
CATEGORIES, RELATIONS

AND

DYNAMIC PROGRAMMING

by

Oege de Moor

Technical Monograph PRG-98
lSBN 0-902928-76-7

April 1992

Oxford University Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OXl 3QD
England

Copyright © 1992 Oege de Moor

Oxford University Computing La.bora.tory
Progr<LlIlming Research Group
11 Keble Road
Oxford OX13QD
England

Electronic mail: oegeCicomlab.ox.ac. uk

.........

A thesis submitted (or the degree Oege de Moor
of Doctor of Philosophy St. John's College

Michaelmas 1991

CATEGORIES, RELATIONS AND DYNAMIC

PROGRAMMING

Abstract

Dynamic programmjng is a strategy for solving optimisation problems. In thiB thesis, it
is shown how many problems that may be solved by dynamic programming arf> instances
of the same abstract specification. This specification is phrased using the calculus of
relations offered by tapas theory. The main theorem that nnderlies dynamic programming
can then be proved by straightforward equational reasoning. This is the first contribution
of this thesis: to provide an elegant fonnulation of dynamic programming in a categorical
setting.

The generic specification of dynamic programming makes use of higher-order opera~

tors on relations, akin to the fold operators found in functionaJ programming languages.
[n the present context, a data type is modelled as an initial F-algebra, wherf' F is an
endofnnctor on the topos under consideration. The mediating arrows from this initial F
aJgebra to other F -algebras are instances of fold - but only for total functiOD5. Can we
generalise to relations? For a regular category f, it is possible to construct a calegory of
relations Re(f). When a functor between regular categories is a so-called relator, it can
be extended (in some canonical way) to a functor between the corresponding categories
of relations. Applied to an endofunctor on a. topos, thi& process of extending functors
preserves initiaJ algebras, and hence fold can be generali&ed from functions to rdations.
This is the second contribution of this thesis: to show bow cat.egory theory facilitates a
smooth generalisation of functional concepts to relations.

It js well-known that the use of dynamic programming is governed by the principle
of optimality. Roughly, the principk of opt.imality says that an optimalsolutioll is com
posed of optimal solutions to subproblems. In a first attempt, we formalise the principle
of optimality as a distributivity condition. This di~tributivit.y condition is elegant. but
difficnlt to check in practice. The difficulty a.rises betause we consider minimum elements
with respect to a. preorder, and therefore mlnimum elements are not unique. Assuming
that we are working in a Boolean topos, it can be proved that monotonicity implies dis
tribntivity, and this monotonicity condition is easy to verify in practice. This is the third
contribution of this thesis: to develop practical results a.bout minimisaHon in preorders.

o Preface

Dynamic programming is a problem solving technique that originated ill operations
research. Typical applications of dynam.ic programming are optimisation problems
whose specifications can be fadorised into three consecutive components. In the
first component, one generates a set of combinatorial objects, for example all bi
nary search trees with a given frontier, or all partitions of an integer. In the second
component, one assigns a cost to each of these objects. In the third and final com
ponent of the specification, one selects an object of minimum cost. The objective
of dynamic prograrruning IS to merge these three components, to obtain a more
efficient way of compnting an object of mininmm cost. Informally, this is possi
ble if an optimal solution is composed of optimal solutions to subproblems. This
property, which is known as the principle of optimality, ca.n often be phra~ed as a
distributivity condition on the operators involved in the specification. Ever since
dynamic programming was iuvented in the fifties, researchers have tried to exploit
this observation to give a precise characl.erisation of dynamic programming. This
thesis reports on another attempt to achieve such a characterisation. Our start
ing point is somewhat different from earlier work on dynamic programming, since
our results are inspired by modern methods for the derivation of programs from
specifications.

0.1 Foundations

0.1.1 The Bird-Meertens Formalism The programming methods that in
spired this work stem from the area of functional programming, and in particular
from the formalism designed by Bird, Meertens and others [13, 14, 15, 16,38,55,68].
This formalism is a calculus huilt around initial data types and homomorphisms on
those data types. The data types are typically various forms of trees, and the homo
morphisms on trees are often called fold operators. The advantage of programming
in terms of fold is that one may nse initiality to prove eqnality of programs, thus
avoiding the tedious steps involved in ordinary inductive proofs.

0.1.2 The Need for Relations In principle, the Bird-Meertens fonnalism only
involves total functions, an assumption which greatly simplifies the mathematical
laws used in deriving algorithms from specifications. For the treatment of dynamic
programming, however, this restriction is too severe, and we shaH need a calculus

ii Preface

of arbitra.ry relations instead of just total functions. Two reasons for geueralising
(rom functions to relations are discussed below.

A purely functional style is inadequate because in maoy optimisation prohlems
one has to deal with nondeterminism. For example, consider the problem of con
structing an optimal binary search tree representing a given set. There may well
be two different trees of minimum cost that represent the same set, aud hence the
specification is nondeterministic. The situation cannot be modelled by a function
from input to output; rather, it is a relatioo.

A Sffond reason for considering relations instead of functions is the structure of
certain proofs. There are deterministic programming problems (functions) where it
is helpful to consider nondeterministic programs (relations) in passing from spec~

ification to implementation. A typical instance occurs when considering program
inversc:3 [27,28,33,48]: not all functions have an inverse, but all relations do havea
converse. In dyuamic programming, program inverses are ofteu helpful in defining
the set of combinatorial objects.

0.1.3 Sets and Power Transpose A calculus of initial data types and re
lations does not necessarily involve a (orm of set theory. In specifying dynamic
programming problems, however, it is quite common to specify sets of combinato
rial objects by equations of the form

gen(y) = {xlf(x)=y}.

This observation motivates the follOWing requirement for our programming formal
ism: there exists an isomorphism between rela.tions A ----+ B and set-valued functions
.4 - P(B). To see how this relates to the above equation for gen, write !I. for the
operator that sends a relation to the corresponding set-valued function, and write
R" for the converse of R. Then the function gen can he written as

gen ~ AW).

The isomorphism !I., which is called power transpose, allows one to give simple
equationa.l proofs of identities in set theory.

0.1.4 Minimisation in Preorders The existence of relations and power trans
pose makes it possible to reason about the first two components of the specification
of dynamic progranuning: generating a set of combinatorial ohjects, and assigning
a cost to each of these objects. However, the third component, which is the selection
of an optimal element from a set, cannot be directly described in terms of these
primitives. Let R: .4 _ A be a preorder (a reflexive a.nd transitive relation), and
let min(R): p(.4) _.4 be the relation that maps its argument set to its minimum
elements:

a(min(R))x = aEx A ('<IbEx,a(R)b).

iv Preface

more general approaches to program construction. Also, the application of our
results seems more mechanical, mostly owing to the algebraic framework.

0.2 Background

The idea to use toposes as a starting point for the investigation of dynamic pro
granuning is not inunediately obvious. It gradually developed, and since this de
velopment seems relevant to the conclusions of this thesis, it will be summarised
below. Tbe reseiUch that led to this thesis started in the summer of 1988 with the
study of various dynamic programming algorithms in Richard Bird's calculus of
functions, a subject which he had already touched upon in [15]. This initial explo
ration [17,72,74] identified two obstacles standing in the way to further progress:
first, the level of abstraction in the calculus was too low. Many results: looked alike,
but they could not be expressed as a single theorem. Second, the insistence on
total functions hampered the treatment of optimal solutions that are not unique.
It seemed expedient, therefore, to change the formalism, and my first attempt Was

to generalise the basic identities of Bird's calculus from total functions to relations.
While this approach solved the problem of non-unique optimal solutions, it failed
to cope with the lack of abstraction.

The main result that needed a proof was about the generalisation of fa!d op
erators from functions to relations. It was dear that a set theoretical approach
was unhelpful here, and many people (in particular Joseph Goguen) suggested the
use of category theory. Indeed, with a naive categorical construction of relat.ions, it
turned out to be quite easy to prove the desired theorem. Charles Wells encouraged
me to show that the assumptions underlying the naive construction reduced to a
topos that satisfies tbe axiom of choice. These results were reported in a first draft
of this thesis [73].

It then took some time to decide which facts about categorical relatione are
well-known and which are not. Fortunately, the textbook by Freyd and Scedrov
appeared around this time [40J, and most results are in there. Aurelio Carboni
kindly gave me access to some unpublished work 124], which showed that splitting
the coreflexives in my naive construction of relations yields the regular reflection of
a category with finite limits. In all, this study of related work in category theory
convinced me that it was better to abandoll my naive approach: the most effective
proof method is a proof by reference. Also, the standard approach to relations
avoids the axiom of choice.

There are, I think, two lessons to be learned from the way in which this research
evolved. First, the development of Dew theoretical concepts in programming meth
ods should be guided by the study of concrete examples. This aJlows one to select

Foundations iii

Note that there may be more than one minimum element a in a set Xi one could
therefore think of mil'l(R) as a non-deterministic mapping that selects some optimal
element from its argument set. To model this relation in onr calculus, we need some
form of universal quantification.

0.1.5 Categorical Relations and Toposea Wbat is an appropriate domain
oC diswurse for reasoning about initial data types, relations, power transpose and
minimisation? It seems reasonable to start with a category £, wbere the objects
are types, and the arrows are Cundions. Informally, one could think of £ as an
abstract view of a functional calculus like the Bird-Meertens formalism. A data
type can then be modelled as an initial F-algebra, wbere F is an endofunctor on
the category under consideration. The mediating arrows from this initial algebra
to other F-algcbras are instances of fold - but only for total Cunctions. Can we
generalise to relations'!

For a regular category C, it is possible to construct a category of relations Rel(C).
Conversely, every category of relations arises in this way. Hence, the assumption
that relations exist in our programming formalism means that £ is regular. \\Then a
functor between regular categories is a so-called relator, it can be extended (in some
canonical way) to a functor between the corresponding categories of relations. A
regular category where relations and set-valued functions are isomorphic is called
a topos. When applied to an endofunctor on a topos, the process of extending
Cunciors to relations preserves initial algebras, and hence rold can be generalised to
relations.

Tn a topos, one has all sOrts of logical operators on relations, in pa.rticular
universal quantification. It is therefore possible to define the relation mil'l{R), and
to reASon about its properties. We use this observatiou to formalise the principle of
optimaJity. As mentioned above, the principle of optimality says that an optimal
solutiou is composed or optimal solutions to subproblems. In a. first attempt, we
model the principle of optimality as a distributivity condition. This distributivity
condition is elegant, but difficult to check in practice. The difficulty arises because
we consider rrunimum elements with respect to a preorder, and thereCore minimum
elements are not llnique. Assuming that we are working in a Boolea.n t.opos, it can
be proved that monotonicity implies distributivity, and tbis monotonicity condition
is easy to verify in practice.

The brief account given above already illustrates bow tbe cat.egorical calculus of
relations (as offered by topos theory) meets the requirements of dynamic program
ming iu an almost perfect manner. This is the ma.in contribution of this tbesis:
to recognise that the categorical calculus of relations is an appropriate setting for
applications in algorithm design. The result is an attractive treatment of dynamic
progrAmming, which extends earlier work or others by making t be connection with

Acknowledgements v

preciS€ly those concepts which are relevant to the applications under consideration.
Second, (and this came as a surprise to me) many of the mathematical structures
identified in this way are already in existence, although they were invented for
completely different purposes. The search for such connections is of course sound
scientific practice, but there is also a pragmatic reward: one can present the main
results and applications witllOut elaborating the foundations.

The structure of this thesis reflects that viewpoint. The first part presents the
results about dynarnic programming and their applications. Although the presen
tation assumes a good deal of category theory, I believe the essence of this work
call be understood by anyone who has a nodding acquaintance with categories and
fundors. Readers who are unfamiliar with more advanced concepts like regular
category or topos with a natural numbers object can just think of the category of
sets and total fund ions.

The second part of this thesis presents the technical details, and it rt>views
those fads about categorical relations and toposes that are relevant to the present
discussion. This part is therefore directed towards computing scientists who (lik~

myself) are not yet skilled in the art of diagram chasing. It is for this reason that
many of tbe proofs are given in much detail, in a calculational style that is familiar
to students of formal methods in computing. Sometimes these rigorous ca.kula.tions
have been enlivened by a diagram, hoth to space out the formulae and as an aid to
type checking the proofs.

0.3 Acknowledgements

Three supervisors have guided the research that led to this thesis. Doaitse Swierstra
was my afstudeersupervisor at Utrecht University, and he stimulated my inter~st in
the formal aspects of program construction. I am grateful to him for the countless
discussions we had since 1987, and for his support and friendship. Rjc~ard Dird
supervised the first two years of my D.Phil. work at Oxford, and 1 am grateful to
him for his tireless efforts to teach me taste and method. From the time I took up
an inter£'st in category theory, Tony Hoare has heen a constant source of inspiration
and sage advice. For the last eight montbs of this research, be was also formally
my superviS'or.

1 would also like to acknowledge helpful discussions with Aurelio Carhoni, Pe
ter Freyd, Paul Gardiner, Joseph Goguen, Clare Martin, Lambert Meerlens, Doug
Smith and Charles Wells. All have made significant contributions to my under
standing of the subject. Four anonymous referees, who commented on earlier parts
of this thesis when I submitted tbem for puhlication. have made suggestioJls thal
led to substantjal improvements. In particular, aU four insisted on the use of well

vi Pre/aLe

established results from category theory, in preference to a more naive approa.ch
that I developed with the applications in mind.

The generous financial assistance of British Petroleum International Ltd., the
British Council, the Dutch STOP project, Lincoln College and St. John's College
is gratefully acknowledged.

Contents

o Preface
0.1 Foundations
0.2 Background
0.3 Acknowledgements

I Dynamic Programming

1 Theory
1.1 Introduction
1.2 Dyna.mic Programming
1.3 Constructing Selectors from Prcorders
1.4 Monotonicity implies Distributivity
1..') Summa.ry

2 Applications
2.1 String-ta-String Correction
2.2 Loading
2.3 Bra.cketing.

3 Discussion
3.1 Related Work
3.2 Future Research
3.3 Conclusions

II Technical Details

4 Introduction
4.1 Notation.
4.2 Overview.

5 Regular Categories
5.1 Subobjects, Images and Covers
,5.2 Relations over a Regular Category.
5.3 Extension of Functors.

;v

v

1

3

3

7

13

16

18

21

21

24

26

32

32

3,>

38

41

43

43

44

46

47

.>2
,>6

vii

5.4 Allegories 63

6 Toposes 68
6.1 The Definition of a Topos 69
6.2 Cross-operators 75
6.3 Relational Algebras 87
6.4 Power Allegories 91
6.5 Existential Image 98

7 Representing Partial Relations 107
7.1 Simple-Relation Classjfiers 107
7.2 R.elation Totalisers 110
7.3 Properties of Relation Totalisers . 117

8 Maximisation in Preorders 121
8.1 Maximum Elements. 122
8.2 Selectors .. 128
8.3 Monotonicity implies Distributivity 137

9 Dynamic Programming 145
9.1 The Basic Theorem. 145
9.2 Application: Text Formatting 149
9.3 A more Practical Theorem 156

10 Discussion 161
10.1 Which Functors preserve Division? . 161
10.2 Does every Topos have a Weak R.elation Totaliser? 162
10.3 What are Selectors? . . . 163

viii

b.O
.....=s s Cil
~

"""'l

b.O
~

0

~

Cil
~

P-4
P-4

u..... S Cil

= >.
0

1 Theory

1.1 Introduction

Dynamic programming is a. strategy for solving optimisation problems [9.32, 35].
It is based on the observation that in many optimisatioll problems an optimal so
lution is composed of optimal solutions to subproblems. This property has been
called the principle of optimali(\I by Richard Bellman [9, 91], who invented dy
namic programming in the fiHiE"E'. If the principle of optimality is satisfied, one
may compute au optimal solutioo to the whole problem by decomposing iL into
subproblems, solving the;c recur~ively, and composing tht, partial sol\ltioJlS inlo an
optimal solution for the whole probl(,ITl. Dynamic programming is a d('gl:'nerate
case of divide--aJld-collqU('.f in that one considers a11 possible dccomposil,jOll~of the
argnment, not just a single one.

'fvpical applications of dynamic programrning include text formatting, molecu
lar sequence comparison, knapsack, ami the construction of optimal binary search
trees [49). Given the variety of the~e applications, aile wonders whether it, is at
all possihle to develop a small, coherent mathematical theory to support dynamic
programming. Fortunately, the answer is yes. Th~ problems that may be solved by
dynamic programming are all instances of a single specification, or slight variations
thereof. In this thesis we shall phrase that generic specification using the calculus
of relations in a tapas. The reasons for nsing topos theory (and not ordinary set
theory) are purely pragmatic: toposes provide the right primitive opera.tors, and
many of tbe basic facts we shall need have been known to tapas theorists for some
years.

Rather than presenting a list of technical definitions, we shall introduce the
generic specification of dynamic programming by means of an example: (he tech
nicalities will come later. Consider the problem of breaking a list of words into
lines to form a paragraph [12, 15, 60]. There are many ways of doing thi~, and we
are interested in forming a paragraph with as little wbite space as possible. For
expository reasons, we shall first stndy the problem of determining th(' minimum
amount of white space rather than constructing a paragraph which realises that
minimum. Later on we shall see how an optimal paragraph can be constructed.

There are three data types involved in the problem statement: words, lines and
paragraphs. For now it is irrelevant how words are represented, and we jnst assume

3

4 Theory

the existence of a set W of words. Lines are s;equences of words, and the s;et of
all lines is denoted W+. In turn, paragraphs are sequences of lines, and the set
of all paragraphs is written W++. Both lines and paragraphs are assumed Lo be
non-empty sequences.

Here is the specification for which we intend to derive an algorithm:

k(z) = min{spacc(x)lxElayoui.s(z)}

The function k takes a line and returns a number which is either natural or infinity.
(The need for infinity will hecome clear when we get down to technical matters.)
The argument of k, here called z, is the Line of words which is to be broken into a
paragra.ph. In the sequel such a paragraph will be called a la.yout of z. The result
of k is the minimum amount of white space in a layout of z. How i.:'l that result
computed? Well, one way is to first generate all possible layonts of z with the
function layout,;;. It takes tiJe line z and it returns the set of all possible layouts
of z. For each of these layouts (say x) we compute the amount of white space
space (x). Finally, take the minimum of the set of numbers generated in this way:
the minimum amount of white space in a layout of z.

To define the function layouts, we first inLroduce concat, which is familiar to
functionll1 programmers [18]. It takes a paragraph, and it concatenates the compo
nent lines to form a single line. For example, we have the identity

concat [["this", "is"] ,
["a"],
["text", "layout"]]

["'this"', "is", "a", "text", "layout" 1

The set of all layouts of z is precisely tiJe set of those paragraphs x for which
concat(z) = z. Writing out the definition, it becomes clear that layouts is the
power transpose of the converse of concat:

layouts(z)	 {xl concat(x) ~.j {x 1.(concaIO)x j
A{concatO)(.) .

Here A sLands for the power transpose operator, which takes a relation A --+ B to
the corresponding set-valued function A --+ P(B), and Ir' B A denotes the
converse of a relation R : A --+ B. From now on~ we shall call the power transpose
of the converse of R the inverse image function of R:

Im,R) ~ A(W).

In providing a formal characterisation of the function concat : W++ --i W+, we
start with a precise definition of the data type of paragraphs W++. It is defined as
tbe initial F-algebra, where F : Set _ Sd is the functor given by

F(A) ~ w+ + (W+ x .4) .

We shall denote this initial algebra by p(F) F(T) _ T. Initial algehras for
endofunctors are well-docnmented in the literature [62, 66], so we shall confine
ourselves to briefly recalling the definition. For each F-algebra h : F(A) ---\ A there
exists precisely one morphism QhDF which makes

F(T) p(F) T

FF[hDFI ![hD

F(A)-h- A

commute. The mediating arrow UhDF is pronounced "fold-aitch", and it 15 said to
be a fold. The subscript F is not prononnced and it will be omitted if there is no
chance of confusion. Folds are interesting [64], because they are !limilar to the fold
or reduce operators found in fnnctional programming languages like Miranda? or
Hope [18, 37. 94].

Let us illustrate this wito two examples. For the given choice of F, fold could
be informally characterised by

a!m,EBID [I" I" ... , t.]

I, EB (I, Ell (... EB m(I.)) .

That is, apply the function m to the last element of the given sequen,'£ of lines,
and sum the remaining tines from right to left with the binary operat.or (11. The
function concat, which takes a paragraph and concatenates its compoIlent line9,
can be expressed using fold:

concat - all, *JD .
ft leaves the last line of the paragraph nnchanged (the identity I), and it concate
nates the component lines from right to left, using the binary operator * which
concatenates two lines to form a single one, e.g.

[Wl,W'lJ*[WJ,W4,WS] :::: [WbW2,W3,W4'WS]

----,,--,----,--,----,------,-----,--
I Miranda is a trademark or R.e&earch Soflware Limited.

6 Theory

As a second exampIe of tbe use of fold, consider the function space, which takes a
paragraph and returns the amount of white space in that paragraph. It is defined

spa" = [[t,0JD
where 10n f(l) + n

f(l) (opt/en - I,ngth (I))'

t(l) {
0
00

if lenglh(l) ~ optlcn
otherwise.

In words, the total amount of white space in a paragraph is the sum of the white
space in the component lines, except for the last line, which does not count unless
it is too long. The white space in a single line 1 is returned hy the functiou f. The
precise definition of f is unimportant for the present discussion, but one could take,
for example, the square of the difference between the optimum line length and the
actual length of the given line t.

In summary, the problem of determining the minimum amount of white space
in a text layout can be specified as

k - min 0 3(space) 0 In v{ concat) .

The inm-se image function lnv{ concat) generates all possihle layou ts of the argu
ment. For ea.clt of these layouts, space computes the amount of white space. (As
is usual in topos theory, the existential image functor Set _ Set is denoted by 3.
Functional programmers can think of 3 as the map operator on sets.) Finally, the
function min takes the minimum of the set that has been generated in this way.

One could argue that we now have an executable specification, for it is not diffi
cult to give progriUilli that implement the three main components of the definition
of k. However, generating all possible layouts is grossly inefficient. Consider the
following recursion equation which describes a more economica.l approach to tbe
computation of k:

k(z) ~ t(z) n min {f(u)+k(v)lu*v=z}.

The minimum amount of white space in a layout of z is the minimum of two
numbers: t(z) a.nd the minimum of a set. Intuitively, this means that either you
don't split z or you do split it. IT you do not split it, z is the only line in the
paragraph, and the amount of white space is just t(z). IT you do split it, you
consider all possible splittings of z into two sequences, sa.y u and v. (Remember
that lines are DOD--empty sequences, so neither u nor v is empty.) The first of these
sequences (u) will be the first line of the paragraph; the amount of wltite spa.ce in
that first line is J(u). For the remainder v of z you recursively compute k(v). The

Dyna.mic Progra.mming 7

snm f(u) +k(v) is then the minimum amount of wbite space in a layout. of z, given
that u is the first line of that layout. Hence,

min {I(u) + k(v) Iu * v = z}

is the minimum amount of white space in a layout of z, given that the la.yout
consists of at least two lines.

If one translate.:'! the recursion equation for k directly into a programming lan
guage, the resulting program will still he inefficient. The reason is that k gets
computed many times over for the same argument. This problem can be alleviated
by storing the value of k for all suffixes of z in a tahle. Whenever k is invoked with
argument v, one looks in the table to see whether the value of k(11) is already there.
If so, retnrn that value. If not, compnte k(v) with the given recursion equation, and
store the ['("sult in the table. This technique, which i:. known as exact. tabulation
or memojsation [11,31,54,70], leads to an efficient. program for computing k. De
riving the recursion equation is an essential step in obtaining an efficient computer
program. Bu t how do we get from the definition of k lo the recursion equation?
By dynamic programming! This is the topic of the next section.

1.2 Dynamic Programming

Let ns abstract from the specific example we considered thus far, and collcentrate
on the following, more general, problem statement:

k = ma3UhDFalnvUgDF.

All variables in the right-hand side are parameters to this specification. The pattern
is the same as in the text formatting example: generate a set of combinatorial
objects with Inv(lgD, evaluate each of these with UhD, and pick an optimal value
with m. To achieve the generality we want, it will be necessary to interpret k
as a relation, because in many optimisation problems, an optimal solution is not
unique. In technical terms, the operator m which selects an optimal dement from
its argument set is a relation and not a function. It is sometimes useful to have 9
as a general relation, hut h is always functionaL For an example where 9 is not a
function, consider the knapsack problem (see e.g. [82]). Here we want to specify
the set of all sequences of natural numbers whose sum is below a certain threshold

c'
t(c) = {xl,um(x)<;c}.

Clearly, t is the inverse image function of the relation (~) 0 sum, which is not
functional. In section 2.2 the knapsack problem will be discussed in more detaiL

B Theory

An appropriate setting for the above requirements is the order-enriched category
of relations &1(£) over a topos £. A topos has precisely the structure needed to
interpret the given operators: relations, power transpose and the existentjal image.
There is a small problem, though. How can we apply fold to a relation? What
happens to familiar functors and their initial algebras when we consider relations
instead of functions? Informally, are the data types of functional programming the
same as the data types of relational programming?

The first issue to consider is what happens to functors when we generalise from
functions to relations. A regular category £ is included in the category of relations
ReI(£) by the graph functor G. Say that a functor H : Rd(1J) --Jo Rd(£) extends
F: 1J --'1£ if it agrees with F on functions:

llG= GF.

The following proposition shows that many functors have a unique extension. It
relies on our decision to regard ReI(£) as an order--enriched category, wuich implies
that fundors on relations are monotonic.

Proposition (Carhoni, Kelly and Wood [23]) Let V and £ be regular ca,tegories,
and F: 'D -+ £. Tbere.exists at most one functor that extends F, whkh wi]} be
denoted F*. Tbis unique extension exiEts if and only if F preserves regular epics
a.nd F nearly preserves pullbacks.

The candition that F nearly preserves pullbacks may need some further explanation.
It means that whenever both

•!L. .---.!...... •

Pj jk and 5j jF(k)

O-h- O 0--0
F(h)

are pullback squares, the mediating arrow in

o

.~
F(p~ -'- 0'0

sl IF(k)

0F(i00

Dynamic Programming 9

is regular epic. One could also say that F nearly preserves pullbacks if and only
if F preserves pullbacks up to image: in the above diagram (5, t) is the image of
(F(p), F(q)). From now on, we shall call a functor a relator if it preserves regula.r
epics and it nearly preserves pullbacks.

An example of a relator is the existential image functor on a topos, which
we already encountered in our example of dynamic programming. On Stl the
existential image fundor can be defined by the set comprehension

3(/)(x) ~ (bI3a,aEx"b~f(a)}.

In words, f is applied t.o eadt element of the set x. Of course, a similar characteri~

sation could be given in the internallauguage of any ot.hl'r topos. The extension of
3: Set _ Set to Rcl(Sd) ----0 Rd(Set) cau be characterised by the predicatl'

y(3·(R))x ~	 Va Ex, 3b E y ,b(R)a "
Vb E .1/ : 3 a Ex: b(R)a. .

Tbis characterisation also generalises to arbitrary topose:;.

When working in a t.opos (as opposed to a general regular category) it is often
quite easy to check whether a functor is a relator, because one only has to exhibit
a so-called cross--operator. Cross-operators are a special kind of natural t.ransfor
mation, reminiscent of Deck's distributive laws [81. Let D and E be lOpllSes, and
F a functor from D to E. A natural transformation '"'(: F3---t3F is said to be a
cross-operator on F if

1. Crossing singletons gives a singleton,

F

F{}l~
F3---3 F1

2. crossing distribut.es over union,

F33 FU F3

13
1 1"

3F33133 F UF 3F

10 Theory

3. and crossing is monotonic:

g <; h => ,(B) 0 F(g) <; ,(B) 0 F(h)

for aU 9,h: A_ PB.

How does this tie in with relators? Consider a tapas E. The existential image
functor induces a monad in E, together with the singleton former and union. It
is well-known that the category of relations Rel(E) is isomorphic to the Kleisli
category of the monad (3, {- },U). Using this isomorphism, we can construct a
bijection hetween extensions of the functor F and cross-operators on F. Together
with the result on extending functors, this yields the following proposition:

Proposition Let D and E be toposes, and F : D _ E. There exists at most one
cross-operator on F, which is denoted Ft. This unique cross-operator exists if and
only if F is a relator.

For an example of a cross-operator, consider the product functor

x : (Set x Set) _ Set .

The product functor preserves pullbacks and regular epics, so we know that it has
a cross-operator. That cross-operator (x)t is the natural transformation which
takes two sets and returns their cartesian product. Of course, a sequence of sets
also has a cartesian product, analogous to (x)t. This induces a cross-operator on
the sequence functor, which sends A to the set of finite sequences over A. It follows
that the sequence functor is a relator too.

We have now accumulated the apparatus needed to generalise a result of Eilen
berg and Wright, which says that a functional initial algebra is also a relational
initial algebra. They proved the proposition in a set theoretic context; the intro
duction of cross-operators makes it possible to reproduce their proof in an arbitrary
topos.

Proposition (Eilenberg and Wright [36]) Let E be a top os, and F : E - E a
relator with initial algebra p(F). Then p(F) is also an initial algebra of F* :
Rd(£) ~ Rd(£).

For functional programmers, this proposition provides a form of reassurance: they
can define their data types in the functional style as before, and use these definitions
in program derivations that are conducted in the calculus of relations. Together
with the result on extending functors, it justifies the slogan

Dynamic Programming 11

"Tbe generalisation of programming with total functions to program
ming with relations is free of surprises. "

This completes thc summary of results needed to formulate a theory of dynamic
programming. Here is the main theorem:

Theorem Let E be a. topos, and considcr tile following equation in Rel([;):

k = m 0 3 qhDF< a (n",[gDF' .

Suppose tha.t

1. F: [; ---I E is a relator t.hat bas an initial algebra,

2. h: F(A) _ A is a [undion,

3. the relation m ; P(A) ---I A satisfies

mo{-}(A) = l(Al and moU(A) m 0 3"(m) and

1. h distributes over m ill Ull.' following sense

F P(A) F"(m) F(A)

FHAl! IT] lh

PF(A)3(hfP(A)-m- A

wlJereIT] i, Gi), (C;:) or (~).

Tben k satisfies

B 1nv(g) PFCB)

kj IT] [3'Ch 0 F'Ck))

A",..-P(A)

Let us carefully step throngh the theorem, using the text formatting example
to clarify its applicahility conditions. First, the definition of k. The relation k is

12 Theory

defined as an instance of the generic specification of dynamic programming. The
inver~ image [nv(IgD is a function that generates a set of combinatorial objects. In
our example, this is the set of all layouts. The existential image 3 ahD assigns a
value to each element of the set; in the example that. is the amount of white space
in a paragraph. Fina.lly, m is a non-determinist.ic mapping t.hat selects an optimal
element from its argument set.. In the example m is t.he function that returns the
minimum of its argument.; the minimum of t.he empt.y set. is infinit.y.

The first applicability rondit.ion concerns the functor F. The functor F should
be a relator, 50 it can be extended to relations. Furthermore it. should have an
init.ial algebra - otherwise it. does not. descrihe a dat.a type. Later on we shall see
t.hat. sQ--1:alled polynomial functors satisfy t.his criterion. In particular, the functor
t.hat defines the data t.ype of paragraphs is polynomial, and therefore it is a relator
t.hat. has an initial algebra.

The second applicability condition says t.hat h is a functional F-algehra, wLich
means t.hat. it lies in the image of the graph functor G. Strictly speaking, it is
possible to formulate a slightly more general theorem without this assumption,
but t.he added generality does not seem t.o be useful. The assumption that h is
functional will be essential in later sections, wLen we develop corollaries t.o the
above t.heorem.

The relation m : P(A} _ A should be a selector; that is, selecting an element
from a singlet.on gives t.he single element. Furthermore, if one selects an optimal
element. from the union of a collection of sets, one may as well select an optimal
element. from each of t.he component sets, and then select an optimal element from
tbose optima. It might appear that m is a selector iff it is an object in the Eilenberg
Moore cat.egory of (3~, {- }, U}. There is a catch, however: (3*, {-}, U) is only a lax
monad in Rel(£), and so one cannot talk about its Eilenberg-Moore category in
the usual sense. [n the next section, we shall study selectors in more detail.

The last condition of the theorem, that h distributes over m, is the really in
terest.ing one. It is a formal statement of the principle of optimality, which is the
properly that an optimal solution is composed of optimal solutions to suhproblems.
Let us try to understand lhat property in terms of our running example. Take
equality (=) for ill When we express the commuting diagram in conventional set
theory, it reads

m;n {J(I) + n In EX} = f(l) + m;n(x).

This idrotity is satisfied because addition is monotonic.

Constructing Selectors [rom Preorders l3

It remains to discuss the conclusion of tbe theorem,

k = m 0 3'(h 0 r(k» 0 In,,(g) _

When interpreted in an operational manner, this recursion equation is in line with
the traditional presentation of dynamic programming that one finds in textbooks on
algorithm design, e.g. [82]. First, decompO'Se the argument in all possible Wli.ys with
the inverse image function of g, (Inv(g)). This generates a set of decompositions,
each of which is solved recursively with P(k). The solutions to subproblems are
then composed by the F-algebra h into solutions for the whole problem. Hence,
one could say that

3'(h 0 r(k)) 0 In,,(g)

geuerates a set of candidate solutions. The relation m select::; an optimal element
from this set.

It should be mentioned that the theorem is not always useflll in deri'ing pro
grams from specifications, even wbeu it is applicable. lnlh*,u, sometime; one obtains
a recursiou equation which is not an algorithm at all, because Int(g) splits an argu
ment x into x itself (and possibly somethiug else). Iu such ca.ses the recursion 'does
not make progress', and the theorem is useless. In the text formatting example, this
problem was avoided by excluding the possibility of empty lines in a paragraph.

1.3 Constructing Selectors from Preorders

One of the applicability conditions of the theorem about dyuamic programming is
that m: peA) _ A should be a selector:

m 0 {- }(A) ~ l(A) and m 0 UrAl = m 0 3'(m) _

This condition is very difficult to meet. To see how stringent it is, consider the
following counter-example. Let A be a non--empty set. Given a preorder R: A --+ A,
the relation mineR) which maps its argument set to its minimum elements is not
a selector, because the empty subset of A does not have a minimum element. As a
consequence, we have the inclusion

m;n(R) 0 3'(m;n(R» ~ m;n(R) 0 UtA) ,

but not inclusion the other way round. It is for this reason that the fictitious value
infinity (00) was introduced in the example specification: the minimum element of
the empty set is infinite. This trick of introducing infinity seems ad hoc, and in
this section we shall discuss a more systematic approach t.o coustructing selectors
from preorders.

14 Theory

To start with, let us formnla.te a. precise definition of the relation min(R). In
the category of rela.tions over a. tapos, one can take the right-quotient R\S of two
relatious R : A --t B and S : A _ C with a common source A. This division operator
(\) is characterised by the following equivalence:

T <; R\S iff T 0 S <; R.

In words, R\S is the maximum morphism T tha.t makes the triangle

A

RI~

B
;{

semi-commute.

Given an endorelation R on A, one can define the relation min(R): P(A) _ A
by

m;n(R) ~ R\E'(A) n E(A)

This is ill accordance with the usual set theoretic definition: a is a minimum element
of x if it is a lower bound of x and it is an element of x.

The domain of a relation is defined as follows:

Dom(R,A~B) ~ I(A) n (R"oR).

This aho corresponds to the usual definition in set theory: a is in the domain of R
if there exist,s an element b such that R relates a to b. A relation R ; A _ B is said
to be entire if the domain of R coincides with the identity on A. (Some authors
call entire relations total or everywhere defined.) The relation min(R) is not a
selector, because the empty set is not in its domain. In a set theoretical context,
we know how to make min(R) entire, namely by adding a fictitious value (infinity)
to its target. Fnrthermore, the introdnction of infinity makes it possible to turn
mineR) into a selector. Can we generalise that construction to arbitrary toposes?
Does lhere exist a canonical way of making a relation entire?

In a topos, partial arrows can be made entire in a canonical way because the
embedding of a topos into its category of partial arrows has a right adjoint. Do we
also have an adjunction between the ca.tegory of entire relations and the category of
relations? Even for Set, the answer is no: there exists a weak universal arrow, hut
it is not proper because there are many different ways of making a relation entire.

Constructing Selec/.ors from Preorders 15

Apparently, to generalise the canonical construction in Set, we need a different
approach.

The unit of the adjunction between a topos and its partial arrows is sometimes
called a partial arrow classifier. We shall generalise this concept to the notion of a
relation totaliser by adding an extra condition that yields the desired uniqueness.

Consider a regular category £. A relation totaliser is a collection of monies in
£ with the following universal property: for each relation R : A ...---, B there exists
precisely one entire relation R: A...---, jj such that

~'(B)oR ~ Rand RoDom(R) C; "(B)oR.

In Set, jj is the set B augmented with a fictitious value; the arrow T/(B) is the
embeddiug of B into ii. The first equation says that if you forget about thefietitious
element in ii, you get R back. The second equation 9ays that if a is in the domain
of R, R. relates it to the same elements of B as R does.

It would be nice if every topos had a relation totaliscr, but this is nolo true. A
counter-example is Set-, the category of commuting squares. For the purpose of
this thesis, however, the following result suffices:

Proposition In a Boolean tapas, the parUal arrow classifier is a/50 a relation
totaliser.

Let us return to the prohlem of constructing selectors from prcorders. Given a
relation R : A ~ A one can define the selector of R, denoted sel(R) : P(A) ----+ A, by
the following equation:

sd(R) ~ min(RI 0 3(.'(A))

The exlstential image 3(T/Q (A)) removes all fictitious values from its argument set.
The relation min (R) returns a minimnm element of the resulting set, prmided such
a minimum dement exists. If it does not exist, ;;m(R) yields a fictitious value.
Assuming that R is a well-founded preorder, sel(R) is indred a selector:

Proposition Let £ be a Boolean tapas. Let R : A...---, A be a well-founded preorder
in Rel(£), i.e.

l(A) C; R Ro R C; R , and Dom(E(A)) C; Dom(min(R)).

Tben sel(R) is a select.or.

For example, the minimum function min: p(NU {oo})"'---' (N U {oo}) can be defined
as the selector of the standard ordering on natural numbers.

16 Theory

1.4 Monotonicity implies Distributivity

The a.bove construction of selectors covers many optimisation problems that occur
in practice. It is worthwhile, therefore, to see whether the other applicability con
ditions of dynamic programming can he simplified when the selector is of the form
8el(R). Recall the formal statement of the principle of optimality:

FP(A) 1""(,<I(R)) F(A)

FHA)! IT] [h

PF(A) 3(h) P(A) ,<I(R) A

where [I] is inclusion (~), containment (2) or equality (=). In the text formatting
example, it was claimed that the principle of optimality is satisfied because additiou
is monot.onic. This seems to be the general pattern; to verify that h distributes over
sel(R), it suffices to show tbat h is iu some sense monotonic with respect to the
preorder R. To make this intuition precise, we shall need some further restrictions
on the functor F.

Let £ be a category with producl.s and coproducts. The class of polynomial
endofundors on £ is inductively defined by the following clauses:

1.	 The identity functor on £ is polynomial.

2.	 If A is an object of £, the constant functor which maps all arrows to the
identity on A is polynomial.

3.	 IfG and H are polynomial functors, then G+H and G'XH defined by

(G+H)(k) G(k) + H(k)
(GxH)(k) G(k) x H(k)

are also polynomial.

The da.<ls of polynomial functors is of course very restricted, but it suffices to define
the simple da.ta types encountered in dynamic programming. Polynomial functors
enjoy a number of properties that are useful in the present context. The first
property says that they extend uniquely to relations:

Proposition In a topos, polynomial functom are re1ator8.

Monotonicity implies Distrjbutivity 17

This proposition follows from the fact that in a tapas coproducts preserve pull
backs, and the coproduct injections are disjoint. The second propert.y says that
any polynomial functor describes a data type;

Proposition (Johnstone [56]) In a topos wjlh a natural numbers object, polyno
mial functors have initial algebras_

The fact that polynomial functors are relators, and other, more technical prlJperties,
yield that mOllotonicity implies distributivity:

Proposition Let. e be a Boolean tapas, and let F be a polyuomiaI endofunctor
on e. Let h : F(A) ---+ A be a functional F-algehra, and lei. R be well-founded

preorder on .4. Finally, let IT] be (~), (2) or (=). lf h is monotonic wifh respect
to R,

A ~h_F(A)

Rj ill jF'(R)
A ----;;0- F (A)

then h distributes m·er sd(R):

PF(A) Ft(A) FP(A/,(,eI(R)) F(4)

F(A)3(E(h) 0 F(A)) ill

P(.4) sel(R) A E(h) F(A)

where F(A) = «F(~(A))rt and E(h) = (h 0 ~At.

A few comments about the operators that are defined in this proposition. The
functor E is the endofunctor on £ that comes with the partial arrow classifier. The
collection of arrows F(A) forms a natural transformation FoE ---+ E 0 F. It is in fact
the cross-operator Ft, restricted to sets that have at most one element. Intuitively
F(.4) takes a structure, say a tuple, and it maps that tuple to the fictitious element
if one of the components is fictitious. IT all elements in the tuple are proper values, it
just returns the tuple. Here its role is to make h strict with respect to the fictitious
value: E(h) 0 r(A) is the strict version of h.

18 Theory

1.5 Summary

What has been achieved so far? First we provided a precise characterisation of
dynamic programming. From a purely theoretical perspective, that result is satis
factory: it is general and elegant. In practice, however, the applicability conditions
may be hard to check. Motivated by this observation, we introduced the construc
tion of selectors from preorders. Subsequently, that construction was used to sim
plify the principle of optimality. The earlier formulation of dynamic programming
can therefore be replaced by the following statement:

Theorem Let £. be a Boolean topas with a natural numbers object. Let F be
a polynomial endofunctor on E, let h : F(A) -+ A be a functional F-algebra. and
9 : F(B) B a relaUonaJ F·~algebra. Let R be a well-founded preordp.r on A.
Define};: B-tA by

k = (mi,,(R)o3QhDolnv[qDt.

Let IT! be (0;), (2) or (=). If h is monotonic with respect to R,

AA.-F(A)

Rj IT] jF'(R)

A ----;;:0-F (A)

therJ k satisfies

B Inv(g) PF(B)

kl IT] 13«t)

A 7ei(Rf1'(A)

wbere t is the composite

F(B)E.l!1.F (A) "P(A) F(A)~ A

To appreciate the practical significance of this new result, let us briefly return
to the text formatting example. We only considered how the minimum amount

Summary 19

of whit.e space in a layont may be computed, not how such an optimal layout
itself may be constructed. There are two reasons why the value problem was more
easily presented than the object problem. First, in the object problem one has to
introduce an object (a paragraph) of infinite cost. This is intuitively more diflkult to
accept than an infinite natnraJ number, although our treatment in terms of relation
totalisers shows that both arise by the same construction. A second difficulty in
reasoning about the object problem is the presence of arbitrary relations instead
of just (partial) functions. With functions, we are on familiar ground and we can
appeal to our intuition for their basic properties, but not so for relations. And yet, it
seems that the object problem and the value problem are in some sense equivalent:
if dynamic programming is applicable to either of them. it is also applicable to the
other.

Let us try to make this a bit more precise. Given F -algebras 9 and h. and a
preorder R, the value problem is given by

" ~ (mi'iR)o3QhD o l'VILQDt.

If R is a partial order, II is a total function. This is not the case for th~ object
problem, which is specified as

Q = (min(UhD' 0 R 0 ([hD) 0 bwQg])t.

Note that the existential image which is explicit in the generic specification is
implicit in the object problem, for

l(P(T)) = 31(T) ~ 3 Q~(FJD ,

where jJ(F) : F(T) ---+ T is the initial F -algebra. Clearly. the value problem can be
reduced to the object probJem, because the triangle

B~~~hD

T

commutes. It is not so clear, however, that a dyuamic programming solution for the
value problem also yields a dynamic programming solution for the object problem.
The next propooition goes some way towards solving that difficulty. It says that if
the monotonicity condition of dynamic progranuning is met for the value problem,
it is also met for the objed problem. Hence, our new formulation of dynamic
programming not only simplifies the applicability conditions: it also clarifies the
relationship between value and object problems.

20 Theory

Proposition Let £ be .l regular category, and let F : £ _ £ be a relator tbat has
initial algebra p(F) : F(T) _ T. Furthermore, let h : F(A) _ A be an F-algebra.
Let [l] be (~), (2) oe (=). Tben

A _h_F(A) T .1!J!lF(T)

R[[l] jP(R) imp];e, 5j [l] jP(S)
A -xoF(A) T(p(F)l(T)

wbeee S ~ ahD' 0 R 0 ahD.

In particular, dynamic programming is applicable to the object problem in the text
formatting example because addition is monotonic.

2 Applications

2.1 String-to-String Correction

Given are two strings of characters, say .r and y. The aim is to transform each
string into the other by performing a sequence of edit operations on both of them
together. There art' three edit operations available to achieve this task, named
movexy, moveyx and swap. Their intended meanings are ~;;tated below:

mOllEzya move character a from x to y
moveyx b move character b from y to x
!,W(lP (a, b) swap a in x with bin y

These operations are applied while traversing x and y from left to right. For exam
ple, let x = "sediment" and y == "eldritch". Two sequences of edit operations that
transform x and y into each other are the following:

edit operation x y

rno/lezy , ,
swap (e, e) e e

moveyx I I
swap (d,d) d d

moveyx , ,
swap (i,i) i i

movexy m m
movexy e e
movexy n n

swap (t, t) t t
rnoveyx c ,
rnoveyx h h

edit operation x y
,,rnovexy
e eswap (e,e)

1swap (d, I) d
i dswap (i,d) ,swap (m,,) m
e iswap (e, i)

swap (n, t) n t
swap (t, c) t c

moveyx h ~~

A sequence of edit operations that transforms x and y into each other is said to be
a transform of x and y. Both of the above examples are transforms of ~sediment"

and "eldritch".

21

22 ApplicatjODs

Associated with each edit operation is a cost, given by the function w. A possible
definition of w is the following:

w (movexy a) 1
w(moveyx b) 1

w(,wap (a, b)) {~
if
if

a,< b
a = b

The total cost of a sequence of edit operations is the sum of the costs of its elements.
Consider for example the transforIilli listed above. With the suggested choice of w,
the transform on the left-hand side has cost 8 while the transform on the right
hand side is of infinite cost. The purpose of this section is to construct an algorithm
that yields a transform of x and y of minimum cost. This programming exercise is
known as the string-to-string correction problem, and it was originally studied by
Wagner and Fischer in [971. Some variants of the problem ace of practical interest;
a recent paper by Apostolico et al. [2] cites widely divergent applications in speech
recognition, machine vision and molecular sequence comparison.

Note that the problem of determining a longest common subsequence of x and y
is a special case of the string-ta-string correction problem. With the above choice
of w, an optimal transform swaps only identical characters, and it contains a longest
common subsequence of x and y in the list of swap operations, Let us check the
validit), of this claim in the above example. The transform on the left-hand side
is the unique transform of minimum cost. The longest common subsequence of
"sediment" and "eldritch" is "edit"; this is precisely the sequence of characters in
the list of swap operations.

As in the text formatting example, the first step towards a formal specification
is to define the relevant types. The string-to-string correction problem involves
two kinds of lists: lists of characters (the input) and lists of edit operations (the
output). It is worthwhile, therefore, to give a definition of lists that is parametrised
by the element type. The lists considered here are finite, possibly empty lists. The
lists over a set of elements E can be viewed as an initial FE-algebra by defining

FdA) = T + (E x A)

where T is the tenninal object of Set. From now on, E- stands for the set of lists
over E, which is the target of the initial FE-algebra, Furthermore, we shall denote
the initial FE-algebra itself by

INil, (0)1' (T + ExE") ~ E" .

Here Nil is the constant function returning the empty list. The binary operator (:)
takes an element and a list, and places the element at the front of the list.

String-to-String CorrectjDn 23

The data type of edit operations is modelled by the coproduct

0= A+A+(AxA),

where A is the set of characters. In line with the informal problem description, we
shall write movexy, mO'llfYZ, and swap for the respective coproduct injections. The
data type of sequence! of edit operations is 0·.

The function eval ; O· -jo (A~ x .4~) takes a sequence of edit operations a.nd
yields two strings hy performing the prescribed edit a.ctions:

'val = aI (Nil, Nil), EIlJD

where ED : 0 x (A" x A*) -jo (A~ x A*) is given by

move;ry(a) i? (u,v) (u,a: v)
mOllfyx(b) ffi (tI,t') (b ; II, t1)
,wapla,b) Ell (",v) (b; u,a : v)

In the informal problem description, we saw two examples of scqn('nce~ or edit
operations. Applied to either of these sequences, et'ul yields the pa.ir

("eldriteh", "sediment")

Let us say that a sequence z is a. transform of x and y if fVU/(Z) = (y,x). Clearly,
the set of all transforms of x and y is returned by

Inv(eval)(y,x) = {z I ,,,,,I(z) = (y,x)}

the inverse image fuuction of eval.

Recall the goal of this programming exercise: to find a transform of minimum
cost. \\'e have just formulated a precise definition of transforms; the next step is to
define the cost function l'.. The cost of a sequence of edit operations is t.he sum of
the rosts of its elt'J1lents:

e = al0,01D
where a ® n = w(a) + n.

The string-ta-string rorrection problem can now be formulated as all instance
of the generic specification of dynamic programming. Let k stand for the relation
that takes a. pa.ir of strings (y.x), and retnrns a transform of x and y of minimum
cost:

k = (min(e' 0 (S) 0 e) 0 In v{ eval))- .

24 Applications

Again d}'namic programming is applicable because addition is monotonic. When
you unfold the abstract definitions in the theorem about dynamic prograrruning,
you obtain the original algorithm of Wagner and Fischer [97J. In this presentation,
we have confined our attention to the simplest form of string-to-string correction,
but the same idea works for more complicated variants, e.g. the modified edit
distance problem discussed by Galil and Giancarlo in [41J.

2.2 Loading

A vessel is to be loaded with containers. The containers that may be selected for
sbipping are lined up on the quay, and associated witb each container is a value and
it weight, which are both natural numbers. The total weight of a cargo is tue sum
of the weights of the containers selected. Likewise, the value of a cargo i~ tue sum
of its parts. The vessel can carry a cargo of limited weight only, and the problem
i~ therefore to maxirrlise the total value of a cargo, without exceeding the carrying
capacity of the vessel.

This programming exercise is known as the knapsack problem - here we uave
chosen to load a vessel rather than to pack the traditional knapsack. The aim in
presenting this example is to demonstrate why we chose to allow 9 to be a relational
F*-algehra in the generic specification

I ,dIR) 0 CJ UhD 0 Inv(]gD t ,
and not just a functional F -algebra, as h must be.

The line of containers on the quay will be modelled as a list of

(value, weight)

paIrs. Both the value and the weight of a container are natural numbers, and the
set C of all containers is the cartesian product N x N. For ease of reference, we
name the projection functions from C to the natural numbers v (for value) and til

(for weight) respectively:

v(a,b) = a and w(a,b) ~ b.

Let z E C· be the line of containers that are awaiting shipment on the quay. To
select a cargo from z, each container will be labelled with either 0 or 1. A label '0'
means that the container is not selected, whereas a label '1' means that it will be
part of the cargo. A cargo is therefore a list of pairs, an element of

(Cx{O,l})"

Loading 25

Not every selection of containcr.'! s E (C x {a, l})* is a possible cargo; (~rtain

constraints have to be satisfied. Firstly, s should be a selection of containers from

z. This requirement may be expressed as follows:

untag(s) = z,

where un tag is the function that removes the labels:

un tag [(1',,1,), (n"I>,), '" (nm,bm)J ~ In"n" .. ,n m).

Secondly, the total weight of the containers selected should not excf'cd the carrying
capacity of the vessel. Let. c E N be that carrying capacity. To be a possible cargo,
s should satisfy the inf'quation

weight(s) :$ c

where weight is thc function that returns the total weight. of a seledion of contain
ers:

m

""ight [(n"b,),(n"I>,), .. ,(nm,bm») ~ 2)w(n,) x b;) .
•=::1

The next step towards a formal specification of the loading problem i~ to define
the function caryos that takes a list:: and a capacity c as parameters, and return5
the set of all possible cargos. It is given by the set. comprehcnsion helow:

eargos(z,c) = {sE(Cx{O,1})'"I tmtag(s)=z/l.. weight(s):$c}

Motivated by a wish to apply dynamic programming, we aim to express cargos as
an inverse image function. To do so, we need a generalisation of the product in £
to Rel(£). For R: A --+ Band S : A --l C relations with a common somce A, define

(R,S» = (R x' 5) 0 (I (A), I(A») , A ~ (B x C) .

(If R and S lie in £, this is the ordinary product.) By some tedious mampulations
using initiaJity of lists and monotonicity of addition, onc may derive that

cargos = Inn{][(lVil, (2:) 0 0)" 8JD ,

where 0 is the function defined by

(n,b)8(z,c) = (n, z, (w(n) x b)+c)

The value of a cargo is the sum of the values of the containers selected. The function
that takes a cargo and returns its value is called value. It is easily defined using
fold,

vall" ~ [10, olD '

26 Applications

whe« (n,b) 0 m ~ (v(n) x b) +m.

The loading problem can now be expressed as an instance of the generic speci
fication:

k = (min(~) 0 3(value) 0 cargos r.
There is a small problem in the application of dynamic programming, becanse the
converse order on numbers is not well-founded: an infinite set of natural numbers
does not have a maximum element. This problem may be solved by restricting the
values of a cargo to a finite set {a, 1, ... ,m}, and stipulating that m is a zero of
addition. For this modified specification, our theorem about dynamic programming
is applica.hle because addition is monotonic.

By mechanically instantiating our result about dynamic prograrruning and using
some elementary arithmetic, one obtains the following equations for k:

I(Nu,c) o
I(z,c) if w(n) > c

l(n:z,c) { I(z,c) U (v(n)+I(z,c-w(n))) if w(n),sc.

Compare this recnrsion to the text formatting algorithm, which we discnssed at the
beginning of this thesis:

I(z) ~ t(z)n(min{J(u)+I(v)lu-tt-v=z)).

Expressed in their traditional form the two algorithms look very different, and yet
they are ahstractly the same.

2.3 Bracketing

Consider the type of binary trees that have data only at their leaves. Such trees are
fully parenthesised representations of their frontier, and therefore they are called
bracketings. In this section, we shall be concerned with constructing a bracketing
of minimum cost for a given frontier. This problem arises, for example, when mul
tiplying a sequence of matrices: different bracketings may lead to vast differences
in the number of arithmetical operations required to perform the multiplication.
It will be shown that the problem of hracketing a sequence of matrices for mnlti
plication does not satisfy the generic specification of dynamic programming. We
shall analyse the difficulty, and present a generic solution which is also applicable to
other programming problems, like the construction of optimal binary search trees.

As in the preceding examples we start by defining the types. There are three
types involved in the hracketing problem: the type of matrices, the type of brack
etings and the type of non-empty lists, which we have already seen in the text
formatting example.

Bracketing 27

Let M be the type of matrices. The fundion rows: }J -+ N returns the rlUmber
of rows in a matrix; similarly, cols : M -+ N yields the number of columns. These
two operators distribute through matrix multiplication in the following sense:

rows(m * n} = rows(m) and cols(m. n) = cols(n).

The data type of bracketings over Af is defined to be the initial F--algebra,
where the functor F : Set -+ Set is given by

F(.4) = M + (A x A) .

It will be expedient \.0 have an explicit name for the set oC all hracketings, and
we shall call it B. Since the initial F-algebra is a coproduct, one can rlame its
individual componentB:

[~,±] = pIF).

The first component of t.his coproduct n takes a mat.rix and turus it into a singleton
tree. The second component (±) is a binary operator that joim. two trees together.
Hence one migh t say that

«m, (m, m,») (m, (m, m,)))

is shorthand for

((in; ± (m, ± m,)) ± (m. ± (m, ± m,;))) .

Now that bracketings have been properly defined, we can make the notions fron
tier and bracketing of a front.ier more precise. As before, * denotes the a%ociative
operator that concatenates two sequences. Singleton sequences are constructed by
[-], and thus we have for instance

[ml, mJ, m3l = [mIl * [mJl * 1m3l

The fold UU-), * JD takes a bracketing and f1att.ens it into a sequence, which is said
to be the frontier of the bracketing. Here is an example of a frontier:

froniier(m\ (m2 m3)) (m4 (m5 m6}))

[nll.nIJ,m3,m4,m5,rTI.(;].

Given a sequence x, we are interested iu the set of all hracketings that have x as a
frontier. This set is returned by the inverse image ImiJrontier}, since we have the
following characterisation of the inverse image in Set:

Inv(froniier)(x} = {t E B Ifrontier(t) = x}

28 Applications

Next, we need to define the cost of a bracketing. The cost of a bracketing of a
matrix product is the number of scalar multiplications required in its evaluation.
For simplicity we assume that the naive matrix multiplication algorithm is used, so
the cost of compnting n * p is

rows(n) x rows(p) x cols(p).

The cost of a bracketing may be defined as follows. The cost of a si ngleton tree is
zero, since no matrix multiplication needs to be performed. The cost of a composite
tree (i·o± i l) is the cost of evaluating the products of to and i], plus the cost of
multiplying these two products. Note that the final term only depends on the
frontier TO of tDand the frontier Xl of it, because matrix multiplication is associative.
We shall write w(XD, xt} for the cost of multiplying the product of a frontier Xo with
the product of a frontier Xl' Formally, the cost function c; B ---+ N is given by the
equations below:

c(m) o
c(to± ttl c(to) +c(td +w(xo, xd

where Xo and Xl are the frontiers of to and i l respectively. It remains to give a
fonnal definition of the function w:

w ([TIl, TI~, ... , nrJ, [mt, m2,···, m.l)

rows(nd x rows(mt} x cols(m.)

This definition requires some further explanation. Consider the product (IT m.) of
the matrices mt. m2, ... , m •. The uumber of rows in (IT m,) equals the number of
rows in ml:

rows (nm,) = rows(md.

Similarly, we have for the columns cols(J1m;) = cols(m.). It follows that the
number Df scalar multiplications required to multiply the matrix products (J1 n;)
and (n m,) is given by

rows(nl) x rows(md x cols(m.) .

We now aim to express the bracketing problem as an instance of dynamic pro
gramming. Recall that the inverse image function of frontier returns all bra.cketings
of its argument. The cost function c assigns to each bracketing of a matrix prod
uct the cost of evaluating that bracketing. The minimum cost of a bracketing is
therefore specified by the relation k given helow~

k _ (min(~) 0 3(c) 0 Inv(frontier) t .

Bracketing 29

This expression does not match the generic spec.ification of dynamic programming,
becanse the cost function c is not a fold. At first sight this may seem alarming, for
the bracketing problem is considered a typical application of dynam.ic programming.
As we shall see shortly, however, there exists a simple solution to this difficulty.

The function c is not a fold because there exists no function I that maKes

M +8' [-,±) 8

l+e'1 Ie
M+N'--I- N

commute. It stands to reason, therefore, that we look for a similar propt'rty that
is not quite so stringent. Using the definitions of F and c above, it ,an be shown
that

M+B' [C,±] B

1 + (fronli",c)'1 Ie

M + (M" x N)' N

commutes, where I is the coproduct [0, EEl] and the binary operator EEl is given by

(xo,a)Efl(xl,b) = a+b+w(xo,xd.

This property suffices to derive an algorithm for k, and the relevant theorem is very
similar to our earlier result about dynamic programming. There are however two
significant differences that ought to mentioned before stating the theorem.

The first difference is that c is not reqnired to be a fold - we alrea.d} discussed
this for the bracketing problem. Instead, c should satisfy the eqnation

cop(F) = IoF(UgD,c)

for some suitable choice of 1. In this sense the new theorem is a genera.lisation of
our earlier result, because if c = tih.D, we can take I == h. 0 F(7f'2)'

The second difference between the new theorem and the earlier result concerns
the F*~-algebra g. So far, 9 was allowed to be an arbitrary relation, and the loading
example showed that this generality is nseful. In the theorem below, however, 9 is
restricted to be a partial arrow. In this sense the new theorem is less general than

30 Applications

the earlier result. Why is the restriction to a partial arrow necessary? The proof
of the theorem below makes use of the equation

(5, I)' 0 S' = (1,5')'.

This is a valid identity if and only if S is a partial arrow. In the theorem below, it
is applied with S = UgD, which is a partial arrow if 9 is one.

Theorem Let [be a Boolean topas with a natural numbers object. Let F be a
polynomjal endofundor on [, and let 9 : F(B) -+ B be an F*-algebra that is a
partial arrow in [. Let c and I be arrows of [that, make

P'([gD, c)'P(T) P(E x A)

P(P)]]1

T c A

commute. Finally, let R be a well-founded preorder on A and define

k ~ (m;n(R) 0 3(c) 0 In«[gD r.
If 1is monotonic wi th respect to R,

A _I_P(E x A)

RI IT] j(P 0 (B x -))'(R)

A -yP(E xA)

then the following diagram (semi-}commutes

E Inv(g) PP(B)

kl IT]]3'(')

A ,d(R) 1'(,1)

where t is given by

x

'"

3 Discussion

3.1 Related Work

The desire to give a. satisfactory treatment of dynarrllc programming was the original
incentive for the work reported here. Of course, we are not the first to give a
rigorous formulation of dyna.mic progra.mming, and the present approach has been
much influenced by earlier work of others. In this section we shall attempt to put
the results of this thesis into a historical perspective.

In 1957, Bellman published a. book entitled Dynamic Programrmng [9]. It de
scribes methods for reasoning about processes where a sequence of decisions has to
be lakelJ. Typical applications include inventory control, equipment repla.cement
and other problems where time plays a significant role. The adjective dynamic
in dynamic programming is meant to emphasise that time dependence. Perhaps
unexpertedly, the noun programming does not refer to computer programming. In
the present context, it would have been more appropriate to speak of dynamic plan~

ning - planning a sequence of decisions, one at each point in tiIne. Bellman did
not give a precise definition of dynamic programming, and merely used the term
as a collective name for the mathematical tools presented in his book. Despite the
efforts to formalise dynamic prograrruning, recent textbooks still take this view [32].

During the 33 years that passed since the publication of his introductory book,
Bellman's \N(lrk has found hundreds of practical applications. Among these ap
plications are many examples where time does not enter the picture; the typical
sequential nature of dynamic programming has become less important over the
years. This is especially true of computing science applications that involve some
tree type other than lists. Due to the lack of communication between operations
researchers and computing scientists, dynamic programming has developed further
in both fields separately. A typical example of this disparity is the common opinion
among computing scientists that dynamic prograrruning is a bottom-up tabulation
tecbnique for recursive program schemes f.g. [1, 69J. An operations researcher
views tabulation as a particular way of evaluating the recursion scheme that has
been derived by means of dynamic programming.

In his 1957 book, Bellman ha.d alrea.dy noticed that the use of dynamic pro
gramming is governed by the principle of optimality. Roughly, tbe principle says
tbat an optimal solution to a complex proh[em is composed of optimal solutions

32

Related Work 33

to subproblems. Bellman's original formulation of the principle is too vague for
use in rigorous program development, but formalising Bellman's work, several au
thors have given definitions of the principle of optimality, thus rendering dynamic
programming a theorem rather than a heuristic.

The first efforts directed towards a formal model of dynamic programming were
based on automata theory. In 1967, Karp illId Held [58] defined the notion of
discrete decision process as a means for expressing optimisation problems. They
showed how under a certain monotonicity condition, a discrete decision process
can be expressed as a sequential decision process, which models the concept of a
dynamic programming a.!gorithm.

In our approach, the work of Karp and Held can be understood as dynamic
programming with a specific data type. namely finite lists. Their notion of discrete
decision process consists of a function t : A _ P(fl*) which ret.urns a. set. of se
quences, and a function f : B* - R which yields the cost of a given sequence. The
optimisation problem that is to be solved is

k = mincr 0 C,,;) 0 f) t0 .

Our generic specification corresponds to Karp and Held's sequential deei.9ion pro
cess. A mouotone sequential decision process is an instance of the generic specifica
tion which satisfies the applicability conditions of the theorem presented in section
2.3. Indeed, that theorem is a generalisation of theorem 1 in Karp and Held's pa
per l58J. The main concern of that paper is to determine when a discrete decision
process can be expre'Ssed as a sequential decision process. In this thesis. we have
not attempted to address this question. The reason for not doing so is pragmatic:
our generic specification is very simple, and it is not difficult to cast a problem into
that form. This is not the case for Karp and Held's definition of sequential decision
processes, which is obscured by the encoding in the language of automata theory.

Karp and Held's work was generalised by Belman and Rosenthal [50, 51J who
proposed a new model of dynamic programming in 1985. They motiva.ted their
approach by the observation that certain algorithms cannot be explainl'd in Karp
a.nd Held's model: a typical example is the bracketing problem discussed in section
2.3. In terms of the work presented here, Helman and Rosenthal generalised from
dynamic programming with lists to more genera.! tree types. Helman and Rosenthal
do not explicitly introduce the notion of data types, however: they encode all
instances of the generic specification as bracketing problems.

In Helman and Rosenthal's approach, the specification is phrased a~ a discrete
optimisation problem. A discrete optimisation problem consists of two components:
a problem structure and a choice function. The choice function corresponds to our

34 Discussion

selector, and tbe problem structure is another way of describing the composite

3 ahD 0 Inv()gD .

As mentioned above, Helman and Rosenthal only consider one kind of functor,
namely F(B) = A + (B x B), for some given set A of a.toms. The F-algehras 9
and h are given as congruence relations on the initial algebra,

H ~ ([gr 0 ([gD and ("') = ahr 0 ahD .
The inpl1t (the argument to the generic specification) is specified by means of a
non-assodaUve regular expression that singles out a specific congruence class in ""'.
At the same time, it specifies a way of enumerating the members of that congruence
class. If the principle of opt.imality is satisfied, the selector can be pushed into t.his
enumeration scheme. The principle of optimality is formalised by a distributivity
condition that is sirrular to ours.

Our approach is a natural extension of Helman and Rosenthal's pioneering ef
forts, and it seems worthwhile to point out in what sense it is an improvement.
The theory presented here takes advantage of recent trends in computing, notably
the strong dependence on initial data types, and the use of a calculus of relations.
In this sense, it breaks down the artificial barrier between algebraic approaches to
algorithm design (as pursued by operations researchers) and the work on formal
program development. Apart from this conceptual improvement, the high level of
abstraction has the advantage of conciseness and almost mechanical proofs.

The issue of mechanisation brings us to the work of Smith, whose research
objectives are closely related to those of this thesis. His goal is to axiomatise
classes of algorithms, and to use these axioms in the (semi-)mechanical derivation
of computer programs. In his earlier work he concentrated on divide-and-conquer
and global search algorithms, but more recently he has also considered dynamic
programming under the name problem reduction generators. To discuss problem
reduction generators, we first need a summary of Smith's theoretical framework.

A theory is a many-sorted theory in classical, first-order predicate logic. Con
crete programrrung problems are modelled by so-called problem theories. A prob
lem theory describes the operators and data types for the problem at hand, and for
each problem theory there is a single, specified model. It is not quite clear from
the paper by Srruth and Lowry [90] how this particular model is obtained; becanse
of the powerful logic used, initial models cannot be taken for granted. Classes of
algorithms are modelled by algorithm theories. In contrast to problem theories,
no particular model is specified. Algorithm theories are supposed to be given in
advance (by an expert), and need not be formulated in the design process of a
particular program.

Future Researcb 3.5

If one wants to develop, say, a divide-and-conquer algorithm for sorting the
procedure is as follows. First, introduce a problem theory which specifies an ele
ment type, an ordering, bags and lists, together with a predicate that tells whether
a list is a sorted bag. Typically, the intended seJTlii.ntics of a problem theory is an
initial algebra. To design a divide-and-conquer algorithm, one starts by select
ing the relevant algorithm theory. The proof obligation is then to show that the
problem theory of sorting can be viewed as an instance of the algorithm theory of
divide-and-amquer. This notion of a view from an algorithm theory to a problem
theory bas been borrowed from algebraic specification languages, e.g. OBJ3 [45J.
Smith has built a computer system that supports the verification of views [88J. Not
surprisingly, these verifications are seldom fully mechanised, and the user needs to
input monotonicity and distributivity conditions. After it has been shown Lbat the
chosen view is correct, a separate component of Smith's computer systemsynthe
sises an optimised computer program. Smith has demonstrated the viability of his
approach by an impressive number of examples [85, 86, 87, 88, 89, 90].

Smith developed the algorithm theory of problem reduction generators [S9] while
on sabbatical at Oxford, and during that time we often compared notes. (t is not
surprising, therefore, that our work is quite similar. Problem reduclion generators
have the same components as the generic specification: there is a signature E
which plays the role of the functor F, there is a E-decompositiotJ structme which
corresponds to the F-algebra g, and a E-composjtjotJ structure which corresponds
to the F-algebra h. Finally, there is a preorder, just as in the construction of
selectors. The main difference is the predicative style enforced by Smith's theorem
prover, in contrast to the compositional style enforced by category theory. Smith's
work is distinguished from the rest of the algorithm design literature in that it
combines abstract theory with mechanisation. I believe that my work is a natural
step towards further abstraction, offering the prospect of further mechanisation.

3.2 Future Research

The main shortcoming of this thesis is that it does not show how the results can be
used to develop concrete computer programs. This was a conscious decision: the
same recursion equation underlies different computer programs on different target
architectures, and therefore deriving the equation and implementiug it are separate
concerns. There is a large body of literature about implementing the recursion
equations that are derived by dynamic programming, e.g. [2, 63, 76, 79J. An
exciting area for further research is to try and extend our categorical approach to
incorporate this aspect of algorithm design as well. Partly speculating, and partly
drawing on research that is currently in progress, we shall attempt to outline how
this goal migbt be achieved.

36 DisOJs,sion

The first step is to study the computation of typical inverse images like

Inv[I,*I, Inv[I,+I, and Inv[[-],*I,

which perform the splitting of the argument in many dynamic programming al
gorithms. Preferably, these computations should be expressed as non-recursive
equations, using only fold operators as primitives. The use of fold makes it easy to
prove properties by initiality, thus avoiding the use of more complicated forms of
induction. Once we have a r(Xursion-free characterisation of the splitting function
Inv(g), we can sub6titute it into the right-hand side of the dynamic programming
equation

k ~ me 3'(h c F"(k)) c 1"'\9) ,

and then 'promote' m a 3"'(h 0 F*(k)) into the expression for Inv(g). If the de
velopment is successful, this results in a non-recursive expression for k, which is
expressed only in terms of folds, and other primitives like products and coproducts.
It is important that all component relations in this expression are entire, so they
can be implemented as total functions.

A non-recursive expression for k may be dir(Xtly translated into a categorical
programming language like Charity, which is currently being developed by Cockett
and Fukushima [30J. Charity is a functional programming language, built around
the notion of initial algebras for polynomial functors in a distributive category.
Charity has the remarkable feature that all programs terminate - an nnexpected
result when one considers the expressive power of the language. To make the tran
sition from our topos-theoretic framework to a programming language like Charity
precise, it is necessary to show that the programming language can be embedded in
a Boolean topos. Furthermore, this embedding should preserve products, coprod
ucts, and initial data-types. Unfortunately, the existence of such an embedding is
by no means obvious [29]: more research is needed to link our remIts to the work
on categorical programming languages.

It would be wrong, however, to suggest that a program in Charity is the final
stage in ~he design of a dynamic programming algorithm. In many practical ex
amples, it is still possible to further optimise the code, exploiting further algebraic
propertie; of the operators that are involved in the problem statement. A typical
example of such a property arises in the text formatting problem. Let J he the
function that returns a measnre of the amount of white space in a single line. A
good choice for J(x) is the square of the difference of the optimum line length and
the actual length of x itself. It is easily seen that J is concave, i.e.

J(x*y)-J(y) ,;;j(x*y*z)-J(y*z).

Exploiting this property, the complexity of the dynamic program.rn.ing algorithm
can be reduced from O(n2

) to O(nlogn) [41, 52J. It is awkward, however, to

express this optimisation in a functional language, as it makes use of binary search
in a non-decreasing list of values. This demonstrates the need to integrate the
present work with the efforts directed towards a calculus of imperative programs.

An obvious candidate for such integration is the so-called refinement calculus
developed by Back, Morgan and others [75J. This calculus is built around the notion
of predicate transformers, which are monotonic functions between power objects.
To allow a smooth transition from one formalism to another, it would be nice if
all higher-order functions that are defined on relations (especially fold) could also
be defined on predicate transformers. Although at the time of writing this issue is
still unresolved, there is some evidence which suggests that predicate transformers
may be endowed with the same type structure as relations. Predicate transformers
form an order-enriched category, and relations are to predicate transformers what
functions are to relations. To wit, the predicate transformers with a right adjoint
are precisely the relations, and every predicate transformer can be factori~ed as a
span of relations. It appears, therefore, that programming with rela.tions can be
generalised to predicate transformers, just as programming with total functions caD
be generalised to relations. Clare Martin has explored this idea. [67] in her thesis,
concentrating on the extension of functors and natural transformations. It seems
but a small step from her results to proving that fold operators can be defined on
predicate transformers as well.

Instead of developing a funy optimised program in an imperative language, one
might wish to implement the Charity program in hardware, say, as a systolic array.
It is difficult for me to speculate how this might be achieved, because hardware
design is completely outside my current field of knowledge. The amount of literature
on dynamic programming with systolic arrays suggests, however, that it might
be a fruitful area for further research [63, 76J. A good starting point for further
investigations is the connection between the present results and the work of Luk,
Jones and Sheeran [57, 83] which aims to apply a calculus of relations to hardware
design. That calculus is already of a fairly categorical nature [84], and the gap
between their work and this thesis seems to be quite narrow.

There is also some existing work on implementing dynamic programming re
cursions as parallel programs in the P-RAM model [79], but it is lc.~s dear what
would be an a.ppropriate programming calculus for the P-RAM model tha.n it is for
procedural programs or hardware. It would probably be a.u extension of the refine
ment calculus, but again my knowledge of the subject is not sufficient towanant a
definite statement.

The prima.ry interest of the research t.hat baa been outlined above does not
lie in the unification of classes of algorithms. Instead, the main challenge is to

38 Discussion

provide smooth transitions from one level of abstraction to another. The leading
theme in crossing boundaries between programming formalisms is to investigate
how the type structure of one formalism can be lifted to another. As was argued
above, dynamic programming provides a rich class of examples, not only in terms
of specifications, but also in terms of non-trivial implementations on a wide variety
of target architectures.

Of course, the identification of further classes of algorithm'> is also an important
research goa\. An obvious starting point for further investigations is the class of
greedy algorithms. Many of these problems can be expressed as instances of the
generic specification of dynamic programming. It is to be expected, therefore, that
as a by-product of the research on generating splittings, one will also be able to
classify a number of tbese algorithms. A slightly different approach is outlined in a
forthcoming paper by Richard Bird and myself, where greedy algorithms are c1assi·
fied without relying on the results about dynamic programming that are presented
in this thesis [17].

3.3 Conclusions

Summarising, we have seen how dynamic programming is conveniently expressed
using the calculus of relations offered by topos theory. The treatment is consistent
with other attempts to formalise dynamic programming. Unlike this earlier work,
however, our results are also compatible with more general approaches to program
construction. In particular, we have made explicit the couuection with the work on
initial data types and their use in functional programmiug calculi. The observation
that the type structure of functional programming can be generalised to relations
is, I believe, one of the most important aspects of this research.

There was little need to develop new mathematics; most of the basic facts were
already known to category theorists. I found it fascinating that these existing
results, which were invented for truly abstract purposes, are applicable to a subject
as mundane as dynamic programming. It is worthwhile to note that the decision
to use these abstract results was entirely driven by the applications. Indeed, it was
only after the discovery of the main results that I realised how many proofs could
be replaced by a reference to the literature.

It was a disappointment that I was nnable to find a definition of relation totaliser
which works for arbitrary toposes. The restriction to Boolean toposes seems too
severe - in the non-Boolean topas SeC'" there exists an obvious way to make
relations entire, but it is not characterised by my definition.

The restriction to Boolean toposes is, however, a natural one in the context

Conclusions 39

of optimisation problems. For consider a topos £ with a natural numbers object.
There exists a canonical partial order on the natural numbers, namely

(s) = (+)0','.

Brook has shown that this partial order is well-founded if and only if £ is Boolean
([19J, p. 156). It follows that there is little point in developing a theory ahuut
optimisation probleffi'3 for arbitrary toposes.

This brings us to the last conclusion: Boolean toposes provide a convenient set
of axioms for deriving programs from specifications. They provide a choice of pro
gramming styles: functions, relations and predicate transformers, and smooth tran~

sitions between these different programming formalisms. One might argue against
this that the axioms of a Boolean topos are not nearly as elementary as (for instance)
the axioms of the relational calculus. In the second part of this thesis, however, we
shall see how the definition of a Boolean topas may be phrased in term,; of relations.
Furthermore, it will be shown how these axioms encourage simple alg~braj[proofs.

rJl
.... -Cil...., Cll

~

~

0

...., l-l - Cil C
)

Cil
P-4

....Q

,.Q

C
)

~

~

~

4 Introduction

The first part of this thesis was intended for a wide audience that includes cat
egory theorists and computing scientists alike. For this rea.son the emphasis was on
applications and intuitive explanations, not on formal proofs. Indeed, we did not
show any of these proofs, and yet it was claimed that their mechanical nature is an
attractive feature of this work. The second part of this thesis seeks to subslantiate
that claim. Here the exposition is aimed at computing scientists with little experi
ence in category theory: many proofs are presented in a calculational style that is
popular among researchers in program construction [4, 34, 95J. However, to keep
the presentation compact, we shaH frequently refer to proofs in the literature. Es
pecially the book Categories, Allegories by Freyd and Scdrov [40] contains many
results tha.t are relevant to the present discussion. There is also a handwritten
technical report by Carboni, Kelly and Wood about A 2-categorical approach to
geometric morphisms [23J.

4.1 Notation

The intention to write for computing scientists and the desire to make liberal ref
erence to the mathematical literature are somewhat contradictory goals when it
comes to notation. On the one hand, computing scientists often prefer notations
that are designed for purely syntactic proofs. ("'Let the symbols do the work!") On
the otber hand, mathematicians prefer the streamlined notations that bave been
ca.refully crafted by themselves and their predecessors for many centuries. Amathe
matician's primary concern is an effective shorthand for communicating his results,
and this shorthand should therefore allow r",ference to the work of at heN without
requiring a tedious translation process. Indeed, at the end of his encyclopedic work
on notations, Cajori argues that mathematical progress would benefit by greater
symbolic uniformity [20, 21J.

It was this second argument that made me chose a very conservatiVE', tradi
tional notation for the first part of this thesis: I did not want to deter any readers
who are interested only in learning about the applications, merely by chosing an
esoteric notation. In chasing a notation for the second part, I have tried to steer
a middle course. The notation is very close to that of Freyd and Scedrov, so it
allows easy reference to their book. However, to meet the exigencies of syntactic
proofs, composition is denoted by a semi-colon instead of simple juxtaposition: this

43

44 Introduction

operations
Ox source of x
xO target of x
x ; y composition of x and y

axioms
x ; y is defined iff xO = Oy

(Ox)O = Ox and O(xO) = xO
Ox ; x = x and x; xO = x
o(x; y) ~ Ox and (x; y)O ~ yO

Figure 4.1; The definition of categories.

makes it easier to push symbols around without type checking the expressions. The
notation is introduced in ngure 4.1, which preseuts a definition of categories. Note
that objects are notationally confnsed with identity morphisms, and composition
is written in diagranunatic order. The asymmetric equality sign (~) means that
if the left-hand side is defined, so is the right- hand side and they are equal. Be
cause application of a functor to a morpbism is written in the usual way (Fh), it
is convenient to write composition of fnnctors in reversed order, and application of
functors associates to the right:

(F 0 G)h F(Gh) FGh.

4.2 Overview

The structure of part II is as follows. Chapter 5 introduces the basic concepts of the
categorica.l calculus of relations. \Vhen a category [; is regular, one can construct
a category of relations ReI(&). Conversely, every category of relations arises in this
way. This theorem is the starting point of Freyd's theory of allegories.

Chapter 6 shows how the basic operators of set theory may be defined in terms
of relations. The main idea is to take the isomorphism between relations and
set-valued functions as fundamental. If such an isomorphism exists in a regular
category, that category is called a tapas. Like regular categories, toposes can be
characterised as categories of relations, this time with some additional structure.
Freyd has called such categories of relations power allegories. Here we use some
basic facts about power allegories to develop a calculus of sets for later applications
jn dynamic programming.

Overview 45

Chapter 7 reports on an attempt to show that every relation in a topos can
be rn.a.de entire in some canonical way. This attempt was unsuccesful, and I only
succeeded in establishing the desired result for Boolean toposes. A Boolean topos
is a topos where every relation has a complement.

Chapter 8 shows how one may define various optimisation operators in the
calculus of relations. The main goal is to estahlish the distributi\'"ity properties
of these operators. In particular, it is shown how one may construct a selector
from a given preorder, using the results about representing partial relations as
entire relations. Subsequently, we irrvestigate the algehraic laws of selectors that
are constructed in this way'

Chapter 9 presents tbe tbrorems about dyna.mic programming. As we already
discussed several applications of these theorems in the first part of this thesis, the
emphasis is on formal aspects of the theory. It is shown how the ahstract theory
may be imtantiated. in an entirely mechanical fashion.

Finally, in chapter 10, we discos:; a number of open problems that arose in the
preceding chapters. In particular, it is indicated how one might improve upon the
results about rnaklng relations entire.

5 Regular Categories

In set theory a relation is defined as a subset of a ca.rtesian product. Accordingly,
category theorists view relations as subobjects of products. This chapter starts off
by reviewing those properties of subohjects that are relevant to the study of rela
tions. Most of these properties depend on certain assumptions abol.Jt the category
under consideration. This collection of assumptions motivates the definition of a
regular category. Informally speaking, a regular category is a. category where it is
easy to reason about subobjeets.

Given a regular category E, one may construct the category of relations Rrl(£).
Its objects are the same as the objects of £, and the arrows A ----1 Bare subobjeds
of the product A x B. There exists an obvious embedding of £ into Rel(£), which
is called tbe graph functor. The algebraic properties of the graph functor will be
discussed in detail, and we introduce some elementary operators of the relational
calculus

The algebraic properties of the graph functor are helpful in studying the ex
tension of functors. It is shown how any functor F : D _ £ can b(:· extended to a
mapping F* : Rd(V) _ Rd(£). The question is then whether F* preserves the ba
sic opera.tors on relations: grapb, reciprocal (converse), composition, intersection.
Graph and reciprocal are always preserved by F*, and we shall state necessary and
sufficient conditions for the preservation of composition and intersection. Finally,
it is shown that the extension F* is in some sense unique.

Are regular categories the natural setting for a calculus of relations? The answer
IS yes, for there exists an equivalence between the category of small regular cat
egories and the category of small categories of relations. To corroborate this claim,
one n~ds define what categories of relations are. There exists such a definition,
due to Freyd, which is called the theory of allegorie8. An allegory is a category that
satisfies certain axioJIl5, similar to those of classical relation algebras. The category
of small unitary tabular allegories is equivalent to the category of small regular cat
egories. Unitary implies the existence of a unit object (a terminator), and tabular
means that there are sufficient subobjects to obtain the regular structure.

46

• • •

Subobjects, Images and Covers 47

5.1 Subobjects, Images and Covers

5.1.1 Let hand k be arrows with a r.ommon target. The a.rrow h factors through
k if there exists an arrow I such that

~~
 •
commutes. We write h ~ k to indicate that h factors througb k. The relation j is a
preorder. Reflexivity is obtained by taking for 1 the identity arrow, and transitivity
follows by pasting two adjacent triangles. Note that identities are maximum among
arrows with a given target: h :::$ hD.

5.1.2 When k is monic, there exists at most oue a.rrow I that makes the above
triangle r.ommute. Therefore, if two monies factor through each other, they are
isomorphic. To wit, when nand m are monic arrows satisfying

njm and mjn

there exists a unique isomorphism i making

. -.
, ~

~/:

•

commute. (Note that monies are depicted with a crossed tail.) We wrile' n, m.

when nand m are isomorphic. The relation"'" is an equivalence on monid, because
j is a preorder. The class of all monies that are isomorphic to n is said to be a
subobject of nO; it will be denoted [nJ. The preorder j is extended to a partial
order on subobjects in the obvious way:

["I C [ml n:=:;m

5.1.3 A category is said to be cartesian if it has all finite limits. Throughout
the remainder of this section, we shall be working in a cartesian category E. The
existence of pullhacks implies that the cl~s of subobjects of a given object A forms
a semi-lattice. To see this, define the intersection of two subobjects [m] and [n] as
the diagonal [p; mJ in the pullback square

48 Regular Categories

.rE--.
mq1 1

ee+---n---

Note that p is monic because pUllbacks preserve monies. \Ve write

[mJn[n]

for the intersection of [ml and in]. It can be shown that 1m] n [n] is indeed the
greatest lower bound of [m] and [n], so intersection is associative, commutative and
idempotent.

5.1.4 The construction of subobjects can be extended to a contravariant functor
from E to 5£, the category of semi-lattices and semi-lattice homomorphisms:

(-). ,Eo'~SI:.

This functor is called the sl1bobject functor. The subobject functor sends an object
A to the family A# of all subobjects of A. On morphisms, (-t sends an arrow
f : A -I B of E to its inverse image function

f# : B# -I A#

which is defined as follows. Let [mJ be a subobject of B. Then F'Um}) is the
subobjed [n], where n is the pullback of m along f:

.--_.

n1 1.--.

m

f
It follows from the universal property of pullbacks that the function f# is mono-
tonic, and therefore well-defined. Similarly, one shows that f*" preserves intersec
tions. We have (f; g)# = g# ; f# because whenever the inner squares in

.-~._.

t I t

• -f-· -g-.

are pullbacks, so is the outpr rectangle. (This property of pullbacks is sometimes
called the pasting property.)

Subobjects, Images and Covers 49

5.].5 An arrow J: A -+B is said to have a direct imagefunetion J(-): At....-; 8'#.
if for all subobjects [mJ of A and [nJ of B,

J([m]) C In] .. [m] C J#(ln]) .

In words, J(-) is left adjoint to p#.. The subobject J{[An is called the image of J.
Note that the image of J is the smallest subobject [nJ such that J factors through
n,

J([A]) C [n] .. [A] C J#([n]) .. J:' n .

The category £ is said to have images if every arrow has a direct image function.
Henceforth, we shall assume that the category £ has images.

5.1.6 An arrow c: A -+ B is called a cover if its image coincides with its target:
c([A]) = [B]. In the literature, covers are sometimes call1''d extremal epics. Covers
will be pictured with a crossed arrowhead:

o---+-o

The class of covers is closed under left-cancellation, and a monic cover is an isomor
phism. The existence of equalisers implies that a cover is epic, and the existence of
pullbacks implies that covers compose.

5.1.7 Proposition A subobjeet [m] is the image oI J iff there exists a cover c
such that

• J •

'>x,,/m
°

commutes. The pair (c, m) is said /,0 be a cover-nlOnic factorisation of J.

5.1.8 Proposition (e.g. Manes and Arbib j3j, p. 39) If the following is a
commuting square where the top is a rover and the bottom a monic,

0_0

J I
° +---0- °

50 Regular Categories

then there exists precisely one diagonal arrow as depicted below:

i?i

o +------- 0

5.1.9 Pullbacks play an essential role in the calculus of suhobjects and images.
It seems natural, therefore, to require that pullhacks preserve the image structure,
namely monies and covers. Pullbacks always preserve monies. Tosay that pullbacks
preserve covers is to say that one can take arbitrary arrows as representatives of
subobjects, not just monies. In a sense this is always possible (two arrows are
equivalent if they have the same image), but the point is that it can be done without
explicitly using images. To make this statement precise, we need the following
definition.

Let hand k be arrows with a conunon target. The arrow h is covered by k if
there exist a.n arrow J and a cover c such that

fj
.~.

lh
0--0

k

commutes. We write h <t k if h is covered by k. Note that h is covered hy a monic
m iff h factors through m.

5.1.10 Proposition (Carboni, Kelly and Wood [23], p. 72) The following two
statements are equivalent:

1. For all h : A ---. C and k: B --+ C

h([A]) c k([B]) ¢> h. k .

2. Pullbacks preserve covers.

Subobjects, Images and CmTIs .'5}

S.1.11 Now a.ssume that in [, pullbacks do preserve covers. By the above propo
sition, 0<{ is a preorder, and we can say that two arrows are equivalent if they are
covered by each other:

h-k ~ h<k and k<h.

This new definition of equivalence is consistent with the earlier definition of equiv
alence (isomorphism) for monies. In this sense, subobjects can be regarded as
equivalence classes of arbitrary arrows in the preorder <L To stress the fact that we
allow arbitrary arrows as representatives of subobjects, we shall speak of extended
subobjects. A monic repre>entative of a subobject is said to be a tabulation.

5.1.12 This completes the snmmary of elementary facts about subobjects. images
and covers. As we mentioned in the introduction to this chapter, a regular category
is a category where it is easy to manipulate subobjects. Formally, a category is said
to be regular if

1.	 it is cartesian,

2.	 it has images, and

3.	 pullbacks preserve covers.

For example, the category of sels and total functions is regular. Grillet's paper [47]
contains a much more thorongh discussion of regular categories.

5.1.13 There exists another definition of regularity, which is due to Barr [7]. To
conclude this introductory section about regular categorie>, let us briefly discuss
that alternative definition. A regular epic is an arrow that occurs as a coequaliser.
The following proposition, which Carboni and Street attribute to Joyal, relates
regular epics to covers. It also states Barr's definition of regularity, and it says that
Barr's definition is equivalent to onrs.

Proposition (A. Joyal, see [25])

- In any ca.tegory, a regular epic is a cover.

- In a regular category, a cover is a regular epic.

- A category is regular iff

1.	 it is ca.rtesian,

2.	 every level (kernel pair, pullback of identic.aJ a,rrows) has a coequaliser,
which is called its quotient, a,nd

• • •

52 Regular Categories

3. pullbadcs preserve regular epics.

The definition of regularity adopted here is based on tbe notion of subobjectsj one
might say that it is inspired by set theoretic considerations. In contrast, Barr's
definition is of a more algebraic flavour: instead of subobjects, it takes the notion
of division by an equivalence relation (a level) as fundamental.

5.2 R.elations over a Regular Category

We shall now proceed to define the category of relations over a regular category.
Relations will be defined as extended subobjects of binary products. Tbis dif
fers marginally from the definition in the literature, wbere ordinary subobjects are
used. I decided to state the definition in terms of extended subobjects because tbat
simpnfies the notion of composition.

5.2.1 An order-enrkhed category is a category witb a partial order on each hom
set, where composition is monotonic. Functors between order--enriched categories
are also required to be monotonic.

5.2.2 Let E be a regular category. The category of relations over E, denoted
Rel(E), is an order-enriched category which is defined as follows.

The objects are the same as the objects of E.

The morphisms are extended subobjects of binary products. That is, if (h, k) :
E----+ (A X B) is a morpbism of E, its equivalence class [(h, k)J : A ----+ B is a
morphism of Rel(E).

Composition is defined as follows. Let [(h, k)J and [(h', k')) be morphisms of
Ref(E), where k and h' have a common target. Then

[(h,k)];[(h',k')] ~ [(r;h,q;k')]

where (r,q) is a pullback of (k,h'):

•

•:/"Z•
y"Zv,,\

Relations over a Regular Category 53

- The arrow [(A, A)] is the identity on A.

- The partial order on the homsets of Rel(E) is inclll~ion (C) of subobjects.

That comp05ition is monotonic (and therefore well-defined) follows from the fact
that pullbacks preserve covers. That composition is associative follows from the
pasting property of pullbacks. The pasting property says that if all squares in

./
•
"'-.

./ "'-./ "'-.

./ "'-./ "'-./ "'-.

are pullbacks, so are the rectangles. One may conclude that Rel(E) is an order
enriched category. The construction given here is isomorphic to that in the litera
ture by proposition 5.1.10.

5.2.3 The reciprocal K' of a relation R is defined by exchanging the branches of
a representative:

[(h, k)]' = [(k, h)] .

Some authors speak of inverse, converse, opposite, transpose or reverse instead
of reciprocal. Reciprocation is a contravariant, order-preserving endofunctor on
Rel(E), which is furthermore an involution:

(R')' = R .

5.2.4 There exists an embedding of E into Rel(E), which i~ called the graph functor
G. It is defined as follows:

Cj = [(OJ,f)].

The graph functor is faithful in a very ~trong sense: if Gh C Gk, then h.:: k.

5.2.5 Intuitively, morphisms of the form Oh are relations that behavehke func·
tions in set theory. To make this preci~e, say that a relation R is entire jf

DR c R; 11:'.

In the literature, entire relations are sometimes called tot,al or ev·erywhere defined.
U~jng the following proposition, it is immediate that Gh. is entire

Proposition (Freyd and Scedrov [40], p. 81) Let R be a. relation. The following
three statements are equivalent:

54 Regular Categories

1. R is entire.

2. There exists a representative (h, k) of R with h a cover.

3. For all representatives (h, k) of R, h is a cover.

5.2.6 A relation R is said to be simple if

Fl';R C RD.

In categDry theory, simple relations are more commonly known as partial arrows,
but in this thesis we shall use the terminology of Freyd and Seedrov. Of CQurse, any
graph Gh is a simple relation, and again this is an instance of a more general result,
which is stated below. Notice the subtle difference with the preceding proposition:
here the universal quantification is restricted to representatives that are monic
(tabnlations).

Proposition (Freyd and Seedrov [40], p. 81) Let R be a relation. The following
three statements are equivalent.:

1. R is simple.

2. There exists a representative (h, k) of R with h monic.

3. For all tabulations (h, k) of R. h is monic.

5.2.7 A relation that is both entire and simple is called a map. The preceding two
propositions, together with the fact that monic covers are isomorphisms, yield that
a. relation is a map iff it is of the form Gh. This result can be strengthened. To state
the stronger result, we shall need the notion of adjoint arrows in an order-enriched
category. Adjoint arrows are discussed in the next paragraph; we return to graphs
and maps later.

5.2.8 Let C be an order-enriched category. An arrow h in C is called a left adjoiut
if there exists an arrow in the opposite direction, say h·, such that

h· ; h C hO and oh c h ; h· .

Relations over a Regular Category 55

The arrow h" is said to be a rigbt adjoint of h. The conjunction of two inequations
may also be sta.ted as an equivalence:

S c h; R .. h"; S c R

(for all R and S of appropriate type) or as the symmetrical variant:

S; heR ~ S c R i h" .

From these two equivalences, one may conelude that the right adjoint h" is 11lliquely
determined by h. Also, composition of left adjoinh gives again a left adjoint. The
connection with ordinary adjunctions between part.ial orders is as follows. An arrow
h is a left adjoint in the sense of t.his paragraph iff (- ,h) is a left adjoint in the
usual sense of the word.

5.2.9 Let us now return to the discussion of maps in the category of relations. As
you might expect, an arrow in Rel(E) is a left adjoint iff it is a map. This yields
the following proposition:

Proposition (Carboni, Kelly and Wood [23], p. 81) Let R be all arrow of ReI(£).
The following three statements are equivalent:

1. R is a left a.djoint.

2. R is a map.

3. There exists an h in E such that R = Gh.

5.2.10 In words, the preceding proposition says that the original category E ma.y
be recovered from Rel(E) by taking the subcategor,Y of maps. This observation will
be important in the sequel, so let us sta.te it as an explicit proposit.ion:

Proposition The subcategory of maps Map(Rel(£)) is isomorphic to £

In view of this result, it seems natural to identify arrows of [and maps of Rel(£)
in our notation; from now on the graph functor will often be left implicil. There
will be occasions, however, where it adds to the clarity of our discussion to denote
the graph functor explicitly. We shall continue to make a notational distinction
between maps and arbitrary relations; arbitrary relations will be denoted by upper
case identifiers (R, S, T, . ..), while lower case identifiers (1, g, h,. .) are reserved for
maps.

56 Regular Categories

5.2.11 Reca.ll that a relation R is simple iff it has a representative (h, k) with h
monic (par. 5.2.6). In particular, we have that m is a monic arrow in £ iff m; m O =
Om. This observation can be generalised to obtain an alternative characterisation
of tabulations:

Proposition (Freyd and Scedrov [40], p. 200) Let R : A _ B be a relation, and
let h : E --to A and k ; E _ B be maps. Then

hO
; k = Rand h;ho n k;ko = E

iff (h, k): E _ (A x B) is a tabulation of R.

5.3 Extension of Functors

Consider the category of small regular categories. What are the morphi:HllS of this
categor)'? You might be inclined to say that they are functors which preserve finite
limits and images. However, one could also look at it in a different way. Regular
categories were introduced to define relations, and therefore functors between reg
ular calegories are those that extend uniquely to order-enriched functors between
categories of relations. This section is a summary of what is known about such
functon and their extension to relations. It is mostly based on a technical report
by C.,boni, Kelly and Wood [21J.

5.3.1 Let V and £ he regular categories, and F a functor from D to £. Define a
mapping P from ReI(V) to Rel(£) by

PR ~ (Fmr;Fn

where (m, n) is a tabulation of R. Because we chose a tabulation of R (and not
an arbitrary representative), F* is monotonic and well-defined. Furthermore, F*
agrees with F on maps. This property may be expressed by saying that F* dis
tributes through the graph functor:

PoG = GoF.

In particular, F* preserves identities. Finally, F* preserves reciproc.als:

(F'Rr = P(W).

The mapping F* does not preserve composition in any obvious sense.

Extension of FunctorfJ 57

5.3.2 Proposition (Carboni, Kelly aDd Wood [23], p. 99) The following four
statements aTe equivalent:

1. For all Rand S with RD ::::: OS,

F"(R;S) C F'R;F"S.

2. F pre;erves covers.

3. F .is monotonic with respect to (<I).

4. F* preserves entireness.

5.3.3 Let us consider a few examples that illustrate the above proposition. A
regulaT category satisfies the axiom of choice if every cover has a left-inverse. The
category of :'lets and total functions satisfies the axiom of choice, and therefore every
functor F ; Set ----t £ preserves covers.

As another example of the above proposition, consider the product functor
x: (£ x £) _ £, where £ is regular. Let c; A _ Band c': A' _ B' be covers. To
show that (c x c") is a cover, it suffices to show that (c x A') and (B x c') are covers,
because covers compose. Write?r} for the projection (A x A') _ A. The diagram

A x A'......!!... A

C x A'I +C
B x A'1i'l B

is a pullback; therefore c cover implies (c x A') cover. By symmetry, (B x e') is a
cover as well.

Not all functors preserve covers. However, because Set satisfies the axiom of
choice, it is difficult to give an elementary counter-example. For readers who are
familiar with topos theory, it may be helpful to know that in a topos covers coin
cide with epics. Furthermore, a tapas satisfies the internal axiom of choice iff the
exponent functor (A ::::} (-)) preserves epics for all A ([40J, p. 179). This illu:'ltrates
once more how the extension of functors is intimately connected to the axiom of
choice.

58 Regular Categori~

5.3.4 The preceding proposition stated a necessary and sufficient condition for
F* to be a weak functor in the following sense:

F"(R;S) c F'R;F"S.

What if the inequa.lion is reversed? Ca.n one also characterise that situation? The
answer is yes, but first we need another definition: to say tbat a functor preserves
pullbacks up to image is to say that whenever

• -'L.. .--.!...... •
pi Ik and jFk'I
• -h-.-· • Fh •

are pulllxr.ck squa.res, the mediating arrow in

•
.~

FA "i ---L iFk

.~.

is a cover. Indeed, when this condition is satisfied, (s, t) is the image of (Fp, Fq) by
proposition 5.1.7. If F preserVe6 pullbacks up to image, one can infer a number of
simple consequences. For example, F preserves monics and therefore F" preserves
simplicity of relations. Also, F preserves covers iff F preserves image~.

5.3.5 Proposition (Carboni, Kelly a.nd Wood [23], p. 98) The following two
statements are equivalent:

- For all Rand 5 with Ro = OS,

F"(R;S) :J F"R;F"S.

- F preserves pullbacks up to image.

Extension of Functors .59

5.3.6 Most functors in computing science preserve pullbacks up to image, but
there are a few pathological counter-exarnples. Consider for instance the functor
F : Set --+ Sei. defined by

FA = {0 if A =0
{I} ;f A,.,0

F(h:A~B) ~ {0~(FB) if A~0
{I} ;f A,.,0.

To see that F does not preser....e pullbacks up to image, let h : {I} --+ {a, I} be
the COnstant function returning 0 and Jet k: {I} --+ {a, l} be the constant function
returning 1. Then h: k o is the empty relation 0: {I} --+ {l}, while

Ph:F'kO ~ Fh;(Fk)' ~ {l} <t. 0:{l}~{1} = P(hYJ.

By the preceding proposition, F does not preserve pullbacks up to image.

5.3.7 A functor F is called a eelatoe if F preserves co....ers and F preserves pull
backs up to image. The tenninology is inspired by the next result, which sum
marises the pee.... ious two propositions.

Proposition (Carboni, Kelly and Wood [23], p. 100) Let V and c bf.' regula.e
categories, a,nd F : D --+ c. Tben F* is a. functor Re.l(V) --+ Rel(c) iff F is a relator.

5.3.8 What is the intuition behind relators? We shall examine three typical ex
amples by describing the extended functors in terms of con....entional, set t.heoretic
relations. The notation

a (R) b

is shorthand for (a, b) E R.

1. Consider	 the list functor L : Set --+ Set. On objects, it takes a sei A and
returns the set of all finite sequences with elements from A. On arrows, (LJ)
is the function that applies f to all elements of a sequence:

(LJ)[a"a" .. ,a.] = [fa,,!a,, ... ,!a.].

A conventional characterisation of the extension of L to relations might read
as follows:

[a"a" ... ,a.] W(R)) [b"b" ... ,bm]

(n = m) A (Vi: I ~ i ~ n : a, (R) b,) .

60 Regular Categories

Indeed, this is the usual way of lifting a given relation R to the data type of
lists.

2.	 As a secood example, let A be a set, and consider the exponential functor
(A =» : Set _ Set. It takes a set B to the set (A => B) of functions from A
to B. 00 arrows, it is defined as follows:

A=>(f,B~C) ~ (AU;!), (A=>B) ~ (A~ C).

As expected, (A =»* is the usual way of lifting a given relation R to function
spaces:

j«(A=>)'(R))g ~ 'taEA, (fa) (R) (ga) .

3.	 Finally, let 3 : Set _ Set be the covariant pDwerset functor that sends a
function to its existeutial image. It is defined by the fDIlDwing equations:

3A {xlx<;;A)
(3 !) x {lalaEx).

When extended to relations, it give5 rise to the so---called Egli-Milner ordering,
which is useful in describing the semantics of parallel programs [77]:

x (3'(R» y ~	 ~aEx'3bEy a(R)b)/\
~bEy'3aEx a (R) b) .

5.3.9 We have seen that for a relator F, F* preserves maps, composition and
reciproca.l. When does F* preserve intersection? Intersection Df relations can be
characterised in terms of products:

Rns ~ (A,A);(Rx'S);(B,Br. (5.1)

Therefore, when F is a relatDr that preserves products, F* preserves intersectiDn.
This conditiDn is hDwever too strong, and it can be weakened. Recall that tabula
tiDns may be described in terms of intersectiDn: a relation R is tabulated by (h, k)
iff

hO
; k = R and h;h o n Ic;ko = O(h,k) .

Say tha~ a functor F preserves tabulatiDns (of relations) if (h,k) monic implies
(Ph, Fli monic.

Proposition (Freyd [39]) Let F be a relator. The fDllowing three 8tafement8 are
equivalent:

1.	 F* preserves ioter8ectJ·on.

Extension of Functors 61

2. F preserves tabulations.

3. F pre.erves pullbacks.

Proof We aim to prove tbe sequence of implications (2) ~ (3) ::::) (1) ==:>- (2).

(2) ==> (3) Note tbat (p,q) is a puHback of (h,k) iff (p,q) is a tabulation of h; kO.
Hence, if F preserves tabulations, F preserves puHbacks.

(3) => (1) Now suppose tbat F preserves pullbacks. Consider the pullback

.-...!L.....
p[[(f'9) ._.

(h,k)

which defines the intersection

hO;k n r;g w; (h,k») ,

Since F preserves pullbacks,

.~.

FP[!F(f,9)
.-_.

F(h, k)

is a.lso a pullhack. Furthermore, if T is the terminator,

F(Ax B)~FB

F"l jFI.
FA- FT

F1,A

is a pullback, a.nd this implies that d:;, (F1fl, F1f)) is monic. We may conclude
that

62 Regu1&r Categories

.-..E!L.-.

FP[j(F!,F9)

0_0

(Fh,Fk)

is a. pullback, since d is monic and

o F(h,k) 0

(Fh, Fk)j /)F(f'9)

0_0

(F!,Fg)

commutlC"-s. It follows that

F"W;k n /';g) F"(h'; k) n F"(f'; g) .

Tha.t is, F* preserves intersection.

(1)	 => (2) Finally, suppose that F* preserves intersection. Then F preserves tabu~

lations by proposition 5.2.11.

5.3.10 Not all relators preserve intersection. A counter~xample is the covariant
powerset functor 3 : Set ~ Set that sends a function to its existential image. Let
B = {O, l}, and consider the projections

11"1 : (B x B) ~ Band 11"'2: (B X B) ~ B .

The product arrow (11"), 11"2) is monic, but (3 1I"lt 311"2) is not monic:

(3)d>,){(O,O),(1,1)) = (3),,3.,){(O,1),(1,O)}

It follows that 3 does not preserve tabulations, and therefore 3* does not preserve
intersection.

5.3.11 This concludes the discussion to what extent F* preserves the structure
of Rel(E). The next question is whether F* is in some sense unique. Say that a
functor Rel(V) ~ &/(£) extends F : V ~ £ if it agrees with F on maps:

HoG = GoF.

Allegories 63

Are there other functors besides F* that extend F? It seems unlikely, as there exists
no obvious alternath'e for the definition of F*. The next proposition confirms that
intuition.

Proposition (Gardiner [42]) Let V and £ be regular categoriC5, and let F: V~ E,
H : Rel(V) ~ Rel(E) be functors. If H extends F, then H = P.

Proof Assume that H extends F, and let (h, k) : E+--(A x B) be monic. It
suffices to show that Hho = (Fht, for then we have

H(h'; k) ~ Hh'; Hk = (Fh)'; F'k F'(h' ;k).

By the uniqueness of right adjoint arrows,

Hh';Fh c FA and FE c Fh;Hh'

imply Hho = (Fhr. The first containment is proved below; the proof of the second
containment is analogous.

Hho i Fh

{ H extends F'

Hho; Hh

{ H functor

H(h'; h)

c {h map, H monotonic

HA

{ H extends F

FA

5.4 Allegories

Is it possible to characterise those categories which arise as the category or relations
O\'er a regular category? The answer is yes: Freyd has found a simple characterisa
tion of categories of relations in terms of three operations: composition, intersection
and reciprocation. These operations satisfy a number of axioms, which constitute
the logical theory of allegories.

64- Regular Categories

operations

H:' reciprocaJ of R

R n 5 intersection of R and 5

axioms
OR" = Ro RQD = DR

(OR)' ~ DR (R; 5)' = 5' ; R"

(R")' = R

RnR=R Rn5~5nR

Rn (5 nT) = (Rn 5) nT R; (5 n T) c R;5 n R;T
o(Rn 5) >- DR

(Rn 5r ~ R" n5' R;5 n T c (R n T;5') ; 5

Figure 5.1: The definition of allegories.

5.4.1 An allegory is a category that has the a.d.ditional structure displayed in
figure 5.1. The notation ReS is sborthand for R = R n S. Most of the equations
are obvious, but there is one notable exception: the so----ealled modular law

R;5 n T c (R n T;5') ; 5 . (5.2)

The modular law is more commonly known as Dedekind's rule [80]. It is usually
stated as

R;5 n T c (R n T;5'); (5 n R";T)

which, ill the presence of the other axiOIllil, is equivaJent to the modular law. A
detailed discussion of various formulations of the modular law can be found in [6J,
appendix B. In what follows, we shall often use the following special case of the
modular law:

R;h n T ~ (R n T;h'); h . (5.3)

5.4.2 Proposition (Freyd and Seedrov [40], pp. 79-80) Let E be a regular
category. Then Rel(£) is an allegory.

5.4.3 Many of the notions that were defined for the special case of Rel(E) can be
generaJi~ed to arbitrAry allegories. For instance, it makes sense to speak of entire

Allegories 65

morphisms, simple morphisms and maps. Also, a pair of maps h : E_A, k E_B
is called a tabulatjon of R : A _ B if

hO ; k = R and h;ho n kjkO = E

(cf. proposition 5.2.11). The modular law is llseful in proving properties of these
concepts. For example, it can be used to show that

F;(RnS) ~ (F;R n F;S)

for all simple morphisms F:

F;R n F;S c F;(R n F';F;S) C F;(RnS)

The reverse containment F; (Rn S) c (F;R n F;S) is one of the allegory axioms.

5.4.4 Let C be an allegory. A morphism R : A _ A in C is said to be coreflexive
if it is coutained in A. The family of all corefiexive morphisms on A is denoted by
Cor(A). Oue can think of corefiexive morphisms as subsets of A. Indeed, if C is
tabular, coreftexives on A are in one--to--one correspondence with subobjrcts oC A
in Map(C); the bijection AJ' _ Cor(A) is given by

[m]1----+ mO;m.

In any allegory, a coreBexive relation is symmetric (RO = R) and idempotent
(R ; R = R). As an example, let us prove that corefiexive implies symmetric;
idempotency is proved in a similar fashion. First note that by the modular law,

R ~ DR;R nRc (DR n R;R'); R c R; R'; R

for any R. Now assume that R is coreBexive:

R c R;Jr>;R C AjJr>;A = n°.
The reverse containment follows hy substituting R<J for R.

5.4.5 The domain of a morphism R is defined as

<R ~ DRn R;R'.

It is characterised among coreflexive morphisms C by the equivalence

<FCC ¢> RCC;R.

Note tha.t a morphism is entire iff its domain coincides with its source. The domain
of the converse of R is called the range of R, a.nd it is denoted by R'>. The next
two paragraphs list some properties of the domain operator tha.t will be useful in
the seqnel.

66 ReglJlar Categodes

5.4.6 Proposition (Freyd and Seedrov [40], pp. 198-199) In any allegory, the
domain operator has the following properties:

«R; S) = «R; <S) (5.4)

h;<R ~ «h;R);h (5.5)

<R;h c h;«hO; R) (5.6)

«RnS) = <Rn(S;R") (5.7)

SnR c <R;S (5.8)

5.4.7 Proposition (Backhouse et al. [6], p. 155) Let TJ a.nd £ be regular
categories, and let F : TJ ----Jo £ be a relator. Then F" preserves domains.

5.4.8 Not every a1legory is of the form Rel(£): one needs to impose two additional
properties which (unlike the allegory axioms) cannot be phrased as simple identities.

First, one needs to ensure the existence of a tenninator in the subcategory of
maps. An elegant way of doing this is the following. Say that an object T in an
allegory is a partial unit if the identity oT is the maximum morphism from T to
itself. A partial unit T is called a unit if for every ohject A there exists an entire
morphi6m A -+ T. The terminator in a regular category £ is a unit in Rel(£). An
allegory that has a unit is said to be unitary.

Proposition (Freyd and Scedrov [40], p. 202) Let C be a. unitary allegory. Then
T is a terminator in Map(C). Furthermore,

«.); C(A,r) ~ Co.-(A)

is an isomorphism of serm-Iattices. Its inverse is

('; 1.); Co.-(A) ~C(A,r)

where !A is the unique map A -+ T.

5.4.9 The second addition to the allegory axioIJl.'j says that there exillt enough
subobjects - enough to have images and finite limits. Formally, we require that
every morphism has a tabulation. If an allegory satisfies this condition, it is said
to be tabular.

5.4.10 Proposition (Freyd and Scedrov [401, pp. 201-202) Let C be a unitary
tabular allegory. Then Map(C) is a regular category, and Rel(Map(C)) is isomorphic
to C.

5.4.11 Let Reg be the category of small regular categories, where the morphisms
a.re functors that preserve finite limits and images. Furthermore, let All be the
category of small unitary tabular allegories, where the morphisms are functors that
preserve reciprocal, intersection and units. By the propo:'iitions about extending
fnnctors (5.3.7, 5.3.9,5.3.11), together with the results that relate regular cat.egories
to allegories (5.2.10, 5.4.2, 5.4.10) we obtain the promised theorem:

Theorem (Freyd and .scedrov [401, p. 204) The category Reg of small regular
ca,tegories is equivalent to the ca,tegory All of smail unitary tabular allegories_

5.4.12 Allegories are not the only way to characterise categories of relalions. In
particular, there exist other characterisations where intersection and reciprocation
are not primitive [26, 22]. At the time of writing, I do not have an adequale under
standing of this work, and therefore I cannot judge whether those characterisations
conld be helpful in the present context.

6 Toposes

A regular category has, in a. sense, all tbe structure needed to reason about sub
objects. Regular categories are however still a. long way from providing a. fonn of
set theory; there are no arrows for the membership relation, subset inclusion, or
existential quantification. How could one add these set theoretic concepts to the
categoriral calculus of relations? The main idea is to take the isomorphism between
relatioD~ A _ B and set-valued functions A _ PB as fundamental. This is the defi~

nition of a tapas; a reguJar category f where the graph functor G: £. _ Rel(£) has
a. right adjoint. In section 6.1 below, we shall consider the definition of a tapas in
more dl.'laiJ.

The isomorphism between relations and set-valued functions gives another in
terpretation for the results about exlending functors to relations. Not only can we
extend fllndors between toposes to the corresponding categories of relations, we
can also extend these functors to set-valued functions. This observation leads to a
different characterisation of relators in terms of so-called cross-operators. Cross
operators are a generalisation of the polymorphic cartesian product function.

The insight gained by studying cross-operators is then applied to relational al
gebras in a topos. The main result of this section says that the process of extending
functors preserves initial algebras. This theorem was proved in a set theoretical con
text by Eilenberg and Wright; the intnxluction of cross-operators makes it possible
to reproduce their proof in an arbitrary topos.

After this short discussion of applications, we return to the definition of toposes.
In the preceding chapter it was shown how regular categories can be defined in
terms of allegories. A similar characterisation is possible for toposes, by adding a
few operators and axioms to the definition of allegories.

This chapter is closed by a detailed study of the existential image functor. It
is sbown that in any topos £, 3 : £ -. £ is a relator. Furthermore, we give an
alternative cha.racterisation of its extension 3*, which relates it to the Egli-Milner
ordering in the semantics of programming languages.

68

6.1 The Definition of a Topos

6.1.1 A topas is a regular category £ where the graph functor G: £ _ Re/(£) has
a rigbt adjoint. fn what follows, we shall consider this adjunction in its equational
presentation:

(G,3,{-J,3) : f~Rd(f)

is called the power adjunction, where G: £_ReI(£) is the left adjoint, 3: Rel(E)---+£
is the right adjoint, {-} : £ -t (3 oG) is the unit, and :3 : (G 0 3) _ Rel(f) is the
caunit. Furthermore, we have the s()--caUed triangular identities, as illustrated by
the commuting triangles below:

3 GG{-}G030G

{}31~ ~J3G
3oGo3--rr 3 G

This definition of a topos is not very economical. The proof that it is equivalent to
other, more concise definitions in the literature Lan he found in [40]. p. }.58. The
object 3 A is called the power object of A; it is customary to denote it by PA.

6.1.2 The primary example of a. topos is the category of sets and total functions,
and it will be instructive to interpret the data given above in this specific instance.
The right adjoint 3 ; Re1(£) ---t £ sends a relation to its existential image

(3 R)x ~ {b I 3 a : a E x A a(R)b} .

It follows that 3 oC is the covariant powerset functor that ta.kes a function to its
existential image. The unit of the adjunction is {-} : £ -. (3oG), the natura.l
transformation that forms singleton sets:

{-JAa ~ {a} (0' a EA.

The notation for the counit of the adjnnction,

3: (Go 3)~ Rd(f)

rightly suggests that this is the collection of has--element rela.tions. The union of a
family of sets is a natural transfonnation

u: (3oC)' ~ (3 oC)

70 Toposes

that may defined as U = 33 G. The triangular identities are siIIlple laws in set
theory: a. singleton has only one element

B = G{-lB;3B

and the union of a singleton set gives its element:

PB = 3GB = {-J,GB;33GB = {-}PB;UB'

This last equation is sometimes called the one-point rule. It does not seem to cause
confusion if one writes 3 instead. of 3 oG, and from now on we shall do so.

6.1.3 The triple (3, {-), U) is an example of a monad. To explore further prop
erties of the power adjunction, we shall need some basic facts ahout monads and
their rela.tionship with ad.junctions. These facts are reviewed below; we return to
the power adjunction later. A more gentle introduction to monads that emphasises
applicatious in functional programming is Wadler's paper [96J.

6.1.4 Let C be a category. A monad in C is a triple

(F,q,~)

where F: C-+C is an endofunctor on C, and 1] : C-+F and 1.J : (FoF)_F are natural
transformations. Furthermore, these operators satisfy the so-called associative Jaw

pF ; p = F1.J; 1.J

as well a.B the unit laws

Fq ; ~ = F = qF; ~

The calculus induced by the monad laws is rich, and two derived la.ws that will be
expedient in later calculations are the following: for all h : A -+ B

Fh = F(h;qB);~B,

and for all k: A -+ FB
k = 1]..4; Fk; 1.JB .

In some proofs, we shall refer to these properties by the hint: '(F,'TJ,1.J) monad'.

As mentioned above, the triple (3, {- },U) is an example of a monad in S~t. The
monad laws are familiar identities in set theory like the fact that union distributes
over itself:

U3;U = 3U;U·

The Definition of a Topos 71

6.1.5 Proposition (Huber [53]) Let (F, U, 1}. () e -..->. 'D be an adjuncUon.
Then

m ~ (UoF,q,U<F)

is a monad in e. \\'e say that m. is the monad defined by lhe adjunction (F, U, 1}. t).

It follows that in any topos [; the power adjunction defines a monad

(3, (-),U) .

This monad is said to be the power monad of E.

6.1.6 Given the fact that an adjunction determines a monad, the next question
to ask is wbether every monad can be obtained from an adjunction. This is indeed
the case, and there exist two extremal ways of constructing an adjunction that
defines the given monad. The following three paragraphs snmmarise one o[these
constructions, due to H. Kleisli [59j.

6.1. 7 Let e be a category, and let m. = (F, 'f}, p) be a monad in e. The Kleis/j
category ofm, denoted em, is defined as follows. Its objects are the same as those
ofe. If h: A __ FB is an arrow in e, tben

h':A-+B

is an arrow in the Kleisli category em. Composition in em is defined by

k~;hh = (k;Fh;pc)P

[or kb : A -+ B, h~ : B -+ C in em. Finally, the identity arro..... s in em. are given by

A = ('}A)".

6.1.8 Them'em (Kleisli [59]) Let e be a category, and let

m = (F,q,p)

be a monad in e. Define two functors F m : e -+ e'" and Um : em -+ e by

Fm(J:A~B) ~ (J;q8)':A~B

and
um(k': D~E) ~ (Fk;PE): FD~FE.

Furthermore, define a natural f.ransfonnation (: (Fm 0 um) _ em by

(A = (F A)'. Then
(pm, urn, 1}, () : e ~ em

is an adjunction and this adjunction defines the given monad m.

72 Toposes

6.1.9 The adjunction described in the preceding theorem is in a sense initial
among the adjunctions that define the given monad. This fact is expressed by
the following result, which is known M the Comparison Theorem for the Kleisn
construction.

Theorem (Schubert [81), p. 330) Let (F, U, 71, e) C ---" 'D be au adjunction, and
Jet

m = (UoF,~,U,F)

be the monad it defines in C. Define a functor L : Cm
---I' 'D by

L(hf,A~B) = (Fh"FB),FA~FB.

Then L is the unique functor such that

UoL=um and LoF"'=F And L(UFA)b=eFA.

The functor L is said to be the comparison functor. The comparison functor is An
isomorphism iff F is bijective on objects.

6.1.10 Let £: be a topos. The graph functor G : £: ---I' Rel(£:) is a bijection on
object5. Therefore, as an immediate consequence of the above theorem, the Kleisli
category £:P of the power monad

P = (3,{-},U)

is isomorphic to the category of relations Rd(£:). This means tha.t relations and
set-valued functions are not only isomorphic at the level of hOIruiets: they are also
isomorphic as categories. The isomorphism is given by the power transpose functor
A, Rd(E)~f'

A(R,A~B) ~ ((-}A'3R)'.

and its in.verse
A-'(hf,A~B) ~ h;~B

which is the comparison functor £:P ---I' Rel(£:). The Kleisli category E:P is an order
enriched category, where the partial order on the homsets is inherited from the
category of relations Re/(£:):

(h c k) (A-'h c A-'k)

for h,k :A---I' B in cPo

The Definition of a Topos 73

6.1.11 The comparison theorem for the Kleisli construct.ion also ha" other appli
cations that are relevant to computing science. For example, consider the caLegory
of simple relations Simple(£) over a tapos £. It is a theorem of Lawvere and Tierney
that the embedding £ -+ Simpl£:{£) has a right adjoint. The comparison tbeorem
gives the well-known isomorphism between partial funct.ions as simple relations,
and their representation by means of pointed sets. The latter representatiall has
heen advocated as a model of exceptions in functional programming languages, e.g.
[92]. The adjunction between £ and Simple(£) will be further discussed in the next
chapter.

6.1.12 Let us close tbis section about the definition of toposes by summarising
a few flmdamental properties that will be useful in th(' sequel. Proors of these
facts may be found in the book by Freyd and Scedrov [40], or indeed in any ot.her
textbook about topos tbeory.

6.1.13 Proposition In a topas, covers and epics coincide.

6.1.14 Proposition A tapas is cocarte.~;an (it has all finite colimits).

In particular, a topos has an initial object O. This means that for every pair of
objects A and E, there exists a least relation 0 : A -+ B, which is represented by
the initial object:

o

A/ ""B

This collection of zero relations acts as a zero with respect to composition:

R;0~0~0;R.

The proof relies on the fact that in a topos, any morphism A ---Jo 0 is an isomorphism.

6.1.15 Proposition In a topos, the coproduct injections are monic, and their
pullback is the initial object. Furthermore, if

74 Toposes

A---.1- B A/~B

91 jk and g'] jk
C----;;-D C'-D

h'

are pullback square8, tben

A +A,If,!'] B

9+9'[jk

C+C'lh,h'] D

is a pullback square as well.

6.1.16 The above proposition has a number of important COllE;equences for re
lations. First of all, it implies that the coproduct functor is a relator. Using the
extension of the coproduct functor to relations, one can define the least upper hound
of two relations in the following way:

RUS = [A,A]';(R+'S);[B,B]. (6.1)

The least upper bound R U S is said to be tbe union of Rand S. Note that
the definition of union is dual to the characterisation of intersections in terms of
products (eq. 5.1, par. 5.3.9). It is however not true that all properties of union
are dual to those of intersection. For example, composition distribute8 over union
of relations:

R; (SUT) = R;S U R;T, (6.2)

and the domain operator distributes over union as well:

«RuS) ~ <RU<S.

Neither of these equations is valid for intersection.

The properties of the coproduct injections which are stated in the above propo
sition can also he expressed in terlIlB of relations. For example, the fact that Ll and
t2 are monic is expressed by

tl;tlO=A and t2;t2o =B. (6.3)

Ccoss-operators 75

The following equations say that the pullback of the injections is the initial object:

Ll;~O=0 wd ~;Llo=0. (6.4)

Fina.lly, the coproduct injections satisfy a property which is dual to our earlier
characterisation of tabulations:

L10;LtUL:/;t2 = A+B (6.5)

(cf. proposition 5.2.11). From the last three equations, one may deduce that A +B
is a coproduct in Rel(c), where the coproduct a.rrow is given by

[R,S] = Ljo;R U L2
o ;S. (6.6)

Because Rei(£) is isomorphic to its own dual, we conclude that (A + B) is also a
product in the category of relations. The paper by Backhouse et al. [6] contains
an exhaustive treatment of the algebraic identities that may be derived from these
observations.

6.2 Cross-operators

In the previous section, it has been shown how the basic operators of set theory
can he defined in terms of the power adjunction: membership, singleton, nnion,
existential image. Some form of cartesian product (a collection of arrows XA,B ;

PA xPB-l p(A x B)) is still missing. This section is an exploration of various fonns
o(cartesian product in a tapas. It will be shown that there exists an isomorphism
between such CTOss-operators and extensions of functors to relations.

6.2.1 Let V and c be tOp08eS, and F : V _ c a fundor. A cross-operator On F
is a natural traruformation

l' (Fo 3) ~ (30F)

such that
F{-};1 = {-}F

F1);1 = 13;31;UF

and (or a.ll arrows g, h : A _ PB in V

l C hb implies (Fg; 1B)' C (Fh; 1B)~ .

This last requirement is just a monotonicity property, and the first two eqnations
are also quite natural when one considers the types involved:

76 Toposes

F Fo303 FU Fo3

Fl-)] ~ ,31 I,
I

F 0 3----:=y--3 of 3 of 0 33'r3 0 3 of----07'3 of

6.2.2 True category theorists will recognise a similarity between cross-operators
and the Dotion of distributive laws, a.s introduced by Beck [8J. Indeed, we shaU use
cross-operators to describe distributivity properties in chapter 8. We are not the
first to perceive the importance of Beck's distributive laws in computing science;
Poigne has demonstrated how they can be used in the analysis of powerdomains
[78]. Another concept that is similar to our cross-operators are the distributive
laws introduced by Manes, who also used them in a treatment of nondeterminism
[65].

6.2.3 Let D and E be tOpose5, and F : V --+ E a functor. A functor between the
corresponding Kleisli categories K : 1Y' --+ EP extends F if

KoFP=FPoF.

Because A-1 0 FP = G, this is consistent with the earlier definition of extends in
sectionS.3.ll: K: LJP--+EPextends F if and only if(A-1oKoA): Rel(V)--+Rel(£)
extends F.

6.2.4 Theorem Let D and £ be toposes, and F : V--+E a fundor. The following
three statements are equivalent:

1. F is a relator.

2. There exists a cross-operator on F.

3. There exists a unique cross-operator on F, namely

(FIAl' ~ APA-'(PA)'.

ProoC In a sequence of three lemmas, it wiU be shown that there exists a bijection
between functors that extend F and cross-operators on F; the theorem then follows
by propositions 5.3.7 and 5.3.11. Since the proofs are somewhat laborious, the
reader may wish to slcip them on first reading.

Cross-operal,ors 77

6.2.4.1 Lem:rna Let J) and £ be toposes, and let F : J) --+ £ and K : V --+ £P

be functors. Deflne 7B by
(8)' ~ K(PB)'.

Suppose tbat K extends F. Thea (or all hb
: A --+ B in J)P.

(Fh ;78)' ~ Kh'.

Proof

(Fh;78)'

{ p = (3, (- },U) monad 1
(Fh; (- lFP8; 378; UF8)'

{ Kleisli construction (par. 6.1.7)

FPFh ;7B'

{ K extends F

KF'Ph; "IB
b

(def.7l

KF'h; K(PB)'

{ K functor }

K (F" h ; (PB)')

{ theorem 6.1.8, triangular identity

Kh'

6.2.4.2 Lemma Let J) and £ be toposes, and let F : J) --+ £ and J{ : DP --+ £P

be functors. Suppose that K extends F. Then 7A defined by

hAl' = K(PA/

is a cross-operator on F.

Proof We shall check that 7 satisfies the four axioms of a cross-openlor on F,
i.e.

78 Toposes

1. ,,(Fo 3) ~ (3oF)

2. F{-};, = {-)F

3. FU;, = ,3;3,;UF

4. ge h implies Fg; fB C Fh; /B, for all g,h: A --+ PB in 'D.

We deal with each of these proof obligations in turn.

L We aim to show tha.t "1 is a. natural tra.nsforrnation from F 0 ::r to 3oF. Let
h: A --+ B be an arrow in D. By a. calcula.lioD tha.t is analogous to the proof
of lemma. 6.2.4.1, one finds that

b. ;3 Fh)' = K(3 h)' .

By	 lemma 6.2.4.1 itself, we have K(3 h)~ = (F3 h; IB)b, a.nd therefore

F3h;1'B = IA;3Fh,

a.c; required.

2. We aim to show
F{-);, ~ {-)F.

Let A be an object of 'D.	 One may calculate as follows:

(F{-). ;,.)'

{ K extends F, lemma 6.2.4.1

K({-).)'

{ def. identity in DP

KA

{ K extend, F)

FA

{ def. identity in £P

({-)FA)'

3.	 We aim to show:

FU;, ,3;3,;UF.

Cross-operators 79

Let A be an object of V. Tben

(FUA ; 'AJ'

{ K extends F, lemma 6.2.4.1 }

K(UA)'

{ identity arrows }

K(PPA;3 PA;UA)'

{ Kleisn construction (par. 6.1.7) }

K((PPA)'; (PA)')

{ K functor }

K(PPA)'; K(PA)'

{deL,)

(-,PAJ'; (,AJ'

{ Kleisli construction }

hPA ; 3'YA ; UFA)P

4. Let g, h : A --+ PB be arrows in V such that l c hb• The aim is to show

(Fg; 'B)' C (Fh; 'B)' .

By lemma 6.2.4.1, this follows immediately from the monotonicity of IC

6.2.4.3 In the preceding lemma, we bave shown that there exists a mapping from
functors that extend F to cross-operators on F. By lemma 6.2.4.1 this mapping is
injedive, since it says that one may recover K from the cross-operator hE) = K B
and F itself:

Kh' = (Fh ;'B)' .

Now suppose that 'Y is an arbitrary crosl5-operator on F. Does the above construc
tion of K in terms of F a.nd 'Y still yield a functor that extends F ?

Lemma Let V and £ be toposes, and F : V --+ £ a functor. Let I be a. cross
operator on F, and define

K : IJP --+ £P

by
KA FA

K(h"A~B) (Fh;'BJ" FA~FB.

80 Toposes

Then K extends F and for all A, (-rA)' ~ K(PA)'.

Proof We shall check the following proof obligations in turn:

1. K is a morphism of graphs.

2. K preserves identity oUTOWS.

3. K preserves composition.

4. K is monotonic.

5. K 0 FP = .FP 0 F.

6. (-rAJ' ~ K(PAJ'.

1. We aim to show that K is a morphism of graphs.

hP : A_ B in Dr>

.. {def. 1)" }

h :A_ PB in D

=> {F,D~E}

Fh:FA_FPB in £

=> {., , F 0 3 ~ 3 of }

(Fh;'B),FA~PFB in E

.. {def.ofE'}

(Fh;'B)',FA~FB in E'

.. {def.oIK}
Kh:KA_KB in £P

2. We aim to show that K preserves identity arrows.

K({-)S

{def.ofK)

(FO A;-rA)'

Cro.~s-operatoTs 81

{	 I cross-operator on F }

({-}FS

{deLofK}

({-}KA)'

3.	 We aim to show that K preserves composition. Let h~ ; A----1o Band l ;B----1oC
be arrows in '[)P.

K(h' ;g')

{ def. of K, Kleisli construction

(F(h;3g;UC);ld

{	 F functor}

(Fh;F3g;FUc;lc)'

{ I cro8s-operator on F }

(Fh; F3g; 1Pe; 31C; UFC)'

{1: Fo3~3oF}

(Fh ;lPB; 3Fg; 31c ;UFC)'

{	 3 functor }

(Fh ;lPB; 3 (Fg ;lc) ;UFC)'

{ def. K, Kleisli construction }

Khb;Kg"

4.	 We aim to show that K is monotonic. Let l, h~ : A ----10 B in VP such that
9~ C h~. Then

Kg'

{ del. K

(Fg;lB)'

C { I cross-operator

(Fh;lB)'

{deLK}

Kh'

5. We aim to show that
KoFP FPoF.

Let h : A -+ B in 'D. Then

KFPh

{ def. F' }

K(h; {-}B)'

{def.K}

(F(h; {-}B); ~B)'

{ F fundo' }

(Fh; F{-}B; ~Bl'

{ '1 cross--operator on F

(Fh; {-}FB)'

{ def. F' }
F'Fh

6.	 We aim to show that
bAl' = K(PA)',

where A is an arbitrary ohject of 'D. This is immediate from the definition of
K;

K(PA)' = (FPA;~Al' = bAl'.

This completes the proof of the lemma, and hence of theorem 6.2.4

6.2.5 Cross--operators are ubiquitous; below we give seven examples that fre
quently occur in computing science.

1.	 As a very trivial instance, consider the identity functor on a topos E. Its
cross-operator is 3, the identity transformation from 3 to itself.

2.	 Let V and & be toposes, and A an object of c. The constant functor

KA:'D-c

maps all arrows in 'D to the identity on A. Here the cross-operator is given
by

(KAj)B = {-IA' (6.7)

Cross-operators 83

3.	 The motivating example for the definition of crosll-operators is the product
functor

x: (Set x Set)_ Set.

Both (Set x Set) and Set are toposes. The cross-operator (x)t is the natural
transformation that returns the cartesian product of two sets. Naturality
means here that

(3/s) (x)te,D (3gt) = 3 (/xg)(, (x)t.,B t)

where .5 ~ A, t ~ B. f : A - C and 9 : B _ D. To instantiate the cross
operator axioms. observe that if E is a topos with power monad (3, {- loU),
(f x E) is a topos with power monad

((3x3), ({-}'{-ll, (U,U))·

The first cross-operator axiom therefore reads

({-)x(-));(x)t = {-)(x) ,

and it says that the cartesian product of two singletons is again a singleton.
The second cross-operator axiom

(UxU);(x)t = (x)t(3x3);3(x)t;U(x)

sa.ys that cartesian product distributes over arbitrary unions. The last re
quirement in the definition of cross-operators states that (x)t is monotonic
with respect to set inclusion.

4.	 The cross-operator of the coproduct functor

+ : (Set x Set) ~ Set

is a coproduct itself:

(+)t.,B = [3',,"',1 (6.8)

where tl : A --+ (A + B) and t] : B _ (A + B) are the injections into the
coproduct.

5.	 The list functor L : Set --+ Set discussed in paragraph 5.3.8 has a cross
operator that is very similar to cartesian product. Informally. it is given by
the following set comprehension:

LtA[XI,X]•...• XnJ = {[al,a], ... ,an] I Vi: a. Ex.}.

6.	 Also in paragraph 5.3.8, we considered the exponential functor

(A=»,Sd_S,'.

Its cross--Qperator is

(A,,*)tcU,A-E'C) = {g,A_CI VaEA,gaEfa}.

7.	 Tbough the above examples may suggest otherwise, it is not always easy
to give a succinct description of a croos-operator. An example of this phe
nomenon is provided by the croos-operator on the existential image functor
3,

3jN{ {1,2),{4,5},{6})

{	 {l,4,6), {l,5,6), (l,4,5,6), {2,4,6), {2,.5,6)' {2,4,5,6}
{l,2,4,6}, {l,2,5,6), {1,2,4,5,6))

This example also shows why the monotonicity condition in the definition of
cross-operator is necessary: ,= u; {- }3 preserves singJetous and distributes
over union, but it is not monotonic.

6.2.6 The remainder of this section is devoted to developing a small calculus of
cross-operators. In this calculus, there is no longer any use for the Kleisli category
of the power monad. For this reason, the power transpose AR of a relation R will
be regarded as an arrow of £, not of the Kleisli category £P.

To start with, let us mention that t\-I(PA) = ~A, and that cross-operators
may therefore be written in terJrul of the membership relatiOIl:

Fj ~ AF'3.	 (6.9)

The identity A-1(PA) :::: ~A is stated in the comparison theorem for the Kleisli
construction (par. 6.1.9).

6.2.7 Proposition Let V and £ be toposes, and let F : V _ £ be a. relator.
Then for R : A _ B in Rel(V)

AF'R FAR; Fin.

Proof

APR

Cross-operators 85

{A-'oA=l}
AF'A-'AR

{ A 0 F* 0 A-1 extends F, lemma 6.2.4.1 }

FAR ;FIB

6.2.8 Proposition Let D and E be toposes, and let F : V C be a relator. ---oJ

Then for R : A _ B in Rel(D)

F3R;FIB = FIA;3F'R.

Proof

F3R;FIB

{ prop. 6.2.7 }
AF'A-' 3R

{ power adjunction

AF'(3A ; R)

(F* functor

A(F'3A ; F'R)

{ power adjunctiou

AF'3A; 3 F'R

{ cross-operator (eq. 6.9)

FIA;3F'R

6.2.9 Proposition Let C, V and C be tOpOSe5, and let F : C_ TJ and H : V-C
be relators. Then H 0 F is a relator and

(H 0 F)j ~ H(Ft) ; (Ht)F.

Proof The fact that (H 0 F) is a relator is trivial. It therefore remains to show
that the following diagram commutes:

86 Toposes

H 0 F 0 f.!-(FtlH 0 3 of

(H~ I(Hj)F

3oHoF

Let A be aQ object of C. We calculate as follows:

(HoF)tA

{ thoo<em 6.2.4 }

A(HoFrA·'(PA)

{(-r functm }

AWPA·'(PA)

{ A isomorphism }

AWA·'APA·'(PA)

{ theorem 6.2.4 }

AWA·' (FtA)

{ prop. 6.2.7 }

H(FtA) ; HtFA

6.2.10 Proposition Let C, V and [; be loposes. Furthermore, let F : C-j. V
and H : C -j. [; be relators. Then thdr product

(F, H) ; C~ (V x 0)

is a relator and for any object A ofC:

(F,H)jA = (FtA,HtA)'

The projection functor
11, ; (V x £) ~ V

is also a relator, and
(Il,)t = 311,·

This proposition may be proved by verifying that the cross-operator axioms hold.
As the reader will imagine, such a proof is not particularly enlightening, and there
fore it is omitted.

Relational Algebra.s 87

6.3 Relational Algebras

Relational algebraB have received considerable attention in the computing literature,
notably in connection with nondeterminism. For instance, Eilenberg and Wright
[361 show how relational algebras can be used in tbe study of nondetenrunistic
automata. Extending this work, Goguen and Meseguer [44J use relational algebras
in deacrihing the semantics of recursive parallel nondeterministic Bow programs.
Here we recall some of these earlier results, slightly adapted to the present needs.

6.3.1 Let £ be a category and let F be an endofunctor on £. An F-algebra is an
arrow of type

k,FA~A.

For example, consider the set L of non--empty finite lists with elements from E.
The function [-] : E --+ L takes an element and turns it into a singleton list. The
binary operator (:) : (E x L) --+ L takes an element and places it at the front of a
list:

eo: [el,e2, ... ,e"j = [eu,el,e2, ... ,en J.
The coproduct of [-] and (:) is of type

[[-], (:)J: (E + (E x L)) ~ L .

It follows that this coproduct is an F-algebra, where F : Set --+ Set is the functor
defined by

FA ~ E+(ExA)
Fk=E+(Exk).

6.8.2 Let k : FA --+ A and 1 : F B --+ B be F-algebra.s. An F-homomorphism
from k to I is an arrow h : A --+ B such that the following square commutes:

A-lL..B

k))1
FAF"C FB

It may be checked tbat the composition of two F-homomocphisms is again an
F-homomorphism. The F-algebras in £ thus form the objects of a category £F,
where the arrows are F-homomorphisms. For many functors F, this category ha.s
an initial object, which we shall denote by

p(F) .

88 Toposes

If k is another F -algebra, we shall write

UkDF

for tbe unique F-homomorphism from /.l(F) to k. Sometimes, when F is clear from
the context and no confusion is possible, we shall drop F from this notalion and
simply write QkD.

6.3.3 An example of an initial F-algebra is the data type of lists discussed in
paragraph 6.3.1. In many functional programming languages, one finds the so
called fold-right operator on lists. It is usually defined by two recursion equations

(fold'k(0))[e] = ke
(fold,k(0)) (a , x) ~ 00 ((fold'k(0))x).

These equations are equivalent to the statement that (fQfdrk (0)) is an F-homo
morphism:

(fold'k(0)) , [[-I, 01 ~ [k,01 .

One may prove this equivalence by a simple calculation, using the defining prop
erties of the coproduct. As [[-J, (:)J is the initial F-algebra ,.,(F), it follows that
(fold'k(0)) = alk,0IDF·

6.3.4 Another example of an initial F -algebra is the following definition of natural
numbers. Here the fundor F is defined as

FA = r+A

Fh = r+h

where T is the terminator. The initial F-algebra is the coproduct arrow [O,succJ.
When this initial F -algebra does exist, we say that the category under consideration
has a natural numbers object.

6.3.5 HomomorpbisIilll on an initial F-algebra occur much more frequently in
programming problems than is usually realised. A particularly lucid account of
their importa.nce and the relevant properties is Malcolm's recent paper [64]. It
would not do justice to Malcolm's work to try to summa.rise it here; we just quote
two propositions that will be useful in later proofs.

Proposition (Malcolm [64]) Let £ be a category, and let F : £ _ £ be a fUlletor
such that the initial F -algebra exists. Let hand k be F -algebras. and

g: h> _ it>

ReJationa1 Algebras 89

anarrowin£. Hh;g=Fgjl: then

ahDF ;9 akDF·

6.3.6 Proposition (Lambek [61]) Let £ be a category, and let F : £ -t £ be a
functor such that the initial F-algebra 1l(F) exists. Then jl(F) is an isomorphism
in E.

6.3.7 The preceding paragraphs summarised the standard results on F-algebras.
We now proceed to consider relational algebras, namely the category

Re1(£),.. .

In [36], Eilenberg and Wright mentioned in passing that the initial ohject of this cat
egory coincides with Jl(F) - though their definition of algehras is slightly different
from ours. The follOWing theorem shows that despite these differences, Eilenberg
and Wright's result is still true. Let £ be a tapas, and Fan endofunetor on £.

Theorem (Eilenberg and Wright [36]) Let E be a topos, and let F : £ -t £ be a
relator that has an initial F-algebra jl(F). Then p(F) is also an initial F"-algebra.

Proof Let R : FA -t A he an F*-algebra. We have to exhibit a unique arrow
aRD that mak",

FT-E!!l. T

paRDj laRD
FA~A

commute. Because jl(F) is an initial F-algebra, UFtA j3RD is the unique arrow
making

FT ~(F) T

FaFtA ; 3 RDj jaFtA ;3 RD

FPA FtA PFA37f" A

commute. Since A is an isomorphism and

A-'(F1FtA;3RD;FtA ;3R) = F'(A-'1FtA;3RDJ; R,

it follows that we can take dRD = A-1dFfA ;3 RD.

6.3.8 How could one think of arrows in Rel(E)F*' and in particular, what is the
intuitive interpretation of homomorphisms of the form

1hD,. ?

Recall the data type of finite lists, as introduced in paragraph 6.3.1. It is the initial
F -algebra, where F is the endofundor ou Set given by

FA = E+(ExA)

Fk = E+(Exk),

for some given set E of elements. The above theorem says that it does not matter
whether we consider tbe functional F-algebra Jl(F) or the relational F*-algebra
Jl(F*): both denote the same data type. Let us now look at a typical example of a
relational homomorphism on that data type.

Define a relation 0: (E x E) -+ PE by

o = 1r1 U 1l"~ •

One may think of 0 as a binary operator that selects either of its arguments in a
nondeterministic fashion. Similarly,

mE, DID

is a nondeterministic mapping that selects an arbitrary element from its argument
list. Less operationally speaking, one could say that mE,oJD is the ba.s--e/ement
relation on lists.

6.3.9 It is often awkward to check whether a functor is a relator that has an
initial algebra. The next few paragraphs present a sufficient criterion to help in
that task. It is not a necessary condition. but it covers many examples that arise
in computing science.

Let E be a topas. The class of polynomial endofunctors on E is inductively
defined hy the following clauses:

1. The identity functor on E is polynomiaL

Power Allegories 91

2.	 If A is an object of £, the constant functor which maps all arrows to the
identity on A is polynomial.

3. If G and H are polynomial functors, then G+H and GxH defined by

(G'tH)(k) G(k) + H(k)
(GxH)(k) G(k) X H(k)

ue also polynomial functors.

6.3.10 Proposition In a topos, polyno:rruaJ functors are relators that preserve
tabulations.

This proposition is immediate from the fact that in a topos, both the product
funct(lr and the coproduct functor preserve epics and pullbacks.

6.3.11 Proposition (Johnstone [56]) In a topos with a natural numbers object,
polyno:rrual functors have initial algebras.

6.4 Power Allegories

The definition of toposes in terms of regular categories suggests that one can phrase
the definition of a topos entirely in teIl11S of relations. What additions should one
make to the allegory rnoIllB? One possibility is to take the equational definition
of the power adjunction, and phral:ie it in the calculus of relations. That would not
give a set of simple containments, however. It is for example necessary to say that
f is a map in

!;{-)B = {-)A;3!.

Hence, a relational formulation of the power adjunction would n(lt be entirely equa
tional.

6.4.1 Freyd has proposed quite a different solution that takes universal quantifica
tion all primitive. This contrasts with a relational encoding of the power adjunction,
which is based on existential quantification.

The basic operator in Freyd's approach is the right-quotient R/5 of two rela
tions with a conunon target. This division operator can be cha.racterised by five

operation
HI S right-quotient of Rand S

axioms
O(RjS) ~ DR
(RjS)O ~ So

(R"nR,)jS C R"jSnR,jS
T C (T:S)jS

(RjS);S C R

Figure 6.1: The definition of right-division.

equations, which are displayed in figure 6.1. From these equations, one may deduce
the following equivalence:

T C RjS .. T; S CR.

In words, «-)1S) is right adjoint to «-) ; R). When you write out the definition of

RIS in ordinary set theory, you can see the connection with universal quantification:

x(RjS)y = 1/ x : y(S)z => x(R)z.

Before we get on to Freyd's relational characterisation of toposes, we expl<lre the

algebraic properties of division.

6.4.2 Proposition In an allegory that has right-division. t.he following are valid
equations:

RjS; r ~ RjU; S) (6.10)

h;RjS ~ (h;R)jS (6.11)

(R: k')jS ~ Rj(S; k) (6.12)

(RjS); (SjT) c RjT (6.13)

Rj(S,; S,J = (RjS,)jS, (6.14)

DR c RjR (6.15)

RjR;R = R (6.16)

Rj(RO) = R 16.17)

R;S n TjS' ~ (Rn T);S n TjS' (6.18)

Po-wer Allegories 93

operation
3R epsiloff of R
axioms
3RD RD
3R 3RC
DR C (R/3R) ; (3R/ R)
03R ::> (3R/3R) n (3R/3R)"

Figure 6.2: The definition of power alJegories.

6.4.3 Various other division operators can be defined in terms of right-division.
An example is left-division:

SIR = (II:' / S°)" .

Left-division is entirely symmetrical to right-division and therefore all facts about
right-division translate into properties of left-division. For instance, left-division
is characterised by the equivalence

T c SIR .. S;T CR.

6.4.4 A power allegory is an allegory with right-quotients, plus the additional
structure displayed in figure 6.2. 1 Let C be a power allegory. Then the inclusion of
Map{C) into C has a right adjoint, analogous to the power adjunction. The basic
idea. in constructing this adjunction is to define power transpose by

AR ~ (R/3R) n (3R/R)0 .

The proof that this works can be found in the book by Freyd and Scedrov [40], p.
236.

6.4.5 Theorem (Freyd .nd S1'edrcv [40], p. 236.) If f is. topos, then ReI(f)
is a unitary tabular power allegory. Conversely, if C is a unitary tabular power
allegory then Map(C) is a topas.

How is this theorem proved? To show that the maps of a unita.ry tabular power
allegory form a topos is ea.sy; we already discussed the relevant construction in the

lIn their definition or power allegories, Freyd &TId S&drov [40} require the existence of union
(u) and lero (I) in addition to division &TId epeiloff. On pAge 250, tbey prove that the union and
lero operators may be omitted.

94 Toposes

preceding paragraph. For the other direction, we need to show that every topos
has quotients. If we can construct the containment relation

;Js = 3B/38: PE - PE

we are done, for then it is possible to define

R/S = AR;:;JB;(AS)o.

Define the internal intersection map n A : (PA x PA) _ PA by

nA = A«3A x· 3A); (A, An .
Note that for any Rand S, A(R n S) = (AR, AS) ; nB . The conta.inment can now
be defined as follows:

0;)A = 11"1 ; (nA n 11"2)

The proof that this construction works makes use of the fact that a tahulation of
11"1

0
; (nA n "'2) is an equaliser of nA and "'2.

6.4.6 Note that the above theorem is not stated as an equivalence of categories.
Indeed, we did not investigate which relators preserve the additional structure of
power allegories. For instance, which functors preserve division? The answer is:
hardly any. Even the produet functor fails to preserve division, as may be checked
by writing out the set theoretical definitions. Still, in the sequel it will sometimes
be necessary to distrihute fnnctors over division. For this reason, we shaU intro
duce a variant of left-division, called strict left--djvision, which is preserved by aU
polynomial functors.

Consider a category that has division, and let Rand S he arrows with a CQmmon
source. The strict left-quotient of Rand S is defined by

R \\ S = W; R\S . (6.19)

Alternatively, it may be characterised by the equivalence

(TcR\\S) .. (R;TCS and <TCW). (6.20)

Some authors speak of weakest postspecification, typed factor or conjugate kernel
instead of strict left-divisjon. Two properties of (\\) will he useful in later cal
culations. The first says that (\\) and (-t interact like division and reciprocal in
number arithmetic:

R\\SCR:';S. (6.21)

The second property follows from the first, and it says that if m is a monic map,

R\\(S;m) = (R\\S);m. (6.22)

Note that neither of these identities is valid for ordinary left-division.

Power Allegories 95

6.4.7 Theorem Polynomial endofundors on a. topos preserve strict left-division.

Proof It is obvious that the identity functor and constant fundors preserve
strict left-division. In the next two lemmas, it is proved that the product and
coproduct functor preserve strict left-division as well. The theorem then follows by
induction.

6.4.7.1 Lemma In a topos, the product functor preserves strict left-division.

Proof Let E be a topos. We aim to show

(50 x* 5,) \\ (11. x* R,) ~ (50 \\ 11.) x* (5, \\ R,) .

The inclusion (:» is obvious. What about the reverse containment? Observe that
the product of E satisfies the following equations in Rel(E):

R x* 8 (1f1 ; R; 1fl°) n (1f;1:; S; 1f;1:0) (6.23)

«R x* S); 1fl; 8 (R x* 5);~, . (6.24)

These identities are discUflsed in a slightly different setting in [6]; here their proof
is omitted. We rea.'ion hackwards from the proof obligation:

(50 x* 5,)\\(11. x' R,) c (50\\11.) x* (5, \\R,)

{;> {equation (6.23), symmetry}

(50 x' 5,)\\(11. x* R,) c ~, ; 50\\11. ; ~,o

{;> {11'"(is a map}

~,o ; (50 x* 5,)\\(11. x* R,) ;~, c 50\\11.

{;> {strict left-division (eq. 6.20) }

50 ; ~,o ; (50 x' 5,)\\(11. x' R,) ;~, c 11. and
« ~,o ; (50 x' 5,)\\(11. x' R,) ; ~,) c 50'

We deal with each of these proof obligations in turn. The first is proved a.'i follows:

50 ; ~,o ; (50 x' 5,)\\(11. x' R,) ; ~,

C {equal;on (6.23) }

80 ; 1fl° ; (80 x* 8t}\\(1rl ; Ro; 1f10) ; 1ft

{ de!. (II) (eq. 6.19), divi';Dn calculus (peap. 6.4.2))

So; 'Il"lQ ; (So x* Sd\\(1r1 j ~J j 1ft O ; 11"1

{ 11"1 epic, proposition 5.2.5 }

So ; ~,o ; (So x· 5,j II (~, ;Ro)

{ def. strict left-division }

So ; 'Il"l" ; (So x.., 5,» ; (So X .. Sd\(1l"l;!ln)

{ equation (6.24), def. range}

.-,0 ; (So x· 5,) ; (So x· 5,j\(~, ,Ro)

{ division calculu.!J }

11'"]0; (So x* 51) ; (7l"}o: (So x .. SdJ\Ro

c {Ieft-divisiou }

n"

It remains to show that

« ~,o ; (So x· 5,)1I(Ro x' R,j ; <,) C 50>'

Here is a proof:

« <,0 ; (So x' 5,j II (Ro x' R,); <,)

{ domain calculus (prop. 5.4.6), 1r) entire]

« <,0 ; (So x' 5,) II (Ro x' R,))

c {strict left-division (eq. 6.21) }

«11",0; (So x .. Sdo ; (flo x .. R I »

c {domain calculus }

« 'trtO; (So x* SdO)

{ reciprocal, def. range }

«So x' 5,); <,»
{ equation (6.24)

«(So x* 51); 11"1 ; So»

c {domain calculus

So>

Power Allegories 97

6.4.7.2 Lemma In.ll. topos, the coproduct functor preserves strict left-division.

Proof Let £ be a. tOPOll. Recall that the coproduct of £ ill also a coproduct of
RrJ(£} (par. 6.1.16). It is therefore not necessary to write (+*) inlltead of (+).
Furthermore l to say that

(50+ 5,) \\ (110 +R,) ~ (So \\ 110) + (5, \\ R,)

ill to My that
'. ; (So + 5,) \\ (110 + Rd = (So \\ 110) ;', .

The latter equation is proved a.s follows:

" ; (So + 5,) \\ (110 + R,)

{ def. strict left-division (eq. 6.19)

" ; (So + 5,j> ; (So + 5,)\(110 + R,)

{ relators preserve range (prop. 5.4.7) }

" ; (So> + 5,»; (So + 5,)\(110 + R,)

{ Ll natural }

So> ;', ; (So + 5,)\(110 + R,)

{ division calculus (prop. 6.4.2) }

50>; «So + 5d; ,,°)\(110 + R,)

{ tl° na.tural }

50>; (,,0; 50)\(110 + R,)

{ division calculus}

50>; 50\(,,; (110 + R,»)

{ def. strict left;ccdivillion }

So \\ (" ; (110 +R,))

{ L1 natural }

So \\ (110; 'd

{ L1 monic, strict left-division (eq. 6.22) }

So\\~ i L1

98 Toposes

6.5 Existential Image

The existential image functor 3: £ _£ is a relator. We already mentioned this fact
for the special case of sets and total functions, but so far the proof was omitted.
That proof is given below; it turns out to be a simple application of the modular
law. We then proceed to explore further algebraic properties of 3 in the calculus of
relations.

Given the fundamental importance of 3 in the definition of a topos, it is not
surprising that its extension also plays a leading role. For example, the containment
relation

;), ~ 3,/3" PA - PA

is a natural transformation from 3 to ~. Using thi!> fact. it can be shown that

3' R ~ (E,\(R; EB)) n «3, ; R)/3B) ,

which means that 3'* R is precisely the EgJj-MiIner ordering from programming
language semantics.

6.5.1 Proposition Let £ be a topas. The existential image functor::3 : [, ---+ e is
is relator.

Proof That 3 preserves epics is dear: if e is an epic, then 3 e is a split epic with
left-inverse ::3 e" .

A weak pullback is like a pullback, except that the mediating arrow is not
required to be unique. Note any two weak pullbacks factor through ea.ch other.
Therefore, to show that 3 preserves pullbacks up to image, it suffices to show that
::3 : £ ---+£ preserves weak pullbacks. Since 3 : Rel(£) ---+£ is right adjoint, it preserves
weak pullbacks. It remains to show that the graph functor £ ---+ Rel(£) preserves
weak pullbacks. Again, because any two weak pullbacks factor through each other,
one only needs to prove that a pullback in £ is a weak pullback in Rd(£). Let the
following be a pullback square in £:

.~q~.

Pj 19
-f-

Let Rand S be relations in Rel(£) such that R; f = S; g. Define

T = RiP" n SjqO

Existentjal Image 99

We aim to show that

•
.~

~~j --L 19

• --f- •

commutes. As an immediate consequence of tbe modular law, we have that

T; p = R n S;qOjP .

Using this equation, we cakulate:

R=T;p

{::> {above, n greatest lower bound

RC S;qO;p

'" f (p,q) pullback of (J,g) }
RCS;g;r

'" ffmap}
R;fCS;g

<=} {assumption

true

By symmetry, we also have 5 = T; q.

6.5.2 Proposition Let T: A --t B. liT"; T = B, t.hen

T;EB C E",;3T.

Proof

T;EB C E",;3T

100 Topooe.

.. { reciprocal }

3BjTO C (3T)O;3A .. { 3' 3~Rel(f) }

3 T'; 3A C (0 T)'; 3A

<= { monotonicity

3T' C (3T)' .. {3Tmap}

3T';3T C PB .. { inclusion of maps

3T';oT ~ PB .. { 3 faithful fnnctor

TO;T = B

6.5.3 Proposition Let R: A-B. If R is entire,

3*Rj3B = 3AiR.

Proof

3*R; 3B

{ let (e, h) be a tabulation of R

(3')';oh;3B

{ 3' 3~R"(f) }
(3')';3c;h

{ see below

3AjeO;h

{ (e, h) t.abulation of R

:7A;R

In the penultima.te step, it was claimed that

(3er;:7c = :7A;eo.

Existential Image 101

By ~be properties of reciprocal, this is equivalent to

Ec;3e = e;EA

We aim to prove the latter identity by mutual inclusion. The containment (~) is
immediate from par. 6.5.2, since R entire implies e cover (par. 5.2.5). The inclusion
(C) follows from the fact that e is entire:

Ec;3e C ejEA

¢} {3,map}

Ec C ejEA;(3e)"

¢} { ~: 3 -+Re/(E), reciprocal }

Ec C e; eO ; Ec

¢} { e entire

true

6.5.4	 RecaU the containment relation JA: PA --+ PA

;:!A = ~A/~A,

which we briefly discussed in paragraph 6.4.5. From the properties of right-division,
it follows that containment is reflexive and transitive:

A C;:!A and (JA; ~A) C JA .

That containment is also a..nti-symmetric is expressed by one of the power allegory
a.xioJ1lS:

(3A/3A) n (3A/3Ar c PA.

6.5.5 Theorem Containment is a natural transformation J: 3 -+3*.

Proor Below we give the main argument; various: details are proved in the lerrunas
that follow this theorem. Let (h,k): C-...(A x B) be a tabulation of R: A -+ B.

:3R;;:!B

{ 3 functor}

:3h";:3 k; JB

102 TopCl8es

{ lemmas 6.5.5.1 and 6.5.5.2

3h"; :::Jc; 3 k

{ lemma 6.5.5.3

:::JA ; (3 h)" ; 3 k

{ def. (-)' }

;!A ;3*R

6.5.5.1 Lemm.a
3R;;!B ~ ;!A; 3R

Proof

;;!A.;3R c 3R;;!B

{def. ;!, division calculus (prop. 6.4.2)

:::JA;3R C (3R;3B)/3B

{right-division)

~A;3R;3B C 3R;3B

.. {3;3~ReI([)}

:;;;)A; 3A ; R C 3A; R

{division calculus (;;;!.; 3 = 3)

true

6.5.5.2 Lemma
3 h; ~B C ~A; 3 h

Proof Let (I,g) be a tabulation of 3h; ~B. Define

z = AU; 3A n g; 38 ; h") .

We have

3 h;:;;;)8

Existential bnage 103

{ (J,g) tabulation

rig

c {z entire

r;z;zO;g

C {see below

~A;3h

In the last step of this calculation, it was claimed that

r i z C ~A and zo; 9 C 3 h .

We deal with each of these proof obligations in tnrn. The first claim is equivalent
to

r; Zi 3A C 3A

by definition of~. This last inclusion can be proved as follows:

r ;Z; 3A

{ def. z, power adjunction

r ;(J; 3A n g; 38 ; hO)

C {monotonicity

r ;1; 3A

C {I simple

3.

To prove the second claim,
2°; 9 C 3 h 1

one may reason

zO;g C 3h

¢:} {z map

gCz;3h

¢:} {inclusion of maps

g=zi3h

104 Toposes

<=}

¢:>

¢:>

..

¢:>

..

¢:>

..

6.5.5.3 Lemma

Proof

{def. z, power adjunction}

9;38 = (J;3A n9;3Bi hO);h

{h map, modular law }

9; 3B = !; 3A ; h n 9; 38

{n greatest lower bound

9;38 C !;3A;h

{jmap}

r;9;38 C 3A;h

{right-division}

1"; 9 C (3" h)/38

{3;3~Rd(£))

1";g C (3 h ;3B)/38

{division calculus (prop. 6.4.2), def. ;;;;)

r;9 C 3h;;;;;)B

{(f,g)tabulationof3h;;)8

true

3 h';;). = ;)8; (3 h)'

3 hO;;;;;)A

{ def. ;!, division calculus (6.4.2)

(3 h'; 3.)/3.

{ 3; 3~Rd(£) }

(38; h')/3.

{ division calculus

38/(3A; h)

Existential Image 105

{ 3' 3~Rd(£) }

3./(3 h; 3.)

{ division calculus, def. ;:;:)

:::l.; (3 ht

6.5.6 Let R : A B be a relation in ReI(E). There are three obvious ways of _
extending R to power objects:

SR

HR

MR

E.\(R; E.)

(3. ; R)/3.

SRn HR.

(6.25)

(6.26)

(6.27)

These extensions of R are named the Smyth, Hoare, and EgIi-Milner extension of
R, respectively. It foUows from the properties of division that the Hoare extension
could also be defined as foUows:

HR = 3R;:::l•. (6.28)

In fact, a similar characterisation could be given for the Smyth extension, for there
is a simple relationship between the two:

SR = (HR")'. (6.29)

6.5.7 Proposition For all R: A -t B,

3·R ~ MR.

Proof To show that 3* R C MR, one may reason as follows:

MR

{def.M)
HRnSR

{ equal;on, (6.28) and (6.29)

(3 R ; :::l.) n (3 R" ; :::l.t

{ theorem 6.5.5 }

(:::l. ; or R) n (:::l.; 3·R't

106 Toposes

:J {:;J is reflexive }

3"Rn (3"ROr

{ (-r involution
,-R

The proof of the reverse containment,

'-RCMR,

is very similar to the proof of lemma 6.5.5.3, and will be omitted.

6.5.8 Proposition A relation R is entire iJf 3 R C 3" R

Proof By proposition 6.5.7, it suffices to show that

3 R c HR and 3 R C SR

iff R is entire. Note that 3 R C HR is always true, since HR = 3 R; :;JB, and :;JB
is reflexive. Furthermore,

3R c SR

{:} {def. Smyth extension }

EA; 3 R C R; EB

.. {(3 R) map}

EA C R ; EB ; (3 Rr

{:} {reciprocal, 3 : 3 --+Rel(£)

EACR;R';EA

.. {EA;{-}~~A}

AcR;R"

7 Representing Partial Relations

It is a. celebrated result of Lawvere and Tierney that a tapas is coreflective in its
category of simple relations. This chapter reports on an attempt to achieve a sirnilM
result for ,ubitraJ:Y relations. That is, it seeks to show that every relation in a tapas
can be made entire in some canonical way. Unfortunately, my attempt has been
unsuccesful, and I only .succeeded in establishing the desired theorem for Boolean
topoaes. Hopefully, the applications that are described in later chapters will provide
an incentive for others to find a more satisfactory solution.

This chapter starts off by reviewing the theorem of Lawvere and Tierney about
simple relations. It is then Ebown how their notion of a simple-relation classi
fier ca.n be generalised to the concept of a relation totaliser. Every topos has a
simple-relation clasBifier, hut not every topos has a relation totaliser. We consider
a particula.r counter--example, namely the topos of commuting squares, in some
detaiL It is then proved that every Boolean topos does have a relation totaliser,
and we record Borne algebraic properties of relation totalisers for later use.

1.1 Simple-Relation Classifiers

7.1.1 In Set, there exists an obvious way of making a partial function entire,
namely by adding an extra element to its target. Let us briefly review that con
struction before presenting its generalisation to an arbitrary topos. Consider a
partialfunetion F: A---tB. The aim is to turn Fintoatotal funetiouF: A---tEB.
The set EB is the collection of all subsets of B that have at most one element:

EB ~ {{6} 16 E B) U {0}

There exists an obvious injection 1JB : B+----EB which maps every element of B to
a singleton set. The function F : A ---t EB can be defined as follows:

F _ {{F(.)) if .(<F).
a - 0 otherwise .

It is characterised among other functions A---t EB by the property that

F;1J~ = F

in the category of relations Rel(E).

107

108 Representing Partial Relations

7.1.2 Consider the category of relations over a regular category E. A simple
relation classiiier is a colJection of monic maps

JIll. :A__ EA

which satisfie!i the following universal property: for every simple relation F: A _ B
there exists a unique map ji: A ~ EB

such that
F ;fl~ = F.

For any regular category E, the simple relations form a subcategory of Rel(E),
which we shall denote by Simple(E). If E has simple-relation classifier fl, (he em
bedding of E into Simple(E) has a right adjoint, and the unit of that adjunction is
7/. The right adjoint is given by

EF = ('I~: Ft .

7.1.3 Theorem (Lawvere-Tierney see e.g. [56], pp. 28-29) A topos has a
simple-relation classifier.

ProoC Although the proof of this theorem is well-known, I cannot resist showing
you my own proof, which makes use of the calculus of relations. Consider the
tahulation of PB n A{- }~, say

p/~B

Let F be a simple relation. We wish to show the existence of a map F such that

EB~PB

ji)~

B

commutes. Note that such a map F is necessarily unique, as iB is monic. Further
more, its existence is equivalent to the containment

/lOF:AF c PBnA{·)~

Simple-Relation Classifiers 109

<=> {AF map, n greAtest lower bound

AF C AF;A{-l~

<=> {let (d,n be a tabulation of F, power adjunction

d";f C AW;J);{-)~

.. {d,{-lBm.p,)

f; {-lB =d; A(d"; f)

<=> {power adjunction, d monic

true

This proves the existence of F. Define'1B = B. Then 11B is monic because {-}B is
monic. To show that 11 is a simple-relation classifier, it remains to prove that

F ; i B = AF iff F ; 118 = F .

By the existence of the power adjunction, it suffices to show that

11s = EB; i1 .

We first prove the inclusion (C):

'1B C EB; iB

<=> {reciprocal, 11B map }

'1B ; iB ; 3B ::> B

<= {power adjunction

'ls;is ={-}B

.. {del. ~8 l
true

For the other containment,

118 ::> EB; i'B
first observe that 11B ; iB = {-} B implies 118 = {-} 8 ; iB because iB is monic. Using
this fad, we reason:

EB; is C 118

110 Representing Partia.l Relations

¢} {fact above }

EB;1B C {-}Biin

¢} {iB map}

EB ;1BjiB C {-}B

<= {def. iB }

EB;(A{-}~r c {-JB

¢} {power adjunction

true

7.1.4	 It follows that for any tapas, we have au adjunction

(G,E,~,~O) [~Simp/,([).

This adjunction is in fa.ct a restriction of the power adjunction. For consider a
simple relation F : A_B. By the construction in the preceding proof, the following
diagram commutes:

EA EF EB

iAr riB
PA3JTPB

In words, this means that E is a subfunctor of 3. It will be useful to bear in mind
that 3 and E are similar: many of the algebraic properties of 3 are shared by E.

7.2	 Relation Totalisers

in the previous section, it was shown how every simple relation in a topos can be
made entire. Does that construction generalise to relations? It certainly does in
Set. Given R: A---+ B, one may construct an entire relation R : A- EB by defining

Ii =	 {(a,{h}) I a(R)h} U

{(a, 0) I ~(a«R)a)}

This construction is a. true generalisation of the simple-relation classifier 1 for if R is
simple Ii = k This suggests that we could define Rby the same universal property

Relation Totalisers 111

we used for simple relations. Unfortunately, however, there may be many relations
S that satisfy

s; ~B = R. (7.1)

for S could map all elements of A to 0, even those which are in the domain of R.
We need an additional condition, which says that if a is in the domain of R, the
statement a(S)b implies a(R ; t]B)b. This condition is expressed by the following
containment:

<R; S c R; ~B . (7.2)

7.2.1 Consider the category of relations over a regular category. A relation to
taliser is a collection of monic maps

flA : A+----EA

which satisfies the following universal property: for every relation R: A -., B there
exists precisely one entire relation

R:A_EB

such that
R; '7~ = Rand <R ; R c R; fl8 .

Note that any two relation totalisen are isomorplJic. Furthermore, if a category
ha.s both a simple-relation classifier (fl':') and a relation totaliser (0-;:'), the simple
relation classifier is also a relation totaliser: given R : A _ B, the entire relation
R : A _ EB ca.n be constructed as

R = R;~.

We may conclude that if both exist 1 a simple-relatiou classifier and a relation
totaliser are isomorplIic.

7.2.2 Not every topos has a relation totaliser. As a counter--example, consider
the category of commuting squares Ser+, which is defined as follows.

- Th.e objects are arrows of Set.

- Th.e arrows are pairs of arrows in Set. That is, if

.-L.
hj jk
• --9- •

is a commuting square in Set,

(J,g):h~.

is an arrow of Set-.

- Composition is defined componentwise:

(J,g); (m,1) = (J ;m,g; II

- Identity arrows in Set--+ are pairs of ide"tity arrows in Set.

The category of corrunuting squares is a tapas. A detailed discussion of this fact
may be found in the book by Goldblatt [46], pp. 86 - R8. The simple-relation
classifier of Set.~ is given by the following diagram, whidl depicts its component at.:

A I LI:T}A+B E(A+B)

k) [E1k,BI

B I ~B EB

where rt is the simple-relation classifier of Set.

The category of relations over Set--+ may be described as the category of semi
commutative squares:

- The objects are arrows of Set.

- The arrows are pairs of arrows in Rel(Sft). That is, if the diagram

0_R_ 0

:0hI lk
o --S-0

semi-oommutes, the pair
(R, S): h ~ k

is an arrow in ReI(Set-).

Relation TotaJisers 113

- Composition is defined componentwise.

It can be shown that «R,S) = «R,<S). In particular, a relation (R,S) in
Rel(Set~) is entire if and only if Rand S are entire.

The simple-relation classifier of Set~ is not a relation tolaliser. For consider
the arrow between identities

(R,S), {I} ~ {O,I}

in Re~Ser-+), where
R~ 0 and S ~ {(I,O),(I,I)}

The obvious way of making this relation entire is

{I} T E({O,I} + (O,I})

idj jE1id, idJ:0

E{O,I}{I} S;~
where T = S ; L~ ; 7/. However, one could also take

T ~ {(l,~(,,(O)))}

In either case

(T,S;~);(";'I,~r~(R,S) and «R,S);(T,S;~)~(R,S);(";~"I)'

It. follows that the simple-relation classifier (L] ; "I, "I) is not a relation totaliser.

The conclusion of this counter--example is that not every topos has a relation
totaliser. So far we developed our results for arbitrary toposes, but now it will
be necessary to impose further restrictions. In what follows, we shall focus on
Boolean toposes. In view of the applications in later chapters, this restriction is
not too severe. From a mathematical viewpoint, however, it is an unsatisfactory
step, and a possible alternative is discussed in chapter 10. At the time of writing,
it is unknown whether the existence of a relation totaliser implies that a topos is
Boolean.

7.2.3 A topos £ is said to be Boolean iffor every object A, the family of subobjects
A# is a Boolean algebra. Equivalently, one could say that all homsets of Rel(£) are
Boolea.o. algebras. That is, every relation R: A _ B has a complement 11.: A _ B,
which is characterised by

R n R = 0 and R UR = [A x BJ

([A x BJ is the maximum morphism A ---+ B). This additional assumption makes it
possible to draw on some well-established results about cla.ssical relation a.lgebras.
For instance, we can use the sbunting rule

TCRu"!J." SnTCR. (7.3)

Furthermore, using the shunting rule and the modular law, one can prove Schroder's
rule, which consists of the following two equivalences:

R;SCT ." R:';TC"!J ." T;soc71

(see e.g. Backhouse et al. [6]). Schroder's rule plays an important role in proving
properties of classical relation algebras flO, 80].

7.2.4 Proposition In a BoDlean topos,

~l : A ---+ (A +T)

is a relation totaliser, and [or aU R ; A ---+ B

R = RiLl U (R;!B);t2

Proof Let R: A ---+ B be a relation. By the construction of coproduets ill Rel(f)
(par. 6.1.16), any morphism A ---+ B + T iii of the form

8 i t1 U T; t'l

for some 8 : A _ Band T: A ---+ T. Because the coproduct injections are disjoint
monics, the identi ty

(8; tl UTi L2); rIO = R

is equivalent to S = R. Lemma 7.2.4.1 says that the inclusion

<R;(R;Lt U T;LZ) C R;LI

is equivalent to T C R; lB. According to lemma 7.2.4.2, the reverse containment
R ; !B C T holds if and only if

<R U <T = A.

Hence, if (R;LI U T;t'll is entire, T = R; !B. Lemma 7.2.4.3 shows that (R;Ll UT;tz)
is entire for T = R; lB.

Rela.tion TotaJiseT9 1] 5

7.2.4.1 Lemma

TCR;!a '¢:> <R;(R;tl U T;t2)cR;tl

Proor

¢:}

¢:}

'¢:>

¢:}

'¢:>

¢:}

T C R; la

{complement

Rj!a cT

{prop. 5.4.8: «R; !B) = <R;!A and !A

<R;0cT

{< R symmetric, Schroder's rule

<R jT c 0

{injections are disjoint

<R;Tjl] c R;tl

{u least upper bound

R;£l U <RjT;£2 C R;£l

{; distributes over U

<R;(R;tl U T;£]) c R;/'I

= '0 }

7.2.4.2 Lemma
<R U <T = A '¢:? R; !B C T

Proor

..

'¢:>

R;ta CT

{pwp. 5.4.8

R; tB n!A c T

{shunting}

R;!B U T ~ lA

.. (prop. 5.4.8)

<R;!A U <T;!A =!A

¢:} {j distributes over U

«RU<T);!A =!A

.. {prop. 5.4.8

<RU<T=A

7.2.4.3 LemlTla
<R U «11;'8) ~ A

Proof First note that R; 18 = H; !B: the containment (~) follows from Schroder's
Tule and the fact that !B is a map, and the reverse inclusion (c) is a consequence
of the shunting rule. The lemma can now be proved by a simple calculation:

<RU«R;!B)

{ above, prop. 5.4.8 }

<Ru <1{

{ domain distributes over union

«RUll)

{ complement

<[A x BJ
{ maximum morphism is entire }

A

7.2.5 As an immediate CQns~quence of the above construction, we obtain the
following monotonicity property of the (-r operator:

Proposition Let £ be a Boolean topas. Suppose that <R = <So Then

ReS .. ReS.

One could also prove this lemma for any topos with a relation totaliser, but the
argument is unduly laborious.

Properties of Relation Totalisers 117

7.3 Properties of Relation Totalisers

The construction of a relation totaliser in a Boolean topos is not suitable for use in
calcula.tional proofs. In a sense, it introduces a case distinction between whether an
element is in the domain of a relation or not. Van Gasteren [95] argues convincingly
that such case analyses should he avoided if one is aimiIlg for purely syntactic proofs.
Therefore, in this section, we shall develop a calculus which only depends on the
definition of a relation totaliser. Throughout this section, it is assumed that we are
working in a topos that has a relation totaliser.

7.3.1 The next proposition says that the requirement <R; R C R j 1]B in the
definition of reJaUoIl totaliser can be replaced by «i[O; R) C ''Ie>. The latter is
easier to check in practice. In the sequel, we shall use the more practical definition
of rela.Lion totaJiser without explicitly referring to this paragraph.

Proposition Suppose that 5; hO C R. TbeI1

<R; 5 C R; h '" «5°; R) C h> .

Proof We prove the equivalence by mutual implication. The forward implication
is a trivial application of the domain calculus (prop. 5.4.6). To prove the backward
implication, one may reason as follows:

«5°;R)Ch>

{::> {domain calculus (prop. 5.4.6) }

«R;5»Ch>

=} {pre--compose with <R ; S
<R;SC<RiSi h>

{::> {range of map }

<R;Se <R;S;hoih

=} {assumption: S; hO C R

<R;5CR;h

7.3.2 Proposition Let A-..B...B.2....C. Suppo5e that R js entire, and

«R:';R;S) C <S.

Tben (R;St= R;S.

Proof It is clear that R; S is entire, and that

R;S;TJ~ = R;S.

It remains to show
«(R;.~)';R;S) C ne>.

Here is a proof:

«(R;S)';R;S)

{ reciprocal }

«5<3 ; Ie; R; S)

c {assumption «R<3; R; S) C <S

«5' ;S)

C {relation totaliser

ne>

7.3.3 Recall the similarity between the power adjunction and the adjunction be
tween a topos and its category of simple relations

(G,E,n,n') f - S;mpl,(f).

This adjunction defines a monad

(E, n, En')

in E. The proof of the next proposition makes use of the naturality of 11.

Proposition Let AJ!....B2-C. Then

(R;ht = R;Eh.

Properties of RelaUon Totalislfi 119

Proof That R; Eh is entire is ohvious; furthermore

R; Eh ; 110 = R; '11 j h = R; h .

The proof can now be completed as follows:

«(R; Eh)o; R; h)

{ h entire, reciprocal }

«(Eh)"; jjo; R)

C {retation totaliser, domain calculus (prop. 5.4.6) }

«(Eh)O; ry~)

c {range is domain of reciprocal }

(ryB; Eh»

{ 11 natural

(h; rye»

C {domain calculus

rye>

7.3.4 Let F; 'D -+ [; be a relator. In analogy with the cross-operator on F, one
may define a natural transformation l' : (F 0 E) _ (E 0 F):

1". ~ ((Fry.n-.

This natural transformation is called the smash on F. Intuitively, it takes a struc
ture (say a tuple), and it returns that tnple if all its components are non-fictitious:

F11A; FA = '1FA (7.4)

However, if one of the components is fictitious, it returns the fictitious vatne. The
term smash is inspired by the connection with smash products in programming
language semantics.

Proposition Let F: 'D _ [; be a relator. Let R; A _ B be a relation in 'D. Then

(F'Rt = F'R;FB .

Proof That (F* it; FB) is entire is obvious. Also,

F*R;"FS;TfB = F*R;(FTfBr :::: F*(R;TfBO) F*R.

It rema.ins to calculate:

«(F"R;l'B(; F'R)

{ redprocal, F* functor

«P;' ; F"(RO ; R))

{ domain calculus (prop. 5.4.6)

«P',,; «F-(il"; R)))

{ relators preserve domain (prop. 5.4.7))

«1"'.; F'«il"; R»)

c {rela.tion totaliser

«P'" ;F-~.»

{ range of map, def. F* }

«7';,; (F~.)O; F~8)

{ FTfB entire, domain calculus

«P'" ;(F~8n

{ range is domain of reciprocal

(F~8; 1'8»

{ equation (7.4) }

TfFB>

8 Maximisation in Preorders

Consider a set of finite sequences. Such a set may have multiple elements of mini
mum length, for the length ordering on sequences is not anti-symmetric. We shall
write x(mi111el1)a if a is an element of x of minimum length. The relation minlen

distributes over union in the following sense:

U; minien = '3 min/en; min/en

Note that 3 minlrn is a set-valued. function which returns alt minimum elements of
all components of its argument. Consequently, a computer program that evaluates
the right-hand side of the above equation might be very time-consuming. This
contra.9ts with the situatiou where :3 is replaced by 3". The relation 3'"minlen
yield:;; a stratified sample of the minimum elements, and here an implementation
just needs to return some minimum value for each component of the argument set.
But does the above equation still hold wheu 3 is replaced by 3*? Iu this chapter,
we sha.ll try to answer t.his question.

We starl off by defining the notion of maximum elements in an arbitrary tapas.
This definition is a generalisation of the relation minlen discussed above; we con
sider maximum elements instead of minimum elements for technical reasons. It
turns out that minlen does indeed distribute over uniou. Unfortunately, distribu
tivity does not hold when 3 is replaced by 3*. This problem will be remedied by
making use of relation totalisers. It is shown how one can make the maximum
element relation entire in such a way that the desired distributivity property holds.

A different kind of distributivity arises in the following context. Write (:) for
the binary operator that places an element at the front of a list;

ao: [al,a~, ... ,an] = [aO,al,a~, ... ,a,,]

This operator is commonly known as cons. Furthermore, write (a:) for the operator
that pla.ces the element a at the front of a list. Cons distributes over min/en in the
following sense:

minlen ; (a:) = 3(a:) ; minien .

Or perltaps it does not? What about the case when the set of sequences is empty?
These issues Me addressed in the last section of this chapter. It is shown that
certain monotonicity conditions imply distrihutivity.

121

8.1 MaxinlUrn Elements

8.1.1 Throughout this section, it is assumed that we are working in a topos E.
Let R : A --+ B be a relation. Define the upper bound relation of R by

Rl PA ~B

Rl ~ EA\R.

Translated into ordinary set theoretic notation, this definition reads as fonaws:

.«RT)b ~ Va E A aEA " => a(R)b . (8.1)

Note that left-division may be characterised in terms of the upper bound operator:

S\R = AS'; Rl . (8.2)

The proof of this property is a simple application of the division calculus. It has
two consequences that will be useful in later c.a.kulations. The first shows how the
upper bound relation distributes oyer union:

u; Rl = (nT)!. (8.3)

The second corollary teHs how an existential image followed by an upper bound
yields another npper bound:

35; Rl = (S'\R)!.	 (8..1)

8.1.2	 Let R: A --+ A in Re/(£). Define the maximum relation of R by

maxR PA_A
(8.5)maxR Rl n 3A .

This definition is in accordance with the usual set theoretic not.ion of ma:-;imum
elements: a is a maximum element of x if it is an upper bound of .T and it is an
element of x. The properties of the upper bound relation translate into facts about
the maximum relation. For example, it is immediate from equation (8.2) that

AS; ma.<R = S'\R n S.	 (8.6)

In particnlar, we have the following instance of equation (8.4):

35; ma.R ~ (S'\Rl1 n 3A; S. (8.7)

Maximum Elements 123

8.1.3 Before we can COlltinue our exploration of the properties of maxR, it will be
necessary to settle some terminology. A relation R: A _ A is said to be transitive
if R; R c R. It is called reBexive if A c R. A relatiou tha.t is both reflexive
and lransitive is said to be a preorder. Preorders frequently arise in optimisation
problems. A typical example is the length preorder on finite sequences, which is
defined as follows:

S;,~ = length; (S;) j length 0 •

Here length is the function that returns the length of a sequerlce, and ($) is the
standard order on natural numbers. The relation minlen that we discussed in the
introduction to this chapter is given by max(::::len)'

A relation R : A_ A is called anti-symmetric if RonR = A. An anti-synunetric
preoroer is said to be a partial order. The standard order on natnral numbers is
anti-syrnmetric, but the length preorder on lists is not.

Finally, a relation R : A _ A is said to be well-bounded if

<3A C «mazR) .

(The reverse indu8ion « maxR) C <3A is always satisfied.) While preorders
and partial orders can he defined in any regular category, the definition of well
boundedness makes essential use of the topos structure. The reciprocal of the length
preorder on sequences is well-bounded: every non-empty set of seqnences contains
a sequence of minimum length.

8.1.4 Proposition Let R: A _ A be a reBexive relation. Then

mazeR; maxR = Rn Jr.

Therefore. (mazR) is simple iff R is anti-symmetric.

Proof We aim to prove the above identity by mutual inclusion. The containment
(C) follows by unfolding the definitions:

mazeR; ma.xR C EA j RT CR.

Taking the reciprocal on both sides of this inequation, one also obtains that maxO R;
mazR c Jr. Therefore, one may conclude that

ma.t:°R; ma.xR C RnRo.

To prove the reverge inclusion, let (h,k) be a tabulation of R n RO, and define
z = A(h Uk). One may reason as follows:

R n RO = hO; k C hO j Z; ZO ; k c maxo R; max R .

Only the last step of this ca.Iculation needs a proof. Since hand k are symmetrical,
it suffices to show that

zO;kcmaxR.

Here is a proof:

zO;kC mazR

~ {zmap}

kCz;mazR

~ {def. z, maximum (eq. 8.6)

k C (h' U P)\R n (h Uk)

'¢::} {n greatest lower bound, U upper bound

k C WUP)\R

~ {left-division}

W Uk'); k C R

~ {modular law

hO; k U A C R

'¢::} {U least upper bound }

h' ; k C R and A C R

'¢::} {(h,k) tabulation of RnJl>, R refiexi\·e

true

8.1.5 Suppose we want to determine the length of a shortest element of a set of
sequences. There are two ways of performing this task. In the first approarh, one
takes the problem statement literally: first find a shortest sequence, and then com
pute its length. In the second approach, one computes the length of a!l sequences
in the set, and then takes its minimum. The next proposition shows that both
methods produce the same result:

Proposition Let B-'_A..l!-A. Then

max(k; R; kO) ; k 3k;maxR.

Maximum Elements 125

Proof

3k i maxR

{ maximum (eq. 8.7) }

W\R)1 n 3B; k

{ division calculus (prop. 6.4.2) }

(k;R)1 n 3B;k

{ modular law }

((k;R)1;k" n 3B);k

{ def. upper bound (eq. 8.1), division calculus}

((k;R;k")1 n 3B);k

{ def. maximum }

max(k; R; kO); k

8.1.6 When we defined the concept of well-houndedness, we noted that the re
ciprocal of the length preorder on lists is well-bouuded. Not surprisingly, this fact
generalises to arbitrary preorders of the form (k; R; kO), where R is well-bounded.

Proposition Let B--!....,..A--B...-A. If R is a well-bounded preorder,

k; R; kO

is a well-bounded preorder as well.

Proof That (k i R; kO) is a. preorder is evident. Tha.t it is also well-hounded may
be proved as follows:

«maz(k; R; P))

{ k entire, domain calculus (prop. 5.4.6) }

«maz(k; R; kO); k)

{ pwp. 8.1.5 }

«3k; mazR)

{ R well-bounded, domain calculus

«3 k ;3A)

{ 3: 3~Rd([) }

«3B ; k)

{ k entire, doma.in calculus

<3B

8.1.7 Consider a coUection of sets of sequences. To find a shortest sequence of all
the components. one can first take the union, and then find a shortest sequence.
Alternatively, one might take all shortest elements of each component set, and then
select a. shortest from those candidates. The next theorem is a precise statement
of this fact. Note that the theorem is only applicable t.o relations thal are well
bounded and transitive.

Theorem Let R : A ---+ A be well-bounded and transjtjvc. Then

UA ; ma:rR oc-::: 3 ma:rR; maxR .

Proof

UA; ma::tR

{ maximum (eq. 8.7), UA = 33A

(3.\R)1 n (3PA ; 3A)

{ def. uppe' bound (eq. 8.1))

(RT)T n (3PA ; 3.)

{ def. upper bound)

(EPA\(RI)) n (3PA; 3A)

{ division calculus (prop. 6.4.2) }

(EPA \(RI)) n (3PA ; (RT n 3A»

{ defs. upper bound and maximum}

(RT)T n (3PA; maIR)

{ lemma 8.1.7.1 }

(3 maxR; RT) n (3PA ; maIR)

Maximum Elements 127

{ 3' 3~Rel(£) }

(3 marR; Rf) n (3 ma,R; 3A)

{ 3 ma.z R simple

3 marR; (RT n 3A)

{ def. maximum

3 mazR; maxR

8.1.7.1 Lemma Let R; A _ A be transjtjve and welJ-bol1nded. Then

3maTR; RT ~ (RT)!.

Proof

3maxR;RT

{ upp" bound ("'I. 8A) }

((maT'R)\R)!

{ below

(RTlT

In the last step, it was claimed that

RT ~ (maz'R)\R.

We aim to prove this identity by mutual containment. First observe that

RT C (maz'R)\R

<::> {def. upper bound

EA\R C (maz'R)\R

{= {(-)\R anti-monotonic)

(maz'R) C EA

{:} {def. maximum }

true

To prove the other containment, note that it is equivalent to

EA; (m<u'R)\R c R,

by definition of upper bound and left-division. The proof can be completed as
follows:

EA; (m<u'Rj\R

{ R well-bounded}

EA; «maxR); (max'R)\R

{ def. strict left-·division (par. 6.4.6) }

EA; (max'R) II R

c { strict left-division (eg. 6.21) }

EA;maxR;R

C { def. maximum

EA;RJ;R

c { def. upper bound

R;R

c {R transitive

R

8.2 Selectors

The theorem which says that U; maxR = :3 ma:r.R; maxR is unsatisfactory in the
following sense. What we would really like to prove is this: to select some optimal
element from the union of a collection of sets, it suflk.e.s to select some optimal
element from each component set, and then select some optimal elemen t from tha.t
set of candidates. In contrast, tbe above theorem says that we should find all
optimal elements of each component set.

8.2.1 A relation 1': PA -) A is said to be a selector if

UA ; T = 3'T ; T and {-} A ; T = A .

Selectors 129

The first requirement states the property that we discussed in the preceding para
graph. The second requirement says that if you select an element from a singleton
set, there is only one choice, namely the single element.

The maximum relation is not a selector, because the empty set does not have a
maximum element. Consequently, the inclusion

UA ; maxR C 3*maxR; maxR

does not hold. This problem might be solved on an ad hoc basis, by introducing a
fictitious value that is smaller than all other values (-00). The maximum element
of the empty set is then defined to be -00. Using relation totalisers, the trick of
introducing -00 can be presented in systematic way. Throughout this section, it
is assumed that we are working in a Boolean topos.

8.2.2 Lei R : A _ A be a relation. Define the se1eC1Dr of R by

selR PEA_EA
(8.8)

selR 3'7A; mazR.

This definition is inspired by the informal considerations sketched above: selR
maps its argument set to a maximum element. IT such a maximum element does
not exist, it returns a fictitious value, which plays the role of minus iufinity (-00).

8.2.3 The next theorem states the anticipated result, namely that selR is a Sf"

lector. The proof of the theorem is unduly complicated and lengthy. However, as
it seems awkward to verify this theorem in ordinary set theory. I was glad to find
a proof at alL Hopefully, if the theorem turns out to be useful in practice, others
will find more elegant ways of presenting its proof.

Theorem Suppose that R is a well-bounded preorder. Then (sel R) is a selector.

Proof We shall present the proof in a sequence of five lemmas. Lemma 8.2.3.1
shows that

OEA;seIR ~ EA.

Lemma 8.2.3.2 says that

UE:A;selR = 3se1R;se1R.

Together with the fact that seiR is entire and proposition 6.5.8, this yields the
containment

UE:A; selR C 3"selR; selR.

The reverse containment follows from lemmas 8.2.3.2 and 8.2.3.5.

8.2.3.1 Lemma Ii R is reflexive, then

HEA; "IR = EA.

Proof

{-}E:'A; 311A j maxR

{ power adjunction

A11A; maxR

{ A11:4. map, relation totaliser (prop. 7.3.2) }

(A11A; maxRf

{ maximum ("I' 8.6) }

(("A \R) n "~t

see below}

~

{ rela.tion totaliser }

EA

Here is a proof of the penultimate step:

11A\ Rn 1JA = 1JA

~ {n greatest lower bound

11A C 1JA\R

~ {left division

1JA ;'7A c R

~ {1JA monic}

ACR

¢:? {R reflexive }

true

Selectors 131

8.2.3.2 The algebraic properties of se1R are very similar to those of maxR. In
paragraph 8.1.7, it was shown that

UA; maxR = 3 maxR; maxR,

provided R is well-bounded and transitive. The next lemma says that this property
is shared hy selR.

Lemma Suppose that R is well-bounded and transitive. Then

UEA;seIR = 3se1R;selR.

Proof

3 setR; selR

{ def. ,elect", of R (eq. 8.8) }

3selR;371A; mazR

{ 3 functor}

3(selR; '1A); ,naxR

{ def. selector of R

3(371A ; iiliizR; '1A); mazR

{ relation totaliser }

3(3 '1A ; max R) ; maxR

{ 3 functor }

3 3tJA ; 3 maxR; iiliixR

{ 3 maxR map, relation totaliser (prop. 7.3.2) }

3 371A; (3 mazR; maxRt

{ themem 8.1.7 }

3 371A ; (UA; maxRt

{ UA map, relation totaliser (prop. 7.3.2)

3371A ; UA ; maxR

{U,3 0 3-3}
UEA; 3tJA; 'maxR

132 Maximisation in Preorders

{ def. selector of R

UEA; selR

8.2.3.3 The next lemma is a technical result that we shall need below. It makes
use of the Smyth and Hoare extensions of a relation R : A _ B, which were
introduced in paragraph 6.5.6.

Lemma Let T : A_B. Then

(3 Tr ;3'T ; 3 ry~ c :;). n S(TO; T) .

Proof

(3Tr; 3'T; 3~B

C {proposition 6.5.7

(3Tr; HT; 3~B

{ Hoare extension (eq. 6.28)

(3T)"; 31'; ;)BB; 3rJa

C {weak naturality of;) (lemma 6.5.5.1)

(3T)"; 3T; 31/8; ~B

{ 3 functor}

(3 Tr; 3(T; ~B) ;:;).

{ relation totaliser

(3Tr; 3T ;:;).

C {3T ,imple }

:;).

It now remains to show that

(3Tr; 3'T; 3ryB c S(TO; T) ,

or equivalently (by definition of the Smyth extension)

EB; (3 T)"; 3*T; 311~ c T"; T; EB .

Selectors 133

Here is a proof of the latter containment:

EB; (3T)';3"T ;3~;'

{ reciprocal, ~ : 3 _Rel(£)

TO; EA; 3"""1'; 31/B

C {proposition 6.5.7

TO; EA; sf; 3 rJB

C {def. Smyth extension

r ;T ; EEB ; 3,,1

{ domain calculus (prop. 5.4.6) }

TO; <T;T; EBB; 3"B

c {relation totaliser }

TO ; T ; 1/B ; EEB ; 3"B

{ reciprocal, ~ : 3 _Rel(£)

TO; T; EB; (3,,1t; 31/B

C {3 1/B simple

TO;T;EB

8.2.3.4 Let x be a subset of A. Suppose that you have a subset y of x such that
for each a in x there exists an element. bin y which is above a:

Va Ex, 3 bEy, a(R)b .

Then a maximum element of y is also a maximum element of x. The lemma below
is a fonnal statement of this fact.

Lemma H R : A _ A js transjtjYe,

C::::l_A n SR) ; maxR C maxR.

Proof By definition of maxR, it suffices to show

(;~A n SR); maxR C ~A

And
(;::J. n SR) ; mazR c RT.

Here is a proof of the first containment:

(;::J. n SR); mazR

C {monotonkity

~A; maxR

{ def. mAXimum (eq. 8.5) }

;::J.; (RTn3.)

c {monotonicity

;)A ; 3",

division calculus

3.

The other containment,

(;::J. n SR); mazR c RT

is equivalent to
EA ; (;::JA n SR); maxR c R,

by definition of (-)l and left-division.

EA ; G~A n SR); mazR

C { monotonkity

EA; SRi maxR

C {def. Smyth extension (eq. 6.25) }

R;EA;maxR

C {def. maximum

Ri EA; Rl

C { def. upper bound

R;R

C {R tramitive }

R

Selectors 135

8.2.3.5 The next lemma completes the proof that selR is a selector. It is worth
while to observe that unlike the preceding lerrunas, this result makes use of all
properties of R: reflexivity, transitivity, and well-boundedness.

Lemma Suppose that R : A _ A is a well-bounded preorder. Then

3*seIR;selR C 3seIR;selR.

Proof

3* selR; selR C 3 selR; selR

.. {def. selector of R (eg. 8.8))

3* selR; 3"1~; rnazR C 3 selR; 3"1~; rnaxR

¢:? {claim (8.9) below, 3 selR and 3"1~ maps, prop. 7.3.2 }

(3* selR; 3"1~; mazRt C (3sdR; 3"1~; mazRt

.. {claim (8.10) below, prop. 7.2.5 }

3*seIR;3"1A, ;mazR C 3seIR;37f~;maxR

¢:? {def. selector of R (eq. 8.8). 3 functor, relation totaliser

33"1~; 3" mazR; 3"1,4; mazR C 33"1.'4 ;3mazR; mazR

¢:? {7fA monic }

3* mazR; 37fA; mazR C 3 mazR; mazR

¢:? {3 mazR map}

(3 mazR)O ; 3" mazR; 3 "1.'4 ; mazR C mazR

<= {lemma 8.2.3.3 }

G;;)A n S(mazoR;mazR)); mazR C mazR

'¢=: {Smyth extension is monotonic, prop. 8.1.4

C;;;)A n SR) ; maxR C mazR

.. {lemma 8.2.3.4

true

There are still two claims to be checked:

«(3"seIRt; 3'sdR; 3~~; maxR) C «3~~; mazR) , (8.9)

136 Maximisation in Preorder9

and
«3*selR;3'1:4;mlUR) = «3seIR;3'1:4.;maxR). (8.10)

We shall only prove claim (8.9); the proof of (8.10) is similar.

«(3*seIRt; 3*selR; 3'1~; muxR)

{ R well-bounded, domain calculus (5.4.6)

«(3*selRt; 3*selR; 3'1:4.; ~A)

{ 3' 3~Rd(£) }
«(3.*selRt; 3*selR; 3EA ; '1~d

{ 3* reciprocal-preserving functor

«3.*(seIO R; selR); 3EA; '1:4)

{ (SfY R; selR) entire by 8.2.3.1, proposition 6.5.3

«3EA; sel° R; selR; '1:4.)

{ def. selector of R, relation totaliser

<{~EA; (maxRt; (3'1:4.t; 3'1:4; muxR)

C {3'7:4. simple}

«3EA; (maxRr; maxR)

{ domain calculus }

«~EA; (maxRt; «muxR))

{ coreflexive implie3 symmetric

«3EA; «(maxR); maxR)')

{ relation totaliser }

«~EA j (muxR; '7At)

{ reciprocal }

«3EA ;'7A.; muxOR)

C {domain calculus

«3EA ; '7:4.)

{ 3' 3~Rd(£) }

«3'7:4.;~A)

{ R well-bounded, domain calculus

«3'7:4.; muxR)

Monotonicity implies Distributivity 131

This completes the proof of the lemma, and tberefore tbe proof of tbeorem 8.2.3.

8.3 Monotonicity implies Distributivity

The function that returns the minimum of a set of natural numbers can be defined
as the selector of~. Indeed, since ~ is a partial order, max(~) is a simple relation.
Because the relation totaJiser is also a simple-relation classifier, max(~) is a total
function, and therefore sel(~) is a total function as welL In fact, sel(~) is just the
function n that returns the minimum of a eet of natural numbers; the minimum
of the empty set is the fictitious value infinity. The function n distributes over
addition in the following sense:

n{a+blaEx,bEy} ~ nx+ny.

This distributivity property is satisfied because addition is monotonic with respect
to~. In this section, we shall investigate in what sense monotonicity implies
distriblltivity. As before, we start with maximum elements (marR), and we consider
(sdRJ later.

8.3.1 Proposition Let £ be a topos, and let F be a polynomial endofunctor on
£. Lel h : FA _ A be a functional F -algebra, and let R be an en dorelation on A.
Finally, let ill be (~), ("2) or (=). If h is monotonic with respect to R,

A ~h_FA

RI m jrR

A ---xo-FA

then h distributes over (marR);

PFA FtA FPA rmaxR FA

m FA3h

PA A FATfIa:lR h

Proof The proof is presented in a Lop-down fashion: here we give the main
calculation, and the two lemmas that are used in this calculation are proved later.

Ft,4 ; 3h; maxR

{ lemma 8.3.1.1 below }

(F"EA)\(h; R) n (F'''A ; h)

{ modular identily }

«(F"EA)\(h; R) ; h') n F"3A) ; h

{ division calculus (prop. 6.4.2)

«(F'E,)\(h; R; h') n F""A) ; h

m {assumption, (F*E,4)\(-) monotonic

«F'EA)\F"R n F'''A) ; h

{ lemma 8.3.1.2 below, def. maximnm }

F*maxR; h

8.3.1.1 The next lemma shows how the composite FtA; 3 h : mazR can be ex
pressed in terms of more primitive operators.

Lemma
FtA;3h;maxR = (F"EA)\(h;R) n (F'3A;h)

Proof

FtA; 3h; maxR

{ Ft = AF*3, power adjunction

A(F*3A; h); maxR

{ maximum (eq. 8.6) }

(F"3A ; hJ'\R n (F"3A ; h)

{ division calculus (prop. 6.4.2)

(F"eA)\(h; R) n (F"'JA ; h)

Monotonicity implies Distribul.ivity 139

8.3.1.2 In section 6.4.7, it wa.s shown that polynomial functors preserve strict
left---division. The origina.l motivation to prove that theorem was the following
resull, whicb shows how polynomial functors can be distributed over the definition
of maximum elements.

Lemma Let T and 5 be reJation5 witb tbe 5ame 50urce and target. If F /5 a
polynomial functor,

P(T\S n 1") PT\PS n PT' .

Proof

P(T\S n 1")

{ F polynomial, props. 6.3.10 and 5.3.9 }

P(T\S) n P1"

{ see below}

PT\PS n PT'

To prove inclusion (C) in the last step, one may reason as follows

P(T\S) C [PT)\(F'S)

¢:} {left-division}

PT; P(T\S) c F'S

¢:} {r functor }

P(T; (T\S)) c PS

{:} {left-division, F* monotonic

true

The converse inclusion,

F'T\PS n F'T' c F'(T\S) ,

is proved below:

PT\PS n PT'

C {domain calculus

«PT'); F'T\P'S

{ def. strict left-division (par. 6.4.6)

PT\\ P'S

{ F polynomial, prop, 6.4.7 }

F'(T \\ S)

C {def. strict left-division, F* monotonic

P(T\S)

8.3.2 In the pr-eceding proposition, it was established that monotonicit), implies
distributivity for the maximum relation of R. Not surprisingly, this result carries
over to the selector of R. There are two significant differences, however. The first
is that the topos under COllsideration is Boolean - this is to ensure the existence
of a relation totaliser. The second difference is that the relation R should blC' well
bonnded. This condition js used in the proof given below; I am not sure Whether
it could be eliminated.

Theorem Let E be a Boolean tapas, and let F be a polynomial endofunctor
on E. Let h : FA _ A be a functional F -algebra, and let R be a well-bounded
endorelation on A. Finally, Jet [TI be (~), (2) or (=). If h is monot,ollie with
respect to R,

A _h_PA

Rj [TI IF'R

A -----r;o-PA

then h distributes over (se/R):

FfE.4 PPEA F'sdR PEAPPEA

7"A3(7"A ; Eh) [TI

PEA 9elR EA Eh EPA

Monotonicity implies Distributivity 141

Proof The proof is split into three lemma.s. The main argument is given below,
and then the lerruna.s are proved in detail.

FlEA; 3(FA ; Eh); sdR ill F"dR; FA; Eh

{:} {lemma.s 8.3.2.1 and 8.3.2.2 below}

F3~A;(FIA;3h;maxRtill F3~A;(F'maxR;ht

{:} {Tf monic }

(FIA;3 h ;maxRt ill (F'maxR;ht

{:} {prop. 7.2.5, lemma 8.3.2.3 helow

FtA ; 3 h; maxR [II F*maxR; h

{= {pmp. 8.3.1)

h ; R; hO ill F'R

8.3.2.1 In the first lemma, we aim to factor the operators of the relation totaliser
('J and (-t) to the outside of the expression FtEA ; 3(1"A ; Eh) ; sdH. This goal
is motivated by a wish to eliminate these operators from our proof obligations
altogether.

Lemma

Ft EA ; 3(FA ; Eh); sdR F3TJ~; (FtA; 3h; maxRt

Proof

FtEA ; 3(FA i Eh); sdR

{ def. selector of R }

FtEA ; 3(FA ; Eh); 3TJA; ma::R

{ 3 functor }

FtEA; 3(1'A; Eh; TJ~); iiiiixR

{ def. F l relation totaliser

FtEA; 3(F*TfA; h); riiaxR

{ 3 functor }

FtEA; 3F*r,~; 3h j maxR

{ Ft, F 0 3 ~ 30F" (pwp. 6.2.8) }

F 3 1/~ ; Ft A ; 3 h ; rnax R

{ (FtA; 3h) map, relation totaliser (prop. 7.3.2) }

F3tfA; (FtA; 3h; maxR)

8.3.2.2 The next lemma is motivat.ed by the same observation as the preceding
result. Here the goal is to factor the operators of the relation totaliser to the outside
of the expression F*selR; FA; Eh.

Lemma
F*seJR; FA,; Eh F3~A; (F"mazR; ht

Proof

F*selR; FA,; Eh

{ def. selector of R }

F*(3r,A; maxR); FA; Eh

{ F relator, 31/:4. map}

F3r,:4.;F*riUixR;FA ;Eh

{ pwp. 7.3.4 }

F3ryA; (F"mozRt; Eh

{ prop. 7.3.3 }

F31/A j (F*maxR; ht

8.3.2.3 To prove the equivalence

(FtA ;3h; maxRt II] (F"mazR; ht
<>

FtA;3hjmaxR mF"maxR;h

MOllotonicity implies Distributivity 143

it suffices (hy prop. 7.2.5) to show that both sides in the latter inequation have the
same domain. This is done in the following lemma.

Lemma Suppose that R is well-bounded. Then

«Ft,; 3h; marR) = «F"ma7R; h) .

Proof

«Ft,;3 h ;marR)

{ Ft = AF*3, power adjunction

«A(F"3,; h); ma7R)

{ R well-bounded, domain calculus (prop. 5.4.6) }

«A(F'3,; hi; 3,)

{ power adjunction

«F"3,; h)

{ h entire, domain calculus

«F"3,)

{ relators preserve domain (prop. 5.4.7) }

F*<:7A

{ R well-bounded

P«marR)

{ relators preserve domain

«F"marR)

{ h entire, domain calculus

«F"marR; h)

8.3.3 The next proposition is often helpful in checking the applicability conditions
of the two preceding results. It is an immediate consequence of lhe definition of
initial F-algebras.

Proposition Let £ be a regular category, and let F : [. --t [. be a. relator that bas
initial algebra JJ(F). Furthermore, let h : FA --t A be an F-algebra. Let rn be (~),
(2) a,(~). Then

144 Maximisation in Preorders

A ~h~FA

RI rn jF'R
AIrFA

implies

T ~(FJ FT

sj rn IF'S
T (~(F))JT

wbe« S ~ UhD; R; UhD'·

8.3.4 Is it worthwhile to try and generalise the results of this chapter to arbitrary
toposes, perhaps by other means than relation totalisers? Typical applications
of the theorems presented here involve the notion of natural numbers: a shortest
sequence, a tree of minimum height, a coarsest partition. In all these applicat.ions,
one makes use of the standard partial order on natural numbers, which is defined
by

kJ ~ (+)';~,.

In his thesis about Order and Recursion in Topoi, Brook has proved that:::': is
well-bounded iff the tapas under consideration is Boolean ([19J, p. 1.'56). It is
unlikely, therdore, that any interesting theory about optimisation operat.ors can be
developed in toposes which are not Boolean.

9 Dynamic Programming

In the computing literature, dynamic programming is often described as a class
of algorithms rather than of specifications. However, as most computing scientists
would agree, the specifications of dynamic programming algorithms constitute a
class of problems that are essentially the same. We propose a precise definition of
this problem class by phrasing a generic specification in categorical terms. Using
the calculus of relations developed in the preceding chapters, it is shown how one
may derive an abstract algorithm from this specification.

The result is illustrated by considering a particular example (text formatting)
in some detail. It will be shown how the hasic theorem about dynamic program
ming can be applied by mechanically instantiating the abstract definitions. More
examples of dynamic programming can be found in the first part of this thec;is.

Although the basic theorem about dynamic programming is satisfactory from
a theoretical point of view, it is difficult to apply in practice. Motivated by this
observation, we simplify the basic theorem, using our earlier results about relation
totalisers. There is a small price to pay for the more practical result: we have to
assume that the topos under consideration is Boolean.

9.1 The Basic Theorem

9.1.1 Throughout this section, it is assumed that we are working in a tapas f.
Let R: A --I' B be a relation in Rel(f). The inverse image function of R is the power
transpose of its converse:

InvR = ARo: B --I' PA .

In Set, the inverse image function of R may be characterised by the following set
comprehension:

(fnvR)b = {a I a(R)b} .

9.1.2 Let F : f --I' f be a relator that has initial F-algebra J.J(F) : FT --I' T.
Furthermore, let S : F B --I' B be a relational F*-algebra, and let h : FA --t A be
an F-algebra. Finally, let M : PA --t A be a relation. We shall st udy a relation K
in Re~£), defined by

K ~ [n.[5]),,; 3 [hD" ; M .

145

146 Dynamic PrograIJUJting

We shall refer to this definition as tbe generjc speciJicat.ion, because many dynamic
programming problems can be cast into this form.

9.1.3 It seems premature to treat instances of the generic specification in full
detail now; we confine ourselves t.o giving an intuitive interpretation in Rel(Set).
Full examples, along with Concrete algorithms, will be discussed after we have
derived an abst.ract algorithm from the generic specification.

Tbe inverse homomorphism (InvtlSD) is typically used to generate a set of com
binatorial objects, like all permutations of a bag or all partitions of an integer.
The latter exalIlple is obtained by taking for uSD the function sum that sums the
elemeuts of a list of positive integers. Given an integer (n > 0), the expression
(fnv(sum)) n stands for the set of all lists whose elements add up to 11..

Usually, one does uot care abollt the order of the elements in an integN partition,
aud therefore it is better to consider an integer partition as a bag' rather than a
list. This is a typical function of the existential image (3 [hD); it turns e'o'ery list
generated by the inverse homomorphism (fnv[SD) into a bag.

Now suppose all partitions are assigned a cost, and we are interested ill finding
a best partition of minimum cost. The selection of such an optimal element is
modelled by the relation AI; it picks an element of minimum cost, possibly in a
nondeterministic fashion.

The goal is now to derive an ahstract algorithm from the generic specification

K = [nvUSD; 3 UhD ; AI .

The proofs that are involved in this derivation will be given in detail, to demonstrate
how our calculus facilitates straightforward, almost mechanical proofs.

9.1.4 Lemma (Goguen [43]) Folds ca.n be chara.cterised as [oJJows:

(1' ~ usn) .. (1' = U,(F)r; F'1'; S) .

Proof

1'= usn
¢} {initiality of p.(F) }

,,(F);1' = }~1';S

The Basic Theorem 147

*' {p(F) isomo,ph;,m (pwp. 6.3.6))

T = (p(F))"; F"T; 5

9.1.5 Lenuna Let t be the composite

t = In'l1s]); 30hD .

Then t satisfies the following equation:

1= InvS; 3(FI;Ft, ;3h); U,.

Proor

{def.l)

InvOs]); 3 OhD

{ power adjunction }

A (OS])° ; OhD)

{ lemm.9.1.4 }

A (((p(F))O ; F"OS]) ; 5)° ; OhD)

{ reciprocal }

A (S° ; F"Os])° ; p(F) ; OhD)

{ F -homomorphism }

A (S° ; F"Os])° ; FOhD ; h)

{ F rel.to,)

A (S° ; F"(Os])° ; OhD) ; h)

{ power a.djunction, deL t

InvS; 3 (Ft; Ft,; 3 h); U,

148 Dynamic Programming

9.1.6	 Theorem Consider tbe generic specification

K = ["vQs])p; 3 QhD p ; M .

Suppose	 tba.t

- the relation M : PA --I A is a. selector, and

- the map h distributes over M in the following sense

F>M
FPA	 FA

FtAI ill lh
PFA~PA~A

whereITJ is (2), (~) or(=).

Then K satj'sfies

B [nvS PFB

K(ill j3>(}~ K; h)

A --xr- PA

Proof Let t = [nvQSJ) ; 3 QhD, as in lemma 9.1.5. Then

K

{dekKandt}

tiM

{ lemma 9.1.5 }

[nuS; 3 (Ft; FjA ; 3 h); UA ; M

{ M ""leetm)
[nuS; 3 (Ft; FtA ; 3 h); 3' M; M

{ 3 relator }

[nvS; 3'(Ft; Fj A; 3 h; M); M

Application: Text Formatting 149

[I]	 {h distributes over M }

InvS; 3'(Fi; PM; h); M

{ F relator, def. K }
InvS;3'(PK;h);M

9.1.7 The preceding theorem is in line with traditional presentations of dynamic
programming when the conclusion

K ~ InvS;3'(PK;h);M

is given an operational interpretation. First, the argument is split in all possible
ways by (InvS). The subproblems that have thus been generated are solved recur
sively with (F*K), and the solutions to subproblems are composed into solutions
for the whole problem by h. Finally, M selects an optima.l element from this set
of candidate solutions. This view of dynamic programming as a degenerate case of
the divide--and-oonquer strategy is voiced by Sedgewick in [82J and can be found in
many other textbooks on algorithm design. Dynamic programming is degenerate
in that one considers all possible splittings in (InvS) rather than just one element
of (IntiS), as one would do in a typical divide--and--conquer algorithm.

It should be stressed that the equation in theorem 9.1.6 is not necessarily an algo
rithm. It is always a valid equation, but it may be that (InvS) splits an argument
x into x itself (and possibly something else), and so the recursion does not make
progr~s. It is therefore necessary to verify termination whenever the theorem is
used for program derivation. In most cases, this is a trivial exercise.

9.2 Application: Text Formatting

A well-known application of dynamic programming is the problem of breaking a
sequence of words into lines to form a paragraph, such that the paragraph contains
as little white space as possible. In this section, we shall not be concerned with
constructing such an optimal layout itself; instead, we only consider the problem of
computing the minimum amount of white space. In section 9.3.5 it will be shown
how the same method applies to the construction of an optimal layout.

9.2.1 A first step towards a formal specification is to consider the types that are
involved in this text formatting problem. The input sequence is represented hy
a list of natural numbers, each signifying the length of a word. The length of a
word could be the number of cbaracters it contains, but one might also chose a

150 Dynamic Programming

a concrete example tbat [[1,8,7,4J,
illustrates our representation [1l,3,14J,
of paragrapbs [2,1011

Figure 9.]: An example paragraph

more complicated measure tbat depends on the width of individual cbaracters. A
para.grapb is represented as a list wbose elements are lists of natural numbers, and
eacb of these component lists stands for a tine in the paragrapb. A conCrete example
tbat illustrates this representation of paragraphs i:'3 given in figure 5.l. The data
type of lists whose elements are lists of natural numbers was formalt)" defined in
section 6.3.1: it is the initial F-algebra, where F: Set _ Set is: the functor

Fk ~ L+(Lxk),

a.nd L is the set of lists of natural numbers.

We now aim to define the set of all possible layouts (paragraphs) for a given input
sequence. The binary operator

*,(LxL)~L

concatenates two lists of numbers. GeneraJisiug this binary concatenation, the
homomorphism

Q[L,*JD

concatenates the components of a lists of lists; speaking in terms of the problem
at hand, one could say that «[L, *lD strings the lines of a paragraph together t.o
form a single sequence of words. It follows that the inverse image of this operation,
given by

InvalL, *ID
produces all possible layouts of its argument. For concreteness, here is an example:

(InvafL,*JDJlI,2,3] ~ ([[1,2,3)]'
[[1,2], [3]],
[[IJ, [2,3IJ,
[[IJ, [2], [3]] }

Now that we know how to generate all possible layouts of a sequence of words, it
remains to make the notion of white space more precise. Let J : L _ (N U {oo I) be

Application: Text Forma.tting 151

a function that returns some measure of the amount of white space on a single line.
To obtain nicely formatted paragraphs, one may have to chose a rather complicated
function for f; fortunately, we do not need its formal definition here. Tbe function
t returns a measure of the white space in the last line of a paragrapb, say t. H
the length of I is below tbe maximum line length, t(l) e(juals zero; otherwise, it is
infinity. The total amount of wbite space in a paragraph is defined to be the sum
of the white space in the component lines, as returned by the homomorphism

alt,0lD where x 0 n = Ix + n .

The text formatting problem that we seek to solve can now be defined by the
expression below:

[nvalL, *ID ;3 alt, 0JD ; n .
This very concise problem statement could be read as follow.~. First, the inverse
homomorphism (/nvQ[L, -+HD) generates all possible layouts. Next, for each of these
layouts, mt, I6IJD computes the amount of white space. This produces a set ofnatura.l
numbers, and the function n selects its minimum.

9.2.2 In order to derive an algorithm for tbe text formatting problem introduced
above, we shall instantiate theorem 9.1.6. The instantiation is somewhat la.borious,
so before going through these manipulations in detail, we first discuss the final
result. It makes use of a new notational convention: for auy binary operator (8),
(8) defined by

(f8g)y ~ (fy)0(gy)

stands for its function-level counterpart.

Theorem LeL k = [n'alL,*ID; 3 [[t,0JD; n. Suppose 'ha' {or all
x and v,

n{x0nlnEv} ~ xe(nv).

Then
k = t Fi (1"'*; 3 «(L x k); e); n) .

It is readily verified that this instant.iated theorem is applicable to the problem at
hand: ® is defined

x0n = fx+n,

and (+) distributes through the minimum function (n). The resulting recursion
equation for k underlies the well-known algorithm discussed by Knuth and Plass in
(60]. To understand the workings of that algorithm, it may be helpful to translate

152 Dynam..ic Programming

the conclusion of the theorem into ordinary set theory. This is just a matter of
expanding the definitions, and the outcome is displayed below:

kx = (iz)n (n{a0(ky)la*y~z))

Why is the instantiated theorem preferable to theorem 9.1.6? First or all, for
its comprehensibihty. The formula.tion given above can be understood by anyone
acquainted with functional programming. This is not the case for theorem 9.1.6,
which requires an understanding of F -algebras and cross-operators.

A second advantage of the instantiated theorem is that it is very close to a computer
program. An efficient implementation of the recursion equation would tabulate all
intermediate va.lues during the computation, so that k is Dever evaluated twice on
the same argument. Some functional programming languages include this tabu"
lation as a language fe.ature, called memo-functions [54, 70J. Translation of the
above theorem into such a language is straightforward, and the result is a rea.<;on
ably efficient program. Alternatively, one could code the tabulation by hand [11, 31 J
to obtain a truly efficient implementation in a more conventional programming lan
guage.

9.2.3 We now proceed to instantiate theorem 9.1 ,6 step by step. Throughout this
proof, indices of natural transformations will be omitted, and we shall write 1 for
the identity function. The first step is to instantiate the conclusion, showing that

[a,,[I,*I; 3(Fk;[i,0]); n
(9.1)

in (la,,*; 3((1 x k);o); n).

In proving this fact, we shall need the fanawing law on the inverse image of coprod
ucts:

[av[g, a>] = (In,,g; 3 ,.) 0 (lnva> ; 3 ,,) (9.2)

where tl and L2 are the coproduct injections and U is set-union. We calculate from
the left-ha.nd side of equation 9.1:

[nv[l, *J ; 3 (Fk; [i,0]) ; n

{ eq. (9.2) }

((lavl; 3 ,,j 0 (la"*; 3',)) ; 3 (Fk; [t,0]) ; n

{ U : 3 x 3 ---+ 3, 3 functor, n selector }

(fnvl ; 3 (" ; Fk; [i,0]) ; n) n (fau* ; 3 (,,;Fk; It, 0]) ; n)

Application: Text Fomlatting 153

{ def. F, coproduct }

(Invl; 3t; n) n (lnv*; 3((1 x k);0); n)

(Invl={-})

({-) ; 3 t ; n) n (Inv* ; 3 ((1 x k) ; 0) ; n)

{ claim: see below }

t n (Inv*; 3((lx k);0); n)

In the last step, it was claimed that

{-};3t;n t . (9.3)

Here is the proof:

{-};3 t ;n
{{-}:1~3 }

t;{-};n

{ n selector

We have now completed the instantiation of tbe conclusion of theorem 9.1.6, and
it has been shown that

Inv[I,*I; 3 (Fk; [t,0]); n

t n (lnv*; 3((1 x k);0); n),
as required. Our next task is to instantiate the applicability condition of theorem
9.1.6, which is the requirement that [t,0} distributes over n. More precisely, the
goal is to try and simplify both sid~ of the equation

Fj; 3 It, 01; n ~ Fn ;/t, 01 . (9.4)

Mechanical application of the laws from paragraphs 6.2.5 to 6.2.10 shows that

Fj = ({-)+ (({-) x 1); (x)t)); [3 ,,,3 ,,) .

For completeness, we shall carry out this calculation, despite its mechanical nature.
Let KL be the constant functor returning L. Then the functor F may be given in
Variable-free form as follows:

F ~ +o(KL, x o (KL,I)) . (9.5)

Hence, bearing in mind that we decided to omit the object-indices of natural trans
formations, one may start pushing (-)t into this expression for F:

FI

{ eq. (9.5) }

(+ 0 (KL, X 0 (KL, 1)))1

{ t of composition (lemma 6.2.9)

(+(KL , x a (KL , l))j) ; (+)j

{ 1of (+) (eq. 6.8) }

(+(KL, x a (KL, I))j) ; [3",3,,1

{ 1of product (-, -) (lemma 6.2.10)

(Kd + (x o(KL,I))I); [3'"3,,J

{ t of composition (lemma 6.2.9) }

(Kd + (x(AL,I)j;(x)j)); [3'd',]

{ 1ofpwdu'l(-,-) (lemma 6.2.10) }

(J{d + ((Kd x Itl; (x)j)) ; [3 ,.,,3 "~I

{ j of K L (eq. 6.7) and I (eq. 6.7)

({- } + (({-) xl) ; (x)j)) ; [3 ,,,3 ',I

So mucb for the unfolding of the cross--operator on F:

Fj = ({-}+(({-) x 1);(x)j));[3',,3',]. (9.6)

Using this fact, we can elaborate the left-band side of tbe distributivity cOrldition
(9.4): (Ft; 3[t, 0J ; n). However, it will be expedient 10 do a little subsidiary
calculation first:

[3,,,3 ,,]; 3 [t,01; n

{ coproduct }

[3', ;3[t,0]; n, 3',; 3 [t,OJ; nJ

{ .3 functor }

[3«,; [t,0j) , n, 3 ("; [t,0j); n]

"= {coproduct}

[3t,n,30;n]

Application: Text Formatting 155

Now it is easy to rewrite (Ft ; 3[t, 0] ; n) to a coproduct itself:

Fj ; 3[t, 0] ; n
{ eq. (9.6) }

(H + (({-) x I) ; (x)j)) ; [3 '" 3 "J; 3[t, 0] ; n

{ subsidiary calculation above }

({-) + (({-) x I) ; (x)j)) ; [3 t ; n, 30 ; n]

{ coprod ud }

[{ -} ; 3 t ; n, ((-) x I) ; (x)j ; 30 ; n]

{ eq. (9.3) }
It, ({-) xI);(x)j;30;n]

In short, it has been shown that

Ft;3 [t,0]; n = It, ({-) x I); (x)j; 30; n] .

Recall that it is our goal to simplify both sides of the equation

Fj ; 3 It, 0] ; n = Fn; [t,0] .

We have just rewritten the left-hand side to a coproduct; it stands to reason that
we try a.nd do the same with the right-hand side:

Fn; [t,0]

{ def. of F }

(I + (I x n)); [t,0]

{ coproduct

[t,(1 x n) ;0]

Summarising, we have sbown that [t,0] distributes through n if and only .if

[t,({-}xI);(x)j;30;n] ~ [t,(lxn);0].

By the universal property of the coproduct, this equation can be further simplified
to get

((-}xI);(x)j;30;n ~ (lxn);0.

We could leave it at this, but again it Inay be helpful to translate the expressions
into ordinary set-theoretic terms. Here is the result:

n{x0n InE"} = x0(nv)

for all x and v. Indeed, this was the condition originally stated in the instantiation
of theorem 9.1.6.

Some readers Inay find the preceding proof ludinously long and laborious. I
sympathise with this opinion, and in fact it is possible to do thi:> type of instantiation
completely mechanically. In fact, I have written a computer program in OB.J3 [45J
that performs this task for a restricted class of examples.

9.3 A more Practical Theorem

One could distinguish between three different stages in the application of dynamic
programming. First, the problem at hand is phrased as an instance of the generic
specification. Sometimes this is easy (as in the text formatting exampk) but it
may also be quite difficult. The second stage is to verify that the applicabilit.y
conditions are met: one has to verify that M is a selector, and t.hat h distributes
over M. Finally, one migbt wish to instantiate the abstract result because it has to
be implemented in a conventional programming language. In the preceding section,
it was shown that such instantiations can be performed in an entirely mechanical
fashion.

To ease the application of dynamic programming is therefore to simplify the
first two stages of the application process: specification and verification. These two
stages are deeply lntertwined_ For example, in the text-formatting problem, we
introduced the fictitious value infinity in the specification Lo ma.ke sure that n is
a seledor. In this section, it will be shown how relation Lotalisers can be used to
ease both specification and verification of dynamic programming.

9.3.1 From now on, it is assumed that E is a Boolean topos with a natural numbers
object. The existence of a natural numbers object implies that all polynomial
functors have an initial algebra. Therefore, we assume lhat the endofundor F :
E ---Jo E is polynomial. As before, S FB _ B is a relational F·-algebra. and
h : FA ---Jo A is an F -algebra. Finally, R is assumed to be a relation A -+ A. The
new generic specification reads as follows:

K ~ (lnv([S]); 3 [hD; m""Rt·

In the next two lemmas, it will be shown that this is an instance of our earlier
generic specification.

A more Practical Theorem 157

9.3.2 Lemma
UhD; ~A ([FA ;EhD

Proof By proposition 6.3.5, it suffices to show that

hj"lA = F"lA ;FA iEh.

Here is a proof of that identity:

F"lA iFA jEh

{ property of F (par. 7.3.4)

"lFA ;Eh

{~;t:~E)

hi "lA

9.3.3 Lemma

(In,qS]); 3 UhD; m"",Rt In,qS]);3([FA ;EhD; sdR

Proof

(In,qS]); 3 UhD; m"",Rt

{ (In,qS]); 3UhD) map, relation lotaliser (pwp. 7.3.2))

InvUS]); 3 UhD; riliirR

{ "lA monic}

InvUS]); 3(UhD; ~A; ~A); maxR

{ 3 functor}

In,qS]); 3(UhD; ~A); 3 ~A ; maxR

{ de!. selector of R)

In,qS]); 3(UhD; ~A); sdR

{ lemma 9.3.2)

In,qS]) ; 3 ([1"A ; EhD ; sd R

158 Dynamic PrograrnrrUng

9.3.4	 TheQrem Consider the specification

K = (Inv([S]); 3 QhD; m""Rt·

Suppo!Je that

- the relation R is a well-founded preorder, and

- the map h is monotonic with respect to R,

A -o---LFA

n(W IF<R
A -----,;0-F A

whereITJ is (<;J, G~) or (=).

Then K !Jatislies

B

Kj

In,S

ITJ

PFB

Iw
EA ,dR PEA

where V is the composite

FB~FEA~EFA---l2!LEA

Proof Immediate from lemma 9.3.3, theorem 8.2.3, theorem 8.3.2, and theorem
9.1.6.

9.3.5 As a.n application, let us return to the text formatting example of the preced
ing section. To avoid the introduction of a list of infinite length, we only considered
the problem of determining the minimum amount of white space, and we did not
consider how such an optimal layout itself might he constructed. The new theorem

A more Practical Theorem 159

makes it easy to reason about a. fictitious list of infinite length, so now we can
a.ddms the problem of constructing an optima.lla.yout. Here is the specification:

K ~ (I'''1[L, *1D; maxRt ,

where R is the preorder

R = 1[t,0JD; ~ ;ml,0Jr .

Note tha.t this preorder is well-founded by proposition 8.1.6. Write T for the initial
F -algebra. We ha.ve

K ~ (I.,,1[L, *]D; 3 G'D ;maxRt ,

because ~TD is the identity morphism T. To apply the new result a.bout dynamic
programming, we should verify that

T ---'- (L+(L xT))

RI jrRJ

T --.~ L + (L x T),
semi-commutes. By proposition 8.3.3, it suffices to show that

N~ (L+(LxN))

(~)j J jrk)
N- L+(L xN)

[1,O]'
semi--coIDlllutes. This last ineqlla.tion may be proved as follows:

r(~) c 11,0]; k); [1,O]'

.. {[1,0] map}

r(~);[t,0] C [1,0];k)

¢:} {def. F, coproduct in Re/(Set) }

1 et; (~) and (L x' (~)); (O) C (O) ;(:~)

160 Dynamic Programming

The first conjunct is immediate from the fact that (~) is reflexive. It remains t.o
show that (0) j (~) :::) (L x· (;;::)); (0). This is a simple consequence of the fact
that addition is monotonic with respect to (~):

(0); (2)

{ de!. 0 }

(fxN);(+);(2)

:::) {+ monotonic }

(f x N); (N x' (2)); (+)

{ x relator, def. 0 }

(L x' (2)); (0)

The proof that a.ddition is monotonic is omitted.

9.3.6 Although the theorem about dynamic programming is adequate for typical
applications like text formatting, knapsack and string-to-string corredion, there
are problems that need a slightly different approach. An example of such a problem
is bracketing a sequence of matrices fer multiplication; We already discllssed it in
the first part of this thesis (section 2.3). The proof of the throrem that wa.~ stated
there is very similar to the proof given here; the details are omitted.

10 Discussion

It is generally recognised tha.t the calculus of relations is a valuable tool in devel
oping programs from specifications. Until recently, most of the work on relations
in computing sdence either used a set theoretic a.pproa.ch, or the axiomatisation of
relation algebras proposed by Tarski [93]. The categorical viewpoint reconciles the
axiomatic approach to rela.tions with the set theoretic one, in that it shows how set
theory (or ra.ther topos theory) ca.n be defined in terms of relations. rn this thesis,
we have tried to demonstrate the adva.ntages of this viewpoint for a.pplications in
program construction. The main advanta.ge is, I believe, the smooth generalisation
of functional concepts like [old to rela.tions.

Backhouse et 801. have shown that such a. generalisation is also possible in a more
traditional form of the relational calculus [6J. There is however a subtle difference:
Backhouse defines all categorical constructions at the level of relatious, a.nd then
shows that they satisfy the expected properties in the subcategory of maps. In
my work, the process goes the other way round: constructions in the subcategory
of maps are extended to the category of relations. Which approa.ch you prefer
depends on whether you see functions or relations as the more basic entity. But
does it really matter whether one starts with maps or with relations? The answer
is no, because regular categories and unitary tabular allegories are equivalent. This
is the attraction of category theory: it uncovers the structure of the calculus of
relations, not only its theorems.

In this thesis, we have made ample use of that structural aspect of the theory:
typical instances are the definition of cross-operators and the generalisation of fold
to relations. In the remainder of this discussion, we shall briefly present three open
problems that are concerned with the structure of relations. This is not to say
that further research on dynamic programming is unimportant; it is however much
clearer in that area where the research is heading, and we already discussed some
of those future directions in part 1.

10.1 Which Functors preserve Division?

In the proof that monotonicity implies distributivity, we used the fact that poly
nomial functors preserve strict left-division. Actually, it was this property that
motivated the restriction to polynomial functors. It would he much better to have

161

162 Discussion

a necessar,Y condition which tells when a relator preserves strict left-division. There
exists such a condition for the preservation of intersection: the relator should pre
serve pullbacks. That result is intuitively obvious, because intersection is defined in
terms of pullba.cks. To achieve a similar theorem for striet Jeft-division, one should
identify the elementary categorical construction that underlies its definition. The
following proposition might be of help in achieving this goal.

Proposition Let F be a relator. Then F* preserves strict left-di ...·jsion if[F*
preserves rigbt-quotients of entire relations.

For any topos, there exist.~ an adjunction between the tapas itsdf and its category
of entire relations. Motivated by the above result, I briefly tried to define right
quotients of entire relations in terms of this adjunction. This may be dont~. but it
did not lead to any further insight.

10.2 Does every Topos have a Weak Relation Totaliser?

The definition of relation totaJjser propo~ed in chapter ·1 is unsatisfactory, becau~e

not every topos has one. While developing the results about relation totalisers, I
considered an alternative definition which is less restrictive than the one adopted
in this the:sis. The disadva.ntage of this alternative definition is that it does not
seem to give a nice calculus. Below we shall briefly summarise some reiults which
indicate that it might still be worthwhile to pursue the topic further. To keep the
account short, all proofs are omitted.

Consider the category of relations over a regular category. A weak relation
totajjser is a collection of monic maps

1]A :A_EA

which satisfies the following pseudo-universal property: for every rdation R : .4 ----+ B
there exists an entire relation

n,A_EB

such that
s; 'flBo R and <R ; S C R : TlB

<>
Sen

for all relations S : A -. EB. The question is now which toposes do have a weak
relation totaJiser. To discuss that qnestion, we need a definition of the mild axiom
of choice.

What are Selectors? 163

Let £ be a regular category. Say that £ satisfies the mild axiom of choice if for
every relation R, there exist a cover e and a simple relation F such that

Fe e;R and «e;R)C<F.

Proposition A topas £ satisfies the mild a..xiom of choice if E ; £ _ £ preserves
epics.

For example, the topos Set- of commuting squares does satisfy the mild axiom of
choice. The usua.! form of the axiom of choice in category theory says that all epics
have a left-inverse. Tbe topos of commuting squares does not satisfy the usual
axiom of choice. To the best of my knowledge, it is unknown whether E preserves
epics in every topos. The next theorem shows why it might be interesting to resolve
that issue;

Theorem Let £ be a topas. Then the simple-relation dassmer is a weak relation
totaliser iff £ satisfies the mild axiom of choice.

10.3 What are Selectors?

Our discussion of selectors focussed on the pragmatic aspects of their use in dynamic
programming, and I believe that from this point of view the relevant questions have
been answered. However, the construction of selectors from preorders sel(-) only
covers a very small c1~s: there are many selectors that do not arise in this way,
for example U itself. This leads to the question what selectors really are; do they
form 0\ category? Is there an alternative description of this category that gives more
insight in their precise nature? First, we need some more terminology. Let £ be a
topos.

For any relation R A _ A in Rel(£), one can define the supremum relation
supR: PA _ A by

supR = RT ; minR.

A partial order is said to be cocompJete if its supremum relation is a map. The
cocomplete partia.! orders in £ form a category, where the objects are cocomplete
partial orders and the arrows are sup-preserving morphisms. An arrow 1 ; A _ B
is said to be a sup-preserving morphism from R : A _ A to S : B _ B if

supR; 1 = 31; supS.

164 Di!JcWlsion

The category of functional selectors is defined as follows. Its objects are selectors
which are maps, and its a.rrows are selection-preserving rnorphisms in E. Let h
PA ---+ A and k : PB _ B be selectors in E. A selection-preserving morphism from
h to k is an arrow f ; A - B such that

h;1 ~ 3/;k.

Alternatively, the category of functional selectors could be defined a.~ the Ei1~nberg
Moore category of the power monad.

Theorem (Mikkelsen [7]], p. 36) In any topos, the category of cocomplete partial
orders is isomorphic to the category of functional selectors.

To gain a proper understanding of what selectors rea.lly a.re, it would be helpful to
have a similar theorem for arbitrary selectors. Unfortunately, time LOllst.raiflts did
not allow me to investigate the issue in any detail.

Bibliography

[1]	 A.V. Aho, J.E. Hopcroft, and J.D. Uliman. The Design a.nd Analysis of Com
puter Algorithms. Addison-Wesley, 1974.

[2]	 A. Apostolico, M.J. Atallah, L.L. Larmore, and S. McFaddin. Efficient par
allel algorithms for string editing and related problems. SIAM Journal on
Computing, 19(5):968-988, 1981.

[3]	 M.A. Arbib and E.G. Manes. Arrows, Structures and Functors: The Cat
egorical Imperative. Academic Press, 1975.

[4]	 R.C. Backhouse. Making formalily work for us. EATeS Bulletin, 38:219-249,
1989.

[5]	 R.C. Backhouse, editor. EURIeS Workshop on Calculational Theories of Pro
gram Structure, 23-27 September 1991.

[6]	 R.e. Backhouse, E. Voermans, and J.e.s.p. van der Woude. A relational
theory of datatypes. Department of Mathematics and Computing Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands. Appears in [5], 1991.

[7]	 M. Barr. Exact categories. In Exact Categories and Categories of Sheaves,
volume 236 of Lecture Notes in Matbematics, pages 1-120. Springer-Verlag,
1970.

[8]	 J. Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and
Categorical Homology Tbeory, \'olume 80 of Lecture Notes in Mathematics,
pages 119-140. Springer-Verlag, 1969.

[9]	 R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[10]	 R. Bergha.rnmer and H. Zierer. Relational algebraic semantics of deterministic
and nondeterministic programs. Tbeoretical Computer Science, 43(2-3):123
147, 1986.

[11]	 R.S. Bird. Tabulation techniques for recursive programs. Computing Sur\'eys,
12(4):403-417, Decembe, 1980.

165

[12J	 R.S. Bird. Transformational programming and the paragraph prohlem. Sci
ence of Computer Programming, 6:159-189, 1986.

[13]	 R.S. Bird. An introduction to the theory of lists. In M. Bray, editor, Logic of
Progra.mming and Calculi of Discrete Design, volume .36 of NATO ,4S1 Series
F, pages 3-42. Springer-Verlag, 1987_

[14J	 a.s. Bird. Lectures on constructive functional programming. In M, Broy,
editor, Constructive Methods in Computing Science, volume .55 of NATO ASI
Series F, pages 151-216. Springer-Verlag, 1989.

[15J	 R.S. Bird. A calculus of [unetiolls for program derivation. In D.A. Turner,
editor, Research Topics in Functional Programming, Universit.y of Texas at
Austin Year of Programming Series, pages 287-308. Addison-\V(~sley. 1990.

[16J	 RS. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching
algorithm. Science of CompuLer Programming.]2:93-104, H)89.

[] 7J	 R.S. Bird and O. de Moor. Nub theory. Draft, 1991.

[18J	 RS. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[I9J	 T. Brook. Order and Recursion in Topoi, volume 9 of Notes on Pure Mathe
matics. Australian National University, Canberra,]977.

[20J	 F. Cajori. A History of Mathematical Notations. Volume I ; Notalions In

Elementary Mathematics. The Open Court Publishing Company, 1928.

[21)	 F. Cajori. A History of Mathematica11Vota.tions. Volume II ; Notations Mainly
in Higher Mathematics. The Open Court Publishing Company, 1929.

[22J	 A. Carboni and S. Kasangian. Bicategories of spans and relations. Journa.l of
Pure and Applied Algebra. 33:259-267, 1984.

[23J	 A. Carboni, C.M. Kelly, and R.J. Wood. A 2-categorical approach Lo geomet
ric morphisms, t. Research Report 89-19, Department of Pure Mathematics,
The University of Sydney, NSW 2006, Australia, 1989. ISSN 1033-2359.

[24J	 A. Carboni and G. Rosolini. The free regular category on a left exact one. In
preparation, 1991.

[25J	 A. Carboni and R. Street. Order ideals in ca.tegories. Pacific Journal of Math
ema'ics, 124(2),275-288, 1986.

Bibliography 167

[26]	 A. Carboni and R.F .C. Walters. Cartesian bicategories I. Journal of Pure and
Applied Algebra, 49,11-32, 1987.

[27]	 R.J. Casimir. Program inversion. Technical Report AIV-80-10, Vakgroep AIV,
Erasmus Universiteit, Postbus 1730, 3000 DR Rotterdam, The Netherlands,
July 1980.

[28]	 W. Chen and J.T. Udding. Program inversion: More than fun! Science of
Computer Programming, 15(1):1-13, 1990.

[29J	 R. Cockett. Personal communication. 1991.

[30]	 R. Cockett and T. Fukushima. Draft: About Charity. Dept. of Compnter
Science, University of Calgary, Calgary, Alberta, Canada, 1991.

[31]	 N.H. Cohen. Characterization and elimination of redundancy in recursive pro
grams. In 6th ACM Annual Symposium on Principles of Programming Lan
guages, pages 143-157. Association for Computing Machinery, 1979.

[32J	 E.V. Denardo. Dynamic Programming - Models and Applications. Prentice
Hall, 1982.

[33]	 E.W. Dijkstra. Program inversion. In F.L. Bauer and M. Broy, editors, Pro
gram Construction, volume 69 of Lecture Notes in Compu ter Science, pages
54-57. Springer-Verlag, 1979.

[34]	 E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

[35J	 J.G. Ecker and M. Kupferschmid. Introduction to Operations Research. John
Wiley, 1988.

[36]	 S. Eilenberg and J.B. Wright. Automata in general algebras. Information and
Control, 11(4),452-470, 1967.

[37]	 A.J. Field and P.G. Harrison. Functional Programming. International com
puter science series. Addison-Wesley, 1988.

[38J	 M.M. Fokkinga. An exercise in transformational programming: Backtracking
and branch-and-bound. Science of Computer Programming, 16:19-48, 1991.

[39]	 PJ. Freyd. Personal communication. 1991.

[40]	 PJ. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical
Library. North-Holland, 1990.

[41J	 Z. Galil and R. Giancarh Speeding up dynamic programming with applica
tions to molecular biology. Theoretical Computer Science. 64~I07-1l8, 1989.

[42]	 P. Gardiner. Personal communication. 1990.

[43J	 J.A. Goguen. Personal communication. 1989.

[44]	 J.A. Goguen and J. Meseguer. Correctness of recursiH' parallel nondetermin
istic flow prograrru;. Journal of Computer and System ScipJlce.~, 27(2):268-290,
1983.

[45J	 J.A. Goguen and T. Winkler. Introducing OBD. Technical Report SRI-CSL
88-9, Computing Science Lahoratory, SRI [n!.crnat,ional, 3:):) Havenswood
Ave., Menlo Park, CA 94025, USA. Augnst 1988.

[46]	 R. Goldblatt. Topoi - The Categorial Analysis of Logic, volume 98 of Studies
in Logic and the Foundat.ions of Alathema.Lics. North-Holland, 1986.

[47;	 P.A. Grillet. Regular categories. In Exact Categories a.nd CiJtcgories
of Sheaves, volume 236 of Lecture Notes in Mathematics. pages 121-222.
Spriuger-Verlag, 1970.

[48]	 P.G. Harrison and H. Khoshnevisan. On the synthe:;is of function iIn·erses.
Research Report DOC 90/4, Department of Computing, Imperial College, 180
Queen's Gate, London SW7 2BZ, Engla.nd, Fehruary 1990.

[49]	 P. Helman. The principle of optimality in the design of efficient algorithms.
Journal of A1aLhematical Analysis arId A.pplications, 119:97-127. 1986.

[50)	 P. Helman. A common schema for dynamic progra.mming and branch-and
bound a.lgorithms. Journal of the ACM, 36(1):97-128, January 1989.

[51]	 P. Helman and A. Rosenthal. A comprehensive model of dynamic progra.m
ming. SIAM Journal on Algebraic and Discrete Methods, 6(2):319-334, 1985.

[52J	 D.S. Hirschberg and L.L. Larmore. The least weight subsequence pmblem.
SIA.M Journal on Computing, 16(4):628-638, 1987.

[53]	 P.J. Huber. Homotopy theory in general categories. Math. A.nnalen, 144:361
385, 1961.

[54]	 J. Hughes. Lazy memo-functions. In J.P. Jouannaud. editor, Functional Pro
gramming Languages and Computer Architecture, \"olume201 of Lecture ."ioles
in Computer Science, pages 130-146. Springer-Verlag, 1985.

Bjbliography 169

[.55]	 J. Jeuring. Algorithms from theorems. In M. Broy and C.B. Jones, editors,
Programmjng Concept8 and Method8, pages 247-266. North-Holland, 1990.

[56]	 P.T. Johnstone. Topas Theory. Academic Press, 1977.

[57J	 G. Jones. Designing circuits hy calculation. Technical Report PRG-TR-ID
90, Programming Research Group, 11 Kehle Road, Oxford OXI 3QD, England,
1990.

[58]	 R.M. Karp and M. Held. Finite-state processes and dynamic programming.
SIAM Journal on Applied Mathematics, 15(3):693-718, 1967.

[59]	 H. Kleisli. Every standard construction is induced by a pair of adjoint fundors.
Proceedjng8 of the A.medcan MathematkaI Socjdy, 16:54.1-546, 1965.

[601	 D.E. Knuth and M.F. Plass. Breaking paragraphs into Jines. Software: Prac
tice and Expedence, 11:1119-1184, 1981.

[61]	 J. Lambek. A fixpoint theorem for complete categories. Mathematische
Zejt,schrift, 103:151-161, 1968.

[62]	 D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A
synthetic approach. Mathematjcal SY8tems Theory, 14:97-139, 1981.

[63J	 B. Louka and M. Tchuente. Dynamic programming on two-dimensional sys
tolic arrays. InformaUon Proces8jng Letters, 29:97-104,1988.

[64]	 G. Malcolm. Data structures and program transformation. Sdence of Com
puter Programming, 14:255-279, 1990.

[65]	 E.G. Manes. Algebrak Theorjes, volume 26 of Graduate Texts in .~.Jathematjcs.

Springer-Verlag, 1975.

[66]	 E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics.
Texts and Monographs in Computer Science. Springer- Verlag! 1986.

[67]	 C.E. Martin. Preordered categories and predicate transformers. D.Phil. thesis.
Programming Research Group, Computing Laboratory, 11 Keble Road. Oxford
OXI 3QD, October 1991.

[68]	 L. Meertens. Algorithmics - towards programming as a mathematical ac
tivity. In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra., editors, Math
ematics and Computer Science, volume 1 of CWI Monograph8, pages 3-42.
North-Holland, 1987.

170	 Bibliography

[69]	 K. Mehlhorn. Data Structl1r~ and Algorithms. EATCS Monographs on The
oretical Computer Science. Springer-Verlag, 1984. (3 volumes).

170J	 D. Michie. "Memo" functions and machine lcarning. Nature, 218:19-22, April
1968.

[71J	 C.J. Mikkelsen. Latt!cp theoretic and logical aspects of elementary topoi.
Various Publications Series 25, Matematisk Institut, Aarhus Universitet, NY
Munkegade, DK-8000 Aarhus C, Denmark, 1976.

[72]	 O. dp Moor. Context-free language recoguilion. Intcrnational Summer School
on Constructive Algorithrnics, Hollum, Ameland, The Netherlands, 1989.

[73J	 O. de Moor. Categories, relations and dynamic programming. n'chnical Rt"'
port PRG-TR-18-90, Programming Research Gronp. 11 Kcble Road, Oxford
OXI 3QD, England, 1990.

[74]	 O. de Moor and n.s. Dird. List partition~. to appear ill Formal A~,peds of
Computing. Programming Research Group. 11 Keble Roa.d, Oxford OX1 :JQD,
England, 1989.

[75J	 C.C. Morgau. Programming from Specifica,tions. Prentice--Hall, 1990.

[76J	 J.F. Myoupo. DynamiC' programming on linear pipelines. Tnformation Pro
cessing Letters, 39:333-341, 1991.

[77]	 G.D. Plotkin. A powerdomain construction. SIAJ\J Journal on Computing,
5(3),452-487,1976.

[78)	 A. Poigne. A note on distributive laws and power domains. In D. Pitt,
S. Abramsky, A. Poigne, and D. Rydeheard, editors, Category Theory and
Computer Programming, volume 240 of Lcetnre ,/I,rotes in Computcr Science,
pages 252-265. Springer-Verlag, 1986.

[79J	 W. Rytter. On efficient parallel computations for some dynamic programming
problems. Theoretical Computer Science, 59:297-307,1988.

[80J	 G. Schmidt. Programs as partial graphs I: Flow equivalence and correcLneS9.
Theoretical Computcr Science, 15:1-25, 1981.

[81)	 H. Schubert. Categories. Springer-Vprlag, 1970.

(82J	 R. Sedgewick_ Algorithm'l. Addison-Wesley, 1983.

[83J	 M. Sheeran. Describing hardware algorithms in Ruby. In David d al.. edi
tors, IFIP WG 10.1 workshop on Concepts a/ld Chara.cterjstics of Dec/araUve
Syst.cms, Budapest 1988. North-Holland, 1989.

Bibliograph.... 171

184]	 M. Sheeran. Categories for the working hardware designer. In M. Leeser and
G. Brown, editors, Workshop on Hardware Specjfication, Verification and S....n
thesis: Matbematical Aspects. Cornell UniversjLJ" 1989, volume 408 of Lecture
Notes in Computer Science, pages 380-402. Springer-Verlag, 1990.

[85]	 n.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27:43-96, 1985.

[86]	 n.R. Smith. Applications of a strategy for designing divide-and-conquer al
gorithms. Science of Computer Programming, 18:213-229, 1987.

[87]	 n.R. Smith. Structure and design of global search algorithms. Technical Re
port KES.U.87.12, Kestrel Institute, 1801 Page Mill Road, Palo Alto, CA
940304, July 1988. To appear in Acta Informatica.

[88]	 D.R. Smith. Kids: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024-1043, 1990.

[891	 D.R. Smith. Structure and design of problem reduction generators. In
B. Moller, editor, Proc. of the IFIP TC2 Workjng Conference on Constructing
Programs from Specifications. North-Holland, 1991.

[90]	 D.R. Smith and M.R. Lowry. Algorithm theories and design tactics. Science
of Computer Programming, 14:305-321, 1990.

[91J	 M. Sniedovich. A new look at BeUman's principle of optimality. Journal of
Optimization Theory and Applications, 49(1):161-176, April 1986.

[92J	 J.M. Spivey. A functional theory of exceptions. Science of Comput.er Pro
gramming, 14:25-42, 1990.

[93]	 A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89,
1941.

[94]	 D.A. Turner. Miranda - a non-strict functional language with polymorphic
types. In P. Henderson and D.A. Turner, editors, Proc. Conference on Func
tional Programming Languages and Computer Architecture, vo(ume 201 of
Lecture Notes in Computer Science, pages 1-16. Springer-Vedag, 1985.

[95]	 A.J.M. van Gasteren. On tbe sbape of mathemal.ical arguments, volume 445
of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[96]	 P. Wadler. Comprehending monads. In G. Kahn, editor, ACM Conference on
Lisp and Functional Programming, pages 61-78. ACM Press, 1990.

172	 Bib}jography

/97]	 R.A. Wagner a.nd M.l. Fischer. The string--lo-string correction problem. Jour
nal of the Association for Computing Machinery, 21(1):168--173, 1974.

Index

adjOiD~ arrow, 54

adjunction, 15,69,110

Aho,32

algebra, 87

initial, 5. 87

relational, 89

algorithm theory, 34

allegory, 64

power, 93

anti-symmetric, 123

Arbib,49

associative law, 70

asymmetric equality, 44

Back,37

Backhouse, 66, 75, 113, 161

Barr, 51

Beck,76

Bellman, 3, 32

binary trees, 26

Bird, i, v, 38

Boolean, 15, 113

bottom-up evaluation, 32

bracketing, 26

Brook,38, 144

Cajori,43

Carboni, v, 43

cargo, 24

cartellian, 47

categorical programming, 36

category oC relations, 52

ChiUily, 36

choice function, 33

classi.fier, 15

simple relation, 108

cocartesian, 73

Cockett,36

cocornplete, 73

coequaliser,51

commuting squares, III

comparison functor, 72

complete, 47

concatenation, 4

concave, 36

conj ugate kernel, 94

containment, 101

natura.lity, 101

converse, 5, 53

coproduct, 73

coreflective, 107

coreflexive, 65

cover, 49, 53

cover-monic factorisation, 49

covered by, 50

cross-operator, 9, 75

composition, 85

example, 82

naturality,85

product, 86

Denardo, 32

diagonal fill-in, 49

direct image, 49

discrete decision process, 33

discrete optimisation problem, 33

distribute, 16, 137

distributive law, 9, 76

divide-and--eonquer, 3,35

division, 14

left, 93

right, 91

strict, 94

domain, 14, 65

dynamic programming, 32

173

174 Index

basie theorem, II, 148

divide-and-conquer, 149

instantiation, 156

practical theorem, 18, 158

edit distance, 21

Egli-Milner order, 105

Eilenberg, 10, 89

element, 90

entire, 14, 53, 64

existential image, 106

epsiloff, 69

equaliser, 49

everywhere defined, 14,53

existential image, 6, 9, 69

relator, 98

extend, 8, 62, 76

extrema.l epic, 49

factorisation, 49

fa.ctors, 47

fa.ithful, 53

fictitious, 13

fold, 5, 88

format, 3

Freyd, v, 43

frontier, 27

Fukushima, 36

function, 54

functor

extended,56

Gardiner, v, 63

Gasterell, 117

generic specification, 7, 145

Goguen, v, 87, 146

Goldblatt, 112

graph, 53

greatest lower bound

subohject,47

greedy, 38

Grillet, 51

hardware, 37

has--element, 90

Held, 33

Helman, 33

Hoare, v, 105

homomorphism, 87

relational, 90

Bopcroft, 32

Huber, 71

identity, 44

image, 49

existential, 69

imperative, 36

infinity, 13

initial, 87

initial algebra, 17

existence, 91

relational, 10

internal intersection, 93

inverse, 53

inverse image, 5, 145

involution, 53

Jones, 37

Joyal, 51

Karp, 33

Kelly, 43

Kleisli, 71

category, 71

knapsack, 24

Lambek, 89

Lawvere, 73, 108

layout, 3, 149

least, 14

least upper bound

of relations, 74

list, 5, 87

lists, 22

load, 24

Lowry, 34

Luk,37

Malmlm,88

MaDfs, 49, 76

map, 6, 54, 64

Martin, v, 37

matrix: multiplication, 26

maximum

existential image, 124

of set, 122

simple, 123

union, 126

mechanisation, 34

Meertens, i, v

rnemoisation, 7, 152

Meseguer,87

mild axiom of choice, 162

minimum, 14

modular law, 64

monad, 70

defined by adjunction, 71

simple relation, 118

monic, 47,54

monotonic, 16, 137

Morgan, 37

natural number-s object, 17, 88,91

Boolean, 144

wdl-bounded, 144

nearly preserve, 8

non-associative regular expression, 33

notation, 43

OBJ3,35, 156

object problem, 19

operations research, 32

optjmal,3

order~nricbed, 52

P-RAM,37

paragraph, 3, 149

par.lld, 37

parenthesis, 26

Index 175

partial arrow, 30, 54

partial arrow classifier, 15

partial order, 123

Poigne,76

polynomial, 16,90

strict division, 95

power

adjunction, 69

allegory, 93

monad,71

object, 69

transpose, 5

of functor, 84

power allegory

topas, 93

power transpose, 72

predicate trausformer, 37

preorder, 15, 123

preserve

c.overs,57

domain, 66

intersection, 60

nearly, 8, 58

pullbacks, 8, 60

up to image, 58

regular epics, 8

stdct division, 95, 161

tabulations, 60, 91

principle of optimality, 3, 16

problem reduction generator, 35

problem theory, 34

quotient, 14

left, 93

right, 91

reciprocaL 53

recursion, 7, 35

reduce, 5, 88

refinement calculus. 37

reflexive, 123

regular

176 Index

category, 51

epic, 51

regular category, 64

regular epic, 8

relation, 52

totaliser, 15, 111

weak, 162

relator, 8, 59, 98

example, 59

polynomial, 16

reverse, 53

Rosenthal, 33

Scedrov,43

Schroeder, 113

Schubert, 72

selector, 13, 128

functional, 164

of preorder, 129

semi-lattice, 48

sequence,S, 87

sequences, 22

sequential decision process, 33

set-valued functi<lns, 72

Sheeran, 37

shunt, 113

simple, 51, 64, 73

singleton, 69

smash, 119

Smith, v, 31

Smyth, 105

Spivey, 73

splitting, 36

string-ta-string, 21

subfunctor, 110

subobject,47

extended,51

functor, 48

subproblem, 3

subsequence, 22

Swierstra, v

systolic, 37

tabular, 66

tabulation, 7, 32, 51, 56, 152

terminator, 88

text formatting, 3, 149

Tierney, 73, 108

topos, 69

Boolean, 15, 1l3, 144

relation totaliser, 114

power allegory, 93

total, 14,53

totaliser, 15, 111

transform, 21

transitive, 123

transpose, 53

triangular identity, 69

typed factor, 9·1

Ullman, 32

union

of relations, 74

of sels, 69

unit, 66

unit law, 70

upper bound

of set, 122

value problem, 19

vessel, 24

view, 35

Wadle"70

weakest postspecification, 91

well-bounded, 123, 125

well-founded, Hi

Wells, v

Wood. 43

Wrigbt, 10,89

