
~.

, I ~'''~~~;l" ,......'""'-~ "~;,..,, I ~
~ry

[J/I."..II \,4 \.)/,? juu

A brief history of Timed CSP

by

Jim Davies and St.eve Schneider

Technical Monograph PRG-96
ISBN 0-902928- 74-0

April 1992

Oxford University
Programming Research Group
11 Keble Road
Oxford OX1 3QD
England

Copyright © 1992 Jim Davies and Steve Schneider

Oxford {;niversity
Programming Research Group
11 Keble Road
Oxfmd OX! 3QD
England

Electronic. mail: Jim.Davies«lprg.ox.ac . uk

Steve.Schneider~prg.ox.ac.uk

1

A brief history of Timed CSP

.Tim Davies and Steve Schneider

Programming Research Group, Oxford University, Oxford OXl 3QD, UK

Abstract This report provides a comprehensive introduction to the language of
Timed esp, presented by Reed and Roscoe in A. timed model for communicating
sequential processes, Springer LNCS 226. A brief description of the notation is
followed by a detailed survey of timed and uotimed models for the language. A
compositional proof system is included, together with an account of timed refine­
ment. The report ends with a list of the changes made to the notation in recent
years, and a brief discussion of other timed process algebras.

Introduction

The language described in this report is very different to the original CSP notation
of IHoa7S]. The language and models of Timed CSP have undergone a gradual
evolution, {rom [ReR86] to [DaS92]. The forthcoming text on CSP and Timed
CSP should provide for some degree of standardisation; until then, we offer this
document as a guide to the current state of Timed esp.

The report begins with a description of the language of Timed esp, and the
model of computation. In section 3, we show how timed. and untimed models
for the language may be used to capture requirements and establish results about
program behaviour. Two complete compositional proof systems are presented; for
the untimed traces, and timed failures models. In section 4, a notion of timed
refinement is introduced, relating timed programs to untimed specifications.

In section 5, we provide a complete list of the changes made to the language
of Timed CSP since [ReR86J. The mathematical foundations provided by [ReM7,
R.ee88] are sufficiently robust to support such improvements without the need to
restructure the semantic models. These changes have been motivated by case studies
and applications, rather than by any need to modify the original intuition. The
report ends with a brief discussion of other timed process algebras.

2 A. trief history of Timed CSP

2 The language of Timed CSP

A program in Timed CSP is a term in the abstract syntax, a language const.ruct such
as a -+ STOP. An observation of a program is a record of observable behaviour
during an execution. A model is a denotational semantic model for t.he language,
in which each program is identified with a set of observat.ions. The different. models
are named according to the type of observat.ions ma.de: in the timed traces model,
observations are sequences of timed events.

A process is an element of a semantic model: a set. of observat.ions which defines
a. pattemof behaviour. We find it useful to maintain a distinction between programs
and pro(~sses, although it is not strictly necessary--va.\id programs are identified
with elements of the semantic model. The construction of the semantic models is
influenc~d by the properties of our model of computation: t.hese include

>I<	 maximal progress: a program will execute until it. terminates, or requires some
external synchronisation

>I<	 maximal parallelism: each component of a parallel combination has sufficient
resources; the speed of execution is independent of the number of programs
in a parallel combination

*	 finite variability: a program may undergo only finitely many changes of state
during a finite interval of time

* synchronous communication: each communication ("'vent requires the simul­
taneous participa.tion of every program involved

>I<	 instant.aneous events: events have zero duration

This mod~l of computation is consistent with that employed in [Hoa.85].

2.1	 Untimed CSP

The langua.ge of CSP includes primitive operators for parallel composition, non­
deterministic choice, and hiding. This makes for an elegant notation in which the
problems of concurrency, nondeterminism, and abstraction can be addressed sep~

arately. The language also provides constructs for modelling deadlock, recursion,
and program relabelling:

P ;;=	 STOP ISKIP I a ~ pip; pip 0 pip n P I
a; A ~ p.1 P" pip j pip,? P II(P) IP \ A I
II Ap P ! P AIIB pip III pip ~ P II' X • F(X)

2 The language of Timed CSP 3

The variety of operators in CSP is in contrast to otber algebraic approaches to
concurrency, in which much emphasis is placed upon obtaining a minimal set of
operators for the syntax.

STOP is a program which will never engage in external communication; it is a.
broken program. SKIP is a program which does nothing except terminate, and is
ready to terminate immediately. The prefix operator -+ allows us to add communi­
cation events to a program description. The program a -+ P is initially prepared to
engage in synchronisation a; if this event occurs, it immediately begins to behave
as P. The sequential composition operator transfers control upon tenrunatiou. In
the program P; Q, control is passed from program P to program Q if and when
P performs the termination event ./. This event is not visible to the environment,
and occurs as soon as P is ready to perform it.

PDQ is an external choice between programs P and Q. If the environment is
prepared to cooperate with P but not Q, then the choice is resolved in favour of
p 1 and vice versa. P n Q is a internal choice between P and Q; the outcome of
this choice is nondeterministic. The program a : A -+ P5 offers an external choice
of initial event a, drawn from a set A, which may he infinite. This construct allows
us to model program input from a channel. If channel c carries values of type T,
then

c?x: T -+ P:& = a: {c.v I vET} -+ P:

where p~.~ = PD. The program c?x : T -+ PI. is prepared to accept any ,'allle v of
type T on channel c, and then behave accordingly. We use the expression c!v to
denote the output of value v on channel c. No choice construct is required in this
case; the value transmitted is determined by the sending program.

The timeout program Pc> Q may behave as Q, or offers a choice between P and
Q, according to whether the timeont has occurred, or not. In uotimed esp, the
resulting behaviour is that of a nondeterministic choice: without timing information,
we cannot determine when the timeout occurs.

The interrupt program
PyQ

behaves as P until the first occurrence of interrupt event i, upon which control
is transferred to Q. The transfer operator j passes control from one program to
another after a predetermined time has elapsed. Without timing information, the
first program may be interrupted at any time.

A synchronised parallel combination of a set of programs is parameterised by
a corresponding set of interfaces: for each program P, we provide an interface set
Ap . In the network of programs defined by

NETWORK = lI. Pp

4 A brief history of Timed CSP

each event a requires the participation of every subprogram P such that a E Ap .

Every pair of subprograms must cooperate on each event from the intersection of
their interface sets. A simple form of network is the binary parallel combination

P ,liB Q

in which program P may perform only those events in Al prograrll Q may perform
only those events in B, and the two programs must cooperate on events drawn from
the intersection of A and B.

In an asynchronous parallel combination

P III Q

both subprograms evolve concurrently without interacting. If both subprograms
are capable of performing the same event. a, then a degree of nondeterminism may
be introduced. In the hybrid parallel program

P II Q
c

components P and Q must synchronise upon events from set C.

The relabelled program f(P) has a similar control strncture to P, with observ­
able events renamed according to function f. The program P \ A hehaves as P,
except that events from set A are concealed from the environment of the program.
Hidden events no longer require the cooperation of the environment, and so occur
as soon ~ P is ready to perform them.

The recursive program J1 X F(X) behaves as F(X), with each instance of0

variable X representing a recursive invocation; this program satisfies the equation
P = F(P). These programs have a well-defined semantics if the function F is
guarded. In untimed esp, a function F is guarded if every free occurrence of X in
F(X) is preceded by at least one observable event.

2.2 Timed CSP

The language of Timed esp is defined by the following grammar rule:

P ,,= STOP ISKIP I WAIT t Ia --. pip; pip 0 pip n pi
a A --. p.1 P'; pip ~ pip?, pIJ(P) I p\A I
IIAp pip AIIB pip III pip ~ pI~X. F(X)

In this rule, event a is drawn from the set of all synchronisations E, event set A
ranges over the set of suhsets of E, and t is a non-negative real number. We place

2 _The language of Timed CSP 5

no lower bound on the interval hetween consecutive events-this allows us to model
asynchronous processes in a satisfactory fashion, without artificial constraints upon
the times at which independent events may be observed.

The new operator WAIT is a delayed. form of SKIP; it does nothing, but is
ready to terminate successfully after the specified time. The following abbreviation
proves useful:

a----!-P a -+ WAIT t; P

The program a -~ P will delay for t time units after the first occurrence of a,
before behaving as P. As in untimed esp, we consider events to be instantaneous;
if tbe duration of an action is of interest, then that action may be modelled by
considering the beginning and the end of the adion to be separate events.

In the timeout program P ~ Q control is transferred from P to Q at time t if
no communications have occurred. If an attempt at communication involving P is
made at time t precisely, then the outcome will be nondeterministic. The situation
is analogous to a bid being made as the auctioneer brings the hammer down: a
satisfactory outcome cannot be guaranteed. Finally, if either of the subprograms
should terminate, then the timeout program terminates immediately.

The timed interrupt, or transfer program

piQ,
behaves as P until time t, when control is transferred to Q. Again, if P terminates
before time t, then tbe entire program terminates immediateJy: control is not passed
to program Q.

The recursive program 11 X • F(X) behaves as F(X), with each instance of
variable X representing an immediate recursive invocation. This program satisfies
the equation P= F(P). Again, recursive programs have a well-defined semantics
if the defining function is guarded. In Timed esp, a function P(X) is guarded if
every free occurrence of X in the body of F(X) is preceded by a non-zero time
delay.

6 A brief history of Timed CSP

3 Semantic models for Timed CSP

In [Ree88J, a. variety of semantic models were defined for the language of Timed
CSP. In these models, programs are associated with sels of observations. We may
reason about programs by reasoning about these sels: a predicate on the semantic
set corresponds to a requirement upon the program. For example, in the Traces
model of esp, we may capture the requirement that program P never performs a
visible action with the predicate

\ltr E traces(P). tr = ()

In this model, the program STOP is associated with the singleton set {O}, contain­
ing only the empty trace. We may conclude that STOP is a program that meets
this requirement.

Accordingly, a specification is a predicate on observations. For example, a spec­
ification in the untimed traces model MT is a predicate of the form S(tr), where
tr is an arbitrary trace. A program P satisfies a specification if that specification
holds for every observation of an execution of P. In the traces model, we define a
satisfaction relation

P sat S(lr) in MT .. \I tr E TIPI· S(tr)

where T is the semantic function for the traces model. We will omit the qualification
'in M T ' where the identity of the model is obvious from the context.

3.1 Untimed models

The most abstract semantic model for the language of CSP is the traces model
of (Hoa85]. It is also the most widely-used and well-understood of all the semant.ic
models. In the traces model, each program is associated witb a set of untimed finite
traces-sequences of observable events. Using trace specifications, we may capture
safeLy conditions--constraints that proscribe certain events Or sequences of events
in an execution of the program.

If we wish to capture untimed liveness conditions-constraints that insist that
certain events become possible in an execution-we must include readi ness or refusal
information in our semantic model. In the failures model MF we associate each trace
of a program with the set of events that may be refused afterwards. If the failure
(tr, X) is present in the semantic set of program P. then P may perform trace tr
and then refuse to engage in any event from X.

In [BrR85l, observations are extended to include divergenceB. A trace of a
program P is a divergence if it may be followed by an unbounded sequence of

3 Semantic models {or Tjmed CSP 7

internal events. In (Ree88] , we find an alternative treatment of divergence. In
the stability model MS1 a trace tr is associated with a stability value of 00 if the
program may diverge after performing tr, or 0 otherwise. In the failures-stability
model Mrs, programs are associated with sets of triples (tr, Q, X). A stability value
D: is attached to eacb failure; if the value is zero, then the program is stable after
performing trace tr: it does not diverge. An infinite stability value indicates that
internal activity may continue indefinitely.

The semantic equations for each denotational model form the basis of a compo­
sitional proof system-a set of inference rules relating the properties of a program
to the properties of its syntactic subcomponents. Each rule is of the form

antecedent

antecedent
[side condit.ion 1

consequent

If we establish the truth of each antecedent, then we can be assured of the trutb of
the consequent 1 providing that the side condition holds. Each consequent will take
the form P sat S: these rules may be used to establish that a program meets a
given specification.

3.2 An untimed proof system

Tbe following logical rules may be derived for the untimed traces model:

P sat S(tr) P sat S(tr)

P sat T(ir) S(tr) =? T(tr)

P sat true P sat S(tr) f\ T(ir) P sat T(tr)

The null specification is true of any program, each goal may be addressed separately,
and we may weaken any specification already established. From the semantic equa­
tions given in [Ree88L we may derive an inference mle for each operator in the
language.

STOP sat tr = () SKIP sat tr = () V tr = (J)

The broken program STOP is unable to engage in external communication: any
trace of this program must be equal to the empty trace (). The program SKIP may
perform only the termination event '/.

8 A brier history of Timed CSP

Any non-empty trace of the program a ---+ P must begin with the event ", and
continue with a trace of program P:

P sat 5(tr)

a --+ P sat tr = 0

V

3 Ir'. tr = (a)~tr' II 5(tr')

We may produce a non-empty trace of a --I P by catenating the singleton trace (a)
with a trace tr' of program P.

A tra.ce of the sequential composition P ; Q may be either a trace of P-if this
program has not lerminated--or the catenation of a trace of P and a trace of Q:

Psat 5(1'-)

Qsat T(tr)

P; Q sat v' ~ <7(lr) II 5(tr)

V

3 Irp,trQ • tr ~ trp~trQ II v' ~ <7(trp) II S(lrp~(v')) II T(trQ)

The termination event..; is hidden from the environment: it is not present in the
event sels of traces t1' and trp.

An observation of a choice program must be an observation of at least one of
the components:

Psat 5(tr) P sat 5(1r)
QsatT(tr) Qsat T(tr)

Pn Q sat 5(tr) V T(tr) PDQ sat S(tr) V T(tr)

In establishing that a program meets a safety requirement, there is no need to
distinguish between internal and eX1ernai choice.

The prefix choice program a : A ~ Pa is initially prepared 10 engage in any
even1 from A. If no even1s have been observed, then no even1 from A may be
refused.

'I a, A. P. sat 5.(tr)

a; A ~ Pa sat tr = 0 V a E A /\ lr = (a)'""""lr l
/\ Sa(tr l

)

If a is the first e\'ent observed, then a is an element of A, and the subsequent
behaviour will be due to P~.

In tbe timeout program P ~ Q control is transferred from P to Q at time t if
no communications have occurred. Without timing information, we may infer only
that the program behaves either a.'l P, or as Q:

P sat S(lr)

Qsat T(I,')

Pc> Q sat S(lr) V T(lr)

The program pi Q behaves as P until time t, when control is transferred to Q.,
PsatS(tr)

Q sat T(tr)

Pi Qsat 3t"p,lrQ,lr= t"p~lrQAS(lrp) A T(lrQ)

An untimed trace of this program is simply a trace of P, foHowed by a trace of Q.
A trace of the interrupt program P'7 Q is a trace of P if interrupt event i has

not been observed: '

P sat S(tr)

Qsat T(tr)

P \l Q sat S(lr) A ; ~ 17(lr)

, V

3trp,lrQo/r = Irp~«)~lrQ A;~ 07(lrp) AS(lrp) A T(lrQ)

If the interrupt event has occurred, the resulting trace is a trace from P, followed
by i, foUowed by a trace from Q.

A parallel combination may terminate only when all programs are ready to
terminate. When we consider the semantics of such a construct, we include this
condition explicitly, by adding the special event .,J to each interface set: if A is a
set of events, we define the augmented set

A" = AU{';}

Clearly, the interface win be unchanged if the termination event has already been
included. In a synchronised parallel combination, each component participates in
every event from its interface set. If the parallel combination is observed to perform
trace t1., then each component P, has contributed the trace tr LA:, where Ai is the
corresponding interface set, and the projection operator is defined by

OlA o
((a)~lr) I A (a)~(tr l A) if a E A

Ir l A otherwise

10 A brjef history of Tjmed CSP

The resulting inference rule is

Vi E I .Pi sat S.(tr)

II A • Pi sat If; E I. S.(lr l A;) 1\ ~(Ir) <;; U. A;

Observe that a parallel combination is capable of performing only those events
contained in the union of the interface sets: the set of events recorded O'(tr) must
be a subset of U. Ai_

In the partially-iuterleaved parallel combination

pil Q
A

the two components are required to synchronise on every event from the common
interface A. If components P and Q are observed to perform traces trp aud irQ,

respectively, then the parallel combination may be observed to perform any trace
ir from the set of interleavings irp II trQ. This set is defined recursively by

A

oE fr, II Ir, .. Ir, ~ Ir, = 0
A

IrEOIIO" Ir=O
A

(a)~lr E (b)~lr, II 0 .. a <t A' 1\ a = b 1\ tr E IrE 110
A	 A

(a)~lr E 0 II (c)~lr, .. a <t A' 1\ a = c 1\ tr EO 111,r,
A A

(a)~lr E (b)~trp	 II (c)~lrQ .. a <t A' 1\ a = b 1\ Ir E Irp II (c)~trQ
A A

V

a ~ c 1\ Ir E Irq	 II (b)~trp
A

V
a E A.I 1\ a = b = c 1\ Ir E trp IItrQ

A

Every even! from the augmented set A"" must appear in both component traces;
other events are recorded independently. The inference rule for the partially­
interleaved parallel combination is

P .at S(lr)

Q sat T(lr)

P II Q sat 3 Irp, Irq' Ir E trp II Irq 1\ S(lrp) 1\ T(lrQ)

A A

In the interleaved parallel combination PIli Q both programs execute independently.
However, synchronisation is required if either component is to terminate. This lea.ds

3 Semantic models for Timed CSP 11

to the following inference rule for the interleaving operator:

PsatS(lr)
Qsat T(lr)

PIli Q sat 3Irp,!rQ' Ir E Irp II IrQ 1\ S(trp) 1\ T(lrQ)
/

The image of P under relabelling f may engage in the event f(a) whenever P can
engage in the event a:

P sat S(lr)

J(P) sat 31rp -Ir = J(trp) 1\ S(lrp)

The effect of concealing a set of communications is simple: they disappear from
the recorded trace. We define a trace hiding operator in terms of the projection
operator introduced above:

Ir \ A = Ir l E - A

wbere 1: is the set of all communication events. If lr is a trace of the program P \ A,
then there must be a trace trl of P such tha.t tr = tr l

\ A. The infereo<e rule for
the hiding operator is

PsatS(lr)

P \ A sat 3 Irp otr = Irp \ A 1\ S(Irp)

Finally, we require a recursion induction rule for reasoning about recursive program
descriptions. A complete theory of recursion induction for untimed CSP is presented
in [Ros821. Here, we will content ourselves with the rule for the Il-operator:

X sat S(lr) => F(X) sat S(ir)
[F is guarded]

~X. F(X) sat S(ir)

To show that a recursive program ~ X 0 F(X) satisfies a specification S, we have
only to show that the specification is invariant under recursive calls, and that the
defining function is guarded.

3.3 Timed models

A variety of timed models have been defined for the language of esp. Just as the
untimed models recorded trace, refusal and stability information, the timed models
record timed traces, timed refusals, and timed stabilities. The simplest Qfthe timed

12 A brief history of Timed CSP

models, TMT , associates a program with a set of timed traces. The timed failures
model TMF , and the timed failures-stability model TMFS record the events refused
by a program during and a.fter the observation of each timed trace.

The timed stability models TMs and TMFs include information about the pres­
ence of internal a.ctivity. The stability value of an observation is the earliest time
by which all internal activity is gua.ranteed to have ceased. In the timed failures­
stability model, each failure (5, N) of a. pragram is associated with a single stability
value a between 0 and 00, inclusive. If the program exhibits the external behaviour
described by (s, l{), then all internal activity must cease at or before time G.

In the specification of a real-time system, internal activity is usually of only
secondary importance. The correctness of a design will be expressed a.s a set of
constraints upon the occurrence aud availability of observable events or external
synchronisations. This is precisely the information that may be obtained from
the timed failures model TMF. Furthermore, the timed models without timed
refusals are complicated by the need to record the times at which events first become
available, in order to give a satisfactory semantics to the hiding operator. For these
reasons, we restrict our attention to the timed failures model of esp.

In this model, we record the times at which the program performs or refuses
external events or synchronisations. An observation is an ordered pair

(timed trace, timed refusal)

in which the tjmed trace records the sequence of timed events observed, and the
timed refusal records tbe set of timed events refused.

In the untimed failures model, each observation contains an untimed trace and
an un timed refusal. If the observation

(lrace, refusal)

is made of program P, then we know that P may perform the events in the trace,
and then refuse to engage in any of the events from the refusal. In the timed
failures model, the observation of a pair (s, l{) corresponds to the knowledge that
the program may perform the events of the trace s while refusing the events from
the refusal set N.

As in the untimed models, we use E to denote the set of all observable events.
Our domain of time values is the non-negative real numbers

TIAIl\ = [0,00)

A timed event is slmply an event from 1: labelled with a time value from TIME.
The set of all tlmed events is a Cartesian product

Tl\ = TIAIE x E

3 Semantic models For Timed CSP 13

A timed trace is a finite sequence of timed events, such that events appear In

chronological order:

TT = {s E seq TE I ((t" al), (t" a,)) :' s "" t1 ,;; t,j

where 51 j St iff SI is a subsequence of St·

U I is a finite half-open time interval, and A is a set of events, then we 9ay that
the Cartesian product I x A is a reFusal token, describing the refusal of a program
to perform any event from A throughout interval I: every event from A is refused
continuously.

We insist that the component intervals I are finite: all observations are com­
pleted in a finite time. This is a characteristic property of the timed fallures model:
if two programs have distinct meanings, then they may be distinguished irJ a finite
time. The set of all refusal tokens is given by

RT = {[t1 ,t,)xAI0,;;t, <t,<oo1\A<;l:}

A timed refusal N. corresponds to a record of events refused during a pa.rticular
execution: timed event (t,a) is an element of N if and only if event a was refused
at time t during this execution. The set of all timed refusals is given by

TR = {U R I R <; RT 1\ R is finite}

Any observation of refusal behaviour may be characterised as a finite union of
refusal tokens: this is a consequence of the finite variability assumption of our
computational model. The set of all timed observations, or timed Fa.i1ure.~, is thus

TF = TT x TR

We may define a semantic function F r from the syntax to the powerset lP'TF,
associating each program with a set of timed failures. From the defining equations
of this function, we may derive a complete set of inference rules, similar to the one
presented above for the untimed traces model. The statement of these rules will
require some additional notation for timed observations.

We define the function u upon each type of timed observation:

u(,) = {aI3t.((t,a)):"}
u(N) {aI3t.(t,a)EN}

u(s,N) = u(s)Uu(N)

returning the set of events present in the trace, refusal or failure. Similarly, the
operator 'times' returns the set of times present in each object:

times(s) {t 13a. ((t,a)):, s}
times(N) {t I 3 a' (t, a) E N}

times(s,N) times(s) U times(N)

14 A brief history of Timed CSP

We will need to restrict our attention to the events refused during a particular
interval I ~ TIME:

N 11 = Nn (I x E)

The following abbreviations will be useful:

N I i = N i [0, t)
N 1 i = N i [i, 00)

These return the set of timed events refused strictly before, or after the specified
time t,

3,4 A timed proof system

As in the case of the untimed traces model, we provide an inference rule for ea.ch
operator in the language of Timed esp, beginning with tbe broken program STOP.
Any trace of this program must be equal to the empty trace,

STOP sat s = 0

but we can infer nothing about a typical refusal set.

The program SKIP is initially prepared to perform the termination event ..I-the
only action that this program may perform:

SKIP sat (s = 0 II J ~ <1(N)) V (s = ((t,J)) II J ~ <7(N I t))

Either no events have been observed and .; is available, or .; is observed at some
time t and was continuously available beforehand. A similar inference rule may be
derived for the delay program:

WAIT t sat s = 0 II J ~ o-(N 1i)
V

s = ((t', J)) II J ~ <1(N i [i, I')) II i' " i

If no events have been observed then'; must be available continuously from time t
onwards. Otherwise,'; is observed at a time t' ~ t and made available at all times
between t and t'.

3 Semantic models [or Timed CSP 1.5

To describe the hehaviour of sequential composition and choice programs, we
will need to refer to the time of the first and last events recorded:

begin(s) inf(limes(s)) end(s) sup(lim" (s))
begin(N) inf(limes(~)) end(~) sup(lim,,(~))

We take the infimum and supremum of the empty set of times to be ·XJ and O.
respectively. This choice of values is the most convenient for the subsequent math­
ematics. \Ve extend the definition of the end operator to timed failures:

end(s,~) = maxi e1ld(s), end(~)}

The interval [0, end(s, N)) is the duration of the observation.

We define a linear addition function for timed traces, timed refusals, and timed
failures, shifting each recorded time by a constant amount:

0+1, o
((I, a))~s) +I, ((t + '" aJ)~(s + I,)

~ + I, {(1+ I" a) I (I, a) E ~}

(s,~)+I, (s+I,,~+I,)

For this function to return valid traces and refusals, we require that

begin(s) + I,? 0 and begin(~) +', ? 0

respectively; time values must be non-negative.

The event prefix operator is associated with the following rule:

P sat S(s,~)

a ~ P sat s = () II a ~ <T(~)

V

3 s'. s = «(I, a))~s' II a ~ <T(~ f t) II S«(s',~) - I)

If the trace is empty, then a may not be refused, and is therefore absent from the
refusal set N. Otherwise, the first eveut must be a. If a occurs at time t, we know
that a may not be refused before this time; the subsequent behaviollf is due to
program P, and must satisfy specification S.

The behaviour of the sequential composition P; Q depends upon whether the

16 A briel history of Timed CSP

first component has termlnated:

P sat S(s, N)

Qsat T(s, N)

P ; Q sat ,I rt a(s) f, S(s, N U [0, 'nd(s, N)) x (,I})

V

3 Sp, SQ, t .. s = Sp r- sQ A J 1: a(sp) /\

S(sp~((t,,J)),NltU[O,t)x (,J})/\
T((sQ' N) - I)

The trace Sp may be extended with a J event at some time t (this event is hidden by
the sequential composition operator). In the presence of the sequential composition
operator, the event J occurs as soon as it becomes available, so we know that it
may be refused at any time before t. Hence

(sp ~((t, ,I)), Nit U [0, I) x (,I})

must be an observation of P. The second part of the trace, together with the
refusals after t, is an observation of Q.

An observation of a nondeterministic choice must be an observation of at least
one of the components:

P sat S(s, N)

Qsat T(s,N)

pn Q sat S(s,N) V T(s,N)

In the case of a. deterministic choice, we may also infer that any event refused before
the first event is observed must be refused by both programs:

P ,at S(s, N)

Q sat T(s, N)

PDQ sat S(s, N) V T(s, N)
f,

S((),N Ibc9in(s)) f, T((),N I b'9;n{s))

Any observation of the form (0, N) must be common to both alternatives.

The prefix choice program a : A -t P/J, is initially prepared to engage in any
event from A. If no events have been observed, then no event from A may be

3 Semantic models for Timed C"S:oP 17__'=_'

refused.

Va: A· P a sat S~(8,~)

a , A -".., P, sat, = 0 II A n V a EA. a rt a(l\)
V

'3a E A,s'. 8 = ((t,a))""s' A
Va EA. art a(l\ It) II
Sores', l\) - I)

If a is the first event observed, then a is an element of A, and the subsequent
behaviour will be due to P~.

In the timeout program P ~ Q, control is transferred to Q unless P performs
an external action before time t.

P sat S(s,~)

Q sat T(s,~)

P 6. Q sat 6'9in(s) ,; til S(s, l\)
V

6'9in(S) ? I II S((), l\ I I) II T((s, l\) - t)

The image of P under relabelling f may engage in the event!(a) whenever P
can engage in the event a:

P sat S(s,~)

[(P) sat 3s'.s = [(s') II S(s',[-' (l\))

The exp;ession [-'ell) deno'es the set {(I, a) I (I,[(a)) E l\}. This is th, inverse
image of refusal set ~ under function l-

To reason about the observations of P \ A, we identify the observations of P
in which every event from A occurs as soon as possible. These are precisely the
observations of P in which events from A may be continuously refused; if we can
show that these o'b8ervations satisfy a behavioural specification S' such that

5'(8, l\ U [0, end(s, ~)) x A) => 5(8 \ A, l\)

then we may conclude that P \ A satisfies S. The reslliting inference rule for the
hiding operator is

P sat [0, ..d(s,N)) x A <; l\ => S'(8,l\)

S'(s,l\U [O"nd(s,l\n x A) => 5(8 \A,l\)

P \ A sat S(8, l\)

18 A brief history of Timed CSP

The second antecedent states that if 51 holds for observation (s, N) when events
from A are continuously refused,

5'(s, N U [0, end(s, N)) x A)

then S should hold of the same observation when events from A are removed from
the trace. If we are to find a suitable specification 5' for program P, the external
specification S must not depend upon the occurrence of events from A.

The program pi Q behaves as P until time t, when control is transferred to
program Q. j

P sat 5(s, N)

Qsat T(s,N)

pi Qsat.3sp ,sQ,Np,N Q .s=sp""sQ 1\ end(sp,Np) ~ t

, 5(sp,Np) 1\ T(sQ,NQ)

An observation of this program is simply an observation of P, ending at or before
time t,followed by an observation of Q.

An observation of the interrupt program P? Q is a observation of P if interrupt
event i has not been observed: '

P sat 5(s, N)

Q sat T(s, N)

P'V Q sat 5(s,N) 1\ i ~ a(s,N)
, V

3sp,sQ,I.s = sp~((I,i))~sQ 1\ i ~ a(sp,N r t) 1\

5(sp, Nr t) 1\ T((sQ, N1I) - I)

If the interrupt event has occurred, the resulting observation is an observation of
P, followed by event i at t, and then an observation of Q. The interrupt event is
available until it occurs.

To describe the behaviour of parallel combinations, we will need to restrict our
attention to the occurrence and a.vailability of events from a particular interface set.
We define a projection operator on traces and refusals:

OlA o
(Irace(l, a)~s) l A ((t, a)ns l A) if a E A

S l A otherwise

NlA = Nn(TIMExA)

and an operator to remove tbe timing information from a, trace:

,trip(()) o
'trip(((i, a))~s) (a)~,trip(s)

3 Semantic models far Timed CSP 19

Suppose that (s, N) is an observation of the network

11,., P,

where the collection of programs p. is indexed by some finite set I. For every index
i, the restriction of trace s to the set A~ is the trace of events performed by the
corresponding progra.m p•. Furthermore, trace s contains only events drawn from

set U. At:

s l U. A;' = s /\ Vi.:3 s• • s l A~ = s.

Suppose that (s" N,) is the corresponding observation of component Pi. Vt;'e can
choose these observations such that

"Wi) <; A;
Any event from set A;' will require the cooperation of P" so

N; <; N l A;
and the inference rule for parallel combination is

'Ii E [,Pi,al S;(s,N)

llA Pi sat 'Vi E 1.3 s" N;. S;{s" No,) /\
• s; = sLAt /\

"(5) <; Ui A; /I
N; <; N l A; /I

NlUi A; = U,(N;)

To apply this rule, we must choose a suitable behavioural specification 5, for each
component program.

In the partially-interleaved parallel combination

PIIQ
A

the two components are required to synchronise on every event from the common
interface A. If components P and Q are observed to perform traces Sp and SQ,

respectively, then the parallel combination may be observed to perform any trace s
from the set of interleavings Sp II sQ, defined by

A

s E Sp II sq ... s E TT /I'll. ,'rip(s TI) E "rip(sp TI) II strip(sQ Tt)
A A

20 A briel history of Timed CSP

Any element of this set is a timed trace s such that, for any timed value t, the
sequence of events in s at t is an interleaving of the events in Sp and sQ at this
time. The inference rule for the partially-interleaved parallel combination is

P sat S(s,~)

Q sat T(s,~)

P II Qsat 3 Sp, SQ, ~p, ~Q, t. s E Sp II sQ A

A A

~IA'=~pIA'U~QIA'A

~\A'=~\A'=~Q\A'A

S(sp,~p) A T(sQ,~Q)

The interleaving operator admits a similar rule:

P sat S(s,~)

Q sat T(s,~)

Pili Q sat 3 Sp, SQ, ~p, ~Q, t • s Esp II sQ A

•

~ I{/l ~ ~d {Jl U ~Q I {/l A
~ \ {/l = ~p \ {/l = ~Q \ {/l A
S(sp,~p) A T(sQ,~Q)

Once again, we require a recursion induction rule for reasoning about recursive pro­
gram descriptions. A complete theory of recursion, which provides for the definition
of programs by sets of mutually-recursive equations, is presented in [DaS9l]. Here,
we present the rule for the J.l operator:

X sat 5(s,~) => F(X) sat 5(s,~)

[F ;s guMded]

~X • F(X) sat S(s,~)

To show that a recursive program J,lX F(X) satisfies a specification S, we have0

only to show that the specification is invariant under recursive calls, and that the
defining function is guarded.

4

4 Refinement 21

RefineUlent

The semantic models for Timed CSP form a hierarchy, ordered by the informa­
tion content of the semantic Bets. The models are linked by projection mappings,
represented by arroY,s in the diagram below; the nature of these mappingg ensures
that results established in one model remain true as we move upwards. In reasoning
abont complex systems, we may use the simplest semantic model that is sufficient to
express the current requirement, safe in the knowledge that the argument remains
valid in the other models of the hierarchy.

TMFS

MFS

/ '" MsTMF - MF - TMs

~ "'MT/
Figure 1: Reed's models
for Timed CSP'~ r

TMT

The untimed models of CSP occupy the lowest positions in the hierarchy. with the
uotimed traces model MT at the very bottom.

To establish that a program P satisfies a specification of the form S 1\ T we
begin by choosing the simplest model M in which both S and T may be expressed.
If one of these conditions-say S----can be expressed as a behavioural specification
51 in a smaller model M ' , without loss of information, then we may be able to
establish S by reasoning within M'. If the two specifications are equivalent, and
we can prove tha.t P satisfies S' in M', then our refinement relation will allow us to
deduce that P satisfies S in the la.rger model M.

If the larger model is a timed model, and the smaller model is an untimoo model,
it may be helpful to remove the timing information from the description of program

22 A brief bistory of Timed CSP

P. We define a syntactic abstraction e upon the syntax of Timed esp, removing
the timing information from timed operators. The definition of e is entirely obvious:
the delay operator is the only operator without a untimed equivalent, and we define

0(WAIT t) ~ SKIP

for any time t.
We are required to prove that the projection 0(P) satisfies a condition 5',

equivalent to the original specification S, hut expressed in terms of model M'. For
example, suppose that we wish to establish that a program P meets a conjunction
of safety and liveness properties SAFE /\ LIFE, and that

•	 the safety condition SAFE depends only upou the order of occurrence of
c('rtain events; in this case, we may be able to establish SAFE using the
uutimed trace model

•	 a proof that the program satisfies the liveness condition LIVE will require
consideration of the timing properties of components of P; in this case, we
must employ the timed failures model

We forma.lise the specification of P using the larger of the two models

SAFE(s, N) /\ LIVE(s, N)

and define an untimed trace specification SAFE'(tr) which is equivalent to SAFE,
but is expressed in terms of the untimed traces model:

vs E TT • SAFE(s) ... SAFE'(strip s)

Our proof obligation is then reduced to showing that

0(P) sat SAFE'(tr)

P sat LIVE(s, N)

This reduction is justified by a refinement proof rule from Mr to TMF :

6(P) sat S'(lr) in MT

'Is E TT. S'(strip s) ... Sis)

P sat S(s) in nh

This rule follows from a more general theory of refinement, Hoking all of the semantic
models in our hierarchy. If models M and ~r are linked by a projection mapping
11", then we may define a refinement relation [;" on programs, such that

flsat SlinM'
[P'C;,PJ

Psat Sin M

where 5' is an equivalent form of specification 5, expressed in terms of model M'.

5 Tbe evolution of Timed CSP 23

5 The evolution of Timed CSP

5.1 The erosion of the delta

The most important change in the language and models of Timed CSP was the
disappearance of the universal delay constant 6. In [ReR86J, this delay was asso­
ciated with every recursive ca.ll, and every event prefix operation. This supported
the assertion that {",:ery recursive program had a valid semantics; every recursive
call was guarded by a delay of at least 8.

The association of 6 with event prefix prevented the simultaneous observance
of causally-related {'vents. It can be argued that, if the observance of event b is
contingent upon the occurrence of event a, it should be impossible to observe both
events at tbe same time. This treatment of timed observations meant that timed
traces contained no more information than a bag---or multiset---of timM events:
the ordering of events is determined only by their time of occurrence.

The multi set view of timed observations was included as an axiom in the se­
mantic models of [Ree88]. This axiom insisted that, if a and b are observed at a
single time instant, then they may be recorded in either order. In the timed failures
model, for example, the axiom took the form

(s,N)ES!\s~u, => (w,N)ES

This states that, for any process S, if (s, N) is a possible observation of Sand w
is trace-equivalent to s, then (w, N) is also a possible observation of S. Two traces
are equivalent if they differ only in the order of appearance of simultaneous events.

However. aspects of instant causality are present in other aspects of the language
and semantic models. In a sequential composition, control is passed to the second
program at the instant the first program terminates: this does not contradict the
above axiom, because the termination event is not observable, but the resulting
semantics conflicts with our operational intuition.

We may improve the situation by associating a 6 delay with every sequential
operator, as in [Seh90] and [Dav91], but the presence of these delays makes the
notation difficult to use, and the language lacks certain algebraic properties: for
example, the famili.ar identities

~X. F(X) _ F(~X. F(X))

a ~ STOP III b ~ STOP (a ~ b ~ STOP)
o
(b ~ a ~ STOP)

fail to hold in the semantic models of [Ree88].

24 A brief history of Timed CSP

Furthermore, a degree of instant causality is present in our treatment of refusal
information. Consider the following external choice program:

a ~ STOP 0 b ~ STOP

If this program engages in event a al time t, then event b is unavailable from time
t onwards. The withdrawal of the offer is instantaneous: in a timed observation,
the refusal information at time t is subsequent to the trace information at time t.

By rejecting the multiset view, and adopting a more abstract view of timed
observations-in which the order of simultaneous events is important-we obtain
a simpler, more consistent semantics for the language. In the current models of
Timed esp, the only operator to introduce a delay is the delay operator, WAIT.
In particular, the operations ofrecursion and prefix are instantaneous, and the above
identities are restored. The new language supports the definition of programs by
sets of mutually-recursive equations. The removal of the trace equivalence axiom
allows us to establish a closer relation with the untimed models of esp, facilitating
timed refinement of programs and processes.

There is a small price to pay. Without the constant delay c, we have no guarantee
that a recursive program has a valid semantics. We need to check that every
recursive invocation is guarded by some non-zero delay. This is almost always
a simple syntactic check upon the program in question: see [DaS92].

5.2 Infinite choice

The language of [ReR86] did not include constructs for infinite choice. In [Sch90],
the languGge was extended to include prefix choice: the program

a: A -t p ..

offers a choice of initial events from a possihly-infinite set A. The subsequent
behaviour is dependent upon the name of the first event performed. This construct
allows us to model communication along a channel. We define the operation of
channel input as follows:

c?x -t pJ; = C.v: {c.v I v E V} -t P~

where c is 0\ channel, and t1 is an element of channel data type V.

If the cboice set is infinite, it is necessary to place a restriction upon the set of
options {a -t p .. I a E A}. One of the assumptions of our computational model
is finite variabjJity, which states that a program may nndergo only finitely many
changes of state during a finite interval of time. In the finite timed models of esp,
we require Lhe bounded speed axiom to guarantee finite variability:

Vt.3nE N.s ES /I ,.d(s) < t => #(,),,;.

5 The evolution of Timed CSP 25

This states that, for any time t, there is a natural number n such that every trace
s ending before t contains no more than n events.

To ensure that the semantics of a prefix choice program satisfies this requirement,
we must check that the set of alternative programs {P4 I a E A} is uniformly
bounded-that there exists a function n: TIME _ N

Vi, I;t, TIME. s E S /\ 'nd(s) < t => #(,) (n(t)

The function n pro,\,jdes a uniform bound for every program in the set of a.lterna­
tives.

The combination of infinite prefix choice and the hiding operator introduces
infinite nondeterministic choice into our language. Consider the following program:

in?n : N _ WAIT n; out!n _ STOP

This program is initially prepared to accept any natural number on channel in. If
a number n is rec.eived on in, the program delays for n time units before offering
to deliver n on channel out. If we hide all communications on channel in, we are
left with a nondetenninistic choice program

n"eN WAIT n; out!n - STOP

It is therefore sensi ble to introduce an indexed nondeterministic choice operator for
the language, with the requirement that the set of alternative programs is uniformly
bounded.

5.3 Infinite observations

The standard models of Timed CSP are based upon finite observations. Within
these models, we have only a set of finite approximations to the behaviour of
a program over the entire time doma.in. For most applications, this presents no
difficulties-finite approximations are perfectly adequate. However, if we wish to
address issues like eventuality, fairness, and unbounded nondeterminism, we require
a more sophisticated treatment of infinjte observations.

For example, extending the nondeterminjstic choice program with the deadlock
program STOP leaves the set of finite ohservations unchanged:

n"eN WAIT n j out!n - STOP = STOP n n"eN WAIT n; out!n - STOP

To distinguish arbitrary waiting from infinite waiting, we must include infinite ob­
servations in semantic sets. The ohservation

((),[O,oo) x {out.n I n E fill)

26 A brief history of Timed CSP

would he associated with the right-hand program~verycommunication on channel
out may he refused over the interval [O,oo)-but not with the left-hand program.
The above equality does Dot hold in any model which includes infinite observations.

The inclusion of infinite timed traces is also essential for modelling infinite be­
havlours. Consider the programs P and Q defined by

P P, STOPn"EN P"
Pn.+l a ~ WATT 1; p.

Q ~ a ~ WAlT 1 ; Q

where (J is any event from our universal alphabet. Program P is capable of per­
forming an arbitrary number of a events 1 while program Q is capable of performing
an infinite number. \Vithout infinite traces 1 we are unable to distinguish P from
P n Q. In an infinite model, an infinite trace of a events would be associated only
with the latter.

The infinite timed model of Timed esp, first introduced in [Sch91], ha.<; several
advantages:

* the introduction of infinite observations allows us to guarantee finite vari­
ability without the use of the bounded speed condition. We may dispense
with any restriction upon the use of the indexed choice operators mentioned
above. Further l we obtain the result that, for any specification S, there is a
least deterministic program P which satisfies S.

* unbounded timed refusals correspond more closely to untimed refusal sets.
Offers and refusals recorded in untimed esp are based upon eventualities:
we consider an event to be refused if it is eventually refused forever. Infinite
refusal sets allow us to express this condition, and we are able to establish a
refinement relation between timed and untirned models.

* by describing complete executions, we are able to address fairness require­
menls in a timed coutext, see [DaS92L and support the temporal logic con­
ceph of always and eventually.

The principal disadvantage of the infinite timed model lies in the complexity of the
fixed point theory required to give a suitable semantics to recursive programs: the
model is neither a complete metric space nor a complete partial order.

5.4 Timeout

Although the addition of WAIT to the untimed syntax allows to simulate certain
forms of timeout and interrupt behaviour, the simulation is too complicated to

5 The evolution of Timed CSP 27

be practical. A more satisfactory solution comes from treating such operators as
language primitives. Although the extended language is harder to reason about­
there are more cases to consider-it is easier to reason with.

The first primitive to be added was the timeout operator t>. In the pTOgram

P~Q

control is transferred from P to Q at time t if no communications have occurred.
If an attempt at communication involving P is made at time t precisely, then the
outcome will be nondeterministic. If either of the subprograms should terminate,
then the timeout program terminates immediately.

Without the time parameter, the timeout operator is an operator of untimed
CSP. The prografil P t> Q may behave as Q, or offer a choice between P and Q,
according to whether the timeout ha..<; occurred, or not.

Pt>Q = (PDQ)n Q

The resnlting behaviour is that of a nondeterministic choice: without timing infor­
mation, we cannot determine when the timeout occurs.

It is possible to define the delay operator WAIT using the timeout operator:

WAlT t = STOP ~ SKIP

5.5 Interrupt

To describe systems in which a component program may be interrupted during
execution, an interrupt operator was added to the language. The program

P\! , Q

behaves as P until the first occurrence of interrupt event i, upon which control is
transferred to Q. It is reasonable to insist that P is unable to perform i itself.

Alternatively, a program may be interrupted after a predetermined time has
elapsed. The program

piQ,
behaves as P until time t, when control is transferred to Q. Without the time
parameter, the transfer operator J. resembles the interrupt operator of [Hoa85J: the
first program may be interrupted at any time.

28 A brief history of Timed CSP

5.6 Distributed termination

Termination in CSP and Timed CSP is modelled by the observation of the spe­
cial termination event '/. In the original language description, any component of a
parallel construct cau signal termination-indicating that the whole program has
termina.ted-while others are still executing. This conflicts with our intended treat­
ment of termination; a parallel combination should not offer to synchronise upon
the eveat ,j unless all components are ready to terminate. Indeed, a similar condi­
tion is placed upon parallel combinations in [Hoa85]: here, asynchronous executions
may not signal termination.

In the current language of Timed esp, parallel programs may only terminate
when all their components are ready. In the parallel combinations

P ,liB Q and P II Q
c

the special event ,j is implicitly present in each interface set, and the interleaving
operator admits the following equivalence

Pili Q ~ P II Q
{/)

where the partially--interleaved parallel operator to the right allows both compo­
nents to execute independently, synchronising only upon eVents from the common
interface.

6 Timed process algebras

In recent years, a variety of process algebras have been developed for the analysis
of timed systems. Four approaches have been adopted.

The bisimulation approach

Programs are given an operational semantics-the meaning of a program is gIVen
by a tre€ of possible transitions, describing the possible executions of the program.
Programs are considered to be equivaleut iff their execution trees are bjsimilar. A
bisimulation is a relation between tre€ structures: two nodes correspond if the sets
of subsequent transitions are equivalent. The notion of equivalence depends upon
the flavour of bisimilarity employed.

Specifications are programs in the prOCess algebra l or properties of execution
trees. In the first case, programs are proved correct by establishing that the se­
mantics of the program is bisirnilar to the semantics of the specification. In the

second, we must establish that the semantics of tbe program has the specified
property. These properties may be expressed in grapb~theoretic terms, or within
a modal logic such as Hennessy-Milner logic [HeM85J. The timed process algebras
which adopt this approach include TeeS [MoT901, Timed ees [Wan90, Lia91),
eeSiT [Dan92), ATP [Nic90) and TPeeS [Han9!).

The testing approach

As in the bisimulation approach, programs are given an operational semantics, but
equivalence is not dPiined by relations on synchronisation trees. Instead. programs
are characterised by their possible interactions with testing programs. Two pro­
grams are equivalent under a certain class of testing program if no test from this
class can distinguish them. Furthermore, a program P may be said to refine an­
other program Q if it passes every test that Q passes. A specification consists
of a program S and a relation R, which must hold between S and any proposed
implementation. This approach IS taken in Hennessy and Regan's TPL [HeR91].

The algebraic approach

Program equivalence is defined directly by a complete set of algebraic Jaws. A
specification is a program, and a proposed implementation may be verified using
laws which define a refinement relation. This approach is often used in cOrljunction
with either testing or bisimulation equivalence. Given a complete axiornatisation
for the operational equivalence, both algebraic and operational techniqlles may
be applied. This approach is taken in RTPA [BaB91J, and Liang Chell's Timed
ees ILia91).

The denotational approach

Programs are associated with elements of a denotational domain; two programs are
equivalent if they are associated with the same object. A specification is a predicate
upon elements of the denotational domain, and a program satisfies a specification
if the defining predicate holds of its semantics. The same language may he given
an operational semantics, as in APA [Jef92] and Timed CSP [Sch91], or a complete
set of algebraic laws [OrF91J. The denotationaJ approach is also taken in [BoG87],
[Hoo9!], and [Zwa.86).

A characteristic of the use of denotational models is the separation of programs
and specifications. A specification language-such a.') a temporal logic [Bar87J­
can be given an interpretation in the denotational domain, and used to capture
program requirements in a property-oriented fashion. As an example, cOIlsider the

30 A brje£ history of Timed CSP

requirement that two events a and b occur alternately, beginning with an occurrence
of event a. In esp, tills can be expressed all a untimed trace specification

alternatelr = trl{a,b}((a,b}'

where (a, b)"" is the sequence (a, b, a, b, a, b, .. .). If we were to express this require­
ment as a program in untimed esp, we might employ a mutual recursion

p. = (a ~ P.) 0 (c ~ p.) n STOP

P, ~ (b ~ p.) 0 (c ~ P.) n STOP

Any other events which are possible for the program must be included in the pro­
gram description; in the above description, we have allowed for the possibility of a
third event c.

The requirement does not insist that either of the events is performed-no live­
ness condition is present-so we must allow for the possibility that an implemen­
tation may cease to perform a's and b's at a.ny time; this is the reason for the
nondeterministic choice above. More generally, the requirement migbt be described
by a state machine

a

~

cCo
t·

OJc
'

T

o Figure 2: An alterna.ting
5lale machine

This machine alternates between two live states, according to whether a or b is
proscribed, but may move to a. dea.dlocked state at any time by performing the
internal action 1".

The practice of using programs to capture requirements is more successful at
higher levels of abstraction. As more information is added to the semantics of the
language, using programs in this way leads to over-specification-additional require­
ments are placed upon the implementation---or complicated expressions which are
difficult to relate to the original intention.

Further, it is difficult to combine programs which represent requirements in an
intuitive and compositional manner; the result of combining two such programs
may not <:orrespond to the desired combination of requirements. This problem is
eliminated by the use of a denotational semantic model for specification. Tbe nature
of denotational semantics guarantees cornpositionality.

We will often wish to examine the behaviour of the same program at different
levels of abstraction. In the operational approach, this may be done by considering
different notions of program equivalence. In the denotational approach, a different
semantic model is required. In Timed CSP, different semantic models may be used
in the same specification: Reed's hierarchy supports a uniform theory of program
verification at several levels of abstraction.

References

[BaB91]	 J. C. M. Baeten and J. A. Bergstra, Real time process algebra, Forma.l
Aspects of Computing, Volume 3, Number 2,1991

[Bar87]	 H. Barringer, The use of temporal logic in the compositional specifica­
tion of concurrent systems, in Temporal Logics and their Applications,
Academic Press 1987

[BrR.85]	 S. D. Brookes and A. W. Roscoe, An improved failures model for com­
munica.ting sequential processes, Proceedings of Pittsburgh Seminar on
Concurrency, Springer LNCS 197, 1985

[BoG87\	 A. Boucher and R. Gerth, A timed model for extended communicating
sequential processes, Proceedings of ICALP '87, Springer LNCS 267, 1987

[Dann]	 M. Daniels, Modelling real-time behaviour with an interval time calcu­
lus, Proceedings of Formal Techniques in Real~tirne and Fa.u1t-tolerant
Systems, Springer LNCS 571, 1992

(DaS91]	 J. Davies and S. A. Schneider, Recursion induction for real-timeprocesses,
submitted for publication 1991

[DaS92]	 J. Davies and S. A. Schneider, Using CSP to verify a timed protocol over
a fair Inedium, submitted for publication 1992

32 A brie{ history of Timed CSP

[Dav91] J. Davies, Specification and proo{ in real-time systems, Programming Re­
search Group Monograph PRG-93, Oxford University 1991

[Han91] H. A. Hansson, Time and probability in {ormal design o{ distributed sys­
tems, doctoral dissertation, UppsaJa University, 1991

[HeM85] M. Hennessy and R. Milner, Algebraic laws {or nondeterminism a.nd con­
currency, Journal of the ACM 32,1985

[HeR91] M. Hennessy and T. Regan, A process algebra {or timed systems, Techni­
cal Report 5-91, School of Cognitive and Computing Sciences, University
of Sussex 1991

[Hoa78] C. A. R. Hoare, Communicating SequentiaJ Processes, Communications
of the ACM 21, 1978

~Hoa85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall In­
ternational 1985

[Hoo91] J. Hooman, Specification and compositional verification o{ real-time sys­
tems, Springer LNCS 558, 1991

[Jef92] A. S. Jeffrey, Observation spaces and timed processes, Oxford University
D.Philthesis 1992

[Lia91] Liang Chen, An interleaving model {or real-time systems, LFCS report
series, ECS-LFCS-91-184, University of Edinburgh 1991

[MoT90]	 F. Moller and C. Tofts, A temporal calculus o{ communica.ting systems,
Proceedings of CONCUR 90, Springer LNCS 458, 1990

[Nic90]	 X. Nicollin, J.-L. Richier, J. Sifakis and J. Voiron, ATP: an algebra for
timed processes, Proceedings of the IFIP Working Conference au Pro­
gramming Concepts and Methods, 1990

[OrF91]	 Y. Ortega-Mallen and D. de Frutos-Escrig, A complete proof system for
timed observations, Proceedings of TAPSOFT 91, Springer LNCS 493,
1991

[Ree88]	 G. M. Reed, A uni{orm mathematical theory {or real-time distdbuted
computing, Oxford University D.Phil thesis 1988

(ReR86]	 G. M. Reed and A. W. Roscoe, A timed model {or communicating sequen­
tial processes, Proceedings of ICALP'86, Springer LNCS 226, 1986

6 Timed process algebras	 33

[ReR87]	 G. M. Reed a.nd A. W. Roscoe, Metric spaces as models for real-time
concurrency, Proceedings of the Third Workshop on the Mathematical
Foundations of Programming Language Semantics, Springer LNCS 298,
1987

[ReR91J	 G.~. Ret'd and A. W. Roscoe, Analysing TA1Fs: a study of nondeter­
min ism in real-t.ime concurrency, Springer LNCS, 1991

[Ros82)	 A. W. Roscoe, A mathematical theory of communicaUng processes, Ox­
ford Univ€rsity D.Phil thesis 1982

ISch90]	 S. A. Schneider, Correctness and communication in real-time .~ystems,

Programming Research Group Monograph PRG-84, Oxford University
1990

ISch91)	 S. A. Schneider, Unbounded nondeterminism in Timed esp, Esprit SPEC
project deliverable 1991

[Wan90J	 Wa.ng Vi, Rea.l-time behaviour of asynchronous agents, Proceedings of
CONCUR 90, Springer LNCS 458, 1990

[Zwa86J	 A.E. Zwarico, A formal model of real-time computing, Universit~'of Penn­
sylvania. 'Technical Report 1986

