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Abstract

Visual texture is a fertile source of information about the pbysical environment. Texture
models should form rich but accessible descriptions of image composition and appear-
ance. Markovian represeniations make explicit the variability of natural textures, bul
manipulation of current models is computationally demanding. This praclical limita-
tion enforces approximations and use of tbe simplified auto-normal form.

We propose two novel frameworks for Markovian texture analysis, and illustrate and
quantily their advantages by adopting Bayesian classification of 33 Brodatz textures as
a bencbmark.

1. Simple spatially-parallel image filtering is computationally atiractive, but our
experiments demonstrate the limitations of segmentation algorithms responding
to first-order differences of Gabor amplitude. We harness the efficiency of Gabor
filtering witbin a hybrid Gebor-Markov framework by describing arrangements of
local image features with random field models.

2. Our experimental appraisal of Gabor-Markov models established the importance
of pre-processing image data prior to statistical analysis. We propose two fami-
lies of Sampled-Markov models cmploying concise representations derived directly
from tle image data.

Both paradigms are more efficient and robust than a conventional Markovian analysis.
Without reducing classifier accuracy, computational load was decreased by 88% using
Gahor-Markov, and by 96% using Sampled-Markov models. Despite the improvements
achieved by Gabor-Markov models, Smooth-Sampled Markov models perform better
and have acliieved 100% accuracy in our tests. We explain their superior performance by
showing a strong correlation between classification accuracy and fidelily of theslatistical
modelling.
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Introduction

Visual texture provides a fertile source ol information about the nature of physical ob-
jects and surfaces, bul is nol exploited fully by current machine vision systems. Two
maiu obstacles have retarded progress in this area: the [ailure of texture models to
provide rich but accessible descriptions of image structure; and the prohibilively high
computational requirements of many algorithms operating on these representations.
One source of modeliing difficulty is the ill-defiued and variable nature of real texiures,
whose hierarchical organisation may encompass many levels of structure, for which a
{raditional analysis is not appropriate. Probabilistic representations using Markov ran-
dom field models acknowledge stochastic character and the influence of spatial context,
but are unwieldy and ipsufficiently abstract.

Our approach is to develop novel representations of texture retaining thedescriptive
power of conventional Markov models but with increased computational efficiency, ro-
bustness, and level of abstraction. We propose a hybrid Gabor-Markov framework for
texture analysis, drawing on the attractive theoretical and practical properlies of Ga-
bor filters. We also propose two families of Sampled-Markov models, employing concise
representations derived directly from thc image data. Bayesian lexture classification
bencbmarks demonstrate that both these paradigms out-perform conventional Marko-
vian approaches, meeting our stated objectives. For the same accuracy as a conventional
Markov classifier, computational load was decrcased by 88% using our Gabor-Markov
compaosite-feature model, and by 96% using Smooth-Sampled Markov models. Despite
tbe enhancements achieved by Gabor-Markov models, Smooth-Sampled Markov models
are preferred, and have achieved 100% accuracy in our irials. Accordingly, we suggest
that a conventional Markovian analysis should be retained only for very small image
regions, which Gabor~Markov or Sampled-Markov models do not describe reliably.

We introduce the concept of visual texture and the basis for current approaches in
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ouler: $77 canvas (b) #21 French canvas (<) 222 reptile skin

@ inner: #84 raffia #565 siraw matting #28 heach sand
Figure 1.1: Brodatz texture montages. Images formed by overlaying
portions of Brodatz textures (Figure 1.6), the boundary forming a diamond

or a circle.

this Chapter, and briefly summarise the layout of this thesis. Reviews of models of
human visual processing (Chapter 2) and of previous approaches to texture analysis
(Chapter 3) further motivate our approach.

1.1 Visual Texture

Visual texture is concerned with spatial patterns and arrangements, and is a funda-
mental property of physical objects. Intuitively, “texture” refers to local image context,
describing relationships between nearby spatial components, althougb no formal defi-
nition has proved entirely adequate. Models of visual texture aceordingly contain two
components; primitive elements, or microfeziure; and their spatial arrangement, or
macrotesture. Single pixels! form the simplest microtextures, but our concept of tex-
ture may be expanded recursively, with macrotexture al one level forming microtexture
at the next, to represent complex structured spatial arrangements. Natura) textures are
often observed to have a hierarchical organisation of this type, possessing quite different
characteristics at different resolutions (Ahuja & Rosenfeld, 1981; Marr, 1976).

Three examples of images containing visval texture are shown in Figure 1.1, formed
by combining portions of textures from the celebrated Brodatz alhum (Brodatz, 1966).
These particular textures are fairly regular, and suitable divisions into micro and macro-
texture may seem obvious. Note, however, that straw loops in matting (#55) or raffia
(#84) may be seen as textures in their own right, and hence form a hierarchy. This
point is further illustrated by herringbone weave (#17; Figure 1.6): the malerial con-
tains bands arising from different orientations of the weave, but each band also forms a
valid image texture. Another lacet of texture is illustrated by beach sand (#28) or by
clouds (#90): these textures are amorphous, and do not decompose readily into distinct
“micro” and “macro” components. Nontheless, all these images, and the remainder of

1A pixel is & single element in an image array, whose value represents inLensily.
2The notation 256 relers to the plate number of a Brodatz textnre shown in Figure 1.6 (page 11).
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our Brodatz set (Figure 1.6), are valid examples of the phenomenon of spatial varia-
tion called “texture”. General-purpose texture analysers seek Lo manipulate images of
this type — recognising, classifying, segmenting, locating, and restoring them — in a
manner that is computationally efficient but robust to image corruption and noise.

1.2 Analysis of Visual Texture

Vision is the most powerful of our five senses, allowing us to perceive the world about
us: to observe meaningful physical objects, and deduce their spalial relations; io track
sequences of events, and make fine discriminations. Visual Lexture lies behind many
of these abilities, and carnouflage reduces the completeness with which we perceive our
environment. In view of the subjective ease with which many tasks may be facilitated
“just by looking”, it might have been templing to assume that machine vision systems
would soon enjoy capabilities quantitatively similar Lo our own, but this has not proved
to be the case. Early wholistic or “Gestalt”™ approaches made little headway, aud it
has proved more profilable to examine separate visual modules in isolation (stercopsis,
motion, colour, efc.), each processing different aspects of the image data without task-
specific knowledge (Brady, 1981). Together, these modules form low-level vision.

1.2.1 Links with Human Vision

Some complex visual tasks appear very straightforward to us — discriminating the tex-
tures shown in Figure 1.1, or recognising our grand-mother in a crowd — but other
visual judgements seem more difficult, and require detailed scrutiny. Conlirolled ex-
periments confirm the preseuce of both “serial” and “parallel” processes in low-level
human vision, although the dichotomy is less distinct than the conventional “attentlive”
and “pre-attentive” Jabels for these paradigms may suggest (Treisman & Sato, 1990).
Current psychological models propose that an early pre-attentive process first locates
potentially “significanl” image locations by performing rudimentary filtering, and that
these are subseqnently examined attentively in greater detail, selectively and sequen-
tially (Wolfe & Cave, 1990). Only the efficiency of pre-attentive guidance allows the
illusion of immediate and complete perception to be sustained.

Unfortunately, psychological models are often expressed in ambiguous verbal terms,
and cannot be subjected to computational analysis or exploited directly by machipe
vision systems (Broadbeat, 1987; Winder, 1988b). Prompted by these ideas, however,
analysis of the complexity of visual search has suggested Lhat complete analysis of the
image may he infeasible, and hence thal selective interpretation is required (Gurari &
Wechsler, 1982; Tsotsos, 1987). Heuristic assumptions about the nature of the physical
environment may guide this choice (Marr, 1982).

1.2.2 Structural and Statistical Approaches

Texture analysis has a dual purpose: to locate boundaries; and to characlerise regions.
Assumnptions of spatial and boundary coherence suggest that image texlure provides
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FIGURE 1.2: Intensity edge segments detected in Brodatz montages.
Edge segments found by the Canny (1983) edge-detector in our Brodatz mon-
tages (Figure 1.1). Although these edges correctly reflect microtexture struc-
ture, they have failed Lo respond 1o the border between different texture types.
The Canny scale parameter was 2 pixels, and hysteresis threshold ratio 6:2.

a useful indication of the properties of physical objects present iu a scene, which are
of ultimate interest (Marr, 1982). Historically, discontinuities in image struclure have
been modelled by one-dimensioual changes in first-order properties, and located by
“edge-detectors”. First-order image properties are strongly influenced by the image-
acquisition envirooruent, by variation in lighting or camera parameters, in addition
to intrinsic surface textore, and hence are unreliable indicators of physical structure.
Higher-order properties defined over an image neighbourhood, or “texture”, forma more
robust guide to physical surfaces and their discontinuities. Approaches to visual texture
are commonly divided into “structural” and “statistical” models, and this separation
is helpful in captoring the major aspects of texture analysis, but there is no rigid
distinction between them (Haralick, 1979).

Analysis of Texture Struclure

Canuy’s (1983) “optimal” intensity edge-detector cnjoys high popularity and performs
well for noisy images, but edge segmenis detected in our Brodatz montages illustrate
some drawbacks of a first-order approach to texture analysis (Figure 1.2). Although
these edges form a reasonahle description of local image structure, they do not define a
clear texture boundary because differences in local intensity reflect only microtexture.
When different image textares have the same mean intensity, their macrotexture bound-
ary cannot be detected directly hy this method. In order 1o segment images into differ-
ent textored regions, it is first necessary to construct macrotexture models by piecing
together local edge segments. While this approach is feasible for regular texiures ol the
sort we bave illustrated (Figure 1.1a,b and #22), if time-consuming and error-prone, it
breaks down for more amorphous textures of the type to which human vision adapts so
easily (e.g. #28, #90; Figure 1.6).
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Ficure 1.3: Texture boundaries detected in Brodatz images by Ga-
bor filtering. Each image was filtered with two tuned Gabor kernels, and
blurred with a space-constant of five pixels. The superimposed border marks
locations where the dominant response changes. (a) cotton canvas-raffia
montage, 128x128 pixels (Figure 1.1a); (¥) French canvas-—straw matting
montage, 128 x128 pixels (Figure 1.14); (¢) herringbone image, 256 x 256 pix-
els (#17; Figure 1.6). Gabor edges reflect texture boundaries rather than
microtexture detail (compare Figure 1.2). This simple method was rol suc-
cessful with our reptile-sand montage (Figure 1.1¢).

Analysis of Texture Stalistics

An allernalive “statistical” approach® to texture is Lo creale more complex image
models, and hence deduce filters responding directly to /eztured rather than inten-
sity edges. Textures are characterised indirectly by simple derived properties, or local
“features”, with the expectation that distinct textures possess different features, leading
to first-order diflerences in the filtered image. Texture processing requires analysis of
a spatially-varying signal coupled with accurate boundary localisation: Gabor filtering
offers the hest compromise between these conflicting requirements (Gabor, 1946). Ac-
ceplable segmentations of two of our Brodatz montages (Figure 1.1a,b) and herringbone
weave (#17) were achieved with only light computatjonal eflort by detecting first-order
differences in Gahor filter output (Figure t.3). Algoritbms responding to differences in
Gabhor filter output offer capabilities qualitatively similar to pre-attentive human vision,
but failed to Jocate an acceptable border with our reptile-sand montage (Figure 1.1¢;
data not shown). Further examples are presented in Chapter 4 (e.g. Figure 4.14 on
page 78).

3In this context, “statistic” refers to a derived property or fealure, and does not necessarily imply
stochastic modelling.
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A second difficulty for statistical approaches is that an inappropriale choice of [ea-
tures may lead to mmany lalse boundaries occurring within a texture of a single type
since spatial variation is an intrinsic characteristic. These inherent limitations imply
Lhat statistical ap proaches to texture analysis are not cornpletely reliahle, and may be
considered analogous to pre-attentive human vision. In this role, they form ae ini-
tia] rudimentary image representation, marking approximate texture boundaries and
regions suitable for further processing.

1.3 Markovian Analysis of Texture

Structural models descrihe texture by regular tessellations of the image plane, cloured
by an alphabet of microtexture primitives; statistical models assume that derived tex-
ture “leatures” are spatially homogeneous. Neither of these approaches makes explicit
a fuudamental property of real textures: variability. Extraneous variation arises from
distortious and noise introduced by the image acquisition system, and cannol be [ully
climinated; but the chiel source of image variety arises from the inherently variable
nature of real textures. Notions ol variability, optimality, and hypothesis-testing are
central to statistical-stochastical study,® and hence this forms a natural framework
within which these effects may be modelled. This route is available to both “struc-
tural” and “statistical” descriptions, but much of tbe literature has concentrated ou the
subject of statistical pattern recognition (Devijver & Kittler, 1982).

Operating witbin a statistical-stochastical [ramework, Markov random field models
address an important weakness by making explicit the influence of spatial context.
Textures are cbaracterised by the marginal probability density of each pixel condilioned
on its image neighbourhood, modilying pixel beliaviour according to image context.
A statistical “figure of merit” [or the complete texture is formed hy computing the
joint Jikelihood of all image pixels according to the Markov model, allowing competing
hypotheses to be compared. The joint distrihution may be sampled to form synthetic
textures (Figure 1.4), but uote that syothesis is a siochasiic and hence unrepeatable
process, and that no valid point-to-point comparisons with Lhe original texlures may
be made. Visual comparison of synthetic textures with the original is nontheless an
attractive method [or assessing the quality of the model. Pressed-cork (#4), French
canvas (#21) and colton canvas (#77; Figure 1.6) are homogeneous texiures, and are
visually similar to their syuthetic counterparts (Figure 1.4a—c), but the reverse is true
for reptile skin (#28), straw matting (#55), and raffia (#84), which all display a higber
level of structure (Figure 1.4d~f). Markov models operate successfully when there is no
clear distinction between micro and macrotexture, and can discriminate almost all the
textures in our Brodatz set.® They have been successfully applied Lo a variely of classic
jmage-processing problems, includieg classification, segmentation and restoration.

One deficiency ol Markov represenlations is apparent in Figure 1.4d-f: syntactic
structure or texture grammar is treated poorly, despite the influence ol spatial context.,
hecause the same stochastic model applies to all image locations. This weakness is

“By “statistical-stochastical”, we do mean Lo imply modelling of random behaviour.
SConventional Markov models classily image quarters wilh an error rate of 6%, falling to less
than 1% after the modifications proposed in this thesis.
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(<) #77 cotion canvas (1) #84 raffia
FIGURE 1.4: Synthetic Brodatz textures derived from Markov models. Synthetic
images [ormed from fifth-order true-likelihood Markov random field models of natural Bro-
datz textures (Figure 1.6), 192x 168 pixels. (a—c) visual sitnilarity is strong when the origi-
nal texture is homogeneous; {d-f) these models have failed to capture the structure of the
original textures.
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partially allayed by hierarchical random field models, which form a richer descriplion
of image strncture. Conventional Markov models operate at a very low level, describ-
ing the spatial arrangement of individual pixcls, and this lack of abstraction makes
them sensitive Lo irnaging parameters such as rotation and magnification. Exhaustive
evaluation of all possible hypotheses is [easible during texture classification hecause
the number of texlure classes is not excessively large. This oplimal approach is not
practical during image segmentation because the number of possible scene partilions
rises exponentially with image size (Tsotsos, 1987). Heuristic assumplions or approxi-
malions ease the computational burden, but these detraet from the “optimal” nature
of the statistical framework. High computational appetite is a factor common to all
Markov texture algorithms, particularly (or hierarchical models, and forrns a significant
restriction on their wider application [or image analysis.

1.4 Thesis Overview

The chiel objective ol this thesis is to propose novel texture models combining computa-
Lional efficiency with the optimal statistical [ramework and superior descriplive power
offered by Markov random fields. OQur approach is to modily conventional Markov
models to:

e raisc their computational efficiency;
e improve their robustness with respect to image noise and blur;

e increase their level of abstraction, so they are less sensitive to imaging parameters.

Chapters 2, 3 and 5 consist mainly of review and aualysis of relevant literalure and
theoretical loundations. Most of the novelty ol our contribution lies in Chapters 4,
6 and 7, with suggestions for [urther research in Chapter 8. In the remainder of this
Chapter, we describe our thesis in greater detail.

Models of hurnan vision have provided mapy insights into the nature of visual infor-
mation processing, at both theoretical and practical levels. Psychologists report that
the major [eature of low-level human vision is an apparenl dicholomy hetween “at-
tentive” and “pre-attentive” processing, but the precise computational [orm of these
paradigms has so far eluded empirical research (Chapter 2). A similar division is
often drawn [or texture analysis in machine vision, into “structural” and “statistical”
approaches, and we review the main characleristics of current techniques (Chapter 3).
The hierarchical nature of visual texture is made explicit by structural approaches,
which scek to form separate descriptions [or micro and macro-structure, and are most
ollen used in conjunction with stochastic models. Statistical approaches decompose the
image inlo local derived properties or “features”, whose selection is often motivated by
models of pre-attentive human vision. Local image [eatures way often be computed
very efficiently, but cannot match the richness of struetural representations.

Texture abalysis is ultimately concerned with observing physical objects, and hence
demands simultaneous measurement of spatial and spectral image properties. Optimal
compromuises of these conflicting requirements are achieved uniqnely by Gabor kernels,
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outer: #77 canvas ouler: #21 French canvas

@ inner: #84 raffia (b) inner: 258 siraw malling
FiGure 1.5: Gabor features extracted from Brodatz montages. Fea
ture vectors were estimated from Brodatz montages (Figure 1.16,b) using our
Resultant method (§4.6), and sampled every four pixels. Needle intensily
represents “error”, and length is proportional to “contrast”.

which have recently found application in low-level vision. Qur experiments wilh natural
and synthetic textures demonstrate the potential of Gabor filtering for image analysis,
and confirm that simple efficient algorithms responding to first-order differences in filter
output segment suitahly-constrained images adequately (Chapter 4). Limitations of
this approach arise [rom over-simplified texture models, which assume thal lextures
contain few significant spectral components, and residual spatial variability witkin each
filtered region interferes with attempts to extract texture boundaries.

We propose to ezploil rather than suppress fluctuations in filter output, describing
the spatial arrangement of Gabor “features” with Markov random fields to [orm hier-
archical G'abor—Markoo models. The role of our Gabor-filtering stage is to assist the
formation of sensilive and concise representations ol image lexture, producing sparsc
feature arrays (Figure 1.5). Unlike previous haphazard procedures, we adopt principled
stralegies for combinjug measurements [rom many filter channels, based on response mo-
ments and parameterised Gabor signatures, and propose two efficient [eature-extraction
algorithms (Chapter 4). Both adapl easily to adjustmenls of filter cbaracteristics, and
offer the poteptial for elementary abstraction of imaging parameters.

Real textures are inherently variable, and their stocbastic behaviour is described
conveaiently by random field models. The influence of spatial context is acknowledged
exphcitly by Markov models, which are specified by tbe probability density of each pixel
conditional on its local image neighbourhood (Chapter 5). We review ihe Lbeoretical
basis of this approach, discuss manipulation of Markov models and their application
to image processing, and conclude that auto-normal models have particularly attrac-
tive properties. Qur proposals for a hybrid Gabor-Markov framework address several
limitations of conventional approaches.

Computational considerations often dictate Lhe use of auto-normal Markov models
in practice, and we adopt this form for our experimental investigation. Orientation
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is an important texture feature but deviates significantly from the normal model, and
we propose angular field models to overcome this disparity {Chapter 6). In order
to compare the performance of Gabor-Markov models with a conventional analysis,
we adopt empirical classification accuracy as a henchmark, applied to a selection of
Brodatz textures (Figure 1.6). Similar accuracy is obtained with both paradigms, but
Gabor-Markov classifiers are more robust to image noise and hlur, and less compu-
tationally demanding. Our experimental appraisal of Gabor-Markov models leads us
to propose two families of Sempled-Mearkov models, employing concise representations
derived directly from the image data. These enjoy greater robustness and higher com-
putational efficiency than either Gabor-Markov or conventional approaches. Smooth-
Sampled Markov models achieve highest accuracy in our tests, and are the preferred
choice.

Classification accuracy correlates strongly with the level of correspondence belween
image data and the auto-normal model, and our explanations for observed performance
trends are founded on this relationship (Chapter 7). This link establishes the impor-
tance of appropriate pre-processing of image data prior to statistical analysis. Assessing
the significance of this thesis, we conclude that hoth Sampled-Markov and Gabor-
Markov models meet our research objectives (page 8), and offer significant practical
benefits compared to current approaches (Chapter 8). Our suggestions for lurther
improvemeuts may enhance the advantages of these novel representations, and we com-
ment briefly on their potential for practical applications.
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Figure 1.6: Our Brodatz image set. (Continued overicaf)
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#92: pigskin #96: brick w.

#100: ice cryslals

Ficure 1.6 (Continued): Our Brodatz image set. Each image is 256%256 pixels and
was digitised from the Brodatz (1966) album.



Models of Visual Attention:
Serial and Parallel Paradigms

Humap vision has heen studied by psychologists for over a century, during which time
many empirical theories have been proposed, refined, and ultimately discarded. Sys-
tematic manipulation of artificial display parameters has allowed interaclions between
perception and image organisation o be siudied by serics of psychophysical experi-
ments. While some aspects of human visual processing are controversial, it has long
heen recognised that low-level vision is aptly described by an attenlive-pre-atientive
dichotomy employing serial and parallel processing paradigms. Current models propose
tbat rndimentary pre-attentive analysis guides selective and seqnential scruliny of lo-
cal image regions, marking locations corresponding to first-order differences in simple
image “leatures”. This operation corrcsponds closely with texture segmentation (Chap-
ter 3). We discuss leading psychological theories and review important aspects of the
experimental data which they describe.

Unfortupately, computational analysis of loose verbal theories is not praclicable, and
empirical palterns of hehaviour cannot directly influence the development of machine
vision systems. An appropriale computational sirategy and the nalnre of suitable
image representations may, however, be suggested by informal apalysis: visval attention
arises as a consequence of the requiremenl for selective processing; and dual-paradigm
processing reflects the application of abstract design principles. Proposals [or many
machine vision systems have been influenced by these conclusions, and first-order feature
differences and dual-paradigm processing are now pervasive (Chapters 3 and 4).
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2.1 Low-Level Human Visual Processing

Despite enormous progress in the last decade, computer vision still lags human vision
by a large margin, particularly in respect of robustness, to image variability and degra-
dation from noise, and speed of operation. Computer hardware is fast and reliable, and
special-purpose desigos may be produced to meet specific requirements. By contrast,
biological components are slow and unrehable, and cannot be readily redesigned to fit
a particular environment. Despite this, the buman visual system not only displays su-
perior competence but often accomplishes in real time' what machine vision can hardly
achieve at all.

A major distinction between biological and machine vision systems is the degree of
parallelism. Human brains contain very many processing elements (perbaps 10") and
yel more communication channels (10'; Barlow, 1986). Simple calculations comparing
rcaction times with neural transmission delays confirm thal extensive parallelism is
essential for a significant proportion of the brain to influence responses. By contrast,
many compulers are parallel only to a tiny degree, and it is possible Lo argue ihatl Lthe
advent of suitable massively-parallel hardware will enable the attaiument of levels ol
performance comparable o biological vision systems, at least in the temporal domain.

Contrary to this simplistic argument, psychologists claim that while low-level per-
ception usuvally appears subjectively to be immediate and complete, human vision often
performs sequential processing, “attending” to image areas sequentially {(Julesz, 1981;
Treisman & Gelade, 1980). This has become known as the attentive-pre-aticniive di-
chotomy (§2.1.1). Further doubt is cast on the supremacy of parallelism hy theoretical
arguments that il is infeasible to accomplish generic visual tasks by purely paraliel
processing {Gurari & Wechsler, 1982; Tsotsos, 1987). Although parallelism is certainly
important, it cannot compensate for a poor understanding of the computational nature
of the prohlem, and is not a panacca. Human vision appears to aclieve instanlaneously
whalt is theoretically not compulable by making implicil assumptions and approxima-
tions. These may be observed by their fajlures, taking the form of visual illusions or
scquential processing.

In this Chapter, we review empirical evidence and psychological models of humnan
visual processing. There is general agreement Lhal a virtually knowledge-[ree spatially-
parallel stage (“pre-attentive vision”) guides the allocalion of more scquential (“atten-
tive”) analysis.? Regions which are hornogeneous with respect to a particular image
property may be lreated as a whole, despite possessiug hierarcbical struclure (§2.3.4).
Study of the human visual system suggests the nature of heuristic consiraints that
might be employed to guide selective processing, and some properties ol thelocal image
fcatures used to form early image representalions. Empirical models of hunan vision
liave often motivated approaches Lo machine vision (Chapter 3), aud suggesl reasonable
objectives.

lGenerally taken Lo mean monitor relresh rate: 25 Hz.
1t is not helpful to define abstract terms such as “consciousness” or “awareness”, and wc refer
to “altention” in a purely perceptual sense.
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2.1.1 Evidence for an Attentive—Pre-Attentive Dichotomy

Tbe distinction between an early “parallel” and a subsequent “sequential” stage in
visual nformation processing has long been accepted by psychologists, and neither the
existence of parallel processing at near-retinal levels nor the expression of a response as
a sequence of motor actions is coutroversial. Although anisotropy of the retina could
lead to serial processing stages accompanied by shifts in fixation, allocation of atlention
may be decoupled from eye movements, breaking this putative hnk (Eriksen & Murphy,
1987). Direct observation of parallel or sequential operation is clearly impossible, and
tbese attributes must be deduced from indirect evidence, supported where possible by
theoretical justification. Given the nature of the implementatiou technology, “parallel”
and “sequential” can at best be approximate descriptions but are useful in reasoning
aboul processing siralegy and performauce.

Visual perception has attracled prolonged research interest, and literature abounds
on the subject. Differences of iuterpretation remain, but recently broad convergence on
the major features of a model for low-level human visual processing has been reached
{§2.4.1). We introduce these below (§2.2), without attempting Lo dislinguish carefully
the minor differences whicb exist between a number of similar theories. Relinements
have been proposed over time; in order to pursue the argument, we first introdnce each
theory in the form in which it was originally proposed.

Behavioral evidence for an attentive dichotomy has heen gathered using lwo main
paradigms: tezture segregntion and visval search. In the former case, ap arlificial dis-
play is partitioned between two or more Lexture types, each formed from well-separated
discrete elements. In the context of our earlier discussion (Chapter 1), these images
decompose easily into micro- and macro-texture. When a difference in a “basic” image
property® occurs across the boundary, the two textures are segregated immediately and
effortlessly: the boundary appears to “pop out”™ of the display. Conversely, when tex-
Lures possess more subtle differences, they may be discriminated orly by slow, careful
scrutiny, even though their iudividual elements may be quite distinguishable in isola-
tion. Properties mediating immediate discrimination include: colour, brightness, size,
orientation, motion aud stereoscopic disparity (Beck, 1983; Julesz, 1981, 1984; Treisman &
Gelade, 1980). Each of the models discussed below assumes a slightly different alphabet
but all generate essentially similar predictions (§2.2).

Visual search tasks have also beecu widely used. Subjecls are presenled with a
multi-element display similar to those used for texture segregation {e.g. Figure 2.5),
and are asked to decide whether a target element is present or absenl. When the target
possesses a basic feature not present among the other display elements (“distractors™),
its presence may be determined in a time almost independent of the lolal number
of elements (“display size”). Informally, it appears again to pop-out of the display
(Treisman & Gelade, 1980). I no such description of tbe lLarget is possible, perhaps
because all its basic fealures are also held in different combinations by the distractors,
then search is slow and effortful, and reaction time (RT) increases linearly with display
size (Figure 2.1). Whilst it is commonly assumed that increasing RT is caused by
additional processing stages, this need not necessarily he the case, and could result from

3Characteristics of these “basic properties” are discussed in §2.3, but their computational form
has never been elucidated.
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Ficurs 2.1: Schematic attentive and pre-attentive response curves.
Ideal dichotomy between attentive and pre-attentive search of artificial multi
element displays. Reaction time (RT) is shown as a function of the number of
elements. (a) when the target is distinguished by & unique feature, it “pops
oul” after an interval independent ol the number of distracting elements.
(b) the target is discovered only by a serial scan of the display, and response
time increases linearly with the number of distraclors. Target-present and
target-absent slopes are in the ralio 1:2.

“noise” or interactions with visual memory (Broadbent, 1987). One set of image fealures
is sufficient to describe performance in both visual search and texture segregation tasks.

2.2 Models of Pre-Attentive Human Vision

Many theories have been advanced to explain the attentive-pre-atlentive dichotomy,
[rom behavioral, tbeoretical and physiological viewpoints. A common failing is theijr
definition in ambiguous verbal terms: different interpretations may lead to conflicting
predictions (Broadbent, 1987). There is olteu a tendency to be rather simplistic, defining
a procedure suitable for processing an artificial multi-element display but which is
inappropriate [or the [nll complexity of arbitrary scenes. In parlicular, display elements
and their properties are often assumed to be discrete whereas in practice neither is true,
and it is not clear how such models could operate robustly with irregular or variable
Lextures. Vague verbal theories may be too weak to generate testable predictions,
instead forming a redescription of existing empirical results, but these short-comings
are avoided by a truly cemputational theory (Winder, 1988b, 1990).

Perceptual theories may be divided broadly into two groups. Farly-seleclion models
hold that comparatively little s achieved by the “parallel” stage, and that linear re-
sponse [unctions observed [or more complicated displays reflect sequential “attentive”™
processing of the field (Treisman & Gelade, 1980). “Perception” is achieved only for a
small proportion of the scene at a time. Conversely, late-selection Lheorists argue that
the parallel “pre-atteutive” stage should more correctly be termed “pre-conscious”, and
does in [act build a complete representation, possibly containing minor inaccuracies.
The serial bottleneck occurs only during the exchange of information with conscious or
motor processes — it is almost as il the visual system had been designed in jsolation,
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interfaces to other functions beiug added as an alter-thought (Duncan & Humphreys,
1989). Despite their apparently opposing viewpoints, both sets of theories seek lo ex-
plain the same set of experimental data, and as this has grown, the differences belween
them have diminished to the point where convergence has almost been reached (§2.4.1).

Pre-attentive processing is assumed 1o be data-driven, little affected by higher-level
knowledge or expectation, and its primary purpose is to form a representation of the
image at a primitive level of ahstraction. Purely linear transformations of the retinal
response preserve its information content hut are invertible and hence do not process
the data. A number of influential theories have been developed proposing similar forms
for the pre-attentive representalion, and hence broadly similar goals for pre-altentive
processing. They are introduced below in their original form; some revisions have since
occurred. Despite appearing to operate within an artificial framework, the prnciples
guiding these models are very similar to those addressed by Lexture segmentalion algo-
rithms in machine vision systems (Chapter 3).

2.2.1 Texton Theory

Julesz (1980, 1981, 1984) proposed that visual input is represenled io terms of an alphabet
of texture primitives, which he called fezions. These are detected at each poini in
the visual field by a spatially-parallel pre-attentive system which eomputes their local
density. Diflerences in texton density are recorded in the pre-atlentive representation,
effectively forming a primitive image segmentation. Texton theory may be summarised
by two heuristics:

1. Human vision operates in two distinct modes: pre-attentive and attentive. In the
former, the visual field is processed instantaneously, in parallel, independent of
the number of elements or complexity of the scene, over a wide visual area. By
contrast, attentive processing is slow, sequential and effortful; and operates only
within a restricted aperture.

2. The pre-attentive system evaluates spatial texton density and directs attentive
vision to locations where differences of texton density occur. All other functions
are performed hy the attentive visual system.

Textons must be selected carefully: too many, and demands for attenlive scrutiny arise
frequently, overloading the system; too few, and pre-attentive figure-ground segregation
is achieved only rarely. Proposed or accepted textons include: colour, angular orienta-
lioo, width, length, hiuocular disparity, motion disparity, ficker rate, brightness, line
terminators and line crossings. [t is possible Lhat different sets are appropriate for
human and robot vision, or for diflerent visual environments (Julesz & Bergen, 1983).

Textons of each type are processed independently by a modular pre-attentive system,
which preserves only their density. Even the relative positions of textons of the same
type are lost, unless some chance alignment gives rise to a new texton property (Beck
el al., 1983; Treisman & Paterson, 1984), confirmed by psychophysical experiments (Fig-
ure 2.2; Julesz & Bergen, 1983). The pre-attenlive representation is a primilive boundary
map (Sagi & Julesz, 1981, 1985), and when this alone provides sufficient evidence for a
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FIGURE 2.2: Search elements with similar textons. Performance at de-
tecting one element from each pair among 35 distractors of the other type is
correctly predicted by differences in textou density (Julesz & Bergen, 1983).
(a,b) pairs of elements differ only in spatial arrangement, not in texton den-
sity: serial search is required. (¢) these elements possess diflerent textons:
the target pops out pre-attentively.

response in an experimental judgement, or when its efficiency at directing attention to
tbe critical location approaches 100%, “parallel” behaviour is observed. Texton theory
15 concerned mainly with the capabilities ol the pre-attentive system: the role of at-
tention is not clearly stated. Note that texton theory shares many characteristics with
“statistical” approaches to texture analysis (§1.2), and has motivated the development
of machine vision systems of this type (Chapter 3).

2.2.2 Primal Sketch

Texton theory shares many components with Marr’s “primal sketch” tbeory of visual
information processing. Neither is a computational theory, but some aspects of the pri-
mal sketch are described more precisely. A symbelic retinotopic description ol the scene
is produced by simple filtering operations in a data-driven manner (Marr & Hildreth,
1980). Marr proposed parameterised primitives similar to those accepted as lextons:
edges, lines, bars and “blobs”, chosen partly for their projection-invariant gualities
(Marr, 1976, 1982). A retinotopic representation called the primal sketch is prelerred to
more abstract organisations on the grounds that many of the processes which operate
on it are local, due ultimately to spatial coherence of natural scenes. Texton theory is
rather vague about the interaction of the pre-attentive representation with higher-level
processing, whereas Lhe primal sketch forms a complete inlermediate representation
{rom which all subseqnent information is derived.

Marr proposed that pre-atlenlive texture discrimination occurs as a result of first-
order {eature differences (Marr, 1976), similar to texton theory. The raw primal skelch
is a primitive abstraction of the image and cannot provide access to bigher-order infor-
mation in the form in which it is required. A hierarchy of represcntations sits above the
raw sketch, each at a higher level of abstraction, transforming a large and unwieldy col-
lection of data into a compact and relevant form. Successive abstractions are computed
from more primitive representations, but do not refer back to the image data directly
(Figure 2.3; Marr, 1976). Grouping adjacent image regions with compatible features is
an important part of this process (§2.3.4).

2.2.3 Feature-Integration Theory

In a series of papers published over the past decade, Treisman has expounded the
“feature-integration” theory of human visual altention (Treisman & Gelade, 1980; Treis-
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(a) “Explicit” {b) “Implicit”
Ficure 2.3: Distinction between implicit and explicit grouping.
Groups may be formed in the primal sketch implicitly by spatial-Irequency
filters or explicitly by symbolic grouping. (a) two blobs may be linked explic-
itly because of their proximity and similarity; (8) or implicitly by the action
of a large-scale bar detector. Marr (1976) proposes the former.

man & Gormican, 1988). Most ol the experimental support for this model has been
derived [rom artificial visual search tasks. The definition ol [eature-integration the-
ory is conched largely in the language of psychology, lorming a loose framework rather
than a testable theory. Key components are the automalic extraction and independcent
processing of elementary [eatures (Figure 2.4), and [eature-integration tbeory may be
summarised by two assertions:

1. Tbe retinal image is first processed in parallel along separable feature dimensions
by independent perceptual analyscrs. Among the image properties extracted at
this stage are: orientation, colour, brightness, direction of motion, and spatial
contrast; and each attribute is represented in an independent feature space. This
first stage is automatic, operates over a wide visual area, and has been ideptificd
as “pre-attentive”.

2. In order to perceive physical objects as unilary forms, primary f{eatures must be
synthesised into conjunctions.* Atlention is required [or correct identification and
conjnnction of an objecl’s [eatures. This is a serial process which operates over a
restricted visual area.

A further task of the pre-attentive stage is to mark [ealure boundaries in a retino-
topic “map ol locations” (Figure 2.4), corresponding to the primilive boundary maps
envisaged elsewhere (§2.2.1). The novclty of feature-integration theory hes in its ex-
plicit identification of a role for attention: it adds detail to the regions marked by
the pre-attentive stage, and detects higher-order properties. This is essential because
boundaries marked in the Map ol Locations are not tagged with the identity of the fea-
ture whose gradient they mark. A [urther [acet of the model is the “Pooled Response”,
which permits a global measurernent of the level of activity within each feature space
to be obtained quickly without the need to attend each display localion sequentially.

2.2.4 Experimental Verification of Proposed Models

Each of the models described above (§§2.2.1-2.2.3) atlempts to explain ihe same body
of experimenlal data, and hence il is not surprising thal similar predictions are made.
Unlortunately, the verbal exposilion of the theories means tbat their predictions are

4For example, colour and orieniation are separate [eatures, and hence a blue vertical line is
represented by a conjunction of “blue” and “verlical”.
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FiGure 2.4: Schematic diagram of feature-integration theory. The
image is decomposed independently in parallel along primitive [eature dimen-
sions. These mark feature discontinuities in the Map ol Locations, forming
a primitive boundary map. Attention is guided to these sites. A “pooled
response” output is also formed, measuring the average level of activalion of
cach feature, Adapted from Treisman {1985).

qualitative rather than quantitative, but we will attempt to circurmvent this fajlure by
restricting our comrnents to the most definite trends. Feature-integration theory is a
little more explicit about the purpose of altention, and hence mmakes more detailed
predictions, but we shall treat all three theories as a whole.

Visual Search

Visual search is a popular paradigm with psychologists: trials are straightforward to
conduct, displays may be construcied easily, and a quantitative performance measure
is obtained. Each model predicts that a targel defined by a unique feature pops-out of
the display (search time virtually independent of the number of distractors) in accord
with the central dichotomy (§2.1.1), consistenl with observed behaviour {Treisman &
Gelade, 1980; Treisman & Gormican, 1988). For cxample, a single blue letier was lound
among hrown and green letters with a response slope® of only 3 ms per distractor, and
similar responses are observed when a numher of targets are present. Displays must be
present for al least a minimurm “initialisation” interval before anything may be perceived
reliably, but a display duration of only 30-45ns is sufficient to detect a vertical line
among 35 horizontal hines (Bergen & Julesz, 1983). Perceptual pop-oul is robust: reaction

“Resaclion times oflen follow the pattern illustrated in Figure 2.1, and are characlerised by a
“response slope”, commonly measured in ms per distraclor.
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FiGure 2.5: Artificial target-present displays used to demonstrate
search asymmetry. A feature is most effective at causing the target to
“pop-out” when it is preseat in the target but not in the distractors (Treisman
& Souther, 1983). (a) the targel possesses a unique feature and pops oul;
(b) the targetl is defined oniy by the absence of the line segment, and is
detected after a serial scan.

tiinc is rarely completely independcnt of display size but the slope is typically a few ms
per item, an order of magnitude less than “serial” responses. A [eature difference is
most cffective when present in the target but absent from the distraclors {Treisman &
Gelade, 1980; Treisman & Souther, 1985), illustrated by Figure 2.5.

A very different trend emerges [or conjunctively-defined targets, where no first-order
difference discriminates target from distractors. Finding Tgeen among equal numbers
0f Thrown and Xgreen Tequired 28 ms per distractor (Treisman & Gelade, 1980). Search
for an L among Ts is serial, whereas a slanted T pops out (Figure 2.6). All aspects
ol spatial relations demand serial processing (Treisman & Gormican, 1988) including the
binding of textons to particular objects (Julesz, 1984; Treisman & Gelade, 1980). “Serjal”
processing is assnmed when the response slope exceeds 10 ms per itern. Pooling data
from many sources, Treisman and Gormican (1988) found thal 99% of the response
variation was linear, with a target present-ahsent search ratio of 0-53: strong evidence
for the operation of a serial sell-terminating search strategy

Textiure Discriminalion

Texture discrimination tasks require subjects to detect a region rather than a single
itern, for example they may be forced to choose whether a boundary runs horizontally
or vertically. As noted above (§2.1.1), the boundary is immediately apparent when
adjacent regions have differing feature densities (Beck el al., 1983; Julesz, 1984; Treisman,
1985). By contrast, if they do not have disjoint features, or have the same texton density,
the boundary may only be traced out one element at a time (Treisman & Gelade, 1980),
even il individnal texture elements may be discriminated easily jn isolation {Julesz, 1984).
When a texture difference arises purely because of spatial relations, such as R and A,
individual scrutiny is always required (Figure 2.2).

®Each display element is checked in turn, until the Largel is found or none remazin. If search
is undireclted, balf as many sleps are required, on average, when the iargel is present rather than
absent.
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FiGURE 2.6: Artificial search displays. Search displays of the type used by
Beck and Ambler (1972). The L in the display on the lelt is found only after
checking each element whilst the slanted-T on the right pops-oul immediately.

Ezperimental Procedure

Experimental procedure for both visual search and texture segregation paradigms must
be designed carefully to ensure thal differences in performance do indeed arise because
of the influence of display coudijtions rather than some unintended effect. Ju order to
ehminate eye movements [rom consideration, it is common to expose the display for
a brief instant, typically 100 ms, during which time saccades canuot occur (Bergen &
Julesz, 1983; Sagi & Jnlesz, 1985). Acuity variation (Anstis, 1974) may also be faclored out
by the use of a circular display (Beck & Ambler, 1972). A pre-cue may aflect performance
considerably, even if it conlains no useful information for tbe task (Eriksen & Murphy,
1987). Display elements are usually selected purely [or their perceplual properties, and
letters are a poor cboice because of uncertain differences in theic physical appearance
and associations (Gilmore, 1985). Despile these complications, the scrial-parallel trends
noted here have been observed by many researchers using different experimental proce-
dures, and are beyond dispute.

2.3 Characteristics of Human Texture Primitives

Ideutification of the “basic image properties” of pre-attentive vision is required before a
computational analysis may be conducted. Several attempts have been made to isolale
definitions for Beck’s (1983) “local image properties” and .Julesz’s (1981) “textons” in
order to understand hetter the process of texture decomposition. More formal specifi-
cation would also he helpful to provide guidance for the design of robot vision systems
because the vagueness of verba) theories is nol amenable to computational analysis
(Broadbent, 1987).

One study attempted to match computalional definitions to six verbal terms de-
scribing seemingly important visual properties for texture discrimination: coarseness,
contrast, direclionality, line-likeness, regularity, and roughness; but was only partially
successful in modelling human performance (Tamura ef al., 1978). A morte promising
level of enquiry has been to abandon the search for detectors corresponding directly
to high-level verbal quantities, and to seek families of simple linear filters consistent
with the characteristics of simple cells. A generic three-stage region-growing algorithm
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was proposed by Caelli (1985). He suggested: linear convolution followed by a point
non-linearity to extract features; linear smoothing or local averagiug to improve the
reliabikity of feature estimates; and region formation by feature clustering and refine-
ment. Coggins and Jain (1985) proposed a combination of oriented and isotropic filters,
and claimed good performance with Brodatz textures. Their system was not fully anto-
malic, and required prior knowledge of the number of texture types. Malik and Perona
(1990) usc livear DOOG? filtering and non-linear inhibition to collect image properties,
and detect boundaries by Laplacian of Gaussian filtering of fcature responses. Their
model successfully ranks textures with ambiguous texton statistics iu the same order of
discriminability as human subjects, but is not {ully automatic and cannot predict some
importiant perceptual eflects (e.g. search asymmetry).

Recently, it has been noted tbat receplive field properties of simple visual cortical
cells are consistent with Gabor filters (Daugman, 1985), prompting suggestions that
many low-Jevel visual eflects might be explained by initial filiering with Gabor kernels
(Fogel & Sagi, 1989; Sulter et al., 1989). Gabor filtering models appear to overcome some
current anomalies of lexton theory (Nothdurft, 1990), and Lhe attractive properties of
Gabor kernels have also aroused interest from the machine-vision community. We shall
postpone discussion of our experiments with Gabor filters until Chapter 4.

2.3.1 Image Features are Local

It is important Lo note that each of the above models proposes tbat pre-atteniive vision
is a local process (§§2.2.2-2.2.3). Texture primitives are compact (e.g. “line crossing”)
and only local feature differences are cornputed, rendering global processing unneces-
sary. Direct evidence for short-range computation of feature differences comes from
a textured Craik-0’Brien-Cornsweet illusion (Muller, 1986): ease of perception of a
boundary between regions of different line orientation depends primarily on the dif-
ference in slope at tbe boundary rather than the difference between Lhe regions as a
whole. Hybrid region—edge algorithms may also be used (Mumford et af., 1987). Tex-
tons capture only local spatial arrangement, and graded differeuces in texton properties
are detected more efficiently when they are ncarby (Sagi & Julesz, 1984). Anisotropic
siretching alters local textou density (Figure 2.7), and discrimination performance is
affected accordingly (Enns, 1986; Julesz, 1986).

2.3.2 Original Julesz Conjecture: Second-Order Statistics

In a precursor to texton theory, Julesz (1962) originally proposed thal spontaueous
textore segregation is mediated by differences in first or second-order siatistics. At
first, the theory seemed snccessful, and perceplion of texture bouudaries in synthetic
Markov textures was predicled correctly. Weak counter-examples were laler found by
syothesising textures from pairs of “iso-dipole” primitives, and Julesz (1975, page 40)
acknowledged that “it would be going too far to believe that texture discrimination
depends entirely on the statistical properties of textures alone”. Pratt, Faugeras and
Gagalowicz (1978) developed autoregressive texture models that permilted control of

"Difference Of Oriented Gaussians: similar Lo anisotropic Laplacian of Gaussian.
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FiGUuRE 2.7: Effect of anisotropic stretching on texton density. Tex-
tured displays were formed by embedding a region consisting of one type
of element within a background formed from the other. {a,d) original tex-
ture pairs: pair (a) segregate pre-attentively but (d) do not. (b,c) after
anisotropic stretching by a factor 5:1, the position is reversed: pair (b) seg:
regate pre-attentively but (¢) do not. Affine transformation does nol change
the texton count for each element but does affect the computation of texton
density (Julesz, 1986).

the statistical properties of more realistic textures than the binary dot arraysused by
Julesz (§3.2.5). They noted Lthat Julesz had omitted to define the degree of dis-similarity
that conld be perceived, and found this to be quite large for first-order properties. They
concluded, however, that “the sufficiency of Julesz’s conjecture is confirmed for fields
possessing spatial correlation” (Pratt et al., 1978, page 801), and later confirmed this
belief for “non-contrived” textures (Faugeras & Pratt, 1980).

Increasing numbers of exceptions were later discovered, however, and Julesz even-
tually admitted that the iso-dipole requirement was inadequate (Julesz et al, 1978).
He initially supplemented his model by local “bar” and “lerminator” detectors (Julesz,
1980), designed to accommodate evidence that some iso-dipole textures may be diserim-
inated effortlessly. An alternative explanation is thal the “exceptions” were caused by
the non-ergodicity of random fields used to synthesise test images, so they differed in
local second-order statistics. A model based on Jocal spatial averages of second-order
statistics was proposed to reflect this possibility (Gagalowicz & Ma, 1985).

Julesz later abandoned the iso-dipole conjecture entirely in favour of texlon theory,
as stated in §2.2.1. Nontheless, many experiments performed by Julesz and others
show that dipole statistics are able to capture much important texture information,
and this has motivated the development of many robot vision systems (§3.2). A further
advantage of first and second-order statistics is their theoretical and computational
simplicity.

2.3.3 Importance of Spatial Location
Each of the models discussed above (§2.2) proposes that image information is initially

represented topographically, and it is implicitly implied that attention is mediated spa-
tially. Several lines of evidence provide support for this possibitity.
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Visual Orienting

One of the simplest visual tasks is to respond to the presence of a single bright dot
against a blank field. Surprisingly, detection of dot onset is influenced by a spatial pre-
cue giving advance warning of its location, and an invalid cue depresses performance
(Posner, 1980; Posner e! al,, 1980). Once an image location bas been “attended to”, it is
temporarily inhibited, and detection of a second target at the same site is slower than
elsewhere (Posner & Presti, 1987). A variely ol experiments have been devised Lo probe
this effect more closely, tracking the allocation of atteution across the visual field (see
Winder, 1988b).

Effect of Advance Cue on Visual Search

According to the theories mentioned above (§2.2), a spatial pre-cue should have little
benefit during a pop-out search because the location of the target (if present) shonld al-
ready be marked pre-attentively, and ibis prediction has beeu confirmed experimentally
(Ambler & Finklea, 1976; Treisman, 1985). There was a small benefit on targel-absent
trials, perhaps because subjects are less inclined to perform a serial check belore re-
spondiug negatively. By contrast, conjunctive Largets were delected much more easily
after a spatial pre-cue, consistent with failure of the pre-attentive system to mark the
target location adequately. Further experiments using similar paradigms confirmed the
importance of image location to conjunctive but not single-feature targets (Nissen, 1985;
Treisman & Gelade, 1980). No evidence was {found that attention could be confined to a
single property {e.g. red), rather ihan locatjon.

When subjects were unable to process tbe display fully because of time pressure,
they sometimes reported “illusory conjunctions” — perception of the correct features
but in the wrong combinations (Treisman & Gelade, 1980). This motivated speculation
that feature spaces might communicate only under the influence of attention, perhaps
because they had parametric internal representalions (Ballacd, 1984), but experimenis
of this ype are unreliable because purely perceptual effects cannot be isolated.

Detection and Identification

Furtber suggestive evidence for the topograpbic organisation of early pre-attentive rep-
resentations follows from a distinction between detection and identification of a target.
According to theory (§§2.2.1-2.2.3), subjects may rapidly detect locations of feature
discontinuity, but may only identify tbe elements responsible after attending to the
marked locations. This pattern of behaviour is indeed observed in practice, using dis-
plays of the type shown in Figure 2.8 (Sagi & Julesz, 1984). When the disiractors are
themselves non-uniform, bul do not share features with the target, visua! search and
texture segregation both become more difficult (Callaghan et al., 1986; Pashler, 1988).

The experiments reported here, together with numerous others (Winder, 1988b),
suggest that image locations of feature differences are of key importance in the early
parallel representation, in accord wilth texton and feature-integration theories. Real
scenes generally have a more complex structure than artificial displays, and may not be
decomposed unambiguously into independent elements, or micro- and macro-structure
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Fictre 2.8: Mixed-target display used in combined counting-
identification task. Subjects were required Lo count the number of non-
distracior lines and identily their orientation (Sagi & Julesz, 1984). Detection
and counting of the odd elements could be achieved in a constanl period
whereas identilying them accuralely required 2 serial check.

(§1.2). In the next section, we uote some modifications to the monolithic pre-aitentive
representation designed to accommodate hierarchical image structure.

2.3.4 Hierarchical Representations and Perceptual Grouping

Artificial displays usually consist of well-separated elements, and structure is present,
only at a single level (for example, Figure 2.6). In practice, real scenes may be much
more complex, with ill-defined or contradictory borders (Figure 1.1 on page 2). Prim-
itive elements at one level may be grouped together to form a meta-primitive at the
next, and many levels of structure may be represented by a bierarchy. Re-examination
of Figure 2.6 shows that it also possesses two levels of structure, appearing at the bigher
level of abstraction as two adjacent circles. Texture segregation demands a high-level
description in terms ol homogeneous regions rather than individual primitive clements.

When we search artificial displays having a clear hierarchical structure, as shown in
Figure 2.9, we are able to break the image into distinct groups pre-attentively. Reaction
limes are linear in the number of groups rather than elements, suggestive of serni-serial
search: each group may be checked in parallel using the pre-atlentive mechanism, but
only ope group at a time (Treisman, 1982). Valid perceptual groups may only be formed
from contiguous regions sharing a common feature.

Spatial Frequency Grouping

A very simple explanation for the phenomenon of hierarchical grouping is a coarse-to-
fine image scan involving the use of tuned spatial-frequency channels (Wilson, 1983).
An example of how this might operate is shown in Figure 2.10: Lbe two groups emerge
immediately after filtering witb a Gaussian kernel. lucreasingly detailed examination
requires the use of filters with smaller space-constants, and the MIRAGF. model proposes
non-linear summation to avoid loss of resolution {Watt, 1988). I has been suggested that
output of simple linear filters could underlie texture segregation (Bergen & Adelson, 1988)
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Figure 2.9: Artificial image with two levels of structure. (a) hi
erarchical decomposition of this image is straightforward. (b,¢) these odd
elements are often missed in (a) at first glance bui are salient within each
sub-group iu isolation.

and Gestalt grouping (Reed & Wechsler, 1990). Perceptual groups ate still efloctlessly
perceived in displays similar Lo Figure 2.10 after filtering to eliminate low spatial-
frequencies (Jafiez, 1984; Julesz & Krose, 1988), and so this must be at mosi a partial
effect. Many grouping strategies are possible, ranging [roni implicit grouping by linear
filteriug to explicit symbolic linking {Beck, 1983); [urther discnssion appears in Winder
(1990).

Attentive-Pre-Allentive Conlinuum

Multiple-resolution image representations blur the distinction between aticnlive and
pre-atlentive vision. An initial “parallel” stage partitions Lhe display inlo a pumber of
regions, each of which may be sclecied (“serial”) and further decomposed. Algorithms of
this type are semi-serial, consisting of a sequence of parallel operations. Il is suggested
that the size and sbape ol these regions may vary (Eriksen & St. James, 1986; Trcisman
& Gelade, 1980) but that they must be spatially contiguous (Crassini, 1986). This is the
refined description offered by [eature-intcgration theory (Treisman & Gormican, 1988),
which also predicts an enhanced role for the Pooled Response (Fignre 2.4). A similar
structnre has now been proposed for texton theory, suggesting tbat finer discrimination
is possible when allention is conflued to a smaller area (Bergen & Julesz, 1983; Julesz,
1986). Definitions of “texture” and “texture element” were revised to make them scale-
independeut, so that texton properties could be extracted at many resolutions.

Whereas texton and fealnre-integration theory suggest that an initially-roarse rep-
resentation is progressively refined, Marr's (1982) primal sketch involves a recursive syn-
thesis. Starting with the coruplete raw primal skelch, representations are formed al suc-
cessively greater levels of abstraction, reflecting higher-order and ultimately viewpoint-
invariant properties. This strategy is more akin to structural analysis (§1.2), but the
distiuction is nol as greal as may be first thought, because il is still sensible to scan
the primal sketch in a predominantly coarse-to-fine direction. With eilher method, the
use of mulliple-resolution representations allows greater benefit to be derived from the
“paralle]” stage when the sceue bas a favourable spatial organisation.



28 CHAPTER TWO: Models of Visual Attention

—

(a) structured image

(b) blurred image

Ficure 2.10: Formation of perceptual groups by spatial flltering.
(a) an artificial image, containing two perceplual groups. {b) convolution
with a Gaussian kernel (space constant as shown) has successfully picked oul
the two groups.

2.4 Origins of Dual Paradigm Processing

Having reviewed the main features of the attenilive—pre-attentive dichotomy, and the
models which seek to describe it, we now lurn to causes for this behaviour, and discuss
implications for machine vision. We conclude that visual atlention implies a selective
analysis of image data, and hence that division into parallel and serial paradigms reflects
good design principles.

2.4.1 Guided Search Model

Recent experiments have shown that certain combinalions of features (or conjunctious)
inay be detected in parallel, for example Ogq among Ogreen and Xieg, contrary to the
dichotomy stated above {§2.1.1). Increasing numbers of special cases to the theory
were proposed in the form of unified conjunction-detectors, until it was shown that
most conjunctions were able to mediate parallel detection under suitable circumstances
(Treisman & Sato, 1990; Wolfe et af., 1989). Exceptions occur when the two features
[orming the conjunction are of the same type, such as parl-red part-green (Wolle et al.,
1990).

This result is an embarrassment for the bottom-up models stated in §2.2, but the
circummstances under which parallel detection of conjunctions is possible are Limited,
and two conditions must be satisfied. Firstly, display elements must be very highly
discriminable, so that “noise” is insignificant. Apparently, colours used in catly tachis-
toscopic displays were insufficiently saturated to meet this condition (Treisman & Sato,
1990). Secondly, subjects must know in advance tbe exact feature composition of the
target(s), and may only scan for conjunctions of a single Lype at a time.

A simple extension to the pre-aticntive models given in §2.1.1 is sufficient to explain
this result. Each feature-space marks locations of fealure discontiuuity in a bottom-up
fasbion, as before, but also compares local sceue properties with those of the target
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using top-down knowledge, and tbe sum of these signals is wrilten into the boundary
map. We might suppose that candidate locations are ranked and scanned in turn, and
hence tbe correct target is present at tbe first location to be attended to when noise
is insignificant. If advance knowledge is imprecisc or absent, the bottom-up procedure
applies. Top-down selection is not very efficient, and may easily be overcome by “noise”
or imprecise specification of the target, or target--distractor similarity.

This modified framework is called Guided Search (Wolfe & Cave. 1990). A fast
spalially-parallel “pre-attentive” stage forms a primitive segmentation, using both
bottom up and top-down informalion, to which each feature space conlributes inde-
pendently. The purpose of this rather inflexible and simple-minded stage is Lo guide
a spalially-restricted, slower, more sophisticated “atientive” processor Lo localions of
poteutial importance efficiently. Eflective guidance hides Lhe serial natnre of the atten-
Live process (Hoffman, 1979). Qnalitative predictions of the model have been [ormed by
computer simulation (Cave & Wolfe, 1990), and are essentially Lhe same as those made
by late-selection models (Duncan & Humphreys, 1989).

2.4.2 Visual Physiology

Only a very brief mention of Lhe anatomy and physiology of the human visual system
lie within the scope of this thesis, bnl physiological approaches are importani because
they may motivate developments at cognitive or computational levels. Visual arcas of
the human (and relaled) brain are not amorphous bnt consist of largely independent
functional units. Cowey (1985) mentions 12 diffcrent visual areas in monkey, and notes
that new areas are discovered “... at a rate ol aboul onc every two years”. Cortical
maps usually {ollow a topographic layout, so that cells responding to adjaceot image
locations are nearby. Several [unctionally-specialised pathways run in parallel, often
physically segregated from each other (Zeki & Shipp, 1988). Similar specialisation is
inferred in the human brain from the selective loss of function snffered by stroke vic-
tims. The brain is, of course, very poorly understood, and it wonld be foolhardy to
base a visual theory npon a fcw isolated neurophysiological observations. Neverthe-
less, Livingstone and Iubel (1987) had sufficient confidence in the significance of their
own observations of separate processiug channels to predicl qualitative performance in
a series of simple psychophysical experiments. Receptive field profiles of simple cells
indicate what information has been extracted at the lowest level (Pollen & Ronner, 1981;
Wilson, 1983), from which performance at threshold discrimination tasks has been pre-
dicted. Different representations may be used at higher Jevels, and wider conclusions
should be approached with caution (Marr, 1982).

Single-cell recordings permit observations of a working brain, although it is not
operating uuder normal conditions. Neural responses are found to be greatly attenu-
ated when altention is direcled elsewhere in the visnal field (Moran & Desimone, 1985).
Increasing the amouut of attention direcled at a stimulns can enhance both Lhe respon-
siveness and seleclivily of neurons that process it (Spitzer et al., 1988). Theseresults from
monkey confirm the spatially-selective nature of attention. Actions of single neurons
may he lenuously related to the computational task, however, and wider conclusions
are speculative. For similar reasons, artificial ueural network models of visual attention
are often inappropriate (Winder, 1989).
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2.4.3 Justification for Serial and Parallel Paradigms

Empirical investigation by psychologists has cstablished some major features of the
buman visual system: a partial dichotomy between parallel and serial modes; localimage
“features”; functional specialisation; and selection by image location. Competitive
evolutionary pressure has probably resulted in human visiop adopting a form that is
at least locally optimal, assuming Naturc is not unduly capricious, and hence Lhese
observations may be relevant to the design of machine vision systems. Simply designing
systems with similar exterpal characteristics is not a helpful way to proceed because
this merely redescribes tbe psychological data; of greater relevance is the compulational
logic which lies behind these external manifestalions.

These questions were addressed by Marr in the construction of his primal sketch
model (Marr, 1976, 1982). Marr’s background was ju physiology, and the operations
he proposes are motivated, at least in part, by empirical studies ol the visual cortex.
He realised, bowever, that it was necessary to exercise “extreme caution in making
inferences from neurophysiological findings about the algorithms and representations
being used ...” (Marr, 1982, page 26). Of central importance is the information that
needs to be represeuted and the process that needs to be implemented. Perceptual
information processing may be addressed at three levels (Marr, 1982, page 25):

1. Computational theory: What is the goal of the computation, why is it appropri-
ate, and what is the Jogic of the strategy by which it can be carried out?

2. Representation and algorithm: How can this computational theory be imple-
mented ? In particular, what is the representation for the iupnt and outpul, and
what is the algorithm for the transformation ?

3. Hardware immplementation: How can the representation and algorithm be re-
alised physically ?

Understanding the computational level is of central importauce, as this defines Lhe ends
to which levels 2 and 3 provide the means. Human and machine vision systeros must
operate in similar visual environments, and employ analogous physical optics,and hence
may address comparable information-processing requirements.

Assuming reasouable spatial and gray-level resolution (say 1000x1000x256), the
number of possible visual stimuli is extremely large (> 102%0%9) even when Lbe influ-
ence of context or other factors are ignored, and precludes a brute-[lorce approach to Lthe
generation of suitable responses. It has been suggested that the pervasive perceptual
tasks of visual search and image segmentation are computationally iniractable {Gurarj
& Wechsler, 1982; Tsotsos, 1987). This limit cannot be circumvented by cleverimplemen-
tation techniques or parallel bardware, and applies equally to biological and machine
vision systems. It implies that visual information must be processed selechively.

Selection of Appropriate Computational Paradigm

Several design principles have been proposed to guide appropriate choices for operations
to he conducted by a sequential analysis. The maxinmun: power-minimum cost principle
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seeks to maximise an abstract performance metric, and those of least commitment and
gracelul degradation address the variable nature of the pbysical world (Marr, 1982, Tsot-
sos, 1987). Operations performed in a spatially-parallel [ashion incur a greater hardware
cost becausc suitable processors must be replicated [or each sub-image location, while
sequential processing receives a temporal penalty. An ideal system with unlimited ca-
pacity would compute in an entirely parallel fashion, but it is inefficient in practice to
devote limited resources to providing parallel processors to support operations which are
rarely invoked. For example, it is entirely reasonable to recognise one’s grand-mother,
but perhaps more cost-eflective Lo selectively apply a single detector responding Lo the
abstract property ol “grand-motherness”, rather than have & bank of processors dedi-
cated to this infrequent operation. Generic “interest operators” are strong candidates
for parallel processing, since it is essential for selective image analysis to be largeted
cfficiently. Since physical objects are of ultimate inlerest, it is sensible to select “inter-
est operators” corresponding to putative physical boundaries. Assuming the world to
be composed mainly of smooth surfaces and collections of similar objects, detection of
local feature differences and grouping image parts are key operations, whereas computa-
tion of spatial or abstract relations may be delerred until a selective sequential analysis
(Ullman, 1984).

To some extent, the choice of which perceptual tasks are conducted “in parallel”
depends on how efficiently they may be implemented. Simple local computations which
are hardly influenced by local data may be performed very efficiently by data-parallel
processors, whereas data-dcpendent or irregular computation is betier supported by the
more costly task-parallel paradigm (§A.1). Both variants are required for image analysis,
prompting the development of a duai-paradigm parallel processor, the DisPuter (§A.1.3).
The high efficiency of local data-parallel proeessing prohahly lies behind the apparent
importance of image location in pre-attentive human vision and the restricted influence
of top-down knowledge. Domain-independent “lcatures” may be deduced [rom unusual
image events or “suspicious coincidences” (Barlow, 1986; Lowe, 1987), and multiple-
resolution or hierarchical representations further maximise performance (Terzopoulos,
t986). Note that no advantage of a dual-paradigm strategy accrues if the “pre-attentive”
representation is iuterpreted completely hy sequential analysis — tbis would merely
trade exponential space [or exponential time. Following the principle of modular design
(Marr, 1976), little has been said about processes operating during selective sequential
image interpretation because these are very task specific.

2.4.4 Conclusions: Local Feature Differences Guide Selective
Processing

Extensive behavioral evidence shows that low-level human vision displays a dichotomy
between “attentive” and “pre-attentive” processing. Pre-attentive vision operates over
a wide image area whereas attention is selective and spatially localised, allhough this
distinction is less sharp for hierarchical displays. No benefit may be derived [rom
simply replicating these characterislics in machine vision systems, but aspects of the
computational strategy employed may be inferred by informal analysis. Current models
propose that the role of pre-attentive vision is to gnide selective attenlion to important
or “salient” 1mage locations by rudimentary processing of local image properiies {Wolfe
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& Cave, 1990). Attempts to find computational definitions for these “features” have
failed, but their precise form is probably less important than Lheir general nature. Our
suhjective experience ol immediate and eflortiess perception reflects ihe efficiency of
this dual-paradigm approach.

Compulational analysis suggests that it is infeasible to process image dala com-
pletely, and hence that selective interpretation is imperative (Gurari & Wechsler, 1982;
Tsotsos, 1987). Vision is ullimately concerned with perceiving physical objects, and
heuristic assumptions about their nature confirm that ficst-order differences in local
image statistics form an appropriate pre-attentive representation. Abstract design prin-
ciples diclate that avajlable resources should be divided between elementary “paralle]”
guidance and detailed “sequential” analysis, the latler paradigm being more suitable
for nnusual or irregular computation. Proposals for machine vision systems are often
influenced by similar reasoning (Chapter 3).



Approaches to the
Representation and Analysis of
Visual Texture

Visual texture is concerned with spatial composition and appearance, and is an inherent
characteristic of physical surlaces. Texture analysis has several goals, but we shall re-
strict our main discussion Lo the location of texture edges (segmentation), and character-
isation of images regions (classification). Classification is often the more straightforward
task, having more constrained results, but requires fexture samples to be homogeneous
and to have been previously segmented [rom Lhe remainder of the image.

Representations of visual texlure are commonly divided into structural and statis-
tical models (§1.2), analogous with the attentive-pre-attentive dichotomy in low-lcvel
humanp vision (Chapter 2). This correspondence is more Lhan superficial, and models
of pre-attentive vision have oflen influenced approaches to texture analysis (and vice
versa). Statistical models share many characteristics with pre-attentive vision: they
represent iexture indirectly by simple local statisties; and correspond naturally with
the data-parallel paradigm (§A.1). Texlure features are often derived from second-
order image statistics, and first-order fealure differeuces used to locate hypothetical
texture boundaries {§3.2). Conversely, structural models {requenlly reqnire irregu-
lar data-dependent processing, but seek to describe hicrarchical structure more com-
pletely (§3.3).

Characteristics of both paradigms may be adjusted to suit the application: segmen-
talion requires features to represent local image properties (§3.5), whereas it is often
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more appropriate during classification to describe Lhe image as a whole (§3.4). Gabor fil-
ters achieve an optimal compromise between these conflicting requirements (Chapler 4).
Texture variability and the probabilistic influence of spatial context are represented ex-
plicitly by Gibbs—Markov random field models (Chapter 5). Building on psychological
models of low-level human vision (Chapter 2) and the discussion of current approaches
to texture presented in this Chapter, we propose a hybrid Gabor-Markov [ramework
for texture analysis {(Chapler 5), combining the best aspects of statistical and struc-
tural models. In this context, Gabor filtering may be described as “pre-attentive”, and
Markovian analysis as “attentive” processing.

3.1 Introduction: Texture Representations

Texture analysis is an important component of low-level vision, providing information
about the nature and three-dimensional shape of physical surfaces. ITmage analysis is
ultimately concerned with properties of the scene, and visual texture has many advan-
tages in this regard: it is a [undamental property ol physical objects; is transformed
predictably by a ehange ol viewpoint; and is robust to changes in lighting or other
external influences. Despite its practical importance, an acceptable [ormal definition of
“texture” does not exist (Ahuja & Rosenfeld, 1981; Haralick, 1979). The Ozford Handy
Dictionary' offers “arrangement ol threads in textile fabric, quality of a surface or sub-
stance when looked at” (page 942), giving two complementary alternatives. When the
former is generalised, so that texture is represenled by ils primitive elements and their
spalial arrangement, these definitions reflect the division into structurel and stulistical
approaches noted above (§1.2). Descriptions of visual texture are commonly classified
according to this dichotomy, which successfully characterises the major aspexts of tex-
ture analysis, but the distinction is becoming increasingly blurred as more complex
models are developed (Haralick, 1979).

“Structural” approaches to texture are concerned with its hierarchical nalure, and
make explicit. the distinclion between microteziure and macrotezture. Microtexture
relers to the fine-scale residual variation present in each texture primitive, aad macro-
texture to Lbeir spalial arcangement. The hierarchy may he expanded recursively, with
macrotexture at one level forming microtexture at the next, and very complex spa-
tial arrangements may be represented, possessing structured organisation similar to
that observed in many patural textures (Ahuja & Rosenleld, 1981; Marr, 1976). Struc-
tural descriptions are most appropriate [or regular textures, such as reptile skiu (#22)
and handwoven rattan (#65; Figure 1.6 on page 11), butl are awkward [or represent-
ing wore amorphous structure, such as beach sand (#28) or clouds (#90). A further
disadvantage is that analysis of many different texture primitives is computationally
demanding, as illustrated above (Figure 1.2 on page 4). We justified the existence of an
apparent dichotomy in low-level human vision by the requirement [or seleclive image
analysis (§2.4), and similar reasoning applies to machine vision, suggesting that it it
preferable to process a single texture ratber thau many individual elements (Marr, 1982).
“Statistical” descriptions of texture adopt this more economical approach, representing

1Sixth Edition, Chancellor Press, London.
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palterns of spatial varialion indirectly by derived properties or “features”. In this re-
spect, the partition into “structural” and “statistical” approaches is analogous Lo the
human attentive—pre-attentive dichotomy (Chapter 2), and is often characterised aptly
by “serial” and “parallel” processing.

Both structural and slatistical approaches represent visual texture concisely by
higher-order properties or “features”, the most appropriate form for which is influenced
by the application. We shall be concerned mainly with classification and segmenlation,
commenting in passing on image synthesis and restoration techniques. We describe
these important operations bricfly in the remainder of this seclion in order to motivate
the selcction of suitable feature properties during our review of statistical and structural
approaches (§83.2~3.3). Texture classification and image segmentaliou algorithms are
discussed in more detail helow (§§3.4-3.5).

3.1.1 Appropriate Features for Texture Classification

Classification of a textured image involves assigning it to a particular class, eachol which
is represented by a small number of “features” derived from appropriatc training data.
When each class contains only a single object, Lhis process corresponds Lo recoguition.
Images are usually assumed to be homogeneous, containing textnre of a single lype, and
a single set of featurcs is used Lo represent Lhe entire image, enforcing global? comparison
between the unidentified “test” image and known “training sets” to establish the correct
class label. Abstraction away [rom raw pixel intensity allows accurate classification to
be achieved without precise duplication of viewpoint or iinaging conditions (§3.1.3). Tt is
convenient to collect texture parameters into a fealure vector, and to view the training
phase as forming a partilion of multi-dimensional feature space (Devijver & Kittler,
1982). Whilst the use of global features may simplily classifier design, it implies that
a hypothetical object may be classified only after a separatc process has scgmented it
from ils image surroundings. Featurc extraction and classification are logically distinct,
and we shall treat them separately, discussing classification algorithms in §3.4.

3.1.2 Appropriate Features for Image Segmentation

Segmentation of an image into homogeneous textured regions suitable for classification
necessarily involves the use of local features. When an image varies unprediclably, fea-
Lure estimates can be improved by extending the area over which they are collected, but
this reduces the precision with which a texture boundary may be localised. This trade-
off is a manifestation of the uncertainty principle ol information (Wilson & Granlund,
1984), and highlights a potential conflict when the same [ealures are used [or both
classification and segmentation.

Partitioning an image into regions which are homogeneous with respect to some
property is usually insufficient by ilself to lorm a good segmecutation. A narrow in-
terpretation of this description could involve clustering pixels sharing a common gray

2In this context, “global” implies a lack of spatial localisation within each image.
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Jevel, even il they are distribuled in small clumps across the image: fragmented bound-
aries would result, with no apparent overall structure (Rosenfeld & Kak, 1982). A good
segmentation makes explicit the arrangement of physical objects which gave rise lo the
image, rather than re-expressing image-related information. This concept lay behind
Barrow and Tenenbaum’s intrinsic images, which seek to represent object-related prop-
erties such as surface depth and orientation (Barrow & Tenenbaum, 1981). Ideally, this
additional information would be available to assist the segmentation process, but in
practice segmentation may contribute to the formation of intrinsic images, and no prior
information may be assumed. As with pre-atientive human vision, heuristic assump-
tions ahout the scene suggest that first-order differences in simple local image features
are appropriate indicators for hypothetical object boundaries (§2.4).

Segmentation is a difficult problem because the number of possible scene partitions
grows exponentially with image dineusions (Gurari & Wechsler, 1952). Texture variation
within each region confounds the characteristic image defining the desired partition, and
this eflect has been hkened fo the modulation of a carrier signal (Clark ef al., 1987). In
human vision, this complexity is apparently overcome by an altenlive—pre-ailentive
dichotomy involving scrutiny of selected image regions. Automatic segmentation re-
quires accurate borders to be found in the absence of additional prior knowledge about
the scene: segmentation and texture description must proceed simultaneously. Ap-
proximate houndaries may sometimes he located fairly quickly, but refinement involves
intensc local scrutiny and is very slow (Blanz & Reinhardt, 1981). As described in §3.5,
edge detection and region growing are the major approaches to this problem (Ballard
& Brown, 1982), although many practical systems require additional information in the
form ol texture or scene parameters provided by human intervention.

3.1.3 Invariant Texture Features

Textnre variation is confounded by viewpoint, lighting, surface shape, and other ex-
trinsic [actors. [deally, these would be eliminated prior to texture analysis, but this is
seldom possible and it may instead be necessary to estimate these parameters. Fealures
may be designed to be invariant to certain transforms in order that reliable classifica-
tion and segmentation may be obtained. For example, circularly-symmetric {features
are clearly rotation invariant, although they fail to capture the {full structure of oriented
textnres (Kashyap & Khotanzad, 1986; Vickers & Modestino, 1982), and fraclal features
are somewhat scale invariant (Peleg el al, 1984). An alternative is to employ param-
eterised texture models which allow viewpoint parameters to be cstimated [rom the
image (Cohen et al., 1991).

Variation in lighting or surface geometry may give rise to smooth changes in first-
order statistics which do not refiect intrinsic properties of the texture, and hence dif-
[erences in first-order properties cannot be relied upon to discriminate texiures. When
these effects are global to the test image, they may be eliminated by histogram equalisa-
tion {Hsiao & Sawchuk, 1989; Pietikainen ef al., 1983; Weszka et al., 1976) or normalisation
(Faugeras & Pratt, 1980; Tomita et al., 1982); and local variations produced by shadowing
may be reduced by Jogarithmic pre-processing (Mitchell et ai., 1977; Voorhees & Poggio,
1987).
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3.2 Statistical Approaches to Texture Analysis

Statistical approaches to texture analysis follow the second form of the definition on
page 34, and seek to represent lexturc indirectly by properties or features derived [rom
its spatial distribution of gray levels. No attempt is made to understand the hicrarchical
structure of the texture; only properties derived dircctly from pixel values are used
(Ahuja & Rosenfeld, 1981). The justification for this approach is the observed vanability
of natural texture, snch as beach sand (#28) or European marble (#63), which oflen
makes any division iuto microlexture and macrotexture somewhat arbitrary (Tamura
et al., 1978).

Suitable image features may often be extracted very efficiently by simple local pro-
cessing, and hence may be computed by data-parallel architectures (§A.1.3). Statistical
approaches are analogous Lo the role proposed for pre-attentive humau vision: the com-
mon objective is to compute an clementary representation in which first-order diflerences
reflect object boundaries or “texture edges” present in the scene (§2.4). Modcls of pre-
attentive buman vision have influenced the design of these systems, and have suggested
suitable charactceristics for the alphabet of primitive texture fcatures. It is essential for
these to reflect sceue boundaries accurately, because it is nol possible to compensate
subsequently for a loss of information at this stage. Both the power spectrum and co-
occurrence methods employ second-order image statistics gathered from a wide area to
increase reliability (§3.2.2; §3.2.3), and are often applied to textnre classification. Image
filtering generates local features more suitable for segmentation algorithms (§3.2.4), and
tbe Gabor encrgy measures discussed in Cbapter 4 are of this type. Texture variabil-
ity is acknowledged by random field models (§3.2.5), including Gibbs-Markov models
discussed in Chapler 5.

3.2.1 First-Order Image Statistics

Pixel intensity is Lhe simoplest image property that can be employed as a texture fea-
ture, and provides sufficient informatiou to segmeut simple structured scenes such as
single cells (Blanz & Reinhardt, 1981). Intensity distribulions of adjacent texiured re-
gions may have considerable overlap, and first-order properties are not, reliable texturc
[eatures because they are defined without reference to image context, and are strongly
influenced by the image acquisition system (§3.1.3). Other first-order properties are
similarly confounded, and it is therefore necessary to seek [eatures seasitive to the spa-
tial arrangement of the texture, modifying their response to cach pixel according to its
context.

Optimal edge deiectors have been developed Lo respond to local variation in pixel
intensity, markiug boundaries accurately even in noisy images (Canny, 1983; Spacek,
1986). Local edges reflect higher-order image properties, and are relatively unaffected
by smooth ¢banges in surface orientation, and hence are a more robust lexiure charac-
teristic. Textnres are spatially varying, and conventional edge-finders respond to many
internal microedges in addition to the desired macroedges wheu adjacent textures do
not differ significantly in mean lumiuance (Figure 1.2 on page 4). An attempl to classify
each edge segment by assuming a particular texture model was only partially successlul:
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some microedges were filtered out but many spurious edge segments remained (Eom &
Kashyap, 1990).

3.2.2 Global Image Statistics

First-order properties represent image location precisely but are insensitive Lo spatial
context; at the other extreme, power spectra capture aspects of spatial variation but
are iuseusitive to image location. Power spectra are too bulky Lo be used directly
as texture [eatures, and such an arrangement would also be insufficiently abstract,
but may be employed indirectly by deriving features from tbem to represent heuristic
perceptual properties such as “coarseness” and “directionality” (Ballard & Brown, 1982).
Another metbod uses gray-ievel run-length statistics at various orientations, whicb are
again collected into matrices and represented indirectly by beuristic features (Conners
& Harlow, 1980; Haralick, 1979).

Both these methods are able to discriminate some varielies of natural Lexture, but
are less reliable than other fealures reported below (Conners & Harlow, 1980; Weszka el al.,
1976). They are still defined al an insulliciently abstract level, and are sensitive to noise
and monotonic changes in gray level (Haralick, 1979). Whilst their inherently global
nature is suitable for image classification, it is less appropriate for accurate houndary
localisation.

3.2.3 Second-Order Co-Occurrence Matrices

Julesz’s (1962, 1975) conjecture Lthat pre-attentive buman vision is sensitive only to firsi,
and second-order statistics has been extremely influential in motivating the scarch for
reliable generic texture features (§2.3.2). Although the human visual system certainly
does not perform perfectly, il is altractive as a baseline, and controlled experiments
show tbai differences in second-order image statistics correlate closely with pre-altentive
texture discriminability. Second-order statistics are defined for pairs of pixels, and hence
are the simplest properties affected by spatial context.

Second-order statistics may be operated on conveniently by collecting them into a
co-eccurrence matriz (Haralick et al., 1973). For a given offsel vector §, matrix elements
represent the number of times each pair of gray levels occurs in the image at separation &,
and form au estimate of the second-order transition probabilities on normalisation.
It is usual to restrict § to cardinal directions and integer pixel steps, and it may be
represented as (d, #). The rank of tbe co-occurrence matrix @(d, #) matches the number
of allowable gray levels, K. Symmetry is implied:

(d,0) = O(d,0+7).
An inlermediate sel of matrices is defined along principal directions.
S(d,0) = 3[®(d,0) + B(d,0+ )], 0= 0,7/2,7,3%/2 (3-1)
Circular symmetry may be enflorced by summing over all orientations.

S(d) = > S(d.0) (3-2)
8
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Co-occurrence maltrices are too unwieldy to use directly, particularly for large K, and
may exceed the dimensions of the image! Tbey are often condensed into more compact
[eatures, achieving graceful degradation when the malrix is sparsely populated. Four-
teen features have been selected heuristically to express significant variation (Haralick
et al., 1973), of which the five most commmonly used are (Ballard & Brown, 1982; Conners
& Harlow, 1980; Haralick, 1979):

K3
Energy: E(d,8) = Y (8,40
vy=0
K=}
Entropy:  H(d,0) = — Y 5.,(d,0)log 5,,(d,0)
£,3=0
1 K-1
Correlation: C(d,8) = S -2 - 1)5.,(d.0)
Sz8y 1,3=0
K-1
: §.,(d.8)
Homogeneity: L(d,8) = I;JH_’(’,—_J_)?
K-1
Inertia: 1d,0) = 3 (i-5)S.,(d,0) (3-3)
3,J=0
where
K-1 K-1
2= Y iy S,(d0)
=0 =0
K-1 K-1
8= Y i-z2 )Y S,(d,0)
1=0 =0

and similarly for § and s, It is not practical to compute these (eatures for many
offset lengths, and often a single value is selected (e.g. d = 1). Haralick (1979) has
suggested that there tend 1o be natural constraiuls betweeun co-occurrence probabilitics
at one spatial distance with thosc at anotlier, but ability to discriminate somc textures
depends critically on the choice of d (Modestino ei al, 1981). At a large scparalion,
individua) pixels tend to be weakly correlated, and the resulting slalistics arc noisy
{Weszka et al., 1976). If gray levels are compared between local neighbourhoods rather
than individual pixels, to form modified co-occurrence maltrices, this effect iseliminated.
Unfortunately, the arbitrary feature definitions (3-3) fail to capture all significant tex-
tore structure (Conners & Harlow, 1980; Modestino et el, 1981), and have no obvious
perceptual correlates {(Tamura el ol., 1978).

Despite these reservations, empirical and theoretical comparalive sludieshave shown
that co-occurrence methods are successful at discriminating natural lextures (Conners
& Harlow, 1980; Weszka el al., 1976). Classification accuracy was significanily higher
than power spectrum or run-length methods witb Brodalz textures, acnal imagery,
and synthetic images, consistent with the Julesz conjecture that second-order slatistics
capture most important texinre variation (§2.3.2). Local co-occurrence statistics may
be collected over small or irregular regions, and benchmark studies have shown that
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reasonable localisation accuracy is achieved during image segmentalion (du Buf ¢ al.,
1990).

Concise Representations: Co-Occurrence Histograms

Co-occurrence methods suffer from two main disadvantages: a large volume of interme-
diate data must be processed; and the heuristic features (3-3) are arbitrary and lossy.
Re-gnantising the image to a smaller pumber of gray levels reduces the rank of inter-
mediate matrices, decreasing computational regnirements, and has negligible impacl on
accuracy provided a reasonable number of gray levels remain (£ = 64; du Bul et al.,
1990; Vickers & Modestino, 1982). Greater efficiency improvements are obtained by com-
pressing tbe K X K co-occurrence matrix into a single K-element bistogram. Weszka et
ol. (1976) suggested the use of absolute gray-level difference to index this hisiogram, and
proposed definitions for fealures analogous Lo those used with full co-occurrence matri-
ces. Empirical classification accuracy with their histogram features was about equal to
that achieved with fcatures defined from the full co-occurrence matrix, but achieved a
considerable compntational saving. Conners and Harlow (1980) suggested this apparent
cquality might reflect the inability of common co-occurrence features (3-3) to capture
all the information present in the matrix rather than a deeper equivalence.

Unser (1986) noted that the covariance matrix Cyxy of a pair of random variables,
x and Y, may be diagonalised by taking their sum and difference:

L op
Coy = Uiy(p 1)
ul _ L /1 1 x
v, T B\l -1 y
_ 2 [Ll4p O
e - {170

After an approximation, this justifies the use of snm and difference histograms to rep-
resent sccond-order statistics in place of bulky co-ocenrrence matrices. Unser proposed
another set of heuristic features for use with ibese histograms; in nine out of lourteen
cases they were identical to those proposed earlier by Haralick et al. {1973). Empirical
classification results suggested that Unser’s histogram features were almost as accurate
as tbose obtained from the full co-occnrrence matrices, confirming the inadequacy of
the latter.

Improved Co-Occurrence Features: Stochastic Models

Histograms and matrices of second-order image stalistics are both dependent on the
use of heuristic {eatures Lo express their informalion more succinctly, leading to arbi-
trary approximations. An alternative approach is to apply a stochastic model to afl
the entries, making explicit the variability of natural textures, and parameters may
be selected and weighted appropriately by maximum-likelihood methods. Vickers and
Modestino (1982) assume the co-occurrence maltrix is drawn from a multinomial distri-
bution, with independent entries, bul note that accurate parameler estimalion requircs
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a large amount of training data. If this is not available, they suggest additional con-
straints could be provided by assuming a random field model [or the texture (§3.2.5).
Good empirical results were reported on Brodatz classification, but a thorough znalysis
was not conducted and some of their assumptions seem questionable. The multino-
mial disiribution was also used hy Unser (1986) to model the components of his surn
and difference histograms. Whilst these methods avoid the use of arbitrary and lossy
[eatures, and have the advantage of statistical techniques, they are dependent on the
appropriatcness of the assumed stochastic model.

3.2.4 Local Texture Properties

Representing texture by global stalistics is appropriate during classification because
cacli image conlains a homogeneous texture sample, but local properties may be more
reliable because they are less affected by smooth changes arising [rom Lhe ymage ac-
quisition environmenl. Local features are also preferred during seginentation, when
the regions over which stalistics must be collected may be small or irregular (§3.1.2).
Exploitation of Jocal image properties is consisteut with texton theory (Julesz, 1981),
which marks texturc boundaries where Lhere is a differeuce in first-order leature statis-
tics (§2.2.1). Compactness and spatial localisation are iuwportant characteristics ol
primitive [eatures apparently employed by the human visual system, and our justifica-
tion for the observed dual-paradigm structure requires that they may be extracted by
simple data-parallel processiug (§2.3). Data-independent transformations are discussed
in this section: their ohjective is o allow texture edges to be located in Lke filtered
image by “standard” first-order techniques (Figure 1.3 on page 5). Mcthods operating
at a slightly higher level are discussed below (§3.3.3).

A system [or segmenting images by thresholding the value of a local image property
was described by Zucker, Rosenfeld and Davis (1975). This relied on a global histogram
of the transformed image being bimodal when two texture types were present, one peak
corresponding Lo each texture. Image statistics were extracted after convolulion with
“spot dctector” kernels, whose spot. size was adjusted automatically, but non-imaximal
snppression was required to form clear peaks in the histogram. Such a simpl operator
has only limited discriminating power but could be extended by a larger set of local
properties (Zucker et al., 1975).

Purely linear filtering is invertible and heuce cannot extract information, but linear
convolution is computationally atiractive and a common techuique is to compose it
with a point non-liearily such as squaring or absolule value (Caelli, 1985). Linear
averaging may be used to overcome spatial variability and “noise” in fealure output,
bnt this can incorrectly eliminate small regions and mislocate boundaries, and non-
linear methods may perform better (§3.5.3). Parlicular care is required in the vicinity
of texture boundaries because the region of support of the feature detcctor may span
more than one lexlure type, witb unpredictable results, but techniques derived from
edge-preserving smoothing may be employed Lo reduce errors of this type (Hsiao &
Sawchuk, 1989).
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Tezture Energy Measures

Many filter kernels have been proposed for use in conjunction with Caelli’s (1985) frame-
work. A set of standard masks, designed to respond strongly Lo heuristic spatial [eatures
such as bars and rings, was proposed by Laws (Ballard & Brown, 1982; Hsiao & Sawchuk,
1989; Pietikdinen et al., 1983), and similar kernels were proposed as edge or spot delec-
tors (Caelli, 1988; Zucker et al., 1975). Precise numerical values appear less important
than the kernel’s general form (Pietikiinen et al., 1983). Indirectly, these filters measure
the local spatial frequencies present in an image, discarding phase, and are known as
tezlure energy measures. Empirical classification results with Brodatz Lextures suggest
that Laws’ kernels achieve higher accuracy than second-order co-occurrence statistics
(Pictikainen ef al., 1983).

Spatial/spatial-frequency dependence may be made more explicit hy the use of the
Wigner representation (Reed & Wechsler, 1990), effectively a spalially-restricted Fourier
transform. Recently, tunable Gabor kernels have attracted much interest because they
achieve optimal joint resolution in Lhe spatial and spectral domains (Daugman, 1985;
Gabor, 1946). This theoretical advantage is reinforced by empirical studies which have
found Gabor kernels suitable for distinguishing many natural and synthetic lexlures
(Bovik el al., 1990; Tan, 1988). We discuss the attractive properties of these filiers in
more detail in Chapter 4, then review some previous applications Lo image analysis
before describing our experiments and proposals for novel Gabor texture [eatures.

Texture energy measures may he computed quickly and easily, and do nol require
data-dependent processing. These characleristics are similar to those observed for pre-
attentive human vision, and imply analogous compulalional benefits (§2.4). Unlike
features collected from global histograms, the simplicity of energy mcasures allows the
formation of cornplete filtered images, assigning a [eature value to each site, and this is
particularly advantageous during segmentation (§3.1.2). Features are robust to smooth
changes in texture parameters because they are collecled locally, and soplisticated
feature-reduction metbods have been proposed to identify which members of the fiiter
family contribute most strongly to texture discrirnination (Caelli, 1988; Unser & Eden,
1989).

3.2.5 Random Field Models

None of the texture models described in this Chapter is in perlect agreement with
real image data. Even disregarding variability arising from external sonrces, such as
surface geometry, ligbting, and camera parameters, correspondence belween abstract
models and real textures is inexact. Disparities arise because the representations we
have discussed ignore an important and fundamental characteristic of nalural texture:
its variability (§1.3). Whilst random variation can never be predicted exactly, it may
be described, analysed and ezpected behaviour predicted by stochastic modelling, which
forms probabilistic descriptions. This framework captures complex random variation
in a small number of parameters, and allows models to be manipulated by optimal
maximum-likelihood techniques (Devijver & Kittler, 1982). Random field models may
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be used to describe both microtexture and inacrotexture, but we shall postponediscus-
sion of tbe latter application nntil §3.3.3 although the distinction between tbese [orms
sometimes vanishes.

Raudom field models describe the image by a multivariate probability distrbution,
specilying the marginal distributiou for each pixel. Within a cbosen [anily of dis-
tribution [unctions, eacb textnre class may be descrihed hy selecting an appropriate
set of parameter valnes, which determine pixel mean, variauce, and correlation struc-
tnre. Optimal maximum-likelihood tecbniques operating on tbe joint likelihood of all
image pixels may be nsed to geuerate parameter estimates, classily textures, and seg-
ment images. Ergodicity is often assumed, implying that similar stochastic behaviour
is obscrved within and between texture samples, although this sometimes breaks down
(Gagalowicz & Ma, 1985). Ouce appropriate feature vectors have been oblained, they
may be operaled on in the same way as other derived statistics (Khotanzad & Cken, 1989;
Manjunath & Chellappa, 1991). Provided that real textures vary in a simjlar manner to
the parameterised random field models, Lbis approach bas thie advantage thal no loss
of information occurs by the use ol heuristic leatures. Ideally, Lhe joint distribulion
would be estimated without the need to assume a paramelric form, but phenomenal
amounts of Lraining data would be required to form accurate cstimales able to operate
al a sufficiently abstract level.

Simultaneous Autoregressive and Gibbs—Markov Models

Motivated by the original Julesz conjeclure (§2.3.2), Pratt, Faugcras and Gagalowicz
(1978) devised a method to synthesise random fields with specified secoud-order prop-
ertics. A field ol white noise v = {v;}: € L} was couvolved with a local kernel, to
synthesise field x:

X o= pit Y Blx,—m)tw, EL (3-4)

J

where B is the convolution kernel and g the pixel meau. Fields of this type are known
as simullaneous auioregressive (SAR), and are convenient Lo manipnlate because of
their local linear neighbonrhood structure (Besag, 1974). Parameter estimalion may be
achieved by computing a “whitening transform” that transforms x back Lo ¥ (Faugeras
& Pratt, 1980).

Autoregressive models are computationally simple, but [ail to capture the full struc-
ture of natural textnres. Second-order statistics of SAR fields may be modelled exactly
by Gibbs-Markov models, and correspondence is exact [or multivariate normal distribu-
Ltions. The converse is not true, and Gibbs-Markov models effectively lorm asuperset of
SAR models having greater flexibilily to model nalural textures (Chellappa & Kashyap,
1982). Gibbs-Markov random fields are popular texture models, and arc the subject
of Chapter 5. They are defined by conditional probahility distribulions operating on a
local neighbourhood, making explicit the role of image contexl, and are most suilable
for modelling amorphous Lexiures nol possessing long-rauge structure.

Random field models capture the structure of a wide variety ol uatural textures
in a concise paramecter set, the success of which may be verified conveniently by syn-
thesis (Figure 1.4 on page 7; Khotanzad & Kashyap, 1987). Computational difficulties
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often dictate the use of simplified models, such as the auto-normal Gibbs-Markov ran-
dom field (§5.1.5). Oune general criticism of global statistics is tbeir inabihty to refiect
smooth changes in texture parameters, but non-stationary random field models address
this problem (Silverman & Cooper, 1988). A more serious concern is that random field
models do not operate at a sufficiently abstract level: they eflectively perform stochastic
template-matching on the image array, and accordingly are sensitive Lo any distortion
of the texture. Image structure, of the type discussed in §3.3, cannot easily be incorpo-
rated into pixel-based random field models. Qur proposals for hybrid Gabor-Markov
models overcome many of these current limitations (§5.7).

3.3 Structural Approaches to Texture Analysis

Our definition of texture (page 34) offered a description at two levels, in terms of: () the
spatial arrangement of primitive elements; and (if) the properties they give rise to.
Rather than representing textures indirectly by associated statistics, structural models
seek to represent their hierarchical organisation direclly (Haralick, 1979). Slalistical
models refer to the arrangement of pixels Lo form a microtexture; structural models to
the arrangement of texture primitives to form a macrotexture (§1.2).

Regular textures may be described mathematically by grammars which specify tes-
sellations of the plane (Ballard & Brown, 1982), but texture primitives must be of regular
size and shape, and bave a precise spalial arrangement for this model to be accurate.
All equivalent texture elements possess a common property but il is not specified by
the structural model — it is often taken to be a region of near-constant intensily, but
could be any of the microtextures described above (§3.2). “Strong” lexture models
are rigid, and do not permit spatial interaction hetween microtextures, but only syn-
thetic textures are perfectly regular, and inflexible deterministic models of this type
are seldom used (Haralick, 1979). We shall discuss “weak”™ texture models, which do
allow probabilistic spatial interaclion (Haralick, 1979). Note that when a texture primi-
tive consists of a single pixel, structural and statistical models are virtually equivalent
(Ahuja & Rosenfeld, 1981).

Ideally, structural models are estimated by segmenting individual texture elemeuts
and noting their spatial arrangement and intcraction (§1.2). This is similar to the
method proposed by Marr (1976), and suggests a strong link between estimation of
structural texture fcatures and inage segmentation (§3.5). In practice, this approach
may be ill-specified for natural textures because the variahility ol both microlexture and
macrotexture means there is no clear distinction between them (Tamura ef al., 1978).
For computational reasons, it is preferable to manipulate a single texture rather than
a collection of elements, and hence structural models are most appropriate to perform
fine discrimination on regions located by a “pre-attentive” statistical analysis, or when
the statistical approach has failed allogether.

Structural analysis js feasible for regular textures, snch as straw (#15) and reptile
skin (#22; Figure 1.6), because these decompose unambiguously into micro and macre-
texture. Weak models of these particular Brodatz textures were formed by extracling
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and grouping regions of near-homogeneous intensity (Tomila et al., 1982). Severzl prim-
itive textnre types were identified and characterised by a number of simple parameters,
such as brightuess, size, and repeat vector (including level of variability), determined
by examining global bistograms. Reconstruction of the texture was possible using in-
teracting placement rules, aud classification was achieved by cowparing feature vectors.

A weakness of this approach was Lhe use of global histograms to determine texture
behaviour, because this implicitly assumes that training images are homogeneous and
not subject Lo perspective or other distortion, whereas both assumptions hold only
under ideal conditions. This limitation may be overcome by a purely local approach
(Hainey & Kanade, 1989), or by assuming particular scene geometry to guide the selec-
tion of texture primitives (Blostein & Ahuja, 1987). Systematic variations in mtensily
across an image are finnessed by the use of more abstracl fealure-derived pnmitives,
such as edges (Vilnrotier et al., 1986). Onec stndy characterised Brodatz textnres by
average scparation between oriented edge segments and claimed superior accuracy to
co-occurrence or texture energy methods (Kjell & Dyer, 1985). Another ook inlen-
sity extrema as primitives and achieved similar classificalion accuracy to co-ocenrrence
methods, but with much less computational effort (Mitchell et al., 1977).

3.3.1 Generalised Co-Occurrence Matrices

Spatial arrangements of texture primitives may he subjecled to a similar second-order
co-occurrence analysis Lo that employed above lor pixels (§3.2.3), [ormalised by the
use of generalised co-occurrence matrices (Davis et al., 1979). Direcl represenlation of
relative locations of [eatures of a given value is not advantageous because the resull-
ing matrix is very sparse and fails to captnre the full spatial properties of the texture,
and hence indirect spatial constraint predicates are preferred. Heurislic fealures similar
to those proposed above (3:3) were defined on these generalised matrices, and an em-
pirical study suggested they could lead to more accurate classification than gray-levcl
co-occurrence matrices (Davis ef al,, 1981). Feature-based represeutations have Lthe ad-
vantage of greater abstraction, and hence may be more immune to irrelevant intensity
variation.

3.3.2 Statistics of Local Image Regions or “Blobs”

Methods described above make explicit the spatial arrangemeut of texture primilives,
but structural models may also make use of other properties. The texton theory ol
pre-atientive humau vision predicts that textures may be distinguished on the basis
of differences in first-order “blob™ statistics (§2.2.1), and was cited by Voorhees as
the motivation for his texiure segmeutatiou program (Voorhees & Poggio, 1987). Small
blobs were detected by Laplacian of Gaussian filtering (Marr & Hildreth, 1980), simple
statistics computed from them, and image boundaries marked between regions whose
blob attributes differed. Performance of Voorhees’ algorithm, which was not plausible
as a biological model, was demonstrated only for favourable images (Voorhees, 1987;
Voorhees & Poggio, 1987). An interesting extensiou of this approach is to characterise
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textnres by their {ractal dimension, measured by observing the rate of variation of blob
attributes as a fnnction of spatial resolution (Peleg et al., 1984).

3.3.3 Random Mosaic Models

Random mosaic models tessellate the plane nondetermiuistically to represent lexture
structnre, and share many of the advantages noted above for stochastic microtexture
models (§3.2.5). An additional factor is their ability to describe the physical generat-
ing process directly in some cases, obtaining a deeper correspondence with ihe lexture
origin (Ahuja & Rosenfeld, 1981). Mosaic models may be divided into two categories:
(1) cell structure models tessellate the plane by defining bouudary hines; (i) coverage
models hy randomly distribuling parlicular geometric shapes. Texture primilives in-
teracl according to an assnmed probability distributiou, for which parameters may be
estimated (Ahuja & Rosenfeld, 1981; Modestino ef al., 1981}

As with otber structural models, suitable microtextures must also be eslimated to
describe texture primitives, but regions of constant gray level were found iuadequate
to model Brodatz texiures (Modestino ef al., 1981). More realistn may be oblained by
nsing a random field to define bolh macrotexture and microtexture, combining the ad-
vantages of stochastic models at two levels (Cohen & Cooper, 1987; Derin & Elliolt, 1987).
Structural random fields may be used to impose spatial coherence heuristics, and Gibbs
random fields are particularly suitable for this purpose (§5.1.3). Hierarchical random
field models are discnssed in §5.6.2 — one significant drawback is their compulational
appetite.

3.4 Texture Classification Algorithms

Textnre classification involves selecting a class label that best describes au unidentified
“test” image by comparing it with sets of known “lraining” images (§3.1.1). Direct
comparison is unwieldy and insufficiently abstract, therefore training images or texture
classes are represented indirectly by feature vectors. Images are usually assumed to
conlain homogeneous texture samples, even though this may oot be true, and a single
feature vector describes the entire image. Il is possible to compare the test image with
class featnres directly, but it is often preferable to represent it by a “test” feature vector
and perform indirect comparison. Errors will, ol course, result if the images are not
bomogeneons and feature vectors are insufficiently abstracl to finesse this {§3.1.3), or
if the choice of texture features is inappropriate.

Which classification strategy should be followed depends in part oo how much infor-
mation about the feature distribution is available. Bayes classification is oplimal when
the joint probability density of image features is known, or a suitable parametric form
may be assumed (§3.4.1); bnt often this is not the case, and simplified classifiers are
more appropriate. We use Bayesian classification to compare the performance of our
proposed Sampled-Markov and Gabor-Markov frameworks with a conveniional texture
analysis (Chapter 6).



§3.4 Texture Classification Algorithms 47

3.4.1 Optimal Bayes Classifiers

Bayes classification selecls the optimal class label by maximum likelibood techniques.
Let us assume that we bave estimated f{ealure sets corresponding to C different texture
classes, and have to decide to wlich class a previously unseen trial texture x belongs.
We assume that the a priori class probabilities 7; for the classes wy, ...,wc areknown,
¥, m = 1, and that all mis-classification errors incur the same penalty. We shall
suspeud judgement on the trial texture if il doesn't appear to fit easily into any of
the classes by adopting a rejection thresbold A (Devijver & Kittler, 1982). The Bayes
classifier & forms the class a posteriori probability P{w; | x}:

Plx | w,}r,
Pi{x}
where P{x} is the unconditional density of x (effeclively a normalising constant). We

sclect the class with highest probability:

Plo, |x) (35)

n = m}ax‘P{w, I x}
R o, Plo|x}=021-2
Gl = { 501 1 iw)\ l>X%I (3-6)

forming the mazimum a posteriori (MAP) class estimate @. If Lbere is a Lic between
two or more classes, any one of them is chosen. When A > (’%, the reject option wyq is
unavailable.

Random field models assume that image pixels follow a particular distribulion pa-
rameterised by the class vectors, and in this context a lossy intermediate representation
may be avoided by representing the test image by its pixecl array or patlem vector,
x in (3-6). Classification then reduces to the simple task of evaluating ¢ posterior:
likelihoods.

An altemative approach is to represent the test image by another parameter vec-
tor, x. Maximum likelihood methods may still be used provided Lhe joint density of
feature coefficients is known, and in praclice these are often assumed to follow a par-
ticular distribution, multinomial and multivariate Gaussian distributions having been
used for tbis purpose (Unser, 1986; Vickers & Modestino, 1982).

Classification of feature vectors is a classical theme in statistical patlern recognition,
and many approaches are available (Devijver & Kittler, 1982). It is usual to view feature
vectors as points in a parameter space, which is partitioned between the various texture
classes during training, possibly including a reject option, so Lhat test veclors may be
assigned the correct class label quickly. In general, the nature of the class boundary or
discriminant function is arbitrary, but for Lhe special case of a two-class problem, when
feature vectors are normally distributed with common covariance X and means g, the
decision boundary is a hyperplane:®

XTE Wy —pg) = S+ 12) £ (1 — 11y) + Jog(ma/my) (37)

where m; are the a priori probabilities (Devijver & Kittler, 1982, page 40). Effectively,
this plane defines the direction which maximally discriminates two classes, along which
the test vector is projected.

3This special case is known as the Anderson discriminant plane.
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3.4.2 Probabilistic Distance Measures

Our Bayesian classification rule (3-6) does not suggest how reliably two classes may be
discriminated, and Bayes error cannot usually be evaluated exactly because it requires
a complicated integration over the entire feature space, &. More tractable probabilistic
distance measures may be used to bound it, of which two are of particular interest: the
Bhatlacharyya coefficient Jg, and Mahalanobis distance Ay.

Iy = —log/G\/P{x|w,}’P{x}wg}dx (38)
Bu = (= p5) (ME 47 E2) 7 (s — 4) (3:9)

The Bhattacharyya coefficient Jg gives a belter estimate for the Bayes error than
the Mahalanobis distance, bul cannot be evaluated except in special cases; for exam-
ple, when feature vectors are drawn from a multivariate normal distribution G{g;, I;)
(Faugeras & Pratt, 1980):

1 T -1 1 |3(X1 + X))

Joo= gy —sa) (L +22)7 (uy ~ #2) +3 log(w)- (3-10)
In the case of equal covariance matrices and a priori probabilities, £; = ¥, and 7, =
7z, the Bbattacharyya and Mahalanobis measures are equal. Probabilistic distance
measures indicate Lhe distincliveness of pairs of texture classes, and are useful to assess
the performance of feature sets independently of subjective criteria or classification
algorithm (§3.6.1), and in determining which regions to merge during agglomeralive
clustering (§3.5).

3.4.3 Sub-Optimal Discriminant Functions

A linear decision boundary is optimal for multivariate normal distributions with com-
mon covariance matrix, but in practice is often applied under other circurnstances as
well because of its computational simplicity. For two classes with arbitrary feature
distributions, we may project the test feature vector onto the direction:*

(B +E2) Wy — 1) (3-11)

wbich maximises the ratio of belween-class and within-class variation (Devijver & Kit-
tler, 1982). It reduces to the maximum-likelihood discriminant plane when the above
conditions are satisfied, and may be extended to multiclass discrimination by comput-
ing:
T
di = (g, —%) E(p; ~ %)

and maximising d, with respect Lo the class label ¢ {Weszka et al., 1976).

In practice, there may be insufficient feature measurements defining each class to
estimate covariance matrices reliably, and a further approximation may be taken by
assuming that they are diagonal (Chellappa & Chatterjee, 1985; Kashyap & Khotanzad,

4‘Known as the Fisher linear discriminant.
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1986). This implies fealures are independent, which is uarealistic, but does allow the
variability of each feature to he taken into account {Coleman & Andrews, 1979). Sim-
ilarity with (3-10) has led some researchers to refer optimistically to this normalised
Euclidean distance as the Bhattacharyya distance (Chellappa & Chatterjee, 1985).

When even the diagonal elements of the covariance matrix are unavailable, perhaps
because each class is defined by a single vector, there is limited scope for slatistical
rigour. One popular measure is the weighted Euchidean distance (Manjnnath & Chellappa,
1991):

Aw = (x-y)'W(x-y) (312)

where Wi s = (2 + y7)6x.¢, but this is sensitive to a translation of feature origin. Alter-
natively, the Euclidean distance may be used directly, following the nearesl-neighbour
rule (Devijver & Kittler, 1982; Mitchell et ai., 1977). This form is dimeusionally inhomo-
geneous, and should be considered as a last resort.

3.4.4 Optimal Feature Selection

We have assumed above that the logically distinct operations of feature extraction and
classification are indeed performed separately, but this need not be the casc. When
fealure extraction or model matching carries a high computalional cost, it is advan-
tageous to structnre the classification as a decision tree (Tomita e! al., 1982; Vilnrotter
el al., 1986). Features with greatest discriminating power are placed near the root of
the tree, and direct subsequent processing accordingly.

Similar principles guide the selection of an optimal feature set. Feature vectors
are sometimes generated by an entire family of filters, many members of which have
little resolving power. A feature extractor matrix transforms Lhe current [eature set
into a smaller vector whilst optimising a probabilistic distance criterion (Devijver &
Kittler, 1982). Compression algorithms may be used Lo identily the most significant
componeals within each region, hut these do not always pick good discriminants (Unser
& Eden, 1989). Orthogonal features may he selecled by comparison of “oue-at-a-time”
Bhattacharyya coefficients (Coleman & Andrews, 1979; du Buf et al., 1990).

3.5 Image Segmentation Algorithms

Segmentation algorithms partition an image inlo disjoint regions, each homogeneous
with respecl o some property. Aulomatic segmentaliou algorithms do not require
prior knowledge of the numher or type of textured regions, but estimate these from the
scene without external intervention. Additional constraints must be provided to specify
segmentation fully, either in the form of heuristics reflecting the continuity and spatial
coherence of physical objects, or a parameterised image model. Similar constraints are
suggested by models of human vision (Chapter 2), and seek to express expectation about
the nature of the physical world {Marr, 1982; Tsotsos, 1987): boundaries are smooth and
continuous, and regions do not contain many holes or small pockels. Henristics may
drive the segmentation from the start, or can be applied during post-processing (§3.5.3).
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Smoothness and homogeneity constraints apply principally to the underlying physical
object and may not be fully reflected in the image. When the image is modelled by
random fields, maximum-likelihood segmentation may be achieved by extremising a
cost function.

Segmentation regnires analysis of both spatial and statistical properties, leadiog to
a conflict hecause image features are estimated accurately from large arcas but spatial
properties from small regions (Wilson & Granlund, 1984). Even when all texture pa-
rameters are known a priori, segmentation is an extremely diffcult problem because
hypothetical bonndaries increase exponentially wilth the number of parameters, and ex-
haustive search is infeasible (Gurari & Wechsler, 1982). Approximate solutions may be
obtained by directed local search, fully evaluating only a small proportion of possible
segmentation hypotheses. Following the central dichotorny of low-level human vision
(Chapter 2), this may take the form of a Lwo-stage process: “pre-attentively” defining
a region of interest to establish the vicinity of the border; and “attentive” refinement to
locate it accuralely (Blanz & Reinbardt, 1981). It may be more efficient to use a process of
continual refnement rather than a two-stage algorithm, supported by multi-resolution
representations (Sber & Rosenfeld, 1989; Spann & Wilson, 1985). Experimental segmen-
tation of synthetic textures and Brodatz montages using Gabor filtering is described in
Chapter 4.

3.5.1 Merging and Splitting Image Regions

The two main approaches to establishing distinct image regions are merging and split-
ting (Ballard & Brown, 1982). If texlure parameters are unknown @ priori, they may be
estimated reliably from large regions of a single texture type — but these are only avail-
able after the segmentation is complete! A compromise is to impose a grid structure on
the image, and to estimate parameters within each of the regions it defines. The size of
these regions should be sufficient for paramelers to be estisnated with some confidence
but small enough for most regions Lo contain a single texture type. Adjacenl regions
with compatible parameters are merged, and their parameters re-estimated, making
exphcit the application of both spatial and statistical constraintls. Agglomeralive clus-
tering continues until: a given number of regions remain (Coggins & Jain, 1985}, an
arbitrary threshold is reached (Caelli, 1985), or according to a statistical criterion (Sil-
verman & Cooper, 1988); but the resulting border still refects the imposed grid structure,
and defincs the approzimate location of the true houndary. Small errors may occur be-
cause flawed merging decisions may not he reversed by this algorithm, and some initial
regions may straddle texture boundaries, but segmentation of non-stationary images is
facihitated by using local properties.

Splitting algorithms proceed in the opposite direction, from coarse to fine resolu-
tion, and recursively decompose inage regions. Purely statistical approaches apply a
threshold derived from a bimodal feature histograrn to segment regions (Zucker et alf.,
1975), bul per-pixel classification does not take full account of spatial context, leading
to ragged boundaries and clnmps of isolated pixels. Spatial coherence may be imposed
by a post-processing step (Caelli, 1985).
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Spatial constraints may be employed directly by computing [eatures over image re-
gions, leading to more reliable feature estimates. A qnad-tree structure (Spann & Wilson,
1985) or resolntion pyramid (Burt & Adelson, 1983) is useful to represent the image at
several levels ol spatial resolution, and may contain image or [eature information (Sher
& Rosenfeld, 1989). Nodes near the apex project to many “children” near the base, and
a coordinate grid is imposed within each layer. Per-pixel classification near the top of
the pyramid defines approximate locations of texture boundaries, and these estimates
are refined at finer resolution by reclassifying pixels in their vicinity, terminating at the
base of the pyramid. As with region merging, the boundary is approximate: errors can-
not be recovered [rom, and the imposed grid structure may lead to fragmentalion; but
tbis is addressed by a combiued split-and-merge algorithm (Ballard & Brown, 1982; Chen
& Pavlidis, 1983). Dcfining approximale image boundaries at each resolution selectively
targels expensive local search to key image locations, achicving accurate seginentation
with high efficiency.

3.5.2 Detection of Texture Edges

Splitting and merging algorithms apply to image regions, and are suitable when lexture
[calures may only be computed at grid points; [or example, it is inefficient to extract
a leature vector [or each image location when tbey are derived [rom histograms or co-
occurrence matrices (§3.2.3). Other [eatures, such as Lexture energy measures, may
readily be computed locally, and allow the use of first-order edge-detectors lo locale
image boundaries (Figure 1.3 on page 5). Texture-edge detectors respond only to local
changes, and offer greater robustness when image boundaries are confounded by noise
and smooth texture variation (Nahi & Jahanshahi, 1977). Another advantage is that
small bnt distinct regions possess clear image boundaries, bui may fail to generate
distinguishahle peaks in global histograms and hence he overlooked by region-based
algorithms (Bhanu & Parvin, 1987). Ideally, combined edge and region processes should
be used (Geman & Geman, 1984).

Multiple resolution representations are usefu! in refining Lhe location of image bor-
ders efficiently. Putative texture edges are first detected near the apex of the pyramid,
and are located conservatively: the width of the border region is a constant number
of pixels, bnt projects into a smaller area in the image at successivcly finer resolution
(Spann & Wilson, 1985). Pyramidal processing is driveu by the principle that expcnsive
high-resolution processing is guided by approximate results computed at lower resolu-
tion, in accord with the Guided Search model of pre-attentive human vision (§2.4.1). A
clear dicbotomy between serial and parallel processing does not emergc because Lhere
is a graded distinction between “coarse” and “fine” detail.

3.5.3 Refinement of Approximate Texture Boundaries

Region merging leads to jaggy texture boundaries, reflecting the imposed coordinate
structure; [eature clustering to ragged and noisy boundaries because spatial continuity
constraints have not been fully expressed; and texture edges may be fragmented or
incomplete, forming a partial segmentation. In each case, acceptable scgmentalion
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accuracy may be achieved hy careflully adjusting boundary position according to selected
optimisation criteria. It is olten acceptable to restrict analysis to local changes of the
existing approximate segmentation boundaries, perhaps by using dynarnic programming
{Derin & Elliott, 1987).

Relaxation lab elling processes impose mnany local constraints simultaneously inorder
to achieve a globally consistent scene interpretation (Kittler & Dtingworth, 1985). Each
node communmicates only witb its local neighbours, adjusting its state according lo local
criteria, hnt constraints propagate over the network allowing an acceptable sub-optimal
solution to he found. Relaxation algorithms are inherently parallel and are a popular
model for simul{aneous expression of many local constraints (Caelli, 1985), but careful
control is required in order to ensure termination whilsl allowing many avenues to be
explored. “Greedy” update rules, which always select the optimal local state, ensure
convergence bnt do not explore the space of solutions very thoroughly. Relaxation
algorithms benefit [rom mnlliple-resolution representations because Lhe rale of conver-
gence is increased (Kittler & Dlingworth, 1985; Terzopoulos, 1986). When the objective
is to refine an approximate initial boundary, greedy optimisation at successively finer
resolution is an efficient approach (Bouman & Liu, 1991).

Relaxation algorithms may be nsed in conjunction with recursive splitting, magnify-
ing local image contrast to encourage the global [eature histogram to become bimodal
(Bhanu & Parvin, 1987), and are infinenced by spatial organisation without requiring
arbitrary partitioning of the image. Added emphasis on local context diminishes the
influence of smooth variations of texture properties across Lhe image. Probabilistic
relaxation allows a wider range of possible solutions to be explored but often at consid-
erahly increased computational cost (Geman & Geman, 1984; Hsiao & Sawchuk, 1989).

3.6 Discussion of Current Approaches

Many of the approaches to lexture manipulation discussed in this Chapter arose [rom
heuristic proposals rather than dispassionate analysis of information-processing require-
ments. Belore outlining our approach to the development of improved lexture repre-
sentations (§3.6.2), we first discnss how competing models may be evaluated.

3.6.1 Evaluation of Feature-Extraction Methods

Comparison between [eature extraction methods is desirable in order to discover which
[eatnre set performs best in wbal circurnstances, and why. A oumber of approaches
have been used, with varying degrees of objectivity and generality. By far the most
commonly used protocol is “classification result comparison”, in which known texture
samples are classified by a single algorithm with different feature sets and performance
is determined quantitatively by the proportion of textures identified correctly (Conners
& Harlow, 1980). This methodology has been used to support many claims of the
snperiority of one feature extraction method over another, often using fextures from
the Brodatz albnm (e.g. Pictikiinen et al., 1983; Unses, 1986; Weszka et al, 1976). We
adopt this approach to compare the perlormance of our proposed Sampled-Markov
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and Gabor-Markov frameworks witb a conventional Markovian analysis using optimal
Bayesian classification (Chapter 6).

Empirical classification accuracy is straightlorward to measure and gives a quanti-
tative comparison, but suffers from a numher of drawbacks. Purely as a performance
measure, it js not independent of the type ol images used or the classification algorithm
itsell. In order to have high confidence in the verdict as a general resull, slatistics
would have Lo be collected for a huge variety of images types (medical, aerial, thermal,
outdoor scenes, noise-corrupted images, etc.), using several classification algorithms. A
further drawback of empiricai classification accuracy is that it fails to identify why one
fealure set performs better than another.

Synthesis of an artificial image from measured feature sets followed by visual com-
parison with the original is effeclive in checking that major lexture characterislics have
becn capilured, and this method has been used Lo guide fealure sclecltion (Khetanzad &
Kashyap, 1987). Knowledge of some statislical properties, such as those obtained from
co-occurrence matrices, does notl suggest a manner by which a texture may be synthe-
sised. Although it is often straightforward to generate arlificial lextures possessing the
Jayout characleristics of structural models, it may slill be impossible to synthesise their
microtexture component if tbis is defined by statistical properties (Ahuja & Rosenfeld,
1981; Tomita ef al., 1982). In one case, comparison with the original texture prompted
an admission that the proposed model was inadequate (Modestino ef al., 1981). One
great advantage of random field models is that synthesis is always possible. allowing
the influence of parameter sels and extraction methods to be compared easily (Cross
& Jain, 1983). Artificial textures are readily synthesised from Gibbs—-Markov models
using techuiques discussed in Chapter 5 (Figure 1.4 on page 7), and [urther examples
are presenled in Chapler 6.

A more objeclive evaluation of [eature performance is obtained by determining the
ideal classificalion error with a given set of feature measurements, independent of classi-
fication algorithm. Bayes error cannot easily he computed exactly but is closely bound
hy the Bhattacharyya distance (§3.4.2), which has been used for this purpose although
il is still tied to a particular set of test data (Coleman & Andrews, 1979; Fangeras & Pratt,
1980). Another restriction is that it is necessary in practice to assume thal the [eature
vector is multivariate Gaussian in order for evaluation of the Bhattacbaryya coefficient
to be feasible, even when this is clearly [alse (Davis et al., 1981).

Recently, it has been argued that global statistics of this Lype are inappropriale
criteria when featurcs are to be used for image segmentation because contradictions may
arise between statistical and spatial accuracy {dn Buf et al., 1990; Wilson & Granlund,
1984). Disagreement also exists over whether comparisons should be made with natural
or synthetic textures: the former have the advantage of natural variability rather than
following a prescribed model; but image parameters may be more closely controlled
wilh synthetic image textures.

A further improvement of relevance to practical systems would be to assess perfor-
mance in conjunction with the amouni of computation required. For a given abstract
archilecture, for example, performauce of different feature extraction and processing
algorithms could be compared as a function of permitted CPU time. Features which
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may be processed by data-parallel machines are potentially much more efficient than
tbose requiring local data-dependent analysis (§A.1).

3.6.2 Summary: Major Aspects of Current Texture Models

Approaches to texture analysis are commonly divided into stalistical and structural
models, analogous with the attentive dichotomy in low-level human vision (Chapter 2).
Structural analysis seeks Lo ideotify individual texiure elements, describing the image
iu terms of their properties and spatial arrangement (§3.3). Although texture hierarchy
and generating processes may be represented explicitly, structural approaches arc often
computationally demanding, and do not fit the data-paralle] paradigm (§A.1).

By conlrast, statistical approaches do not atlempt to form complete image rep-
resentations, but describe textures indirectly by simple derived properties or features
which may be extracted and manipulaled efficiently, and require little data-dependent
processing (§3.2). Texture features are often computed from second-order image statis-
tics, then first-order feature differences used to locale hypothetical texture boundaries.
consistent with models of pre-attentive human vision (§2.2). Structural models have
been less thoroughly studied, perhaps because of their requirement for grealer com-
putalional resources, bul form a superset of stalistical representations and hence are
potentially superior (Ahuja & Rosenfeld, 1981}. Random field models explicitly describe
texture variability, and hence are suitable for representing irregular natural texlures,
but hierarchical random field models are very computationally demanding.

Our objective is to combine the computalional efficiency and convenience of statisti-
cal models with the superior descriptive power of structural approaches, while acknow|-
edging random texture variability. We have identified Gabor fillering as an atlractive
means of extracting statistical features, and Gibbs-Markov random fields as particu-
larly appropriate for expressing the probabilistic influence of spatial conlext, and we
examine these paradigms in more detail in Chapters 4 and 5, motivating our proposed
Gabor-Markov framework for texture analysis.



Gabor Segmentation
Experiments and Feature
Extraction Algorithms

Useful physical information from several sources is bound up in the gray-level image,
and early vision algorithms seek lo recover it by making heuristic assumptions about
the spatial properties of Lhe scene. Segmenting the image into different textured re-
gions is an important component of the transition from image to object properties, and
many solutions to this problem have been proposed. Qur review of current epproaches
lo texture classification and segmentation in Chapler 3 identified texture energy fil-
tering as a promising technique, offering good performance iu emnpirical cumparative
studies but amenable to efficient parallel implementation hecause processiug is largely
data-iudependent (§A.1). The texture cnergy algorithms we discussed previousty em-
ploy heuristic filter kernels, designed for practical rather than theoretical convenience.
Examination of physical objects requires simultaneous analysis of spatial and spectral
properties, which Gabor filters uniquely achieve with minimum uncertainty (§4.1), and
therefore we anticipate that the performauce of texture segmentation algorithms using
Gabor filters should be comparable or superior Lo those reported previously. Gabor fil-
tering has also been suggested as a mechanism Lo support perceptual Lheories of human
vision, motivated partly by experimental physiological data (Chapter 2). Inthis Chap-
ter, we study Gabor filters in greater detail, and suggest how they may be exploited in
a novel framework for texture analysis.

Previous applications, reviewed briefly in §4.3, have concentrated both on the per-
formance of Gabor filters in their own right and as models of human visual processing.
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Building on these results, our experiments with natural and synthetic textures confirm
that simple algorithms exploiting Gabor energy are able to segment suitably-consirained
images, offering levels of performance qualitatively similar to those of pre-attentive hu-
man vision, and demonstrate the potential of Gabor filtering for image analysis. The
two major difficulties with this approach are: firstly, residual variability within each
textured region after Gabor filtering, which interferes with altempts to extract valid
image boundaries and must be suppressed by post-processing; and secondly, the lack of
a principled strategy to combine respouses from many Gabor channels, most of which
contribute little useful information to the segmentation process.

Our approach is to describe texture by hierarchical models wbich exploit rather than
suppress fuctuations in Gabor chaunels, describing the spatial arrangement of Gabor
features by random fields (Cbapter 5). Observed response spectra are matched against
parameterised Gabor signatures by efficienl optimisation algorithms in a novel leature-
extraction framework (§4.6), producing a sensitive and compacl representation suitable
for subsequent modelling. We adopt two approaches to the difficull task of feature
estimation, aud demonstrate that these generale acceptable feature vectors from real
Lextures (§4.6.4). Suitable random field models are discussed in Chapter 5, and we
apply our novel Gabor-Markov models to the analysis of real textures in Chapter 6.

4.1 Theoretical Properties of Gabor Filters

Gabor originally proposed the class of filters which bears his name in the context of
communication tbeory (Gabor, 1946). He had become convinced that the maximum
amount of information which a signal conld convey was proportional to both its du-
ration and frequency bandwidth. Gabor proposed a “diagram of information”, with
time and temporal {requency axes, in which quanta of information were represented by
cells. As a communications engineer, his goal was to identify the elementary signals or
“logons” wbich could represent informalion most efficiently with the smallest possible
area. A fundamental conflict between simultaneous localisation along both dimensions,
predicted by analogy with quantum theory, prevents this area being reduced io a point.
A sigoal located exactly in the {requency domain, a sinusoid, simultaneously occupies
the entire time axis because there is no concept of “varying frequency”, and similarly a
3-function pulse occupies a single point on the temporal axis but is dispersed across all
spatial frequencies. The uncertainty principle predicts the minimum area in Gabor’s
diagram of information whicb any signal may occupy:!

ALAF > é (4-1)

where At and Af represent uncertainty along the temporal and temporal-lrequency
axes, respectlively, in measurements derived {rom linear filters. The elementary signals
sought by Gabor achieve equality in (4-1), and may be written as the product of a
Gaussian envelope with a sinusoid (Gabor, 1946).

!Gabor (1946) included a factor of +/Zr in his definilions of At and A f, reaching the equation:
atafz1/2.
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The dichotomy between temporal aud temporal-frequency decomposition is mirrored
in image processing, where the relevant quantities are space and spatial frequency (in
one or two dimensions). Fourier methods, discussed briefly in §3.2.2, seek to idertily
a pattern by its spectral components alone, discarding all spatial (phase) inlormation.
By contrast, the location of a single pixel is known exactly, but it does not describe
spatial pattern and hardly provides sufficient information to recognise an ohject. As
noted in §3.5, visual processing demands simulteneous identification and localisation of
physical objects appearing in an image, but the unceriainty principle imphes that this
may be achieved only by compromising both the bandwidth and spatial extent of the
filtering kernel (Wilson & Granlund, 1984). In this case, the motivation is to characterise
signals with minimum join{ uncertainty. In two dimensions, similar relations Lo (4-1)
hold independently along each axis (§A.2.1):

Az Au 2 #
AyAdv 2 L (4-2)
where u and v are spatial {requencies along the z and y directions, respectively (Daug-
man, 1985; Wilson & Granlund, 1984). These may be combined into a single relation:

!

: S =
Az AulAyAv 67

(4:3)
but (4-2} always lakes precedence. Relation (4-3) defines the minimum volume each
filler may sample in an information hyperspace. Members of the Gahor family arc
unique in achieving minimum joint uncerlainty, shown by equality in (4-2) and (4-3).

4.1.1 Specification of Gabor Kernels

It is convenient to represent the amphtude and phase of a signal by complex numbers.
In the most general form, a 2-D Gabor kernel ¢(z,¥) of typec R — C is given hy:

q(z,y) = exp[—(A1:2+ Bxy+Cy2+DI+Ey+F}] (4-1)

where B? < 4AC and D, E and F are complex (Daugman, 1985). This funclion may
be written as Lhe product of an envelope with a sinusoid, and we shall resirict our
attention to the case when these are aligned along a common axis because fillers of this
type correspond to more intuitive image features. The resulting expression is simphified
by rotating the coordinate system by an angle # to align it with this axis:

1 %" y'? .
9(2.9) = g——exp (—§> exp (*m? exp(jwz’) (4-5)
vy £ v
envelope sinusoid
where?
XJ = Rgx.

Note that @ is measured clockwise from vertical. Effectively, filtering with this kernel
(4-5) performs a one-dimensional Fourier transform under a Gaussian envclope. The
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(a) cosine phase (b) sme phase

Ficure 4.1: Typical Gabor kernel. Real and imaginary parts of the
Gabor filier are in approximate quadrature. The origin lies at the centre of
each plot. (&) cosine phase (real), viewed (rom above (only positive values
are shown). (B) sine phase (imaginary). Filter parameters are: (T = 142
pixels, Bija = 1, &8y2 = 7/6, 8 = x/18; 0 = 8 pixels, w = 0-44, A = /3),
using the notation described on page 69.

spatial form of a Gabor kernel is shown in Figure 4.1: it is clear that the parameter 8
determines the orientation to which g4(=,y) responds most strongly, by defining the
axis along which the [requency analysis is conducted. Interaction with the Gaussian
envelope means that the two phase components (real and imaginary) are no longer in
perfect quadrature. Note that the Fourier and Gaussian kernels are special cases of the
Gabor family, obtained by setling o — ¢o and w = 0 respectively. Gabor funclions are
unique in maintaining Lhe joinl uncertainty limit for all intermediate cases.

It is convenient to name the eccentricity of the Ganssian envelope explicitly and to
recognise the cos and sin phases by writing A = 0;/0, and ¢ = ¢. + j¢,:

X z 2 yl 2/\2
afs i) = e 2 e ot

A z' 2 y.‘ 1/\2 . ;
mexp (—ﬁ) eXp (— 557 ) sm(u.u: ) (46)

The {regnency response Qg(u,v) of the Gabor filler gg(z,y) is also expressed conve-
niently in rotated coordinates:

Qo(u,v) = exp[—3(2rv' —w)?0?) exp[—i(2rv'o/A)] (4-7)

where u’ = Rypu. @y is simply a Ganssian with aspect ratio 1/A, displaced according to

q—‘(Aﬁ GVI!y)

where o = o,.

the spatial frequency ug = %R;l(w, O)T. The frequency response of a lypical (complex)
filter is shown in Figure 4.2 — nole thal it is often drawn for the scparate phase
components, 4. and g;, which have lobes al +u,.

ge(w) = Lfe(w)+ g(-w)]
W) = 3elw) - g(-w)]

2The matrix Rs rotates axes clockwise by an angle 8: Ry = ( cosf  —sind )

siné cosf
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FIGURE 4.2: Fourier transform of typical Gabor kernel. The frequency
response of a complex Gabor kerncl is a Gaussian displaced according lo
filter frequency and orientation. The [requency origin lies aL the centre of
each plot. Fourier translorms of separale phase components have Lwo lobes
placed symmetrically about the origin. Filler parameters are: (T = 142
pixels, By = 1, Abyyy = 7/6, 8 = 7/18: 0 = 8 pixels, w = 0-44, X = /3),
using the notalion described on page 69. This flter was shown in Figure 4.1.

Symmelry of (4-2) implies that we may exchange g, and Qy, corresponding io spatial
filtering with a displaced Gaussian, but this is not ol practical interest.

4.1.2 Suitable Parameterisation of Filter Kernels

In the [orm expressed in (4-6), a Gabor kernel has four parameters: q(A,o.w,8). Of
these, only w and @& directly reflect image properties, namely orientation aad spatial
frequency, and consequently alfernative paramelerisations are more appropriate. We
may derive expressions for orientation and principle spatial-[requency bandwidths and
use these to characterise the filter (§A.2.2):

Abyy = arctan (a—/\>
ow
Awyp = afo
B - ow + «a
172 = 108, (aw — a) (4-8)

where o = v/ In 4. We shall use half-peak bandwidths thronghout: Aws; (rdians per
pixel) is the half-peak angular spalial-frequency handwidth measured along the z'-axis:
By (dimensionless) is the same quantity but measured in frequency oclaves; A8,
(radians} is the half-peak orientation bandwidth (Bovik et al., 1990). Taking bandwidths
as primary characteristics, we may parameterise the filter kernel as: ¢(w, Byp, Af, 45, 8)
or ¢{T, By 2, 881 12,8), where T = 2r fw. With this form, appropriate sampling intervals
of § and w are easily obtained, and typically we may choose: A8,, = x/6 and By, = 1;
from (4-8) this gives A = \/3 and ow = 3, as shown in Figures 4.1 and 4.2.
Parameters for continuous filters may be chosen at will, because optimal joint res-

olution is achieved by any member of the Gabor family, but discrete convolution js
employed in practice and acceptable parameter sets are dictated by the requirement
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Lo restrict aliasing errors. Some aliasing is inevitable because the kernel Qg(2z,y) (4-5)
is not band-limited. Since ibe sinusoid is always aligned with the z’-axis, we may
safely assume that the critical sampling density lies in this direction, and conduct a
one-dimensional analysis to determine the retative error € (§A.2.3):

®[v(1 - ;%))

®(7) (49)

wbere

2% 41

7= 2B 1

and ®(-) is the cumulative normal distribution. Iu ali cases, the sampling theorem
dictates tbat the image must be sampled at least twice witbin eacb sinusoid period
(Rosenfeld & Kak, 1982). Radial anisotropy of the rectangular pixe) grid [orces the image
to be sarpled a little more densely than this along the coordinate axes, to ensure that
the condition is met in all directions.

w < wf/2
T > 22 (4-10)

Tbe level of error émac deemed to be acceptahle dictates bow closely tbese absolute
limits ray be approached (§A.2.3).

4.1.3 Image Filtering

Qur intention is to apply Gabor kernels to image analysis. Images are filtercd by linear
convolution forming complex outputl A:

Reontimon(2,3) = ] f Iz + ¢,y +7)4(C,7m) & dy
Rgucrete(z,3) = I*g (4-11)

where * represents discrete linear convolution, / the image and ¢ the Gabor kernel.
Discrete convolution is used for real applications. Truncation of the kerncland quan-
tisation of coefficients botb form additional sources of error but may be conlrolled and
will be assumed negligible. The extent of the kernel required to avoid severe lruncation
error may be selected with reference to the space constant of the Gaussian envelope.

Our convolution equations {4-11) do not specify what adjustments should be made
al image borders, where pixels have a reduced neighhourbood, and it is oflen helpful to
approximate the image boundary as periodic in order Lo reduce spurious edge effects.
Filter output is unreliable when the kernel extends over textures of nore than one type,
however, and should ideally be disregarded in these circumstances (Hsiao & Sawchuk,
1989).

Gabor filter output is composed of real and imaginary parts, contributed by the two
phases of the kernel: R = R, + jR,. These may be “demodulated” Lo give amplitude
and pbase envelopes:

Alz,y) = VR +R!
#(z,y) = arctan(R,/R.). (4-12)
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It should be borne in mind, however, tbat g, and g, are not true quadrature filiers, and
hence that “amplitude” and “phase” are approximate descriptions. We shall make use
of the texture energy R:

R(z,y) = R+ R (4-13)

Although derived from linear convolution, it is important to note that A, R and ¢ are
not themselves linear, and hence linear superposition does not apply. Image filtering
must be non-linear in order to extract information because linear translormalions are
invertible (Caelli, 1985).

Efficient Convolution

Conventiona! sequential computers are not well-suited to performing linear convolu-
tion. Parallel machines achieve higher bandwidth and lower unit cost, and translational
symmetry is exploited conveniently by a data-parallel architecture (§A.1.1). Special-
purpose hardware may be more appropriate than general-purpose computers for a well-
constrained task, further improving the price-performance ralio. It is reasonable to
assume that a suitable parallel machine would be able to filter images in real time,
and our applications of Gabor filtering have assumed the convolution overhead to be
negligible.

At a developmental stage, however, special-purpose hardware is unavailable, and
convolution must he performed on a general-purpose computer. Filtering an image of
dimensions nx7n pixels with a kernel of size mxm (usually m < n) requires O(n?m?)
operations. Convolution must be repeated for each set of filter parameters, imposing a
heavy computational burden. Separahility of Gabor kernels along z’ and y’-axes may
be exploited to reduce this (Heeger, 1987):

(2,9) = 1 p (xn)e (jwz')- A o (—ylz)‘z)
aqz,y - 0\/2_pr 202 XpL2 0\/% P 252 "

We roay replace the full 2-D convolution hy itwo 1-D convolutions, reducing the com-
plexity to O(n?m).

A more promising approach is Lo replace convolution in the spatial domain by mul-
tiphcation in the frequency domain:

Fi=q) = F(I)-F(q) (4-14)

where F( -) denotes Fourier transform. Using the FFT algorithm, convolution may now
be achieved in ©O(n?logn) operations in the best case — this is still large, but is a
considerable improvement on naive convolution. The filter transform @ = F(g) may
be computed directly from (4-7). Use of discrete Fourier transforms implies toroidal
boundary conditions.
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4.1.4 Gabor Image Representations

Once the existence of elementary functions conveying information with maximum effi-
ciency had been established, it was natural for Gabor (1946) to question whether they
defined a basis on which an arbitrary signal could be represented, in order to achieve
his goal of compressed transmission and reconstruction of audio signals. In the con-
text of image processing, the objective is to form a compact representation to facilitate
subsequent analysis.

An arhitrary image I(z,y) may be represented exactly by the sum:

I(:Cv y) = E Lm,n(r»‘s] Q(J: - rT!.z)y - STs,ylwm.m €m,n) (4' 15)

rs,mnEN

for the parameterisation ¢(z, y,w,8), where
€050 Sinfn, Wi _ MU,
—5i00m, €050, 0 - sy

Wiglew = 2m
wp iy = 2m (4-16)

provided

Note that in this expansion, the shape of the Gaussian envelope, determined by ¢
and A, does not change. The image / is represented by clusters of coefficients {¢}
at grid points witb separation vector (TSIZ,T,_,,)T; when sampling is isotropic, we may
write T, . = T,, = T,. Unfortunately, Gabor functions are not orthogonal, and exact
determination of {¢} is somewhat involved (Porat & Zeevi, 1988), but they may be
determined to a good approximation by convolution when the {requency overlap between
adjacent filters is not large (Bovik et al., 1990; Daugman, 1985):

tmn(r,8) = I(z,y) 2 4(z — oz y — $Thy, Wimn, Ompn )- (417)

In practice, manipulation of infinite sets of coefficients is clearly infeasible, and the
series is truncated after a few terms to form an approximate representalion. When the
image is band-lirnited, the series is finite in any case.

Since all Gabor functions achieve oplimal joint uncertainty, there is 1o need to
sample isotropically with a single kernel: Porat and Zeevi (1988) describe a generalised
Gabor representation in which w, and 7, vary as a function of position (or eccentricity).
Their product remains constant, as (4-16), and so a loss-less representalion is still
possible. In any Gabor representation, the Gaussian envelope retains a constant shape
while the sinusoid frequency varies.

Links with the Wavelet Transform

As discussed in §3.5, multi-resolution representations have many advantages for visual
information processing because they allow regions of interest to he located approxi-
mately at coarse resolution with little compultatioual effort, in order to guide a more
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Figure 4.3: Information diagram for Gabor and wavelet image rep-
resentations. Ellipses represent the region sampled by each Gabor kerxel,
and all have the same area, and z and = represent one-dimensional space and
spatial-frequency axes. (a) original Gabor transform: isotropic sampling.
(%) generalised Gabor transform: the tessellation is complete but anisotropic.
(e) wavelet Lransform: spatial accuracy decreases witb scale. Each transform
may use Gabor kernels, and is complete il sufficient samples are taken.

detailed selective analysis. The wavelet transform is a popular method for construct-
ing a representation at many scales (Mallat, 1989). A given kernel 9, salisfying weak
conditions, is convolved with the image for several valnes of a scale parameter s:

bi(zy) = Vei(sz,sy). (418)

Note that all components of the kernel are scaled in proportion, unlike the Gabor
transform (4:15) where the shape of the Gaussian envelope does not change. According
to the effect of the uncertainty principle (4-2), the effect of this “dilation” of the kernel is
to adjust the spectral and spatial resolutions such that their product remains constant.
Large s corresponds to a compact kernel, achieving high spatial but poar spectral
accuracy; the posilion is reversed for small s.

Wavelet transforms are interesting in the present discussion because Gabor functions
are acceptable wavelet kernels. Three transforms, all based on linear convolution with
Gabor kernels, necd to be distinguished. The original Gabor transform samples the
image with fixed resolution in space and spatial frequency (Bovik et al, 1990). The
generalised Gabor transform varies the balance between spatial and spectral resolution
as a function of eccentricity, achieving higher spatial accuracy near the “fovea” (Porat
& Zeevi, 1988). A warelet transform varies resolution as a function of spatial [requency,
such that the locations of signals composed of high spatial [requencies are determined
accurately (Mallat, 1989). These three alternatives are illustrated in Figure 4.3. In all
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cases, use of a Gabor kernel ensures that complete representation of an arbitrary signal
is possible if the required sampling density (4-16) is observed.

Examination of our parameterisation (4-8) shows that ¢ and w vary inversely when
frequency and orientalion bandwidths remain constant, consistent witb a uniform scal-
ing of the Gabor kernel. This shows that a decomposition along ibe lines we have
proposed is a wawelet rather than a Gabor transform {Perry & Lowe, 1989). In practice,
only a few terms in the series arc taken and the representation is not complete.

4.2 Relation to Other Texture Measures

Numerous approaches to texture analysis involve spatial fillering to some degree, as
discussed in Chapter 3. The ullimate goal is to deduce object rather than image prop-
erties. Physical objects are spatially localised, bnl cannot be segmented or recognised
reliably by inspection ol first-order properties alone because these statislics may be
confounded hy variations in lighling and other extrinsic factors (§3.1). Consequently,
image analysis demands examination of both spectral and spatial properties.

Some of the simplest textnre methods we reviewed (§3.2.4 on page 41) detecl image
“features” with local isotropic mask profiles (Coggins & Jain, 1985; Zucker et of., 1975).
These filter kernels perform a rudimentary spatial-freqneucy analysis, bnt are sub-
optimal because joint uncertainty (4-2) is not minimised. Gaussian kerncls are an
exception to this trend (Marr & Hildreth, 1980) bul these are simply an isotropic special
case of Gabor functions. Methods based on the power spectrum alone (§3.2.2) may also
be viewed as a special case of Gabor filtering.

Orientation is an important cue {or visual perceptiou (Zucker, 1983), perhaps because
arrangements of oriented line segments can be projectively invariant (Lowe, 1987; Marr,
1976). Gabor filters are suitahle for extracting oriented features because orientation
tuning and bandwidth (4-8) may be adjusted explicitly. Texture energy filters proposed
by Laws (Ballard & Brown, 1982) may be viewed as discrete approximations ol Gabor
kernels (Bovik et al., 1990). Similarly, the filters proposed by Coggins and Jain (1985) are
sensitive to both orientation and spatial frequency but lack optimal joint localisation.
Good empirical performance was, however, reported [or these texture cnergy measures
(83.2.4), which bodes well for the success of Gabor filtering.

One further theme developed in Cbapter 3 was the use of multiple-resolution rep-
resentations to facilitate efficient analysis. Since Gabor filters bave lunable spatial-
{requency characteristics, they are also suitable for this purpose, as in tbe Gabor pyra-
mid (Porat & Zeevi, 1988). It is a pity that Gabor kernels are not orthogonal because
this corplicates the determination of coefficients: orthogonal wavelel transforms, for
example, allow coefficients to he computed exactly by linear convolution (Mallat, 1989).
This practical advantage is not great, bowever, because approximate Gabor coefficients
may still he found by convolulion (4-17).

In summary, image analysis often requires simultaneous evalnation of spatial and
spectral properties in order to draw reliable conclusions about the physical environment.
Various approaches have been proposed lo perform local analyses (Chapter 3), but
Gabor filters have unique advantages for this purpose, achieving optimal joint resolution
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in space and spatial frequency, and form a complete basis so that arbitrary signals may
be represented by Gabor coefficients. Following extension of Gabor’s (1946) theory to
two dimensions (Daugman, 1985), both human and machine vision communities have
appreciated their potential for image processing.

4.3 Applications of Gabor Filtering: A Review

Texture energy measures (§3.2.4) may be implemented hy simple data-independent
processing, allowing approximate segmentation of many classes of image to be performed
quickly. In this scction, we review previous applications of Gabor filters io image
segmentation, before describing our own experiments in §4.4.

4.3.1 Models of Pre-Attentive Human Vision

Psychologists often nse artificial multi-clernent displays to examine the performance
of the human visual system because their properties may be more closely-controlled
than natural textures (§2.2.4). In this seciion, we review the use ol Gahor fillering to
mimic human vision with images of this type. We broaden the discussion lo include
scgmentation of nalural textures below (84.3.2).

The attentive—pre-altentive dichotomy described by psychologists (Chapler 2) is
consistent with seleclive scrutiny of image locations under the guidance of aspatially-
parallel filtering stage (§2.4.1). It is now recognised that efficient multi-resolution rep-
resentations may blur the distinction between “parallel” and “serial” modes, but it is
common to model pre-attentive human vision largely by data-indcpendent processing.
Psychological theories often fail to generate quantitative predictions becausc of their
vague verbal specification (Broadbent, 1987), and unfortunately definitions for the prim-
itive texture elements on which pre-attentive human vision is beheved to operate are
of this type (§2.2). Recently, it has been claimed that receptive field profiles ol simple
visual cells are described well by Gahor functions, which has motivated speculation
that thesc may be the primitive currency of human vision (Daugman, 1985). Any proof
of this hypothesis is clearly impossible, and it is unlikely that receptive field profiles
possess sufficient precision to allow meaningful discrimination belween similar kernels,
but this notion has drawn attention to the theoretical advantages of Gabor filters.

Pre-attentive vision is concerned with locating image boundaries rather than ohject
recognition. Texton tbeory states that pre-attentive vision operales by detecling and
marking first-order differences in local image properties or “features™ (§2.2.1; Julesz,
1981, 1984), and, building on previous attempts (§2.3), Gabor filtering is seen as an
attractive model for the extraction of tbese statistics (Fogel & Sagi, 1989; Turmer, 1986).
Tbe implied image model is that different textures map into differeut Gabor [eatures,
such that there is smooth variation within a single filtered texture but sharp variation
al texture boundaries. Texture edges may theu be localed in the filtered image by
conventional first-order edge detection. Banks of Gabor filters tuned to diflerent combi-
nations of orientation and spatial frequency are commonly employed to cover parameter
space evenly becanse human vision can hardly know in advance which textures will be
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present. Raw “modulated” filter output computed by (4-11) contains phase variation
not consistent with the assumed model (Clark et ai., 1987), and this is usually removed
by computing the Gabor energy (4-13) or amplitude (4-12). This non-linearity also
permits output from different linear frequency channels to be combined meaningfully,
according to Caelli’s (1985) framework.

In the absence of any principled strategy to combine filter output, Turner summed
Gabor amplitudes from 32 channels (4 orientations x 4 frequencies x 2 phases) com-
puted al grid points (Turner, 1986). When applied to artificial displays of the type
designed to verify texton theory (§2.2.1) and Junlesz’s original conjecture (§2.3.2),
this model was adequate to form first-order differences belween textured regions pre-
attentively discriminable by humans. A high degree of variability remained within each
region, however, and Turner did not atternpt to extract a boundary, suggesting that re-
cursive application of Gabor filteriug might be necessary to distinguish textured regions
reliahly. High variahility of the response within a single texture limits the accuracy with
which boundaries may be located, but is always present to some degree when [catures
are derived from local image regions. A quantlilative model of Lhe cffects of element
jitter and patterns of shape variation on the Lhomogeneity of filter oulpul had some
success at predicting human texture discrimination performance and search asymmetry
(Rubenstein & Sagi, 1990).

A second stage of filtering to smooth feature output, so that only large-scale variation
remains, was proposed by Caelli (1985), and may be effective when filtered textures
differ in their mean values, rather than in their variances as noted by Turner (1986).
Smoothing and boundary detection may be combined by Laplacian-of-Gaussian filtering
(Marr & Hildreth, 1980), and this approach was adopted by the GGL algorithm, which
operated on dermodulated Gabor energy from 32 fillers (Fogel & Sagi, 1989). The space
constant of tbe Gaussian was large, in the range 6-18 pixels, and caused distortion of
the boundary shape but even after such heavy blurring, spurious noise regions remained
in the “segmented” image, and were removed by non-maximal suppression.

Beck’s “complex channels” model required two stages of Gabor filtering (Beck et al.,
1989; Sutter et al., 1989), as suggested hy Turner (1986). Instead of demodulating fil-
ter output, a local “standard deviation” was computed from tlie even (cosine) phase
alone, for 39 filters (13 frequencies x 3 orientations). Differences in filter standard
deviations for a pair of texlures were combined by a weighted sum to estimate texture
discrimirahility but, although some qualitative effects were predicted correctly, system-
atic discrepancies with hurnan performance were noted, and it was later concluded that
the model failed to account adequately for hnman lexture segregation capahikities (Beck
et al., 1989).

These simple Gabor models were partially successful in modelling human texture
discrimination. In more general terms, they bave suggested some deficiencies of this ap-
proach, namely the requirement for many different filter kernels, and variability within
as well as between textured regions after filtering. No principled method for the com-
bination of information from different channels to form a single boundary map was
proposed, and heuristic smoothing and post-processing was required to form an ac-
ceptable border. These difficnlties may arise {from the use of artificial multi-element



displays, from arbitrary modelling decisions, or from inherent limitations of the Gabor
approach.

4.3.2 Segmentation of Natural Textures

The algorithms described above were intended to model human visual processing, and
were constrained by notions of “biclogical plausibility”. No such restriclions apply in
this section: eacb architecture may be optimised to raise efficiency and funclionality.
One such improvement involves parameter selection — previous models were obliged to
sample the image with a large number of filters Lo ensure a reasonably even coverage
of parameter space. Since the images with which performance was gauged contained
only two textures, il is very doubtful whether many of these filters contributed uscfully
{o the segmentation process. Having a fairly complete representation after the initial
filtering stage was of Jittle advantage, because there was uo intuition about how different
chaunels should be combined,

Clark. Bovik and Giesler (1987) proposed a much simpler image model, allowing
most of this complexity to be dispensed with. Eacb texture Lype present in an image
is assumed to possess at least one range of frequencies uniquely, so Lhat the presence
of energy in this band acts as an indicator function. Effectively, each texture is mod-
elled by a single spectral component, aud may be thoughl of as a gray-level modulating
fuuctiou. This model is clearly insufficient for recognition of textured regions, but may
he suitable for “sportaneous” texture discrimination, and is perhaps no more unreason-
able in the context of textured-edge detection thau the ideal step-edge olter assumed
by conventional edge-finding algorithms (Bovik et al., 1990). The {requency bands which
characterise each texture may be located by searching for peaks in the global image
power spectrum. Bovik, Clark and Giesler (1990) take the rather extreme view that all
images may be broken into only two texture types, and choose two sets of parameters
corresponding to the two largest spectral peaks {unless human jntervention suggests
otherwise!). Tan’s (1988) algorithm is a hittle more flexible, and selects paramelers cor-
responding to all “significant” peaks. Note that this procedure is very similar lo feature
clustering algorithms described above (§3.5.1), and is liable to fail when the dominant
energy modes do not discriminate texture types, or when a texture does not have a
dominant frequency. These restrictions are reminiscent of trends observed in human
vision (§2.2.4; Treisman & Souther, 1985). Splitting algorithms may also fail to detect
the presence of smaller regions, and are susceptible to noise (Bhanu & Parvir, 1987).

An image containing strong frequency hands and its power spectrum are shown in
Figurc 4.4: the distinct spectral peaks seen here facilitate the estimation of appropriate
parameters, Note that power spectra display conjugate symmetry® because of redun-
dancy arising {rom the loss of phase information. Care must be taken to eliminate
DC and low-frequency components, such as intensity gradients, as these may otherwise
dominate the specirum (§A.2.4). Peak location defines filter frequency and orientation;
its shapc may be used to select bandwidths.

3Throughout this thesis, we have sampled power specira for display purposes, and hence symmetry
may not be completely reflected in our Figures.
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Ficure 4.4: Zebra image and power spectrum. Suilable Gabor fil-
ter parameters may be deduced from the [requency coordinates ol peaks
the image power spectrum. Clear peaks emerge in this spectrum (after De-
correction ), corresponding to the large diagonal stripes in the zebra’s neck.
Power spectra display conjugate symmetry.

The difficult problem of channel combination is largely avoided when only a few
filters are used. It is possible to perform a per-pixel classification, comparing indicator
[unctions to determine which texture is present at each site (Bovik et al., 1990; Clark
et al., 1987):

(2,9) € Rn, if A(un, 7,9) = max[A(u;, 2,)] {4-19)

where u; denotes the frequency band ol the z-th filler, mapping into region R,. We
shall refer to this process as “modal fllering”. As with other per-pixel classifications
(§3.5.1), the resulting segmentation is noisy but this may be overcome by blurring
the texture energy prior Lo classification in order to eliminate small-scale flucluations:
cleaner boundarics are obtained but there is an accompanying risk of degradation. Ar-
tificial and natural Brodatz textures were segmented success{ully by this simple method
(Bovik et al., 1990; Clark ef al., 1987), but it was only demonstrated for periodic textures,
and boundaries were sometimes distorted. Generally, modal [illering employs a very
simple texture model which may easily break down. Pbase disconlinuities were detected
by an extension to the algorithm, allowing texture boundaries to be located when the
" dominant frequency mode did not alter (Bovik et ai., 1990).

Some of the disadvantages of region processes are overcome by compuling edges
(§3.5.2), and this approach was adopted hy Tan (1988), who computed a fealure gradi-
ent for each channel, Aflter combination by a weighted sum, thresholding and thinning,
accurate connected boundaries were obtained from several synthetic and nalural Bro-
datz textures. These textures appear to have been chosen carefully to be [avourable to
tbe algorithm, however, and were mainly periodic with few spectral compenents, and
sufficient area was covered by each texture type to ensure it forined a clear peak in the
power spectrum (Tan, 1988).

No real measure of significance is assigned to feature boundaries by the above meth-
ods, perbaps because so few channels were chosen, but there is in general a danger
that filters capable of discriminaling texiures accurately will be masked hy variability
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in other channels. Perry and Lowe (1989) proposed retaining only a compact feature
vector, reflecling the maximum response at each site, and normalising variability in
each channel by a local standard deviation in order to reduce tbe impact of “poisy™ fl-
ters. A relaxation algorithm seeded at the most reliable feature points completed their
segmentation algorithm, from which impressive results were reported with collages of
natural textures.

Qur brief review has suggested that siimnple algorithms may be found to segment
some types of textured images by Gabor filtering but that success is only likely uuder
constrained circumstances, when textures may be treated by very simple models. This
Lype of analysis is valuable to form a preliminary indication of image organisation but is
easily confused by textures which do not obey the assumed model. In tbe nexl section,
we descrihe some experiments which confirm these impressions.

4.4 Gabor Segmentation Experiments

Despile the attraclive theoretical properties of Gabor filters (§4.1), results reported
in the literature suggest that simple texture-energy algorithms may be inadequate to
segment images reliably, unless they are described accurately by elementary models
(§4.3.2). Problems arise becausc many filters are required to cover parameter space
adequately, but few have a beneficial influciice on boundary detection, and significant
variation of texture energy is observed within as well as between textured regions.
Iu this section, we report our own experiments on Gabor segmentation, and confirm
that although Gabor energy filtering is adequate for localing approximale boundaries
belween simple textures, additional complexity is required to segment more complicated
images.

Most experimeuts were conducted with the simple artificial displays shown in Fig-
ure 4.5, dcsigned to test “Segregation” (SEG) and “Pop-out” (POP) ability (§2.1.1).
Although highly unrealistic, they allow aspects of segmentation perfermance to be ex-
amined closely. Some real images were also used; all were quantised to 256 gray levels,
but no histogram equalisation or normalisation was performed. Filtering was achieved
by a mixture of convolution and FFT techniques (page 61), adopting toroidal boundary
conditions. The local image mean was adjusled to zero by pre-processing (§A.2.4), in
order to ensure that tcxture energy is not perturbed by Lhe small response to a uniform
field generated by all Gabor filters other than pure sine phase.

Notation for specification of filter paramelers

Sets of fillers covering several orientations are described by the sinuscid period 7°
(pixels), half-height octave spatial-[requency bandwidth B, spacing betwem orienta-
tions ©, and bhalf-height orientation bandwidth Af, ;. From these may be derived the
sinusoid [requency w = 27/ (1/pixel units), space constanl of Gaussian window ¢ (pixel
units), and window aspect ralio A, as described in §4.1. Individual filters are specified
additionally by their orientation tuning &, which we restrict to the range 0 € 8 < «
because filters g(8) and ¢(8 + ) are equivaleut up to a change of sign (4-6 on page 58).
Channel outputs were combined from several orientations but a single frequency.
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4.4.1 Modal Filtering: A Simple Segmentation Algorithm

Our artificial “Segmentation” and “Pop-out” images (Figure 4.5) are composed of iden-
tical line elements which have a thickness of one pixel. In order to respond to these fea-
tures, we selected a high-frequency filter with a narrow orientation bandwidth: (T = 3.5
pixels, Bijz = 0-4, 882 = 7/8; o = 476 pixels). The sine phase and demodulaled am-
phtude envelope for the “Pop-out” image are shown in Figure 4.6 for the two principal
directions along whicb line elements lie, § = x/4 and § = 3x/4: amplitude demodu-
lation (4-12) has successfully removed the high-frequency phase information, and the
location of the singleton element is clearly marked. Filter responses at both these ori-
eutations have a high level of residual background variation, but this is eliminated if
Lhe line segments are positioned on a regular grid rather than being randomly jittered
(data not shown). Responses from filters tuned to orientalions # = 0 and § = /2 were
of low amplitude, suggesting that our filters had been successfully tuned to the diagonal
line elements.

Gabor amplitude filtering cannot segment images without further processing, and
we computed the mode response (4-19; Bovik et al., 1990) to our artificial images us-
ing the filter kernels employed in the previous paragraph at four orientations {#;} =
{0, /s, 7/2, 3/s}, with separation @ = n/4. Taking more filters did not significantly
affect the pattern of the results. The eflect of modal fillering is shown in Figures 4.7
and 4.8: although the singleton element and Lexture boundary have been detected and
successfully characterised, there is some “noise”. This is a feature of many Gabor seg-
meutation programs (Bovik el al., 1990; Fogel & Sagi, 1989; Tnrner, 1986), as noted above
(84.3). Smoothing with an isotropic Gaussian g(s) eliminates most of the spurious weak
responses but the parameter ¢ must be chosen carefully: ¢ = 2 pixels gives lhe best
result for our “Segregation” image (Figure 4.7) but tbis would completely oblilerate the
target element in the “Pop-out” image, for which a smaller value ¢ = 1 pixel is optimal
(Figure 4.8). A fixed choice of ¢ does not seem appropriate, perhaps even within a single
image, and some algorithms require this parameter to be adjusted by huinan interven-
tion (Bovik et al., 1990). Low-pass filtering is a popular technique for textured displays
(e.g. Bovik et al., 1990; Malik & Perona, 1990; Perry & Lowe, 1989; Sagi & Rubenstein,
1990) because it tends Lo make the boundaries smoother and to remove isolated weak
responses, but is also liable to destroy important detail. Our artificial images high-
light. some of the deficiencies of modal filtering: it is insensitive and unreliable; may
require human intervention to set the smoothing parameter ; and potentially destroys
image detail and introduces artifactual bouudaries. Simple relaxation algorithms may
be used instead of smoothiug to regularise the texture boundary, but suffer [rom similar
limitations (Caclli, 1988; Hsiao & Sawchuk, 1989; Reed & Wechsler, 1990).

4.4.2 Appraisal of Feature Contrast Operator

Good discriminant [unctions have a high level of variation befween regions rather than
uecessarily the highest response within a region (§3.4.4). Failure to acknowledge this
[act was one reason behind the uncertain performance of the power spectrum parameter-
selection method (§4.3.2}. In order to accentuate relative variations in filter response, we
shall introduce the concept of feature contrast, formed by weighting amplitudevariation.
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SEG: “Segregation” image POP: “Pop-oul” image

FIGurE 4.5: Artificial “Segregation” and “Pop-out” images. Simple images designed
to lest texture segmentation algorithms, both 70x70 pixels. Line elemenls ate jittered
randomly on a regular grid.

g

POP filtered aL 8 = x /4 POP fillered at # = 3x/4

FiGuRE 4.6: Raw and demodulated Gabor filter output from “Pop-oul” image.
Sine phase R, (positive values only) and demodulated amplitude A obtained from our “Pop-
out” image (Figure 4.5) by Gabor filtering at key orientations. Before scaling, the maximum
amplitudes were 1:1-88. Demodulation has successfully removed the high-frequency phase
information, and the location of the diagonal singleton elemenl is clearly marked. Filter
parameters: (T = 3-5 pixels, Byj; = 04, &by, = 7/8; o = 4:76 pixels), using the notalion
described on page 69.
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(a) original (b) smoathed

FIGURE 1.7: “Segregation” image after modal filtering. Our “Segregation” image
(Figure 4.5) was filtered with Gabor kernels at four orientations and labelled according 1o the
maximum amplitude response (§4.3.2). White represents zero response at all orientations,
light grey & = 0 dominant, up to black for § = 3x/4 dominant. (a) wilthout smootlhing;
(b) after smoothing with space-constant 2 pixels prior to matching: this gives a “cleaner”
boundary. Filter parameters: (T = 3.5 pixels, B j; = 0-4. A8y, = 7/8, © = x/d;0 = 4-76
pixels), using the notation described on page 69.

(a) original {b) smoothed

FiGURE 4.8: “Pop-out” image after modal filtering. Our “Pop-out” image (Figure 4.5)
was filtered with Gabor kernels at four orientalions and labelled according Lo Lhe maximum
aniplitude response (§4.3.2). White represents zero response at all orieutations. ight grey
8 = 0 dominant, up to black for # = 3x/4 dominant. (a) without smoothing: (b) after
smoothing with space-constant 1 pixel prior to matching: this removes most but not all the
“noise”, but smoothing with a larger space-constant also removes Lhe true boundary. Filter
parameters: (T = 3-5 pixels, By =04, Abyyp = 7/8, @ = #x/4; 0 = 4-76 pixcls), using the
nolation described on page 69.



{a) 6 =x/a {b) max

FIGURE 4.9: Effect of contrast operator on filtered “Pop-out” image.
Feature contrast was computed for our “Pop-out” image (Figure 4.5) after
filtering to extracl Gabor amplitude. Untreated output is shown in Figure 4.6.
(a) contrast found by (4-20) at orientation § = =/4; (&) overall feature
contrast found by (4-21) from four orientalions: spurious variation within the
background region remains. Filter parameters: (T = 3-5 pixels, By, = 04,
AByyy = ©/8, © = w/4; o = 4.76 pixels), using the notation described on
page 69.

with the intention that places of high coutrast gradient map into boundaries. We define
contrast ¢(f, z,) for each channel as:

o(8,z,y) = %;LW) (4-20)

finding this form slightly superior to (4 —A)/(A+ A), where A denotes a global average
response.

As expected, the singleton target in our “Pop-oul” image gives high contrast accord-
ing to (4:20) in the channel tuned 1o its orientation, # = x/4 (Figure 4.94), confirming
the potential of our contrast operator. Channels are combined by selecting maximum
contrast C'(z,y) at each position in the display:

Clz,y) = max 8, z,y) (4-21)

where 7 ranges over all channels. The result of applying this maximum-conlrast oper-
alor to our “Pop-out” image is shown in Figure 4.96: the singleton elemenl correctly
generales the highest conlrast in the filtered image, but unfortunately fluctuations or
“noise” in low-amplitude channels are also mapped into high contrast by the contrast
operalor (4-20), and a “criss-cross” pattern arises {rom low-amplitude varialion in the
6 =0 and § = = /2 chanuels. The singleton element in Ltbe “Pop-out” image is of suffi-
cient prominence 1o remain apparent in the global contrast map, but peak contrast is
lower for our “Segregatiou” image and the texture boundary is hiddeu by *neise” (dala
not shown). It would be possible to add a threshold to the contrast operator (4-20) to
eliminate low-amplitude eflects, but this is unlikely to prove satisfactory and may be
self-clefeating if these convey useful information. At the root of the problem lics the
uneven filter response to apparently bomogeneous textures: any model which does not
allow [or this is liable to run into difficulty.
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(2)f=x/4 (b) 6 = 3r/4

Figure 4.10: Effect of gradient operator on filtered “Pop-cut” im-
age. Gabor amplitudes of channels tuned to the indicated orientations, fil-
tered by Laplacian-of-Gaussian edge defection with a space-conslant of 4 pix-
els. The original image is shown in Figure 4.5, and untreated output in
Figure 4.6. (&) channel tuned to the singleton element, 8 = x/4; (&) chanuel
tuned to the background elements, § = 3x/4. Spurious background variation
in (b) remains, and interleres with attempts to exiract a texture boundary.
Filter parameters: (T = 3.5 pixels, B, = 04, Ab, s, = x/8; ¢ = 4:76 pixels),
using the notation deseribed on page 69.

4.4.3 Appraisal of Feature Gradient Operator

Modal filtering is a region-based process, labelling each image neighbourhood according
to its dominant frequency component. Edge-based processes are a suitable alternative
(§3.5), and we may locate image sites with high feature gradient because ihese map
naturally into texture bonndaries (Tan, 1988). Given the problems with uneven filter
response, we have chosen to take the gradient after convolution with a Gaussian kerncl:

r(8,z,y) = ||[Valp)* [I(z,y)=q(8)]| (4-22)

where the space constant p may be adjusted to control the degree of smoothing. Our
feature-gradient operator (4-22) is potentially more sensitive to texture houndaries than
modal filtering because the requirement that the dominant frequency component must
change has been relaxed, and each putative boundary has an associated sirength or
level of confidence which may be used to eliminate weak responses.

A difficulty with the Gabor energy filter output we obtained previously was the high
level of variability within a region of apparently homogeneous texture (Figure4.8), with
fluctuations in amplitude sometimes causing a local drop to a near-zero response. These
eflects still appear in maps of feature gradient after smoolhing (p = 4 pixels), as shown
at key orientations for our “Pop-out” image (Figure 4.10): although high gradient was
detected in the channel tuned to the orientation of the singleton element {# = w/4),
spurious edges in the orthogonal direction (6 = 3x/4) interfere with atlempts to exiract
a valid boundary. Tan (1988) showed that feature gradient is an attractive cur for image
segmeutation, but the problem of fluctuating filler response must first be understood
and either overcome or dimimished.



4.4.4 Selection of Filter Parameters and Phase Effects

A consistent problem with the attempts Lo segment our artificial images reported in
this section bas been the bigh level of non-uniformity of filler response to an appar-
ently bomogeneous texture, and it becomes particularly acute for our “Pop-out” image
(Figure 4.5) where heavy corrective smoothing cannot be employed withoul destroy-
ing detail. Amplitude variation arises because adjacent texture elements may add out,
of phase, interfering destructively to cause a local drop in response amplitude (Fig-
ure 4.11). These effects are very sensitive to line-spacing and the filter period 7, perhaps
explaining the irregular fluctuations of Gabor amphtude.

Interference between adjacent parts of an image may he reduced by selecting a
more local filter (smaller Gaussian envelope). Figure 4.12 shows the response of the
filter (T = 3-5 pixels, Biyz = 2, Aby;z = x/4; 0 = 1-1 pixels) to the samc mages —
previously we used (Byj; = 0-4, o = 4.76 pixels). The new oulput contrasts rather
sharply with the previons response (Figure 4.6): the general level of varialion is much
reduced but instead there are local feature “blips” around each texture element. Clearly,
tbe more local filter is responding to individual texture elements rather than to the
texture arrangement, but an additional processing step is required in order io join the
elcments to form composite regions and segment tbe image. This is conlrary to the goals
of this approach, which seeks to use spatially-parallel data-independent processing.

When we processed more uniform versions of the artificial “Segregation” and “Pop-
ont” images, with line segments arranged on a regular grid wilbout jitter, smplitude
fluctuations almost disappeared (data not shown) because phase effects were constant.
across the image. This result confirms our explanation for the source of Gabor amplitude
variation within a region of a single texture type. It was fortuitous that both natural and
synthetic textures segmented by the algorithms described in the literature and above
(§4.3.2) did not display irregnlar local variation of this type unless heavy smoothing
could be tolerated to correct a “noisy” boundary (Bovik et al., 1990; Tan, 1988). Although
the feature contrast or feature gradient tecbniques described ahove (§§4.4.2-4.4.3) might
permit texture borders to be obtained a little more sensitively, it is thc hrmitations of
the basic texture model adopled by all tbese approaches which ultimately constrain
performance.

4.4.5 Segmentation of Real Textures

Simple artificial textures specifically designed to expose liniitations of segmentation
accuracy were employed in the experiments described above (§84.4.1-4.4.4). We found
that these images were not segmented well by previous Gabor texture-encrgy algorithms
becanse local variations in phase caused fluctuations in Gabor amplitude sufficienl to
interfere with attempts to extract valid boundaries. Although useful to probe the
restrictions of this approach, our “Segregation” and “Pop-out” images (Figure 4.5} are
very unrealistic, and it is doubtful whether sucb patterns of variability occur [requently
in practice. In this section, we apply the modal filtering segmentation algorithm (Bovik
et al., 1990; Clark et el., 1987} Lo some real textures, which may obey its simple image
model more closely.
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FiGure 4.11: Phase effects with Gabor fliters. The Gabor filter illustrated by the
background is tuned to the correct frequency and orientation but records low amplilude
because tbe two line segments are out of phase and interfere destructively.
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FiGURE 4.12: Artiflcial images after flltering with a local kernel. Demodulated
Gabor amplitude from “Segregation” and “Pop-out” images (Figure 4.5) obtained with a
local kernel (space constant 1-1 pixels). Texture boundaries are evident but post-processing
is required to extract them because of the high level of non-uniformity within esch display
(compare Figure 4.6). Filter parameters: (T = 3-5 pixels, Byy; = 20, 88y, = nfd; 0 =1-1
pixels), using the notation described on page 69.
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(a) denim collage (b) segmented image

FIGURE 4.13: Denim image after modal filtering. Demodulated Gabor
amplitude was obtained from the denim collage by Lhe method described
in §4.3.2. (a) denim collage, formed by rotating the central disc by 90°.
{b) segmentation produced by modal filtering with Gabor kernels tuned to
four orientations and blurring with parameter ¢ = 2-8 pixels. Texture contrasl
is strong enough to overcome this degree of blur. Filter parameiers: (T = 15
pixels, Byjz = 1-5, Abyyp = w/4, © = n/4; 0 = 14 pixels), using the potalion
described on page 69.

The modal filtering algorithm (§4.3.2) assumes that each texture conlainsa unique
dominant frequency component, so that Gabor cbannels tuned to these critical wave-
bands may act as indicator functions and segmeut the image (Bovik et al., 1990; Tan,
1988). Suhjectively, the denim texture shown in Figure 4.13a appears similar to a si-
nusoid, confirmed by the presence of a single sharp peak in the power spectrum of the
original texture (data not shown}, and hence should be in close correspondence with this
texture model. Our collage was formed by rotating the central disc clockwise by 90° so
that the diagonal patterns of the material are orthogonal. Both the smooth houndary
shape and good separation of texture frequencics are favourable to the scgmentation
algorithm. We filtered the denim collage with four high-frequency Gabor kermels, and
blurred the demodulated channel amplitude prior to exiracting boundaries. 4s shown
in Figure 4.134, the regions extracted have the correct form and general shape, and the
estimated boundary lies close to the true contour, although the parameter of the blur
kernel was adjusted carefully to get this result (¢ = 2.8 pixels).

Filtering at a single frequency and fixed orientations may be appropriate lor images
composed of a single base texture (such as Figure 4.13) but is less suitable for discrim-
inating arhitrary textures. The power spectrum paramcter-sclection method (Bovik
el al., 1990; Tan, 1988) is more flexible and often suggests betler discriminants, and we
adopted this procedure in order to segment the texture montages shown in Figures 4.14
and 4.15, formed by superimposing a patch of one texture over another so thal the true
boundary was a circle or a diamond (see also Figure 1.3 on page 5). Apart from the
denim image used previonsly, textures were obtained from our Brodatz image sel (Fig-
ure 1.6 on page 11). These textures olten have peak energies at similar frequercies, with
periods in the range 5-10 pixels, and are discriminated most effeciively if they differ in
orieutation. All the montages shown in Figure 4.14 are of this type, and were segmented
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(a) outer. denim ( ) ouler: #77 collon canvas (c) outer: 821 French canvas
inner: denim inner: #84 raflia inner: 868 woadl grain

ouler: #15 straw () outer: #78 siraw cloth (f) outer: #17 herringbone weave

(d) inner: 216 straw inner: #68 wood grain ionec: #21 French canvas
FIGURE 4.14: Successful Gabor energy segmentations. Each montage image was
filtered with tuned Gabor kernels, two for (a-¢) and three for (f), with parameterssuggested
by the power spectrum method {§4.3.2), and blurred with a space constant of five pixels. The
superimposed border marks locations where the dominant response changes, and should form
a circle or a diamond. (&) denim image, 108x 106 pixels; (b—f) Brodatz images (Figure 1.6
on page 11), 128 x 128 pixels. The segmentation takes the correct form in each case, although
boundary shape is sometimes distorted {see also Figure 1.3 on page 5). Filter parameters
for (a-e) are shown below, using the notation described on page 69.

outer I inner
image | T| 6| Byjp} Ay, T| 68| By | A8y
(a) 52| 51° 1-0 25 52 | 141° 10 25
(b) 4-5 0° 1-0 251 85| 86° 17 40
(¢) 71| 93° 1-0 25 || 105 52 1-5 25
(d) 6-0 | 169° 14 35 60| 79° 14 35
(e) 4.4 2¢ 1-0 25 || 106 | 95° 04 10
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well. First-order properties were not normalised but these are not exploited by our al-
gorithm. One Gabor kernel was tuned Lo each texture patch excepl #17 (hemringbone)
where two orientations were used (Figure 4.14f): this is one case where the dominant
frequency model breaks down because two [requency bands were required to represent
this texture. For all these monlages, Gabor amplitude was smoothed with a Gaussian
of space-constant 5 pixels in order to eliminate small “noise” regions from the labelling
procedure (4-19 on page 68). As can be seen [rom Figurc 4.14, this technique was
snccessful at forming a single connected boundary but has tended to distort its shape.
Border accuracy could have been improved by adjusting the smoothing parameter for
each image.

Somec images [or which the segmentation algorithm is less successful are showu in
Figure 4.15. Failure was caused by: (a) similar [requencies and orientations being cho-
sen Lo represent each texture, so that they were poorly discriminated; (4,¢) textures
not possessing a dominant [requency band; (d) texture inhomogencity. Although some
improvement might follow [rom combining amplitudes from a larger number of chan-
nels, or examining [eatnre gradients (Tan. 1988}, these [ailures arise [rom {urdamental
weaknesses ol the model and cannot be overcome cntirely. In [airness, some of the
Llextures in Figure 4.15 are also difficult for humans to distingnish quickly.

4.4.6 Conclusions: Limitations of Gabor Energy Filtering

Gabor filtering can only be the first slep in an image segmenlation algorithm becanse
Gabor representations are complete and heuce re-express image data rather than pro-
cessing it. Simple image segmentation algorithms suggested in the literature (§4.3)
were studied in this section, based on an idealised texture model and demanding only a
small number of tuned Gabor channels (Bovik et al, 1990; Tan, 1988). Performance was
measured [or synthetic aud real fexlures, but only partial success was achieved with
both image types. Jitler in our arlificial multi-element displays (}Figure 4.5 on page 71)
led to local variations in filter phase, causing large fluctuations in Gabor amplitude
which obstructed attempts to locate texture boundaries. The simplistic texture model
predicts that each channel has a constant response within cach textured region. Some
of the fluctuations noted above may be reduced by smoothing Lo agree wilh Lhis as-
sumption more closely, hul this process also tends to distort boundary shape, and may
destroy uselnl information.

When suitable filter parameters were chosen, high segmentation accuracy was
achieved with montages ol natural textures provided these were in close agreement
with the assnmed texinre model. All these texture types werc sponianeonsly discrim-
inable by humans, and resemble those employed previously Lo demonstrate the potential
of this segmentation method (Bovik et al., 1990; Tan, 1988). Poor seginentation accuracy
was obtained wben the texture model broke down, which could happen [or several rea-
sons (Figure 4.15). Failurc to segment these images accurately does not anse from a
lack of available information because the algorithms developed in Chapter 6 distinguish
all these textures reliably, and is noL a consequence of insensilive fillers since Gabor
kernels achieve optimal resolution (§4.1). Poor performarce is caused by an incomplete
segmentation algorithm arising from an over-simplified texture model.
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(a) outer: 15 slraw (b) outer. #63 European marble
2) Inner #68 wood grain

inner: #90 clouds

(©) outer: #73 soap bubbles (d) outer: #96 brick wall
inner: #12 bark of tree inner: ®18 straw

Ficure 4.15: Unsuccessful Gabor energy segmentations. Each Brodaiz montage,
derived [rom Figure 1.6, was filtered with two tuned Gabor kezrnels with parameters suggested
by the power-spectrum method (§4.3.2), and blurred. Tbe superimposed border marks
locations where the dominant response changes, and should form a circle or 2 diamond.
(a—-c) blur space constant five pixels. (d) blur space constant one pixel. The algorithm has
become confused because the textures lack a unique frequency band. Filter parameters are
shown below, using the notation described on page 69.

ouler inner
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4.5 Gabor Signatures: Parameterised Image
Models

Qur experiments with both artificial and Brodatz textures reported in §4.4 confirmed
impressions gained {rom the literature (§4.3): Gabor amplitude filtering provides a fast
and efficient method for obtaining approximate boundaries from suitably coustrained
images, but is unable to segment unconstrained images reliably. Drawing an analogy
with Cbapter 2, we may think of Gabor filtering as performing a pre-allentive analysis:
spatially-parallel and efficient, but used only to guide allocation of more sophisticated
processes. Perbaps it is not surprising that simple semi-automatic algorithms using
linear filtering are unable to distinguisb reliably the complex spatial arrangements we
call “lexture”. Given their superior Lheoretical properlies (§4.1), we believe that Gabor
filters perform at least as well in Lhe role of linear feature-extractor as any similar
metbod reviewed in Chapter 3.

Limitations of Gabor filtering algorithms arise from over-simplified texture models:
textures are commonly assumed to form regions of constant or slowly-varying Gabor
amplitude, but copsiderable variation was observed within filtered textures in practice.
Some authors suggested recursive applicalion of Gabor fillers in an attemp! to make
texture boundaries more distinct (Turner, 1986; Beck et al., 1989), but this is a rather
haphazard procedure. We adopl an allernalive approach which seeks to exploit rather
than suppress spatial variation in Gabor amplitude, describing spatial arrangements of
Gabor features by random ficlds: our hierarchical model allows us to exploit the speed
and flexibility of Gabor fillering combined with the rigorous approach to stochastic
spalial dependence offered by random field models. We anticipate that our new model
will be more sensitive and reliable than Gabor filtering alone, but more computationally
attractive than many structural approaches to texture analysis (§3.3).

4.5.1 Objectives: Concise Feature Representations

Our objectives for the remainder of this Chapter are to convert voluminous Gabor
amplitude obtained by image filtering and demodulation into a compact form which
may be described conveniently and efficiently by random fields, without severe loss
of information. We intend to hide details of Gabor filtering {rom the random field
models, providing a degree of abstraction, by pooling information from several Gabor
channels and re-expressing it in terms of a few local images “features”. Unlike some
previous approaches described above (§4.3), we intend Lo derive this transfommation in
a principled manner. A degree of data compression is required. hence it is inappropriate
to use a complete Gabor rcpresentation (§4.1.4).

Our approach is to paremeferise Gabor filter outpul according to simple local im-
age primitives, described in §4.5.2. At each image site, feature parameters which best
describe the observed Gabor signature! are estimated, forming a compact representa-
tion of activity in local channels. Several approaches Lo Lthe cstimation procedure are

“The signature of a texture primitive is its response spectrum across Gabor filter channels.
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described below (84.6; §A.3). A residual error is computed at each sitc, enabling a level
of confidence Lo be attached to each feature vector.

Several filter measurements are required in order to estimate feature parameters reli-
ably. Families of filter kernels may he developed in two ways: varying either orientation
or spatial frequency (§4.1.2). Orientation is thought to be a key feature in low-level
vision (Zucker, 1983), and in order to ensure it is represented accurately, we filter the
image with kernels tuned to several orientations {4,}, where #, — 8;_;, = ©. Filtering
at many spatial scales is computationally attractive, hut is not currently implemented
— some advantages of an extension to multiple scales are discussed in Chapter 8. I is
also possible to take advantage of spatial coherence hy pooling filter ontput from a local
neighbourhood, in order to form more reliable feature vectors (Kass & Wilkin, 1985), but
this approach is inappropriale in the present context because we wish to preserve local
spatial vanation for analysis by the random field model.

4.5.2 Parameterised Image Primitives

Previous approaches have combined output. from several channels in an expcdient man-
ner, without any particular image model (§4.3). We take a more principled view: mea-
sured channel outputs form an ohserved Gabor “signature”, which is matched against
that of parameterised image primitives. The parameter ‘sel which brings these into
closest correspondence is used as a feature veclor to represent the response at Lhat
sitc. This approach has the advantage that it operates independently of the number or
nature of channels used, since the features ohtained take a similar form in each case.
Care must be taken in designing image primilives: they should have sulficient variation
to capture important local structure but must he descrihed by only a small number of
parameters, in order that these may be eslimaled efficiently and reliably.

Currently, we have two primitives, LINE and SINU:

cb(z" - d) (4-23)
csin{wz” + ¥) (4-24)

June(z,y)
Jswu(z,y)

where the z”-axis is rolated clockwise by an angle #; from the z-axis (herce z =
zcosfy — ysinfp). Onr LINE primilive is a line of vanishing thickness, impulse ¢, and
orientation 8y, sited a distance d [rom the coordinate origin. The SINU primitive is
a sinusoid of contrast ¢, orienlation @y, angular frequency w, and phase ¢. Three
parameters describe LINF; four describe SINU. Both these image primitives have infinite
spatial extent hut are suitable for describing local features because of the windowing
eflect of the Gabor kernel (§4.1.1).

The response to these primitives of a Gabor filter ¢(A, 8, 0,w), parameterised as (4-6)
on page 58, is derived in §A.2.5.
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LINE:

cA M2\ [wdr?cos(fy — 0) w?o?sin?(fo— 0)

i e E R ]
(4-25)

eA A d? wd)? cos(fp — 6) w?a?sin’(8,- )

L e
(4-26)

N3 A2 w2o?sin(8, — 6)
& = 2rv207? exp( a’u’) SR [_ v? ] (:27)
2 =

tang = tan [w_d/\_co#ﬁ} (4-28)

SINU:

. ..
R, = ccosipexp ( ) exp(—a?w?/2)sinh [wwa cos(fy — 9)] (4-29)

a?ute?
R, = esint exp (———) exp(—a*w?/2) cosh[wwa® cos(6p — 0)] {4-30)
2

2X2
2 -z Vet S (P i 2 8. — 0
R = cexp 2 exp(—o’w ){sm i + sinh’ [wwo? cos(fg — )]} (4-31)
tang = cobep tanh|wma? cos(By — 0)) (4-32)
Where:
v = sin®(fp — 0) + A% cos* (6o — 0), (4-33)

and R = B.+ jR, is the complex channel outpul (4:11), R the demodulated Gabor
cnergy (4-13), and ¢ the phase (4:12). Any of these quantities may be used during
feature estimation but they are all ultimatcly derived from tlie channel response R.

Signalure of LINE primitive

Gabor signatures of the LINE primitive are parameterised by: linc oflset d, orientation 8,
and contrast ¢ (4-25-4-28). Typical LINE response curves are shown in Figures 4.16
and 4.17, and response surfaces in Figure 4.18. Gabor outpul Aywe is symmelric for
orientation tuning either side of the true value, § = 8p. If the sign of Lhe lioe offset d
is changed, sine phase R, is negated but cosine phase A, is unaffected: ford — —d,
R — R*. As orientation error ¥ = 8, — 0 varies, v2(#) (4-33) changes ooly a little for a
nearly circular Gahor envelope, aspect ratio A 2 1, and the major sources of variation
of response R with ¥ are the terms in sin?4 and cos 9 (4-25-4-26). When line offset
and Gabor period are comparable (d > T/4), R, and R, may oscillate mildly with ¥,
but oscillation with line offset d is sharp, as confirmed by Figures 4.17 and 4.18a. As
this oscillation is mainly due to a variation in phase, Gabor energy R is little affected
(Figure 4.185). Further discussion appears in §A.3.1. Channel oulput R scales linearly
with hine contrast .
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80 60 -4 @ -20

FIGURE 4.16: Gabor signature of untransiated LINE primitive. Cosine phase R, for
the response to a LINE primitive (4-23 on page 82) coinciding with filter origin, and relative
orientation ¢ (degrees), for typical filter kernels. (a) high orientation-bandwidth, A8, ;, =
7/4; (&) low frequency-bandwidth, Bz = 1; (¢) high frequency-bandwidth, By, — 2;
(d) low [requency, 7" = 5 pixels. Except where otherwise stated above, filler parameters arc:
(T = 3-5 pixels, B, 3 = 2, A8,; == x/8), using Lhe notation described on page 69. The sine
phase is zero in all cases,

FiGURE 4.17: Gabor signature of translated LINE primitive. Cosine phase R (dotted)
and sine phase R, (solid) response to a LINE primitive (4:23 on page 82) translated by d pixels
{rom the filter origin, and relative orientation ¢ (degrees), for typical kernels. {a) high
frequency-bandwidth, (T = 3-5 pixels, By, = 2; d = 2 pixels); (#) narrow frequency-
bandwidth, (T = 3 pixels, By, = lA; d = 25 pixels), using the notation dexribed on
page 69. Orientation bandwidth was x/8 for both filters.
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Signature of SINU primilive

Gabor signatures of the SINU primitive are parameterised by: grating [requency o,
orientation 8y, contrast ¢, and phase ¥ (4-29-4-32). The response Rgny is symmetric [or
filters tuned either side of the correct orientation 8. The phase of the grating ¢ aflects
both the phase and amplitude of the channel response, applying a small corection to
Gahor energy. Unlike the response to the LINE primitive, Rsny does not oscillate: both
R, and R, take the same sign everywhere, and their amplitude reaches a maximum when
the filter is perfectly tuned, to the correct frequency @ = w and orientatiou 8§ = 6y,
with rougbly exponential decay when mis-tuned (Figure 4.19). Apart from a scaling
factor, R, and R. vary in a very similar way, and the Gabor phase tan ¢ (4-32) is ncarly
constant for § == fy — when its argument becomes large, tanh(wwo?cos@) ~ 1, and
hence tan ¢ = cot 3. Channel oulput R scales linearly with contrast c.

4.5.3 Least-Squares Feature Extraction

Qur iutention is to combine measured responses from several Gabor channels, repre-
senting them wiLh a small numher of feature parameters. These will usnally be over-
constrained by equations (4-25-4-28) for LINE and (4:29-4-32) for SINU primilives. Ex-
act inversion of these equations is not feasible in practice, and would also fail to form
the “best” estimate from “noisy” measurements; least-squares parameter estimation is a
suitable technique to apply in these circumstances (Papoulis, 1990, Chapter 11), Unfortu-
nately, the response equations for both LINE and SINU primitives are too complicated for
us to obtain a ¢losed-form solulion by this method, even after simplifying assurnptions
discussed helow, and we currenily employ the sub-optimal feature-extraction techniques
described in §4.6.

Let us write the measured and model responses {rom all channels at eachimage site
as complex vectors M and R, respectively, one element corresponding to each filter.
We may then seek to minimise the error ¢ between measured and response vectors:®

e = [[M-RJ®. (4-34)

For the LINE primitive, £ is minimised with respect to the free parameters Bywg =
R(ba,c,d) to generate three equations:

0 de  Oe
EJ;*'&:ﬁ_O' (4-35)

In principle, these are solved as simultaueous equations to obtain the matched parame-
ters 8o, ¢ and d and to give £min. Uufortunately, the complicaled nature of the variation
of Ry with 8 (4-25-4-26) means that a closed-form solution is not possible, and even
if the equations are simplified by assuming that the hne coincides with the filler kernel,

5Where [|A[] denotes the Euclidean norm: ||A|? =15 IA, L



86 CHAPTER FOUR: Gabor Fiiters

(2) sine phase R, (b) energy R

FIGURE 4.18: Response surfaces for the LINE primitive. Gabor signalure forihe LINE
primitive (4-23 on page 82) as a function ol orientation Luning ¥ and line offset d {pixels),
in the rauges 0 £ ¢ € n/2 and 0 < 4 € 15. (@) sine phase R, oscillates rapidly with d
small; (b) Gabor energy R varies smoothly. Filter paraineters: (T = 3-5 pixels, B, = 05,
Al g = 7[6; 0 = 3-8 pixels), using the notation described on page 69.
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a) sine phase R, b) angular phase ¢/x
p gular p

FIGURE 4.19: Gabor signature of the SINU primitive. Response to the SINU primitive
(424 on page 82). (a) response surface for sine phase R,, as a function of onentation
tuning ¥ and sinusoid frequency o, in the ranges 0 £ ¥ € #/2 and 0-15w € @ € 2w, and
for grating phase 4 = 0. Maximum response is reached when the filter is correctly tuned.
(&) Gabor phase ¢ for several combinations of filter and SINU parameters, as a [unction
of orientation tuning ¢ (degrees): (A) @ = w, phase p = 097; (B) By = 25 @ = w/2,
$=09m (C) Byyy = 0-5; w = 2w, ¢ = L-27. Filter parameters: (T = 5 pixels, By = 1,
Abyy, = w/6; 0 = 28 pixels), except where stated otherwise above, using the notation
described on page 69.
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d = 0, we reach a pair of very unwieldy simultaneous equations:

252 6in?(d, — 0: . R i
Z M‘;” exp {—%20—0‘)] sin(fp — 6;) cos(fp — 6;) [(1 — AM)w? + W?e™] =
v 1%

3 sin(fy — 8;) cos(o — 8, w22 sin? (8 — 6,
T Z: (% )6 (% )exp[— £ £ )] [(1 =%} +wlo?A?)

v
M. w?a?sin*(fo — 0,) e exp[—w?c? sin?(f, — 8;)/
Do exe [‘ o - =3 - (4.36)
where
o= sinz(éo —-8) 4 A? cos’(éo -0;) (4-37)

and summation for ¢ extends over all cbannels. Nole that because the sine phase of
the model signature R, is identically zero, estimated features (4-36) depend solely on
measured cosine phase {M,;}. Exact solution for & and By is not practical. The above
form assumes that all filter parameters except orientation (that is, w, o and A) are
common, and this was true for our experiments, but this restriction need not apply.

Inversion of the responses to the SINU primitive (4-29-4-30) is just as difficult, even
il less important paramelers are dropped to simplify the problem. Consequently, we
rejected simultaneous least-squares estimation of all parameters as infeasible in prac-
tice. In §4.6, we describe a sub-optimal estimator based on response momenls which
generates acceptable features without invoking the full complexity of our parameterised
signatures: this is our prelerred method. Some alternative approaches are discussed

in §A.3.

4.6 Feature Estimation using Response Moments

Least-squares estimation of [eature pararmeters from measured responses of several chan-
nels using the parameterised Gabor signatures Rymwg (4-25-4-26) and Rspy (4-29-4-30) is
not feasible in practice because the equations involved are extremely unwieldy (§84.5.3).
In Lhis section, we develop alternalive sub-optimal parameter estimators by exploiling
response moments. Qur Profile and Resultant methods are shown to generale accept-
able {eatures efficiently, and both are employed below in conjunction with our hybrid
Gabor-Markov texture models (Chapter 6). Some further approaches and our reasons
for having rejected them are discussed in §A.3.

4.6.1 Response Moments

From the form ol Lhe model response equations for both LINE {4-27) and siNu (4-31)
primitives, it is clear that Gabor energy R(#) is symmetric and decreasing about the
orientation of the image primitive 8y (except possibly for very ill-tuned flters), as
confirmed for the LINE primitive by Figures 4.16 and 4.17. We may exploil this simple
angular variation by setling the estimated orientation feature fy to the angle at which
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the angular moment of the observed response energies is a minimum. This may be
expressed as a least-squares estimate by minimising the lengths of projections onto the
appropriate axis, writing:

¢ = Y Msin®(fo—0.) (4-38)

1

and minimising € witb respect to the {ree parameter, 8,. This approach is equivalent
to treating R(#) as apn angular distribution and computing its mean {Kass & Witkin,
1985). We map R(#) around tbe unit circle, writing:

3 sin 26

% = ' R(8) (szg) dé (4-39)
2

where the direction of g defines the resultant mean, & = 8, as expected from symmelry

of R(#). This is true for both LINE and $INU primitives, and for any other image

primitive possessing appropriate symmetry.

In order to estimate 8, we may compute Lbe angular mean (4-39) using the measured
Gabor energies M (9,). Replacing integration by discrete summation, we have
5 M, sin 28,
tan20, = p 4.40
© 2o, M, cos 28, [440)
where summation for ¢ extends over all channels. For this to be accurate, it is helpful
for the channels to be regularly spaced around the circle, and for their responses to
overlap sornewhat. This may be arranged by selecting appropriate filter orientatjons
and orientation bandwidths. One further way of expressing the estitnator s by the
direction of the eigenvectors of the matrix:

cos?f;  sin®, cosé;
Z ( sinf, cos§;  sin®é; ) M;.

Both 8, and 90 + ©/; are solutions: we choose the value that minimises ¢’ (4:38). This
form for §y is much more convenient than attermpts to use lcast-squares estimalion
(84.5.3) because it is readily evaluated, and the same equation holds for both LINE and
SINU primitives.

Our equation for the estimated orientation feature o (4-40) does nol refer directly
to the model energy response R, although the general form of R was applied mdirectly
in selecting the moment method. Consequently, our estimated orientation is not nec-
essarily an optimal solution to the overall {cature estimation problem (4-:35). We have
dealt with orientation in this way because il was tbe feature with the least prospect of
being obtained {rom the observed Gabor signatures by analytic methods.

Note tbat because R = RR*, we are effectively computing a second moment of the
tinear cbaonel response. It is tempting to ask whether higher-order moments could
lead Lo estimators for furtber parameters, but unfortunately the integration required to
cornpute model responses against which observed values are compared, is inlractable,
aud it is also likely that “noise” would become a serious factor.
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4.6.2 Profile Feature Extraction Method

Once the orientation feature 50 has been obtained by the moment estimator (4-40), we
may again consider least-squares estimation to recover the remaining featurs (§4.5.3).
This will, in general, form a sub-optimal feature vector compared with solufion of the
complete least-squares equation (4:35), but may still be a good approximation. Esti-
mation of all remaining feature parameters is still infeasible, but we may simplify the
problem by accepting a partial solution. Orientation features for LINE and SNU primi-
tives are identical because they are hoth obtained by the moment estimator [1-40), but
different treatmenls are appropriate to extract the remaining features using parame-
terised Gabor signatures.

Feature Estimalion using the LINE primilive

Even with the oricntation feature &, given independently by (4-40), it is still inpractical
to write down a least-squares solution for both remaining features, line contrast ¢ and
offset d (§A.3.1). Instead, we choose to set d = 0 and to disregard Lhe phise of the
observed response M, effectively assuming the image line intersects the filier origin:
this is justified because any matcb away from d a2 0 will have low amplitudeand high
error. We may now write a least-squares contrast estimator & in terms of observed
Gabor energies M;:

m

-— . ?
z‘; [——MA'M?‘ (4-41)

AM = QVMAM

where AM represents the standard deviation of M, and we have assumed that the
measured responscs have equal standard deviations: AM, = AM, = Ap. Tach term
is normalised by its estimated standard deviation in order to give equal weight to each
measured quantity. We use Gabor energy ratber than the separate phases be:ause this
degrades more gracefully when modelling assnmptions are inexact, but is insasitive to
the sign of the line contrast ¢, which is consequently not determined by this method.
Minimisation of £ with respect to cZ gives:

2 _ 2mdt Y, exp [—w?o? sin?(fp — 0.)/v}]/v?
BIRE T 32 ¥, exp[—2wlo? sin?(fy — 0:)/vi) [(viM,)

plus the trivial solution ¢ = 0. When the true line feature does lie some dstance d
from the centre of the filter, apparent contrast ¢? decays roughly as: exp|—d?/c?),
under the influence of the Gabor envelope, as is apparent in Figure 4.21 onpage 93.
Non-maximal suppression or “lateral inhibition” (Malik & Perona, 1990) coull perhaps
be employed to sharpen the response, but this would probably also remove vilid detail
and is not currently implemented. The residual least-squarcs error ¢min, oblained by
minimising (4-41), represents the level of agreement achieved hetween meawred and
model Gabor energy signatures, A and R(fo, ;7), and is used to define an “error”
feature & ye:

(4-42)

= Emin
T ey
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where 0 € £ < 1.

Feature Estimation using the SINU primitive

Similar difficulties are experienced with the SINU primitive, where it is necessary to
assume the filter and grating frequencies are equal: @ = w; and convenient lo set the
graling phase to zero: ¥ = 0. We may then write a least-squares estimator for grating
contrasl, using the same approach as above (4-41):

¥, exp(—w?o?v? 3%} sinh?[w?a? cos(dy — 6,)]
5, exp(=2P0% 3 ) sinkt [0 cos(Fo — 00)] | My

gguw = exp(w’s?) (4-44)

When filter and grating frequencies differ, @ # w, apparent contrast & again falls off
approximately exponentially, as: exp[—o?(w ~ w)7] , under the influence of the Gabor
envelope. We define £spy as above (4-43).

4.6.3 Resultant Feature Extraction Method

Profile feature extraction (§4.6.2) uses our moment estimator (§4.6.1) to oblain the
orientation feature only: other features are ohtained (in principle, at least) by least-
sqnares Gabor signature matching, which also generates a residual error or level of
confidence . An alternative approach is to ahandon LINE and SINU primitives entirely,
and derive all fealures directly from ohserved channel responses without reference to
image primitives: we call this the Resultant feature-extraction method. It has the
advantage that fealures may be computed more simply than above, from (4.42) or
(4-44).

The Resultant orientation feature &, is computed exactly as above (4-40); only con-
trast and residual error are treated differently. We define the Resultant “contrast”
feature to be the length of the resuliant vector formed in (4-40):

S

Unlike previous estimators, which respond mainly to variations in image properties (4-42
and 4-44), this definition is sensitive to changes in filler parameterisation (¢, » and ),
but this does not matter in praclice because we hold these paraincters constant, varying
only filter orientation @, and because the spatial arrangement of derived fealures is of
more importance than their first-order properties. Note that we have defined contrast
{4-45) relative to the orientation axis §o rather than taking the absolute measure |[M][?,
to reduce the effects of noise. Unlike the Profile feature-extraction method, Resultant
{eatures are not tied to a particular image primitive, and hence there are not separate
[eatures for LINE and SINU primitives.

In a similar spirit, we define a Resultant “error” feature £ggs:

-~

c*
Eppsy = 1= ——. (4-46)
IMl*
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This measures the extent to which Gabor energy projects in a coherent direction, and
varies in a similar manner to the Profile residual error (4-43). QOur definition (4-46)
is agaiu imperfect because & approaches zero only in exceptional circumstances, but it
does permit an indication of response coberence to be computed quickly.

4.6.4 Examples of Features Extracted from Real Textures

Natnral textures are too ill-constrained for any theoretical model to be entirely accu-
rate, and empirical verification of performance is often appropriate. We obtained feature
sets from a selection of textures in order to assess the success of our signature-malching
framework in fulfilling our objeclives (§4.5.1), and to compare the performance of dif-
ferent estimators. Each feature vector has three components: orientation, apparent
contrast and residual modelling error, as described above. Since these cannot be repre-
sented directly, we show features only at fixed grid points, nsing small ncedles aligned
with the orientation feature; contrast is represented by line lengih and residual error
by intensity (black corresponds to zero error), botk on a linear scale. Toroidal bound-
ary conditions were assumed, and hence feature vectors immediately adjacent to image
boundarics are unreliable.

Each image was fltered at several orientations (usually four) but at only a single
spatial [requency, and consequently the feature sets do not represent the full hierarchi-
cal structure of the texture but only a single layer of it. Effectively, microtexture is
captured at only a single scale — extension to fillering at multiple scales is discussed in
Chapter 8. Features are displayed at fixed grid points, without non-maximal suppres-
sion or hysteresis, and hence do not bave as much freedom to follow image contours as
typical edge-detector outpnt (e.g. Canny, 1983). For our application, it is more appro-
priate that filters should respoud to regiors than boundaries, providing information on
the spatial strncture of the texture for analysis by random field models.

Both our Profile and Resultant feature-extraction methods {§84.6.2-4.6.3) rely on
response moments to derive the orientation feature (§4.6.1), and hence the ability of
this estimator (4-40 on page 88) to respond sensitively to local image structure is ol
paramount importance. Using needles of unit length and intensity, we show the orien-
tation feature map extracted from the herringbone-canvas montage (Figure 4.14f on
page 78) in isolation in Figure 4.20a, having deduced suitable filter parameters by the
power-spectrum method (§4.3.2). Comparison with the original texture confirms that
small variations in the orientation feature accurately reflect local texture structure,
following small irregularities in the weave in this case. Successful segmentation of this
montage (Figure 4.14f) confirmed that Gabor features are suitahle for determining gross
texture structure; this new result suggests that they are also sensilive to fine variation.
Similar conclnsions may be drawn from other examples described below.

Contrast and error features extracted by Profile (LINE and SINU) and Resultant es-
timators are shown in Figure 4.205-d; in each case, the orientation is the same as that
represented in (a). These features again respond to local texture structure, appcar-
ing fainter (low confidence) when evidence for the selected orientation is inconclusive,
notably near texture boundaries. Small differences between the three sets of features
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FIGURE 4.20: Gabor features extracted from herr
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parameters suggested by the power-spectrum method (§4.3.2)
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estimated for the montage shown in Figure 4.14f on page 78
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2 pixels, By = 07, A8y = 7/6, 0 = =/4;

7

o = 5-7 pixels), using the notation described on page 69.
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(a) high-lrequency filter (b) low-frequency Alter

FIGURE 4.21: Gabor features extracted from “Pop-out” image. Fea-
ture vectors were estimated from the “Pop-out” image (Figure 4.5 on page 71)
using the Profile LINE method. Needle intensity represents “error”, and lenglh
is proportional to “contrast”. (a) high-frequency filter: (" = 3.5 pixels;
o = 1.1 pixels); (b) low-frequency filter: (T = 7 pixels; 0 = 2-2 pixels).
Feature blurring becomes more pronounced at lower spatial frequencies but
may be partially offset by sampliug. Other filter parameters: (B, = 2,
Afyyp = m/4, © = x/4), using the notation described on page 69.

may be distinguished, particularly in ibe central (canvas) region, but they are remark-
ably similar given that different modelling assumptions apply in each case. Only small
differences between feature sets were observed for otber images (data not shown), and
hence only Profile LINE features are shown below.

It is very important to select suitable filter parameters because our Gabor kernels
respond only to a band of orientations and spatial frequeneies (§A.2.2): ill-tuned filters
will not respond 1o major texture structure, and the feature representation may be
entirely different when the filter tuning is changed (Ahuja & Rosenfeld, 1981; Marr, 1976).
Qur artificial “Pop-out” image (Figure 4.5 on page 71) consists of line elements of widlh
one pixel, and consequently contains a range of spatial frequencies. When Gabor filters
are tuned to a high spatial-frequency (7" = 3.5 pixels), the Gabor envelope is tightly
localised (o = 1-1 pixel) and a small amount of feature “blur” js apparent (Figure 4.21),
but this becomes much more noticeable when the filter period is doubled (7" = 7 pixels;
o = 2.2 pixels) althongh this is offset to some extent by tbe potential for sparse sampling
(84.1.4). These results confirm our prediction (page 89) that apparent contrast decays
exponentially either side of the true image feature: ¢*(d) = ¢ exp(—d?/c?). Stripes in
the zebra image contain energy at many spatial frequencies, hut the sharp peak in the
power spectrum confirms that one band predominates (Figure 4.4 on page 68). When
filter frequency was set to this value (7" = 7-8 pixels), the diagonal stripes of the neck
were picked out clearly (Figure 4.22a), bnt the nose was almost invisible; reducing the
filter period to T = 3.5 pixels gives a more even respouse (4). For the herringbone
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texture (Figure 4.23), a high-frequency filter (T = 4 pixels) shown in (&) responds to
the fine structure of the material, but at a lower spatial frequency (T = 8 pixels), the
coarse-scale organisation is much more apparent (¢).

Spatial-frequency tuning again influences features extracted from the Wesiminster
image (Figure 4.24): a filter period of 9-5 pixels, suggested by the power-spectrum
method, captures much of the ornate structure of the columns and windows but is
insensitive to the high spatial-frequency horizontal slats running across the windows.
Similarly with the table-mat image, a filler period T = 32 pixels picks up the straw
loops hut is insensitive to the ring structure (Figure 4.25). Spatial frequency tuning
is compatible with our objectives (§4.5.1), and allows spatial variation to be recorded
for analysis by the structural layer in our hierarchical model. Different characteristics
would be more appropriate for forming a “cartoon” of the image, since thisseeks to
represent “significant” structure at all spatial scales. We have found little effect of
increasing the number of orientations at which thc image is filtered, usually selecting
four (® = = /4), and ensure that the orieutatiou baudwidth is wide enough to wver the
spectrum evenly.

Filter parameters for our final set of feature maps were again selected by Lhe power-
spectrum method (§4.3.2); original Brodatz textures are shown in Figure 1.6 onpage 11,
montages iu Figures 4.14 and 4.15 on pages 78 and 80, and feature representations in
Figure 4.26 on page 98 (see also Figure 1.5 on page 9). Our features successfully charac-
terise the semi-regular structured textures from which the montages are composed (a—c),
hut also capture the more intricate patterns shown in (d-f). Previous experiments have
shown that Gabor filtering is useful at one Jevel to segment textures into coarse-scale
regions with simple energy algorithms (§4.4); this result confirms that they are also
suitable at another, for extracting more detailed local structure, and showsthat the
approximations taken in the derivation of our Profile and Resultant feature-extraction
methods do not adversely affect performance.

4.7 Conclusions

Low-level vision demands analysis of hoth spatial and spectral properties because phys-
ical objects are localised yet may he identified rehably only by examining an image
neighbourhood. There is a fundamenta! conflict between these two requirements such
that camplete determination of spatial and spectral properties is not possible, but partiaf
accuracy may be achieved along both dimensions according to the uncerlainly princi-
ple for information (Wilson & Granlnnd, 1984). Only Gabor kernels allow signals to
be measured with minimum joint uncertainty, and hence enjoy unique advantages for
image processing as with other forms of communijcation (Daugman, 1985; Gabor, 1946).
In this context, Gabor filtering has been proposed both in its own right in conjunction
with texture energy filtering (Chapter 3), and as a model of low-level human visual
processing (Chapter 2).

Texture energy models assume that the filtered image varies smoothly within each
textured region but sharply at texture boundaries, and we reviewed simple algorithms
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() low-frequency filter (b) high-frequency filter

FIGURE 4.22: Gabor features extracted from zebra image. Feature vectors were
estimated {rom the zebra image (Figure 4.4 on page 68) using the Profile LINE method, and
sampled every four pixels. Needle intensity represents “error”, and length is proportional to
“contrast”. (@) low-frequency filler (T = 7-8 pixels, Byj, = 0-5, Aby;y = 7/9, © = =/6;
o = 85 pixels); (&) high-frequency filter (T = 3-5 pixels, By = 2, Abyyp = 7/6,0 = n/4;

= 1.1 pixels), using the notation described on page 69. Filter (a) is tuned selectively to
low-frequency stripes in the neck; (b) detects more detailed structure.

»-....—/-;\\ 44\!--5 ~ g
e f P NN .
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(a) herringbone (h) high-freqnency filter (<) low-frequency filLer

FIGURE 4.23: Gabor features extracted from herringbone image. Feature vectors
were estimated using the Profile LINE method, and sampled every four pixels. Needle inten-
sity represents “error”, and length is proportional to “contrast”. (a) herringbone texture,
104x 122 pixels; (b) high-frequency filter (T = 4 pixels; ¢ = 1-6 pixels); (¢} low-lrequency
filter (T = 8 pixels; o = 3-1 pixels). Fine detail is more clear in (4) and the structure of
the weave in (c). Qther filter parameters: (8, = 1.5, Abyj2 = 7/6, © = x/6), using the
notation described on page 69.
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(b) Gabor features

(2) Westminster image

FIGURE 4.24: Gabor features extracted from Westminster image. Feature vectors

were estimated using the Profile LINE method, and sampled every Lhree pixels. (a) West-

error”

“«

needle intensity represents

(%) Gabor features:

ter image, 156x328 pixels.
and length is proportional to “contrast”.

mins

1-5,

9-5 pixels, By, =

Filter parameters: (7'

80,, = w4, © = m[6; a = 3-7 pixels), using the notation described on page 69.
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FiGURE 4.25: Gabor features extracted from mat image. Feature vectors were esti-
mated by the Profile LINE method, and sampled every five pixels. (@) mat image, 240X 160
pixels. (b) Gabor features: needle intensity represents “error”, and length is proportional
to “contrast”. Filter parameters: (T = 32 pixels, By, = 1, Afyyy = 27/9, © = n/d; 0 = 18
pixels), using the notation described on page 69.
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FIGURE 4.26 (Conlinuzed): Gabor features extracted from Brodatz
images. Feature vectors were estimated for these Brodatz montages (Figures
4.14 and 4.15 on pages 78 and 80) and original Lextures (Figure 1.6 oo page 11)
using the Profile LINE method with filter parameters suggested by the power-
spectrum method (§4.3.2), and sampled every four pixels. Needle intcnsiy
represents “error”, and length is proporlional to “contrast”. (a) canvas—
raffia: (T = 45 pixels, Byjp = 0.7, 88y, = /6, 8 = n/4; 0 = 3.5 pixels);
(b) wall-straw: (T = 6 pixels, By = 1, 88y, = 27/9, © = n/4; 0 = 34
pixels); (€) straw-straw: (T' = 7-3 pixels, Byjz = 1, A8yp2 = /6, @ = n/6;
a = 4-1 pixels); (d) pressed cork: (T' = 55 pixels, Byj; = 0-5, A8, = /6,
O = n/4; o = 6:0 pixels); () reptile skin: (T = 6 pixels, Byj; =1, Ay =
27/9, © = n/4; ¢ = 34 pixels); (f) water: (T = 44 pixels, By, = L,
A8y = 7/6, © = w/4; ¢ = 2.5 pixels), using the notation described on
page 69.

exploiting this expected behaviour. Qur own experiments with artificial texlures con-
firmed some reservatious expressed in the literature: variability is olten observed within
each filtered texture, and post-processing used to suppress it has the side-effect of re-
ducing the accuracy with which texture boundarics may be determined. None of the
approaches we reviewed could entirely overcome this problem, and we argued that it was
unavoidable except for regular texlures. Despite these limitations, we found that Gabor
energy filtering was sufficient to segment many Brodatz montages botb accurately and
efficiently, altaining levels of performance qualitatively similar to pre-attentive human
vision and offering scope [or parallel processing. Performance deteriorated when the
image did not obey the severe constraints imposed by the simple texture model, and
we identified several circumstances in which these could be violated. These drawbacks,
caused by deficiencies in tbe texture energy algorithms rather than with Gabor filtering
per se, limit the scope of simple Gabor energy filtering for image analysis.

Accepting tbat spatial fluctuvations in Gabor amplitude arise as unavoidable conse-
quences of texture variability, our approach is to construct hierarchical texture mod-
els in which the spatial arrangement of Gabor features is described explicitly. Unlike
previous haphazard procedures, we proposed a principled method [or combining mea-
suremeuts {rom several Gabor chanoels, estimating features by minimising the error
between observed spectra and parameterised Gabor signatures. Haviog considered a
number of alternatives, we proposed two efficient algorithms allowing features to be
extracted without excessive computational effort. By testing this procedure with real
textures, we demonstrated that our feature sets give a sensitive and compact description
of texture variability suitable for use with our proposed hierarcbical model (Chapter 5).

4.7.1 Summary of Achievements
In this Chapter, we bave:
o explored the applicability of Gabor energy filtering for texture scgmentation using

synthetic and natural textures, and identified causes for observed constraints on
performance;
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o formed a principled strategy for Lhe extraction of local Gabor features by signalure
matching;

o proposed efficient algorithms to extract Gabor features using the above procedure,
and demonstrated that features obtained frora natural textures form a sensitive
and compact representation suitable for use with our novel hierarchical framework.



Texture Analysis with Gibbs—
Markov Random Field Models

Simple spatially-parallel operations are computationally attractive because they may
be executed very efficiently by suitahle architectures, and it is therefore desirable to
employ this paradigm for texture analysis (Chapters 2 and 3). Our experiments with
natural and synthetic textures demonstrated the potential of Gabor filtering in lhis role,
and confirmed that simple images are segmented efficiently by algorithms responding to
first-order differences in filter output {Chapter 4). Post-processing is often required Lo
refine these rudimentary segmentations, hut this can destroy important detail, leading
to distorted or missing boundaries, and it is easy to construct texiures for which Gahor
energy methods fail altogetber.

Real textures are inherently variable, hut this is not accommodated easily by simple
filtering algorithms, which tend to suppress spatial fluctuations. Notions of optimality,
hypotbesis testing, and random variation are central to statistical study, and hence
stocbastic models are popular tools for texture analysis. We consider representations
employing Gibbs—Markov random fields in this Chapter, which make explicit the proh-
abilistic influence of spatial context within an optimal statistical framework. Many of
tbe image-processing algorithms which apply these models are at least partially serial in
nature, and are often computationally intense. This is particularly true for hierarchical
random field models, which describe several levels of image structure. Ncvertheless,
tbeir flexibility and adaptive qualities facilitate automatic segmentation of images con-
taining scenes composed of highly-irregular textures.

In order to establish the statistical framework within which Gibhs—Markov mod-
els reside, we first develop tbe theory ol one-dimensional stochastic processes {§5.1).
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Auto-normal models are introduced as an important special case whose linear correla-
tion structure greatly simplifies the evaluation of competing statistical hypotheses. We
comment on approaches to the estimation of suitable modelling parameters to describe
real texture samples (§35.2), and briefly review some applications of Gibbs-Markov mod-
els to classic problems in tbe literature (§§5.3-5.6). Among the deficiencies of current
Gibbs—Markov representations are their heavy computational requirement and insuffi-
cient level of ahstraction. We propose a novel Gabor-Markow framework which addresses
these concerns by blending the descriptive power offered by Markov random fields with
the computational efficiency of Gabor filtering (§5.7). The performance benefits of this
new paradigm are demonstrated in Chapter 6.

5.1 Foundations of Gibbs-Markov Random Fields

The probabilistic spatial structure of variable natural textures is made explicit by rep-
resentations employing Gibbs~Markov random fields, which may operate within an op-
timal statistical framework. In order to provide a solid foundation for the manipulation
and application of Gibhs-Markov texture models (§§5.2-5.6), we establish their theo-
retical basis in this section. We bricfly review properties of one-dimensional stochastic
processes and their statistics, in order to establish a theoretical framework (§5.1.1).
This extends readily to homogeneous two-dimensional random fields, which describe
the bebaviour and interaction of lattice sites by probability distributions.

Markov random fields possess a simplified correlation structure, and are specified
by the distribution of each lattice site conditional on a collection of other sites, known
as its Markov neighbourhood (§5.1.2). The Hammersley-Clifford Lheorem establishes
ibe formal equivalence between Gibhs and Markov random field models, and the two
forms may be used interchangeably (§5.1.3). Statistical manipulalion of Markov random
field models requires tbe joint probability distribution of all sites to be computed from
the local conditional densities, but this is often cormputationally arduous, requiring
sumrnation over a very large stale space. We introduce the special case of auto-normal
random fields, whose analysis is greatly simplified because Jattice sites inleract linearly,
and we develop a matrix nolation used extensively below (§5.1.5). The reader already
familiar with the concept of random fields may prefer to omit §5.1.1, and proceed
directly to discussion of the Markov property (§5.1.2) or of aulo-normal fields (§5.1.5).

5.1.1 Theory of Stochastic Processes and Fields

A random variable x assumes a particular value z according to the outcome of a non-
deterministic selection procedure. Random quantities will be shown in a different font
to distinguish them from ordinary values, as in the previous sentence. The notation
{x € z] refers to the set of possible experimental outcomes {¢,} such that x(¢;) < =,
and is called an “event”. The probability of each event P{x < z} may he determined
by reference to the underlying experimental outcomes (Papoulis, 1990).
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A stochastic process represents a small extension to this concept: each oulcome (,
35 coupled with a function x{1,(;). Single-pararneter functions are conventionally de-
scribed as “time” varying, while two-parameter functions are called “fields”, and may
be written x(z,%) or X(r). In hoth cases, the hehaviour of the {unction is deterministic
for a particular experimental outcome (, and it may be treated as an ordinary random
variable for known paramelers ¢ or r. We shall estahlish the basic results in terms of a
one-dimensional process x(2) for the sake of clarity, but extension to two dimensions is
obvious.

For a specific t, the process x(t) has distribution function F and density J:

F(z,0) = P{x() <=}

Jap = &Y (51)

and the link between F(z,¢) and x(t) will he made explicit when necessary by writing
Fi(z,t) or even Fyy(z,t). We shall use the notation P{x} for P{x < z} where the
context is unambiguous.

As we now have more than one random variable, corresponding to differenl param-
eter values, their joiut (n-th order) statistics are relevant:

F(z1, .oy Zajty, oonta) = Plx(h) €z, o0 x(ts) € 20}
o F i
J(#1, 0y Taith, oo t) = I (52)

Statistical Properties of One-Dimensional Processes

The mean and vanance of a stochastic process are defined in the usual way, but in
general they will be [unctious of the parameter ¢:

ux(t) = 5{;(‘)}
= / zf(z;t) dz
ox(t) = E{x(Ox (1)) = px(Dux(2). (53)

We shall also use the correlation R, and covariance Cy, for two processes x{{) and

y(?):

Aey(ty, t2) E{x(t)y"(t2)}
1, (t2, ) (5-4)
(5-5)

Cryltitz) = Ryl da) — px(t)uy(22)

and because x(t) is a function, its autocorrelation and autocovariance are similarly
defined. Note that the autocorrelation Ryy(Z,1) is non-negative at any instant t:

& {Ix()*}
> 0 (5-6)

R ()

1
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In general, for any function a(t):

It

/m /m a(t1}Ryx(t1, t2)a™(¢2) di, dt, f_m /m E{alt)x(t)a"(1)x"(¢,)} diy de,

£ {i[jo a(t)x(t) dt;z}
0 (5:7)

with equabty holding only if Lhe [unctions x(f) are linearly dependent, and hence
Rux(ti, ;) is non-negative definite. This property has imporiant consequences in the
next Chapter.

it

2

It is convenient to make use of the speciral properties of the process, which are
defiued in the usual way:

X(w) = f—w x()e " dt (5-8)

=

and we shall use the notation X(w) = x(2) to signify a transform pair. The autocorre-
lation Ry of a process x may be related to Lhat of its Lransform, Rxx:

E {X (W)X (w2)}
/_ /_ Rox(ty, t2) exp[—j(wnity — watp)] dty dt,
= Fxx(wl ) _wl) (59)

il

Rxx(whwz)

where 'y, is the Fourier transform of Ryx: TUxx(wi,ws) = Ryxx(f;,22). The change
of sign occurs in (59) because of the complex conjugate in the definition of au-
tocorrelation, and our definition for I'xyx follows (Papoulis, 1991) rather than (Pa-
poulis, 1984). This problem does not arise for a real process, when we may write:
Rxx(whwz) = Rx:(tl,!2)~

Stationary and Homogeneous Proceaaes

A stochastic process is strict-sense stationary if ils statistical properties are invariant
to a shiflt of the parameter origin, implying that the processes x(¢) and x(t+ T') have
identical n-th order distributions:

F(zy, .. Tailyy oobn) = Flza, ooz + T, 8.+ T), VI, (5:10)
In particular, (5-10) implies:

flz;t)
flzata | 23ty)

f(z) (5-11)
flay | @ity — 1), Vit {5-12)

It

I

A homogeneous process may not have a stationary first-order density, and only satisfies
the latter relation (5-12). The influence of boundary conditions means thal most finite
processes are homogeneous rather than stationary.
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One consequence of (5-10) is that the time-dependence of the above statistical prop-
erties is confined to an inlerval 7:

Ax(t) = px
) = o
Rey(t,t—7) = Rxy(r). (5-13)

A wide-sense stationary process satisfies (5-13) but not (5:10).
We shall be concerned with ihe spectral-density of stationary processes: Sy (w) =
Ryx(7). When x is stationary, I'xx is diagonal:
Tux(w,w—0) = Ru(t,t-T)

f Ry (T)e T dT / ™% dg

) oo

Sx(w)8() (5-14)

implying that X{w) is non-stationary white noise with average power S¢x(v). This
conclusion lollows because white noise v(¢) is uncorrelated:

Cun(tista) = a2(2)8(1; — t2). (5-15)
If~v(t) is also stationary zero-mean:
Rn(r) = a38(r)
Svv(w) = o2
RNN(W) = 0’,3(5(’7') (516)

implying that the transform N(w) = v(¢) is also stationary white noise. In general, Lhe
processes defined by (5:15) and (5-16) may assume complex values.

Let us take a stationary process f(t) and transform it by a linear point-spread
function A(¢) and additive zero-mean stationary white noise v(t):
o(t) = (&) x h(t) +v(t)
Rgg(T) Rec(r) = h(r) * h*(—7) + 0‘3,5(7')
Seg(w) = Ses(w)HW)[® + Syv(w) (5-17)
where H(w) == h(1). These important results may be obtained by algebraic manipu-
lation (Rosenfleld & Kak, 1982).

1l

Discrete- Tyme Processes

We shall be concerned mainly with real discrete-time processes in the following Chap-
ters, aud it is convenient to represent these using vector (x) and matrix (R) notation.

Ry = &fxxt}
detRyx > 0 (5-18)

If the field x is homogeueous, its autocorrelation matrix Ry is Toeplitz:

Rxxlk-pe] = Rxx[pnda ifk—Lt=p-gq (5-19)



106 CHAPTER FIVE: Gibbs—Markov Random Flelds

For a finite sequence x of length n, the autocorrelation matrix Ry, has rank n, and
i x is treated as a segment of a periodic process, Ry is circulant. The discrete Fourier
transform may then be taken to obtain I'ny = Rxx, wbich is diagonal for stationary x:

MNx = FRLF! (5-20)

where F is the Fourier matrix. A diagonal Iy« is much easier to manipulate than R,
directly, and we shall make use of the substitution

R = g-’rxxg- (521)

below. This is particularly convenient because F is unitary.

Generalisation to Two Dimensions: Random Fields

Results obtained previously in this section for one-dimensional stochastic processes
generalise easily to {wo-dimensioual random fields. Correspondence is particularly close
for fiuite randomn fields, which we shall represent by suilably ordered M x /N vectors and
treat as above. Tbe autocorrelation matrix Ryy is block-Toeplitz for a homogeneous
field x, and block-circnlant for stationary x. A linear trausformation may also be
represented as a matrix equation, following (5:17):

g = Hf+v
Rgo = HR(H' 4021
Fog = (FHINM(FHFN 4421 (5-22)

where H is a block-Toeplitz matrix of rank MN, f and g are the original and trans-
formed fields, respectively, and v is wbite noise. Matrix manipulatiou becomes very
computationally demanding for large field size, if not infeasible, but this may he avoided
if f is periodic since I'r¢ is then diagonal. For this reasou, jt is common to take the
approximation of a periodic field hy assuming toroidal houndary conditions (Rosenfeld
& Kak, 1982).

5.1.2 Markov Random Fields

Natural textures are described conveniently by Markov random field (MRF) models,
which represent inherent variability and the influence of spatial context.! In Lhis sec-
tion, we develop MRF theory from the preceding analysis (§5.1.1) by introducing the
Markov property, and establish the simplified correlation structure it implies. The val-
ues taken hy a Markov random field x defined on a discrete lattice £ at different sites n
are conditionally independent provided certain conditions are metl. Each element x,,
possesses a Markov neighbourhood set A, C £. If values taken by all sites within
this region are koown, then x, is conditionally independent of the remaining surround
2, = L\{r}, where x € &.

S (x| £22) J (x| Ma) (5-23)
£ {xn | $2.} £ {xa | Mo} (5-24)

. Markov processes are inherently one-dimensional” (Julesz, 1975,

il

il

«

! Despite a comment Lhat
page 38)!
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FiGure 5.1: Markov neighbourhood structure. A non-causal MRF
neighbourhood of order P contains all sites labelled P or below. For an
auto-normal model (§5.1.5), the neighbourhood coefficients display conjugate
symmetry, so only the unshaded part needs to be given. This corresponds to
a unilateral neighbourhood. No models of greater than ninth order were used.

Although any neighbourhood set A, C 2, is formally possible, it is usual for it to
contain sites symmetrically placed around and immediately adjacent to the “ceutre”
pixel n. We again use a flexible notation here: by f(x. | A.) we imply f(xa | x, =
z,, ¥i € M,). The size of the neighbourhood set AVp is characterised by the onder of the
process, P. Each successive incremenl in order adds to A, all sites which are equally
spaced from and closest to n but which are currently not members, and we shall assumne
the neighbourhood set takes the same form across the lattice. For a one-dimeasional
process, the ordering is obvious:

Npp = {n+4i:0<|n—i|<P) (5-25)

and we shall write A5 = Apgo. The position is a little more complicated in two-
dimensions, as illustrated by Figure 5.1: Ap contains all sites labelled P or less. A
site is always excluded frem its own neighbourhood set. When a two-dimensional field
is ordered as a vector, adjacent sites are no longer necessarily represented as adjacent
elements but this is of no consequence. An MRF of order P is sometimes referred to as
Markov-P.

When the neighbourhood set is symmetrical, the process is non-causal (as in Fig-
ure 5.1). Il only half the surrounding plane is retained, preserving symmetry along
one axis, the process is unilaleral with neighbourhood sel A}, represented by the un-
shaded part of Figure 5.1. Simplifying further to retain only a quarter plage gives a
causal process, with neighbourhood A%. 1t is easier to manipulate models with directed
neighbourhood sets, but they are often poor approximations when the structure of the
data is genuinely non-causal.

Wide-Sense Markov Processes

The conditional density equation (5-23) defines a strict-sense Markov process. Most
properties of interest stem from (3-24), which is obeyed by a wide-sense Markov process
when tbe expected value is replaced by a least-squares estimate x:

% = ga[M]
gn[ﬁn] (526)

i
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represented by the function g,. As above (5-24), Z is not affected by the wider sur-
round once neighbouring values are known. The MRF predictor-error u, is equal to the
difference between the estimated and true pixel values, and lies at the heart of Markov
models.

U = X, — %y
Eu,) =0 (5-27)
From the least-squares orthogonality principle,
E{unh(xm)} = 0,m#n (5-28)

where A( - ) is an arbitrary function (Papoulis, 1990), and hence the error terms u, and u,,
are correlated only when they lie within a neighbonrhood Ay .

E{xmun} = Ruuln,n)bmn
- — Ruu(ns 7?7) me N‘.‘P,n
i) = { g kb (529)
From the symmetry of neighbourhood sets, this relation (5-29) is unambiguous:
meN, & neN,. (5-30)

The autocorrelation function R,,, depends on the particular distribution funclion of
the process x,.

Homogeneous processes are of particular importance. Since the autocorrelation A,,,,
depends on second-order density, (5-29) may be replaced by:

. ol n=m
E{amun) = { 0 otherwise
ol n=m
E{uauy} = Auu(n~m) n—meNy (5-31)
0 n-m¢Ny

where o2 is the MRF variance. We shall be concerned only with hornogeneous processes
below.

Discrete-State Markov Processes

When the range of the Markov process x, is restricted to a finite set of values, a, € V,
the density function may be replaced by a probability vector p, and the conditional
density by a probability matrix . A one-dimensional discrete-state process is called a
Markoy chain, and for a homogeneous chain x[n]:

pilrl = P{xr]=a)
IL; ;] Pixln +m]=a, | xn] = a;}
Nr+k = N5 (5-32)

Il x[n] is stationary, p is an eigenvector of M.

NMNp = p (5-33)
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5.1.3 Gibbs Random Fields

We present the basic definitions of Gibbs distributions in tbis section, wbicb are rele-
vant because Gibbs and Markov random fields are equivalent. In some circumstances,
the Gibbs formulation is more convenient to manipulate, and can take more intuitive
parameters.

Gibbs Distributions
A Gibbs distribution &(x) js an exponential distribution formed [rom an energy func-
tion U(x): :
8(x) = P{x=x}
1
= ZeUw (534)
7 = Z e—U(x)
x€G

where Z is the normalising constant, or partition function, formed by summing over all
possible states x € &. The origin of Gibbs distributions lies in pbysical systcms, and it
is usual to add a “temperalure” parameter, writing:

1
B(x.T) = — ¢ VT, .
The effect of increasing T is to decrease the distinction between different slates, and

the physical analogue is clear. As shown in the nexl section, the energy funclion U(x)
may be defined to construct a Gibbs random field.

Gibbs-Markov Equivalence

The Hammersley—Clifford theorem (Besag, 1974) established the equivalence between
Markov and Gibbs random fields. We will summarise this briefly, and introduce a full
definition for Gibbs random fields.

We start with a Markov random field x, assumed homogeneous and discrele-state,
defined on a lattice £ of size n: x; € ¥, & = V. The Markov form (5-23) establishes the
conditional probability distribution for the i-tb pixel, conditioned on its surround A,
but we seek the joint distribution P(x):

p(z) = Plxi==z|a}

= P{x |AN} (5-36)
Pix) = P{x=x}
= Pixi=a1 % =2} (5:37)

From repeated application of the chain rule (Papoulis, 1990), we may express the relative
joint likelihoods of two configurations x and y.

P(X) Hp{x'|xla--'7x|'—lny;+17~--»yn}
€L

Ply) — PLy; [ %1, -y Xie1,Ypgrs - -, Yn)

(5:38)



110 CHAPTER FIVE: Gibbs—Markov Random Fields
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(a) first order (b) second order

FIGURE 5.2: Gibbs random fleld clique types. A potential function must
he defined for each clique. (&) first order; (b) second order. Each clique must
be contained within the corresponding neighbonrhood system (Figure 5.1).

This expression is always valid if P(y) > 0 for each combination of possible pixel
values P{y;} # 0, known as the positivily condition. In order to compare different
distributious x;, we may assume an arbitrary “reference” distribntion O:

Q) = la[P(x)/P(0)].

The Hammersley—Clifford theorem (Besag, 1974) gives a unique expansion for Q(x):

Q(x) = Z z:Gi(z) + Z 27,Gii(zoz) + -+ 21 20Gh (T, - Z0)
el i€c
€ o (5-39)
and tbe expansion for the conditional distribution ¢;(z,) follows a similar form. The G
functions may be chosen arbitrarily, except that Gs = 0 unless all membhers of set S
are neighbours, in which case S is a eligue:

Gs#0 = NpU{0}2{i—j:ijeS). (5-40)

Valid chqne types for first and second-order processes are shown in Figure 5.2. Since
each clique must he coutained within the extended neighbourhood set My, U {1}, the
order of the process influences how many terms of the expansion (5-39) apply.

Whea the energy function U(x) is formed by summing potentials for cach clique,
our earlier definition for a Gibbs distribution (5-34) defines a Gibbs random field:

Ux) = Y Vix) (5-41)

eeC

where C is the set of cliques, and V.(x) is an arbitrary potential function associated
with chque ¢ that depends only on tbe valnes taken by the members of ¢. When the
field & is stationary, so are its potentials V.. In order to specify ® fully, we must give V.
for each possible combination of inputs. Tabulation is manageable for simple processes,
bnt rapidly becomes unwieldy when the number of allowable pixel states is increased,
and V. may he specified as a true function when the process is continuous-state.

Under the Hammersley-Clifford restrictions (5-40) and (5-41), the Gibbsand Markov
formulations are equivaleut: &(x) = P(x), alithough it is possible for one GRF to cor-
respond to many MRFs.? An MRF is established in terms of its local density structure

We adopt the notation GRF for Gibbs random field, MAF for Markov random field, and GMRF for
Gibbs—Markov random field.
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whereas a GRF is immediately suggestive of global structure, but normalisation is usu-
ally computationally-infeasible in both cases. Summation is required over all possible
configurations but tbis space grows explosively with field size and number of available

stales.

Z: P(x) =1

x€S
Relative likelihoods of two states may be obtained with much lcss computational effort,
and this is more straigbtforward with the Gihbs formulation in general, sinceall that
is required is surnrmation of the affected clique potentials.

5.1.4 Auto Models

A restricted class of Gibbs—Markov random fields was proposed by Besag (1974), limiting
tbe Hammersley—Clifford expansion (5-39) to the first two summations and Lhereby
allowing cliques to contain at most two sites.

Qx) = Y #G(z)+ Y 52,6z, 1,) (5-42)
&

Distributions baving this properly and an exponential conditional probabilily distribu-~
tiou are called auto models. Under these assumptions, (5-42) may be simplified further:

Q) = Y =Gilz)+ Y Bz (5:43)

iec iEec

<
Pixel interaction is linear, corresponding to a linear form for the Markov estimator g,
(5-26), and these equations simplify further if x js homogeneous. The simplest auto-
distribntion is auto-binary, since we may write G;(z;) = &;. Auto-models are attraclive
because a linear neighbourliood function makes their analysis tractable, and it also

implies tbat they are only scnsitive to first and second-order statistics.

5.1.5 Auto-Normal Models

Both Markov and Gibbs random fields can be difficult to analyse because the expres-
sions involved are often extremely unwieldy. With the Markov formulation, ibe problem
is obtaining an expression for the joint likelibood in terms of the (known) conditional
probability distributions because the normalising constant is elusive, requiring summa-
tion over a very large state space.

Markov Formulation of Auto-Normal Model

The issue of computational tractability is largely solved by the bomogeneous auto-
normal model:

= cxp ——i— (z.— p, — &) (5-44)
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where p;(z;) is the probability of site ¢ conditioned on its surround, as above. Auto-
normal models have two key advantages. Firstly, the joint distribution of pormmal vari-
ahles may immediately be written down (Papoulis, 1991):

- 1 1 Te-1
J@s il ste) = e oxp [~36c = w)TC M x - )] (5:45)
and is {ully specified by the mean g and covariance matrix C, assuming a particularly
straight{forward form when x; are uncorrelated (C diagonal). Secondly, the least-squares
neighbourhood function g, (5:26) is Linear in the general case (Papoulis, 1991). Any
multivariate normal process is therefore auto-normal, and hence a linear neighbourhood
function may be assumed without approximation:

S o= Y fiax (5-46)

1ENR

where ;, are the neighbourhood coefficients, and B, . = 0 since each pixel is excluded
from its own neighbourhood set. We shall assume that the field x is homogencous, and
hence may follow (5-31) to write down its correlation structure:

Xn o= ) BiXop t Ua (547)
iEN
. o2 n=m
£ {xun} = { []‘JL otherwise
ol n=m
E{uaus,} = ( —0lBm-n n—mENp (5-48)
0 n—m¢Np

where w is the MRF predictor error (5:27), and a2, its variance. We noted above that an
autocorrelation function is positive definite (5-6) and hermitian (5-4); and [rom (5-48)
this imphes:

detRy, > 0
B = B (5-49)

or 3, = B, for a real process. We shall group these neigbbonrhood coefficients into a
vector 3, and the terms they multiply into n, so that (5:47) may now be written in
vector form:

X, = ﬁTn,. + un {(5-50)
Xn41 F Xn-1
N, = | Xn+2t Xn-2 (5-51)

taking as many terms [or 7),, as necessary, but dropping elements for which S = 0.
Expressed in this form, only distinct coefficients are contained within 8, since B, is
defined only for ¢ > 0.
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Finite Auto-Normal Fields

Real applications require the analysis of ohserved data, for wbich finile fields are more
appropriate. As above (page 106), we shall write the finite two-dimensional field as
a vector, using raster-ordering, and express the linear equation (5:47) using matrix
algehra:

x = Bx+u (5-52)
for 8;; = f,—,; alternatively:
x = B_I'LI. (5‘53)

where B = 1 — B. The coefficient matrix B is hermitian block-Toeplitz, with elements
B;;=1and B,; = —fi-,; and 1 is coloured noise. From (5-22) and (5-48):

Ruuw = oiB
Ryx = B-lRuuB_l
= o287 (5-54)

where Rxx and Ry, are autocorrelation matrices for the field and predictor-error, re-
spectively. Hence, from (5-45) the joint likelihood P(x) is given by:

—_— T —
I e I

where p is an arbitrary mean veclor, which we shall drop in order to enhance clarity.
Note that we also require the coefficient matrix B to be positive definite because it
defines the autocorrelation structure. Inspection of (5:54) shows that the correlation
matrix Ry, may be wrilten:

Ree = \/a?B"’l(\/a?B-l)1 (5-56)

implying that the field x may he expressed as a linear transformation of zero-mean
unit-variance white noise v, since Ry, = 1:

x = Vo:B'v+Blb

VBx = ov+b/ (5-57)

where b and b’ reflect contrihutions from the bouudary conditions. [t is therefore
possible to ohtain a realisation of x directly once VB~ is known (Woods, 1972), but the
difficulty with this approach lies in forming VB~ from the known cocfficient vector 8
because B has rank MN (large).

Toroidal Boundary Condilions

A popular approximalion with a finite field X is to assume a periodic exteusion of the
lattice over the plane, and it has only a slight impact for lattices of moderate size despite
appearing to be very artificial (Cohen el al., 1991; Chellappa & Kashyap, 1982). Under
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these conditions, with x stationary (u = u1), the coefficient matrix B is block-circulant,
having a sub-matrix B; for each column of the M x /N image:

Bo B .-+ Bwn.,
By.1 Bo -+ Bn-

B = N ' :0 F N ’ (5'58)
B, B -+ B

where B; are circulant and have rank M. Following (5-21), B may be diagonalised by
the Fourier matrix:

B
A

FIAF (5-59)
(A {5-60)

N

il

where A is diagonal with elements A; = Sy,,;/0?, and has rapk MN.
A = 1-2 3 Beescos |2x mk ot 561
m+nM k415 M N ( )
(kL) eN+

The double subscripts on Anynas and fries reflect raster-ordering of the array: the
field lattice £ has width M, and the causal neighbourhood A° has span S. Where the
context is obvious, we shall instead write A; or 8%, and use the two [orms interchangeably
below.? Eflectively, the finite relation (5-57) has been re-written as a convaluiion.

x£+(6—-8) = u
We shall also write
Ao o= 1-8B; (5-62)

noting {from (5-61) that B is the cosine translorm of g:*

14
Brgnm = 2 E Biyes cos [QW (mﬁk + %)] . (5-63)
(OEN+

Using the diagonal form for B, and noting that: |3"A9’| = [T, Ai; we may write down
the joint likelihood of a periodic field x:

Plx) = |F'AF| | 7 xTFAFx
X = (2mo2 )MN SRR 202
X\ |XJ2 A
= H (Zmﬂ) exp(— 957 ) (5-64)
€L uw u
2 1Xl* A

2L(x) = 3 logh — MNlog(2mol) = — (5-65)

€L €L fl

3Spatial and spectral lattice co-ordinates are nol equivalent as we have implied, and we inlroduce
the “spectral mapping function” in §7 2.

“Nole that B is a coefficient matrix derived [rom the vector 8 (5-53), and Lhat B is the cosine
transform of 3, with elements B; (5-63). We shall not refer again to individual elements of B.
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where X = Fx, summation for 7 extends over the image lattice £, and L(x) = log P(x).
Symmetry of Ry is reflected by A; being real; positive-definiteness implies A; positive:

A, > 0, Vie L. (5-66)
This condition on the neighbourhood coefficient vector 3 is clearly satisfied hy:
Z Bz +27) < LVzEC: |2 =1 (5:67)
ieMt

but this is more restrictive than necessary, and (5-66) suffices for finite fields. Whether 8
represenls a valid stationary field depends on the range of summation 7 € L, and
hence on field size. The relation (5:-66) is unjversal, and since it was derived under
the assumption that the field was homogeneous, we small name it the homogeneity
constraind. It has important consequences for MRF parameter-estimation methods, since
approximations may lead to invalid parameter sets which violale this constraint (§5.2).

Ignoring houndary conditions, the relation {5-57) may now he written:
x = oF'WAFv (5-68)

but the Fourier transform of unit-variance zero-mean white noise v s unii-variance
zero-mean white noise (5-16), giving the distribution for X:

X; ~ G(0,0%/)). (5-69)

The field x is usually real, and hence its complex spectrum X displays conjugale sym-
melry.

Causal Representation

An alternative simplification is availahble for finite lincar fields by rewriting (5-52) as:
x = Llx+v (5-70)

where L is lower-triangular with zero leading diagonal (Stuller & Kurz, 1976). This is
a causal represenlation, which often makes analysis easier. For a Markov-? field and
a lattice of size NxN, the order of the new field is NP — this may he very large in
praclice, and we prefer Lo take advantage of the toroidal houndary approximation. A
cansal process is driven hy white noise v:

X o= ¥ Bxeitv, (571)
iEN

where A/¢ denotes the causal neighbourhood.

Gibbs Formulatlion of Auto-Normal Model

Following the Hammersley-Clifford theorem (§5.1.3), the auto-normal MRF may also be
expressed as a Gibhs random field. From (5-43), this takes a particularly simple form:
cliques contain at most two pixels, reflecting the linear neighbourhood function. The
weighting given to single-pixel cliques, G,{z,), delermines the normal form.
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5.1.6 Summary: Properties of Gibbs—Markov Random Fields

Markov random fields are stochastic processes having a simplified autocorrelationstruc-
ture. In this section, we have jutroduced the properties and definitions that areof use
below in the application of Gibbs—-Markov random fields to image analysis (§§5.2-5.6).
Under certain conditions, Gibbs and Markov random fields are equivalent (§5.1.3), and
either or hoth forms may be used in a particular application. Determination of the
joint likelthood of all lattice sites is computationally arduous in general, but is greatly
simplified by the use of auto-models, and by the auto-normal model in particular. Mani-
pulation of auto-normal models is often far more convenient than other Gibbs-Markov
forms because pixels interact linearly, and there is no tractable alternative in some
cases. This simplification has great practical significance, and it is common to adopt
auto-normal models [or practical applications.

5.2 Estimation of Parameters for Gibbs—Markov
Models

If Gibbs—Markov random fields are to be used as models of natural textures, it is es-
sential to be able to estimate a parameter set to characterise each texture type given
suitable sample images. Optimal parameter estimates are oblained by maximising
the likelihood of the observed training data with respect to the parameterised Gibbs—
Markov model, but Lhis is often infeasible because the joint likelihood of all image
pixels can not be found in closed form {§5.2.1). Code and pseudo-likelihood estima-
tion methods substitute an approximate function that can usually be maximised with
only moderate computational effort, leading to acceptable but sub-optimal parame-
ter estimates (§5.2.2; §5.2.3). Heuristic approximations are also required to estimate
parameters for the Gibbs formulation (85.2.4). Noue of these restrictions applies to
auto-normal models, whose simplified correlation structure leads to a closed form for
the joint hkelihood (§5.2.5). This must still be maximised numerically, bul pseudo-
likelihood estimates are available analytically and are sometimes preferred.

Situations do arise where no suitable training data is available: modelling scene
Jayout is a common example. Without particular prior knowledge, the requirement is
to describe how an arbitrary image is partitioned between different textured regions,
and a general assumption of spatial coherence is often used to bias the model in favour
of homogeneous clumps of texture. Attempling to estimale a parameter sel is inap-
propriate in these circumstauces, but it is straightlorward to design a Gibbs random
field with the correct form (Derin & Cole, 1986; Geman & Geman, 1984; Hansen & Elliott,
1982).

5.2.1 MRF True-Likelihood Estimation

Let us assume that we have au MRF with a given conditional density distribution and
ueighbourhood size, and wish 1o select a parameter sel tbat most-closely malches some
training data. Maximum-likelihood cstimation takes a realisation x and model X, and
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seeks to maximise their joint likelihood P{x, X} or log-likelihood L(x,X). Suppose
X = X(0) where @ = {#;}, are the parameters lo be estimated:

oL
09 9,24,

X = x(6) (5-72)

0,z=1.n

where 8 is the truelikelihood parameler set. When several rcalisations {x,} are avail-
able, their joint likehhood is maximised. Unlortunately, the joint likelihood of a
field P{x) is difficult to compute in general, for thc reasons outlined in 85.1.3, and
computation of true maximum-likelihood estimates is therelore often infeasible in prac-
tice.

5.2.2 MRF Code Estimation

An alternative approximate method is available because the conditional densities p, (xr;)
are known. Il Lhe siles werc independent, we could easily comhine couditional likelihoods
to form the joint likelihood:

il

Pe(x) II »i=)
FEQ(K)
Li(x) = InPi(x)
= Y lp(=z) (5:73)
fEQ(k)
Q = {{ieL: QNN =0} (5-74)

where x s defined on the lattice £. From the Markov assumption, sites are only
correlated out to a certain dislance, and hencec the joint distribution ol well-separated
sites may indeed be written as (5-73). This approach is called coding (Besag, 1974);
each set of well-separated elements Qg is a code. In eflect, we are maximising the
joint Kkelihood for each code conditional on the rest of the image. It is usual, but not
essential, to make each code as large as possible within the constraint (5-74) so that
each estimate is as efficient as possible, and minimising the number of codes « required
to cover the latlice.

c = e
1=1
QNQ, = G, Vi#j (5-75)

Coding is an effective way of overcoming the intractable partition function required
by true-likelihood estimation, but there seems to be no sensible way of combining
parameters frorn each code other than an arithmetic average. This is unlortunate
because tbey are not independent, but they are often numerically similar. Coding makes
rather an inefficient use of the training data because each code uses only a subset of
the field, and this problem becomes particularly acute for fields of high MRF order. The
coding method does not depend on a particular form [or the conditional distribution
function p;{z;), and has been successfully applied with several model variants (Besag,
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1974; Cross & Jain, 1983). Code likelihoods Ly (5-73) must be maximised numerically
in general, and there is unfortunately no guarantee that the final parameter setl will be
consistent with respect to the homogeneity constraint (5-66).

5.2.3 MRF Pseudo-Likehhood Estimation

The chief disadvantage of the coding method is the rather inefficient use of training
data, particularly for fields of large order. For example, third-order neighbourhoods
contain twelve sites, so each code uses only 71/,% of the data directly. A simple way
of increasing this is to extend the range of summation in (5-74) to all pixels of 2 given
texture type (olher than houndary pixels, if any):

P(x) = J]n(=)
icL

L(x) > lnpi(z:) (5-76)

1€L

where L is the entire image lattice. The quantities £(x) and L(x) are not true likelihood
functions but the product of conditional likelihoods, and lead to approximate parameter
estimates, 6 or B. Advantages of the pseudo-likelihood are: it is easy o compute, even
over an irregularly-shaped region; it is more efficient than the coding metbod; and
it generates acceptahle parameter eslimates in practice (Besag, 1986; Cohen & Cooper,
1987; Derin & Elliott, 1987). It is usual [or more questionable approximations to be taken
at other stages of irnage analysis, and hence sub-optimal pseudo-likelihood parameter
estimates may be acceptable. They do suffer from MRF consistency problems because
the hornogeneity constraint (5-66) is not always observed, but these may somctimes be
comnpensated for (Cohen & Cooper, 1987), and pseudo-likelihood estimation is popular
because of its computational simplicity.

5.2.4 GRF Histogram Parameter-Estimation Method

The above methods estimate Markov parameters, and suffer from the disadvaniage that
the estimated paramelers may not obey the restrictions for a valid MRF: the field is
often assumed to be stationary, but the homogeneity constraint (5-66) inay be violated.
This consistency problem is avoided by using the alternative Gibbs formulation, but
true maximum-likelihood estimation is no more tractable than above (§5.2.1) because
of the difficulty in calculating the normalising constaut Z (5-34).

The “histogram method” is an approximation to true maximum-likelihood that over-
comes this practical difficulty (Derin & Elliott, 1987). We define V; Lo he the sum of
potential functions for all cliques ¢ containing the pixel 7

V. = ) Vi) (5-77)
ceCuge

where V; may be written as a product between the (colurnn) parameter vector 8 and a
suitable neighbourhood function ¢.

Vi = ¢'6 (5-78)
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The nurnber of terms in ¢ and 8 depends on the symmetry and the order of the GRF,
but auto-models have [ewer parameters than general fields (§5.1.4), and are suitable for
use with this method. From the Gibbs-Markov equivalence (§5.1.3), it follows that:

Plu=z|f} = Plz|A})

_ P {z, M}
)
o exp[—Vi(z,N})] (5-79)
Pz | No= X:}
In m —VJ(IHX.)'FVi(IhXJ)
= [¢(za X)) — (), X)] 6. (5-80)

where A/ is the Markov neighbourhood. Il the LES of (5-80) is known, this vectorrelation
may be solved as linear equations in the unknown parameters 8 and neighbourhood
function ¢. In general, 8 is over specified provided the number of gray-levelsis small,
the clignes have low order, or sitplifying assumpftions are made, and least-squares
solutions may be sought. The probabilities P{z | A’} may be estimated by forming a
histogram [or all obscrved combinations of neighbourhood and centre pixel. The law of
large numbers:

P{A} =~ nafn, nlarge

may be invoked to [orm the estimates, A large amouni of trial dala is needed to
estimate these probabilities accurately for all pixel combinations, particularly for fields
ol moderale order or for many pixcl valnes, when the nnmber of permutations of z, N
is large. lowever, since the desired parameler vector 8 is usually over-specified, it is
not necessary to evaluale every term. An advantage of the histogram method is that it
is [ree of consistency problems, and is straighilorward to iinplement. A disadvantage is
that it requires a large amount of training data, although this is also true of the coding
method, and its [ormal properties have not been thoroughly analysed.

5.2.5 Estimation of Auto-Normal Parameters
True-Likelthood Parameter Estimalion

For tbe general cases considered above, it was necessary o use approximate methods to
locate the best parameter estimates becanse the joint likelihood P(x) was unavailable
(885.2.2-5.2.4). This is no longer an obstacle [or homogeneous aulo-normal models,
when P(x) may be evaluated comparatively casily (§5.1.5).

True-likelihood estimation demands maximisation of L(x,X) with respect to the
parameter set X = {g,0?% B}, where the ncighbourhood coefficient vector B also deter-
roines the coefficient matrix B. For an image of size r, from (5-55) and (5-72):

- xBx

= (5-81)

and the maximum likelihood estimate B minimises

ala(x'Bx) — In|8B|
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from which B and hence # may he ohtained by Newton-Raphson iteration {Besag,
1974). The toroidal boundary approximation allows B to be diagonalised (5-64), and
the estimate to be found more easily, but a closed-form solution for @ does not exist
in general (Kashyap & Chellappa, 1983). I[n practice, the requirement for numerical
optimisation is a drawhack of true-likelihood estimation — it has even been described as
“cumbersome and unreliahle” (Derin & Elliott, 1987). Approximate closed-form solutions
are free from this uncertainty.

Pseudo-Likelihood Parameter Estimation

True-likelihood methods require numerical techniques to locate the best parameter es-
timate, and this may require more CPU time than is available. A popular alternative
is pseudo-hkelihood estimation (85.2.3), which obtains inferior parameter estimates but
requires a predictable and much-reduced amount of computation, and is usually pre-
ferred to the coding method (§5.2.2).

From definitions for the local conditional probability distribution (5-44) and pseudo-
likelihood function (5-76), and dropping the mean:

T, \2
2i(x) = MNlog(Zwaz)—zgn_a# (5-82)
€l

where the image is defined on a lattice £ of size M xN. Maximisation accordingto (5:72)
gives:

8 [Z n.-n.-T] h >

€L €L

B p 2
7 - i (") e

1€L

where 7 is the neighbourhood vector (5-51). Because L{x) is not a true likelihood, there
is a danger that the interaction matrix B estimaled from it will not be positive defi-
nite, and bence that the homogeneity constraint (5-66) will not always hold. Whether
this is a serious deficiency clearly depends on the precise apphication of the estimated
parameter set, hut true-likelihood methods are preferred if parameter estimation may
be performed off-line. In this case, the pseudo-likelihood function (5-82) may still be
used in subsequent analysis. For auto-normal models, pseudo-likelihood estimation is
asymptotically more efficient than coding estimates (Kashyap & Chellappa, 1983).

5.2.6 Verification of Parameter Sets

Having obtained a parameter estimate, it is often desirable to test whether il describes
the training data adequately (§3.6.1). Discrepancies may arise because of approximation
errors in estimatjon, hecause of unjustified assumptions made about the field, or simply
because of the variation inherent in a stochastic process. One simple aud cffective but
subjective verification method is to reconstruct an image with the estimated parameters
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and to compare it visually wilb the original (Cross & Jain, 1983; Kashyap ¢t ol., 1982).
Field synthesis methods are discussed in §5.3.

A more scientific test may be made by forming a goodness-of-fit hypothesis. When
the number of configurations is reasonably small, the Pearson stalistic may be used,
leading to a x?-test (Besag, 1974; Cross & Jain, 1983). This involves comparing aclual and
expected frequencies for each neighbourhood situation, and only gives reliable results
if the observations are not sparse. When the pixel values are (almost) continuous and
normal, analysis of variance leading to an F-lest is more appropriate (Besag, 1974).

An approximate Bayesian statistic has been proposed to select the correct neighbour-
bood structure, providing a more objective and quantitalive test than visual inspection
(Kashyap & Chellappa, 1983). Selection of the best neighbourhood is complicated be-
cause a model with more parameters always has greater freedom to model the data
more closely, and residual error is always a decreasing function of model order.

5.3 Texture Synthesis from Gibbs—Markov Models

An atiractive qualitative method of demonstrating that importanl texture characteris-
tics are represen ted by a measured parameter set is to generate an artificial texture {from
it (§5.2.6). A discussion of approaches to texture synthesis allows us to introduce some
geueric techniques for manipulating Gibbs-Markov models, which have also been used
for more concrete applications (§§5.5-5.6). Ideally, field synthesis is straighltforward:
all that is required is to sample the joint distribution. Complications arise because
the joint likelihood is generally nnavailable, with the exception of homogeneous auto-
normal fields when synthesis is indeed straightforward (§5.3.5). Usually, only the local
conditional density p,(z;) is known, either direclly [rom the MRF [ormulation, or from
snmming and comparing local GRF clique potentials.

Probabilistic methods may be used to move from local conditional to joini distribu-
tion, and have wider application than field synthesis (§§5.5-5.6). Performarce of this
technique is not guaranteed for a particular realisation because of its non-deterministic
nature, but it can be shown that the expected result has the correct form. Relaxation
algorithms seek to refine the initial state iteralively until its distribution takes the de-
sired form, and are usually computationally demanding. Some approaches to parallel
implementation are discussed in §5.6.6.

5.3.1 Monte Carlo Algorithm

In essence, a Monte Carlo (or Metropolis) algorithm assumes the field takes state §(¢)
and perturbs it to generate 8(¢ + 1) in such a way that as ¢ — oo the distribulion of §
tends to that of the required joint distribution. Each perturbation involves changing the
state of at most two sites, and bence computation of local conditional probabilities is
sufficient to calculate the change in the joint distrihution. Kach tiine step has associated
with it a transition J, which may be either accepted or rejected according to the change
in joint Likehihood it effects. With the “flip” algorithm, the state of a single site is set
to a new value; for the “exchange” variant, a pair of sites may be exchanged. Clearly,
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the first-order distribution is unaffected by the exchange procedure, freezing in pixel
values in the same proportion as the initial state. It is usually desirable to minimise
the importance of the starting state, because this may have been chosen in an ad hoc
manner.

At the core of the algorithm hes the selection of which transitions are allowed to
proceed.

T
T

X — X
P(x'}/ P(x) (5-84)

I

For simplicity, let. us assume a “flip” model, with a possible transition J at sitei. Both
i and T sbould be generated to ensure possible field configurations are sampled evenly.
Relative likelihoods of the two global states x and x’ are obtained from known condi-
tional densities according to the Hammersley-Clifford theorem (5-38), and summation
need only extend over those sites whose neighbourhood contains i:

pi(zi) P {ze | Ak, 21}
P2 s piow, P lae | &3]

PTMpRF =

Similarly, prgrr is computed by summing potentials V; for all cliques containing 7, since
other cliques do not change.

pronr = exp[Wi(z, &) - Vilsh, &)
As with deterministic greedy algorithms, the transition ¥ is always accepted when
p7 2 1, but it may also he accepted when it causes a decrease in the joint likelihood.

a { pr 2 1 ACCEPT (5-85)

E pr <1 ACCEPT wilb probability pr

“Convergence” may be determined by monitoring tbe statistics of the field x compared
with their anticipated values, or by counting tbe proportion of transitions which are
accepted. There is no clear end-point because equilibrium around the final state is dy-
namic, as the algorithm continually samples the required distribution. The sequence of
states 8, is a Markov chain (§5.1.2), whose ergodicity allows a proof that the synthesised
field X has a distribution corresponding to the limiting state of tbe chain, which is the
eigenvector of its transition matrix {5-:33). This distribution is only approached once
transients caused by the choice of initial state have died away.

As described here, the algorithm operates at a single resolution and hence changes
in state propagate across the field slowly. Recovery from a poor choice of initial state
may take many iterations although the limiting distribution is unaffected. Oaly a single
transition is considered at each iteration, and so this algorithm js not very sutable when
each pixel may assume many possible values. It has been used successfully with the
binomial distribution for up to 32 gray levels altbough this required many minutes’ CPU
time per image (Cross & Jain, 1983).



5.3.2 Gibbs Sampler

Another stocbastic relaxation algorithm closely related to the ahove is the “Gibhs sam-
pler® (Geman & Geman, 1884). Transitions are not restricted to fixed candidates hut
are generated directly from the local conditional distribution al each iteration. Let us
assume a homogeneous field x defined on a lattice £ of size r, for x € & = V™. At each
time pulse ¢ the state of a single site x; may be updated, and its proposed new state x}
is drawn dircetly from the conditional density distribution p,(z;), conditioned on the
unchanged surround A;. This process is repealed across the lattice using any sensible
ordering (which need not be deterministic). Unlike the Monte Carlo algorihm, the
Gibbs sampler considers all possible values at site i and disregards the presenl state.

Much of the novelty of the Gibbs sampler Les in the use of the “temperature”
parameter 7, whichb effectively forms the Gibbs-Boltzmann distribution (§5.13). From
(5-35):

&(x,T) = Z(IT) e~V NT
p(z:) o exp[-Vi(z:, X)/T). (5-86)

where Z(T') is the partition fuuction. For very large T, the clique potentials V(z,) have
comparatively little effect on p,(z;), and as T — oo, the new slate is chosen at chance:
p(z;) = 1/n. Conversely, T = 0 is equivalent to a deterministic greedy algorithm,
which always selects the state with the largest local probability. An “annealing sched-
ule” dictates how temperature 7" varies as a function of time . Large-scale changes may
occur much more rapidly for large T becausc intermediate states with low likelihood
may be accepted more easily, and hence T should be large near the start, since this
diminisbes the influence of the initial state. As T is reduced, the scope for large-scale
change diminishes and fewer transitions are expected. The sequence of states §; again
forms a Markov chain, witb a hmiting distribution equal to the desired joint lkelihood,
reached at T = 1. It is possible to set T = 1 from the start and dispense with an an-
nealing schedule, simplifying the algorithm marginally, but this increases theinfluence
of the starting state and hence more iterations may be required belore transients decay
and the desired distribution is reacbed (Hassner & Sklansky, 1980). In order to reflect
the importance of image “features”, a dual region~boundary structure may be adopted
(Geman & Geman, 1984).

When tbe objective is to maximise rather tban sample the likelihood, T = 0 is
appropriate as the destination temperature. Zero lemperature during synthesis would
always select the state corresponding to the mode of tbe joint likelihood rather than
sampling it fairly. In practice, acceptable synthesis of an image of size 128x128 pixels
from a very simple model with no ananealing scbedule requires about 200 iterations
(Geman & Geman, 1984). Fewer iterations are required when the field size is smaller,
but a much larger numbher of iterations is needed to produce realistic images (Derin &
Cole, 1986; Derin & Elliott, 1987).

The strengths of tbe Gibbs sampler lie in its ability to consider many new states
simultaneously, both at a single site and across a code. The ltemperature schedule
allows approximate convergence to be reached much more rapidly than would otherwise
be the case, and diminisbes tbe influence of the starting stale. The Gibbs sampler has
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found application outside field synthesis, notably in image restoration and segmentation
(§85.5-5.6), but has beavy computational requiremeats.

5.3.3 Deterministic Greedy Relaxation

As we have noted (§5.3.1; §5.3.2), stochastic relaxation has the advantage of being able
to switch between distant states despite the poor fit of intermediate configurations.
A determiuistic greedy algorithm allows the fit to be improved locally at each time
step, and terminates after fewer iterations, but tbere is a strong danger that the true
minimum will not be found and inferior images rnay result.

A deterministic algoritbm was proposed by Gagalowicz and Ma (1985), who defined
feature vectors corresponding to desired and present image statistics. Each change of
state reduces Lhe distance belween the feature vectors, and the texture model need not.
be Markov since the feature vector defines Lhe required attributes. Synthetic copies of
natural textures were produced, but the dimension of the feature vector was unfortu-
nately excessive, often cornparable with field size, and only 8 gray levels were atiempted.
In essence, this algorithm is similar to the Gibbs sampler (§5.3.2) at T' = 0.

5.3.4 Synthesis of Causal Fields

When a Markov random field has a causal neighbourhood, it is straightforward to
generate a field from given houndary conditions by application of (5:71). Asnoted on
page 115, a causal form is available for all linear two-dimensional processes although the
order of the causal neigbbourhood is usually much larger than that of the corresponding
non-causal field. Another route is simply to adopt a causal approximation because it is
much easier to generate, but this does not generally lead to acceptable resulis (Hansen
& Elliott, 1982).

5.3.5 Synthesis of Auto-Normal Fields

We bave hinted above how realisations of homogeneous auto-normal fields may be syn-
thesised (§5.1.5), and this procedure is far quicker than stochastic relaxation methods
because tbe joint distribution may be sampled directly. Under the toroidal bound-
ary approximation, we have shown that the transform of the field X = x is coloured
Gaussian noise (5-69):

0.2
% - e 87
G(OI_B€) (587)

wbere B, is the cosine iransform of the coefficient vector 8 (5-62). A practical synthesis
metbod is to manufacture the required form from a field of unit-variance white noise v
(Cohen et al., 1991; Kashyap & Chellappa, 1983; Woods, 1972).

av,

X = ﬁ (5-88)
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Complex multi- parameter models may be synthesised with this method in enly a few
seconds of CPU time, often generating images very similar to natural textures (Cohen
el al., 1991; Kashyap & Chellappa, 1983). Examples of synthetic Brodatz textures formed
by this method are shown in Figure 1.4 (page 7) and Figure 6.2 (page 142). Alter-
natively, the field may be synthesised as a matrix equation (5-57), or by invwking the
causal form (5-71). All these methods are very fast compared with those which do not
depend on explicit computation of the joint likelihood.

5.4 Gibbs—Markov Texture Classification

Several approacbes to texture classification were discussed in §3.4: test images are
usually assummed to contain a homogeneous sample of a single texture type, and the
most suitable classification method is influenced by how much information is available
from class feature vectors. Since Gibbs- Markov models fully specify the joint distri-
bution, optimal Bayesian classification is feasible (§3.4.1). Given a GMRF model G,
from class w;, it is necessary to compute the joint likebhood of the observed pixel data
P{x | G} = Pi(x). This is straightforward in some special cases, such as an auto-
normal GMRF, but is difficult in general unless an approximation is taken (§5.2). If it is
impossible to compute P;(x) directly, some other method should be considered, either
approximating the Bayes form or adopting a suh-optimal classification method (§3.4.3).
We adopt Bayesian classification as a benchmark to compare our proposed frameworks
with a conventional Markovian analysis (Chapter 6), and suhsequently suggest designs
for modified classifiers to improve robustness with respect to image degradation (Chap-
ter 7).

5.4.1 Modifled Bayes Classifiers

It is often desirable to represent each class more flexibly hy a parameterised model G;,
as this may increase classifier robustness or level of abstraction. In this case the miss-
ing parameters & may be estimated from the observed data (Cohen et al., 1991). The
modified Bayes classifier suhstitutes a maximum-likehhood estimate for # and proceeds
as ahove:

It

P{w; | x} max P{w; | x,8}

Biin i

Plwi | x, 8} (5:89)

I

where 8 is the maximum-likelihood estimate of the missing parameters. Major restric-
tions on the wider use of GMRF texture models are their scale and rotation vanance, but
both were partially overcome by a modified Bayesian classifier taking these quantities
as free parameters (Cohen et af., 1991). This was feasible because Lbe specirum of a
homogeneous auto-normal model varies predictably with these projection parameters,
allowing rehable estimates to be made, High accuracy was reported, but the classifier
was only tested with synthetic images which exactly matched the model distribution.
Our experience suggests that results obtained with synthetic textures may be unrepeat-
ahle with real images (Chapter 6). A more straightforward procedure suffices lo protect
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the classifier from image-wide changes in hrightness, wbich influence the MRF varance.
Pixel and MRF variances are altered by the same proportion and hence their mtio is
invariant, and should be recorded as a more robust parameter (Kashyap et al., 1982).

5.5 Restoration of Degraded Images

Restoration is concerned with recovering a true copy of a picture that has been degraded,
and is a classic image-processing application. We hriefly review the use of MRF models
for this purpose in order to establish the credentials of Markovian metbods for image
aualysis, and to indicate possible applications for our novel frameworks. Many sources
of degradation occur in practice (Rosenfeld & Kak, 1982); we shall make the simphfying
assumption that the transformation is linear and hence may be expressed as 2 matrix
equation similar to the form considered above (5-22):

9 = Hf+wv (5-90)

where f is the original field, g is the observed degraded image, and v is while noise.
When the transform is deterministic and has a known form, the original imige may
be recovered exactly: f= H~'g. This is not usually the case, and the algorithm must
produce the hest estimate for the onginal image that is availahle. Estimation of the
transform parameters from the degraded image requires assumptions to be made about
both the image and transformation.

5.5.1 Maximum a posteriort Restoration

Bayesian maximum a posieriori (MAP) restoration demands that the conditional likeli-
hood of the true image f given the degraded copy g, is maximised.

P{fig} x P{g|f}P{f} (5-91)

The two components of the RRS of (5-91) correspond to the transformation and im-
age likehihoods, respeclively, and are generally assurned independent (Rosenfeld & Kak,
1982). Commonly, a particular form is assumed for the true image f, for example it
is often modelled by a Gibhs random field. The transform is parameterised so that it
may be evaluated for specific cases, and restoration reduces to maximising the posterior
distribution P{f | g} with respect to the field f and transform parameters. This condi-
tional density also follows a Gibhs distrihution in practice, and the problem isequivalent
to minimising a cost function (Geman & Geman, 1984). It is not always necessary to
estimate a parameter set G¢ to describe the true image: an assumption of spatial co-
herence allows suitable parameters to be manufactured without direct reference to the
image (§5.2). With more complicated images, MAP restoration is not always suitable
because the search space is enormous and effective maximisation presents a formidable
challenge.



Application of the Gibbs Sampler to Image Restoration

Image restoration demands that a good but not necessarily optimal solution should be
selected from a vast number of alternatives. As noted m §5.3.2, the Gibbs sampler is
well-suited to this type of problem, exploring the vast solution space effectively without
exphcit computation of the joint likelihood. Exhaustive search is computationally-
infeasible because the numher of permitted configurations grows explosively with field
size and number of gray levels (Gurari & Wechsler, 1982). When it is desired to mazimise
rather than sample the likelihood, the temperature parameter T should be reduced
gradually to zero. In practice, T is lowered faster than is consistent with locating
the optimal minimum because of computational considerations. Despite this, excellent
results have been reported for natural and synthetic images, often at very high noise
levels (Geman & Geman, 1984). The main disadvantage of the Gibbs sampler is its
requirement for very large amounts of computation, upon which parallel implementation
has only limited impact (§5.6.6).

ICM Restoration Algorithm

Besag’s (1986) ICM algorithm is a variant of the Gibbs sampler that seeks lo reduce
the amount of computation at the expense of sub-optimal solutions, and adopts a
similar basic approach. Aware that locating the true maximum of the joint posterior
density is computationally demanding, Besag proposed iterative maximisation of the
local conditional densities, exactly equivalent to the Gihhs sampler at T' = 0. Although
successful resulls were reported (Besag, 1986), and the computational demandsare lower
than for the full Gibhs sampler, there is no protection against becoming trapped in a
poor local-maximum state.

5.5.2 Wiener Filtering

The full complexity of the posterior distrihution may be avoided by approximatec meth-
ods, and Wiener filtering minimises the expected least-squares error between the origi-
nal and restored image (Rosenfeld & Kak, 1982). If the image joint likelihood is normal,
the least-squares function is linear, greatly simphfying the calculations. Assuming the
degradation transformation again follows the form (5-90):

= ChHT(HCHT +071) ' g (5-92)

where T is the estimate of the original image given the degraded copy g. Brute-force
computation is possihle but undesirahle because of the dimension of C¢y. [ an MRF
parameter set is assumed for f, (5:22) gives:

Cer = HCgHT +6%1
F = H(Ceo—0*1)Ch 8. (5-93)
The purpose of this assumption is to allow the covariance matrices to be manipulated

easily, and further simplification follows under the toroidal boundary approximation
(Chellappa & Kashyap, 1982).
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5.6 Segmentation of Textured Images

Unsupervised image segmentation algorithms partition an image into disjoint textured
regions, about which little or nothing is known a priori (§3.5). This problem is illposed
in general, and additional mformation or constraints are required, often in the form of
heuristic approximations reflecting the nature of the physical environment (§2.4). In
this section, we briefly discuss tbe use of Gibbs-Markov models to descrihe image com-
position, and review some previous approaches to segmentation. Markovian models are
capable of representing natural textures sensitively, but drastic approximations are usu-
ally taken in a bid to reduce the computational load, detracting from the quality of the
resulting segmentatjons. It is normal, for example, to adopt homogeneous second-order
models and pseudo-likelihood manipulation, or even the simultaneous autoregressive
form (§3.2.5). Our proposed Gabor-Markov framework and Sampled-Markov models
may be used with many of the algorithms described bere, bnt have several important
advantages which should strongly reduce the compulational burden whilst increasing
segmentation quality (§5.7).

5.6.1 Simple Gray-Scale Textures

We shall first consider a class of very simple textures, each taking a constant gray level.
Segmentation is non-trivial because of the addition of large amounts of independent
random noise, and is virtually identical to restoration in this case. If the noise is white,
each Lexture may be modelled by an MRF of order zero.

Optimal maximum a posteriori estimation is appropriate for this type of problem.
As above, we sball assume that a “degraded” or textured image g is available. and the
goal is a partition f corresponding to the scene layout (5-90), derived from the posterior
density, P{f | 9} (5-91). Maximisation may proceed using the techniques outlined
above (85.5), if “noise” or texture parameters are known (Hansen & Elliott, 1982). The
arrangement of textured regions is not usually known accurately, bnt may be described
adequately by a clustering GRF. Without this influence of spatial context, a per-pixel
MAP estimate would give very noisy results which would require smoolhing or some
other form of post-processing (§3.5.3).

In general, noise parameters are unknown, and may be inhomogeneous. All the
estimation methods discussed above (§5.2) require access to a contiguous region formed
from a single texture type, hut this is not generally available until the segmentation has
been completed. In order to overcome this, a more complex image model is required.

5.6.2 Hierarchical Random Field Representations

A monolithic model is sufficient to capture the structure of the heavily-simplified tex-
tures described above (§5.6.1), when the complete image may be viewed as being com-
posed of a single meta-texture. In eflect, we have descrihed a random mosaic model,
each texture primitive having constant intensity (§3.3.3). Image structure is generally
much more complex and may take different forms at different levels of description (Marr,
1982), for which a hierarchical model is required. We shall limit ourselves to iwo levels of



structure, corres pouding to a model for each individual texture and for the arrangement
in which they appear in the scene (§3.1). An example of this type of decomposition
was shown in Figure 4.13 (page 77). We have shown above that Gibbs-Markov random
fields provide suitahle models for single textures; this extension allows their use for more
realistic itnages. It is not necessary for models at both levels to be Gibbs-Markov but
this is convenient and is often done.

Given an observed image y, the goal is to compute an estimate of the scene parti-
tion, k. Of course, x cannot be observed directly, hut a MAP estimate is obtained by
maximising the posterior density:

Lix|y) = L(x)+L(y|x) (5-94)

droppiug constant terms. This maximisation problem is very similar to thal encoun-
tered during image restoration, with the added difficulty that model parameters for
each texture type are unknown. Use of a scene model to bias segmentations towards
“reasonable” partitions gives superior results to data-independent techniques such as
median filtering, although the latter is much faster (Hansen & Elliott, 1982).

5.6.3 Non-Adaptive Segmentation Algorithms

Parameters for both scene and texture models are known or assumed in advance by
non-adaptive segmentation algorithms, or estimated independently. The crux of these
methods lies in the computational problem of minimising the posterior hkelihood {5-94),
for which exhaustive search is computationally infeasihle (§3.5).

Two-Stage Region Splitling Algorithm

An ingenious two-stage algorithm was proposed by Cohen and Cooper (1987), who
used second-order auto-normal texturc models and an auto-binary scene model. Their
approach is of the region-splitting variety described above (§3.5), and the image is
initially decomp osed over a pyramidal grid following a quad-tree pattern. Each block is
initially assumed to contain a single texture type and is classified accordingly against
known parameter sets (§5.4), at successively finer resolution. Errors are most likely near
the start of the process when the hlocks are large and are unlikely to contain a single
homogeneous texture. Some pixel values from adjacent blocks are required in order to
complete the neighhourhood sets of pixels near the border, and a difficulty anses when
the required sites are occupied hy a different texture Lype because the likelihood function
then assumes a different form. This is overcome by temporarily replacing such pixels
by the field mean, and proceeding as before. Termination follows when the size of the
blocks approaches pixel dimensions. Noting that most of the difficulty in computing
the likelihood (5-55) lies in the detcrminant, Cohen and Cooper (1987) used the the
toroidal form (5-64) for this term whilst retatning the true neighbourhood structure for
the remainder of the expression.

The segmentation produced hy the first stage is coarse with jaggy boundaries created
as artifacts of the quad-tree structure, and no account is taken of the scene model in
its formation. A deterministic greedy restoration algorithm refines it during the second
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stage (§3.5.3), except that the state is perturbed and ascent re-started on convergence,
as a safeguard against poor local maxima.

Dynamic Programming Algorithm

An alternative approach to an essentially computational problem employs dynamic
prograrnming (Derin & Elliott, 1987). Pixel interaction is assumed to be predominantly
local, and correlation between pixels separated in the image by more than a certain
distance is assumed negligible. Exploiting this, the optimal scene configuration within a
narrow strip may be calculated exhaustively, conditioned on the previously-segmented
bordering balf-plane. The line of pixels adjacent to this plane is classified according
to this local maximum state, and the algorithm advances by one row. The image is
processed semi-sequentially, discarding intermediate results at each stage as thecontext
is enlarged. Even when the widtb of the strip and the nuinber of texture types are small,
this algorithm is computationally-demanding. A second-order GRF was used lor both
texture and scene models.

A mild relaxation of the condition that all image parameters must be givena priori
was offered by Lakshmanan and Derin (1989): texture parameters are still fixed, but
the scene layout parameters may be adapted. The algonitbrn initially proceeds as for
the non-adaptive version, but scene parameters are periodically re-estimated fom the
current segmentation, and the relaxation re-started, eventually terminating after a fixed
number of iterations. Although high accuracy was reported with some artificial lextures
{Lakshmanan & Derin, 1989), the algorithm is computationally intense and the degree of
adaptability is very small.

5.6.4 Adaptive Segmentation Algorithms

Fach of the ahove algorithms demands that all texture parameters are known inadvance
and that no degradation occurs, hut both conditions are unreasonable in practice. A
clustering algorithm which overcomes these restrictions was proposed hy Silverman and
Cooper (1988), who initially divide the image into small blocks (§3.5.1). Each isassurned
to contain a single texture type, for which a second-order auto-normal pseudolikelihood
parameter set j8 estimated. Using a2 Mahalanobis distance criterion (§3.4.2), adjacent
blocks witb compatible parameter sets are merged using a greedy algorithm, building
up a coarse segmentation of the image. Common manufactured objects bave smooth
surfaces, and these were described more closely by adopting a non-stationary Markov
model, whose field mean varied according to a low-order polynomial. Estimation of
the polynomial coefficients complicates extraction of other MRF parameters as the Ltwo
processes are not independent. The coarse nature of the segmentation resulting from
agglomerative clustering means that a second pass Lo “restore” it is desirable (§3.5.3),
but even when this is done, real and artificial scenes may be segmented without excessive
amouats of computation (Manjunath & Chellappa, 1991).
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5.6.5 Multiple-Resolution Segmentation Algorithms

All the segmentation algorithms described above suffer from a requirement for large
amounts of computation, despite approximations taken to reduce this load. Multiple-
resolution algorithms address this weakness by obtaining initial coarse estimates across
an image block and subsequently refining them at the pixel level (§3.5). Multi-grid
algoritbms extend this approach by conducting the relaxation at several scales simulta-
neously (Terzopoulos, 1986), and this was the basis of the multiple-resolution adaptive
segmentation algorithm proposed by Bouman and Liu (1991). An initial coarse segmen-
tation is ohtained after decomposition of the image into small blocks as above (§5.6.4),
and the resulting scene is used as the initial state for a greedy reconstruction algorithm
which is apphed successively at each resolution. After each change, parameters are re-
estimated and the algorithm re-started. Segmentation accuracy is intermediate between
the Gibbs sampler and ICM algoritbm (§5.5.1), but less computation is reqnired than
either, representing an acceptable compromise.

5.6.6 Approaches to Parallel Implementation

A common feature of many algorithms described in this Chapter is the requirement for
large amounts of computation, sometimes leading to excessively long execution times
on conventional sequential processors. Parallel implementation appears to present an
attractive means of addressing this concern (§A.1), but ezact solution remains infeasible
(Gurari & Wechsler, 1982; Tsotsos, 1987), and we consider parallel approaches to efficient
sub-optimal algorithms. A classic example is the Gihbs sampler (§5.3.2), claimed by its
authors to be parallel although their implementation was sequential (Geman & Geman,
1984). The state of each pixel is iteratively updated by a relaxation process according
to the value taken by other pixels witbin its Markov neighbourhood (§3.1.2), and con-
sequently image codes must be processed sequentially but pixels within each code may
be updated in parallel (§5.2.2). During image restoralion, processing requirements are
local, regular, and possess translational symmetry; and bence may be met efficiently by
data-parallel architectures (Derin & Won, 1987; Murray et al., 1986).

Image segmentation algorithms are necessarily less homogeneous, and bence map less
vaturally onto data-parallel hardware (§A.1.1). This is particularly true for adaptive
algonithms, which combine parameter estimation from irregular regions with boundary
localisation, and their more Joosely-constrained processing requirements are supported
flexibly hy task-parallel bardware (§A.1.2). Both these approaches exploit spatial par-
allelism to some degree, but are partially sequential in one sense because very many
iterations are usually required at each processor.

5.7 Motivation for Gabor—-Markov Framework

Natural textures often exhibit random spatial variation, and the stochastic influence of
local image context is made explicit by Markovian representations whicl: describe eacb
pixel by a conditional prohability distribution. Algorithms manipulating Gibbs-Markov
models generate competing statistical hypotheses about image composition or layout,
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which may be [orrmally compared by evaluating tbeir respective joint likelihoods. This
is computationally burdensome in general, but is more straightforward for homogeneous
auto-normal models which are [requently adopted for this reason, often in conjunction
with the toroidal boundary approximation. Explicit calculation of the joint likelihood
is not imperative, but stochastic algonthms which manipulate only the conditional
likelihood are often very computationally demanding.

The descriptive power of Gibbs—Markov models was estahlished by reviewing some
previous applications in the literature, often involving the manipulation of ill-constrained
natural textures. Computational concerns [requently motivated the use of low-order
models, able to descrihe only very local spatial correlation. Sub-optimal pseudo-
likelihood parameter sets were frequently adopted for the same reason, detracting from
the “optimal” statistical framework. Hierarchical random field models describe the
image more richly by representing structure at several levels, but are even more compu-
tationally exacting. Despite these concerns, Gihbs-Markov models have been success-
fully employed in a variety of demanding applications, including image restoralion and
unsupervised segrentation.

5.7.1 Drawbacks of Gibbs—Markov Models

Despite the apparent success of Gibbs—-Markov models in the applications reviewed
above, they suffer from a number of limitations which restrict their wider use for texture
analysis.

1. A major disadvantage of Gibhs~Markov models is their computational appetite.
Even approximate solutions ohtained with low-order models and pseudo-likelihood
parameter sets cannot be achieved in real time. This is in contrast to spatially-
parallel algorithms, which may he executed extremely efficiently by suitable ar-
chitectures (§3.2).

2. Raw Gihbs—~Markov models perform stochastic template-matching on the observed
image data, and hence alterations of viewpoint, lighting, texture mapping, or
the image acquisition environment all require appropriate adjustment of model
parameters. While it is often desirable to detect these changes, it is seldom useful
for them to create distinct textures.

3. None of the papers reviewed in this Chapter atternpted to assess the robustness
of Gibbs—Markov models to image degradation hy blur or noise: all apart from
the simple gray-scale textures (§5.6.1) were assumed to be noise-free, but this is
hardly realistic in practice. Qur experiments show that raw Gibhs—Markov models
are very sensitive to these artifacts, particularly wben using pseudelikelihood
parameter sets (Chapter 6).

4. Multi-resolution algorithms seek to arrive quickly at a coarse solution and then
refine it to achieve higher accuracy. Despite recent developments (§5.6.5), this
strategy has not been [fully exploited and most algorithms operate solely at the
pixel level.
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5.7.2 Proposed Improvements: Gabor—Markov Framework

Qur objective is to retain the descriptive power offered by conventional Markovian
analysis, but to raise computational efficiency, robustness, and level of abstraction
(Chapter 1). Motivated by the apparent success of simple local image “fesiures” in
pre-attentive human vision (Chapter 2), and the computational efficiency of “statisti-
cal” approaches (Chapter 3), we assessed experimentally the potential of Gabor filters
for image apalysis (Chapter 4). Suitably constrained images were segmented accurately
by locating first-order differences in Gabor amplitude, but this approach is unreliable
because considerahle variation is often observed within as well as between textured
regions. Ralher than attempting to suppress this by heuristic post-processing, our ap-
proach is to describe the spatial variation of Gabor features with Markov random ficlds,
forming a hybrid Gabor-Markov framework for texture analysis. We anticipate that
this dual paradigm analysis will allow us to combine Lhe best aspects of “statistical” and
“structural” approaches in a similar manner to the pre-attentive dicholomy observed
in low-level human vision. In particular, Gahor—Markov models address the concerns
noted above (§5.7.1).

L. Feature values have a higher information conteut than pixels, aliowing the [eature
array to be sub-sampled without significant loss of information. A reduction in
the effeclive image size immediately leads to computational benefits, allowing
execution times to be reduced or models of a liigher order to be used.

2. Our Profile and Resultant feature-extraction algorithms generate sensilive and
compact descriptions of real textures, but require only simple data-panllel pro-
cessing and hence may be implemented very efficiently on suitable architectures.
Straightforward enhancements would allow them Lo adapt to observed image char-
acteristics, providing a welcome degree of abstraclion so ihat feature represenla-
tions always assume a standard form.

3. Each feature vector has a region of support much larger than a single pixel and
hence should be less affected by image degradation, suggesting that a fealure-based
model should be more robust.

4. Gabor filtering may be used to derive an approximale image segmentation [or low
computational cost (§4.4), which can he used to guide selectively a more expensive
Markovian analysis.

We propose specific Gabor-Markov models in Chapter 6, and compare their perfor-
mance with a conventional Markovian analysis by adopting Bayesian classificalion as a
benchmark.



Markovian Texture
Classification: A Comparison of
Novel and Conventional Models

Gahor filtering is a powerful tool for texture analysis. It is a promising member of the
class of texture energy measures, which may he computed in a data-parallel (ashion
with a local region of support (§3.2). In Chapter 4, we described the implementation of
a simple spatially-parallel image segmentation algorithm based directly on Gabor filter
amplitude. Performance was adequate for simple images, but a number ol deficiencies
that limited its scope were noted. Only first-order statistics of Gabor amplitude were
used by this method — spatial context was neglected. In practice, Gabor filtenng often
failed to eliminate variation within textured regions, and these residual flucluations
complicated the process of boundary extractiou. We developed models for Gabor filter
output in terms of response signatures of simple image primitives, and proposed two
efficient feature-extraction algorithms.

One factor which limits the applicability of simple spatial-filtering algorithms for
texture analysis is their failure to acknowledge an inherent characteristic of real textures:
variability. This attribute is represented explicitly by Markov! random field (MRF)
models. Each pixel is described by a conditional probability distribution, expressing the
stochastic influence of spatial context (Chapter 5). Markov models have been employed
successfully in a variety of demanding applications, including image restoration and
unsupervised segmentation, and their descriptive power is well-established. Their main

'Whilst acknowledging the Gibbs—Markov equivalence (§5.1.3), we shall only make use of the
Markov formulation in this Chapter.
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drawbacks arise from heavy computational requirements, which cannot be met fully by
parallel implementation, and an insufficient level of abstraction.

In this Chapter, we combine Gabor filters with Markov fields to form a new method
for texture analysis. Arrays of Gabor features obtained by our extraction algorithms are
represented hy Markov random fields to form the new class of Gabor-Markoo models.
This hierarchical arrangement should allow us to exploit the spatial variability of Gabor
amplitude noted above. Different modelling assumptions lead to the implementation
of several members of this hybrid framework. We hope to retain some of the speed
and flexibility of raw Gabor filtering coupled with the superior scope and performance
offered hy Markov models. The efficacy of this approach is measured by comparing the
performance of our proposed Gabor-Markov method with a conventional Markovian
analysis. Texture classification accnracy was chosen as a suitable benchmark. Despite
some criticism of its generality (8§3.6.1), empirical classification accuracy givesa simple
quantitative measure of performance, may easily he repeated for different parameters,
and does not require excessive amounts of computation.

Relative classification accuracy of the Gahor—Markov and conveantional MRF models
is assessed using 33 textures chosen from the popular Brodatz album, divided into
132 images. Performance gains anticipated for our new Gabor-Markov method are
observed in practice: image dimensions may be reduced by a faetor 16 without loss of
accaracy; noise tolerance is improved by a factor of up to 45; blur tolerance isincreased
considerably (§6.5).

Qur appraisal of Gabor-Markov models leads to a greater appreciation of the impor-
tance of suitable pre-processing. We propose a Sampled-Markov framework, employing
concise representations derived directly from the image data (§6.6). Performance with
this paradigm further improves upon a conventional Markovian analysis. Image dimen-
sions may be reduced by a factor 25 without loss of accuracy, and noise tolerance is
improved by a factor of up to 200. Smooth-Sampled Markov models are preferred, and
achieve 100% accuracy in our tests.

These results are of considerable practical interest. The superior performance of
Sampled-Markov classifiers is particularly remarkable. We investigate possible causes
for these trends in Chapter 7. Finally in Chapter 8, we propose modifications which
should further enhance the performance of hoth Sampled- and Gabor—Markovclassifiers,
and discuss potential applications.

6.1 Choice of Auto-Normal MRF Model

From the results given in the previous Chapter, it is clear that auto-normal Markov
random fields are particularly convenient to manipulate in practice, compared to other
forms of MRF. It s feasible to evaluate the joint likelihood; the conditional probability
distribution assumes a simple form, with a linear neighbourhood function; and analysis
is often possible using analytical rather than stochastic numerical techniques. Homo-
geneous auto-normal models are therefore very much favoured candidates for image
description, and their benefits are so overwhelming that we have confined ouwr attention
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exclusively to this form. Whetber this choice is appropriate depends on the balance be-
tween computational tractability and tbe descriptive power of the model. Assumptions
that images are multivariate normal are common (Bouman & Liu, 1991; Chen & Pavlidis,
1983), and have some empirical support (Hunt & Cannon, 1976).

In the context of a pixel image, a number of approximations are inherent in lhe choice
of an auto-normal MRF: the normal distribution is continuous and unbounded whereas
the image is discrete and bounded, taking integer gray-Jevels in the range 0-255, and
some further inconsistencies are described helow (§7.1.1). Despite this, aulo-normal
models are popular in the hterature and have been shown to be effective practical tools,
if the approximations are not taken to extremes (Chellappa & Chatterjee, 1985; Cohen &
Cooper, 1987).

We shall also take the approximation of loroidal boundary conditions (§5.1.5). Each
pixel possesses a surrounding necighbourhood set, whose values are required %o form its
conditional gray-level distribution, but some ol these values are rissing when the centre
pixc] lies near an image boundary. Dimensions of the images considered below are very
large compared to those of the neighbourhood set, and hence the toroidal boundary
approximation introduces negligible error. We chose it because it is more convenient
than the free boundary condition, particularly when using discrete Fourier transforms.
Since our irnages are all rectangular, no difficulty arises with an irregular boundary
shape. We further assume that fields are stationary: their mean does not vary as a
function of lattice sife.

6.1.1 Other Possible MRF Models

Experiments with other distribution functions have been limited in the literature be-
cause of Lthe attractiveness of aulo-normal models. The binomial distribution is discrete
and bounded, and has been employed to model pixel images (Cross & Jain, 1983), but
computational difficulties forced the use of only 8 gray levels rather than the usual 256.
Other discrete models also suffer from this reslriction (Gagalowicz & Ma, 1985), which
drastically reduces their descriplive power.

6.2 Pixel Images: Conventional Analysis

The main set of images used with the classifier was digitised from the Brodalz album.
Camera and hghting parameters were usually adjusted to ensure that the dynamic range
was well used but some images have heen re-normalised. No corrections were made for
camera transfer characteristics. Unless stated to the contrary, the original images were
256256 pixels (Figure 1.6 on page 11).
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6.2.1 Estimation of MRF Parameters

As discussed in §5.2, several parameter estimation methods are available. Two were
used here: maximisation of the true P(x) and pseudo P(x) likelihoods.

P(x) = [(2,!,?;“4 exp [ e “)gﬁ(x = #)}

€L

Our notation is as used previously (Chapter 5): x image data defined on laitice £,
ordered as an M XN vector; g = ul1 mean vector; 8 MRF neighbourhood coefficients,
ordered as a column vector; B a block-circulant matrix formed by rotating g; 7, the
neighbourhood vector for point 7, defined by (5-51) on page 112; P true image like-
lihood; P image pseudo-hkelihood; o? MRF predictor variance; § = {u,02,8} MRF
parameter set. Maximum-likelihood parameter estimates are obtained by maximising
the appropriate likelihood function (6:1) with respect to the free parameters, §(§5.2.1).
In order to improve clarity, the mean will be dropped from now on. The corresponding
log-likelihood functions L(x) and L(x) are more convenient theoretically and practically.

When using the Group method (§6.4.3), simultaneous parameter estimation from
several images is required. Taking these images to be independent, the new joint like-
lihood may be written as the product of those for each image.

r=1
P (<@, %0, x0-0) = ] P(x9)

1=0

n—1
L(x(a),x“),...,x(""')) = ZL(X(U) (6-2)

1=0
The notation x(*) refers to the i-th image.
Pseudo-Likelthood Parameter Estimalion

For an auto-normal MRF, the pseudo-hkehhood parameter estimate is the same as the
least-sqnares estimate, and is relatively straightforward to evaluate (§5.2.5.. Group
estimates for n A x N images are:

B 1 n=-1
B= SMN P3O

320 ieL
% HZ 0077 S 0,0
B = [Z 450 ] I
j=0 ieL j=0 i€L
> 1 W _ gT0?
? = T L (- AT) (©3)
1=0 1€L

where the notation x refers to a centered process, lormed by subtracting the appropriate
mean from x. Unless the context requires the use of this notation, we will otherwise
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assume that tbe field has heen centered. The largest neighbourhood size used was
ninth order, which required the inversion of a 24x24 matrix. This presents no practical
difficulties.

Altbough the pseudo-likelihood estimate is an approximation, it is often able to
capture much of tbe character of an image at relatively modest computational cost.
One significant disadvantage is that the parameter estimate need not correspond to a
homogeneous texture (B not positive definite), and often the homogeneity constraint
(5-66 on page 115) does not hold. Whenever homogeneity is assumed (as in thesynthesis
procedure described below, §6.2.2), a contradiction occurs.

True-Likelthood Parameter Eslimation

True maximum-likelihood parameter estimates are superior to pseudo-likelihood est;-
mates but are generally available only at considerably increased computational cost.
Unfortunately, no analytic expression for tbe oplimal parameter vector is available, and
tbe hikelihood must be maximised mainly hy numerical techuiques (page 119).

log(27rc72) - — Zx")TBx")

=N

T 1
o? = WZXU Bx{" (6-4)

=0

L(x@,.. . 1) = lo |B| -

Substitute for o2.

n=1 xT 1
L(x@,...,x"1) = 27 31 x¥ Bx(’) _ﬂMfV—IJ

[logIB{ MNlog( A MN =1 "

[T

(65)

Under toroidal boundary conditions, the coefficient matrix B is block-circulant, and
hence (6-5) may be simplified considerahly. Dropping constant terms, the expression to
be maximised is:

L{(x©®, . . x-1) ZIOg,\ -MNlog[ZA (Z|X“)| )} (6-6)
€L el
where (5-61)
mk nf
Ampni = 1-2 37 ﬂ**’s‘“’s[z’r(M N)]
(kOeN

Summation for ¢ extends over the image lattice £; S represents the span of the MRF
neighbourhood A'*. Power spectra and cosine terms may be pre-computed, and summa-
tion over the image may he reduced by balf hy taking advantage of conjugate symmetry.

2One degree of freedom is subtrected from the expression for the estimated variance 2 because the

field mean is also determined empirically (Papoulis, 1990, page 222). This ensures that the estimator

is consistent: E{—u?} =a>
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FIGURE 6.1: Shape of the true-likelihood function near the maxi-
mum. A ninth-order model was estimated from the pressed cork image (#;
Figure 1.6 on page 11). The effect on the log-likelihood L of perturbing the
first two elements of B around their estimated values is shown. Coefficients
mesh together so that the scope for independent variation is small, because
ol the reqnirement to observe the homogeneity constraint (5-66; page 115).
When this is broken, the likelihood becomes zero (L — —o0), shown by dotted
lines.

Partial gradients of (6-6) with respect to 3 are easily computed and may be used in
a Newton gradient-ascent algorithm. We have found this process to yield salisfactory
parameler estimates.

Two prohlems remain: the first is that the gradient-ascent algorithm simetimes
attempts to evaluate (6-6) at a point where the homogeneity constraint A; > 0(5:66 on
page 115) does not hold. Siace this parameter set is inadmissible, one polental action
is to trap the nurnerijcal exception and to set L = —co. Unfortunately, no gradient can
then be computed, and the algorithm fails. A second problem is that the algorithm will
probably coaverge to a {ocal maximum, and there is no practical method for comparing
this with the true maximum. Stochastic methods may be used to perform a thorough
probahilistic search, but this is very slow (Geman & Geman, 1984; Kirkpatrick elal., 1983).

Both these difficulties are overcome by the use of an appropriate seed point. Since
the pseudo-Likelihood estimate 3 is acceptable and fairly cheap to compute, this is used
to generate an initial estimate B,. When necessary, G is scaled uniformly lo ensure
that ﬁo satisfies the homogeneity constraint (5:66). Under these conditions, we have
found that the Newton algorithm converges to an acceptahle estimate, usually taking
no more than two minutes per image, sometimes mnuch less.®

The parameter estimatjon algorithm was checked in several ways. Firstly, parame-
ters re-estimated from synthesised images were always very close to the origital values.
Secondly, whea the algorithm was restarted from a random initial poinl ten times, in no
case was a superior maximum found. As final confirmation, the likelihood function (6-6)
was plotted as a functlion of parameter values (Figure 6.1). Each was perturbed around
its “maximum” value to assess how local this extremum was. Unfortunately, this proved
to be a weak test because the homogeneity constraint (5-66) imposes a very tight limit

3This figure is for estimation of ninth-order paramelers [rom an image of size 128x128 pixels,
running on a Sun SPARC architecture. For comparison, pseudo-likelihood estimation takes only
15 seconds.
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on the values which each coefficient may assume, such that the scope for individual
variation is very small.

6.2.2 Texture Synthesis from Measured Parameter Sets

As a final qualitative check, images were synthesised with the estimated parameters
and compared visually with the originals. The Fourier transform synthesis method was
used (§5.3.5), again taking advantage of toroidal houndary conditions. In order to allow
the approximate visualisation of pseudo-likelihood parameter estimates which do not
ohey the homogeneity constraint (5-66), the spectral-density coefficients A; were forced
to he non-negative.

kE nt
Amintt = [1=2 Y Bryescos [2:: (%+%)H (6-7)
(k)eN+

Although this alters the appearance of the image, the effect is usually small when
only a few terms are affected. Unfortunately, the transform of the synthetic image is
proportional to \/A,-_l and hence js very sensitive to small perturhations arourd J; a2 0.
Each synthesised image is quantised and its range restricted to [0,255) hy clipping at
the extremes.

Examples of some ninth-order synthetic Brodatz textures are shown in Figure 6.2;
the originals are in Figure 1.6 on page 11. In all cases, no valid point-to-point com-
parisons can be made between original and synthetic textures. When the real texture
appears homogeneous, the true-likebhood synthetic texture is often a very good likeness
(e.g. 24, #24, 838, #70). Similar trends were noted in the fifth-order synthetic Brodatz
textures shown earlier (Figure 1.4 on page 7). If the original possesses significant struc-
ture extending over a region larger than the MRF neighhourhood, however, this is not
reflected in the synthetic texture, which is instead dominated by microtexture(e.g. #15,
#17, 865, #95). In these cases, it is not surprising that the model has failed to cap-
ture the inhomogeneity of the real texture. This failure is only partial, however, as the
microtexture may still provide sufficient information for accurate discrimination.

Banding in some syntbetic pseudo-likelihood textures is caused hy the partial re-
covery by the synthesis algorithm from an inhomogeneous model. The spectral-density
coeflicient A; has hecome very small, and possibly negative, at the offending frequen-
cies, causing these to dominate the synthetic image. An alternative (hut more costly)
synthesis procedure could reduce or eliminate these artifacts. Qur main goal is classi-
fication rather than synthesis, however, during which a different method (page 147) is
used to overcome violations of the homogeneity constraint.

6.3 Feature Images: Gabor—Markov Models

Texture analysis is often divided into statistical and structural approaches: the former
represent a texture indirectly by a derived property; the latter hy the spatial arrange-
ment of primitive elements. From our review of current texture methods in Chapter 3,
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FIGURE 6.2: Synthetic Brodatz images. Ninth-order copies of natural Brodalz lextures,
256x256 pixels, formed by the MRF method described in §6.2.2: lefi—true likelihood; right—
pseudo likelihood. No point-to-point comparison with the originals in Figure 1.6 on page 11
is possible. The auto-normal MRF model usually characterises the texture well unless its
structure extends over a region greater than the MRF neighbourhood. Textures lormed with
true-likelihood parameters are consistenlly more convincing.



§6.3 Feature images: Gabor—Markoy Models 143

we concluded that statistical approaches have the advantage of computational simplicity
whilst structural tecbniques are more sensitive to Lthe hierarchical nature of natural tex-
tures, but often require large amounts of computation. A hybrid stochastic—structural
model was proposed to combiue the attractive properties of both approaches. Gabor
filtering and Markov random fields were identified as particularly promising technigues,
and were examined in detail in Chapters 4 and 5, respectively. We are now able to
propose bow our hybrid model should be implemcnted.

Our objective is Lo represent arrays of Gabor [eatures extracted by the filterng meth-
ods proposed in Chapter 4, by Markov random fields, {forming Gabor-Markor models.
As with pixel data, using an auto-normal MRF is almost obligatory on compntational
grounds. Features convey more information than individual pixel values, and we antic-
ipate that computational benefils will arise from sparse sampling (§3.7). Conventional
Markov models operate al a very low level, and may suffer from a lack of abstraction.
Describing tbe spatial arrangement of [eatures rather than pixels addresses this con-
cern, and may bring similar advantages to those claimed for generalised co-occurrence
matrices (§3.3.1; Davis et al., 1981). In particular, aspects of pcrformance measured in
this Chapter are: computational efficicncy, determined by the degree ol sampling; and
robustness to image corruption by nojsc and blur.

Several features are produced by both Profile and Resullant extraction algorithms
(§4.6). One possibility is to assume features are independent.

P(B,c,e) = Po(68)Pc(c)Pele) (6-8)

In practice, the error field € is not used. Independence has the advantage that the
contribution for each term may be analysed in isolation, and features with liitle diag-
uostic information may he dropped. For example, if the orientlation feld & were found
to be the most reliable discriminant, we could use P(@) alone. This approximalion also
[acilitates modelling with independent MRFs. Feature arrays arc not truly independent,
however, and this approach is not always appropriate.

6.3.1 Angular Field Models

Our goal is to model an angular pattern 8 hy means of an auto-norinal MRF. The Gabor
orientation feature obtained according to §4.6 is continuous but its range is restricted
to 0 € 8 < =. This may easily be extended to cover any segment of size 2r by a
simple transform, and we sball assume thal this has been done for the remainder of this
section (6.3).

Direct Normal Model

As wilh the pixel images, tbe simplest use of the auto-normal MRF is to model the image
data directly, but the fit to an angular pattern is unfortunately very poor. Figure 6.3
shows representations of the original and ninth-order true-likelihood reconstructed an-
gular components of Lhe Resultant orientation field extracted from the pressed cork
image (84; Figure 1.6 on page 11). It is not surprising that ibe fit is poor, because the
normal model ignores the periodic nature of the data: whereas —m and =~ should be
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FIGURE 6.3: Comparison of Gabor—-Markov angular fleld models.

for the pressed cork image (24

Figure 1.6 on page 11)

10N

0 up to black for @ = 7. (&) unsampled crientat

field. (b) needle diagram for (a). (c~e) true-likelihood ninth-order synthetic copies ol (a).

described in §4.6. White represents 8

(f) needle diagram for (e). The orientation field synthesised according to the composite-

[eature model is most similar to the original.
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adjacent points, they are instead treated as extremes. This distorts the structure of the
pattern, and means that the direct auto-normal approximation is of no practical use.
The synthetic angular field shown in Figure 6.3¢ js displayed using the same gray-scale
as for the original. Values exceeding the normal pixel range were clipped at the limit
rather tban being wrapped around.

A possible alternative is to apply a periodic transformation:
T = tan(8/2). (6-9)

This solves the range problem but —« and =~ are still treated as poles.

Orthogonal Normal Fields Model

Most of the advantages of Lhe auto-normal distribution may be retained whilst ac-
knowledging the periodicity of the data if orientatjon is represented by the direction of
a vector. The resolutes of the vector along the principal axes may then be modelled
as normal. Since only the directior of the vector has any significance, thete are no
restrictions on the range of its components.

Let the two orthogonal componeuts he p and q. We theu have:
0 = arctan{p/q) (6-10)

for —m < 8 € . Effectively (6:10) is a partial transformation to polar co-ordinates.
The margiral distribution fg(#) is derived in §A .4, and a graph of this function for the
case g = 0q is shown in Figure A.T (page 268). This appears to have greater potential
{or describing the angular distribution than the direct normal model although this must
be verified cmpirically.

Pseudo-inversion of (6-10) for a given € gives:

P sind
g = cosé (6-11)

implying that —1 < p,¢ € | and p? 4+ ¢* = }. This relation (6:11) is used to lorm the
training data p and q, but is incompatible with them heing normal and independent.
Ambiguity about the scaling for p and g occurs since only their ratio is specified by
(6:10).

Because the fields p and q are assumed normal and independent, their MRF pa-
rameters may be estimated from Lhe training data given by (6-11) using the method of
§6.2.1. As they are estimated in isolation, the two parameter sets have {reedom to be
completely different, but are similar in practice. Following the same argument, an an-
gular image may be synthesised by generating p and g fields as in §5.3 and application
of (6-10).

An angular image and jts reconstruction according to this method are shown in
Figure 6.3. The synthetic angular field (&) certainly appears more similar to theoriginal
than for the direct normal model (¢) but is still not totally convincing. In patticular,
it appears more broken up than the original.
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In order to model an angular field successfully, it appears that eitber a more compli-
cated structure is required, or the auto-normal distribution must be discarded. Given
the qualitative differences between model and data, this is inconvenient but perhaps
not surprising. Below, we discuss a more viable alternative that is presently wsed.

6.3.2 Composite Feature Model

We shall relinquish the idea that features are independent (6-8) and attempt to model
their joint distribution P(8,¢). The partial polar transform (6-10) may now he com-
pleted.

csin @
Yy = ccos (6:12)

x

I

Although the couvenience of being able to treat the Gabor fecatures as independent,
and hence of easily assessing their relative diagnostic effectiveness, has been lost, it is
slill possible to consider the random variables x and y independent. This asumption
is likely to be a better approximation than for the orthogonal-normal components p
and q because normalisation implied by (6-11} is avoided. We again use the eslimation
method of §6.2.1, finding G4 and G, separately. Synthesis of new images prceeds as
above, inversion of (6:12) is straightforward, and the structure of the Resultantsynthetic
field is now much more similar to the actual data (Figure 6.3). This is also true even
when the generating texture does not have a strong directional component Similar
trends arc observed with Profile features (data not shown).

6.4 Implementation of the Classifier

Bayes classification (§3.4.1) is used to identify texture samples, with no reject option.
Each class is assumed to be equally likely @ priori, reducing the task of the classifier
to selecting the class with the highest likelihood. In [act, the numerical value of the
likelihood is usually extremely small, and it is more convenient to manipulale the log-
likclihood. This has no effect on tbe result because log is a monolonically increasing
function.

True-Likelihood Tezture Classification

During classification, it is convenient to exploit the toroidal boundary apprximation
in a similar way to parameter estimation (§6.2.1}):

b A
2L(x) = Y logh!? — MNlog(2va?) -y l—'?— (6-13)
i€l €L e
/\(c) - 1 9 () 9 mk né
miaM T 1T Z Biiescos |27 ™ +F N

(ke
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where ,\‘(C) are spectral density coefficients computed from the parameter vector 8(<),
and |X,|2 are components of the test image power spectrum. The likelihood L. is
evaluated with parameters drawn from the MRF G, for each class in turn. Asexplained
on page 149, the field mean is sometimes uareliable and is not always used during
classification. When used, the MRF field mean may be subtracted from x to centre the
data; otherwise, the sample mean Z is used to remove the DC offset. True-likelihood
classification is relatively fast under the toroidal boundary approximation because the
image power spectrum |X,|2 and cosine terms used to form A;, may be pre-computed if
sufiicient memory is available — this is particularly valuable when matching one sample
texture against many classes. Further advantage follows from the conjugate symmetry
of power spectra, and the complexity of the true-likelihood classifier is no larger than
for the FFT: O(M N log M).

The form of (6-13) clearly implies that A, > 0. This breaks down if the homogene-
ity constraint is violated, which is olten the case for parameter sets obtained by the
pseudo-hikelihood method (§5.2.3). In these circumstances, it is possible Lo drop the
factor |B] from the likelihood because this appears in (6-13) as 3, log A;, producing an
approximate likelihood L/(x) (Cohen & Cooper, 1987).

. 2 ()
2L(x) = —MNlog(2ra?) — Z %2}‘—'
i€L ¢

(6:14)

Compare (6-13); L. also has the advautage of being [aster to compute. However, this
approximation is not taken further; we instead use the pseudo-likelihood classificr {6-15)
which is unaffected by inhomogeneous parameter sets. Note that P(x) is a probability
density function because the model for x is conlinuous. It is Lherefore quite possible to
find P(x) > 1 and hence L(x) > 0.

Pseudo-Likelthood Tezture Classification

There is no direct advantage of exploiting toroidal boundary conditions in the pseudo-
hkelibood function, which must be evaluated directly.

L) = -l logere?) = 5 3" (=~ 1))’ (615)

¢ ieL

This usually takes longer than for the true-likelihood classifier and has complexity

O(MN#8).

6.4.1 Sub-Optimal Classification Strategies

One may question whether the effort involved in evaluating the full Bayesian likelihood
[unction for each possible texture class is worthwhile or whether a faster procedure
would still give acceptable results. A number of approaches were discussed in §3.4:
rather than comparing the test image with all class MRFs, it is possible to describe the
image by its own MRF parameters and then to compare parameter sets. The simplest
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way to compare sets of parameters is to treal them as vectors and compute the veighted
Euclidean distance between them (§3.4.3; Manjunath & Chellappa, 1991).

(S; = )’

Aw(§%) = Y T

J

(6-16)

We compared the accuracy of this method with true-likelihood Bayesian classification.
With a ninth-order model, the weighted Euchtidean classifier gave 44-7% error against
6-1% for Bayes. This increase is far too large {o be tolerated, and the weighted Euclidean
classifier was not used further.

More sophistication may be added to (6:16) by normalising the difference between
each pair of parameters with a parameter variance (§3.4.3). This expression approxi-
mates the Bhattacharyya and Mahalanobis distance measures (3-8-3-10), equafity hold-
ing if the parameters are normal and independent. It reportedly gives good results with
Brodatz textures {Chellappa & Chatterjee, 1985; Kashyap e! af., 1982), but is inappropri-
ate in the present circumstances: reliable estimates of the mean and covariances of the
parameters must be available, but we have only a few training textures in each class,
and so the required variances are not obtainable. Experience shows that the pararneters
covary strongly, which perhaps explains the failure of the weighted Euclidean classifier.
Further, obtaining a true-likelihood parameter estimate for the test image is a relatively
slow process, and could take as long as compuling all the Bayesian hkelihoods. This
means that this method is polentially advantageous only when usiug pseudo-lkelihood
parameter estimates, which themselves introduce another source of error.

6.4.2 Classification using Gabor-Markov Models

When a single MRF is used to represent the feature array, as in the “direct normal
model” (page 143), no special treatment is required. When iwo MRFs are needed, the
overall log-likelihood is the sum of the parts:

L{x,y) = L(x)+ L(y)- (6-17)

This simple form arises because the constituent fields and the corresponding sample
dala are assumed. to be independent.

Feature images were classified using the orientation field alone, under the orthogonal-
normal model, or using both orieptation and contrast features wilh the composite fea-
ture model. Different results may be obtained with the Profile or Resultant [eature-
extraction methods, and some sets of results have been duplicated using both types.

Ecztraction of Gabor Features

Arrays of Gabor features were estimated from each image using eitber our Profile or
Resultant extraction methods (§4.6), as indicated by the context. Quly the LINE prim-
itive was employed to extract Profile featurcs. Botb methods estimate orentation,
contrast, and error features, but the latter were not used in this study (86.3). Our
experience guided the selection of a fixed set of Gabor filter parameters which was em-
ployed throughout. Following the notation of Chapter 4 (page 69), these prameters
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were: (T =4 pixels, B =1, Af;p = n /6, © = 7/6; 0 = 2:25 pixels, A = /3); hence
each image was filtered at six orientations, two phases, and a single spatial frequency.
Possible extensions to allow adaptive selection of filter parameters are discussed in §8.2.

6.4.3 Classification Procedure

Tbe raw image material was 33 Brodatz images (Figure 1.6 on page 11), which were
divided into quarters to give 132 independent gray-scale images of size 128x128 pix-
els. Not all the textures appeared very distinct to a human observer (e.g. #4—89,
#5-#28), and some of the photograpby could have been improved upon. No images
were discarded, however, since these factors cannot always be controlled in practice, and
the variation was taken to be representative. No pre-processing of the type described
in §3.1.3 was performed.

Two variants on the “leave-one-out” procedure were used to generate texture classes.
Under tbe Afl-Quarters method, a separate MRF was estimated for each of the 132
images. During classification, each image was then matched against the M®Fs of the
remaining 131 images. The result was a “success” if the match was with another quarter
of the same parent image. This method is potentially susceptible to inhomogeneities in
the image, since one errant quarter may indeed be more similar to part of another parent
texture! The more conventional Group method was to form 33 separate MRFs, taking
all quarters of one parent together. During classification, each sample was matched
against the 32 classes to whicb it did not belong, and againsi a new MRF estimated
Irom the remaining three quarters of the same parent. Consequently, test and training
image quarters were always disjoint.

Both our methods derive a texture class {rom a single parent image. The number of
classes is larger than tbat normally considered (e.g. Chellappa & Chaiterjee, 1985; Cohen
et al., 1991; Vickers & Modestino, 1982), making correct classification more difficult.

Treatment of Field Mean

Classification was performed both with and without the MRF mean. In the lalter case,
the test image was simply adjusted to have zero mean. Making use of the mean for a
pixel image may be thought of as “cheating”, since it exploits atypical consistency in
our imaging environment. Lighting and camera parameters may normally be expected
to vary for different exposures, making this information unreliable. In any case, these
parameters bad been adjusted to make good use of the dynamic range offered by the
camera, 50 the pixel means were very similar. The first step in extracting Gabor features
from an image is to ehiminate the DG cormnponent (§A.2.4), and so the fealurc mean is
not covered by the above comments: it is a valid texture property. Both sets of results
are given below (with and without mean), but a fair comparison is between lhe pixel
classifier without mean and the feature classifier with mean.

Pixel variance is another first-order statistic, and is similarly unreliable (§3.1).
Changes of illumination affect the absolute variability of the texture, which is reflected
in tbe MRF variance o2, bul the relative variability is unchanged. Global changes in
illumination could have been compensated for by scaling the MRF varjance (Kashyap



SAMPLE
OR
SMOOTH-
—" SAMPLE
l PIXEL
ADD
NOISE & EXPRESSIN | onel W CLASSIFY  |— CLASS
PIXEL UNITS
BLUR
l FEATURE
EXTRACT
GABOR || sampLe
FEATURES

FiGURE 6.4: Classification procedure. lmages are classified according
to the procedure illustrated above. When required, image corruption occurs
prior to sampling and feature extraction. No sampling is performed by tbe
conventional pixel classifier.

et al., 1982), or by a modified classifier (§5.4); local changes by logarithmic fillering
(Voorhees & Poggio, 1987). Neither procedure was adopted in our experiments.

Evalualion of Classifier Robusiness

When assessing the tolcrance of tbe classifier to image corruption, only the test im-
ages were altered: the same training dala were used. Robustness is imporant in a
practical environment since imaging parameters cannot always be fully controlled. The
procedure for pixel and feature classifiers is illustrated in Figure 6.4. Zero-mean white
random noise was added to the image before processing. Pixel values were quantiscd
and clipped to the permitted range. This implies tbat noise and image datawere not
fully independent; for example, noise cannot decrease tbe intensity of a fully-black pixel.
The noise-generator was non-delerministic and hence classification accuracy may differ
slightly for different runs.* The amount of noise is characterised by its varance p?,
measured in gray-level units squared.

Blur was modelled rather ideally by convolution of the image with a arenlarly-
syminetric normalised Gaussian kernel. No anti-aliasing was done, causing the filter
to have virtually no effect when the intended amount of blur was very small. Clip-
ping could not occur, but the process was irreversible because tbe blurred image was
quantised Lo pixel units. The amount of blur was characterised by the spaceconstant

1This was a minor effect, however, and did not disguise the trends noted below.



§6.5 Performance of Texture Classifiers 151

of the Gaussian, b, measured in pixel units. Additive noise and blur were not applied
simultaneousty.®

6.5 Performance of Texture Classifiers

Several aspects of classifier performance are of interest. The chief comparison is between
conventional pixel models and our new Gabor-Markov feature models: we wish to
compare trade-offs between accuracy, speed, and robustness; and to see whether either
type of model is better suited Lo a particular class of images. In order to make a
fair comparison, we investigated the influence of model order, and the use of true or
pseudo likelihoods. For the feature models, there is the further question of what level
of sampling may be tolerated and which feature-extraction and modelling procedures
should be used. Texture classification gives a simple quantitalive performance measure
for each comhination.

In order to assist comparison between different sets of results, graphs of classifier
accuracy are collected together at the end of this Chapter (pages 165-173).

6.5.1 Basic Results
Accuracy of Conventional Pizel Classifier

True-likelihood classification was performed using the All-Quarters method (§6.4.3)
with MRF parameter sets of order 1-9. The first-order model has a tiny ueighbourhood
set containing only four pixels {Figure 5.1 on page 107), and this is clearly insufficient
to capture the structure of the different textures (Figure 6.10 on page 165). A third-
order model has only seven paramelers, yet the mis-classification rate is only 7%. As
neighbourhood size is increased further, there is only a marginal [urther improvement
in accuracy: a ninth-order model with 25 parameters achieves a 6% error rate. This
difference is hardly significant and Lhe additional computational effort does not seem
worthwhile. Including the MRF mean has a marginal heneficial influence on classification
accuracy but, as discussed above (page 149), this parameter is unreliahle in general.

Using the Group method gives a very similar pattern of results. Accuracy is slightly
impaired: the error rate rises from 7% (All-Quarters) to 8% (Group) for a fifth-order
model ignoring field mean. The distinction between different classification methods seen
in Figure 6.10 is repeated for most other image conditions. In order to enhance clarity,
only the All-Quarters results, without field mean, are shown graphically in most cases.

Pseudo-likelihood classification is less accurate (Figure 6.11), achieving a minimum
error rate of 17-4% without field mean — this rate was reached with a third-order model.
Increasing the model complexity further tends to decrease accuracy. There is a sharp
jump in error rate for a second-order model, for which we do not have a convincing
explanation. The effects of field mean and classifier design are similar to those for the
true-likelihood classifier. Generally, the pseudo-likelihood classificr is inferior: there is

5Some quantisation noise arises when the image is blurred, however.
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no speed advantage when the toroidal boundary approximatiou is fully exphited and
when parameter estimation is excluded, and accuracy is reduced. Accordingly, we have
concentrated our resources on true-likelihood classification, noting comparions with
pseudo-likelibood where appropriate.

Accuracy of Gabor—Markov Classifiers

A putative advantage of using features to represent the image data is that they can
be sampled more sparsely than the pixel array, therehy decreasing the computational
requirement (§5.7). In a complete Gabor representation (§4.1.4; Porat & Zeei, 1988),
the sampling period 7, is the same as the period of the trigonometric envelampe of the
filter kernel {4-16 on page 62). For our filter parameters (§6.4.2), this gives 7, =4 pixels,
allowing the quantity of data to be reduced by 93% [rorn 128x 128 to 32x32 pixels. It is
likely tbat the image will have to be sampled more densely than this, however, because
we took only one layer of the Gabor pyramid and hence cannot achieve a loss-less
representation.

This comparison is nol entirely fair because the present implementalion presents
Gabor features using floating-point (4 byles) compared to 1 byte for pixel dita. This
extra precision is not necessary, however, and a scaled single byte per [eatwre would
suffice. An unsampled two-feature representation would then require twiceas much
storage as the original image, dropping to 12-5% afler sampling,.

Our Brodatz irmage set was classified using both orthogonal-normal and cimposite-
feature models, for Profile and Resultant [eatures. Accuracy using the orientation field
alone, with the orthogonal-normal model, is shown in Figure 6.12 as a [unction of
sampling period s for a fifth-order model. Using the field mean improvesaccuracy
considerably, as would be expected, but there is surprisingly hittle effect of the degree
of sub-sampling. Error rates for this method are higher than for the pixel clasifier.

The sampling period again has little effect on accuracy when using the composite-
feature model and Resultant extraction method (Figure 6.13). When the feld mean
is used, accuracy rises as the sampling period is increased. Model order has only a
small impact (Figure 6.14); highest accuracy is obtained for a model of intermediate
complexity. For the most favourable choice of parameters, accuracy is virlually the
same as for the pixel classifier (6-0% against 5-3% error) but this is achiewd with a
field reduced to ore-sizteenth of its original area. When the field mean is not used,
error rates are considerably higher, exceeding those obtained by the pixel clasifier.

A similar pattern is observed for the Profile extraction method (Figure 6.15). Max-
imum accuracy is achieved for a sampling period of three pixels with the AllQuarters
method, and for a greater period with the Group classifier. There is virtuallyno vana-
tion of accuracy with model order between second and ninth order (data notshown).

The composite feature model uses both orientation and contrast featurs, and is
consistently more accurate than tbe orthogonal-normal model derived {rom orentation
alone. Since two random fields are used to represent both models, there is 1o signifi-
cant computational penalty for using the composite-feature model. We shallbe chiefly
concerned with this model below, commeutiug on the orthogonal-normal model only in
passing.
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There is no clear choice between the Profile and Resultant feature-extraction meth-
ods: they require similar amounts of computation and offer similar performance. We
shall concentrate on the Resultant method because it appears to have slightly higher
accuracy for unsarnpled and heavily-sampled fields, and is marginally faster lo calcu-
late. Our discussions below of the “feature classifier” will refer to this model, using
true likelihood. Preliminary investigations of the use of pseudo likelihood with feature
data suggested a similar pattern to that achieved for pixel data, classification accuracy
being far less accurate than with true-likelihood parameter sets.

6.5.2 Classification of Noisy Images

Noise is unavoidable in real images. Our noise model (page 150) is idealised hul is valid
for comparative purposes, giving a measure of the relative robustness of classifier types.
The classification task ensures that models which are either too specific or too imprecise
are penalised.

Accuracy of Conventional Pizel Classifier

Additive random noise was applied to the image set prior to classification, as described
in §6.4.3. The variance of the noise is measured in gray-level units squared. As may be
seen immediately from Figure 6.16, the pixel classifier is extremely sensitive 10 noise,
particularly for models with many parameters. Even noise of variance p?> =3 causes
the error rate to triple for a fifth-order model; for noise of variance 20 or grealer, more
than half the corrupted textures are incorrectly classified, compared Lo an original
error rate of 6%. This surprisingly sharp drop in performance undermines the utility
of this classifier. As can he seen from the sequence in Figure 6.5, the texture is still
visually easily recognisable after the addition of much larger amounts of noise than this,
suggesting that the classifier is making poor use of the available information.

Another trend present in the results is for a classifier of larger order to be more
seriously affected by noise. This reverses the ranking for uncorrupted images. It might
have been supposed that the larger neighbourhood size of the model of higher order
would he more effective in suppressing the noise, but this is clearly pot thecase. A
third-order model gives highest accuracy with most noise levels. Possible causes {or this
effect are discussed in §7.3. As before, Group classification shows a similar trend but
accuracy i8 marginally reduced (data not shown); using the field mean gives a slight
improvement. Noise is even more destructive for the pseudo-likelihood classifier. A
fifth-order model achieves 17-4% error for no noise, rising sharply to 78-0% for p? = 3
(data not shown). Such high error rates mean this classifier is virtually unusable for
noisy images.

There is no direct precursor to these results in the literature. When noise is con-
sidered, it is in conjunction with regions of constant luminance rather than a random
texture (Geman & Geman, 1984; Hansen & Elliott, 1982; Lakshmanan & Derir, 1989). This
is a qualitatively different problem to that faced bere — classification is not rezlly an is-
sue with these primitive textures, since the hest available estimate is computed directly
from the sample mean.
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(a) #4 plus noise (p? = 100) (b) #4 pius blur (b= 0-5)
FiGURE 6.5: Effect of noise and blur on Brodatz image. The pressd
cork image (84; Figure 1.6 on page 11), 256x 256 pixels, was corrupted by (he
methods used to test classifier robustness (page 150). (a) addition of whte
noise, variance p° = 100 gray-level units squared. () blur with parameler
b = 0-5 pixel units. In both cases, the original texture is still sufficiently
discernible to identify it visually. This suggests that high error rates from the
pixel classifier are caused by a poor use of the available inforination.

Accuracy of Gabor-Markov Classifiers

Given that Gabor filters have a region of support extending over surrouudiag pixels,
we would expect features to be less affected by noise than the pixel values themselves.
Consequently, the performance of the [eature classifier should improve relative to that
of tbe pixel classifier as tbe level of noise is increased. This supposition is streagly sup-
ported by our results (Figure 6.17): the All-Quarters fifth-order model with asampling
period of 4 pixels achieves an error rate of 7-5% for no noise, increasing t08-3% for
p* = 20. Tbis compares favourably to error rates of 6-8% and 52-4% for the conven-
tional fifth-order pixel classifier. A roughly linear increase in error witb noise variance
is seen in hoth cases but the slope is lower by a factor 45 for the composile-feslure clas-
sifier. The accuracy of the feature classifier declines only gradually with higher noise
levels, and also receives the computational benefits of sub-sampling. As may be seen in
Figure 6.17, sampling more heavily decreases both the slope and intercept, s well as
reducing the computational load.

When the feature mean is ignored, the error rates are a little higher but the trend
is the same (data not shown). Unlike the pixe! MRF, the order of the featwe model
has only a weak influence on accuracy between tbird and ninth order. In both cases,
the additional complexity of implementing a full ninth-order model is not justified:
fifth order is a better choice. Error rates with the orthogonal-normal clasifier are
consistently bigher tban for composite features (data not shown).
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6.5.3 Classification of Blurred Images

Camera blur and pixel leakage is anotber pervasive potential source of image corruption.
We model tbis by Gaussian blur with parameter b, measured in pixel units {page 150).
Only very small values of b were taken, and bence the actual effect on the image is
somewbalt complicated by aliasing. Pixel and feature classifiers receive the same treated
images, bowever, and so their comparative performance is still valid.

The pixel classifier was hardly affected by a small amount of blur (b = 0-25 pixel),
possibly because of aliasing, but was virtually destroyed by a larger amount (b = 0-5),
the error rate exceeding 80% (Figure 6.18). There is Little effect of model order — this
is surprising because a larger neighbourhood may have been expected to respond on the
basis of remaining medium-scale structure. Tbe pixel-based classifier is almost unusahle
with blurred images, because ils error rate is only a little better than chance (97-7%).

Blur is less detrimental to ihe feature classifier (Figure 6.19): the fifth-order
composite-feature metbod gives an error rate of 54% for b = 0-5 against 8% with
the pixel classifier. Botb the baseline error and rate of increase are lower for increased
sampling period. It is not meaningful to quantify tbis difference in terms of a change of
slope because too few points are available. Tbere is a mild effect of model order (data
not shown) favouring more complex models; a fifth-order model is a good cormpromise.
Errors are higber if tbe field meau is discarded or if the Group classifier is used (data
not shown).

In view of its inferior noise tolerance, a surprising result is that the orthogonal-
normal orientation classifier is less sensitive to blur than the composite-feature method.
Both sets of data are sbown in Figure 6.19. With a sampling period of four pixels, the
error rale for the fifth-order orientation classifier after blur with parameter 0-5 was only
17-4%. It appears that the oricntation feature is virtually unaffected by this amount of
image blur. The orientation field extracted from the pressed cork image (#4; Figure 1.6
ou page 11) does indeed appear to be slowly-varying (Figure 6.3). Unlortunately, the
orientation classifier is more sensitive to noise and has a higher haseline error, and so
the composite feature classifier js still the best choice overall.

6.5.4 Comments and Conclusions

It is clear from the above results that many of the anticipated benefits of a swilch from
pixel- to feature-based classification do occur in practice:

o Lhe fealure array may be sampled to !/is of its original area, briuging considerable
computational benefits, witbout loss of acenracy;

o Lhe composite-feature model is up to 45 times more noise-tolerant than the pixel
classifier;

¢ blur tolerance is also increased, particularly with the orthogonal fields model.

There is no subset of our Brodatz immages for whicb either method is particularly well-
suited: errors are similarly distributed. Tbis is illustrated by the confusion matrices
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Ficure 6.6: Scatter matrices for pixel and composite-feature classi-
flers. Qur Brodatz image set was classified using true-likelihood parameler
sets by the All-Quarters method. Matrix order follows Lhe numerical labellng
of the images (Figure 1.6). Correctly classified images lie along the leadng
diagonal. Intensity is proportional 1o frequency. (@) pixel classifier for moc:ls
of order 2-5, 7 and 9. (&) Resultant composite-feature classifier for modils
of order 2, 5 and 9. Almost all errors occur with the same images for both
classifier types.

shown in Figure 6.6. Misclassification errors, shown by off-diagonal entries, usually
occur on the same row for both pixel and feature classifiers. Equal accuracy isobtained
by the two methods for uncorrupted images. The greater robustness of the fealure
method is important as it may notl always be possible in practice to oblain mages of
high quality.

With both classifier types, it is clear that a ninth-order model does notoffer suf-
ficiently improved performance relative to the more economical fifth-order model to
justify its use, and in many cases the ninth-order classifier was less accurate. & second-
order model is too small to distinguish textures rehably, and the ideal choice lies between
third and fifth order. A sampling period of [our pixels is most advantageous with the
composite-feature method, tending Lo reduce both computational load and eror rate.
Unless blur is a particularly serious hazard, the composite-feature model, denved from
both conlrast and orienlation features, is superior to the use of orientation abue.

Our conclusions are based mainly on observations of accuracy using the AllQuarters
mecthod. Very similar trends are observed with more conventional Group classifica-
tion, however, confirming that our results are genuine. Initial results with the pseudo-
likelihood classifier suggest tbat it is even more sensitive to noise than true lkelihood.
When used with the pseudo-likelihood function, the sampled [eature classifer again
achieves comparable accuracy Lo the pixel classifier with uncorrupted images(data not
sbown). In these circumstances, greater immunity to image corruption may be more
valuable than with true-hkelihood classification.

With the current serial implenientatiou, there is a significant computatioml cost in-
volved in representing the image by Gabor features. Mainly simple local computation is
required, however, and a suitable parallel machine or special-purpose architecure could
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8= 2 pixels s = 3 pixels 8 = 4 pixels
FIGURE 6.7: Sub-sampled Brodatz image. Sub-sampled versions of the
pressed cork image (#4; Figure 1.6 on page 11) formed by taking every secoud,
third and fourth pixel, respectively. Pixel size has been adjusted so thal each
printed image occupies the same area. When used with the pixel classifier,
a sampling period of two or three pixels leads to higher accuracy than with
unsampled images.

easily be constructed to perform this task (§4.1). Using this method, the processing
time of the [cature extraction stage could be made small compared to classification or
parameter estimation.

6.6 Performance of Sampled-Markov Classifiers

The twin advantages of using Gabor features are robustness and sparse sampling. From
the experiments of the previous section, it is not clear whether these are conferred by
the nature of the Gabor features themselves, or simply because of an increased area of
support for each feature point. Sub-sampling has a strong influence on computational
requirements, achieving a reduction of an order of magnitude, and is thereloreof imme-
diate practical interest. [n order to assess the influence of increased region of support
and of sub-sampling on the feature classifier, we investigated the effect of building them
into a modified pixel-based classifier.

6.6.1 Classification using Sub-Sampled Markov Models

Sampling with period s pixels was achieved by retaining only the first pixel from each
s5x5 block in the image - this immediately reduced the volume of data by a factor
s~2. Missing parts of boxes were ignored. Only integer 5 was used, but sampling with
a suitable weighting to avoid aliasing could easily overcome this restriction ({8.3). No
attempt was made to control aliasing errors. This crude sampling method mirors that
used Lo sample the output of tbe feature detector. Since the structure of the sampled
images differed from their unsampled counterparts, fresh sets of MRF paramelers were
obtained. The visual effect of sampling is illustrated by Figure 6.7: there is surprising
resilience for a sampling period of two pixels but image quality declines significantly
thereafter.
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FiGure 6.8: Comparison of original and sampled Markov neighbour-
hoods. Ilustration of MRF neighbourhood structures, centre pixel marked.
{a) unsampled ninth-order (Figure 5.1 on page 107); (&) sampled second-
order, period 2 pixels; (¢) smooth-sampled second-order, period 2 pixas.
Both sam pled neighbourhoods project into a smaller image “footprint” than
the original ninth-order model.

Classificalion of Uncorrupied Images

The effect of sub-sampling is shown in Figure 6.20. Remarkably, discardiug most of
the data by sub-sampling reduces the error rate — from around 6% for the dense
image to 0-7% when 5 = 2! Accuracy is raised for models of all order vhen the
sampling period is two or three pixels but declines for heavier sampling. A perjod of
Lwo pixelg gives minimum error. Given the perceived decrease in image quality produced
by sampling, this improvement in accuracy is startling. It seemns highly counterintuitive
that discarding nearly 90% of the data should improve classifier performance!

There are several possible explanations for this effect:

1. smaller image size leads to a less-complicated likelihood function, allowing gracdient
ascent to find a better maximum;

2. when projected back into the dense image, the span of the MRF ueighbairhood is
increased, allowing the model to reflect larger-scale correlation;

3. the sampled image achieves a closer fit to the auto-normal model, thereby increas-
ing efficiency.

Failure of the parameter estimation algorithm appears not to he the cause, ruling out
our first suggestion. This conclusion is supported hy the appearance of similar trends
for both true and pseudo-likelihood classifiers, even though the latter is unafecied by
local likelihood maxima. The second possible cause is due to increase in the image
area covered hy the neighbourhood set of the sub-sampled model when this isprojected
back onto the original. Although only some of the values within this neighbourhood
are presenl, it could be suggested that this is more than offset by the avaiability of
louger-range information. This hypothesis is not confirmed by the data. Theorojected
neighbourhood of the sub-sampled second-order model (s = 2 pixels) is contaired within
that of the full ninth-order model (Figure 6.8), yet it still achieves higher accuracy. The
third suggestion is more intriguing; we return to this below (§7.1.3).
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Just as tbe coding estimate is inefficient because it uses only a small proportion
of tbe available data, tbe sub-sampled classifier appears to be very wasteful (Besag,
1974; Cross & Jain, 1983). Another similanty with codes is that a shift in thearbitrary
sampling origin yields a different set of data. We have not sought to compare or combine
tbesc separate estimates (preferring instead Lo use the smooth-sampling method, §6.6.2).
Whereas a code retains the whole image but uses only part of the conditional probability
structure, sub-sampling discards most of the data entirely.

As has previously been the trend, classification accuracy was marginally improved
by using the pixel mean, and reduced a litile by the Group method {data net shown),
bul similar patterns of results were obtained. Increasing the order of the MRF model
beyond fiftb-order did not convey any real benefit o classification performance. We
sbali present the results for corrupted images for a fifth-order model. This level of
complexity acbieves a reasonable compromise between speed and accuracy, and the
results follow a typical pattern.

Classification of Noisy Images

Sub-sampling cannot counteract noise directly because there is no pooling of data from
neighbouring pixels. One would predict the sub-sampled classifier to be no more noise-
tolerant than the original, and possibly less so, because a reduction in effective image
size diminishes scope for cancelling out random fluctuations.

It is immediately clear {rom the results for a fifth-order MRF (Figure 6.21) that this
is not tbe case: the sub-sampled classifier is massively more tolerant to noisc than
tbe original version (shown dotted). Whereas the error rate for the full pixel classifier
exceeds 50% for noise of variance p? > 20, the sub-sampled classifier with sampling
period 5 = 3 pixels has an error rate of only 5% for noise of variance p* = 20 rising
to 11% for p? = 50. Increasing the degree of sampling decreases the noise—ermor slope
further.

These results are highly counter-intuitive. A fifth-order MRF was discussed above
as a good compromise between speed and efficiency, but the same pattern is observed
for models of different order (data not shown). It is easy to construct quite different
textures that would be difficult to distinguish on this basis but our image set was
chosen without any covert selection criteria and presumably does nol contain any of
these patbological cases.

Tbe familiar advantage of using the pixel mean and disadvantage of using the Group
method were again observed (data not shown). They did not appear to interast greatly
with tbe variance of Lhe noise. Unlike the full classifier (Figure 6.16), accuracy did not
appear to decline for models of higher order for the moderate noise levels examined,
reaching a plateau between third and fifth order.

Classification of Blurred Images

Even a small degree of blur was sufficient to desiroy the performance of the unsam-
pled pixel classifier. Although blur does still have a serious adverse impacl on the
sub-sampled classifier, this is less severe than before (Figure 6.22). The information
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conveyed by the pixel mean is very helpful for large amounts of blur (4 = 0.5 pixels)
but even without tbis, an error rate of 26% is achieved with a sampling period of 3 pix-
els compared to 84% previously. We observed a small increase in accuracy lor higher
order; this trend could also be seen for the Group classifier (data not shown).

It is clear from Figure 6.22 that the rate of error increase with blur is consistently
reduced for heavier sampling. This juteraction is similar to that observed for additive
noise. Very beavy sampling leads to an increase in baseline error (no noist or blur)
suggesting that the best classification metbod should be chosen with regad to the
anticipated level of image contamination.

Summary of Resulls using Sub-Sampled Markov Models

There is a strong computational incentive for reducing the amount of dat: used to
represent eachb image but one would expect this to be balanced by a performanc penalty.
Remarkably, however, sub-samnpling increases classification accuracy: asampling period
of two or three pixels gives fewer errors than the dense classifier with unworrupted
images. Noise and blur tolerance were increased, errors rising more slowly the larger
the sampling period. Minimum error for uncorrupted images was seen with asampling
period of two pixels, so a trade-off does operate between baseline accuracr against
robustness and computational efficiency. Unsampled fields achieve a very poorbalance,
offering low baseline accuracy, minimurn robustness and minimum efficiency. The best
compromise is a fifth-order mode! with a sampling period of two or three pix:ls.

6.6.2 Classification using Smooth-Sampled Markov Madels

The large performance increases seen in the previous section are even more surprising
when one considers the drastic aliasing efects of the primitive sub-sampling method.
Although still far from optimal, an improved technique is to average the pixeks in each
box (Meer et al., 1987); no weighting was used, aud the boxes did not overlap. We char-
acterise this smooth-sampling by the factor by which the side of the image isreduced;
hence a sampling frequency f = 0-5 reduces the area by 75%. The resultingimage is
expressed in gray-level units, rounding any fraction, and any remaining [raciions of a
box are discarded. Only integer values of § ™' were used. In the discussion, weshall take
“s” to imply sub-sampling and “f” smooth-sampling. Full anti-aliasing, which allows
the original texture to be reconstructed [rom the sampled data, is discussed in §8.3.

All the data is used in this type of samphing, suggesting that efficiency should be
higher than sub-sampling alone. Shifting the sampling origin still changes Lhesampled
image, but aligning the sampling box with the image borders is the most natun! choice.

Classification of Uncorrupted Images

Smooth sampling reduces the error rate for uncorrupted images below that ofthe sub-
sampled classifier (Figure 6.23). At f = 0-5, a fifth-order classifier achieves an extremely
low misclassification rate of 0-7%, falling further to 0% il the pixel mean is ued. This
compares witb 1-5% (0-7%) for the corresponding suh-sampled classifier (s =2 pixels),
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FiGURE 6.9: Smooth-sampled Brodatz image. Smooth-sampled versions
of the pressed cork image (#4; Figure 1.6 on page 11) formed by averaging over
a box of size: (a) 2x2 pixels, (#) 3x3 pixels, (¢) 5x5 pixels; and samplog
with frequency f (1/pixel units). Pixel size has been adjusted so that each
printed image occupies the same area. When used with the pixel classifer,
each of these sampling periods gives higher accuracy than with the unsampled

image set.

and 6-8% (6-8%) by the original method. Smooth sampling is consistently more accurate
than sub-sampling when the same volume of data is retained. A high degree ofsampling
is possible — the classifier for sampling frequency | = 0-2 achieves an error rate of 4-5%
(3-7%) with a set of data rednced to 4% of ts original size. Minimum error is achieved
with a sampling period of two pixels (only integer values were tested). When the
sampling period was increased to five pixels (f = 0-2), accuracy is comparable to that
for the dense image.

A graph of accuracy against MRF order is again L-shaped, reaching a platean be-
tween third and fifth order (Figure 6.23). The single error at = 0-5 at filth or seventh
order occurs when a quarter of #2 (fieldstone) is classified as #73 (soap bubbles). For
the same parameters, the Group classifier makes five errors. Given the fine variation
present in the original textures, it seems remarkable that good accuracy can beachieved
after spatial averaging. Smoothly-sampled versions of #4 (pressed cork) are shown in
Figure 6.9: averaging has reduced the dynamic range noticeably (compare zlso Fig-
ure 6.7 on page 157). Both sets conld be made more faithful to the original by better
anti-ahasing hut this might jeopardise accuracy improvements.

Sampling also improves the accuracy of the pseudo-likelihood classifier although it
is still less reliable than true likelihood. A fifth-order pseudo-likelihood model sampled
every two pixels has an error rate of 5-3% after sub-sampling, and 6-8% after smooth-
sampling, compared to 17-4% for the dense image. Unlike the true-likelihood classifier,
averaging appears to decrease accnracy.

Classification of Noisy Images

We would expect the smooth-sampled classifier to have good noise-tolerance because
it pools data from a region, thereby redncing the effective noise vaniance by a lactor
f2. For very small §, this effect fails because the remaining data will be insufficient to
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characterise the texture. Because the sampled image is not re-normalised to use the full
pixel range, the amount of information diminishes faster than the size of the yrocessed
image.

Classification accuracy for various levels of noise variance p? and degrees of sampling
are shown in Figure 6.24; f = 1 (dotted) corresponds to the un-processed image. There is
a dramatic difference in noise tolerance: the rate of increase of error with noisevariance
is approximately 200 times smaller with the smooth-sampled classifier compared to
the original unsampled method. An error of only 8% is achieved for noise of variance
p* = 200 and smooth-sampling frequency f = 0-2. Model order has a very weakmnfluernce
on classifier accuracy between third and ninth order, hut this was difficult o judge
accurately because error rates were so Jow.

This pattern of results is very similar to tbe subh-sampled classifier: a substantial
improvernent in noise-tolerance compared to the original method, with a reduced slope
but higber intercept for larger sampling pcriod. The smooth-sampled classifier is more
accurate: for noise p? = 50 and sampling period 2 pixels, it achieves an ernr of 3%
compared with 20-4% for a corresponding degree of sub-sampling. Similar tends are
again observed for the Group classifier, and when the field mean is used (data no

shown).

Classification of Blurred Images

As predicted from the large area of support for the smoothly-sampled image, the effect. of
blur is reduced as the sampling period is increased. In all cases shown, the newclassifier
out-performs the conventional unsampled classifier (Figure 6.25): for modente hlur,
b= 0-5 pixels, the old method achieved an error of 84-0% (83-3% with mean) ompared
to 5:3% (4-5%) for smooth-sampling at f = 0-2.

Contrary to the trend for additive noise, models of larger order are moreaccurate
for unisampled hlurred images (§6.5.3), and this is also true after sampling. Accuracy
is inproved when the field mean is used, but is lower for the Group classifieralthough
similar trends were observed (data not shown).

Summary of Results using Smooth-Sampled Markov Models

Smooth-sampling with a flat window funclion provides a degree of anti-alising hut
is far from ideal in this respect. Nonlheless, performance advantages of the primitive
sub-sampled classifier (§6.6.1) were extended further. Using the window fundion and
a sampling period of two pixels, extremely high accuracy is achieved: zero emor when
the ficld mean is used. This compares with 6% for the dense classifier. Tolrance to
noise and blur were both extended, surpassing the levels achieved hy Gaho-Markov
classifiers. A trade-off was noted: a sampling period of two pixels gives highesf haseline
accuracy but heavier sampling offers greater robustness and computational ¢ficiency.
The dense classifier scores poorly with this price-performance equation, giving minirnum
reward for maximum cost. A fifth-order model with a sampling period of two or three
pixels is a good general choice, but a larger sampling period should he comsidered if
processing time is critical and an adequate volume of data is avatlahle.
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6.7 Comparison of Texture Models

Building on Cbapters 4 and 5, we proposed a novel method of texture analysis, modelling
the =patial distribution of Gabor features witb Markov randor fields. Several members
of the new class of Gabor-Markov models were proposed. We also proposed a Sampled-
Markov {ramework, which employs representations derived from sampled inages. For
reasous of compu tational tractability, we adopted the auto-normal MRF for conventional,
Sampled-Markov and Gabor-Markov models. Usiug Bayesian texture classification as
a benchmark, we compared the performance of our new Gabor-Markov method with
that of the conventional MRF treatment. Our miotivation in proposing the Gabor -
Markov model was to seek enhanced robustness through grealer abstraction, and higher
computational efficiency. Both objectives were achieved: similar accuracy was attained
by GGabor-Markov and conveutional claszifiers for uncorrupted images, with a minimum
error rate of 6%, but our new model derives cfliciency benefits from a reduction of
effeclive image area of up to 94% (Figure 6.26). Tolerauce to noise was increased by a
factor of up to 45, and the orientation classifier was virtually unaflected by blur. Since
blur and noisc are unavoidable properties of real images, these robustness inprovements
are of practical inportauce. There was little distinction in accuracy betwern the Profile
and Resultanl [eature-extraction methods (§4.6), and similar trends were seen for All-
Quarters and Group classifiers, and for true and pseudo hkelihoods.

Qur experiments with the conventional MRF algorithm led to proposals for Sampled-
Markov models. Pixel selection occurs immedialely for the Sub-Sampled classifier;
alter first smoothing with a simple window function for the Smoolh-Sampled version.
Primitive sub-sampling was not expected to be a good way of reducing image area: il
discards important high spatial-frequencies and is prone to aliasing error. In the present
context, these objections could be overcome by justead taking a smaller contiguous
patch of the texlure since the image is assumed to be homogencous. We [ound, however,
thal sampling has a far more beneficial effect than we had inilially supposed.

Image sampling improves classifier accuracy, reliability and efficiency. The greatest
benefits are seen with the Smooth-Sampled classifier: this achieves the highest accuracy
of any classifier for uncorrupted images, with a misclassificalion rate of less than 1%.
Tolerance to noise is increased relative to the unsampled images by a factor of up
to 200, and is also superior to the feature classifier (Figure 6.26); blur tolerance is con-
siderably higher than for dense images, and again exceeds that of the feature classifier
(Figure 6.27). These performance improvements are obtained in conjunction with the
computational benefits of samphing, giving the smooth-sampled classifier optimal per-
formance in all respects. Preferred parameters are: fifth-order, true likelihood, with a
sampling period of between two and three pixels. A sampled classifier is inappropriate
when the image area is already small because too few pixels would remain after sam-
pling to characterise the texture rehably. The feature classifier is similarly affected, and
the dense pixel classifier should be used in these circumstances.

These results are of immediate practical interest because they suggest that both
Gabor-Markov and Sampled-Markov methods offer improved performance at lower
computational cost than a conventional Markovian analysis. Qur experiments were per-
formed on natural textures drawn {rom the popular Brodatz album. Performance trends
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are derived from over 110000 classification results, and appear sufficiently clear-cut to
suggest their wider validity. The success of Sampled-Markov classifiers is rmarkable
because tbey initially appear to make very inelficicnt use of the available inforration. In
Chapter 7, we assess faclors influeucing classificalion accuracy, discuss possitle causes
[or the observed trends, and propose modifications leading to further improvements in
accuracy and robustness.

6.7.1 Summary of Achievements
In this Chapter, we have:

e proposcd several members of a new class of hybrid Gabor-Markov models;

e used texture classification accuracy as a benchmark to demonstrate sujerior per-
formance of our novel approach compared with convenlional Markoian tech-
niques, including — reduction of effective image area by a [actor 16 without loss
ol accuracy, improvement of noise tolerance by up Lo 45 times, considerable im-
provement ol blur tolerance;

proposed a new [amily of Sampled-Markov models, and shown that they out-
perlorm convenlional dense models by an even grealer margin, including — op-
timal crror rate of less than 1%, reduction of image area by a factor 25, noise
tolerance increased by up to 200, vast increase in blur tolerance.
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FIGURE 6.10: Accuracy of unsampled pixel classifier. Error rate against MRF order
for the unsampled uncorrupted trne-likelihood pixel classifier. 132 Brodatz image quarters
were classified as described in §6.4.3, using All-Quarlers and Group methods.
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Ficure 6.11: Accuracy of unsampled pseudo-likelihood pixel classifier. Error rate
against MRF order for the unsampled uncorrupted pseudo-likelihood pixel classifier. 132 Bro-
datz image quarters were classified as described in §6.4.3, using All-Quarlers and Group
methods. True-likelihood classification is more accurate (Figure 6.10). The low error-rate
for the first-order model is unexplained.
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FIGURE 6.12: Accuracy of Gabor-Markov orthogonsal-normal orientation classi-
fler. Error rate against sampling period 8 {pixel units) for the fifth-order Al-Quarters
uncorrupted orthogonal-normal orientation classifier. 132 Brodatz image quarters were clas-
sified as described in §6.4.3. Error rates are higher than for the pixel or composie-feature
classifiers (Figures 6.10 and 6.13).
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FIGURE 6.13: Accuracy of Gabor-Markov Resultant composite-feature dassifier.
Error rate against sampling period s (pixel units) for the fifth-order uncorrupted esultant
composite-feature classifier. 132 Brodatz image quarters were classified as describedin §6.4.3,
using All-Quarters (AQ) and Group methods. When the ficld mean is used, accuracy is
similar to the unsampled pixel classifier (Figure 6.10).
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FIGURE 6.14: Accuracy of Gabor-Markov Resultant composite-feature classifier.
Error rate against MRF order for the All-Quarlers uncorrupled Resultant composite-feature
classifier. 132 Brodatz image quarters were classified as described in §6.4.3, using field mean.
Sampling period s s measured in pixel units.
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FIGURE 6.15: Accuracy of Gabor-Markov Profile composite-feature classifier.
Error rate against sampling period s (pixel units) for the fifth-order uncorrupted Profile
composite-feature classifier. 132 Brodatz image quarters were classified as describedin §6.4.3,
using All-Quarters and Group methods. When the ficld mean is used, accuracy is similar to
the unsampled pixel classifier (Figure 6.10).
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FIGURE 6.16: Accuracy of unsampled pixel classifier with noise. Error rzle against
MRF order for the unsampled All-Quarters true-likelihood pixel classifier with addilive noise.
132 Brodatz image quarters were classified as described in §6.4.3, ignoring field mean. No
noise is shown dotted; increased noise variance p? (gray-level units squared) corrsponds to
increasing error. Similar trends were found using the field mean or Group classifier.
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FIGURE 6.17: Accuraey of Gabor—Markov Resultant composite-feature classifier
with noise. Error rate against noise variance {gray-level units squared) for the fifth-order
Resultant composite-leature classifier. 132 Brodatz image quarters were classifed as de-
scribed in §6.4.3, using field mean, by All-Quarters and Group methods. Accurac is higher
for larger sampling period 3 (pixel units} hut reduced when the field mean is ignered. With
a sampling period of four pixels, the feature classifier is approximately 45 times les sensitive
to noise than the unsampled pixel classifier (Figure 6.16).
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FiGURE 6.18: Accuracy of unsampled pixel classifier with blur. Error rate against
MRF order for the unsampled All-Quarters true-likelihood pixel classifier with blur. 132
Brodatz image quarters were classified as described in §6.4.3, ignoring field mean. No blur
is shown dotted; increasing blur parameter b {pixel units) corresponds to rapidly-increasing
error. Similar trends were found using the field mean or Group classifier.
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FIGURE 6.19: Accuracy of Gabor-Markov feature classifiers with blur. Error rate
against blur parameter (pixel units) for fifth-order classifiers. 132 Brodatz image quarters
were classified as described in §6.4.3, using field mean. Solid: Resultant composite-feature
classifier. Dotted: orthogonal-normal orientation classifier. Accuracy is reduced when the
field mean is ignored. Blur is less destructive for a large sampling period s (pixel units). Both
feature classifiers are less sensitive to blur than the unsampled pixel classifier (Figure 6.18).
The orientation classifier is pacticularly resilient to blur but does less well wilh noisy or
uncorrupted images.
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FIGURE 6.20: Accuracy of Sub-Sampled Markov classifier. Error ratc aginst MRF
order for the sampled All-Quarters true-likelihood pixel classifier. 132 Brodatz image quar-
ters were classified as described in §6.4.3, ignoring field mean, [or several samplingperiods s

{pixel units). No sampling (9 = 1) is showu dotted; moderate sampling increases accuracy.
Similar trends were lound using the field mean or Group classifier.
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I1IGeRE 6.21; Accuracy of Sub-Sampled Markov classifier with noise. Error rate
against noise variance (gray-level units squared) for the sampled fifth-order All-Quarters
true-likelihood pixel classifier. 132 Brodatz image quarters were classified as desvribed in
§6.4.3, ignoring field mean, for several sampling periods s (pixel units). No samping (5 =
1) is shown dotted; moderate sampling greatly increases accuracy, slope decreasisg as the
or different MRF order.

sainpling period is increased. Similar trends were fouud using the field mean, Groupclassifier
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FIGURE 6.22: Accuracy of Sub-Sampled Markov classifier with blur. Error rate
against blur parameter (pixel units) for the sampled fifth-order Ali-Quarters true-likelihood
pixel classifier. 132 Brodatz image quarters were classified as described in §6.4.], ignoring
field mean, for several sampling periods s (pixel units). No sampling (s = 1) is shown dotted;
moderate sampling greatly increases blur tolerance, slope decreasing as the sampling period

is increased. Similar trends were found using the field mean, Group classifier or different
MRF order.
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Ficure 6.23: Accuracy of Smooth-Sampled Markov classifier. Error rale against
MRF order for the sincoth-sampled All-Quarters true likelihood pixel classifier. 132 Brodatz
image quarters were classified as described in §6.4.3, ignoring field mean, for several sampling
frequencies f (1/pixel units). No sampling (f = 1) is shown dotted; moderate sampling
increases accuracy. Similar trends were found using the field mean or Group classifier.
Smooth-sampling is more accurate than sub-sampling of the same degree (Figure 6.20).
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FIGURE 6.24: Accuracy of Smooth-Sampled Markov classifier with noise. Error
rate against noise variance (gray-level units squared) for the smooth-sampled ffth-order
All-Quarters true-likelihood pixel classifier. 132 Brodalz image quarters were clasified as
described in §6.4.3, ignoring field mean, for several sampling [requencies § (1/pixel units).
No sampling (f = 1) is shown dotted; moderate sampling greally increases accurcy, slope
decreasing for lower sampling {requency. With a sampling period of five pixels (f = 12), slope
is reduced relative to the unsampled pixel classifier by a factor 200 (Figure 6.16). Similar
irends were found using the field mean, Group classifier or different MRF order.
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FIGURE 6.25: Accuracy of Smooth-Sampled Markov classifier with blur. Error
rate against blur parameter (pixel units) for the smooth-sampled fifth-order All-Quarters
truc-likelihood pixel classifier. 132 Brodatz image quarters were classified as destribed in
§6.4.3, ignoring field mean, for several sampling frequencies f (1/pixel units). Nosampling
(f = 1) is shown dotted; moderate sampling greatly increases accuracy, slope decraasing as
the sampling period is increased. Similar trends were found using the field mean, Group
classifier or different MRF order.
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Ficure 6.26: Comparative accuracy of Gabor—-Markov, Sampled-Markov and
conventional classifiers with noise. Error rate against noise variance {gray-level units
squared) for fifth-order classifiers. Dotted: conventional classifier without field mean. Solid:
Resultant composite-feature classifier with field mean, sampling period 4 pixels. Dashed:
Smooth-Sampled classifier without field mean, sampling period 3 pixels. 132 Brodalz image
quarters were classified as described in §6.4.3, using All-Quarters and Group methods. The
Gabor-Markov classifier achieves similar basic accuracy to the conventional classifier and is
much more noise-tolerant, but tbe Smooth-Sampled Markov classifier achieves both higher
accuracy aud greater uoise-tolerance than Gabor-Markov.
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FIGURE 6.27: Com parative accuracy of Gabor—-Markov, Sampled-Markov and con-
ventional classifiers witb blur. Error rate against blur parameter (pixel units) for fifth-
order All-Quarters classifiers. Dotted: conventional classifier without field mean. Solid:
Resultant composite-fealure and orthogonal-normal orientation classifiers with field means,
sampling period 4 pixels. Dashed: Smooth-Sampled Markov classifier without field mean,
sampling period 5 pixels. 132 Brodatz image quarters were classified as described in §6.4.3.
The composite-leature classifier achieves similar basic accuracy to the conventional tlassifier
but js more blur-tolerant; grealer blur-tolerance is displayed by the orientation classifier but
this has a higher initial error rate. The Smooth-Sampled Markov classifier offers both higher
accuracy and greater noise-tolerance than either Gabor-Markov method.



Consequences of Adopting
Auto-Normal Models

The merits of our proposed Gabor-Markov and Sampled-Markov models were compared
with those of a conventional Markovian analysis in Chapler 6 by adopting texiure clas-
sification accuracy as a benchmark. Given the enhanced descriptive power available
to hierarchical models (Chapter 3), and the attractive theoretical properties of Gabor
filters (Chapter 4), we anlicipated that our hybrid Gabor-Markov models would offer
superior performance and compulational efficiency. Evidence for both trends was pre-
senled in Chapler 6: Gabor-Markov models are up to 45 times more robust than the
conventional approach, and may he sampled heavily without loss of accuracy.

Qur appraisal ol the Gabor-Markov framework led to the discovery ol Sampled-
Markov models possessing cven more favourable atiributes. These new represcutations
are obtained simply by sampling the test image, and offer greater robustness and cffi-
ciency than Gabor—Markov models, achieving 100% classificalion accuracy in some cir-
cumstances. Our results have important practical consequences because there appears
Lo be little reason to retain conventional unsampled pixel models except in special cases.

In this Chapter, we investigate possible causes for the success of Sampled-Markov
and Gabor-Markov models, commenting on the inflnence ol the imposed auto-normal
structure. The level of correspondence between model and data correlates closely with
classifier performance: unsanmpled pixel models show moderate agreement, which de-
teriorates rapidly when tbe image is corrupted; but Sampled-Markov models describe
the experimental data closcly. Sampled Gabor-Markov models are intermediate be-
tween these two extremes, but we suggest improvements which bring them into closer
harmony with the experimental data. These observations establish the imporlance of



pre-processing image data prior to statistical analysis. Examination of tte interac-
tiou between image corruption and the auto-normal model allows us to predict trends
in misclassification ecrror, aud we demonstrate that this behaviour is consislent with
our classification results. By investigating the effect of sampling on the imge power
spectrum, we suggest origins for the superior performance of Sampled-Markev models,
concluding tbat it stems from close agreement betweeu model and data.

7.1 Relation between Classifier Accuracy and
Fidelity of our Statistical Model

Markov random field models used by all the classifiers studied in Chaptcr 6, repre-
seuting botb pixel and Gabor-Markov data, were assumed to be auto-uorma (§5.1.5).
Several approximations are known to be implicit in this choice, for cxample pixel data
are discrete and bounded while the normal distribution is continuous and urbouuded,
but it s almost compulsory to adopt the auto-normal form for computalonal rea-
sons (§6.1). Attempting to explaiu the remarkably good performance of our sampled
classificrs (§6.6), we suggested ou page 158 that image sampling might lead toa closer fit
with the auto-normal model, thereby raising classifier efficiency. In this section, we test
this hypothesis by investigating tbe level of agreement between our imposed statistical
model and the empirical distributions of measured data, and assess the extentto which
this correlates with elassifier accuracy aud robustness. Haviug identified pirameters
which influence the degree of correspondence, we propose positive measures to iucrease
classification accuracy in §§7.2-7.4.

7.1.1 Modelling Error for Unsampled Pixel Images

Pixel images are commonly assumed to be multivariate normal, and have beenmodelled
successfully by auto-normal MRFs (§6.1). Ouly if the fit to the normal distrbution is
very poor will a more cumbersome model be of greater practical use. Inorder to
assess the acceptability of the fit, we examined tbe local conditional error distribution,
f(u) = f(z — %), where, for each image site, z represents the gray-level pirel value,
# the value predicted from the MRF neighbourhood structure, and u (gray-level units)
is the MRF predictor-error (3-27 on page 108). For a true auto-normal disrribution,
we expect the predictor-error to be normally-distributed, w ~ G(0,0?), and we shall
compare the observed distributions with this form. Visual comparison is suficient to
obtain a qualitative measure of the fit aud is helpful in suggesting how it might be
improved. A mnore [ormal goodness-of-fit analysis is only able to confirm ordeny the
ideutity bypothesis (e.g. Besag, 1974). Note that the MRF predictor-error #has zero

mean {§5.1.2), and that by “larger predictor-error” we mean a larger variance, o7,.

We investigated the MRF predictor-error distribution for models estimated from our
Brodatz set (Figure 1.6 on page 11) and some additional images used in Chapter 4,
taking several values for MRF order and using botb true and pseudo likelihoed. Typi-
cally, the general form ol the observed MRF predictor-error distribution is cowect, but
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agreement with the normal curve is far from exact, irrespective of whether the Bro-
datz texture appears bomogeneous. Error distributions f(u) for two representative
images are shown in Figure 7.1; histogram hin size was adjusted to avoid excessive
noise but there are sufficient pixels in these images for it to appear contiouous. The
MRF model variance chosen by the pseudo-likehhood estimation method is necessarily
the same as the empirical predictor-error variance s2, (§6.2.1), and can mean that the
pseudo-likelihood histogram appears to follow the expected form more elosely than for
true-likelihood estimation. In the latter case, the likelihood is weighted according to the
joint probability distribution (6-4 on page 139), and bence Lhe model and experimental
predictor-error variances may differ. It has been snggested that typical spatial variation
of gray-level images is described more aptly by the Laplacian rather tban lhe normal
distribution, but we did not pursue this possibility (Trussell & Kruger, 1978).

By comparison with Lhe poor agreement obtained for real images, the fit to a
synthetic image, produced by tbe Yourier transform method (§5.3.5), is excellent
(Figure 7.2a). When tbe synthetic image is expressed in gray-level units rather than in
foating point, agreement is a little less exact, with a trend Lo larger absoluleerror and
uoticeable “tails” (data not shown), bot is still far superior to that of real images (Fig-
ure 7.1). Despite this, the auto-normal model usually describes real images sufficiently
well to distinguisb mis-matches (Figure 7.2)).

Possible Causes of Modelling Error
Imperfect agreemnent of the type noted above for real textures occurs with lhe exact
image used for parameter estimation, and hence represents modelling error rather than

a lack of robustuess. Several factors may contribute to the poor fit, iucluding:

poor choice of MRF distribution function (data not auto-normal);

failure of the parameler-estimation method;

wrong order for MRF;

error introduced by toroidal boundary approximation;

quantisation error;

clipping to pixel units;
e “noise”;
e image not homogeneous;

¢ image or camera blur.

All of these probably have some effect. The imperfect fit for unsampled pixel data
(Figure 7.1) could certainly be blamed on the wrong choice of MRF model, but this is
really only a re-descriptiou of the result. More ipteresting questions are why dassifier
performance is improved by sampling, and how modelling ¢rror may be reduced or
overcome. Modelling error represents a [ailure of the image representation because
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FIGURE 7.l: Agreement with auto-normal model of unsampled Brodatz images.
[fistograms of observed (solid) and expected (dotted) distributions for ninth-oder MRF
predictor-error u (gray-level units), to different vertical scales, using the analysis described in
§6.2. (a) pressed-cork imagc (#4; Figure 1.6 on page 11), true-likelihood paramcters; (b) #4,
pscudo-likelihood parameters. (¢) raffia image (#84; Figure 1.6), true-likelihood pammeters;
(d) #84, pseudo-likelihood parameters. These resulls are typical: in no casc is agreement
close despite apparent homogeneity of the original textures.
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FIGURE 7.2: Agreement with auto-normal model of synthetic and mis-matched
textures. Histograms of observed (solid) and expecled (dotted) distributions for ninth-order
truc-likelihood MRF predictor-error u (gray-level uuits), to different vertical scales, vsing the
analysis described in §6.2. (a) synthetic pressed-cork image (#4; Figure 6.2 on page 142)
evaluated with correct parameter set; (b) genuine expanded mica image (#5; Figure 1.6 on
page 11) evaluated with parameter set for #4.
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an image should be definitive once it has been recorded, irrespective of the physical
processes giving rise to the observed texture.

In order to assess the relative inBuence of each poticutial source of error inisolation,
we took a synihetic image, which initially displays perfect agreement (Figure 7.2), mod-
ified it appropriately, re-estimated new MRF parameters, and examined the resulting fit.
This procedure ensures that only modeclling error is introduced because the descriptive
accuracy of each MRF parameter set is evaluated with the exact image [rom which it
was derived. The ninth-order true-likelihood syathetic image used for this purpose is
shown in Figure 6.2 on page 142; ils Brodatz parcnt #4 “pressed cork” in Figure 1.6 on
page 11. True-likelibood mamipulation was used throughout.

Fatlure of the Parameter-Estimation Method

True-likelihood parameter estimation is uot straightforward because the likekhood func-
tion is multi-dimensional and may have many local maxima. No analytical eslimale is
possible for the optimal parameter setl, and there is a clear danger that the gradient-
ascent algorithm wc employ (page 139) will become trapped in a local maximum. Hav-
ing a large image may exacerbale this problem because there is potential for the likeli-
hood function to be eveu more uneven, and improved performance obscrved [rom Lhe
Sampled-Markov classifiers is consistent with Lhis possibility (§6.6).

We argued in §6.2.1 (page 139) that failure of the parametcr-estimation algorithm
does not introduce siguificanl error in practice, having found that repeated gradient
ascent {rom differeut initial points was unable Lo improve the parameter estimate. This
coutenlion is further streugthened because advantages of sampling are also observed
for pseudo-likelihood parameters, which are not obtained by gradient ascent. [n order
to coufirm this conclusion, we compared the empirical fit to an cnlire Brodalz image
with that obtained from a single quarter. Il image size does iuteract willi parameter
estimation in the way we hypothesised above, agreement with the quarter-image should
be superior to the whole, but no significant improvemeut was found (data uol shown),
cousistent with our belief that this is indeed a negligible source of error.

Incorrect MRF Neighbourhood Size

Whben the neighbourbood size of the Markov random field model is iucreased, the new
parameter space contains the old, and hence it is always possible to oblain agreement
at least as good as before. When the Markovianity of the dala is only approximate,
iucreasing the MRF neighbourhood size always leads to a better description of the data.
Closer agreement is demonstrated by the MRF predictor being more accurate, leading to
a lower variance, and by the predictor-error distribution being approximately normal.
As expected, the average MRF variance of true-hkelihood parameter setls estimated from
all our 132 Brodatz image segments is a decreasing function of MRF order (Figure 7.3).
For unsampled images, the variance decreases by a factor 5-7 between third and ninth
order.

Tbe importance of having the correct order for the model is demonstrated in a more
controlled way by modelliug a ninth-order syuthetic image with a reduced parameter
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FIGURE 7.3: Influence of sampling period and MRF order on variance
of pixel models. Average MRF variance (gray-level units squared) lrom true-
likelihood parameter sets eslimaled [rom our 132 Brodatz image quarters,
against MRF order. Sampling was done with a period of 2 pixels. In eah
case, mode] variance is a decreasing lunction ol MRF order.

set (Figure 7.44,8). Note that because of Lhe inter-dependence of MRF coefficents, the
new parameter vectors are uot simply truncated versions of the old. The degree of
error caused by simplifying the MRF neighbourhood struclure clearly depends on the
nature of the original Markov random field, but significant error occurs in ‘his case,
which is typical, caused by the iuability of the reduced model to {ollow the shape of the
image power spectrum closely. Agreement with the seventh-order model (Figire 7.44)
is closer than for fifth order (a), and when MRF neighbourhood size is inceased to
Lhe correct value, correspondence is almost exact (Figure 7.2). This transition is more
gradual for real images (data not shown), but our observations suggest that avincrease
in MRF neighbourhood size is always beneficial. In practice, however, increaing MRF
order beyond third-order had very little impact on classifier performancc, ard larger
order led to less accurate classification in some cases (§6.5). Most sampled models of
low MRF order achieve good classification and modelling accuracy (86.6; §7.1.3), and
although error rates are high for very small neighbourhood size, it does not appear that
the order of the MRF is generally of paramount importance.

Toroidal Boundary Condilions

It appears unlikely that the toroidal boundary approximalion is a significant source of
error because the image dimensions are much larger thau the extcnt of the MEF neigh-
bourhood. This was confirmed by comparing the it under toroidal and free boundary
conditions for real and synthetic textures. As expected, there was little diffetence be-
tween Lhem (data not shown).
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FIGURE 7.4: Agreement with auto-normal model of perturbed synthetic textures.
Histograms of observed (solid) and expected (dotted) distributions for MRF predictor-error u
(gray-level units), using the analysis described in §6.2, and a 256X 256 synthetic pressed-cork
image (#4). (&) ninth-order image (Figure 6.2 on page 142) and filth-order parameter sel;
(4) ninth-order image and seventh-arder parameter set; {¢) ninth-order inage quantised to
5 bits (32 gray levels) and ninth-order parameter set; (d) ninth-order image clipped to gray-
level range [32,223] and ninth-order parameter set; (e) fifth-order image (Figure l.4a on
page 7) with added noise of variance 20 gray-level units squared, and fifth-order parameter
set; (f) fifth-order image blurred with parameter 0-5 pixels, and fifth-order parameter set.
Errors are introduced when the model has insufficient parameters, by clipping, and by blur,
but moderate levels of quantisation or Gaussian noise have litile eflect.
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Quantisation Error

Pixel images are normally represented using 8 bits, giving 256 (unsigned) gray levels.
This is a potential source of error because image data is assumed to be conlinuous by the
auto-normal model. In order to test whether quantisation error has a significantimpact,
we re-estimated parameters for Lhe ninth-order true-likelihood synthetic pressed-cork
image (#4; Figure 6.2) quantised to only 5 bits (32 gray levels). Agreement between the
observed MRF predictor-error distribution and the normal curve is very good, suggesting
1hat quantisation error is, at most, a very minor effect (Figure 7.4c). Note thal this fit
was for MRF parameters re-estimated from tle quantised image rather than theoriginal
set: correspondence with tle latter was much poorer (data not shown).

Clipping Error!

The range of the normal distribution is unbounded, whereas pixel images are bounded
above and below. Imaging parameters were adjusted Lo make good apparenl use of the
available dynamic range when our textnres were photographed, but this was nol checked
quanlitatively. It is possible that clipping at one extreme could cause skew within the
distribution, and clipping certainly distorls the Markov property by disrupting the
correlation structure.

In order to test these effects, the synthetic pressed-cork image was clipped artifi-
cially, its MRF parameters re-estimated, and the new MRF predictor-error distribution
compared to the normal curve {Figure 7.44). Modelling error is modest, but is larger
if the order of the model is decreased, and it does not appear to matter whether or
not clipping is symmetrical (data not shown). Agreement may be improved  little hy
describing the range-restricted synthetic image by a model of higher MRF order than
the original. The extenl to which an image is clipped is determined by the camera and
posl-processing parameters, which may be controllable. Our results show that clipping
does interfere with texture modelling, perhaps to a greater extent than quantisation
effects, suggesting that the image acqnisilion environment should be adjusted carefully.

Additive Noise Error

The noise paramcters of our imaging system are unknown but it is likely that noise
depends on the image dala whereas our simple model assumes it to be white, Gaussian,
additive and independent of the image (§6.4). It could be argued that oncethe image
has been taken, any noise should be regarded as an intrinsic part of Lhe texture rather
than due to some external influence.

In practice, small amounts of additive white noise, applied according to ihe classi-
fication procedure given in §6.4.3, appear not to cause the model any difficulty (Fig-
ure 7.4e). Qur original texture in tbis case was a fiftb-order synthetic pressed-cork
image (Figure 1.42 on page 7), with model and pixel variances of 80 and 2750 gray-
level units squared, respectively. The it shown is after addition of noise of variance 20

! Clipping occurs when & signal exceeds the dynamic range ol the mcasuring device and is recorded
at the nearest available value.
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— this is sufficient Lo cause a nine-fold increase in errors with Lhe dense pixel classifier
when using genuiue Brodalz textures (§6.5.2).

Inhomogeneous Texture Samples

Large inhomogeneities in the texture will certainly prevent it being described accuralely
by a homogeneous model. However, no significanl difference was ohserved between
agreemenl obtained with apparently-homogeneous and apparently inbomogeneous Bro-
datz images (data not shown). Although none of our images is perfectly homogeneous,
the lack of any obvious relationship does suggest that the primary cause lies elsewhere.

Jt has been suggested that non-stationary or “coloured” Gaussiau MRFs may provide
a closer description of real images than the [orm we have used (§6.1), allowing the
field mean to vary with image location (llunt & Cannor, 1976; Silverman & Cooper,
1988), When image mean varies smoothly with position, it may be estimated by a
local weighted average, and hence a zero-mean field recovered by convolving the image
witb a blur kernel and subtracting it from the original (Hnnt & Cannon, 1976). We use
this procedure to eliminate the local field nican during Gabor filtering (§A.24). When
our Brodalz image set was processed in this [ashion aud the classification exercise
repeated wilh a conventional ninth-order true-likelihood classifier, the error rale was
hardly affected (6-8% against 6-1% previously), confivming that our lextures are largely
homogeneous with respect to field mean.

Image Blur

Severa! types of blur are possible, including opfical hlur and camera leakage. but blur
may also be a valid property of the texture (water ripples, for example). The actual
natnre of the “blur” transformation is complex, but we adopt uniforms Gaussian blur as
a simple model (§6.4). As with noise, once a photograph has been taken, the blur may
be considered to be an intrinsic parl of the resulling image.

We assessed Lhe importance of image blur by comparing the MRF predictor-error dis-
tributions obtained from blurred synthetic images with the normal curve (Figure 7.4f),
and found that the new MRF models were unable to describe the structure of the blurred
images adequately, [ailing in a very similar way to the mis-fit seen for Brodatz orig-
inals (Figure 7.1). It appears that a blurred image is no longer well-described by an
auto-normal MRF. Visually, the blurred texture is still quite recognisable (Figure 6.5
on page 154), and so errors appear to be caused by a failure of the model, for whbich
possible causes are discussed in §7.2.1.

Summary of the Causes of Modelling Error

Of tbe effects listed ahove, blur introduces the largest modelling errors, followed by
clipping; both are difficnlt 1o eliminate entirely from real images. The degree of blur
required to introduce significant modelling error (and also a significant increase in clas-
sification error) was small, space-constant & = (-5 pixels. Unless great care is taken, or
computationally-expensive restoration employed, blur is likely to represent a significant
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FiGURE 7.5: Agreement with aulo-normal model of corrupted syn-
thetic images. Hislograms of observed (solid) and expecled (dotted) dis
tributions for filth-order MRF predictor-error u (gray-level units), to different
vertical scales, using the analysis described in §6.2. Agreement wilth the un-
corrupted fifth-order 256x256 syniheiic pressed-cork image (#4; Figure 1.4a;
is excellenl; we corrupted this image belore malching il against the origh
nal paramecter set. {a) alter addition of noise, variance 20 gray-level uniis
squared; ( &) after blur, parameter 0-5 pixels.

source of error for real images, and we suggest in §7.2.3 how its destructive influence
can be diminished. Distortion was also observed when the model had insuffident pa-
rameters, but our experience with the classifier suggests thal increasing the order of the
model beyond a reasonable minimum level often fails to improve accuracy (§65.1).

7.1.2 Robustness of Unsampled Pixel Models

Two sonrces of error are present in the classifier resnlts: failure to model the original
data closely, and distortion caused by image corruption (§6.5). Only the former was
investigated above because fresh parameter sets were re-estimated for each perturbed
image. In this section, we examine the impact of image corruption on the level of
agreement obtaiued with the original model.

In order to isolate the eflects of modelling and perturbation error, we again used
a syntbetic texture which initially agreed with the model precisely, choosing a ffth-
order copy of the pressed-cork image (#4; Figure 1.4a). Addition of noise of variance
20 gray-level units squared introduced significant_disagreement between the normal
and observed distributions (Figure 7.5a): MRF predictor-errors were higher than anlic-
ipated. This is consistent with our intuition that poise rednces the accuracy of the MRF
predictor. Noise of this magnitude jocreased the error rate of the fifth-order classifier
from 6-8% to 52-2% when using genuine Brodatz textures (§6.5.2).

Blnr has an even more powerful effect (Figure 7.5b): MRF predictor-errors are tightly
buoched around zero, confirming that blur reduces sudden image variation. The distri-
bution shown was for a moderate amount of blur, parameter b = 0-5 pixel, sufficient to
increase tbe error rate ol the fifth-order classifier from 6-8% to 84% (§6.5.3). Such low
accuracy is not hard to understand given the high level of disagreement seen here.

All images show a similar pattern bul the rate of degradation varies, and the noise-
tolerance of the pressed-cork image is a little higher than average. It is important to
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distingnish these resuits from those of the previous section: modelling error relates
primarily to the level of classification error for uncorrupted images; whereas the rate at
which the model degrades when the image is corrupted determines classifier robustness.
Whilst a model which is initially in good agreement with the data may also lead to a
more robnst classifier, the two effects need not vary in a similar way.

7.1.3 Descriptive Accuracy of Sampled-Markov Models

We have shown above that dense pixel models do not fully capture image structure
(§7.1.1), and are sensitive to small image perturbations (§7.1.2). These deficiencies are
rellected in classifier performance as a bigh error baseline and poor robustness (§6.5).
The puzzle is how these problems are overcome by sampling, which leads to both higher
accuracy and greater robustness {§6.6).

Modelling Error

As with uusampled models (§7.1.1), we shall investigate modelling error by evaluat-
ing MRF parameter sets in conjunction with the exact image [rom which they were
estimated. Histograms of ninth-order true-likelihood MRF predictor-error distribulions
f(u) for sub-sampled Brodatz images are shown in Figure 7.6 [or the same texlures ex-
amined previously with unsamnpled models (compare with Figure 7.1), #4 pressed-cork
and #84 raffia (Figure 1.6 on page 11). For bolh images, sampling has translormed the
level of agreement from poor to very good, despite the residual effect of the factors listed
on page 177. Even closer agreement is obtained by the corresponding Smooth-Sampled
models, and modelling error is virtually ehminated (Figure 7.7). This was confirmed
by looking at the MRF predictor-error field u, which appeared more homogeneous after
sampling and had highest magnitude for the Sub-Sampled Markov models (dala not
shown). The MRF variance is higher [or Smooth-Sampled Markov than conventional
models, and for Sub-Sarnpled models it is higher still, although the proportional change
between third and ninth order is greatest with unsampled models (Figure 7.3). To some
exient, the reduced variance for a smooth-sampled image reflects a reduction in pixel
variance caused by compression of the dynamic range.

Following the procedure outlined iu §7.1.1, we altempted to isolate the effects of
particular types ol modelling error by using synthetic images. The dense image was
perturbed and sampled, and a new parameter estimate obtained. For the range of
parameters used previously, no significant error was introduced (data not shown), in
strong conlrast to unsampled models (Figure 7.5).

Model Robustness

In order to assess the robustness to image noise and blur of the closc-correspondcace ob-
served between experimental and normal MRF prediclor-error distributions, we adopted
a similar technique to that described above (§7.1.2). A 256x256 pixel image was syn-
thesised from an unsampled fifth-order true-likelihood MRF paramcter set (Figure1.4a),
derived as previously [romn the pressed-cork image (#4), and [resh parameter sets were
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estimaled after ap propriate image sampling. We corrupted the unsampled image using
the same techniques as above (§6.4), and compared the new level of agreement between
the original parameter sets and the corrupted image after appropriate sampling. Sim-
ilar trends to those observed for dense images were found: a shift towards higher MRF
predictor-error for noigsy images, and towards lower predictor-error after blur, bul sam-
pling reduced the extent of hoth effects. Fifth-order MRF predictor-error distributions
obtained from a corrupted synthetic image show only limited distortion (Figure 7.8),
contrasting with the same image, noise and hlur parameters used previously without
sampliug (Figure 7.5). Blur has a stronger effect for lower sampling period, and affects
sub-sampled models more than smooth-sampled, but agreement is always superior (o
that obtained without sampling.

Summary: Fidelity of Sampled-Markov Models

Sampled MRF models display good agreement with real textures and are resilient in the
face of image corruption. These properties are reflected in the improved accuracy and
robustness of the sampled classifiers. Smooth-sampled models have a lower variance
than sub-sampled, and achieve a better fit to the data in some cases.

7.1.4 Descriptive Accuracy of Gabor—-Markov Models

As with conventional and Sampled-Markov models, computatioual concerns led us to
implement Gabor-~Markov classifiers using auto-normal MRFs. Three types of Gabor—
Markov model were proposed in §6.3, describing arrays of Gabor features directly, or
alter the orthogonal fields or composite-feature transformaltions. By ils nature as a
windowed linear filter, the Gabor kernel introduces blur into its output (§4.1). Conse-
quently the shortcomings seen with blurred pixel images (§7.1.1) are also expected in
dense feature images, perhaps to a greater degree reflecling the larger space constant
(0Gabor = 2:25 pixels).

Direct Normal Model

Under the direct normal model (§6.3.1), the orientation feature # is assumed normally
distributed, ignoring periodicity. Correspondence between the observed MRT predictor-
crror and normal distributions is exiremely poor {Figure 7.9a): the trend seen above
for unsampled images towards a large central peak and long tails has been exaggerated,
cousistent with the influence of blur (§7.1.1). Sub-sampling has a dramatic effect,
eliminating tbe central peak, but the fit is very strained because of skew (Figure 7.104).

One way to reflect the periodicity of the dala is o apply a trgonometric transfor-
mation (§6.3.1), but taking the tangent of the measured orientation makesthe fit worse
(Figure 7.95). The predicted distributiou is indistinguishable from tbe axis because the
model variance is very large, presumahly because tan is insufficiently localised around
the origin. Sub-sampling improves the fit a little, but it is still very poor (data not
shown).



§7.1 Relation between Classifier Accuracy and Fidelity of our Statistical Mode! 187

t
(b) 284
4
N
\\
% I 4
\\ | \
oy : \*«N .
0 50 100 S0 50 0 Y 100

(2) 24

1

FIGURE 7.6: Agreement with auto-normal model of sub-sampled Brodatz im-
ages. Histograms of observed (solid) and expected (dotted) distributions for ninth-order
MRF predictor-error u (gray-level units), to different vertical scales, using Lhe analysis de-
scribed in §6.2. (@) pressed cork image (#4; Figure 1.6 on page 11), sampling period 2 pixels;
(b) raffia image (#84; Figure 1.6), sampling period 3 pixels. In both cases, agrcement is far
better thau without sampling {compare Figure 7.1).
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FIGURE 7.7: Agreement with auto-normal model of smooth-sampled Brodatz im-
ages. Histograms of observed (solid) and expeccted (dotted) distributions for ninth-order
MRF predictor-erroc u (gray-level units), to different vertical scales, using the analysis de-
scrihed in §6.2. (@) pressed-cork image (#4; Figure 1.6 on page 11), sampling period 2 pixels;
(b) raffia image (#84; Figure 1.6), sampling period 3 pixels. In both cases, agreement is far
better than without sampling (compare Figure 7.1). Note the decreased variance compared
with the corresponding sub-sampled models (Figure 7.6).
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FiGuREe 7.8: Agreement with auto-normal model of sampled corrupted synthetic
textures. Histograms ol ohserved (solid) aud expected (dotted) distrihutions for filth-
order MRF predictor-error u (gray-level units), to different vertical scales, using the analysis
described in §6.2. Agreement with the uncorrupted sainpled Gfth-order synthctic pressed-cock
(#4; Figure 1.4e) image is excellent. We corrupt Lhis image, sample it, and match it against
the original parameter set. (a) alter addition ol noise, variance 20 gray-level units, and
sub-sampling, period of 2 pixels; (b) after blur, parameter 0-5 pixels, and smooth-sampling,
period 3 pixels. Agreemeut is far superior to that obtained without sampling (Figure 7.5).
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FiGuRE 7.9: Agreement between auto-normal and Gabor-Markov models. His-
tograins of observed (solid) and expected (dotted) distributions for ninth-order MRF
predictor-error u {arbitrary units), to different vertical scales, using the analysis described in
§6.3. Gabor features were obtained from the pressed-cork image (#4; Figure 1.6 on page 11)
by the Resultant method. (a) orientation feature & and direct normal model; (¢) 7 = tan4d
and direct normal model; (e,d)} orthogonal normal fields model; (e,f) composile-feature
model; (g) contrast feature ¢ and direct normal model. In no case is agreement good.
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FIGURE 7.10: Agreement between auto-normal and sampled Gabor-Markov mod-
els. Mistograms of observed {solid) and expected (dotted) distributions for ninth-order MRF
predictor-error % (arbitrary units), Lo different vertical scales, using the analysis described in
§6.3. Gabor (eatures were obtained from Lhe pressed-cork image (#4; Figure 1.6 on page 11)
by the Resultant method, and sampled with a period of 4 pixels. (a) orientation feature 8
and direct normal model; (¥) conlrast feature ¢ and direct normal model; (¢,d) orthogonal
normal fields model; (e,f) composite-lfeature model. Agreement is better than for unsampled
features {(compare Figure 7.9), but (a) and (c.d) show pronounced skew,
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Compared to the angular fields, the fit for the contrast feature is reasonable (Fig-
ure 7.9¢), similar to that seen for pixel images (Figure 7.1). Sampling again improves
the fit but also makes skew more apparent (Figure 7.105). Resultant features were used
hece (§4.6), bnl a similar pattern is observed with the Profile LINE and SINU methods
(data not shown).

Orthogonal Normal Fields Model

Our assumptions of normality and independence for the components of the orthogonal-
normal model were somewhat questionable (§6.3.1), and the observed fit is again poor
(Fignre 7.9¢,d). Note that the orthogonal normal fields model nses two Markov randomn
fields, p and q, to describe the spatial variation of the data (§6.3.1). A large central peak
is again prominent in nnsampled fields, and when this is eliminaled by sub-sampling,
skew becomes apparent (Figure 7.10¢,4). These results are similar to those obtained for
the direct normal model. The amount of skew varies [rom image to image but lends to
have an opposite sign for the orthogonal components. Below (§7.1.5), we suggest how
the skew conld be rednced in an improved model.

Composile Feature Model

There ts a little more snpport (§A.4.2) for both the normality and independence of
the components of the composite feature model (§6.3.2) compared with the orthogonal-
normal model (§6.3.1). Note that two Markov random fields are employed, x and y.
Correspondence between the unsampled experimental MRF predictor-error distributions
and the normal corve is still poor, bul improves upon previous results for angular
fields {Figure 7.9). When Gahor features are sub-sampled, as was our original intention
(§5.7), modelling accuracy is much improved, attaining an acceptable level o agreernent
(Tigure 7.10e,f). In this respect, the composite-feature model] is superior to the direct
normal model, and it achieves the best fit for any of Lthe Gabor feature data. Agreement
is good for both random field components of the composite-feature model (x and y),
with no significant skew.

We tested the robnstness of the composite-leature classifier by examining the cor-
respondence between the troe parameter set and Gabor features extracted from a
corrupted image. Noise of variance 20 gray-level units squared poses litlle difficulty,
but after moderate blur (parameter 0-5 pixels), the famibar shift towards lower MRF
predictor-error is observed (Figure 7.11). Both the raw fit and tolerance lo corruption
of the sampled compaosite-featnre model are snperior to those of dense pixel models but
do not match those of sampled pixel models. This is reflected in the performance of the
classifier (§6.7).

7.1.5 Improved Gabor—-Markov Models

A common factor in the observed Gabor-Markov prediclor-error distribntions for un-
sampled feature data is the presence of a large central peak with long tails (Figure 7.9).
The position is improved by sub-sampling bnt skew emerges as a new error [or all except
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FIGnRE 7.11: Agreement between auto-normal and sampled Gabor—
Markov models with corruption. Histograms of observed (solid) and
expected (dolted) disiributions for ninth-order MRF predicior-error u (arbi-
trary units), to different vertical scales, using the analysis described in §6.3.
Gabor features were obtained from the pressed-cork image (#4; Figure 1.6on
page 11) by the Resultant method, with a samipling period of 4 pixels, and
processed using the composite-leature model. Field x is shown (y is simi-
lar), and agreement with features extracted from the uncorrupted image was
good (Figure 7.10). (&) after addition of noise, variance 20 gray-level units
squared; () after blur, parameler 0-5 pixels. Correspondence with the cor-
rupted image is far superior to that obtained by the unsampled pixel model
{Figure 7.5) but less good Lhan that of the sampled pixel models (Figure 7.8).

the composite-feature model (Figure 7.10), hecause of interaction between theimposed
normal model and the periodicity of angular data. Errors are introduced when adjacent
values are instead trealed as extremes, and the extent to which this causes skewdepends
on the spread of the angular data across its principal segment. This is illustrated for
the orientation feature in Figure 7.12: in (a), the modal (peak) orientation ocaurs well
to one side of the segment, leading to skew on truncation. Much less skew is introduced
in {b) because the peak lies near the centre of the region and the spread isroughly
symmetrical. Similar arguments apply to the dircct and orthogonal normal models:
skew is introduced unless the truncated distribution is symmetrical. Bolh models could
be improved by shifting the angular component so that its modal value lies at§ = /s,
in the middle of the principal region.? Skew cannot be eliminated completely unless the
distribntion about the mean happens to be symmetrical, as shown in an idealised form
in Figure 7.12, but can be snbstantially reduced.

When the mean of the orientation fealures is adjusted in this fashion, it also affects
derived fields used by the orthogonal-normal and composite-fcature models. Corre-
spondence between the MRF predictor-error distribution and the normal curve is much
improved [or modified feature data after sampling, as shown for ninth-order Resul-
tant featnres extracted from the pressed-cork image (#4) in Figure 7.13. Agreement
is acceptable, even for images which do uot have a predominant orientation (data not
shown). A tall central peak remains in the MAF predictor-error distribution from un-
sampled features, similar to Figure 7.9, but is now sited exaclly at Lhe origin (dala not
shown).

The improvernent for the direct normal model is such thal one may question whether

?Note that initially 0 € 6 < =, but its range is doubled 10 27 by the Gabor-Markov models Lo
match the periodicity of trigonomelrie functions (§6.3.1).
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Figure 7.12: Illustration of improved Gabor-Markov models. His-
tograms of Gabor orientation feature 8. (@) typical asymmetric distribution,
leading to skew wben periodicity of the data is ignored. (&) modified sym-
metric distribution: mean orientation has been shifted to the centre of the
principle segment, and skew is much reduced. We propose transforming the
orientation feature in this manaer to form improved Gabor-Markov models.

the additional complexity ol the orthogonal model is worthwhile. When the angular
data is shifted to [ree the sin component p [rom skew, it simnltancously iniroduces
maximnm skew in the cos field. We could similarly improve agreement with the cosine
component G by rotating the mean of the orientation leatures to § = = /4, but this
makes one component redundant. Both fields were originally necessary to ensure that
the [ull range of the data was covered with uniform sensitivity but it appears that one
component may suffice when the data is shilted to coincide with the most sensitive
region of the siousoid.

Rotating the orientalion field has no significant effect on the composile-feature
model, with which most of our resnlts were obtained, and which already agrees closely
with experimental data. No improvement ocenrs in the direct fit Lo the contrast [eature
since this has no angular component, bnt some skew is apparent (Figure 7.108). If pixel
values are themselves normally distributed, as appears to hold to a good approxima-
tion, we would expect local contrast to follow a normal cnrve. Qur extraction tnethods
(§4.6) fail to obtain tbe sign of the contrast because the contrast [eature ¢is derived
from the Gabor cnergy R (R ~ ¢?), and Lhe positive square root is taken. Skew is
introduced when contrast ¢ is modelled by a normal density, hut this does not occur
with the composite-feature model which is ilsclfl derived from 2.

7.1.6 Summary of Correspondence with Experimental Data

Poor correspondence was [onud between dense pixel images and the anto-normal MRE:
in all cases, the experimental MRF predictor-error distribution had a taller central peak
and longer tails than the normal model, bnt differences between the fit [or the correct
and incorrect model were still usnally noticeable (§7.1.1). We [ound that major sources
ol modelling error are: blur, clipping, and insufficient MRF order. Conveulional models
are [ragile: descriplive accuracy deleriorates quickly il the imagce is corrupted by noisc
or blur.

In contrast to the above, the descriptive accnracy of Sampled-Markov models is
very high, and remains good alter corrnption by noise or blur. These differcnces are
reflccted in the superior accnracy and robustness of the Sampled-Markov classifiers
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FIGUrRE 7.13: Agreement between auto-normal and improved Gabor-Markov
models. Histograms ol observed (solid) and expected (dotted) distributions for ninth-order
MRF predictor-error u (arbitrary units), to different vertical scales, using the analysis de-
scribed in §6.3 and improved in §7.1.5. Gabor features were oblained from the pressed-cork
image (#4; Figure 1.6 on page 11} by the Resultant method, and sampled with a period
of 4 pixels. Orientation features were rotated to set their mean to m/2. (a) orientation
feature € and direct norinal model; (4,¢) orthogonal normal felds model; (d,e) composite-
(eature model. Agreement in (,8) is much improved compared to the original orientation
features (Figure 7.10), (d,c) are hardly changed, and {c) is much worse because the new
mean favours sine rather than cosine.
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(§6.7). Sampled models have a higher MRF vartance because some information is lost
on sampling. Model specificity dechnes as the sampling period is increased.

Similar trends were observed witb MRF predictor-error distributions obtained from
unsampled Gabor--Markov models: agreement with the normal curve was poor because
the experimental distrihution had a tall central peak and long tails, consistent with
the effects of image blur. Skew was initially a problem for sampled angular fields
but may be subsiantially reduced by a modified modelling technique (§7.1.5). With
this procedure, correspondence between the auto-normal and sampled Gabor-Markov
models is much improved, comparable Lo that achicved by sampled pixel models. Closest
agreement was obtained with the composite-leature model, and this was also rebust to
image corruption. Strong correlation was observed between modelling and classification
accuracy, but this link may be broken because very heavy sampling increases the level
of agrecment with cxperimental data bul reduces specificity.

7.2 Comments on the Influence of Image Blur

Image blur has a strong detrimental effect on classifier accuracy (Chapter 6),and was
shown above Lo decrease the correspondence between the auto-normal MRF model and
real data, but its impact is diminished by both the lypes of sub-sampling we employed
ahove (§6.6). The purpose of this section is to explain these eflects, commenting mainly
on true-likelihood classification, and to seek a way of reducing misclassification errors
introduced by blur.

Blnr distorts the image power spectrum, introducing high-contrast peaks which give
rise to modelling inaccuracy (§7.2.1). The usual balance between Bayesian penalty and
bias terms is upset, prejudicing the classifier towards classes described by models with
low MRF variance (§7.2.2). Modified Bayes classifiers have vastly improved robustness
with respect to image blur (§7.2.3).

7.2.1 Modelling Error Arising from Image Blur

At first, it seems strange that image blur should introduce modelling error: blur
produces strong correlation between adjacent pixels by attenuating high lrequencies,
but correlation between nearby pixels lies at the heart of Markov random field mod-
els (§5.1.2). Following our classification procedure (§6.4.3), we shall model blur by a
Gaussian kernel, and will ignore discretisation effects. Let us Lake an MRF X and blur
it with the kernel g(4):

u; = x,*xg4(b)
Y: = X:G.(b} (1)

Grpm(b) = exp {2078 [Z2(m/M) + ZX(n/N)]) (7-2)
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where

2p = {1y ME2 1)

1~ f otherwise

and tbe subscripts m + nM reflect raster-ordering of the image array. We introduce the
“spectral mapping function” =(-) to convert from lattice to [requency co-ordinales at
which tbe transformed kernel G = g is evaluated. Our aim is to express the new field y
as an auto-normal MRF. Il this may be done, the expected power spectrum 5{}Y|7}

will assume tbe usual form over the image lattice £:

E{IXI* GE(8))

(oM
= 1-B. GIb)

E{IY:1}

-

2

= % Yiel (7-4)
whbere we take (¢7)x to rcfer to the model variance f{or parameter set Gy, and By
refers to the cosine transform of the MRF parameter vector 8, (5-63), and similarly for
(o%)y and B,,. This equation may be solved trivially for (¢?)x = 0 (constant field) but
does not otberwise give Gy of finite order. Perhaps this is not surprising with reference
to the Markov property (§5.1.2}, becanse blur has distributed the necessary pixel values
over a larger area so that the required neighbourhood set is no longer given. Ounly if the
entire field is known can this information be recovered. Gaussian blur is nol spatially
limited but a similar resul¢ is obtained for a finite kernel. Our conclusion is that after
applying blur, a non-trivial auto-normal MRF is no tonger an aulo-normal MRF of finite
order.?

Whereas the blurred field may not be represented ezactiy as an auto-normal MRF,
this is not of crucial importance in practical cases because Markovianily of the original
field is itself only approximate, and it is certainly possible to estimale MRF parameters
from a blurred image. Power spectra of blurred images tend to be heavily concentrated
in the low frequencies around tbe origiu because higher [requencies are attenvated. The
model spectrum is formed from the reciprocal of periodic components:

E{Xminml} T [ Aminss

0.2

— : 22(&,()5#* ﬁk+{$ coq[?w(mk/M +n€/N)] (75)

where \; are spectral density coefficients, and S represents the span of the MRF neigh-
bourhood A/*. In order to obtain Lhe peak near the origin, it is necessary for X; to
approach zero, but often A, becomes so close to zero that any small change in any ele-
ment, of tbe MRF parameter vector @ is sufficient to break the homogeneity constraint
(5-66 on page 115; Figure 6.1 on page 140), giving A; < 0 for some frequency. In prac-
tice, the freedom for variation of the coefficients is so small that full 15-figure decimal
accuracy must be preserved. The model is very unstable, since 1/); is dearly sensitive

3We have not atlempted Lo obtain a stronger version of this result as our primary concern is with
the auto-normal MRF.
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Lo numerical error when A; = 0, and there is reduced freedom ol choice to fit the data
closely when the neighbourhood coefficients B are meshed together so closely.

A further practical difficulty is felt by the parameter estimation algorithm. The
pseudo-likelihood parameter vector B is used to form an initial estimate of the true-
likelihood parameter vector (3, used to seed our gradient-ascent parameter-estimation
algorithm (§6.2.1). The seed point B, almost always has to be revised, however, because
ihe true likelihood maximnum lies very close to a forbidden (inhomogeneous) region, into
which 3 usually falls. Once a valid starting point has been found, gradient ascent may
only proceed extremely slowly becanse parameters can only change by a tiny amount
at each iteration without leaving the permilted region. Estimating the MRF parameters
{rom a blurred image may take 50 or more times as long as for the original image.*

Biur is not unique in cansing modelling difficulty: any transformation causing the
power spectrum to contaiu large peaks will simiilarly affect the parameter estimates. It
is particularly easy to introduce hlur, however, and we have shown that evena small
amount can have drastic practlical consequences (§6.5).

7.2.2 Classification Error Arising from Image Blur

Whatever the effect of blur on modelling, it certainly has a strongly adverseeffect on
classification accuracy (§6.5.3): even a moderate amount of blur, space-constant 6 = 0-5
pixels, is sufficient to increase the error rate of the fiftb-order dense pixel classifier from
6-8% to 84%. Tn order to explain this, we shall consider the effect of image blur on the
true log-likelihood function, Ly:

2 (x*g(b)) = Zlog/\ — MNlog(2ro*) — Z M (7-6)

€L i€l

where summation for ¢ extends over the dimensions of the image lattice £ (compare 6-13
on page 146). The Gaussian kernel G(b} was given in (7-2), and satisfies: G(b) < 1.
The first two terms ol (7-6) are unaffected by blur, and the third term, which contains
all the image information, is always made less negative. lence, the eflect of blur is
always to increase the likelihood Lp. In the limit as the blur space-constant increases
to infinity (6 — ©0), the blnrred image assures the same value everywhere, and the
likelihood reaches its maximum equal to the sum of the first two terms of (7-6), and is
independent of the original texture:

2Ueae = _loghi — MNlog(2n0?)
€L
X, ’c’ B
2Ly x z| FGb) (1-7)
€L

where Ly, = Lmax — Ly x. The effect of blur is to introduce bias towards the class for
which Ly is the largest, and this term is often dominated by the MRF variance, o2.

9Estimation of ninth-order true-likelihood parameters from the pressed-cork image (84) required
302 iterations of the gradient-ascent algorithm. When the image was first blurred by convolution
with a Gaussian, space-constant 1 pixel, this increased Lo 9641 ileratious, a [(actor of 32.
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Usually, a large MRF variance results in a small bias term L., which is balanced by a
smaller image error penalty term Ly, x (since this is divided by &?). Similarly, 2 model
with low variance usually has a larger bias term but also a correspondingly greater
image penalty term. Blur always reduces the image penalty term Ly, x, predisposing
tbe classifier towards ctasses with a large bias term Lax and hence a small MRF variance.
As tbe amount of blur is increased, so the influence of the original data diounishes.

In terms of empirical classification accnracy, we predict thal blurred images whose
true texture model has a high MRF variance will be misclassified, and that models
with low MRF variance will generate false-positives. On comparing confusion matrices
for uncorrupted and blurred images (Figures 7.14 and 7.15), both of which have heen
sorted hy MRF variance (Fignre 7.16), we find tbat all misclassification errors involve a
shift Lo lower variance, appearing below the leading diagonal, consistent with the ahove
prediction. The degree of blur (parameter & = 0-5 pixels) was small enough for the image
data to retain some influence, and most errors were from large to medium variance, but
bias towards models of smaller variance becomes stironger as the blur parameter is
increased (data not shown). Note that becanse the Sampled-Markov classifiers achieve
acceptable ecror rates using blurred images (§6.6), there is not a problem of insufficient
information (see also Figure 6.5 on page 154).

The rate at wbich blur distorts an image in practice clearly varies with the image
itself. We shall consider the expected effect of blur on pixel and error variance terms
[or a true MRF evaluated witb Lhe correct parameter set (§4.5.1):

Volu) = —— S (1 - B)GHY)
L MN £
? GH(b)
Volz) = i e O
Bl MN 2 (1~ B,)
2px = Z G (7-8)

160

where Vi(u) and V4 (2) represent variances of tbe MRF predictor-error and pixel data
respectively, Ly x is the likelihood penally term introduced by (7-7), and summation
for 7 exteuds over the dimensions of the image lattice £ (M x N pixels). Typically for our
Brodatz images, the spectral density coefficient A; = 1 — B; is very small pear the origin
(=2 0-001), suggesting that MRF predictor-error variance V4, (u) wilt decrease very rapidly
for blurred images because tbe high freqnencies which contribnte most to this term are
heavily attenuated. Pixel variance V;(z) is Jess affected becanse it receives the greater
contribution from low spatjal {reqnencies which are relatively unaffected by blur. The
penalty termm Ly, x used hy the true-likelihood classifier {7-7) is intermediate between
these two cases when the field is consistent with the MRF parameter set, and when
the blur parameter & is large enongh for aliasiug Lo be insignificant (§8A.5.1), Ly x
(47b?)"'. The effect of blur is more complicated when the model does ot accurately
describe the field. In particular, an image dominated hy high spatial [requencies or a
model dominated by low spatial [requencies will be affecled more rapidly than (7-8).
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FIGURE 7.14: Scatter matrices for uncorrupted pixel classifiers. Our uncorrupted
Brodatz image set was classified by the All-Quarters method, described in §6.4.3. The
matrices have been ordered by increasing MRF variance (33 classes) and are pooled from
models of order 1-5, 7 and 9. Correclly classified images lie along the leading diagonal,
and intensity is proportional to frequency. (a) true-likelibood; (&) pseudo-likelihood. No
obvious bias towards higher or lower variance is present.
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FIGURE 7.15: Scatter matrices for pixel classiflers with blur. Qur Brodatz image set
was blurred with parameter 0-5 pixels and classified using true-likelihood parameter sets by
the All-Quarters method, described in §6.4.3. The matrices have been ordered by increasing
MRF variance. Correctly classified images lie along the leading diagonal, and intensity is
proportional to frequency. (a) filth-order classifier; (b) classifiers of order 2, 3,5 and 9. 1n
both cases, every misclassification is caused by the selection of a model ol lower variance,
appearing here as a shift below the diagonal.
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FIGURE 7.16: Histograms of MRF variance for unsampled pixel mod-
els. Parameter sets were estimated from our Brodatz image set using true-
likelihood estimation (§6.2.1). Sorted cumulative histograms of MRF variance
(gray-level units squared) are shown. Selid: fifth order; Dotled: ninth order.
Average model variance is a decreasing function of MRF order (Figure 7.3).

7.2.3 Measures to Counteract Image Blur
Image Restoration

The classical approach to image restoration is Wiener filtering (§5.5.2). The given image
y, assumned degraded by blur, is effectively de-convolved by dividing out the transform
spectrum:

X, = Y,/G.(b) (79)

where X is the Fourier transform of the restored image (Rosenfeld & Kak, 1982). This
method can be effective but steps must usually be taken to ensure that noise does not
dorninate for frequencies where the blur kernel G() is small, and the blur parameter b
must be known in advance.

Modified Bayes Classifier

Our main objective is to obtain a measure of immunity from classificalion error by
increasing robustness. It is templing to seek to modily the data to fit the model by
dividing out the blur spectrum, forming a modified penalty term Lj:

Un(x;8) = S log A — MN log(2r0®) — > % (7-10)

€L €L

where the original form for Ly, is given hy (7-7). We might hope to maximise Lj (x;b)
with respect to b to undo the transformation and simultaneously estimate the bluc
parameter. Unfortunately, just as blurring the image always increases the likelihood,
de-blurring it will always decrease it, causing this approach to fail.
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A more profitable approach is to use a modified Bayes classifier (§5.4.1), where the
model is adjusted to fit the data, forming the new likelihood function Fy:

et = g(ﬁ) o - Zsl)él(b] T

where Sy = 227", and summation for 1 extends over the dimensions of the image lat-
tice £ (compare 5-64 ou page 114). The modified likehbood P{(x;4) may now salely be
maximised with respect to & to overcome the effect of the blur transform. Classification
is based on these maximum likelihoods, I1,:

=]
|

; max Plw, | x,5}

D(x) = wy, if II; = max IT; (7-12)
J

aud an estimate b is also obtained for the degree of blur. A similar approach has recently
been applied to other viewing parameters (Cohen et al, 1991), and a simpler technique
was suggested to accommodate global changes in illumination (Kashyap ¢t al., 1982).

As was mentioned above (§7.2.1), the blurred MRF no longer has finite order, but
this is of no practical consequence since the use of spectra avoids the need for direct
convolution. The modified likelihood (7-11) is easily decomposed:

2Li(x;8) = ‘Ezclog [X:G7(8)] — M N log(2mo?) Z ‘;YC.L(/;)
aaig = 4”2”( Zlfcle)) > Zm/M)+Zn/N)  (713)
(m.n)eL

where L] is the log-likelihood derived from (7-11), and Z(-) is the spectral mapping
function (7-3). Unfortunately, applying the usual criterion 9L{/0b = 0 does not usually
lead to an analytic form for 3; but because A; > 0, the gradient is a decrcasing function
of b, and a numerical algorithm converges rapidly. If 8L /3%|,., 2 0, it is immediately
clear that b = 0.

This approach is somewhat idealised because we have taken no account of aliasing,
quantisation error or other noise effects. It does not depend on the blur being Ganssian,
although this is convenient, since any spectrum may be substituted for G(b), and a
different model would be preferred if more realistic transformation parameters were
known. Noise becomes a problem when the blur space-constant & is large, and in
these circumstances it might be scnsible to consider only the low-frequency part of the
spectrum, to cap G7%{(b), or to adopt other corrective measures (Rosenfeld & Kak, 1982).

Preliminary Results with Modified Classifier

Early results with the modified classifier described above have been encouraging. When
we used it to eslimate the {known) amount of blur present in two synthetic images,
blurred according to §6.4.3, tbe blur parameter was estimated accurately (Table 7.1).
Interestingly, the classifier also recorded the presence of blur in our original Brodatz
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estimated blur parameter b
blur parameter b | #4 pressed cork | denim
0-0 0-00 0-00
0-2 0-00 0-07
0-4 0-35 0-38
0-6 0-59 0-61
0-8 0-81 0-82
1.0 1.01 1-02
1.2 1.22 1-22
1-4 1.27 1-26

TaBLE 7.1: Image blur estimated by the modifled classifler. Ninth-
order 256 X 256 synthetic textures for the pressed-cork and denim images (orig-
inals in Figures 6.2 and 4.13) were hinrred with parameter & (pixel units).
Except for & large or small, when noise and aliasing are most significant, Lhe
estimated blur parameter ohtained hy the modified classifier is very close to
the true value.

images (data not shown), consistent with their poor correspondence with the auto-
normal mode! (Figure 7.1). A possible extension would be to allow blur as a free
parameter during the original parameter-estimalion stage as this would permit the
underlying texture variation to be captured more closely. I the modified classifier is
used to classily images degraded other than by blur, errors may result.

Using the modified classifier, we repeated the classification exercise for Brodatz
images corrupted by moderate synthetic blur (parameter b = 0-5 pixels) using true-
likelihood fifth-order parameter sets. The error rate fell dramatically from 84% with
the original classifier (§6.5.3) to 9-8%, with estimates for the blur parameter bunched
tightly around 0-5 (b = 0-505 + 0-06 pixels}. Although the synthetic blur applied
bere was close to the form assumed by the model, this is a significant improvement in
classification accuracy with real images which confirms the validity of the approach.

7.3 Comments on the Influence of Additive Noise

Qur classification resnlts show that the addition of a siall amount of noise compared
to the inherent variation of each pixel has a strongly adverse effect on unsampled pixel
models (§6.5.2), affecting Gabor-Markov and sampled pixel models to a lesser degree
(86.6). It is surprising at first that additive random noise should cause problems for
an MRF model since it is built around the random variation of each pixel. Our goal is
to examine the interaction of additive noise with the auto-normal model, and hence to
suggest ways of restricting its unwelcome consequences. As above, we shall distinguish
between modelling and classification error, and show that noise prejudices the classifier
towards classes described hy models with high MRF vaniance (§7.3.2). We propose a
modified classifier which may arrest this trend (§7.3.3).
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7.3.1 Modelling Error Arising from Additive Noise

Modelling error refers to the extent ol disagreement between a parameter sel ard the
image from which it was estimated. In §7.1.1, we found experimentally that an image
to which white noise had beeu added, following our simple noise mode] (§6.4.3), was no
longer described accurately by an auto-normal MRF. In order to isolate modelling error
attrihutahle to additive noise, let us consider taking an MRF and adding independent
white noise of variance p?, forming the field x = X:

o?

X, =
YV1-B

+pv (7-14)

where v and v’ are independent zero-mean unit-variance normal random variables,
and B is the cosine transform of the MRF parameter vector 8 (5:63). We may combine
the terms by adding variances:

2

y  w= i 2 :
X; v (I_B‘+,0). (7-15)

We may now attempt to find an MRF G, which gives the correct form for Lhe expected
power spectrum of the new field:

2 o 2
E{IXF} = g T
e (Uz)x .

= 1—_1:, Vie L (7-16)

where we again use (¢?)y to denote the model variance for parameter set G,. Unflortu-
nately, just as when the image is corrupted by blur (§7.2.1), this has no general solution
except in trivial cases. This is again consistent with the idea of the Markov neighbour-
hood: uow that these values are no longer known exactly, additional information may
be obtained from the wider surround. IL is possible to ignore this and obtaim the best
estimate possible with the given number of parameters. The amounts ol noise used
in our experiments were much less than the pixel variance, and hence noise was not a
source of modelling error of practical concern.

7.3.2 Classification Error Arising from Additive Noise

Noise has a strong adverse impact on classification accuracy (§6.5.2), parlicularly [or
unsampled models. We shall examnine the expected effect on the likelihood function of
corruption by additive noise, evaluating the true hkelihood with the original parameter
set G, hut the noisy field x + pu-

Xr' 2 2 )‘t
2Wnlx+pv) = Zlog A\ — NM log(2xo?) — Z (—li—ti
VEL €L 4
= 2U(x)=p* Y /o
1€l

2L(x) - MNp*/a? (7-17)
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FIGURE 7.17: Scatter matrices for pixel elassifiers with noise. Our
Brodatz image set was classified nsing true-likelihood parameter sets by the
All-Quarters method (§6.4.3) after addition of noise of variance 20 gray-level
units squared. The matrices have been ordered by increasing MRF variance.
Correctly classified images lie along the leading diagonal, and intensity is
proportional to frequency. {a) filth-order classifier; (8) classifiers of order 1,
3,5, 7 and 9. Almost all misclassification errors are cansed by the seleclion
of a model of higher variance, appearing here as a shift above the diagonal.

where L(x) is the original log-likelihood (no noise), given by (6-13) on page 146. An
extra term appears, and since A; > 0, its eflect is always to decrease the likelihood.
As above (§7.2.2), we shall separate bias and penalty terms, writing: L, = Lpa, —
L, x. We may compare the expected impact of noise on MRF predictor-error and pixel
variances (§A.5.1):

alu) = ol +p'(1+2]8")
Volz) = of+/
2L,y = MN(1+p%/d?) (7-18)

where o and o2 refer to the original predictor-error and pixel variances, respectively.

The pixel variance V4(z) increases linearly with noise variance, but the predictor-error
variance V,(u) increases more rapidly, and proportionally by a much higher rate (since
o2 < o2). Further, the increase will probably be larger for rmodels of higher order
because of the weighting from ||8||>. The classifier penalty term L, x increases at a
proportionately greater rale for small MRF variance o2, upsetting the balance between
bias and penalty terms in a similar manner Lo image blur {§7.2.2), and prejudicing the
classifier. In this case, the trend is towards models of higher MRF variance, confirmed
by the scatter matrix shown in Figure 7.17, where almost all misclassifications involve
the selection of a model of higher variance. This appears as a shift above ihe leading
diagonal (compare uncorrupted images in Figure 7.14}, and is the opposite effect to
blur (Figure 7.15). A clear trend in the results for the dense classifier was for the error
rate under noise to increase for models of larger order (Figure 6.16 on page 168), and
we may now explain this counter-intnitive efflect. When the model order is large, the
MRF predictor-error variance o is small (Figure 7.3), increasing the impac! of external
noise according to the factor p?/o? in (7-18).
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7.3.3 Measures to Counteract Noise
Image Restorgtion

Noise is not deterministic, and so restoration canaot hope to restore the original image
exactly, but instead seeks to remove the ezpected effect of the noise. In the case of the
Wiener filter (§5.5.2), noise adds a constant amount to the power specirum and so this
is simply subtracted to give the restored image:

v Sui - pz

where Y is the Fourier transform of the degraded image y, and X is the transform of
the restored image (Rosenfeld & Kak, 1982). This method requires the noise vanance p?
to be known in advance. In our case, the form of the restored image may be assumed,
Sx. = @2/, and this may be substituted into (7-19}:

c ]

e = Tt (7-20)

Maximum a posteriori (MAP) restoration is more flexihie and is generally preferable.
We maximise the likelihood of the original image x given the observed degraded copy y:
P(x|y) = Ply|x)P(x)
Py |x) = [[6(z.—w.0". (7:21)

€L

In this case, the form of P(x) is assumed known. The likelihood must usually be
maximised numerically to find x.

Modified Bayes Classifier

Following the approach taken in §7.2.3, we may design a modified classifier that contains
the amount of added noise as a free parameter. It is again tempting to modily the data
to fit the model, forming the new hkelihood ¥, (from 5-64 on page 114):

IEE

but subtracting noise {from an image in this way always increases the likclihood and so
it is impossible to maximise Pi(x;p) to ohtain an estimate p. The solution is again to
modify the model to fit the data:

o = [ () =B o

forming a modified Bayes classifier (§5.4.1). It is again of no practical consequence that
this equation no longer represents an MRF of finite order. The modified log-likelihood L,
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arising from (7-23) is easily decomposed:

1X, %N

2L (x;p0) = Zlog An‘"Zlog(02+p2,\,) = 2_2_2)\
i€l €L prid + %A
oL, Z M1 X = o = p2A)
o &z (P2 + 0%’
LI
a n = 1 (724)
3;) =p

but the noise estimnate 4 can only be found numerically, apart from the trivial solution
p = 0. This procedure has not currently been implemented.

7.4 Comments on the Influence of Image Sampling

Sub-sampling of both types (selection and averaging) improves classification accuracy
for corrupted and uncorrupted data (§6.6). This pbenomenon is of practical importance,
and several aspects of sampling are investigated in this section. Only Lhe power spec-
trum of tbe test image is used during true-likelihood classification (§6.4), and hence any
explanation demands consideration of the effect of sub-sampling on the image spectrum.
For clarity, some of the results below are given for a 1-D signal but they extend easily
into two dimensions. We contend that the increased modelling accuracy of Sainpled-
Markov models arises from changes in tbe morphology of the image spectrum (§7.4.2).
A reduction in the contrast of spectral peaks brings tbe data into closer correspondence
with our assumed statistical model. Sampling reduces the effeclive magnitude of botb
image noise and blur, enhancing classifier robustiness (§7.4.3; §7.4.4).

7.4.1 Spatial-Frequency Spectra and Aliasing

Unsampled images are necessarily band-limited, —7 < w € 7, since they are already
expressed as a discrete array, but aliasing still occurs on sampling (§A.5.2). This is
visualised for a sampling period s = 1-5 pixels in Figure 7.18: the contents of the
heavy box form the spectrum of the sampled image, which is contaminated by aliasing
in the shaded regions where adjacent copies of the spectruin overlap. Aliasing causes
unpredictable distortion of the signal according to the phase, and can be a significant
source of error. Smooth-sampling reduces aliasing error by partially attenuating bigh
frequencies: adjacent copies of the frequency spectrum stilt overlap to the same degree,
but the aliased regions contain a lower proportion of the image energy. Our simple
window function is far from being an ideal band-pass filter (Meer et al., 1987) because
its transfer functjon is insufficiently abrupt at the cut-off frequency (Figure A.9% on
page 273). The effect of anti-aliasing filters is discussed further below (§8.3).

According to tbe diagram shown in Figure 7.18, sampling magnifies the proportion of
the image spectrum occupied by the energy formerly concentrated in the low-frequency
band. Coupled with the effects of aliasing, this tends to even out the distribution of
energy across spatial frequencies in the sampled image. Power spectra of the dense and
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(a) (&)

Ficure 7.18: Illustration of frequency aliasing arising from sampling.
Each box represents the range of spatial [requencies occupied by a discrete
two-dimensional image with the origin, shown here by a dot, at ils centre.
(a) unsampled image: no aliasing. Copies of the spectcum eflectively abut
but do not overlap. (&) sampled image, period 1.5 pixels: adjacent copies
ol the spectrum overlap (shaded regions), causing (requency aliasing. The
smaller heavy box represents the spectrum of the sampled image. Energy at
high frequencies in the original image is mapped to new [requencies in the
sampled image.

sampled pressed-cork image (#4; Figure 1.6 on page 11) are shown in Figure 7.19: a
dominant feature of the unsampled specirum is a large peak near the origin, shown
here at any corner of the array, reflecling tbe strong contribution from low spatial
freqnencies. Peak contrast is Jower in sampled images reflecting both truncation of the
frequency range and aliasiug effects (6-d). As shown by comparison of (4) and (¢), this
change is more gradual after smooth-sampling because the window kernel Lransmits the
low-[requency band wlich usually coutains the peak, but atlenuates higher frequencies.
Whben the sampling period is too large, the specirum hecomes unrecognisable (d), due
to trnncation of the frequency range and severe aliasing.

7.4.2 Effects of Sampling Uncorrupted Images

In §7.2, we argued that tle presence of bigh-contrast peaks in the power spectrum
created both theoretical and practical difficulty [or the MRF model, and the ubiquity of
Lhese (eatures in our Brodatz set is illustrated by the pressed-cork image (Figure 7.19).
Sub-sampling reduces the contrast of the spectral peak, and hence should improve
modelliug accuracy: exactly the trend noted in §7.1.3, and consistent with a lower
bascline error for sub-sampled images (§6.6). A conflict exists: too much sampling, and
the spectrum will be easy to model accurately but will contain insufficient information
to discriminate texture classes reliably; too little, and the necessary informalion will
be present but a badly-fitting model will be unable to make full use of it. Our current
sampling techniques cause aliasing error, which has an unpredictable effect on the shape
ol the power spectrum but increases in magnitnde for larger sampling period.

The tendency of sub-sampling to reduce tbe spectrum peak contrast is demonstrated
morc quantitatively by Figure 7.20: we examined the minimum value of the spectral
density coefficient Ani, using a fifth-order classifier, averaged across all our 132 Brodatz
images. As predicted, Ay, is very small for the unsampled image set (sampling period
s = 1 pixcl), corresponding to large peaks in the power spectrum, wbich are proportional



§7.4 Comments on the Infiuence of Image Sampling 207

(a) dense image (b) sub-sampled, period 2 pixcls

(c) smooth-sampled, period 2 pixels (d) sub-sampled, period 4 pixels

FIGURE 7.19: Power spectra of dense and sampled Brodatz images. Horizontal axes
represent spatial {requency, with the origin at any corner, and height represents image energy.
(a) power spectrum of the pressed-cork image (#84; Figure 1.6): note the concentration of
cnergy at low spatial frequencies. (&,¢) after sampling and smooth-sampling, respectively,
with a period of two pixels. In both cases, the spectral peaks are relatively broader and have
reduced contrast. (d) after sampling with a period of four pixels.
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F1GURE 7.20: Effect of sampling on contrast of spectral peak. Minr
mum spectral density coefficient Amin, shown to a log)q scale, averaged across
our 132 Brodatz image set for a fifth-order true-likelihood classifier. Solid:
pixel classifier, smooth- and snb-sampled; Deotted: sub-sampled Resultanl
composite-feature classifier. When Ana is small, high peak contrast resulls,
causing difficulty for parameler cstimation algorithms.

to 1/Amin. As the sampling period is increased, peak contrast progressively diminishes
although the central peak remains (shown here to a log,, scale). Smooth-sampled
spectra tend to have a somewhat taller peak than for selection sampling, consistent
with tbe effect of tbe window fonction in preserving peak contrast, but this appears to
be more than offset in terms of classificalion accuracy by a reduction in aliasing error.

It is difficult to predict the genera!l effect of snb-sampling on classificalion accu-
racy because it is closely influenced by the actnal spectra. If the dense image fits the
MRF model closely, sub-sampling is liable to rednce the amonnt of information and
add aliasing error without any clear Ltheorelical benefit, but if onr experienceis typical,
sub-sampling has mnch to offer in praclice, hoth in terms of fidelity ol representation
and compntational efficiency. Redncing the dimensions of the image by a factor n de-
creases tbe computational requirement by a [actor greater than n? during classification.
Parameter estimation benefits to a greater degree hecause the relative absence of mesh-
ing of coefficients means that [ar [ewer ileralions are required for the gradieni-ascent
algorithm (§7.2.1).%

The expected power spectrum corresponding to a particular parameter set may be
computed by taking the cosine Lransform of MRF neighbourhood coefficients {7-5 on
page 195). Note that this procednre is distinct from measuring the power spectrum of a
texture syntbesised from these parameters because random fAuctuations are eliminated.
Compare real power spectra (Figure 7.19¢,6) with Lbose derived from ninth-order true-
liketihood parameter sets (Figure 7.21), both obtained from the pressed-cork image (#4;
Figure 1.6), and shown from the same “viewpoint” but to different vertical scales. Su-
perficially, the model spectrum of tbe unsampled image (Figure 7.21a) bas Lhe correct

SEstimation of ninth-order true-likelihood parameters from the unsampled pressed-cork image (84)
required 302 jterations, falling to 168 after sampling with a period of 2 pixels, and further to 104 it-
erations for a period of 4 pixels.
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(a) dense fheld (b) sub-sampled, period 2 pixels
FIGURE 7.21: Model power spectra of dense and sampled Brodatz
images. Expected power spectra corresponding to ninth-order true-likelihood
MRF parameter sets estimated from the pressed-cork image (#4; Fignre 1.6).
Horizontlal axes represent spatial [requency, with the origin at any corner,
and height represents image encrgy. (@) unsampled model; () sub-sampled.
period 2 pixels. Compare the real spectra (Figure 7.19a,).

form, containing peaks al low [requencies and a central plateau. We believe thal as-
suming this general form imposes strain on Lhe model, so that there is little remaining
freedom to follow the contours of the real spectrum closely. After sampling (period
2 pixels), the form of the spectrum is more undulating (Figure 7.21b), and is more
compatible with the cosine variation from which it is derived (7-5). ln this case, the
limit imposed by the homogeneity constraint (5-66 on page 115) is not approached, and
the model forms a more sensitive description of the real spectrum.

We constructed scatter matrices Lo represent misclassification errors made by both
Lypes of sampled pixel classifier with uncorrupted images (data not shown). No bias
was observed, but tbe number of errors was so small that it was difficult to draw firm
conclusions. Smootb-sampling reduces aliasing error and provides better protection
against noise. It is unclear wbether modelling improvemenls derive mainly from a
reduction in the contrast of spectral peaks or an increase in peak width.

7.4.3 Effects of Sampling Blurred Images

Blur attenuates higb spatial-frequencies, reducing the amount of aliasing that occnrs
wheu tbe image is sampled. For large amounts of blur, the image is effectively band-
pass filtered, so that subsequent sub-sampling does not cause much loss of information.
In this case, the net effect of blur and sampling is Lo apply a lower amounl of blur
to the sub-sampled image, reduced by the same factor as the image dimensions. Sub-
sarupling does not change the fact that blur distorls the spectrum, bul has reduced
the effective amount of blur. Our prediction that misclassification errors would favour
models with a lower variance is still valid (§7.2.2). After the 33 image classes have been
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FIGURE 7.22: Scatter matrices for Sampled-Markov classifiers with
corruption. Our Brodatz image set was classified using true-likelihood pa-
rameter sets by the All-Quarters method alter sampling with a period of two
pixels (§6.4.3). The matrices have been ordered by increasing MRF variance
(33 classes). Correctly classified images lie along Lhe leading diagonal, and in-
tensity is proportional to frequency. (a) smooth-sampled classifier with noise,
variance 100 gray-level units squared, orders 2, 5, 7 and 9; (&) sub-sampled
classifier with blur, parameter 0-5 pixels, orders 3, 5 and 9. High levels of cor-
ruption have less effect than for the unsampled pixel classifier (Figures 7.15
and 7.17) but the trends towards higber variance (noise) and lower variance
(blur) remain.

sorted by MRF variance (Figure 7.16), misclassificalion errors of this type are marked
helow the leading diagonal of the scatter matrix, and this Lype of error predominates
(Figure 7.22a). Compare these results with those for the unsampled pixel classificr
(Figure 7.15): the trends are similar, bul the magnitude of the effect is smaller after
sampling, and reduces further when the sampling period is increased (data not shown).

7.4.4 Effects of Sampling Noisy Images
Sub-Sampled I'mages

The expected eflect of uncorrelated additive white noise is to add a constant fo the image
power spectrum, and this remains the case after sub-sampling with integer period s
because aliasing still gives a flat noise spectrum. Consequently, classificalion errors
should now show a trend in favour ol models with a high MRF variance (§7.3.2), and
this effect is observed in practice. The critical ratio which determines the magnitude of
this effect is: p?/a? (§7.3.2).

From this argument, it could be thought that sub-sampling would have no effect on
noise-immunity because noise has a similar effect on the spectra of dense and sampled
images. Examination ol Figure 6.2]1 on page 170 disproves this view: the sub-sampled
classifiers have greatly-increased noise tolerance. This is because the MRF variance of
sub-sampled models tends to he much higher than for dense images (Figure 7.3), and
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bence the magnitude of the noise has effectively heen reduced by the ratio p?/q?, tend-
ing to be masked by the inherent variability of the pattern. Informally, the iacreased
variance may be taken as a reflection of the loss of information caused by sampling:
the MRF predictor £ is very accurate for a dense image, giving a low prediclor-error
variance o2, but sampling inevitably reduces accuracy and causes the predicior-error
variance to rise. Unlike unsampled models, the variance changes by only a small pro-
portion for different MRF order, explaining why an interaction hetween noise level and
model order was virtually absent from our results (§6.6; data not shown).

Smooth-Sampled Images

On first glance, the smooth-sampled classifier has a big advantage over other pixel
classifiers because the window function reduces the variance of the addilive noise in the
sampled image by a factor §*:

var (f s Z v.-)

EN

I

it Z varv,

164
= 1% (7:25)

where f is the sampling frequency, and the range of summation for ¢ extendsover the
window neighbourhood AY. A few moments consideration show Lthat Lhe variance of the
field is liable to be reduced by the same faetor, nullifying Lhis advantage. In practice,
this does not happen because the field is usually dominated hy low frequencies, which
are hardly affected hy the windowing function. By contrast, the noise is proporlionately
grealest at precisely the higher spatial frequeneies which are most heavily atlenuated,
and its effeet is reduced aceordingly. Smooth-sampling with a period of 2 pixels reduces
the average model variance hy a factor 1-8 (Figure 7.3), but the variance of additive
noise by a factor 4, leading to a two-fold increase in signal-to-noise ratio. For bheavy
sampling (small f), even large amouuts of additive noise hardly affect classifieraccuracy
(86.6.2; Figure 6.24 on page 172), bul significant toss of information occurs al high
levels of sampling and the error rale for uncorrupted images starts to rise. Despite this,
the error rate for no added noise was still lower than for the dense classifier for the
range of values we examined (§6.6.2). Seatler matrices confirm the expected prejudice
for texture classes with high MRF variance (Figure 7.224).

7.4.5 Improved Robustness: Modified Classifiers

Although the noise and hlur-tolerance of the sub-sampled classifiers is much grealer than
with the dense image, it is possihle to improve it further hy using a modified classifier,
similar Lo those suggested above (§7.2.3; §7.3.3). Frequency aliasing complicates this
approach because it is not possible to predict what proportion of the spectral energy
is caused by this effect. Aliasing may he ignored, effectively assuming that the original
image was hand-limited and that all energy observed in the sampled spectrumis genuine.
The success of this approximation clearly deperds on the particular image. It allows
the previous blur-tolerant classifier to be used without further modification (§7.2.3),
because the shape of the hlur kernel is unchanged.
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Additive noise presents less of a problem because its (expected) effect on the spec-
trum is known, and it is straight{forward to correct for the effect of the window fuaction
in the case of the smooth-sampled classifier. Whether the noise-tolerant classifier gen-
erates useful results depends on the validity of our simple noise model, and should be
verified experimentally. Neither of these approaches has currently been implemented.

7.4.6 Sampled Gabor-Markov Models

Convolution with a Gabor kernel performs a windowed transform, effeetively blurring
the image wilth a space-constant ogaper (§4.1). The filter parameters we used imply that
OGsbor = 2+25 pixels (§6.4.2), and hence it is not surprising that agreement between
the unsampled data and auto-normal model is poor, given that a much smaller blur
parameter, b = 0-5 pixels, was sufficient to cause difficulty for the pixel classifier (§6.5.3).
High spatial-frequencies are heavily reduced by this amount of blur, creating aspectral
peak of very high contrast. Figure 7.20 shows how close to zero the average minimum
spectral density coefficient Apin becomes for the composite-feature model, leading to
higher spectral contrast than for pixel models. Only after a greater degree of sampling
does the peak contrast decline to more familiar levels. The band-limited nature of the
speclrum means that parameter sels are difficult to estimale and have a strong risk
of pumerical instability (page 196), but implies that very little information is lost on
sub-sampling. Note thal feature arrays are sampled for Gabor-Markov models ralher
than the original image (§6.4).

Blur inherent in the Gabor kernel tends to dominate the power speclrism, meaning
that tbere is little to distinguish the shape of specira from different. textures, and the
magnitude of the response and the meau of the feature array assume greater impnrtance.
Including the feature mean leads to a significant improvement in classification accuracy
(§6.5.1; Figure 6.13 on page 166), and Lhis trend accelerates as Lhe sampling period
is increased. When the feature mean is included, the eror rate is still falling for the
composite-feature classifier at a sampling period of four pixels whereas ithe rate for the
pixel classifier has then started to rise (§6.6). This is perhaps explained by the peak
in the feature spectrum being steeper, reducing Lhe effect of aliasing (compare Figures
7.19 and 7.23).

7.5 Conclusions: Modelling Accuracy Determines
Classifier Performance

Texture classification henchmarks show that our hybrid Gabor~Markov models perform
hetter than a conventional pixel analysis, achieving superior robustness o image blur
and noise combined with greater computational efficiency. Our proposed Sampled-
Markov models have even more attractive propertics, and achicved the best results in
our tests (Chapter 6). In this Chapter, we examined the level of agreement between the
imposed auto-normal model and experimental data, and found this correlated strongly
with classifier performance. Unsampled pixet data was in moderate agreement with the
model, and we identificd image blur as a possible cause of modelling error. Synthetic
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(a) dcense field (b) sub-sampled, period 4 pixels

FIGURE 7.23: Power spectra of dense and sampled Gabor-Markoev
features. Horizontal axes represent spatial frequency, with the origiu at any
corner, and height represents image energy. Resultant features were extracted
[rom the pressed-cork image (#4; Figure 1.6). (a) power spectrum of the
x field of the composite-feature model: energy is conceutrated at low spatial
{requencies. (&) as (a), after sampling with a period 4 pixels: the spectrum
is more even, but without the very high degree of aliasing seen [or sampled
pixel spectra (Figure 7.19).

textures fit the model exactly, but agreement soon deleriorates when the image is
corrupted by noise or blur, consistent with poor robustness of the unsampled pixel
classifier. By contrast, sampled pixel models were in close correspondence withlhe data,
and this it declined only gradually when the image was corrupted. Unsampled Gabor—
Markov features show poor correspondence with the auto-normal model, and although
this was substantially improved by sampling, skew was a problem for angular fcatures.
We proposed a modification to overcome this, forming improved Gabor-Markov models,
and demonstrated that these were in significantly closer correspondence with the auto-
normal model. From these observations, we conclude that classification accuracy is
strongly correlated with the fidelity of statistical modelling. It is not sufficienl to rely
on the statistical framework to make best use of the data: pre-processing to ensure high
descriptlive accuracy affects perlormance considerably.

By examining the effects of image corruption on the true-likelihood funclion, we
predicted trends in misclassification error arising from noise and blur, and demonstrated
that our results followed this patteru. Blur biases the classifier towards models of lower
MRF variance; noise towards higher variance. In both cases, we suggested modified
classifiers ltaving the flexibility to resist these predispositions, and demonsirated that
classification accuracy could be improved substantially by this approach.

Images influence the likelihood function only through their power spectrum, and we
sought to explain the consequences of image sampling by a spatial-[requency analysis.
We suggested that the presence of a high-contrast peak in the image spectium causes
modeclling difficulty, and hence leads to poor classifier perlormance. Tall peaks usually



214 CHAPTER SEVEN: Fidgelity of Auto-Normal Mode!

occur in the power spectra of our Brodalz Lextures, but peak contrast is reduced by
sampling, leading to betier agreement with the model and improved classifier acauracy.
This conjecture should be understood as a heuristic argument supported by experimen-
tal data ratber than a proof. When taken to extremes, sampling produces data which
may be modelled very accurately but contains litile remaining information. This limit
was nol approached by the parameters used in Chapter 6, and our results show that
performance of all types of classifier correlates closely with the level of correspondence
with the auto-normal model.



Conclusions, and Suggestions
for Further Work

This thesis appertains principally to the efficient analysis of visual texture. Blending
the computational efficiency of Gabor filtering with the descriptive power of hierarchi-
cal Gibbs-Markov models, we have proposed a statistical Gabor-Markov framework
for texture analysis in low-level vision. Qur experimental appraisal of this framework
led ns to propose families of Sampled-Markov models. Adopting texture classification
accuracy as a benchmark, we showed that bolh model types combine improved effi-
ciency with greater accuracy and robustness than a conventional Markovian analysis.
These performance trends were explained by examining interactions between image data
and the auto-normal Markov model: there is a strong correlation betwecn accuracy of
classification and fidelity of the statistical modelling.

In this final Chapter, we reslate our main objectives, summarise how we have sought
to meet themn, and draw conclusions from our achievements. We suggest several avenues
for further research arising from extensions and refinements of our work. Gabor-Markov
models are polentially more flexihle than conventional Markovian approacheslo texture,
but this was not exploited fully by the prototype models we employed. Enhancing the
range of features and image primitives coupled with automatic spatial-frequency tuning
should remmedy this omission. Image sampling hes at the heart of our most successful
Sampled-Markov texture classifiers, and we propose investigating the influence of anti-
aliasing to test whether their superiority may be further increased. Finally, e mention
ideas for additional texture classification and segmentation experiments, and comment
on approaches to the implementation of Gahor-Markov models on parallel hardware.



216 CHAPTER EIGHT: Conclusions

8.1 Markovian Analysis of Texture: Conclusions

Subjectively, human visual perception appears to be immediate and spontaneous, allow-
ing us to sense our surroundings completely and effortlessly, but controllied experiments
demonstrate the existence of both serial and parallel paradigms (Chapter 2). Current
psychological models of low-level human vision employ a two-stage hierarchy: simple
spatially-parallel “pre-attentive™ fillering guides the allocation of more complex but
spatially-restricted “attentive” processing across the visual field. Similarly in machine
vision, it is possible to analyse texture either in Lerms of derived properties or statistics,
many of which may be obtained by simple local processing; or in greater depth hut with
more difficulty, by characterising its hierarchical structure (Chapter 3). This thesis is
about serial and parallel paradigms in low-level vision.

Derived texture statistics are usually incomplete, and hence fail to represent each tex-
ture unamhiguously, but are computationally altractive because local data-independent
processing maps easily onto special-purpose parallel hardware (in both biological and
machine vision). We have exarmined Gabor filters in this thesis because of Lheir unique
theoretical advantages for signal processing, namely rinimisation of joint uncertainty
according to the uncertainty principle for information {Chapter 4). Despite these at-
tractive properties of Gabor keruels, simple image segmentation algorithms derived
[rom idealised texture models gave mixed results. Suitably-conslrained textures were
segmented accuratcly and efficiently, attainiug levels of pecformance qualitatively sim-
ilar to pre-attentive human vision. Performance deteriorated for textures violating the
assumed model, and borders were detected with low accuracy or missed altogether.

Natural textures often display random rather thau regular spatial varialion, and
may possess different structure at different spatial scales (Ahuja & Rosenleld, 1981; Marr,
1976). Notions ol optimality, hypolhesis-testing and inherent variability are central to
statistical study, and we adopt Gibbs-Markov random feld models because they make
explicit the influence ol local spatial context withiu a statistical framework (Chap-
ter 5). Raw random field models operate at a low level, describing arrangements of
individual pixels, and it is common to describe more complex texture structure by hier-
archical models. Unfortunately, algorithms to manipulate these structural models are
often computationally intense, and several approximations must be taken lo simplify
the analysis, diminishing the benefits arising from an optimal statistical ramework.
Gibbs-Markov models have been successfully applied to many classic image-processing
problems, including image restoration and unsupervised segmentation.

8.1.1 Our Approach and Objectives

The chief objective of this thesis is to propose new models for textnre analysis combin-
ing the computational efficiency of Gabor filtering with the superior descriptive power
and optimal statistical framework available to hierarchical Gibbs—-Markov models. Lim-
itations of current Gabor-filtering algorithms arise from over-simplified image models:
textures are assumed to contain few significant spectral components and to generate
constant or smoothly-varying Gabor amplitude wben filtered (Bovik et al,, 1990; Tan,
1988). In practice, the spectral composition of adjacent textures may nol be disjoint,
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and Gabor amplitude shows considerable variation within each textured region (Chap-
ter 4). Some authors have sougbt to suppress these fluctuations by employing heuristic
post-processing, but this leads to distorted or missing texture boundaries (e.g. Fogel &
Sagi, 1989). Our approach is to ezploit ratber than suppress spatial variation in Gabor
amplitude within an optimal statistical framework, describing the spatial arrangement
of Gabor “features” wilh Markov random fields to form hierarchical Gabor-Markou
models.

Gabor feature arrays are expressed in standard forms in order to hide details of low-
level filtering from higher-level models, and to provide a degree of abstraction (Chap-
ter 4). Unlike previous expedient strategies for combining measurements from many
Gabor channels, we propose two feature-extraction melhods based on sound principles.
Our Profile algorithms determine local image features by matching observed channel
responses to ideal Gabor signatures generated by parameterised irnage primitives, se-
lecting the feature vector thal brings tbese inlo closesi correspondence. In an allernative
proccedure, Resultant features are obtained directly [rom Gabor channel outputs by ex-
ploiling response momcnts. Both methods generale sensilive and compact descriptions
of real textnres, and may be enhanced by the improvements suggested below (§8.2).

Markov random fields are specified by local conditional probability densities arising
from pixel interactions witbin a small image neigbbourhood (Chapter 5). Hypothesis-
testing and manipulation of these models often requires the joint probabilily of afl
pixcls to be compuled, but this is intractable except in special cases. We adopt autlo-
normal Markov models for this reason, assuming that pixels have a normal marginal
probabilily density and interact linearly. Orientation is an important visnal cue and
a key Gabor feature, but is periodic whereas the normal distribution is aperiodic and
unbounded. We proposed angular field models to overcome Lhis disparity.

In order to compare the performance of our proposed Gabor-Markov models with a
conventional Markovian analysis, we adopted texture-classifieation accuracy asa bench-
mark (Chapler 6). True and pseudo-likelihood classifiers were implemented for both
paradigms, and we tested their robustness by adopting ideal models for image noise
and blur. Fixed filter parameters were used to extract Gabor features from each image,
but automnatic spatial freqnency-tuning methods proposed below should lead to more
sensitive and flexible representations (§8.2).

8.1.2 Experimental Results and Discussion

Similar accuracy was obtained by Gabor~Markov and conventional pixel classifiers with
uncorrupted images, achieving a minimum error rate of 6% (Chapter 6). Our Gabor-
Markov analysis was much more robust, increasing noise-tolerance by a factor ol up
to 45, and derives computational benefits from a reduction of eflective image area
of up to 94%. Little distinction was observed between performance with Profile and
Resultant feature vectors, but true-lkelihcod parameter sets were consistenty superior
to pseudo likelihood. Further investigation led to the diseovery of Sampled-Markov
classifiers: these enjoy greater robustness and bigher computational efficency than
botb conventional and Gabor-Markov classifiers, and have an optimal error rale of 0%.
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Although we expected Gabor-Markov classifiers to perform well, the success of
Sampled-Markov classifiers is remarkable. Classification accuracy shows strong cor-
relation with the level ol correspondence belween image data and the assumed auto-
normal model, and our results may be explained by this effect (Chapter 7). Parameter
sets lor conventional pixel models show poor agreement with the image data from
which they were estimated, possibly due to image blur. By contrast, Sampled- and
Gabor-Markov models both fit experimental data closely, particularly alter proposed
improvements (§7.1.5; §8.3). We believe that the presence of high-conurast peaks in the
image power spectrum leads to inaccurate modelling by a conventional analysis, and
demonstrated that peak contrast is reduced by sampling, bul [urther investigation of
this effect is proposed below (§8.3.1). Trends in misclassification error are predicted
correctly by examining the interaction of image blur and noise terms with the auto-
normal likelihood [unction, and modified classifiers were proposed to compeesate for
these types of image degradation.

8.1.3 Summary of Achievements

Io this thesis, we have:

explored the applicability of Gabor euergy filtering to visual texture segmentation,
aud identified causes for observed performance limitations. Variability is often

observed within each fltered texture, but this is not accommmodated by algorithms
responding to first-order differences of Gabor amplitude.

devised sensitive and efficient algorithus to extract Gabor [eatures from textured
images, and proposed a bybrid Gabor-Markov framework [or texture analysis.

discovered new [amilies of Sampled-Markov texture models possessing altractive
descriptive and computational attributes.

adopted texture classification accuracy as a benchmark to compare our novet
[rameworks with a conventional Markovian analysis.

Gabor-Markov: without reducing classifier accuracy, computational load was re-
duced by 88%, and robustness to image noise increased by a factor of up
to 45.

Sampled-Markov: computational load was reduced by 96% and robusiness 1o im-
age noise increased by a factor of up to 200. Smooth-Sampled models achieved
100% accuracy in our tests, compared with 94% witb a couventional analysis,
and are the prelerred choice.

explained observed performance trends by investigating interactions with the as-
sumed auto-normal Markov model. Classification accuracy correlales strongly
with the descriptive accuracy our models, establishing the importance of appro-
priate pre-processing ol image data prior to statistical analysis.

Qur classification resulls demonstrate the superiority of both Sampled-Markov and
Gabor-Markov models compared to a convenlional Markovian analysis. Accordingly,
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we conclude that the conventional approach sbould be discarded except for analysis
of very small image regions, when there is insufficient data for Sampled- or Gabor-
Markov models to operate reliably. Further work suggested below can only widen the
performance gap between our proposed models and current methods, strengthening this
conclusion. Highest classification accuracy with our Brodatz image set was achieved
with a fifth-order true-likelihood Smooth-Sampled Markov classifier, sampling period
2 pixels, and we recommend these model parameters. Gabor-Markov approaches are
potentially more flexible than Sampled-Markov models, and could become the preferred
paradigm if the improvements and further work suggested below are successful.

8.2 Improved Gabor Feature Representations

Our novel Gabor—Markov models achieved superior perlormance to a conventional pixel
analysis in the texture classification benchmarks reporled in Chaptler 6, suggesting that
textures are characterised adequalely by arrays of Gabor [ealures extracted by our
proposed methods (§4.6). Despite this success, several aspects of the feature-extraclion
process could be improved, leading to increased fexibilily, better performance, and
greater computational efficiency. With these enhancements, Gabor-Markov models
may surpass the excellent results obtaiued with Sampled-Markov models.

8.2.1 Additional Features and Image Primitives

Onur proposed Profile feature-extraction method combines measurements from many
Gabor channels by matching observed responses to Gabor siguatures produced by pa-
rameterised image primitives (§4.6.2). This procedure is flexible because additional
Gabor channels or alternative filler parameterisalions may be accommodated easily,
yet the representation always assumes a standard form. Such an arrangementis conve-
nient for a hierarchical model, as it hides low-level operational details from the high-level
model (our Markov random fields). We noted in §4.5.2 that the success ol this approach
is conditional on the selection of appropriale image primitives and paramectersations.
Two primitives were discussed above, LINE and SINU, corresponding to an ideal line
and a sinusoid grating, respectively. Other primitives may provide a more appropriate
description of the observed Gabor responses in some cases, and we have considered
STEP and RAMP, corresponding to a sltep-edge and intensity ramp:

c ifz<0
{—c ifz>0 &)

Jranp(z,y) = cz (8'2)

Sstree(z,y) =

where both primitives may be rotated about the origin, and possibly translaled. With
an extended range of image primitlives, it may be appropriale to select the signature
which most-closely matches the observed response at each image location, perhaps using
“primitive Lype” as an additional image feature.

No image primitives are required for Resultant feature extraction: obscrved Gabor
responses are described directly (§4.6.3). Similar performance was obtained with Profile
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and Resultant features in conjnnction with Gabor-Markov texture classifiers (§6.5), bui
this was using filters tnned to a single spatial frequency. Two deficiencies o Resultant
feature exlraction may be addressed by a simple extension to the procedures described
in §4.6, by estimating a local Gahor “phase” [eature, é. Firstly, the current method
does not measure the sigr of local conirast ¢, because both contrast and orienlation
[eatures are extracled [rom measnred Gabor energies, which are insensitive to this pa-
rameter (R o< ¢?). This is probably the canse of skew present in direct MRF models of
image contrast (e.g. Figure 7.105 on page 189). Secoudly, it is not possible at present Lo
reconstruct textures [rom their Gabor [eatures because these do nol capture sufficient
information., Texture synthesis is desirable to verify that [eature sets represent visual
properties of the texture adequately, and often suggests how improvements may be
made (§3.6.1). We conld, [or example, compare textures syathesised [ror their Gabor
and MRF parameter sets, and ultimately also [rom Gabor-Markov parameters. Approx-
imate reconstrnction is possible il local phase is known, and phase also determines the
sign of local image contrast.

We bave tentatively defined onr Gabor “phase” [eature ¢ in a similar manner to
other Resultant [eatures:
Zx Ma.: (83)
z, Mc.i
where snmmation [or 7 extends over all channels, M; and M, are the sine and co-
sine phases of observed channel responses (orientation spacing assumed equal), and
—r1 < ¢ € =. Examples of phase fields extracted from two of the imagcs used previ-
ously are shown in Figure 8.1: whilst we bave not altcmpted to classify textures based
on these [eatures, they do appear to have potential for image description, and phase dis-
continuities may be used to locate Lexture boundaries (Bovik el al.. 1990). Phase could
easily be added to the Gabor-Markov models described in Chapter 6, eilher as an “in-
dependent” additional [eatnre, or by modilying an existing model, perhaps lorming a
complex-valued Markov random field.

tanq@ =

8.2.2 Selection of Gabor Filter Parameters

Fixed Gabor filter parameters were used 1o exiract [eatnres nsed by the Gabor-Markov
classifiers reporied in Chapter 6: each image was filtered al six orientations,iwo phases,
and a single spatial [requency (§6.4.2). Natural textures olten have a hierarchical (rather
than a [ractal) structure, and may generate quile different [eature arrays at different spa-
tial scales (Ahuja & Rosenfeld, 1981; Marr, 1976). Both our fealure-extraction methods,
Profile and Resnltant, could easily be extended to accommodate variable or multiple
spatial-[requency tuning, allowing the higher-level Markov random field component of
our hierarchical models to operate al a more abstract level. Our Gabor segmentation
experiments confirmed that fixed filter parameters are nol always suitahle for texture
discrimnination (§4.4), and we suggest iwo alternative procedures below.

Automatlic Selection of Spatial-Frequency Parameler

When the objective is to represent the most significant component of a texture, or
to characlerise il approximately using only a few filter channels, the power-spectrum
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(a) #17: herringbone weave (b) zebra image

FIGURE 8.1: Examples of proposed Gabor “phase” feature. Gabor
“phase” feature ¢ drawn to a linear scale (white: ¢ = —m; black: ¢ = =).
(a) herringbone image (#17; Figure 1.6 on page 11), 256x256 pixels, filter
parameters: (T = 7-3 pixels, By, = 07, &8,y = 7/9, © = 7/6; 0 =
5-8 pixels). (b) zebra image (Figure 4.4 on page 68), 151x177 pixels, filter
parameters: (T = 6 pixels, Byy; = 4, A8,y, =2r/9, 0 = 7/d; ¢ = 1-3 pixels),
using the notation described on page 69. Results with these images suggest
that the proposed phase feature generates useful image descriptions.

ncthod is often able to suggest suitable Gabor filler parameters (Bovik et al., 1990; Tan,
1988). Dominant spatial frequencies are found by searching for peaks in the image power
spectrum (§4.3.2). We adopted the power-spectrum method to select filter parameters
used Lo obtain Gabor energy segmentations (Figures 4.14 and 4.15 on pages 78-80)
and Gabor-feature representations (Figures 4.244.26 ou pages 96-98), described in
Chapter 4. In the form stated in §4.3.2, the power-spectrum method determines bolh
a spatial frequency and an orientation by locating a single spectral peak. We mtend Lo
sample image orientaljons evenly at the chosen spatial frequency, and hence il is more
appropriatle to pool spectral energy across all orientations before locating frequency
co-ordinates of spectral peaks.

When the application is texlure clagsification, and projection parameters may be
assumed constant across the image, a single spatial scale chosen by the power-spectrum
method will probably give a superior feature representation than a fixed value assumed a
priori. Feature representations may be made scale-invariant by sampling in proportion
to the filter period, hidiug changes in spatial scale from the random field components of
our hybrid models. This is altractive because Markov random field models are sensitive
to changes of texture magnification, and an extension hy means of a modified classifier
is awkward and computationally demanding {Cohen ef al,, 1991). Elimination of scale
variation during the Gabor filtering stage may be achieved with very litile computa-
tional effort, using the method suggested above, which also automatically determines
the sampling period for Gabor-Markov models. Care is required when compeling fre-
quencies have similar encrgies because selectiug different bands during trainiug and
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classification stages could prove disastrous. Unlike true modified Bayes classifiers, this
method has no claim to be optimal, but js more computationally efficient.

Raw MRF models are also sensitive to image rotation, unless circularly-symmetric
featurcs are used (§3.1.3). Image rotation is eflectively eliminated by the improved
Gabor-Markov models proposed in §7.1.5 because the orientation feature array is ef-
fectively “normalised” before computing fields required by tbe Markov models. Bolh
spatial-frequency and orientaliou paramelers may be estimated automatically with lit-
tle computational effort, providing (approximate) scale- and rotation-invariant lexture
classificatiou more readily that full modified Bayes classification (Cohen et al., 1991).

Filiering at Multiple Spatial Scales

Only trivial textnres possess significaut structure at jusl one spatial scale, and more
sensitive feature representations to those considered above require filtering at multiple
spatial-frequencies. Suitable frequeucies may be identified by locating peaks of suc-
cessive magnitnde in the orientation-corrected power spectrum (Tan, 1988), or a fixed
range of frequencies may be built into tbe feature-extraclion algorithm. With this ex-
tra flexibility, it is possible to compute a local scale parameter, perhaps along the lines
described in §A.3. Our signature-matcbing (Profile) approach to feature extraction
adapts immediately to chaunels tuned to mauy spatial {requencies, allowing us to es-
timate more feature parameters for our current image primitives, or to consider more
complex patterns.

Adopting a local spatial scale is appropriate for image segmentation, wheredifferent
textures (or portions of textures) may be present at different magnification. The “scale”
parameter could be trcated as anolber “independent” feature and added lo existing
Gabor-Markov models, or possibly used to obtain an initial rough segmentation so that
later MRF algorithms could be applied at a single scale. A further possibility is to apply
the information represented by tbe scale feature to estimating slant and tilt, neither of
which is accommodated well by raw Markov models.

We have demonstrated a link between classifier performance and the level of cor-
respondence between texture model and experimental data (Chapter 7), and showed
that improved Gabor-Markov models achieve good agreement (§7.1.5). Coupled with
improvements in {eature representations and filter tuning proposed here, we believe that
Gabor-Markov models are capable of higher accuracy and greater flexibility than the
protolype versions implemented in Chapler 6, and are deserving of further study.

8.3 Improved MRF Models

Our experience with unsampled MRF pixel models has shown that tbe use of maximum-
likelibood techniques does not necessarily lead to an optimal system (Chapter 6). We
have a number of ideas for improvements and suggestions for further work, mostly
slemming from the success of Sampled-Markov models.
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8.3.1 Further Investigation of the Effects of Sampling

Our examination of the influence of image sampling on classifier performance found
convincing explanations for the superior blur and noise tolerance of Sampled-Markov
texture models (§7.4), and we found experimentally that performance correlates closely
with the level of correspondence between model and data (§7.1). We suggesled that
unsampled arrays of pixels (and Gabor fealures) are difficult to model closely by auto-
normal MRFs because of the presence of high-coutrast peaks in their Fourier spectrum,
supporting this hypothesis with experimental data (§7.4). The practical importance
of the cousequences of image sampling justify further investigation of this topic. For
example, might it be possible to determine the most appropriate sampling period auto-
matically by examining the image power spectrum? This procedure would have [urther
practical advantages, allowing the most favourable trade-off between modelling accuracy
and computational efficiency to be determined for each fexture class.

Tbe role of frequency aliasing iu the superior performance of Sampled- Markov classi-
fiers has nol been fully examiued. Aliasing coutributes to an jucrease in high-frequency
energy in sampled images, acling to reduce the coutrast of the problematic spectral
peak, and hence may be beneficial in small amounts. This suggestion is not entircly
consisteni with the success of Smooth-Sampled Markov classifiers, however, since their
window {unctiou reduces aliasing. Anti-aliasing is computationally-expensive in the
spatial domain, requiring couvolution with a broad kernel, but may be performed easily
with an unsampled spectral representation by band-limiting it. Adopting this procedure
could allow us to eliminate aliasing error, and hence achieve a better understanding of
the effects of image sampling, and possibly obtain yet further improvements in classi-
fier performance. Manipulating image dimensious in the spatial-lrequency domaiu also
facihitales the use of non-integer sampling periods.

Preliminary Investigalion of the Influence of Anti-Aliasing

Thorough investigation of the iufluence of [requency aliasing awaits further research, but
we may reporl some preliminary resulls with the pressed-cork image (#4; Figure 1.6).!
The image was band-limited in the Fourier domain, and converted back to ils spatial
form. We characterise anti-aliasing by the largest sampling period with which the mod-
ified image may be sampled without introducing aliasing error. Band-limited versious
of the pressed-cork image are shown in Figure 8.2: the visual effect of anii-aliasing
is similar to blur. We may compare power spectra of sampled band-limited images,
without aliasing, with those of the unprocessed sampled images (Figures 8.3a,b and
7.195,d on page 207, respectively), shown from the same viewpoint. Power spectra with
a sampling period of 2 pixels are similar, but the anti-ahased version assumes a much
less cbaolic form for heavier sampling (period 4 pixels). This confirms that the original
image is virtually band-limited, and hence that aliasing plays a minor rolc for moderate
sampling, becoming more significaut wheu the sampling period is jucreased. Spectral
peaks of band-limited images have very high contrast, tending to infinity, and bence

'Unlike previous Chaplers, where results with the pressed-cork image have been presented to
illustrate common trends for our Brodatz image sel, the investigation presented herc is preliminary
and we have onfy examined this image.
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(a) period 2 pixels (b) period 4 pixels
FiGURE 8.2: Anti-aliased Brodatz image. Anti-aliased versions of the
pressed-cork image (#4; Figure 1.6 on page 11), formed by adjusting its Fourier

spectrum. (a) suitable for sainpling with period 2 pixels: (b) period 4 pixels.
Anti-aliasing has a similar visual effect to blur.

our argument of §7.4 predicts that modelling error will be high. Agreement with ninth-
order true-likelihood MRF parameter sets after anti-aliasing for sampling periods of 2
and 4 pixels are shown in Figure 8.3¢,d: modelling error is very significant, appearing
similar to that for blurred images (§7.1). Note tbe extremely low standard deviation
of the empirical MRF prediclor-ecror, 0-05 and 0-06 gray-level units, respeclively: cen-
Lre pixels of band-limited images may be reconstructed almost exactly from their MRF
neighbourhoods.

By contrast, correspondence belween ninth-order true-likelihood parameler sets esti-
mated from sampled anti-aliased pressed-cork images is very close (Figure 8.3¢f). The
degree of anti-aliasing matches the sampling period, so that Lhe resulting frequency spec-
trum does not contain any “holes” (a,b), and contrasl of Lhe spectral peaks does not
approach infinity. From these preliminary resulls, which have been obtained by process-
ing only the pressed-cork image, it appears that freqnency aliasing is not beneficial 1o
modelling accuracy, and should be eliminated by anti-aliasing prior to sampling. Once
this is done, we anticipate that performance of anti-aliased sampled classifiers will be
superior to smooth-sampling (§6.6.2), further extending the advantages of our proposed
methods compared to conventional techniques. Sampled Gabor-Markov models wonld
probably also benefit from anti-aliasing, bunt this was not examined. If this tentative
conclusion is supported by further research, automatic selection of the mosl appropriate
sampling period becomes even more attractive, corresponding to the proportion of the
[requency specirum to be modelled.

8.3.2 Simplified MRF Neighbourhood Structure

Classification results for both sampled and unsampled images show that there is little
performance benefit when MRF neighbourhood size is increased above a small miniinum
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(a) sampling period 2 pixels (b) sampling period 4 pixels
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Ficure 8.3: Effect of anti-aliasing on image spectra and correspondence with
auto-normal model. The pressed-cork image (#4; Figure 1.6 on page 11) was anti-aliased
by adjusting its Fourier transform to permit sampling with the period shown, and ninth-order
true-likelihood parameter sets estimated. (a,b) power spectra after sampling, periods 2 and
4 pixels, respectively. Horizontal axes represent spatial frequency, with the origin at any
corner. Compare spectra without aliasing (1'igure 7.195,d on page 207). (c,d) histograms
of observed (solid) and expected (dotted) distributions for MRF predictor-error u (gray-level
units), showing agreement with auto-normal model of unsampled band-limited image, peri-
ods 2 and 4 pixels: very poor corrcspondence. (e,f) after sanipling, periods 2 and 4 pixels:
close correspondence. Cotnpare agreement with original image (Figure 7.1a on page 178)
and after raw sampling (Figure 7.6a on page 187).
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Ficure 8.4: Modified Markov neighbourhood structure. This Markov
random field structure has a larger image “footprint™ than a conventional
ninth-order model, but is specified by 10 rather than 24 parameters (compare
Figure 5.1 on page 107).

value between third and filth order (Chapter 6). In some cases, larger MRF neighbour-
hood size leads to {ower accuracy! Third-order MRF neighbourhoods are specified by
six paramelers, rising to twenly-four for ninth order, and the additional computational
effort involved in estimating and manipulating Lhese exlra lerms hardly seems worth-
while. In some cases, it may be appropriate Lo adopt a simplified neighbourhood struc-
ture, where several pixels are multiplied by the same coefficient. The neighbourhood
structure sbown in Figure 8.4 has a larger image “loolprint” than a ninth-order model,
but is specified by only ten pararucters. This form is drawn only to illustrate the idea;
we have not performed experimeuts to determiue its effect on performance. Grouping
neighbourhood sites together in this way does not affect their liuear inferaction, and
hence the resulting model s still auto-normal.

8.3.3 Experimental Appraisal of Modified Classifiers

We have characterised robustness with respect to idealised models for image degrada-
tion, modelling image blur by convolution with a Gaussian kernel, and image noise
as independent, additive, white aud Gaussian (§6.4.3). By examining the perturbing
effcet. of these transformalions on Lhe image power spectrum, we identified modified
Bayes classifiers which sense the amount of noise or blur present and correct appropri-
ately (§7.2; §7.3). Preliminary resulls with the modified anti-blur classifier were encour-
aging (§7.2.3). but [ull investigation of the practical utilily of these forms awails further
experimental verification. In particular, we need to estabhsh whether real image degra-
dation phenomena are modelled adequately hy the idealised foruis we have assumed,
whether modified classifiers function correctly iu conjunction with image samphng, and
whether they are themselves sufficiently robust. Following a suggestion by Kashyap, we
could design a further modified classifier insensitive to changes of global illumination
(Kashyap et ol., 1982). Modified classifiers iuseusitive to global changes in image scale
or rotation have been proposed by Cohen et al. (1991), and it would be inlerestiug to
compare the performance of these maximum-likelihood classifiers with our proposed
sub-optimal method exploiting Gabor filtcring (§8.2.2). All the classifies mentioned
above assume global image transformations; it would be useful Lo extend this to include
smooth variations due to orthographic projection or texture inapping.
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It has been suggested that manufactured objects (rather than natural textures of
the type we have considered) are better described by nou-stationary Markos models,
wbere the field mean is a low-order function of image location (Hunt & Cannon, 1976;
Silverman & Cooper, 1988). Parameler estimation and manipulation of non-slationary
models arc challenging because many of the techniques described above rely on the
field being stationary (Cbapter 5), and exact extensions to non-stationary fields are
computationally prohibitive (Silverman & Cooper, 1988). Further development of efficient
sub-oplimal algorithins is required Lo make non-stationary models more accessible.

8.4 Applications to Image Analysis

Some applications of conventional Markov models to image analysis werc discussed in
Chapter 5, and many of these algorithms adapt easily Lo Sampled- or Gabor-Markov
models. Texture analysis is an important part of low-level vision: there are very many
tasks for whicb it may be exploiled, and a full review lies outside the scope of Lhis
thesis. Some common examples include: classification of medical, aerial and geological
images; navigation, bin-picking, and identification. In this section, we suggest some
further texture classification experiments and comment on ideas for image segmentation
algorithms.

8.4.1 Further Texture Classification Experiments

Texture classification was used in Chapter 6 as a benchmark to compare the perfor-
mance of our proposed Gabor-Markov models with a conventional textnre analysis. We
concluded that Gabor-Markov models were superior to conventional nnsampled pixel
models with respect to classifier robustness and compntational efficiency, and that (he
composite-leature model was usually the appropriate choice (§6.7). Sampled-Markov
classifiers were much more accurate tban other types, achieving 100% accuracy in some
circumstances. Both Gabor-Markov and Sampled-Markov models achieve superior per-
formance to that offered by a conventional analysis. Discussion of these results led us to
suggest modifications to Lhe original Sampled- and Gabor-Markov models, and furlher
classification experiments suitable for establishing the merils ol these updated proposals
are considered below.

In §7.1.5 we proposed improvements to Gabor-Markov models, bringing them into
closer correspondence with experimental data, and further enhancements weresuggested
above (§8.2). Our preliminary investigation of anti-aliasing suggests that Sampled-
Markov models could also be improved (§8.3.1). Together, these proposed revisions
sbould further widen the gap between conventional (unsampled pixel) analysis and the
new forms we propose, but the margin should be determined experimentally. Our study
has used natural Brodatz textures (Figure 1.6), and it would be helpful to extend the
generality of our conclusions by repeating the classification exercise for a wider variety
of real textures (aerial, medical, geological, efc.), perhaps also widening the domain to
include colour images or range data.
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Robustness Lo image noise and blur was measured in Chapter 6, and we have de-
signed modified classifiers to increase immunily to tbese types of image corruption.
In §8.2, we proposed tbat image scale and rotation should be eliminated from our hy-
brid models by adaptive Gabor filtering, believing that this procedure should be less
computationally-demanding than full modificd Bayes classification and demonstrate
{urther advantages of Gabor-Markov models. Both proposals awaitl experimental veri-
fication.

8.4.2 Ideas for Image Segmentation Algorithms

In this thesis, we have concentrated mainly on texture classification becauscil is a
suitable benchmark for comparing different texture models, bnl image segmenialion is
probably of greater practical interest. Current approaches to image segmentatiou were
reviewed bricfly in §3.5, commenting further on Gabor and Markov methods in Chapters
4 and 3, respectively. Many of these conventional methods may be used in conjunction
with our proposed Sampled- and Gabor-Markov models. Below, we comment on two
ideas for efficient imagce segmentation, neither of which has yet been implemented.

Gabor-Gibbs Image Segmentation

Texture energy algorithms are atiractive because of Lheir computational efficiency, and
may be implemented easily on parallel hardware. Qur experiments with Gabor energy
segmentation confirmed impressions from the literature that the main drawhack with
this approach is the level of variation within textured regions after filtering, so that
boundary shape is often distorted by corrective post-processing (§4.4). Our approach
to this situation is Lo describe the spatial arrangement of Gabor features by Markov
random fields, forming Gabor-Markov models (§5.7). Gabor filter output may be sub-
sampled, and hence these models retain some of the compulational benefits of Gahor
filtcring.

An alternative procedure, more in keeping with the attentive-pre-atieutive di-
chotomy described in Chapter 2, is to “regularise” Gabor output by modelling the
segmented image with a Gibbs random field. Previous apphcations ol Gibbs random
fields (GRFs) to image segmentation have either used pixel dala directly or formed a
hierarchical random field model, and demoanstrate that it is straightforward lo assume
suitable GRF clique potentials without having to estimate them explicitly (Chapter 5).
The simple “modal filteriug” algorithm we used above in conjunction with Gabor energy
classifies each pixel according to the orientation of tbe dominant filter response, and is
not very discerning (§4.4). A suitable extension of this approach is to form the Gabor
orientation field using our proposed extraction method (§4.6), and then to “restore” it
with tbe Gibbs sampling algorithm (§5.3.2; Geman & Geman, 1984). Raw [eature arrays
are “noisy” but seem amenable to improvement by this approach (Figure 8.5). Defini-
tions for the clique polentials and image penalty term should reflect the periodicity of
the data; perhaps something similar to fg(#) (Figure A.7 on page 268). Extension to
olher Gabor features, or to include additional bonndary processes, is straightforward.
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outer: #77 canvas ouler: #78 straw cloth
(2) ()

inner: #84 raffia inner: #68 wood grain
FIGURE 8.53: Gabor features suitable for modelling with Gibbs ran-
dom fields. Orientation features estimated from Brodatz montages after
filtering with parameters suggested by Lhe power-spectrum method (§4.3.2).
Orientation is represented by a linear scale rom white to black, ignoring
periodicily. (a) canvas-raffia (Figure 4.145 on page 78), filter parameters:
(T = 4:5 pixels, By = 0-7, A8 3 = 7/6, © = n/d; 0 = 3.5 pixels); (b) cloth-
wood (Figure 4.14¢), parameters: (T =5 pixels, By, = 1-5, 88, = 57/36,
© = n/6; o = 2 pixels), using thc notation described on page 69. Both fea-
ture arrays are “noisy” but could probably be restored more sensitively aflier
modelling by a Gibbs random field thar by biur.

Essenuially, the above proposal parallels models of human vision, using fast spatially-
parallel Gabor filtering to guide more detailed examination of boundary location
(§2.4.1). Gibbs random fields are suitable for modelling image layout because segmen-
tations differing with respect to local change in boundary location may be compared
by a local analysis. An alternative application is to use the primitive Gabor segmenta-
tion to guide estimation of initial MRF parameter sets in an estimate-segment cycle for
unsupervised image segmentation (§5.6).

Sampled-Markov Image Segmentation Algorithm

Images usually have a very large number of possible segmentations, and compulationally-
efficient sub-optimal techniques must be employed to identify good solutions. A common
approach is to exploit the phenomenon of spatial colierence (§2.3.4 and §3.5). In §5.6.3,
we commented on a two-stage MRF segmentation algorithm proposed by Cohen and
Cooper (1987), in which successively smaller image regions are classified according to
known texture models. Large-scale image blocks serve only to determine the neigh-
bourhood structure of smaller regions, but require significant computational effort to
process because they each refer Lo a large amount of underlying pixel data. A very sim-
ple extension to this algorithm, exploitiug the assumption that possible texiure types
are known @ priori, is to match the sampling period to the dimensions of each image
block, so that the volume of data accompanying each block is bounded. This allows
coarse-scale segmentation Lo proceed rapidly, since few blocks are present, concentrating
most computational effort on fine-scale refinement.
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8.4.3 Implementation on Paralle] Hardware

Even after efficiency gains accruing from our proposed improvements, image analysis
with Markov models is computationally intense, stemming mainly from a requirement
Lo cvaluate relative image likelihoods for many possible scene configuralions. Several
of the application areas mentioned above demnand real-time opcration (e.g. navigation),
and there is continual pressure to reduce execution time. An attractive route by which
this may perhaps be accomplished is implementation on parallel hardware.

Gabor filtering s spatially-parallel and largely data-independent, and we noted
above that these atlributes render it suitable for implementation on SIMD? or special-
purpose hardware (§4.1; §A.1). It is reasonable to assume that this approach could cause
the overhead arising from Gabor filtering to be negligible. By contrast, the processing
requirements of most Markov algorithms arc spatially-locahised and data-dependent,
and hence are less straightforward to implement cfficiently. Previous approaches Lo the
problem of mapping Gibbs-Markov algorithms Lo SIMD or systolic hardwarc certainly
improve upon sequential implementations, but are not entirely satisfactory {§5.6.6).
The Markov property implies thal well-scparated image codes may be updalted inde-
pendently, and since the MRF neighbourhood sizc is small compared to the dirensions
of the image lattice, this allows some parallclisin to be extracted. During image segmien-
tation, however, processing requirements are far {from homogeneous across the image,
and there is a danger that processor utilisation will be low. The more flexible M1MD?
paradigm is more appropriate in this instance {§A.1.2}.

This provisional analysis suggests that Gahor-Markov models require support for
both sIMD and MIMD processing modes, and heuce are implemenled most efficiently on
dual-paradigm parallel hardware. A suitable archilecture, the DisPutcr, is described
in §A.1.3 (Winder, 1988a). Further work is required to establish appropriate partitions
of image and data between the two paradigms. Particular atlention needs to be given
to communication requirements, as our expcrience suggesls that these may impose
more severe consiraints on performance than computation alone (Winder, 1987). Once
real-time performance seems atlainable, further research should address adaptation ol
existing static algorithms o exploil motion coherence.

2Single Insiruction Multiple Data, or “data-parallel”.
3Multiple Instruction Multiple Data, or “task-parallel”.
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Glossary of Principal Notation

Our principal notation is given below, bul additional local terminology is defired in the

main text.
Abbreviations
1-D one dimensional
2-D two dimensional
CPU Central Processing Unit
DC Direct Current; implying “spatially-coustant” in Lhis conlext
DOOG Difference Of Oriented Gaussians
FFT Fast Fourier Translorm
GMRF Gibbs-Markov Random Field
GRF Gibbs Random Field
LUS Left Hand Side
LINE Gabor image primitive (§4.5)
MAP Maximum A Posteriori
MIMD Multiple Instruction Mulliple Data
MRF Markov Random Field
PE Processor Element
RHS Right Hand Side
RT Reaction Time
SAR Simultaneous AutoRegressive (random field models)
SIMD Single Instruction Multiple Data
SINU Cabor image primitive (§4.5)
VLSI Very Large Scale Integration

Other Terminology

855 plate numbcr of a Brodatz texture (Figure 1.6 on page 11)

§ seclion

All-Quarters texture classificalion paradigm (§6.4)

Group texture classification paradigm (§6.4)

Profile Gabor feature-extraction method (§4.6)

Resultant Gabor feature-extraction method (§4.6)

SEG, POP artificial “segregation” and “pop-out” displays (Figure 4.5 on

page 71)
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Universal Notation

x, X random numbers {Euler font}

X,z matrices (uppercase bold sans-serif), with elements X} ,
x,S sets (uppercase script)

x, X vectors (bold), with elements z,

x, X random vectors (bold Euler)

z, X, a scalar variables (math italic)

P{A} prohability of the event A

P{A| B} probability of the event A conditional on event B
E{x} mathematical expectation of the random variable x
rHy discrete linear convolution of functions z and ¥

AT complex conjugate of A

x' transpose ol vector x

x! conjugale transpose of vector x

#A, #A4 cardinality of the vector A or set 4

1Al Euclidean norm of the vector A: |A|* = 3, |4
det A, |A| determinant of mairix A

r=X denotes that functions z and X are Fourier transform pairs
a~b denotes that a and b are similarly distributed
Flz) =X Fourier transform of function z

A sample mean of variable A

varz variance of variable r

N,R, C sets of natural, real and complex numbers

7 positive root of —1
F Fourier matrix

1 the identity matrix (rank determined by context)

0 conslant veclor, all elements 0 (rank determined by conlext)
1 constant vector, all elements 1 (rank determined by conlext)

8(+), b Dirac delta-function

o(-) inverse Normal distribution

G(p,0?) normal distribution with mean u and variance o?
o) computational complexity ol algorithm

L image latlice

sZ sample variance of variable z

I(z,y) two-dimensional image array

g(s) = G(s) Gaussian distribulions, space constant ¢

v set of allowahle gray levels

8,c, ¢ Gahor orientation, contrast and error features
Je Bhattacharyya coefficient

Apm Mahalanobis distance

Aw weighted Euclidean distance

S state space: set of feasible lattice configurations

. . _ [ cos8® ~sind
Re rotalion matrix: Ry = ( sin 8 cose)



Gabor Notation

The [ollowing notation is used primarily in Chapter 4, and also in Appendices A.2
and A.3.

At Af measuremenl uncertainty for time ¢ and temporal frequency f
% =i, y)T two-dimensional axes

%t = il y’)T rotated two-dimensional axes

u= (u,v)T two-dimensional spatial-frequency axes

¢g=Q complex Gabor kernel, parameters given below

Gey s cosine and sine pbases of Gabor kernel: ¢ = ¢. + j¢,

R model complex Gabor response

R model complex Gabor response from several channels

MM measured complex Gabor response

R., R,, M., M, phase components of Gabor responscs: R = R. + jR,

R, M, R, A Gabor energy responses: R = B2 + R?

A Gabor amplitude: A = /2 + R?

d, ¢ model Gabor phase response: ¢ = arctan(R,/1t,)

B, P measured Gabor phase response

ket cocflicients of Gabor image representation

e, fsinu definitions for LINE and SINU primitives

d, ¢, 9y offset, contrast, and orientation parameters [or LINE primitive

@, ¢, ¥, angular frequency, contrast, phase, and orientation parameters for
SINU primitive

9 relative orientation between filter and image primitive: 9=68y — ¢

kpe(opc) image pre-processing filter

£ signature match error

£ Emax relative sampling error

P Proox sampling ratio (relative to Nyquist frequency)

a Vind

T sampling period for Gabor image representations

Filter Parameters

Ay hall-height angular-frequency bandwidth
B2 octave half-height spatial-frequency bandwidth
a7 hall-beight orientation bandwidth

sinusoid period
w sinusoid angular frequency
A envelope aspect ratio
9 filter orientation (0 € 8 < )
o envelope space constant
C] angular separation of Gabor filters
5 smoothing parameter (Gaussian space-constant)
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Gibbs—Markov Notation

This notation is used primarily in Chapters 5-7, and also in Appendix A.5.

A, A
MxN
U(x), V(x)
B(x)

2

~

Ll o (\:& N

antocorrelation of process x

autocovariance ol process x

Fourier Lransform of aulocorrelation: ['yy = Ryx
spectral density of statiouary process x: Syx(w) = Ryx(7)
distribution fuaction for x: F(z) = P{x < z}
density function for x: f(z) = 0F(z}/dz
non-causal Markov neighbourhood of order P
unilateral and causal Markov neighbourhoods
span of unilateral Markov neighbourhood A*
set of all image sites except n: 12, = L\{n}

ficld neighbourhood vector for site n
Gibbs—Markov parameter sets

Markov prediclor: estimate of pixel conditional ou its surround
Markov predictor-error: u =z —

field mean

Markov predictor-error variance

Markov neighbourhood coeficient vector

cosine transform of 8

Toeplitz coefficient matrix derived from 3

joint likelihood and log-likelihood for field x
probahility density of site ¢ conditional upon its surround
pseudo-likelihood and pseudo log-Likelihood
true-likebhood parameter estimates
pseudo-likelihood parameter estimates
sub-sampling period

smooth-sampling frequency

angular spatial frequency

spectral densily coefficients: A; =1 ~ B,

image dimensions

Gibbs energy and potential functions

Gibbs distribution

blur parameter

noise variance

partition function, or normalising constant
white noise

set of all field cliques

an image code: QNN; =D, Vie QC L

a centered process: zero expected mean



Gabor-Markov Notation
This notation is used primarily in Chapters 6 and 7, and also in Appendix A4.
A components of orthogonal-normal model

q
\ Y components of composite-feature model
tangent direct-normal model

A Xy



Appendices

A.1 Parallel Vision Architectures

Coniputers were originally introduced to replace error-prone human beings in making
tedious calculalions (Zakharov, 1984). Speed soon dominated reliability as the major
motivation, and huge advances in technology have been made in attempts to salisfy
this increasing demand but fundamental limits on the performance ol single-processor
architectures will soon be approached. The appeal of present single-processor super-
compnters is further diminished because cost increases as an accelerating [unction of
performance.

In this Appendix, we discuss the characteristics of parallel architectures, which
appear to release these constraints. Parallel machines are subject to far less severe
fundamental limits than individual processors, and offer a potentially linear price—
performance curve. Efficient designs should satisly perlormance criteria at minimum
cost, suggesting that parallel architectures should be employed for large problems. Con-
cepts of parallelistm and interacting concurrent processes may help Lo shape soliware de-
sign, leading to mote elegant and abstract algorithms. General-purpose mulli-processor
machines fall into two groups, particularly suitable for supporting data and task paral-
lelism, respectively. Pipelined and special-purpose archilectures may often be designed
to meet specific requirements, but are not general-purpose and fall outside the scope of
this brief review.
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A.1.1 Data Parallelism: SIMD Arrays

Data-parallel machines perform the same basic operation concurrently in many pro-
cessor elernents (PEs), each accessing its local data. Each PE has only very limited
capabilities, often operating on a single bit of data, but may he replicated many times
(tens of thousands) to provide high overall processor bandwidth. Regular arrangements
ol simple componecnts are particularly suitable for implementation in VLSI, permit-
ting further reductions in cost. We shall consider SIMD' processor arrays, which are
usually organised as a toroidal square array of PEs with local communications (“mesh-
connected”). Each PE has a Jocal memory and register set, but all instruction and data
sequencing is performed by an external control unit, which broadcasts microinstruction
and memory-access signals. This arrangement is very economical because unnecessary
duplication of [unction is avoided. Its disadvantage is that each PE has very liltle au-
tonomy, and all must execute the same microinstruction on the same operand {perhaps
modified by local registers) at each time step: rigid translational symmetry is enforced.
Numerical calculations are often performed using bit-serial arithmetic on single-bit PEs,
but an iucrease in the number rather than depth ol the PEs is considered to be more
flexible when the extent of data parallelism exceeds the dimensions of the processor
array (Reeves, 1984). Local synchronous communication achieves very high bandwidth
via the local network, and random communication hetween PEs may be accomphished
by explicit routing (very slow) or by an external routing network.

Synchrony of operation unlocks the potential of SIMD machines but imposes severe
limitations on the classes of algorithm which may be executed efficiently. Early vi-
sion tasks often require large amounts ol local communication but may be executed
efficiently by SIMD architectures because they possess translational symmetry; convolu-
Llicn and relaxation are obvious examples. In the context of our discussion of low-level
human vision, the SIMD paradigm is analogous to inflexible “pre-attentive” processing
(Chapter 2).

Processor utilisation is a measure of the proportion of broadcast instructions that
achieve uscful processing, and approaches the ideal of 100% only for very well-condi-
tioued tasks. Lower ratios are still acceptable, however, because a SIMD array is rela-
tively cheap to implement and hence may still achieve a good price-performance ratio.
When there is a strong requirement [or dala-specific processing, processor utilisation
drops dramatically. Data-dependent processing can only be imposed locally because pri-
vate PE memory is not globally accessihle, and the controller must sequentially broadcast
an instruction strecam [or all possible branches. Each PE idles until the streamappropri-
ate to its own circurnstances is received. A binary decision tree of depth N operates in
O(log N) time on an array of independent processors, but achieves only O(/N)on a SIMD
processor array. High-level tasks such as recognition frequently involve data-dcpendent
processing, and hence operate with low processor utilisation. Global communication
may also become a hottleneck because it is unbuffered; if one PE must receive data
from all the others, this must usually he dore sequentially and can be extremely slow.

Current SIMD processor arrays include the DAP, CLIP and Connection Machine.
Despite the reservations given above, these are sold as general-purpose processors, and

!Single Instruction Multiple Data.
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are supported by hbraries which exploit the best features of each architecture(Zakharov,
1984).

A.1.2 Task Parallelism: MIMD Networks

Processors are loosely-coupled and operate largely autonormously within MIMD? net-
works, wbich exhibit task parallelism. Eacb processor has its own program and sequenc-
ing logic, increasing its cost compared with a SIMD PE, bul dala depeudent branching
canses no particular difficulty and MIMD neilworks offer much higher flexibility. There is
no requirement that all processors should be identical. Communication handwidths may
he lower than for SIMD processors because of the additional requirement for synchroni-
zation, but this commentl does not apply to shared-memory architectures. linbuffered
global communication may be a botileneck.

Although MIMD networks are more expensive to implement than SIMD amays. they
are preferred for high-level or “attentive” visiou Lasks, provided these do nat require
exlensive global communicatiou, becanse the greater flexihility of this paradigm permits
increased efficiency. Data-parallel algorithius may also be execuled conveniently on a
MIMD network Ly replicating the same program at each processor, althongh a s1MD pro-
cessor array could be substituted at lower cost (Reeves, 1984). A MIMD nciwork is most
appropriate when the algorithm rmay be hroken into sell-contained semi-independent
tasks, and a processor [arm may then be emnployed Lo achieve antomatic load-balancing
(Winder, 1987).

MIMD nelworks may easily be constructed [rom readily-available componert!s, using
shared memory or a global bus to supporl communication, and addilional processors
may often be added wilh only minor adjustment to the system. Concurrency is sup-
ported specifically by the Inmos transputer. with the intention that many transpulers
will be counected in a multi-processor array, Trausputer poinl-to-poinl communication
links are slow compared to image-processing bandwidths, suggesting thal commnnica-
tion in Lransputer arrays should also be supported by a high-bandwidth globai bus.

A.1.3 Dual Paradigm Parallelism: The DisPuter

Data parallelism is supported efficiently by SIMD processor arrays and lask parallelism
by MIMD networks, but unfortunately most vision systems need to operate in both modes
(Reeves, 1984). Neither true SIMD nor true MIMD architectures offer optimal performance
because both must operate inefficiently for part of the time. The requirement [or dual-
paradigm parallelism is illustrated by the attentive-pre-attenlive dicholomy in low-level
human vision (Chapter 2).

One solution to this problem is to have a loosely-coupled array of SIMD processor ar-
rays, and this philosophy is adopted by PASM: SIMD PEs may be swapped dynamically
between modules, each supported by its own controller. There is a danger that this
approach combines the expense of MIMD with the inflexibility of SIMD (Reeves, 1981).

Multiple Instruction Multiple Data.
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FiGure A.1l: DisPuter Architecture. Dual-paradigm parallelism is pro-
vided by close coupling between a 16x16 SiMD processor array DisArray and
a transputer-based controller linked Lo an Inmos B042 board. Inlerfaces to
an Orion minicomputer and au IBM PC are also supported.

Multiple sSIMD is emnlated by DADO: each PE may acl as a conventional MIMD proces-
sor or accept instructions from a remole conlroller iu SIMD mode, bui overall cificiency
is no higher than MIMD.

The DisPuter

Dual-paradigm parallel architectures provide both SIMD and MIMD componcenls within
one machiue, allowing all stages of the visual pipeline to be executed efficiently and
cost-effeclively. We mated a 16x16 SIMD processor array DisArray with a transpuler
network to form a powerlul 300-processor dual-paradigm parallel processor, the Dis-
Puter (Winder, 1986). All 256 DisArray PEs are identical and have access to a 256 kbit
local memory, local status registers and a 4-connected communications network (Fig-
ure A.1). This work began as an M.Sc. project, and the DisPuter was built to investigate
the inipact of direct support for dual-paradigm parallelism following the MIMD /SIMD
model (Reeves, 1984).

DisArray microinstructions are execuled globally, and take the form of ap arbitrary
logic [unction of local memory and registers. We designed and built a transputer-
hased microinstruction controller, achieviug close coupling between SIMD and MIMD
components. Additional transpulers are atlached by Inmos links, and olher modules are
accessed via EtherNel connections. Libraries were wrilten in occam to provide low-leve]
snpport for graphics aud image-processing (Winder, 1987). Communication bandwidth
is as important as processing baudwidth, and communicalion botllenecks hetween the
SIMD array and its transputer controller, and between transputers, atc wezknesses of
the DisPnter architecture (Winder, 1987). We also uoted some undesirable lcatures of
the transputer instruction set, and proposed a small modification (Winder, 1988a).
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A.2 Properties of Gabor Filters

We invoked several theoretical resulis concerning Gabor filters in Chapter 4 without
detailed justification. The purpose of this Appendix is to provide more background to
thesc derivations, and on the practical arrangements for Gabor filtering, and to derive
Gabor signalures ol simple image primitives. We adopt the notation of Chapter 4.

A.2.1 Joint Uncertainty Relation

Examination of images of physical objects regnires simultaneous analysis of spatial and
spectral properties. In §4.1, we claimed that Gahor filters enjoy unique advantages
for this purpose, miuimising the joint uncerlainty with which these quantilies may be
measured by linear flters. Following §4.1, we shall take our Gabor filler g and its
Fonrier transform () as:

12 £242
g(A, 0, z,y) = T/\(ﬂe}(p (—;—03) exp (— y2o;\ ) exp(jwz)
Q(A,0,u,v) = exp[-1(2mu’ — w)?c?] exp[-i(2rv'a/A)T] (A1)
where u and v represent spalial frequency along the z and y axes, respectively. The
conventjonal definition of the uncertainty is given by the variance of the energy distiri-
bution (Daugman, 1985; Gabor, 1946), hy analogy with the uncertainty principle (Wilson
& Granlund, 1984):

/ ] 24(z,y)0"(z,y) dz dy
— —0/—c0

(A‘T)? = = 1%
] f g(z,y)9"(z,y) dz dy
;cu -co
/ zlexp(—2*fo?) dx
= ;”oo—_
/ exp(—z%/o?) dz
—co
= o?/2
Ar = of/2.
Similarly,
A o
Y= 32
We may follow the same procedure with Q(u,v) lo get:
1
8= mon
P A
v 2ro\/2

Multiplicatiou confirms that the optimal uncertainty relation (4-3 on page 57) issalisfied
for this family of filters:

3
Az AuAyAv = Tk (A-2)
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FIGURE A.2: Gabor orientation and frequency bandwidths. The dia-
gram illustrates the frequency response of a Gabor filter, [rom which band-
widths are defined as indicated.

A.2.2 Orientation and Frequency Bandwidths

The frequency response ol a Gabor filter is shown in Figure 4.2 on page 59: il is a
displaced Gaussian. We shall use the idealised scheme shown in Figure A.2 lo define
the orienlalion selectivity Adyy; = arclan(h/uo). Our filter has a principal [requency
response at ug = “far — this is the centre of the ellipse in Figure A.2. Tzking Lhe
hall-height bandwidth by setting Q(wug, h) = /2 we get:

h o= Av2In?2
- 2ro

and hence®

al

tanAOllg = (A3)

ow

where @ = +/2In 2. The hall-height angular frequency bandwidth may be obtained
similarly from setting Q(ug - 7,0) = 1/ Aw s = afo. Il is more common lo express

this in terms of frequency octaves:
A
log, (w+ “-'1/2)

w— Auwyyy

log, (““’*“) . (A-4)

qw — o

Bl,'z

If we take the bandwidths By ; and A8/, as Lhe primary characteristics, theseequations
may be inverted to give the kernel paramelers ¢ and A:

ow = af
A = ftanAbyy (A-5)
where
2812 41
f = omt

This paramcterisation for the filter kernel ¢ is more appropriate than (A1} because
frequency and orientation bandwidths reflect image properties and hence are of greater
relevance than kernel shape.

30ur result differs [rom Daugman (1985) who found: sin A8y = a—’\.
Tw
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A.2.3 Gabor Aliasing Error

In this section, we will derive the aliasing error caused by discrete convolulion of the

Gabor filter g(x, y) (A-1). Let us assume that the critical sampling density is perpendic-

ular to the sinusoid, along the «'-axis (Bovik et al., 1990). This holds for all reasonable

filter coefficients and allows us to simplify our analysis to 1-D using the kerrel h = I1:
2

h{z) ﬁ exp (*?;—,) exp(jwi)

H(w) = exp[~L(2mu—w)*d?].

Aliasing crror £ may be laken as tbe proportion of filter encrgy that lies abovethe image
hall-sampling [requency f,. For a unilorm sampling period X, f, = (2X)~!. We shall
assume (salcly) that truncation of the filter is negligible.

fm H{w)H*(w) du

/0 H(u)I1"(u) du

4

Writle

~
1]

/mexp[—(%ru - w)zaz] du
1s

1]

/fw exp[—(‘lw()za'z] d¢

1= lg

where ug = “f2. and ¢ = u — yp. Subslitute 7 = 2/270(:
! = / exp(—1*/2) dn
x P(a)

where ®( - ) is the inverse-Normal distrihution and ¢ = 2\/270{ug — f,). We may write
sampling ratio p = f;fug, and hence:

¢ oy{t -2l
©()
Y = owy2

bul from (A-3) ow = af and hence! v = af /2.

Ifapn image is sampled on a rectangular array of pixels, it is tempting to set theimage
sampling period X to one pixel, X = 1, and herce half-sampling [requency f, = /.
However, in the worst-case direction along a diagonal, X = /2 and f, = K'ﬁ Taking
this into account, we arrive at the result (4-9) quoled on page 60.

4This differs from the relation obtained by Bovik et al. (1990): v = «?3/2.
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FI1GURE A.3: Relation between Gabor aliasing error and sampling
density. Relation between sampling ratio p and filter frequency band-
width By, for fixed sampling error £max. The Nyquist sampling liruit corre
sponds to p = 1. As the required level of accuracy is increased, the image
must be sarnpled more densely.

Over- and Under-Sampling

Il we are given a maximum permissible error &mae, we may inverl (4-9) to give the
required sampling density 7max:
1YV2

T, = : (A-7

Y T ST TES)) )
The relationship between sampling ratio p and [reqnency bandwidth B, for fixed &,
is shown in Figure A.3: [or low-frequency fillers, 7 large, it is possible Lo take édvaniage
of Tax > 1 by sub-sampling the imege. For the example filter (A8, = 7 /6, By = 1)
discnssed in §4.1.2, we have T = 3-65 pixcls when énax = 1%.

Sampling ratio p is an asymptotically increasing function of B2, and to ne certain
Lhat &ax is not exceeded whatever Lhe value ol B3;/;, we may take By — coand f = 1:

_ P-t [fma.x')(o'\/‘z)] i

For a permissible error level £, = 1%, the maximum sampling ratio py.. =1-99, and
on a rectangular pixel grid (r = /2), this gives 7" > 5-63 pixels.
A.2.4 Elimination of Local Image Mean

The cosine phase Gabor filter ¢, (4:6 on page 58) has a small response to a uniform
field (§A.2.5):

/ / a(z,y)dedy = exp(~oiw?/2). (A-9)

Uuless climinated, this will perturb the real filter outputs for each image. Linear filter
response 2 may be adjusted by subtracting an appropriate correction, but the effect
is parlicularly serious for the non-linear quantities R and ¢. We apply a local “pc”
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Ficure A.4: Filter kernel used to ensure that local image mean
is zero. Convolution with this zero-sum filter profile, an inverted Gaus-
sian g{opc ) plus a 8-funclion, ensures that the image has negligible local mean
and hence avoids periurbing Gabor filter output. As drawn here, opc = 3 pix-
els.

correctlion to each image to suhtract the local mean luminance hy convolution with the
profile shown in Figure A4 (Bnrt & Adelson, 1983; leeger, 1987). Ideally, this kerncl kpe
is a 6-function added to an inverted Gaussian:

1 4yt
o) = 8(o9) - oo (- 5L ) (A10)

where we usually set ope = o, or opc = Ao for A > 1, but in practice, a discrete
approximalion to kpc {A-10) is used. Some residual DC signal will remaiu because the
filter kpc is circular whereas the Gabor kernels are usually elliptical, but this effect is
not significant.

Although direct convolution is possihle, and the filter kernel kpc is separable, it
is most convenient Lo apply this correction in conjunction with the FFT algorithm
(page 61). We have:

F(l+q) = F(I)-Flq)
which may be extended to write
Fl(Iskoc)»q] = F(I) Flkoc) Fla).
The filter transform F{kpc) = Kpc(u,v) may be wrilten down:
Kpo(u,0) = 1= exp[~3(2xopou)’] exp[~4(2ropco)?].

Other DC-elimination strategies are possible: Bovik et al. (1990) simply apply a small
threshold to Gabor amplitude A(z,y) while Perry and Lowe (1989) adjust their discrete
mask kernels to ensure they sum to zero.

A.2.5 Gabor Response to Image Primitives

Our Profile feature-extraction algorithm (§4.5) compares observed filter responses with
Gabor signatures of parameterised image primitives. In this section, we detive the
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response of a Gabor filter ¢, parameterised as (4-6) on page 58, to a uniform field and
to LINE and SINU primitives. Following Chapter 4, we make a nnmber of definitions
which are repcated here for clarity:

)\ J:I 2 yr 242 ) ;
d2n) = goewn (i) erp (-5 Jemlien) (A1)

z’ _ cosd —sind z
¥ ) = \sin@ cosé y
W, _ cosd sind w
wy, - —sind cosé 0

¥ = sin®9+ A?cos? @

£ = (A*=1)sinfcosd

- /\2 + .‘-:2
v2

R(z,y) = /_wﬁmq(c,n)f(x+f,y+n)dcdn

= R.+jR, (A-12)
R 4 B!

I

it

R(z,y)

and we may express ¢(z,y) = ¢+ 7¢; (A-11) in terms of the auxiliary variables defined
above:

A 1 ; ; .
gz, y) = Fy— exp f:—ﬁ(zzcz + 2zyx + yzvl)} sin(w,z + wyy)

1
g(z,y) = 37g? P [—%—z(z?ﬁ + 2zyx + y’uz)] cos(w,T + wyy).

We shall also use the following results irom contour integration:

%/_wm(—:?/z) di = 1 (A13)
o0 N2 co=3A
—\/12=1r/_°° exp(—z?/2)cos Az dz = %@[m_ﬂ exp(—z?/2)dz
= exp{=2?/2). (A-14)
Gabor Signature of Uniform Field
We take [ as the image function, where
fDC(‘r7 y) = ¢

Since this function is rotationally symmetric, we may sel # = 0 for convenience, and
derive the Gabor signature from continuous linear convolution (A-12):

cA [® = z? ¥y |
Tro? P | =g | o L =g sinwz dz

0 (A-15)

A

il

I
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because tbe integrand is antlisymmetric around x = 0, and

y2A?
R, = 2#0‘/ / exp( ) (—-2—cﬁ-> coswz dz

cexp(—w?a?/2) (A-16)

from application of (A-13) and (A-14). We are interested in the spatial veriation of
the image, not its mean value, and a local correction is made during pre-processing to
ensure that filter response is not perlurbed (§A.2.4).

Gabor Signature of Ideal Line: LINE

For the LINE primitive, we take the image function to be an ideal line formed by an
extended é-function, as (4-23) on page 82:

Jure(z,y) = cé(z—ad).

For convenience, we take the line to be parallel to the y-axis and consider the application
of a filter tuned to angle 4, taking line offsel d as Lhe perpendicular distance from the
line to the filter origin measured along the filter z-axis (so d may be negalive), and
setting — > < 8 < 7/

B = E%f E"P[ (£ + 22y +y’v")] sinfwsz +w,y)8(z = d) dz dy
= 27r02 exp ( 2{:?,)/ exp [ y + i—f)z] sin(w,d + wyy) dy
- S (EE) () (5

Similarly,

R = g,wz / _/ CXp [_— (2% + 27yx + 9™y )] cos(wot + wyy) 8(z — d) dx dy
= m exp ( ;:312) cos (wd/\ifosg) cxp (_#) . (A-18)

Gabor Signature of Infinite Sinusoid Grating: SINU
Our SINU primitive is an infinite sinusoid grating, as (4:24) on page 82:
Jspu(z,y) = esin{zz + ).

We take @ > 0 and -7/, < § < 7/;. For convenience, we take the sinusoid parallel to
the y-axis:
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L 3 8
R, = 27[_02/ / exp [—-2—(:5 C2ryet oy 1/)]

x sin{wzz + wyy) sm(wr + 1) dz dy
¥2A2
- wn L L () e (5)
X {—-cos (w: + @)u] cos(y [wy — (ws + =)x/ ) +d))
+ cos[(w. — w)u] cos(y[w, — (we — w)x/az] - 1,15)} du dy
cA cos1/) (W2 +=Ne?] [ yIA?
= 2w\/-2? [ 2.2 ] [-m P (_W)
x {— exp (—wewa?/i?) cos (y [wy = (w: + w)n/a’])
+ exp (+w,wa2/¢?) cos (y [w, — (we — w)ﬁ/a’])} du dy

i

= ccost exp ( 530 )exp(—azwz/2)sinh[mwa2 cos 8] (A-19)
o2iw?

R, = csinyexp ( T) exp(—c’w? /2) cosh [wwo? cos 6]. (A-20)
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A.3 Alternative Gabor Feature Estimators

A principled approach to the problem of how to pool measurements from many Gabor
channels to form a single image description was proposed in Chapter 4. Our objec-
tives, established in §4.5.1, are to express mcasured responses in many Gabor channels
in a compact and convenient form by matching tbem to Gabor signatures formed by
parameterised image primitives. This matching problem is over-constrained but the
measuremeuts may be noisy, and analytic inversion of the response equations, (4-25-
4.28) or (4-29-4-32) on page 83, is not appropriate. Least-squares feature eslimation is
desirable in principle but complex in practice (§4.5.3), and in §4.6 we set out our Pro-
file and Resultant feature-extraction methods, which both exploit response moments.
Whilst these both generate acceptable features (§4.6.4), and are successfully used in
Chapter 6 in conjunction with our hybrid models, some compromises of our original
objectives were involved. [n this section, we briefly explore some alterualive [eature-
extraction strategies, and explain why these were rejected in favour of the Profile and
Resultant methods.

Notation

Following Chapter 4 (page 69), we specily sets of filters by: sinusoid period T (pixels),
half-height octave spatial-frequency bandwidth B2, spacing between orienlations ©,
and hall-height orientation handwidth Af,,. From these may be derived the sinusoid
frequency w = 27/r (1/pixel units), space constant of Gaussian window o (pixel units),
and window aspect ratio A, as described in §4.1. Individual filters are specified addi-
tionally by their oricntation tuning f, which we restrict to the range 0 € # < 7 because
filters ¢(f) and g(@+ ) are equivalent up to a change of sign (4-6 on page 58). Channel
outputs were combined from several orientations but a single frequency. Additionally,
we employ the notation from page 82 to specify image primitives:

LINE: contrast ¢ (gray-level units), line offset d (pixels), and orientation 6 (radians);

SINU: contrast ¢ (gray-level units), grating phase ¥ (radians), angular {requency @
(radians per pixel), and orientation 6y (radians).

A.3.1 Estimation of LINE Features
Tabulation of One Parameter

The Gabor signature of the LINE primitive is parameterised by three “features™: orien-
tation o, contrast ¢, and line offset d (4-25-4-28 on page 83). Of these, variation with 6,
takes the most complicated form and holds out least prospect [or direct evatuation, and
consequently it is sensible to seek alternatlive estimalors for this [eature first. One al-
ternative approach is to estimate orientation hy partial tabulation of possible values
before seeking a local best fit for the remaining pair of parameters. This is tantamount
to quantising orientation, say to units of 5°, and performing exhaustive search for all
allowable values. Let us assume that terms used Lo compute the model signature Ry
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are tabulated at the orientations {ax}. Local leasi-squares estimation (§4.5.3) may be
used for each possible orientation ay, comparing residual errors €, to select the best
combination:

& = |IM - R(a)|’ (A-21)
for measured response vector M and model signature R(a;), and setting
de;.  Oer
3 =30 =" e

to get &, dy and €xmin. We tben select the orientation a; which minimises €xmat

50 =ay, i €rmn = m:'n(ek_m;.,). (A-23)
Unfortunately, (A-22) cannot be solved easily because the [unction R(d) is too compli-
cated (4-25-4-26 on page 83).

Gabor phase ¢ (4-28 on page 83) varies more simply with line offset d, and we may
consider an estimator based on the phase of the observed response, again assuming
tabulation of §:®

& = Z (%:—: — tan(g(ay — 9;)1)2

but this is also difficult to solve for Jk, and it is tempting to take the argument one
stage furtber to write

e = |IP-o|°
where PI = arcta.n(M,,./Mc‘;), and bence
s 71 Y. Pcos(ar—60)/v?

dy = —— .
* wA? 3 cos(ay — 8,)}/v
Unfortunately, this expression is erroneous because no account has been taken of the
periodicity of arctan, and we should replace the above definition of P, by:

P, = arctan(M,; /M) Etmr, m=0,1,...

but tbis creates many additional possible solutions which must be investigaled. Peri-
odicity is a problem only for moderate line offset, |d| > T'/2, but it is quite possible for
this range to be exceeded in practice (see Figure 4.18 on page 86), and significant errors
will result unless the spatial frequency bandwidth B/, (4-8 on page 59) is set very high,
implying the Gabor envelope has limited spatial exient (¢ small) and restricting the
effective range of possible solutions for d.

Instead, it is possible lo obtain an estimate from tbe Gabor energy R (4-27) by
writing:

22 N wle?sin?(6y - 8)
mR = In (%’2”2) A L (A-24)

5This estimalor is incorrect because our confidence in the observed phase M,/M, isnot the same
for all measurements: see Lhe treatment in {A-25).
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We may now write a least-squares estimator in terms of {In M}, but because these are
derived quantities, we can no Jonger assume thal all errors are of the same magnitude —
as with {4-41) on page 89, we normalise eacb tcrm hy tts estimated standard deviation:

Afln M) = AM/M
= QAMM_UZ
where AM, = A M, = Ay Hence:
S o(n M, - In R} M, (A-25)

which gives:
7 oo (3; M) [Z, MeBe{ Ac — In My)] = (3, MB) |32, Mc(Ac — InM)]
g (T, MBI (T, M) = (L, M.B)?
UM, (In M, — A, + Bd2))
XM,

where suinmation for : and £ extends over all chaunels, and:

2 =
g =

A w2l siu*(ay — 8,)
o = - !
A ! (21”/,?{77) v?
A2
B = o
v} = sin?(o; —0,) + A? cos*(ay — 6;)

plus the trivial solution cﬁ = 0. In principle, these estimalors (&?" and [;ﬁ) are {ully
funclional, and we have tested Lhc results on several images. The main effect on Gabor
epergy R of increasing line offset d is a scaling by approximately: exp(—d?/s?); the
above estimators depend on this factor varying slightly with angle as: exp(—X2d*/o?v?).
The distinction between these two terms is illustrated in Figure A.5: for typical values
of filter eccenlricity A, il is too small Lo give reliable estimators for ¢? and d%.

Tabulation of Two Parametlers

We found above that tbe variation of the Gabor signature Ry ny was too complicated to
permit accurale parameler estimation by simple methods, even alter oblaining orienta-
tion by partial tabulation, and that Gabor cnergy R and phase ¢ were nol sufficiently
sensitive to the required parameters Lo form reliable estimators. We now return to the
channel response Rpwe, tabulating values for line offset d to simplify the residual esti-
mation problem further. This may he done in conjunction with tabulation to oblain o
(although this will be very slow), or with the moment estimator (§4.6.1).

Given values for 85 aud d, is is straightlorward Lo write down a loeal estimator (or
the copntrast c:
exp (";’f’) exp (_.,“u’ ,'.;.;-ao_a, ) )
ol . [Mc o (wrﬂ’cmé(?o—a.]) o4 B i (wdhz(:(‘a](\?o—g 1)] / )

A A2t ?w?sin®(6o — 6,)
S (D)~ (R
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FIGURE A.5: Gabor energy variation for LINE primitive. We postu-
Jated an estimation method for LINE features based on the difference belween
dotted and solid lines, shown as a [unction of orientation tuuing ¥ (degrees),
but this was too small in practice to extract reliable parameters. (a) 7 = 35
pixels, B, = 1-5, Abyj; = n/8, d = 1-75 pixels; (b) T = 4 pixels, Byjp = 1,
A8y, = m/8, d = 3 pixels, using the nolation described on page 259.

where v; is given by (4:37) on page 87. This estimation method was implemented in
conjunction with the moment estimator, and tested on some simple images. Although
the observed signatures M(z,y) were modelied closely, and the residual error £ was
small, the estimates obtained for contrast ¢ and line offsel d were often hopelessly
wrong: small changes in d cause rapid oscillalions in the match error &, with the
global minimum error being only slightly smaller than many local minima inlo which
the inflexible search algorithm readily falls. This problem is a comhination of those
experienced when treating phase and amplitude envelopes separately:

A2 2.2 2 A2 _
B = cA i ( d? )exp [ w?o?sin*(8, 0)] - [J wdA? cos( — 0)
N —

vo /2T 20?2 22 v
A B

term A is too inseasitive to estimate d because v(#) varies only weakly; while the
trigonometric term B oscillates rapidly to give many false matches. We may estimate
the density of local minima to see whether a finer tabulation of d would help: let us
assume that the principal component of the observed response vector M lies at the
correct onientation, ¥ = 0. We may At this term exactly by:

d, = dy+iT/2
- 4t — d}
A = - | =+ 1 (]
& co(—1)* exp ( o )
where 7 =0, 1, ... . Only filters away from the match angle will be able to dilferentiate

between these solutions, similar to the situation illustrated in Figure A.5, bul unfor-
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tunately these have the weakest responses and hence are most noise prone. This is a
serious flaw with the tabulation procedure, and cannot easily be overcome.

Circular Fiiers

The position is simpler for a circular Gabor filter (A = 1), which has energy response R,:

2 2
R, = # exp (—%) exp [-w?o?sin®(0, — 6)] . (A-26)
If we are content to define a “feature strenglh” parameter s = c?exp(—d?/0?), 5 may
easily be obtained from the response vector M, assuming that 8, is known or estimated
independently. In praclice, setting A = | imposes too many restrictions on Lhe ori-
entation bandwidtb A, and il is in any case unclear what advantages the above
procedurc would offer over that descrihed on page 89.

Filtering at Mulliple Scales

One final avenue is to pool oulput from fillers at scveral scales. Let us cousider two
responses, at filter frequencies w and {:

R = X2 _ Ad? wlo?sin®(f, — )
w T opgda P o?y? e v?
c2A? A%d? Q*E2sin?(6y — 6)
Ra = Sy P (—EQNQ) exp (— N ) (A-27)

wbere
v = sin(f — 0) + A? cos?(0 — 6)
N? = sin®(fp — 0) + A% cos?(8p — 6).

If filters at the same angles {#;} are used to make both sets of measnrements, and Abyya
and B);; are also maintained, we have: A = A, N? = v? and EQ = ow. Hence,

from {A-27):
'Ry . Xt /1 1
TRq . R \TE T

This could be used as the basis for a multi-scale estimator for line offset 4, but has not
currently been implemented. Further discussion appears in §8.2.

A.3.2 Estimation of SINU Features

As with the LINE primitive, direct least-sqnares estimates of SINU fealures are not read-
ily available (§4.5.3), and instead we consider approximate methods. Exact variation
of the Gabor signature Rgyy with filler orientation & is complicated (4-29-4-32 on
page 83), and consequently we shall assume that the grating orientation 8y has been
cslimated either by the moment method (§4.6.1) or by tabulation of partial results and
exbaustive search. Ju this seclion, we consider approaches to delermine the remaining
SINU features: grating frequency @, contrast ¢, and phasc .
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FIGURE A.6: Gabor response variation for SINU primitive. We posty-
lated an estimation method for SINU features based on the difference between
dotted and solid lines bui this was loo small in practice to extract reliable
parameters. (a) sine phase response R, for frequency ralio @w = 0-56w;
{b) scaled resonse for equal filter and grating frequencies. Filter parameters:
(T = 5 pixels, Byjy = 1, Abypp = 7/6; ¢ = 28 pixels, ¥ = 0), using the
notalion described on page 259.

Sinusoid Freguency

The major effect of a change in the [requency of the image sinusoid @ is to scale
the channel response Aspy by: exp[—o?(@ —~ w)?/2]; and hence Gabor cnergy R by:
exp[~o*(w — w)?]. The difference between a pure scaling and the perturbing eflect
alone is shown in Figure A.6: it is insufficient in practice to establish a reliable esti-
mator & from a single set of observations. Consequently, our approach is to abandon
direct estimation of the grating frequency @, and set w = w. When this is sub-
stantially in error, the apparent contrast will be small, because it decays roughly as:
& x exp[—oH(w — w)?].

Phase Estimator
From (4-32) on page 83, the phase of the filter responsc ¢ is given by:
tang = cotytanh(wwao? cos(y — ).
In most cases, we have wwo? > 1, and except for 6y — § = L7/, we may wrile:

tang = col® (A-28)

{see Figure 4.19% on page 86). This allows an informal estimate of ¢, but this is not
done at present.
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Contrast Estimator

When we assume grating and filter frequeucies 10 be equal (@ = w), the modcl energy

response R is given by:

o?w?(sin? 8 + A? cos? 6)
2

x [sin® % + sinh*(ow? cos 8)].

R(w=w) = fexp|— exp(—a’w?)

In practice, sin®% < sinh?(w?0?cos8), and we may drop this term. The contrast
may then be estimated using the weighted least-squares procedurc described in §4.6.2,
leading Lo the Profile contrast estimator (4-42) on page 89.

Mulliple Frequencies

I[ we take c. as the true contrast, measured by a filter tuned Lo the grating [requency,
w = w, Lhen apparent contrast ¢? varies approximately as:

Fw) & & exp[-dt(m—w)?].

By taking two or more filter frequencics, we may estimate ¢, and @. The validity of
these expressions depends on the approximation:

Sinhz(uwaz] - % exp(wemo?).

Further errors will be introduced if the image actually contains structurc al several

scales.
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A.4 Marginal Densities of Proposed Gabor-Markov
Models

1ir order to diminish the disparity between our Gabor fcatlures and the auto-normal
model, we proposed transformations corresponding to specific Gabor-Markov models
(%6.3). The purpose of this Appendix is to demonstrate that these proposed models
form appropriate representations for our orientation feature 8. We adopt Lhe notation
of Chapter 6.

A.4.1 Orthogonal Normal Fields Model

I §6.3.1, we proposed that an angular field © could be modelled by two autc-tiormal
MRFs p and ¢, according to the transform:

8 = arctan(p/q) {A-29)
for —7 < 8 € =, where p and q are normal and independent fields. In this section, we
derive the resulting marginal density function fo(9).

Let us introduce an auxiliary variable r, and express the new distribution fr g in
terms of the known density function fp, q:

P = VPt E (A-30)

fp.q(rsin@,rcos )

fro(r6) = |4(rsin 8, r cos 8)|
= rfpqlrsind,rcosd)
fe(8) = [ rfp.q(rsinf,rcos ) dr (A-31)
o

where J{-) is the Jacobian matrix (Papoulis, 1991), and p and q are assumed normal
and independent but not necessarily identically distributed, with means ji, and pg.

1 1
fr.a(p,q) exp [—E(P = .““p)2 - E(‘I - l‘q)7 (A-32)

2rop0q

Write p = op/0q-

fol8) = 1 [wrexp - r?P_lsin’t9+pcosz9_2r ppp~tsind +uqpcosd
2ropaq Jo 2 Tp0q Opoyg
24 48
+,u,,/p yqu dr
apaq
Set
p~1sin? 0 + pcos? §
o o= (A il i

Iplgq

ppp~tsind + pgpcosd

\/Tp9q (p7sin? 8 + pcos? §)

o
)
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and complele the square.

fe(#)

1 (_u?,/p + ke
27 (p~1sin? 6 + pcos? §) 20,04

X /Ooouexp [_(u;e)’) du

Tbe integral is now straightforward:

1 gy +#§p) .
= - V2 2)® 3
Jol®) 27 (p~"sin? @ + pcos? ) exp( 20504 [l v exple 2] (6)]

Y exptes)

This may be simplified a little by writing

tany = ,u.p_/p
HaqP
g = uhlot + piot
OpOq
. cos(8 — 1)
p~1sin’0 4 pcos? @
hence
fo(8) = ! ex [_@j(coszz/) + psin? yf;)
@ 2 (p=" sin® 8 + p cos? ) |72 P P
x [1 + V27 exp(e?/2) cI’(‘s)] s (A-33)

Equal Model Variances

In practice, variances of the two orthogonal components are similar (o2 & 02), and we
usually have p = 1. We shall assume that p = 1 from now on, and set o, =0q = 0.
Hence:

J5(0) = oo exn(=12) |1+ BavET op(@RY/2) 0(6K)]  (A3Y)

where
2 2
SRR T
g = vaz a
tany = ppfpg
K = cos(d — ). (A-35)

A plot of f§(8) is shown in Figure A.7. Although agreement with angular field data
must be verified empirically, this function possesses appropriate characleristics: it is
uuimodal, periodic, smoothly varying, and symmetrical aboul the mean.
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FIGURE A.7: Marginal density for orthogonal-normal model. Plots of
fa(8) with mean ¢ = 74°, derived (rom orthogonal normal components with
equal variances o2, (@) o = 1/; pixel; (b) o = 1 pixel; (¢) ¢ = 2 pixcls. In
all cases, the distribution for @ (degrees) is symmetrical about the mean.

Mean of Angular Distribution

The mean of the angular distribution may be evaluated by integrating around a nuit
circle.

(P‘i: PC)T
f (sin 8, cos 0) 7 fa(8) 48 (A-36)

x

E{0} = arctan(p./p.)

5
I

The integral is only possible in the case p = 1, when
£(0) = »

from the symmetry of f§(8) about # = 3. This is convenient, as the mean of the
angular distribution is easily expressed as a function of the two normal distributions:
£{0) = arctan(pup /o).

Note thal when pp, = q = 0, 3 is notl defined. The distribution then reduces to:
f§(8) = 3=; and tan® has a zero-mean Cauchy density with parameter p.

A.4.2 Composite Feature Model

The composite-featnre model (86.3.2) is effectively the same as (A-29) and (A-30) except
that our “auxiliary variable” r = ¢ is now taken lo be the contrast [cature. From the
dcfinition of ¢ {§4.6) and the hinearity of Gabor fillering, this form is approximately
consistent with normally-distributed pixel data. When x,y ~ G(0,0?), ¢ assumes a
Rayleigh density.
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A.5 Properties of Modified Textures

In our discussion of our MRF texture-classification resulis in Chapter 7, some conse-
quences of image corruption and sampling were assumed without proper justification.
More hackground to these effects is presented in this Appendix, and the required results
are derived.

A.5.1 Effect of Image Corruption on MRF Likelihood and
Variance Terms

We examined the influence of image noise and blur on MRF likelihood in order to under-
stand observed trends in classifier robustness (§§7.2-7.3). Three terms are important in
evaluating the level of distortion of a corrupted image: the pixel variance V(z} = var z:
the MRF predictor-error variance V(u) = varu; and the image-dependent penalty term
of the true log-likelihood function Ly (§7.2.2):

;
x'Bx
Lxtx) = =5
— I*X1|2 (] — B-)
=) o (A37)
€L

where summation for : extends over the dimensions ol the image lattice £. Our notation
follows Chapters 5-7: x = X represents the rastcr-ordered image data; B is a block-
circulant matrix formed hy rotating the MRF neighhourhood cocflicients 3; B is the
cosine transform of 8; and o7 is the MRF variance. The pixel variance V(z) is 2 property
of the image alone whereas the penalty term Lx and predictor-error variance V(u) also
depend on the MRF parameter set G,. We shall assume for simplicity that the parameter
set descrihes the uncorrupted data perfectly.

Usually, the MRF predictor-error variance is defined in the MRF paramcter set:
V{u) = ¢2. This correspondence may be verified:

u, = z,—%,
= z;*x(6 - f).
Using Parseval’s theorem, {ju|® = |[U}* = Piec | Xl — B,)|*. However, the expected
form of the power spectrum [X;|* is assumed known (§5.1.5):

o?

2
Xl = 1z B;

and hence
E{lul’} = > (1-B)
i€c
but B; has a cosine variation (5-63 on page 114), and hence sums to zero, giving V,(u) =
o? as expected. Similarly,

1 a?
Vo(z) = W,EZCI—B, (A-38)



where the image has size M xN. We may also substitute for IX;|2 ju Ly:

a*(l- By)
; - B,)2°

MN/2. (A-39)

E {LG.X }

We may now exarnine how these terms are affected when the image is corrupted.

Effect of Image Blur

Following §6.4.3, we shall model image blur by convolution with a Gaussian kernel ¢(5).
Let us take an ideal image x and blur it to give the new image z, * g,(). Subslitutiug
the new spectrum |.V,|> G3(b) for |X,-l2 above gives:

V(u) = Gz(b
c MN ;
= (1 = B:)Gi(b)
= Volu) % ——
ot Gi(b)
Vilz) =
o) = N 2 1-B;
_ Yiec GHY)/(1 - B)
- V\;(I) Z,EC 1/(1 = B
Lb.X = = Z Gj
‘GC
2
= Lax) 5 i (b (A-10)
1€L0

Ignoring discretisation, we may approximate this last summation £ by the correspond-
ing integral:

1 z
L = [/ exp(—4r2a?b?) da]
-1

[2@(vB#b) —1]".

¥ i b’
For hlur parameter b sufficiently large, ®(VBxb) =~ 1 and £ = (4767, and hence:
Ly.x = Lo x(475%). All three terms in (A-40) are smaller than for the original image.

Effect of Additive Noise

Blur is deterministic and hence its effect may be predicled exactly. In the caseof random
uoise, we shall instead analyse the ezpected effecl. Following §6.4.3, we model image
noise as white, Gaussian, independent and additive. While noise has a flat spectrum,
and we expect the modified power spectrum to be increase uniformly in proportion to
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the noise variance. Lel us add noise of variance p? to the ideal image Lo form x + pr,
and substitnte the new spectrum |X;|? + p? for | X;|* above:

2
Valu) = ;;'ch(l—anp’(l—a)’.
1€

We again appeal to the periodicity of B, to write 3, . B; = 0. In the caseof J_ (1 —
B,)?, all cross terms sum to zero, and cos? terms to M N/2.

V) = +7(1+2 Y 8)
TENt
2 2
- w14 2022080 )]
2 [
We) = d4ym Y g
€L ®

_ PPMN
= Vel (l M YV )
Lox = (1+p%a%) MN/2
= Ll (1+p2/07) (A41)

All three terms are larger than for the uncorrupted image.

A.5.2 Frequency Analysis of Image Sampling

In this section, we establish some results which help to support our explamtion for
the remarkably beneficial effects of sampling (§7.4). These mostly involve the spatial
{requency domain and are given for one-dimensional signals in order Lo enhance clarity.
The spectrum of a continuous signal may be obtained by the Fourier integral:

Fo) = [ J@exp(-jor) ds

and the discrete transiorm may be expressed as a matrix, F. The basic result we
need to invoke (without proof) is that convolution in the spatial domain corresponds
to multiplication in the frequency domain and vice versa (Rosenfeld & Kak, 1962).

Flaxb) = F(a)F(b) (A-42)

This can be shown algebraically.

Ideal spatial sampling consists ol multiplicalion of the signal by a regularly-spaced
train of unit impulses. From (A-42), this is equivalent to convelulion by a lrain of
d-functions in the {requency domain, forming many translated copies of the spectrum
(Figure A.8). Sampling is irreversible when adjacent copies of the spectrum overlap
because the extent to which they reinforce or cancel is unknown, but otherwise full
recovery of the original signal is possible. The sampling theorem states that a conlinuous
signal multiplied by an ideal sampling function may be exactly recovered il the original
spectrum is contained within a bandwidth of less than half the sampling rate (Bateman



272 APPENDICES

..1[]'H|Yt.., /\/U y
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FiGure A.8: Effect of temporal sampling on the frequency spectrum.
Tllustration of the effect of sampling a one-dimensional signal z(f) in the
temporal domain with a regular period 7. (a) the signal z(t) is eflectively
multiplied by a §-function at the sampling points. (&) the repeat period of
the spectrum X(f) is related to the temporal sampling period.

& Yates, 1988). Sampling more frequently than tbis poses no difficulty but will clearly
nul generate the most compact representation. A discrete Fourier spectrum is sampled
in the spectral domain, effectively extending the spatial signal with a repcat period.

Recovery of the {ull signal from the sampled spectrum is achieved by truncating it
to its principal period, band-limiting it to half the sampling frequency. Multiplication
by a rectangular window in the spectral domain is equivalent to convolution with a
sinc function in the spatial domain. If Lthe original signal was sampled at an insufficient
rate, adjacent spectra overlap and hence part of the signal is shifted to a new spatial
frequency, causing aliasing error (Figure 7.18 on page 206).

Blnr imposes a Gaussian envelope on the spectrum, attenuating high frequencics
(Figure A.9a). For a moderate degree of blur, aliasing still occurs and tends to produce
a more even spectrum in the sampled image, but heavier blur effectively band-limits
the image at a lower frequency, rendering aliasing insignificant.

Smooth-sampled images are windowed by unweigbted averaging, which altenuates
spatial frequency according to the sinc curve (Figure A.9b). The side lobes are impor-
tant only [or Jow sampling frequency, | < 0-5, as otherwise no iage energy is present at
these spatial frequencies. Although aliasing is somewbat redueed, this simple method
compares unfavourably with an ideal band-pass filter (Meer et al., 1987), which trans-
mits all the energy wilthin the pass region and none outside it. We have suggested
that some aliasing has a beneficial effect in improving modelling accuracy, and hence
it is doubtfnl in the present circumstances whether use of an “improved” filler would
be appropriate, although a preliminary investigation suggests that anti-aliasing may be
beneficial (§8.3).
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FiGUuRE A.9: Spectra of blur and window transefer functions. For
uncorrected pixcl images, aliasing occurs for frequencies ¢ outside the range
—0-5 < @ < 0-5. (a) blur transfer function |G(&)| for & = 0-25 (dotted) and
b = 0-5 (solid). (¥) window transfer function |W|. The shape of the [unction
is the same for different smooth-sampling frequencies f. An ideal band-pass
function only transmits frequencies between the dotted lines.





