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An Introduction to Expert Systems 

Bryan S. Todd 

Abstract 

This monograph provides an introduction to the theory of expert systems. 
The task of medical diagnosis is used as a unifying theme throughout. A 
broad perspective is taken, ranging from the role of diagnostic programs 
to methods of evaluation. While much emphasis is placed on probability 
theory, other calculi of uncertainty are given due consideration. 
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Chapter 1 

Synopsis 

1.1 Scope of Monograph 

What is an expert system? Opinions differ, and definitioll6 vary from fllDC
tional requirements, which may be undemanding 

a program intended to make reasoned judgements or give as
sistance in a complex area in which human skills are fallible or 
scarce [Lau88} 

or exacting 

a program designed to solve problems at a level comparable to 
that of a human expert in a given domain [Coo89j, 

to more operational descriptions, usually in terms of 'knowledge' and 'infer
ence': 

a computer system that operates by applyillg an inference 
mechanism to a body of specialist expertise represented in the 
form of 'knowledge' [Go08Sj. 

The scope of this monograph is not restricted to any specific kind of 
implementation method, such as that embodied by the last of the three 
definitions above. Instead, a broader view is taken. Other kinds of system 
meeting the first definition are included for comparison. 

Application to medjcal diagnosis is used as a recurring theme through
out. This is one of the most intensive fields of expert system re6earch, and it 
provides a unifying context for discussing the merits of different approaches. 
The a.rguments are, however, transferable to other domains, and other a.p
plica.tions are also described and used as exa.mples where relevant. 

1 



2 CHAPTER 1. SYNOPSIS 

1.2 Outline of Monograph 

Chapter 2 discusses the possible roles of medical expert systems, and brieflj' 
review6 some early methods for providing decision support. These include 
one of the most successful: the use of Bayes' theorem with the assumption 
of conditional independence. 

Chapter 3 reviews a variety of alternative statistical methods which in 
one wa)' or another avoid some of the disadvantages associated with the 
simpler use of Bayes' theorem. 

Chapter 4 introduces rule-based methods by illustrating some of the 
components of a categorical expert system, by means of a simple example 
in Prolog. Two well-known systems, MYCIN and PROSPECTOR, which 
reason under uncertainty, are then described. 

Chapter 5 explains an alternative knowledge representation: the descrip
tive pa.radigm. This is exemplified by two large medical expert systems, 
INTERNIST and its successor CADUCEUS. 

Chapter 6 introduces causal networks as a descriptive knowledge rep
resentation hased soundly on probability theory. Considerable emphasis is 
given to the theory of causal networks. This is because they appear to be 
emerging as one of the most important methods for constructing expert 
systems which reason under uncertainty. 

Chapter 7 counters the claim that inference rules are unsuitable as a 
knowledge representation when uncertainty is involved. A rule-based repre
sentation is derived, employing a model first introduced in Chapter 3: the 
logistic form. 

Chapter 8 describes two alternative formalisms for handling uncertainty. 
The motivation for seeking new techniques is explained, and the methods 
are contrasted with probabili ty theory. 

Chapter 9 discusses both how to evaluate a diagnostic expert system, 
and how to present the results in a dear and comprehensive way. 



Chapter 2 

Decision Support Systems 

2.1 Purpose and Role 

Consider the prd'blem of medical diagnosis. How might a computer program 
assist a doctor to interpret his clinical findings and make a correct dia.gnosis? 
There are two, quite different ways, and it is possible for a computer program 
to help to some extent in both. 

2.1.1 Checklists 

Firstly, from time to time a particular kind of diagnostic challenge is en
countered, with the following characteristics. 

1.	 All the information necessary to reach the correct diagnosis has been 
gathered. 

2.	 It is hard, however, to think of the correct diagnosis. 

3. Once suggested, though, the correct diagnosis is easily verified. 

A loose analogy can be drawn with solving a crossword due. For this 
kind of problem, a computer program would be useful if it could suggest a 
sensible Ust of possible interpretations. The role of such a program ought to 
bQ uncontroversial because judgement and decision are left entirely to the 
clinician. The program can be regarded simply as an 'intelligent checklist' 
which prevents a possible oversight. However, while such problems are often 
thought to be quite common, they are actually extremely rare [Dom78]. 

2.1.2 Decision Aids 

A more controversial role for a computer program is as a direct aid to de
ciding between a few possible alternatives, others having been ruled out. 

3 



4 CHAPTER 2. DECISION SUPPORT SYSTEMS 

It has been suggested that the results of a. computer analysis can be re
garded just like those of any other test which assist the doctor in making 
a decision [Dom84]. Indeed, computer analysis is an entirely non-invasive 
test carrying no direct risk to the patient, only the indirect risk that it 
may mislead the doctor. ~1oreover, if the program is carefully designed and 
implemented, it is inexpensive too! 

However, there is a special distinction between analysing clinical findings 
by computer and carrying out a blood test or an X-ray; no new diagnostic 
evidence is obtained. The computer simply analyses the clinicjan 's own find
ings. Furthermore, the facts entered into the computer are an abstraction 
of those findings, so some of the information available to the clinician is in~ 

evitably lost in the process. (Can you think of a practical way of estimating 
how much is lost?) 

Despite these constraints, programs can be developed which, in trjals, 
appear useful. One approach entails trying to formalize a specialist's own 
knowledge and to simulate his reasoning processes; the program may then 
assist non-experts ('dissemination of expertise'). A recent example of such 
a progra.m in a medical domain is the PLEXUS system for advice on the 
diagnosis and management of nerve injuries [Jas87]. We will examine others 
in more detail later. 

If, though, the intention is to assist the specialist himself, then the pro~ 

gram must incorporate 'knowledge' he does not possess, and (if possible) 
use it in a more effective way. Surprisingly, quite simple techniques go some 
considerable way to attaining this objective, although no systems yet exist 
which have been shown to be of unequivocal use to a medical specialist. 

2.2 Early Attempts 

Before computers became widely available, efforts were made to provide di
agnosticaasistance using mechanical devices. Na.c;h designed a wooden frame 
down the side of which were marked some 300 diseases [Nas54]. Wooden 
strips, one for each symptom the patient had, could be hung on the frame. 
Each strip was marked across with lines corresponding in position to the 
diseases which could explain the symptom. Disea.<ies which could explain 
all the patient's symptoms were then easily read off the frame; they were 
against continuons lines running across all the strips. Lipkin and Hardy 
describe a. similar method for the ideutification of 26 blood disorders, using 
punched cards [Lip58J. They tested their system using the case records of 
80 patients who had been pre...iously diagnosed. In 73 of these cases, only 
one disease explained all the findings, and this was invariably the correct 
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diagnosis. In the remaining 7 cases, the system failed because each patient 
had multiple disorders, and no single disease could explain everything. 

The !:itrength of these systems is their simplicitYi it is transparently obvi
ous to the user how the results are obtained and what they mean. Further
more, the inherent limitations of mechanical devices are readily overcome 
by implementing the methods as computer programs instead. For example, 
it would then be easy to look for all pairs of diseases which explain the 
findings. A system in current use based on these principles assists in the 
diagnosis of rare malformation syndromes [Win84]. 

Exercise 2.1 Choose some diagnostic task with which you are familiar (for 
example, working out why a car UJon't start). Design and implement in your 
pre.ferred programming language, a system based on the principle of Nash's 
apparatus to help localize the cause. 

2.2.1 Flowcharts 

Once computers became readily accessible, a favoured method of encoding 
medical reasoning was by means of flowcharts using branch chain Jogic (so
called 'clinical algorithms'). Flowcharts can be useful because ttley make 
lines of reasoning explicit, so errors and omissions can be more readily iden
tified than with some more complicated techniques. Quite complex diag
nostic procedures can he formalized in this way, and explanations can be 
assembled during program execution from fragments of prose attached to 
arcs in the diagram; see for example a program to interpret biochemical 
abnormalities [Ble721. Other medical applications include the diagnosjs of 
dysphagia [Edw70J, and screening for neurological disease [Va.s73]. 

Exercise 2.2 Repeat Exercise 2.1 using a flowchart representation instead. 
Which method is easier, and why? 

2.3 Observer Variation 

The diagnostic value of any computer analysis is ultimately limited by the 
reliability of the clinical information entered ahout a given patient, and this 
principle applies equally to non-medical applications. How reljable then are 
clinica.l findings? In 1973 Gill and co-workers reported the results of a study 
of observer variation amongst clinicians [Gil73]. Three clinicians attended 
patient interviews conducted by a fourth. They recorded which questions 
were asked, and whether the symptoms were present or not. Surprisingly, 
the three observers disagreed in 20% of instances as to whether a particular 
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question was a.ctually asked, and in 16% of instances as to whether the 
patient's response was positive or negative! 

This high degree of variation was attributed to a lack of standard defi
nitions of symptoms. When agreed formal definitions were introduced, and 
the experiment repeated, disagreement occurred in only about 4% of in
stances [Gil73]. Further evidence of this wide divergence of opinion regard
ing the definition of common symptoms is provided by a study of 40 ex
perienced gastroenterologists and surgeons [Kni85]. Clearly, any proposed 
development of an expert system to assist diagnosis should be preceded 
where'o'er possible by agreeing standard definitions of findings. This may 
prove to have a greater effect on the final performance than any particular 
choice of implementation method. 

2.4 Statistical Methods 

In generaJ, what sources of medicaJ 'knowledge' are available for construct
ing an expert system? There are of course journal articles, textbooks and 
medical specialists themselves. There is, however, another important source 
of information: databases of previously diagnosed cases, particularly when 
compiled using agreed formal definitions of symptoms and signs. 

2.4.1 The Value of Raw Data 

In an interesting study [Kni85], four gastroenterologists were asked inde
pendently to specify which symptoms might discriminate between duodenal 
and gastric ulcers. When compared with a database of severaJ hundred ac
tual cases, only four of the twelve most trnsted symptoms were subsequently 
found to be significantly discriminating, one of which discriminated in the 
reverse direction to that expected. This demonstrates the poten tial diagnos
tic value of databases, and to some extent casts doubt on 'expert opinion' 
as a primary source of knowledge for diagnostjc programs. 

2.4.2 Probability Theory 

In order to draw from previous cases, possibly uncertain inferences regard
ing a new case, we require a calculus of uncertainty. Althougll there exist 
several such calculi perti nent to expert systems (two modern alternatives are 
described in Chapter 8), probability theory is the most firmly established. 
The following is a brief summary of the basics of discrete probability theory. 
A more complete account can he found in almost any standard text (for 
example, [Nea89]). 
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Definitions and Axioms 

Consider an experiment whose set n of possihle outcomes is known in ad
vance. The 8et n is known as the sample space of the experiment, aCid 
each element of n is known as a. sample point. (For simplicity we will as
sume that n is fiuite.) Thus if the experiment consists of rolling a. die, then 
11 = {l,2,3,4,5,6}. 

Any Sll bset of n is referred to as an event. (We will denote events by 
upper-case letters.) An event E is said to occur precisely when the outcome 
of the experiment lies in E. For example regarding dice, {2, 4,6} is tbe event 
'an even number is thrown', and {l,2,3} IS the event 'a number less than 
four is thrown'. The entire sample space n denotes the certain event, a.nd 
the empty set {} denotes the impossible event. 

The probability of an event E is a real number denoted peE), and every 
probability function p satisfies three axioms. 

Axiom 1 Probabilities are non·negatil'e. 

os: piE) 

Axiom 2 The probability of the certain event is one. 

p(l1) ~ 1 

Axiom 3 If two events (E and F) are mutually exclusive (disJoint) then 
the probability that at least one of them occurs is the sum of their respective 
probabilities. 

En F = {) :} p(E U F) ~ p(E) + p(F) 

The Complement of an Event 

The complement (or negation) of an event E is written E. By definition, 
E occurs if and only if E does not occur. 

E'" I1-E (2.1) 

Consequently, 

piE) = 1 - piE) (2.2) 
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Joint Probabilities and Conditional Probabilities 

The proba.bility pCE n F) tha.t both event E and event F occur is termed 
the joint probability of E and F. By convention, a comma. is used to denote 
intersection of events; given any two events E and F, 

p(E, F) " p(E n F) (2.3) 

The conditional probability of E given F is denoted peE I F). When p(F) 
is non-zero, peE ! F) is defined to be the ratio of the joint probability to the 
proba.bility of F. 

p(E IF) " p~~~~) (2.4) 

When p(F) is zero, p(E I F) is undefined. 
Continuing wi th the example of a die, let E be the event 'an even number 

is thrown' and let F be the event "a. number less than four is tluown'. The 
probability of any event is given by the sum of the probabilities associated 
with its constituent sample points (from Axiom 3). We assume that thf:! 
die is unbiased, so the probability associated with each sample point is the 
same (1/6). Thus 

E ~ {2,4,6} and p(E) 1/2 
F {1,2,3} and p(F) 1/2 
EnF {2} and p(E,F) 1/6 

Therefore, the conditional probability that an even number has been thrown, 
given that the number is less than four, is 1/3 (i.e. 1/6 divided by 1/2). 

Random Variables 

A random variable is a function from n to the reals R. We will use lower-case 
Greek )f'tters to denote random variables. In this course we will consider only 
the boolean variety (n - {D, I}) which we will call propositional variables. 

By convention, the event that a random variable D: takes value a, is 
denoted by '0 = a'. Thus, given any propositional variable 0: : n - {D, I} 
and value a: {D, 1}, 

~ o=a {3 ,111 ,:>(3) ~ a} (2 ..5) 

\\'e will denote sets of propositional variables by the letteni A, B, ... , Z. 
Given any set A of propositional variables (A = {OhD:2, ...• On}) and cor
responding sequence a of values (a = [at, a2, ... , a'll), by con vention, 

A ~ a n (ni ~ a,) (2.6) 
19:=::'1 
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In order to reduce the notational burden, a. propositional variable (or set 
of propositional va.riahles) will often appear in a formula without reference to 
a particular value. In such cases, there is an implicit universal quantification 
over a.ll possible values. For example, 

p(a, {3) = P(a )p({3) 

is short for 

'Va,b: {a, I}.p(a = a,{3 = b) = pia = a)p({3 = b) 

Furthermore, the event that a propositional variable takes value 1 wHl often 
be ab breviated to the corresponding upper·case letter. Thus 

a = 1 becomes A 

{3 = I becomes B 

and so forth. Simil.arly, 

0'=0 becomes A 
{3=a becomes B 

etc. 

Independence 

Two events E and F are said to be independent exactly when the proba
bility p(E, F) of the joint event is equal to the product of the individual 
prohabilitiE~, p(E) and p(F). Clearly, independence is a symmetric relation
ship. Furthermore, it follows that if E and F are independen t then, whenever 
p(E I F) is defined, ptE) is equa.! to piE I F). Thus knowledge that event F 
has occurred does not influence the likelibood of E occurring. 

SimllarlYI two propositional variables a and f3 are said to be (uncondi
tionally) jndependent precisely when 

p(a, {3) = p(a )p({3) (2.7) 

and conditionally independent given a set of variables C precisely when 

p(a,{31 C) = pia IC)p({31 C) (2.8) 
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Application to Medical Diagnosis 

In the context of medical diagnosis, n is some real or imagined population 
(for example, the set of all patients who have been, or ever will be, referred 
to the John Radcliffe Hospital). Now suppose b represents some arbitrary 
disease: formally, b :::: 1 (abbreviated to D) is the set of all patients who 
have disease b. Furthermore, let S (= {0"1' 0'2, ••• I an}) be a set of propmii
tional variables corresponding to possible symptoms, signs or other items of 
diagnostic value. Thus, if say 0'3 is 'raised temperature' then 0"3 = 0 is the 
event 'the patient does not have a raised temperature', and 0"3 :::: 1 is the 
event 'the patient does have a raised temperature'. 

Suppmie a patient is drawn randomly from the same population. The 
act uat symptom val ues we record are s (= [s}, S2, • ", sn]), and we wish 
to predict whether he OJ she has disease 6. We are therefore interested 
in p(D IS = s), the conditional probability that our patient has disease 6. 

Unfortunately, in practice any attempt to estimate p(D IS = s) directly 
from a random sample of previously diagnosed patients will almost certainly 
fail because it is unlikely that the sample will include any cases with exactly 
the findings s. One solutioll1 however, is to make some modelling assump~ 

tions; Bayes' theorem allows this. 

2.4.3 Bayes' Theorem 

Two applications of the definition of conditional probability (Equation 2.4) 
leads to 

p(D IS) = p(S I D)p(D) (2.9)
p(S) 

Unless disease 6 is very rare, it is generally feasible to estimate p(D) di
rectly a.c; the relative frequency with which f, = 1 in a random sample (e.g. a 
database of several hundred cases). One solution to the problem of estimat
ing piS I D) is to assume that the individual symptoms are conditionally 
independent given the presence of disease 6. Thus, 

p(SID) = IT p(", I D) (2.10) 
1$I$n 

Direct estimation of the conditional probability p(a; I D) is usually feasible. 
The denominator piS) of Equation 2.9 is also problematic. The usual 

procedure is to assume that all diseases (61,62 , ... ,6rn ) are mutually ex
clusive (each patient has exactly one such disease OJ). It then follows from 
Axiom 3(Page 7) and the definition of conditional probability (Equation 2.4) 
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that 
piS) = L p(S IDj)p(Dj) (2.11) 

l$i$m 

(The numerator in Equation 2.9 is one of the terms in the sum; the others 
a.re evaluated simila.rly.) 

Exercise 2.3 As an alternative to Equation 2.11 with its implicit assump
tion that every patient has exactly one disease, we could assume instead that 
findings are unconditionally independent as well. Thus we could write 

p(S) = II p(",) 
l$i$n 

Suppose two symptoms (0'1 and (J'l) are recorded from 1000 patients each of 
whom has one of two possible diseases (61 and 62). 

'1 " "I '" Cases 
0 1 0 0 730 
0 1 0 1 20 
0 1 1 0 20 
0 1 1 1 30 
1 0 0 0 20 
1 0 0 1 80 
1 0 1 0 80 
1 0 1 1 20 

1000 

Calculate p(D1 151 ,52 ) using Equation 2,9. Obtain the numerator by as
suming conditional independence and applying Equation 2.10. Obtain the 
denominator by assl.lming unconditional independence and applying the for
mula suggested above. What is the meaning of the result? 

An Application of Bayes' Theorem: The Leeds Program 

One of the most successful medical applications of Bayes' theorem has been 
to the diagnosis of acute abdominal pain. De Dombal and co-workers in 
Leeds noted that 95% of patients presenting to hospital with Qbdominal pain 
of recent onset fall into exactly one of seven diagnostic categories [Dom72J. 

1. Appendicitis 

2. Diverticular disease 

3. Perforated duodenal ulcer 
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4. Non-specific a.bdominal. pain 

5. Cholecystitis 

6. Small bowel obstruction 

7. Pa.ncreatHis 

Using data from 400 patients, conditional. probabilities for each possible 
clinical finding~ given each of the seven diagnostic ca.tegories, were estimated. 
Bayes' theorem was used to classify 304 new cases; the computer diagnosis 
wa.s t.aken to be the disease 6j with highest p(Dj I S), where S stands for 
the registra.r's findings at his first contact with the patient. The computer 
achieved a. correct diagnosis rate of 91.8% compared to 79.6% for the most 
senior clinician who saw the case. 

This very high computer a.ccuracy has not been sustained in subsequent 
trials, however, a.nd doubts are now being expressed about the true value of 
this method [5ut89J. 

Exercise 2.4 In 43% of cases referred to hospital with acute abdominal 
pain, the pain resolves spontaneously and no specific cause is found ('non
specific abdominal pain'). Another 24 %of cases tum out to have appendici
tis. In 74 %of cases of appendicitis, the pain is in the right lower quadrant, 
whereas in only 29% of cases of non-specific pain is this the site. What is 
the rela/ive likelihood of appendicitis as opposed to non-specific abdominal 
pain if the site is the n'ght lower quadrant? (Published data [Dom80j) 

Exercise 2.5 Continuing Exercise 2.4, in 57% of cases of appendicitis, the 
pain is aggravafed by movement, but this is true in only 9% of cases of non
specific pain. Assuming that the sit-e of the pain is conditionally independent 
of aggravation of the pain by movement, both in the presence of acute appen
dicitis and when the pain has no specific cause, what is the relative likelihood 
of appendicitis if we also learn that the pain is not aggravated by movement '! 
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Data-Based Approaches 

3.1 Validity of the Independence Assumption 

The most common criticism of the lise of Baye8' theorem as described in 
Cha.pter 2 is the assumption of conditional independence. In practice, many 
symptoms and signs are correlated (fof example, pulse rate and tempera
ture). Several studies (for example lFry78, Cha89]) have assessed the im
portance of the independence assumption with respect to medica.l dataj a 
small but significant reduction of diagnostic accuracy was generally found. 

To see the effect of ignoring interactions, consider the following hypothet
ical example (taken from [Nori.5a]) of the joint distributions of two symp
toms (<11 and 0'2) given the presence of each of two diseases (01 and 62 ). 

p(5 j ,5, I D,) ~ 0.5 p(5, ,5,ID,) ~ 0 
p(S" S, ID,) ~ 0 p(5" S, I D,) ~ 0.5 
p(5" 5, ID,) ~ 0 p(5,,5, I D,) ~ 0.5 
p(5" 5, I D,) ~ 0.5 p(5,,5,ID,) ~ 0 

The conditional probabilitiES of each symptom are the same given each dis
ea..<;e, since 

p(5, I D,) ~ p(5, I D,) ~ 0.5 

and 
p(5, ID,) ~ p(5, I D,) ~ 0.5 

So taken alone, each symptom provides no discriminatory power between the 
diseases. Yet, considered in combination, the two symptoms enable perfect 
discrimination. 

This chapter describes a variety of approaches which make weaker as
sumptions than does the simpler application of Bayes' theorem. 

13 
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3.2 Avoiding the Independence Assumption 

3.2.1 Lancaster Model 

Lancaster has generalized the definition of independence between variables 
to one of independence between sets of variables [Zen75]. This enables the 
following alternative to Equation 2.10 (Page 10); Equation 3.1 takes into ac
count pa.irwise interactions between symptoms, but assumes that no higher 
order interactions occur. 

peS I D)= (IS~S/(U"Uj ID) ,!!/(U, ID)) -(C,-I),Lt p(u, ID) 
(3.1 ) 

Notice, however, that the number of parameters to estimate is now 
quadratic rather than linear with respect to the number of symptoms. In 
most applications, this requires a large amount of training data. 

The effect of weakening the independence assumption in this way was 
assessed with respect to the diagnosis of acute abdominal pain using 5916 
training cases [Ser86]. A small improvement in diagnostic accuracy was 
found. 

3.2.2 Clustering Methods 

The principal interactions that do occur are probably between small clusters 
of symptoms which share a Common cause. Norussis and Jacquez have sug
gested identifying these clusters by analyzing correlation coefficients, and 
then rega,rding each such group of variables as a single, multi-valued vari
able [Nor75b]. 

3.2.3 Kernel Method 

If sufficient training data were available, the conditional probabmty peS I 
D) could be estimated diTf:ct]y, aud no independence assumption would be 
necessary. One \...·ay to compensate for a shortage of training data is to 'blur' 
the cases that are available; each case is replaced by a collection of similar 
cases. This is the basis of the 'kernel' method of smoothing [Ait76]. It offers 
another alternative to Equation 2.10. 

peS I D) =:f L -';-"(1 - -,,)" (3.2) 
l::::;t.s;T 
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when:! 

T = Total number of training cases. 

>'6 = Smoothing parameter for disease b. (0.5 ~ >'5 ~ 1) 

5, = Hamming distance (number of differing values) between 
the instantiation of S and the corresponding findings of 
the t ~h training case. 

The sucres!> of this method depends on the choice of the smooth.ing 
parameter >'5' Several optimization methods have been described [Ait76, 
Tit80, TU186). 

3.3 Nearest-Neighbours Method 

Actually, if sufficient training data really were available, then Equation 2.9 
(Page 10) would be irrelevant; p(D IS = s) itself could be estimated directly 
as the relative frequency with which b = 1 amongst cases which have exactly 
the clinical findings s. This is defeated in practice, however, because it is 
very unusual to find in the training set even a single exact match (identical 
symptom values) to a new patient. 

A simple relaxation of this is to define a metric on vectors of findings, 
and identify (for some pre--set value k, such as k == 10) the k cases in the 
training set which are closest to the new patient. The conditional probabil
ity p(D IS) is then estimated as the relative frequency of disease b amongst 
this set of partial matches. The simplest metric to use is the Ha.mming dis
tance. However, greater diagnostic accuracy may be achieved jf each of the 
symptoms is a.ssigned a positive weight, and the distance defined as the sum 
of the weights of the symptoms whose values differ. Notice that application 
of tills method entails no assumption of mutual exclusion between diseases; 
multiple disorders can be detected. 

It has been proposed to implement this method on a connectionist archi
tecture in which the task of storing a very large training set and retrieving 
close matches to new cases is distributed over a large number of proces
sors [Sta86]. However, when the nearest-neighbours method was applied to 
the diagnosis of acute abdominal pain (5916 training cases and 1000 test 
cases), results were markedly inferior to those obtained simply from apply
ing Bayes' theorem with the assumption of conditional iudependence [SerB5]. 
More encouraging results were obtained in a similar comparative study of 
the methods for the diagnosis of liver disorders (1991 training cases and 
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437 test cases), but Bayes' theorem was still marginally better [Cro72]. In 
conclusion, it seems that the nearest-neighbours method is not effective UD

less a very large amount of training data is available) and this is generally 
impracticable. 

3.4 Logistic Model 

For any events E and F, the odds are defined by 

pre)
odds (E) '" (3.3)

pCE) 

and the conditional odds are defined by 

prE IF)
odds (E IF) '" (3.4)

prE IF) 

Notice that the corresponding probabilities are easily recovered. 

odds (E)
pre) (3.5)

1 +odds (E) 

odds (E I F)
prE IF) (3.6)

1 + odds (E I F) 

The logistic approach to discrimination assumes a linear form for the 
log-odds [And82]. Thus if a is a sequence of real-valued coefficients (a = 
lao, G}, ..• , an]), 

In odds (D IS::: s) ::: ao + L aisl (3.7) 
l:$i$n 

The coefficients lJ{), .•• , a,L a.re chosen to maximize the probability of correct 
classification of the training cases. This entails iterative optimization. 

Equation 3.7 is consistent with several families of distribution, includlng 
that in which symptoms are either conditionally independent or mutually 
exclusive given D and, conversely, given D. It is also consistent with log
linear distributions in which the interaction terms are equal. Therefore, the 
logistic model is more general than independence Bayes, and this is usually 
reflected by higher diagnostic accuracy. 
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3.4.1 The Spiegelhalter-KniJl-Jones Method 

Indeed, whatever the underlying distribution, the conditional log-odds for a 
disease ca.n be expressed as the sum of the 'weights of evidence' provided by 
the findings. 

In odds (D IS) ~ L W, (3.8) 
O$i$;n 

The term Wo stands for the prior weight of evidence before any of the 
findings are considered. It is simply the prior log-odds. 

Wo '" Inodds (D) (3.9) 

Each of the other terms represents the weight of evidence provided by 
the corresponding finding. 

~ I (p(a, Ia" a2, .. ·, a, "Dl)(i fe 0), WI - n (3.10)
p(O"; 10"1,0"2, ... ,O"i_llD) 

Notice that the value of weight Wi depends on the values of all symp
toms al ... aj. So Wi is really a family of 2i terms, one for eacb possible 
assignment of symptom values. Therefore the number of parameters to es
timate from training data is infeasibly large, in general. 

One solution is to assume that symptoms are conditionally independent 
given D and, conversely, given D. Equation 3.10 then simplifif's to Equa
tion 3.11. Now only two parameters are required for each symptom aj: the 
weight of evidence provided by aj = 0 and the weight of evideflce provided 
by aj = 1. 

(i fe 0), Wi '" In (p(a, I DJ) (3.11)
p(ai ID) 

We refer to these weights (Equation 3.11) as 'simple weights of evidence', 
because they rely upon a naive assumption of independence. Ifsymptoms are 
in fact associated statistically, then the procedure implied by Equation 3.8 
tends to count their evidence twke. To compensate for this, Spiegelhalter 
and Knill·Jones [Spi84] introduce 'shrinkage coefficients'. 

In odds (D IS) ~ L D,W, (3.12) 
O:::;":::;n 

Thus, a logistic relationship is assumed between p(D IS) and the weights 
of evidence w. The coefficients ao, ... , an are optimized iteratively over the 
same training data used to determine w. 
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Exercise 3.1 Deril'e Equations 3.8,3.9,3.10 and 3.11 fmmfirst principles. 
Hencejustify the assET'lion that the logistic/arm (Equation 3.7) is consistent 
with distf'ibulions in which symptoms Uf'e conditionally independent in the 
presence of the disease and in the absence of the disease. 

The Glasgow Dyspepsia System 

This method was first applied to the diagnosis of dyspepsia (abdominal 
discomfort) [Spi84]. Ahollt 1.50 6ymptoms were recorded in 1200 patients 
referred to a specialist gastrointestinal clinic with dyspepsia. From this data 
simple weights of evidencf' for each of 7 diagnostic categories were obtained, 
and then shrinkage coefficients were derived. ~ultip1icatjon of a simple 
weight of evideuce by its shrinkage coefficient gives the actual weight. 

For example, tabulated below arc some weights of evidence for the diag
nosis of gallstones. 

I Finding I Simple Weight I Actual Weight] 

Starting score (tL'O) -2.97 -3.00 
History::; 12 months No 

Ye' 
-0.52 
+0.56 

-0.44 
+0.52 

Attacks of pain No 
":....es 

-1.75 
+2.18 

-1.41 
+1.77 

Pain in RUQ No 
Ye' 

-0.88 
+1.28 

-0.53 
+0.77 

Pain radiates to shoulder No 
Yes 

-0.37 
+2.53 

-0.19 
+ 1.29 

So for example, if a patient presents (-3.00) with a two-year history 
(-0.44) of attacks (+1.77) of pain in the right upper quadrant (+0.77) 
radiating to the shoulder (+1.29), then the total score is +0.39. So, the 
conditionallog~odds are 0.39. Taking antilogs and applying Equation 3.6 
(Page 16), we find that the probability that the patient has gallstones is 0.60. 

eO.39 

-039 =0.60
l+e· 

The strength of this met.hod is that the user can clearly see which find
ings count for and which count against the final diagnosis, and to what 
extent. Furthermore, the method has an attractive simpUcity. The entire 
table of weights, and a graph or reference table for performing the final 
transformation from score to probability, can be printed on a piece of card. 
The user can then calculate p(D ,I S) even without the aid of a computer. 
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More recently this method has been applied to the problem of predicting 
postoperative resphatory complications in elderly surgical patients [Sey90]. 

3.5 Recursive Partitioning 

Rather than make the independence assumption that is implicit in Equa
tion 3.11, it may be preferred to retain the generality of Equation 3.10. This 
is actually possible because, although the number of parameters to estimate 
is exponentially large, in practice the most reasonable estimate of nearly all 
of these is zero by default. 

This 1s because in order to estimate w, for some particular symptom val
ues (SI"'" sd, sufficient training cases are required with precisely the find
ings 81,' .. , Si_l, and these become rarer as i increases. If no such training 
cases are available, or if their number is too small to permit relia,ble estima
tion, then there is no alternative but to take Wi to be zero both for (1; = 0 
and for O"i = 1. It follows that the number of weights that can actually be 
estimated cannot exceed the total number of training cases available. 

The effect of each finding on the running total of evidence in fa.vour of 
diagnosis 6 can be expressed as a kind of flowchart (see Figure 3.l). 

The accuracy of the probabiIj ties depends critlcally on the order in which 
symptoms are considered. The worst decision would be to choose as O"} a 
symptom which is present in about half the training cases, but which pro
vides hardly any evidence for or against the diagnosis of disease 6. Whatever 
the value of at. only about half the training data would then be available 
to guide interpretation of subsequent findings. 

When choosing the next symptom to consider, the objective should be 
to select one which partitions the training data into two sets of roughly 
similar size, but in which the relative frequency of disease 6 is as different 
as possible. A measure advocated by Michie [Mic89] for this purpose is the 
expected magnitude of the weight of evidence that the finding will provide. 
In general, for symptom O"j this is given by 

E(w;) = p; x Iwil + (1- p;) x Iw?1 (3.13) 

where Pi is the probability that 0i = 1 given the values of the preceding 
symptoms. 

p, '" p(S; Iu"u" ... ,U;_l) (3.14) 

and w? and wI are the weights of evidence provided by 0"; = 0 and 0"; = 1, 
respectively. 

In (p(S;1 U"U2, ,a;_"DJ)wO, (3.15)
p(s; I (1},02, ,Oi_1>D) 
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In (P(S; I at,a" ... ,a, [,D))
w~	 (3.16) 

p(s; I 0"1,0"2""'O"'-l,D) 

Overfitting is avoided hy consid<!ring only symptoms which are significant 
according to Fisher's exact test, or X2 if numbers are large. If none of 
the remaining symptoms are significant then partitioning stops. The entire 
recursive procedure is as 5hown below, where T is the training set. 

iiT is 'partitionworthy' then 

•	 Choose as the next (1i the symptom with highest expected 
weight of evidence among the significant candidates. 

•	 Partition T into To (those for which O"j = 0) and T1 (those for 
which (1j ::: 1). 

• Apply this same procedure recursively to To and T1 • 

else label T with the log-likelihood ratio of disease b estimated as 

In (NUmber of cases in T for which b ::: 1)
I Number of cases in T for which () = 0 

A training set T is sa.id to be partitionwo1'lhy exactly when 

1.	 There is some symptom which does not appear anywhere on the path 
to r from the root, and 

Z.	 this symptom is present in at least one member of T and absent in at 
least one member of T, and 

3.	 this symptom is a statistically significant discriminant for disease /Y. 
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Figure 3.1: Example of a flowchart showing influence of each finding on the 
total evidence in favour of diagnosis 6, expressed on a vertical scale. 

3.0 .../ p(D IS) = 0.95 

/O,~2.0 /0, = 1 p(D IS) = 0.84 

1.0 0, p(DIS)=O.71 
(12:::; 0 

0 0"3 = 0 ~ L0, 
~ = 1 p(D IS) =0.29 

·1.0 (11 = 1 

~hl 
·2.0 0, 04~4 =0 

= 0 ~ p(D IS) = 0.06 

-3.0 '" p(D IS) = 0.05 

"'0, 
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Notice that in Figure 3.1 each symptom is numbered according to its 
distance from the root, but different occurrences of (1j need not stand for 
the same symptom. 

Exercise 3.2 Since recursive partitioning avoids making independence as
sumptions, is it necessarily a more accurate method than application of 
Bayes'theorem with the assumption 0/ conditional independence? (Con
sider the case that findings really are conditionally independent. Consider 
also thf: example of extreme conditional dependence given in Section 3. J 
(Page 13).) 

3.6 Neural Networks 

Althougb. motivated by the desire to model biological neural systems, the 
study of computational neural networks has led to more flexible discriminant 
functiom, capable of computing more accurate conditional probabilitie; in 
the presence of interactions [Lip87]. One kind, a percept ron, is constructed 
from an ordered set of logistic functions (called either 'neurons' or simply 
'units'). Each variable ('input') now consists of either a symptom (1i or 
the output of another logistic function lower in the order. The final value 
computl!d by the top element ('output unit') can be regarded as an estimate 
of p(D I S). The lower elements are referred to as 'hidden units'; their 
purposels to detect important, but unspecified features of the finding vector. 

Figure 3.2 shows a three-unit percept ron. For simplicity, it has been 
assumed that tbere are only three symptoms: S = {(111 (12, U3}. 

A simple, iterative algorithm has hecome available in recent years for 
optimizing the coefficients over training data [Rum86]. It is a gradient de
scent ml!thod entailing the propagation of errors back from the output unit 
to those lower in the order. 
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Figure 3,2; Three-unit perceptron computing p(D IS). 

p(D I S) 

Output unit 

Hidden units 

<71 <72 <73 Symptoms 



Chapter 4 

Rule-Based Methods 

4.1 Types of Knowledge 

Although databases ofprevious cases provide a great deal of useful diagnostic 
information, other kinds of medical knowledge exist too. They include 

•	 Heuristic knowledge - recognized assocjations between diseases and 
8~·mptoms. For example, 

- Appendicitis nsually causes right lower quadrant abdominal pain. 

- Right lower quadrant pain suggests appendicitis. 

•	 Deep knowlEdge. knowledge about underlying causal and anatomical 
mechanisms. For example, 

- The appendix usually lies in the right lower quadrant of the ab
domen. 

-	 lnflammation of an abdominal organ usually causes local pain. 

•	 Meta-knowledge. knowledge about knowledge. This includes explicit 
awareness both of the reliability of particular knowledge, and of the 
strategy for using knowledge. For example, 

- Probabilities derived from stati6tical databases are more reliable 
than subjective estimates. 

- If a diagnosis cannot be reached directly by application of heuris
tic knowledge, then reason from first principles hy applying deep 
knowledge. 

24 
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Knowledge of this kind can be gathered from textbooks and journals, 
and elicited from experts through interview. Trus knowledge is invaluable 
for the construction of expert systems when training data are scarce. Also, 
expert systems which use explicit knowledge of their domain to reasoD, have 
the potential to explain and justify their conclusions. 

The ability of an expert system to explain its conclusions is often said 
to be an important prerequisite if it is to gain acceptance into routine 
use (TeaSl, Fox83, San85]. (However, in a national trial of the Leeds system 
few doctors (under 10%) complained about the program's numerical output 
or its lack of reasoning [Dom84].) 

4.2 Categorical Knowledge 

Knowledge which consists only of logical relationships between facts, and 
which contains no element of doubt, is called categorical. Categoricalknowl
edge can be expressed as 'IF-THEN' rules. In their simplest form, they have 
the structure 

IF Antecedent THEN Conclusion 

The antecedent is a conjunction of facts, and the conclusion is some new fact 
which may be inferred. By analogy with the term 'database', a collection of 
these rules is said to constitute a knowledge base. 

4.2.1 Knowledge Base 

For example, listed below are some rules to identify animals, written in 
the logic programming language Prolog [CloS1]. The first argument of each 
term is the rule's antecedent, and the second argument is the conclusion. 
The antecedent is a li5t of facts which must all be established before the 
conclusion can be drawn. Notice that the conclusions (e.g. 'is-bird') of some 
rules appear within the antecedents of others. 

ruleC [has_feathers,lays_eggs ], is_bird ). 
ruleC [has_scales,lives_on_land,lays_eggs ], is_reptile). 
ruleC [has_scales,lives_in_llater,lays~eggs].is_fish ). 
rul e C [has_fur. drinks_milk ]. is_mammal ). 
mleC [is_viviparous.drinks_mllk ], is_mammal ). 
ruleC [is_bird.is_flightless,sllims ]. is_penguin). 
rulsC [is_bird,is_flightless,is~big ], is_ostrich ). 
mlsC [is_mammal,lives_in_llater.is_big ], is_'l/hale ). 
ruleC [is_fish.ls_big J. is_shark ). 
mleC [is_reptile,has_no_legs J. is_snake ). 
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4.2.2 Inference Engine 

In order to apply a set of rules to solve a particular problem, we require 
an inference engine. Several different inference strategies are possible, and 
explicit separation of the declarati ve knowledge expressed in the rules from 
details of the inference algorithm is ODe of the distinct merits of the rule
based approach (as opposed to the procedural approach of say the flowchart). 
This makes it much easier to modify the knowledge as the expert system is 
being developed. 

Suppose the following observations have been made about an animal. 
(They too are expressed as Prolog assertions.) 

is_big. 
is3lightless. 
baa_feathers. 
lays.eggs. 

Backward Chaining 

Suppose now we wish to prove that the animal is an ostrich. After first 
checking that this fact is not already established, we choose any rule which 
concludes 'is-ostrich', and try to prove recursively all the facts in its an
tecedenL If this is unsuccessful, we choose an alternative rule (there are 
none in this example) and try again. 

This inference algorithm is a depth-first backward-chaining method, and 
is often referred to as goal driven. It may be expressed in Prolog as follows. 

bak(G):- G. 

bak(G):- rule(A,G) , mapl(bak,A). assert(G). 

Here, 'mapl(P,L)' means that the single~argument predicate P holds for 
each member of the list L. It is defined 

maple, 0). 
mapllF,[HIT):- P [F.H), P, mapl(F,T). 

The goal 'bak(G)' succeeds precisely when the fact G can he established 
through hackward cha.ining. Notice, however, that the goal may not ter
minate if the knowledge base is cyclic. (Consider the effect of including 
'rule( [is..ostrich] • is..ostrich).' at the top of the list of rules.) 

Identification of the animal entails trying to prove each of the possible 
hypotheses (in a medical context: 'diagnoses') in turn until one is success
fully estabUshed, or none remain (in which case the rules are insufficient to 
permit identification). Expressing this in Prolog, 
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identity(G);- animal(G). bak(G). 

animal(is_ostrich).
 
animal(is_penguin).
 
animal (is_ostrich).
 
animaHis_whale ).
 
animal(is_shark ).
 
animal(is_snake ).
 

Forward Chaining 

Alternatively, we can choose any rule whose antecedent is already estab
lished, but whose conclusion is not, and add this conclusion to the growing 
database of established fact!>. We repeat this procedure untH the fact of 
interest is finally proven\ or no further rules can be found. 

This strategy is forward chaining, and is often referred to as data driven. 
It can be expressed in Prolog as follows. (Whether inference proceeds in a 
depth-first or breadth-first manner depends on the reJatjve positions of the 
rules in the Prolog database.) 

fvd(G):- G. 
fwd(G):- rule(A,H). mapl(call.A). not H. assert(H), fvd(G). 

The goal 'fwd(G)l succeeds precisely when fact G can be established 
through forward chaining. Given the present form of rule, this inference 
strategy is impervious to cycles in the knowledge base, However, if the 
knowledge base is acyclic l then 'fwd(G)' is logically equivalent to 'bak(G)'. 

The principal difference between forward and backward chain.ing con
cerns efliclency. Forward chaining tends to be more efficient when the num
ber of availa.ble diagnoses is large, whereas backward chaining tends to be 
more efficient when the number is small. 

The inference strategy is pertinent also to interactive programs. We have 
assumed that all possible observations about the animal are illcluded in the 
Prolog database before inference begins. However, diagnostic expert systems 
are usua.lly required to seek whatever further information is necessary 1n 
order to reach a diagnosis, by questioning the user. A simple extension to 
the definitions of 'bak(G)' and 'fwd(G)' will cause the program to ask the 
user the truth value of G when a.ll else fails. The order in which questions 
are asked depends on the inference strategy employed. 

IThe facts can be ordered totally so that fads in the antecedent of any given rule aTe 
strictly lower than the conclusion. 
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Explanations 

One of the ad....antages of the rule-based representation is the ease with 
which diagnostic conclusions can be supported by reasoned explanations. 
This is because each rule amounts to a. justification for its own conclusion. 
A complete trace of the rules used to establish a final diagnosis thus provides 
a coherent and complete argument. 

This is how our Prolog program can be extended to generate explana
tions. Firstly, if a. fact G is found in the Prolog database, then the explana
tion forG is simply that it is 'given' (by the user). 

exp(G,given(G»,- G. 

Backward chaining need proceed no further if an explanation for G is known. 
If not, then G is explained by the list A of proven facts, each supported by 
their own explanation, provided that a suitable rule with antecedent A and 
conclusion G can he found. 

bak(G,EJ:- exp(G,E).
 
bak(G,since(G,E»,- rule(A,G), map2(bak,A,E),
 

assert(exp(G,since(G,E»).
 

Here, 'map2(P ,LO,L 1)' means that the binary predicate P holds for each 
pair of corresponding members of the lists LO and L1. It is defined 

map2C, 0 , D). 
map2(F,[HOITO],[H1IT1])'- P [F,HO,Hl], P, msp2(F ,TO,Ti). 

The explanation we obtain, when presented in a suitably readable forma.t, 
is as follows. 
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is_ostrich 

/
BECAUSE is_bird AND is.1lightless AND is_big 

/ GIVEN GL 

BECAUSE has..feathers AND lays..eggs 

1	 ) 
GIVEN GIVEN 

Conflic1- Resolution 

Rules can be a good deal more complicated than this. The antecedent can 
be an arbitrary boolean expression, the expression can include predicates as 
well as propositions, and the conclusion can be generalized to an 'action' to 
be taken if the antecedent is satisfied. An action may entail, for example, 
assertion or retraction of a fact, assignment of a value to a global variable, or 
printing of a message. When an expert system is used in a real·tjrne control 
application, an action might be, say, to open or close a particular valve. 

When forward cha.ining, jf more than one rule's antecedent is satisfied, 
there is said to be conflict in the choice of rule to apply next. Th.e inferences 
made, the actions taken, and the advice given by the expert system depend 
on the way these choices a.re made. The protocol for selecting among al
ternative rules is called a 'conflict resolution strategy'. Possible strategies 
are 

1.	 Priority Ordering - Give rules a fixed priority, and choose the rule 
with the highest priority. This is the strategy employed in the animal 



30	 CHAPTER 4. RULE·BASED METHODS 

classification example; the order of the rules is simply the order in 
which they appear in the Prolog database. 

2. Specificity Orde,;ng - Choose a rule whose antecedent is maximally 
strong (logically). The rationale for this is that, if an antecedent holds, 
the stronger it is, the more pertinent is the corresponding rule to the 
present situation. 

3.	 Ulility Ordering - Choose the rule which employs cheapest materials, 
or which entails the least hazardous remedy. 

4.	 Recency Ordering - Choose the rule which was most (or least) recently 
us('d. 

5.	 CMlext Limiting ~ Partition rules into disjoint sets. Only one set of 
rules is active at anyone time. 

XCON/Rl is a rule-based expert system of this kind [McD82]. It is used 
by DEC to configure Vax systems. The program checks that the customer's 
order is complete and consistent, and then configures a layout of the com~ 

puter system. XCON is said to have reduced the error rate on orders from 
35% to 2%, and to have saved $18~20m per year [Go085, Jac86]. 

Medical reasoning, however, is almost inevitably associated with some 
uncertainty. One area, though, in which categorical decisions can be made 
is the planning of therapy. ONCOCIN is a rule-based system sharing sim
ilar principles with XCON, which assists a clinician to plan cancer treat
menl [Sho8I}. 

Exercise 4.1 Modify the definitions 0/ 'bak(G) , and 'jwd(G)' so that in
stead oj the observations having to be asserted into the Prolog database at 
the outset, the ezpert system questions the user. Define ,!wd(G, E)' 80 that 
it providts ezplanat.ions. 

Exercise 4.2 Repeat Ezercise 2.1 (Page 5) using a rule-based representa
tion inslead. 

Exercise 4.3 How might recursive partitioning (Section 3.5, Page 19) be 
used to irlduce rules automatically? 

4.3 MYCIN 

If knowlt'dge is uncertain, the degree of certainty in a rule can be expressed 
by some suitable parameter attached to the rule. The first system to in
corporatl! an explicit mechanism for handling uncertainty in this way was 
MYCIN [Sho76]. 
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MYCIN assists in the diagnosis and treatment of bacterial infections, 
and it has several hundred rules. The antecedent of a rule is a. conjunction 
of clauses, each of which is a boolean expression. The conclusion of a rule 
is a list of new facts which may be inferred. and it is associated with a 
numerical certainty factor ranging from -1 to +l. 

Here is an example of a MYCIN rule. The number appearing in bra.r.kets 
in the conclusion is the certainty factor. 

RULE 85 
I) The site of the culture is blood, and 

IF 
{ 

2) 
3) 
4) 

The Gram stain of the organism is negative, and 
The morphology of the organism is rod, and 
The patient is a compromised host 

There is suggestive evidence (0.6) that the identityTHEN { of the organism is pseudomonas aeruginosa. 

This means that if ali the conditions in the antecedent are satisfied, 
theu our beBef that the infecting organism is pseudomonas a.eruginosa is 
significantly increased (by an amount '0.6'). 

4.3.1 Certainty Factors 

A rule's certainty factor is elici ted directly from the same expert who formu
lates the rule. The number is understood as the degree to which beliefin the 
rule's conclusion would change if it were learned that the rule's a.ntecedent 
were true. A certainty factor of +1 indicates that the conclusion would 
follow logically, and a certainty factor of -1 indicates that the conclusion 
would be completely refuted. 

In the original MYCIN experiment, certainty factors were given a forma.l 
interpretation by relating them to subjective probabilities (Equation 4.1). 
Nevertheless, the certainty factors were still elidted directlYi they were not 
calculated using these equations. 

With reference to an arbitrary rule, we adopt the following notation for 
events (corresponding to fvidence and h.ypot.hesis). 

E = 'The antecedent is true.'
 

H = 'The conclusion is true.'
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The rule's certainty fa.ctor (CF) is then defined 

p(H) S p(H I E)
j - p(H)1". I " - "" 

CF ~ (4. j) 
p(H I E) - p(H) p(H) > p(H I E)p(H) 

4.3.2 Belief 

The current belief 'bel (a = 1)' in a. fact a is also represented on a scale -1 
to +1. (The user can therefore express doubt in his findings.) For example, 
the user might assert the following. 

bel (!The site of the culture is blood. ') :::: 1.0 
hel ('The Gra.m stain of the organism is negative.') :::: 1.0 
bel ('The morphology of the organism is rod. ') = 0.9 
bel (,The patient is a. compromised host. ') :::: 0.4 

Propagation of Belief 

The belief in a. rule's antecedent is calcula.ted from those of its component 
facts by taking the minimum over conjunctions and the maximum over dis
junctions. The belief in the antecedent of Rule 85, for example, would thus 
be 0.4. The intuitive justification for this procedure is that a chain of nec
essary conditions is only as strong as its weakest Link. 

If the belief 'bel (E), in a rule's antecedent is negative, then that rule 
causes no change in belief in its conclusion. This is because a rule is meant 
to influence belief in its conclusion only if we have some reason to believe 
that the antecedent holds. 

However, if the belief in a rule's antecedent is positive then the change 
CFt in belief in the rule's conclusion is taken to be the product of 'bel (E)' 
and the rule's certainty factor CF. This is because CF is defined to be the 
change in bellef In the conclusion when the antecedent is known to hold 
for certain. If there is doubt, then the change must be attenuated. Tills is 
summarized by 

CF' ~ (0 U bel (E)) x CF (4.2) 

where Udenotes the binary infix 'maximum' operator. 
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Combination of Belief 

If more than one rule share the same conclusion, then separate cbanges 
in belief CF"l and CF"2 are combined to form a resulting total change in 
belief CF~ EB CF~ using the following commutative and associative rule of 
combination. 

CF; +CF', 
CF~CF~ < 0 

CF; Ell CF~ "= 1 - (ICFiI n ICF~I) (4.3) 
{ 

CF; +CF;(I-ICFiI) CF~CF; ~ 0 

where n denotes the binary infix 'minimum 1 operator. 
Since the initial belief in the conclusion is zero, the resulting b~lief is 

given simply by the total change in belief. So if the conclusion appears 
within the antecedent of another rule, belief can be propagated by repeating 
the same procedure described above. 

The certainty factor formalism has, however, been criticized for its ad 
hoc nature [Spi84J. Adams [Ada,76] has shown that the definition of the 
MYCIN combinator (Equation 4.3) involves implicit assumption of both con· 
ditional and unconditional independence. Furthermore, HeckermaJl [Hec86] 
bas also poiuted out that the original interpretation of certainty factors 
(Equation 4.1) is inconsistent with the combinator. 

Exercise 4.4 Show that the MYCIN combinator (_ EB _) has identity ele
ment 0, and two zero elements 1 and -1. (Remember that '_1 €I l' is un
defined.) 

Exercise 4.5 Show that the MYCIN combinator (_ EB _) is eommutative and 
associative. 

Hint - first show that funetion f defined by 

-In(l- x) x>O 
f(x) "= { In(l+ x) x ~ 0 

has the property that 
f(x Ell Y) = f(x) + f(y) 

4.3.3 Inference Strategy 

The inference strategy of MYCIN is backward chaining. Rules that bear 
on the current goal (determination of the value of a particular variable) are 
retrieved and evaluated. Any antecedent fact encountered whose current 
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belief is unknown causes a subgoal to be generated, and the process re
curses. Subgoals, however, are generalizations of the unknown fact: so, for 
example, if the fact 'the identity of the organism is pseudomonas aeruginosa' 
is encountered, but its belief value is as yet undetermined, then a subgoal 
'determine the identity of the organism' is created. If, after application of 
this recursive procedure, the total weight of evidence about the current goal 
remains small, the user is asked the value of the variable. 

The search space is limited by means of 'meta-rules'. These have the 
same form as ordinary rules, but prescribe which rules to evaluate. In other 
words, tile inference strategy is itself encoded by rules to some extent. 

4.3.4 EMYCIN 

MYCIN was found to perform at expert level (Yu79], but has never found 
a role in clinical practice. However, a derivative of MYCIN (wi th different 
rules), PUFF [Aik83a], has been applied successfully to the routine interpre
tation oflung function tests. An expert system without a knowledge base 
is referred to as an expert system shell. EMYCIN (standing for Essential 
MYCINj is MYCIN's shell. 

4.4 PROSPECTOR 

The expert system PROSPECTOR assists geologists to evaluate exploration 
sites for mineral ores [Dud79]. It contains several hundred inference rules. 
The antecedent of a rule is a boolean combination of facts, and the con
elusion of a rule is a single fact. Like MYCIN, the belief in an antecedent 
is calculated from the beliefs iu the component facts by minimizing over 
conjunctions, and maximizing over disjunctions. Unlike MYCIN, however, 
beliefs are expressed on a scale 0 to 1, and they are interpreted as probabil~ 

hies conditioned on the evidence available to the user. 

4.4.1 Inference 

Regarding a particular rule, if E is the event 'the antecedent holds', and 
H is the event 'the conclusion holds', then the likelihood ratio.? >. and>: are 
defined by 

), 
p(E IH) 

(4.4) 
p(E IH) 

~Note these are real numbers, and Dol ra.ndom varia.bles or events. 
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p(E I H) >. (4.5)
p(E I H)
 

It follows that
 

odds (H I E) = >. X odds (H) (4.6) 

and 
odds (H IE) = ~ x odds (H) (4.7) 

Every rule is associated with a pair of values (.A, >:), and every fact which 
is the conclusion of any rule is associated with prior odds 'odds (H),. All 
these quantities were estimated subjectively by expert geologists. 

Propagation of Probabilities 

Equations 4.6 and 4.7 allow us to compute the conditional proba.bility of H 
when it is known for certain either that E has occurred or that E has not 
occurred. However, in general, it is not known for certain whether E has 
occurred, either because E is directly observable but the user is doubtful 
about it, or because E is not observable and must be inferred by means 
of other uncertain rules. Either way, the probability that E has occurred 
is conditioned on the event U representing all the evidence the user has 
regarding E. The probability peE I U) is known, and we would Like to 
compute p(H I U). It follows that 

p(H I U) = p(H,E I Uj +p(H,E I U) 

= p(H I E, U)p(E I U) +p(H IE, U)p(E I U) (4.8) 

If now we assume that E subsumes aU evidence provided by U about H, as 

does E, then 
p(H I E, U) = p(H IE) (4.9) 

and 
p(H IE, U) = p(H IE) (4.10) 

So, substituting and rearranging, Equation 4.8 becomes 

p(H I U) = p(H I E) +p(E I U) (p(H I E) - p(H I E)) (4.11) 

This means that p(R I U) can be calculated by linear interpolation between 
the value it would have if E did not occur and the value jt would have if 
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E did occur. One way to view this is to imagine the two likelihood ratios ). 
and>: being combined to form a. single effective likelihood ratio >..' depending 
on the amount of evidence for E. This is defined 

odds (H I U)
>/ == (4.12)

odds (H) 

Notice that 
p(H 1 UJ = p(H 1 E) => A' = A 
p(H I U) = p(H 1E) => A' = A 

Combination of Probabilities 

If sev€rol (k) rules share the same conclusion, their separate evidence must 
be combined. Let Ei (1 5 i :S k) be the event 'the antecedent of the jlh rule 
holds', a.nd let 1I be the event 'the (common) conclusion holds', If all 
the E; are independent both given H and given H, then 

odds (H 1 E" ... , E,) = A, x ... X A, x odds (H) (4.13) 

and 
odd, (H IE" ... ,E,) = A, x ... X A, x odds (H) (4.14) 

where A, and -Xi are the respective likelihood ratios for the i lh rrue. (If the 
occurrence of Ej is not known for certain, then the corresponding effective 
likelihood ratio is used instead.) 

Performance 

Although the propagation formulae used hy PROSPECTOR make strong 
independence assumptions, a dose correspondence was found between the 
computed probabilities and an expert's subjective estimates with respect to 
three test cases. Furthermore, when put to practical use, PROSPECTOR 
was instrumental in the discovery of a deposit of molybdenum near Mount 
Tolman (Washington State), and later in the discovery of anotheT in Alberta 
Canada (wo,th $100m). 

Exercise 4.6 What is the sample space n in relation to PROSPECTOR? 
To which (imagined) population do the probabilities relate? 

Exercise 4.7 Derive Equations 4.6 and ./.7. 
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Descriptive Methods 

A difficulty with the rule-based approach is t1a.t in many applications the 
validity of inferences is highly context-sensitive. So antecedents tend to be 
long, containing many preconditions, and the Dumber of rules requjred tends 
to be large. Also, formulation of inference rules is a largely subjective and 
ad hoc procedure, and furthermore, experts tend to experience difficulty in 
articulating their expertise. 

An alternative, and often more satisra-ctory method of representing med
ical knowledge, is to describe the consequences of diseases, rather than to 
say explicitly how to interpret symptoms. This descriptive knowledge of 
diseases must then be coupled to some suitable inference engine which per
forms the inverse task of finding the disease which most closely matches the 
actual findings. 

5.1 INTERNIST 

One of the largest medical expert systems that employs a descriptive rep
resentation, is INTERNIST [MiI82, Pop85]. It covers about 80% of general 
medicine, and it hM descriptions of about 750 disorders. These were com~ 

piled from the medical literature and from interviews with specialists. 

5.1.1 Knowledge Representation 

Each disease description consists of a list of the manifestations (symptoms, 
signs etc.) that the presence of the disease can explain. Each ma.nifesta~ 

tion in the list is associated with two numbers: a frequency and an evoking 
strength. Respectively, these are estimates of the frequency with which the 
disease produces the manifestation, and the frequency with which the dis

37 
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ease explains the manifestation. They are expressed on a discrete, subjective 
scale from 0 to 5. 

Every manifestation is also assigned an importance, irrespective of a.ny 
disease, which indicates the necessity with which the manifestation must be 
explained by the final diagnosis. This is also expressed on a discrete scale, 
from 1 to 5. An importance of 1 means that the manifestation occurs com
monly in normal persons and is easily disregarded. Whereas, an importance 
of 5 means that it is absolutely essential to explain the manifestation. The 
importance of a manifestation can thus be thought of as the frequency with 
which it can be explained by some identifiable disease. 

Some of the 750 'diseases' are actually generalizations of others. For 
example, 'inflammatory hepatocellular disease' is a generalization of 'in
fectious mononucleosis" both being represented in the model. Conversely, 
others are more properly termed 'pathophysiological states'; for example, 
'anaemia'. Links of various types (e.g. 'is...caused_by', 'is...subtype..of') exist 
between the diseases. 

5.1.2 Inference Algorithm 

When the clinical findings of a patient are entered into the computer, a 
list is compiled of the diseases which can explain any of the manifestations 
present. A score is calculated for each disease on the list using a heuristk 
scoring system. The score is based on the evoking strengths and importance 
values of the manifestations that are present, and the frequency values of 
the manifestations that are absent. Bonus points are awarded if there are 
links in the database to previously concluded diseases. Precise details of the 
scoring system can be found in [Mi182]. More general diseases are retained 
on the list in place of the more specific diseases they subsume, provided the 
latter are indistinguishable in their ability to €Xplain the observed data. 

Next, a set of competitors for the h.ighest scoring disease is identified. 
Two diseases are said to be competitors precisely when the positive findings 
explained by one disease are a subset of those explained by the other. If 
there are no competitors, or jf the nearest ones are 90 or more points below, 
t hen INTERNIST concludes that the highest scoring disease is present. Oth
erwise one of three diagnostic strategies is adopted according to the relative 
scores: 

1.	 Closest competitor 46 to 89 points below ~ Pursuing Afode: ques
tions are asked about manifestations with h.igh evoking strength for 
the Leading disease. 

2.	 More than 4 competitors within 45 points of leading disease ~ Rul* 
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ing Out Mode: questions are asked about manifestations with high 
frequency numbers amongst the competitors. 

3. From 1	 to 4 competitors within 45 points of leading disease ==> Dis
criminating Mode: questions a.re asked which 'attempt to maximize 
the spread in scores'. 

When the presence of a disease is concluded, the manifestations explained 
by that disease are removed from further consideration, and the procedure 
is repeated. This enables the diagnosis of multiple co-existent disorders. 

5.1.3 Performance 

When tested on 19 cases that had been published in the mewcaJ literature 
because of their abstruse nature, INTERNIST was found to have roughly the 
same diag,nostic accuracy as hospital physicians. The principal weaknesses 
identified in INTERNIST's reasoning were the inabilities to syntbesize a 
broad overview of the ease, to reason temporally, and to reason anatomically. 

5.1.4 CADUCEUS 

A second version of INTERNIST, called CADUCEUS [Pop85], has an em· 
bellished knowledge base, and employs an improved diagnostic algorithm. 
Whereas INTERNIST has only one strategy (identify the common cause of a 
set of manifestations), CADUCEUS has several more operations to assist in 
constructing an explanation. These include identifying one evobd disease 
as a subtype or cause of another, and identifying shared subtypes of two 
evoked diseases. A search for a coherent explana.tion is then performed by 
repeated execution of these procedures, with the facility for back-tracking 
(unlike INTERNIST) when unfavourable evidence is obtained. 

5.2 Discussion 

INTERNIST and CADUCEUS utilize a semantic network representation in 
which links between entities (diseases, manifestations) are of more than one 
kind, denoting various types of relationship. Several other systems employ 
a similar representation: for example, CASNET [Wei78] and ABEL [Pat82]. 
Others have found frames useful which allow procedural information to be 
combined with declarative: for example, the systems PIP [Pau76] and CEN
TAUR [Aik83b]. 
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5.2.1 Patient Specific Models 

Common to all these approaches is the construction of a patient specific 
model. This means that the inference engine constructa an explanation for 
the specific set of findings under consideration, which is in some sense the 
most likely. 

However, a maximum likelihood classification rule can be misleading. 
Consider the restricted case that there are precisely three alternative com
plete explanations that are consistent with the patient's clinical findings s: 

E, 'The patient has precisely diseases 6] and 02"
 

E, 'The patient has precisely diseases (h and 63 .'
 

~E3 'The patient has precisely diseases 64, and 05.' 

Suppose that the probabilities of these explanations conditioned on the find
ings are 

prE, IS = s) = 0.3 

p(E,IS=s) = 0.3 

prE, IS = s) = 0.4 

Then the most likely explaIlation is E3 tha.t the patient has precisely the 
diseases 64 and {j5. Yet, disease {jl is more likely to be presellt (p(D1 I S = 
sJ = 0.6) than either 6. or 65 (p(D. IS = 8) = p(D 5 I S = s) = 0.4). 
This potential a.nomaly becomes much more pronounced as the number of 
possible alternative explanations increases. 

Exercise 5.1 In the design. of an expert system employing a d~criptive 

representation, how might one guard against t.he anomaly described above '? 



Chapter 6 

Causal Networks 

6.1	 Combining Statistical and Knowledge-Based 
Methods 

When reasoning under uncertainty, iuappropriate assumption of indepen
dence can lead to loss of diagnostic accuracy. Yet, general statistical meth
ods which avoid independence assumptions (e.g. nearest neighbours, recur
sive partitioning) use training data inefficiently. However, it is often possible 
to predict statistical interactions and de~ndencies, from a knowledge of the 
underlying causa.! mechanisms of the given domain. A possible solution is 
therefore to assume a (possibly complicated) statistical model based on a 
knowledge of causal mechanisms, and then to estimate the numerical param
eters of the model objectively, by reference to training data. This combined 
statistical and knowledge-based approach is now increasingly advocated for 
the design of diagnostic expert systems. Recent discoveries of efficient algo
rithms for propagating probabilities through graphicaJ structures have made 
this approach much more feasible. 

6.1.1 A Generalization 

When symptoms tend to occur together in the presence of a particular dis
ease, they are generally prodllced by some shared mechanism (often termed a 
'pathophysiologicaJ state'). For example, gallstone5 (disease) can sometimes 
block the common bile duct causing obstructive jaundice (pathophysiologi
caJ state), which causes the skin to turn yellow and the urine to become dark 
(symptoms). Analogously, with regard to fault diagnosis in cars for example, 
failure of the aJternator ('disease') causes the battery to run down ('patho
physiological state') which both dims the headlights and makes it difficult 
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to start ('symptoms'). The key to making statistical dependencies explicit, 
therefore l is to introduce pathophysiological states into the computer model. 

However, some symptoms can cause others: for example, a raised tem
perature causes sweating. Furthermore, sweating contributes to dehydra
tion, wb.ich is not a symptom but a pathophysiological state! Also, the 
clinician using the expert system may know (or wish to hypothesize) that 
his patient has a particular pathophysiological state or co-existent disease. 
Ideally, therefore, it should be possible for the user to make assertions about 
pathophysiological states and diseases as well as symptoms. So the di!,tinc~ 

tion between these three kinds of entity seems unhelpful. 
Let us generalize and con5ider symptoms, pathophysiological states and 

diseases all simply as propositional variables. The diagnostic task giveu the 
values oC any subset of these variables is to determine the likely values of 
the rest. 

6.2 Causal Networks as a Representation 

Let A be an indexed set of variables A = {0'1'0'2, ... ,On}' (Although, for 
simplicitY1 we assume these are binary variables, most of the techniques and 
results described here generalize easily to the multi-valued case). The knowl
edge representation task amounts to finding some suitable way of describing 
the joint probability distribution p(A). 

p(A) ~ p(a" a" ... , an) (6.1 ) 

Explicit definition of p{A = a) for every sequence (a) of values would, 
however, require tabulating 2n separate probabilities. However, it follows 
from the definition of conditional probability (Equation 2.41 Page 8) that 
any joint proba.bility can be defined by a chain of conditional probabiUties 
(Equation 6.2). Furthermore, any such chain defines a valid joint probability; 
the two representations are equi valent. 

p(A) ~p(al) x pia, Iall x p(a31 a"a,) x ... x p(an I a" a" ... ,an_Jl 
(6.2) 

The first few terms in Equation 6.2 are easily specified. Only one value 
(p( at = I» is requ.ired for the nrst term since p(at = 0) is equal to 1-p(at = 
1). Similarly, two values are needed for the second term, four values for 
the third1 and eight values for the fourth. However, the number of values 
increases exponentiallY1 the last term requiring 2n-1, 50 no saving is yet 
achieved, 
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6.2.1 Simplification 

In practice, however, evidence about the state of any given variable 0i is 
exhausted by only a few anterior variables. They are caHed the parents 
of ai, and their set is denoted by 'par(Oir· 

Suppose, for example, the parents of a'll are 03, 07 and Ct16. That 
is to say, par(ozd = {03, 0"7, Ct16}' Therefore knowledge of the values of 
just those three variables exhausts the evidence provided by all the vari
ables 01, ••• , 020 regarding the value of the variable a21' This means 

p(021 1OJ, 02, ••. , 0'20) = p(a'll I 0'3,07, Ct16) 

So, the number of probabilities to specify is only eight instead of more than 
a million. 

The greatest savings are likely to be achieved if the variables are indexed 
so that those which represent direct physical causes of any other lie anterior 
to it in the chain. Knowledge of the state of the direct causes of a given 
va.riable thus exha.usts the anterior evidence regarding that variable's own 
state. For example, if it is known whether or not a car's battery is flat, then 
the state of the alternator does not affect the probability that the car will 
start. 

The dependencies between the variables at, ... , an can be expressed as 
a directed acyclic graph (DAG). The nodes are the variables, and the arcs 
indicate direct dependencej an arc from aj to OJ indicates that 0i is one of 
the parents of aj' Irrespective of whether the variables really are indexed 
so as to respect true physical causation (not possible if causation happens 
to be cyclic), we will refer to any such graph as a causal graph. Associated 
with each node O'i in the causal graph is a table specifying the conditional 
probability that OJ ::;. 1 given all possible states of its parents. 

6.2.2 An Example 

Let us develop the previous example. Suppose we wish to construct an 
expert system to help garage mechanics determine the likely faults with cars. 
The number of variables in any useful system would run into hundreds, bu t 
for simplicity let us select just five. 
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<> 'Alternator is ok' 
{J 'Battery is charged' , 'Carburettor is ok' 
E 'Engine starts' 
A 'Lights work I 

With respect to any of these five variables, a value of 1 corresponds to 
'true', and a value of 0 corresponds to 'false'. 

Next we must decide how to order the variables. Let us do it as follows, 
because this accords with our knowledge of causation. 

<><,<{J<A<E 

Now we must consider each variable in tllrn and decide which anterior 
variables are its parents. It may be helpful at this stage to refer to any 
available training data. If we do, we wm probably be surprised to find that 
; ('carbl1rettor is ok') depends on Q ('alternator is ok') even though there 
is no apparent causal connection. This is because the joint distribution we 
are describing i6 implicitly conditioned on the event 'the car is taken to the 
garage to be mended'. This makes rare, independent faults become almost 
mutually exclusive (but much more prevalent than in the unselected popu
lation of vehicles). We must therefore retain Q as a parent of;. Figure 6.1 
shows this and other dependencies. 

The conditional probability tables (Table 6.1) are derived from training 
data. The num bers are fictitious in this case, and serve only as an example. 

The joint probabiJjties are easily recovered from these tables. For exam
ple, 

p(A,B,C,E,L) = p(A)p(B I A)p(CI Alp(EI B,C)p(L I B) 
0.81 x 0.89 x (1- 0.95) x (1- 0.23) x 0.94 

" 0.026 

Exercise 6.1 Calculate (or write a program to compute) the rest of the 
joint pro~ahilitydistribution from Table 6.1. Use the explicit joint probability 
distributlorl to calculate peA I t, E). 
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Figure 6.1: Causal graph of car faults. 

arburettor 0 

(,) 

C1~),)O!KT ) ( £ngw(£)tartS?) 

Table 6.1: Conditional probability tables for network shown in Figure 6.1. 

a	 p(A) = 0.81 · .. Alternators sometimes fail. 

{3	 p(B I A) = 0.00 · . . Battery discharges if alternator fails. 
p(B I A) = 0.89 · . . Batteries can fail for other reasor/so 

1	 p(C I A) = 0.99 ... Two separate faults are very unlikely. 
p(C I A) 0.95 · . . Carburettors sometimes fail. = 

), p(L Ill) = 0.10 · , . Lights usually fail if battery is low. 
p(L I B) = 0.94 · .. Lights can fail for other reasons. 

, prE I B,C) = 0.05 · .. Starting less likely if both fatJlt~. 

prE I1l,C) = 0.12 · .. A loU' battery hinders starting. 
p(E I B,C) = 0.23 · .. A faulty carburettor hinders starting. 
p(EI B,C) = 0.8S · . . Engines can fail for other reasons. 
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6.2.3 Separation 

A variety of conditional independencies can be read from a. causal graph. 
We slat with some definitions. 

An undirected path between variables Q and (3 in a causal graph is said 
to be blocked by a set of variables C if one of the following holds. 

1. Two arcs on the path meet tail to tail at a. variable "'I in C. 

2. Two arcs on the path meet head I to tall at a variable "f in C. 

3. Two arcs	 on the path meet head to head at a. variable f such that 
neither I nor any of I'S descendants2 are in C. 

Two variables Q and f3 in a causal graph are Bald to be separate.d by a 
set of variables C if every undirected path hetween a and f3 is blocked by C. 
By extension, two disjoint sets of variables A and B are said to be separated 
by C ir every member of A is separated by C from every member of B. 

The notion of separation is the graphical equivalent of conditional in
dependence [Pea86]. If C separa.tes A from B then the variables A and B 
are conditionally independent given C. See [Nea.89) Cha.pter 6 for a formal 
treatment of separation. 

Exercise 6.2 Regarding the eausal graph shown in Figure 6.1/ prove that 

p(,\,E,<> I (3,,) = p(>.,E I (3,,) x p(<> I (3,,) 

first without appeal to 'separat.ion', and then again by arguing that {!J,...,.} 
separates {>., c} from {a}. 

6.2.4 Assumed Models 

If a va,riable has more than a few direct causes, it may he infeasible to 
estimate all the entries in its conditional probability table from training 
data. If so, then it may be reasonable to assume a statistical model for the 
dependence of the variable upon the state of its direct causes. 

One such model is the so-called 'noisy OR gate'. Here it is assumed 
that a variable Q can be true only if at least one of its parents is also trUe. 
Suppose that par(a) = B, and B = {13l. ... ,I3:m}. According to the model, 
each such l3i has some specified probability Pi of causing a to be true, and 
these causation events are statistically independent. This can be expressed 

p(AIB=b)=I- IT (I-b,p,) (63) 
lSiSm 

1 AIIOW head
 
:lVariables reachable via 8. direcledpath {rom )'.
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where b stands for some arbi trary sequ~mce of values, [b1 , ••• l bm ]. 

A network in which all the tables are defined in this way is sometimes 
referred to as a probabilistic causal graph. A medical expert system using 
this representation has been proposed by Peng and Reggia {Pen87J, although 
earlier experiments with a similar representation were unrewarding [Lud83]. 

An alternative to the 'noisy OR gate' is the logistic model (Equation 3.7, 
Page 16). Reference to training data will help to decide which model is the 
most appropriate for any given application. 

6.3 Inference 

Although causal graphs are an efficient way of representing a joint dis~ 

tribution over a set of variables, the inference task is unfortunately NP
Hard [Coo89]. Nevertheless, efficient algorithms are known for restricted 
kinds of causal graphs. 

6.3.1 Inference in Causal Trees 

If the causal graph is restricted to a tree, then design of an inference algo
rithm is particularly straightforward. Consjder the tree shown in Figure 6.2. 
In a medical context, the upper variables would correspond to diseases, and 
the lower variables to symptoms. Suppose we observe that symptoms 1r 

and a are present and symptoms 6, II, and T are ab6ent. If, furthermore, 
we cho06e to assume tbat disease I is pre6ent, how likely is disease f3 to 
be present too? The conditional probability we wish to compute can be 
expressed a.s the ratio of two marginal probabllities. 

p(B I C, D, N, P, S, T) z p(B, C, D,N, P, S, T) (6.4)
p(C,D,N, P, S, T) 

The task of computing conditional probabilities therefore reduces to one 
of computing marginal probabilities. A general algorithm for this is easily 
derived. 

Let A be the set of variables in a causal tree (..4. ~ {01,' •. ,an}), where 
01 is the root. Suppose I is the set of variables in the tree which are in
stantiated to particular values (I ~ A), and we wish to determine the prob
ability p(I). Regardless of whether a1 is one of the instantiated variables 
in I 

p(I)	 p(I,A,)+p(I,A,) 

p(I IA,)p(A,) + p(I IA,)p(A,) (6.5) 
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Figure 6.2: An example of a causal tree. (Conditional probabili ties are given 
in Table 6.2.) 

" 

f3 

8 
1\0)f 0)f
 

8 8 8 8
 

Let Ii denote the subset of I in the tree rooted at OJ, for any i (1 '$ i '$ 
n). Also, for any value u (u E {O, I}) let us define w;(u) to be the conditional 
probability associated with the variables Ii given that O:j takes value u. 

W;" Au:{O,I}.p(I,la;=u) (6.6) 

Thus Equation 6.5 may be rewritten 

p(I) = w,(I)p(AJl +wl(O)p(A, ) (6.7) 

Notice that p(Ad, and hence p(Ad, can be found in the conditional 
probability table associated with the root node of the causal tree. Further
more, WI is determined by the following recursive equations. 

For all i and 'fl, if OJ is in I, and u is not its instantiated value then 

w;(u) = 0 (6.8) 
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Ta.ble 6.2: Conditional proba.bility tables for causal tree shown in Figure 6.2. 

" ptA) = 0.3 ~	 p(L IC) = 0.1 
p(L I C) = 1.0 

fJ	 p(B IA) = 0.9 IS p(M I C) = 0.0 
p(B I A) = 0.1 p(M I C) = 0.7 

1	 p( C IA) = 0.2 v p(N I E) = 0.5 
piC I A) = 0.8 p(N I E) = 0.1 

, p(D I B) = 0.5 " piP IE) = 0.1 
p(D I B) = 0.4 piP I E) = 0.6 

£	 p(EIB) = 0.7 a piS I M) = 0.8 

piE I BJ = 0.2 piS I M) = 0.5 

"	 p( K IB) = 0.3 T piT IM) = 0.3 
p(K I B) = 0.9 piT 1M) = 0.7 

whereas if u is its instantiated value, or if OJ is not in I, then 

Wi(U) = II (Wj(l)p(A; I "i =u) +Wj(O)p(Aj I ". =uJ) (6.9) 
O'JEchn(O',) 

where 'chn(Oil' denotes the children of OJ in the tree. Again, notice that 
p(O:j 1 O':i) is given by the conditional probability ta.ble associated with 
node o.j. Provided that these equations are applied starting at the leaves 
and working ba.ck to the root of the tree, they enable efficient calculation 
of p(I). 

Proof 

Equation 6.8 follows directly from the definition of w (Equation 6.6). Equa
tion 6.9 is derived as follows. If OJ is in I and u is its instantiated value 
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then 

w,(u); p(I,la,=u) 
... Definition of w. 

; p(I, - {a,} Ia, = u) 
... Since u is the instantiated value of Qj. 

p(UoJEchn(o,)I) I Qj u)=0 

... From definition of Ii. 

TIo,Echn(o.j p(I, 1 a, = u) 
... Since Q. separates each of the Ij. 

TIo,E<hn(o.j(p(I"Aj Ia, = u)+ p(Ij,Aj Ia, = u)) 
... Partitions event. 

; TIo,Echn{o,)(p(Ij I A;c!!, = u)p(Ai..la, = u)
 
+p(I, I Aj, a, ; u)p(Aj Ia, = u))
 

TIo,E<hn(o,)(p(Ij I Aj)p(A, Ia, = u) +p(Ij I Aj)p(Aj Iai = u)) 
... Since Ct.j separates I j from 0i. 

TIo,Echn(o,j(Wj(l)p(Aj Ia, = u) +Wj(O)p(Aj Ia, = u)) 
... Definition of w. 

The case where 0:; is not in I follows similarly. 

Exercise 6.3 Calculate the conditional probability specified by Equation 6,4 
(Pagf 47) by applying Equations 6.8 and 6.9 to the data given in Table 6.2. 
(Calculate first the denominator of the right-hand side of Equation 6. ./, and 
then the numerator.) What is t.he computational complexity of this proce
dure? 

6.3.2 Inference in Sparse Causal Graphs 

Overview 

R€cently, an inference algorithm has be€n d€scribed. for causal graphs which 
is €ffici€nt provided that tbe graph is sparse (Lau88]. The method entails 
clustering togetber interacting variabl€s in such a way that the dependence 
betwe€n the S€ts of variables has a tree structur€. This is carried out as a 
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single pre-processing step at the time of building the expert system. Only 
the tree is then retained for calculating conditional probabilities as and 
when required. The algorithm for computing these conditional probabilities 
makes special use of the fact that the conditional probability of an event is 
proportional to the joint probability when the conditioning event F is held 
constant. 

p(E IF) C( p(E, F) 

A more detailed description of the entire method is now given in reverse 
order so as to motivate each preceding step. We start with some definitions. 

Definitions 

Let A be a set of propositional variables (A = {0"1"'" an}), and let r de
note a collection of sets of these variables (f = {C}, ... ,Cp }); for example, 
C3 = {a2' Cl7, Q"g}. ]f ljJ is a function which maps instantiations of the vari
ables in C. to the reals, for each i (1 ~ i ~ p), such that for some constant k 

p(A) = k II ¢(C,) (6.10) 
1S-iS-p 

then (f,1/1) is said to be a potential representation of the joint probabHity 
distribution over A. 

For each set Ci we define the separator Sj and the residual R; as follows 
(S1 is simply the empty set). 

S, C, n (C, uC, u ... uC,_Il (6.11) 

11., Cj - Sl (6.12) 

The set f is said to have the running intersection property if for all i > 1 
there exists a j < i such that S; ~ C j • The set Cj is then called the parent 
of C;. If more than one such C) exists then the choice as to which one is the 
parent is arbitrary. Thus the relationship between the sets in f has a tree 
structure, the root being C1 . 

It follows that if (f,1/1) is a potential representatjon of the joint dis
tribution such that r has the running intersection property then marginal 
probabilitiffi (for example, p(Aa)) can be computed using the method given 
below. The theorems are stated here without proof. For a fuller and more 
formal treatment, see [Lau88, Nea89]. 

Conditioning on Evidence 

Firstly, if any of the variables in A are instantiated to particular "alues then a 
new potential function 1/1' is obtained from 1/1 by substituting theinstantiated 
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values. Thus, continuing the earlier example, if 02 is instantiated to the 
value 1, and Ctg to the value 0, then C3 shrinks to the singleton set C3 = {U7} 
and 1/;' is defined on C3 as follows . 

.p'(A,) 'i,(A" A" A,) 

.p'(A,) = .p(A"A"A,) 

The other Ci are trea.ted similarly. 
It follows, beca.use of the constant of proportionality k in Equation 6.10. 

that (f/, T/J') is itself a. potential representation of the joint distribution over 
the uninstantiated variables in A, conditioned on the insta.ntiated variables. 
Furthermore, f' inherits the running intersection property from r. Thus, by 
first conditioning the potential representation on available evidence before 
recovering marginal proba.bilities) we obtain condltiona.I probabilities (fOf 
exampLe, p(Aa I A~, A,)) instead. 

Computing Marginal Probabilities 

Margillal probabilities are recovered in three stages. 

1.	 The conditjonal probabilities p(ni ISil are computed for each i, start 
ing wHh i :::: p and working down fo i :::: 1. This entails repeated 
application of the following two steps. Firstly, it follows that 

.p(Cp ) (6.13)p(7lp ISp) = L", .p(Cp) 

where the sum is over all possible instantiations of the variables in 'Rp • 

Secondly, let Cj be the parent of Cpo We now define a new potential 
function 1/J' according to 

'i'(C;) iii 
.p'(C;) " { .p(C;) L", .p(C 

p 
) i=j 

(6.14) 

It follows that ({CI, ... ,Cp-tl, 'I/J') is a potential representation of the 
joint distribution over C1 U ... UCp _ 1 • So by repeating these steps we 
can recover all the p(ni 1S.l 

2.	 From these, the probabilities p(Ci ) are computed for each i, start 
ing with i = 1 and working up to i = p. Since SI = {}, it follows 
that p(C,) = p(7l, ISJl. The rest are calculated using p(C;) = p(7l; I 
Si)p(S;). Probabiloity p(Sd is determined by summing p(Cj) over all 
possible instantiations of the variables in Cj - So, where Cj is Cj's par
ent. 
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3.	 The marginal probability of any given variable is then determined 
from p(Ci), for any C1 containing that variable, by summing out over 
all possible instantia.tions of the remaining variables in Cio 

Exercise 6.4 Prove Equation 6.13. 

Obtaining a Potential Representation t/J 

We have now seen how to calculate conditional probabilities from a potential 
representation (C t/J) with the running intersection property. How can we 
obtain a suitable potential function t/J from a causal graph representation of 
the joint distribution over the variables A? 

If r is chosen such that for every variable 0i there exists a Cj which 
contains both OJ and all o;'s parents (i.e. Clj E Cj I\par(oi) ~ Ci) then!jJ can 
be obtained by multjplication of the conditional probability tables associated 
with the causal graph. This is accomplisbed by assigning every variable OJ 

to exa.ctly one Cj which contains both that variable a.nd its parents. If there 
is more than one such Cj then the choice is arbitrary. 

For each Cj let Ij be the (possibly empty) set of variables assigned to Cj. 
The potential function t./J is then defined for each Cj by 

,p(Gi ) '" IT pea; I parra;)) (6.15) 
o,:1J 

This forms a valid potential representation of the joint distribution (with 
constant k ;::;: 1) because 

IT ,p(G}) = IT pea; I par(a.)) (6.16) 
l:5j:5p 15i:5n 

Obtaining a Cover r 
It remains, therefore, only to nnd a snitable collection r of sets of vari
ables. It must have the running intersection property, and each variable 
must appear together with its parents in at least one of these sets. 

Lauritzen and Spiegelhalter's method consists of first forming the moral 
graph from the original causal graph by marrying all common parents: that 
is to say, inserting a.n undhected edge between any two parents of a variable 
that are not already joined, and then dropping directions of all edges. 

Next, the nodes of the moral graph are ordered (assigned ra.nk 1 to n) 
by maximum cardinality search [Tar84], which proceeds as follows. First, 
rank 1 is assigned to an a.rbitrary variable. Tben, repeatedly, the variable 
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adjacent to the greatest number of previously numbered variables (breaking 
ties arbitrarily) is chosen as the next to number. 

It follows that if the moral graph is triangulated3 and if r is taken to 
be the set of cliques4, ordered by their highest ranked variable, then r has 
the running intersection property. Furthermore, since each va.ri able together 
with its direct causes forms a complete setS in the moral graph, they must 
all appear together, as required, in at least one clique. If the moral graph is 
not already triangulated, then a simple algorithm [Ta.r84] fills in with extra 
edges \lotil the graph is triangulated. 

Computational Complexity 

The Lauritzen-Spiegelhalter algorithm is applicable to any causal graph, yet 
computation of conditional probabilities is known to be NP-Hard [Coo89]. 
For which kinds of graph is the algorithm efficient, and which component of 
the algorithm becomes infeasible when the method is applied to an ull5uit
able kind of graph? 

Pre-processing of the causal graph can always be completed in poly
nomiaJ time. Algorithms are available for performing maximum cardinal
ity search, and for triangulating graphs by computing the fill-in, which 
are O(n+e) where n is the number of nodes (variables) and e is the number 
of edges iB the causal graph [TarB4]. Furthermore, an O(n +e) algorithm is 
known for enumerating the cliques of a triangulated graph [GalBO]. This is 
possible because in the case of triangulated graphs, the number of cliques i.s 
no greater than the number of nodes. 

However, initialization of the potential function 'tj; and computation of 
marginal probabilities are Q(2m ) where m is the number of variables in the 
largest clique. This is the critical factor whjch determines the feasibility of 
the algorithm for any particular causal graph, and the size of the largest 
clique 15 discovered during the pre-processing step. 

In one medical application of this method, MUNIN [And87] a system to 
assist the interpretation of electromyographic findings, no clique was found 
to contain more than four variables. 

6.3.3 Monte Carlo Inference Methods 

One technique worth considering when others are found to be infeasible, is 
Monte Carlo simulation. Pearl [Pea.87] has proposed a stochastic simulation 

3(i.e. contains no cycle of more than three nodf!s without ll, bridging edge)
 
4 A clique is a maJdmal complete !Jet of nodes.
 
~ A complete.Jet of nodes is that which induces a complete ~bgraph.
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method in which the known varia.bles are cla.mped to their respective aDd the 
unknown varia.bles a.re assigned random values. Then, ea.ch of the unknown 
variables in turn is assigned a (possibly new) random value with probability 
determined by the conditional probability tables. This procedure is repeated 
many times, nntil the system reaches a. stationary distribution. For any i, the 
rela.tive frequency with which variable OJ ta.kes value 1 during the simula.tion 
thus provides an estimate of the probability P(Ad conditioned on the known 
variables. 

Underlying this method is the principal tha.t a. variable a. depends on 
all others only through its parents, its children and their parents. These are 
said to constitute the varia.ble's Markov blanket. 

The nature of a variable's dependence on its Markov blanket is quite 
simple. Let 'R.j here denote the set of all variables except 0i_ 

n, ~ A-{ao} (6.17) 

The conditional proba.bility associated with OJ given the values of all other 
variables is 

pea"~ no)
pea; Ino) ~ 

pen;) 
peA) 

(6.18)
2:0, piA) 

where the sum is over all possible values (0 a.nd 1) of variable OJ. Now, the 
joint distribution specified by the causal graph is 

P(A) ~ II p(aj I par(aj» (6.19) 
1:5J~n 

Thus, from Equations 6.18 and 6.19, 

II p(aj I par(aj» 
l<j<n (6.20)

pia, In;) = E II pea; Ipar(aj)) 

0; 1:5J~n 

However, OJ appears only in the term P{Oj I par(oj)) and in each term p(o; I 
par(0;)) where 0; is a child of OJ (and equivalently OJ E par(OJ )). The other 
terms therefore factor and cancel. 

pea; I par(a;» II pia; I parCo;»~ 
~ ) a,Ech.(a,)( I IV (6.21)po" 

. . - E (P(O; I parCo;»~ II p(o; I parco;»)) 
cr, OjEchn(o,) 
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However, the denominator is independent of the actual value of OJ since the 
sum is over all possible values. So 

PC", 11l;) '" (P('" [parC";)) II pC"j IparC",))) (6.22) 
""Echn(cr, ) 

where the constant of proportionality does not de~nd on ai, it depends 
only on the values of ai's Markov blanket. Equation 6.22 thus provides a 
more efficient way of calculating the conditional probability p( (}j I R;) than 
does Equation 6.21. This is because, provided no variable's Markov blanket 
is too large, the term on the right-hand side of the proportionality can be 
pre-computed as a reference table. 

Although this method seems a powerful technique for small but highly 
connected causal gra,phs that would otherwise not yield to exact methods, 
convergence tends to become unaccepta.hly slow 3.'l the number of nodes in 
the network increases [Coo89]. 

Exercise 6.5 Without reCOur3e to Equation 6.22, use the definition ofsepa
ration (Section 6.2.3, Page 46) to argue that a variable depends on all others 
in a causal graph only through its Markov blanket. 



Chapter 7 

A Probabilistic Rule-Based 
System 

It has often been argued that the rule-based approach is inappropriate for 
reasoning under uncertainty [Hec86, Nea.89]. In this chapter, we first look at 
how a rule-based system could be constructed, and then discuss the relative 
merits of adopting a rule-based rather than a descriptive approach. 

7.1 A Causal Graph Representation 

The direction of inference in a rule- based system is usually in the reverse 
direction to that of causation. In general, we observe symptoms, and we 
wish to determine which disease has caused them, rather than the other 
way around. A causal graph representation would therefore appear to he 
the converse to that required for direct inferential knowledge. However, 
Equation 6.2 (Page 42) remains valid for any indexing of the variables, not 
just th05€ which respect causation. The reason the latter are preferred when 
describing a joint probability distribution is that knowledge of the state of 
the direct causes of a variable tends to exhaust all other anterior evidence, so 
the resulting graph is sparser. If we are prepared to suspend temporarily any 
consideration of efficiency, we can use a causal graph to represent inferential 
knowledge. 

Recall the earlier example (Section 6.2.2, Page 43) of a diagnostic pro
gram for faults in cars. Let us develop the causal graph again, but this time 
representing inferential rather than descriptive knowledge. 

57 
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7.1.1 Car Faults Revisited 

Gjyen the task of developing an expert system to assist garage mechanics 
localize faults in cars, we have decided upon the following (trivial) list of 
binary variables. 

0: = 'Alternator is ok' 
f3 = 'Battery is charged' 
" = 'Carburettor is ok' 
E = 'Engine starts' 
>. = 'Lights work' 

A value of 1 corresponds to 'true', and a value of 0 corresponds to 'false', 
a.., before. This time, however, let us order the variables according to the 
sequence in which we infer their values. Lowest are those variahles whose 
values are directly observable ([ and >.). Higher variables are inferred from 
lower ones. 

),,<£<!3<,<cr. 

Next we construct the causal graph. We consider each variable in turn, 
and decide on which anterior variables in the new order it depends. We can 
discover this by ins-pection of the original causal graph (Figure 6.1, Page 45). 
If .A is the set of variables anterior to a particular variable 1> in the new order, 
then we wish to restrict A to the smallest subset At which separates {¢} 
and A - At in the original causal graph. 

1. Variable>. has no anterior variables. It is the root of the new graph. 

2. Variable £ depends on >. because fallure of the lights is evidence that 
the battery is flat, and therefore makes it less likely that the engine 
will start. 

3. Variable	 {3 depends on both>. and £ since if it found that the lights 
work normally, or that the engine starts, then this is evidence that the 
battery is charged. Doth>. and £ must be retained as parents of 13 in 
the new graph because neither separates the other from 13 in the old 
graph. 

4. Variable " however, depends on >. only through 13, since {13} sepa
rates I from>. in the old graph. Only £ and {3 need to be retained as 
pareuts of I in the new graph. 
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5. Variable	 0: depends on the other variables only through {3 and i, 
since {.I3, l' } separates {o:} from p., ~} in the descriptive graph. There
fore, only {3 and "I need to be retained as parents of 0: in the Dew graph. 

So some economy of representation can still be achieved. Figure 7.1 shows 
the new 'causal' graph. 

Figure 7.1: Causal graph of car faults. 

Alternator ok? 
(a) 

Carburet tor ok? 
(» 

Lights work?	 Engine starts? 
(A)	 (0) 

For this example, let us derive the new conditional probability tables 
(Table 7.1, Page 60) from the previous ones (Table 6.1, Page 45) using, say, 
the Lauritzen-Spiegelhalter method, so that both the old and the new causal 
graphs specify the same joint probability distdbutioD. In practice, though, 
we would derive the probabili ties directly from training data. 
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Table?l: Conditional prubability tables for network shown in Figure 7.1. 

A	 p(L) = 0.706 · .. Lights usually work normally. 

€	 prE I L) = 0.221 · .. If lights fail then usually no starting.
 

prE I L) = 0.791 .. . If lights work then probably starts ok.
 

{3	 pCB IL, E) = 0.034 ... No start/lights::::} battery probably low. 
pCB I L,E) = 0.544 · .. Engine starts ok suggests battery ok. 
pCB I L,E) = 0.833 · .. If lights work then battery probably ok. 
p(B I L,E) = 0.994 · . . Start/lights ok => battery probably ok. 

7	 p(CIB,E) = 0.975 · . . Two separate faults are unlikely. 
p(CIB,E) = 0.990 · . . Starts ok => carburettor probably ok. 
p(CIB,E) = 0.787 · . . Carburettor fault can explain no start. 
p(C I B,E) = 0.986 · . . Starts ok =* carburettor probably ok. 

£>	 peA I B,C) = 0.701 · .. Two separate faults are unlikely.
 
ptA I B,C) = 0.310 · . . Flat battery suggests alternator fault.
 
ptA I B,C) = 1.000 · .. If battery charged then alternator ok.
 
peA I B,C) = 1.000 .. . If battery charged then alternator ok.
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The same joint probabilitj~ as before are easily recovered from these 
tables, allowing for the fact that we are working to three decimal places 
only. For example, 

p(A,B,C,E,L) = p(A I B,C)p(B I L,E)p(CI B,E)p(EI L)p(L) 
= 1.000 x 0.833 x (1- 0.787) x (1- 0.791) x 0.706 

" 0.026 

7.2 Assuming a Logistic Model 

Actually, it was possible to invert the original ca.usal graph as shown above 
only because of its small size. In general, we would find that a variable has 
50 many new parents that it is infeasible to specify by explicit enumeration 
all the conditional probabilities in its table. That, after all, is the reason for 
trying to order the variables in a manner consistent with causation. We are 
deliberately doing the opposite here. 

A simple solution, however, is to specify each variable's conditionaJprob
ability table implicitly, by assuming a statistical model. A reasonable model 
to choose is the logistic one, since the parents of a variable now represent 
evidence rather than causative factors. (The 'noisy OR gate' model might 
have been a better choice had the latter been the case instead.) 

Let us see how we can specify the conditional probahility tables in the 
a.bove example (Table 7.1). The first two variables present no difficulty 
because neither has more than one parent. 

In odds (L) = 0.874 (7.1 ) 

Inodds(EI~) = -1.26+2.59~ (7.2) 

Notice that in Equation 7.2 we allow random varia.bles to appear on the 
right-ha.nd side. This is a shorthand for the more cumbersome 

Vu: {O, I} • In odds (E I ~ = u) = -1.26 + 2.59u 

The next varia.ble {3 has two parents (A and e). However, we are rather 
fortunate: {3 does indeed depend logistically on A and E. This is because 
A and E are conditionally independent given {3; inspection of the original 
graph (Figure 6.1) confirms that {{3} separates A and E. Calculating the 
appropria.te weights we obtain 

In odds (B I ~,€) = -3.342 + 4.949~ + 3.517€ (7.3) 
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Thus only three parameters instead of four are required to specify the joiut 
probability table. In general, only n + 1 parameters' rather than 2n are 
required, where n is the number of parents. 

7.2.1 Allowing Expressions 

We are less fortunate with the next variable 1. It has two parents, E and fl, 
and h} fails to separate them in the original graph, 50 they aTe not condi
t1ona]l~' independent. A logistic relationship might still have held ueverthe
less, but not in this particular case. 

However, a logistic form of dependence can always be obtained if we 
replace the variables in the logistic equation with arbitrary boolean expres
sions. Thus, 

Inodds (C I [,13) = 
3.683('[ ~ ,13) + 4.635([ ~ ,13) + 1.309(~. ~ 13) + 4.2.52([ ~ 13) 

(7.4 ) 
where,for a.ny values 11.,17 (1I.,1'E (o,l}), 

'v 1-1' 

ul\v u x v 

A logistic relationship now holds because all of the terms are mutually 
exclusive. However, we have as many terms as there are entries in I'S con
ditional probability table. Nevertheless, we can approximate the required 
function by combining terms with similar weights. For example, combining 
the second and fourth terms (and averaging the weights) we obtain 

Inodds (C I [,fJ) = 3.683(~[ ~ ,13) + 1.309(~£ ~ 13) + 4.443. (7.5) 

In practice, we would use our knowledge of the domain to decide upon 
a set of terms that were mutually independent or exclusive, and then derive 
the relevant weights directly from training data. Although this involves an 
element of approximation and assumption, so too does the construction of 
a descriptive causal graph. 

7.2.2 Transforming the Weights 

The last variable Q poses a special problem. How are we to handle logical 
constraints? Although a depends logistically ou its new parents, j3 and I' 
because it separates them in the original graph, p(A I B) = 1. This means 
variable fJ would require an infinitely large weight in the logistic equation! 
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A simple solution is to transform the weights to the interval [-1, +1]. 
This is €asily achieved [Haj85] by applying a suitable transformation such 
as:F. 

e" - 1 
F " AT: R. -- (7.6)er + 1 

We will refer to these tra.nsformed weights as certainty factors. They 
comhine not by simple a.ddition, but by a new operator 'EEl'. (Let a and b 

denote arbitrary certainty factors.) 

a E!J b " F(r'(a) + r'(b) (7.7) 

Since F is bijective, the operator EB inherits the properties of commuta
tivity and associativity from simple addition, in terms of which it is defined. 
The operator also has 0 as its identity element. Furthermore, substituting 
for F in the definition a,hove we obtain the following more familiar rule of 
combination [Ra.j85]. 

a E!J b = (a +b)/(ab+ 1) (7.8) 

LogicaJ constraints are now represented by the certainty factors +1 
and -1. These are both zero elements of the operator EEl: in the presence 
of complete certainty, further evidence makes no difference. (Note that, as 
one would expect, +1 cannot be camhined with -1 because that denotes 
contradiction.) 

a1"-1 "" +1E!Ja=+1 (7.9) 

a1"+1 "" -lElla=-1 (7.10) 

In general, let us denote the conditional certainty in an event E given F 
by 'cert (E IF)'. This is defined as the transformed log-odds. Thus, for any 
pair of events E and F, 

cert (E IF) " F(1nodds (E IF» (7.11) 

It follows that 

cert (E IF) = prE IF) - piE I F) 

= 2p(E I F)  I (7.12) 

So conditional probabilities are easily recovered from conditional certainties. 
Let us now transform Equations 7.1, 7.2, 7.3 and 7.4, before going on to deal 
with a. From Equation 7.1, 

F(lnodds (L) = F(O.874) (7.13) 
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Thus, 
cert (L) = 0.411	 (7.14) 

From Equation 7.2 

F(lnodds (E 1.\)) = F(-1.26+ 2.59.\) (7.15) 

Thus, from the definition of EEl, and since 0 is a. fixed point of transforma
tion :F, 

cert (E ).\)	 F( -1.26 + 2.59.\) 

F( -1.26) Ell F(2.59.\) 

F( -1.26) Ell .\ F(2.59) 

-0.557 Ell 0.860.\ (7.16) 

Similarly, from Equations 7.3 and 7.4 

cert (B 1 .\,E) -0.932 Ell 0.986.\ Ell 0.942< (7.17) 

cert [e 1 <, {3) 0.951(~< A ~{3) Ell 0.981(E A ~{3) EIJ 0.575(~E A {3) 

Ell 0.972« (VtA'!J) 

Lastly, the equation for variable cr is 

cert (A 1 {3,7) =	 0.402 Ell {3 Ell -0.6787 (7.19) 

7.2.3 Decomposition into Rules 

If we so desire, we can rewrite Equations 7.14, 7.16, 7.17, 7.18 and 7.19 
as a cuIlection of inference rules. Each rule corresponds to one term in an 
equation. All that is required is to introduce 'true' a.s an expression that has 
constant value 1 in order to represent the constant term in each equation. 
The certainty factor of each term we write as a superscript to the implication 
symbol. Thus, 

=>+0.411true .\	 (7.20) 
=>-0.557true E (7.21) 

.\ < (7.22)=>+0.860 

=:} -0.932true {3 (7.23) 
=:} +0.986.\ {3 (7.24) 
:::} +0.942 {3E (7.25) 

-,f3 1\ OC 7 (7.26):::> +0.951 
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::::>+0.981~(3 At , (7.27) 

{3 1\ ......c , (7.28)::::> +0.575 

(3 A t ::::>+0.97:;1 , (7.29) 
=> +OAO:l 

(3 =>+1,000 

true (l (7.30) 

(l (7.31 ) , :::>-0.678 (l (7.32) 

Notice that acyclicity of rules obtained this way folJows from acyclicity of 
causal graphs. 

7.3 Inference 

Since a. set of rules, such as the one above, is equivalent to a causal graph, the 
Lauritzen·Spiegelhalter algorithm provides a method for drawing inferences 
('applying the rules'), If this is found to be infeasible because the size of 
the resulting cliques is too great, then there is another suitable alternative: 
Monte Carlo propagation [Cor86]. 

7.3.1 Monte Carlo Propagation 

Since the causal graph on which the rules are based has been orientated 
in the direction of inference, the variables whose values are known for any 
given case tend to be a complete initial segment of the order. Thus, if 
the order on the variables is (tl < (t2 < ... < (tn, then precisely the vari
ables (tl,(t2, ... ,ai are known, for some i. Notice that this is the opposite 
state of affairs to that when the variables are ordered according to causa
tion. This is why Monte Carlo methods tend to be efficient for inferential 
representations, but not for descriptive ones. 

If the known variables do constitute a.n initial segment of the order, 
then Mon te Carlo propagation is particularly simple and effective. In order 
to sample the distribution over the unknown variables, conditioned on the 
values of the known ones, we start by setting all known variables to their 
respective values (0 or 1). We then turn to tbe next variable in the order 
and compute the probability that it has value 1. Suppose the prohability 
is p. We then assign the value 1 to this variable randomly with probability p, 
and value 0 with probability 1 - p. We repeat this 6tep for each successive 
variable in turn. This entire procedure corresponds to one simulation. We 
repeat many simulatjons (say 1000), and count the relative frequency with 
which each of the unknown variables is assigned value 1. 
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Example 

Continuing the previous example, suppose we observe that>. = 0 (the lights 
do not work) and E = 0 (the engine does not start). We set these variables 
to th€ir respective values. 

>. := 0 

E := 0 

The next variable in the order is p. We use Rules 7.23, 7.24 and 7.25 to 
determine the probability p(B ) L,E). Rule 7.23 'fires' (i.e. its antecedent 
evaluates to 1), but Rules 7.24 and 7.25 do not (Le. their antecedents eval
uate to 0). Thus, 

cert (IJ II,E)	 -0.932 E!i 0 E!i 0 

-0.932 

So, applying Equation 7.12 (Page 63), 

p(B II,E) (-0.932+ 1)/2 

0.034 

which corresponds to the value given in Ta.ble 7.1 (Page 60). 
Now we draw a random number from the rectangular distribution over 

the interval [0,1). Using a random number generator, let us suppose we 
obtain 0.663. Th.is is not strictly less than 0.034 so we set {J to value O. 

iJ:= 0 

The n~xt variable in the order is /. Only Rule 7.26 llres for J. Thus, 

cert (C IE, Il) = 0.951 

and 
p(C IE, Il) = 0.975 

Again we have simply computed the relevant entry in Table 7,1. Suppose 
the ne:<t random number is 0.102. This is strictly less than 0.975, so we set 
J to value 1. 

,:= I 
Finally. regarding 0:, only Rules 7.30 and 7.32 llre. Rule 7.31 does not. 
Therefore, 

cert (A I Il, C)	 0.402 E!i -0.678 

-0.379 
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and 
p(A I B, C) =0.310 

Suppose the next random number is 0.721. Since tills is Dot strictly less 
than 0.310, so we set a to value O. 

a:== 0 

Therefore, at the end of the first simulation,;3 :;: 0, , :;:: 1 and a :;: O. 
Shown in Table 7.2 are the results of an actual experiment in which 

this procedure was repeated many times. As the number of runs increases, 
the relative frequencies approach the actual conditional probabilities given 
A = 0 and € = O. 

Table 7.2: Frequencies with which variables were assigned value 1 during 
increasing numbers of simulations. The last column shows the actual con
ditional probabilities. 

PROBVARIABLE RUNS 
100 1000 10000 

0.0343 34 342(j 
96 969 9689 0.9691 
35 346 3434 0.343" 

This algorithm is both efficient a.nd universally applicable. Notice that 
it is unaffected by the degree of connectivity of the graph. 

Exercise 7.1 Suppose we intend to use Monte Carlo simulation to appT"Ox
imate the conditional probability associated with a particular unknown vari
able. IJ we require the estimate to be correct to two decimal places at a 
confidence level of 95%, how many simulations do we need to perJorm? 

7.4 Inferential versus Causal Representations 

As we have seen, when knowledge is represented as a set of inference rules 1 

propagation of evidence is computationally more tractable than when knowl
edge is represented as a descriptive causal graph, unless that graph is sparse. 
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These are not the only reasons, however I for preferring inference rules as a 
representation. 

7.4.1 Insufficiency of Causation 

In practice, training data are generally conditioned on events which are 
observable effect!> rather than underlying causes. For example, a. medica} 
database is usually conditioned on the event 'the patient seeks medical ad
vice' or some specialization thereof (e.g. lthe patient presents to hospital 
with acute abdominal pain'). Clearly this excludes persons who have no 
symptoms, which in turn makes causally unrelated events spuriously depen
dent. 

This means, when constructing a descriptive causal graph, it is not safe 
to asSllme that the parents of a given variable are only those which are its 
direct causes. For example, we had to include an arc from 'Alternator is ok' 
to ICarburettor is ok' in Figure 6.1 (Page 45) even though there is no direct 
causal link. Perhaps we should also have included an arc from 'Battery is 
charged' for the same reason: if the battery becomes old it may no longer 
hold a charge, thus making starting difficult. However, causally unrelated 
and independent faults tend to be mutually exclusive amongst t hose vehicles 
showing signs of trouble. Incompleteness of the graph means that the joint 
distribution it specifies does not correspond exactly to the population, no 
matte! how accurately the individual entries in the conditional probability 
tables are estimated. 

7.4.2 Scarcity of Training Data 

When constructing a large expert system, perhaps one encompassing many 
rare diseases for example, it may be found that the available training data are 
insufficient for estimating all the required conditional probabilities. There 
are tWD ways to proceed. 

Numerical Stability 

One solution is to make Uge of other sources of information, such as published 
results of relevant studies, or subjective estimates elicited from experts. Se
lection of the kind described above, however, compUcates this process; it 
is difficult to be sure that numerical estimates obtained from one popu
lation apply to another one selected in a different way. For example, are 
probability estimates derived from patients referred to hospital with acute 
abdominal pain compatible with those for patients who consult their general 
practitioner with the same symptom? 
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However, Dawid has shown that conditional probabilities of disea.ses 
given symptoms remain stable while those of symptoms given diseases vary 
according to the way a population is selected [Daw76]. Therefore, we might 
expect any selection bias in the training data to have less effect on certainty 
factors derived for inference rules, than on conditional probability tables for 
a descriptive causal graph. 

Variable Reduction 

Another solution is to try to reduce the number of parameters to estimate. 
Suppose our expert system includes three fare symptoms 0"1, (72 and G'3, any 
one of which is evidence for a particular disease D. If we adopt a descriptive 
representation, we will need to specify a conditional probability table for 
each of the three symptoms. However, if we choose to write inference rules 
instead, then if data are scarce a single rule will suffice: 

£11 V {12 V £13 =>c 6 

This reqnires estimation of only one certainty factor (c), and so allows data 
regarding the three symptoms to be pooled. 

7.4.3 Explanations 

Lastly, explanations are more easily generated from inference rules than from 
descriptive knowledge representations. This is because expla,nations must 
justify conclusions in terms of the given observations, and this corr€sponds 
directly to t he orientation of the knowledge expressed in the form of inf~rencc 

rules. 



Chapter 8 

Alternative Calculi of 
Uncertainty 

Most of the ~xpert systems described in earlier chapters have used proba
bility theory to model uncertainty. However, alternative formalisms have 
been proposed and are being developed to address perceived weaknesses of 
probabiUty theory as a calculus of uncertainty. This has ca.used a certain 
pOlarization of opinion, and has led to some friction between proponents of 
different methods - see the discussion foHowing [Spi84] for example. Never
theless, we describe here two formalisms, 'approximate reasoning' based on 
fuzzy sets, and the Dempst.er-Shafer theory of evidence, w hleh have aroused 
a great deal of interest and which are relevant to expert systems. 

8.1 Fuzzy Sets 

Expert opinion is often used as a source of knowledge for expert systems, 
yet it tends to be imprecise. Recall an example from Chapter 4 (Page 24): 
most clinicians would readily assert that 

inflammation of an abdominal organ usually causes local pain. 

Clearly this is an important fact that ought to be useful diagnostically, 
yet it is imprecise; what exactly is meant by 'inflammation\ 'usually" 'local' 
and 'pain'? The study of fuzzy sets [Zad65] is motivated by the desire to 
model concepts such as these which are inherently vague. 

8.1.1 Paradoxes of Gradual Change 

Consider what it is to be bald. Choose an arbitrary bald manj in general, 
he is not completely hairless, but has noticeably fewer hairs than normal. 

70 
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Now ~uppo~e he grows precisely one additional hair: clearly he is still bald. 
However, if we continue this chain of reasoning, repeatedly postulating the 
growth of a single further hair, we will eventually conclude that this indi
vidual remains bald no matter how many extra hairs he grows (paradox of 
/alakros, 'the bald man' [Car69]). Similar paradoxes derive from heaps of 
objects that remain heaps even after a single object is removed, and from 
luge numbers that remain large even after they are decremented by one. 

The source of the paradox is that the concept 'bald' ('heap', or 'large') is 
inherently vague, and can be made precise only by arbitrary definition (e.g. 
'A person is bald precisely when he has fewer than 10,000 scalp hairs. '). 
Expressed another way, the set of all bald persons is not precisely defined; 
it is fuzzy. Paradoxes such as those of falakros can be avoided by formal 
reasoning in terms of fuzzy sets [Gog69]. 

8.1.2 A Representation for Fuzzy Sets 

Crisp Sets 

A (conventional) set whose membership is clearly defined is said to be crisp. 
Any crisp set A of type Po: is uniquely represented by its characteristic 
function ~A which maps each element of 0: to 1 ifit is in set A or 0 otherwise. 

I'A :0_ {O,l} 
(8.1 )

\!U:OOI'A(U)={ ~ uEA 

ul1'A 

For example, suppose a is the set of outcomes of rolling a die, and A is 
the set of even scores. 

o {l,2,3,4,5,6} 
A (2,4,6} 

Then the characteristic function of A is 

~A == {l ....... 0, 2 I-' 1, 3 ....... 0, 4 ....... 1, 51-+ 0, 61-+ I}
 

Fuzzy Sets 

Fuzzy sets are represented by generalizing the notion of a characteristic 
function to allow continuous grades of membership. Thus, in general, 

I'A: 0 - [0,1) (8.2) 
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Thus, elements can be only partial members of a fuzzy set. (Notice that 
crisp Bets are just special cases of fuzzy ones.) 

For example, regarding dice, suppose HIG H is the (fuzzy) set of outcomes 
which are 'high' scores. One possibJe characterization of this set is 

I'HIGH " {I ~ 0.0, 2 ~ 0.0, 3 ~ 0.1, 4 ~ 0.5, 5 ~ 0.9, 6 ~ l.0} (8.3) 

One possible interpretation for the degree of membership of an element u 
to a fuzzy set :1 is the proportion of persons who would agree that u is a 
member of A. 

Exercise 8.1 Let 0 and U be, respectively, the empty and the universal fuzzy 
subsets of the (crisp) set w. Define 0 and [T by means of their characteristic 
functions. ALso, define 'f', the fuzziest of all subsets of w. 

Exercise 8.2 Explain how the use of fuzzy sets can avoid the paradox of 
falakro8. 

8.1.3 Operations on Fuzzy Sets 

Union and Intersection 

Consider now what it means to take the union and intersection of fuzzy sets. 
Assume that A, Band C are fuzzy subsets of a uuiversaJ set w, of which 
u and v are arbitrary members. 

Operations on fuzzy sets should preserve the familiar properties in the 
case that the operands are crisp. 

I'A(U)=O"I'B(")=O => I'AuB(U) = 0 "I'AnB(u)=O (8.4) 

I'A(u)=O"I'B(u)=l => I'AUB(U) = 1 "I'AnB(u)=O (8.5) 

I'A(u) = 1 "I'B(u) = 1 => I'AuB(u) = 1" I'AnB(u) = 1 (8.6) 

Furthermore, the degree of membership of u to the union of A and B should 
be no less than its degree of membership to either set. 

I'AuB(U) ~ (I'A(u)UI'B(U» (8.7) 

wbere U denotes the infix binary operator 'maximum!. Similarly, the degree 
of membership of u to the interseetjon of A and B should be no more than 
its degree of membership to either. 

I'AnB(U) S (I'A(u) nI'B(u)) (8.8) 
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where n denotes 'minimum', Also, even when extended to fuzzy sets, the 
opera.tions of union a.nd intersection should have their usual algebraic prop
erties of associativity, commutativity, idempotency and distributivity. 

(AUB)UC = AU(BUC) (8.9) 

(AnB)nC = An(BnC) (8.10) 

AuB = BUA (8.11 ) 

AnB = BnA (8.12) 

AUA = A (8.13) 

AnA = A (8.14) 

An(BuC) = (AnB)U(AnC) (8.15) 

If also we require that J1.AuB and J1.AnB a.re continuous and non-decreasing 
with respect to J.LA and J1.B' then it follows [Be173] that 

I'AUB(U) = I'A(U) U I'B(u) (8.16) 

and 
I'AnB(U) = I'A(U)nI'B(u) (8.17) 

Complement 

Clearly complementation should reverse the ordering of the degree of mem
bership of an element to two sets. 

I'AlU) > I'B(u) => I';<{u) < I'a(u) (8.18) 

Furthermore, complementation should be its own im'erse. 

A=A (8.19) 

Lastly, if we also require that the effect of complementation on the degrees 
of membership is symmetric 

I'A(U) + I'A(v) = 1 => I';<{u) + I';<{v) = I (8.20) 

then it follows [Gai76] that 

I';<{U) = 1-I'A(u) (8.21 ) 

Exercise 8.3 Using the definitions of union, intersection and complemen
tation given by Equations 8.16, 8.17 and 8.21, show that De Morgan's Laws 
hold for fuzzy s~ts. 
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8.1.4 Linguistic Hedges 

Zadeh rZad 72] introduced the notion of linguistic hedges (e.g. 'very', 'more 
or less\ 'not very') as modifiers of fuzzy 5ets. The hedge 'very' is defined as 
replacing the degree of membersh.ip of an element by its square. 

I'm,A (u) =(I'A(u))' (8.22) 

The im'erse, 'fairly', is defined as replacing the degree of membership of an 
element by its squa.re-root. 

I'r~",A(U) = ;;'A(U) (8.23) 

These operators are sa.id to correspond reasonably well to normal usage of 
the terms; although, in one study, 'very' seemed to be more of a horizon
tal tra.n.slator than a. power function [Her76]. Nevertheless, the operators 
provide a consistent way of constructing more complicated fuzzy sets from 
fundamental ones. 

Example 

For example, returning to the previous example of a die, we could de
fine MOD to be the set of 'moderately high' scores, with the assumption that 
'moderately high' means 'high, but not very high'. Recall (Equation 8.3) 
that we have chosen to characterize HIGH by 

JlHJGH:::: {I 1--+ 0.0, 2/--l 0.0, 3/--l 0.1, 4/--l 0.5, 51--+0.9, 61--+ 1.0} 

Squaring, 

Pvery)-HGH :::: {I 1--+ 0.0, 21--+ 0.0, 31--+ 0.01,41--+ 0.25, 5/--l 0.81, 61--+ 1.0} 

Taking the complement, 

Pno( very HIGH :::: 

{I 1--+ 1.0, 2- 1.0, 3/--l 0.99,41--+ 0.75,51--+ 0.19,6 /--l O.O} 

And, taking the intersection with H itself, 

PHIGHn(not very HIGH) :::: PM :::: 
{I 1--+ 0.0, 2 1--+ 0.0, 3 1--+ 0.1, 4 1--+ 0.5, 5 1--+ 0.19, 6/--l D.D} 
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8.1.5 Fuzzy Inference 

Fuzzy Relations 

A fuzzy relation R is a. fuzzy subset of aX p, where a and {J are the domain 
and range types of R, respectively. The degree of membership PR( U, v) of a. 
pair (tt, v) to R is the degree to which R rela.tes u to v. 

For example, regarding scores obta.ined by rolling a die, let LOTLESS be 
the relation 'is a lot lower than'. Shown below is ODe possible characteriza
tion of this relation. 

PLOTLESS == 
{(I, 1)~0.0, (I, 2)~0.l, (1, 3) ~0.5, (1, 4) ~0.9, (1, 5) ~ 1.0, (1, 6)~ 1.0, 

(2, 1) ~ 0.0, (2, 2)~0.0, (2, 3)~ 0.1, (2, 4)~0.5, (2, 5)~0.9, (2,6)~ 1.0, 
(3, 1) ~ 0.0, (3, 2)~0.0, (3, 3) ~O.O. (3,4)~0.1, (3, 5) ~0.2, (3,6)~0.7, 

(4, 1) ~O.O, (4, 2)~0.0, (4, 3) ~O.O, (4,4)~0.O, (4, 5)~0.1, (4,6)~0.3, 

(5, 1) ~O.O, (5, 2)~0.0, (5, 3)~0.0, (5,4)~ 0.0, (5, 5)~0.0, (5,6)~ 0.1, 
(6, 1) ~O.O, (6, 2)~0.0, (6, 3)~0.0, (6,4)~ 0.0, (6,5)~0.0, (6,6)~0.O) 

In general, if we know that two variables x : a. and y : fJ are relat.ed by 
a relation R, where IlR : (0 X fJ) -. [0,11, and we learn the actual value of 
x, then we can infer that y lies in the (fuzzy) image of x through R. 

For exa.rnple, suppose x and yare the scores obtained on two consecutive 
rolls of a die, and we are told that x 'is a lot lower than' y. If then we learn 
that x is act11ally 2, adopting the characterization of LOTLESS given above 
we can conclude that y is a member of the set B where 

J1-B = oX v: fJ. J1-LoTLESS(2, v) 

{I ~ 0.0, 2 ~ 0.0, 3 ~ 0.1, 4 ~ 0.5, 5 ~ 0.9, 6 ~ 1.0} 

J1-HIGH 

So we conclude that y is 'high'. 

The Compositional Rule of Fuzzy Inference 

In the case that all we knO\\i of x is, say, that it is either 2 or 3, we obtain 
two alternative fuzzy restrictions on y, either of which may be appropriate. 
Naturally, therefore, the resulta.nt set is given by the fuzzy uuion of the two. 
This pdnciple readily extends to larger (crisp) sets of possible values of x. 

Zadeh [Zad73] generalized this principle to the case when the vaJue of x 
is known only fuzzily. This is expressed as the 'Compositional Rule of Fuzzy 
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Inference'. 
x is A 
(x,y) is R 

y is AoR 

where A 0 R denotes the 'composition' of A with R (i.e. the image of A 
through R). This is defined 

~AoR =.\v:iJ·U(~A(U)n~R(u,V)) (8.24) 
U;Cl' 

wheI'€ 

~A a~[O,l] 

~R (axfJ)~[O,l] 

(The principle of fuzzy inference readily extends to the case where the value 
of a variable is determined from the values of n - 1 other variables through 
a n-ary relation.) 

Exercise 8.4 Suppose that a die is rolled twice. The first score. is 'not 
very high', and, even worse, the second 'is a lot lower than' the first.' Use 
the Compositional Rule of Fuzzy Inference to calculate the (fuzzy) set of 
pos8ible scores that might have been obtained on the second roll. (Use HIGH 
and LOTLESS.) 

8.1.6 Production Rules 

It may not always be feasible to specify fuzzy relations by explicit enumer
ation. Production rules provide a. convenient shortha.nd. Although by no 
means the only way of deriVing a fuzzy relation (rom a production rule, 
the simplest wa.y is to take the cartesian product of the antecedent and 
conclusion. Thus, we interpret a rule 

z is A ::::} Y is B 

as the proposi tion 
(x,y)isAxB 

The cartesian product of two fuzzy sets is defined by 

~AxB =.\ u: a; v: fJ. ~A(u) n ~B(v) (8.25) 

where A is a fuzzy subset of 0:, and B is a fuzzy subset of p. In the case 
that we have several rules relating:t: and y, we simply take the fuzzy union 
of the corresponding relations. 
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Exercise 8.5 Suppose I and y are the scores obtained on two rolls of 1I die. 
The assertion that x and yare 'about the same' can be expressed as three 
production rules. 

x is low ::::} y is low
 

x is moderate ::::} y IS moderate
 

x is high => y is high
 

A8sume that 'high' corresponds to the set HIGH defined above (Equation 8.3, 
Page 72), and t.hat 'low' corresponds to the set LOW defined below. Take 
'moderate' here to mean 'not low and not high'. Reduce the set of three 
production rules to a single fUZZY relation by taking the union of the corre
sponding cartesian products. Is this an accurate characterization of 'is about 
the same as'? 

I'ww = {I ~ 1.0, 2 ~ 0.9, 3 ~ 0.5, 4 ~ 0.1, 5 ~ 0.0. 6 ~ D.O} 

Exercise 8.6 Continuing Exercise 8.5, use the Compositional Rule of Fuzzy 
Inference to determine the value of y if x is 'fairly low'. 

8.1.7 Fuzzy Inference and Medical Diagnosis 

Fnzzy sets have been claimed by some (e.g. [AdI85]) as 'highly su..itable for 
the formalization of medical processes and concepts'. Others disagree. For 
example, De Dombal pointed out that the obvious remedy to the \'agueness 
of clinical terminology is to make the terminology more precise [Dom78]. 
Although some medical expert systems have been built which employ fuzzy 
sets (for example, [AdI85, Fie90J), the 'mi n-max' operations that a.re an inte
gral part of fuzzy reasoning seem inappropriate: medical diagnosis involves 
accumulation and weighing of evidence. The multjplication and addition 
operations of probability theory seem intuitively more correct. 

8.2 Dempster-Shafer Theory of Evidence 

8.2.1 Some Difficulties with Probability Theory 

Dempster~Shafertheory [Dem67, Sha76] directly addresses two problematic 
aspects of the use of probabiHty theory to model belief: the representation 
of ignorance, a.nd the separation of belief in competing hypotheses. Accord
ing to probability theory and the 'Principle of Indifference', if we have no 
reason to choose between two mutually exclusive events then both are as
signed equal prior probabilities. No distinction, therefore, is made between 
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complrte ignorance about the relathe likelihood of two mutually exclusive 
events, and secure knowledge that the two events are equally probable. 

Furthermore, it is a consequence of the axioms of probability theory that 
given any event E, the probability peE) is 1 - p(E). This means that any 
evidence for E is necessarily evidence against its complement E, yet often 
this seems counter-intuitive. For example, fever is evidence for measles, 
yet it is also evidence for (rather than against) the alternative diagnosis of 
influenza. 

8.2.2 Mass Functions 

According to Dempster-Shafer theory, rather than a.<isign probability mass to 
individual sample points alone, we can distribute the total mass amongst all 
subsets of the sample space. Thus m(E) denotes the amount of probability 
mass that we are prepared to associate with event E, but not with any 
proper subset of E, on the strength of the available evidence. A probability 
muss function m therefore has the following properties. (In Dempster-Shafer 
theory 0 is used rather than n to denote the sample space, and we follow 
that convention.) 

m:P0~[0,lJ 

m({}) = 0 (8.26) 

L m(E) = 1 (8.27) 
E~8 

Belief 

The total probability we have committed to event E (or, in subjective terms, 
our curren t belief 'bel (E), that event E has occurred) is given by the sum 
of the probability mass assodated with all subsets of E. 

bel (E) = L m(F) (8.28) 
f~E 

Thus the constraint that the probabilities of an event and its complement 
mus~ sum to 1 has been rela-xed to the following. 

bel (E) + bel (E) ~ 1 (8.29) 

As one would expect, we are always certain that the universal event 0 has 
occurred. This follows directly from Equations 8.27: 

bel(0) = I (8.30) 
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Some ExtreUl.e Mass Functions 

In the case rna that all the probability mass is assigned to 0, we have 
no belief in any more refined event than the universal event itself. This 
represents complete ignorance. 

morE) = { ~ E=0 
(8.31)

E;i0 

Whereas, if all the probability mass is assigned to singleton events (mt) 

#E = 1m)(E) = { ~(E)	 (8.32)
#E;i 1 

then the belief in any event is identical to the probability of that event. So 
a probability functjon is just a particular kind of belief function. 

8.2.3 Dempster's Rule of Combination 

Consider now how beliefs based on two sources of evidence can be com~ 

bined. Suppose a patient has either measles (M), influenza (1) or some 
Qther infectious disease (0). 

0= {M,!,O} 

Furthermore, suppose that, taken individually, two items of clinical evidence 
induce the mass functions ml and mz shown below. (Only events with non
zero probability mass have been included in the table.) 

m, 
{M,I} 0.80 {I} 0.20 

{M} DAD {M} 0.32 {} 0.08 
m)	 {M,O} 0.50 {M} DAD {} 0.10 

{M,!,O} 0.10 {M,I} 0.08 {I} 0.02 

The only way that, say, event {Af,l} can occur is if two events oc
cur simultaneously whose intersection is {M, I}: in this case, {M, l, O} 
and {}J, I} with probability masses 0.10 and 0.80, respectively. Therefore, 
assuming independence, the comhined probability mass of {Af,!} is 0.10 x 
0.80. \Vhen an event (such as {M} in this case) can occur in more than one 
way, the sum of the products is calculated; thus the combined probability 
associated with {M} is 0.32 +DAD. 

There is a difficulty, however, when the intersection of the respective 
events is empty. A total probability mass of 0.18 is apparently associated 
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in the example a.bove with the impossible (empty) event. The solution is 
to set this to zero, and redistribute the probability mass amongst the pos
sible events by normaliza.tion (division by 0.82). The combined proba.bility 
mass function is as follows, all other events mapping to zero proba.bility, 
where ffi denotes combination of two mass functions. Values are shown to 
two decimal places only. 

mIill m, ({M}) = 0.88 
m, Ell m, ( (J)) = 0.02 
m,Ellm, ({M,I)) = 0.10 

The general form of Dempster's Rule of Combination is 

E= {] 

m, II) m,(E) '" 0 L m,(F)m,(G) (8.33)1
FnG E E i {]L m, (F)m,( G) 
FnG~{) 

Exercise 8.7 You are playing a game of Judo. Your opponent rolls the die 
and then seems very pleased with himself indeed. This is strange hecause the 
SCore on the die looks like only a jive, but you canJt be 100% sure without 
your specs. 

Judging your opponent's reaction, you assign subjcctive probability to the 
possible events according to the following mass function (ml). 

m,({4,5,6)) ~ 0.1 
m,({5,6}) 0.2 
m,({6}) = 0.7 

While, the blurred appearance of the die suggests mass function m2. 

m,({4, 5, 6)) = 0.2 
m,({5}) = 0.8 

Using Dempster's Rule of Combination, calculate how strongly you believe 
the opponent's SCore is five, when taking both pieces of evidence into account. 
Also, how certain are you that the score was more than four? 



Chapter 9 

Testing and Evaluation of 
Decision Aids 

9.1 Evaluation 

Once a new expert system has been designed and implemented, the next 
stage is to evaluate its performance. In many applications, the user interface 
is important; it may ultimately determine the acceptability of the system. 
More fundamental however, and the subject of this chapter, is the ability of 
the system to arrive at the correct diagnosis and to give the right advice. 
How then should the diagnostic accuracy of an expert system be assessed? 
(We answer this question specifically in relation to medical expert systems, 
although the principles generalize to many other applications.) 

9.1.1 Test Data 

Retrospective VB Prospective 

For training and te5t purposes we require a collection of case descriptions 
specifying both the symptoms and the true diagnoses for a random set of 
patients. There are two ways of collecting such data: 

1.	 Retrospectively - Case notes are retrieved from hospital archives, and 
the relevant information is transcribed onto structured forms. 

2.	 Prospectively - Doctors are asked to fill in structured forms themselves 
at the time patients are seen. 

Retrospective data are easily collected, but tend to be of poor quality. 
Handwritten entries in case notes are often ambiguous, and sometimes illeg
ible. There is a tendency to record only positive findings and key negative 
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ones. This means that it is often ha.rd to tell whether a symptom or sign 
was truly absent, or simply not looked for. 

Prospective data, on the other hand, are generally of a similar quality to 
the data that would be entered into the computer if the expert system were in 
routine use. Nevertheless, it may not be worth the trouble of collecting such 
data unless the expert system has already been tested with retrospective 
data, a.nd has shown promise. 

Avoiding Bias 

When assessing performance, two sources of bias should be avoided. Firstly, 
the training setl and the test set2 should be random samples from the same 
popula.tion. If not. then misleadingly poor performance figures may be ob
tained. 

Secondly, the training set and the test set should not intersect (except 
by chance). If training cases are used to test the performance of the system 
then performance may be deceptively optimistic. 

'Leaving-One-Out' Method Often only a limited number (n) of cases 
are available to the system developer, and the numbers become too small if 
the set is partitioned into training cases and test cases. If training entails 
only calculation of numerical parameters, and is computationally efficient) 
then the 'leaving-one-out' method is applicable. This entails using each case 
in turn as a test case, and training the expert system afresh each time on 
thecemaining (n-l) cases. 

9.1.2 Trial Design 

When evaluating a system, the results are more easily interpreted if they can 
be compared with those of familiar standards such as Bayes' theorem and 
the unaided clinician himself. The significance of such results can be better 
assessed also jfthe computer and the clinician are compared with respect to 
the same test cases; this allows paired rank tests of statistical significance 
to be applied. 

In some applications, the 'true' diagnosis may he unclear and open to 
debate. This is the ease, for example, regarding selection of antimicrobial 
therapy. In order to overcome this difficulty, the treatment recommenda
tions of MYCIN (Chapter 4, Page 30) were compared with those of eight 

1 (lbe set of cases used to derive stalhtical parameters for the llystem and ~o optimize 
its pedorma.nce) 

:l(the set. of cases used to test the system) 
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clinicians by a. panel of expert judges [Yu79]. The judges were blinded as to 
which was the computer's advice and which were the clinicians'. In 35% of 
assessments, MYCIN's recommendation was considered 'unacceptable', but 
this was marginally better than any of the eight clinicians! 

Although an expert system is likely to be useful if it gets the diagnosis 
right more often than the unaided clinician, the real purpm;e is to assist 
the clinician himself to achieve a higher diagnostic accuracy. Th1s is a more 
difficult hypothesis to test, and where it has been tested there have been 
some surprising results. 

In a multicentre trial of the Leeds program for the diagnosis of abdominal 
pain (Chapter 2, Page 11), not only did the clinicians' diagnostic accuracy 
rise from 46% to more than 65% when the computer system was introduced, 
but a real improvement in patient management was observed [Ada86]. For 
example, approximately 278 unnecessary operations were avoided during 
the trial period, and savings in NHS resources amounting to £20m were 
achieved. 

However, introduction of a computer system not only makes available to 
the clinician an interpretation of his own findings, but also requires that the 
clinician use a structured data-coll('.ction form. This discipline itself is likely 
to lead to an improvement in diagnostic accura.cy. When structured forms 
alone were used, diagnostic accuracy was found to be about 57% [Ada86]. 
Furthermore, when clinicians were also given regnlar feedback about their 
own performance, they achieved the same diagnostic accuracy alter three 
months as those using the computer program. It is therefore far from clear 
what contribution, if any, the computer is making [SutB9]. One would hope 
that this question can be eventually resolved by developing more accurate 
programs whose contribution is greater and more easily measurable. 

9.2 Performance Parameters 

Let us now look more closely at the various performance parameters that 
we can measure. 

9.2.1 Diagnostic Accuracy 

The diagnostic accuracy of an expert system (or clinician, flowchart etc.) is 
the proportion of cases it correctly diagnoses. While this is useful as a single 
numerical parameter of overall performance, it is generally helpful to know 
which diseases the system identifie5 well, and which it identifies poorly. 

Consider a single arbitrary disease 6. A case which has 6 is said to be 
a true positive if 6 is diagnosed by the system, otherwise a false negative. 
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Conversely, a case which does not have 6 is said to be a false positive if 6 is 
diagrlOsed, otherwise a true negative. 

The sensitiL'ityof an expert system to a particular disease 6 is the propor
tion of cases which have 6, that the system correctly diagnoses. Conversely, 
the specificity is the proportion of cases which do not ha.ve 6 that the system 
correctly diagnoses as not having 6. 

For example, Vastola [Va.s73] described a flowchart-style program called 
ASSIGN for deciding whether or not patients have a neurological disorder 
requiting referral to a neurologist. The program was tested on 308 patients 
attending a neurological clinic, and ASSIGNS's decision was compared with 
that of a physician, whose decision was assumed to be correct. The following 
results were obtained. 

183 patients (TP) Correctly referred 
57 patients (FP) UnnecessariJy referred 
58 patients (TN) Correctly discharged 
10 patients (FN) Wrongly discharged 

308 patients Total 

Therefore, 

Sensitivity TP/(TP + FN) = 183/(183+ 10) '" 0.95 
Specificity TN/(TN + FP) = 58/(58 + 57) '" 0.50 

Thus while ASSIGN is quite sensitive (i.e. it correctly refers most cases that 
require referral), it is not very specific (Le. it is not very good at identifying 
the patients who can be safely discharged). 

9.2.2 ROC Curves 

Generally, expert systems do not make categorical decisions in the way that 
ASSIGN does. Instead, they calculate a numerical measure of support (e.g. 
the conditional probability) for a particular hypothesis. A decision as to 
whether or not to accept the hypothesis is taken (either by the clinician or 
the expert system itself) by comparing the numerical measure of support for 
the hypothesis with a pre-determined threshold. By lowering this threshold, 
the sensitivity of the system can be increased, but only at the expense of a 
decrease in the specificity. 

A graph of sensitivity against the complement of the specificity, as the 
threshold is altered, provides a way of comparing on a common scale, di
verse kinds of expert system designed for the same discrimination task. The 
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graph (see Figure 9.1) is called the relative operating characteristic (ROC) 
of the system [Swe88]. The area under the curve provides a single numerical 
measure of discrimination; a. value of 1 denotes perfect discrimination, and 
a value of 0.5 denotes zero discrimination. 

Figure 9.1: ROC curves for three expert systems (At B, C) regarding a par
ticular binary decision problem. System A provides the most discriminatory 
power, and system C provides none at all. 

1 

A 

B 

c 
Sensitivity 

o V 
o 1 - Specificity 

Exercise 9.1 Test the flowchart shown in Figure 3.1 (Page 21) 011 the ran
dom sample of 20 cases given in Table 9.1 (Page 87). Sketch the ROC cun,€, 
and use it to decide whether the flowchart is a better discriminant than an
other system which is known to have a sensitirlity of 0.90 and a specificity 
of 0.95. 
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9.2.:1. Discriminant Matrices 

Once a decision threshold has been oelected, a dear and comprehensive way 
of summarizing an expert system's performance with a range of alternative 
diagI'oses is by means of a diseriminant matrix. A discriminant matrix 
itemizes the total number of test cases which actually have disease 6, but 
were diagnosed as having disease 6}, for every i and j. 

For example, suppose an expert system is designed to classify patients 
into ~xactly ODf' of three categories (A, B and C). Table 9.2 presents some 
hypo:hetical test results in the form of a discrimination matrix. 

This providps all the information necessary to calculate the sensitivity 
and lpecifici ty of the expert system to each of the disorders. Take diagno
sis A, for example: 

23
Sensitivity to A 23 + 1 + 1 = 0.92 

167 + 18 + 22 + 166
Specificity to A =: 

15 + 167 + 18 + 12 + 22 + 166 '" 0.93 

Reliability 

There is another parameter, however, that we have not considered: reli
abililll. How reliable is the computer diagnosis 'A' in the above example 
(Table 9.2)? In other words, when the computer asserts that the diagnosis 
is A, what is the probability that the computer is correct? This too is easHy 
determined from the discrimination matrix. 

Reliability of A = 23/(23 + 1.5 + 12) = 0.46 

Notice that while the expert system is very sensitive and specific to A, the 
computer's diagnosis of A is quite unreliable and unsa.fe. 

Exercise 9.2 From Table 9.2, calculate the sensitivity! specificity and reli
abili~y of the expert system with respect to diagnose.s 'B' and 'C'. 
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Table 9.1: Test data. for Exercise 9.1. 

Case 8 "1 "2 "3 '" 
I I I I 0
 

2
 
I
 

0 0 0 0 I
 
3
 I I 0 0 I
 

4
 I I 0 I I
 

5
 0 0 I I 0
 
6
 0 I 0 I 0
 
7
 I I 0 I I
 

8
 I I 0 0 I
 

9
 I I I 0 0
 
10
 0 I 0 I I
 

II
 0 I 0 I I
 
12
 I I I I 0
 
13
 I I 0 0 0
 
14
 0 I I 0 I
 

15
 I I 0 I 0
 
16
 0 I 0 0 0 
i7 0 I 0 I 0
 
18
 0 I I I I
 

19
 0 0 0 I 0
 
20
 I I I 0 I
 

Table 9.2: Discrimination matrix for dia.gnoses A, Band C. 

Computer's diagnosis 
A B C
 

True dia.gnosis 15 167 18
 
12 22 166
~I 
23 I I
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