oY 2P : f
0 Flaivmpeitg Mammoting Lohcrotory

o
Lo

Uniid UAT 3G

THE DRY AND THE WET

by
Joseph A. Goguen

Technical Meonograph PRG-100

March 1992
Oxford University Computing Laboratory
Programming Rescarch Group

511 Keble Road .

Fl

OXFORD OX13QD O v

United Kingdom i
l 29 FEB 2007

L=

R

/

———————— e

Footeww

oK E 0;’2/3

HINARRARBHE

303397008X

et + e —c———
-——————

P — .

Copytight © 1992 Joseph A. Goguen

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

OXFORD 0X13QD

United Kingdom

Electronic mail: goguendprg.oxford.ac.uk

The Dry and the Wet!

Joseph A. Goguen?

Abstract

This paper discusses the relationship between formal, context insensitive
information, and informal, situated information, in the context of Require-
ments Engineering; these opposite but complementary aspects of informa-
tion are called “the dry” and “the wet.” Formal information occurs in the
syntactic representations used in computer-based systems. Informal situ-
ated information arises in social interaction, for example, between usersand
managers, as well as in their interactions with systems analysts. Thus, Re-
quirements Engineering has a strong practical need to reconcile the dryand
the wet.

Following some background on the culture of Computing Science, the pa-
per descrihes some projects in the Centre for Requirements and Foundations
at Oxford. One of these is a taxonomy for Requirements Engineering meth-
ods. Another is applying techniques from sociology and sociolinguistics to
requirements elicitation, and in particular, to determining the value system
of an organisation. These projects draw on ideas from ethnomethodelogy
and Conversation Analysis. The paper also demonstrates that structures as
dry as abstract data types occur in the ordinary discourse of social groups.

' The research reported in this paper has been anppaoried in part by a contract from BT,
and grants from the Scence and Engineering Research Coundil, the System Development
Foundalion, and the Fujitsn Laboratories,

2 Also with SRI Inlcrnational, Menlo Park CA, USA.

CONTENTS

Contents
1 Introduction
2 Four Cultures in Computing
21 HackerCulture,
22 Dry Culture e
23 Wet Culture i,
24 TheoryCultere
3 Requirements as a Site for Research
3.1 The Oxford Centre for Requirements and Foundations
4 The Classification of Requirements Methods
5 Discourse Anelysis and Requirements Engineering
51 Two Examples oo
52 Discussion e e e e e e e
8 Summary

1 Introduction

This paper is concerned with the relationship between formal, context in-
sensitive information and informal, situated information; these two opposite
but complementary aspecis of information will be called “the dry” and “the
wet,” Following some cultural backgronnd from Computing Sciencs, the
paper descrihes the Centre for Requirements and Foundations at Oxford,
using some of its projects to raise and discuss issnes about the relationship
between the dry and the wet.

One conclusion is that novel approaches may be needed, as well as a
willingness to he eclectic rather than dogmatic. In particular, it may be
necessary to abandon, or at least dilute, the notion of “ob jectivity” in or-
der to properly handle situated information, In this respect, I draw on
ideas from ethnomethodology and Conversation Analysis, as well as from
the work of Jean-Francois Lyotard on “postmodernism,” Bruno Latcur on
“immutable mohiles,” and Leigh Star on “boundary cbjects.” Also, we dis-
cover that structnres as dry as abstract data types can be found in the
ordinary discourse of social groups, such as sports fans.

This paper uses Requirements Engineering as a site for research on the
relationship between formal and informal information. Informal situated
information arises in social interaction, for example, in the worlds of users
and managers, as well as in their interactions with systems analysts. Formal
structures occur in the internal representations of computer-based systems,
which are suhject to the formal syntactic and semantic rules of computers
and computer languages. Thus, Requirements Engineering has an especially
strong practical need to reconcile the dry and the wet. Indeed, one might
almost say that this kind of reconciliation is the essence of Requirements
Engineering.

Acknowledgements

I wish to thank the members of the Oxford Cenire for Requirments and
Foundations for many stimulating conversations on the topics discussed here,
particularly Marina Jirotka and Matthew Bickerton; in fact, many of the
ideas here arose in response to a question asked by Marina. [also wish to
thauk my wife Kathleen for carefully reading several drafts of the paper and
offering many helpful comments. I thank the participants of COSCIS’91
{Conference on Collaborative Work, Social Communications and Informa-
tion Systems) in Helsinki for their many interesting comments following the
presentation of this paper as part of a panel discussion there; particular
thanks for Prof. Ronald Stamper for organisiug the panel and inviting me
to participate in it. Thaunks to Frances Page for preparing the figwes in
this paper. Finally, special thanks to Dr. Charlotte Linde for our long col-
laboration, during which I learned much of what I know about Distourse
Analysis.

2 2 FOUR CULTURES IN COMPUTING

2 Four Cultures in Computing

Difficulties with large and complex systems are accelerating the {ragmen-
tation of Compnting Science. This can be seen in the increasing frictions
amang tbe four subcultures within Computing Science that are described
in this section. Evidence for such a division can be found in systematic
diflerences in the vocabulary, conferences and jonrnals used by computing
scientists, as well as in the cemantic domains of their conversations, lectures
and publications. However, this is not the place to pursue such evidence in
detail.

2.1 Hacker Culture

Members of the old culture, which we shall call the “hacker culture ™ just sit
down, “bang code,” and patch it until it works. While this can be effective
and amusing for small projects, it does not work well for large projects, and
industrial practice typically imposes a complex system of manage ment con-
trols, incinding documentation standards, required walk-throughs, change
management, and so on. Hackers hate this, and argue that it does at least
as mucth harm as good. Hacker culture is somewhat undisciplined, but it is
alsc lively and creative, and hackers can often bnild effective systems where
other approaches fail.

2.2 Dry Culture

Another group, let us call them the *dry cultyre,” take the precision of for-
mal mathematical logic as their ideal. They say that computer programs
can be seen as mathematical objects, and the criteria for their correctness
can be formalised as mathematical formulae, so that the whole of program-
ming ran be seen as a branch of mathematics. Moreover, the same can be
done for hardware, by regarding system designs as mathematical objects.
System development can therefore be formalised as a process of moving,
step by step, from an abstract statement of what is wanted, to an object
that delivers it, in snch a way that each step can actually be proved correct
(e.g., see [25]).

There are indeed some successful examples of this, but there are also a
number of difficnities. One difficulty is that it can be a lot of work. Per-
haps computer-based tools can help reduce this effort; for example, syntax
checkers, theorem provers, and sophisticated configuration managers should
be useful. But with the present state of the art, it appears inevitable that
a fully rigorous system development approach will take more effort than an
informal approach. Advocates of the dry culture argue that the extra effort
is worthwhile for certain systems, including safety critical systems. Interest-
ingly, hardware projects may he easier to automate, because certain useful

?In the U.S., the media seem to be trying to change the meaning of the word “hacker”
so that il connotes law breaking, rather than a fascination with computing and cornmu-
nications technology as such. Here, we use the original meaning.

2.3 Wet Cufture 3

formalisms are also simple, although somewhat incomplete.

Examining the sonrces of difficulty for large systems projects reveals
that incorrect code is a relatively ingignificant factor, dwarfed by incorrect
specifications and (even more significantly) incorrect requirements [2, 3].
Formal methods can indeed increase the likelihood that code satisfies some
given specification; hnt this is not much help if the specification is wrong.
However, by providing a precise language for specifications, formal methods
can also aid in the social process that produces specifications, by reducing
misunderstandings. Trying to formally verify certain properties of a spec-
ification may also reveal some bugs. But experience seems to ehow that
formal methods are most effective when used in a relatively informal way as
a medium of commnnication {26]. This can make advocates of the dry cul-
ture uncomfortahle, because it is rather far from the ideal of mathematical
perfection,

Please note that I am not denying that formal mathematical models
can be useful in many jmportant situations. For example, compiler writ-
ers use formal language theory, and information systemn designers use data
modelling. But the higher levels of formality seem to be unsuitable for
communication with (most) managers and users, and can even slow down
communication among designers and implementers. Moreover, formal meth-
ods do not {and cannot) address the kind of issues considered in the next
subsection.

2.3 Wet Culture

A still closer examination of the major source of difficulty in large software
projects — which is their reqnirements — shows that factors from the social
world often lie at the root. Advocates of what I shall call the “wet culture®
say that this mnst be taken seriously, because social, political and cultural
factors ultimately determine the success of systems. For example, if alarge
information system does not meet the day to-day needs of its users, then
it may not be used at all. This culture therefore calls for using methods
from the social sciences, particularly during the requirements phase of large
system development projects. A significant difficulty with this, however, is
that few computing scientists know very much about the social sciences;
indeed, many computing scientists have little sympathy with the social sci-
ences, and prefer the relative certainties ol hardware, software and dryware,
to the ambiguities, conflicts and vagueness of wetwaret.

‘I have been using the term “weiware” for patterns of social intetaclion since the
early 1970%s, but unfortunately, it has recently taken on a new meaning in the socalled
cyberpunk literature. In both cases, the name is derived [tom the fact that human (and
more generally, most animal) bodies are mostly water. “Dryware”® refers Lo the formal
documents (except software) associaled with sysiems, including requirement, design, and
specificalion docnments. Of conrse, such documents are not in genetal fully dry, ie, fully
formal, but also have an informal situated aspect.

4 3 REQUIREMENTS AS A SITE FOR RESEARCH

2.4 Theory Culture

There is a fourth cultnre that should also be mentioned, that of the the-
oreticians. They have close links with both mathematicians and the dry
culture, and (in general) like to prove interesting theorems about some area
of Computing Science that has become sufficiently formalised. Sometimes
they may produce “airware,” i.e., resnlts with little or no immediate prac-
tical application. It is perhaps sad, but true, that basic definitions often
have the greatest practical value, and that hard theorems rarely have direct
practical value. Perhaps this helps to explain why the importance of the-
oretical work is often underestimated. But results that seemn useless today
may have significant practical importance in the future. For example, the
whole field of Computing Science arose out of highly theoretical work in
metamathematics due to Turing; and revolutionary improvements may well
arise out of some of today’s seemingly most esoteric research.

3 Requirements as a Site for Research

The lifecycle of a system is often considered to consist of a number of
“phases”. There is no universal agreement on what these are, and in fact,
their nember, names and boundaries are somewhat arhitary, but roughly
speaking, the following may be distinguished:

1. needs, in which the desirability of a certain kind of system is identified
at an executive Jevel;

2. requirernents, in which properties that the system must satisfy in order
lo succeed are determined;

3. design, in which a rough architecture of the system is determined, e.g.,
as a block diagram of its major components;

4. specification, in which the behaviour of the components is described;

B. construction, in which the components are actually built, and then
assembled to form the system;

6. velidation, in which the resulting system is tested against its specifi-
cations;

7. deployment, in which the system is installed in its target environment;
and

8. maintenance, in which the system is continually modified, upgraded
and debugged.

It is interesting that most of the effort for typical large systems goes into
the maintenance phase. Some advocates of dry culture have argued that this
is because not enough effort has been put into being precise in earlier phases,
particularly specification, but [believe the real reason is that much more is

3.1 The Oxdord Centre for Requirements and Foundations 5

going on in the so-called maintenance phase than meets the eye. The first
observation is that in real projects, there is no orderly progression from one
stage to the next (contrary to the so-called waterfall model) but rather, there
is a continual process of projection forward and backward; for example, the
client may perceive a new need (or reassess an old one}, or the implementer
may perceive a new opportunity (or impossibility); also, rapid prototypes
may be huilt to assess feasibility, and can lead to changes in requirements,
specifications, etc. In fact, both feedback and feedforward go on all the
time, at least in snccessful large projects. fn particular, reassessment of
requirements, specification, and code, as well as redoing of documentation
and validation, is very much a part of the so-called maintenance phase;
thus, the mainienance phase may contain smaller versione of the complete
lifecycleS.

The waterfall model has been widely criticised, and many alternatives
have been proposed; even so, feedback and feedforward are not as appreci-
ated as they should be, and many projects have process models that severely
limit adaptation. One very pernicious factor is procurement processes Lthat
attempt to rigidly separate phases with contractual barriers in the name of
competition.

The belief that the steps of the lifecycle should be executed sequentially
is a crude form of the myth that there is 2 more or less unique best system to
he built. Similazly, in the requirements phase, one might believe that there
is a unique best model of the organisation. However, requirements are emer-
gent, in the sense that they do not already exist, but rather emerge from
interactions between analysts and the client organisation. Moverover, re-
quirements continually change, just as the organisation does, and sometimes
the requirements process can have a significant impact on an organisalion,
for example, causing it to adopt some recommendations before the system
is actually delivered, and perhaps even rendering the system unnecessary.

As already noted, the requirements phase of a large software and/or
hardware development project is the most error-prone; moreover, thes er-
rors are the most expensive to correct [2, 3]. Consequently, this phase has
the greatest economic leverage. Unfortunately, it is also the least explred,
and has the least satisfactory intellectual foundations. It therefore seems a
good place to invest effort.

3.1 The Oxford Centre for Requirements and Foundations

At the Oxford Centre for Requirements and Foundations, we are trying 1o
reconcile the cultures described in the previous section. We want (o do
practical work on real systems, and we also want to explore the foundations
of this difficult area. The need for progress is acute. For exambple, large
projects have an astonishingly high likelihood of failure®. CQur research is

31t follows that methods that help with requirements can also help with some apects
of maintenance.

"A 1979 study by the U.5. Government Accounting Office [27] reports that 8% of
fands were wasted in a sample of nine projects totalling nearly 7 million dollars; Lhere are

6 3 REQUIREMENTS AS A SITE FOR RESEARCH

particularly focused on the earliest phases of the software lifecycle, the re-
quirements and specifications.

But the problems in this area seem very difficult, so that it would not
be wise to expect too much progress too quickly. Also, we believe that some
really new ideas are needed, because the social issnes that lie at the root
of the difficulties are not amenable to modelling by traditional technologi-
cal techniques. Consequently, we are exploring techniques from Discourse
Analysis,

At present, we have three major projects in the requirements area. The
first of these aims to classify and evaluate existing requirements methods ina
scientific, unbiased way; this is important because of the many exaggerated
claims that can be found in the marketplace. Some preliminary results
from this project are described in Sectiou 4 below. The second project
is a case study, exploring the viability of using social science methods in
Requirements Engineering. Some preliminary results from this project are
presented in Section 5 below.

We expect to start a third project on “hyper-requirements” in the near
future. This will consider requirements for systems to improve the traceabil-
ily, accessibility, modularity, and reusability of the numerous ob jects that
arise and are manipnlated during the requirements phase. We will explore a
flexible, user-confignrable object oriented database to support links among
related objects (in a wide variety of senses of “related,” as in hypertext sys-
tems), in order to ground requirements decisions in the prior objects that
justily them. We hope that this will snpport the situatedness of require-
ments decisions, as well as their troceabifily through an idealised chain of
causal stages. This approach associates related objects into what are called
module clusiers in [3). Generic modules may lead to improved reuse, and
a generalised notion of mew is used to organise the links that give a ratio-
nal reconstruction of the reasons that lie behind decisions. These techniques
should also be useful in the design phase, duriug which specifications are pro-
duced from requirements, as well as in the coding aud maintanence phases.
We hope to eventually produce a prototype for such a system, perhaps with
a hypermedia user interface.

There are three other projects that we expect to start soon in the Centre:
a study of multi-media medical records, with a view towards developing
common European standards; a study of the semantic foundations of object
oriented informatiou systems; and a long term study of situated, adaptive
software. The first two are sponsored by the European Commission under its
Esprit programme, and the third by the Japanese government agency MITIL.
In addition, there are related projects of a more formal character, coucerned
with object oriented specification and theorem proving, sponsored by SERC,
DTI and Esprit.

some indications that things may be better now.

"In this paper,] use “Discourse Analysis™ in a braad sense that includes techniques for
analysing written texts in their social context, as well as techniques for analysiug spoken
language and other natural interaction.

Metlhods
Mo%iern Postmlodern
Uniltary Plur!iﬂistic
Hard Soft Diviisive Coopelra.tive
Marxist Critical Democratic Anarchic/

Libertarian

Figure 1: A Taxonomy for Requirements Methads

4 The Classification of Requirements Methods

We are working under the hypothesis that every requirements methaod has
its own, usually unarticulated, theory of organisations, which is therefore
an implicit sociological theory. Hence, a good classification of sociological
theories would provide a good basis for classifying requirements methods.
We have found a useful starting point in the work of French philosopher
Lyotard [23]). His scheme first distinguishes between (what he calls) mod-
ern and postmodern theories; in the former, it further distinguishes between
(what we call) unitary and duval approaches. Unitary, or systems theoretic,
approaches assume that there is some unique pre-existing “real system” to
be “captured.” Dualistic, also called critical or neo-Marxist, approaches as-
sume that the most important feature of an organisation is the split between
its workers and its managers. Postmodern theoties assert tbat organisations
are composed of many “local language games™ that cannot necessarily be
unified, or neatly divided into parts.

We® have modified Lyotard’s taxonomy, first by subdividing the uni-
tary class into Aard and soff subclasses, and second by extending the dual
class Lo be pluralistie, with major subclasses divisive and cooperutive, which
are further subdivided into Marzist and critical, and democratic and aner-
chicflibertarian, respectively. See Figure 1,

Most existing work in requirements falls within the systems theory clas-
sification; for example, the most familiar structured design methods are all
hard unitary. Work in the Scandinavian tradition falls into the coopera-
tive democratic classification. There is very little work in requirements that
falls within the postmodern classification, although there is some related
work in Computer Supported Cooperative Work. For this reason, we are

8This phrase was introduced by Lyotard [23], inspired by Witlgenslein’s lale work on
language games.

?This version of Lhe taxonomy is the result of much discussion within the Centre, and
some significant help from Dr. Susan Leigh Star.

8 5 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

undertaking a case study ourselves, as described in the next section.

A major goal of our survey project is to compile a Methods and Tools
Hondbook, intended be useful to managers in deciding how to organise actual
projects. This document will include a taxonomy of relevant metbods and
relaled disciplines, with an annotated selection of relevant books, papers,
individuals, groups, and especially of metbods and tools. We will try to
identify the hest of these, and to indicate tbe applications for which they
seem particularly suitable. We will be especially concerned with actual
experience, and we will also be alert to the possibilities of bybrid metbods.

5 Discourse Analysis and Requirements Engineer-
ing

Although natural language is often criticised for its informality, ambiguity,
and lack of explicit structure, these features can actually be advantages for
requirements. For example, these features of natural language can facilitate
the gradual evolution of requirements, without forcing too early a resolution
of conflicts and ambiguities that may arise from the initial situation. Also,
natural langnage, possibly supplemented by graphics, is often the medium
preferred by tbe individuals who represent the client.

There is a growing body of evidence that natural language is actually far
more structured than most pecple realise, and that this natural discourse
structure carries much important information about the structure of what is
being described. For example, work by Abbott (1], and by Enomoto, Horai
and others [30] sbows tbat the nouns and verbs used in stating requirements
provide important clues to an object oriented design for the system. In par-
ticular, the nouns give clues about ciasses and their attributes, and the verbs
give clues about methods. Syatactic structure can also show relationships
of inheritance and clustering.

Work by Goguen and Linde [7] shows that task oriented descriptions
can be readily translated into data flow diagrams. Therefore, the applica-
tion of linguistic analysis to naturally occurring instructional disconrse is
highly compatible with standard structured design methodologies, such as
those of De Marco [24], Jackson [14], and Yourdon [34]. Other research
by Goguen and Linde [22, 12, 8, 10] uses techniques from sociolingeistics
to show that explanations, directions, and otber everyday types of discourse
havea well defined high level structure that relates directly to their semantic
domains. What is called “command and control” disconrse in [7] is relevant
to Requirements Engineering, because it can reveal the structure of tasks
unfolding in real time.

We consider that all such discourse structures are situated, emergent,
open, locally organised, and contingent. As mentioned before, “situated-
ness” refers to the social context that is needed to fully understand such
structures, and “emergence” refers to the claim that these structures are
Jjoinily constructed by members through their on-going interactions. “Open-
ness” refers to the view that theories of such structures cannot in general be

Value system

/ \

Homan Organisation Beliein
Mouey Yalues of information abont

[N SN TN N

The money Money is We're We're Orglmu.hon Maximum Priorities

limited humane helping should information should be bmme- (1]
mnde is by human to each Lhese precise und. should be explicit its energy
untimited energy other people expliae gathered From culside

Figure 2: A Value System Tree

given a final and complete form, but should remain open to revision in the
light of farther analysis and further data. “Local organisation™ refers to the
idea that what participants do is conditioned by details of the situation in
which they find themselves, including, for example, the timing of a previous
utterance. “Contingence” trefers to the fact that the interpretation of past
actions, and the possibilities for future actions, depend upon the details of
current interactions.

One specific result from [7] is that organisations (and parts of organi-
sations) tend to have value systems, whose structure can be expressed as
a value systern tree, with higher level nodes corresponding to higher level
values, and lower level nodes corresponding to refinements, applications, or
corrections of superordinate nodes; this structure is similar to that of classes
under inheritance in object oriented programming. The method used in [7)
for discovering such structures is to analyse what are called evaluations in
narratives, i.e., roughly the morals of stories. It may be surprising to some
that such evaluations are an integral part of the internal structure of natu-
rally occurring narratives, and are not confined to a summary statement at
the very end. Indeed, the discourse and syntactic placement of evaluative
matetial can be an important clue to its position in the value system tree.
The classic work on the structure of narratives is due to Labov [18].

Figure 2 shows part of a value system tree obtained by Goguen and
Linde [6] in 1978. It represents the values of a small corporate recruitment
(i.e., “head hunting”) firm. All nodes at the first three levels are analysts’
constructions, with support from the data. The phrases in the fourth level
are taken from the evaluative clauses of stories and jokes collected at this
firm, mostly during lunch and coffee breaks. (Some of the uodes at the fourth
level of Figure 2 have two more levels below them.) Note the contradiction
between the first two nodes on the fourth level. This illustrates the fact

l:uunes-a in
rational and

comprehensible

105 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

that real value systems are not necessarily consistent. Perhaps this is one of
the reasons why it is difficult (or perhaps impossible) to elicit values from
members just by asking for them. Indeed, value systems, like many other
aspects of social life, are hidden.

The value system tree of the client (and/for end user) can help the ana-
lyst make appropriate trade-offs between conflicting requirements (such as
cost versus almost everything else, including speed and functionality). The
hierarchical structure of the value system tree can also tell analysts which
requirements should be given precedence over others, and can clarify the
nature of the conflicts involved [7], because higher level values are more sig-
nificant. 1t is also possible to assign weights to values based on the frequency
of clauses that support them, The analysis of task oriented discourse also
seems promising for Requirements Engineering, because it can provide the
fundamental units of traditional analysis, which are the main items of infor-
mation involved significant tasks, and the main transformations performed
on them. The analyses of task oriented discourse and of narratives were the
two basic techniques used in [6]. See Section 5.1 for some further discussion
of value system trees.

It can he difficult to gather good data upon which to base requirements.
Experience suggests that simply asking managers what they want often does
not work well. We believe that ethnomethodology [4} can provide useful gen-
eral guidelines for how to collect high guality data about social interaction.
This approach recommends looking closely at how competent members of a
group actually organise their behaviour, and in particular, at the concepts
and the methods that they use to render their actions intelligible to one
another; this contrasts with presupposing that the concepts and methods
of the analyst are necessarily superior to those of members. We are work-
ing with the hypothesis that members’ concepts and methods can be useful
inputs to the requirements process.

On the other hand, analysts often need to do things that members do not
need to do, and then they may need methods and concepts that members
do not use. For example, analysts may want to accumulate statistics on
telephone calls that would be incomprehensible to those making the calls.
Thus, the principles of ethnomethodology may not apply to the analysis of
data. Even so, analysts can generally benefit from knowiug the methods
and concepts of members, particularly when they want to do something
that members regularly and ordinarily do themselves. 1t should alse be
noted that relationships between ethnomethodology and the structure of
large-grain discourse types, such as narratives and plans, have not heen
much explored, and there may be some incompatibilities, as discussed in
[15]. We plan to pursue this issne further. See [21], [9] and [15] for relatively
comprehensible expositions of ethnomethodology.

The emphasis of ethnomethodology on members’ competence, members’
concepts, and members’ methods is a significant departure from the tradi-
tional dogmas of “scientific methed”, which call for a rigid separation he-
tween subject and object, i.e., between observer and observed. But physics

11

has already moved rather far from classical ohjectivity'®, and so it should
not be surprising if sociology, and social aspects of computing, had to go
even further.

Conversation Analysis grew out of ethnomethodology through the work
of Sacks on how speakers organise such details as timing, overlap, response,
interruption, and repair in ordinary conversation {e.g., see [29]). Interaction
Analysis extends Conversation Analysis from audio to video data, See [13)
for a recent overview of Conversation Analysis, and [17] for a collection of
egsays on and applications of Interaction Analysis.

An essential property of real social data is that it is situated, that is, it
can only be fully understood in relation to the particular, concrete situation
in which it occurred. As Suchman {32] points out, situated actions are em-
bodied, ad hoc, contingent, and local; it is only our pest hoc explanations
for them that appear to be what Latour [19] calls immutable mobiles, which
are structutes that can be transported from one context to another with-
out undergoing essential change, and which therefore can participate in the
discourse of science. Thus, “immutable mobiles” are information structures
that have been at least partially dried out.

It is also worth noting that analysts construct immutable mobiles in
order to support their positions in agonistic encounters, such as meetings
with managers, or meetings with peers. Data flow diagrams are a good
example. As Latour [19] points out, this is an issue of power, a way ol mo-
bilising support by compressing large amounts of data into simple graphical
representations.

Information systems are a particularly interesting site for research. Such
systems are repositories for immutable mobiles, and increasingly they pro-
vide the means for producing vew immutable mobiles, and for transperting
them into new contexts; information systems are powerful engines for con-
ceutrating and applyiug power. Consequently, the design of an information
system is a natural occasion for power struggles, and it is important that
the human interests of all stakeholders he recognised and protected. Failure
to do so explains why many large systems have not worked well in practice.
In fact, for an information system to be successful, it will often have to serve
as what Star [31] calls a “houndary object,” which is used and interpreted
in different ways by different social groups, in order to meet their different
needs.

We are now designiug a case study of a “live” project within BT to test
the practical application of techniques of Discourse Analysis to Requirements
Engineering. This will involve the analysis of video tapes of interviews
conducted by Requirements Analysts, and also of their internal working
sesgions, with a view to explicating their work practices, and developing
hetter methods for requirements elicitation and analysis.

1 Penrose [28] gives an elegant and readable exposition which shows just how strange
contemporary physics can be.

125 DISCOURSE ANALYSIS AND REQUIREMENTS ENGINEERING

Visitors’ Cup. Heat 1: Jesus, Cambridge v. Christ Church;
Heat 2: Oriel v. New College; ... Heat 8: Lady Margaret v
winner of Heat 1; ... Heat 26: Winner of Heat 23 v. winner of
Heat 24; Final: Winner of Heat 25 v. winner of Heat 26.

Figure 3: Draw for the Henley Regatta

5.1 Two Examples

This subsection uses two examples to illustrate some issues that arise in try-
ing to reconcile the situated and the context insensitive information. Each
example organises some data into what computing scientists call a tree strue-
ture.

The first example is the value system tree of Figure 2. Here, the tip
nodes are situated, in that they arise directly from actual marratives by
membera. Many interior nodes, which express superordinate values, are also
situated in this sense, but others may be created by analysts, by clustering
nodes into larger and larger related groups, in the general style of the KJ
method [16]. The edges, which express relationships of subordination, are
to a certain extent situated in that there may be direct evidence for them
in the structure of the discourse, and in any case, members can he asked
about them.

However, the tree as a whole is an analysts’ construction: members do
not talk about properties of the tree as a whole, such as its nurnber of nodes
or edges; they do not have names for these concepts, and they do not regard
questions abont them as meaningful. Instead, this tree serves as a formal
summary of the data that has been collected so far, and of the analysts’
current understanding of it. In fact, this structnre is not only formal, but is
also open and contingent, in that it remains subject to revision in the light
of further data and further analysis. This is typical of summary objects for
data from the social sciences, as pointed out, for example, by Lévi-Strauss
[20].

Our second example comes from Toulmin’s suggestive book The [ses
of Argument [33]. Here, both the nodes and the tree itself are socially con-
structed, shared structnres that are fully situated and available to members.
In particular, members talk about global properties of this tree, including its
internal nodes and its edges, and the number of each; they also have names
for these concepts. This example is the annual regatta at Henley, in which
nodes represent boats (i.e., “crews”), internal nodes represent winners of
races (i.e., “heats”), and edges point to the participants in a race. Figures
3 and 4 show part of an initial “draw™ for one such race'’. The number of
internal nodes is the total number of races, and the number of edges is the
number of instances of crews racing. This formal structure js situated in

“Toulmir [33] presents his dala in the form shown in Figere 3, saying that it comes
from “the sports page of a Sunday paper,” presumably in Lthe mid-1950s.

5.2 Discussion 13

wy
RN /N
Jesus, Christ Lady Qriel New
Camb. Church Margaret College

Figure 4: Tree for the Henley Regatta Draw

the events of a particular actual regatta, and it is determined on a local, ad
hoc, contingent basis. In particular, the internal variables {(wy, w3, ...} of the
draw hecome instantiated by concrete situated events that unfoid in actual
time, until the whole race is summarised by a single structure that tells
what happened, including which crews raced in each heat, and who won.
Note that the structure may change during an instance of the regatta; for
example, a crew can be disqualified, resulting in fewer heats than originally
scheduled.

Members are aware that the same structure (i.e., “race™) can be pre-
sented in a variety of ways; for example, it can be represented by a table
in a newspaper as in Figure 3, by a verbally presented list, or by the com-
puter scientists’ traditional representation'?, shown in Figure 4. Hence,
there is a precise structure here that is independent of how it happens to be
represented; this means that we have an abstract data lype, in the precise
mathematical sense of [11], which is an isomorphism class of computable
many-sorted algebras'®. Of course, this does not mean that members are
familiar with this matbematical concept; even Toulmin only uses concrete
representations.

5.2 Discussion

These examples, particularly the second one, show that “dry” structures
occur “in nature,” that is, in ordinary social interaction, in the sense that
members of ordinary groups (such as sports fans) organise their talk in ways
that correspond to such structures. These structures can be printed in news-
papers or shown on television, in a compact graphical form. Nevertheless,
the structures are still recognisably situafed, that is, locally organised, con-

17Note Lhat this representation diflers from trees on earth, which have their roots at the
bottom.

?The different algebras in the class correspond Lo the different representations of the
same abstract structure; see [11] for detaila.

14 6 SUMMARY

tingent and ad hoe, and they attain a sort of immutability only in retrospect.
In the case of a2 value system tree, the analystz are sccially responsible for
some parts of the structure, and the members of the organisation for other
parts; the tree itself is only meaningful to members of the analyst culture.
These observations seem to offer some hope of making further progress
in Requirements Engineering if we recognise the situated nature of the struc-
tures involved, and indeed, of the whole requirements process, This means
that we must effect an ongoing, practical reconciliation of “the dry™ and “the
wet” in the practice of Requirements Engineering. Nor should we ignore the
power of “hacking” code, or of deep theoretical reflection on the mathe-
matical properties of certain structures; for example the hyper-requirements
project described in Section 3 attempts to reconcile all of these aspects.

6 Summary

This section collects some points from the body of the paper that may be
especially provocative:

1. Requirements Engineering is a very challenging and relatively little
explored field, so that any conclusions are necessarily somewhat ten-
tative.

2. Tt seems likely that approaches quite different from the traditional
systems analyses methods will be needed, in order to take account of
the social context in which computing systems are used.

3. The examples in Section 5.1 suggest that the social nature of informa-
tion structures is a complex problem that may require sophisticated
analysis. It seems that neither a purely formal (i.e., dry} nor a purely
social (i.e., wet) approach will suffice, and that an effective approach
to systems development must reconcile the dry and the wet.

4. Structures as dry as abstract data types occur “in nature™, that is,
in the naturally occurring discourse of ordinary social groups, such as
gports fans.

5. On the other hand, requirements are emergent, in that they arise from
interactions between analysts and members of the client organisation.
Moveover, requirements change as the organisation does, and some-
times the requirements process itself can have a significant effect on
an organisation.

6. Much of what analysts do is not consistent with ethnomethodology;
analysts’ methods are often no! memhers’ methods. Nor should they
be.

7. In particular, analysts construct what Latour [19] calls “immutable
mobiles” in order to support positions in agonistic encounters, such as
meetings with managers, or peers.

10.

11.

12

15

. Computer systems are incteasingly repositories for immutable mabiles,

and increasingly provide the means for producing new immutable mo-
hiles, and for transporting them into new contexts. Hence, computer
systema can he powerful engiues for concentrating and applying power.

. Thus, requirements analysis for such systems is a natural occasion

for power struggles, and it is important that the human interests of all
stakeholders be recognised and protected. The failure to do so explains
why many large systems fail to work well in practice.

In fact, to be successful, a computer system may need to serve as what
Star [31] calls a “boundary object”™ which intermediates the needs of
different social communities.

The relationship between the dry and the wet is complez, in that
there are many different facets, which arise in different contexts and
at different levels of abstraction.

The relationship between the dry and the wet is not one of antagonism,
in which one must be wrong and the other right; rather, these two
aspects of data and its interpretation are complementary, and are both
needed for successful Requirements Engineering.

16 REFERENCES

References

[1]) Russell Abbott. Program design by informal English descriptions. Com-
munications of the Association for Computing Machinery, 26(11):882-
894, 1983.

[2] Barry Boehm. Software Engineering Feonomics. Prentice-Hall, 1981,

[3] Alan M. Davis. Sefiware Requirements: Analysis & Specification.
Prentice-Hall, 1990.

[4] Harold Garfinkel. Studies in Ethnomethodology. Prentice-Hall, 1967,

[5] Joseph Goguen. Hyperprogramming: A formal approach to software
environments. In Proceedings, Symposium on Formal Approaches to
Software Environment Technology. Joint System Development Corpo-
tation, Tokyo, Japan, January 1990.

[6] Joseph Goguen and Charlotte Linde. Cost-benefit analysis of a pro-
posed computer system. Technical report, Structural Semantics, 1978.

[7] Joseph Goguen and Charlotte Linde. Structural semantic analysis of
the information structure of organizations. Technical report, Structural
Semantics, 1981.

[8] Joseph Goguen and Charlotte Linde. Linguistic methodology for the
analysis of aviation accidents. Technical report, Structural Semantics,
December 1983. NASA Contractor Report 3741, Ames Research Cen-
ter.

[9] Joseph Goguen and Charlotte Linde. Methodology for requirements
elicitation. Technical report, Centre for Requirements and Foundations,
Oxford University Computing Lab, 1991. Draft.

[10] Joseph Goguen, Charlotte Linde, and Miles Murphy. Crew communi-
cation as a factor in aviation accidents. In E. James Hartzell and San-
dra Hart, editors, Papers from the 20th Annual Confcrence on Manual
Control. NASA Ames Research Center, 1984,

[11] Joseph Goguen, James Thatcher, and Eric Wagner. An initial alge-
bra approach to the specification, correctness and implementation of
abstract data types. Technical Report RC 6487, IBM T.J. Watson
Research Center, October 1976. In Current Trends in Programming
Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages 80-
149,

[12] Joseph Goguen, James Weiner, and Charlotte Linde. Reasoning and
1atural explanation. International Journal of Man-Machine Studies,
19:521-559, 1983.

[13] Charles Goodwin and Johu Heritage. Conversation analysis. Annual
Review of Anthropology, 19:283-307, 1990.

REFERENCES 17

(14]
(15]

(16]

(17]

[18]

(19]

(20}

f21]
(22]

[23}

[24]

{25)
(26]

(27]

28]

[29]

Michael Jackson. Principles of Program Design. Academic, 1973.

Marina Jirotka. Ethnomethodology and requirements engineefing.
Technical report, Centre for Requirements and Foundations, Oxford
University Computing Lab, 1991. Draft.

Jiro Kawakita. KJ Method: a Scientific Approach to Problem Solving.
Kawakita Research Institute, 1975.

Adam Kendon. Conducting Interaction: Paflerns of Behavior in Fo-
cused Fncounters. Cambridge University, 1990. Studies in Interactional
Sociolinguistics Number 7.

William Labov. The transformation of experience in narrative syntax.
In Language in the Inner Cily, pages 354-396. University of Pennsyl-
vania, 1972.

Brune Latour. Visualization and cognition: Thinking with eyes and
hands. Anowledge and Society: Studies in the Sociology of Cullure
Pasl and Present, 6:1-40, 1986.

Claude Lévi-Strauss. The Raw and the Cooked. Penguin, 1964, Trans-
lation by John and Poreen Weightman, 1986.

Steven Levinson. Pragmatics. Cambridge University, 1983.

Charlotte Linde and Joseph Goguen. Structure of planning discourse.
Journal of Sociel and Biological Structures, 1:219-251, 1978.

Jean-Francois Lyotard. The Postmodern Condition: a Report on
Knowledge. Manchester University, 1984, Theory and History of Liter-
ature, Volume 10.

Tom De Marco. Structured Anaelysis and System Specificatian. Yourdon,
1978.

Carrall Morgan. Progreamming from Specifications. Prentice Hall, 1990.

Christopher Nix and Peter Collins. The use of software engineering, in-
cluding the Z notation, in the development of CICS. Quality Assumnce,
14(3):103--110, September 1988,

U.S. Government Accounting Office. Contracting for computer soft-
ware development - serious problems require management attention to
avoid wasting additional millions. Technical Report FFGMSD-80-4,
U.S. Government Accounting Office, November 1979,

Roger Penrose. The Emperor’s New Mind, Oxford, 1989, Viutage
paperback edition, 1990,

Harvey Sacks. On doing ‘being ordinary’. In J.M. Atkinson and John
Heritage, editors, Structures of Social Action: Studies in Conversation
Analysis. Cambridge University, 1984. Original date, 1971.

18 REFERENCES

[30] Motoshi Saek:, Hisayuki Horai, Katsuyasu Toyama, Naoya Uematsu,
and Hajime Enomoto. Specification framework based on natural lan-
guage. In Proceedings of the Fourth International Workshop on Software
Specification and Design, pages 87-94. IEEE, 1987.

[31] Susan Leigh Star. The structure of ill-structured solutions: hetero-
geneous prohlem-solving, houndary objects and distributed artificial
intelligence. In Michael Huhns and Les Gasser, editors, Distributed Ar-
tificial Intelligence, volume 3, pages 37-54. Morgan Kauffmann, 1988.

[32) Luey Suchman. Plans and Situated Actions: The Problern of Human-
machine Communication. Cambridge University, 1987.

[33) Stephen Toulmin. The Uses of Argument. Cambridge University, 1958,
[34] Edward Yourdon. Medern Structured Analysis. Prentice-Hall, 1989.

