CATEGORIES, RELATIONS
AND
DYNAMIC PROGRAMMING

by

Oege de Moor

Technical Monograph PRG-98
1SBN (-902928-76-7

April 1992

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX1 3QD

England

Copyright © 1992 Oege de Moor

Oxford University Computing Laboratory
Programming Research Group

11 Keble Road

Oxford OX13QD

England

Electronic mail: cegef@comlab.ox.ac.uk

A thesis submitted for the degree Oege de Moor
of Doctor of Philosophy St. John's College
Michaelmas 1991

CATEGORIES, RELATIONS AND DYNAMIC
PROGRAMMING

Abstract

Dynamic programming is a strategy for solving optimisation problerms. In this thesis, it
is shown how many problems that may be solved by dynamic programming are instances
of the same abstract epecification. This specification is phrased using the caleulus of
relations offered by topos theory. The main theorem that nnderlies dynamic programming
can then be proved by straightforward equational reasoning. This js the Rrst contribution
of this thesis: to provide an elegant fonmulation of dynamic programrming in a categorical
setting.

The generic specification of dynamic programming makes use of higher—order opera-
tors on relations, akin te the fold operators found in functional programming languages.
In the present context, a data type is modelled as an initial F-algebra, where F is an
endofunctor on the topos under consideration. The mediating arrows from this initial F-
algebra to other F-algebras are instances of fold — but only for total functions, Can we
generalise to relations? For a regular category £, it is possible to construct a calegory of
relations Rel£). When a functor between regular categories is a so—called refator, it can
be extended (in some canonical way) to a functor beiween the corresponding categories
of relations. Applied to an endofunctor on a tepos, this process of extending functors
preserves initial algebras, and hence fold can be generalised from functions to relations.
This is the second contribution of this thesis: to show bow category theory facilitates a
smooth generalisation of functional concepts to relations.

[t js weli-known that the use of dynamic programming is governed by the principle
of optimality. Roughly, the principle of optimality says that an optimal solution is com-
posed of optimal solutions to subproblems. In a first attempt, we formalise the principle
of optimality as a distributivity condition. This distributivity condition is elegant. but
difficnlt to check in practice. The difficulty arises because we consider minimum elements
with respect to a preorder, and therefore minimum elements are not unique. Assaming
that we are working in a Boolean topos, it can be proved that monotonicity implies dis-
tribntivity, and this monatonicity condition is easy to verify in practice. This is the third
contribution of this thesis: to develop practical results about minimisation in preorders.

0 Preface

Dynamic programming is a problemn solving technique that originated iu operations
research. Typical applications of dynamic programming are optimisation problems
whose specifications can be factorised into three consecutive components. In the
first component, one generates a set of combinatorial objects, for example all bi-
nary search trees with a given frontier, or all partitions of an integer. In the second
component, one assigns a cost to each of these objects. In the third and final com-
ponent of the specification, one selects an object of minimum cost. The objective
of dynamic programming is tc merge these three components, to obtain a more
efficient way of compnting an object of miniminm cost. Informally, this is possi-
ble if an optimal solution is composed of optimal solutions to subproblems. This
property, which is known as the principle of optimality, can often be phrased as a
distributivity condition on the operators involved in the specification. Ever since
dynamic programming was iuvented in the fifties, researchers have tried to exploit
this observation to give a precise characterisation of dynamic programming. This
thesis reports on another attempt to achieve such a characterisation. Qur start-
ing point is somewhat different from earlier work on dynamic programming, since
our results are inspired by modern metheds for the derivation of programs from
specifications.

0.1 Foundations

0.1.1 The Bird-Meertens Formalism The programming methods that in-
spired this work stem from the area of functional programming, and in particular
from the formalism designed by Bird, Meertens and others [13, 14,15, 16, 38, 55, 68].
This formalism is a calculus huilt around initial data types and homomorphisms on
those data types. The data types are Lypically various forms of trees, and the homo-
morphisms on trees are often called fold operators. The advantage of programming
in terms of fold is that one may nse initiality to prove eqnality of progrms, thus
avoiding the tedious steps involved in ordinary inductive proofs.

0.1.2 The Need for Relations In principle, the Bird-Meertens formalism only
involves total functions, an assumption which greatly simplifies the malhematical
laws used in deriving algorithms from specifications. For the treatment of dynamic
programming, however, this restriction is too severe, and we shall need a calculus

i1 Preface

of arbitrary relations instead of just total functions. Two reasors for generalising
tom functions to relations are discussed below.

A purely functional style is inadequate because in many optimisation prohlems
one has to deal with nondeterminism. For example, consider the problem of con-
structing an optimal binary search tree representing a given set. There may well
be two different trees of minimum cost that represent the same set, aud hence the
specification is nondeterministic. The situation cannot be modelled by a function
from input to output; rather, it is a relation.

A second reason for considering relations instead of functions is the structure of
certain proofs. There are deterministic programming problems (functions) where it
is helpful to consider nondeterministic programs (relations) in passing from spec-
ification to implementation. A typical instance occurs when considering program
inverses 27, 28, 33, 48): not all functions have an inverse, but all relations do have a
converse. In dyuamic programming, program inverses are ofteu helpful in defining
the set of combinatorial objects.

0.1.3 Sets and Power Transpose A calculus of initial data types and re-
lations does not necessarily involve a form of set theory. In specifying dynamic
programming problems, however, it is quite common to specify sets of combinato-
rial objects by equations of the form

gen(y) = {z|f(r)=y}.

This observation mativates the following requirement for our programming formal-
ism: there exists an isomorphism between relations A — B and set—valued functions
A — AB). To see how this relates to the above equation for gen, write A for the
operator that sends a relation to the corresponding set-valued functiorn, and write
ft° for the converse of K. Then the function gen can he written as

gen = A(f°) .

The isomorphism A, which is called power transpose, allows one to give simple
equational proofs of identities in set theory.

0.1.4 Minimisation in Preorders The existence of relations and power trans-
pose makes it possible to reason about the first two components of the specification
of dynamic programming: generating a set of combinatorial ohjects, and assigning
a cost toeach of these objects, However, the third component, which is the selection
of an optimal element from a set, cannot be directly described in terms of these
primitives. Let B : A — A be a preorder (a reflexive and transitive relation), and
let min(f) : P(A) — A be the relation that maps its argument set to its minimum
elements:
a(min(R))x = acx A (vbez:a(R)D).

1v Preface

more general approaches to program construction. Also, the application of our
results seems more mechanical, mostly owing to the algebraic framework.

0.2 Background

The idea to use toposes as a starting point for the investigation of dynamic pro-
gramming is not immediately obvious. It gradually developed, and since this de-
velopment seems relevant to the conclusions of this thesis, it will be summarised
below. The research that led to this thesis started in the summmer of 1988 with the
study of varicus dynamic programming algorithms in Richard Bird’s calculus of
functions, a subject which he had already touched upon in [15]. This initial explo-
ration [17, 72, 74] identified two obstacles standing in the way to further progress:
first, the level of abstraction in the calculus was too low. Many resulls locked alike,
but they could not be expressed as a single theorem. Second, the (nsistence on
tatal functions hampered the treatment of optimal solutions that are not unique.
It seemed expedient, therefore, to change the formalism, and my first attemnpt was
to generalise the basic identities of Bird’s calculus from total functions to relations.
While this approach solved the problem of non—unique aptimal solutions, il failed
to cope with the lack of abstraction.

The main result that needed a proof was about the generalisation of fold op-
erators from functions to relations. It was clear that a set theoretical approach
was unhelpful here, and many people (in particular Joseph Goguen} suggested the
use of category theory. Indeed, with a naive categorical construction of relations, it
turned out to be quite easy to prove the desired theorein. Charles Wells encouraged
me to show that the assumptions underlying the naive construction reduced to a
topos that satisfies the axiom of choice. These results were reported in a fist draft
of this thesis [73].

It then took some time to decide which facts about categorical relations are
well-known and which are not. Fortunately, the textbook by Freyd and Seedrov
appeated around this time [40], and most results are in there. Aurelio Carboai
kindly gave me access to some unpublished work [24], which showed that splitting
the coreflexives in my naive construction of relations yields the regular reflection of
a category with finite limits. In all, this study of related work in category theory
convinced me that it was better to abandou my naive approach: the most effective
proof method is a proof by reference. Also, the standard approach to relations
avoids the axiom of choice.

There are, I think, two lessons to be learned from the way in which thisresearch
evolved. First, the development of new theoretical concepts in programming meth-
ods should be guided by the study of concrete examples. This allows one to select

Foundations iii

Note that there may be more than one minimum element a in a set r; one could
therefore think of min{ H) as a non—deterministic mapping that selects some optimal
element from its argument set. To model this relation in onr calculus, we need some
form of universal quantification.

0.1.5 Categorical Relations and Toposea Whbat is an appropriate domain
of discourse [or reasoning about initial data types, relations, power transpose and
minimisation? It seems reasonable to start with a category £, whbere the objects
are types, and the arrows are functions. Informally, one could think of £ as an
abstract view of a {unctional calculus like the Bird-Meertens formahsm. A data
type can then be modelled as an initial F-algebra, wbere F i5 an endofunctor on
the category under consideration. The mediating arrows from this initial algebra
to other F-algcbras are instances of fold — but only for total functions. Can we
generzlise to relations?

For a regular category C, it is possible Lo construct a category of relations Rel{C).
Conversely, every category of relations arises in this way. Hence, the assumption
that relations exist in our programming formalism means that £ is regular. When a
functor between regular categories is a so—called relator, it can be extended (in some
canonical way) to a functor between the corresponding categories of relations. A
regular category where relations and set—valued functions are isomorphic is called
a topos. When applied to an endofunctor on a topos, the process of extending
functors to relations preserves inilial algebras, and hence fold can be generalised to
relations.

in a topos, one has all sorts of logical operators on relations, in particular
univetsal quantification. I is therefore possible to define the rclation min(R), and
to reason about its properties. We use this observation to formalise the principle of
optimality. As mentioned above, the principle of optimality says that an optimal
solutiou is composed of optimal solutions to subproblems. In a first attempt, we
model the principle of optimality as a distributivity condition. This distributivity
condition is elegant, but difficult to check in practice. The difficulty arises because
we consider minimum elements with respect to a preorder, and therefore minimum
elements are not unique. Assuming that we are working in a Boolean topos, it can
be proved that monolonicity implies distributivity, and tbis monotonicity condition
is easy to verify in praclice.

The brief account given above already illustrates bow tbe categorical caleulus of
relations (as offered by topos theory) meets the requirements of dynamic program-
ming iu an almost perfect manner. This is the main contribution of this tbesis:
to recognise that the categorical calculus of relations is an appropriate setting for
applications in algorithm design, The result is an attractive treatment of dynamic
programming, which extends earlier work of others by making tbe connection with

Acknowledgements v

precisely those concepts which are relevant to the applications under consideration.
Second, (and this came as a surprise to me) many of the mathematical structures
identified in this way are already in existence, although they were invented for
completely different purposes. The search for such connections is of course sound
scientific practice, but there is also a pragmatic reward: one can present the main
results and applications witlout elaborating the foundations.

The structure of this thesis reflects that viewpoint. The first part presents the
results about dynamic programming and their applications. Although the presen-
tation assumes a good deal of category theory, I believe the essence of this work
can be understood by anyone who has a nodding acquaintance with categories and
functors. Readers who are unfamiliar with more advanced concepts like regular
category or topos witl a natural mumbers object can just think of the category of
sets and total functions.

The second part of this thesis presents the technical details, and it reviews
those [acts about categorical relations and toposes that are relevant {o the present
discussion. This part is thercfore direcled towards computing scientists who (like
myself) are not yet skilled in the art of diagram chasing. It is for this reason that
many of the proofs are given in much detail, in a calculational style that is familiar
to students of formal methods in computing. Sometimes these rigorous calculations
have been enlivened by a diagram, hoth to space cut the formulae and as an aid to
type checking the proofs.

0.3 Acknowledgements

Three supervisors have guided the research that led to this thesis. Doaitse Swierstra
was my afstudeersupervisor at Utrecht University, and he stimulated my interest in
the formal aspects of program construction. I am grateful to him for the countless
discussions we had since 1987, and for his support and friendship. Richard Bird
supervised the first two years of my D.Phil. work at Oxford, and 1 am grateful to
him for his tireless efforts to teach me taste and method. From the time [ook up
an interest in category theory, Tony Hoare has heen a constant source of inspiration
and sage advice, For the last eight months of this research, he was also formally
My SUpPervisor.

1 would also like to acknowledge helpful discussions with Aurelio Carhoni, Pe-
ter Freyd, Paul Gardiner, Joseph Goguen, Clare Martin, Lambert Meeriens, Doug
Smith and Charles Wells. Al have made significant contributions to my under-
standing of the suhject. Four anonymous referees, who commented on earlier parts
of this thesis when I suhmitted them for puhlication, have made suggestions that
led to substantial improvements. In particular, all four insisted on the use of well-

vi Preface

established results from categoty theory, in preference to a more naive approach
that I developed with the applications in mind.

The generous financial assistance of British Petroleum International Ltd., the
British Council, the Dutch STOP project, Lincoln College and St. John's College
is gratefully acknowledged.

Contents

0 Preface
0.1 Foundations o
0.2 Background Lo
0.3 Acknowledgements

I Dynamic Programming

1 Theory
1.1 Introduction
1.2 Dynamic Programming
1.3 Constructing Selectars from Preorders
1.4 Monotonicity implies Distributivity
1.5 SUumumaryo e e e e e e e e

2 Applications

2.1 String—to-String Correction

22 Loading e

2.3 Bracketing
3 Discussion

3.1 Related Work

3.2 Future Research

3.3 Conclusions e e

II Technical Details

4 Introduction
4.1 Notation e
4.2 OVerview e e e

5 Regular Categories

51 Subobjects, Imagesand Covers,
5.2 Relations over a Regular Category,
53 Extemsionof Functors.

vii

v

-

-F w W

41

43
43
44

46
47
32

10

5.4 Allegories e e

Toposes

6.1 The Definition of a Topos
6.2 Cross—operatorso oo
6.3 Relational Algebras L L oo
6.4 Power Allegories 0.
6.5 Existential Image

Representing Partial Relations

7.1 Simple-Relation Classifiers _
7.2 Relation Totalisers
7.3 Properties of Relation Totalisers

Maximisation in Preorders

8.1 Maximum Elements.
8.2 Selectors L e
8.3 Monotonicity implies Distributivity

Dynamic Programming

9.1 The Basic Theorem
9.2 Application; Text Formatting
9.3 A more Practical Theorem

Discussion

10.1 Which Functors preserve Division?

10.2 Does every Topos have a Weak Relation Totaliser?

viii

Part 1

Dynamic Programming

1 Theory

1.1 Introduction

Dynamic programming is a strategy for solving optimisation problems [9. 32, 35].
It is based on the observation that in many optimisation problems an optimal so-
lution is composed of pptimal solutions to subproblems. This properly has been
called the principle of optimality by Richard Bellman [9, 41], who invenled dy-
namic programrmuing in the fifties. If the principle of optimality is satisfied, one
may compute au optimal solution to the whole problem by decomposing il into
subproblems, solving these recursively, and composing the partial solutions intv an
optimal solution for the whole problem. Dynamic programming is a degenerate
case of divide—and-conquer in that one considers ail possible decompositions of the
argnment, not just a single one.

Typical applications of dynamic programming include text formatting, molecu-
lar sequence comparison, knapsack, and the construction of optimal binary search
trees [49]. Given the variety of these applications. one wonders whether it is at
all possihle to develop a small, coherent mathematical theary to support dynamic
programming. Fortunately, the answer is yes. The problems that may be solved by
dynami¢ programming are all instances of a single specification, or slight variations
thereof. In this thesis we shall phrase that generic specification using the calculus
of relations in a topos. The reasons for nsing topos theory (and not ordinary set
theory) are purely pragmatic: toposes provide the right primitive operators, and
many of the basic facts we shall need have been known to topos theorists for some
years.

Rather than presenting a list of technical definitions, we shall introduce the
generic specification of dynamic programming by means of an example; the tech-
nicalities will come later. Consider the problem of breaking a list of words into
lines to form a paragraph (12, 15, 60]. There are many ways of doing this, and we
are interested in forming a paragraph with as little wbite space as possible. For
expository reasons, we shall first stndy the problem of determining the minimum
amount of white space rather than constrnctling a paragraph which realises that
minimum. Later on we shall sce how an optimal paragraph can be constructed.

There are three data types involved in the problem statement: words, lines and
paragraphs. For now it is irrelevant how words are represented, and we jnst assume

3

4 Theory

the existence of a set W of words. Lines are sequences of words, and the set of
all lines is denoted W*. In turn, paragraphs are sequences of lines, and the set
of all paragraphs is written W*+, Both lines and paragraphs are assumed Lo be
non—emply sequences.

Here is the specification for which we inlend to derive an algorithm:
k(z) = min {spacc(z)|z € layouis(z)} .

The function & takes a line and returns a number which is either natural or infinity.
(The need for infinity will hecome clear when we get down to technical matters.)
The argument of k, here called z, is the line of words which is ta be broken into a
paragraph. In the sequel such a paragraph will be called a layout of z. The result
of k is the minimum amount of white space in a layout of z. How is that result
computed? Well, one way is Lo first generate all possible layonts of z with the
function layouts. 1t takes the line z and it returns the set of all possible layouts
of z. For each of these layouts (say z) we compute the amount of white space
space (1). Finally, take the munimum of the set of numbers generated in this way:
the minimum amount of white space in a layout of 2.

To define the function layouts, we first introduce concal, which is familiar to
Tunctional prograrmumers 18], It takes a paragraph, and it concatenates the compo-
nent lnes to form a single line. For example, we have the identity

comcal [[“this”, “is”],
[“a”],
[“text”, “layout”]]

[“this™, “is", “a”, “text”, “layout”]

The set of all layouts of z is precisely the set of those paragraphs z for which
concat(z) = z. Writing out the definition, it becomes clear that layouts is the
power transpose of the converse of concai:

{ziconcat(r) =z} = {z]|z(comneat®)x}
A{coneat®)(z) .

layouts (z)

Here A stands for the power transpose operator, which takes a relation A — B to
the cotresponding set—valued function A — P(B), and R° : B — A denotes the
converse of a relation H: A — B. From now on, we shall call the power transpose
of the converse of R the inverse image function of H:

niR) = A(R).

In providing a formal characterisation of the function concat : W' s W+, we
start with a precise definition of the data type of paragraphs W**, 1L is defined as
tbe initial F-algebra, where F : Set — Set is the functor given by

F(A) = WY+ (W x 4).

We shall denote this initial algebra by p(F) : F(T) — T. Initial algebras for
endofunctors are well-docnmented in the literature [62, 66], so we shall confine
ourselves to briefly recalling the definition. For each F-algebra ki : F(A) — A there
exists precisely one morphism (k] which makes

F() B(F) T
Fahl)f-l W)y

FiA)

A

A
commute. The mediating arrow (k) is pronounced “fold-aitch”, and it i said to
be a fold. The subscript £ is not prononnced and it will be omitted if there is no
chance of confusion. Folds are interesting [64], because Lthey are similar to the fold
or reduce operatars found in fnnctional programming languages like Miranda® ar
Hope [18, 37, 94].

Let us illustrate this with two examples, For the given choice of F, fold could
be informally characterised by

([[m-;@]]) ”ls ’2! . ':In]

Lae(hs(...em{l)).

That is, apply the function m to the last element of the given sequence of lines,
and sum the remaining lines from right to lelt with the binary operator ®. The
function concat, which takes a paragraph and concatenates ils component lines,
can be expressed using fold:

concat = ([[1,#]] .

it Jeaves the last line of the paragraph nnchanged (the identity 1}, and il concate-
nates the component lines from right to left, using the binary operator #+ which
concatenates two lines to form a single one, e.g.

Ewhw?] hu [w:i! w-hwfll = [whwhwﬁswhwb] -

1Miranda is a trademark of Research Softiware Limited.

6 Theory

As a second example of the use of fold, consider the function space , which takes a
paragraph and returns the amount of white space in that paragraph. It is defined

space = ([1,])

where 1@n = f(D)+n
flh = (eptlen — length (I))?
0 if length{l) < optlen
i = ”
oo otherwise .

In words, the total amount of white space in a paragraph is the sum of the white
space in the component lines, except for the last line, which does not count unless
it is toolong. The white space in a single line ! is returned hy the functiou f. The
precise definition of f is unitmportant for the present discussion, but one could take,
for example, the square of the difference between the optimum line length and the
actual length of the given line {.

In summary, the problem of determining the minimum amount of white space
in a text layout can be specified as

k = min o 3(space) o Inv{concat) .

The inverse image function fnv{concat) generates all possihle layouts of the argu-
mernt. For each of these layouts, space computes the amount of white space. {As
is usual in topos theory, the existential image functor Set — Sei! is denoted by 3.
Functional programmers can think of 3 as the map operator on sets.) Finally, the
function min takes the minimum of the set that has been generated in this way.

One could argue that we now have an executable specification, for it is not difb-
cult to give programs that implement the three main components of the definition
of k. However, generating all possible layouts is grossly inefficient. Consider the
following recursion equation which describes a more economical approach to tbe
computation of k:

K(z) = t(z) N min {f(u}+k(v)|uHv=2}.

The minimum amount of white space In a layout of z is the minimum of two
numbers: #(z) and the minimum of a set. Intuitively, this means that either you
don’t split z or you do split it. If you do not split it, z is the only line in the
paragraph, and the amount of white space is just ¢(z). If you do split it, you
consider all possible splittings of z into two sequences, say u and v. (Remember
that lines are non—empty sequences, so neither u nor v is empty.) The first of these
sequences (1) will be the first line of the paragraph; the amount of white space in
that first line is f(u). For the remainder v of 2 you recursively compute k(v). The

Dynamic Programming 7

snm f{u) -+ k(v) is then the minimum amount of white space in a layout of z, given
that u is the first line of that layout. Hence,

min { fu) + k(v) [u 4 v = 2}

is the minimum amount of white space in 2 layout of z, given that the layout
consists of at least two lines.

If one translates the recursion equation for k directly into a programming lan-
guage, the resulting program will still he joefficient. The reason is thal k gets
computed many times over for the same argument. This problem can be alleviated
by storing the value of & for all suffixes of z in a tahle. Whenever & is invoked with
argument v, one looks in the table to see whether the value of k(v) is already there.
If 50, return that value. If not, compnte k() with the given recursion equation, and
store the result in the table. This technique, which i1s known as exael tabulation
or memoisation (11, 31, 54, 70, leads to an efficient program for computing k. De-
riving the recursion equation is an essential step in obtaining an efficient computer
program. But how do we get from the definition of £ Lo the recursion equation?
By dynamic programming! This is the topic of the next section.

1.2 Dynamic Programming

Let ns abstract from the specific example we considered thus far, and concentrate
on the following, more general, problem statement:

k = ma EﬂhDFOInU([gDF .

All variables in the right-hand side are parameters to this specification. The pattern
is the same as in the text formatting example: generate a set of combinatorial
objects with Inv{lg]}, evaluate each of these with (k]), and pick an optimal value
with m. To achieve the generality we want, it will be necessary to interpret &
as a relation, because in many optimisation problems, an optimal solution is not
unique, In technical terms, the operator m which selects an optimal element from
its argument set is a relation and not a function. It is sometimes useful to have ¢
as a general relation, hut k is always functional. For an example where g is not a
function, consider the knapsack problem (see e.g. [62]). Here we want to specify
the set of all sequences of natural numbers whose sum is below a certain threshold
c
e} = {z|sum(z} £c}.

Clearly, ¢ is the inverse image function of the relation () o sum, which is not
functional. In section 2.2 the krapsack problem will be discussed in more detail.

8 Theoty

An appropriate setting for the above requirements is the order-enriched category
of relations Rel(£) over a topos £. A topos has precisely the structure needed to
interprei the given operators: relations, power transpose and the existential image.
There is a small problem, though. How can we apply fold to a relation? What
happens to familiar functors and their initial algebras when we consider relations
instead of functions? Informally, are the data types of functional programming the
same as the data types of relational programming?

The first issue to consider is what happens to functors when we generalise from
functions to relations. A regular category £ is included in the category of relations
Rel(£) by the graph fenclor G. Say that a funclor H : Ref{D) — Rel(£) extends
F :D £ i it agrees with F on functions:

HG=GF.

The following proposition shows that many functors have a unique extension. [t
relies on our decision to regard Rel(£) as an order-enriched category, which implies
that functors on relations are monotonic.

Propaosition (Carhoni, Kelly and Wood [23]) Let D and £ be regular categories,
and F . D -— £ There.exists at most one functor that extends F', which will be
depoted F*. This unique extension exists if and only if F preserves regular epics
and F pearly preserves pullbacks.

The condition that F* nearly preserves pullbacks may need some further explanation.
It means that whenever both

o9 o

| b |
l—h... .F_(h.)-.

are pullback squares, the mediating arrow in

Dynamic Programming 9

is regular epic. One could also say Lthat F nearly preserves pullbacks il and only
if £ preserves pullbacks up te image: in Lhe above diagram (s,7) is the image of
(F(p), F(q)). From now on, we shall call a functor a refator if it preserves regular
epics and it nearly preserves pullbacks.

An example of a relator is the existential image functor on a topos, which
we already encountered in our example of dynamic programming. On Sel the
existential image functor can be defined by the set comprehension

{2y = {b|Ia:acz Ab=fla)].

In words, f is applied 10 each element of the set z. Of course, a similar characteri-
sation could be given in the inlernal lauguage of any other topos. The extension of
J: Set — Set to Rel(Set) — Rel{ Set) cau be characterised by the predicate

y(T(RNz = Vacz:3bey:b(Rja A
vhbey:Jacz:b(Ra.

Tbis characterisation also generalises to arbitrary toposcs.

When working in a topos (as opposed to a general regular calegory) it is often
quite easy to check whelber a functor is a relator, because one only has to exhibit
a so-called cross—operator. Cross—operators are a special kind of natural transfor-
mation, reminiscent of Beck’s distributive Jaws [8]. Let D and £ be toposes, and
F a functor from D o £. A natural transformation v : F3—3 F 1s said to be a
cross—operator on F il

1. Crossing singletons gives a singleton,

3

F-} -}

F4 5 =rd

2. crossing distributes over union,

Fiz— U pj

¥3 e

10 Theory

3. and crossing i3 monotonic:
g<h = y(B)oF(g) <~(B)o F(h)
for all g,k : A— PB.

How does this tie in with relators? Consider a topos £. The existential image
functor induces a monad in £, together with the singleton former and union. It
is well-known that the category of relations Rel(£) is isomorphic to the Kleisli-
category of the monad (3, {-},U). Using this isomorphism, we can construct a
bijection hetween extensions of the functor F and cross—operators on F. Together
with the result on extending functors, this yields the following proposition:

Proposition Let D and £ be loposes, and F : D — E. There exists at most one
cross—operator on I, which is denoted Fi. This unique cross—operator exists if and
only if F is a relator.

For an example of a cross—operator, consider the product functor
%t (Set x Set) — Set .

The product functor preserves pullbacks and regular epics, so we know that it has
a cross—operator. That cress—operator (%)} is the natural transformation which
takes two sets and returns their cartesian product. Of course, a sequence of sets
also has a cartesian product, analogous to (x)f. This induces a cross—operator on
the sequence functor, which sends A to the set of finite sequences over A. It follows
that the sequence functor is a relator too.

We have now accumulated the apparatus needed to generalise a result of Eilen-
berg and Wright, which says that a functional initial algebra is also a relational
imitial algebra. They proved the proposition in a set theoretic context; the intro-
duction of cross—operators makes it possible to reproduce their proof in an arbitrary
topos.

Proposition (Eilenberg and Wright [36]) Let £ be a topos, and F : £E— £ a
relator with initial algebra u(F). Ther u(F) is also an initial aigebra of F* :
Rel(£) —» Rel(E).

For functional programmers, this proposition provides a form of reassurance: they
can define their data types in the functional style as before, and use these definitions
in program derivations that are conducted in the calculus of relations. Together
with the result on extending functors, it justifies the slogan

Dynamic Programming 11

“The generalisation of programming with total functions to program-
ming with relations js free of surprises.”

This completes the summary of results needed to formulate a theory of dynamic
programmng. Here is the main theorem:

Theorem Let £ be a topos, and consider the foliowing equation in Rel(£):
k= mo3(A)g. e fnufg)p. -
Suppose that
1. F:E— & is a relator that bas an initial algebra,
2. h:F(A) — A s a [unction,
3. the relation m : P{A) — A satisfies

mo{-}{(A) = 1{A) and moJ(A) = moI(m) and

4. h distributes over m in the following sense

FPA— (M) pogy
F(A) h

PR(A) 5y~ PA) A

where 7] is (2), (C) or {=).

Then k satisfies

p I7v9) pp(g)

*

F(h o FH(k))

A P(A)

m

Let us carefully step throngh the theorem, using the text formatting example
to clarify its applicahility conditions. First, the definition of k. The relation k is

12 Thbeory

defined a3 an instance of the generic specification of dynamic programming. The
inverse image fnu{g]) is a function that generates a set of combinatorial objects. In
our example, this is the set of all layouts. The existential image 3 (k) assigns a
value to each element of the set; in the example that is the amount of white space
in a paragraph. Finally, m is a non—deterministic mappiag that selects an optimal
element from its argument set. In the example m is the function that returns the
minimum of its argument; the minimum of the empty set is infinity.

The first applicability condition concerns the functor F. The functor F should
be a relator, so it can be extended to relations. Furthermore it should have an
initial algebra — otherwise it does not descrihe a data type. Later on we shall see
that so—called polynomial lunctors satisly this criterion. In particular, the functor
that defines the data type of paragraphs is polynomial, and therefore it is a relator
that has an initial algebra.

The second applicability condition says that A is a functional F'-algehra, which
means that it lies in the image of the graph functor G. Striclly speaking, it is
possible to formulate a slightly more general theorem without this assumptian,
but the added generality does not seem to be useful. The assumption that # is
functional will be essential in later sections, when we develop corollaries to the
abaove theorem.

The relation m : P(A) —+ A should be a selector; that is, selecting an element
from a singleton gives the single element. Furthermore, if one selects an optimal
element from the union of a collection of sets, one may as well select an optimal
element [rom each of the component sets, and then select an optimal element from
tbose optima. It might appear that m is a selector iff it is an object in the Eilenberg-
Moore category of (3%, {-},U). There is a catch, however: (F*,{-},1J) is only a lax
monad in Rel(€), and so one cannot talk about its Eilenberg-Moore category in
the usuval sense. In the next section, we shall study selectors in more detail.

The last condition of the theorem, that h distributes over m, is the really in-
teresting one. It is a formal statement of the principle of optimality, which is the
properly that an optimal solution is composed of optimal solutions to suhproblems.
Let us try to understand that property in terms of our running example. Take
equality (=) for When we express the commuting diagram in conventional set
theory, it reads

min { f(N+nlnez} = f{I)+ min(z).

This identity is satisfied because addition is monotonic.

Constructing Selectors from Prearders 13

It remaius to discuss the conclusion of the theorem,
ko= moT(ho F(k) o Ine(g)

When interpreted in an aperational manner, this recursion equation is in line with
the traditional presentation of dynamic programming that one finds in texibooks on
algorithm design, e.g. [82]. First, decompose the argument in all possible ways with
the inverse image function of ¢, (fnv{g)). This generates a sel of decompositions,
each of which is solved recursively with F*(&). The solutions to subproblms are
ther composed by the F-algebra h into solutions for the whole problem. Hence,
one could say that

I*(h o F*(k)) o Inv(g)

geuerates a set of candidate solutions. The relation m selects an oplimal element
from this set.

It should be mentioned that the theorem is not always useful in deriving pro-
grams from specifications, even wheu it is applicable. Indeed. sometimes one cbtains
a recursiou equation which is not an algorithm at all, because far{g) splitsan argu-
ment z into r itself (and possibly somethiug else). Iu such cases the recursien ‘does
not make progress’, and the theorem is useless. In the text formatting example, this
problem was avoided by excluding the possibility of emply lines in a paragraph.

1.3 Constructing Selectors from Preorders

QOne of the applicability conditions of the theorem about dyuamic programming is
that m : P(A) — A should be a selector:

mo{-}{A) = 1{A) and moU(A) = moT(m).

This condition is very difficult to meet. To see bow stringent it is, consider the
Tollowing counter-example. Let 4 be a non-empty set. Given a preorder : A— A,
the relation min{R) which maps its argument set to its minimum elements is not
a selector, because the empty subset of A does not have a minimum element. As a
consequence, we have the inclusion

min(R) o I {(min(A)) C min(R)oJ(A),

but not inclusion the other way round. It is for this reason that the fictitious value
infinity (o) was introduced in the example specification: the minimum element of
the empty set is infinite. This trick of introducing infinity seems ad hoc, and in
this section we shall discuss a more systematic approach to coustructing selectors
from preorders.

14 Theory

To start with, let us formnlate a precise definition of the relation min(R}. In
the category of relations over a topos, one can take the right-quotient A\S of two
relations R : A—+ B and §: A— C with a common source A. This division operator
(\) is characterised by the following equivalence:

T CRS if ToSCR.

In words, A\S is the maximnm morphism T that makes the triangle

semi—commute.

Given an endorelation R on A, one can define the relation min(R): P(4) — A
by
min(R) = H\€'(A) N €(A).

This 13 in accordance with the usual set theoretic definition: a is a minimum element
of z if it is a lower bound of z and it is an elemeut of z.

The domain of a relation is defined as follows:
Dom(R:A— B) = 1{A)n (R°aR).

This also corresponds to the usual definition in set theory: a is in the domain of B
if there exists an element b such that & relates a to b. A relation R : A — B is said
to be entire if the domain of R coincides with the identity on A. (Some authors
call entire relations total or everywhere defined.) The relation min{R) is not a
selector, because the empty set is not in its domain. In a set theoretical context,
we know how Lo make min(R) entire, namely by adding a fictitious value (infinity)
to its target. Fnrihermore, the introdnction of infinity makes it possible to turn
min(R) into a selector. Can we generalise that construction to arbitrary toposes?
Does there exist a canonical way of making a relation entire?

In a topos, partial arrows can be made entire in a canonical way because the
embedding of a topos into its category of partial arrows has a right adjoint. Do we
also have an adjunction between the category of entire relations and the category of
relations? Even for Set, the answer is no: there exists a weak universal arrow, hut
it is not proper because there are many different ways of making a relation entire.

Constructing Selectors from Preorders 15

Apparently, to generalise the canonical construction in Set, we need a different
approach.

The unit of the adjunction between a topos and its partial arrows is sometimes
called a partial arrow classifier. We shall generalise this concept 1o the notion of a
relation totaliser by adding an extra condition that yields the desired uniqueness.

Consider a regular category £ A relation totaliser is a collection of monics in
£ with the [ollowing universal properly: for each relation R : A — B there exists
precisely one entire relation 7 : A — B such that

n°(ByoR = R and RoDem(R) C n(B)oR.

In Set, B is the set B augmented with a fictitious value; the arrow p(B) is the
embeddiug of &1 into B. The first equation says that if you forget about the fictitious
element in &, you get R back. The second equation says that if e is in the domain
of R, R relates it to the same elements of B as R does.

It would be nice if every topos had a relation totaliser, but this is not irue. A
counter—-example is Sef~, the category of commuting squares. For the purpose of
this Lhesis, however, the following result suffices:

Proposition In a Boolean topos, the pariial arrow classifier is also a relation
totaliser.

Let us return to the prohlem of constructing selectors from preorders, Gi»;en a
relation R: A — A one can define the selector of R, denoted sel(R) : P(A)— A, by
the following equation:

sel(R) = min(R) o 3(n°(4)) .

The existential image 3(7°(A)) removes all fictitious values from its argument set.
The relation n:;a(R] returns a minimnm element of the resulting set, pravided such
a minimum element exists. If it does not exist, min{K) yields a ficlitious value.
Assuming that R is a well-founded preorder, sel(R) is indced a selector:

Proposition Let £ be a Boolean topos. Let B : A— A be a well-founded preorder
i Rel(€), i.e.

HA)C R, RoRCR,and Dom(€(A))C Dom(min(R)).
Then sel(R} is a selector.

For example, the minimum function min : ANU {oo})} = (N U{oc)) can be defined
as the selector of the standard ordering on natural numbers.

16 Theory

1.4 Monotonicity implies Distributivity

The above construction of selectors covers many optimisation problems that occur
in practice. It is worthwhile, therefore, to see whether the other applicability con-
ditions of dynamic programming can he simplified when the selector is of the form
sef(R). Recall the formal statement of the principle of optimality:

FP(A)M- F(A)

Fi(4) h

PEN 5y P Doy 4
where |?]is inclusion (C), containment (2) or equality (=). In the text formatting
example, it was claimed that the principle of optimality is satisfied because additiou
is monotonic. This seemns to be the general pattern: to verify that & distributes over
sel{ R}, it suffices to show tbat A is iu some sense monotonic with respect to the
preorder R. To make this intuition precise, we shall need some further restrictions
on the functor F.

Let £ be a category with products and coproducts. The class of pelynomial
endofunctors on £ is inductively defined by the following clauses:

1. The identity functor on £ is polynomial.

2. If A is an object of £, the constant functor which maps all arrows to the
identity on A is polynomial.

3. i G and H are polynomial functors, then G+H and GXH defined by

(GFH)K) G(k) + H (k)
(GRH)K} = G(k) x H(k)

are also polynomial.

The class of polynomial functors is of course very restricted, but it suffices to define
the simple data types encountered in dynamic programming. Polynomial functors
enjoy a number of properties that are uselul in the present context. The first
property says that they extend uniquely to relations:

Proposition In a topoes, polynomial functors are relators.

Monotonicity implies Distributivity 17

This proposition follows from the fact that in a topos coproducts preserve pull-
backs, and the coproduct injections are disjoint, The second property says that
any polynomial functor describes a data type:

Proposition (Johnstone [36]} In a topos with a natural numbers object, polyno-
mial functors have initial algebras.

The fact that polynomial functors are relators, and other, more technical properties,
yield that monotonicity imphlies distributivity:

Proposition Let £ be a Boolean topos, and let ' be a polyusmial endofunctor
on £. Let b : F(A) — A be a functional F-algebra, and let R be well-founded
preorder on A. Firally, let [T be (C), (2) or {=). Nk is monotonic with respect
to A,

At FA)
R ‘F"(R)
A —ho—’F(A)
Lhen h distributes aver sel(R):
PRA)LMA pp iy ee(R) 5y

A(E(R) 0 F(4)) T(4)

P(A) sel(R) A E(R)

where F(A) = ((F(3(4)))°)” and E(h) = (honj)"

F(A)

A few comments about the operators that are defined in this proposition. The
functor £ is the endofunctor on £ that comes with the partial arrow classifier. The
collection of arrows F(A) lorms a natural transformation £ 0 E—~E o F. lisin fact
the cross—operator ['1, restricted to sets that have at most one element. Intuitively
F(A) takes a structure, say a tuple, and it maps that tuple to the fictitious element
if one of the components is fictitious. If all elements in the tuple are proper values, it
just returns the tuple. Here its rdle is to make A strict with respect to the fictitious
value: E(h} o F(A) is the strict version of A.

18 Theory

1.5 Summary

What has heen achieved so far? First we provided a precise characterisation of
dynamic programming. From a purely theoretical perspective, that result is satis-
factory: it is general and elegant. In practice, however, the applicability conditions
may be hard to check. Motivated by this observation, we introduced the construc-
tion of selectors from preorders. Subsequently, that construction was used to sim-
plify the principle of optimality. The earlier formulation of dynamic programming
can therefore be replaced by the following statement:

Theorem Let £ be a Boolean topos with a natural numbers object. Let F be
a polynomial endofunctor on £, let h : F(A) — A be a functional F-algebra, and
g : F(B) — B a relational F*-algebra. Let R be a well-founded preorder on A.
Definek: B— A by

k = (min(R) o) o Ine(g)) .

Let | 7| be (), (2) or (=). If b is monotonic with respect to R,

A P pa)
R FY{R)
e F(4)

then k satisfies

p 1ol pp(p)

¢

4 sel(R) RA)

(1)

where { is the composite

F(B)MF(;{) F(4) FA) Bh) &

To appreciate the practical significance of this new result, let us briefly return
to the text formatting example. We only considered how the minimum amount

Summary 19

of white space in a layont may be computed, not how such an optimal layout
itself may be constructed. There are two reascns why the value problem was more
easily presented than the object problem. First, in the object problem one has to
introduce an object (a paragraph) of infinite cost. This is intuitively more dificult to
accept than an infinite natnral number, although our treatment in terms of relation
totakisers shows that both arise by the same construction. A second difficulty in
reasoning about the object problem is the presence of arbitrary relations instead
of just (partial) functions. With functions, we are on familiar ground and we can
appeal to our intuition for their basic properties, but not so for relations. And yet, it
seems that the object problem and the value problem are in some sense equivalent:
if dynamic programming is applicable 1o either of them, it is also applicable to the
other.

Let us try to make this a bit more precise. Given F-algebras ¢ and k. and a
preorder R, the value problem is given by

v = (mie{R}oI[h]) o Inv(g)) .

If R is a partial order, v is a total function. This is not the case for the object
problem, which is specified as

o = (min{{k])° o Ro((h])) o Inv{g)) .

Note that the existential image which is explicit in the generic specification is
implicit in the object problem, for

W(AT)) = 3UT) = A(u(F)) .

where g(F) : F(T)— T is the initial F-algebra. Clearly, the value problem can be
reduced to the object problem, because the triangle

B—Y .j
N
T
commutes. It is not so clear, however, that a dynamic programming solutien for the
value problem also yields a dynamic programming solution for the object problem.
The next proposition goes some way towards solving that difficulty. It says that if
the monotonicity condition of dynamic programming is met for the value problem,
it is also met for the objecrt problem. Hence, our new formulation of dynamic

programming not only simplifies the applicability conditions: it also clanfies the
relationship between value and object problems,

20 Theory

Proposition Let £ be a regular category, and let F : £ — £ be a relator that has
initial algebra py(F) : F(T) = T. Furthermore, let h : F(A) —» A be an F-algebra.

Let be (C), [2) or (=). Then

A b _Fa) 7 £E) pr)

R F{R) implies 5 £(S)
—F(A —F(T

A —FA) " Gy

where § = (k)" o R o (A).

In particular, dynamic programming is applicable to the object problem in the text
formatting example because addition is monotonic.

2 Applications

2.1 String—to—String Correction

Given are two strings of characters, say r and y. The aim is to transform each
string into the other by performing a sequence of edit operations on both of them
together. There are three edit operations available to achieve this task, named
movezy, moveyzr and swep. Their intended meanings are stated below:

movery @ move character ¢ from z to y
moveyz b move character b from y to =
swap (a,b) swap ¢ in z with bin y

These operations are applied while traversing z and y from left ta right. For cxam-
ple, let £ = “sediment” and y = “eldritch”. Two sequences of edit operations that
transform z and y into each other are the following:

edit operation | z |y |
movesy s § edit operation | z jy
swap (e,e) | e e
movery S s
moveyr | 1 swap (e,e) | e | e
2 d,d)| d|d ’
swap (d,d) swap (d,1) [d |1
moveyr r . .
. Sl swep (i,d) | 1 |d
swap (i,i) |1 | i
swep (m,r) |m|r
movery O m . .
swap (e,d) | e |1
movezy € e
swap (p,t) [n |t
movery N n
swap (L) [t |t swap (L.e) | b e
’ moveyr h h
moveyr ¢ c
moveyr h h

A sequence of edit operations that transforms r and y into each other is said to be
a transform of ¢ and y. Both of the above examples are transforms of “sediment”
and “eldritch”.

21

22 Applications

Associated with each edit operation is a cost, given by the function w. A possible
definition of w is the following:

w(movezya) = 1
w(moveyr b) = 1

oo if a#b
w(swap (a,8)) = {0 it aib

The total cost of a sequence of edit operations is the sum of the costs of its elements.
Consider for example the transforms listed above. With the suggested choice of w,
the transform on the left-hand side has cost 8 while the transform on the right—
hand side iz of infinite cost. The purpose of this section is to construct an algorithm
that yields a transform of z and y of minimum cost. This programrning exercise is
known as the string-to—string correction problern, and it was originally studied by
Wagner and Fischer in [97]. Some variants of the problem are of practical interest;
a recent paper by Apostolico et al. [2] cites widely divergent applications in speech
recognition, machine vision and rmolecular sequence comparisen.

Note that the problem of determining a longest common subsequence of £ and
is a special case of the string-to—string correction problem. With the above choice
of w, anoptimal transform swaps only identical characters, and it contains a longest
common subsequence of and y in the list of swap operations. Let us check the
validity of this claim in the above example. The transform on the left~hand side
is the urique transform of minimum cost. The longest common subsequence of
“sediment” and “eldritch” is “edit™; this is precisely the sequence of characters in
the list of swep operations.

As in the text formatting example, the first step towards a formal specification
is to define the relevant types. The string-to-strirg correction problem involves
two kinds of hsts: lists of characters (the input) and lsts of edit operations (the
outpul). It is worthwhile, therefore, to give a definition of lists that is parametrised
by the element type. The lists considered here are finite, possibly empty lists. The
lists avet a set of elements E can be viewed as an initial Fg-algebra by defining

Fe(A) = T+(ExA)

where T is the terminal object of Sef. From now on, £* stands for the set of lists
over E, which is the target of the initial Fg-algebra. Furthermeore, we shall denote
the initial Fg-algebra itself by

(N ()] (T + ExE*) = E*.

Here Nil is the constant function returning the empty list. The binary operator (:)
takes an element and a list, and places the element at the front of the list.

String-to-String Correction 23

The data type of edit operations is modelled by the coproduct
O = A+ A+(Ax4),

where A is the set of characters. In line with the informal problem deseription, we
shall write movezy, moveyr, and swap for the respective coproduct injections. The
data type of sequences of edit operations is (O°.

The function eval : 0" — (A™ x A”) takes a sequence of edit operations and
yields two strings hy performing the prescribed edit actions:

eval = ([[(Ml, Ny, @)D

where @ : O x (A" x A*} = {A”™ x A*) is given by

movery (2) @ (w,v) = (u,a:v)
moveyz (b) & (v,v) = {(b:u,v)
swap(a,b) & (u,v) = (bru,a:e) .

In the informal problem description, we saw two examples of scqnences ol edit
operations. Applied to either of these sequences, era! yields the pair

{ “eldritch”, “sediment™ } .

Let us say that a sequence z is a transform of z and y if eval (z) = (y, z). Clearly,
the set of all transforms of r and y is returned by

Invleval Yy, z) = {z]|eval{z)=(y,2)} .
the inverse image {uuction ol eval.

Recall the goal of this programming exercise: to find a transform of minimum
cost, We have just formulated a precise definition of transforms; the next step is to
define the cost function e. The cost of a sequence of edit operations is the sum of
the costs of its elements:

e = ([0,@)

where @ ® n = w(a) +n.

The string—lo-string correction problem can now be formulated as an instance
of the generic specification of dynamic programming. Let k stand for the relation
that takes a pair of strings (y.z), and retnmns a transform of 2 and y of minimum
rost:

k = (min(e®o(<)oe) o nv(eval)) .

24 Applications

Apgain dypamic programming is applicable because addition is monotonic. When
vou unfold the abstract definitions in the thearem about dynamic programming,
you obtain the original algorithm of Wagner and Fischer [97]. In this presentation,
we have confined our attention to the simplest form of string-to-string correction,
but the same idea works for more complicated variants, e.g. the modified edit
distance problem discussed by Galil and Giancarlo in [41].

2.2 Loading

A vessel is to be loaded with containers. The containers that may be selected [or
sbipping are lined up on the quay, and associated witb each container is a value and
a weight, which are both natural numbers. The total weight of a cargo is the sum
of the weights of the containers selected. Likewise, the value of a cargo is the sum
of its parts. The vessel can carry a cargo of limited weight only, and the problem
is therefore to maximise the total value of a cargo, without exceeding the carrying
capacity of the vessel.

This programming exercise is known as the knapsack problem — here we Lave
chosen 1o load a vessel rather than to pack the traditional knapsack. The aim in
presenting this example is to demonstrate why we chose to allow g to be a relational
F™-algebra in the generic specification

(sel(R) oI {[AD o Inv{lg]),
and not just a functional F-algebra, as k must be.

The line of containers on the quay will be modelled as a list of
(value, weight)

pairs. Both the value and the weight of a container are natural numbers, and the
set C of all containers is the cartesian product N x N. For ease of reference, we
name the projection functions from ¢ to the natural numbers v (for value) and w
(for weight) respectively:

v(a,b) = a and wla,b) = b.

Let z € C" be the line of containers that are awaiting shipment on the quay. To
select a cargo from z, each container will be labelled with either 0 or 1. A label ‘0’
means that the container is not selected, whereas a label ‘1’ means that it will be
part of the carge. A cargo is therefore a kst of pairs, an element of

(€ x {0,1})" .

Loading 25

Not every selection of containers s € (C x {0,1})* is a possible cargo; certain
coustraints have to be satisfied. Firsily, s should be a selection of containers from
z. This requirement may he expressed as follows:

unlag(s} = =z,
where unfag is the function that removes the labels:

untag [(n;,5), (5.)y o+ (ReaOm)] = [r,m2,.o 00}

Secondly, the total weight of the conlainers selected should not exceed the carrying
capacity of the vessel. Let ¢ € N be that carrving capacity. To be a possible cargo,
s should satisfy ithe inequalion

weight (s) £ ¢,

where weight is the function that returns the total weight of a seleciion of contain-
ers:

weight [(ny,01), (n3.). . .. (N, b)) = Em:(w(nl) = b} .
1=1

The next step towards a formal specification of the loading problem is to define
the function cargos that takes a list = and a capacity ¢ as parameters, and returns
the set of all possible cargos. It is given by the set comprehension below:

eargos (z,¢) = {se€(C x {0,1})" | untag(s) = z A weight (s) <c}

Motivated by a wish to apply dynamic programming, we airn to express rergos as
an inverse image {unction. To do so, we need a generalisation of the product in £
to Rel(£). For R: A— B and §: A — C relations with a common source 4, define

(R,S) = (R x* §)o(1(A),1{4)) : A= (B xC).

(If R and S lie in £, this is the ordinary product.) By some tedious manipulations
using initiality of lists and monotonicity of addition, one may derive that

cargos = Inu[[(Nid, (=)o 0, Gl ,
where @ is the function defined by
(r.B)@ (2,2} = (n:z, (w(r) xb)+e).

The value of a cargo is the sum of the values of the containers selected. The function
that takes a cargo and returns its value is called walue. It is easily defined using
fold:

value = ([[0,2]].

26 Applications

where (n,b) @m = (v(n) x b} + m.

The loading problem can now be expressed as an instance of the generic sped-

fication:
k& = {min(2)oI(value) o cargos).

There is a small problem in the application of dynamic programming, becanse the
converse order on numbers is not well-founded: an infinite set of natural numbers
does not have a maximum element. This problem may be solved by restricting the
values of a cargo to a finite set {0,1,...,m}, and stipulating that m is a zero of
addition. For this modified specification, our theorem about dynamic programming
ig applicahle because addition is monotonic.

By mechanically instantiating our result about dynamic programming and using
some elementary arithmetic, one obtains the following equations for &:

k(Nid,e) = 0
Kn:z,¢) = { k(z,c) if w(n)>ec
o E(z,¢) U (v{n) + k(z,c— w(n))) if wn)<c.

Compare this recnrsion to the text formatting algorithm, which we discnssed at the
beginning of this thesis:

k(z) = Hz) N (min { flu)+ &(v) Jubv=2])).

Expressed in their traditional form the two algorithms look very different, and yet
they are ahstractly the same,

2.3 Bracketing

Consider the type of binary trees that have data only at their leaves. Such trees are
fully parenthesised representations of their frontier, and therefore they are called
bracketings. In this section, we shall be concerned with constructing a bracketing
of minimum cost for a given frontier. This problem arises, for examnple, when mul-
tiplying a sequence of matrices: different bracketings may lead to vast differences
in the number of arithmetical operations required to perform the muliiplication.
It will be shown that the problem of hracketing a sequence of matrices for mnlti-
plication does not satisfy the generic specification of dynamic programming. We
shall analyse the difficulty, and present a generic solution which is also applicable to
other programming problems, like the constrnction of optimal binary search trees.

As in the preceding examples we start by defining the types. There are three
types involved in the hracketing problem: the type of matrices, the type of brack-
etings and the type of non-empty lists, which we have already seen in the text
formatting example.

Bracketing 27

Let M be the type of matrices. The function rows : M — N returns the number
of rows in a matrix; similarly, cols : M — N yields the number of columns. These
two operators distnbute through matrix multiplicatior in the following sense:

rows{m+n) = rows(m) and cols(m=*n) = cols(n).

The data type of bracketings over M is defined to be the initial F--zigebra,
where the functor F : Set — Set is given by

F(A) = M4 (AxA).

It will be expedient to have an explicit name for the set of all hracketings, and
we shall call it B. Since the initial F-algebra is a coproduct, one can name its
individual components:

[= w(#).
The first component of this coproduct (%) {akes a2 matrix and turus it into a singleton
tree. The second component (=) is a binary operator that joins two trees tagether.
Hence one might say that

{(my (mzmg)) (my (ms me)))
is shorthand for
((my £ (M £ ™3)} + (7 = (s £ ma))) .

Now that bracketings have been properly defined, we can make the notions fron-
tier and bracketing of a frontier more precise. As before, H denotes the associative
operator that concalenates two sequences. Singleton sequences are constructed by
[], and thus we have for instance

[my,ma,my] = [my] # [ma] H [mj) .

The fold ([[-}, H]]} takes a bracketing and flattens it into a scquence, which is said
to be the frontier of the bracketing. Here is an example of a frontier:

frontier ((m (my my)) (my (ms mg)))

My, ma, mg, my, ms, g .

Given a sequence z, we are interested ju the set of all hracketings that have z as a
frontier. This set s returned by the inverse image nu(frontier), since we have the
following characterisation of the inverse image in Sei:

Inv(frontier)(z) = {1€ B|frontier({) =12} .

28 Applications

Next, we need to define the cost of a bracketing. The cost of a bracketing of a
matrix product is the number of scalar multiplications required in its evaluation.
For simplicity we assume that the naive matrix multiplication algorithm is used, so
the cost of compnting r * pis

rows (r) x rows(p) x cols(p) .

The cost of a bracketing may be defined as follows. The cost of a singleton tree is
zero, since Ro matrix multiplication needs to be performed. The cost of a composite
tree (#, £ 1)) is the cost of evaluating the products of {p and ?,, plus the cost of
multiplying these two products. Note that the final term only depends on the
frontier ry of 4y and the frontier T, of ¢;, because matrix multiplication is associative.
We shall write w(zo, z1) for the cost of multiplying the product of a frontier z, with
the product of a frontier ;. Formally, the cost function ¢: B — N is given by the
equations below:

ofimi} 0
ctotty) = elto) +o(t) + wi(zo,z1)

where z; and z, are the frontiers of #, and 1, respectively. It remains to give a
formal definition of the function w:

w([n.,n:,...,n,], [ml,mg,...,m,])

rows(ni) x rows(m;) x cols(rmn,)

This definition requires sorme further explanation. Consider the product ([Tm,) of
the matrices my, ma,...,m,. The uumber of rows in (JJm,) equals the number of
rows in my:

rows([Im,) = rows(m,).

Similarly, we have for the columns cols{[Trm;) = cols(m,). It follows that the
number of scalar multiplications required to multiply the matrix products (] r:)
and (TTm,) is given by

rows{r) x rows(m,) x cols(m,) .

We now aim to express the bracketing problem as an instance of dynamic pro-
gramming. Recall that the inverse image function of frontier returns all bracketings
of its argument. The cost function ¢ assigns to each bracketing of a matrix prod-
uct the cost of evaluating that bracketing. The minimum cost of a bracketing is
therefore specified by the relation & given helow:

k = (min(<)o3(c)o Infrontier)).

Bracketing 29

This expression does pot match the generic specification of dynamic programming,
becanse the cost function ¢ is not a fold. At first sight this may seem alarming, for
the bracketing problem is considered a typical application of dynamic programming.
As we shall see shortly, however, there exists a simple solution to this difficulty.

The function ¢ is not a fold because there exists no function { that makes

[P B R

1+ch c

2

i
commute. [t stands to reason, therefore, that we look for a similar property that
is not quite so stringent. Using the definitions of F' and ¢ above, it can be shown
that

M+N N

[4]

M+ 52 B
1 4 {frontier, ¢}’ c
Mo+ (M7 x NP — N

commutes, where [is the coproduct [0, @) and the binary operator & is given by
(zo,8) @ (z1,8) = a+b+w(ze, 1) -

This property suffices to derive an algorithm for &, and the relevant theorem is very
similar to our earlier result about dynamic programming. There are however two
significant differences that ought to mentioned before stating the theorem.

The first difference is that ¢ is not reqnired to be a fold - we already discussed
this for the bracketing problem. Instead, ¢ should satisfy the egnation

cou(F) = loF((g],c)

for some suitable choice of {. In this sense the new theorem is a generalisation of
our earlier result, because if ¢ = ({h]), we can take I = h o F(ir;).

The second difference between the new theorem and the earlier result concerns
the F*-algebra g. So far, g was allowed to be an arbitrary relation, and the loading
example showed that this generality s nseful. In the theorem below, however, ¢ is
restricted to be a partial arrow. In this sense the new theorem is less general than

30 Applications

the earlier result. Why is the restriction to a partial arrow necessary? The proof
of the theorem below makes use of the equation

(5,1)*08° = (1,5%*.

This is a valid identity if and only if S is a partial arrow. In the theorem below, it
is applied with § = ([g]), which is a partial arrow if g is one.

Theorem Let £ be a Boolean topos with a natural numbers object. Let F be a
polynomial endofunctor on £, and let ¢ : F{B) — B be an F*-algebra that is a
partial arrow in €. Let ¢ and { be arrows of £ that make
rry GO pep o«
p(F) {
A

[

commute. Finally, let R be a well-founded preorder on A and define
k = (min(R)o3(c)o Ing]).
Ifl is menotonic with respect to R,
A -L_F(B x A)
R! (F o (B x))*(R)

A —-F(B x 4)

then the following diagram (semi-)commutes
B I"_"(fv'lpp(B)
-

A~ PA)

F()

where t is given by

Bracketing 31
FB L g « A

t (Fo(Bx-))(A)

A W(F(ﬂ x A

3 Discussion

3.1 Related Work

The desire to give a satisfactory treatment of dynamic programming was the original
incentive for the work reported here. Of course, we ate not the first to give a
rigorous formulation of dynamic programming, and the present approach has been
much inluenced by earlier work of others. In this section we shall attempt to put
the results of this thesis into a historical perspective.

In 1957, Bellman published a book entitled Dynamic Programming [9]. [t de-
scribes methods for reasoning about processes where a sequence of decisions has to
be taken. Typical applications include inventory control, equipment replacement
and other problems where time plays a significant role. Thbe adjective dynamic
in dynamic programming is meant to emphasise that time dependence. Perhaps
unexpectedly, the noun programming does not refer to computer programming. In
the present context, it would have been more appropriate to speak of dynamic plan-
ning — planning a sequence of decisions, one at each point in time. Bellman did
not give a precise definition of dynamic programming, and merely used the term
as a collective name for the mathematical tools presented in his book. Despite the
efforts to formalise dynamic programming, recent textbooks still take this view [32].

During the 33 years that passed since the publication of his introductory book,
Bellman’s work has found hundreds of practical applications. Among these ap-
plications are many examples where time does not enter the picture; the typical
sequential nature of dynamic programming has become less important over the
years. This is especially true of computing science applications that involve some
tree type other than lists. Due to the lack of communication hetween operations
researchers and computing scientists, dynamic programming has developed further
in both fields separately. A typical example of this disparity is the common opinion
among computing scientists that dynamic programming is a bottom-up tabulation
tecbnique for recursive program schemes e.g. [1, 69]. An operations researcher
views tabulation as a particular way of evalualing the recurston scheme that has
been derived by means of dynamic programming.

In his 1957 book, Bellman had already noticed that the use of dynamic pro-
gramming is governed by the principle of optimality. Roughly, tbe principle says
tbat an optimal solution to a complex prohiem is composed of optimal solutions

32

Reiated Work 33

to subprobiems. Bellman’s original formulation of the principle is too vague for
use in rigorous program development, but formalising Bellman's work, several au-
thors have given definiiions of the principle of optimality, thus rendering dynamic
programming a theorem rather than a heuristic.

The first efforts directed towards a [ormal medel of dynamic programming were
based on automata theory. In 1967, Karp and Held [58] defined the notion of
discrete decision process as a means for expressing optimisation problems. They
showed how under a certain monotonicity condition, a discrele decision process
can be expressed as a sequential decision process, which models the concept of a
dynamic programming algorithm.

In our approach, the work of Karp and Held can be understood as dynamic
programming with a specific data type, namely finite lists. Their notion ol discrete
decision process consists of a function { : 4 — P(B*) which returns a set of se-
quences, and a function f : B* — R which yields the cost of a given sequence. The
optimisation problem that is to be solved is

k= min(f°o({)of)ot.

Our generic specification corresponds to Karp and Held’s sequential decision pro-
cess. A monotone sequential decision process is an instance of the generic specifica-
tion which satisfies the applicability conditions of the theorem presented in section
2.3. Indeed, that theorem is a generalisation of thecrem 1 in Karp and Held’s pa-
per [58]. The main concern of that paper is to determine when a discrete decision
process can be expressed as a sequential decision process. In this thesis. we have
not attempted to address this question. The reason for not doing so is pragmatic:
our generic specification is very simple, and it is not difficult to cast a problem into
that form. This is not the case for Karp and Held's definition of sequentia! decision
processes, which is obscured by the encoding in the language of automata theory.

Karp and Held’s work was generalised by Helman and Rosenthal [30, 51] who
proposed a new model of dynamic programming in 1935. They motivated their
approach by the observation that certain algorithms cannot be explained in Karp
and Held's model: a typical example is the bracketing problem discussed in section
2.3. In terms of the work presented here, Helman and Rosenthal generalised from
dynamic programming with lists to more general tree types. Helman and Rosenthal
do not explicitly introduce the notion of data types, however: they encode all
instances of the generic specification as bracketing problems.

In Helman and Rosenthal’s approach, the specification is phrased as a discrete
optimisation problem. A discrete optimisation problem consists of two components:
a problem structure and a choice function. The choice function corresponds to our

34 Discussion

selector, and tbe problem structure is another way of describing the composite

3([A) o Fnv(g) -

As mentioned above, Helman and Rosenthal only consider one kind of functor,
namely F(B) = A+ (B x B), for some given set A of atorns. The F-algehras ¢
and k are given as congruence relations on the initial algebra,

(~) =)o (g) and (=)= (R’ (RD.

The input (the argument to the generic specification) is specified by means of a
non—associative regular expression that singles out a specific congruence class in ~.
At the same time, it specifies a way of enumerating the members of that congruence
class. If the principle of oplimality is satisfied, the selector can be pushed into this
enumeration scheme. The principle of optimality is formalised by a distributivity
condition that is similar to ours.

Our approach is a natural extension of Helman and Rosenthal’s picneering ef-
forts, and it seems worthwhile to point out in what sense it is an improvement.
The theory presented here takes advantage of recent trends in computing, notably
the strong dependence on initial data types, and the use of a calculus of relations.
In this sense, it breaks down the artificial barrier between algebraic approaches to
algorithm design (as pursued by operations researchers) and the work on formal
program development. Apart from this conceptual improvement, the high level of
abstraction has the advantage of conciseness and almost mechanical proofs.

The issue of mechanisation brings us to the work of Smith, whose research
objectives are closely related to those of this thesis. His goal is to axiomatise
classes of algorithms, and to use these axioms in the (semi—)mechanical derivation
of computer programs. In his earlier work he concentrated on divide-and-conquer
and global search algorithms, but more recently he has also considered dynamic
programming under the name problem reduction generators. To discuss problem
reduction generators, we first need a summary of Smith’s theoretical framework.

A theory is a many-sorted theory in classical, first-order predicate logic. Con-
crete programming problems are modelled by so-called problem theories. A prob-
lemn theory describes the operators and data types for the problem at hand, and for
each problem theory there is a single, specified model. It is not quite clear from
the paper by Smith and Lowry [90] how this particular model is obtained; becanse
of the powerful logic used, initial models cannot be taken for granted. Classes of
algorithms are modelled by algorithm theories. In comtrast to problem theories,
no particular model is specified. Algorithm theories are supposed to be given in
advance (by an expert), and need not be formulated in the design process of a
particular program.

Future Research 35

If one wants to develop, say, a divide-and—conquer algorithm for sorting the
procedure is as follows. First, introduce a problem theory which specifies an ele-
ment type, an ordering, bags and lists, together with a predicate that tells whether
a list is a sorted bag. Typically, the intended semantics of a problem theory is an
initial algebra. To design a divide-and-conquer algorithm, one starts by select-
ing the relevant algorithm theory. The proof obligation is then to show that the
problem theory of sorting can be viewed as an instance of the algorithm theory of
divide-and—conquer. This notion of a view from an algorithm theory to a problem
theory has been borrowed from algebraic specification languages, e.g. OBI3 {43].
Smith has built a computer system that supports the verification of views [88]. Not
surprisingly, these verifications are seldom fully mechanised, and the user needs to
input monotonicity and distributivity conditions. After it has been shown Lhat the
chosen view is correct, a separate component of Smith’s computer systemsynthe-
sises an oplimised computer program. Smith has demonstrated the viabilily of his
approach by an impressive number of examples (85, 86, 87, 88, 89, 90],

$mith developed the algorithm theory of problem reduction generators [39] while
on sabbatical at Oxford, and during that time we often compared notes. [t is not
surprising, therefore, that our work is quite similar. Problem reduction generators
have the same components as the generic specification: there is a signature £
which plays the réle of the functor F, there is a E-decomposition structure which
corresponds to the F-algebra g, and a E-composition structure which corresponds
to the F-algebra k. Finally, there is a preurder, just as in the construction of
selectors. The main difference is the predicative style enforced by Smith’s theorem
prover, in contrast to the compositional style enforced by category theory. Smith’s
work is distinguished from the rest of the algorithm design literature in that it
combines abstract theory with mechanisation. I believe that my work is a natural
step towards further abstraction, offering the prospect of further mechanisation.

3.2 Future Research

The main shortcoming of this thesis iz that 1t does not show how the results can be
used to develop concrete computer programs. This was a conscious decision: the
same recursion equation underlies different computer programs on different target
architectures, and therefore deriving the equation and implementiug it are separate
concerns. There is a large body of literature about implementing the recursion
equations that are derived by dynamic programming, e.g. (2, 63, 76, 79). An
exciting area for further research is to try and extend our categorical approach to
incorporate this aspect of algorithm design as well. Partly speculating, and partly
drawing on research thatl is curreatly in progress, we shall attempt to cutline how
this goal migbt be achjeved.

36 Discussion

The first step is to study the computation of typical inverse images like
fny(l, 4], fav[l,+], and fme[[], H],

which perform the splitting of the argument in many dynamic programming al-
gorithms. Preferably, these computations should be expressed as non-recursive
equations, using only fold operators as primitives. The use of fold makes it easy to
prove properties by initiality, thus avoiding the use of more complicated forms of
induction. Once we have a recursion—{ree characterisation of the splitting function
Inv(g), we can substitute it into the right-hand side of the dynamic programming
equation
k = maJ(haF(k))alnug),

and then ‘promote’ m o 3"(h o F*(k)) into the expression for Inuv(g). If the de-
velopment is successful, this results in a non-recursive expression for k, which is
expresaed only in terms of folds, and other primitives ljke products and coproducte.
It is important that all component relations in this expression are entire, so they
can be implemented as total functions.

A non-recursive expression for k& may be directly translated into a categorical
programming language like Charity, which is currently being developed by Cockett
and Fukushima [30]. Charity is a functional programming language, built around
the notion of initial algebras for polynomial functors in a distributive category.
Charity has the remarkable feature that all programs terminate — an nnexpected
result when one considers the expressive power of the language. To make the tran-
sition from our topos—theoretic framework to a programming language like Charity
precise, il is necessary to show that the programming language can be embedded in
a Boolean topos. Furthermore, this embedding should preserve products, coprod-
ucts, and initial data—types. Unfortunately, the existence of such an embedding is
by no means obvious [29]: more research is needed to link our results to the work
on categerical programming languages.

It would be wrong, however, to suggest that a program in Charity is the final
stage in the design of a dynamic programming algorithm. In many practical ex-
amples, it is still possible to further optimise the code, exploiting further algebraic
properties of the operators that are involved in the problem statement. A typical
example of such a properiy arises in the text formatting problem. Let f he the
function that returns a measnre of the amount of white space in a single line. A
good choice for f(z) is the square of the difference of the optimum Iine length and
the actual length of z itself. It is easily seen that f is concave, i.e.

flzdy) - fly) € flzhyHa)- fly+2).

Exploiting this property, the complexity of the dynamic programming algorithm
can be reduced from OQ(n?) to O(nlogn) [41, 52). Ii is awkward, however, to

express this optimisation in a functional language, as it makes use of binary search
in a non—decreasing list of values. This demonsirates the need Lo integrate the
present work with the efforts directed towards a calculus of imperative programs.

An obvious candidate for such integration is the so-called refinement calculus
developed by Back, Morgan and others [73]. This calculus is built around the notion
of predicate transformers, which are monotonic functions between power objects.
To allow a smooth transition from one formalism to another, it would be nice if
all higher-order functions that are defined on relations (especially [old) could also
be defined on predicate transformers. Although at the time of writing this issue is
still unresolved, there 1s some evidence which suggests that predicate transiormers
may be endowed with the same type structure as relations. Predicate transformers
form an order—enriched category, and relations are to predicate translormers what
functions are to relations. To wit, the predicale transformers with a right adjoint
are precjsely the relations, and every predicale transformer can be factorised as a
span of relations. It appears, therefore, that programming with relations can be
generalised to predicate transformers, just as programming with total functions can
be generalised to relations. Clare Martin has explored this idea [67] in her thesis,
concentrating on the extension of functors and natural transformations. [t seems
but a small step from her results to proving that (old operators can be dtfined on
predicate transformers as well.

Instead of developing a fully optimised program in an imperative language, one
might wish to implement the Charity program in hardware, say, as a systolic array.
It is difficult for me to speculate how this might be achieved, because hardware
design is completely outside my current field of knowledge. The amount of literature
on dypnamic programming with systolic arrays suggests, however, that it might
he a fruitful area for further research [63, 76]. A good starting point for further
investigations is the connection between the present results and the work of Luk,
Jones and Sheeran [57, 83] which aims to apply a calculus of relations to hardware
design. That calculus is already of a fairly categorical nature [84], and the gap
between their work and this thesis seems to be quite narrow.

There is also some existing work on implementing dynamic programming re-
cursions as paralle] programs in the P-RAM model [79], but it is less clear what
would be an appropriate programming calculus for the P-RAM model than it is for
procedural programs or hardware. It would probably be au extension of the refine-
ment calculus, but again my knowledge of the subject is not sufficient to warrant a
definite statement.

The primary interest of the research that has been outlined above does not
lie m the unification of classes of algorithms. Instead, the main challenge is to

38 Discussion

provide smooth transitions from one level of abstraction to another. The leading
theme in crossing boundaries between programming formalisms is to investigate
how the type structure of one formalism can be lifted to another. As was argued
above, dynamic programming provides a rich class of examples, not only in terms
of specifications, but also in terms of non—trivial implementations on a wide variety
of target architectures.

Of course, the identification of further classes of algorithms is also an important
research goal. An obvious starting point for further investigations is the class of
greedy algorithms. Many of these problems can be expressed as instances of the
generic specification of dynamic programming. It is to be expected, therefore, that
as a by-product of the research on generating splittings, one will also be able to
classify a number of tbese algorithms. A slightly different approach is outlined in a
forthcoming paper by Richard Bird and myself, where greedy algorithms are classi-
fied without relying on the results about dynamic programming that are presented
in this thesis [17].

3.3 Conclusions

Summarsing, we have seen how dynamic programming is conveniently expressed
using the calculus of relations offered by topos theory. The treatment is consistent
with other attempts to formalise dynamic programming. Unlike this earlier work,
however, our results are also compatible with more general approaches to program
construction. In particular, we have made explicit the couuection with the work on
initial data types and their use in functional programmiug calculi. The observation
that the type structure of functional programming can be generalised to relations
18, I believe, one of the most important aspects of this research.

There was little need to develop new mathematics; most of the basic facts were
already known to category theorists. I found it fascinating that these existing
results, which were invented for truly abstract purposes, are applicable to a subject
as mundane as dynamic programming. It is worthwhile to note that the decision
to use these abstract results was entirely driven by the applications. Indeed, it was
only after the discovery of the main results that I realised how many proofs could
be replaced by a reference to the literature.

It was a disappointment that [was nnable to find a definition of relfation totaliser
which works for arbitrary toposes. The restriction to Boolean toposes seems too
severe — in the non-Boolean topos Set™ there exists an obvious way to make
relations entire, but it is not characterised by my definition.

The restriction to Boolean toposes is, however, a natural cne in the context

Conclusions 39

of optimisation problems. For consider a topos £ with a natural nunibers object.
There exists a canonical partial order on the natural numbers, namely

() = (#)om”.

Brook has shown that this partial order is well-founded if and only if £ is Boolean
((19]. p. 156). It follows Lhal there is little point in developing a Lheory about
optimisation problems for arbitrary toposes.

This brings us to the last conclusion: Boolean toposes provide a convenient set
of axioms for deriving programs from specifications. They provide a choice of pro-
gramming styles: {unctions, relations and predicate translormers, and smocth tran-
sitions between these different programming formalisms. One might argue against
this that the axioms of a Boolean topos are not nearly as elementary as (for instance)
the axioms of the relational calculus. In the second part of this thesis, however, we
shall sce how the definition of a Boolean topos may be plirased in terms of relations.
Furthermore, it will be shown how these axioms encourage simnple algebraic proofs.

Part 11

Technical Details

41

4 Introduction

The first part of this thesis was intended for a wide audience that includes cat-
egory theorists and computing scientists alike. For this reason the empbasis was on
applications and intuitive explanations, not on formal proofls. Indeed, we did not
show any of these proofs, and yet it was claimed that their mechanical nature is an
attractive feature of this work. The second part of this thesis seeks to subslantiate
that claim. Here the exposition is aimed at computing scientists with httle experi-
ence in category theory: many proofs are presented in a calculational style that is
popular among researchers in program construction [4, 34, 95]. However, to keep
the presentation compact, we shall frequently refer to proofs in the literature. Es-
pecially the book Categories, Allegories by Freyd and Séedrov [40] contains many
results that are relevant to the present discussion. There is also a handwritten
technical report by Carboni, Kelly and Wood about A 2-categorical approach to
geometric morphisms [23).

4.1 Notation

The intention to write for computing scientists and the desire to make liberal ref-
erence to the mathematical literature are somewhat contradictory goals when it
comes to notation. On the one hand, computing scientists often prefer notations
that are designed for purely syntactic proofs. (“Let the symbois da Lhe work!™) On
the otber hand, mathematicians prefer the streamlined notations that have been
carefully crafted by themselves and their predecessors for many centuries. A mathe-
malician’s primary concern is an effective shorthand for communicating his results,
and this shorthand should therefore allow reference to the work of others without
requiring a tedious translation process. Indeed, at the end of his encyclopedic work
on notations, Cajori argues that mathematical progress would benefit hy greater
symbeolic unifermity [20, 21].

It was this second argument that made me chose a very conservative, tradi-
tional notation for the first part of this thesis: I did not want to deter any readers
who are interested only in learning about the applications, merely by chosing an
esoteric notation. In chosing a notation for the second part, [have tried to steer
a middle course. The notation is very close to that of Freyd and Séedrov, so it
allows easy reference to their book. However, to meet the exigencies of syntactic
proofs, composition is denoted by a semi—colon instead of simple juxtaposition: this

43

44 Introduction

operations

Oz source of

z0 target of

z;y composition of r and y

axioms

z;y is defined iff z0 = Oy

(O0z)C =0z and O(z0) =z0O
Oz;z =z and r;z0=2z2
O(z;y}> 0z and (z;y)0»y0

Figure 4.1: The definition of categories.

makes it easier to push symbols around without type checking the expressions. The
notation is introduced in figure 4.1, which preseuts a definition of categories. Note
that objects are notationally confnsed with identity morphisms, and cemposition
is written in diagrammatic order. The asymmetric equality sign (>) means that
if the left-hand side is defined, so is the right-hand side and they are equal. Be-
cause application of a functor to a morpbism is written in the usual way {(F°h), it
is convenient to write composition of fnnctors in reversed order, and application of
functors associates to the right:

(FoG)h = F(GR) = FGh.

4.2 Overview

The structure of part II is as follows. Chapter 3 introduces the basic concepts of the
categorical calculus of relations. When a category £ is regular, one can construct
a category of relations Rel{€). Conversely, every category of relations arises in this
way. This theorem is the starting point of Freyd's theory of allegories.

Chapter 6 shows how the basic operators of set theory may be defined in terms
of relations. The main idea is to take the isomorphism between relations and
set-valued functions as fundamental. If such an isomorphism exists in a regular
category, that category is called a topos. Like regular categories, toposes can be
characterised as categories of relations, this time with some additional structure.
Freyd has called such categories of relations power allegories. Here we use some
basic facls about power allegories to develop a calculus of sets for later applications
in dynamic programining.

Overview 45

Chapter 7 reports on an attempt to show that every relation in a topos can
he made entire in some canonical way. This attempl was unsuccesful, and | only
succeeded in establishing the desired result for Boolean toposes. A Boolean topos
is a topos where every relation has a complement.

Chapter 8 shows how one may define various optimisation operators in the
calculus of relations. The main goal is to estahlish the distributivity properties
of these operators. In particular, it is shown how one may consiruct a selector
from a given preorder, using the results ahoui representing partial relations as
entire relations. Subsequently, we investigate the algehraic laws of selectors that
are constructed in this way.

Chapter & presents the tbeorems about dynamic programming. As we already
discussed several applications of these theorems in the first part of this thesis, the
emphasis is on formal aspects of the theory. It is shown how the ahstrad theary
may be instantiated in an entirely meckanical fashion.

Finally, in chapler 10, we discnss a number of open problems that arose in the
preceding chapters. In particular, it is indicated how one might improve upon the
results about making relations entire.

5 Regular Categories

In set theory a relation is defined as a subset of a cartesian product. Accordingly,
category theorists view relations as subobjects of products. This chapter starts off
by reviewing those properties of subohjects that are relevant to the study of rela-
tions. Most of these properties depend on certain assumptions about the category
under consideration. This collection of assumptions motivates the definition of a
regular category. Informally speaking, a regular category is a category where it is
easy to reason about subobjects.

Given a regular category £, one may construct the category of relations Rel{£).
Its objects are the same as the objects of £, and the arrows A — H are subobjects
of the product A x B. There exists an obvious embedding of £ into Rel(£), which
is called the graph functor. The algebraic properties of the graph functor will be
discussed in detail, and we introduce some elementary operators of the relational
calculus,

The algebraic properties of the graph functor are helpful in studying the ex-
tension of functors. It is shown how any functor F : D — £ can be extended to a
mapping F* : Rel(D) — Rel(€). The question is then whether F* preserves the ba-
sic operators on relations: graph, reciprocal (converse), composition, intersection.
Graph and reciprocal are always preserved by F*, and we shall state necessary and
sufficient conditions for the preservation of composition and intersection. Finally,
it is shown that the exlension F* is in some sense unique.

Aretegular categories the natural setting for a calculus of relations? The answer
15 yes, for there exists an equivalence between the category of small regular cat-
egories and the category of small categories of relations. To corroborate this claim,
one needs define what categories of relations are. There exists such a definition,
due to Freyd, which is called the theary of allegories. An allegory is a category that
satisfies certain axioms, similar to those of classical relation algebras. The category
of small unitary tabular allegories is equivalent to the category of small regular cat-
egories. Unitary mmplies Lhe existence of a unit object (a terminator), and tabular
means that there are sufficient subobjects to obtain the regular structure.

46

Subobjects, Images and Covers 47

5.1 Subobjects, Images and Covers

5.1.1 Let h and k be arrows with a common target. The arrow k facters through
k if there exists an arrow [such that

NS

commutes. We write & < k to indicate that h factors througb k. The relation < is a
prearder. Reflexivity is obtained by taking for ! the identity arrow, and transitivity
follows by pasting two adjacent triangles. Note that identities are maximum among
arrows with a given target: h < A0,

5.1.2 When k is monic, there exists at most oue arrow { that makes the above
triangle comrnute. Therefore, if two monics factor through each other, they are
isomorphic. To wit, when n and m are monic arrows satis{ying

n=<m and m=<n

there exists a unique isomorphisi ¢ making

i ®
’\ e
mn ./

commute. {Note thal moanics are depicted with a crossed tail.} We wrile n ~ m
when n and m are isomorphic. The relation ~ is an equivalence on monics, because
= is a preorder. The class of all monics that are isomorphic to n is said to be a
subobject of nQ; it will be denoted [»). The preorder < is extended to a partial
order on subabjects in the obvipus way:

[[]cim] = n<m.

5.1.3 A category is said to be cartesian if it has all finite limits. Throughout
the remainder of this section, we shall be working in a cartesiar category £, The
existence of pullhacks implies that the class of subobjects of a given object 4 forms
2 semi-lattice. To see this, defive the intersection of two subobjects [m]and [n] as
the diagonal [p;m] in the puilback square

48 HRegular Categories

Note that p is monic because pullbacks preserve monics. We write
(m] N [n)]

for the intersection of [m] and {n]. [t can be shown that [m]n [n] is indeed the
greatest lower bound of [m] and [n), so intersection is associative, commutative and
idempotent.

5.1.4 The construction of subobjects can be extended to a contravariant functor
from & o SC, the category of semi-lattices and semi-lattice homomorphisms:
(¥ EP L SC.

This functor is called the subobject functor. The subobject fuactor sends an object
A to the family A# of all subobjects of A. On morphisms, ()‘{lE sends an arrow
f:A— Bof £ 1o its inverse image function

f*. B* 4#

which is defined as follows. Let [m) be a subobject of B. Then f#*([m]) is the
subobject [n], where n is the pullback of m along f:

It follows from the universal property of pullbacks that the function f¥ is mono-
tonic, and therefore well-defined. Similarly, one shows that f# preserves intersec-
tions. We have (f; _q;)“t = g*; f* because whenever the inner squares in

[] .. 0

1]

- L] L]
f 7
are pullbacks, s0 is the outer rectangle. (This property of pullbacks is sometimes
called the pasiting property.}

Subobjects, Images and Covers 49

5.1.5 Anarrow f:A— B issaid to have a direct image function f(-) : A*¥ - B#
if for all subobjects [m] of A and [n] of B,

f(m) Cln] & [m]c f(n]).

In words, f(-) is left adjoint to f*. The subobject f{[A]) is called the image of f.
Note that the image of f is the smallest subobject [r] such that f factors through
n:

A cln] & [Alcf*(n]) & f=n.
The category £ is said to have images if every arrow has a direct image function.
Henceforth, we shall assume that the category £ has images.

5.1.6 An arrow c¢c: A — B is called a cover il its image coincides with its target:

<([A]) = [B]. In the literature, covers are sometimes called extremal epics. Covers
will be pictured with a crossed arrowhead:

. — .
The class of covers is closed under left—cancellation, and a monic cover is an isomor-
phism. The existence of equalisers implies that a caver is epic, and the existence of

pullbacks implies that covers compose.

5.1.7 Proposition A subobject [m] is the image o] f Iff there exists 2 cover ¢
such that

o[
N

commutes. The pair (c,m) is said lo be a cover-monic factorisation of f.

5.1.8 Proposition (e.g. Manes and Arbib [3], p. 39) If the following is a
commulting square where the top is a cover and the bottom a mounic,

50 Regular Categories

then there exists precisely one diagonal arrow as depicted below:

-
.
. r— 8

5.1.9 Pullbacks play an essential réle in the calculus of suhobjects and images.
It seems natural, therefore, to require that pullhacks preserve the image structure,
namely monics and covers. Pullbacks always preserve monics. Tosay that pullbacks
preserve covers is to say that one can take arbitrary arrows as representatives of
subobjects, not just monics. Tn a sense this is always possible (two arrows are
equivalent if they have the same image), but the point is that it can be done without
explicitly using images. To make this statement precise, we need the following
definition.

Let k and k be arrows with a common target. The arrow A is covered by k if

there exist an arrow f and a cover ¢ such that

o,

commutes. We write & « k if & is covered by k. Note that & is covered hy a monic
m iff & factors through m.

5.1.10 Proposition (Carboni, Kelly and Wood [23], p. 72) The folfowing two
statements are equivalent:

1. Fralh:A—=Candk:B—-C

KA CK(B]) & Bak.

2. Pullbacks preserve covers.

Subobjects, Irmages and Covers 51

8.1.11 Now assume that in £, pullbacks do preserve covers. By the above propo-
sition, 4 is a preorder, and we can say that two arrows are equivalent il they are
covered by each other:

h~k = hak and k<h.

This new definition of equivalence is consistent with the earlier defnition of equiv-
alence (isomorphism) for monics. In this sense, subobjects can be regarded as
equivalence classes of arbitrary arrows in the preorder <. To stress the fact that we
allow arbitrary arrows as representatives of subobjects, we shall speak of extended
subobjects. A monic representative of a subobject is said to be a tabulation.

5.1.12 This completes the snmmary of elementary facts about subaobjects. images
and covers, As we mentioned in the introduction to this chapter, a regular category
is a category where il is easy to manipulate subobjects, Formally, a category is said
to be regular if

1. it is cartesian,
2. it has images, and
3. pullbacks preserve covers.

For example, the category of sets and total functions is regular. Grillet's paper [47]
contains a much more thorongh discussion of rcgular categories.

5.1.13 There exists another definition of regularity, which is due to Barr [7]. To
conclude this introductory section about regular categories, let us briefly discuss
that alternative definition. A regular epic is an arrow that occurs a3 a coequaliser,
The following proposition, which Carboni and Street attribute to Joyal, relates
regular epics to covers. It also states Barr’s definition of regularity, and il says that
Barr's definition is equivalent to onrs.

Proposition (A. Joyal, see [25)}
- In any category, a regular epic is a cover.
— In a regular category, a cover is a regular epic.
- A category is regular iff

I. it is carlesiam,

2. every level (kernel pair, pullback of identical arrows) has a coequaliser,
which is called its quotient, and

52 Regular Categories

3. pulibacks preserve regular epics.

The definition of regularity adopted here is based on tbe notion of subobjects; one
might say that it is inspired by set theoretic considerations. In contrast, Barr’s
definition is of a more algebraic flavour: instead of subobjects, it takes the notion
of divisicn by an equivalence relation (a level) as fundamental.

5.2 Relations over a Regular Category

We shall now proceed to define the category of relations over a regular category.
Relations will be defined as extended subobjects of binary products. Tbis dif-
fers marginally from the definition in the literature, where ordinary subobjects are
used. [decided ta state the definition in terms of extended subobjects because that
simplifies the notion of composition.

5.2.1 An order-enriched categary is a category with a partial order on each hom-
set, where composition is monotoni¢. Functors between order—enriched categories
are also required to be monotonic.

5.2.2 Let £ be a regular category. The category of relations over £, denoted
Rel(£), 13 an order—enriched category which is defined as follows.
— The objects are the same as the objects of £.

— The morphisms are extended subobjects of binary products. That is, if {h, &} :
E -+ (A x B) is a morpbism of £, its equivalence class [{h, k}] : A > Bis a
morphism of Rel(&).

— Cemposition is defined as follows. Let [{A, k)] and [{A', ¥')] be morphisms of
Rel(E), where k and A’ have a common target. Then

[{a, B); (A,)] = [irih,q; k)
where (r,q) is a pullback of (k,A"):

N
KON

Relations over a Regular Category 53

~ The arrow [{A, A}] is the identity on A.
- The partial order on the homsets of Rel(€) is inclusion (<) of subobjects.

That composition is monotonic (and therefore well-defined) follows from the fact
that pullbacks preserve covers. That composition is associative follows from the
pasting property of pullbacks. The pasting property says that if all squares in

S\
NN\,
N VNN

are pullbacks, so are the rectangles. One may conclude that Rel(€) is ap order-
enriched category. The construction given here is isomorphic to that in the litera-
ture by proposition 5.1.10.

5.2.3 The reciprocal B® of a relation R is defined by exchanging the branches of
a Tepreseniative:

(k)" = [(kB)].
Some authors speak of inverse, cogverse, opposite, transpose or reverse instead
of reciprocal. Reciprocation is a conlravariant, order-preserving endofunctor on
Rel(£), which is furthermore an involution:

(R =R.
5.2.4 There exists an embedding of £ into Rel(£}, which is called the graph functor

G. It is defined as follows:
Gf = [(Dfa.f)] -

The graph functor is faithful in a very strong sense: if Gh C Gk, then A =k.
5.2.5 Intuitively, morphisms of the form Gh are relations that behave hke func-
tions in set theory. To make this precise, say that a relation R is entire i

OR C R} R°.

In the literature, entire relations are sometimes called total or evervwhere defined.
Using the following proposition, it is immediate that Gh is entire.

Proposition (Freyd and Scedrov [40], p. 81) Let R be a relation. The following
three statements are equivalent:

54 Regular Categories

1. Ris entire.
2. There exisls a representative (h,k) of R with k a cover.

3. For all representatives (h, k) of R, h is a cover.

5.2.8 A relation R is said 1o be simple if
R°;R C RO.

In categery theory, simple relations are more commonly known as partial arrows,
but in this thesis we shall use the terminology of Freyd and Séedrov. Of course, ary
graph Gh is a simple relation, and again this is an instance of a more general result,
which isstated below. Notice the subtle difference with the preceding proposition:
here the universal quantification is resiricled io representatives that are monic
(tabnlations).

Proposition (Freyd and Stedrov [40], p. 81) Let R be a relation. The following
three statements are equivalent:

1. R is simple.
2. There exists a representative {h, k) of R with h monic.

3. For all tabulations (h,k) of R, h is monic.

5.2.7 A relation that is both entire and simple is called a map. The preceding two
propositions, together with the fact that monic covers are isomorphiams, yield that
a relation is a map iff it is of the form Gh. This result can be strengthened. Tostate
the stronger result, we shall need the notion of adjoint arrows in an order—eariched
category. Adjoint arrows are discussed in the next paragrapk; we return to graphs
and maps later.

5.2.8 Let C be an order—enriched category. An arrow h in C is called a left adjoiut
if there exists an arrow in the opposite direction, say k~, such that

h*;hC AO and Oh C h;h*.

Relations over a Regular Category 55

The arrow A* is said to be a right adjoint of A. The conjunction of two inequations
may also be stated as an equivalence:

SCch;R & A S5CR
(for all R and S of appropriate type) or as the symmetrical variant:
S;hCR & SCHR;A.

From these two equivalences, one may conclude that the right adjoint A” is uniquely
determined by k. Also, composition of left adjoints gives again a left adjoint. The
connection with ordinary adjunctions between partial orders is as follows. An arrow
h is a left adjoint in the sense of this paragraph iff (- ; &) is a left adjoint in the
usual sense of the word.

5.2.9 Let us now return {o the discussion of maps in the category of rclations. As
you might expect, an arrow in Rel(€) is a left adjoint i it is a map. This yields
the following proposition:

Proposition (Carboni, Kelly and Wood [23], p. 81) Let R be an arrow of Rel(£).
The following three statements are equivalent:

1. R is a left adjoint.
2. His amap.

3. There exists an A in £ such thai R = Gh.

5.2.10 In words, the preceding proposition says that the original category £ may
be recovered from Rel(£) by taking the subcategory of maps. This observation will
be important in the sequel, so let us state it as an explicit proposition:

Proposition The subcategory of maps Map(Rel(£)) is isomorphic to £,

In view of this result, it seems natural to identify arrows of £ and maps of Rel(£)
in our potation; from now on the graph functor will often be left implicit. There
will be occasions, however, where it adds to the clarily of our discusston to denote
the graph functor explicitly. We shall continue to make a notatjonal distinetion
between maps and arbitrary relations: arbitrary relations will be denoted by upper
case identifiers (R, 5,T,. ..}, while lower case identifiers (f, g, k,...) are reserved for
maps.

56 Regular Calegories

5.2.11 Recall that a relation R is simple iff it has a representative {h, k} with &
mouic (par. 5.2.6). In particular, we have that m is a monic arrow in £ iff m;m® =
Ormn. This observation can be generalised to obtain an alternative characterisation
of tabulations:

Proposition (Freyd and Séedrov [40], p. 200) Let R : A — B be a relation, and
let h:E~+ A and k: E— B be maps. Then

h°; k=R and RPN kk*=E

iff (h,k}): E — (A x B) is a tabulation of H.

5.3 Extension of Functors

Consider the category of small regular categories. What are the morphisms of this
category? You might be inclined to say that they are functors which preserve finite
limits and images. However, one could also look at it in a different way. Regular
categories were introduced to define relations, and therefore functors between reg-
ular calegories are those that extend uniquely to order—enriched functors between
categories of relations. This section is a summary of what is known about such
functors and their extension to relations. It is mostly based on a technical report
by Carboni, Kelly and Wood [23].

5.3.1 Let D and £ he regular categories, and £’ a funcior from D to £. Define a
mapping F* from Rel(D) to Rel(E) by

F*R = (Fm)’;Fn
where (m,n) is a tabulation of R. Because we chose a tabulation of R (and not
an arbitrary representative), F* is monotonic and well-defined. Furthermore, F*
agrees with F' on maps. This property may be expressed by saying that F* dis-
tributes through the graph functor:

FFoG@ = GoF.
In particular, F* preserves identities. Finally, F* preserves reciprocals:

(F*R)° = F*(R°).

The mapping F* does not preserve composition in any obvious sense.

Extension of Fanctors 57
5.3.2 Proposition (Carboni, Kelly and Wood [23], p. 99) The following four
statements are equivalent:
1. For alf R and 5 with R0) =05,

F(R;S) ¢ F*R,F*S.

2. F preserves covers.
3. F is monotonic with respeet to ().

4. F* preserves entireness.

5.3.3 Let us consider a few examples that illustrate the above proposition. A
regular category satisfies the axjom of choice if every cover has a left-inverse. The
category of sets and total functions satisfies the axiom of choice, and therefore every
functor F : Set — £ preserves covers.

As another example of the above proposition, consider the product functor
x i (Ex £} = E, where £ 15 regular. Let c: A — B and ¢’ : A’ — I’ be covers. To
show that (¢ x ¢’} is a cover, it suffices to show that {c x A") and (B x ¢') are covers,
because covers compose. Write x; for the projection (A x A’) — A. The diagram

Ax AT 4
ch" lc
Bx A - B

is a pullback; therefore ¢ cover implies (c x A') cover. By symmetry, (Bx¢') is a
cover as well.

Not all functors preserve covers. However, because Sel satisfies the axiom of
choice, it is difficult to give an elementary counter—example. For readers who are
familiar with topos theory, it may be helpful to know that in a topos covers coin-
cide with epics. Furthermore, a topos satisfies the internal axiom of choice iff the
exponent functor (A = (-)) preserves epics for all A ([40], p. 179). This Dlustrates
once more how the extension of functors is intimately connected to the axiom of
choice.

58 Regular Categories

5.3.4 The preceding proposition stated a necessary and sufficient condition for
F* to be a weak functor in the following sense:

F(R;S5) ¢ F*R;F§.

What if the inequation is reversed? Can onpe also characterise that situation? The
answer js yes, but first we need another definition: to say tbat a functor preserves
pullbacks up to image is to say that whenever

o9 . PR S
k Fk
1 and Sl l

h Fh

are pullback squares, the mediating arrow in

p

is a cover. Indeed, when this condition is satisfied, (s,?) is the image of (Fp, Fq) by
proposition 5.1.7. If F preserves pullbacks up to image, one can infer a number of
simple consequences. For example, F preserves monics and therefore F* preserves
simplicity of relations. Also, F' preserves covers iff F* preserves images.

5.3.5 Proposition (Carboni, Kelly and Wood [23], p. 98) The following two
statements are equivalent:

— For all R and S with RO = 085,

F*(R;8) D F*R;F*S.

— F preserves pullbacks up to image.

Extensian of Functors 59

5.3.6 Most functlors in computing science preserve pullbacks up lo image, but
there are a few pathological counter-examples. Consider for instance the functor

F : Set — Set defined by

[if A=28
FA = {{1} i OA#D

il

F(h:A— B)

B (FB) if A=D
1} it AAD.

To see that F' does not preserve pullbacks up to image, let & : {1} — {0,1} be
the constant function returning 0 and let & : {1} — {0,1} be the constant funclion
returning 1. Then b : &° is the emply relation @ : {1} — {1}, while

Frh F*k° = Fhy(Fk)' = {1] ¢ 8:{1} = {1} = F*(h; 4.
By the preceding proposition, ¥ does not preserve pullbacks up to image.
5.3.7 A functor Fis called a relator if F' preserves covers and F preserves pull-

backs up to image. The terminology is inspired by the next result, which sum-
marises the previous two propositions.

Proposition (Carboni, Kelly and Wood [23], p. 100} Let D and £ be regular
categories, and F : D — £. Then F* is a functor Rel{ D) — Rel(£) iff F is a relator,

5.3.8 What is the intuition behind relators? We shall examine three typical ex-
amples by describing the extended functors in terms of conventional, set theoretic
relations. The notation

a(R)b
is shorthand for (a,8) € R.

1. Consider the list functor L : Set — Set. On objects, it takes a sel 4 and
returns the set of all finite sequences with elements from 4. On arrows, (L f)
is the function that applies f to all elements of a sequence:

(Lf)[al=‘12="'vaﬂ] = [fal,fa:,---,fﬂn] .

A conventional characterisation of the extension of L to relations might read

as follows:
(a1,02,- .- an) (L*(R)) [by,bay. .., 00]

(n=m) A (Vi:l<i<n:a;(R)5).

60 Regular Categories

Indeed, this is the usual way of lifting a given relation R to the data type of
lists.

2. As a second example, let A be a set, and consider the exponential functor
(A=>) : Set — Set. It takes a set B to the set (A = B) of functions from A
to B. On arrows, it is defined as follows:

A= (f:B=C) = (Mkk;f): (A= B) = (A= C).

As expected, (A =)" is the usual way of lifting a given relation R to [unction
paCes:

FA=Y(R)g = vacA: (fa)(R)(ga) .
3. Finally, let 3 : Set — Set be the covariant powerset functor that sends a
function to its existeutial image. It is defined by the following equations:
34 = {z{zCA}
@)= {falaez}.

When extended to relations, it gives rise to the so—called Egh-Milner ordering,
which is useful in describing the semantics of parallel programs [77]:

z(I(R)y = (Veez:Jbey:a(R)H A
(vbey:Jecz:a{R)D .

5.3.9 We have seen that for a relator F, F* preserves maps, composition and
reciprocal. When does F* preserve intersection? Intersection of relations can be
characterised in terms of products:

RNS = (A A);(Rx*S);(B,EB)". (5.1)

Therefore, when F is a relator that preserves products, F* preserves intersection.
This condition is however too strong, and it can be weakened. Recall that tabula-
tions may be described in terms of intersection: a relation R is tabulated by (&, k)
iff

ks k = R and KA° N kk® = O(R k) .

Say tha! a functor F preserves tabulations {of relations) if (h,k) monic implies
(Fh, Fk} monic.

Proposition (Freyd [39]) Let F be a relator. The following three statements are
equivalent:

1. F* preserves intersection.

Extension of Functors 61

2. F preserves tabulations.

3. F preserves pullbacks.

Proof We aim to prove the sequence of implications (2) = (3) =2 (1) = (2

(2) = (3) Note that (p,q) is a pullhack of (A, k) f {p, ¢} is a tabulation of k ; k°.
Hence, if F preserves tahulations, F' preserves pullbacks.

(3) = (1) Now suppose that F preserves pullbacks. Consider the pullback

which defines the intersection
hek N fog = [p; (k)] .

Since F preserves pullbacks,

. .

Fp ‘F

—_—
F(h k)

is also a pullhack. Furthermore, if 7 is the terminator,

FAx Y Tpp

Fm Flg

FA Fr

Fl,

is a pullback, and this implies that d = (F'ry, Fry) is monic. We may conclude
that

62 Regular Categories

R L

Fp \(Ff,Fy)

S —
(Fh, FE)

/]F(f, g

Ff Fy)

i3 a pullback, since d is monic and

(Fh, Fk)

commutes, It follows that
Pk 0 fog) = FHA° Ry N F(f59)
That is, F* preserves intersection.

(1) = (2) Finally, suppose that F* preserves intersection. Then F preserves tabu-
lations by proposition 5.2.11,

5.3.10 Not all reiators preserve intersection. A counter~example is the covariant
powerset funcior 3 : Set — Set that sends a function to its existential image. Let
B = {0,1}, and consider the projections

m:(BxB)— B and m;:(BxB)—B.
The product arrow {my, 7;} is monie, but {Jr;, I x;) is not monic:
(3‘”[13”3) {(050)1(11 1]} = (3”153“9){(011J= (130)}

1t follows that J does not preserve tabulations, and therefore 3* does not preserve
intersection.

5.3.11 This concludes the discussion to what extent F* preserves the structure
of Rel(f). The next question is whether £ is in some sense unique. Say that a
functor Rel(D) — Rel(€) extends F : D — £ if it agrees with F on maps:

HoG = GoF.

Allegories 63

Are there other functors besides f* that extend F? It seems unlikely, as thereexists
no obvious alternative for the definjtion of . The next proposition confirms that
intuition.

Proposition (Gardiner [42]) Let D and £ be regular categories, and let F: D £,
H : Rel(D) — Rel(£) be functors, If H extends F, then H = F*.

Proof Assume that H extends F, and let (h, k) : E+—{A x B) be monic. It
suffices to show that HA° = (Fh)°, for then we have
H(h*;k) = HE*; Hk = (FR): Fk = FX° k).
By the uniqueness of right adjoint arrows,
Hh°;Fh ¢ FA and FE C Fh;HkR®

imply HAh° = (F'h)°. The first containment is proved helow; the proof of the second
containment is analogous.

Hh® 5 Fh

{ H extends F }
Hh®; Hh

{ H functor }
H(h® ; h)

{ & map, H monotonic }
HA

n

{ H extends F }
FA

Il

5.4 Allegories

Is it possible to characterise those categories which arise as the category of relations
over a regular category? The answer is yes: Freyd has found a simple characterisa-
tion of categories of relations in terms of three operations: composition, intersection
and reciprocation. These operations salisfy a number of axioms, which constitute
the logical theory of allegories.

64 Regular Categories

operations]
R reciprocal of R

RN S intersection of R and §

axioms

DR° = RO RO =0R

(DRY = DR (R; 5 =5°";R°

() =R

RNAR=R RnS=5nRA
RO(SNTy=(BRnSINT R;{(ENnT)C /8 n ;T
O(RNn S5)~ DR

(RNS)Y =ARN5 RSNTC(RNT8): 8

Figure 5.1: The definition of allegories.

5.4.1 An allegory is a category that has the additional structure displayed in
figure 5.1. The notation R C § is sborthand for R = RN 5. Most of the equations
are obvious, but there is one nolable exceplion: the so—alled modular law

RSNT Cc (RNT;5%;5. (5.2)

The modular law is more commonly known as Dedekind’s rule [80]. It is usually
stated as
BESnT c (ROT,5;:(5n AMT)

which, in the presence of the other axioms, is equivalent to the modular law. A
detailed discussion of various formulations of the modular law can be found i [6],
appendix B. In what follows, we shall often use the following special case of the
modular law;

BRhOT = (ROTh) k. (5.3)

5.4.2 Proposition (Freyd and Séedrov [40], pp. 79-80) Let £ be a regular
category. Then Rel(£) is an allegory.

5.4.3 Maay of the notions that were defined for the special case of Rel£) can be
generalised to arhitrary allegories. For instance, it makes sense to speak of entire

Allegories 65

morphisms, simple morphisms and maps. Also, a pair of maps h: E—A k. E—B8
is called a tabulationof R: A— B if

h°;k=R and BA* N kk*=E

(cf. propesition 5.2.11). The modular law is useful in proving properties of these
concepts. For example, it can be used to show that

F;(RNS)=(F;Rn F.%)
{or all simple morphisms F:
FsRN F8 C Fiy(Rn FyR8) C Fi(ENnS).
The reverse containment F; (RN S) C (F;R N F.5) is one of the allegory axioms.
5.4.4 Let C be an allegory. A morphism R: A — A in C is said Lo be coreflexive
if it is contained in A. The family of all coreflexive morphisms on A is denoted by
Cor{A). One can think of coreflexive morphisms as subsets of A. Indeed, if C is

tabular, coreflexives on A are in one-to-one correspondence with subobjects of A
in Map(C); the bijection A* — Cor{A) is given by

[m] + m®;m.

In any allegory, a coreflexive relation is symmetric (R* = R) and idenpotent
(R; R = R). As an example, let us prove that coreflexive implies symmetric;
idempotency is proved in a similar fashion. First note that by the modular law,

R=0RRNR Cc (ORNAR");R ¢ R,R";R
for any R. Now assume that R is coreflexive:
RCHERERC AR A= R

The reverse containment follows hy substituting R° for R.

5.4.5 The domair of a morphism R is defined as
<R = CRNR,R®.
It is characterised among coreflexive morphisms C by the equivalence
“FCcC & RCC;R.

Note that a morphism 1s entire iff its domain coincides with its source. The domain
of the converse of R is called the range of R, and it is denoted by R>. The next
two paragraphs list some properties of the domain operator that will be uselul in
the seqnel.

66 Regular Categories

5.4.8 Proposition (Freyd and $¢edrov [40], pp. 198-199) In any allegory, the
domain operator has the following properties:

“(R;S) = <(R;<S) (5.4)
hi<R = <(h;R);h (5.5)
<R;h C h;<(h°;R) (5.6)

YRNS) = <RN(S;R) (5.7)
SNR C <R:S (5.8)

5.4.7 Proposition (Backhouse et al. [6], p. 153) Let D and £ bhe regular
categories, and let F' : D — £ be a relator. Then F* preserves dornains.

5.4.8 Not every allegory is of the form Rel(£): one needs to impose two additional
properties which (unlike the allegory axioms) cannot be phrased as sitnple identities.

Firsi, one needs to ensure the existence of a terminator in the subcategory of
maps. An elegant way of doing this is the following. Say that an object 7 in an
allegoryis a partial unit if the identity Ot is the maximum morphism from 7 to
itself. A partial unit v is called a unit if for every ohject A there exists an entire
morphism A — 7. The terminator in a regular category £ is a unit in Rel(£). An
allegory that has a unit is said to be unitary.

Proposition (Freyd and Séedrov [40], p. 202) Let C be a unitary allegory. Then
7 is a terminator in Map{C). Furthermore,

<(-) : €(A, 7) = Cor{ A)
is an Isomorphism of semi-lattices. Iis inverse is
(-;'4) : Con{A) = C(A,7)

where 1, is the unique map A — 7.

5.4.9 The second addition to the allegory axioms says that there exist enough
subobjects — enough to have images and finite limits. Formally, we require that
every merphism has a tabulation. If an allegory satisfies this condition, it is said
to be tabular.

5.4.10 Proposition (Freyd and $zedrov [40], pp. 201-202) Let C be a unitary
tabular allegory. Then Map(C) is a regular category, and Rel{ Map(C)) is isomorphic
to C.

5.4.11 Let Reg be the category of small regular categories, where the morphisms
are functors that preserve finite limits and images. Furthermore, let All be the
category of small unitary tabular allegories, where the morphisms are functors that
preserve reciprocal, intersection and units. By the propositions about exiending
fanctors (5.3.7, 5.3.9, 5.3.11), together with the results Lhat relate regular categories
to allegories (5.2.10, 5.4.2, 5.4.10) we obtain the promised theorem:

Theorem (Freyd and Stedrov [40], p. 204) The category Reg of small regular
categories 1s equivalent to the category All of small unitary tabular allegonies.

5.4.12 Allegories are not the only way to characterise categories of relalions. In
particular, there exist other characterisations where intersection and reciprocation
are not primitive [26, 22]. At the time of writing, I do not have an adequale under-
standing of this work, and therefore I cannot judge whether those characterisations
conld be helpful in the present context.

6 Toposes

A regular category has, in a sense, all the structure needed to reason about sub-
objects. Regular categories are however still a long way from providing a form of
sel theory: there are no arrows for the membership relation, subset inclusion, or
existential quantification. How could one add these set theoretic concepts to the
categorical calculus of relations? The main idea is to take the isomorphism between
relations A — B and set-valued functions A — PH as fundamental. This is the defi-
nition ol a topos: a regular category £ where the graph (unctor G : £ — Rel(€) has
a right adjoint. In section 6.1 below, we shall consider the definition of a topos in
more detail.

The iscmorphizm belween relations and set-valued functions gives another in-
terpretalion for the results about exiending functors to relations. Not only can we
extend functors belween toposes to the corresponding calegories of relations, we
can also extend these functors to set-valued functions. This observation leads to a
different characterisation of relators in terms of so—called cross—operators. Cross—
operators are a generalisation of the polymorphic cartesian product function.

The iosight gained by studying cross—operators is then applied to refational al-
gebras in a topos. The main result of Lthis section says that the process of extending
functors preserves initial algebras. This Ltheorem was proved in a set theoretical con-
text by Filenberg and Wright; the introduction of cross—operators makes it possible
to reproduce their proof in an arbitrary topos.

Afterthis short discussion of apphcations, we return to the definition of toposes.
In the preceding chapter it was shown how regular categories can be defined in
terms of allegories. A similar characterisation is possible for toposes, by adding a
few operstors and axioms to the definition of allegories.

This chapter is closed by a detailed study of the existential image functor. It
is sbown that in any topos £, 3 : £ — £ is a relator. Furthermore, we give an
alternative characterisation of its extension 3*, which relates it to the Egli-Milner
ordering in the semantics of programming languages.

68

6.1 The Definition of a Topos

6.1.1 A topos is aregular category £ where the graph functor G': £ — Rel(£) has
a right adjoint. fn what follows, we shall consider this adjunction in its equational
presentation:

(G,3,{-},3) : € — Rell§)

is called the power adjunction, where G : £— Rel£) is the left adjoint, 3 : Rell£}—+&
is the right adjoint, {-} : £ =+ (30G) is the unit, and 3 : (Go 3) — Rel(£) is the
counit. Furthermore, we have the so-called triangular identities, as illustrated by
the commuting triangles below:

GﬂlGOHOG
{-}3

306‘03

This definition of a topos is not very econcmical. The proof that it is equivalent to
other, more concise definitions in the Kterature can he found in [40], p. 158. The
object 3 4 is called the power object of A; it is customary to denote it by PA,

6.1.2 The primary example of a topos is the category of sets and total functions,
and it will be instructive to interpret the data given above in this specific instance.
The right adjoint 3 : Rel(£) — £ sends a relation to its existential image

(3 = {b|Fa:e€zna(R)b}.
It follows that Jo(is the covariant powerset functor that takes a function to its
existential irmage. The unit of the adjunction is {-} : £ = (30G), the natural
transformation that forms singleton seta:
{-},8 = {a} for ac A.
The notation for the counit of the adjnnction,

3:{Go 3)— Rel(E)

rightly suggests that this is the collection of has—element relations. The union of a
family of sets is 2 natural transformation

U:(30G) 2 (3006)

70 Toposes

that may defined as |J = 33G. The triangular identities are simple laws in set
theory: a singleton has only one element

B = G{-}gi3s
and the union of a singleton set gives its element:
FB = 3GB = {'}3.:;35396'8 = {-}ps;Us -
This last equation is sometimes called the one—point rufe. It does not seem to cause

confusion if one writes J instead of 30, and from now on we shall do so.

6.1.3 The triple (3,{-},U)) is an example of a monad. To explore further prop-
erties of the power adjunction, we shall need some basic facts ahout menads and
their relationship with adjunctions. These facts are reviewed below; we return to
the power adjunction later. A more gentle introduction to monads that emphasises
applications in functional programming is Wadler’s paper [96].

6.1.4 Let C be a category. A monad in C is a triple

(F,YJ,,U)

where F: C—C is an endofunctoronC, and 5 : C— F and p : (FoF)— F are natural

transformations. Furthermore, these operators satisfy the so-called associative Jaw
pFip = Fuip

as well a the urit laws

Fpip = F = gF .

The calculus induced by the monad laws is rich, and two derived laws that will be
expedient in later calculations are the following: for all h: A— B

Fh = F(hing)ins,
and foralk: A - FB
k = na;Fkiup.
In some proofs, we shall refer to these properties by the hint : {(F, n, 4) monad’.
As mentioned above, the triple (3, {-1,1J) is an example of a monad in Set. The
monad laws are familiar identities in set theary like the fact that union distributes

over itself:

ua;u = 3uu.

The Definition of a Topos 71

6.1.5 Proposition (Huber [33]) Let (F,U,n.e} : C — D be an adjunction.
Then
m = (UoF,nUcF}

is a monad in C. We say that m is the monad defined by the adjunction (F,U,n, €).

It follows that in any topos £ the power adjunction defines a monad

(31 {'}:U] .
This monad is said to be the power monad of £.
6.1.6 Given the fact that an adjunction determines a monad, the next quesijon
to ask is wbhether every monad can be obtained from an adjunction. This isindeed
the case, and there exist two extremal ways of constructing an adjunclior that

defines the given monad. The following three paragraphs snmmarise one aof these
constructions, due ta H. Kleisli [59].

8.1.7 Let C be a category, and let m = (F,n,p) be a monad in €. The Kleisli
category of m, denoted C™, is defined as follows. Its objects are the same as those
of C. If h: A— FB is an arrow in C, then

i:A—B
is an arrow in the Kleisli category C”. Composition in C™ is defined by
BB = (k;Fhipc)
for k*: A— B, k*: B— C in C™. Finally, the identity arrows in C™ are given by
A = (na)

6.1.8 Theorem (Kleishi [59]) Let C be a category, and let
m = (F,p)
be a monad in (. Define two functors F™ : C = C™ and U™ : C™ = C by
Fr(f:A—>B) = (f;1s) A= B

and
U : D E) = (Fkyug): FDSFE.
Furthermore, define a natural transformation e : (F™ o U™y = C™ by
¢4 = (FA). Then
(F U pe) : C—C™

is an adjunction and this adjunction defines the given monad m.

72 Toposes

6.1.9 The adjunction described in the preceding theorem is in a sense initial
among the adjunctions that define the given monad. This fact is expressed by
the following result, which is known as the Comparison Theoremn for the Kleish
consiruction.

Theorem (Schubert [81}, p. 330) Let (F,U/,n,e} : ¢ — D be ag adjunction, and
let
m=(UoF,nUeF)

be Lhe monad it defines in C. Define a functor L : C™ — D by
LW:A—=B) = (Fh;epp): FASFB.
Then L is the unique functor such that
UoL=U™ and Lo F™=F and L{UFAY = epa .

The functor L is said to be the comparison functor. The comparison functor is an
isomorphism iff F Is bijective op objects.

6.1.10 Let £ be a topos. The graph functor G : £ — Rel(£) is a bijection on
objects. Therefore, as an immediate consequence of the abowve theorem, the Kleisli
categary EF of the power monad

p = 3,{hU)

is isomorphic to the category of relations Rel(£). This means that relations and
set—valued functions are not only isomorphic at the level of homsets: they are also
isomorphic as categories. The isomorphism is given by the power transpose functor
A: Rellf)— &7

AR:A=B) = ({}:38),

and its inverse
AR A B) = k;35

which is the comparison functor £7 — Rel(£). The Kleisli category £” is an order-
enriched category, where the partial order on the homsets is inherited from the
category of relations Rel(£):

(hck) = (AR CATYR)

for h,k:A— Bin C*.

The Definition of a Topos 73

6.1.11 The comparison theorem for the Kleisli construction also has other appli-
cations that are relevant to computing science. For example, consider the calegory
of simple relations Sitmpie(£) over a topos £. It is a theorem of Lawvere and Tierney
that the embedding £ — Simple(£) has a right adjoint. The comparison theorern
gives the well-known isornorphism between partial functions as simple relations,
and their representation by means of pointed sets. The latter representation has
heen advocated as a model of exceptions in functional programming languages, e.g.
[92]. The adjunction between £ and Simple(£) will be further discussed in the next
chapter.

8.1.12 Let us close this section about the definition of toposes by summarising
a few fundamental properties that will be useful in the sequel. Proofs of these
facts may be found in the book by Freyd and Séedrov [40], or indeed in any other
textbook about topos tbeory.

8.1.13 Proposition i a topos, covers and epics coincide,

6.1.14 Proposition A topos is cocartesian (it has all finite colimiis).

In particular, a lopos has an initial object fi. This means that for every pair of
objects A and B, there exists a least relation # : A — B, which is represented by
the initial object:

U\
/ N
A B
This collection of zero relations acts as a zero with respect to composition:

B:0 =% = B;R.

The prool relies on the fact that in a topos, any morphism A — 0 is an isomorphism.

6.1.15 Proposition In a topos, the coproduct injections are monic, and their
pullback is the initial chject. Furthermore, if

74 Toposes

AL .pB at . B

RN

¥
are puﬂback squares, tbﬂﬂ

A+Alf!f’ B

g+g k

C+C—[h,h'] D

is a pullback square as well.

6.1.16 The above proposition has a number of important consequences for re-
lations. First of all, it implies that the coproduct functor is a relator. Using the
extension of the coproduct funcior to relations, one can define the least upper hound
of iwo relations in the following way:

RUS = [AA];(R+*S);[B,B]. (6.1)

The least upper bound R U S is said to be the union of R and §. Note that
the definition of union is dual to the characterisation of intersections in terms of
products (eq. 5.1, par. 5.3.9). It is however not true that all properties of union
are dual to those of intersection. For example, composition distributes over union
of relations:

R;(SuT) = RS U RT, (6.2)

and the domain operator distributes over union as well:
<{RUS) = <RU<S.
Neither of these equations is valid for intersection.

The properties of the coproduct injections which are stated in the above propo-
sition can also he expressed in terms of relations. For example, the fact that +; and
t2 are monic is expressed by

nin®=A and ;°=8. (6.3)

Cross-operators 75

The following equations say that the pullback of the injections is the initial object:
i =0 and 4;u,°=0. (6.4)

Finally, the coproduct injections satisfy a property which is dual to our carlier
characterisation of tabulations:

Llo;tl U tzo;la = A+ B (6.5)

(cf. proposition 5.2.11). From the last three equations, one may deduce that A+ B
is a coproduct in Rel(£), where the coproduct arrow is given by

[R5 = uRU LSS, {6.6)

Because Rel{ £) is isomorphic to its own dual, we conclude that (A + B)is also a
product in the category of relations. The paper by Backhouse et al. [6] contains
an exhaustive treatment of the algebraic identities that may be derived from these
observations.

6.2 Cross—operators

In the previous section, it has been shown how the basic operators of set theory
can be defined in terms of the power adjunction: membership, singleton, nnion,
existential image. Some form of cartesian product (a collection of arrows x 4 5 :
PAxPB— P(A x B))isstill missing. This section is an exploration of various forms
of cartesian product in a topos. It will be shown that there exists an isomorphism
between such cross-operators and extensions of funciors to relations.

8.2.1 Let D and £ be toposes, and F : D — £ a functor. A cross-operator on F
is a natural transformation

¥:(Fo3)— (3eF)

such that
Fi}sv
FU;~
and for all arrows g,h: A— PR in D

(-}F
¥3;37v;UF

Il

@ C k' implies (Fg;-n;}b C(Fh; '7;5,)b .

This Jast requirement is just a monotonicity property, and the first two eqnations
are also quite natural when one considers the types involved:

76 Topeses

F Fo3jod— U . Fo3

F{'} {'}F ')'3 ¥
}

Fo3——30F 30F 0 33=+3030F g3 oF

6.2.2 True category theorists will recognise a similarity between cross—operators
and the notion of distributive laws, as introduced by Beck (8]. Indeed, we shall use
cross—operators to describe distributivity properties in chapter 8. We are not the
first to perceive the importance of Beck’s distributive laws in computing science;
Poigné has demonsirated how they can be used in the analysis of powerdomains
[78]. Another concept that is similar to our cross-operators are the distributive
laws introduced by Manes, who also used them in a treatment of nondeterminism
[65].

8.2.3 let D and £ be toposes, and F : D — £ a functor. A functor between the
corresponding Kieisli categories K : D — £? extends F if
KoFP=FFPaF .

Because A~! o FP = @, this is consistent with the earlier definition of exteands in
section 5.3.11: K : D — E¥ extends F if and only if (A"'0 Ko A} : Rel(D)— Rel(£)
extends F.

6.2.4 Theorem Let D and £ be toposes, and F : D— £ a functor. The following
three sistements are equivalent:

1. Fis a relator.
2. There exists a2 cross—operator on F,

3. There exists a unique cross—operator on F, namely

(Fis) = AF*A-Y(PA).

Proof In a sequence of three lemmas, it will be shown that there exists a bijection
between functors that extend F and cross—operators on £; the theorem then follows
by propositions 5.3.7 and 5.3.11. Since the proofs are somewhat laborious, the
reader may wish to skip them on first reading.

Cross—operators 77

6.2.4.1 Lemma Let D and £ be toposes, and let F': D — £ and K : TP — £7

be functors. Define vg by . .
{va) = K(PB}) .

Suppose that K extends F. Then for all B* : A— B in D?,
(Fhivg) = KR .

Proof
(Fhiva)

= {p=(3{},U) monad }
{(Fh:{-}ppg;3 78 ;Urp)

= { Kleisli constructien (par. 6.1.7) }
FPPhiys’

= { Kextends F }
KFPh;yg

= { dEI i }
KF*h: K(PB)

= { K functor }
K{(F?h; (PB))

= { theorem 6.1.8, triangular identity }
Kt

6.2.4.2 Lemma Let D and £ be toposes, and let F : D — £ and K :D? — £F
be functors. Suppose that K extends F. Then v, defined by

(14) = K(PA)

is & cross—operator on F.

Proof We shall check that + satisfies the four axioms of a cross—operator on F,
ie

78 Toposes

1. y:(Fo3)— (3oF)

2. F(}:7 = {}F

3. FUiy = 13;37;:UF

4. gC himplies Fg;98 C Fh;vg, forall g,h: A— PBin D.
We deal with each of these proof obligations in turn.

1. We aim to show Lhat 7 is a natural transformation from F o J to JoF. Let
h:A— B be an arrow in D. By a calculation that is analogous to Lhe proof
of lemma 6.2.4.1, one finds that

(1a;IFRY = K(@Eh).

By lemma 6.2.4.1 itself, we have K(34)" = (F3k;vg)’, and therefore
FIhjvg = 71433Fh,

as required.

2. We aim to show
F{-}sy = {}F.
Let A be an object of D. One may calculate as {ollows:

(F{-)g57a)

= { K extends F, lemma 6.2.4.1 }
K({-}Y

= { def. identity in T")
KA

= { K extends F }
FA

= { def. identity in £7)}
(3ea)

3. Weum to show:
Uiy = 73:37;UF .

Cross—operators 79

Let A be an object of D. Then
(FUas7a)
{ K extends F,lemma 6.2.4.1 }
K(Ua)
= { identity arrows }

K(PPA;3PA;,)

= { Kleisk construction (par. 6.1.7) }
K((PPA) ; (PA)')

= { K functor }
K(PPAY ; K(PA)

= {defl v}
(yra)" s (1a)

{ Kleisli construction }

(1pa; 3743 Ura)

4. Let g,k : A — PB be arrows in D such that g* € A*. The aim is to show
(Fg;78) C (Fhivs) .

By lemma 6.2.4.1, this follows immediately from the monotonicity of J(.

6.2.4.3 In the preceding lemma, we bave shown that there exists a mapping from
functors that extend F to cross—operators on F. By lemma 6.2.4.1 this mag)ping is
injective, since it says that one may recover K from the cross—operator {(vg) = K B
and F itsell:

KK = (Fh;ya) .
Now suppose that <y is an arbitrary cross—operator on F. Does the above construc-
tion of K in terms of F and + still yield a functor that extends F 7

Lemma Let D and £ be toposes, and F : 7' — £ a functor. Let v be a crogs—
operalor on F, and define
K:DP g7
by
KA = FA
K(MW:A—- B) = (Fhiv):FASFB.

80 Toposes
Then K extends F and for alt A, (14)" = K(PAY".

Proof We shall check the following proof obligations in turn:
1. K is a morphism of graphs.
2. K preserves identity arrows.
3. K preserves composition.
4. K is monotenic.
5 KofP = FFPaF.
6. (74) = K(PAY.

1. We aim to show that K is a morphism of graphs.
K¥:A—> B in DF

& { del. D° }
h:A->PB in D

= {F.DE}
Fh:FA—-FPB in £

= {7y:Fo3—3oF}
(Fhivg): FA-PFB in £

< { def. of £7 }
(Fh;’yg)l':FA)rFB in E?

< {def. ol K }
Kh:KA— KB in E?

2. We aim to show that K preserves identity arrows.

K({-3,)
{ def. of X' }
(F{)as1a)

Crass—operators 81

{ 7 cross—operator on F }

(-1ea)
{ def. of K }
({ bea

3. We aim to show that K preserves composition. Let h* : 4 » Band ¢ : B—(
be arrows in DF.

K(h' ;g%
= { del. of K, Kleisli construction }
(P(h;39:Uc) i)
= { F functor }
(Fh;Fag; FUcsive)
= { # cross—operator on ¥ }
(Fh;F3g;9p0:370:Ure)
= {v:Fo3—-3J0F }
‘ (Fhivpg:3Fg:37c;Ure)
.= { 3 functor 1
(Fh;res:3(Fg39¢) sUre)
= { def. K, Kleisli construction }
Kp' Ky
4. We aim to show that K is monotonic. Let ¢’ 4" : A — B in DF such that
¢ C B*. Then
K¢
{ def. K }
(Fgivs)
{ ~ cross—operator }
(Fhivs)
{ del. K }
KR

mn

5. We aim to show that
KoF?Pr = FPoF.

Let h: A—~ Bin D. Then
KFPh
{ del. F? }
K(h;{'}B)b
{ del. K }
(F(hi{-s);78)
{ F functor }
(Fh:F{}pi78)

{ 7 cross-operator on F' }

i

It

I

(Fhi{-}eg)
= { del. F*}
FrFh

6. We aim to show that
(7a) = K(PA),

where A is an arbitrary ohject of D. Thia is immediate from the definition of
K:
K(PAY = (FPA;14) = (1a) .

This completes ihe proof of the lemma, and hence of theorem 6.2.4
6.2.5 Cross-operators are ubiquitous; below we give seven examples that fre-
quently occur in computing science.

1. As a very trivial instance, consider the identity functor on a topos £. Its
cross—operator 18 J, the identity transformation [rom 3 to itself.

2. Let D and £ be toposes, and A an object of £. The constant functor
K,:D—=E

maps all arrows in D to the identity on A. Here the cross—operator is given
by
(Kat)s = {-}4- {6.7)

Cross—operalors 83

3. The motivating example for the definition of cross—operators is the product
functor

x 1 (Set x Set) — Set .

Both (Set x Sei) and Set are toposes. The cross—operator (%)t is the natural
transformation that returns the cartesian product of two sets. Naturality
means here that

(3fs) (x)iep (A9t} = I(fxg)(s XMap t)

where s CA, I C B, f: A—C and g : B— D. To instantiate the cross—
operator axioms, observe that if £ is a topos with power monad (3, {-},U),
(£ x £} is a topos with power monad

((3x3), {-L4-D, LU

The first cross—operator axiom therefore reads

{3 D500 = {30,

and jt says that the cartesian product of two singletons is again a singleton.
The second cross—operator axiom

(UxU); (0 = OiEx3);5301:U0¢)

says that cartesian product distributes over arbitrary unions. The last re-
quiremnent in the definition of cross—operators states that { x){ is monotonic
with respect to set inclusion.

4. The cross—operator of the coproduct functor
4+ : (Set x Set) — Set

is a coproduct itsell:

(+)iap = [3t1,3 4] (6.8)
where ¢; : A — (A+ B) and ¢« : B — (A + B) are the injections into the
coproduct.

5. The hist functor L : Set — Set discussed in paragraph 5.3.8 has a cross-
operator that iz very similar to cartesian product. Informally, it is given by
the following set comprehension:

Lialz1, 23,z} = {[o1,03,...,80] | Vi:a; € 2.} .

6. Also in paragraph 5.3.8, we considered Lhe exporential functor
(A=):Set— Set .
Its cross—operator is
(A=2)s (f:A=PC) = {g:AC | VYaec€A:gacfal}.
7. Though the above examples may suggest otherwise, it is not always easy
to give a succinct description of a cross—operator. An example of this phe-

nomenon is provided by the cross—operator on the existential image functor

ER
Itn {{1.2},{4,5},{6}}

{ {114?6}1 {115!6}‘ {1!415!6}1 {214‘6}5 {2!5’6}’ {2!43556}
{1,2,4,6}, {1,2,5,6}, {1,2,4,5,6} } .

This example also shows why Lhe monotonicity condition in the definition of
cross—operalor is necessary: v = |J; {-}3 preserves singletous and distributes
over union, but it is not monotonic.

6.2.6 The remainder of this section is devoted to developing a small calculus of
cross-operators. In this calculus, there is no longer any use for the Kleisli category
of the power monad. For this reason, the power transpose AR of a relation R will
be regarded as an arrow of £, not of the Kleisli category EF.

To start with, let us mention Lthat A~'{PA) = 34, and thal cross—operators
may therefore be written in terms of the membership relation:

Ft = AF‘s. (6.9)

The identity A"1(PA) = 3, is stated in the comparison theorem for the Kleisli
construction (par. 6.1.9).

6.2.7 Proposition Let D and £ be foposes, and let F : D — £ be a relator.
Then for R: A — B in Rel(D}

AF*R = FAR;Fip.

Proof
AF*R

Cross—operators 85

— {AoA=1}
AF*ATTAR

= { AoF*oA™" extends F, lemma 6.24.1 }
FAR; Fig

6.2.8 Proposition Let D and £ be topases, and let F' : D — £ be a relator.
Thenfor R: A— B in Rel(D)

F3IR;Ftg = Fi4;;3FR.

Proof
F3IR; Fipg

= { prop. 6.2.7 }
AF*A-13R

= { power adjunction }

AF* (34, R)

= { F* functor }
A(F*54; F*R)

= { power adjunctiou }
AF'3,4;3FR

= { cross—operator (eq. 6.9} }
FTA = F*R

6.2.9 Proposition LeiC, D and € be loposes, and et F:C—»Dand H: D&
be relators. Then H o F is a relator and

(HeF)t = H(F{); (H)F .

Proof The fact that {H o F) is a relator is trivial. It therefore remains to show
that the following diagram commutes:

86 Toposes
HoFod Ity o3or

(HoP) (HHF
3cHoF
Let A be an object of C. We calculate as follows:
(HoF)t,
{ theorem 6.2.4 }
A(H o F)*"A7Y{(PA)

{ (-)* functor }
AH*F*A"1(PA)

= { A isomorphism }
AH*A"TAFA-1(PA)

= { theorem 6.24 }
AHATY(FY,)

= { prop. 62.7 }
H(Ft.) ;s Hira

6.2.10 Proposition Let C, D apd £ be loposes. Furthermore, let ¥ : (- D
and H :C — £ be relators. Then their product

(F,H):C— (Dx &)
is a relator and for any object A of C:
(F.H)t4 = (Fty Hi,) .
The projection functor
M:{Px&E—-D

is also a relator, and

(nl)T = 3“1-

This proposition may be proved by verifying that the cross-operator axioms hold.
As the reader will imagine, such a proof is not particularly enlightening, and there-
fore it is omitted.

Relational Algebras 87

6.3 Relational Algebras

Relational algebras have received considerable attention in the computing literature,
notably in connection with nondeterminism. For instance, Eilenberg and Wright
[36) show how relational algebras can be used in tbe study of nondeterministic
automata. Extending this work, Goguen and Meseguer [44] use relational algebras
in descrihing the semantics of recursive parallel nondeterministic flow programs.
Here we recall some of these earlier results, slightly adapted to the present needs.

8.3.1 Let £ be a category and let F be an endofunctor on £. An F-algebra is an
arrow of type

k:FA—- A.

For example, consider the set L of non—empty finite lists with elements from K.
The function [-] : & — L takes an element and turns it into a singleton list. The
binary operator {:) : (E x L) — L takes an element and places it at the front of a
List:

eo:[er,e2, ... 80] = [eg e €2,...560] -

The coproduct of [-] and (:) is of type
(L () (E+(Ex L) = L.

It follows that this coproduct iz an F-algebra, where F' : Sei — Set is tbe functor

defined by
FA

Fk

E+(E x A)
E+(Exk).

8.83.2 Let k: FA— Aandl: FB — B be F-algebras. An F-homomorphism
from kto ! is an arrow h : A — B such that the following square commutes:

A=t . pB

kl Il
It may be checked tbat the composition of two F-homomorphisms is again an
F-homomorphism. The F-algebras in £ thus form the objects of a category Er,
where the arrows are F—homomorphisms. For many functors F, this category has

an initial object, which we shall denote by

u(F) .

B8 Toposes

If k is another F-algebra, we shall write
1*Dr

for the unique F'-homomorphism from u(F) to k. Sometimes, when F is clear from
the context and no confusion is possible, we shall drop F from this notalion and
simply write ([&]).

6.3.3 An example of an initial #-algebra is the data type of lists discussed in
paragraph 6.3.1. In many functional programming languages, one finds the so—
called fold-right operator on lists. It is usually defined by two recursion equations

(foldrk (@) [¢] ke
(foldrk(®))(a:2z) = a @ ((foldrk(®))z) .

These equations are equivalent to the statement that (foldrk (®)) is an F-homo-
morphism:

(foldrk (@)} : [, ()] — [k,8] .
One may prove this equivalence by a simple calculation, using the defining prop-
erties of the coproduct. As [[-], (:)] is the initial F-algebra u(F), it follows that
(foldr k(&) = ([k, €]Dp-

6.3.4 Another example of an initial F-algebra is the following definition of natural
numbers. Here the functor F is defined as

FA = 7+ A
Fh T+ h

Il

where r is the terminator. The initial F-algebra is the coproduct arrow [0,suec).
When this initial F'-algebra does exist, we say that the category under consideration
has a natural numbers object.

6.3.5 Homomorpbisms on an initial F-algebra occur much more frequently in
programmming problems than is usually realised. A particularly lucid account of
their importance and the relevant properties is Malcolm’s recent paper [64). It
would not do justice to Malcolm’s work to try to summarise it here; we just quote
two propositions that will be useful in later proofs.

Proposition (Malcolm [64]) Let £ be a category, and let F : £ — £ be a fugctor
such that the initial F-algebra exists. Let h and k be F-algebras, and

g:h> — k>

Relational Algebras 89

an arrow in £. T h ;g = Fg;k then
([h]}pig = (IkDF -

8.3.6 Proposition (Lambek [61]) Let £ be a category, and let F: £ —+ £ bea
Tunctor such thal the initial F-algebra u(F) exists. Then u(F) is an isomorphism
méE.

8.3.7 The preceding paragraphs summarised the standard results on F-algebras.
We now proceed to consider relational algehras, namely the category

Rel(£) .

In [36], Eilenberg and Wright meutioned in passing that the initial object of this cat-
egory coincides with u(F) — though their definition of algehras is slightly different
from curs. The following theorem shows that despite these differences, Eilenberg
and Wright's result is still true. Let £ be a topos, and F an endofunctor on £.

Theorem (Eilenberg and Wright [36]) Let £ be a tapas, and let F : £ 4 £ be a
relator that has an initial F-algebra p(F). Then u(F) iz also an initial F*-algebra.

Proof Let H: FA— A be an f*-algebra. We have to exhibit a unique arrow
{{R] that makes

FT_”LF_)_ T
F*(IRD\)
FA—p— A

commute. Because u(F) is an initial F-algebra, {Ft, ;3R] is the unique arrow
making

FTJF)_, T

F([FM;EIRD\ (Fia:3H)

FPA—— —_—
i, PF A IR A

commute. Since A is an isomorphism and
AN F(Ft,;3RD; Fiy; AR) = FA'(Ft.;3RD): R,

it follows that we can take (K]) = A~ (Fj, ; 3 R).

6.3.8 How could one think of arrows in Rel(£)p,, and in particular, what is the
intuitive interpretation of homomorphisms of the form

(BDes 7

Recall the data type of finite lists, as introduced in paragraph 6.3.1. 1t is the initial
F-algebra, wbere F' is the endofunctor ou Set given by

FA = E+(Ex A)
Fk = E+(Exk),

il

for some given set E of elements. The above theorem says that it does not matter
whether we consider tbe functional F-algebra u(F) ot the relational F*-algebra
#(F*): both denote the same data type. Let us now look at a typical example of 2
relational homomorphism on that data type.

Define a relation O : (£ x E) — PE by
D= mUmnmg.

One may think of O as a binary operator that selects either of ils arguments in a
nondetermiristic fashion. Similarly,

(£, a

is a nondeterministic mapping that selects an arbitrary element from its argument
list. Less operationally speaking, one could say that ([E,O]]) is the has—element
relation on lists.

6.3.9 It is often awkward to check whether a functor is a relator that has an
initial algebra. The next few paragraphs present a sufficient criterion to help in
that task, It is not a necessary condition, but it covers many examples that arise
in computing science.

Let £ be a topos. The class of polynomial endofunctors on £ is inductively
defined hy the following clauses:

1. The identity functor on £ is polynomial.

Power Allegories 91

2. f Ais an object of £, the constant functor which maps all arrows to the
identity on A is polynomial.
3. I G and H are polynomial functors, then G+ H and GxH defined by

(GHH)(k) = G(k) + H(k)
(GXH)k) G(k) x H(k)

are also polynomial functors.

6.3.10 Proposition I a topos, polynomial functors are relators that preserve
tabulations.

This proposition is immediate from the fact that in a topos, both the product
functor and the coproduct functor preserve epics and pulibacks.

6.3.11 Proposition (Johnstone [56]) In a topos with a natural numbers object,
polynomijal functors have initial algebras.

6.4 Power Allegories

The definition of toposes in terms of regular categories suggests that one can phrase
the definition of a topos entirely in terms of relations. What additions should one
make to the allegory axiorns? One possibility is to take the equational definition
of the power adjunction, and phrase it in the calculus of relations. That weuld not
give aset of simple containments, however. It is for example necessary to say that
fis amap in
fitlg = {}asaf.

Hence, a relational farmulation of the power adjunction would not be entirely equa-
tional.

6.4.1 Freyd has proposed quite a different solution that takes universal quantifica-
tion as primitive. This contrasts with a relational encoding of the power adjunction,
which is based on existential quantification.

The basic operator in Freyd’s approach is the right-quotient R/S of two rela-
tions with a common target. This division operator can be characterised by five

_operation
R/5 nght-quotient of R and §

axioms
O(R/S) » DR
(R/SYOD » 8§D
(RoNR1)/S C Ro/S N RifS
T Cc (T;5)/8
(R/5);5 C R

Figure 6.1: The definition of right-division.
equations, which are displayed in figure 6.1. From these equations, one may deduce
the following equivalence:
T C RIS &« T;5 C R.

In words, ({-)/5) is right adjoint to {(-) ; R). When you write out the definition of
R/S8 in ordinary set theory, you can see the connection wilk universal quantification:

2{R/S)y = ¥z : 4(8)z = z(R)z.

Before we get on to Freyd’s relational characterisation of toposes, we expioze the
algebraie properties of division.

6.4.2 Proposition Iz an allegory that has right—division, the foliowing are valid
equations:

RISif = RIS:S) (6.10)
hiR/S = (h; RYS i6.11)
(R;%°)/8 = R/(S:k) (6.12)
(R/5);(5/T) ¢ RIT (8.13)
R/(S035) = (R/S1)/So (6.14)
OR C R/R (6.15)

R/R;R = R (6.16)
R/(RD) = R 6.17)

RS NT{S = (RNT)S n T[S (6.18)

Power Allegories 93

operation

3r epsiloff of R

axioms

3p0 = RO

3R = 3ro

OR C (R/3a);(3r/R)
03r D (3a/3g) N (3r/3R)°

Figure 6.2: The definition of power allegaries,

6.4.3 Various other division operators can be defined in terms of right-divigion.
An example is left-division:

S\R = (R°/S°Y.

Left-division is entirely symmetrical to right—division and therefore all facts about
right-division translate into properties of left-division. For instance, le{t-division
ia characterised by the equivalence

TCS\R& STCR.

68.4.4 A power allegory is an allegory with right—quotients, plus the additional
structure displayed in figure 6.2.! Let C be a power allegory. Then the inclusion of
Map(C) into C has a right adjoint, analogous to the power adjuncticn. The basic
idea in constructing this adjunction is to define power transpose by

AR = (R/3g) N (3r/RY .
The proof that this works can be found in the book hy Freyd and S¢edrov [40], p.
236.

6.4.5 Theorem (Freyd and Séedrov [40], p. 236.) If € is a topos, then Rel(£)
is a unitary tabular power allegory. Conversely, if C is a unitary tabular power
allegory then Map(C) is & topos.

How is this theorem proved? To show that the maps of a unitary tabular power
allegory form a tapos i3 easy; we already discussed the relevant construction in the

In their definition of power allegories, Freyd and $2edrov [40] require the existence of unicn
() and serc (@) in addition to division and epsiloff. On page 250, they prove that the union and
zera operators may be omitted.

94 Toposes

preceding paragraph. For the other direction, we need to show that every topos
has quotients. If we can construct the containment relation

Jg = d5/3p: PB— FH
we are done, for then it is possible to define
R/S = AR;dp;(AS).
Define the internal intersection map My : (PA x PA) — PA by
Ma = A((24 x* 34);(4,4)) .

Note that for any H and §, A(ENS) = (AR, AS); Nz. The containment can now
be defined as follows:

J4 = m®;(Manm) .
The proof that this construction works makes vse of the fact thal a tahulation of
7% (Ma N#z) is an equaliser of Ny and 73,

6.4.6 Note that the above theorem is not stated as an equivalence of categories.
Indeed, we did not investigate which relators preserve the additional structure of
power allegories. For instance, which functors preserve division? The answer is:
hardly any. Even the product functor fails to preserve division, as may be checked
by writing out the set theoretical definitions. Still, in the sequel it will sometimes
be necessary to distribute fnnctors over division. For this reason, we shall intro-
duce a variant of left-division, called strict left-division, which is preserved by all
polynomial functors.

Consider a category that has division, and let R and § be arrows with a common
source. The strict left—quotient of R and 5 is defined by

R\ S = R>;R\S. (6.19)
Alternatively, il may be characterised by the equivalence
(TCRW\S) & (BBTCS and <T CR>). (6.20)

Some authors speak of weakest posispecification, typed factor or conjugate kernel
instead of strict left-division. Two properties of (\\} will be useful in later cal-
culations. The first says that (\\) and (-)° interact like division and reciprocal in
number arithrnetic:

R\SCR;S. 16.21)
The second property follows from the first, and it says that if m is a monic map,
RN\ (S:m) = (R\\S);m. 6.22)

Note that neither of these identities is valid for ordinary left-division.

Power Allegories 95

6.4.7 Theorem Polynomial endofunctors on a topos preserve strict left—division.

Proof It is obvious that the identity functor and constant functors preserve
strict left—division. In the next two lemmas, it is proved that the product and
coproduct functor preserve strict left—division as well. The theorem then follows by
induclion.

6.4.71 Lemma In a topos, the product functor preserves strict left-division.

Proof Let £ be a topes. We aim to show

(So X SN\ (o> Ba) = (So\\ o} x* (51 \\ A1) .

The icclusion (>) is obvious. What about the reverse containment? Observe that
the product of £ satisfies the following equations in Rei{£):

Rx*S = (m; B;m°)N(m2; 5;m°) (6.23)

(R x*S);m; 8 (Rx*8);m . (6.24)

These identities are discussed in a slightly different setting in [6]; Lere their proof
is omitted, We reason hackwards from the proof obligation:

(So x* SN (Ho x* B} C (So\\Ho) ™ (S1\\ /)
e { equation (6.23), symmetry }
(Jo x" SUN(Fo x* B1} C 715 So\\Ro 5 71°

< {misamap }

m°; (S0 x* S)W(Ho x* By) s mp € So\\Ro

& { strict left-division (eq. 6.20) }

So;m®; (Sox* SIN(Hox* Ra) s my C Hp and
Am®; (Sax* S x* By) 5 m) C So?

We deal with each of these proof obligations in turn. The first is proved as follows:

Sa 5 m® 5 {Sg x* 51)\\(R0 Ry

C { equation {6.23) }
SO y 11'1“ ; (SD X*SI)\\(TH ; Ro;?rl") -

Il

{ def. (\\) (eq. 6.19), division calcujus (prop. 6.4.2) }
So 5 5 (Sox* S)\(mi Ra) i m° 5 7
{ m epic, proposition 5.2.5 }
So 3 ®° 5 (S0 x* Sih\\ (715 Ko)
{ def. strict left-division }
So 3 m® ; (Sax* 51)> 3 (SD x* Sl)\('frl i Ho)
{ equation (6.24), def. range }
1% 5 (S x* S} 5 {So x* S\ (m 1 Ry)
{ division calculus }
m° 5 (So x* 51) 5 (1% (So x* 51\ Ry
{ left—divisiou }
R,

[t remains to show that

Here is a proof:

Am® g (So x* SN Ao x* By) s m) C Se” .

Am® s (Sox* S W (Fp x* Ry) i7y)
{ domain calculus (prop. 5.4.6), =, entire]
(m® ;5 (So x* 51) W (Ho x*))
- { strict left-division (eq. 6.21) }
{m®; (8o x* 51)° ; (Rox* Ry))
C [domain calculus }
(%5 (So x* 5i)7)

= { reciprocal, def. range }
({80 x* 54); m)>

= { equation (6.24) }
({50 x* S1}; 705 50)”

< { domain calculus }

So™

Power Allegories 97

6.4.7.2 Lemma In a topos, the coproduct functor preserves strict left—division.

Proof Let £ be a topos. Recall that the coproduct of £ is also a coproduct of
Rel(€) (par. 6.1.18). It is therefore not necessary to write (+*) instead of (+).
Furthermore, Lo say that

(So+ 51\ (Ho+ B1) = (So\\Bo)+(S1\\ 1)

is to say that

;3 (So+ S)N (B + R1) = (Sa\\Ro) i

The latter equation is proved as follows:

Il

1 (So+ 81)\\ (Fo + Ri)

{ def. strict left-division (eq. 6.19) }
u; (So+ 5107 (So+ S1)\(Ro + fr)

{ relators preserve range {prop. 5.4.7) }
0 (Se” + 517} (So + Si\(flo + Fu)

{ & natural }
505415 (So+ SN (fo + Ry)

{ division calculus (prop. 6.4.2) }
5075 ((So+ $1) 5 0®)\(Ho + B1)

{ &° natural }
So> 1 (0”5 So\(Ho + 1)

{ division calculus }
$o” ;5 So\{e1 5 (Ho + 1))

{ def. strict left-division }
Sa W (er i (Ao + fil))

{ ¢ natural }
So W\ (Hosu)

{ ¢y monic, strict left-division (eq. 6.22) }
So\\Ha 7 0

98 Toposes

6.5 Existential Image

The existential image functor 3: £ — £ is a relator, We already mentioned this fact
for the special case of sets and total functions, but so far the proof was omitted.
That proof is given below; it turns out to be a simple applicalion of the modular
law. We then proceed to explore further algebraic properties of 3 in the calculus of
relations.

Given the fundamental importance of 3 in the definition of a topos, it is not
surprising that its extension also plays a leading role. For example, the coplainrnent
relation

da= 2a4/32: PA— PA

is a natural transformation from 3 to I*. Using this fact, it can be shown that
TR = (ca\(R;€8)) N ((24:R)/28B),

which means that 3*R is precisely the Egli-Milner ordering [rom programming
language semantics.

8.5.1 Proposition Let £ be a topos. The existential image functor 3: £ — £ Is
a refator.

Proof That 3 preserves epics is clear: if e is an epic, then Je is a split epic with
left-inverse Je®.

A weak pullback is like a pullback, except that the mediating arrow is mot
required to be unigue. Note any lwo weak pullbacks factor through each other.
T herefore, to show that 3 preserves pullbacks up to image, it suffices to show that
3 : £— & preserves weak pullbacks. Since 3 : Rel(£)— £ is right adjoint, it preserves
weak pullbacks. It remains to show that the graph functor £ — Rel(£) preserves
weak pullbacks. Again, because any two weak pullbacks factor through each other,
one only needs to prove that a pullback in € is a weak pullback in Rel(£). Let the
{ollowing be a pullback square in £:

PR
P lg
[e—

Let R and § be relations in Rel(£) such that R; f = 5;¢. Define
T = Rp° 0 S

Existentlial Image 99

We aim to show that

commutes. As an immediate consequence of the modular law, we have that
Tip = RN Sy"p.
Using this equation, we calculate:
R=T;p

= { above, N greatest lower bound }
RCS;¢°5p

@ { (p.q) pullback of (f,g} }
RCS;g:f°

& { fmap)
R, fCS:y9

=3 { assumption }
true

By symmetry, we also have S=T; q.

6.5.2 Proposition LetT: A— B. IFT°;T = B, then

T;€a C €,:3T.

Proof

T;,ep C €,4;3T

100 Toposes
& { reciprocal }
35;T° C (3T)°:3a

& | 3:3-Rel(€) }
AT°;34 C (3T); 34

< { monotonicity }
AT ¢ (37T

& { 3T map }
qT°;3T < PB

& { inclusion of maps }

3T°;3T = PB

& { 3 faithful fnnctor }
T°,T =D

8.5.3 Proposition Let R: A— B. If R is entire,

FR;3g = 34, R.

Proof
FR:i5m

{ let (&, h} be a tabulation of R }
(3c)";34; 38

{ 3:39Rel(E) }
(3e)*313¢5h

I

{ see below }
24:e%h

{ {e, %) tabulation of R }
Sa R

il

In the penultimate step, it was claimed that

(3e)° ;3¢ = daze.

Existential Image 101

By the properties of reciprocal, this is equivalent to
€gide = e;€,4.

We aim to prove the latter identity by mutual inclusion. The containment (D) is
immediate from par. 6.5.2, since R entire implies ¢ caver (par. 5.2.5). The inclusion
{C) follows from the fact that e is entire:

€¢;Je C e;€4

< { 3¢ map }
€c C e;€4;(3e)

& { 3:3—Rel(£), reciprocal }
€c C e;e';€¢

4 { eecntire }

true

6.5.4 Hecall the containment relation J4: PA— PA
Jda = 34/34,

which we briefly discussed in paragraph 6.4.5. From the properties of right-division,
it follows that containment is reflexive and transitive:

A Cdy and (Jy;34) C Ja
That containment is also anti-symmetric is expressed by one of the power allegory

AXI0mS:
(24/34) N (34/34)° C PA.

6.5.5 Theorem Containment is a natural transformation J: 3 -3,

Proof Below we give the main argument; various details are proved in the lemmas
that follow this theorem. Let (&, k) : C+—-(A x B) be a tabulation of R: A — B.

JR;Js

= { 3 functor }
34°;3%; 35

102 Toposes

= { lemmas 6.5.5.1 and 6.5.5.2 }
34°;Jz; 3k

= { lemma6.5.53 }
T4 (3h)°; 3%

= { def (-)' }
Ja ;TR

6.5.5.1 Lemma
JR;3p D sz 3R

Proof
J.3;3R ¢ 3R;3p

& { def. 3, division calculus (prop. 6.4.2) }
J4;3R C (3R;38)/28

< { right-division }
Ja:3R;3p C IR;38

< { 2:3—=Rel&) }
Jas34; R C 340

o { division calculus (2;3 = 3) }

true

6.5.5.2 Lemma
Ik;3p € Ja;3h

Proof Let {f,g) be a tabulation of 34 ; Jp. Define
z = A(f;34aNg;38:k).
We have
3hids

Existential Image 103

{ {f,g) tabulation }
fig
C { z entire }
fiz:2%5g

C { see below }
Ja;3k

In the last step of this calculation, it was claimed that
fooz C 34 and 2°;9 C 3h.

We deal with each of these proof obligations in tnrn. The first claim is equivalent
to

Jei2;324C o4

by definition of 3. This last inclusion can be proved as follows:

IPizi34

{ def. z, power adjunction }
(34N gi3p,47)

< { monotonicity }

Joifi3a
C { fsimple }
3a
To prove the second claim,
g C 34,
one may reason
2°;9 C 3k
© { zmap}
gCz;3h
=3 { inclusion of maps }

g==z;3h

104 Toposes

6.5.5.3 Lemma

Proof

{ def. z, power adjunction }
9:35 = (f3324Ng;3p;:h°);h
{ h map, modular law }
9:38 = fida;hNg;38
{ N greatest lower bound }
9:98 C f;da3h
{ f map }
f7i9:38 C 345k
{ right—division }
foig € (34:8)/38
{3:3Rel(£) }
I°:9 C (3k;38)/38

[H]

{ divisien calculus (prop. 6.4.2), def.
fig € 3k s

{ {f, g} tabulation of 34 ;g }

true

a0, = Jde: (3R

3k

{ def. 3, division calculus (6.4.2) }
(3h°;24)/24

{ 5:3-Rellf))
(35 4%)/34

{ division calculus }
28/(343h)

I

it

Exisiential Image 105

{ 3:3—RelE) }
38/(3h;38)

{ division calculus, def. 1 }
da;(3h)°

1

8.58 Let R: A — B be a relation in Rel{£). There are three obvious ways of
extending A to power objects:

SR = €a\(H;¢€s) (6.25)
HR = (34;R)/3s (6.26)
MR = SRNHR. (6.27)

These extensions of R are named the Smyth, Hoare, and Egli-Milner extension of
R, respectively. It Iollows from the properties of division that the Hoare extension
could also be defined as follows:

BR = 3R;Js. (6.28)

In fact, a similar characterisation could be given for the Smyth extension, for there
is a simple relationship between the two:

SR = (HR°)". (6.29)

6.5.7 Proposition Forall R: A— B,
3R = MR.

Proof To show that 3*# C MR, one may reason as follows:
MR

= {def. M)
HRNSR

{ equations (6.28) and {6.23) }
(3R;3Js) N (AR*;2,)°

= { theorem 6.3.5 }
(Da:FR) N (D ;R

106 Toposes
3 { 3 iz reflexive }
RN (I*R°Y

= { (-)° involution }

IR

The proof of the reverse containment,
TRCMR,

is very similar to the proof of lemma 6.5.5.3, and will be omitted.

6.5.8 Proposition A relation R is entire F 3R C I*R.

Proof By proposition 6.5.7, it suffices to show that
JRCHR and 3R CSR

iff R is entire. Note that 3R C HR is always true, since HR = 3R ; Jg, and Dp
18 reflexive. Furthermore,

3R C SR

< { def. Smyth extension }
€4;3RC R €q

= { (3R) map }
€aC R;€p;(3RY

« { reciprocal, 3 : 3 —Rel(£) }
EsC R R ;€4

& {en{hi=4)
ACR;R

7 Representing Partial Relations

It is a celebrated result of Lawvere and Tierney tbat a topos is coreflective in its
category of simple relations. This chapter reports on an attempt to achieve a simijar
result for arbitrary relations. That is, it seeks to show that every relation in a topos
can be made entire in some canonical way. Unfortunately, my attempt has been
unsuccesful, and I only succeeded in establishing the desired theorem for Boolean
toposes. Hopefully, the applications that, are described in later chapters will provide
an incenlive for others to find a more satisfactory solution.

This chapter starts off by reviewing the theorem of Lawvere and Tierney ahout
simple relations. It is ther shown how their notion of a simple-relation classi-
fier can be generalised to the concept of a refalion fotaliser. Every topos has a
simple-relation classifier, hut not every topos has a relation totaliser. We consider
a particular counter-example, namely the topos of commuting squares, in some
detail. It is then proved that every Boolean topos does have a relation totaliser,
and we record some algebraic properties of relation tatalisers for later use.

7.1 Simple—Relation Classifiers

7.1.1 In Set, there exists an obvious way of making a partial function entire,
namely by adding an extra element to its target. Let us briefly review that con-
struction before presenting its generalisation to an arbitrary topos. Consider a
partial function £ : A~ B, The aim is to turn £ into a total functiou F : A~ EB.
The set £ B is the collection of all subsets of B that have at most one element:

EB = ({8} |be B} U {8).

There exists an obvious injection fp : B+— EB which maps every element of B to
a singleton set. The function ¥ : A -+ EB can be defined as follows:

Fa — { {Flej} if a(<F)a

otherwise .
It is characterised among other functions A — £ B by the property that
Finy = F
in the category of zelations Rel(£).

107

108 Representing Partial Relations

7.1.2 Consider the category of relations over a regular category £. A simple-
relation classifier is a collection of monic maps

ni Ar—FEA

which satisfies the following universal properiy: for every simple relation F: A— B
there exists a unique map

F:A-EB
such that

Fing = F.

For any regular category £, the simple relations form a subcategory of Rel(£),
which we shall denote by Simple(£). If £ has simple-relation classifier 5, the em-
bedding of £ into Simple(£) has a right adjoint, and the unit of that adjunction is
n. The night adjoint is given by

EF = (naiF) .

7.1.3 Theorem (Lawvere Tierney see e.g. [56], pp. 28-29) A topos has a
stmple-telation classifier.

Proof Although the proof of this theorem is well-known, T cannol resist showing
you my own proof, which makes use of Lhe calculus of relations. Consider the

tahulatmn Of PB “{]E say

Let F be a simple relation. We wish to show the existence of a map F such that

EB+B . pp
d %
B

commutes. Note that such a map F is necessarily unique, as tg is monic. Further-
more, its existence is equivalent to the containment

A°F3AF C PBNA{-);

Simple-Relation Classifiers 109

< { AF map, N greatest lower bound }
AF © AF ALY

< { let {d,f) be a tabulation of F, power adjunction }
3 f C Ald:f)i (-

{d {}5maps }
Fillg=diA(; f)

« { power adjunction, d monic }
true

This proves the existence of £. Define ng = B. Then np is monic because {-] is
monic. To show that 7 is a simple-relation classifier, it remains to prove that

Fiip=AF i Fip4y=F.
By the existence of the power adjunction, it suffices to show that
78 = Eg;ip .
We first prove the inclusion (C):

ms C €a;ip

& { reciprocal, ng map }
"e;ig;dp DB

= { power adjunction }
mpite={-}g

& {def pg }
true

For the other containment,
78 2 €p5;in

first observe that 7g;i5 = {-}5 implies 5g = {-}5 ; i} because ig is monic. Using
this fact, we reason:

€aiiyg C 7@

110 Representing Partial Relations

& { fact above }
€piiy C {-lgith

¢« { igmap }
€g3igiin C {-}p

= { def. ip }
€ni(Al-}5) € {p

& { power adjunction }
true

7.1.4 It follows that for any topos, we have au adjunction
(G, E,qn°) : €— Simple(€) .

This adjunction is in fact a restriciion of the power adjunction. For consider a
simple relation F' : A— B. By the construction in the preceding proof, the following
diagram commutes:

PASp~PB

In words, this means that F is a subfunctor of 3. It will be usefu] to bear in mind
that 3 and E are similar: many of the algebraic properties of 3 are shared by £.

7.2 Relation Totalisers

o the previous section, it was shown how every simple relation in a topos can be
made entire. Does that construction generalise Lo relations? It certainly does in
Set. Given 1: A— B, ove may construct an entire relation fi : A— EB by defining

R = {(a{8})|a(m)) v
{(a,0) | ~(a(<R)a)} .

This copstruction is a true generalisation of the simple-relation classifier, for il R is
simple £ = R. This suggests that we could define R by the same universal property

Relation Totalisers 111

we used for simple relations. Unfortunately, however, there may be many relations
S that satisfy

Sinp = R, (7.1)
for S could map all elements of A to B, even those which are in the domain of R.
‘We need an additional condition, which says that if a is in the domain of &, the
statement a(S)b implies a(R ; ng)b. This condition is expressed by the following

containment:
<R;85 C Riyns . (7.2)

7-2.1 Consider the category of relations over a regular category. A relation to-
taliser is a collection of monic maps

Ta A+—FEA

which satisfies the following universal property: for every relation B: A— B there
exists precisely one entire relation

R:A-EB
such that i _
R;ng = R and <R;R C R;ins.
Note that any two relation totalisers are isomorplic. Furthermore, if a category

has both a simple-relation classifier (5,%) and a relation totaliser (¢r,~), the simple-
relation classifier is also a relation totaliser: given R : A — B, the entire relation

£ : A— EB can be constructed as

We may conclude that if both exist, a simple-relatiou classifier and a relation
totaliser are isomorphic.

7.2.2 Not every topos has a relation totaliser. As a counter-example, consider
the category of commuting squares Sed™, which is defined as follows.

- The objects are arrows of Set.

— The arrows are pairs of arrows in Set. That is, if

is a commuting square in Set,
{fv g) th—ok

is an arrow of Set™.

~ Composition is defined componentwise:
(f9);m.lh=(fim,g:0).

- ldentity arrows tn Set™ are pairs of identity arrows in Sef.

The category of commuting squares is a topos. A detailed discussion of ithis fact
may be found in the book by Goldblatt [46], pp. 86 - 88. The simplerelation
classifier of Set™ is given by the following diagram, which depicts ils component at

k:

A Y7448 E(A+B)
k E[k, B)
B -0——,;,5——-EB

where » is tbe simple-relation classifier of Set.

The category of relations over Sef™ may be destribed as the category of semi-
commutative squares:

- The objects ate arrows of Set.

— The arrows are pairs of arrows in Rel{Set). That is, if the diagram

semi—commutes, the pajr

(R,S): h— k

is an arrow in Rel(Set™).

Relation Totalisers 113

- Composition is defined componentwise.

It can be shown that <(&,S) = (<R,<S). In particular, a relation (R, S) in
Rel(Set™) is entire if and only if R and S are entire.

The simple-relation classifier of Set™ is not a relation tolaliser. For consider
the arrow between identities

(R,8): {1} = {0,1}
in RelSet™), where
R=0 and $={(1,0},(1,1)} .

The obvious way of making this relation entire is

1y — L —- E({0a} + {01}
id 5 Elid, id]
- _ F
{1} —5— E(01)
where T' = §; 1 ; 5. However, one could also take

T = {(Ln(a(0))} -
In either case
(T,8:0); (cimn)’ = (R, S) and <(R,8)i(T,S;n)=(R,S);(uinm) .
It follows that the simple—relation classifier {¢; ; 7,7) is not a relation totaliser.

The conclusion of this counter-exampie is that not every topos has a relation
totaliser. So far we developed our results for arbitrary toposes, but now it will
be necessaty to impose further resirictions. In what follows, we shall focus on
Boolean toposes. In view of the applications in later chapters, this restriction is
not too severe. From a mathematical viewpoint, however, it is an unsatisfactory
step, and a possible alternative is discussed in chapter 10. At the time of writing,
it is unknown whether the existence of a relation totaliser implies that a topes is
Boolean.

7.2.3 A topos £ is said to be Boolean if for every object A, the family of subobjects
A¥ is a Boolean algebra. Equivalently, one could say that all homsets of Rel(E) are
Boolean algebras. That is, every relation R: A — B has a complernent K : A— B,
which is characterised by

RNR=0 and RUR=[Ax B)

{[A x B] is the maximum morphism A — B). This additional assumption makes it
possible to draw on some well-established results about classical relation algebras.
For instance, we can use the shunting rule

TCRUT & SNTCRH. (7.3)

Furthermore, using the shunting rule and the modular law, one can prove Schréder’s
ritle, which consists of the following two equivalences:

R:ScT & R;TCS & T;5°cH

(see e.g. Backhouse et al. [6]). Schroder’s rule plays an important réle in proving
properties of classical relation algebras [10, 80].

7.2.4 Proposition In a Booslean topos,
HqrA—=(A47)

i3 a relation totaliser, and forall R: A— B

Ro= RinUTER)iu

Proof Let R: A — B be a relation. By the construction of coproducts in Rel{€)
(par. 6.1.16), any morphism A —+ B + 7 is of the form

S UT;yq

for some 5: A— Band T : A— 7, Because the coproduct injections are disjoint
monics, the identity
(BsuUTin)in® = R

is equivalent to S = R. Lernma 7.2.4.1 says that the inclusion
SRy (R UTyw) C Ry

is equivalent to T < H; 5. According to lemma 7.2.4.2, the teverse containment
R;!p C T holds if and only if

“TRU<T = A.

Hence, if (R;e1 U Tji2) is entire, T' = R ; /5. Lemma 7.2.4.3 shows that { R;¢; UT;¢4)
is entire for T = H; '5.

Relation Totalisers 115

7.241 Lemma

TCR;.B Lo <R;(R;L1UT;LQ}CR;L1

Proof
Tch;lg

=S { complement }
R;'sCT

o { prop. 5.4.8 <(R;1g)=<R;'sand!y =10}
<R;8cT

e { <R symmetric, Schrider’s rule }
<R;TC@

& { injections are disjoint }
“H;TtaC Ry

& { U least upper bound }
R;uy U<R;T;e C Ry

& { ; distribules over U }
Ry (R UT;) C Riny

7.2.42 Lemma
SRU<T =4 & R;'gCT

Proof
R;'lpcCcT

< { prop. 54.8 }
R;.Bn!A Z T

< | shunting }
R:'lsUTol,

& { prop. 5.4.8 }
<Rl uU<T;ly=1,

< { ; distributes over U }
(FRU<T); la =4

& { prop. 54.8 }
<RUu<Tr=A

7.2.4.3 Lemma

<RU<(H;Ts) = A

Proof First note that H; g = K;!5: the containment (2) follows from Schroder’s
rule and the fact that !z is a map, and the reverse inclusion (C) is a consequence
of the shunting rule. The lemma can now be proved by a simple calculation:

<R U <(R N 'B)
= { above, prop. 54.8 }
<RU<R

= { domain distributes over union }

“(RUR)

{ complement }
<[Ax B)

{ maximum morphism is entire }

A

7.2.5 As an immediate consequence of the above construction, we obtain the
following monotonicity property of the (-)~ operator:

Propaosition Let £ be a Boolean topos. Suppose that <R = <5, Then
RCS & RcS.

One could also prove this lemma for any topos with a relation totaliser, but the
argument is unduly labarious.

Properties of Relation Totalisers 117

7.3 Properties of Relation Totalisers

The construction of a relation totaliser in a Boolean topos is not suitable for use in
calculational proofs. [n a sense, it introduces a case distinction between whether an
element is in the domain of a relation or not. Van Gasteren [95] argues convincingly
that such case analyses should he avoided if one is aiming for purely syntactic proofs.
Therelare, in this section, we shall develop a calculus which only depends on the
definition of a relation totaliser. Throughout this section, it is assumed that we are
working in a topos that has a relation totaliser.

7.3.1 The next proposition says that the requirement <R ; C R ;75 in the
definition of refation totaliser can be replaced by <(R°; R) C pa>. The latter is
easier to check in practice. In the sequel, we shall use the more practical definition
of relation totaliser without explicitly referring to this paragraph.

Proposition Suppose that 5;4° C H. Then

<R;SCR:h & <(5°:R)Ch>.

Proof We prove the equivalence by mutual implication. The forward implication
is a trivial application of the domain calculus (prop. 5.4.6). To prove the backward
implication, one may reason as follows:
<(S*;RYC K>
& { domain calculus (prop. 5.4.6} }
(<H:5)> C k>

= | pre—compose with <R; S }
<R;S5C<RH;S5;hk>

& { range of map }
<R;ScC<R;5:h%;h

= { assumption: §;4° C R }
SR;SCR;h

7.3.2 Proposition Let A-f. B-£.C. Suppose that R js entire, and
S(R°;R;5) C <5.
Then (R; Sy = R; 5.

Proof It is clear that R ; § is entire, and that
R;S;7% = R;5.

It remains to show

(RS RS < pe”.
Here is a proof:

<(R;5) ;1 R;S)

= { reciprocal }
(SR R;S)

C { assumption <(R"; R; 5} C <§)
(858

C { relation totaliser }

e’

7.3.3 Recall the similarity between the power adjunction and the adjunction be-
tween a topos and its category of simple relations

(G, E,q,n°) : £ — Simple(£) .
This adjunction defines a monad
{E, 0. En°)
in €. The proof of the next proposition makes use of the naturality of 5.
Proposition Let A2+ B_A.(C. Then

(Rik)~ = R:Eh.

Properties of Relation Totalisers 119

Praof That R ; Eh is entire is ohvious; furthermore
RiEhing = Ring;h = R;h.
The proof can now be completed as follows:

<((R; ER); R; h)

{ A entire, reciprocal }
<((ERY; H°; R)
€ { relation totaliser, domain calculus (prep. 5.4.6) }
<((ER) s n3)

- { range is domain of reciprocal }
(78 ; ER)>

= { 7 natural }
(hincy

€ { domain caleulus }
1>

7.3.4 Let F:D — & be a relator. In analogy with the cross—operator on F, one
may define a natural transformation F : (F o E) — (E o F):

FA = ((FTM)D)--

This patural transformation is called the smash on F. Intuitively, it takes a struc-
ture (say a tuple), and it returns that tnple if all its components are non-fictitious:

Fra iFa = NFa - (7.4)

However, if one of the components is fictitious, it returns the fictitious valne. The
term smash is inspired by the connection with smash products in programming
language semantics.

Proposition Let F: D — £ he a relator. Let R : A— B be arelation in D. Then

(F*R~ = F*R.Fs.

Proof That { £+ ;Fp) is entire is obvious. Also,
F*R;Fp;ny = F'Ri(Fis)° = F*(R;ns°) = F*R.
It remains to caleulate:
<(FR:Fs)" ; F'R)
= { reciprocal, F* functor }
<(Fp; F{(R°; B))
= { domain calculus (prop. 5.4.6) }
<(Fg; <(F(R; R)))
= { relators preserve domain {prop. 5.4.7) }
<(Fg; F<(B; R))
C { relaticn totaliser }
<(Fp: F*ngs”)
= { range of map, def. F* }
<(Fp;(Fna); Fra)
= { Fng entire, domain caleulus }
«(Fg;(Fna)")
= { range is domain of reciprocal }
(Fng; Fa)>
= { equation (7.4) }

nFE”

8 Maximisation in Preorders

Consider a set of finite sequences. Such a set may have multiple elements of mini-
mum length, for the length ordering on sequences is not anti-syminetric. We shall
write z(minlen Ja if a is an element of = of minimum length. The relation minlen
distributes over union in the following sense:

UJ; minlen = 3 minlen ; minlen .

Note that 3 minlen is a set-valued function which returns all minimum elements of
all components of its argument. Consequently, a computer prograrm that evaluates
the right-hand side of the ahove equation might be very time—consuming. This
contrasts with the situatiou where 3 ia replaced by 3*. The rclation 3*minlen
vields a stratified sample of the minimum elements, and here an implementation
just needs to return some minimum value for each component of the argument set.
But does the above equation still hold wheu 3 is replaced by 3*7 Iu this chapter,
we shall try to answer this question.

We start off by defining the notien of maximum elements in an arbitrary topos.
This definition is a generalisation of the relation minlen discussed above; we con-
sider maximum elements instead of minimum elements for technical reasons. It
turns cut that minlen does indeed distribute over uniou. Unfortunately, distribu-
tivity does not hold when 3 is replaced by 3. This problem will be remedied by
making use of relation totalisers. It is shown how one can make the maximum
element relation entire in such a way that the desired distributivity property holds.

A different kind of distributjvity arises in the following context. Write (:) for
the binary operator that places an element at the front of a list:

ap: a5, 82,...,8.) = |ag,01,03,...,a,] .

This operator is commonly known as cons. Furthermore, write (a:) for the operator
that places the element a at the front of a list. Cons distributes over minlen in the
following sense:

minlen ; (a1) = 3J(a); minlen .

Or perhaps it does not? What about the case when the set of sequences is empty?
These issues are addressed in the last section of this chapter. It is shown that
certain monotonicity conditions imply distrihutivity

121

8.1 Maximum Elements

8.1.1 Throughout this section, it is assumed that we are working in atopos £.
Let R: A— B be a relation. Define the upper bound relation of R by

Rl : PA-B
Rl = €4\R.

Translated into ordinary set theoretic notation, this definition reads as follows:
(A1) = VaeAd : e€ z = a(R)b. (8.1)
Note that left-division may be characterised in terms of the upper bound operator:
S\R = AS°;RT. (8.2)

The proof of this property is a simple application of the division calculus. It has
two consequences that will be useful in later calculations. The first shows how the
upper bonnd relation distributes over union:

U:Rl = (RD)T. (8.3)

The second corollary tells how an existential! image followed by an upper bound
yields another npper bound:

35 RT = (S\R)T. (8.4)

8.1.2 Let R: A — Ain Rel£). Define the maximum relation of A by

mazh : PA—- A

mazf = R N3,. (8.5)

This definition is in accordance with the usual set theoretic notion of maximum
elements: @ is a maximum element of z if it is an upper bound of = and it is an
element of . The properties of the upper bouund relation translate into facts about
the maximum relation. For example, it is immediate from equation (8.2) that

AS mezR = S\BEN S. (8.6)
In particnlar, we have the following instance of equation {8.4):

38 ;mazR = (5°\R)} N 34:;5. (8.7)

Maximum Elements 123

8.1.3 Before we can continue our exploration of the properties of maz R, it will be
necessary to settle some terminology. A relation R : A— A is said to be transitive
if R;R C R 1t is called reflexive if A C R. A relatiou that is both reflexive
and lransitive is said o be a preotder. Preorders frequently arise in optimisation
problems. A typical example is the length preorder on finite sequences, which is
defined as foliows:
Siem = length ; (<) ; length® .

Here length is the function that returns the length of a sequence, and {<) is the
standard order on natural numbers, The relation minler that we discussed in the
introduction to this chapter is given by mar(>.,).

Arelation R : A— Ais called anti-symmetricif R°*NR = A. An anti-symmetric
preorder is said to be a partial order. The standard order on natnral numbers is
anti-symmetric, but the length preorder on lists is not.

Finally, a relation A : A — A is said to be well-bounded if
<34 C <(mazR) .

(The reverse inclusion <(mazh) C <34 is always salisfied.) While preorders
and partial orders can he defined in any regular category, the definition of well-
boundedress makes essential use of the topos structure. The reciprocal of the length
preorder on sequences is well-bounded: every non-empty set of seqnences contains
a gequence of minimum length.

8.1.4 Proposition Let R: 4 + A be a reflexive relation. Then

maz®R;mazR = RN A .

Therelore, (maz R) is simple iff R is anti-symmetric,

Proofl We aim to prove the above identity by mutual inclusion. The containment
(<) fellows by unfolding the definitions:

maz*f;mazl C €4;RT C R.

Taking the reciprocal on both sides of this inequation, one also obtains that maz° R;
maz R C R°. Therefore, one may conclude that

maz’R;mazR C RNR".

To prove the reverse inclusion, let (k,k) be a tabulation of B M R°, and define
z = A(h U k). One may reason as follows:

ANRAR® = h°:k C K°;2;2°;k C maz"R;marR .

Only the last step of this calculation needs a proof. Since h and & are symmetrical,
it suffices to show that
i kCmaezR.

Here is a proof:
i kC maz R
< { zmap }
kC z:mar R

“ { def. z, maximum (eq. 8.6) }
kC (RPUEFNRN(RUK)

g { N greatest lower bound , U upper bound }
k C (h°Uk\R

< { left—division }
(hPLEK);kC R

< { modular law }
ikUACR

<> { Uleast upper bound }
R°:k C R and ACR

< { {(h,k) \abulation of RN A°, R reflexive }
true

8.1.5 Suppose we want to determine the length of a shortest element of a set of
sequences. There are two ways of performing this task. In the first approach, one
takes the problemn statement literally: first find a shortest sequence, and then com-
pute its length. In the second approach, one computes the length of all sequences
m the set, and then takes its minimmum. The next proposition shows that both
methods produce the same result:

Proposition Let B2 A-Ee A Then

mez(k; R; k%) ; k = 3k; mazR .

Maximum Elements 125

Prool
3k;maz R

= { maximum (eq. 8.7) }
(K°\R)T N 255k

= { division calculus (prop. 6.4.2) }
(k; R)T N o3p;3k

= { modular law }

((k; R)T:&° 0 38) 5k

= { def. upper bound (eq. 8.1), division calculus }
((k; B k%) 0 3p6) 5k

= { def. maximum }

maz(k; R; k%) ; k

8.1.6 When we defined the concept of well-houndedness, we noted that the re-
ciprocal of the length preorder on lists is well-bouuded. Not surprisingly, this fact
generalises to arbitrary preorders of the form (k; R; k°), where R is well-bounded.

Proposition Let B—%+-A-—f. A, If R is a well-bounded preorder,
ki Rk

i a well-bounded preorder as well,

Proof That (k; R;%°) is a preorder is evident. That it is also well-hounded may
be proved as follows:

(maz(k; R;E°))

{ k entire, domain calculus (prop. 5.4.6) }
<(maz(k; R; k%) ; k)

{ prop. 815 }
<(3k; mazR)

{ R well-bounded, domain calculus }
“(3k:34)

It

{ 3:3—Rell€) }
“{(3p,; k)

{ & enlire, domain calculus }

<3B

8.1.7 Consider a collection of sets of sequences. To find a shortest sequence of all
the components, one can first take the union, and then find a shortest sequence.
Alternatively, one might take all shortest elements of each component set, and then
select a shortest from those candidates. The next thearem is a precise statement
of this fact. Note that the theorem is only applicable to relations that are well-
bounded and transitive.

Theorem Let H: A — A be well-bounded and transitive. Then

Ja;mazR = JmazR;mazlR.

Proof
Ugs; mazh

= { maximum (eq. 8.7), U, = 334 }
(3R N(3p4;24)

= { def. upper bound (eq. 8.1) }
(RDTN(2p4;34)

= { dei. upper bound }
(ErA\(RT))N(3pa;24)

= { division calculus (prop. 6.4.2) }
(pa\(ATY) N (Dpa; (RTN34))

= { defs. upper bound and maximum }
(AT)T N (3pa ; mazR}

= { lemma8.1.71}
(ImaezR; RT)N{2p4; maz A)

Maximum Elements 127

{ 3:3—RelE) }
(Amazf; R} (ImacR; 34)

{ Imaz R simple }
Amaz R (RT N 34)

{ def. maximum }

JmazR; marR

8.1.71 Lemma Lef R: A — A be transitive and well-bounded. Then

JmaerR; RT = (RI)T.

Proof
Imar R RT

{ upper bound (eq. 8.4) }
((maz® R\R)T

{ below }
(BRD1

In thelast step, it was claimed that
RT = (maz°R)\R .
We aim to prove this identity by mutual containment. First observe that
R C (maz*R)\R
< { def. upper bound }
€4\R C (maz°R)\R
+<= { (-)\R anti-monotonic }
(maz®R) C €4

« { def. maximum }

true

To prove the other containment, note that it is equivalent to
€q;(mer*R\R C I,

by definition of upper bound and left-division. The proof can be completed as
followas:

€a; (maz®RI\R

{ A well-bounded }
Ex: <(mazR); (mar*R\R

= { del. strict lefi-division (par. 6.4.6) }
€a;(mar®R)\ R

C { strict left-division (eq. 6.21) }
ca;mazR; R

C { def. maximum }
€aRT;H

< { def. upper bound }
R R

N

{ R trapsitive }
R

8.2 Selectors

The theorem which says that | J; maz B = 3maz R ; maz R is unsalisfactory in the
following sense. What we would really like to prove is this: to select some optimal
element from the union of a collection of sets, it suffices 10 select some optimal
element from each component set, and then select some optimal element from that
set of candidates. In contrast, the above Ltheorem says that we should find all
optimal elements of each component set.

8.2.1 A relation 7'; PA— Ais said to be a selector if

Ua; T=FT;T and {-},:T=A.

Selectors 129

The first requiremnent states the property that we discussed in the preceding para-
graph. The second requirement says that if you select an element from a singleton
set, there is only one choice, namely the single element.

The maximum relation is not a selector, because the empty set does not have a
maximum element. Consequently, the inclusion

Uas;mazR C F*mazR;mazR

does not hold. This problem might be solved on an ad hoc basis, by introducing a
fictitions value that is smaller than all other values (—oc). The maximum element
of the empty set is then defined to be —oo. Using relation totalisers, the trick of
introducing —oo can be presented in systematic way. Throughout this section, it
is assumed that we are working in a Boolean topos.

8.2.2 Let R: A— A be arelation. Define the selector of R by

selR . PEA— FEA

selR = qAn5;mazR . 8.8)

This definition is inspired by the informal considerations sketched above: selR
maps its argument set to a maximum element. If such a maximum element does
not exist, it returns a fictitious value, which plays the réle of minus iufinity (—o0).

8.2.3 The next theorem states the anticipated result, namely that selR is a se-
lector. The proof of the theorem is unduly complicated and lengthy. However, as
it seems awkward to verify this theorem in ordinary set theory, T was glad to find
a proof at all. Hopefully, if the theorem turns out to be useful in practice, others
will find more elegant ways of presenting its proof.

Theorem Suppose that R is a well-bounded preorder. Then (sel R) is a selector.

Proof We shall present the proof in a sequence of five lemmas. Lemma 8.2.3.1
shows that
{-}gaiselR = EA.

Lemma §.2.3.2 says that
Uga; selR = JselR;selR.

Together with the fact that selR is entire and proposition 6.5.8, this yields the
containment
Uga;selR C T'selR;sell .

The reverse containment follows from lemmas §.2.3.2 and 8.2.3.5.

8.2.3.1 Lemma If R is reflexive, then

{-}ga;5eiR = EA.

Praoof

{-}ga;Ani; mazh

= { power adjunction }
AnS;marR

= { An} map, relation totaliser {prop. 7.3.2) }
{(Any ; maz R)~

= { maximum (eq. 8.6) }
({na\f) N ag)”

= { see below }

Y

74

= { relation totaliser }
EA

Here is a proof of the penultimate step:

2\, = 73

+ { N greatest lower bound }
72 C 1a\R

L { left division }
naiqy C R

] { 7.4 monic }
ACH

& { A reflexive }
true

Selectors 131

8.2.3.2 The algebraic properties of selR are very similar to those of mazR. In
paragraph 8.1.7, it was shown that

Ua;mazR = ImazR;mazh

provided R is well-bounded and transitive. The next lemma says that this property
is shared hy selR.

Lemma Suppose that R is well-bounded and transitive. Then

Uga;sefR = JselR;selR .

Prool

Isel R selR

= { def. selector of R (eq. 8.8) }
JselR ;375 ; mazR
= { 3 functor }
I(selR;n3); mazR
= { def. selector of R }
(3% i mazR;ny) ; maz R
= { relation totaliser }
3(3n5 ; maz R) ; mazR
= { 3 functor }
3394 ;AmoazR; maz B
= { 3 mazR map, relation totaliser (prop. 7.3.2) }
33%%; (ImazR; maz R
= { theorem 8.1.7 }
33735 (Ua; mazR)
= { U4 map, relation totaliser {prop. 7.3.2) }
I3ng ;Us s mazh

= {U:303-3)
Uga;3ns; fmazh

132 Maximisation in Preorders

= { def. selector of B }
Uga;9elR

8.2.3.3 The next lemma is a technical result Lhat we shall necd below. It makes
use of the Smyth and Hoare extensions of a relation £ : A — B, which were
introduced in paragraph 6.5.6.

YLemma Let T : A— B. Then
37375305 C 3sNS(T° 7).

Praoof
(A7) ;3T ;30

0

{ proposition 6.5.7 }

(3T)°; HT ; 205

= { Hoare extension (eg. 6.28) }
(37)°;3T; 2ea; 273

< { weak nalurality of 3 (lemma 6.5.5.1) }
EFPREVEEL ="

= { 3 functor }
@ATY ;3T 78): s

= { relation totaliser }

(37) ;3738

C { 3T simple }
-p

It now remains to show that
@Ty;3 T30y © S(T°;T),
or equivalently (by definition of the Smyth extension)

EB;(BT)“;EI‘T;EI?]% Cc I*;T:ep.

Selectors 133

Here is a proof of the latter eontainment:
€p; (3T) ;3T 3}
{ reciprocal, 3 : 3—~fel(f) }
T°;€4; 3T 308
< { proposition 6.5.7 }
T°;€4:5T 3%

< { def. Smyth extension }
T°;T;€55:303

= { domain calculus (prop. 5.4.6) }
T*:<T;T;€pn; A5

C { relation totaliser }
T°:Tinp;€ep;3NG

= { reciprocal, 3 : 3—Rel(E) }
T, T €p5(303)" 303

C {3 simple }
T°;T;€xp

8.2.34 Let z be a subset of A. Suppose that you have a subset y of z such that
for each a m z there exists an element b in y which is above a:

Yecz:Jbey:a(A).

Then a maximum element of ¥ is also a maximum element of 2. The lemma below
i3 a formal statement of this fact.

Lemma If R: A — A s transitive,

(Z4NSRY;mazR C mazhl.

Proof By definition of maz i, it suffices to show

(JaNSR); mazR C 34

and
(24NSAH); mazR C RT.

Here is a proof of the first containment:
(J4NSA); mazR
C | monotonicity }
Ja;mazh

= { del. maximum {eq. 8.5) }
Jdas(RTN3,)

C { monotonicity }
Ja;3a

= { division calculus }

E

The other containment,
(JanSR);mazR C RT

18 equivalent to
Eq;(JaNSR); mezR C R,

by definition of (-} and left-division.
€4;(J4NSR); mazR

C { monotonicity }
Ga;SH; mozR

€ { def. Smyth extension (eq. 6.25) }
R;€,;mazR

C { def. maximum }
Ries; AT

C { def. upper bound }
H: R

C { R transitive }
R

Selectors 135

8.2.3.5 The next lemma completes the proof that selR is a selector. It is worth-
while to observe that unlike the preceding lemmas, this result makes use of all
propetties of R: reflexivity, transitivity, and well-boundedness.

Lemma Suppose that R: A — A Is a well-bounded preorder. Then
J*selR ;selR C JselR;selR .

Proaof
I selR;selR C JselR;selR
& { def. selector of R {eq. 8.8) }
J*selfl; A% maz R C JselR ;39 maz K
& { claim (8.9) below, J selR and 373 maps, prop. 7.3.2 }
(3*selR; 355 ; mazRY C (IselR; A0 ; maz R)

& { claim {8.10} below, prop. 7.2.5 }
J*selR;3n5 s mezR C Jsell; 355 ; mazR

& | def. selector of R [eq. 8.8), 3 functor, relation totaliser }
3395 ;T maxf; A, ;mezR C 339, ;ImazR; mazR

< { 54 monic }
J*mazll; 3In% ; mezR C ImazR; mazh

< { ImazA map }
(Amez R)° ;3* maz R ;375 ; mezR C mazR

<= {lemma8233}
(34 N S(mez°R; mazR)) ; mazR C mazR

< { Smyth extension is monotonic, prop. 8.1.4 }
(24 N SR) ; mazR C mazR

= { lemma 8.2.3.4 }

true

There are still two claims to be checked:

<((F*selR)°; F*'selR Ay s mezR) C <(Ig5; maz R) (8.9)

136 Maximisation in Preorders

and
<(FrselR;3An5 ;mazR) = <(FselR;qn%; mazR) . (8.10)

We shall only preve claim (8.9); the proof of (8.10) is similar.
<((FselR)°; TselR;AnY ; maz R}

{ R well-bounded, domain calculus (5.4.6) }
<((T*selR)"; T'selR;A05 1 234)

= { 3 HHRSI(S) }
<((3*selR)° ; T selR;3pa 3 03)

i

= { 3* reciprocal-preserving functor }
<{(I*(sel°R; selR) ; 3841 0%)
= { (5eI°R; selR) entire by 8.2.3.1, proposition 6.5.3]
<(9pa;sel’R; 3elR ;0%)
= { def. selector of R, relation totaliser }
dg4; (mazR)”; (39%)° ;305 ; maz R)
C { 355 simple }
<(2ga; (mazR)’ ; mazR)
= { domain calculus }
<(2ga; (mazR)°; <(mazR))
= { coreflexive implies symmetric }
<(3pa; (<(mazR); mazR)")
= { relation totaliser }
<(3pa;(mazf;n4)°)
= { reciprocal }
<(3ga;ny; mez’R)
C { domain calculus }
<(3Eain0)
= { 3:30Rel(E) }
“(373:24)
{ R well-bounded, domain caleulus }
<(39%; mazR)

Il

Monotonicity implies Distributivity 137

This completes the proof of the lemma, and therefore the prool of theorem 8.2.3.

8.3 Monotonicity implies Distributivity

The function that returns the minimum of a set of natural numbers can be defined
as the selector of =. Indeed, since > is a partial order, maz(>) is a simple relation.
Because the relation Lotaliser is also a simple-relation classifier, mraz(>) is a total
function, and therefore sel(>) is a tolal function as well. In fact, sel(>) is just the
function M that returns the minimum of a set of natural numbers; the minimum
of the empty set is the ficlitious value infinity. The function Il distributes over
addition in the [ollowing sense:

Mia+b|laez,bey} = Nz + Ny.

This distributivity property is satisfied hecause addition js monotonic with respect
to >. In this section, we shall investigate in what sense monotonicity implies
distributivity. As hefore, we start with maximum elements (maz R), and we consider
(selR) later.

8.3.1 Proposition Let £ be a topos, and let F be a polynomial endofunctor on
E. Leth: FA — A be a functional F-algebra, and let R be an endorefation on A.
Finally, let|?] be (<), (2) or (=). If k is monotonic with respect to R,

At _pa
R FR
A——FA

then h distributes over (maz R):

PFA Fi, FPA F*mazR FA

3k FA

PA —R A s FA

Proof The proof is presented in a top-down fashion: here we give the main
calculation, and the two lernmas that are used in this calculation are proved later.

Fty ;34 mazR

= { lemma 8.3.1.1 below }
(Freal\(h: R) D {F*34:h)

= { modular identity }
(({F*ea\(h R); R°) N F*3,) 5 h

= { division calculus (prop. 6.4.2) }
((Fre\(h R R°) 0 F*34) 1 A

{ assumption, (F*€4)\(-) monotonic }
((Fre \F*R 0 F*3,) ; h

= { lemma 8.3.1.2 below, def. maximnm }
FrmarR; h

8.3.1.1 The nexd lemma shows how the composite Ft,; 34 ; mar R can be ex-
pressed in terms of more primitive operators.

Lemma
Fi,:3h;mazR = (Fe\(h; B) 0 (F*3,;h)

Proof
Fi,;3h;mazR

{ Fi = AF*3, power adjunction }
A(F*34; k) mazR

{ maximum (eq. 8.6) }
(F'2a4; APAR N (F*3, k)

l

{ division caloulus {prop. 6.4.2) }
(Fred\(hi R) N (F*3,:4)

Monoloaicity implies Distributivity 139

8.3.1.2 In section 6.4.7, it was shown that polynomial functors preserve strict
left-division. The original motivation to prove that theorem was the following
resuli, whicb shows how polynomial functors can be distributed aver the definition
of maximum elements.

Lemma Let T and S be relations with the same source and target. K F is a
polynomial functor,

FT\S O T%) = FT\F*Sn FT°.

Proof
FT\S n T

{ F polynomial, props. 6.3.10 and 5.3.9 }
F{(T\&) n F1*°

{ see below }
F*T\F*S N FT°

To prove inclusion (C) in the last step, one may reason as follows
F<(T\S) c (F*T)\(F*5)

& { lefi-division }
FT; PXT\S) C F*S

& { F* functor }
F(T;(T\8) ¢ F*S
& { left-division, F* monotonic }

true

The converse inclusion,
FINF*S n F*T° C F(T\S),

is proved belaw:

FT\F*§ N F*T°

N

{ domalin calculus }
<(FT°); AT\F*S
= { def strict left-division (par. 6.4.6) }
FTR\F*5

= { F polynomial, prop. 6.4.7 }
FH(T\\5)

C { def. strict left-division, F* monotonic }
FHT\5)

8.3.2 In the preceding proposition, it was established that monotonicity implies
distributivity for the maximum relation of R. Not surprisingly, this resull carries
over 1o the selector of B. There are two significant differences, however. The first
is that the topas under consideration is Boolean — this is to ensure the existence
af a relation totaliser. The second difference is that the relation B should be well-
bonnded. This condition is used in the proofl given below; I am not sure whether
it could be eliminated.

Theorem Let £ be a Boolean topos, and let ¥ be a polynomial endofunctor
on £ Let h : FA— A be a functional F-algebra, and let R be a weli-bounded
endorelation on A. Finally, let be (C), (2) or (=). If h is monotonic with
respect to R,

h__pa
\F‘R
FA

he

R

A
then h distributes over (sel R):

PrEA-T1Es pppp FrselR ppg

A(F,; ER) F 4

PEA el E EA R EFA

Monotonicity implies Distribulivity 141

Proof The proof is split into three lemmas. The main argument is given below,
and then the lemmas are proved in detail.

Ftga;3(Fai ER); selR FrselR; Fa; ER
{ lemmas 8.3.2.1 and 8.3.2.2 below }

FAns; (Ftyi3h, mazR)” F3ny; (Frmaz R; h)
{ % monic }

(Fty;3h; maz Ry (F*maz R ; k)"
{ prop. 7.2.5, lemma 8.3.2.3 helow }

Fty;3hk; mazR F*mazR;h

{ prop. 8.3.1 }
hy R h° FR

8.3.21 In the first lemma, we aim to factor the operators of the relation totaliser
{n and (-)7) to the outside of the expression Ftgs;3(Fa; ER) ; selR. This goal
is motivated by a wish to eliminate these operators from our proof obligations

altogether.

Lemma

Proof

Figa :HFa ER);selR = FIny;(Fty;3k; maz RY

Figa;3(FPa; Eh); selR
{ def. selector of R)
Ftgai3(Fa; ER); 30y ; mazR
{ 3 functor }
Ftga;3(Fa; Ebing); mazR

{ def. F, relation totaliser }
Ftpa;A(F'ny i h); maxR

[}

{ 3 functor }
Ftgs ;330 mazR

{ Ft: Fo3d—JoF" (prop. 6.2.8) }
FIny:Fty;3h; maah

{ (Ft,3;3h) map, relation totaliser (prop. 7.3.2} }
Fady i (Fia;i3h; mezRy

8.3.2.2 The next lemma is motivated by the same observation as the preceding
result. Here the goal iz to factor the operators of the relation totaliser to the outside
of the expression F*selR;F4; Eh.

Lemma
FrselR; Fa; Eh = F3n%;{F*mazR kY

Proof

F*selR F4; Eh
= { def. selector of /2 }
F*(3n5;mazR); Fa,; Eh
= { F relator, 375 map }
F‘E}qi;F*rrTE'IR;TA i Eh
= { prop. 7.34 }
F3n5;(FrmezRY ; Eh

= { prop. 7.3.3 }
F3n8, (F*mazR; hY

8.3.2.3 To prove the equivalence

(Fta;3h; mazRY (F*mazR ;b)Y
<~
Fia:3h;mazR [2] FrmezR:h

Monotonicity implies Distributivity 143

it suffices (hy prop. 7.2.5) to show that both sides in the latter inequation have the
same domain. This is done in the following lemma.

Lemma Suppose that R is well-bounded. Then
S(Fty:3kh;maezR) = <(F*mazR:k).

Proof

<(Ft,;3h;mazR)

= { F{ = AF*3, power adjunction }
(A(F*3,; h); mazR)

= { R well-bounded, domain calculus (prop. 5.4.6) }
“(A(F*3414);34)

= { power adjunction }
(F*2a3h)

= { * entire, domain calculus }
(F2a)

= { relators preserve domain (prop. 5.4.7) }
Ft<3,

= { R well-bounded }
F*<(mazR)

= { relators preserve domain }

<(F*mazR)

= { h entire, domain calculus }
<(FrmazR; h)

8.3.3 The next proposition is often helpful in checking the applicability conditions
of the two preceding results. It is an immediate consequence of the definition of
inittal F-algebraa.

Proposition Let £ be a regular category, and let F : £ — £ be a relator that bas
initial algebra u(F). Furthermore, let h: FA— A be an F-algebra. Let|?] be (C),
(2) ar(=). Then

144 Maximisation in Preorders

A~—b_ra
R R
A——FA
implies
r EE) pp
S ‘F*S

T —
(#(F))"FT

where S = (A} ; A; (R])°.

8.3.4 Isit worthwhile to try and generalise the results of this chapter to arbitrary
toposes, perhaps by other means than relation totalisers? Typical applications
of the theorems presented here involve the notion of natural numbers: a shortest
sequence, a tree of minimum height, a coarsest partition. In all these applications,
one makes use of the standard partial order on patural numbers, which is defined
by
(z) = (+)°im.

In his thesis about Order and Recursion in Topoi, Broock has proved thal > is
well-bounded iff the topos under consideration is Boolean ([19], p. 156). It is
unlikely, therelore, that any interesting theory about oplimisation operators can be
developed in toposes which are not Boolean.

9 Dynamic Programming

In the computing literature, dynamic programming is often described as a class
of algorithms rather than of specifications. However, as most computing scientists
would agree, the specifications of dynamic programming algoritbms constitute a
class of problems that are essentially the same. We propose a precise definition of
this problem class by phrasing a generic specification in categorical terms. Using
the calculus of relations developed in the preceding chapters, it is shown how one
may derive an abstract algorithm from this specification.

The result is illustrated by considering a particular example (text formatting)
in some detail. It will be shown how the hasic theorem abont dynamic program-
ming can be applied by mechanically instantiating the abstract definitions. More
examples of dynamic programming can be found in the first part of this thesis.

Although the basic thecrem about dynamic programming is satisfactory [rom
a theoretical point of view, it is difficult to apply in practice. Motivated by this
observation, we simplify the basic theorem, using our earlier results about relation
totalisers. There is a small price to pay for the more practical result: we have to
assume that the topos under consideration is Boolean.

9.1 The Basic Theorem

9.1.1 Throughout this section, it is assumed that we are working in a topos £.
Let R: A— B be arelation in Rel£). The inverse image function of R is the power
transpose of its converse:

InvR = AR°: B PA.

In Set, the inverse image function of R may be characterised by the following set
cornprehension:

(InvR)b = {a]e(R)b}.

9.1.2 Let F : £ — £ be a relator that has initial F-algebra u(F) : FT —T.
Furthermore, let §: FB — B be a relational F*-algebra, and let & : FA -+ A be
an F-algebra. Finally, let M : PA —+ A be a relation. We shall study a relation K
in Ref£), defined by

K = mo(S)p. ;3 (h)p s M .

145

146 Dynamic Programming

We shall refer to this definition as the generic specification, because many dynamic
programming problems can be cast into this form.

9.1.3 It seems premalure to treat instances of the generic specification in full
detail now; we confine ourselves to giving an irinitive interpretation in Rel Set).
Full examples, along with concrete algorithms, will be discussed after we have
derived an abstract algorithm from the generic specification.

Tbe inverse homomorphism (/nv{S])} is typically used to generate a set of com-
hinatorial objects, like all permutations of a bag or all partitions of an integer.
The latter example is obtained by taking for (S]) the function sum that sums the
elemneuts of a list of positive integers. Given an integer (r > 0}, the expression
(fnv(sum)) n stands for the set of all lisls whose elernents add up to n.

Usually, one does uot care about the order of the elements in an integer partition,
aud therefore it is better to consider an integer partition as a bag rather than a
fist. This is a typical function of the existential image (3 ([&]); it turns every list
generated by the inverse homomorphism { nv((S)) into a bag.

Now suppose all partitions are assigned a cost, and we are interested in finding
a best partition of minimum cost. The selection of such an optimal element is
modelled by the relation M; it picks an element of minimum cost, possibly in a
nondeterministic fashion.

The goal is now to derive an ahstract algorithm from the generic specification
K = Inv[S);3(k); M.

The proofs that are involved in this derivation will be given in detail, to dermonstrate
how our calculus facilitates straightforward, almost meckanical proofs.

9.1.4 Lemma (Goguen [43]) Folds can be characterised as follows:

(T=(08D) & (T=(u(F):FT;5).

Proof

T =(5)
< { initiality of g(F) }
wlf); T = T8

The Basic Theorem 147

& { p{F) isomorphism (prop. 6.3.6) }
T = (u(F); FT:5

9.1.5 Lemma Lett be the composite

t = IS} 3(A].
Then t satisfies the lollowing equation:

t = InvS ; 3(Ft; Ftyi3h); Ua -

Proof

= { def. t}
Inv((S]) ;3 (A)
= { power adjunction }
A((SD"; QxD)
= { lemma 9.1.4 }
A(({u(F)) 5 F*(SD; S 5 (AD)
= { reciprocal }
A(S®; PSD 5 w(F) 5 (RD)
= { F-homomorphism }
A(S® 5 F(S)"; F(AD 5 4)
= { F relator }
A(S® 5 FHSY 5 (D) 5 &)

= { power adjunction, def. ¢ }

IS 3 (Ft; Fta;3h);Ua

148 Dynamic FProgramming

9.1.8 Theorem Consider the generic specification
K = Bo(S)r:3(KDp i M -
Suppose that
- the relation M : PA — A is a selector, and

— the map h distributes over M In the following sense

Fpa— "M p4
Ft, b
PFA—p— PA—— A

where i5(2), (€) or (=).
Then K satisfies

B Amvs ppp
K F(F K ; h)
A —— PA

Proof Let ¢ = Inv{5]);3 (%), as in lemma 9.1.5. Then
K

{ defs. K and ¢t }
M

1

= { lemma9.1.5 }
oS 3(FL; Py 3 kU0 M

= { M selector }
oS53 (Ft Fiy;3R); 3 M M

= { Jrelator }
InuS;F(Ft Fty; b M) M

Application: Text Formatting 149

{ k distributes over M }
InvS ;3 (Ft; F*M;;R); M

= { F relator, def. K }
e S ;3 (F*K; R} M

9.1.7 The preceding theorem is in line with traditional presentations of dynamic
programming when the conclusion

K = Ino§;3"(F*K;R); M

is given an operational interpretation. First, the argument is split in all possible
ways by (invS). The subproblems that have thus been generated are solved recur-
sively with (F*K), and the solutions to subproblems are composed into solutions
for the whole problem by A. Finally, M selects an optimal element from this set
of candidate solutions. This view of dynamic programming as a degenerate case of
the divide-and-conquer strategy is voiced by Sedgewick in [82] and can be found in
many other textbooks on algorithm design. Dynamic programming is degenerate
in that one considers all possible splittings in (fne S) rather than just one element
of (InrS), as one would do in a typical divide-and—conquer algorithm.

It should be stressed that the equation in theorem 9.1.6 is not necessarily an algo-
rithm. It is always a valid equation, but it may be that {fnv §) splits an argument
z into z itself (and possibly something else), and so the recursion does not make
progress. It is therefore necessary to verify termination whenever the theorem is
used for program derivation. In most cases, this is a trivial exercise.

9.2 Application: Text Formatting

A well-known application of dynamic programming is the problem of breaking a
sequence of words into lines to form a paragraph, such that the paragraph contains
as little white space as possible. In this section, we shall not be concerned with
constructing such an optimal layout itself; instead, we only consider the problem of
computing the minimum amount of white space. In section 9.3.5 it will be shown
how the same method applies to the construction of an optimal layout.

9.2.1 A first step towards a formal specification is to consider the types that are
involved in this text formatting problem. The input sequence is represented hy
a list of natural numbers, each signilying the length of a word. The length of a
word could be the number of cbaracters it contains, but one might also chose a

150 Dypamic Programming

a concrete example that [[1,8,7.4],
illustrates our representaticn f11,3,14],
of paragraphs [2,10}]

Figure 9.1: An example paragraph

more complicated measure that depends on the width of individual characters. A
paragraph is represented as a list whose elements are lists of natural numbers, and
each of these component lists stands for a line in the paragraph. A concreteexample
tbat illustrates this representation of paragraphs is given in figure 5.1. The data
type of hists whose elements are hists of natural numbers was formally defined in
section 6.3.1: it is the initial F-algebra, where F : Set — Set is Lhe functor

Fk = L+ (Lxk),
and L is the set of lists of natural numbers.

We now aim to define the set of all possible layouts (paragraphs) for a given input
sequence. The binary operator

#i(LxL)y—L

concatenates two lists of numbers. Generalisiug this binary concatenation, the
hemornorphism
(L, +]D

concatenates the components of a lists of lists; speaking in terms of the problem
at hand, one could say that {[£,4+]) strings the lines of a paragraph together to
form a single sequence of words. It follows that the inverse image of this operation,
given by

Inof{{[L, 4]

produces all possible layouts of its argument. For concreteness, here is an example:

(me(L,+)) [1,2.3) = { [[1,2,3]),
(1,2}, [3]),
[(1], (2,311,
(1), (2], 311 } -

Now that we know how to generate all possible layouts of a sequence of words, it
remains to make the notion of while space more precise. Let f : L —+ (NU {o}) be

Applicatior: Text Formatting 131

a function that returns some measure of the amount of white space on a single line.
To obtain nicely formatted paragraphs, one may have to chose a rather complicated
function for f; fortunately, we do not need its formal definition here. The function
t returns a measure of the white space in the last line of a paragraph, say [If
the length of [is below tbe maximum lize length, ¢({} equals zero; otherwise, it is
infinity. The total amount of wbite space in a paragraph is defined to be the sum
of the white space in the component lines. as returned by the homomorphism

(lt,®]) where z©n=fz+n.

The text formatting problem that we seek to solve can now be defined by the
expression below:

Fn([L,4]) ;3 (@) N .

This very concise problem statement could be read as follows. First, the inverse
homomorphism (fro([L, 4#])) generates all possible layouts. Next, for each of these
layouts, (£, ®]]) computes the amount of white space. This produces a set of natural
numbers, and the function 1 selects its minimum.

9.2.2 In order to derive an algorithm for the text formatting problem introduced
above, we shall instantiate theorem 9.1.6. The instantiation is somewhat laborious,
50 before going through these manipulations in detail, we first discuss the final
result. It makes use of a new notational convention: for auy binary operator (O},
(&) defined by

(fogly = (fy)@lgy)

stands for its function-level counterpart.

Theorem Let k = Mu{(L,+]}; 3 (I£,®]) ;M. Suppose that for all
z and v,

Ma@n|nev) = z@{MNy).

Then
E o= i 0 (vt 3((LxE);0); M),

It is readily verified that this instantiated theorem is applicable to the problem at
hand: ® is defined

z@n = fz+n,
and {4) distributes through the minimum function (M). The resulting recursion

equation for k underlies the well-known algorithm discussed by Knuth and Plass in
(60]. To understand the workings of that algorithm, it may be helpful Lo translate

152 Dynamic Programming

the conclusion of the theorem into ordinary set theory. This is just a matter of
expanding the definitions, and the outcome is displayed below:

kz = (0 (M{ew(ky)]|aty=2}).

Why is the instantiated theorem preferable to theorem 9.1.67 First of all, for
its comprehensibility. The formulation given above can be understood by anyone
acquainted with funclional programming. This is not the case for theorem 9.1.6,
which requires an understanding of F-algebras and cross—operators.

A second advantage of the instantiated Lthearem is that it is very close to a computer
program. Amn efficient implementation of the recursion equation would tabulate all
intermediate values during the computation, so that k is never evaluated twice on
the same argumnent. Senie functional programmung languages include this Labu-
Jation as a language feature, called memo—{unctions [54, 70|. Translation of the
above theorem into such a lapguage is straightforward, and the result is 2 reason-
ably efficient program. Alternatively, one could code the tabulation by hand |11, 31]
to obtain a truly efficient implementation in a more conventijonal programming lan-
guage.

9.2.3 We now proceed to instantiate iheorem 9.1.6 step by step. Throughout this
proof, indices of natural transformations will be omitted, and we shall write 1 for
the identity function. The first step is to instantiate the conclusion, showing that

o1, #] 5 T(FE;1L@)) ;N
= (9.1)
tR (nvd ;A1 x k) ;@) M.

In proving this fact, we shall need the following law on the inverse image of coprod-
ucts:

Inv[g,®] = (fnvg;34) 0 (Invd ;) (9.2)

where ¢; and i3 are the coproduct injections and U is set-union. We calculate from
the left-hand side of equation 9.1:

oL, H 5 3(FE;{£,8)) 5 1

{eq (92) }
((fav1;34) O (fnedt;320)) 5 A(FE; 8D ; N

{ U:3x 313, 3 functor, [selector }
(vl 5 A0 PR [5 M) A (ot 5 3(as Fei @) 5 M)

il

i

Application: Text Formatting 153

{ def. F, coproduct }
(Fnvl ; 3t T A (Frod 5 I((Ax k) ;815 M)

{ wl={))
({-} s 3¢5 M) A (vt 5 (1 x k) ;@) ;M)
{ claim: see below }

t 0 (v ;3{1x k) @) M)

]

"

In the last step, it was claimed that
{-};3;N = ¢. (9.3)
Here is the proof:
{h:3pn

{ {313}
ti4-1:0

{ M selector }

We have now completed the instantiation of tbe conclusion of theovrem 9.1.6, and
it has been shown that

Im[l,+];3{Fk;[t, ®)); N

A (v s S((Lx k) ;®) 5 M),

as required. Qur next task is to instantiate the applicability condition of theorem
9.1.6, which is the requirement that [t, ®] distributes over I'l. More precisely, the
goal is to try and simplify both sides of the equation

Ft;3kel;n = NG L@l (9.4)
Mechanical application of the laws from paragraphs 6.2.5 to 6.2.10 shows that
Fy o= (PG> D060) 5 B3] -

For completeness, we shall carry out this calculation, despite its mechanical nature.
Let K, be the constant functor returning L. Then the functor F¥ may be given in
variable free form as follows:

F = t4o(Kg, xo(Kp,1)). (9.5}

Henee, bearing in mind thal we decided to omit the object-indices of natural trans-
formations, one may start pushing (-)f into this expression for £

F1
(eq (95))
(+o (K, xo (KL, 1))
= { t of compasition (lemma 6.2.9) }
(+{Kp, x o (K, 1)) 5 (H)i
{ }of (+) (eq. 63))
(+(Kp, <o (K, I 5 B, T]
{ t of product (-,-) (lemma 6.2.10) }
(Kt + (xo(Kp, 1)) i 3.3 4l
{ t of composition (lemma 6.2.9) }
(Kt + (< (K, D5 (<)1) 5 30,34l
{ 1 of product (-.-) (lemma 6.2.10) }
(Kt + (Kot < 1) (<)1) 5 3,3 4]

{ tof K (eq. 6.7) and 1 (eq. 6.7} }
{3+ x D) 5 [Fa,T e

1

Ih

Il

Il

So much for the unfolding of the cross—operator on F:

Fto= ({34 (4 < 150903 Ba,3] - {9.6)
Using this fact, we can elaborate the left-hand side of the distributivity condition
{9.4): (Ft; 3, ®]; M). However, it will be expedient Lo do a little subsidiary
calculation first:

Ba,3a]:30e):M

{ coproduct }
(3030815, 3030, 6] M)

il

{ 3 functor }
(3w [L@)) M, F(es [, @1 T

= { coproduct }
(3¢:1, 305

Application: Text Formatting 155

Now it is easy to rewrite (F}; J[t,®]; 1) to a coproduct itself:
Ft; 3@ N
{ eqa (96) }
({3 + (- x D5 65 [Fas3a]; A8 €]5 1
{ subsidiary calculation above }
{1+ (= D) 0ath; 30, 38,5
{ coproduct }
[{-3i3e:M, ({3 x 1) (x)t3@5 0]
{ eq (93) }
[t ({-} x1): ()t53@;5 M

l

In short, it has been shown that
Fiiakelin = [4 (-} x1)i(x)t;28:M] .
Recall that it is our goal to simplify both sides of the equation
Ft;a,e):nN = FN;[Le].

We have just rewritten the left-hand side to a coproduct; it stands to reason that
we try and do the same with the right-hand side:

Fn;[tl®]

{ def. of F }
(14 (1 xM));[t,8]

{ coproduct }
[tw (1 X r]) ;@]

Summerising, we have sbown that {¢, ®)] distributes through M if and only if
(& (=15 0)t3@:00] = [1, 1=xM);8] .

By the universal property of the coproduct, this equation can be further simplified
to get
(FIxDi(x)f:3e:N = 1xM);@.

We could leave it at this, but again it may be helpful to lranslate the expressions
into ordinary set-theoretic terms. Here is the result:

N{zgnlnev] = z@(Mv),

for all x and v. Indeed, this was the condition originally stated in the instantiation
of theorem 9.1.6.

Some readers may find the preceding proof ludicrously long and laborious. [
sympathise with this opinion, and in fact it is possible to do this type of instantialion
completely mechanically. In fact, [have written a computer program in OBJ3 [45)
that performs this task for a restricted class of examples.

9.3 A more Practical Theorem

One could distinguish between three different stages in the application of dvnamic
programming. First, the problem at hand is phrased as an instance of the generic
specification. Sometimes this is easy (as in the text formatting example) but it
may also be quite difficelt. The second stage is to verify that the applicability
conditions are met: one has to verify that M is a selector, and that h distributes
over M. Finally, one might wish to instantiate the abstract result because il has to
be implemented in a conventional programming language. In the preceding seclion,
it was shown that such instantiations can be performed in an entirely mechanical
fashion.

To ease the application of dynamic programming is therelore to simplify the
first two stages of the application process: specification and verificalion. These two
stages are deeply intertwined. For example, in the text-formatting problem, we
introduced the fictitious value infinity in the specification to make sure that [is
a selector. In this section, it will be shown how relation totalisers can be used to
ease both specification and verification of dynamic programming,.

9.3.1 From now on, it is assumed that £ is a Boolean topos with a natural numbers
object. The existence of a natural numbers object implies that all polynomial
functors have an initial algebra. Therefore, we assume that the endoluncter F :
£ — £ is polynomial. As before, § : FB — B is a relational F*-algebra. and
h:FA— Aisan F-algebra. Finally, R is assumed to be a relation A — A The
new generic specification reads as follows:

K = (Inv(5);3(h); mazAY .

In the next two lemmas, it will be shown that this is an instance of our earlier
generic specification.

A more Practical Theorem 157

9.3.2 Lemma

(h)ina = (Fa;ERD

Praof By proposition 6.3.5, it suffices to show that
hina = Fra;Fa; Eh.
Here is a proof of that identity:
Fna;Fa;EL
{ property of F (par. 7.3.4) }
nra; Eh
— {n:f-E}
kina

8.3.3 Lemma

(o8] ;3(8); mazAY = Inv(S); 3([F4; ER); selR

Proof

(Imv(ST}; 3R] ; maz R)~
= { (Inv{S]);3{A)D) map, relation totaliser (prop. 7.3.2))
nvS) ;3 () ; mazR
= { 74 mome }
Ino((S) ; I(([AY s na 1 93) ;s oz A
= { 3 functor }
Inv((ST; 3(([A) s na) i 3Iny s mazR
= { def. selectorof R }
Ino(S]); 3(([hD i na) ; selR
= { lemma 9.3.2 }
Inu(S); 3([Fa; 4] ; selR

158 Dynamic Progranuning

9.3.4 Theorem Consider the specification
K = (nofS);30h); marR)”.
Suppose that
— the relation R is a well-founded preorder, and

— the map k is monotonic with respect to R,

At _pa
R E R
A ——FA

where is (), (2) or (=).
Then K satisfies

p mS. prp

K av

EA PEA

sel R

where V is the composite

7B K ppaFa ppa_Eh . ps

Proof Immediate from lemma 9.3.3, theorem 8.2.3, theorem 8.3.2, and theorem
9.1.6.

9.3.5 Asan application, let us return to the text formatting example of the preced-
ing section. To avoid the introduction of a list of infinite length, we only considered
the problem of determining the minimum amount of white space, and we did not
consider how such an optimal layout itself might he consiructed. The new theorern

A more Practical Theorem 159

makes it easy to reason about a fictitious list of iafinite length, so now we can
address the problem of constructing an optimal layout. Here is the specification:

K = (Ino{L, #]) ; mez RY",
where i is the preorder
£ = (telkz;(t.el’ .

Note that this preorder is well-founded by proposition 8.1.6. Write 7 for the initial
F-algebra. We have

K = (Ino([L,#]);3 (7] ; mazR)",

because ([r]} is the identity morphism T". To apply the new result about dynamic
programming, we should verify that

T I (L4 (L =xT))
R F‘R

2

T —0s L+{LxT)

semi-commutes. By proposition 8.3.3, it suffices to show that
N 88l (s (rxw))
(2)

N

) F(2)

T L+(LxN)

semi—commutes. This last inequation may be proved as follows:
F(2) c t,8];(2): 1t 8)

< { [t,®] map }
P2y Le] C Le);(2)

& { def. F, coproduct in Rel(Set) }
tCt;(2) and (Lx*(2)):(@) C(8);(=)

160 Dynamic Programming

The first conjunct is immediate from the fact that {>) is reflexive. It remains to
show that (®) ; () D (L x* (2));(®). This is a simple consequence of the fact
that addition is monotonic with respect to (2):
(@):(2)

{ def. @ }
(f xN);(+): (=)
) { + meonotonic }

(f xR (Nx™(2)):(+)

{ x relator, def. @ }
(L x*(2));(9)

Il

The proof that addition is monotonic is omitted.

9.3.6 Although the theorem about dynawmic programming is adequate for typical
applications like text formatting, knapsack and string-to-string correction, there
are problems that need a slightly different approach. An example of such a problem
is bracketing a sequence of matrices for multiplication; we already discussed it in
the first part of this thesis (section 2.3). The proof of the theorem that was stated
there is very similar to the proof given here; the details are omitted.

10 Discussion

It is generally recognised that the calculus of relations is a valuable tool in devel-
oping programs from specifications. Until recently, most of the work on relations
in computing ecience either used a set theoretic approach, or the axiomatisation of
relation algebras proposed by Tarski [93]. The categorical viewpoint reconciles the
axiomatic approach to relations with the set theoretic one, in that it shows how set
thecry (or rather topos theory) can be defined in terms of relations. In this thesis,
we have tried to demaonstrate the advantages of this viewpoint for applications in
program construction. The main advantage is, I believe, the smooth generalisation
of functional concepts like fold to relations.

Backhouse et al. have shown that such a generalisation is also possible in a more
traditional form of the relational calculus [6]. There is however a subtle difference:
Backhouse defines all categorical constructions at the level of relatious, and then
shows that they satisfy the expected properties in the subcalegory of maps. In
my work, the process goes the other way round: constructions in the subcategory
of maps are extended to the category of relations. Which approach you prefer
depends on whether you see functions or relations as the more basic entity. But
does it really matter whether one starts with maps or with relations? The answer
it no, because regular categories and unitary tabular allegories are equivalent. This
is the attraction of category theory: it uncovers the structure of the calculus of
relations, not only its theorems.

In this thesis, we have made ample use of that structura) aspect of the theory:
typical instances are the definition of cross—operators and the generalisation of fold
to relations. In the remainder of this discussion, we shall briefly present three open
problems that are concerned with the structure of relations. This is not to say
that further research on dynamic programming is unimportant; it is however much
clearer in that area where the research is heading, and we already discussed some
of those future directions in part L.

10.1 Which Functors preserve Division?
In the proof that monotlonicity implies distributivity, we used the fact that poly-

nomial functors preserve strict left-division. Actually, it was this property that
motivated the restriction to polynomial functors. It would he much better to have

161

162 Discussion

a necessary condition which tells when a relator preserves strict left-division. There
exists such a condition for the preservation of intersection: the relator should pre-
serve pullbacks. That result is intuitively obvious, because intersection is defined in
terms of pullbacks. To achieve a similar theorem for strict left—divisian, one should
identify the elementary categorical construction that underlies its definition. The
following proposition might be of help in achieving this goal.

Proposition Let F be a relator. Then F™ preserves sirict left—division iff F*
preserves right —quotients of entire relations.

For any topos, there exista an adjunction between the topos itsclf and iis category
of entire relations. Motivated by the above result, I briefly tried to define right-
quotients of entire relations in terms of this adjunction. This may be doae. but it
did not lead to any further insight.

18.2 Does every Topos have a Weak Relation Totaliser?

The definition of relation totaliser proposed in chapter 1 is unsatisfactory, because
not every topos has one. While developing the results about relation totalisers, I
considered an alternative definition which is less restrictive than the one adopted
in this thesis. The disadvantage of this alternative definition is that it dees not
seem to give a nice calculus. Below we shall briefly summarise some results which
indicate that it might still be worthwhile to pursue the topic further. To keep the
account short, all proofs are omitted.

Consider Lhe category of relalions over a regular category. A weak relation
totaliser is a collection of monic maps

N4 Ar—FEA

which satisfies the following pseudo—universal property: for every relation R: 4— B
there exists an entire relation
R:A-EB

such that
S:ing® = R and <A;8C R:ng
Sch

for all relations 5 : A — EB. The question is now which toposes do have a weak
relation totaliser. To discuss that qnestioni, we need a definition of the mild axiom
of choice.

What are Selectors? 163

Let £ be a regular category. Say that £ satisfies the mild axiom of choice if for
every relation R, there exist a cover € and a simple relation ¥ such that

F C e; R and <(e;R) C <F.

Proposition A topos £ satisfles the mild axiom of choice if E : £ —+ £ preserves
epics.

For example, the topos Set™ of commuting squares does satisfy the mild axiom of
choice. The usual form of the axiom of choice in category theory says that all epics
have a left-inverse. The topos of commuting squares does not satis{y the usual
axiom of choice. To the best of my knowledge, it is unknown whether £ preserves
epics in every topos. The next theorem shows why it might be interesting to resolve
that issue:

Theorem Let £ be a topos. Then the simple-relation classifier iz a weak relation
totaliser iff £ satisfies the mild axiom of choice.

10.3 What are Selectors?

Our discussion of selectors focussed on the pragmatic aspects of their use in dynamic
programming, and [believe that from this point of view the relevant questions have
been answered. However, the construction of selectors from preorders sel(-) only
covers a very small class: there are many selectors that do not arise in this way,
for example | itsell. This leads to the question what selectors really are: do they
form a category? Is there an alternative description of this category that gives more
insight in their precise nature? First, we need some more terminology. Let £ be a
topos.

For any relation R : A —+ A in Rel(£), one can define the supremum relation
supR: PA— A by
supR = RT; mmmB .
A partial order is said to be cocomplete if its supremum relation is a map. The
cocomplete partial orders in £ form a category, where the objects are cocomplete

partial orders and the arrows are sup—preserving morphisms. An arrow f: A —+ B
is said to be a sup-preserving motphism from R: A=+ Ato §5: B =+ B if

supR; f = 3f;supf.

164 Diacussion

The category of functional selectors is defined as follows. 1ts objects areselectors
which are maps, and its arraws are selection-preserving morphisms in £. Let & :
FPA— Aand k: PB — B be selectors in £. A selection-preserving morphism from
h to k is an arrow f : A — B such that

hyf =3f:k.

Alternatively, the calegory of functioral selectors could be defined as the Eilenberg-
Moore category of the power monad.

Theorem (Mikkelsen [71], p. 36) In any lopos, the category of cacornplete partial
orders is isomorphic lo the category of functional selectors.

To gain a proper understanding of what selectors really are, it would be helpful to
have a similar theorem for arbitrary selectars. Unfortunately, time constrairts did
not allow me to investigate the issue in any detail.

Bibliography

(1]

2

i3

4

5

[6]

[T

&

(9
(10]

(t]

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison—Wesley, 1974.

A. Apostolico, M.J. Atallah, L.L. Larmore, and §. McFaddin. Efficient par-
allel algorithmns for string editing and related problems. SIAM Journa! on
Computing, 19(5):968-988, 1981.

M.A. Arbib and E.G. Manes. Arrows, Structures and Functors: The Cat-
egorical Imperative. Academic Press, 1975.

R.C. Backhouse. Makiug formality work for us. EATCS Bulletin, 38:219-249,
1989,

R.C. Backhouse, editor. EURICS Workshop on Caleulational Theories of Pro-
gram Structure, 23-27 September 1991.

R.C. Backhouse, E. Voermans, and J.C.5.P. van der Woude. A relational
theory of datatypes. Department of Mathematics and Computing Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands. Appears in [5], 1991.

M. Barr. Exact categories. In Exact Categories and Categories of Sheaves,
volume 236 of Lecture Noles in Mathematics, pages 1-120. Springer-Verlag,
1970.

J. Beck. Distributive laws. In B. Eckmann, editar, Seminar on Triples and
Categorical Homology Thenry, volume B0 of Lecture Notes in Mathematics,
pages 119-140. Springer—Verlag, 1969.

R. Bellman. Dynamic Programming. Princeton University Press, 1937.

R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic
and nondeterministic programs. Theoretical Computer Science, 43(2-3):123-
147, 1986.

R.S. Bird. Tabulation technigues for recnrsive programs. Cornputing Surveys,
12(4):403-417, December 1980.

165

(12]

(13]

(14]

(15]

(16]

7]

(18]

[19]

(20]

21)

(22]

[23]

[24]

R.S. Bird. Transformational programming and the paragraph problem. Sci-
ence of Computer Programming, 6:139-189, 1986,

R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, volume 36 of NATO ASI Series
F, pages 3-42. Springer-Verlag, 1987.

R.S. Bird. Lectures on constructive functional programming. In M. Broy,
editor, Constructive Methods in Computing Science, volume 55 of NATO AST
Series F, pages 151-216. Springer-Verlag, 1989.

R.S. Bird. A calculus of functions for program derivation. In D.A. Turner,
editor, Research Topics in Functiona! Programming, Universily of Texas at
Austin Year of Programming Series, pages 287-308. Addison-Wesley. 1990.

R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of & pattern matching
algorithm, Science of Computer Programming, 12:93-104, 1089,

R.S. Bird and O. de Moor. Nub theory. Draft, 1991,

R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice-
Hall, 1988,

T. Brock. Order and Recursion in Topoi, volume 9 of Notes on Pure Mathe-
matics. Australian Nationa]l University, Canberra, 1977.

F. Cajori. A History of Mathematical Notations. Volume I : Notalions in
Elementary Mathematics. The Open Court Publishing Company, 1928.

F. Cajori. A History of Mathematical Notations. Volume IT : Notations Mainly
in Higher Mathematics. The Open Court Publishing Company, 1929,

A. Carboni and §. Kasangian. Bicategories of spans and relations. Jourpal of
Pure and Applied Algebra, 33:259-267, 1984,

A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach Lo geomet-
ric morphisms, L. Research Report 89-19, Depariment of Pure Mathematics,
The University of Sydney, NSW 2006, Ausiralia, 19589. ISSN 1033-2359.

A. Carboni and G. Rosolini. The free regular category on a left exact one. In
preparation, 1991.

[25] A. Carboni and R. Street. Order ideals in categories. Pacific Journal of Math-

ematics, 124(2):275-288, 1986.

Bibliography 167

[26] A. Carboni and R.F.C. Walters. Cartesian bicategories I. Journa! of Pure and
Applied Algebra, 49:11-32, 1987.

[27] R.J. Casimir. Program inversion. Technical Report ATV-80-10, Vakgroep AIV,
Erasmus Universileit, Postbus 1730, 3000 DR Rotterdam, The Netherlands,
July 1980.

[28] W. Chen and J.T. Udding. Program inversion: More than fun! Science of
Computer Programming, 15(1):1-13, 1990.

[29] R. Cockett. Personal communication. 1991.

[30] R. Cockett and T. Fukushima. Draft: About Charity. Dept. of Compnter
Science, University of Calgary, Calgary, Alberta, Canada, 1991.

(31] N.H. Cohen. Characterization and elimination of redundancy in recursive pro-
grams. In 6th ACM Annual Symposium on Principles of Programming Lan-
guages, pages 143-157. Association for Computing Machinery, 1979.

[32) E.V. Denardo. Dynamic Programming — Models and Applications. Prentice-
Hall, 1982.

[33] EW. Dijkstra. Program inversion. In F.L. Bauer and M. Broy, editors, Pro-
gram Construction, volume 69 of Lecture Notes in Computer Science, pages
84-57. Springer—Verlag, 1979,

[34] EW. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer—Verlag, 1990.

[35] J.G. Ecker and M. Kupferschmid. Introduction to Operations Research. John
Wiley, 1988.

[36] §. Eilenberg and J.B. Wright. Automata in general algebras. Information and
Control, 11(4):452-470, 1967.

[37] A.J. Field and P.G. Harrison. Functional Programming. International com-
puter science series. Addison-Wesley, 1988.

[38] M.M. Fokkinga. An exercise in transformational programming: Backtracking
and branch-and-bound. Science of Computer Programming, 16:19-48, 1991.

[39] P.J. Freyd. Personal communication. 1991.

[40] PJ. Freyd and A. S¢edrov. Categories, Allegories, volume 39 of Mathematical
Library. North-Holland, 1990.

(41]

(42]
(43]
[44]

[43]

16

[47

18]

[49]

[50]

(51]

(52)

(53]

[54]

Z. Galil and R. Giancatle, Speeding up dynamic programming with applica-
tions to molecular biology. Theoretical Computer Science. 64:107-118, 1989.

P. Gardiner. Personal communication. 1990.
J.A. Goguen. Personal communication. 1989.

J.A. Goguen and J. Meseguer. Correctness of recursive parallel nondetermin-
istic flow programs. Journal of Computer and System Sciences, 27(2):268-290,
1983.

J.A. Goguen and T. Winkler. Introducing OBJ3., Technical Report SRECSL-
88-9, Computing Science Lahoratory, SR! International, 331 Ravenswood
Ave., Menlo Park, CA 94025, USA, Augnst 1988,

R. Goldhlatt. Topoi — The Categorial Analysis of Logic, volume 98 of Studies
in Logic and the Foundations of Mathemalics. North-Holland, 1986,

P.A. Grillet. Regular categories. In Exact Categories and Catcgories
of Sheaves, volume 236 of Lecture Notes in Mathematics, pages 121-222.
Spriuger-Verlag, 1970.

P.G. Harrison and H. Khoshnevisan. On the synthesis of function inverses.
Research Report DOC 90/4, Department of Computing, Imperial College, 180
Queen’s Gate, London SWT 2BZ, England, Fehruary 1990.

P. Helman. The principle of optimality in the design of efficient algorthms.
Journal of Mathematical Analysis and Applications, 119:97-127. 1986.

P. Helman. A common schema for dynamic programming and branch-and-
bound algorithms. Journal of the ACM, 36{1):97-128, January 1989,

P. Helman and A. Rosenthal. A comprehensive model of dynamic program-
ming. STAM Journal on Algebraic and Discrete Meihods, 6(2):319-334, 1985.

D.S. Hirschberg and L.L, Larmore. The least weight subsequence problem.
SIAM Journal on Computing, 16{4):628-638, 1987.

P.J. Huber. Homotopy theory in general categories. Math. Annalen, 144:361-
3853, 1961.

J. Hughes. Lazy memo-functions. In J.P. Jouannaud, editor, Functional Pro-
grarmming Languages and Computer Architceture, volume 201 of Lecture Notes
in Computer Science, pages 130-146. Springer-Verlag, 1985,

(3]

[56]

[57)

[58]

[59]

(60

61)

[62]

(63]

[64]

[65]

[66]

/67)

(68]

Bibliography 169

J. Jeuring. Algorithms from theorems. In M. Broy and C.B. Jones, editors,
Programming Concepts and Methods, pages 247-266. North—Holland, 1990.

P.T. Johnstone. Topos Theory. Academic Press, 1977.

G. Jones. Designing circuits hy calculation. Technical Report PRG-TR-10-
90, Programming Research Group, 11 Kehle Road, Oxford 0X1 3QD, England,
1990.

RM. Karp and M. Held. Finite-state processes and dynamic programming.
SIAM Journal on Applied Mathematics, 15(3):693-718, 1967.

H. Kleisli. Every standard construction is induced by a pair of adjoint functors.
Proceedings of the American Mathematical Society, 16:541-546, 1965.

D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software: Prac-
tice and Experience, 11:1119-1184, 1981.

J. Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151-161, 1968.

D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A
synthetic approach. Mathematical Systems Theory, 14:97-139, 1981.

B. Louka and M. Tchuente. Dynamic programming on two-dimensional sys-
tolic arrays. Information Processing Letters, 29:97-104, 1988,

G. Malcolm. Data structures and program transformation. Science of Com-
puler Programming, 14:255-279, 1990.

E.G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics.
Springer-Verlag, 1975.

EG. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics.
Texts and Monographs in Computer Science. Springer-Vertag, 1986.

C.E. Martin. Preordered categories and predicate transformers. D.Phil. thesis.
Programming Research Group, Computing Laboratory, 11 Keble Road, Oxford
0X1 3QD, October 1991,

L. Meertens. Algorithmics — towards programming as a mathemnatical ac-
tivity. In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Math-
ematics and Computer Science, volume 1 of CWI Monographs, pages 3-42.
North-Holland, 1987.

170
(69]
iy

(1]

{72
[73]

(74]

(73]

i76]

[77]

[78]

[79]
(80]

[81]
[82]
(83]

Bibliography

K. Mehihorn. Data Structures and Algorithms. EATCS Monographs on The-
oretical Computer Science. Springer—Verlag, 1984. (3 volumes).

D. Michie. “Memo” functions and machine learning. Nature, 218:19-22, April
1968.

C.J. Mikkelsen. Lattice theoretic and logical aspects of elementary topoi.
Various Publications Series 25, Matematisk Institut, Aarhus Universitet, NY
Munkegade, DK-5000 Aarhus C, Denmark, 1976.

0. de Moor. Context—free language recoguilion. International Summer School
on Constructive Algorithmics, Hollumn, Ameland, The Netherlands, 1989.

0. de Moor, Categories, relations and dynamic prograinming. Technical Re-
port PRG-TR-18-90, Programming Research Gronp, 11 Keble Road, Oxford
0X1 3QD, England, 1990.

0. de Moor and R.5. Bird. List partitions. tu appear in Formal Aspecls of
Computing. Programming Research Group, 11 Keble Road, Oxderd OX1 3QD,
England, 1989.

C.C. Morgau. Programming from Specifications. Prentice-Hall, 1990.

J.F. Myoupo. Dynamic prograruming on linear pipelines. Inforipation Pro-
cessing Letters, 39:333-341, 1991.

G.D. Plotkin. A powerdomain construction, SIAM Joursal on Computing,
5(3):452-487, 1976.

A. Poigné. A note on distribulive laws and power domains. In D. Pitt,
S. Abramsky, A. Paigné, and D. Rydeheard, editors, Category Theory and
Computer Programming, volume 240 of Lecinre Notes in Computer Science,
pages 252-265. Springer-Verlag, 1986.

W. Rytter. On efficient parallel computations {or some dynarnic programming
problemns. Theoretical Computer Science, 59:297-307, 1988.

G. Schmidt. Programs as partial graphs I: Flow equivalence and correciness.
Theoretical Computer Science, 15:1-25, 1981.

H. Schubert. Categories. Springer—Verlag, 1970.
R. Sedgewick. Algorithms. Addison-Wesley, 1983,

M. Sheeran. Describing hardware algorithms in Ruby. In David e! al. cdi-
tors, IFIP WG 10.1 workshop on Concepts and Characteristics of Declaralive
Systems, Budapest 1988. North-Holland, 1989.

Bibliography 171

[84] M. Sheeran. Categories for the working hardware designer. Io M. Leeser and
G. Brown, editors, Workshop on Hardware Specification, Verification and Syn-
thesis: Mathematical Aspects. Cornell University 1989, volume 408 of Lecture
Notes in Computer Science, pages 380-402. Springer-Verlag, 1990.

[85] D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27:43-96, 1985.

[86] D.R. Smith. Applications of a strategy for designing divide—and-conquer al-
gorithms. Science of Computer Programiming, 18:213-229, 1987.

[87] D.R. Smith. Structure and design of global search algorithms. Technical Re-
port KES.U.87.12, Kestrel Institute, 1801 Page Mill Road, Palo Alte, CA
94304, July 1983. To appear in Acta Informatica.

[88] D.R. Smith. Kids: A semiautomatic program developmenl system. IEEE
Transactions on Software Engineering, 16(9):1024-1043, 1990.

[89] D.R. Smith. Structure and design of problem reduction generators. In
B. Méller, editor, Proc. of the IFIP TC2 Working Conference on Constructing
Programs from Specifications. North-Holland, 1991.

[90] D.R. Smith and M.R. Lowry. Algorithm theories and design tacties. Science
of Computer Programming, 14:305-321, 1990.

[91] M. Sniedovich. A new look at Bellman's principle of optimality. Journal of
Optimization Theory and Applications, 49(1):161-176, April 1986.

[92] JM. Spivey. A functional theory of exceptions. Science of Computer Pro-
gramining, 14:25-42, 1990.

[93] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89,
1041,

[94] D.A. Turner. Miranda — a non-strict functional language with polymorphic
types. In P. Henderson and D.A. Turner, editors, Proc. Conference on Func-
tional Programming Languages and Computer Architecture, volume 201 of
Lecture Notes in Computer Science, pages 1-18. Springer-Verlag, 1985.

[95] AJ.M. van Gasteren. On the shape of mathemalical arguments, volume 445
of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[96] P. Wadler. Comprehending monads. In G. Kahn, editor, ACM Conference on
Lisp and Functional Programming, pages 61-78, ACM Press, 1990.

172 Bibliogra phy

[97] R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Jour-
nal of the Association for Computing Machinery, 21(1):168-173, 1974.

Index

adjoint arrow, 54
adjunction, 15, 69, 110
Aho, 32
algebra, 87

initial, 5, 87

relational, 89
algorithm theory, 34
allegory, 64

power, 93
anti-symmetric, 123
Arbib, 49
associative law, 70
asymmetric equality, 44

Back, 17

Backhouse, 66, 75, 113, 161
Barr, 51

Beck, 76

Bellman, 3, 32

binary trees, 26

Bird, i, v, 38

Boolean, 15, 113
bottom-up evaluation, 32
bracksting, 26

Brook, 38, 144

Cajori, 43
Carboni, v, 43
cargo, 24
cartesian, 47
categorical programming, 36
category of relations, 52
Charity, 36
choiee function, 33
classifier, 15

simple relation, 108
cocartesian, 73
Cockett, 36

cocomplete, 73
coequaliser, 51
commuting squates, 111
comparison functor, 72
complete, 47
concatenation, 4
concave, 36
conjugate kernel, 94
containment, 101
naturality, 101
converse, 5, 53
coproduct, 73
coreflective, 107
coreflexive, 65
cover, 49, 53
cover—monic factorisation, 49
covered by, 50
cross—operator, 9, 75
composition, 85
exampie, 82
paturality, 85
product, 86

Denardo, 32

diagonal fill-in, 49

direct image, 49

discrete decision process, 33

discrete optimisation problem, 33

distribute, 16, 137
distributive law, 9, 76
divide-and-conquer, 3, 35
division, 14

left, 93

right, 91

strict, 94
domain, 14, 65
dynamic programming, 32

174 Index

basic theorem, L1, 148
divide-and—conquer, 149
instantiation, 156
practical theorem, 18, 158

edit distance, 21

Egli-Milner order, 105

Eilenberg, 10, 8%

element, 90

entire, 14, 53, 64
exdstential image, 106

epsiloff, 69

equaliger, 49

everywhere defined, 14, 53

existential image, 6, 9, 69
relator, 98

extend, 8, 62, 76

extremal epic, 49

factorisation, 49
factors, 47
faithful, 53
fictitious, 13
fold, 5, 88
format, 3
Freyd, v, 43
frontier, 27
Fukushima, 36
function, 54
functor
extended, 56

Gardiner, v, §3

Gasteren, 117

generic specification, 7, 145

Goguen, v, 87, 146

Goldblatt, 112

graph, 53

greatest lower bound
subohject, 47

greedy, 38

Grillet, 51

hardware, 37

has—element, 90

Held, 33

Helman, 33

Hoare, v, 105

homomorphism, 87
relational, 90

Hoperoft, 32

Huber, 71

identity, 44

image, 49
exislential, 69

imperative, 36

infinity, 13

initial, 87

initial algebra, 17
cxislence, 91
relational, 10

internal intersection, 93

inverse, 53

inverse image, 5, 145

involution, 53

Jones, 37
Jayal, 51

Karp, 33

Kelly, 43

Kleisk, 71
calegory, 71

knapsack, 24

Lambek, 89

Lawvere, 73, 108

layout, 3, 149

least, 14

least upper bound
of relations, 74

list, 5, 87

lists, 22

load, 24

Lowry, 34

Luk, 37

Malowlm, 88
Mane, 49, 76
map, 6, 54, 64
Martin, v, 37
matrix muitiplication, 26
maximum
edstential image, 124
of set, 122
simple, 123
union, 126
mechanisation, 34
Meertens, 1, v
memoisation, 7, 152
Meseguer, 87
mild axiom of choice, 162
minimum, 14
modular law, 64
monad, 7¢
defined by adjunction, 71
simple relation, 118
monic, 47, 54
monolonic, 16, 137
Morgan, 37

naturad numbers object, 17, 88, 91
Boolean, 144
well-bounded, 144

nearly preserve, 8

non-asociative regular expression, 33

notation, 43

0BJ3,35, 156

object problem, 19
operations research, 32
optimal, 3
order—enricbed, 52
P-RAM, 37
paragraph, 3, 149
parallel, 37
parenthesis, 26

Index 175

partial arrow, 30, 54
partial arrow classifier, 13
partial order, 123
Poigné, 76
polynomial, 16, 90

strict division, 95
power

adjunction, 69

allegory, 93

monad, 71

object, 69

transpose, 5

of functor, 84

power allegory

topas, 93
power iranspose, 72
predicate trausformer, 37
preorder, 15, 123
preserve

covers, 57

domain, 66

intersection, 60

nearly, 8, 58

pullbacks, 8, 60

up to image, 58

regular epics, 8

strict division, 95, 161

tabulations, 60, 91
principle of optimality, 3, 16
problem reduction generator, 33
problem theory, 34

quotient, 14
left, 93
right, 91

reciprocal, 53
recursion, 7, 35
reduce, 5, 88
refinement calculus, 37
reflexive, 123

regular

176 Index

calegory, 51
epic, 51
regular category, 64
regular epic, 8
relation, 52
totaliser, 15, 111
weak, 162
relator, §, 59, 98
example, 59
polynomial, 16
reverse, 33
Rosenthal, 33

Scedrov, 43
Schroeder, 113
Schubert, 72
selector, 13, 128
{unctional, 164
of preorder, 129
semi—lattice, 4§
sequence, 9, 87
seguences, 22
sequential decision process, 33
set-valued functions, 72
Sheeran, 37
shunt, 113
simple, 54, 64, 73
singleton, 69
smash, 119
Smith, v, 34
Smyth, 105
Spivey, 73
splitting, 36
string-to-string, 21
subfunctor, 110
subobject, 47
extended, 51
functor, 48
subproblem, 3
subsequence, 22
Swierstra, v
systolic, 37

tabular, 66
tabulation, 7, 32, 51, 56, 152
terminator, 88
text formatting, 3, 149
Tierney, 73, 108
topos, 69
Boolean, 15, 113, 144
relation totaljser, 114
power allegory, 93
total, 14, 533
totaliser, 15, 111
transform, 21
iransitive, 123
transpose, 53
triangular identity, 64
typed factor, 94

Ullman, 32
unjon
of relations, 74
of sets, 69
unit, 66
unit law, 70
upper bound
of set, 122

value problem, 19
vessel, 24
view, 35

Wadler, 70

weakest posispecification, 94
well-bounded, 123, 125
well-founded, 15

Wells, v

Wood, 43

Wright, 10, 89

