = "./9, 0 = "./6; =(7 

5·8 pixels). (6) zebra image (Figure 4.4 on page 68), 151xl77 pixels, filter 
parameters: (T =' 6 pixels, 8 1/2 = 4, 68'/2 =2/f/9, e ="./4; (7 = 1·3 pixels), 
us'mg the notation described on page 69, Results wil,h t.hese images sugge,t 
that the proposed phase feature generates userul image descriptions. 

method is often able to suggest suitable Gabor filter parameters (Bovik el al., 1990; DUI, 

1988). Dominant spatial frequencies are found by searching for peaks in the image power 
spectrum (§4.3.2). We adopted the power-spectrum method to select filter parameters 
used to obtain Gabor energy segmentat.ions (Figures 4.14 and 4.15 on pages 78-80) 
and Gabor-feature representations (Figures 4.24-4.25 ou pages 96-98), destribed in 
Cilapter 4. In the form stated in §4.3.2, t.he power-spectrum method determines both 
a spat.ial frequency and an orientation by locating a single spectral peak. We IOtend to 
sample image orientations evenly at the chosen spatial frequency, and hence it is more 
a.ppropriate to pool spectral eoergy across all orientations before locating frequency 
co-ordinates of spectral peaks. 

When the application is texture classification, and projection pa.rameter; may be 
assumed constant across the image, a single spatial scalp chosen by t.he power-spectrum 
method wiU probably givea superior feat.ure representation than a fixed value assumed a 
prio'ri. Feature representations may be made scale-invariant by sampling in proportion 
to the filter period, hidiug changes in spatial scale from the random field components of 
our hybrid models. This is attractive because Markov random field models are sensitive 
to changes of texture magnification, and an extension hy means of a. modified classifier 
is awkward and computationally demandiog (Cohen el al., 1991). Elimina.t.ion of scale 
variation during the Gabor filtering stage may be achieved with very little computa­
tional effort, using the method suggested above, which also automatically determines 
the sampling period for Gabor-Markov models. Care is required when competing fre­
quencies have similar energies bcca,use selectiug different bands during trainiug and 
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classification stages could prove disastrous. Unlike true modified Bayes classifiers, this 
method has no cla.im to be optimal, but is more computationally efficient. 

Raw MRF models are also sensitive to image rotation, unless circularly-symmetric 
featurcs are used (§3.1.3). Image rotation is effectively eliminated by the improved 
Gabor-Markov models proposed in §7.1.5 because the orientation feat.ure array is ef­
fectively "normalised" before computing fields required by tbe Markov models. BoLh 
spatial-frequency and orientaLiou parameLers may be estimated automatically with lit­
tle computational effort, providing (approximate) scale- and rotation-invariant texture 
classificatiou more readily that full modined Bayes classification (Cohen ~l aJ., 1991). 

Filtering at Multiple Spatial Scales 

Only t.rivial textnres possess significaut structure at just one spatial scale, and mare 
sensitive feature representations t.o those considered above require filtering at. lIlultiple 
spatial-frequencies. Suit.able frequeucies may be identified by locating peaks of suc­
cessive magnitnde in the orientation-corrected power spectrum (Tan, 1988), or a fixed 
range of frequencies may be built into tbe featme-extracLion algorithm. With this ex­
tra flexibility, it is possible to comput.e a local scale paramet.er, perhaps along the lines 
described in §A.3. Our signature-matcbing (Profile) approach to feaLure extraction 
adapt.s immediately t.o chaunels tuned to mauy spatial frequencies, allowing us to es­
timate more feature parameters for our current image primitives, or to consider more 
complex patterns. 

Adopting a local spatial scale is appropriate for image segmentation, where different 
textures (or portions of textures) may be present at different magnification. The "scale" 
parameter could be t.reated as anotber "independent" feature and added to existing 
Gabor-Markov models, or possibly used to obtain an iniLial rough segmentation so that 
later M RF algorithms could be applied at a single scale. A furt.her possibility is to apply 
the information represented by tbe scale feature to estimating slant and tilt, neither of 
which is accommodated well by raw Markov models. 

We bave demonst.rated a link between classifier performance and the level of cor­
respondence between texture model and experimental data (Chapter 7), and showed 
that improved Gabor-Markov models achieve good agreement (§7.1.5). Coupled with 
improvements in feal-ure representations and niter tuning proposed here, we believe that 
Gabor-Markov models are capable of higher accuracy and greater flexibility than the 
prol.otype versions implemented in Chapter 6, and are deserving of furthersludy. 

8.3 Improved MRF Models 

Our experience with unsampled MRF pixel models has shown that tbe use of maximum­
likelihood techniques does not necessarily lead to an optimal system (Cbapter 6). We 
bave a number of ideas for improvements and suggestions for furtber work, mostly 
sl.,'onrning from the succe;s of Sampled-Markov models. 
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8.3.1 Further Investigation of the Effects of Sampling 

Our examination of the influence of image sampling on c1a.ssifier performance found 
convincing explanations for the superior blur and noise tolerance of Sampled·Markov 
texture models (§7.4), and we found experimentally that performanoe correlates closely 
with the level of correspondence between model and data (§7.1). We suggesl.ed that 
unsampled arrays of pixels (and Gabor features) are difficult to model closely by auto­
normal M RFs because of the presence of high-coutrast peaks in their Fourier spectrum, 
supporting this hypothesis with experimental data (§7.4). The practical importance 
of the cousequences of image sampling justify further investigation of this topic. For 
example, might it be possible to determine tue most appropriate sampling period auto­
matically by exarn.ining the image power spectrum? This procedure would have further 
practical advantages, allowing the most favourable trade-off between modelling accuracy 
and computational efficiency to be determined for each t.exture class. 

Tbe role of frequency aliasing iu the superior performance of Sampled· Markov classi­
fiers has nol been fullyexamiued. Aliasing coutributes to an iucrea.se in high-frequency 
energy in sampled images, acting t.o reduce the coutrast of the problematic spectral 
peak, and hence may be beneficial in small amounts. This suggestion is not entirely 
consistent with the success of Smooth-Sampled Markov classifiers, however, since their 
window functiou reduces aliasing. Anti-aliasing is computationally-expensive in the 
spatial domain, requiring couvolution wit.h a broad kernel, but may be performed easily 
with an un sampled spectral representation by band-limit.ing it. Adopting this procedure 
could allow us to eliminate alia.sing error, and hence achieve a better understanding of 
the effect.s of image sampling, and possibly obtain yet furl.her improvements in classi­
fier performance. Manipulating image dimensious in the spat.ial-frequency domaiu also 
facilitates the use of non-int.eger sampling periods. 

Preliminary Investigation of the Influence of Anti-Aliasing 

Thorough investigation of tue iufluence of frequency alia.sing awaits further research, bllt 
we may report some preliminary results with the pressed-cork image ('4; Figure 1.6).1 
The image was band-limited in the Fourier domain, and converted back to its spatial 
form. We characterise anti-aliasing by the largest sampling period wilh which the mod­
ified image may be sampled without introducing aliasing error. Band-limited versious 
of the pressed-cork image are shown in Figure 8.2: t.he visual effect of anli.alia.9ing 
is similar to blur. We may compare power spectra of sampled band-limit.ed images, 
without aliasing, with those of the unprocessed sampled images (Figures 8.3a,b and 
7.19b,d on page 207, resiWctively), shown rrom the same viewpoint. Power spectra with 
a sampling period of 2 pixels are similar, but the anti-aliased version assumes a much 
less cbaolic form for heavier sampling (period 4 pixels). This confirms that til(' original 
image is virtually band-limited, and hence that aliasing plays a minor role for moderate 
sampling, becoming more significaut wheu the sampling period is iucrea.sed. Spectral 
peaks of band-limited images have very high contrast, tending to infinity, and bence 

IUnlike previous Chaplers, where results wiLh the pressed-cork image have been presented to 
illustrate commoo tr<>nds fOJ" OUT Brodat:l ima.ge ~ll Lhe investigation presented h~r(' i~ prdiminRf,)' 
and we have only exa.mined c·his ima.ge. 
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(a) period 2 pixels (b) period 4 pixels -
fIGURE 8.2: Anti-aJiased Brodatz image. Anti-a.Hased versions of I,h. 
pressed· cork image ('4; Figure 1.6 on page ill, formed by adjusting its fourier 
.pectrum. (0) suitable for sampli"g wir.h period 2 pixels: (b) period 4 pixel,. 
Anti·aliasing has a similar vi.ual effect to blur. 

our argument of §7,4 predicts that modelling error will be high. Agreement. with ninth, 
order true-likelihood M R.F parameter sets after anti-aliasing for sampling periods of 2 
and 4 pixels are shown in Figure 8.3c,d: modelling error is very significant, appearing 
similar to that for blurred images (§7.\). Note tbe extremely low st.andard deviation 
of the empirical MRF predictor-error, 0·05 and 0·06 gray·level units, respectively: ccn' 
tre pixels of band-limited images may be reconstructed almost exactly from their MRF 

neighbourhoods. 

By contrast, mrrcspondence between ninth-order true-likelihood parameter sets esti­
mated from sampled anti-aliased pressed-cork images is very close (Figure 8.kJ). The 
degTee of anti-aliasing matches the sampling period, so that the resulting frequency spec­
trum does not mntain any "holes" ((I,b), and contrast of the spectral peaks does not 
approach infinity. From these preliminary results, which have been obtained by process­
ing only the pressed-cork image, it appears that freqncncy aliasing is not beneficial to 
modelling accuracy, and should be eliminat.ed by anti-aliasing prior to sampling, Once 
this is done, we ant.icipate that. performance of anti-aliased sampled classifie~ will be 
.,uperior to smooth-sampling (§6.6.2), further extending the advantages of our proposed 
methods compared to conventionaltechniqucs. Sampled Gabor-Markov models wonld 
probably also benefit from anti-aliasing, bnt this was not examined. If this t.entative 
conclusion is supported by further research, automatic selection of the most appropriate 
sampling period becomes even more attractive, corresponding to the proportion of t.he 
frequency spectrum to be modelled. 

8.3.2 Simplified MRF Neighbourhood Structure 

Classification results for both sampled a.nd unsampled images show that there is lit.tle 
performance benefit when MRF neighbourhood size is increased above a small minilnum 
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(a) sampling period 2 pixels (b) .ampling period 1 pixels 

I 
2 pixels 4 pixel.

~1 (d)(c) IJn9aJTlpied unsampled 

.._..._-- .. _" 
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(e) 2 pixels (f) 
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FIGURE 8.3: Effect of anti-aliasing on image spectra and correspondence with 
auto-normal mode\. The pressed·cork image (~; Figure 1.6 on page 11) was anti-ali"s"d 
by adjust.ing its Fourier transform t.o permit sampling with the perIod shown, and nin(h-order 
true-likelihood parameter sets est.imated. (a,b) power spedra afl.er sampling, periods 2 and 
4 pixels, respect.ively. Horizontal axes represent spatial frequency, with the origin at any 
cOrner. Compare spectra wil.hout aliasing (Figure 7.19b,d on page 207). (c,d) histograms 
of observed (solid) and expected (dolled) distributions for MRF predictor-error u ("ray-level 
units), showing agreement with auto-normal model of unsampled band.limit.ed ilnge, peri­
ods 2 and 4 pixels: very poor correspondence. (eJ) after sampling, periods 2 and 4 pixels: 
close correspondence. Compare agreement wit.h original image (Figure 7.Ja on page 178) 
and after raw sampling (Figure 7.6a on page 187). 

4 pixel. 
sampled 
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FIGUR.£ 8.4: Modified Markov neighbourhood structure. This MarkO\' 
random neld structure has a larger image "footprint" than a conventional 
ninth-order model, but i. specined b'y 10 rather than 24 parameters (campa'" 
Figu re 5.1 on page 107). 

value betwee!l third and fifth order (Chapter 6). ill some cases, larger MRF neighbour­
hood size leads to lower accuracy! Third-order MRF neighbourhoods arc specified by 
six parameters, rising to twenty-four for ninth order, and l.he additional computational 
effort involved in estimating and manipulating these extra terms hardly seems wort.h­
while. In some cases, it may be appropriate to adopt a simplified nl'ighhourhood strnc­
ture, where several pixels are mult.iplied by the same coefficient. The neighbourbootl 
structure sbown in Figure 8.4 has a larger image "fool.print" than a ninth-order model, 
hut is specified by only ten parameters. This form is drawn only to illustral.e I.he idea; 
we have not performed experimeuts to determiue its effect on performance. Grouping 
neigbbourhood sit.es together in this way does not affect their liuear interaction, and 
hence the resulting model is still auto-normal. 

8.3.3 Experimental Appraisal of Modified Classifiers 

We have characterised robustness with respect to idealised models for image degrada­
tion, modelling image blur by convolution with a Gaussian kemel, and image noise 
as independent, additive, white aud Gaussian (§6.4_3). By examining the perturbing 
dreel. of these transformations on the image power spectrum, we itlentified modified 
Bayes classifiers which sense the amount of noise Or blur present and cOTTed appropri­
ately (§7.2; §7.3). Preliminary results with the modified anti·blur classifier were encour­
aging (§7.2.:J). but full investigation of the practical utility of these forms awaits further 
experimental '-,·rification. In particular, we need t.o establish whether real ima.ge degra­
dat.ion phenomena are modelled adequately hy the idealised [oru]s we have assumed, 
whether modified classifiers function correctly iu conjunct-ion with image sa.mpling, and 
whether they are themselves sufficiently robust. Following a suggestion by Kashyap, we 
could design a further modified classifier insensitive to changes of global illumination 
(Kashyap e/. ol., 1982). Modified classifiers iuseusitive to global changes in image sca.le 
or rotation have been proposed by Cohen et al. (1991), and it would be interestiug to 
compare the performance of these maximum-likelihood classifiers with our proposed 
sub-optima.1 method exploiting Gabor filtering (§S.2.2). All the classifiers mentioned 
ahove assume global image transformations; it would be u.~eful to extend this to include 
smooth varia.tions due to orthographic projection or texture Illapping. 
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It has been sugg('"t.ed that manufactured objects (ratber than natural textures of 
tbe type we have considered) are bet.ter described by nou·stationary Marko, models, 
wbere tbe field mean is a low-order function of image location (Hunt &: Cannon, 1976; 
Silverman &: Cooper, 1988). Parameter estimation and manipulal,ion of non-stationary 
models arc challenging because many of the techniques d""cribed above rely on the 
field being stationary (Cbapter 5), and exact extensions to non-stationary fields are 
computationally prohibitive (Silverman &: Cooper, 1988). Further development of efficient 
sub-optima.l algorithms is required to make noo-stationary models more accessible. 

8.4 Applications to Image Analysis 

Some applications of conventional .\1arkov models to image analysis werc di.cu""d In 

Chapter 5, a.nd many of these algorithms adapt easily to Sampled- nr Gabor-Markov 
models. Text.ure analysis is an important part of low-level vision: there are very many 
tasks for whicb it may be exploited, and a f"JI review lies outside the scope of this 
thesis. Some common examples include: classification of medical, aerial and geological 
images; navigation, bin-picking, and identification. In this sect-ion, we suggest some 
further texture classification expcriments and corrunent on ideas for image segmentation 
algorithms. 

8.4.1 Further Texture Classification Experiments 

Texture classification was used in Chapter 6 as a benchmark to compare the perfor­
mance of Our proposed Gabor-Markov models with a conventional textnre analysis. \Ve 
concluded tbat Gabor-Markov models were superior to conl'entional nnsampled pixel 
models with respect to classifier robustness and compntational efficiency, and that the 
composite-feature model was usually t.he appropriat.e choice (§6.7). Sampled-Markov 
classifiers were much more accurate tban other Lypes, achieving 100% accuracy in some 
circumstances. Both Ga.bor-Markov and Sampled-Markov models achieve superior per­
formance to that offered by a conventional analysis. Discussion of these resultlled uS to 
suggest modifications to the original Sampled- and Gabor-Markov models, and further 
classification experiments suit.able for est.ablishing the merits of t.hese updated proposals 
are considered below. 

In §7.1.5 we proposed improvements to Gabor-Markov models, bringing Lbem into 
closer correspondence with experimental data, and further en hancements were suggested 
above (§8.2). Our preliminary investigation of anti-aliasing suggests that. Sampled· 
Markov models could also be improved (§8.3.1). Together, these proposed revisions 
should further widen the gap between convent.ional (unsampled pixel) analysis and the 
new forms we propose, but the margin should be determined experimentally. Our study 
has used natural Brodat.z textures (Figure 1.6), and it would be helpful t.o extend the 
generality of our conclusions by repeating the classification exercise for a wider variety 
of real textures (aerial, medical, geological, e!c.), perhaps al,o widening Lhe domain to 
include colour images or range dat.a. 
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Rohustness to image noise and hlur was measured in Chapter 6, and we have de­
signed modified classifiers to increase immunity to these types of image corruption. 
In §8.2, we proposed that image scale and rotation should be eliminated from our hy­
brid models by adaptive Gabor filtering, believing that this procedure should be less 
computationally-demanding than full modified Bayes classification and demonstrate 
further advantages of Gabor-Markov models. Doth proposals await experimental veri­
fication. 

8.4.2 Ideas for Image Segmentation Algorithms 

In this thesis, we have concentrated mainly On texture classification because it is a 
suitable benchmark for compuing different texture models, bnt image segmentation is 
probahly of greater pra.et.ic~J interest.. Current approaches to image segment.at.iou were 
reviewed brieBy in §3.5, commenting further on Gabor and Markov methods in Chapters 
1 and 5, respectively. Many of these convent.ional methods may be used in conjunction 
with our proposed Sampled- and Gabor-Markov models. Below, we comment on two 
ideas for efficient image segmentation, neither of which has yet been implemented. 

Gabor-Gibbs Image Segmentation 

Texture energy algorithms are attractive because of their computational efficicllcy, and 
may he implemented easily on parallel hardware. Our experiments wit.h Gabor energy 
segmentation confirmed impressions from t.he lit.erature that the main drawhack with 
this approach is the level of varial;ion within t.extured regions after filtering, so that 
boundary shape is often distorted by corrective post-processing (§4.4). Our approach 
to this situation is to describe the spatial arrangement of Gabor featnres by Markov 
random fields, forming Gabor-Markov models (§5.7). Gabor filter ontp1lt may be sub­
sampled, and hence these models retain some of the computational bcndils of Gabor 
filtering. 

An alternative procedure, more in keeping with the attentive-pre-atteutive di­
chot,omy described in Chapter 2, is to "regularise" Gabor output by moddling tbe 
segmented image with a Gibbs random field. Previous applications of Gibbs random 
fields (GRFS) to image segmentation have either used pixel data directly or formed a 
hierarchical random field model, and demonstrate that it is straightforward 1.0 assume 
suitable GRF clique potentials withollt having to estimate them explicilly (Chapter 5). 
The simple "modal filterillg" algorithm we noSed above in conjunction with Gabor energy 
classifies e.ach pixel according to the orientation of tbe dominant. filt.er response, and is 
not very discerning (§4.4). A suitable extension of this approach is t.o form the Gabor 
orientation field using our proposed extraction method (§4.6), and thclI t.o "restore" it 
with tbe Gibbs sampling algorithm (§5.3.2j GCnJan & Geman, 1984). Raw feature arrays 
are "noisy" but seem amenable to improvement by this approach (Figure 8.5). Defini­
!.ions for t.he clique potentials and image penalt,y term should reRect t.he periodicity of 
the data; perhaps something similar to le(O) (Figure A.7 on page 268). Extension 1.0 

other Gabor features, or 1.0 include addit.ional bonndary processes, is straightforward. 
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ouler: ..77 canvas ouLer: .78 sLraw doth
(a) (I»jn ner: .84 [affia inner: '&8 wood gfsin 

fJGI:RE 8.5: Gabor features suitable for modelling with Gibb. ran­
dom fields. Orienl...tion fealures estimated from Brod..tz mont..ges afler 
filt~ring with parameters suggested by the power-spectrum method (§4.3.'1). 
Orienta-tion is represented by a linear scale from white to blad, ignoring 
periodicity. (a) canvas-raffia (Figure 4.14b on page 78), filter parameters: 
(T = 4·5 pixels, B'/l = 0·7, ~(J1/1 ="/6, e = ,,/4; (J =3·5 pixels); (6) c1oth­
wood (Figure 4.14e), pa.rameters: (T = 5 pixels, B /2 = 1·5, ~Ol/l = 5"/36, 
e = ,,/6; ()' = ' page 69. ·2 pixels), using the not..tion described on Both f..
ture arrays are "noisy" but could probably be restored more sensitively after 
modelling by a Gibbs random field than by blur. 

Essemially, the above proposal parallels models of human vision, using fast spat ially­
parallel Gabor filtering to guide more detailed examination of boundary location 
(§2.4.1). Gibbs random fields are suitable for modelling image layout because segmen­
tations differing with respect to local change in boundary location may be compared 
by a local analysis. An alteroative application is to use the primitive Gabor 'egmenta­
tion to guide estimation of init.ial MRF paramet.er sets in an estimate-segmen1 cycle for 
unsupervised image segmentation (§5.6). 

Sampled-Markov Image Segmentation Algorithm 

Images usually have a very large number of possible segmentations, and computationally· 
efficient sllb-opt.imaltechniques must be employed to identify good solutions. Acommon 
approach is to exploit t.he phenomenon of spatial coherence (92.3.4 and 93.5). In §.5.6.3, 
we commented on a two-stage MRF segmentation algorithm proposed by Cohen and 
Cooper (1987), in which successively smaller image regions are classified according to 

known texture models. Large-scale image blocks serve only to determine Ihe neigh­
bourhood stmcture of smaller regions, but require sign.ifica.nt computational effort t.o 
process because they each refer to a large amouot of underlying pixel data. A very sim· 
pIe extension to this algorithm, exploitiug the assumption that possible texture types 
are known a priori, is to match the sampling period to the dimensions of each image 
block, so that the volume of data accompanying each block is bounded. This allows 
coarse-sca.le segmentation to proceed rapidly, since few blocks are pr",.sent, concentrating 
most computat.ional effort on fine-scale refinement. 
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8.4.3 Implementation on Parallel Hardware 

Even after efficiency gains accruing from Our proposed improvements, image analysis 
with Markov models is computationally intense, stemming mainly from a requirement 
to evaluate relative image likelihoods for many possible scene configurations. Several 
of the application areas mentioned above demand real-time operation (e.g. na\'igation), 
and there is cont.inual pressure t.o reduce execution time. An attractive route by which 
this may perhaps be accomplished is implementation on parallel hardware. 

Gabor filtering is spatially-parallel and largely data-independent, and we noted 
above that these attributes render it suitable for implementation on SIMD 2 Or special­
purpose hardware (§4.1; §A.l). It is reasonable to assume that. this approach could cause 
the overhead arising from Gabor filtering to be negligible. By contrast, the processing 
requirements of most Markov algorithms arc spatially-localised and data-dependent, 
and hence are less straightforward t.o implement efficiently. Previous approach",; to I.he 
problem of mapping Gibbs-Markov algorithms to SIMD Or syst.olic hardware certainly 
improve upon sequential implementations, but are not entirely satisfactory l§.s.6.6). 
The Markov property implies that well-separated image codes may be updated inde­
pendently, and sinee the MRF neighbourhood size is small compared to t.he diP.'ensions 
of the image lattice, this allows some parallcli"n to be extracted. During image 'egmen­
tation, however, processing requirements are far [rom homogeneous across the ima.ge, 
and there is a danger that processor utilisat.ion will be low. The more flexible MIMD3 

paradigm is more a.ppropriate in this inst.anee (§A.1.2). 

This provisional analysis suggests t.hat Gahor-Markov models require support for 
both SIMD and MIMD processing modes, and heuee a.re implemented most efficiently on 
dua.l-pamdigm parallel hardware. A suitable architecture, the DisPuter, is described 
in §A.1.3 (Winder, 1988a). Furtber work is required to establish appropriate part.itions 
of image and data between the two paradigms. Particular attention needs to be given 
1.0 communication requirements, as our experience suggests that. these may impose 
more severe constraints on performance than computation alone (Winder, 19S7). Once 
real-t.ime performance seems attainable, further research should address adaptation of 
existing static algorit.hms to exploit motion coherence. 

:2'Smgle [nsl,ruCllon Multiple Data, or Udata-panlllel". 
3Multiplc lrL9trucLion Multiple Data, or "Lask-parallel". 
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Glossary of Principal Notation
 

Our principal notation is given below, but additional local tenninology is defined in l.he 
main text. 

Abbreviations 

I-D one dimensional 
2-D t.wo dimensional 
CPU Central Proc""ing Unit 
DC Direct, Current; implying "spatially-cousta.nt" in this context 
DOOG Difference or Oriented Gau~sians 

FFT Fast Fourier Transform 
GMRF Gibbs-Markov Random Field 
GRF Gibbs Random Field 
LHS Left Hand Side 
LINE Gabor image primitive (§4.5) 
MAP Maximum A Posteriori 
MIMD Multiple Instruction Mulliple Data 
MRF Markov Random Field 
PE Processor Element 
RIlS Right Hand Side 
RT Readion Time 
SAR Simult.aneous AutoRegressive (random field models) 
SIIvID Single Instruction 1I'\llltiple Data 
SINU Cabor image primitive (§4.5) 
VLSI Very Large Scale Integration 

Other Terminology 

#55 plate number of a Brodatz texture (Figure 1.6 on page ll) 
§ section 
All-Quarters texture c1a"sification paradigm (§6.4) 
Group texture classification paradigm (§5.4) 
Profile Gabor feature-extraction mdhod (§4.5) 
Resultant Gabor f(".alure-extra.ction method (§4.5) 
SEG, POP artificial "segregation" and ~pop·out" displays (Figure 4.5 on 

page 71) 



24l GLOSSARY OF PRINCIPAL NOTATION 

Universal Notation 

x,x 
X,I: 
X,S 
x,X 
x, X 
x, x, (} 

PiA} 
PIA I 'B} 
.[ {x} 
x.y 
A" 

XT 

xl 

#A,#A 
II All 
det A, IAI 
x;= X 
a~b 

F(x) ==X 
A 
var x 

N,R,C 

J 
~ 

1 
a 
1 
o( . ), Ok,l 

<1>(. ) 
6(1',0-2

) 

0(· ) 
J:. 
52 

x 
I(x,y) 
g(<;) ;= G(<;) 
V 
8, c, E 

J s 
ll.M 
ll.w 
6 
Re 

random numbers (Euler font)
 
matrices (uppercase bold sans-serif), with elements XI;,t
 

sets (upperC<lSe script)
 
vectors (bold), with elements x,
 
random vectors (bold Euler)
 
scalar variables (math italic)
 

prohability of the event A 
probability of the event. A conditional on event 'B 
mathematical expectation of the random variable x 
discrete linear convolution of functions x and 11 
complex conjugate of A 
transpose of vedor x 
conjugate t.ranspose of vector x 
cardinality of t.he vector A or set A 
Euclidean norm of the vector A: IIAJl2 == E, IA;i2 
determinant. of matrix A 
denotes that functions x and X are Fourier transform pairs 
denotes that a and b are similarly dist.ribut.ed 
Fourier transform of function x 
sample mea·n of variable A 
variance of variable :r 

sets of natural, real and complex numbers 
positive root of - t 
Fourier matrix 
the identity matrix (rank determined by context) 
constant vector, all elements 0 (rank determined by conl,ext) 
constant vector, all elements 1 (rank dclermined by context) 
Dirac delta·function 
inverse Nonnal dist.ribution 
normal distribution with mean I' and variance 0-2 

computational complexity of algorithm 
image lattice 
sample variance of variable x 

two-dimensional image atTay 
Gaussian distributions, space constant <; 

set. of allowahle gray levels 
Gahor orientat.ion, contrast and error features 
Bhattacharyya coefficient 
Mahalanobis distance 
weighted Euclidean distance 
state space: set of feasible lattice configurat.ions 

. . (COSO -sinO)rotatIOn mattlx: R, = sin 0 cosO 



Gabor Notation 

The following notation is used primarily in Chapter 4, and also in Appendices A.2 
and A.3. 

6t,6f 

x == (x,y)T 
x' == (x', y,)T 

u == (u,v)T 
q=Q 

qCl qs 
R 
R 
M,M
 
R e , R., !vIc, M.
 
R, M, 'R., M 
A 
r/>,¢
 
P, P
 
'If,!. 

fLlNF-, fSINU 

d, C, 00 

Q, c,,p, 00 

{) 

kOc(<Toc) 
E 

~, (mo.. 
p, Pnuu 

measurement uncertainty for time t and temporal frequency f 
two-dimensional axes 

rotated two-dimensional a.xes 

two-dimensional spatial· frequency axes 
complex Gabor kernel, parameters given below 
cosine and sine pbases of Ga.bor kernel: q'" qc + jq, 
model complex Gabor response 
model complex Gabor response frolll "evrral chilllllels 
measured complex Gabor response 
phase components of Gabor responses: R == Rc + j R. 
Gabor energy r~ponses: 'R. == R~ + R~ 

Gabor amplitude: A == J H;. + R: 
model Gabor phase response: rP == arctan ( R./ He) 
measured Gabor phase response 
coefficient.s of Gabor image representation 
definit.ions for LINE and SINU primitives 
offset., contrast, and orientation parameters for LINE prirnitive 
angular frequency, contrast, phase, and orientat.ion paramet.ers for 
SINU primitive 
relat.ive orientation between filter and imal';" primitiw: {) == 00 - 0 
image pre-processing filter 
signature match error 
relative sampling error 
sampling ratio (rdative to Nyquist freque"cy) 

Cl VID4 
T. sampling period for Gabor image representations 

Filter Parameters 

6Wl/2 

8 , /2 

60 /2 
' T 

w 

,\ 

o 
<T 

o 
<; 

half-height angular-frequency bandwidth 
octave half-height spat.ial-frequency bandwidth 
haH-lJeight orientation bandwidth 
sinusoid period 
sinusoid anguli\[ frequency 
envelope aspect ratio 
filter orientation (0;:;; 0 < 11") 
envelope space constant 
angular separation of Gabor filters 
smoothing parameter (Gaussian space· constant) 
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Gibbs-Markov Notation 

This notation is used primarily in Chapters &-7, and alSQ iu Appendix A.5. 

C
Rx.x~ Rxx antocorrelation of process X 

XX1 Cxx au tocovariance of process x 

rxx,r-x x Fourier transform of autocorrelation: r xx ~ Rxx 

Sxx speelral density of statiouary process x: Sxx(w) ~ Rxx(r) 
F(x) distribution function for x: F(x) =; P{x ~ x} 
f(x) density function for x: f(x) =' of(x)(ox 
N'J' non-causal Markov neighbourhood of order 3' 
N+,N< unilateral and causal Markov neighbourhoods 

5 span of unilateral Markov neighbourhood N+ 
no set of all image sites except n: nn = .c\{n} 
1/n field neighbourhood veelor for sile n 
5, l: Gibbs-Markov parameter sets 
i Markov predictor: estimate of pixel conditional ou its surrouud 

'u,11 Markov predictor-error: u = x - :i: 

j1.,1-' field mean 
q2 t CT~ Markov predictor-error varian ce 
(3 Markov neighbourhood coefficient vector 
B cosine transform of {3 
B Toeplitz coefficient matrix derived from {3 
P(x), L(x) joint likelihood and log-likelihood for field x 

Pi probahility density of site i conditional upon its surround 
p,l pseudo-likelihood and pseudo log-likelihood 

{3, (;2, jJ true-likelihood parameter estimates 

{3, ;;2 pseudo-likelihood parameter estimates 
£; sub-sampling period 

smooth-sampling frequency
 
w angnlar spatial frequency
 
II, .\ spectral density coefficient.s: Ai = 1 - E,
 
MxN image dimensions
 

U(x), V(x) Gibbs energy and potential functions
 

l!l(x) Gibbs distribution
 

b blur parameter
 
p2 noise varian ce
 

Z partition function, or nonnalising constant
 
'Y,V white noise
 
C set of all field cliques
 

Q an image code: Q n Ni =: 0, Vi E Q <;;; .c
 
i a cent.ered process: zero expected mean
 



Gabor-Markov Notation 

This notation is used primarily in Chapters 6 a.nd 7, and also in Appendix AA. 

p, q components of orthogonal-normal model 
x, 11 components of composite-feature model 
T tangent direct-nonna.! model 



Appendices
 

A.I Parallel Vision Architectures 

Computers were originally introduced to replace error-prone human beings in making 
tedious calculations (Zakharov, 1984). Speed soon dominated reliability as toe major 
motivation, and huge advances in technology have been made in attempts (0 satisfy 
this increasing demanrl but fundamental limits on the performance of single-processor 
architectures will soon be approached. The appeal of present single-processor super­
compnters is further diminished because cost increases as an accelerating function of 
performance. 

In this Appendix, we discuss the characteristics of parollel archit.ectures, which 
appear to release these constraints. Parallel machines are subject to far less severe 
fundamental limits than individual processors, and offcr a pot.entially linear price-­
performance curve. Efficient designs should satisfy performance criteria at minimum 
cost, suggesting that parallel architectures should be employed for large problems. Con­
cepts of parallelism and interacting concurrent processes may help to shape softwarc dc­
sign, leading to more elegant and abstract algorithms. General-purpose mu lti-processor 
machines fall into t.wo groups, part.icularly suitable for supporting data and task paral­
lelism, respectively. PipeJined and special-purpose architectures may often be designed 
to meet specific requirements, but are not general-purpose and fall outsidc thc scope of 
t.his brief review. 
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A.I.! Data Parallelism: SWD Arrays 

Data-parallel machincs perform the same basic operation concurrently in many pre>­
ccosor elcmcnts (PES), each accessing its local data. Each PE has only very limited 
capabilities, often operating on a single bit of data, but may he replicated many times 
(tens of thousands) to provide high overall processor bandwidth. Regular arrangements 
of simple components are particularly suitahle for implementation in VLSI, permit.­
ting further reductions in cost. We shall consider SIMO' processor arrays, which are 
usually organised as a toroidal square array of PEs with local communications ("mesh­
conoected"). Ell.Ch PE has a local memory and register set, but all instruction and data 
sequcncing is performed by an external control unit, which broadcasts microinstruction 
and mcmory-access signals. This arrangement is very economical because unn~essary 

duplication of function is avoided. Its disadvantage is that each PE has very liLtle all· 
tonomy, and all must execute the same microi nstruction on the same op"rand (pcrhaps 
modified by local registcrs) at each time step: rigid translational symmetry is enforced. 
Numerical calculations are often performed using bil-serial arithmetic on single-bit PB, 

hilt an iucrease in thc num.ber rathcr than depth of the PEs is considered Lo be morc 
flexible when tbe extent of daLa parallelism exceeds the dimensions of the processor 
array (Reeves, 1984). Local synchronous communication achieves very high bandwidt.h 
via the local network, and random communication hetween PEs may be accompnshpd 
by expliciL routing (vcry slow) or by an external routing network. 

Synchrony of operation unlocks the pot.ential of SIMO machines but imposes severe 
limitations on the classes of algorithm which may be executed efficiently. Early vi­
sion tasks often require largc amounts of local communication but may be executed 
efficicntly by SIMD architectures because they possess translational symmetry; convolu­
tion and relaxation are obvious examples. In the context of our discussion of low-level 
human vision, the SIMD paradigm is analogous to inflexible "pre-attentive" processing 
(Chapter 2). 

Processor utilisation is a measure of the proport.ion of broadcast instruc~ions that 
a.chieve useful processing, and approaches the ideal of 100% only for very 1I'c1I-condi­
tioued tasks. Lower ratios arc still acceptable, however, beca.use a SIMO a,nay is rela­
tively cheap to implement and hence may still a..:hieve a good price-performance ratio. 
When there is a strong requirement for data-specific processing, processor utilisation 
drops dramatically. Data-dependent processing can only be imposed locally because pri­
vate PE memory is not globally accessihle, and the controller must sequcntially broadcast 
an instruction stream for all possible branches. Each PE idles until the stream appropri­
at,c to its own circumstances is received. A binary decision t.ree of depth N operates in 
O(log N) time 00 an array of independent processors, but achieves only O(N) on a SIMD 
processor array. High-level tasks such as recognition frequently involve data-dependcnt 
processing, and hence operate with low processor utilisation. Global communication 
may also become a hottleneck because it is unbuffered; if one PE must receive data 
from all the others, this must usually he done sequentially and can be extremely slow. 

Current SfMD processor arrays include the OAP, CLIP and Connection Machine. 
Despite the reservations given above, these are sold as general-purpose pro(J~ssors, and 

I Single In6lruclion Mulliple Data. 
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are supported by libraries which exploit the best features of each arcbitecture(Zakharov, 
1984). 

A.1.2 Task Parallelism: MIMD Networks 

Processors are loosely-coupled and operate largely autonomously withio MIM0 2 net­
"'arks, wbich exhibit task parallelism. Eacb processor has its own program and sequenc­
ing logic, increasing its cost compared with a SIMO PE, but daLa depeud..ot branching 
cames no particular difficulty and MIMD networks offer much bigher flexibilit.y. There is 
no requirement that all processors should be identical. Communication bandwidths may 
he lower than for SIMD processors because of the additional requirement fOT synchroni­
sation, but this comment does not apply to shared-memory architectures. Unhuffered 
globuJ commun iCation may be a boli I..'neck. 

All hough M[\0{ 0 networks are more expellsi·...e La implement thaI"! SHfD am.;.'s. they 
aT<' preferred for' hi~h-I .. \'cl or "attentive" visiou tasks, pro\·idcc.! these do ooL req"ire 
extensive g]ol)al comIn\lIlicatiou, beeanse the greater flexihility of this paradigm permits 
increased efficiency. Data-parallel algorithms may also be ('"ecul ed coll\'enitnLly on a 
MIM 0 network by replicating the same program at each processor, althongh a 51.\1 0 pro­
cessor array could f", substituted at lower ('ost (Reeves, l%~). A MIMD nctwOlk is rnos~ 

appropriate when the a.lgorithm may be broken into self-contained >erni-indc.pendent 
t.asks, and a processor farm may then be employed to achieve antomatic load-baJancing 
(Winder, 1987). 

MIMO networks may ~A>Sily be constructed from readily-available compone~lc;, using 
shared memory or a global bus t.o support communication, and additional processors 
may often he added "'ith orrly minor adjllstmnjlt to the syst.f"n. Co"c.nrn~'ncy is ""p­
ported specifically hy t1w Inrnos 1rilflsputcr. with the int"nti"n that many !.[dllsputers 
will be counected in a multi-processor array. Trausputer point-to-point communication 
links are slow oompared to image-procCl;sing ba.ndwidth.<, suggest.ing [,hat commnnica­
tion in Lransputer arrays should also be supported by a high-h<!ndwiJ\h glob,.' bus. 

A.1.3 Dual Paradigm Parallelism: The DisPuter 

Data pa.rallelism is supported efficiently by SIMD processor arrays and task parallelism 
by MIMD networks, hut unfortunat.ely most vision systems need to operate in both modes 
(Reeves, 1984). Neither true SIMD nor true MIMD architectures offer optimal periormance 
because both must operaote inefficiently for part of the time. The requirement {or dual­
paradigm parallelism is illustrated by the attentive-pre-attentive dichotomy in low-level 
human vision (Chapter 2). 

One solution to t.his problem is to have a loosely-coupled array of SIMD processor ar­
raoys, and this philosophy is adopted by PASM: SIMO PEs may be swapped dynamically 
between modules, each supported by its own controller. There is a danger thaI l.his 
approach combines the expense of MIMD with the inflexibility of SIMO (Reeves, 198,1). 

'MultIple Instruction Mlllliple Dat •. 
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IBM PC 

o 
Control 

Transputer 

Orion 

FIGURE A .1: DisPuter Architecture. Dual-paradigm parallelism is pro­
vided by close coupling bel ween ,,16x16 ,I\ID processor array DisArray a.nd 
a transputer· based conlroller linked ~o an lnmos 0042 board. Inl.erfaces (0 

an Orion minicomputer and au IBM PC are also supported. 

Multiple SIMD is emnlated by DADO: each 1'£ may acl as a conventional MIMD proces­
sor or accept instructions from a remote controller iu SIMD mode, but overall dficiency 
is no bigher tban MIMD. 

Th.e DisPuter 

Dual-paradigm parallcl architedmes provide both SIMD and \IlMD componenls within 
one machiue, allowing all stages of the visual pipeline to be executed effteielltly and 
cost·effectively. We mated a 16x16 SIMD processor array Di~Array with a transpllter 
network to form a powerful JOO-processor dual·paradigm parallel processor, the Dis­
Puter (Winder, 1986). All 256 DisArray PEs are identical and have access to a 256 kbit 
10ca.1 memory, local status registers and .. 4-connecled communications network (Fig­
ure A.I). This work began as an M.Sc. project, and the DisPuter WaS bllilt to inw's(igate 
the impi\ct of direct support for dual-paradigm parallelism following t.he MIMD/STMD 

mod,>l (Reeves, 1984). 

DisArray nUcroinstruet.ions are executed globally, and t.ake the form of an arbitrary 
logic fUllction of loc..l memory and registers. We designed and built a transputer· 
based micrninstruction controller, achieving close collpling between SIMD and MIMD 

components. Additional t.ransputers are attached by Inmos links, and other modules are 
accessed via EtherNet connections. Libraries were written in occam to provide low-If>\Tl 
snpport {or graphics aud image-processing (Winder, 1987). Communicat.ion bandwidth 
is as import ..nt a.s processing baudwidth, and conununicaLion bot,l.lenecks het.ween the 
SIMD array and its t.ranspuler controller, and bet.ween transput.ers, arc weaknesses of 
the DisPnter a.rchitecture (Winder, 1987). We also uoted some ulldesirable features of 
the tranoputer illstrlldion set., and proposed a sma.ll modifica.tion (Winder, 1988a). 
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A.2 Properties of Gabor Filters 

We invoked several theoretical resulls concerning Gabor filters in Chapter 4 without 
detailed justifica.tion. The purpose of this Appendix is to provide more background to 
these derivations, and on the practical arrangements for Gabor fillering, and to derive 
Gahor signatures of simple image primitives. We adopt the notation of Chapter 4. 

A.2.1 Joint Uncertainty Relation 

Examination of images of physical objects reqnires simultaneous analysis of spatial and 
spectral properties. In §4.1, we claimed that Gahor filters enjoy unique advantages 
for this purpose, miuirnising the joint uncertainty with which these quant.ities may be 
m..-asurcd by linear filters. Following §4.1, we shall take our Gabor filter q and its 
Fonrier t.ransform Q as: 

A (X'2) (y'2A1)q( A, 0, x, y) == 2;r02 exp - 201 exp - 20' exp(jwx') 

Q(A,O,u,v) == exp[-~(2;ru' - w)20-1J exp[-H2;rv'0-/A)1J (A· I) 

where u and v represent spalial frequency along the x and y axes, respectively. The 
conventional definition of the uncertainty is given by the variance of the energy distri­
bution (Daugman, 1985; Ga.bor, 1946), hy analogy with the uncertainty principle (Wilson 
& Granlund, 1984): 1:1: x'q(x,y)q'(x,y)dxdy

(t:.:r )1 1:1: q(x,y)q'(x,y) dx dy 

2 2 21: x exp( _x /0- ) dx 

2 21:exp(_x /( ) dx 

0- 2/2 
t:.x oIJ2. 

Similarly, 

t:.y == 
0­

A..j2. 

We may follow the same procedure with Q(u,v) to get: 

I 
t:.u 

21ro..j2 
A 

t:.v 21ro..j2· 

Multiplicatiou confirms t.hat the optimal uncertainty relation (4·3 on page 57) is satisfied 
for this family of filters: 

I
t:.X t..u t..y t..v (A2)

161r2 · 
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.'
 

u' 

Bl/'J 

FIGURg A .2: Gabor orientation and frequency bandwidth•. The dia· 
gram illustra.tes the frequency response of a Gabor filter, from which band· 
widths are defined as indicated. 

A.2.2 Orientation and Frequency Bandwidths 

The frequency response of a Gabor filter is shown in Figure 4.2 on page 59: it is a 
displaced Gaussian. We shall use the idealised scheme shown in Figure A.2 Lo define 
the orientation selectivity l:>O,!2 = aretan(h/tio). Our filter ha.'l a principal frequency 
response at flO = wh~ - this is the centre of the ellipse in Figure A.2. Ta~ing the 
half-height bandwidth by setting Q(-l1o, h) = th we get: 

h = >.v'2'ill2 
21r(T 

and hence3 

0>' 
tan l:>01!2 = (A'3)

(Tw 

where 0 = v'2Tii2, The half-height angular frequency bandwidth may be obtained 
similarly from setting Q(tl<l •. i,O) = '/2: !:>w,!2 = 0/17. It is mOre common 1.0 express 
this in terms of frequency octaves: 

w + l:>wl!2)BIn = log, ( 
W - b.w1/2 

(TW + 0)Iog2 --- . (A.4)( (TW- 0 

If we take the bandwidths Ell' and l:>Ot/2 as the primary characteristics, these equations 
may be inverted t.o give the kernel parameters 17 and >.: 

(TW o{J 

>. {J Ian b.OI /2 (A·S) 

where 

2B,,, + 1 
(J = -~g--_ 

This parameterisation for the filter kernel q is more appropriate t.han (AI) because 
frequency and orientat.ion bandwidths reflect image properties and hence are of greater 
relevance than kernel shape. 

'Our resull differ,; from Dau~rnan (1985) who found: sinil8J/2 = 0''\. 
(fW 
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A.2.3 Gabor Aliasing Error 

In this se<;tion, we will derive the aliasing error caused by discrete convolulion of lhe 
Gabor filter q(x, y) (A.I). Let u.s assume that the critical sampling density is perpendic­
ular to the sinusoid, along the x'-axis (Bovik €I al., 1990). This holds for all reasonable 
filter coefficients and allows uS to simplify our analysis to 1-0 using the kernel h ;=' li: 

2
1 (X )hex) = <7.j2"; exp - 2(12 exp(jwx) 

H(u) = exp[-H211"u-w?<71
]. 

Ahasing crror ( may be taken as tbe proportion of filter encrgy lhatlies above tbe image 
half-sampling frequency I •. Por a uniform sampling period X, I. = (2X)-I. We shall 
assume (safely) that truncation of the filLer is negligible. 

l<' JJ(u)H'(u) du 
I. (A6)

LX> H(u)lI'(u) du 
~ 

Write 

I = ;00 exp[-(211"u -w)1<72J du 
I. 

2l~ ... exp[_(211"()2<7 ) d( 

where 'Uo = "'/2. and ( = ·u - Uo· Substitute 11 = 2.j21f<7(: 

IX 1~ exp( _,)2 j2) d') 

ex: <.I> (a) 

where cf>( . ) is the inverse-Normal distrihution and a = 2,j21f(1(uo - I.). We may write 
sampling ratio p = I.juo, and hence: 

<P!I(I-p)] 
<pb) 

"I = <7w.j2 

bul from (A-5) (1w = a{3 and hence4 "I = o.{J,j2. 

If an image is sampled on a rcctangular array of pixels, it is tempting to set the image 
sampling period X to one pixel, X = I, and hence half-sampling frequency f, = 1/2. 
However, in the worst-case direction along a diagonal, X = .j2 and I. = in· Taking 
this into i\Ccount, we arrive at the result (4·9) quoled On page 60. 

'This differs from lhe relation obLained by Bovik et ai. (1990): -y = a 2fJ/2. 
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FIGURE A.3: Relation between Gabor aliasing error and sampling 
density. R£lation between sampling ralio p and filter freq uency band­
width 8'/2 for fixed sampling error (rna>. The :\yquisL sampling lirllil corre­
sponds to p == 1. As lhe require<.l level of a.<:curacy is increase<.l, lhe ima~e 

must, be sampled more densely. 

Over- and Under-Sampling 

If we are given a maximum permi,sible error ~"""'" we may invert (4 ·9) to give t.he 
required sampling density r mox : 

"'''(,/2 
T"",. (A·7) 

w h - 4>-1 (~""",,<I>(--r))] . 

The relationship between sampling ratio P and freqnency bandwidth B I /2 for ~xed ~~~X 

is shown in Figure A.3: [or low-frequency fillers, T large, it. is possible to take ad'-a.ntagc 
of T(JUU" > 1 by SUb-sampling the im~,ge. For the example filter (fi01/7 = ,,/6, B'I7 =1) 
discnssed in §4.1.2, we have r""", =3·65 pixels when ~max = 1%. 

Sampling ratio p is an asymptotically increasing function of B1/ 7 , and to o. certain 
that ~mox is not exceeded whatever the value of Bl / 7 , we may take B 1/7 -< 00 iilld (J == 1: 

4>-1 [~ma.x<l>(0';2)] 
Pmos);, = (A'8)1 - 0';2 . 

For a permissible error level ~n>a.x =1%, the maximum sampling ratio Pm.. = 1·99, and 
011 a rectaugular pixel grid (r = ';2), this gives T > 5·63 pixels. 

A.2.4 Elimination of Local Image Mean 

The cosine phase Cabor filter q, (4·6 on page 58) has a small response to a uniform 
field (§A.2.5): 

jjq,(x,y)dxdy = exp(-a·l w 2 /2). (A'9) 

Uuless eliminated, this will perturb the real filter outputs for each image. Linear filt.er 
response R may be adjusted by subtracting an appropriate correction, but the effect 
is particularly serious for the uon-linear quantit.ies Rand <p. We apply a local "nc" 
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FIGU RE A.4: Filter kernel used to ensure that local image mean 
is ZerO. Convolution ""ith this zero-sum filter profile, an inver(ed Gaus· 
sian g(UDe) plus a 8·fundioll, ensures tl'at the image has negligible local mean 
and hence avoids perturbing Gabor filter output. As drawn here, ODe = :) pi,· 
els. 

correction to each image to suhtract t.he local mean luminance hy convolution with lhe 
profile shown in Figure A.4 (Bnrt &. Adelson, 1983; Hoegcr, 1987). Ideally, t.his kernd koc 
is a o-function added to an inverted Gaussi;m: 

1 ( r' + y~)koc(r,y) = 5(x,.y) - --,-exp ---,- (A·IO)
2Jruoc 2uoc 

where we usually set O'oc = 0', or O'OC = AO' for A > 1, but in practice, a discrete 
approximalion to koc (A·l0) is used. Some r('.sidua! DC signal will remaiu because the 
filter koc is circular whereas the Gabor kernels are usually elliptical, but this effect is 
not significant. 

Although direct convolution is possihle, and the filter kernel koc is separable, it 
is most. convenient to apply this correction in conjunction with the FFT algorithm 
(page 61). We have; 

F(I " q) F(I)· F(q) 

which may be extended to write 

F[(I" koe)" q] = F(!)· F(koc ) . F(q). 

The filter transform F(kocl = KocCu, v) may be wrilten down: 

f(DcC1t,V) = 1- exp[-H2lTO'ocu)2] exp[-H2JrO'oc'll)2J. 

Other Dc-,·Iirnination strategies are possible: Bovik eL al. (1990) simply apply a small 
lhreshold to Gabor amplitude A(z, y) while Perry and Lowe (1989) adjust their discrete 
mask kernels lo ensure they sum to zero. 

A.2.5 Gabor Response to Image Primitives 

Our Profile feature-extraction algorithm (§4.5) compares observed filter r('.sponses with 
Gabor signatures of parameterised image primitives. In this section, wc dcrive the 
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response of a Gabor filter q, para.meterised as (4-6) on page 58, to a uniform field and 
to LINE and SINU primitives. Following Chapter 4, we ma.ke a nnmber of defioitions 
which are repeated here for clarity: 

q( x, y) >. -- e.\l' (Y">") el.l'(jwx') (A-ll )--exp (X") --­
2:rra 2 2a' 2a' 

c~s () - sin B) (x)(;:) ( Sill () cos B y 

COS () sin B) (w)(~: ) - cos ()( sin () 0 

v 2 sin' () + >.2 cos' B 

(>.2 -1)sin()cosO" >.2 + 1'.2 
[2 -y-'­

R(x,y) 1:1: q((,TJ)f(X+(,Y+TJ)d(dq 

R,+jR, (A-12) 

R(x, y) R~ +R: 

and we may express q(x, y) = q, + jq, (A-1l) in terms of t.he auxiliary variables defined 
above: 

q,(x,y) ~ exp [_--;'(X'[2 +2xy,,- + y2 y -2)] sin(w.x +wyy)
2-;ra 2a 

qc(x,y) ~ exp [_~(X2[' +2xy" +y'y')] cos(w.x +uJ.y).
211" a 2a 

We shall also use the following results from contour integration: 

1 -00 exp(-x'/2) dx../2i 1"" (A·U) 

00 exp(->"/2) l"'-i~ 
1 1-00 exp(-x 2 .j2; exp(-x1 /2)dx.j2; /2)cos>.xdx 

-0:>-)).. 

exp( -).7/2)_ (A-J4) 

Gabor Signature of Uniform Field 

We take foe as the image function, where 

foc(x,y) = c. 

Since this function is rotationally symmetric, we may set B = 0 for convenience, and 
derive the Gabor signature from continuous linear convolution (A·12): 

100 100 
c>. (x' ) (y2>.')R. -- exp -- exp --- sinwx dx 

2-;ra1 
-00 -00 2a2 2a2 

o (A-15) 
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because ~be integrand is antisymmetric around x == 0, and 

c), (y2),2)1'"1'" (Z2 )~ - exp -- exl' -- coswz dz
2"'(72 2(72 2(72-00 -00 

cexp( _W2(72 /2) (A·16) 

from application of (A-13) and (A-14). We are interested in the spatial variation of 
the image, not its mean value, and a local correction is made during pre-processing to 
ensure that filter response is not perturbed (§A.2.4). 

Gabor Signature of Ideal Line: LINE 

For the LINE primitive, we take the image function ~o be an ideal line formed by an 
extended o-function, as (4.23) on page 82: 

!LlNdx, y) == c6(x - d). 

For convenience, we take the line to be para.llelto the y-axis and consider the application 
of a filter tuned to angle 0, taking line ojfse~ d as the perpendicular dista.nce from the 
line to the filter origin measured along the fil~er x-axis (so d may be negative), and 
setting -~h < 0 ~ ~h: 

00 00 

c), 1 1 [ I ( 22 2 2)]R. == --2 exp --2 z , +2xy,,- +y jI sin(wzx + wvy) o(x - d) d.T dy
2"'(7 2(7-00 -00 

00 

c), (~), 
2)1 [,,2 ( dK) 2] .

2"'(72 exp - 2(72j12 _QO exp - 2(72 Y + jl2 sln(wxd +wvy) dy 

2 2c>. (d
2>.2) . (Wd)' cos 0) (W (72 sin

20) _---exp --- Sill exp - . (A']I)
//(7..J2; 2(72//2 //2 2,,2 

Similarly, 

QO00 1c>. 1 [ I ( 22 2 2)] ,~ = --2 exp --2 Z, + 2xYI< +y" cosl"-'z·r +wyY) 6(x - d) dx dy 
2".0' _= -0<> 20' 

2 
c), (~>'2) (Wd),2COS O) (w2 

O' s;n 
20) (A·18)I/O'.,J2; exp - 20'2,,2 cos ,,2 exp 2,,2 . 

Gabor Signature of Infinite Sinusoid Grating: SINU 

Our SlNU primitive is an infinite sinusoid grating, as (4·24) on page 82: 

!snlU(x,y) = csill(;;::-x + lj,). 

We take to> > 0 and -'12 < 0 ,,; "/l. For convenience, we take the sinusoid pa.rallel to 
the y-axis: 
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c,}, r {"" [ l 2 2 ]R.	 211"<12 i-co i-co exp - 2<1 2 (X • +2xy", + y2l/2) 

X sin(w.x +w.y) sin(l;;>x +,p) dx dy 

cA (U2.2) (y2,},2)[joo-- exp -- exp -- ­
4".<12 _"" _'" 2<1 2 2<1 2 ,2 

X { - cos ((Wz + t:J)u] cos(y(wv - (wz +0)"/L2] +,p) 
+ COS [(Wr - tv)U] cos (y [w. - (wr - o)",N] -,p)} dl1 dy 

cACOS,p [(W;+tv2
)0"2] j'" (y2,},2)---exp - exp -- ­

2LO".j2; 2.2 20"'.2-00 

X { - exp (-Wz l;;><1 2/ (2) COS (y [wy - (W r + 0)",/.2]) 

+ exp (+wr t:J<12/,2) COS (y(w. - (W. - 0),,/.2])} dl1 dy 

0"2l/2tv2)
c COS,p exp ------w- exp( _0"2w2/2) sinh [wQa 2 cos 0]( 

<12112tv2)
R, csio,p exp ------w- exp(-a2

w 
2 /2) cosh [w00"2 cos 0].( 

(A·19) 

(A20) 
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A.3 Alternative Gabor Feature Estimators 

A principled approa,ch to tbe problem of bow to pool measurements from many Gabor 
cbannels to fonn a single image description was proposed in Chapter 4. Our objec­
tives, established in §4.5.1, are to express measured responses in many Gabor channels 
in a compact aDd convenient form by matching tbem to Gabor signatures formed by 
parameterised image primitives. This mat.ching problem is over-constrained but the 
measuremeuts may be noisy, and analytic inversion of the response equations, (4·25­
4·28) or (4·29-4·32) on page 83, is not appropriate. Least-squares feat.ure estimation is 
desirable in principle but complex in practice (§4.5.3), and in §4.5 We set oul Our Pro­
file and Result.ant feature-extra,ction methods, which both exploit response moments. 
Wbilst these both generate acceptable features (§4.6.4), and are successfully used in 
Chapter 6 in conjunction with Our hybrid models, some compromises of ollr original 
objectives were involved. [n this section, we briefly explore some alteruati'e feat.ure­
extraction strategies, and explain why these were rejected in favour of t.he Profile and 
Resultant methods. 

Notation 

Following Chapter 4 (page 59), we specify sets of filters by: sinusoid period T (pixels), 
half-beigbt octave spatial-frequency bandwidth B'/2' spacing bet.ween orientations e, 
and balf-beight orientation bandwidth .6.01/ 2 , From tbese may be derived the sinusoid 
frequency w = 2"/T (l/pixel units), space constant of Gaussian window (J' (pixel units), 
and window aspect ratio .x, as described in §4.1. Individual filters are specified addi­
tionally by tbeir orientation tuning 0, wbicb we restrict to the range 0 ,.;; 0 < ~ beca.use 
filters q(O) and q(O+ 11') are equivalent up to a change of sign (4·6 on page 58). Cbannel 
outputs were combined from several orientations but a single frequency. Additionally, 
we employ the notation from page 82 to specify image primitives: 

LINE: contrast c (gray-level units), nne offset d (pixels), and orientation 00 (radians); 

SINU: contrast c (gray-level units), grat.ing phase .p (radians), angular frequency CZI 

(radians per pixel), and orientation 00 (radians). 

A.3.1 Estimation of LINE Features 

Tabulation of One Parameter 

Tbe Gabor signature of tbe LINE primitive is parameterised by three "features": orien­
tation 00 , contrast c, and line offset d (4·2~4·28 on page 83). Of these, variatioo with 00 

takes tbe most complicated form and holds out least prospect for direct evaluation, and 
consequently it is sensible to seek alternative estimators for tbis feature first. One al­
ternative approach is to estimate orientation hy partial t.abulation of possible values 
before seeking a local best fit for tbe remaining pair of parameters. Tbis is tantamount 
to quantising orientation, say to unit.s of 5°, and performing exhaust.ive search for all 
allowable values. Let. us assume that terms used. to compute tbe model signature RLL~~ 
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are tabulated at the orientations {ad. Local least-squares estimation (§4.5.3) IDay be 
used for each possible orientation crk, comparing residual errors IO~ to select the best 
combination; 

10k = 11M - R(a~)112 (A21) 

for measured response vector M and model signature R(ak), and setting 

OlOk = alOk =0 (A·22)oc ad 
to get Ck, dk and IOk.min· We tben select the orieotation at which minimises IOk.min: 

80 = crt, if IOl.min = min(lOk.min)' (A·23)• 
Unfortunately, (A·22) cannot be solved easily because the function R(d) is too compli­
cated (4·25--4·26 on page 83). 

Gabor phase if> (4·28 on page 83) varies more simply with line offset d, and we may 
consider an estimator ba.sed on the phase of the observed response, again assuming 
tabulation of 0;5 

10k =, L: (M~ - tan[4>(ak - O;)l)2 
i M C•1 

but this is also difficult to solve for db and it is tempting to take the argumcnt onc 
stage furtber to write 

10k ,-;, liP _ 4>11 2 

where P, = arctan(M•.• / Me.;), and bence 

d ,-;, _1_ E; P, COS(ak - 0,)/,,: 
k 

W).2 E;cos1 (ak - O,)/,,~ . 

Unfortunately, this expression is erroneous because no account has been taken of the 
periodicity of arctan. and we should replace the above definition of P, by: 

Pi = arctan(M,.;/Mc,i) ± m,,-, m = 0,1, .. 

but tbis creates many additional possible solutions whicb must be inv~tigaled. Peri­
odicity is a problem only for moderate line offset, Idl > T/2, but it is quite possible (or 
this range to be exceeded in practice (see Figure 4.18 on page 86), and significant errors 
will result unless the spatial frequency bandwidth 8){2 (4·8 on page 59) is set very high, 
implying the Gabor envelope has limited spatial extent (q small) and restricting the 
effective range of possible solutions for d. 

Instead, it is possible to obtain an estimate from tbe Gabor energy 'R (4·27) by 
writing: 

2).2 ) ).,~ W 1q 1 sin'(80 - 0) 
(A·24)In n = In (2".,,1 q 11

2 - {72 2 - 1/1 

!iThis cstim~lot" is incorrect because Our confidence in the observed phase M,I Me is not lhe same 
for ali measurements: see the treotment in (A·2S). 



§A.3 Alternative Gabor Feature Estimators	 ~6~ 

We may now write a least-squares estimator in terms of {In M,), but because these are 
derived quantities, we can no longer assume that all errors are of the same magnitude ­
as with (4·41) on page 89, we normalise eacb tcrm hy its estimated standard deviation: 

C>.(lnM)	 "" C>.MIM 

"" 2C>. M M- 1/ 2 

where C>.lvl. "" DoMe"" 6.M . Hence: 

Ck "" 2)lnM, -1o'R.yM,	 (A·25) 

which gives: 

(L M,) [LM,.Be(A/-IIlMd] - (I:,M,B.) [LM/(A,-1nMd);p
k	 (I:,M;B;)(L;,Md - (L;;M,B,)' 

L[M,(1nM, - A. + B,d1J14 L;,M, 

where summat.ion for 1 and £ extends over all chaunels, and: 
2 2 

A; "" In (~) _ w (72 siu (ok - 0,) 
27fvtu2 v; 

;,'
B, 

02 U,2 

V, 
1 sin2

(ok - 0,) +).' COS'(Qk - 0;) 

plus the trivial solution it ;: O. 10 principle, these estimators (;p and 2) are fully 
funcLional, and we have tested the results on several images. The main cffcd on Gabor 
energy 'R. of increasing line offset d is a scaling by approximately: exp( -([1 /(7 2

); t.he 
above estimators depend all this factor varying slightly wit.h angle as: exp( _).'<1' la'v'). 
The distinction between these two terms is illustrated in Figure A.5: for typical values 
of filter eccentricity;', it is t.oo small Lo give reliable estimators for 2 and tfl. 

Tabulation of Two Parameters 

We found above that tbe variation of the Gabor signature R LI"" was t.oo complicated 1.0 

permit accurate parameter estimat.ion by simple methods, even aft.er obtaining orienta­
tion by partial tabulat.ion, and that Cabor cnergy 'R. and phase ¢ were nol, sufficiently 
sensitive to the required parameters to fOfm reliable estimat.ors. We now rdurn t·o the 
channel response R LlNE , t.abulating values Cor line offset d to simplify the residual esti· 
mat.ion problem further. This may he done in conjunction with t.abulation to obtain 00 

(although this will be vcry slow), or with the moment, estimat.or (§4.6.1). 

Given values for 00 aud d, is is straightforward to write down a local estimator for 
the contrast c: 

( >"J') (o'w'.;nJoo 0,1)	 )exp -2;l7 exp , . 

=- L ( [,., , (wd>"<vJ00-O,I)'+ ", . (Wd),'"....(OO-O,)\ 1 / ...
(7v21r ' 

X 
/»< cos , '», sm "~ JJ I "/;. -;, ~ (;"/£') ((7'W~Sin'(Oo - 0,)) / ' 

L exp - a'v' exp - v~ v;. ' . 
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enerQY 
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-00 -60 ~ ~ 0 m ~ 00 so 
FIGURE A.5: Gabor energy variation for LINE primitive. We post,,· 
Jated an estimation method for LiNE features based on the difference bel ween 
dolted and solid lines, shown as a function of orienlation tuuing 19 (degrees), 
but I,his was loa small in practice to extract reliable parameters. (a) T = 3--) 
pixels, 8 1/ 2 = 1·5, AO I /1 = 7f/8, d = 1·75 pixels; (b) T = 4 pixels, B1/ 2 =I, 
AO I/ 2 = 1r/8, d == 3 pixels, using the notation described on page 259. 

where v; is given by (4-37) on page 87. This estimation method was impleruented in 
conjunction wit.h the moment estimator, and tested on some simple images_ Although 
the observed signatures M(x, y) were modelled closely, and the residual error e Was 
small, the estimates obtained for contrast c and line olIset d were often hopelessly 
wrong: small changes in d cause rapid oscillations in the ma.tch error c, with the 
global minimum error being only slightly smaller than many local minima into which 
the inflexible search algorithm readily falls, This problem is a camhi nation of those 
experienced when treating phase and amplitude envelopes separately: 

2 2
c>. (>.2d2 ) [ w a sin

2(00 - 0)] [u.'dV cos(O, - 0)]
R = ---exp --- e 2v2 exp J 112va.j2; 2a1 v 2 xp 

'-...-' .,,---';' 
A B 

term A is too insensitive to estimate d because v(O) varies only weakly; while the 
trigonometric term B oscillates rapidly to give many false matches. We may estimate 
the density of local minima to see whether a finer tabulation of d would help: let us 
assume that the principal component. of the observed response vector M lies at the 
correct orientation, {) = 0_ We may fit this term exactly by: 

d, = ~ ±iT/2 

(tfl - dJ.)C; = Co ( -1)±'exp- _,__0 
2a2 

whcre i = 0, I, . _ Only filters away from the match angle will be able to differ<:'ntiate 
hf'1.ween these solutions, similar to the situation illustrated in Figure A.5, but unfor· 

6 
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tunately these have the weakesl responses and hence are most noise prone. This is a 
serious flaw with the tabulation procedure, and cannot easily be overcome. 

Circular Filters 

The position is simpler for a circular Gabor filter (). = I), which has energy response 'R..: 

' 'R.. = C exp (- 2,£12) exp [_W20'2 sin2 (00 - 0)\ . (A-26),21f(T (T 

I[ We are can tent to define a "feat.ure strength" parameter s = c2e:cp(-rP /(2), .. may 
easily be obt.ained from the response vector M, assuming that 00 is known or estimated 
independently. In practice, setting). = I imposes too many restrictions on lhe ori­
entalion bandwidt.b 60J / 2 , and il is in any case unclear what. advant.ages the above 
procedure would offer over t.hat descrihed on page 89. 

Filtering at Multiple Scales 

One Jinal avenue is to pool output from fillers at several sca.les. Let us coosider two 
responses, at filter frequencies wand fl: 

c' ).2 ().2,£1) (w2
(T2 sin2(OO - 0))

'R. w --exp -- exp
21f(T2,,' 0'2,,2 v 2 

c'I\.2 . (1\.2rP) (fl22:?sin'(Bo-0))'R.o (A'27)21fL;'N2 exp -I:;'N' exp N2 

wbere 

2v = sin2(00-0)+).2 c052(00-0) 

N2 = sin2(00 - 0) +A2 cos2(00 - 0). 

I[ filters at the same angles {O;} are used t.o make both sets of measnrements, and 601/ 2 

and B l / 2 are also maintained, we have; I\. = )., N2 = v 2 and Efl = (TW. Hence, 
from (A.27): 

O"'R.", = exp [).2,£1 (2._~)] 
I; 2 'R.n ,,2 L;2 (T2 

This could be used as the basis for a multi-scale estimator for line offset. d, but has not 
currently been implemented. Forther discussion a.ppears in §8.2. 

A.3.2 Estimation of SINU Features 

As with the LINE primitive, direct least-sqnares estimates of 5lNU features are not read­
ily available (§4.5.3), and instead we consider approximate methods. Exact variation 
of lhe Gabor signature Rs1NU with filter orientation 0 is complicated (4·29-4·32 on 
page 83), and con~...qll ...ntly we shall assume thai. t.h ... grat.ing orientation 00 has been 
estimated either by the moment melhod (§1.6.1) or by tabulation of part.ial results and 
exbau~tivl' search. Iu this section, we consider approaches to determine the remaining 
SINl1 feat.ures: grating frequency tv, conlra.~t c, and phase 1/>. 
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FIGUIlE A.6: Gabor response variation for SINU primitive. We posh·
 
l ..led an estimalion meLhod for SINU fealures bilSed on the difference between
 
dotted and solid lines but this was 1,00 small in practice to extracl reliable
 
par..meters. (a) .ine phase response R. for frequenc.y ral,io "' = 0·56",:
 
(b) scaled resonse for equal filter a,nd grating frequencies. Filter parameters: 
(T = 5 pixels, 8 1/ 1 = I, c,.O'!2 = ,,/6; (f = 2·8 pixels, '" = 0), using (I,e 
notation described on page 259. 

Sinu.soid Frequency 

The major effect of a change in the frequency of the image sinusoid Q is to scale 
the channel response Rsrnu by: exp[_0'1(G:1 - w)1/2]; and hence Gabor energy 'R by: 
exp[-q1(G:1 - wV]. The difference between a pure scaling and the perturbing effect 
alone is shown in Figure A.6: it is insufficient in pradice to establish a reliable esti· 
mator a from a single set of obseryations. Consequently, our approach is t.o abandon 
direct estimation of the grating frequency Q, and set Q = w. When t.his is sub· 
sl,'ntiaUy in error, the apparent contrast will be small, because it decays roughly as: 
,? <X. exp[-q2(tv' - w?]. 

Phase Estimator 

from (4·32) on page 83, the phase of the filter response t/> is giYen by: 

tant/> = cot.ptanh(wQ0'2cos(00 - 0)). 

In most cases, we haye WG:10'2 > ], and except for 00 - 0 ~ ±"h we may wril,e: 

tan rP ~ cot 0 (A-28) 

(see Figure 4.19b on page 86). This allows an informal estimate of .p, but this is not 
done at present. 
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Contrast Estimator 

When we assume grating and filter frequeucies to be equal ('" = w), the model energy 
response n is given by: 

, [a'W'(Sin' () +A' cos' ())] , ')
R(w == w) c exp - A' exp(-a W 

x [sin'tP +sinh'(a'w' cos 0)). 

[n practice, sin'tP « sinh2 (w'a' cos ()), and we may drop this term. The contrast 
m~.y then be estimat.ed using the weighted least-squares procedure described in §4.6.2, 
leading 1.0 the Profile contrast es(jmator (1·42) on page S:J. 

Multiple Frequencies 

If we take c-= as the true contrast, measured by a fdter tUl.ecl 1.0 the grat.ing freqnency, 
2 

r..; = "', then apparenl. contrasl c varies approximal.dy as: 

c'(w) "" c~ exp[-a'(~ - w)'J. 

By taking two or more nlt.er frequencies, we may estim~.t.e de a.nd Q. The \·aliclil.y of 
I.hese f'xpressions depends on the approximation: 

sinh'(woa') "" f exp(2w""a'). 

Further errors wi]] be introduced if the image actually conta.ins structure al. several 
scales. 
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A.4	 Marginal Densities of Proposed Gabor-Markov 
Models 

III order to diminish the disparity between our Gabor features and the auto-normal 
model, we proposed transformations corresponding to specific Gabor-Markov models 
(~6.3). The purpose of tills Appendix is to demonstrate that these proposed models 
form appropriate representations for our orientation feature 8. We adopt the notation 
of Chapter 6. 

A.4.1 Orthogonal Normal Fields Model 

III ~6.3.1, we proposed that an angular field a could be modelled by lWO aU[L·'i<,rmal 
MRFs p and q, according to the transform: 

8 =	 aretan(pi q) (A·29) 

for -1f < 8 ~ rr, where p and q are normal and independent fields. In this seelion, we 
derive the resulting marginal density function Ia(O}. 

Let us introduce an auxiliary variable T, and express the new distribution f,,9 In 

terms of the known density fundion f p.q : 

T	 Jp 2 + q2 (A'3D) 
fp,q (r sin 0, r cos 0)

fr.a(r,O) 
p(rsin 0, rcos 0)1
 

r fp,q(T sin 0, r cos 0)
 

fa(O) =	 1"" rfp,q(rsinO,rcosO)dr (A'3l) 

where J( . ) is the Jacobian matrix (Papoulis, 1991), and p and q are assumed normal 
and independent but not necessarily identically distrihuted, with mea.ns lip and /lq. 

1	 [I I ~]fp.Q(p,q) = -2-- exp --22(P-!JP)2 --22(q-I-Iq) (A'32)
1f0"pO"q O"p O"Q 

Write p = O"p/O"Q' 

21 1"" {I [2P-lsin 0+Pcos 2 0 2 !Jpp- 1 sinO+l'qpcoSO
fe(O)	 = --- rexp -- r - r 

2rrO"pO"q	 0 2 O"pO"q O"pO"q 

+ /l~/p + !J~P]} dr 
O"p 0"q 

Set 

p-l sin2 0 + Pcos2 0 
u	 r 

O"pO"q 

!Jpp-1 sin8 + /lqpcosO
e 

jO"pO"q (p-l sin 2 0 +Pcos2 8) 
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and complete the square. 

faU}) = J4~/p + I-'~P) exp(€2/2)
271" (p-l sin 2~ + p cos2 0) exp ( -:<TpUq 

r [(u -~Y]x)o u exp ---2- du 

Tbe integral is now straightforward: 

1 ( I'~/ p+J4~P) [ ~ ]2f a(0) = ~ 1_, '_2n, .?n\exp 20'pU 1+€v271"exp(€/2)4>(€) . 
q 

This may be simplified a little by writing 

I'p/ptan V) 
l'-qP 

1'~/p2 + I'~l(32 
upuq 

/3 cos(O - 1/1)
[ 

VP 1 sin' 0 + pcos' 0 

hence 

fe(O) 1 exp [ 13
2 (COS' 1/1 + . 2 )]-- -- sIn

21r (r1sin'0 +Pcos2 0) 2 p p 1/1 

x [1 +€.j2; exp(€2/2)~(€)]. (A-33) 

Equal Model Variances 

In pra.ctice, variances of the two orthogonal components are similar (u~ "" u~), and we 
usually have p "" I. We shall assume thaL p "= I from now on, and set Up = uq == <T. 

Hence: 

f~(O) = 2~ exp( _/32 /2) [J + fJK..j2; exp(fJ',;2 /2) <fl(.B,;)] (A·34) 

where 

J4~ + J4~13' --u-2­

lan 1/1 I'vll'q 
,; cos(O-1/1). (A·35) 

A plot of fe(O) is shown in Figure A.7. Allbaugh agreement with angular field dat.a 
musL be verified empirically, this function possesses appropriate characteristics: iL is 
uuimodal, periodic, smoothly varying, and symmetrical about the mean. 
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FIGU R£ A. 7: Marginal density for orthogonal-normal model. Plots o( 
fa(O) with mean ',p = 74°, derived (rom orthogonal normal components with 
equal variances (12. (a) (1 = '/2 pixel; (6) (1 = 1 pixel; (c) (1 =2 pixels. In 
all cases, the distrihution for 0 (degrees) is symmetrical aboul the mean. 

Mean of Angular Di8tribution 

The mean of the angula.r dist.ribution may be evalnated by integrating around a nnit 
circle. 

~ (fI" fie) T1: (sin O,cosO)T fe(O) dO (A-36) 

E{O} arctan(fI,/ fie) 

The integral is only possible in the case p = 1, when 

E(O} = '" 
from the synunetry of f~(Il) about 0 = t/). This is convenient, as the mean of the 
angular djs~ribution is easily expressed as a function of the two normal disl,ributions: 
E{IlJ =arctan(/-"p/flq)· 

Note that when flp = flq = 0, t/) is not defined. The distribution then rednces to: 
f~ (0) = -t;; and tan e has a zero-mean Cauchy density with parameLer p. 

AA.2 Composite Feature Model 

The composite-featnre model (§6.3.2) is effectively the same as (A·29) and (A-30) except 
that our "a.uxiliary variable" r = c is now taken to be the contrast feature. From the 
dC'fmition of ;;2 (§4.6) and the linearity of Gabor ftltering, this form is approximately 
consistent with normally-distributed pixel data. When x, 1,1 ~ 6(0,0"2), C assumes a 
Rayleigh density. 
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A.S	 Properties of Modified Textures 

In our discussion of our MRF texture-classification results in Chapter 7, some conse­
quences of image corruption and sampling were assumed without proper justification. 
More ba.ckgroun d to these effects is presented in tbis Appendix, and the required results 
are derived. 

A.5.l	 Effect of Image Corruption on MRF Likelihood and 
Variance Terms 

We examined the influence of image noise and blur on MRF likelihood in order to under­
stand observed trends in classifier robustness (§§7.2-7.::l). Three terms are important in 
~valuating the level of distort.ion of a corrupted image; the pixel variance V(x) = var x; 
the MRF predictor-error varianrc V(u) = varu; and the image·dependent penalty term 
or the true log-likelihood function Lx (§7.2.2): 

xTBx 
Lx(x) = -­

2<72 

""' IX,1
2 

(J - B.)	 (A-::l7) 
~ 2<77 
,EC 

where summation for I extends over the dimensions of the image lattice £. Our notation 
follows Chapters 5-7: x "" X represents the raster-ordered image data; B is a block­
circulant matrix formed by rotating tbe MRF neighbourhood coefficients {3; B is the 
cosine transform of (3; and <7 2 is tbe MRF variance. The pixel variance V(x) is 3 property 
of tbe image alone whereas the pena.lty term Lx and predictor-error variance V( tl) also 
depend on the MRF parameter set S•. We shall assume for simplicity that the parameter 
set descrihes the uncorrupted data perfectly. 

Usually, the MRF predictor-error variance is defined in tbe MRF parameter set; 
V(u) = (1~. Tbis correspondence may be verified: 

tJ, = x~ - XI 

= x;. (0 - /3). 

Using Parseval's tbeorem, lIul1 2 = IIUll2 = LiEC IXi(1 - E.)( However, tbe expected 
form of tbe power spectrum IX;1 2 is assumed known (§5.1.5): 

,,2 
IX,I] = 1- B 

i 

and hence 

[{lIuIl2} = ,,2 L(l- E,) 
iEC 

but Bi bas a cosine variation (5·63 on page 114), and bence sums to zero, giving V.(u) == 
(12 as expected. Similarly, 

1 (12 

V.(x) =	 MNL 1 - B• (A·38) 
,Ee 



where the image has sire MxN. We may also substitute for IXd2 iu Lx: 

0-2(1- B o)
£ {L.,x } I: (I - B,) 20-2 

,e£: 

MN/2. (A-39) 

We may now examine how these terms are affected when the image is corrupted. 

Effect of Image Blur 

F.)lIowing ~6.4.3, we shall model image blur by convolut.ion wit.h a Gaussian kernel g(b). 
Let. us ta.ke an ideal image x and blur it to give the new image x, • g,(b). Sub,(itutiug 
t1:e new spect.rum 1.\',12 Gf{b) for IX;\2 above gives: 

0-2 

Vb(U) == MN I:(1 ­ B;)G~(b) 
,e£: 

V.(1J.) I: (1 - B;)G?(b) 
;e£: MN 

Vb(x) ~" Gf(b) 
MN~I-B·fee £ 

v.,(x) Lie£: G?(b)/(I - D,) 
1 L:.e£:l/(l-B;) 

Lb,x 2I: Gf(b) 
iEC 

L.,x I: Gf(b) 
,EC MN' 

(A·10) 

Ignoring rliscretisation, we may approximate this last summation E by the correspond­
ing integral: 

E "" [[Il exp(-47l"2e>2b2)de>f 

~ -!."'d24>(.,/8"'b) -It
4".b 

For hlur parameter b sufficiently large, 4>(.,/8".b) ~ 1 and E "" (4".b2)-I, and hence: 
Lb .X "" L •.x (47l"1?)-1. All three terms in (A·40) are smaller tha.n for t.he original image. 

Effect of Additive Noise 

Blur is deterministic and hence its effect may be predicted exactly. In the case of random 
uoise, we shall inst~arl analyse the expected effect. Following §6.4.3, we model image 
noise as white, Gaussian, independent and additive. White noise has a Rat spectrum, 
and we expect the modified power spectrum to be increase unifonnJy in proportion to 
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the noise variance. Let us add noise of variance p2 to the ideal ima.ge to foon x + pv, 
and substitnte the new spectrum IXd2 + P2 for IXd2 above: 

q2
V~(u) '= M N L(1- Bl ) + p2(1 - B,)2. 

iet. 

We again appeal to the periodicity of B, to writeL:,ec Bi = O. In the case of L:,ec(l ­
B,f, all cross terms sum to zero. and cos2 terms to M N /2. 

v,,(u) '= q2+ p2(l+2 L fJ~) 
;EN< 

2 
Vc,(u) [1 + p2(l +<7: 1IJ311 )] 

<72 1 
Vn(X) p2 + MN L I-B 

iEl:	 t 

2 

V(x) (1 + p MN ) 
o	 <72 L:iEC 1/(1 - n,) 

Ln.x	 (i +l/(72 
) MN/2 

Lo.x (1 + p' /(7 2 
) (A-41) 

All three terms a.re larger than for the uncorrupted image. 

A.5.2	 Frequency Analysis of Image Sampling 

In this section, we establish some results which help to support our explanation for 
the remarkably beneficial effects of sampling (§7.4). These mostly involve the spatial 
frequency domain and are given for one-dimensional signals in order to enhance clarity. 
The spectrum of a continuous signal may be obtained by the Fourier integral: 

F(w) = 1: f(x) exp( - jwx) dx 

and the discrel.e transform may be expressed as a matrix, :7. The basic result we 
need to invoke (without proof) is that convolution in the spatial domain corresponds 
to multiplication in the frequency domain and vice versa (Rosenfeld & Kak, 1982). 

F(a* b)	 '= F(a)F(b) (A·42) 

This can be shown algebraically. 

fdeal spatial sampung consists of multiplication of the signal by a regularl)'-spaced 
train of unit impulses. From (A-42), this is equivalent to convolution by a lrain of 
6-functions in the frequency domain, forming many translal.ed copies of the spectrum 
(Figure A.S). Sampling is irreversible when adjacent copies of the spectrum overlap 
because the extent to which they reinforce or cancel is unknown. but otherwise full 
recovery of the original signal is possible. The sampling theorem states that a conlinuous 
signal multiplied by an ideal sampling function may be exactly recovered i[ the original 
spectrum is contained within a bandwidth of less than half the sampling rale (Ba~eman 
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AAJr'AA/
(0) lempor,,1 domain (b) frequency domain 

FIGUllt A.8; Effect ortemporal sampling on the frequency spe<:trum. 
Illustration of the effect of sa.mpling a one-dimensional signal ret) in the 
tempor;» dom;>in with a regu1;>r period T. (a) the sign;» ret) is effectively 
mulliplied by a §·function at the sampling points. (6) I.he repeat period of 
the spectrum XU) is rel;>ted to the temporal sampling period. 

& Yates. 1988). Sampling more frequently than tbis poses no difficulty but will clearly 
n,,~ generate the most compact representation. A discrete Fourier spectrum is sampled 
in lhe spectral domain, effectively extending the spatial signal with a repeat period. 

Recovery of the full signal from the sampled spectrum is .u:hieved by truncating it 
to its principal period, band-limiting it to balf the sampling frequency. Multiplication 
by a rectangular window in the spectral domain is equivalent to convolution with a 
sille function in the spatial domain. If the original signal was sampled at an insufficient 
rate, adjacent spectra overlap and bence part of the signal is shifted to a new spatial 
frequency, causing aliasing error (Figure 7.18 on page 206). 

Blm imposes a Gaussian envelope on the spectrum, att.enuating high frr.quencics 
(Figure A.9a). For a moderate degree of blur. aliasing still occurs and tends to produce 
a more even spectrum in the sampled image, but heavier blur effectively hand-limits 
the image at a lower frequency, rendering aliasing insignificant. 

Smooth-sampled images are windowed by unweigbt.ed averaging, which attenuates 
spatial frequency accorcling to the sinc curve (Figure A.9b). The side lobes are impor­
tallt only for low sampling frequency, i < 0·5, as otherwise no image energy is present at 
these spatial frequencies. Although aliasing is somewbat redueed. this simple method 
compares unfavourably with an ideal band-pass filter (Meer eI al., 1987), which trans­
mits all the energy within the pass region and none outside it. We have suggested 
that some aliasing has a beneficial effect in improving modelling accuracy. and hence 
it is doubtfnl in tbe present circumstances wbether use of an "improved" filter would 
be appropriate, although a preliminary investigation suggests that. anti-aliasing may be 
beneficial (§8.3). 
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(a) blur (b) window 
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F1GURE A.9: Spectra of blur and window transfer functions. For 
uncorrected pixel images, aliasing occurs for frequencies a outBide I.he range 
-0·5 < a < 0·5. (a) blur transfer function IG(b)1 for b =0·25 (doH.d) and 
b = 0·5 (solid). (b) window transfer function IWI. The .hape of lhe function 
is the sa·me for different .mooth-sampling frequencies j. An idea.! band-pass 
function only transmits frequencies between l.he dotted lines_ 
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