
0,,1 .. 1 r r ;"'"'r.... ;f-' ,...1')ri'~"~!n1 L.'"'~Cr2_tory

j
_.'i

LJ~il.,d.J UX 1 ~UU

THE DRY AND THE WET

hy

Joseph A. Goguen

Technical. Monograph l-'RG-IOO

March 1992
Oxford University Computing Laborator)'
Progra.mrning Research Group 8-Jl Kehle Road ~ ">_",,• .,"c" ,,--

:;:::.~"~~'"'"
f
(:,,~ i 2~T[~'~OO)
L ~ ,

. '"'c •. __ "..• ,..",.. >.

OXFOF2IJ
.'~

III1II1IIIII

303387008X
.---.--.-._----

Copyright © 1992 Joseph A. Goguen

Oxlord University Computing Laboratory
Progrilmming Research Group
8-11 Keble Road
OXFORD OX! 3QD
United Kingdom

Electronic mail: goguenClprg.odord.ac .uk

The Dry and the Wet I

J06eph A. Goguen"

Abstract

This paper discusses the rela.tionship between formal, context insensitive
informa.tion, and informal, situated informa.tion, in the context of Require
ments Engineering; these opposite but complf'mentary aEipects of informa.
tion are called "the dry" and "the wet." Formal informa.tion occurs in the
syntactic representations used in computer-based systems. Informal situ
ated information arises in social interaction, for example, between users and
ma.nagers, as well aEi in their interactions with systems a.nalysts. Thus. Re
quirements Engineering has a strong practical need to reconcile the dry and
the wet.

Following some background on the culture of Computing Science, the pa
per describes some projects in the Centre for Requirements and Foundations
at Oxford. One of these is a taxonomy for Requirements Engineering meth
ods. Another is applying techniques from sociology and sociolinguistics to
requirements elicitation, and in particular, to detemtining the value system
of an organisation. These projects draw on ideas from ethnomethodology
and Conversation Analysis. The paper also demonstrates that structures as
dryas abstract data types occur in the ordinary discourse of social gr<lUpS.

I The resea.rch reported in this pa.per h;u; been f!lllpported in part by a contract from BT,
&lid grants {10m the Science a.nd Engineering Reseuch Council, the System De'Velopmenl
Founddion, and the Fujitsu L.boratories.

~ Also with SRI Interna.tional, Menlo Park CA, USA.

CONTENTS

Contents

1 Introduction 1

2 Four Cultures in Computing 2

2.1 Hacker Culture 2

2.2 Dry Culture.. 2

2.3 Wet Culture. . . . 3

2.4 Theory Culture 4

3 Requirements as a Site Cor Reaear<:h 4

3.1 The Oxford Centre for Requirements and Foundations .. " .5

4 The Classification of Requirements Methods 7

5 Discourse Analysis and Requirements Engineering 8

5.1 Two Examples 12

5.2 Discussion........................ 13

6 Summary 14

1

1 Introduction

This pa.per is concerned with the relationship between formal, context in
sensitive information and informal, situa.ted informa.tion; these two opposite
but complementary aspects of informa.tion will be called "the dry" and "the
wet." Following some cultural background from Computing Science, the
pa.per descrihes the Centre for Requirements and Foundations at Onord,
using some of its projects to raise and discuss issnes a.bout the relationship
between the dry and the wet.

One conclusion is that novel approaches ma.y be needed, as well as a.
willingness to he eclectic ra.ther tha.n dogma.tic. In pa.rticular, it may be
necessary to abandon, or at least dilute, the notion of "objectivity'" in or
der to properly handle situa.ted information. In this respect, I draw on
ideas from ethnomethodology and Conversation Analysis, as well as from
the work of Jean-Francois Lyotard on "postmodernism," Bruno Latour on
"immutable mohiles," and Leigh Star on "boundary objects." Also, we dis~

cover that structnres as dryas abstract data types can be found in the
ordinary discourse of social groups, such as sports fans.

This paper uses Requirements Engineering as a site for research on the
relationship between formal and informal information. Informal situated
information arises in social interaction, for example, in the worlds of users
and managers, as well as in their interactions with systems analysts. Formal
structures occur in the internal representations of computer-based systems,
which are suhject to the formal syntactic and semantic rules of computers
and computer languages. Thus, Requirements Engineering has an especially
strong practical need to reconcile the dry and the wet. Indeed, one might
almost say that this kind of reconciliation is the essence of Requirements
Engineering.

Acknowledgements

I wish to thank the members of the Oxford Centre for Requirments and
Foundations for many stimulating conversations on the topics discussed here,
particularly Marina Jirotka and Matthew Bickerton; in fact, many of the
ideas here arose in response to a question asked by Marina. I also v.ish to
thauk my wife Kathleen for carefully reading several drafts of the paper and
offering many helpful comments. I thank the participants of COSCIS'91
(Conference on Collaborative Work, Social Communications and Informa.
tion Systems) in Helsinki for their many interesting comments following the
presentation of this paper as part of a panel discussion there; particular
thanks for Prof. Ronald Stamper for organisiug the panel and inviting me
to participa.te in it. Thanks to Frances Page for preparing the figures in
this paper. Finally, special thanks to Dr. Charlotte Linde for our long col~

laboration, during which I learned much of what I know about Discourse
Analysis.

2 2 FOUIl CULTUIlES IN COMPUTING

2 Four Cultures in Computing

Difficulties with large and complex systems are accelerating the fragmen
tation of Compnting Science. This can be seen in the increasing frictions
amoog tbe four subcultures within Computing Science that are described
in this section. Evidence fOT such a division can be found in systematic
differences in the vocabulary, conferences and jonrnals used by computing
scientists, as well as in the semantic domains of their conversations, lectures
and pu blications. However, this is not the place to pursue such evidence in
detail.

2.1 Hacker Culture

Members of the old culture, which we shall call the "'hacker culture,"3 just sit
down, "'bang code," and patch it until it works. While this can be effective
a.nd amusing for small projects, it does not work well for large projects, and
industrial practice typically imposes a complex system of management con
trols, inclnding documentation standards, required walk-throughs, cbange
management, and so on. Hackers hate this, and argue that it does at least
as much harm as good. Hacker culture is somewhat undisciplined, but it is
also lively and creative, and hackers can often bnild effective systems where
other approaches faiL

2.2 Dry Culture

Another group, let us call them the ;J.dry culture," take the precision of for
mal mathematical logic as their ideal. They say that computer programs
can be seen as mathematical objects, and the criteria for their correctness
can be formalised as mathematical formulae, so that the whole of program
ming ran be seen as a branch of mathematics. Moreover, the same can be
done for hardware, by regarding system designs as mathematical objects.
System development can therefore be formalised as a process of moving,
step by step, from an abstract statement of what Is wanted, to an object
that delivers it, in snch a way that each step can actually be proven correct
(e.g., see [25]).

There are indeed some successful examples of this, but there are also a
number of difficnlties. One difficulty is that it can be a lot of work. Per
haps computer-based tools can help reduce this effort; for ex.ample, syntax
checkers, theorem provers, and sophisticated configuration managers should
be useful. But with the present state of the art, it appears inevitable that
a fully rigorous system development approach wiU take more effort than an
informal approach. Advocates of the dry culture argue that the extra effort
is worthwhile for certain systems, including safety critical systems. Interest
ingly, hardware projects may be easier to automate, because certain useful

3Jn lne U.S., the media seem La be hying to cha.nge the meaning of the wurd "ha.ckern

so that it connote!! law breaking, rather lhan a fascina.tion with computing a.nd commu
nica.tionJ te<hnology as such. Here, we use the original meaning.

2.3 Wet Culture 3

formalisms are also simple, although somewhat incomplete.

Examining the sonrces of difficulty for large systems projects reveals
that incorrect code is a relatively insignificant factor, dwarfed by incorrect
specifications and (even more significantly) incorrect requirements [2, 3].
Formal methods can indeed increase the likelihood that code satisfies some
given specification; hnt this is not much help if the specification is wrong.
However, by providing a precise language for specifications, formal methods
can also aid in the social process that produces specifications, hy reducing
misunderstandings. Trying to formally verify certain properties of a spec
ification may also reveal some bugs. But experience seems to show that
fonnal methods a.re most effective when used in a relatively informal wa.y as
a medium of commnnication [26]. This can ma.ke advocates of the dry cul
ture uncomfortahle, because it is rather far from the ideal of mathema.tical
perfection.

Please note that I am not denying that formal ma.thematical models
can be useful in many important situations. For example, compiler writ
ers use formal language theory, and information system designers use data
modelling. But the higher levels of formality seem to be unsuitable for
communication with (most) managers and users, and can even slow down
communication among designers and implementers. Moreover, formal meth
ods do not (and cannot) address the kind of issues considered in the next
subsection.

2.3 Wet Culture

A still closer examination of the major 50urce of difficulty in large software
projects - which is their reqnirements - shows that factors from the social
world often lie at the root. Advocates of what J shall call the "'wet culture"
say that this mnst be taken seriously, because social, political and cultural
factors ultimately determine the success of systems. For example, if a large
information system does not meet the day-to-day needs of its users, then
it may not be used at aU. This culture therefore calls for using methods
from the social sciences, particularly during the requirements phase ofla.rge
system development projects. A significant difficulty with this, however, is
that few computing scientists know very much about the social sciences;
indeed, many computing scientists have little sympathy with the social sci
ences, and prefer the relative certainties of hardware, software and dryware,
to the a.mbiguities, conflicts and vagueness of wetware4

.

4r ha¥e beeu usiug the term "welware" for pattern, of .'IOciaJ inLellu;lion sinre the
early 1970's, but lIu{ortunately, it has recently taken on a new meaning in the IlO-Cillled
cyberpunk literature, In both cases, the name i, derived hom the filct that human (iUld
more generaJly, most animal) hodies are mostly waler. ~Dryware" refer' lo the formal
documents (except 8Oftwa.re) 1I.8S0crded with systems, including r~uirement, deflil!n, "nd
apecifi.ca~ion docnmenla. Of conrse, such documenla are not in general (lilly dry, i.e" fully
formal, hilt aJso have an informal situated aspect.

4 3 REQUIREMENTS AS A SITE FOR RESEARCH

2.4 Theory Culture

There is a fourth culture that should also be mentioned, that of the the
oreticians. They have close links with both mathematicians and the dry
culture, a.:nd (in general) like to prove intere>ting theorems about some area.
of Computing Science tha.t has become sufficiently formalised. Sometimes
they may produce "airware," Le., resnlts with little or no immediate prac
tical application. It is perha.ps sad, but true, that basic definitions often
have the greatest practical value, and that hard theorems rarely have direct
practical value. Perhaps this helps to explain why the importance of the
oretical work is often underestima.ted. But results that seem useless today
may have significant practical importance in the future. For example, the
whole field of Computing Science arose out of highly theoretical work in
metamathematics due to Turing; and revolutionary improvements may well
arise out of some of today's seemingly most esoteric research.

3 Requirements as a Site for Research

The lifecyde of a system is often considered to consist of a number of
"phases". There js no universal agreement on what these are, a.nd in fact,
their number, names and houndaries are somewhat arbitary, but roughly
speaking, the following may be distinguished:

1.	 needs, in which the desirability of a certain kind of system is identified
at a.n executive level;

2.	 rfl'}uirements, in which properties that the system must satisfy in order
to succeed are determined;

3. design, in which a rough architecture of the system is determined, e.g.,
as a. block diagram of its major components;

4. specification, in which the behaviour of the components is described;

5. construction,	 in which the components are actually built, and then
assembled to form the system;

6. validation,	 in which the resulting system is tested against its specifi
catjons;

7. deployment, in which the system is instaJled in its target environment;
and

8.	 maintenance, in which the system is continually modified, upgraded
and debugged.

It is interesting that most of the effort for typical large systems goes into
the maintenance phase. Some advocates of dry culture have argued that this
is because not enough effort has been put into being precise in earlier phases,
particularly specification, but [believe the real reason is that much more is

3.1 The Oxford Centre for Requirements and Foundations 5

going on in the so-called maintenance phase than meets the eye. The first
observation is that in real projects, there is no orderly progression from one
stage to the next (contrary to the so-called waterfall model) but rather, there
is a continual process of projection forward and backward; for exampll"l the
client may perceive a new need (or reassess an old one), or tbe implementer
may perceive a new opportunity (or impossibility); also, rapid prototypes
may be built to assess feasibility, and can lead to changes in requirements,
specifications, etc. In fact, both feedback and feedforward go on all the
time, at least in snccessful large projects. fn particular, reassessment of
requirements, specification, and code, as wen as redoing of documentation
and validation, is very much a part of the so-called maintenance phase;
thus, the maintena.nce phase may contain smaller versions of the complete
lifecycle5

•

The waterfall model has been widely criticised, a.nd many alternatives
have been proposed; even so, feedback and feedforward are not as appreci
ated as they should be, and many projects have process models that sewrely
limit adapta.tion. One very pernicious factor is procurement processes that
attempt to rigidly separate phases with contractual barriers in the name of
competition.

The belief that the steps of the lifecycle should be executed sequentially
is a crude form ofthe myth that there is a more or less unique best system to
he built. Similarly, in the requirements phase, one might believe that tnere
is a unique best model of the organisation. However, requirements are fmer~

gent, in the sense that they do not already exist, but rather emerge from
interactions between analysts and the client organisation. Moveroverl re
quirements continually change, just as the organisation does, and sometimes
the requirements process can have a significant impact on an organisation,
for example, causing it to adopt some recommendations before the system
is actually delivered, and perhaps even rendering the system unnecessary.

As already noted, the requirements phase of a large software aJldjor
hardware development project is the most error-prone; moreover, these er
rors are the most expensive to correct [2, 3]. Consequently, this phase has
the greatest economic leverage. Unfortunately, it is also the least explored,
and has the least satisfactory intellectual foundations. It therefore seems a
good place to invest effort.

3.1 The Oxford Centre for Requirements and Foundations

At the Oxford Centre for Requirements and Foundations, we ace trying to
reconcile the cultures described in the previous section. We want to do
practical work on real systems, and we also want to explore the foundations
of this difficult area. The need for progress is acute. For example, large
projects ha.ve an astonishingly high likelihood of failure6 • Our research is

~H follows th.at methods lhAt help with requiremenls CAn also help wil,h some I.lpec~

of mIUD\.enAD.ce.
B A 1979 study by lhe U.S. Government Accounting Office [27] reporl.'l that SS% of

fundI! were WllBted in a .'Iample of nine projects totalling neArly 7 million dollu'!: lh~le are

6 3 REQUIREMENTS AS A SITE FOR RESEARCH

particularly focused on the earliest phases of the software- Ufecycle, the re
quirements and specifications.

But the problems in this area seem very difficult, 80 that it would not
be wise to expect too much progress too quickly. Also, we believe that some
really new ideas are needed, because the social issnes that lie at the root
of the difficulties are not amenable to modelling by traditional technologi
cal ti'Chniques. Consequently, we are exploring techniques (rom Discourse
Analysis7 •

At present, we have three major projects in the requirements area.. The
first ofthe5e aims to classify and evaluate existing requirements methods in a
scientific, unbi3!ied way; this is important because of the many exaggerated
claims that ca.n be found in the marketplace. Some prelimlnary results
from this project are described in Sectiou 4 below. The second project
is a case study, exploring the viability of using social science methods in
Requirements Engineering. Some preliminary results from this project are
presented in Section 5 below.

We expect to start a third project on "hyper-requirements" in the near
future. This will consider requirements for systems to improve the traceabil
ity, accessibility, modularity, and reusability of the numerous objects that
arise and are manipulated during the requirements phase. We will explore a
flexible, user-confignrable object oriented database to support links among
related objects (in a wide variety of senses of "related,'" as in hypertext sys
tems), in order to ground requirements decisions in the prior objects that
justify them. We hope that this will snpport the situatedness of require·
ments decisions, as well as their traceability through an idealised chain of
causal stages. This approach associates related objects into wbat are called
module dustcrs in [5J. Generic modules may lead to improved reuse, and
a generalised notion of t.iew is used to organise the links that give a ratio
nal reconstruction of the reasons that lie behind decisions. These techniques
should also be useful in the design phase, duriug which specifications are pro
duced from requirements, as well as in the coding aud maintanence phases.
We hope to eventually produce a prototype for such a system, perhaps with
a hypermedia user interface.

There are three other projects that we expect to start soon in the Centre:
a study of multi-media medical records, with a view towards developing
common European standards; a study of the semantic foundations of object
oriented informatiou systems; and a long term study of situated. adaptive
software. The first two are sponsored by the European Commission under its
Esprit programme, and the third by the Japanese government agency MIT!.
In addition, there are related projects of a more formal character, coucerned
with object oriented specification and throrf":m proving, sponsowd by SERC,
DTI and Esprit.

some indica.tions tha.t things ma.y be better now.
7In this paper, J use "Discourse Ana.lysis" in a broad sense lhat indudt$ techniques for

a.naJy~ing wrilten texts in their socia.l conlut, a.6 well &9 techniques for anaJysiug spoken
language and other natural interaclion

4

7

Methods
I

I I
Modern Postmodem

I

Uni1tary	 Plur~istic
I r L..I ----,

I i I I

Hard Soft Divisive	 Cooperative

I	 r--.1i-----,I I I I
Marxist Critical Democratic	 Anarchic/

Li berlan an

Figure 1: A Taxonomy for Requirements Methods

The Classification of Requirements Methods

We are working under the hypothesis that every requirements method has
its own, usually unarticulated, theory of organisatioDs, which is therefore
an implicit sociological theory. Heme, a good cla.s8ification of sociologicaJ
theories would provide a good basis for classifying requirements methods.
We have found a useful starting point in the work of French philosopher
Lyotard [23]. His scheme first distinguishes between (what he calls) modw
em and postmodem throries; in the former, it further distinguishes between
(what we call) unitary and dual approaches. Unitary, or systems theoretic,
a.pproaches assume that there is some unique pre-p-Xisting "real system" to
be "captured." Dualistic, also called critical or nea-Marxist, approaches as
sume that the most important feature of an organisation is the split between
its workers and its rna.nagers. Postmodern theories assert tbat organil,alions
are composed of many "local langua@;e games"S that cannot necessarily be
unified, or neatly divided into parts.

We9 have modified Lyotard's taxonomy, first by subdividing the uni
tary class into hard and soft subclasses, and second by extending the dual
class to be plurali..."tie, with major subclasses divisive and cooperative, which
are further subdivided into Marxist and critical, a.nd democratic and anar
chic/libertarian, respectively. See Figure l.

Most existing work in requirements falls within the systems theory clas
sification; for example, the most familiar structured design methods are all
hard unitary. Work in the Scandinavian tradition falls into the coopera.
tive democratic classification. There is very little work in requirements that
falls within the postmodern classification, although there is some relat.ed
work in Computer Supported Cooperative Work. For this reason, we are

8This phrase w;u; introduced by Lyotard [23], inspired by WiUgensl,ein'9Iale work on
language games.

9This vemon of Ihe taxonomy is the result of much discuMion within the CenLrf, and
!OQme significant help from Dr. Susan Leigh Star.

5

8 5 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

undertaking a. case study ourselves, as described in the next section.
A major goal of our survey project is to compile a. Methods and Tools

Handbook, intended be useful to managers in deciding how to organise actual.
projects. This document will include a. taxonomy of relevant methods and
relaied disciplines, with an annotated selection of relevant books, papers,
individual5, groups, a.nd especially of methods and tools. We will try to
identify the best of these, and to indicate the applications for which they
8~m particularly suitable. We will be especially concerned with actual
experience, a.nd we will also be alert to the pOSBibilities of hybrid methods.

Discourse Analysis and Requirements Engineer
ing

Although natural language is often criticised for its informality, ambiguity,
and lack of explicit structure, these features can actually be advantages for
requirements. For example, these features of natural language can facilitate
the gradual evolution of requirements, without forcing too early a resolution
of conflicts and ambiguities that may arise from the initial situation. Also,
natural language, possibly supplemented by graphics, is often the medium
preferred hy the individuals who represent the client.

There is a growing hody of evidence that natural language js actually far
more structured th3J1 most people realise, and that this natural discourse
structure carries much important information about the structure of what is
being described. For example, work hy Abbott (IJ, and by Enomoto, Horai
and others [30] shows that the nouns and verbs used in stating requirements
provide important clues to an object oriented design for the system. In par
ticular, the nouns give clues about classes and their attributes, and the verbs
give clues ahout methods. Syntactic structure can also show relationships
of inheritance and clustering.

Wor'k by Gognen and Linde [7] shows that task oriented descriptions
can be readily translated into data flow diagrams. Therefore, the applica
tion of linguistic analysis to naturally occurring instructional disconrse is
highly compatible with standard structured design methodologies, such as
those of De Marco [24], Jackson [14], and Yourdon [34]. Other research
by Goguen and Linde [22, 12, 8, 10] uses tecbniques from sociolinguistics
to show that explanations, directions, and otber everyday types of discourse
havea well defined high level structure that relates directly to their semantic
domains. What is called "command and control" disconrse in [71 is relevant
to Requirements Engineering, because it can reveal the struct ure of tasks
unfolding in real time.

We consider that all such discourse structures are situated, emergent,
open, locally organised, and contingent. As mentioned hefore, "situated
ness" refers to the social context that is needed to fully understand such
structures, and "emergence" refers to the claim that these structures are
jointly constructed by members through their on-going interactions. "Open·
ness" refers to the view that theories of such structures cannot in general he

9

______ Value system

How/WhY,--- ------
Organiaa.lion Beliefs
of informa.lioD aboot
and work realityl'\ ~~:::/\ / ~ /~

111.. mon"')' Money ill We'", W,,'", °rsUIie&l.ion Mallimurn Priori tie. nu. 'J'hj"
10 bo limited humane helping ahouJd bol information .lwu.ld be h...in_ ~~~ buainesa;8
made ia by human to each these p~i""and DouId be uplicit its ena-gy rational 8rId
unlimited eno.rgy oLher peopl.t explicil &:Ill.h~ from ou"'d.. com.prehellBibl..

Figure 2: A Value System Tree

given a final and complete form, but should remain Open to revision in the
light of further analysis ana further data. "Local organisation" refers to the
idea that what participants do is conditioned by details of the situation in
which they find themselves, including, for example, the timing of it. previous
utterance. "Contingence" refers to the fact that the interpretation of past
actions, and the possibilities for futufe actions, depend upon the details of
current interactions.

One specific result from [1] is that organisations (and parts of orga.ni
sations) tend to have value systems, whose structure can be expressed as
a value ~y.dem tree, with higher level nodes corresponding to higher le\·el
values, and lower level nodes corresponding to refinements, applications, or
corrections of superordinate nodes; this structure is similar to that of classes
under inheritance in object oriented programming. The method used in [7)
for discovering such structures is to analyse what are called evaluations in
narratives, Le., roughly the morals of stories. It may be surprising to some
that such evaluations are an integral part of the internal structure of natu
rally occurring narratives. and are not confined to a summary statement at
the very end. Indeed, the discourse and syntactic placement of evaluative
material can be an important due to its position in the value system tree.
The classic work on the structure of narratives is due to Labov [18].

Figure 2 shows part of a value system tree obtained by Goguen and
Linde [6J in 1978. It represents the values of a small corporate recruitment
(Le., "'head hunting") firm. All nodes at the first three levels are analysts'
constructions, with support from the data. The phrases in the fourth level
are taken from the evaluative clauses of stories and jokes collected at lhis
firm, mostly during lunch and coffee breaks. (Some of the uodes at the fourth
level of Figure 2 have two more levels below them.) Note the contradiction
between the first two nodes on the fourth level. This illustrates the fact

105 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

that real value systems are not necessarily consistent. Perhaps this is one of
the reasons why it is difficult (or perhaps impossible) to elicit values from
members just by asking for them. Indeed, value systems, like many other
aspects of 5Odallife, are hidden.

The value system tree of the client (and/or end user) can help the ana..
lyst make appropriate trade-airs between conflicting requirements (such as
cost versus almost everything else, including speed and functionality). The
hiera.rchical structure of the value system tree can also tell analysts which
requirements should be given precedence over others, and can clarify the
nature of the conflicts involved [7], because higher level values are more sig
nificant. It is also possible to assign weights to values based on the frequency
of clauses that support them. The analysis of task oriented discourse also
seems promising for Requirements Engineering, because it can provide the
fundamental units of traditional analysis, wmch are the main items of infor
mation involved significant tasks, and the main transformations performed
on them. The analyses of task oriented discourse and of narratives were the
two basic techniques used in [6]. See Section 5.1 for some further discusBi.on
of value system trees.

It can be difficult to gather good data upon which to base requirements.
Experience suggests that simply asking managers what they want often does
nol work well. We believe that ethnomethodology [4} can provide useful gen
eralguidelines for how to collect high quality data about social interaction.
This approach recommends looking closely at how competent members of a
group actually organise their behaviour, and in particular, at the concepts
and the methods that they use to render their actions intelligible to one
another; this contrasts with presupposing that the concepts and methods
of the analyst axe necessarily superior to those of members. We are work
ing with the hypothesis that members' concepts and methods can be useful
inputs to the requirements process.

On the other hand, analysts often need to do things that members do not
need to do, and then they may need methods and concepts that members
do not use. For example, analysts may want to accumulate statistics on
telephone calls that would be incomprehensible to those making the calls.
Thus, the principles of ethnomethodology may not apply to the analysis of
data. Even so, analysts can generally benefit from knowiug the methods
and concepts of members, particularly when they want to do something
that members regularly and ordinarily do themselves. It should also be
noted that relationships between ethnomethodology and the structure of
large-grain discourse types, such as narratives and plans, have not heen
much explored, and there may be some incompatibilities, as discussed in
[15]. We plan to pursue this issne further. See [21], [9] and I15] for relatively
comprehensible expositions of ethnomethodology.

The emphasis of ethnomethodology on members' competence, members'
concepts, and members' methods is a significant departure from the tradi
tional dogmas of "scientific method", which call for a rigid separation he-
tween subject and object, i.e., between observer and observed. But physics

11

has already moved rather far from classical ohjectivitylO. and 80 it should
not be surprising if sociology, and social aspects of computing l bad. to go
even (urtber.

Conversation Analysis grew out of ethnomethodology through the work
of Sacks on how speakers organise such details as timing, overlap, response,
interruption. and repair in ordinary conv€r6ation (e.g., see [29]). Interaction
Analysis extends Conversation Analysis from audio to video data. See [13]
for a recent overview of Conversation Analysis, and [17] for a collection of
essays on and applications of Interaction AnAlysis.

An e8llentia.1 property of real social data is that it is situated, that 1s, it
can only be fully understood in relation to the particular, concrete situation
in which it occurred. As Suchman [32J points out, situated actioQS are em
bodied, ad hoc, contingent, alld local; it is only our post hoc explanations
for them that appear to be what Latour [19] calls immutable mobiles, which
are structures that can be transported from one context to another with
out undergoing essential change, and which therefore can participate in the
discourse of Bcience. Thus, "'immutable mobiles" are information structllres
that have been at least partia.lly dried out.

It is alBO worth noting that analysts construct immutable mobiles in
order to support their positions in agonistic encounters, such as meetings
with managers, or meetings with peers. Data flow diagrams are a good
example. As Latour [19] points out, this is an issue of power, a way of mo
bilising support by compressing large a.mounts of data into simple graphical
representations.

Information systems are a particula.rly interesting site for research. Such
systems are repositories for immutable mobiles, and increasingly they pro
vide the means for producing new immutable mobiles, and for transporting
them into new contexts; information systems are powerful engines for con
ceutrating and applying power. Consequently, the design of an information
system is a natural occasion for power struggles, and it is important that
the huma.n interests of aU stakeholders he recognised and protected. failure
to do so explains why ma.ny large systems have not worked weU in practice.
In fact, for an information system to be successful, it will often have to serve
as what Star 131] calls a "boundary object," which is used a.nd interpreted
in different ways by different social groups, in order to meet their different
needs.

We a.re now designiug a case study of a "'live" project within BT to test
the practical application of techniques of Discourse Analysis to Requirements
Engineering. This will involve the analysis of video tapes of interviews
conducted by Requirements Analysts. and also of their internal working
sessions, with a view to explicating their work practices, and developing
better methods for requirements elicitation and analysis.

IOPenrose [28] give~ an elegant and readable exposition which shows just how strange
contemporary physics can be.

125 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

Visitors' Cup. Hea.t 1: Jesus, Ca.mbridge v. Christ Church;
Hea.t 2: Oriel v. New College; ... Hea.t 8: Lady Margaret v.
winner of Heat 1; ... Heat 26: Winner of Heat 23 v. winner of
Heat 24; Final: Winner of Heat 25 v. winner of Hea.t 26.

Figure 3: Draw for the Henley Regatta

5.1 Two Examples

This subsection uses two examples to illustra.te some issues that arise in try
ing to reconcile the situa.ted and the context insensitive Infonnation. Each
example organises some da.ta. into what computing scientists call a. tree struc
ture.

The first example is the value system tree of Figure 2. Here, the tip
nodes a.re situated, in that they arise directly from actual narratives by
membeOi. Many interior nodes, which express superordinate values, are also
situa.ted in this sense, but others may be created by analysts, by clustering
nodes into larger and larger related groups, in the general style of the KJ
method [16]. The edges, which express relationships of subordination, are
to a certain extent situated in that there may be direct evidence for them
in the structure of the discour!;e, and in any case, members can he asked
about them.

However, the tree as a whole is an analysts' construction: members do
not talk about properties of the tree as a whole, such as its number of nodes
or edges; they do not have names for these concepts, and they do not regard
questions abont them as meaningful. Instead, this tree serves as a formal
summary of the data that has been collected so far, and of the analysts'
current understanding of it. In fact, this structnre is not only formal, but is
also open and contingent, in that it remains sub~ct to revision in the light
of fllrther data and further analysis. This is typical of summary objects for
data. from the social sciences, as pointed out, for example, by Levi-Strauss
[201·

Our second example comes from Toulmin's suggestive book The Uses
of Argument [33]. Here, both the nodes and the tree itself are socially con
structed, shared structnres that are fully situated and available to members.
In particular, members talk about globa.! properties of this tree, including its
internal nodes and its edges, and the number of each; they also have names
for these concepts. This example is the annual regatta at Henley, in which
nodes represent boats (Le., "'crews"), internal nodes represent winners of
races (Le., "'heats"), and edges point to the participants in a race. Figures
3 and 4 show part of an initial "draw" for one such rMell . The number of
interna.! nodes is the tota.! number of races, and the uumber of edges is the
number of instances of crews racing. This formal structure is situated in

"Tonlmin [33J presents his dda in the Corm 8hown in Fignre 3, saying that it come~

{rom "the sporte page oC a Sunday paper," presumably in lhe mid-19S0s.

5.2 Djscussion 13

/w.
/00'/ ~ w,

/"" ~ /""
Jesus, Christ Lady Oriel New
Camb. Church Marga.ret College

Figure 4: Tree for the Henley Regatta Draw

the events of a particular actual regatta, and it is detennined on a local, ad
hoc, contingent basis. In particular, the internal variables (WI, W2, ..•) of the
draw hecome instantiated by concrete situated events that unfold in actual
time, until the whole race is summarised by a single structure that tells
what happened, including which crews raced in each heat, and who won.
Note that the structure may change during an instance of the regatta; for
exa.mple, a crew can be disqualified, resulting in fewer heats than originally
scheduled.

Members a.re awa.re that the same structure (i.e., "race») can be pre
sented in a variety of ways; for exa.mple, it can be represented by a table
in a newspa.per as in Figure 3, by a verbally presented list, or by the com
puter sdentists' traditional representatioll 12 , shown in Figure 4. Hence,
there is a precise structure here that is independent of how it happens to be
represented; this means that we have an abstmct data type, in the precise
mathematical sense of [11], which is an isomorphism class of computa.ble
ma.ny-sorted algebrasI3 • Of course, this does not mean that members are
familiar with this matbematical concept; even Toulmin only uses concrete
representations.

5.2 Discussion

These examples, particularly the second one, show that "'dry" structures
occur "in na.ture,'" that is, in ordinary social interaction, in the sense that
members of ordinary groups (such as sports fans) organise their talk in ways
that correspond to such structures. These structures can be prin ted in news
papers or shown on televi&ion, in a compact graphical form. Nevertheless,
the structures are still recognisably situated, that is, locally organised, con

1'lNote thd thu representation differs from trees on earth, which have their root! a.lthe
boUom.

"The diJrerent algebras in lhe daM correspond to the different representatioDfi of lhe
lIame a.bstract structure; see [11] for deta.ils.

14	 6 SUMMARY

tingent and ad h~, and they attain a sort of immutability only in retrospect.
In the case of a value system tree, the analysts are socially responsible for
some parts of the structure, a.nd the members of the organisation for other
parts; the tree itself is only meaningful to members of the a.nalyst culture.

These observations seem to offer some hope of making further progress
in Requirements Engineering jf we recognise the situated nature of the struc
tures involved, and indeed, of the whole requirements process. This means
that we must effect an ongoing, practical reconciliation of "the dry" a.nd "the
wet~ in the prodice of Requirements Engineering. Nor should we ignore the
power of "hadting" code, or of deep theoretical reflection on the mathe
matical properties of certain structures; for example the hyper-requirements
project described in Section 3 attempts to reconcile a.U of these aspects.

6 Summary

This section collects some points from the body of the paper that may be
especia.Uy provocative:

1.	 Requirements Engineering is a very challenging and rela.tively little
explored field, so that any conclusions are necessarily somewhat ten
tative.

2.	 It seems likely that approaches quite different from the traditional
systems analyses methods will be needed, in order to take account of
the social context in which computing systems are used.

3.	 The examples in Section 5.1 suggest that the social nature of informa.
tion structures is a complex problem that may require sophisticated
analysis. It seems that neither a purely formal (Le., dry) nor a purely
social (i.e., wet) approach will suffice, and that an effective approach
to systems development must reconcile the dry and the wet.

4.	 Structures as dry as abstract data type; occur "in nature", that is,
in the natura.Uy occurring discourse of ordinary social groups, such as
sports fans.

5.	 On the other hand, requirements are emergent, in that they arise from
interactions between analysts and members of the client organisation.
Moveover, requirements change as the organisation does, and some
times the requirements process itself can have a significant effect on
an organisation.

6.	 Much of what analysts do is not consistent with ethnomethodology;
analysts' methods are often not memhers' methods. Nor should they
be.

7. In particular, analysts construct what Latour [19] calls "'immutable
mobiles" in order to support positions in agonistic encounters, such as
meetings with managers, or peers.

1,

8.	 Computer systems are increasingly repositories (or immutable mobiles,
and increasingly provide the means for producing new immutable mo
hiles, and for transporting them into new contexh. Hence, computer
systems can be powerful engines for concentrating and applying power.

9.	 Thus, requirements analysis for such systems is a na.tural occasion
for power struggles, and it is important that the human interests of all
stakeholders be recognised and protected. The failure to do 80 explains
why many large systems fail to work well in practice.

10.	 In fact, to be succeB8ful, a. computer system ma.y need to serve as what
Star [31] calls a. "boundary object" which intermediates the needs of
different social communitiell.

11.	 The rela.tionship between the dry and the wet is complez, in that
there are many different facets, which arise in different contexts and
at different levels of abstraction.

12.	 Tbe relationship between tbe dry and the wet is not one of antagonism,
in which one must be wrong and the other rightj rather, these two
aspects of data and its interpretation are complementary, and are both
needed for successful Requirements Engineering.

16 REFERENCES

References

[IJ	 RU6sell Abbott. Program design by inrormal English descriptions. Com
munications of the Association for Computing Machinery, 26(11):882
894, 1983.

[2J Barry Boebm. Software Engineering EeonomiC8. Prentice-Hall, 1981.

[3]	 Alan M. Da.vis. Software Requirements: Analysill & Specification.
Prentice-Hall, 1990.

[4J Ha.rold Garfinkel. Studies in Ethnomethodology. Prentice-Hall, 1967.

[5]	 Joseph Goguen. Hyperprogramming: A fonnal approal:h to 80ftWiYe
environments. In Proceedings, Symposium on Formal Approaches to
Software Environment TechM/ogy. Joint System Development Corpo
ratjoD, Tokyo, Japan, January 1990.

[6]	 Joseph Goguen and Charlotte Linde. Cost-benefit a.nalysis of a pro
posed computer system. Technical report, Structural Semantics, 1978.

[7]	 Joseph Goguen and Charlotte Linde. Structural semantic analysis of
the infonnation structure of organizations. Technical report, Structural
Semantics, 1981.

[8]	 Joseph Goguen and Charlotte Linde. Linguistic methodology for the
a.nalysis of aviation accidents. Technical report, Structural Semantics,
December 1983. NASA Contractor Report 3741, Ames Research Cen
ter.

19J	 Joseph Goguen and Charlotte Linde. Methodology for requirements
elicitation. Technical report, Centre for Requirements and Foundations,
Oxford University Computing Lab, 1991. Draft.

[IOJ	 Joseph Goguen, Charlotte Linde, and Miles Murphy. Crew communi
cation as a factor in aviation accidents. In E. James Hartzell and San
dra Hart, editors, Papers from the 20th Annual Conference on Manual
Control. NASA Ames Research Center, 1984.

[11]	 Joseph Goguen, Ja.mes Thatcher, and Eric Wagner. An initial alge
bra approach to the specification, correctness and implementation of
a.bstra.ct data types. Technical Report RC 6487, IBM T.J. Watson
R.esearch Center, October 1976. ln Current Trends in Progmmming
Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages 80
149.

[12]	 Joseph Goguen, James Weiner, and Charlotte Linde. Reasoning and
natural explanation. International Journal of Man·Machine Studies,
19:521-559, 1983.

[13]	 Charles Goodwin and Johu Heritage. Conversation analysis. Annual
Review of Anthropology, 19:283-307, 1990.

17 REFERENCES

[14]	 Michael Jackson. Principles of Program Design. Academic, 1975.

[15]	 Marina. Jjrotka. Ethnomethodology and requirements engineering.
Technical report, Centre for R.equirements and Foundations, Oxford
University Computing Lab, 1991. Draft.

[16]	 Jiro Kawakita. KJ Method: a Scientific Approach to Problem Solving.
Kawakita Research Institute , 1975.

[17]	 Adam Kendon. Conducting Interaction: Patterns of Behavior in Fo
cused Encou.nters. Cambridge University, 1990. Studies in Interactional
Sodolinguistics Number 7.

[IB\	 William Labov. The transformation of experience in narrative synta.x:.
In Language in the Inner City, pages 354-396. University of Pennsyl
vania, 1972.

[19]	 Bruno Latour. Visualization and cognition: Thinking with eyes and
hands. Knowledge and Society: Studies in the Sociology of Cullure
Past and Present, 6:1-40, 1986.

[20}	 Claude Levi-Strauss. The Raw and the Cooked. Penguin, 1964. Tra.ns
lation by John and Doreen Weightman, 1986.

[21]	 Steven Levinson. Pragmatics. Cambridge University, 1983.

[22]	 Charlotte Linde and Joseph Goguen. Structure of planning discourse.
Journal of Social and Biological Strnctures, 1:219-251, 1978.

[23}	 Jean-Francois Lyotard. The Postmodern Condition: a Report on
Knowledge. Manchester UniveI1lity, 1984. Theory and History of Liter
ature, Volume 10.

[24]	 Tom De Marco. Structured Analysis and System Specijirntion. Yourdon,
1978.

[25J	 Carroll Morgan. Programming from SpeciMations. Prentice Hall, 1990.

{26]	 Christopher Nix and Peter Collins. The use of software engineering, in
cluding the Z notation, in the development of CICS. Quality Assurtlnce,
14(31'103--110, September 1988.

[271	 U.S. Government Accounting Office. Contracting for computer soft
ware development - serious problems reql1ire management attention to
avoid wasting additional millions. Technical R.eport FFGMSD-80-4,
U.S. Government Accounting Office, November 1979.

[28]	 Roger Penrose. The Emperor's New Mind. Oxford, 1989. Vintage
paperback edition, 1990.

129]	 Ha.rvey Sacks. On doing 'being ordinary'. In J.M. Atkinson and John
Heritage, editors, Strnctures of Social Action: Studies in Conversation
Analysis. Cambridge University, 1984. Original date, 1971.

18 REFERENCES

[30]	 Motoshi Sa.eki, Hisayuki Moral, Katsuyasu Toyama, Naoya Uemat8u,
and Hajime Enomoto. Specification framework based on natural lan
guage. In Proceedings of the Fourth InteNl4lional Workshop on Software
Specification Gnd Design, pages 87-94. IEEE, 1987.

[311	 Susan Leigh Star. The structure of ill-structured solutions: hetero
geneous problem-solving, boundary objects and distributed artificial
intelligence. In Michael Huhos and Les Gasser, edHors, Distributed Ar
tifieialIntelligence, volume 3, pages 37-54. Morgan Kauffmann, 1988.

[32J	 Lucy Suchman. Plam and Situated Actiom: The Problem of Human
machine Communication. Cambridge University, 1987,

[331 Stephen Toulmin. The Uses of Argument. Cambrjdge University, 1958.

[34J Edward Yourdon. Modem StructtJred Analysis. Prentice-Ha.ll, 1989.

