
PROBABILISTIC COMMUNICATING PROCESSES

by

K.lff'1I Scidp[

Technical Monograph I'RG-lO'2
ISBN 0-902928-79-1

Michaelm<'l.~ 1992

Oxford Unj';ersity Computing Laboratory
Programming Rf'search Group
11 l\cble Road
Oxford OX13QD
Ellgland

Probabilistic Communicating

Processes

Karen Seidel

Lady Margaret Hall

•

Thesis submitted for the degree of Doctor of Philosophy

at the University of Oxford

Hilary Term, 1992

Abstract

In this thesis, we develop a mat.hematical formalism for the specification and proof
of correctness of probabilistic communicating processes. This formalism combines
a notion of proba.bilistic correctness with the theory of concurrency provided by the
language of Communicating Sequential Processes (CSP).

We first present the semantics of a model in which processes a.re defined as
probability measures on the space of infinite traces. The model contains definitions
for prefixing, probabilistic choice, hiding, simple parallel composition, sequential
composition, interleaving, relabelling and recursion. These operators are defined as
functions (mostly transformations) of probability measures. Although the ~mantics

of this model is very different from that of other models of esp, it has almost the
same algebraic properties as the traces model. Examples are given which use these
algebraic properties as well as the probabilistic properties of the processes.

In the second part of the thpsis we present the semantic" of a model in which
processes are defined as conditional probability measures. This enables 1jS to giv,,"
definitions for external choice and alphabetised parallel composition, as well as
prefixing, probabilistic choice, relabelling and recursion. Again we show that this
semantics satisfies the appropriate algebraic laws. We also present a, set of proof
roles which provide a link between the process algebra and behavioural specifica~

tions. A significant case study is IIsed to demonstrate the applicability of the model
and the proof rules.

Acknowledgements

Above all, I would like to thank my supervisor, Jeff Sanders, for his continuing
guidance and advice as well as his friendship. I would also like to acknowledge the
many helpful comments made by Steve Schneider, Bill Roscoe, Isaa.c Saias, Jeremy
Jacob and Tony Hoare. I would further like to thank Jim Davies, without whom
the typesetting of this thesis would have been quite scrappy.

Finally I would like to give a special mention to Clare Martin, my comrade in
arms and moral support extraordinaire.

This rfSearch was made possible by a grant from the Science a.nd Engineering
Research Council.

Dedication

Fur meine EI tern

ji

Contents

1 Introduction 1

2 Preliminary Material 3

2.1 Probability Theory 3

2.2 Notation .. 10

3 A Model Without External Choice 13

3.1 Atoms . 14

3.2 Prefixing. Ui

3.3 Probabi listie Choice . 1·5

3.4 Hiding 17

3.5 Simple Parallel Composition 19

3.6 Sequential Composition. 22

3.7 Prioritised Interleaving 26

3.8 ReLabelling 30

4 Recursion 32

4.1 Weak Convergence 33

4.2 Single Rewrsion 34

4.3 Mutua.l Recursion 43

4.4 Recursion Induction 45

5 Examples 47

5.1 Fairness 47

5.2 The Asymptotic Frequency of an Action 49

5.3 Dea.dlock. 51

5.4 Random Wa.lk on the Positive Integers 52

iii

5.5 An Interesting Fixed Point.

5.6 Probabilistic vs. Non-deterministic Choice

5.7 Discussion

6 Alphabetised Parallel Composition

6.1 Tra.nsformation of Measure with Relations

6.2 The Extended Model .

6.3 The Loss Rate of a Pipe

6.4 Discussion

7 A Model with External Choice

7.1 STOr

7.2 Prefixing.

7.3 External ChoicC"

7A Probabilistic choice

7.5 General Choice

7.6 Simple Parallel Composition

7.7 Alphabetised Parallel Compo:'lition

7.8 Relabelling

7.9 Conditional

7.10 Recursion .

7.11 'fwo Common Properties of PCSP-processes

8 P.roo(Rules

8.1 Safety Properties

8.2 Liveness Propertir-s

8.3 A Self-stabilising Tokenring

9 Randomised Consensus

9.1 Specification

9.2 Proof of Correctness

9.3 Discussion

10 Discussion

.kO.l Conclusions

10.2 Related Vlork

]0.3 Future Work.

5.>
,')6

,)/

59

50

62

6;

69

70

;1

71

71

72

73

76

77

81

81

84

89

92

91

97

100

106

107

lJO

!l7

119

119

120

122

>V

Chapter 1

Introduction

Handomised algorithms are increasingly being used in distributed systems, for in­
stance to solve prohlems like lO,l,d- balancing !Pu90] and self-stabilisation [HermgO].
Not only are these algorithms often sinlpler and faster than any deterministic al­
ternative but sometil11e~ no such alternative exists, as in the case of randomiscd
consenSllS [AH90]. This is typically so when identical components in ident.ical situ­
ations have to make different decisions for the system to progress.

A mathematical formalism for thl' specification of systems involving randomi­
sation must be based on a notion of probabilistic correctness. For a deterministic
algorithm the statement that it is correct in that it has or achieves a certllin prop­
erty is either true of false. Moreover, if the propert}' is to be achieved, this is
guaranteed to happen within a finite nnmber of steps. By contrast, a randomiscd
algorithm is correct if it has or achieves a property with probability 1. So t.here may
be possible behaviours of the algorithm which violate the property in que~tion; only
the probability that they will happen i.s O. Also, if the property is to be lIchieved,
we cannot give a finite bOl1nd on when this will happen, only that it will be within
a finite expected number of steps.

The langnage of Commnnicating Sequential Processes (CSP) [Iloa~jJ provides
a mathematical formalism for the specification of deterministic distribntcd systems.
Its main advanta.ges are sl1pport for algebraic reasoning and an effeclive treatment of
concurrency. Our aim is to constrnct a probabilistic version of CSP which combines
these advantages with a notion of probabilistic COrrectness.

Chapter:l of this thesis contains some measnre thoory which we will [leed to for­
malise this notion. Chapter 3 presents a small model which differs from standard
esp in that it has a probabinstic choice operator instead of the internal choice
operator of esp, no external choice. and a parallel composition operator only for
processes which synchronise on every action. Proo~sses are defined as probability
measures on the space of infinite !'races and operators as fnnetions (mostly transfor­

2 IntroductjoIl

matiom) of probability measures. We chose to work with infinite rather than finite
traces because many probabilistic considerations are about asymptotic behaviours
and thtls involve taking limits to infinity and cannot be expressed in terms of finite
traces. Also by defining all probabilities on one infinite-dimensional space, rather
than ou many different finite-dimensional spaces, we can use standard concepts of
con vergence of probability mea.sur<'s which are crucial for the definition of recursion.
as pre'3ented in chapter 4. In chapter 5 we give examples to show how to prove t.hat
probabilistic processes have the properties that distinguish them from determinist.ic
processes.

Chapters 6 and 7 extend the model to include alpiJabetised parallel composi­
tion and external choice. Tbe model of chapter 7 df'fines processes as conditional
probability me<l~ures. This is motivated by our Il/Jderstnllding of external choice in
a probabilistic context: given that the environmf'nt has chosen a certain action, a
process offering external choice will engage in this action with probability 1. Thns
external choice is most naturally defined as a conditional probability and all the
definitions given in chapter 3 can be modified to apply to conditional probabilities,
too. Chapter 8 contains a set of proof rule:, hased on the model in d.lapter 7. W<,
use t.hese rules as well as the th('()ry developed in the earlier chapters in chapter.g
where we present the formal specification and proof of correctness of a randomised
consensus protocol. The algorithm is a variation of an algorithm deviSf>d by Aspnes
and Herlihy [AI-I90j. Our version is guaranteed to terminate only if the scheduling
of the components of the protocol is independent of the state of the components,
but the expected number of steps to termination is O(n 2

), as opposed to O(2n) for
the original algorithm. and O(rl1) for the best previouslY known algorithm.

Chapter 2

Preliminary Material

2.1 Probability Theory

This section contains definitions and results from probability theory which we will
need later. Proofs of the results can be found in Billingsley[Bi79] or Shiryayev[Sh84]
(or indeed in any good textbook on probability theory).

Let n be a set of points. A O"-field :F defined on n is a family of sets on n which
contains n and is closed uuder the formation of complements as well as finite and
countable unions. (A field is dosed only under complementation and finite unions.)
Members of a a-field are called mmsurable sets. The pair (0, F) constitutes a
measurable spaCE. A probability space consists of a measurable space (O.F) and a
probability measure P defined on :T. A probability meas'U7~ P on a field or O"-field
:F is iI function P : :F __ IR wbich satisfies the following couditions:

1. '1AEF· O"PA"I,

2. P 0 = 0, P fl = I,

3. if (A")n:N forms a disjoiut. seqtleuce of F-sets (and, if F i8 only a field, UnA" E
F) then

PU.A. ~ LPA.

The last condition is called countahle. additil,jty. If a function P ; F -4 IR satisfies
conditions 1. and 2. and is finitely additive then it can be shown that it i~ CQuntably
additive if and only if it is continuous in the sense that

A. I A => P A. I P A

meaning if (Aft),,:N is a, sequence of sets such tha.t An +1 C An and A = nn An. then
the probabilities P An approach P A from above.

2.1 Probability Theory 4

To reason about a q-field it is sometimes useful to know that it is a monotonic
class, which is a collection M of subsets of n such that if (An),,:N is a sequence of
sets in n and A., ! A or An T A, then A E M. (An T A means that (An)n:N is
a sequence of sets such that A..+1 :) A" and A = Un A".) lt can be shown that
a necessary and sufficient condition for a field Fa to he a u-l1eld is that it is a
monotonic class.

A q-fieJd is generated by a collection of sets it it is the smallest u-field which
contains those sets. A set A is a support of a measure P if P A = 1.

Extension of measure

The following theorem is important for us because it impljl."S that to prow' equality
of two measures defined on au-field F it suffices to prove that thpy agree on a
:<iubset of the sets in F, namely on a field Fa which generate..8 F.

The Extension Theorem A probability measure on a field Fa ha." a unique ex­
tension to the q-field F generated by Fa. 0

For a proof of this theorem see [Bi79J. It can also be shown that if the q-field F
is generated by a class 'P of subsets of 0 which is dosed under finite intersectious,
then to prove equality of two meaSUH.-'S on F it suffices to show that they agree on
P.

Measurable functions

Given two measurable spaces (O,F) and (O',F'), a function j: n __ 0' is said to
be measurable F IF' if for all sets A E F' the inverse image j-l A is an element of
F . If (rV, F ') = (IR, n), ; .e. t he real line with the u-neld generated by the opeu
intervals, then j is called a random variable. If the range of j is a finite set of
points, f i<; called a ~~imph junction or st"mplt' mndom variable and can be uniquely
written in the form

f ~ L: a, lA,
':01

where {a, I 0 ~ i -:; n} is the r<lnge of j, A, = j-1(1;. and (4, is the indicator
junction, defined as

1 if 1t E A

fA U == { 0 otherwise.

2.1 Probability Theory 5

We will need the following results about random variables, which we quote from
[Sh84],

Theorem 2.1.1 Any non-negative measurable function 1: n --+ R+ is the limit of
a monotone increasing sequence of non-negative simple functions. 0

Theorem 2.1.2 If1 and 9 are measurable functions: n _ Rand k E R then each
of the functions

j+k,kj,j+g,jg

is measurable. o

Theorem 2.1.3 The limit lim .. 1 of a convergent sequence (1..)",N of random vari~

abIes is measurable (i.e. a random variable). 0

To prove a function measurable it suffices to show that I-I A' E F for each
A' E A' where A' generates F'. Also if 1 is measurable FIF' and l' is measurable
F'IF" then the function 1; l' obtained by composing 1 and l' is measurable FI F"
[B;79].

Transformation of measure

Given a measure P on (n, F) and an F IF-measurable function 1 we can transform
P into a measure P' on (n',p) by setting

P'A " p r'A

for any set /1 E :F'. pi is a measure since p' A is well defined for all sets A E :P and
conntable additivity of p' follows from that of P. r is called the measure induced
by j.

We use transformation functions to define most of the operators in all[language.
Often the laws that link differeut operators foHow from the fact that different com­
binations of transformation functions are the same; obviously jf 1 ; 9 = g; 1 then
the measure induced by 1 ; 9 is the same as the measure induced by 9 ; f.

Linear combination of measures

Lemma 2.1.4 If P and Q are probability measures and 0 ~ p ~ I then the
function R : F _ [0, 1J defined by

RA p PA+(l-p) Q A

is also a measure. o

2.1 Probability Theory	 6

Proof Clearly R n = 1, R 0 = 0 and 0 ~ R A ~] for all other sets A E T. It
remains to show that R is countably additive: for a djsjoin~ sequence (A,,),,:N of
sets

R(UA.)	 p P(UA.) + (I-p) Q(UA.)

pI:: PA.+(I-p)I::QA.

by coulltable additivity of P. Q

I:: (p PA. +(I-p) QA.)

I:: R A•.

o

Integration

In connection with product rnf"asur~8 it will prove usefnl to use the notation of
integrals. Integration of a simple function f with respf"ct to a measure P is defined
by .Jf(a)P(da) L,u,pr'a,.

i::=1

The definition of the integral of an arbitrary non-negative measurable function
f : n --+ R is based on the fact that every such function i:'i the limit of a monotonic
increasing sequeuce of simple functions.

J[(u}P(du) '" ,up {J ,(u)P(da) I ' "f,' a ,;mple function}.

We will need the following simple form of a change of variable: if P' is a mcasllre
induced by the function h : n --+ n then

J[(a)P'(da) = Jf(h(w))P(dw).

For insta.nce the probability of a set of traces A can be written as the integral of
IA' Suppose that

JIA(u)P'(du) = JIA(h(w))P(dw).

Since 1,-IA(W) = IA(h(w)) this rnean8 that pi is an induced measure:

P'A = JIA(u)P'(dal = Jh-'A(W)P(dw).

2.1 Probabili(..,· Theory 7

VVeak Convergence

In chapter 4 we will construct the fixed point of a recursive equation as the limit
of a convergent sequence of measures. The standard concept of convergence in the
space of measures is weak convergence, which is usually defined as follows [Sh84J:
Let 0 be a metric space under metric 6. Let:F be the a-field of subsf'ls of n
which is generated by the open sets with respect to 6. Let (P~)~:N be a sequence of
probability measures on (0, :F).

Definition 2.1.5 The sequence of probability measures (P,•.) .. :N converges weakly
to the probability measure P (notation P" ~ P) if

hfIX)P.(dx) ~ hflx)Pldx)

for every function f in the class 1[(0) of continuous bounded functions on n.

Textbook exampIe~ like the law of large uumbers motivate use of weak comergence,
but we will wait lIntil chapter 4 to give one arising from the semantics of probabilis­
tic communicating processes. The following theorem which we quote from [Sh84]
provides us with two alternative coudit.ions which we will find marl" con"enient to
usc tban definition 2.1.5.

Theorem 2.1.6 The following statements are equivalent.

1. Fr, ~ P.

2. Jim sup p .. A ::;: P A for every closed set A.

3.liminfPn A ~ PAforcveryopensctA.

o

Product Measure

Let A x B denote the Cartesian product of two set:;:

AxB'" j(u,"lluEAA "EBI·

Given two probability spaccs (Ox, F x , Px) and (Oy, Fl'. Pr) we const.ruct the
product space (OXy,:FXY , Pxy) as follows. The ~et OXY consists of lhe pairs of
points in flxxf!y. The a-field Fxy is generated by the mea.surablc recfl1ngles which
are sets of the form AxE where A E:Fx and B EF~·. These sets have probability

PxyAx B -= PxA PyE.

0

2.1 Probability Theory 8

This definition gives a countably additive function on the field of finite disjoint
unions of measurable rectangles. By the extension theorem it extends uniquely to
a measure on the a-field F xy which is generated by the measura.ble rectangles.

For general E E F Xy this measure can be written as

PnE = J PxE,Py(dy)

where we adopt the notatiou E~ = {r I (x, y) E E} so that E~ represents a section
through the set E at y, If E = .4 x B then

E ~ {A if Y E B
~ - 0 otherwise

and hence P:rE, = IB(y)Px/1 so that as required

PxrAxB = JI8(yjPxAPy(dy) = PxAPyB.

By Fubini's theorem the order of integration is reversible, i.e.

J PxE,Py(dy) ~ J P,E,Px(dx).

We will use (Px x P y) as an alternative notation for the product mea.sure. (This
form is clearer if we distinguish measures not by snbscripts but by different upper
case letters.)

Conditional probability measures

In cllapter 7 we will model dependence on an environment by defining a process as
a conditional probability mea..,ure,

Definition 2.1.7 A conditional probahility measure (cpm) is a function of two
parameters, P : F x n -----+ [0,1], such that

• for fixed yEn and varying A E F, P(A, y) is a probability mea.~ure aud

• for fixed A E F and varying yEn, P(.4, y) is a. F-mea..'iurable random
variable.

o

To give a semantics for a language in t.erms of conditional probability measures
we also require products, trallsformations and linear combinations of conditional
probahility measures.

2.1 Probability Theory 9

Product of cpm's

Let Px and P r be two cpm's and let f : n -) nand 9 : n n be two measurable
functions on traces. We define the product of Px and Py with respect to f and 9
to be the function which, for given z, is tbe product measure of Px given f z and
P r giveng:;.

Lemma 2.1.8 The function P : Fn x n -) [0, I) defined for all E E :FXY and
zEn by

P(E,z) '" JPx(E,,Jz)Py(dy,g,)

is it conditional probability mea.sure. o

ProoF For fixed z, f z and 9 z are fixed, so that P(E,::) is simply the product.
measure of Px given f z and P y given !l z.

For fixed A E:F. Px(A.z) and Py(A,:;) are random variables. Sincef and 9
are measurable, it follows that Px(A,f z) and Py(A,g z) are also random Yariables.
Let J\1 be the class of sets such that for fixed E E M the function Pxt"{E, z) is a
random variable. The class Ai: contains the measurable rectangles:

PxdA x B, z) = Px(A,J z) Py(B,g z)

is a product of random variables and hence itself a random variable. Any set E
in the field generated by the measurable rectangles can be expressed as a disjoint
union. U Ei say, of rectangles such that Pxy(E, z) = L Pxy(E" z). As a sum of
random variables is itself a random variahle and M contains the field generated by
the measurable rectangles. Thns it is enongh to show that M is a monotonic class
to deduce that :Fxr <; M. Suppose that (E~),,,N is a sequence of sets ill M such
that E~ 1 E. Then Pxy(E~, z) 1 Pxy(E, z) for all z . Thus Pxy(E, z) is the limit
of a sequence of random variables and hence itself a random variable. Therefore
EE,I.1, 0

Transformation of cpm

Lemma 2.1.9 Let f, !l : n -) n be two :F-measurable fnnctions. Given two cpm's
P and Q set

P'(A,z) '" I'M!(z) p(r' A,gz) + I('~'Jl'(z) Q(A, z).

for all A E :F and zEn. The function pi is 1\ cpm. o

2.2 Notation 10

Proof Reca.ll that IB(z) denotes the indicator function which has value 1 if z E B
and 0 otherwise. For fixed B and variable z this is a random variable and for fixed
z and variable B this is a point measure. So I is a cpm. Since for fixed z the
function pl(A,z) is either PU-1A,gz) or Q(A,z) and both P and Q are cpm's,
P' is a probability measure for fixed z. For fixed A, P' is a sum of t.wo random
variables arid hence itself a random variable. 0

Sums of cpm's

Lemma 2,1.10 Let {S.} he a partition of nand {P;} a set of cpm's. Then the
fundion defined '</ A E F. yEn as

P(A,y) L: [s,(V) Pi(A,v)

is also a cpm. D

Proof For ca,ch y there exists exactly one i such that yES;. This gives P(A, y)
P,CA, y)hich is a cpm by definition of P" For fixed A, peA, y) is a sum of produets
of random variahles which is again a random variable. 0

We will give reference to some other standard results of probability, like the
Borel-Cantelli lenunas and the law of large numbers, as and when they are needed.

2.2 Notation

In CSP jHoa85] each process is parametriscd by an alphabet, or set of actions which
it can perform. We use a universal (non-empty, finite or countable) alphabet 1:
instead, and wh(~re necessary, as in alphabetised parallel composition, explicitely
restrict a process to a suhset of E. 'We usually use the letters a or e for actions.
and B, C or D for sets of actions.

Seqllences of actions are called tracf.,~. The following is an informal summary of
the notation we use for traces and operations on traces. (For the formal definitions
see [H0a.85J.) The notation is used both for finite aud infinite traces, unless otherwise
stated.

2.2 Notation 11

o the empty trace,
(a) the trace containing only a,

t ,<; concatenation of traces t and s (where t finite),

#t the length of a trace i (#i = 00 if t infinite),

tTl, n <it (n+l)lh element of a trace t (the first element is always ~),

i rn restriction of a trace t to its first n actions,

t rB restriction of a trace t to actions in the set B,

t 1B the number of elernents of B conta.ined in t,

t < u t is a proper prefix of u,

t",n: N a finite trace t repeated n times (to = 0),

i'" a finite trace t repeated infinitely many times,

tIn, n ~ #t i after n, i.e'. I with its first 71 steps removed.

By B- and Bw we denote the set of finite and infinite traces respectively made
up of elements of B. rsually we use the letters t, s for finite traces and the letters
u, lJ for infinite traces.

From now on we use n to denote the set of infinite traces. We int.roduce a

special 'unobservable' action T to encode as infinite traces with a tail (T}'" all finite
traces after which a process may terminate. So

Il " EW u {t(T)W 1/ E E").

We nse another special action, J. to mark the snccessfnl termination of a process.
We write E,.. a."i ~horthand for L U {T} and

I'" E" u { /, I t E ':" " .< E {T r)·~,

We will need a restriction function which adds a tail of T'S where r produces a
finite trace:

,rB if z 1B = 00
lI'Ell·z1B ~ { (d B)(T)W otherwise.

Given a trace tEE;, let

5(1) " {"Ill u> I}
denote the set of infinite traces which are extensions of t. If t consists of a single
element a we leave out the brackets and write Sea). Note that the only trace
leading on from a T is the tail of T'S: S(ieT)) = {l(T)"'}. Also if tEl:- then S(tT)
can be expressed as a difference of sets with T-free prefixes:

5(/(7)) = 5(/) - U5(1(,)).
<,.

Sets of traces with a common prefix belong to the family of cylinder ,~rts which
are sets defined by a predicate on a finite number of dimensiom in an infinite­
dimensional space; using a sel of k distinct indices {n; 1 a < i ~ k} and a set

2.2 Notaljvn l2

H ~ E t • a cylinder set can be ritten as {u n I (un" U"t) E H}. i.c. the
traces in thi, set are constrained only on the 1... tnples picked out by the index set.

From now on let F denote the a-field gent"rated by the sets of infinite tract's
with a common prefix. As a a-field, F is closed under the formation of finite and
countable unions. It also contains the empty set (0 = nC

) and is closed under finite
and countable inter~pctions because An LJ = (.tt" U BC)". Vle u:;p thr symbol =:
to dellote that two syntactic expressions are equivalent in that they have thr "amp
semantlCS.

Chapter 3

A Model Without External

Choice

In this chapter We present the semantics for Ii small language which W(~ call PCSPo.
The:'" syntax of PCSPo contains a subsd of t.he COl1Strods of C8P [HaaS5]. There
is no external choice, and parallel composition is restricted to fully synchronised or
simple parallel composition. because alphabetised parallel composition would remit
in extf'wal choice between unsynchronised actions. Internal (or non-deterministic)
choice has been turned into probabilistic choice by adding a subscript to indicate
the probability with which the choice is made. Similarly interleaving now has a
probability attached to it.

P ,,~	 STOP I SKIP I X I a ~ P! P ,n Q I P\B I f(P) I
P II Q I P; Q I P, III Q I ~ X • P I (X, ~ P,).

Clause X introdllces variables from a set VAR; tbe::;e are reqnired for the treat­
ment of mutual recursion presented in chapter 4. The semantics of each variable is
determined by a binding hich maps each variablf' to an element of the space PM
of prohability measures on (n.F). Let RNDo be the domain of all bindings.

BNDn 2c V4R~ PM.

The semantics of a PCSPo term P is a function of the set of free variahle> appearing

,':;	 in P. For example. tbe semantics of a ---+ X is parametrised by p[X], thl'semantics
of X in the current binding p. Given p Wf' can associate a X with a measure in
PM. Thus the semantic function for terms must be of type

PCSP, - END, ~ PM.

RathPr than clogging our notation with an explicit symbol for t.his runction we
overload the meaning of the denotational brackets and simply write ~PJp to denote

3.1 Atoms	 14

the semantics of a term P in a binding p. The semantics may be evaluated by
associating each free variable X with its value p[Xi in the current binding. We
write p[Y / Xl to change the binding p by associating the variable X with a new
measure Y:

p[YjXIIZI ~	 Y if Z ~ X

p!ZI otherwise.

This enables us to define syntactic substitution P[Q/XJ, where all occurrences of
the variable X are replaced by the term Q, as having semantics

[P[Qj XI!I' "	 IPjp[[Qlpj Xl·

Even though we need free variables to be a.ble to define mutual recursion. we will
ultimately bp interested only in terms which represent proCc,~5es_ These terms
contain no free variables and are therefore independent of the current binding.
Thus when defining a process we <:an omit the binding parameter. Also it turns
out that. up until recursion the parameter p is carried through the proof of every
algebraic equivalence without ever changing. So for simplicity's sake we omit p in
these proofs - they could be made rigorous simply by inserting p to the right of
each term in denotational brackels.

We now present the semantics of PCSPo. Let A be an arbitrary set in F.

3.1 Atoms

The process STOP deadlocks immediately, i.e. jt never does anything. This be­
haviour corresponds to the point measure which gives probability 1 to the trace of
unobservable actions and probability 0 to everything else:

if(T}"EA
\STOP!p4 "	 { ~ otherwise.

As in C:SP we distinguish between deadlock and succes:>ful termination, which is
marked by the special action J. Once a process has performed this adion it cannot
do anything else (although potentially another process can take over). The process
SKIP does nothing but terminate su<:cessfully.

!SKIPlp A " {l if (.I)(T)" E A
o otherwise.

3.2 Prefixing 15

3.2 Prefixing

The expression a --t P denotes a process which first performs the observable action
a and then behaves as process P. Vle lise the function prefi~fl.' which prefixe5 a trace
with an a. t.o define the probability measure denoted by a ~ P as a transformation
of the measure denoted by P.

la ~ Pip A '" IPlp prefix;;' A

where

preji~. : f! --t n

VuEn prcfix.(u) = {a}IL

The following lemma show~ that this is a valid definition.

Lemma 3.2.1 The function prefix" is mC3-'iurable. o

Proof "VIt'f' :>how that the inverse image of each generating ~et i~ in F. For a
non-empt,y sequence t E r:; the set Sit) has inverse image

if f{) = a
prejix;;'S(I) = {~(1/1)

otherwise.

Also prefi;r;ln = prejix.-IS(a) U U'~4prefix4-IS(c) = n. o

Using the above expression for the inverse image of S(t) we can write it.s prob­
ability as

la ~ P!S(t) = {[PIS(1/1) if 10 ~ a
o otherwise.

So a ~ P must do a as its first step, and the probability of any further steps
depends on P. This is analogoHs to the behaviour of a -) P in other models of
CSP.

3.3 Probabilistic Choice

\\le write P pn Q for a process w!lieh behaves like P with probability p and like
Q with probability I-p. This corresponds to the weighted average of t.he nl{'asures
ofPandQ.

IP,n QlpA '" p!PlpA + (l-p)!QlpA

3.3 Probabi/istjc Choice	 16

It follows from lemma 2.1..1 that [P ~n Q~ is a mea.sure. Probabilistic choice
satisfies similar laws as the choice operator in the traces model of CSP:

Lemma 3.3.1

ProbabiliBtic choice is idempotent a.ud commuta.tive.

Ll l' ,n P " p.

L2 l' ,n Q " Q ,_,n p.

A choice with probability 1 if' certainty.

L3 l' ,n Q " P.

The associative law holds if the weights attached to the choices are adjusted appro­
priately. II is expressed most neatly in the following, slightly unusual. form:

L4 (P p/(I_q1rl Q) l-qn R =- (R q/(I_~)n Q) l_pn P.

Prefixing distributes through cboice.

LS a~lp,n Q) = (a~p),n (a~Q).

o

Proof Laws 1 to 3 follow immediately from the definitiou. The measuref; for both
sides of law 4 expand to

piPlA + (l-p-q)[QH + qlRjA.

Prefixjng distribut.es through probabilistic choicp because

I, - (1' ,n Q)J A	 IP ,n QI pccjix;:' ,1

p [PI pnjix;:'A+(J-p) [Ql p,~jiz,-'.4

p [a_PI A+(1-p) [a~ QI A
I(a _1') ,n (a _ Q)I A.

o

Binary non-deterministic choice call be generalised to n~. Pi where the Pi are
PCSPo terms and the P, are probabilities, that is 0 ::; p, ~ 1 and LI Pi = 1.

3.4 Hiding 17

3.4 Hiding

Hiding, or removing a set of observable actions from the traces, enables us to ab­
stract from unnecessary detail in the hehaviour of a process. The expression P\B,
where B ~ ~, denotes a process which behaves like P without tbe actions in B.
Using the function hideB which removes all actions in B from the traces, we define
the semantics of P\B as a transformatiou of the measure denoted by P. The prob­
ability of a set of traces after biding is the probability of all the traces containing
actions in B which it conld have stemmed from. So

[P\B]p A " [PIp hid'B' A

where

hitleR: 0 n---jo

V'llEn hidq~('ll) - 'lllB'

Lemma 3.4.1 The function hitle. is measurable. o

Proor Consider the inverse image of the generating set S(t) where t E r:;. If t
contains any element of B then hirie'B1S(t) = 0. Otherwise suppose that I contains
only visible actions. Then the inverse image of S(i) consists of all the infinit.e traces
which, after hiding of B, bep;in with t. Each such trace "U must have a finit.e prefix
s such that hidq;l (s) = t. i.e. hideB (u) 2 t if and only jf there exists an !i such that
u > s and hideB(s) = I.

hid'B' 5(t) (u I hid'B(u) > I)

U 5(s).

h,de/1(.)=1

Since there are only conntably mau)' finite traces the set U S(.~) i:; at worsl a count­
able union of F-sets and hence itself in F.

If t euds in a tail ofT's we can write S(i) = S(t'(T)) where t' ==: t r~, Since

5(t'(r)) 5(t') - U 5(1'(,))

"#'1

it follows that

hid'B'5(1'(r)) ~ hid'B'5(1') - U hid'B'S(t'(,))

_'I'"

which. as a difference of measurable sets. is also measurable. Thus the (nverse image
of every generating set is measurable. 0

3.4 Hiding 18

The argument concerning traces ending in a tail of T'S can be used for any
transformation function. So for the remaining operators we only need to prove
measurability for sets with T- free prefixes.

Lemma. 3.4.2

Hiding everything produces a process which docs nothing.

Ll PIE = STOP.

Hiding not.hing changes nothing.

L2 PI0 = P.

Hiding does not affect. a process which does nothing.

L3 STOPIB '" STOP.

Hiding first one set of actions and t.hen another is the same as hiding t,hf' union of

both sets.

L4 {PIB)I C '" PIB U C.

Hidden actions disa.ppear; other actions are unaffected.

L5 (a _ P) III '" { a ~ PIB if a <t B
P\B otherwise.

Hiding distributes through probabilistic choice.

L6 (P ,n QlIll '" PIB ,n QIB.
o

Proof For law 1 note that hideEu = (T)'" for all u. Therefore

hid,-l A = {fl if (T)- .E A
~ 0 otherwise.

So

fPIEI A [P!hid,;;' A

I if (T)- E A

{ o otherwise

[STOP] A

3.5 Simple Parallel Composition 19

Law 2 follows from the fact that hide, = id, the identity function on traces. For
law 3 note that {r)'"' E A {:::;I (T}'"' E hides I A so that

ISTOP\BI A ~ [STOP] Md,.' A

I if (r)w E ,I
= { 0 otherwise

= [STOP! A.

Law 4 holds because hidf'B ; hidec = hide8uc and law 5 because

'h'd _ {hides; prefixa if a ¢ B
prefiTIL' 1 e.S - hideB otherwise.

The proof of the law that hiding distributes through choice is similar to t.he proof
that prefixing distributes through choice. 0

3.5 Simple Parallel Composition

In simple parallel composition two processes must cooperate on every act lOU that is
performed. We would expect the probability that the parallel system PI) Qpprform~

an action to be the product of the probabilities with which the componertts P and
Q perform this action. So it Sf'f:ffiS natural to define the measure for PIIQ as a
transformation of the product measure ([P] x [Q]), This transformation uses a
function par which maps a pair of traces 1.0 t.he longest trace up to which they
agree. If that is a finite trace it. adds a tail of unobservable actions. This reflects
the fact that for the parallel system to perform an infinite trace tJ. both component
processes must perform 'U. If the component processes set out to perform traces
which differ after 11 steps the parallel system will deadlock at that point.

IPIIQ!p A '= ([Plpx[Q[p) par-'A

where

pl1r: oxn _ fl:

if u = v
\l'u.vEn ·par(tt,v) = {~ur'l)CT)<.J if tJ. rn = t' in. 1\ 'II .. i- u...

Lemma 3.5.1 The function pal' is measurable. o

Proof Consider t,he inverse image of the set of extensions of a 7"-free trace lEE"'.

par-' S(l) (Cu,,,) I pac(u,") > I}
{(u, ") I (u ~ " A " > f) V

(3,,· ur,,~ "r" A". #". A(ur")(r)w> t)}
S(t)xS(I).

3.5 Simple ParaJJel Composition 20

By the same argument which we used in lemma 3.4.1 it follows that the set of
extensions of a trace ending in T also has a measurable inverse image. Thus paT is
measurable. 0

Note that if t is T-(ree then the inverse image of S(t(T)) can be written a!'l

par-'S(t(r)) = S(t(r))xS(t(r)) U UU S(t(e))xS(t(g))
< 9#-'

where e,9 E E T • So the probability of deadlock in a parallel system derives from
the probability that the components deadlock individually or that they attempt to
do different things.

As in esp, parallel composition in PCSPo is not idempotent. as is shown by the
two coin-tossing processes in parallel (example 5.3). The following lemma shows
which law~ do hold.

Lemma 3.5.2

Parallel composition is commntative and associative.

LI PIIQ '" QIIP­

L2 PII(QIIR) '" (PIIQ)IIR

A process in parallel with STOP can do nothing.

L3 PIISTOP '" STOP.

Parallel composit.ion distributes through probabilistic ,hoice.

L4 (P ,n QIIiR '" PIIR ,n QIIR.

If two parallel processes an> both prepared to perform the same a.ction, they will

synchronise in doing so.

LS (a _ PIII(a ~ Q) '" a ~ (PIIQ).

If two parallel processes attempt to perform different actions, they deadlock.

L6 a ¥ b => (a ~ P)II(b ~ Q) '" STOP.

o

3.5 Simple Parallel Composition 21

Proof La.w 1 follows from the symmetry of par and f'ubini's theorem. To prove
that parallel composition is associative we show that (id, par) ; par = (par. id) ; par:
For all u, v, w E fl

((id,par); pa;)(a,v,w)

par(u, 11) if v = tV

{ par(a,(vln)(T)") ifvrn~wrn"v.;tw.

U if u = v = w
{ (ufa)(T)" ifarn ~ vrn~wrn" (a.;t v. V v,;tw, V ,,;t w.)

(par, id); par)(a, v, wi.

To proe Law ;3 we write

[PIISTOPjA

([Pj x ISTOP~) p.,.-' A

(IPj x [STOP!) par-' An (ri x {(r)"))

,inee ([Pj x [STOPj) (ri x {(T)"}) ~ 1

I if (T)" E A

{ o otherwlsf'

since (Tt E A "" (ri x {(T)")) <;; pa,.-' A

[STOPj A.

Parallel composition distributes through probabilistic choice (law 4) hecause

[PII(Q,n R)I A

j[p,n Qi (par-'A), [RHdz)

p j [Pi (par-' A), [R] (dz)+ (1-1') j [Qi (par-' A), [Rj (d,)

[p/lQ,n PIIRIA.

Distributivity in the other direction is simply a consequence of symmetry. For law 5
it is straight.forward to check that (prefixa, prefi:r¢) ;par = par; prrfi:ra. To prove Law
6, note that ((prefixa, prefixc) ; par)(u, v) = par((a) u, (c) v) = (7)"'" for aU u, v E fl.
Thus the inverse of any set A through this transformation is n x n if A. contains
(7}'" and empty otherwise. Hence

[(a - PHI(b - Q)J A

[Pirl[QlrI if (T)" E A

{ [Pj0 [Qj0 olherwioe.

[STOPi A.

o

3.6 Sequential Composition 22

Simple parallel composition is very restrictive because it requires processes to
synchronise on every action. Alphabetised parallel composition would allow some
actions to be performed internally by one process without the participation of oth
ers. Unfortunately, this cannot be modelled. as a transformation of measure because
if two processes each set out to perform an internal action the two actions can hap·
pen in either order, and the pair of component trace:. beginning with these iuternnl
actions is related to more than one trace of the parallel system. So there is no
function from pairs of component traces to system traces which could be used to
induce a measure for the parallel system. We will invest.igate ot.her ways of defining
alphabetised parallel composition in chapters 6 and 7. but we cannot incorporate
it into PCSPo.

3.6 Sequential Composition

We denote sequeutial composition of two processes P and Q by P; Q. Like parallel
composition, it is defined a..,,, a tram,formation of the product measure:

[P;Qlp A '" ([Plpx[Qlp) "q-'A

where SEq if' a function which cuts the tail off its first argument at the v and
concatenates it with the second argument:

seq: OxO -. S1

if II v-free

"iu,t'ES1· scq(u,v) = {(Ufn)v ifurnv-frec /\u l1 =./.

Lemma 3.6.1 The function seq is measurable. o

Proof For alt tEE·

"q-'S(I) {(u,v) I (u > I Au ,1-f,ee) V

(3n·urnv·frce /\u,,=v/\(tlrn)v> t)}

{(u,v) I (,,1#1 ,1-f'ee Au> t) V

(30::; n < #t· !lIn ..I-free /\ Un = ..I 1\ (u[n)v > In.

So if t is v·free the inver;;e image seq-1S(t) contains all the pairs of sequences
where the first sequence begins with a prefix of t followed by ./ and the second
sequence makes up the resl of 1. It also contains the pairs of sequences where
the first argument contains the whole of I. (not necessarily followed by ..I), and the
second sequence is arbitrary:

#1-1

"q-'S(I) = U S«tln)(,1))xS(tln)US(t)xf! jf t ,1-f'ee.
11==0

0

3.6 Sequential Composition 23

If t does contain a ,I then il must stem from the st'Cond argument of Slq because
seq removes the first J. So

•
seq-'S(t) - U S((/[n)(J))xS(tjn) if t rk ,I-free 1\ t" = ,l •

.. =0

In either case the inverse image is a finite union of measurable rectangles and thus
a measurable set. Hence Sf;q is measurable.

Lemma 3.6.2

SKIP is the ideut,ity of sequential composition and STOP is the zero.

Ll SKIP; P =' 1'; SldP = P.

L2 STOP; I' =' STOP.

Sequential composition is a.<;sociativc.

L3 (I'; Q) ; R =' 1'; (Q ; H).

It distributes through probi'lbilistic choice in both directions.

L4 (p,n Q); R '" (I'; H) ,n (Q; H).

L5 p;(Q ,n R) =' (I'; Q) ,n (I'; H).

Prefixing and sequential cotllposition can bC' performed in either order.

L6(,,~P);Q "'a~(P;Q).

Sequential composition dist.ributes through hiding.

L7 If J" Jj then (I'; Q)IB = (pIIJ); (QIB).

o

Proof To prove Law 1 we first deal with ""KIP; P.

liSMp! x [I'll scq-',1

liSKIPI xip~) (s,q-' An {(J)(T)"} xO)
';nce IISMp!x[p!) {(J)(T)W}XO = 1

([SlOP! x [PI) {(J)(T)W) x A

since "i u En· S€q((,1)(T)"', 11) = u

[SlOP! {(J)(T)W) Iri A

[PI A.

3.6 Sequential Composition	 24

Now consider P; SKiP. If tEE; is ';-free we have

~j-l

[P; SKlP! S(t) L [PI S((t[n)(J)) [SKIP! S(t/n) + [PIS(t)
~==O

[P! S(t)

since if 0 S 11. < #t then [SfdP~ S(tin) = O. If ti is the first.; in l then

•
[P:S/\IP] Sit) L [P]S«tln)(J)) [,'il\'/P!S(t/n)

..==0

[PIS«(tlk)(J)) [SJ(/PjS(t/k),

We wiU prove in lemma, :1.6.3 that. no process can ever do anything visible after

terminating. It follows that if tl; = .; then

[P!S(t) = {[nS((Ilk)(J)) ifl/(k+l)«T)w
o otherwise.

Also [SkIP] S(tl k) = t if tl(k + 1) < (rJ'" and 0 otherwise. So for a trace t which
contains,j as jts (k + 1)th (·lcment

[PIS((tlk)(J)) is/\IP]S(t/k) = [P!S(I),

So the second half of law 1 holds, too.

To prove Law 2 we use the fact that {(r)""} x 11 is the support of the product
measure and hence

[STOP; Pi A	 = ([STOPI' [P~) ,,,q-' A

= ([STOp!xIP!)("q-'An{(T)W}Xn),

Since srq-l (rJW = {(';J (r)W} x {(rJ""} U {(T)'"'} x 11 the int.ersection is non-empty if
and only if (r)W E A. So

[STOP' P! ,I	 = {I if (T)W EA
, 0 otherwise

= [STOPI A,

Associativity of sequential composition follows if we can show that (seq, Id): seq =

(id, seq) ; seq. Given u, v. 'u' E n we have

seq(se.q(u,v),w)

seq(u,w) ifu ';-free

= { .9e.q«urn)v,w) ifurn.';-free /l.u,,=';

3.6 Sequential Composition 25

u if tL ../ -free
(u rn)u if tI rn ../-free A tL" =../ A v ../-free

{ (urn)(urm)w if tL rn ../-free A tL" = ../ A v rm ../-free A v", = ../
if tL ../-free

{ (ufn)seq(v,w) if '/1 rn ../-free Au" = ../

seq(u, ..;eq(v, w)).

The proofs of Laws 4 and 5 follow along the same lines as the corresponding
distributivity laws for parallel composition. For Law 6 it is easily checked that
(pl"f'.jiXa, id) ; seq = .'.eq; prefix4' To prove Law 7 we show that seq; hideB
(hide8' hideB) ; Sl:q, For all 11, v E n

(srq;hideB)(tL,r)

hideB'/1 jf tI ../-frec
{ hideB((utll)v) if(1!rn) ../-fr~ Au" =../"

hidf'Jju if u ../-frce{ ((hidfBtI) rm)(hidc8t') if (hideRuHm. ../-free A (hidf.B"/1)m::../'

((hides, hide8) ; seq)(tI, r)"

o

A process which terminates can never do auything dse, Accordingly, the prob­
ability of a visi ble action happening after ../ ough t to be 7..ero, This is expressed by
the termination conslr"ainl: let U be the set of traces which contain a vi:;ible event
after ../,

U '" {t(/)u I t ,f-rree Auf- (T)").

The following lemma asserts that all the measures representing PCSPo·processes
assign this set probability zero.

Lemma 3.6.3 V P E pesp,· [Pi U = o.

Proof We use structnral induction. Clearly

[STOPi u ~ [SKIP] U = o.

Consider now t he operators which are transformations of measure and suppose thaI
their arguments satisfy the constraint. A violation of the constraint can arise only jf
the inverse image of U through the transformation function contains traces outside
U, because only they can have non-zero probability, However, it is easily checked.
that if f is any funtion defined so far (id, pr-ejixa , hide8, par or Mq), or one of the
functions defined in the next two sections (interleave or a. relabelling fundion) then

0

3.7 Prioritised Interleaving 26

U
cf u" ~

or, if f is binary,

f [lexu e ~ [Ie.

So all the transformation functions defined in this model presen"e the termination
constraint. Probabilistic choice preserves the constraint because the snm of two
null-sets is again a null-set. It will he shown iu chapter 4 that a. recursively defined
process is the limit of a sequence of iterates which consist of some combination of
the above functions applied to STOP a finite nnmber of times. So the: termination
constraint i" satified by each iterate and preserved in the limit. 0

3.7 Prioritised Interleaving

Interleaving is similar to completely unsynchronised parallel composition in that
the ordering of action::; by different processes is entirely arbitrary. We will give a
definition for the interleaving operator which works because it makes an assumption
about this ordering, nam('ly t.hat we know the 8.'iymptotic frequency of actions by
P and Q in the interleaved traces. This can be interpreted as knowledge ahout
the relative speed of the component process('s or, equivalently, that each process is
scheduled some fixed proportion of t,he time.

We writ.e P pili Q to indicate that P and Q are interleaved in such a way that at
each step P has a chance p of perforrrUng t.he next action. More succinctly, we say
that P and Q are interleaved wit.h P having priority p. If P deadlocks, Q proceeds
on it.s own (irrespective of P's priorit.y) and vice versa. If both P and Q deadlock
the whole system deadlocks. If P has priorit.y 1 t.hen Q can only do something if P
deadlocks. This is simila.r t.o t.he notion of process priority which [SS901 model in
the context of PCCS. The syst.em terminat.es successfully only when both P and
Q are prepared t.o terminate. If only one process is prepared to termInate, t.hen the
other process takes over until it, t.oo, can t.erminate. In effect. the action J is the
only adion on which the proC('sses must. synchronise.

The semantics of t.his operator involves a. transformation function intel"leave and
a. coin.tossing process T(p).

IP, III Qlp A ([PIp x [Qlp x T(p)) inlerl",,,e-' A.

The process T(p) chom;es between a 0 and a I with probability p and I-p respec­
tivelyat. each st.ep. Once we have defined recursion we will be able to write

T(p) " [pX.((o~x),n(l~Xm.

3.7 Priorit;sed Interleaving 27

For our present purpose it suffices to know that for any T-free trace t E r.:; which
contains k O's we have

T(p) S(I) " p'(l-p)#'-'.

As long as neither P nor Q have deadlocked or terminated, P is allowed to make a
step whenever T(p) chooses Dand Q is allowed a step whenever T(p) chooses 1. The
function interleave takes two traces of actions and interleaves them as determined
by a trace of D's and 1's, i.e. it is of type

flx!1xBW -fl.

Let d E :8'" and suppose that u and v are 1"- and ..I -free up to at least d 10 and d 10
respp-ctively. Then there exists a unique sequence of pairs of booleans and actions,
such that the sequence of hooleans is d and the sequence of actions labelled 0 is
u and the sequence of actions labelled 1 is v. To express this formally It>! zip be
the function which transforms a pair of sequences into a sequence of pilirs, and
let Jr1' 11"2 be projection functions such that for any two sequences J, , we have
Jr1(zip(l, r) = 1 a.nd Jr2(zip(l, '")) = T. Then for u and v as above we define

interlea1Je(u, v, d) - 71::

where;; E (8 x L:)W
1\ 1l"1;: = d
A .,(zr{O}xE) ~"

A <,(d{l}xE) ~ v

If 1l is T- and ..I-free only up to some up n < d 10 and Un = ./ and v is T- and ..I-free
up t.o that point then tllf' interleaved trace follows d unt.il jnst. before Un is chosen
and continues as the remainder of v.

interleave(u, v, d) = (1I"2z)(t'j«1l"lz11)

,.... here :; E (8 x L:)"
A «, z)(O) < d
A .,rd{O} xE)(-,) <"
A .,rd{l}xE) < v

If everything is as in the last case except that 1ln = 1" t.hen the interleave trace
cannot terminate successfully. \Ve therefore define

int,d,""e(u.",d) ~ «"j("/((,,z)ll)f{-'}')

where Z E (8 x L:t

A (" z)(O) < d

A <,rzr{O} XE)(T) < u

A .,(zr{l) xE) < v

The cases where t he first ... or ..I to be chosen by d stems from v are treated
accordingly.

28 3. 7 Prjorj~i3ed Interleaving

Lemma 3.7.1 The function interleave is measurable. o

Proof Let tE1:- be T-free. Then

interleave- l S(t)

U S(.-,(zip(d,t)f({O}xE)))

lE.'- xS(.-,(zip(d,t)f({I}xE)))

xS(d)

#1-1

U U U
11",,0 dEBn

S(z,(zip(d, 1)f({O) XE))(T)) US(z,(zop(d, ')friO} xE)(J»)

xSI z,lzip(d, t) II {I} x E»)('I n))

xSI d(O»

U S(z,lzip(d, I) I({D) U E))(tln))

xS(z,(zip(d, t)f({I} x E»)(T» U S(z,1 zip(d, I) f({I Jx E))(J))

xS(d(I»

As a countable union of sets of traces with a common prefix the inverse image of
S(t) is a measurable set. If l ends in .; the only difference is that the component
traces ending in T are not in the inverse image. A set of traces with a prefix that
is not T-free can be expressed as the difference of sets with T-free prefixes and is
therefore also measurable. Heuce the function interleave is measurable. 0

Using the above expre.ssion for interleat'e-1S(t) we can give an explicit exprC9­
sion for its probability. Each term in the nnion over all d E 18#1 has probability

P'"(l-p)'"IP!S(z,(zip(d, t) I({OJ x E»)) IQIS(z,lzip(d, I) I({I} x E)))(3.1)

Similarly for the other terms. Note that p = 1 reduces the sum over all these terms
10

#1-1

IP!S(t) + L IPIS((tfn)(J»)US((Iln)(T» IQIS(tln).
11",,0

So, a.c; mentioned earlier. if P has priority 1 then Q can only do something jf P
deadlocks or termiuates. Interleaving satisfies the following laws:

Lemma 3.7.2

Interleaving is commutative, associative and distributes through choice.

3.7 Prioritised Interleaving 29

LI P, III Q =" Q '-. III P.

L2 (P ,n Q), III R =" (P ,III R) ,n (Q, III R).

L3 (P ,10-0 III Q) " III R =" (R ,1,-.111 Qj H III P.

The process SKIP leaves the remaining component to run on its OWn.

L4 SKIP, III P '" P (even ;[p ~ 1').

L5 (a~P),1I1 (b~ Q) '" (a~(P,111 (b~ Q)),n (b~(a~P),111 Q))).

o

Proof Commuta.tivity LS obvious, and distrLbutivity through choice can be proved
in the same way iL'l the corresponding law for parallel composition.

Associativity can be proved by induction. The base cases are the probabilities
of SO, S(T) and S(/). Assuming that the law holds for any S(t) where t E r:; it
can be shown to hold for S«(a)l) by expanding the inverse image of S((II)t) twice
using formula 3.1 and regrouping the resulting term.,.

For law 4 note that VuE ,11, dEB'"' . inlerleave{ (,/) (T)"', it, d) = u. Also the
product measure (ISKIPI x [PI x T(p)j h., ,upport {(-I) (T)"} X (I X (I. 1herefore

[SKIP, III PI A

(ISKIPI x [PI x T(p)) (;n!c"/ca,,-' An {(-1)(T)"} x (I x (I)

~ (ISKIPi x [PlxT(p)){(-1)(T)"}xAxf)

[Pi A.

For law 5 it is easy to check the following two identities;

(prefixa, id, prefiX{)); interleave inLerleave ; prefix",

(id, prefixb, prefix]); inte.rleal!e interleave; prefixb.

Also, it follows from the recursive definition of T(p) and law 1 of thc recursion laws
(4.2.9) that

T(p) A ~ p T(p) prcfix;' A + (l-p) T(p) I,re]ix,-'A.

3.8 Relabelling 30

Using these facts we can write

I(a ~ P) ,III (0 ~ QIJA
p (I PI x 10 ~ QI x T(p)) (prefix:' , ,d, p"'fi",-')(,nlerlwve-IA)

+ (J - p) (Ia ~ PJ x 1QI x T(p)) (,d, p"'fix,-" prefi,,-I)(,nterleave-I A)

p (IPI x 10 ~ QJ x T(p)) ,nl"lea"e-'(p"'fix:' A)

+ (l-p) (Ia ~ PlxIQ!xT(p)),nl"leave-'(p"'fix,'A)

piP, III (0 ~ Q)! p,·rfix.-' A

+ (I-p) I(a ~ P) r III QI P"fix,-'A

[(a~(P, III (o~ Q)) ,n(o~«a~ PI ,III Q)))! A.

o

3.8 Relabelling

Let / : E~ _ r~ be a function which relabels visible events but does not affect.,.. or
./,

a=T ¢:} f(a)===T
a=./ <> /(a)=.f.

Lift / to sequences:

VaEfl ViEN·/(v), =/(v,).

Then f can be used to define a probability measure

l!(P)!p A = IPlp /-1 A.

Lemma 3.8.1 The function / is measurable. o

Proof The function / applied to a trace does not affect the length of the trace.
Thus the inverse ima.ge /-1 S(i) is of the form U~ S(5) where #5 = #t and /(5) = I..
This is a measurable set. 0

Rdabelling sat.isfies the following laws:

Lemma 3.8.2

A process which does nothing remains unchanged by relabelling.

L1 !(STOP) " STOP.

3.8 Rel.belling 31

R.elabelling a process first by one function and then another is the same as relabelling
a process with the combined relabelling function.

L2 f(g(P)) -= (g ;f)P.

Relabelling distributes through the following operators:

L3 f(a ~ P) -= f(a) ~ f(P).

L4 f(P,n QJ " f(P) ,n f(Q)·

L5 f(P II Q) '= f(P) IIf(Q) iff is I-I.

L6 f(P; Q) '= f(P) ;I(Q).

L7 f(P, III Q) " f(P), iii f(Q)·
o

Proof Law 1 holds because

~f(STOP)D A ~ [STOPll u-' An {(T)W}) ~ [STOPH A.

Law 2 is obvious. Law ;j holds because prf.fi;x~ ; / = f ; p1'tjiX!(a)_ Law 4 follows
becall;';e

I!(p,n Q)DA ~ p~Plr'A+(I--p)[Qllr'A ~ I!(p),n J(Q)JA.

Laws 5 to 7 hold because

p(tr; / (J.J); par if J is 1-1

seq :1 (J.f); srq since(a=,/ ¢} !(a)=,J)

inter/eavE; f U,J, !'d): interleave.

o

Chapter 4

Recursion

In this chapter we introduce operators for single aud mutual recursion in PCSPo.
The semantics of a recursie definition relies on the fact that the sequence of in­
creasingly many unfoldiugs of the recursion converges. In the first section of this
chapter we define weak com'crgence in the space PM of probability measures on
(O,:F) and show that a stronger concept of convergence would be unsuitable. In
other models of CSP as well as other languages convergence is defined either with
respect to a partial order (as in [HoaS5l and [JPS9j) or with respect to a metric (as
in [ReR88] and [OS91]). In both cases a fixed point theorem exists which yields a
sufficient condition for the validity of a recursive definition which is easy to check.

A partial order on prohability measures can easily be defined if the underlying
space is ordered. For instance, given two measures P, Q on (IR, R) we could define
P to be below Q if V I : IR· P(-00, x J :::; Q(-00, :c]. However, the space of infinite
sequences of actions is not ordered in a way which would have an intuitive appeaL
[JP89] solve the problem by basing the semantics of their probabilistic language on
evaluations rather than measures. Evaluations are like measures, but are defined
only on a restricted class of sets and need not have total mass 1. One evaluation is
defined to be below another if the "probabilities" assigned by the former are always
less than those assigned by the latter. However, as the authors remark, it is more
natural to use measures than evaluations. This is what we will do.

In the second section of this chapter we will define a metric and show that
con vergence respect to this metric is the same as weak convergence. This will enable
us to take (almost) the standard approach towards establishing a sufficient condition
{or the validity of single recursion. In the third section we extend this approach to
mutua.l recursion. In the last section we establish proof rules for recursion induction.

4.1 Weak Convergence 33

4.1 Weak Convergence

To define weak convergence in the spa.ce PM in the sense of definition 2.1.5 we use
a metric 6 on sequences which depends on the length of the longest prefix up to
which they agree:

Vu,vEll· o(u,v) ~ mjn{T·lurn~vrnl·

The open halls in this space a.re the sets with fixed prefixes. Taking finite a.nd
countable unions as well as finite intersections of these sets yields the cylinder sets
as open sets which, as required, are the generating sets of T. They are a.ctually
e1open, because the complement of a cylinder set is also a cylinderset. Therefore it
follows from theorem 2.1.6 that a sequence (P")"'N of measures in PM converges
weakly to a measure P only jf for all cylinder sets A

lim sup P"A = lim inf PnA = Jim P"A = P A.

To see why a concept stronger than weak convergence would be unsuitable con­
sider Il X • (Z -+ X. From our understanding of standard CSP we expect this to
denote the process which performs infinitely many a's. In the probahili~tic model
this is the poin t measure

P A _ {I if (n)" EA
- 0 otherwisc.

We also expect Ii. X. II - X to he the limit of the sequence (P,,) where tht> process
Pn performs n a's aud then stops:

P A ~ {l if (n)'(r)" EA
n 0 otherwise.

The sequence {Pn } converges on all sets with fixed prefixes:

r P _ if t < (n)"S() {I
l~n n t - 0 otherwise.

However, it does not converge on all A E :T. Consider the probabilities assigned by
the P" to the singleton set which contains just the infinite seqnence of a·s. Writing
{(a)'"'} = ntS(a)t and using the fact that Vk > n' P"S(a)t = 0 we have

li:n P, (n,S(n)') ~ O.

Not only is this different from P{ {a)W} 1 but it also means that the pointwise limit
of the sequence of P,,'s assigns 0 to all sets in T and thus fails to be a measure at
all. By contrast, if we use weak convergence then because {(a)W) is a closed set alt
that is required according to theorem 2.1.6 is that

lim sup p. {(n)") <; P {(n)")

which is true.

4.2 Single Recursion 34

4.2 Single Recursion

Let P be a term possibly containing the free variable X. We write p X _ P to
denote a process that behaves as P with X representing a recursive invocation of
the process.

To give a. semantics to this expression first consider the semantics of P with a
binding p. U we regard p[X~ as being variable, [Pip becomes a function whose
argument is the measure to he bound to X:

Definition 4.2.1 If P is a PCSPo term possibly containing the free variable X
then

MIX,Plp =), YIPlp[Y/X).

o

Any free ~'ariables other than X are bound by p as usual. We can now give the
semantics of the recursion operator:

[pX. P]p == the unique fixed. point of the mapping M(X, P)p.

Not all fixed points are unique. For example, every measure is a fixed point of the
mapping M(X, X)p, corresponding to the recursion p X -X. The rest of this section
serves to estahlish conditions for the existence and uniqueness of fix-ed points, based.
on the following theorem:

The Banach Fixed Point Theorem If (M, d) is a complete metric space and
F : M M is a contraction map, then F has a unique fixed point jix(F). Fur­
thermore, for all S in M, jix(F) = limll~C>:l F"(S). 0

For a proof of this theorem see for instance [Su75].

There are two candidates for a suitable metric for PM. The first one takes the
weighted sums of all the differences in the probabilities given by the measures P
and Q to sets with increasingly longer T-free prefixes:

~ 1

dIP, Q) = L 2" L IP Sit) - QS(t)l·

n=l tEEn

It is easily checked that this defines a metric. Note that VP, Q. d(P, Q) S; 2. The
secona metric is based on the length of the longest r-free traces up to which P and
Q agree in probability:

d'(P, Q) = inf {Z-"IVt n:"· PS(t) = QS(t)}.

4.2 Si.ngle Recursion 35

(For both metrics we could have included traces ending in T in the definition.
This would have heen topologically equivalent since the probability of any set of
traces with a prefix ending in T is completely determined by the probabilities of the
sets of traces with T-free prefixes. The definition which involves only T-free traces
considerably simplifies the proof of clanse 5 (concerning a Lipschitz condition (or
parallel composition) of lemma 4.2.5 but the other definition would enable liS to
prove a similar clause for sequeutial compositiou. However, since this proof would
involve two pages of rather unpleasant algebra and the clause is of minor importance,
we have chosen to use the simpler definition.)

In the following we will show (lemma 4.2.2) that convergence in d is equivalent
to weak can vergence. Convergence in d' implies convergence in d but not vice versa
(lemma 4.2.3). This means lhat d admits a wider variety of recursive definitions.
For example, we wilt be able to deduce (from lemmas 4.2.5 and 4.2.7) thaI the term
(a _ X) pn X corresponds to a contraction map with respect to d but not with
respect to d'. Therefore we nc-ed to use d. On the other hand, some expressions,
like a _ (XIiXlIX), which we would expect to be well-defined recursions, are not d­
contractions. However. they arc d'-contractions which together with lemma 4.2.3 is
snfficient to assert that a sequence of iterates of this map is also a Cauch)" sequence
with respect to d. So we also need d'.

Informally, the difference between the two metrics lies iu the way they regard
probabilistic choice. Take for instance the processes

P ­ [a _ STOP~

Q ~ [(a ~ STOP) ,n STOPI
R _ ISTOP~.

The metric d considers P and Q to be nearer to each other than P and R:

d(P,Q) (1-p)/2

d(P,R) ~ 1/2.

The metric d' classes Q and R as equany far apart from P:

d'(P, Q) ~ 1

d'(P,R) ~ 1.

Lemma 4.2.2 Convergence in d is equivalent. to weak convergence. o

Proof A sequence of probability measures (PllkN converges in d if and only if it
converges on all sets with fixed prefixes.

lim. d(P., P) ~ 0 .. '<ItEl:~ . lim. p.S(t) ~ P S(t).

4.2 Single Recursion 36

Since these sets are cylindersets, convergence on all cylindersets implies convergence
in d.

For the reverse implication we use the fact that every cylinderset can be written
as a countable disjoint union of sets with fixed prefixes. So for any cylinderset A
we can write A =UoS; where Vi· S, E {S(t) I tEI::+} and i=fj =} s,nS, =0.
Therefore

lim.. P~A lim" P" U,S; = lim" E, PnS, = E; P Sj
PA.

o

Lemma 4.2.3 Convergence in dl implies convergence in d. o

Proof We show that a Cauchy sequence with respect to d' is also a Cauchy se­
quence with respect to d. First note that V P, Q. d(P, Q) s: 2dl (P, Q) because

d'(P.Q)=!- '* 'VIEE"·PS(ll=QS(I)
2"

which means all terms in d(P, Q) involving traces of length Jess than n+1 are zero
and

~ ~ 1 l
d(P,Q) = 2 -..E, 2'

1 ,E IP 5(1) - Q 5(111 < "- 2- ~ 2l: 2"
.I:=n+l

If (P..)",N is a d'-Cauchy sequence then

Vl>O,3N,Vm,n>N· d'(Pn,Pm)<4t:
which implies d(Pn,Pm) < t:. So (Pn)",N is also a d-Cauchy sequence. o

Theorem 4.2.4 The space PM is complete in the metric d. o

Proof A metric space is complete if every Cauchy seqnence converges. Let (P").. ,N

be a Cauchy sequence in PM, that is

V,>O,3N,Vn,m>N· d(P.,Pml<<.

If this holds, then V1/., m > IV the difference in probabilities assigned by p .. and
Pm to any set S(I) with l of length k can be at most 2.l:t:. Since 2"(can be
made arbitrarily small, (P"SU)kN is a Cauchy seqnence in R. So we can define
a function Q : :F -Jo [0, I] which assigns to each S(t) the limit lim" p .. S(t) and
is finitely additive. Then Q is a probability measure on the field of all cylinder
sets. By the extension theorem, there exists a unique probability measure P on the
a-field:F which is generated by the cylindersets, snch that P agrees with Q on all
cylindersets. But then P is the limit of the Canchy sequence (Pn),,:N. Hence PM
is d·complete. 0

4.2 Single Recursion	 37

Now we need to investigate which PCSPo terms repre:lent contraction maps. A
fnnction l' ; PM _ PM satisfies a Lipschitz condition with constant k if

IIX, Y E PM· d(F X,F Y) <: k d(X, Y).

Let r(F) denote the smallest such k;

rtF) ;= in[{kIIlX,YEPM· d(FX,F Y) <: kd(X,Y)}.

The function F is a contraction map if r(1') < 1, non-expanding if d1') = 1 and
cxpanding if r(F) > 1.

In other models of CSP, prefixing is a contraction map <Ind all other operators
except the hiding operators arc non-expanding. This is sufficient to turn the com­
position of any opera.tor with the prefixing operator into a contraction map because
the composition of two functions corresponds to the multiplication of their Lipschitz
conditions: for any measures X, Y

d(F(G X},F(G Y))	 <: rtF) dIG X, G Y)

<: "(F) "(G) d(X, Y)

<: d(X, Y) ;fc(F) r(G) < I.

In the probabilistic model, parallel composition can actually expand the distance
between measures, as the following example may illustrate;

Consider the parallel composition of a. proce.'lS with itself, that if! let l' ==
M(X, XIIX)p. Let

P ;= [0 ~ STOPi

Q ;= I(0 ~ STOP) ,n STOPI·

Then

FP [XIIXlp[P/X] [0 ~ STOPl

FQ IXIIXlp[Q/Xj [(" ~ STOP) "n STOP~

and d(P, Q) = (l-p)/2 whe,eas d(F P, F Q) = (1- p')/2. So

d(F P,F Q) ~ (l+p) d(P, Q).

i.e. if p is large p<lrallel composition almost doubles the distance between P and Q.
However, the fact that a function l' is an expansion map does not matter as

long as r(1') is bOllnded and can be compensated for by a contraction map G, such
that r(F) r(G) < 1. The following theorem establishes such bounds.

4.2 Single Recursion	 38

Lemma 4.2.5 Let P, Q be terms possibly involving the term variable Z and let
F and G be the corresponding semantic functions, that is let

F " M(Z,P)p

G " M(Z,Q)p.

Consider a semantic function H such that

L H is constant w.r.t. p[Z]' Then r(H)~..: O.

2. H=M(Z,Z)p. Thenr(H)=1.

3. H = M(Z, a ~ Pll" Then r(H) ~ 1/2 ,(F).

4. H = ,\f(Z, P ,n (J)p. Then dH) = p rtF) + (1-1') r(G).

5.	 H =M(Z,PIIQ)p. Then r(H) 5 r(F)+r(G).
o

Proof Let X. Y be probability measures. If lJ is constant then

d(HX,H Y) = O.

If H is the identity function then

d(H X. H Y) = d(X, Y).

For the third case remember that for l E 1:", n > 0

p"lix.-' S(t) = {S(t/l) if," = ao otherwise.

Therefore

dlH X,H Y) d([a ~ P!p[X/Z],[a ~ I'jp[l'/ZII
~ II: 2" I: IF X pre/ix;'S(t) - F Y prejix;'S(t)1

""'\ tEE"

~ 1
I: ?" I: IF X 5(1/1) - F Y S(I/Ill
,,"'I ~ tf1err.-1

/0"'0

~ _1_ " IF X 5(,) - F Y S(s)[
L.J 2m+1 L.J

m=O 6E:£;m

~ d(FX,Fy).

4.2 Single Recursion	 39

For the last step we could disregard m = 0 because s E EO {:} 8 = () and F X SO =

F Y SO = O. For an expression with probabilistic choice tbe metric dis

d(HX,H y) ~ fl. L IpFX S(I)+(1-p)GX S(I)
71=1 2 IEEn

-pFY S(t)-(I-p)G Y S(t)1

$ p d(FX,F Y)+(l-p) d(GX,GY).

To show that parallel composition has Lipschitz condition at most the sum of the
Lipschitz conditions of its components is slightly more involved. Note that for a T­

free trace t the inverse image pa7·- 1S(t) is simply S(t)xS(t). So if H is t,hf'~emantjc

function corresponding to the parallel composition PII Q of the PCSPo-terms P and
Q we get

00 1
d(H X,H y) ~ L-;; L IFXSIt) GXS(I)-FYS(t) GYS(t)l·

2"=1 IEr: n

The terms in this summation are of the form la,bI - uJ b2 1 where at. aJ' b, and b2

are probabilities. Writing

albl - a2 b2 = '2I (al - G2)(bl + b2) + 2I (at + a2)(bl - b·l)

we can derive the inequality

1
la,b, - a,b,1	 " '21 la, - a,l(b, + b,) + (a, + a,)lb, - 1>,11

$ la, - a,1 + Ib, - b,l· (4.1)

The last step follows because bl + b1 ~ 2 and at + a2 ~ 2. Using this inequality we
can split d(H X. H Y) into two sums, one involving only terms in F and the other
only involving terms in G. This leads to

d(HX,HY)

< f ~ L	 (IF X Set) - F Y' S(tll + IG X S(I) + G Y S(tlll
2,,=1 lEE"

$ d(FX,Fy)+d(GX,GYl

$ reF) d(X, Y)+r(G) d(X, Y).

So r(H) < reF) + ,·(Gj.
o

4.2 Single Recursion 40

Lemma 4.2.5 provides a simple rule to determine whether a PCSPo-term is a
contraction map w.r.t. d. It shows that, unlike in other metrically based CSP
models, ungua.rded recursion may sometimes be well-defined in the probabilistic
model. For example,

Ir«a ~ (XIiSTOP)) ,n(XIlX)) < P2(1 +0)+(1-p)2

< 1
.
If p > 3'

2

However, some expressions, like a ~ (X II XliX), which we would expect to provide
well-defined recursions, are not contraction maps with respect to d, The next lemma
shows that all guarded recursions are contraction maps with resped. to d'. Thus
the fixed-point theorem applied to (PM, it) together with lemma 4.2.3 ensure that
any guarded recursion is well-defined.

The metric d' is analogous to the metrics which have been llsed for the nn­
timed and timed models of CSP (for a summary d. [Re88]) in that it depends
solely OIl the number of steps up to which the behaviour of two processes is in­
distinguishable. Not surprisingly it is also an an ultra-metric (i.e. V X, r, Z E
PM· d'(X, Y)::S: max (d'(X, V), d/(Y,Z))). In the non-probahilistic models a
function is a contraction map if and only if it increa.5es the number of steps U[1

to which the behaviour of two processes is indistinguishable. This is also true of
functions which are d'-contractions. We therefore adopt the standard terminology
for such functions ([Ros82], [Hoa85]):

Definition 4.2.6 Let P be a PCSPo-term possibly involving a free variable Z. We
say that P is constructive if M(Z, P)p is a d'-contraction, and non-desf.ruciive if
M(Z, P)p is non-expanding with respect to d'. 0

So in a probabilistic context a function is constructive if and only if it. increases the
length of the traces up to which two processes agree in probability:

Pi, co",tmctive ..." d'(IPlp[X/Z],IPJp[Y/ZI) < d'(X. Y)

..." (VtEl:" . X Sri) = Y Sri)

"" 'I s E l:"+1 ·IPJp[X / Z] 5(.,) = [Plp[Y / Z] 5(8)).

Similarly for non-destructive terms.

4.2 Single Recursion 41

Lemma 4.2.7

1. STOP and SKIP are constructive.

2. The free variablc X is non-destructive.

3. a -+ P i3 constructive if P is non~dest.ructive.

4. p,n Q, P II Q and P; Q are cOllstructi ve if P and Q are constructiR

o

Proof Let X, Y be two measures and suppose that "It E En. X S(I.) = Y 5(1).
Let E EIL+I. Clallsc31 and 2 follow directly. Clause 3 follows bccause prefix;;18(s)
gives a set with a fixed prefix of length n:

{ ~Plp[X / Z] .1'(,/1) if.so=a[a ~ Pjp[X /Z] .1'(,,)
otherwise

{ ~Plp[Y /Z] .1'(,/1) ifso=a

otherwise

since s/l E ~"

[a ~ Plp[Y/ZjS(s),

Let sEEn. Probahilistic choice is non-destructive becausc it does not affect the
Sis),

[p,n Qip[X/Z]S(s) ~ pIPlp[X/ZIS(s) + (l-p)lQlp[X/Z]S(s)

p[pJp[Y/ Z] .1'(,) + (1- p)[Qlp[Y / Z] Sis)
[P ,n Qlp[Y/ZJS(s),

For parallel composition recall that d l only compares T-free ,~. For these

[PIIQlp[XjZ]S(s) ~ [Plp[X/ZjS(,) [QJp[X/ZJS(s)
~ [Plp!Y/Z]S(,) IQ]p[Y/Z] .1'(,)

= /PIIQlp[Y/Z]S(s).

For the proof for sequential composition assume that. s ./~ and T-free. Then

IP; Qlp[X /Z]S(s)
.-,
I: [Plp[X / Z! S(sfk(J)) IQlp[X / Z] S(,/k) + [Plp[X / Z] Sis)
h"O .-,
I: [Plp[Y / Z] S(d k(~)) [Qlp[Y / Z] S(s/k) + [Plp[Y / Z] SCsi ,.,
[P; Qlp[Y /ZJ .1'(,).

Similarly for traces ending in ,J. o

4.2 Sjngle Recursjon 42

We combine lemmas 4.2.5 and 4.2.7 to characterise a class of recursive expres­
sions which are well-defined.

Theorem 4.2.8 Suppose that P is a PCSPo expression possibly containing the
free varia.ble X. If r(M(X, P)p) < 1 or if P is constructive with respect to X then
the semantics

1"X'Plp

is well defined. for all bindings p. o

For weU·defined Il X • P the laws li$ted below apply. The first two, concerning
the unfolding of recursion and the changing of bound variables, are completely
standard and follow directly from the semantics. The la.st one is particnlar to the
probabilistic model and follows from t.he last theorem.

4.3 Mutual Recursion 43

Lemma 4.2.9

Ll ~X.P =' P[I'X.P/Xj.

L2 If Y is not free in P then Jj X • P ::::::: Jj Y • P.

L3 IfM(X,P)p is acontractionmapw.r.t. dthenJjX.(P"n X) ~X.P.

o

Law 1 justifies the use of recursive equations as process definitions. Since P _
Q[P/X] if and only if P == 11X. Q we write P = Q[P/X] as an alternative to
p = 11 X • Q. SO for example P = a _ P and P :3. Jj X • a _ X are equivalent
definitions. The e<]uational definitiou is more cancIs£', especially in the case of
mutual recursion.

4.3 Mutual Recursion

To give a semantics to mutual recursion we closely follow the approach which [DS91]
presented for timed CSP. \Ve use the same syntax and translate the semantics frorn
the domain of sets of timed traces to the domain of probabMtt)' measures.

A term P may be ddined by a v£'ctor of mntually recursive equations with an
initial index j E I to indicate the. starting point of the recursion:

P "" (Xi ~ Pi), i E l.

Each term P, may contain calls to any of the variables Xl" The index set I need
not be finite.

As an example, consider the process-algebra representation of a random walk
on the natural numbers: tbe walk starts off at the origin:

CT ~ CTo·

At the origin it either goes up or it stays at the origin. At any other point it either
goes up or down. Any alt.ernative is chosen with probability 1/2.

around _ eT In up _ CTCTe o 1,
CTo dOll.'n - CTn_1 in up - CTn+1 Jl > o.

The semantic domain required to model a solution for a vector of mutnally
recursive equations is PM'; t.his is a product space with one copy of the model

4.3 Mutual Recursion 41

PM for each i E I. For any I, this domain is a complete metric space, with the
following metric on vectors.

d(V,IV) =0 ,up {d(V;,W,lliEI}.

To construct a semantic function for vectors of terms, we extend the use of bindings
to include mappings from vectors of variables to vectors of processes. We overload
the mapping notation (definition 4.2.1) with

Definition 4.3.1 If P a vector of PCSPo terms, and X is a vector of variables
indexed by the set I, then

M(X,P)p =0 >.Y·IPJp[YjXj.

is the mapping corresponding to the ~emantics of P as a function of the processes
bound to X. 0

Definition 4.3.2 If P is a vector of PCSPo terms, then

[(X, = P;);Ip =0 Sj where S ;, a fixed po;nt of M(X, Pip.

o

This semantics is well-defined if all fixed points of the mapping Af(X, P)p agree
on the j component, which is trivia.lly the case if M(X, P)p has only one fixed point.
For this to be true, jt is sufficient that every Pi be a contraction mapping for every
Xl with respect to d, 3-'l this turns P into a coutraction mappiug for X with respect
to d. It is also sufficient if every P, is constructive for every X)l as this turns Pinto
a contraction mapping for X with respect to d!, which implies convergence with
respect to d. [DS91] show that this condition can be weakened in the following way.

A partial ordering -< on a set. I is a well-ordering if and only if there is no infinite
strictly descending sequence (S,)"N slIch that 'if i : N. 5'+1 -< 5,.

Definition 4.3.3 If -< is a partial ordering on I. and i is an element of I, then the
initial segment ofi in (l. -<) is defined by seg(i) == {j: I I j -< i}. 0

Definition 4.3.4 A vector of terms P is constructive for a vector of variables X
if there is a well-ordering -< of the indexing set I such that

vj. i : [. j 1. seg(i) :::} P, is constructive for Xj

Vj, i : [. j E seg(i) :::} Pi is non-destructive for Xj.

o

4.4 Recursion Induet.ion	 45

Any mutual recursion in which the vector of terms is constructive for the fe-ctor of
\'ariables has a well-defiued semantics.

Theorem 4.3.5 (Unique Fixed Point Theorem) If a vector of terms P is con­
structive for the vector of variables X, then the mapping M(X, P)p has a unique
fixed point in Ph/I. 0

The proof of tbis theorem is giveu in [Dav91]. From it we deduce the coroiJary:

Corollary 4.3.6 If a vector of terms P is constructive for vector of variables X,
then the recursion I' X. P is well-defined. 0

4.4 Recursion Induction

The bare-hands approach to proving that a recursively defined process P ha:;; a
property R invol ves three proof obligations:

1.	 R is a satisfiable predicate (that is 3 p. R(P)).

2.	 R is continuons

(so if (P,) is.li convergent sequence then Vi· R(P;):;. R(lim P;)),

3.	 There exists a convergent sequence (Pi) such that P, ~ P and Vl·R(P i).

The theory of recursion inductiou, as presented by [RosS2J and extended to timed
CSP by [Re8S] and [DS9lj, simplifies these obligations by cstablishing

* a criterion for the continuity of a predicate which is easily checked,

* an inference rule which reduce~ the third obligation to one step.

We apply this approach to the probabilistic model.

We identify predicates ou measures with mappings from PM to the space of
truth values TV == {tnu:,Jalse.}. We use the metric d' to define the open sets
of PM to be those generated by the open balls, and define the open sels of TV
as {0, {false}, {true, false}} (this is the Sierpinsky topology). We now show that a
predicate is continuous if we only ut"("d to look at sets with fixed prefixes to establish
whether it holds of a process.

Theorem 4.4.1 If R is a mapping from the complete metric space (PM. d') to TF
such that for any P in PM

R(P)=fal.<c => (3u,N·\lIEE"·PS(t)=P'S(t)=>R.(P')~f.I.<e)

then R is continllous.	 o

4.4 Recursion Induction 46

Proor A mapping between two topological spaces is continuous if the inverse image
of every open set is open. Recall that the metric d' depends on the length of tbe
longest prefix up to whicb P and pi agree in probability.

d'(P,Q) = in! (T"I'tt E);'. #t <; n "" P S(t) = Q S(t)).

The above condition impli{'s that wh{'never R(P) is false it is false of aU measures
in tbe open ball {P'ld(P, P') < 2n +I

}. Thus R is continuous. 0

The following theorem is laken from [RosS2].

Theorem 4.4.2 Let M = (A, d) be a complete metric space, a.nd let TV be thf'
topological space ({ trTlf,jalse), T) with the Sierpinsky topology. If F : AI -; TV
is continuous and the set {a E A I F(a) = tru.e} is nonempty, then

('tx,A·F(x) =tr,,"" F(C(x))=f,,,e) "" F(fix(C))~h'ue

for any cont.raction mapping C: J'-'I ---Jo M. o

This allows us to postulate the following inference rule.

Suppose that n is a satisfiable and continuous predicatt> and that the PCSPo'
term P is r.omltructive for the variable X. Then

Rule 4.4.3

vy, PM· R(l') "" R([PJp[Y/Xi)

R([~ X • Pip)

o

Proof If P is constructive then AY . [P~p[Y / Xl is a contraction mapping. We
have assumed that R is satisfia.ble, continuous and that V Y : PM· R(Y) =}

R([P]p[Y / Xl). Therefore by theorem 4.4.2 the rule is sound. 0

This rule can be ext.ended to mllhlally recursive equations as shown by [DS91J.
If P is a vector of mutually recursive processes which is constructive for the vector
of variables X then to establish that a vector of predicates R correctly describes
tbe fixed point of M(X.P) it is sufTicif'nt 1.0 show that each R, is continuous arld
satisfiable and that R is presf'fved by AI (X, Pl.

Rule 4.4.4

('t;. R,(Y,)) ",,'tj. R,([P,Ip[Y/XIl

R(I~X,P~p)

o

Chapter 5

Examples

At the beginning of this theJ'lis we claimed that the specification of probabilistic
processes must be linked to a notion of probabilistic correctness which requires that
a property be satisfied with probability 1. hl this chapter we give examples of some
typical properties of probabiliJ'ltic processes and show how the semantics of PCSPo
enable us to reason about them.

A property which holds of all traces except possibly a set of traces of zero
probability iJ'l said to hold of almost all traces.

5.1 Fairness

The first property we consider is fairness: if a probabilistic choice of finitely many
branches is executed infinitely often then almost all traces contain every branch
infinitely often: the probability that from some point onwards one branch is over­
looked forever is zero. This coincides with the notion of extreme fairness introduced
by [Pnu83J. The probability that a process is fair can be evaluated with the help of
the following lemma, 'Nhich we quote from [Bi79].

The Second Borel-Cantelli Lemma If (An) is a sequeuce of independent events
and Ln P An diverges then P(lim sup" An) = L 0

(Note that "event" here means "a set of points in a probability space", not to be
confused with "event" as a synonym for action.)

Lemma 5.1.1 Let

P = n
pn

(an - P) where 0 ~ 11 < N, the an are distinct and p, > o.

5.1 Fairness 48

Then P is fair in the sen~e that almost all traces of P contain f'very a" infinitely
often, i.e.

vo <:" < N . [PI lim ,up{a I a, = a.) = 1.

o

Proof Let A; be the set of traces whose (i+l)lh element is a".

A, = {a I a, = a.} = U 5(8(a.)) .
• EE'

For all sEE' we have 11'15(8(".)) ~ p.IpI5(s). AI,o LEE' [pI5(s) = 1. Hence

[PIA, = L [pI5(s(".)) = P•
• EE'

Similarly. it can be shown that if i f:. j then any A,. A] arc independent" i.e.
P(A; I AJ) = p". Consider the set

= =
lim sup A; nU A,

;0:1 ~o:,

consisting of all the tra,ces which contain an. infinitely often. The A, are independent
and t.he sum L, [P]A, = L, p" diverges. Therefore by the Borel-Cantelli lemma
[P] (lim sup, A;) = 1. Hence P is fair. 0

This result can easily be generalised: Suppose PJ = np" P" where each P"
contains only prefixing and a recursive invocation of P'. Let t(P,,) be the trace
which P" performs in one unfolding of the recursion and let f be a function such
that V n-f(a,,) = t(P,,). Lifting f to sequences we can write V A· [P']A = [P]J-1 A.
In particular, the set. of traces which contain t(P,,) infinitely often has inverse imagf'
(limsup,A i) where A; 8.<; defined above. Hence it also has probability 1.

As a concrete example of a process of this form considf'r a communications
medium which loses input with probability p. Since we are not interested in the
nature of the data which is being transmitted, we model this simply as a process
which can perform two actions: in and out, f'uch that the probability of an in being
followed by out is 1-p.

P = in _ (P pn out -+ P).

Since probabilistic choice distributes through prefixing we can write

P = (in _ P) pn (m _ OU/ -+ Pl.

From the generalisation of lemma .5.1.1 it follows that P will perform (in, out)
infinitely often with probahilit.y 1. In other words we know that P will never
stop producing output altogether - if this was not true, it wonld be impossible to
implement a working communications protocol around P.

5.2 The Asymptotic Frequency of an Action 49

5.2 The Asymptotic Frequency of an Action

When we defined the interleaving operator we claimed that the asymptotic fre­
quency of heads in the traces of a coin-tossing process is the same as the probability
with which a head appears at each throw. This example shows bow to substantiate
this claim.

An action a oCCurs with asymptotic frequency 1 in an infinite trace u if the ratio
of occurrences of a to the length of successively longer prefixes of u tends towards
the limit I:

lim (ulnlL{a) ~ I.
II-~"" n

Note that this limit does not exist for every trace. A counterexample is provided
by the trace (a,b,b,a,a,a,a, ...) in which each run of a's is followed by twice as
many b's and vice versa.

We say that the process P performs a with asymptotic frequency I if the prob­
ahility of the traces in which a occurs with asymptotic frequency I is 1:

P {u I tim (uln)L{a)n_= n l} = 1.

The set of these traces is measurable because it can be expressed in terms of cylinder
sets as follows:

{u I lim (u InH{a) = I}
"'_00 n

(u InH{a) I

{uIV,>O·3N·Vn>N· " -I <'}[

n Am
m=l

where

.4 m = U n{UII(ulnH(a}_II<~}·
N=On>N n m

In the following lemma we show that the processes which we considered in the
previous section not only perform every branch infinitely often, but with a constant
asymptotic frequency:

Lemma 5.2.1 Let

P = n,," (a", -t P) where 0 ~ n < N, the a", are distinct and P. > O.

Then P performs each a.. with asymptotic frequency p ... o

5.2 The Asymptotic Frequency of an Action	 50

Proof Consider the set R(i,j) of traces which contain a run of j actions other
than all after the jth all'

R(O,j) " {u I (a t))l{a.) = 0" a, = ao }

R(i,j) " {t(ao}.(ao)a 1#. =j" sl{a.} ~ 0" tl{ao} = i-I} i > O.

Then IFI R(O,j) = Po(l-po)' and for i > 0

~ (d k -I) ; . jIFI R(i,j) E k (I-po) Po (I-po) p.

(l-po)'po'

Thus [PI R(i,j) is independeut of i. Similarly it can be shown that the proba­
bilities of two different runs are independent of each other. Let V, be a random
variable which records the number of actions other than an in the jlh run, that is
V;(u) = LJj lR(;"I(u), The sequence (V;) is a sequence of independent, identically
distributed random variables, each of which has expected valne

E(V) ~	 Lj(l-po)'p. ~ (I-po)

}=o P"

This translates int.o an expected ratio of the nnmber of all's to the length of each
run of l/(E(V) + 1) = P.. , The strong law of large numbers (cf. [Bi79J) applies to
give

' Vl + + ViIPHa I .,mI . (a) = E(V)) = I,
'-H'O	 1

i.e. the a.'lymptotic ratio of a.. 's in all runs is the same as the expected ratio in each
run. Now

V,+ ... +V,()
. u	 = x
•

.. 3j,,';', ... j;. a E R(l,j,) n R(2,j,) n ... n R(i,j,)

,,(afL:oidi)l{a.)' ~x

•
" (arLjd i)l{a.) ~ I

•
!\Lj!=ix

•
So

. V,+ ... + V.(a)~E(V)hm	 .
i~1X>	 1

5.3 Deadlock 51

. (uri(E(V) +l))) J{a. I 1
:::;. ,1m .

' 00 I

r (uli(E(V)+I)))J{a.J
=> ;'...~ i(E(V)+I) (E(V)+I)

r (urk)J{a.J
:::;. /;:.~ k =p..

Hence as required

[PJ{u I ._0:>lim (uri)){a.)
i = P.. } = 1.

o

As in the preceeding section, this lemma can be generalised to processes of the
form pI = n"n POl where p .. contains only prefixing and a rer:ursive invocation of
P'. Since the asymptotic frequency of each trace I.(P,,) is Pn it follows that the
asymptotic frequency of any single action of pI is L," (Pnl #t(p..)).

5.3 Deadlock

In this section we show t.hat if one of the branches of a probabilistic choice ends
in deadlock, then a repeated execution of this choice will eventually deadlock with
probability 1.

Lemma 5.3.1 Let P = npnP.. where PrJ> 0, Po = STOP and for all n> 0, p ..
contains only prefixing and a recursive invocation of P. Then P will deadlock with
probability 1. 0

Proof The set D of a,I1 traces after which P may deadlock can be written as

D = U A.
t=O

where At = UIE:r;I: S(t(T)) denotes the set of traces such that P deadlocks after k
steps. Then

[PI A, = (I-Po)' Po

and
~

IPID I: IPI A, l.
/;=0

o

5.4 Random Walk on the Positive Integers	 52

We can use this lemma to prove, for example, that two coin-tossing processes
will eventually deadlock when put in parallel: let P = hd p,n tl P and---t ---t

Q = hd _	 Q fn tl _ Q. From the laws of parallel composition it follows that

P 1\ Q "	 hd ~ (P II Q) ,n (t/ ~ (P 1\ Q) ,n STOP)

whe,e s = pq, r = (l-p)(l-q)/(l-pq)_

This is of the form described by lemma 5.3.1. The result follows.

5.4 Random Walk on the Positive Integers

In [Hoa85], p.174, the example of a counter which can move up or around at ground­
level and up or down above ground-level is used to show how different algebraic
representations of a process can be proved equivalent algebraically. H instead of
deterministic choice we use probabilistic cboice with probability 1/2 the process
becomes a random walk on the natural numbers: let C £ eTa where

CTo = around _ CTo ,n up ---t CT1

CT,. = down CT"'_ l tn up ---t CT..+ 1 , n > O.---t

For an alt.ernative representati~n of this proC"ess, take

ZERO	 around _ ZERo!n up POS; ZERO
•

---t

POS down _ SJ(IP tn up ---t POS ; pas.

and put

c;, ~ ZERO, C.+. = POS; C._

The proof that "r/ n.C.. = CT.. follows along the same lines as for the original example
(cf. [Roo82]) because all the relevant laws for deterministic choice are replaced by
corresponding laws for probabilistic choice. Instead of repeating it here we prove
that the counter eventually returns to zero with probability 1. The probability of
eventual return to zero is the sum of the probabilities of the first return to zero
occurring after n steps, which we denote by T Clearly, the probability of first
return to zero at step 1 is the probability of staying at zero at step 1, i.e.

c, = ICI S(around) = 21

If the first return to zero happens at some later stage there must have been the
same number of up's as doum's and no around. Moreover, up until the last step
there must always have been more up's than down's. So the probability of first
return to zero after an odd number of steps is

5.4 Random Walk on the Po.<;itive Integers 53

r~ ..+l = 0

and the probability of first return to zero after an even number of steps is

r,. = EICIS(t) where #t ~ 2n" !lap = tldown" 11 aroand = 0 ,
"'1k<2n· (tlk)lap>(tlk)ldoum.

Every set Set) where t is a trace of length 2n bas probability (1/2)110 and rZ n is this
number multiplied by the number of traces t which satisfy the above constraints.

The number of traces can be determined by the following standard approach
(cL [FeI57]): let Sj, represent the difference between the number of up's and down's
after the first k steps. So So = 0 and St - St_l = ±l. We represent a sequence
of up's and down's by a polygonal line whose vertices have abscissas 0,1, ,.. k and
ordinates So,S) ••. St. Such nn~ are called paths.

height (k,h)

no. of steps

Figure 5.1: A path

A path from the origin to an arbitrary point (k. h) exists only if k = j + j a.nd
h = i - j where i,j are the nnmhers of up's a.nd down's respectively. In this ca.'3e
there are

i+ j)_(k)N". = (i - (k+h)/2

ways of getting from the origin to (k, h). [(the sta.rting point is (k1 , hd and the
end point (k], h~) there are Nt2-tl.~-Jil ways of getting from one to the olher.

However, we are only interested in those paths which do not cross the x-axis.
Their number can be determined with the help of the reflection principle, which we
quote Crom [FeI57),

The Reflection principle Let A = (k'H h,,) and B = (k~. hh) be two integral
points such that kb > k" ;:: 0 and hb > 0, hG > O. By reflection on the x-axis is
meant the point A' = (kG' -h,,) The number of paths from A to B which touch or
cross the x-axis equals the number of paths from AI to B. 0

5.4 Random Walk on the Positive Integers 54

height I A

B

no. of steps

A'

Figure .5.2: The reflection principle

As an immediate consequence the number of paths from A to B which do not
touch the x·axis can be calculated as the total number of paths from A to B minus
the number of paths from A' to B.

The paths which start at the origin and first return to it at step 2n must all pass
through the points (1,1) and (2n -1,1). Between these two points the number of
paths which do not touch the x-axis is

2n - 2N2.._ 2 ,O _ N2 .. _ 2 ,2 = (2n - 2) (2n; 2) _
n-l n (n - 1)

So

'h ~ ~ (2n -2) (~)'".
n n - 1 2

To sum all the return probabilities we factorise this expression into

1() h (2n) '"T2n = 2" U2n_2 - 'U2n were U2n = n 2­

(It can be shown that 1/2 U2 .. is the probability of no return in the first 2n steps.
SO T2 .. is the probahility of no retnrn up to 2n - 2 steps minus the probability that
the process still hasn't returned to zero at 2n steps.) It follows that

= 1 1
r j + L T2n '2+'21lo = 1.

..=1

Hence the process is certain to return to zero eventually.

5.5 An Interesting Fixed Point 55

5.5 An Interesting Fixed Point

This example stems from [RosS8] who used it to demonstrate that the failures­
divergences model witb infinite traces can cope witb unbounded non-determinism,
but that transfini te induction may be needed to compute the fixed point of a recur­
sion in this model. Replacing non-deterministic choice by probabilistic choice gives
a recursive proce5s definition in the probabilistic model whose fixed poiIJt can be
computed by ordinary induction, but whose form is still somewhat surprising. Let
Q be a process which offers an unbounded probabilistic choice of performing some
finite number of a's:

Q == n"" Qn where n 2 0, Qo == STOP and Q,.+l =. (I -) Qn'

Let

p ~ (a. ~ P) II Q.

We show that
J .. +1

P = n,. Q. wheee Q. " above, qo = Po, and q.+, ~ II (1 - L p,) L p,.
j=O t=o 1=0

The predicate R(Y) == (Y = [nq" Qn~) is satisfiable and continuous and the term
((! -. X) II Q is constructive for the variable X. We can therefore apply the
inference rule for recnrsion induction (4.4.3). Its antecedent requires t.hat

'0';', PM· R(Y) => R(Ia. ~ X II Qlp[Y IX]).

Suppose that Y = [n
q

" Q,J. Substituting for X in a ---) X II Q gives

(a ~ n,.Q.) II Q '" (n,.a. ~ Q.) II (n.. Q,)
since -+ distributes over n
n,.lQ.+, II n.. Q.)
since a _ Q.. = Qn+l and n distributes over II

- n,.n.. (Q•., II Q.)
since n distributes over II and is associative.

From the laws which relate prefixing and parallel composition it follows that if
m > n then Qm II Qn = Qn' Gathering all the terms in Qn and using the fact that
the probabilities of identical choices add up we get

n,.n..(Q.+, II Q.) '" n,.Q. whew

ro ~ Po, r.+. ~ q.(L p,) + (L q')P.+l'
t= .. +1 !-=n+l

5.6 Probabili5l.ic VB. Non-dcterministjc Cboice	 56

Substituting for q.. and for L~ ..+l qt = 1 - L!=:o qt = nj=:o(l - Lt=oPl:) we get

.. -I J .. 00 .. J

r.+, = (IT (l - L P.) L P.)(L p.) + IT (1 - L P.) P.+,
j""O .=0 !=o .=:,,+1 1=:0 t=o
.. j ,,+1

IT(1- L p,) LP' = q.+,.
1=0 l:=O l:=0

So the antecedent is true. We deduce that

P '" pX'((a~X)IIQ) '" n,.Q•.
At first it ma.y seem surprising that the probabilities with which P chooses a certain
number of a's are different from the probabilities with which Q chooses bnt this
is explaine<J by the fact that P chooses not only once, but several times over. For
instance, supposing that to begin with P chooses to do three a's. After it has done
one a it chooses again and run~ this second choice in parallel with the first. If the
second choice is of less than two a's, P can't do the three u's which it originally set
out to do.

5.6 Probabilistic vs. Non-deterministic Choice

In the two examples in this section we take a process in tbe failures-divergences
model and compare it with its probabilistic analogue, whicb we obtain by snbsti­
tuting probabilistic choice for non-deterministic choice. We have not attempted to
formalise the relation between the probabilistic and the failures-divergences model,
but these examples show some important differences between the two models which
make it un likely that the models can be related to each other by a simple abstraction
function.

The first example shows the difference between non-deterministic and proba·
bilistic choice as far as asymptotic behaviour is concerned. Consider the process
P = 0 --t P n 1 ----10 P in the failures- divergences model. This can choose to perform
1 forever; so hiding 1 would lead to divergence. By contrast, the PCSPo-process
P = 0 P pn 1 ----10 P where p f- 0 is fair in the sense that almost all traces of
P conta.in 0 infinitely often (as shown in lemma 5.1.1). So we would expect that
hiding t would result in the process which performs 0 forever, Q = 0 ----10 Q, say.
This is indeed the case: consider the probability of the set of sequences starting
witb nO's after hiding 1.

IP\{I}!S(O)'	 IPI(U~~oU,"o ... Ui.:"oS((I)" (0) (I)" (0) ... (I)'" (0))

Lo,(l-pr'p Lo,(I-p)"p ... Lo.(1-P)'"p
I.

5.7 Djscussjon 57

From 'he f.d th.t S(O)' ~ {(O)-} => [P\{I))S(O)' ~ [P\P)) {(O)w) it follow,
that lP\{l}] {(O)'"'} = 1. Therefore all sets not conta.ining the infinite sequence of
D's have probability zero and V A En

I if (0)- E A
[P\P)) A { o otherwise

[QI A.

So P\P}" Q.
Our second example shows that using probabilistic choice eliminates the prob­

lems of unbounded non-determinism. The problems caused by unbounded non­
determinism in the failures-divergences model are demonstrated by the following
process. Let

Qu ~ STOP. Q.+, ~ a ~ Q• •nd p. ~ n.>. Qi.

Then p. C;; p.+" U~, p. ~ STOP .nd P.\{a} ~ CHAOS w th.t U(P.I{a}) i
(U PII)\ {a}. 1n the probabilistic analogue the problem disappears. Let

P II == nl'n.. _n Qi where Vk· L"PII,k = 1.

Now lim [P.l ~ [~X. a ~ XI so that

lim!P.\{a}! ~ lim [STOPI [STOPI I(~X, a ~ X)I{aH.

5.7 Discussion

We have defined the semantics of a probabilistic language which features a subset
of the operators of esp, with probabilistic choice substituted for non-deterministic
choice. Processes are defined as probability measures on infinite sequences of actions
and operators as transformations or linear combinations of measures.

We have given examples which show that this semantics enables us to reason
about important properties such as livcness, asymptotic frequencies of aclions, fair­
ness and probabilistic correctnes:'l. We have also proved the validity of algebraic
laws which are important for reasoning about parallel systems in general. The laws
of PCSPo are the same as those of the corr~ponding subset of operators of the
traces model of CSP, with two exceptions: parallel composition is idempotent in
the traces model, but not in PCSPo, and unguarded recursion may he wf'll~defined

in PCSPo, but not in the trace; model. Like the traces model, the probabilistic
model does uot distinguish between deadlock and divergence; the infinite sequencp
of unobservable events is used to model both.

5.7 Discussion 58

It would be interesting to determine the precise relation between PCSPo and
other models of CSP. It is possible that the relation between PCSPo and the
traces model could be charaderised by a projection function which maps each set
of extensions of a finite trace of positive probability to a trace of the corresponding
process in the traces model, but we have not looked at this in detail.

The main disadvantage of PCSP01 which limits its usefulness, is that it lacks
the operators for general paranel composition and external choice. This problem is
addressed in the remainder of the thesis.

Chapter 6

Alphabetised Parallel
Composition

In this chapter we investigate a way of defining the parallel composition of processes
which syuchrouise on only some actions and perform others independently. The
relative order of unsyuchronised actions is arbitrary, which means thai parallel
composition in general cannot be characterised by a function which maps pairs of
traces into single ones, but only by a relation between pairs of traces and possible
interleavings of unsynchronised adions.

Recall that given a measure P and a function F a new measure pi can be defined
by setting

P'A =- P F-1A

for all A E F. For a function the inverse images of disjoint sets are disjoint or,
equivalently,

VAEF· r'Anr'A'~0

so that for any disjoint sets A and B

P'(A U B)	 pr'(AUB) p(r'AUr'B) PF-'A+PF-'B

P'A + P'B.

If F is a relation disjoiutedness is not always preserved under the inverse image
which, at first sight, means that it cannot be nsed for a transformation of measure.
However, we will show that the lluhset of sets for which disjointedness is preserved
forms a a-field,:F' say. Therefore WP C<ln use the definition above (with F arelation)
Lo define a probability measure P' on the restricted u-field F'.

This and other results about the transformation of measure with relalions form
the first section of this cbapt.er. We will u:-e these in the second section, where we

6.1 Transformation of Mea.sure witb Relations	 60

define the semantics of an extended version of PCSPo which includes alphabetised
parallel composition, based on a transformation relation. In the third section we
give an example to show how to use the extended model. The last section we discuss
the advantages and disa.dvantages of this approach.

6.1 Transformation of Measure with Relations

In this section we wilt prove that the sets whose disjointedness is preserved uuder
the inverse image of a relation form a u-field. In the first lemma these sets are
described a.'l the sets whose inverse image is disjoint from the inverse image of their
complement. In the second and third lemma we find alternative representations of
this u-field which enable us to identify sets in this u-field more easily.

Lemma 6.1.1 Given measurable spaces (!1,F) and (!1' . .F'), and a relation R
fl +-+ fl' the collection of sets

M := {A:Plw'AnW'A'~0i\W'AE.F}

is au-field.	 o

Proof The class M is obviously dosed under complementation. We show tha.t JVf
is also closed under finite unions and that it is a monotone class. Let A, BE M.
Then

W'(A U B) n W'(A uBI'
(W' A u W' B) n R-'(A U B)'
(W' An W'(.4 u Bn u (R-' B) n W'(A u Bn

~ (W'AnW'A')U(W'BnR-'B')

0.

and R-t(A u B) = R- 1 .4 U R-1 BE F. So A U B EM. Let (B,kN be a. sequence
of sets in M such that B" lB. Then

R-1 B n R- 1 Be =	 R-1U"B" n R-ln"B~

U" R-1B" n R-1n"B:

U.(W' B. n W'nmB~)

~ U.(W'B.nW'B;)

0.

Also R- l B U"R-t B.. E F. So B E M, M is a monotone class and hence a
a-field. o

6.1 Transformation of Measure with Relations 61

Note that M is always non-empty, but that it can be trivial.

Lemma 6.1.2 Let M, " {A , :p I (W'; R)(A (han R) = (A nran R) E Fl· Then
M,=M. 0

Proof By the definition of inverse x R y .;::. y R-1x which implies

BnRAI0 .. W'BnAI0. (6.1)

We first show that M 1 ~ M. For .4 E M 1

(R-' ; R)(A n ran R) = (A n ran R)

=> (R- I ;R)(AnranR)n(A'nranR)~0

because (A nranR)n (A e n ranR) = 0

=> (A n ran R) n (n-' ; R)(A' n ran R) ~ 0

hy 6.1

=> (n- ' ; R)(A n ranR) n (n- ' ;R)(A' nran R) = 0

by assumption

=> n-'(AnranR)nn-'(A'nranR) =0

=> n-' An R-' A' = 0.

Conversely, to show that M ~ M 1 we show that A ¢ M 1 => A ¢ M.

A<f.M,

.. (n- I ;R)(Anran R)::J Anran R

=> (W'; R)(A n ran R) n (A n ran R)' 10

=> W'(AnranR)nW' (AnranR)'10

=> n-' An R-1(A' U (ran R)') 10

=> n-'AnR-1 A'10

since R- t A 2 R-l(A n ran R) and R-1(AC U (ran R)C) = R-1AC.

So equality holds_ o

Yet another equivalent definition of M is formulated. in terms of the transitive
closure of (R- t ; R). For til E n let

Tw " U(W';R)"w .
.. ~o

Lemma 6.1.3 Let M, ~ {T A I A E :P 1\ W' A E Fl. Then M, = M,. 0

6.2 The Extended Model 62

Proof

A E M, ¢> (W'; R)(A n "0 R) = (A n "0 R)

¢> TA=A

{:} AEM2 ·

o

6.2 The Extended Model

If we are to add an operator based on a transformation relation to our model then
the a-field on which a process is defined must be made explicit. In the following
we define a, a-field for every exi~ting PCSPo construct, writing Q"[P~ for the a-field
on which the measure denoted by P is defin.ed. Apart from being para.metrised
by a a-field the definitions of processes and operators remain unchanged. So to
prove that all the PCSPo-laws still hold in the extended model we only need to
add proofs concerning the equality of the a-fields. Where the law dep~nds on the
commutativity of two transformation functions, f and 9 say, equality of the a-fields
follows immediately. Therefore we need to reconsider only the proofs of those laws
which do not foUow from the commutativity of transformation functions.

Having determined the effect of relational transformations on PCSPo we define
alphabetised parallel composition based aD a relation, mergeB,c, and show tha.t it
satisfies all the laws we would expect it to hold.

The Semantics of PCSPo with Variable a-fields

The processes STOP and SKIP are defined on the standard a-field.

alSTOPI '" :F

alSKIPI '" :F.

The a-field of a _ P contains all the standard sets of traces not beginning with a
and the sets of alP] prefixed by a.

ala ~ PI '" {A;:F I prejix.- l A E alPiJ·
P pn Q is defined only for arguments with identical q-fidds: let u[P] = dQ]'
Then

alP ,n QI '" aIPI(= alQI)
For any law involving probabilistic choice, equality of the a-fields aD the right and
left-hand sides of the equatiou is obvious. The reason we do not allow probabilistic

6.2 The Extended Model 63

choice between processes with differing O"-fields, is that even though it could be
defined on the intersection of these fields, this would distroy law 3, namely that
p,n Q ~ P.

The l1-field of X\B, where B 5; E, must be such that un hiding B yields a set
in ~[PI.

~IP\BI '" {A' F I hid,.' E ~IPI}·

To prove that q[P\E] = a[STOP) note that since hideil A = n if (7)'" E A,
ootherwise, and nand 0 a.re contained in any a-field on n it follows that {A :
Fhid'E' E ~IP)} = 1'. We have ~IP\0J = ~[PI because hid" = id.

The l1-field for simple parallel composition is

~[PIIQI '" (A, F I par-'A E ~[Plx~[QIJ

It will turn out that simple parallel composition is a special case of alphabetised
parallel composition. So we need not prove it.s laws separately.

The sequential composition of P and Q has l1-field

~[P;QI '" {A,Flseq-'AE~IPlx~[QI}

To show that ~[SKIP; PI ~ u1PI recall that SKIP\(E - (/}) ~ SKIP. This
allows us to write

A E ~!SK[P; PI
.. (seq-'; (hid'E'{_). id))A E Fx~[PI

.. (hide;;'U); id)((s,q-'A) nran(hid'"_{_l>id)) E Fx~[PI

.. (hide;;~{_);id)({(/)(T)W}xA U{(T)W}x!l)EFx~[PI

assuming w.o.Lo.g. that (r)W E A

.. A E a[PI·

So l1[SKIP; PI = l1[P]. A similar argument can be used 1.0 show that a[P j Slap]
~ ~[PJ and that ,,[STOP; Pi ~ ,,[STOPj.

The l1-field for interleaving is

~[P r iii Q) '" (A, F I intarlaav,-'A E ~[Plx~[QJ x F)

The only law for which we need to prove equality of the a-fields is STOPp III P == P.
This proof is very similar to the proof that SKIP; P == P.

If we allowed relational transformations in recursive process definitions then
each unfolding of the recursion could change the underlying O"-field. Howe\'er, con­
vergence is defined only for sequences of measures which have the same underlying
a-field. So we allow recursive processes only if they are defined on the full a-field
F. That is, we cannot ha.ve recursive calls to parallel processes unless they are fully
synchronised or form a master-slave system (where the actions of one component
are a subset of the actions of the other).

6.2 The Extended Model 64

Alphabetised Parallel Composition

Alphabetised parallel composition is denoted by

P Bile Q

where B, C are sets of actions. Both contain T. The processes Pand Q synchronise
only on actions in the intersection of Band C. E....ents outside B happen without the
participation of P, with a probability and ordering entirely determined by Q, and
events outside C happen without the participation of Q, with a probability entirely
determined by P. The semantics of this operator is defined as a transformation of
the product measure ([P]px [Q~p) with the relation merycB,C:

alP ,lie QI
== {A::F I mcrgcB,lcA n mcrgcB",tcA c = 0 1\ mergeB~c E 17gP] X17[Q]}

II A E alP Bile QI IP Bile Qlp A '= (IPlpx IQlp) m,rgeii,'c A,

The relation mcrycB,c maps a pair of traces to the longest trace up to which they
agree On the order of actions in B n C.

mergCB,C: !1x11 H 11

Vu.v E !1 .

u!E mcrycB.c(U.V)

<> (wE(BUC)w!lwIBSu!lwfCS v)

V (w =t(T)w!lt E (BUC)"!I 1[B <U !lilC < v

!I II, E (B U C) , (t(e»)I B 1. U V (I(,»)1 C 1. v),

]f wand w' are two possible mergings of the traces u, v then mergeB~C{w} n
mergei1c{ Wi} is not empty. So the restriction of the 17-field on which parallel
composition is defined means that in a parallel system probabilities are known only
for the set of all possible orderings of unsynchronised actions, but not for individual
orderings within that set.

Note that mergcE.,E. = par and that if B ~ Cor C ~ B then mergeB,C is a
function. We could have used a slightly different definition in which a merging w

of two traces u. v has to satisfy til rB = u /\ w rC = v. The difference matters only
if u and tJ have tails of unsyuchronised actions in B - C and C - B respectively.
The definition we use allows mergings in which actions in u always ha....e precedence
over actions in v (or the olher way round). Thus a sequence w containing only a
finite number of actions iu v and the same tail as u would be a possible merging.
The alternatie definition excludes this possibility. it implies t.hat infiuite overtaking
would always have zero probability simply because the traces resulting from infinite

6.2 The Extended Model	 65

overtaking would be outside the range of merge. We have opted for a relation which
does not have this implicit fairness property.

The laws for alphabetised parallel composition are the same as those in the
traces model of CSP with one important exception: associativity holds only in
special cases.

Lemma 6.2.1

Ll P Bile Q = Q Bile P.

L2 B <;: c,* P Bile STOP", STOP.

L3 B <;: C <;: D '*
P BlleuD (Q eliD 0) '" (P Bile Q) BueliD O.

L4 (P ,n Q) B lie 0 '" P Bile 0 ,n Q Bile O.

L5 P	 Bile (Q ,n 0) '" P Bile Q ,n P Bile O.

L6 a	 E Bn C ~

(a~P)Blle(a~Q) '" a~(PBlleQ)·

L7 a E B n C, b E B - C '*
(b~P)Btle(a~Q) '" b~IPBllea~Q).

L8 a,bEBne,alb,*
(b~P)Blle(a~Q) '" STOP.

o

Proof Law 1 follows from the symmetry of merge and Fubini's theorem. For law
2 note that since ran hider, = {(r)"'J and mergeB,c(u, (7)"') = (7)'" for all t.! E n it
follows that (id, hidt:r,); mergeB,C is a function. Thus

alP Bile STOPI = alP Bile (STOP\E)] = :F = aISTOPJ.

For an sets A E :F we have

IP RlicSTOP!A =	 (IPlxISTOP!) mer9'B,'CA

(IPI x [STOP!) (mer9'B,'eA n In x {(T)W}))

,ince (IPjxISTOPIHn x ((T)')) = 1

IPI n ISTOPH(T)w} ;((T)w E A
{ o otherwise

,;nce (Tt E ,4 '" ,"cry,-' An (ll x ((Tt)) 10
= [STOP! A.

6.2 The Extended Model 66

To see why pa.rallel composition with merge is not always associative consider the
composition of three processes on sets B, C and D where (B U C) S; D. Then
(mergeB.e, id); mergeBue,D is a relation whereas (id, mergee,o); mergeB,O is a func­
tion. Hence the two sides cannot be the same. Only if B ~ C C; D are the
transformations on both sides functions. In this special case we can write for all
u, v, wEn

mergeBuC,D(mergeB,c(U, v), w)

mergeC,l)(v,w) if t'ECWAvfB=u

mergee,D(t(r)', w) ;f lEe A IrB < U A I < v

{

A 'ie E C'I(e)IB f u V I(e) f v

w if wE DWA WrC:S.I,A wrB:S. u

l(r)W ;f IED'AtrC<VAtrB<u
{

A 'i e ED· I(elr B f u V I(elr C f " V I (e) f v.

Evaluation of merges.cuo(u, mergeC,l) (v, w)) leads to the same expression.

Probabilistic choice is defined only between processes with identical u-fields. So
for law 4 ..'ume tballYlPI = IYIQI. Tben

IYI(P en Q) Bile O!
= {A: F I merges,leA n merges.1cA c = 0 A mergen,le E <T[P~ X<T[On

= d(P Bile 0) en (Q Bile 0)1·

The proof of equality in probability follows along the same lines as the proof in
section 3.5 that probabilistic choice distributes over simple parallel composition.
Similarly for law 5.

Law 6 follows if we can show that for a E B n C

(prefixa,prefixa); mergeB,C = mergeB,C; prefixa.

This is true because V u, v E n
w E (merge8,c(prefixa 1 prefixal)(11.. v)

<=> wE mergeB,e((a)u,(a)v)

.. (wE(BUC)"AwIB:S;(a)uAWrC:S;(a)v)

V(w =1(r)'A I E (BUC)" A trB< (a)uA qc < (a)v

A 'i e E (B U C).(I(e) IrB f (a) u V (I(em C f (a) v)

<=> w = (a}w l A Wi E mergeB,c(u, v)

<=> wE prefixa(mergeB,c(u, v)).

Similarly, it can be shown that if a E B n C and b E B - C then

(prefiXb,prefix",); mergeB,c = (id,prefix",); mergeB,C; prefixb

6.3 The Loss Rate of a Pipe 67

and law 7 follows. For law 8 note tha.t if a #- b and a, b E B n C then for all
U,v E [}

(m,rg'B,c(pre}ix.. pr<jir.))(u,v) = (T)".

So

[(6 _ P)Bllc(a - Q)IA {
([PlxIQIl OxO
([Plx[QI) 0

if(T)"EA
otherwise

ISTOPIA.

o

6.3 The Loss Rate of a Pipe

Consider a pipe of two media with loss rates p and q. (The loss rate is the long term
or asymptotic frequency with which a medium loses data.) We model the media in
the same way as in tbe example of section 5.1.

P = in --+ (P pn mid -----I P)

Q = m;d_(Q,noul_Q).

In a way similar to the example of section 5.2 it can be shown that t~ese two
processes have indeed the required loss rales. The process P Bile Q w~ere B =

{in, mid}, C = {mid, out}, forms a pipe which inputs data on channel in, passes
it on internally on channel mid and outputs it on channel out. We would like to
know the overall loss rate of the pipe.

in p mid Q out

Figure 6.1: The pipe

The loss rate equals 1 minus the success rate, which is the asymptotic ratio of
outputs to inputs in the infinite traces. To determine the latter consider the set
R(i,j) of traces which contain j internal communications before the first output
and i inputs before the jth internal communication. Any such trace has a prefix t
snch that

t",-, ~ out A tHout) = 1 /I tHmid} =j /I

t,+,_1 = mid /I (tid j)Hmid} = 0 /I (t[d j)Hin} ~ i.

6.3 The Loss Rate of a Pipe	 68

Then the smallest superset of S(t) to which we can assign a probability is

TS(t) = {sul(s[a=tra~s[c=trC)

V (sfa ~ (tfi+ ma ~ s[C = (tri+ jHC ~ ul{mid) = 0)).

Then R(i,j) = Ul TS(t) (where t as above) is the smallest measurable set con­
taining all the traces we are interested in. Note for example that R(2, 1) contains
traces beginning with (in, in, mid, in, out) where the last in has nothing to do with
the output but just happened to be input while the previous message was still in
the pipe. It, a.lso contains (in, mid){in)"'.

IP Bile QI R(;,j)	 (IPlxIQ!) merg'i/cRU,j)

([Plx[QI) (A,xS((mid)'(outi) U A,xS((midi'))

where

At = {sul#s='i+j f\Si+J_l = mid f\s!{mid} =jl\s!{in) = i}
A, = {sUn/"l#s=i+j~Si+,_,=mid~sl{mid}=j~sHin}~i}.

Since [P]A:z = 0 we are left with

j) -1)p'_'(l_P)j q'-'(I_q).IPI,', [QIS((midij(out)) = (i+ (i ­
,- J

Taking the sum over all j then gives the probahility of i inputs being needed to
produce an output. Let U be a random variable recording the number of in's up
to the first out. Then U has expectation

E(U) = j) -1)pi_'(I_P)' q'-'(l-q) ift (i+ (: =
;:lJ=1 J

~ to (i+ :- I) p'(I-p)' q'-'(I-q)(i +j)

~(l-p)' qH(I-q)jtoe~i)pi

(I-q)fq' U+I)
(l-p) j=O

1

(1- q)(l-p)'

Thus the success rate of the pipe is 11 E(U) = (l- q)(I- p) and the loss rate is
p + q- pq (which is as we would have expected from combinatorial arguments).

6.4 Discussion 69

6.4 Discussion

We have presented an extension of PCSPo which includes an operator for alphabe­
tised pa.rallel composition. This operator is defined as a transforrna.tion of measure
hased on the relation merye. We have shown that a relation can be used for a trans­
formation of measure if restricted those sets for which probabilities are defined. For
a system of parallel processes this means that we can no longer assign a probability
to every set in F , but only to sets which contain all alternative interleavings of
unsynchronised actions. We have given an example to show that this still allows
us to deduce an interesting property of a parallel system from the properties of its
components.

However, even though the extended model euables us to reason about a wider
class of processes than PCSPo it is not really useful without an operator for external
choice. If a proce:ss offers external choice we can sa.y that with probability 1 it will
do one of two actions, but we cannot a priori give the probability of either one
being chosen. We could assign probabilities to those sets only which contain both
branches of the choice, but for most processes this will leave us with little more than
the trivial u-field {Q,0}. So in the next chapter we will try a different approach,
which allow us to define both alphabetised parallel composition and external choice.

Chapter 7

A Model with External Choice

In CSP the term e : E ~ Pe denotes d process which offers deterministi.c or external
choice. Such a process will participate in whatever action e its environment offers,
as long a.'; e is in E, and then behave like p•. If the environment offers an action
outside E the system will deadlock. This behaviour cannot be described in PCSPo,
because the probability with which a PCSPo-process decides what to do is always
independent of its environment. External choice f€quires a notion of dependence
or conditioning on the environment. In this chapter we formalise this notion by
defining a process as a conditional probability measure. The idea is that if a process
P is offered a sequence!! E n by its environment, we know the probability with
which it performs a set A E F. We use this to define the semantics of a second
language, PCSP, which differs from PCSPo in that it contains operators for external
choice and alphabetised parallel composition, but lacks the operatorn for sequential
composi60u. hiding and interleaving.

The syntax of the language PCSP contains the following constructs:

P 0:=	 STOP I X I a ~ PIP ," Q I ' , E ~ P, IPs 0 Q I

P II Q I P .lIe Q I I(P) I ~ X • P I (X, = Pi)

Let CM be the space of conditional probability measures. Like the semantics or
other models the semantics of a PCSP-term P is parametrised by a binding for its
free variables. Let BlVD be the domain of all bindings of variables to cpm's:

BND " VAH ~ eM

We use round brackets ~~ for a semantic runction which defines the meaning of
PCS? terms:

~D "	 PCSP ~ BND ~ CM

We will show that the cpm's representing processes have two additional properties:

7.1 STOP	 71

1.	 If offered y by its environment, a process P can either perform y or deadlock
at some point. So

P({y}uu.{(yrn)(T)-),Y) = I.

2.	 For fixed t E I;~ the probability P (S(t), y) is constant if y rangc50ver the
set of extemions of t. Intuitively, the probability of n actions happening to
begin with depends on whether the environment initially offers these actions,
bnt not on what it offers thereafter.

We now give the semantics of pesp. All definitions are for any F-set A and trace
yEn.

7.1 STOP

As always, the simplest process is STOP, which deadlocks no matter what the
environment offers (and is therefore constant wit.h respect to y):

qSTOPDp (A,y) " IA(Tt.

7.2 Prefixing

If the environment offers an a E I:, the probability of a P performing a set---1'

A is the probability of P performing prefix;:l A, which depends on the second and
further actions offered by the environment. If the environment does not offer a,
then a -----) P beha...'es like STOP. We therefore define

qa ~ PDp (A, y)

" ISI.I(Y) qP~p (prefix.-' A, y/I) + Is(ol'(Y) ~STOP~p (A, y).

It follows from lemma 2.1.9 that this defines a cpm.

7.3 External Choice

For a set of visible actions E define f : E -----) p. to be the process which, when
offered an action e in E, performs f with probability 1 and then behaves like Pe
conditioned on the sewnd and fnrther steps of the environment. When offered an
action ontside E the process deadlocks.

qe, E ~ P,~p (A.y)

" L ISI<)(Y) qP,~p (prefix,-' A. y/J) + L IS1 ,1(1I) qSTOPDp (A,g).
tEE	 'i~

7.4 Probabilistic choice 72

It follows frum lemma 2.1.10 that this is a cpm. Note that STOP and a --+ P are
special cases of external choice with E = 0 and E = {a} respectively.

We adopt a special notation for communication. Let c.v denote an action with
two components. The first component, c, is the name of the channel on which the
communication takes place. The second component, v, is the value of the message
which passes. A process which first outputs v on channel c and then behaves as P
is defined

c!v -; P == c.v --+ P.

A process which is initially prepared to input any value commnnicable on channel
c is defined

c?x --t p% ::>: d: {e I chan(e):::: c} --+ P"u.q(d).

where chan(c.v} = c and msg(c.v) = t'.

7.4 Probabilistic choice

As before we write P pn Q to denote probabilistic choice. Its semantics in terms
of conditional probabilities hardly needs explanation: it equals the weighted sum
of the cO!lditional probabilities of the component processes.

Op,n QDp(A,y) ;'; pW~p(·4,y)+(1-p) OQDp(A,y).

For fixed y, GP ,n QD is a weighted sum of probability measures, and thus itself a
probability measure by lemma 2.1.4. For fixed A it is a sum of random variables
and thus itself a random variable. Therefore it is a cpm.

All the laws which hold in PCSPo also hold in pesp. Additionally there is a
law which relates probabilistic and external choice:

Lemma 7.4.1

Ll P ,n P " P.

L2 P ,n Q " Q ,_,n P.

L3 P ,n Q " P.

L4 (P ,/(>-.In Q) ,_.n R " (R o/(>-,In Q) ,-,n P.

Proba.bilistic choice distributes over external choice and prefixing:

L5 "E_(P, ,n Q,) = ("E_P,),n ("E_(j,).

L6 a _ (P ,n Q) = (a _ P) ,n (a - Q).

o

Proof Laws 1 to 3 are obvious. The proof of associativity (law 4) is the same as
in PCSPo if we snbstitute cpms for probability measures. For law 5 note that

0" E - (P, ,n Q,)~ (.4. y)

L Is(,)(y) ~P, ,n Q,~ (p"jiz;' A, y/l) + L Is(,,(y) OSTOP~(A, y)
eEl' <I/. E

p (I: ISI'I(Y) or,D Ipnjiz,-'A, y/1) + L ISI<)IY) aSTOP~ (.4.y)
tEE <'/.E

+ (I-p)

(I: IsI'I(Y) aQ,~ (pr,jiz,-' A. y/l) + L IsI'I(V) aSTOP~ (A,y»
tEE filE

a(" E - P,) ,n (e' E - Q.)~ (A.y)

Law 6 is it special case of law 5. o

7.5 General Choice

The general choice operator in CSP denotes external choice between processes
rather than actions. The same is true for general choice in PCSP. We write
P sO Q for a process which behaves like P when off('f('n. a trace iII S, and like Q
when offered it trace in Sf:

ap 5 0 Q~p (A, y) " I.,(y) ap~p (A.y) + Is·(Y) aQ~p (A, y)

where S must be such that for any trace t E ~~

yESnS(t)AzES'nS(t) => ~1'~(S(f).y)~aQ~(S(t).z).

The fact that tbis is a cpm follows from lemma 2.1.10.

To see why not all sets S are admissible suppose u _ P S(a,b) 0 STOP to be a
valid process definition, Then au _ P S(d) 0 STOP~ (S(a). =) would he 1 if =1 = b
and 0 if Xl -I b. This violates the rule that an action, u, must no! depend on
anything that might happen afterwards, b.

General choice satisfies most of the laws which WI' would expect it to, bnt in
one respect it is different from other modf'ls of esp. In the failufe-s-di\'C'rgences

7.5 General Choice	 i4

model [HoaSS] the choice betwe€n identical initial actions degenerates into non­
deterministic choice:

a~POa~Q	 '" (a~p)n(a~Q)

'" a~ (pn Q).

In the probabilistic model, a process with a general choice between two branches
beginning with a will also do an a first, but then the choice of P or Q depends on
the second slep of the environment:

a PsDa---+Q::;:: a-(P,refiril1S DQ)

The other laws for general choice are similar to those for probabilistic choice. This
is to be exprocted since the semantics of both operators are defined in terms of sums
of cpm's.

Lemma 7.5.1

Ll PsO P '"	 P.

L2 P sO Q '" Q 5' 0 P.

L3 P 00 Q '" P.

L4 (Ps,O Q)s,O R '" Ps,ns,O (Qs,O R).

Probabilistic and general choice distribute over each other.

L5 P sO (Q,n H) '" (P sO Q),n (P sO H).

L6 (P sO Q),n H '" (p,n H) sO (Q,n H).

The next law is the probabili~tic analogue of the eSP-law Po STOP:::: P.

L7 P (5(,1l' 0 STOP", P.

L8 US;2 {ulUo E E-D} and S';2 {ul"" E D- E) then

("E~P,)sO (d,D~Q,) '" d,EuD~H,

P",OQ, if dEE n D
where, {or S = prejixilS. Rtf. == Ptf. if dEE - D

{ Q, ifdED-E.

7.5 General Cboice	 75

As a corollary to law 8 we can write

L9 a -----Jo P sO a -+ Q :::::: a --+ (P pr<fi.%;I S 0 Q).
o

Proof Law 1 follows directly (rom the definition:

Is(y) app(A,y)+!s'(y) ~PP(A,y) ~ app(A,y)

Symmetry (law 2) is obvious, as is law 3. In the proofs of associativity (law 4) and
dislribulivity (law .j) we suppress the arguments (A, y) which are carried through
the whole proof unchanged.

a(ps,O Q)s,O R~	 Is, (Is, ap~ + Is! ~QP) + lSi aRp

Is,ns, ~P~ + Is,'ns, OQ~ + Is{ aR~

OP SlnS2 0 (Q S2 0 RlD·
To prove that general choice distributes over non-deterministic choice simply expand
and regroup the terms: for law 5 we get

ap sO (Q,n RlD	 ~ Is app+ Is, (p aQP+(I-p) aR~)

= p (Is ap~ + Is, OQP) + (I-p) (IsOP~ + Is,IRP)

= a(psoQ),n (PsO R)~.

Similarly for law 6. To prove law 7 rl'caJl that ror any process P and for all yEn
we have OPP ({y) U U. {(y In)(T)W), y) = 1. Aeemd;ngly, app ({ (T)w), (T)W) = 1 for
any P, i.e. no process can do anything when t.he environment. offers it (T)"'. So

aPD (A, (T)W) = aSTOP~ (A, (T)W).

Law 7 rol\ows. For law 8 we expand

a(e .E~ P,) sO (d. D~ Q,)P (A,y)

lsi y) (:z ISI'I(y) ap,p (prefix,-' A, yl I) +:z ISI'I(yJaSTOPP (.1, y»
eEE	 .tE

+ Is, (y)(:Z ISI'I(y) aQ,~ (prefix,' A, y/l) +:z Isl'l(y) ~STOP~ (A, y»
<lED	 diD

:z IS1'I(yHIs(y) ap,p (prefix,' A, yI I) + Is« y) OQ,~ (preft'" A, yjl»
dEEnD

+ 2: IsI'I(y) (Is(y) ~p,p (prefix,' A. y/l) + Is'(y) OSTOPP lA, y»
dEE-D

+ 2: IS1'I(y) (ls(Y) ~S1'Opp (A, y) + Is'(y) OQ,P (prefix,' A,y/l»
dED-E

+ 2: IS1'I(y) aSTOP~ (A, y).
dtEuD

7.6 Simple Parallel Compo9jlion 76

Since S 2 {u 1Uo E E - D} a.nd SC 2 {u I Uo E D - E} this simplifies to

L I;(,)(y) (ls(Y) ~Pd~ (prefix,' A, y/l) + Is'(y) ~Qd~ (prefix,' A, yfl))
dEEnO

+ L ls(d)(y!aPdD(pr,fix,'A, y/l)
dEE-D

+ L ls(d)(Y) ~QdD (pr'fix,' A, ufl))
dED-E

+ L IS(d)(Y) ~STOP~ (A, y)
di-EuD

~d, EUD~ Rd~ (A,y)

where Rd is the same as in law 8. D

If {S,loSt<~ is a finite part.ition of n Wf> write

Os, p,

for the prefix form of general choice. Also, if all tbe branches of the choice are
guarded and the sets au which they are wnditioncd coincide with the guards, we
can omit the sels: for example a -I P 0 b -I P == a ---l' P S(t>j 0 b -I P.

7.6 Simple Parallel Composition

Two processes which operate in locksl,ep parallel must synchronise with each other
and wiih their common environment at. every step. Thus if the environment offers
a trace! to the parallel system P II Q, then the components behave as P given
z and Q given z, and interact in the same way as the corresponding prohabiJ-ity
measures in the model PCSPo. That is we define simple para.llel composition as a
transformation of cpm's based on the fuuction par:

~p II Q~p (A,z) " J~P~p ((par-'A)"z)~Q~p (dy,z).

We hal'e already shown in chapter 3 that par is mt'--<l.8urablt> (FxF)jF. Therefore
by lemmas 2.1.9 and 2.1.8 the above defines a cpm.

Not surprisingly all the las for simple paralle! composition which hold in PCSPo
also hold in PCSP, but additionally there is a law (law 8) which relates pa.rallel
composition to eX\'f;rnal choice.

Lemma 7,6,1

LI P II Q 0= Q II P.

7.7 Alphabetised Para.1lel Composition 77

L2 P II (Q II R) " (P II Q) II R.

L3 P II STOP " STOP.

L4 (P ,n Q) II R " P II R ,n Q 11 R.

L5 P II (Q ,n R) " P II Q ,n P II R.

L6 (a~P)II(a~Q)" a~(PIIQ).

L7 a I' b "" (a ~ P) 11 (b ~ Q) " STOP.

L8 (f' E~ P,) II (g, G~ Qd) " d, EnG~ (Pd II Qd)'
o

We will show in the uext .~ection that simple parallel composition is a special case
of alphabetised parallel composition. So the laws for ~jmpJe parallel composition
need not be proved separately.

7.7 Alphabetised Parallel Composition

Let Band C be two sets of actions snch that 1" E B ~ E T , 1" E C ~ ET • We
write P Bile Q to denote the parallel composition of two processes P and Q such
that P can perform actions in Band Q can perform actions in C and P aud Q
synchronise on actions in the intersection B n C. The environment. of this system
participates in every action and can be thonght of as a scheduler or adversary. If
the environment offer.~ a trace z E E T to the system, then the component P is
affected only by the steps in z which are elements of B. So it behaves as P given
zrB, provided z rB is infinite. If it is finite then P cannot do anything beyond zf B.
i.e. it behaves as P given (zt B)(1")"". Apart from the fact that the sequence offered
by the environment determines how the actions performed by different components
are to be interleaved we want parallel composition to work in the same way as in
chapter 6, that is the probability that the system performs a sequence of actions
shonld be the product of the probabilities with which the wmponents take part.
We therefore define parallel composition as a transformation of the prod1Jl:t of the
component cpm's, based on a fnnction which merges two sequences T and y as far
as possible in accordanf£ with the seqnence offered by the environment.

OP Bile QDp(A,z) = JOp~p«(cpa'·ii.'c.,A),.zlB) ~QDp(dy,zlC)

7.7 Alphabetised Parallel ComposiUoll 78

where

cparB.C,z ; fI: x (1 _ fI:

'<Ix, YEn cparB.C.z(X, y) = mergeB,LT(x, mergeC.ET(Y'z))

(Recall that 1 is the restriction fnnction which adds a tail of r's where f produces
a finite trace.)

To show that the above tri\nsformation defines a cpm we only need to prove
that cpar is a measurable function.

Lemma 7.1.1 The function cp(JrB,C,: is measurable FxF/F. o

Proof Wt fIrst expand the definition of cpa"'8.c,z:

Cpar8.C,.(x, y)

mergeB,ET(x,z) if de:s y
{ mergeB,E,(x, (z In)(T)") if (=[nHC < y A (zfn + 1) I C f. y

z if::fB:$x/\zfCS;y
(zln)(T)" if(zlnHB<xA(ztnHC<y

{
A ((zln + IHB f. x v (zln + 1)IC f. y)

If t is a finite trace such that 1 1.. z and -, :I fl· t < (zfn)(r)'" thf'.n cparii.1c,zS(t) = 0.
Otherwise, if I. is r-frcc then we must have t = z f#t and

cp"ii.'c"S(t) = S(tlB)xS(IIC),

If t contains a tail of r's then :1 i' E r:. such that t' < t < t'(r)'" and

cparii.1c,zS(t) = cp(Jrn,'c,zS(t'J - U... ,.cparii,lc,zS(r.'(e))

which, as a differl'nce of measurable sets, is also measurable. So cparB,C,z is mea­
surable. 0

Lemma 7.7.2 Simple parallel composition is equivall'nt to alphabetised paralll'1
composition which is synchronised on all actions: P II Q == P E..II ET Q. D

Proof Note that '<I x, yEn

Cpa"ET,ET'Z(X, y)

z if x = y = x
{ (zln)(T)" if xln = rln = yin A (=" ¥ z" V z, ¥ y"),

par(par(x,y),x)

79 7.7 Alpha.betised Parallel Composition

By definition

qP II Q~(A, z) = JqP~((pa,-IA).,zHQ~(dy,z).

The support of the product measure is Tx T where T == {z} UU.. {(zrn)(r}"'}. But

x,y E T ~

par(x,y) = par(par(x,y),z) = Cpa1!:..-,E.,.,...(X,y).

Therefore

OP II Q~(A, z) Jap~((cpa''';E",A)" z) ~Q~(dy, z)

~P dE, QD(A, z).

D

Lemma 7.7.3

Ll PBlleQ" QBlleP'

L2 (P Bile QJ BucilD R " P Blleun (Q eli D R).

L3 B <:: C =} P Bile STOP" STOP.

L4 (p,n Q)BllaR" PBlleR,n Q.lleR.

L5 P .lIe(Q ,n R) " P Bile Q ,n P Bile R.

L6 a E Bn C ~

(a~P)Blle(a~Q)" a~(PBlleQ)·

L7 a E B n C, bE B - C =}

(b~P)Blle(a~Q)" b~(PBllea~Q).

L8 a,bEBnC,a1'b=}

(b ~ P) Bile (a ~ Q) " STOP.

L9 b E B '. C, c E C - B =}

(b~P)Blle(c~Q)" b~(PBllec~Q)S('IDc~((b~P)BlleQ)·

The last four Ja.ws a.re generalised by the following:

7.7 Alphabetised Parallel Composit,ion	 80

LlO Let E and D be sets of visible actions such that E C Band Dee. Then

(v ,E~ P')Bllc(d ,D~ Q,) '" g' G~ P' Bile Q'

whe«	 G = (EnD)u(E-C)u(D-B)
P' == P~ if 9 E E, P otherwise
Q' == Q, if 9 E D, Q otherwise.

o

Proal Symmetry follows from the symmetry of cpar and Fubini's theorem. For
associativity we first prove that

(cparB,C,u, id) ; cparBuC,D,,, = (id, Cpare,D, ..); cparB,CuD,,.,

Expanding the left hand side we get 'r/ x, y, :: E n
cparBUC,D,,,(cparB,C,,,' id)(7, y,::)

cparRUc,D, .. (-U. or) ifllrBS:xl\llrCS:y
cparBuC,D ... « II rn)(r)W, z) ;{ (u rn Jr B < Z 1\ (u I,,) 1c < y

{
1\ ((uln+l)IB 10 Z V (uln+l)fC 10 y)

'U if u rB :$ x 1\ II res; y /\ u fD s: z

(uln)(r)" ;{(ul"JrB<zl\(ul"JrC<yl\(ulllj[D<z

{ 1\ ((uln+1JrB f Z V (uln+1JrC f y
V (urn+l)lD f z).

Because of the symmetry of cpar we can write

cparB ,CvD, .. (id, cparc,D, ..)(:C, y, z) = cparcvD,B ... (cparC,D,,,, id)(y, z,:c)

and use the above formula to expand it and show equality. It follows that

(cparB},.. (cparB'0c,D,llAL)I = «(cparB,C,u' id) ; CparBue,D, ..)-1 A)I,:

= «(id, cpare,D,,,); cparB,cVD, ..)-l A)r,:

= (cpare,ID,. (cparii.lcUD, .. A)or)z'

This together with Fubini's theorem allows us to prove associativity:

~(P Bile QJ BuciiD RD(A,v)

JqP B II c QD ((epar';~c.D .• AL, ,,1 B U C) GRD (d=, ul D)

JJqQD ((epari.'c .• (cpari~CD .• AU,. vl C) qPD (dx, u 1B) qRD (dz, ul D)

JJqQD ((cparC.'D .• (eparii.'cuo .• AJ,)" ul C) ~RD (dz, u 1D) qPD (dx, ul B)

J~ Q cliD RD ((ep"ri.'cuo .• AI" ul CUD) qPD (dx, ul B)

qP Bil euD (Q clio R)D (A, "I·

http:epari.'c.�

7.7 Alpbabetised Pa.rallel Compositjon 81

For law 3 note that

~P Bile STOPP (A,z) J app ((,pa'B,\",A)" zl B) aSTOPp (dy, '1 C)

app « <pa'B'e.,A),'I", zl B)
since Vz· aSTOPp({(T)"),O) = 1

aPD (n, zl B) if (T)" E A
{ ~PH0, zl B) nthe,wise

since eparB,c,z(J:, (T)"') = {T)W if B <;:: C

aSTOP~ (A, 01 BI
aSTOPD(A,o).

The proofs of distributivity of alphabetised parallel composition over probabilistic
choice follow along the sanw lines as the proofs of the corresponding laws for simple
paraHel composition in PCSPo. Since laws 6 - 9 are special cases of law 10 the
latter is the only one which remains to be proven. Let aPD = ae : E..........,. p.~ a.nd tet
~QD = ~d , D ~ Q,~. By definitinn

aPBllcQD(A,z) = Japp((cpa'·B.'e.,A),,'IB)~Q~(dY,'IC).

1£ Zo = e E EnD then (z1 B)o = f and (zl C)o = e. Therefore in this casf'

~P Bile QD(A,o)

J ~e ~ P,D(<pa'B.'e.,A).. zlB) ~e ~ Q,~(dw,zl C)

J ap,D (prejix;' (cpacB.'e., A)"I.' (zl B)/ I) aQ,D(dw, (zl C)/I)

J ap ,0 (,pa'·B,C"/1 (prejix; 1 A)., (z/ I) I B) aQ,D(dw, (z /1)1 C)

ap, Bile Q,D (preji,,-' A, z/I)

~e ~ (P, Bile Q,)~(A,z).

If"" = e E E - C then (zl B)o = e and zl C = (z/l)l C. The"foce

ap Bile QD (A, z)

J ae ~ P,~ «,pa'B~e.,A)" (zl B» N~(dy, zl C)

J W,D(pcejix;'(cpa'ii.'e.,A),,(zl B)/I) ~QD(dy,zl C)

J ap,D (cpa'B.e.,/,(pceji,,-' A)" (z/I)I B) aQD(dy, (z /1)1CI

ap, Bile QD(pcejix,-'A,z/l)

ae ~ (P, Bile Q)D (A, z).

7.7 Alphabetised Parallel Compasition	 82

Sim.ilarly ir ~ = e E D - B then

qP Bile QD(A,z) = q, ~ (P Bile Q,)D(A,z).

If", E (B - E) n G then (zl B), = Zo and (zl G), = ",. So

qP Bile QD(A,z) = JqSTOPD ((,paro.'c"A)"(zlB)) qQ~(dy,zlG).

Also ZQ E (B - E) n C => cparB,c,.(T)"", y):::: {T)'" for all y. Therefore it follows
that cpaTB",lc,.A;2 {(T)"'}xfl ¢:> (T}'" E A and

qP Bile QD(A,z) ~ qSTOP~(A,z).

The same is true if ZQ E (C - D) n B. Finally, if Zo E (D u C)~ then

qP BII c QD (A, z)	 ~ JOSTOP~ ((cpaTo,'c., A)" (zl B)) qSTOPD(dy, zl G)

= QSTOP~(A,z)

since {(1)""} X{(T)"'} E cparii,lc,z A¢:> (T)'" EA. Drawing all these cases together,
we get

QPBli c Q~(A,z)	 = L IS('I(z)q, ~ (P, Bile Q,)DIA,z)
eE£nD

+ L IS('I(z)q'~IP'BiieQ)D(A,z)
eEE-C

+ L Is(,)(z)~, ~ (P Bile Q,)D(A,z)
eED-B

+ L Is(,)(z)qSTOPD(A,z)
eEr:-G

wheee G = (E n D) U IE - G) U (D - B). Thus as ecquieed

~p Bile QD(A,z) = ~9' G~ IP' Bile Q')~(A,z)

where p', QJ as defined in Law 10. o

We write liB P; for the prefix form of parallel composition. Each component
process P; may 'perform only actions which are in the corresponding set fl,. The
behaviour of the whole system is the pairwisl? evaluation of the parallel composition
components (by associativity).

7.8 Relabelling

RecaIl tha.t given a. cpm P and functions f and 9 a cpm P' can be defined as a
transformation of P by setting P'(A,z)'= PU-1A,g z). For the prefixing operator
we use 9 z = prejix;lz. For parallel composition we use 9 z = (xl B,zl C) which
is an element of cparii1c zZ' An a.ttempt to define hiding or sequential composition
similarly fails because th'ere is no sensible way of select.ing an element of the inverses
of hide and seq.

hide"B1 z (ululB~zJ

seq-Iz U.S((zrn)(J))x(z/n) U (z}xf!.

However. we can define relabelliug if we restrict oursPives to injective relabelling
functions. Let f : I: --+ I: be such a. function, which is lifted to sequences in the
usua.l way. Then

I1I(P)~p(A,z) '" ~P~p U-'A,j-'z)

defines a. cpm.

It is easily checked that rela.belling satisfies the following laws:

Lemma 7.8,1

Ll f(STOP) '" STOP.

L2 f(g(P)) = (g;f)P.

L3 f(" E ~ p.) = "f(E) ~ f(P) •.

L4 f(P ,n Q) = f(P) ,n f(Q)·

L5 f(PBllcQ) = f(P) J(B1IIJlC) f(Q)·
o

7.9 Conditional

We use an infix-notation for conditiona.ls. For a. boolean expression b and processes
P, Q define

P <l b t> = {QP~ if b = true
Q QD QQ~ othe,wi,e.

7.10 Recursion 84

7.10 Recursion

To give a semantics to recursion in terms of cpm's we use the same approach as in
chapter 4: we define the semantics of a recursive expression to be the fixed point
of an eqnation and use a metric on the space of cpm's and the Banach Fixed Point
Theorem to establish conditions of well-definedness.

Let P be a term possibly containing tbe free variable X. As before, we write
J.l X • P to denote a process that behaves a.s P with X representing a recursive
invocation of the process. To define its semantics we regard ~P~p as a function of
the cpm to be bound to the variable X in P:

Definition 1.10.1 If P is a PCSP term possibly conta.ining the free variable X
'hen M(X,P)p"'\ Y '~PDp[YIX]. 0

We can then define

~J.l X • PDp == the unique fixed point of the mapping M(X, P)p.

We llse two metrics which are closely related to the ones we used for the semantics
of PCSPo• Given two cpm's P and Q define

6(P. Q) "
~ 1

,up L :;-;IP(S(z r
zE};'" ,.=0 -

n), z) ­ Q(S(z fn), z)1

and

6'(P,Ql " inr {2-' IVz E EW
• P(S(z[n),z) = Q(S(zrn),z)}.

Theorem 1.10.2 The spa.ce CAl is complete in the metric Ii. o

Proof Let (P;).N be a Ii-Ca.uchy sequence of cpm's, i.e.

V,>O,3N,N· Vn,m>N· 6(P.,Pm)<<.

This implies that for ever)' z E I:'"

~ 1
L,IP.(S(dk),z)- Pm(S(zrk),z)1 < ,.
1=0 2

SinceP.. (S(t).=) = 0 for any i- t ... we have

~ 1

L 2' L IP.(S(I),z) - p .. (S(I).z)1 < "

<=0 leE.!:

7.10 Recursjon	 85

that is (or every:! E I:'"' the sequence of p .. '5 given z is a sequence of probability
measures which is a Cauchy sequence with respect to the metric d. By theorem 4.2.4
this converges to a probability measure, P given z, say. For all z E I:'" and all
cylinder sets A E :F w€ have P.. (A, z) --+ P(A, z). Hence for a fixed cylinderset
A, P(A, z) is a random variable. Also if A" TA then P(A .. , z) --+ P(A, z) and as
a function of z, P(A, z) is the limit of the random variables P(A", z) and hence
itself a random variable. Hence the class of sets for which P is a random variable
contains the cylinder sets and is a monotonic class. Hence it contains:F. So P is a
cpm and the limit of the sequence (P..).. :N. Therefore eM is b-complete. 0

The following theorem establishe~ Lip~chit;>; bounds on the operators of PCSP.

Lemma 7.10.3 Let P, Q be terms possibly involving the term variable Z and let
F and G be the corresponding semantic functions, that is let F == M(Z,P)p and
G == M(Z, Q)p. Consider a, semantic function H such that

1.	 H is constant with respect to pOZ~. Then r(H) = O.

2.	 H ~ M(Z, Z)p. Then r(H) ~ 1.

3.	 H = M(Z,a ~ Pip. Then r(H) ~ 1/2 rtF).

4.	 H ~ M(Z, e: E ~ P,)p. Then r(H) ~ 1/2 mH'Edr(F,» where

F, " M(Z, P,)p.

5.	 H = M(Z,P ,n Q)p. Then r(H) ~ p r(F) + (l-p) riG).

6.	 H ~ M(Z, P 5 0 Q)p. Then r(H) ~ mH(r(F), r(G)).

7.	 H = M(Z, P Bile Q)p. Then r(H) < 2(r(F) + riG)).

o

Proof Let X, Y be cpm's. If H is constant then 6(H X, H Y) = O. If II is the
identity function then 6(H X, H Y) = b(X, Y). For H = M(Z, t : E --+ p.)p and
F. == M(Z, p.)p we have

fJ(H X,H Y)
~	 1

,up L:­
zEl:'" ,,=1 2"

(I L: [5('I(z)(F,X (prefix;' S(z I"), x/I) - F, Y (prefix;' 5(, In), z / I)
'EE

+ L: 15('I(z)(aSTOP~ (S(z [n),z) - ~STOP~ (S(z In), ,)1)
.~E

7.10 Recursion 86

00 I

:<; ,up L~

·/IEE'" .. =1

L IS('I(,)I F,X (prefiz;' 5(, In), ,/1) - F, Y (prefiz,-' 5(ztn), '/ j)1
,eE

I
:<; -2 m• x6(F,X,F,Y).

'eE

So r(lI) ~ 1/2 max,eE:(r(F,)). The Lipschitz condition for prefixing arises as a
special case of this rule. For an expression with probabilistic choice the metric 6 is

6(HX,II Y)
I

'lip L00 - Il,(F X (5('ln),,) - F Y (5(:ln),:))
zEE'" .. =1 2"

+(1- p) (G X (5(: I"),:) - G Y (5(, In)")11

S p6(FX,F Y)+(I-p)6(GX,G Y).

For general choice, i.e. if H = M(Z, P 5 0 Q)p, Wf'; hav~

6(8 X,II Y)
I

sup L00

-IIs(,)(F X (5(ztn), ,) - F Y 5(, In), ,i)
zEE~ """I 2"

+ls,(,)(G X (5('ln),,) - G Y (5('1,,), z))1

S m.x(6(F X, F Y),6(G X,G Y)).

So r(II1= m.x(r(F),r(GJ).

To determine the Lipschitz condition of parallel composition recall that for T-free
z, i.e. jf z E E.... , then

~p 811e QO (5(, In), ,) = QPO (5((, In) I B), ,) B) aQO (5«(z InHC), ,) C).

Therefore if f{ = M(Z,P 8ile Q)p then

6(II X. f{ Y)
1

'up L
00

2.(1 F X (5(('lnJlB),,)8) G X (5(z[n)fC),:)Cll)
zEE"" ..=1

-F Y (5((zl")18).:)8) G Y (5(zln)fC),,(C)
I

< ,up L00

-(IF X (S(,lnHB),z)B) - F Y (5((:I,,)fB),,) 8)1
zE:r'" 11.=[2"

+1 G X (S((z I") I C),z) C) - G Y (5(z I"JlC), ,) C)I)

where the last. step follows from the inequality 4.1. Suppose that the first k elements
of a trace z are in B and the next j in C -B. Then for n. < k, (zrnHB = {:rBHn.

7.10 Recursion 87

For k S n < k + j, (, rn) rB = (, rB) [k. Also L~~;. 2-' S 2.2-'. Thereafter
(z rn) rB s (z rB) rn - j) a.nd for any subsequence of z consisting of i actions in
C - B we have 2-" < 2.2-(II-jl. Hence

Ii(H X,H Y)

~ 1

S ,up I: 2--;; IF X (5(,rn),,)-F Y (5(zrn),z)1

zEB'" _=1 2

00 1
+ ,up L22'IG X (5(,rn),z) - G Y (5(zrn),')1

zEC.... II =1 ..

S Ii(F X, F Y)+Ii(G X, G Y).

So r(H) < 2(r(F) + r(Gl). o

As in chapter 4, the Lipschitz hounds for fJ mean that even unguarded recursion
is sometimes well defined. However. we still need fJ' to show that guarded recursion
is always well defined.

Definition 7.10.4 Let P be a PCSP-term possibly involving a free variable Z.
We say that P is constr11ctive if M(Z, P)p is a contraction map w.r.t. 6\ and non­
destructive if M(Z, P)p is non-expanding w.r.t. fJ'. 0

This means that

P is constructive

.. 1i'(~PDp[X/ ZJ, OPDp! Y / Z]) < 1i'(X, Y)

.. ('h E E"· X (5(, rn), ,) = Y (5(dn), ,)

=> V, E E" . OPDp[X /ZJ(5(d n+ 1), z) = OPDp! Y / ZI(5(z rnt 1), z)).

Similarly for non-destructive terms.

Lemma 7.10.5

1. STOP is constructive.

2. X is non-destructive.

3. a ~ P is constructive jf P is non-destructive.

4. e : E ~ P e is constructive if every P~ is non-destructive.

5. P pn Q, P sO Q, P II Q and P Bile Q are constructive if P and Q are
constructive.

o

7.10 Recursion 88

Proof Let X, Y be two cpm's and suppose that Vz E E""· X (5(z rn),z) =
Y (S(z rn), ..), Cla.uses 1 and 2 follow directly. For clause 4 (whicb implies clause
3) note that

a, ;E ~ P,Op[X / Z] (5(, in + 1), z)

qP~Op[X/Z] (5((z/IHn),z) if", E E

{ o otherwise

~P~Op[Y/Z] (5((,/I)1n),z) if", E E

{ o otherwise

q,; E ~ P,Op[Y/Z] (5(zrn + 1),z).

The proof that probabilistic choice is non-destructive is the same as in chapter 4
if we substitute (5«z/l) ~n), z) for the probability measures used in the argument
there. The proof t.hat general choice is non-destructive follows if we substitute the
appropriate indicator functions for the probability of dwice.

For alphabetised parallel composition we get

~P811e QOp{X/Zj(5(zrn),')
qPOp[X / Zj (5(z rn) rB), zl B) ~ QDp[X / Z] (5((z rn) rC), zl C)
qPOp[Y / Zj (5«(z rn) IB), '1 B) qQOp[Y / Z] (5«(z rn) i C), zl C)

qP Bile QOp[Y/Z](5(,rn),z).

This completes the proof. o

We combine the last two lemmas to cha.racterise a class of recursive expressions
which are well-defined.

Theorem 7.10.6 Suppose that P is a peS? expression possibly containing the
free variable X. If r(M(X, P)p) < 1 or if P is constructive with respect to X then
the semantics

~~ X • POp

is well defined for all bindings p. o

For weJl-defined JJ X • P the same laws apply for PC5P as for PC5Po.

Lemma 7.10.7

L6 pX. P '" Pip x. PIX].

LT If Y is not free in P then JJ X • P == JJ Y • P.

7.11 Two Common PropertieJ of PCSP·proceJses	 89

L8 If M(X, P)p is a 5-contraction map then 1J X • (p,n X) == 1J X • P.
o

We treat mutual recursion in the same way as in cbapter 4, substituting cpm's
for probability measures as appropria.te. Furthermore, the simila.rity between the
metric d' on PM and 5' on CM means that recursion induction on cpm's can be
treated in the same way as recursion induction on probability measures. So we will
be able to use the following two rules: Suppose that R is a satisfiable and continuous
predicate and that the PCSP-term P is constructive for the variable X. Then

Rule 7.10.8

V~', PM· R(Y) => R(OPDPlY IXIJ

R(~~ X • PPp)

o

If P is a vector of mutually recursive processes which is constructive for the vector
of variables X then to establish that a vector of predicates R correctly describes
the fixed point of M(X, P) it is sufficient to show that each R; is continuous and
satisfiable and that R is preserved by M(X, P).

Rule 7.10.9

(Vi· RJ Y,)) => Vj' Rj(OP,Pp[YIXIJ

R(O~X, PPp)

o

7.11 Two Common Properties of PCSP-processes

We can now prove that all PCSP-processes have tht> following two properties.

Lemma 7.11.1

1. If P is a PCSP-term theu Vy E n

OPP({y}UU.{(y[n)(T)"J,y) ~ 1.

2.	 If lEE; and y> I then OPP (5(1), y) = OPP (5(1), I(T)"I.
o

7.11 Two Common Properties of PCSP-processes	 90

Proof We prove both properties by structural induction. Consider property 1. It
is obviously true of STOP. For the every operator, suppose that property 1 is true
of the arguments. Then for external choice

0' :E ~ P,p ({y) U U. {(y in)(T)"), y)
'" I: ISI,}(y/l) OP,p (prefix;'{y/I) U U.{(y/I InleT)"}, y/I)

,eE

+I: Isl,}(y) OSTOPP ({y) U U. {(yin)(T)"), y)
'OE

I.

The proofs for probabilistic and general choice follow immediately from the induc­
tive hypothesis. For parallel composition we have

cparii.'c.,({y}uU.{(yln)(T)")) ~	 B"xC".

Hence

OP,lIc QP({y} uU.{(yln)(r)"},y)	 = ~PP(aw,ylB) ~QP(C",Y1C)

= I.

The proof for relabelling follows because the relabelling function f is 1-1 and maps
T to itself. Hence

;-'({y}UU.{lYln)(r)")) = ir'Y}UU.{((r'Y)ln)(T)"}.

A well defined recursive process J.l X • P is the limit of a sequenc.e of iterates.
(POSTOPP)"N '"y, each of which satisfies pcoperty 1. Since {y) U U. {(y In)(r)")
is a closed set, we deduce from theorem 2.1.6 that

~I'X • pp ({y) U U. {(y In)(T)"), y)

2: lim supF'OSTOPP({y} uU.{(yln)(r)"},y)

= I.

Now consider property 2. It is obviously true of STOP. It is true of all processes
if t = O. For non-empty I, suppose that it holds of the arguments of each PCSP­
operator. If lQ E E then

~, : E ~ P,D (S(t), y)	 P,(S(t/I), y/I)

OP,P(S(1/1), (I/I)(r)")

~, : e ~ P,p (S(I), I(T)").

If lQ ¢ E then the process behaves as STOP and property 2 js also true. For
probabilistic choice the proof follows directly from the inductive hypothesis. For
general choice we have

wsO QP (S(I), y) = /sly) OPD (S(I), y) + /s'(y) OQD (5(1), y).

7.11 Two Common Propertjes or PCSP-processes	 91

If 5 n Set) ~ 0 thi, hecomes

OP s 0 QD (S(t), Y)	 OQ~ (S(t), Y)

OQ~(S(t),t(T)-)

OP sO QD(S(t), I(T)-).

Similarly if se n 5(t) =	 0. If 5(i) intersects both 5 IYld 5 e then by definition

YESnS(t)i\zES'nS(t) => OPD(S(I),y)~OQ~(S(I),z).

Hence the above steps also apply to this case. For parallel composition we have

~P Bile QD (S(t), y)	 ~ OP~ (S(t rB), yl B) OQD (5(1 IC), y1 C)
~ OPD (S(t IB), (tf B)(T)-)OQD (5(1 IC), (It C)(T)")

~ oP Bile Q~ (S(t), I(T)").

The case of relabelling is easily checked. Finally, recursive processes satisfy property
2. because the probability of S(t) is preserved in the limit. Tbis conclndes the prooL

o

Chapter 8

Proof Rules

The description of an algorithm in CSP process algebra is a specification at an inter­
mediate level of abstraction. At a higher level of abstraction. the properties which
the algorithm is designed to achieve provide predicates upon process behaviours.
If it ca.n be shown that such a predicate holds of every possible behaviour of the
algorithm we say that the algorithm satisfies the predicate. At a lower level of
abstraction lies a (deterministic) implementation in, say, occam.

In the traces model of esp, a bebaviour is just a finite trace. In the failures­
divergences model it is represented as a failure, that is as a trace combined with
refusal sets. In the timed model, a, beha,viour is a timed failure. In all these models
the semantics of a process is the set of aU possible hehaviours of that process.
Thus to characterise when a process P with semantics T[PJ satisfies a specification
expressed as a predicate R with free variable u, it is sufficient to set

PsatR = (uETlp!""R(u)).

In the probabilistic model a process behaviour is an infinite trace. The semantics
of a process is not the set of all possible behaviours, but a cpm which assigns a
probability to every behaviour. One way of defining wben a PCSP~process satisfies
a specification wonld be to derive the set of possible behaviours from the cpm
and use it in a definition of the above form. However, we can give a more direct
definition. If a predicate describes all the possible behaviours of a process, then the
probability of any behaviour for which the predicate is false must be zero. So we
say

P sat R = 't zEn· ~P~ (R, zl = 1

where we follow the convention of writing just R for the set {u I R(un. Note that
since every process behaves like STOP wben offered {or)"" by the environment, i.e.
't P E eM· P({(r)W), (r}W) = 1, it follows that P sat R "" R((r}W) = tru'. So

8.1 Safety Properties 93

typically R is a predicate of the form (tto = T) V R'(u), that is a predicate which
constrains what a process may do if it does anything at all. Such a comtraint is
called a safety property, as opposed to a liveness property which asserts that a
process will do something.

If a safety property is violated, then at some finite point some undesired be­
ha.viour occurs which is irremediable. For instance, the statement that. certaiD
actions always happen in the same order constitutes a safety property because once
the order has been violated, it cannot be restored by any later actions.

By contrast, aliveness property caD be satisfied at some point in the future no
matter what ha.ppens initially. Typicalliveness properties are fairness, asymptotic
behaviours, starvation freedom and termination. These observations motivate the
following definitions which we adopt from Alpern and Schneider [AS85].

Definition 8.0.2 A predicate R upon infinite sequencE'S with freP variable u rep­
resents a safety property jf

If,,:n· ~RI") => 3n:N·S(urn)nR~0.

o

Definition 8.0.3 A predicate R upon infinite sequences with free variable u rep­
resents a Iiveness property if

1ft E j;'. S(t)nR¥0.

o

Since these definitions arc expressed in terms of infinite traces they (annot be
used in a semantics which is based on finite traces, like the traces model or the
failures-divergences modeL In the traces model it is impossible to reason about
liveness properties. In the failures-divergences model. liveness properties are ex­
pressed in terms of refusal sets. It would be interesting to investigate the differences
between these alternative concepts of liveness, but we have not had time to address
this issue.

8.1 Safety Properties

We now present an inference rule for each clause in the syntax of PCSP, expressing
the properties of a process in terms of predicates with several components. For com­
pound processes, the antecedent of the rule will consist of component specifications
for the component processes.

The definition of sat gives rise to the usual logical rules:

8.1 Safety Properties 94

Psat R P sat R
P sat T R""T

P sat true P sat (R A T) Psat T

The null specification is true of any process because {u I true} = n a.nd

y, Efl· GP~ (fl, z) = I.

Each gOil.l may be addressed separately because

'h E fl . GPD (R, ,) = I A GPD (T, ,) ~ I

'* 'hE fl·GPD(Rn T,,)~ I.

We may wpaken any specification already established beca.use

V'Efl·GPD(R,z)=IAR<; T "" VZEfl'GP~(T,z)~ I.

The process STOP is unwilling to participate in any external activity. The first
visible action performed by a -+ P must be a and the subsequent behaviour is that
of P. So the inference rules for STOP and a -+ Pare

P sat R

STOP satu = (r)' o ~ P sat ("" = r) V (uo ~ a II R(u/l»

These last two rules are special cases of the following:

TIe E E· p. sat R,

, : E ~ P, sat ("0 ~ r) V ("" E Ell R%(u/l»

To shu..... that this is sound let R("u) == (Uo = r) V (Uo E E /\ R« It/l)). Then
Yz E f!

~" E ~ P,D (R, z)

L 151 '1(')GP,~ (prcfiz,-' R, z/ I) + L ISI,I(')GSTOPD (R. z)
.EE 'fE

L ISI,}(z)QP,~(R"z/l) + L ISI'I(z)GSTOPD(R.z)
.EE tfE

I.

Any behaviour of the pruhabilistic choice P pn Q must arise from either P or Q.
This gives rise to the inference rule

Psat R

Q sat T

P ,n Q sat (R V T)

8.1 Safety Propertie...	 95

This is sound becaus~ for all zEn

OP ,n QD (RU T,z)	 p~PD(RUT,z)+(I-p)~QD(RUT,z)

p ~PD (R, z) + (l-p) ~QD (T, z)

1.

A process offering external choice also behaves like one of its components. So the
same inference rule applies as for probabilistic choice.

Psat R

Qsat T

P s D Q sat (R V T)

This rule can be strengthened if we make the anleccdents d~pend on tile traces
offered by the environment, in which case w~ havf> to abandon the sat-nQtation in
the antecedent part of the rule.

'f z E S . OPD (R, z) ~ 1

'fz E S'· OQD(T,z) = 1

PsD Qsat(RV 1')

The soundness of this rule (as of the weaker one) follows immediately from the
definition of general choice:

~PsD QD(RUT,z) ls(z)OP~(RU T,z)+Is,~QD(RUT,z)

1.

In simple parallel composition P 11 Q processes P and Q must ::;ynchronise on
every action. Thus the parallel system can do only what both of them are prepared
to do:

P sat R
Q sat T

PII Qsat(RA T)

By definition,

OF II QD(R n T,z) J~PD(par-'(RnT)),,') OQD(dy,z).

We prove that

~P~(R,,)~lA~QD(T,z)=1 => RxT<C:,par-'(RnT).

8.1 Safety Properties 96

We know that if a. process attempts to perform a trace, u say, then the environment
can forO) it to stop by offering a trace z which disagrees with u from some point
onwards. Therefore if P sat R and R(u) then R must also be true of aU prefixes of
u followed by (T)"'

Psat R => (R(u) => 'In· R((urn)(T)")).

AlsoVv'par(u,v)= u V3n'par(u,v)=(ufn)('r)"". Thusu E R=>par(u,v)E R.
Applying the same argument to l' E T we get

uER/\vE T ~ par(u,I')ERnT.

Therefore

P sat R A Q sat T

=> OP II QD IR n T. ,)

~

IOPDx~QD)(par-'(RnT),,)

IOPDxOQD)(RxT,:)

~PDIR,:) OQDIT,:)
1.

The generalised versioll of this inference rule i"

P sat R A (u E W)
Qsat T A Iu E C")

P Bll c QsatRlv!B)AT(u1 C)

The proof of soundness of this rule has to take account of Band C but, apart
from that follows along similar lines as the previous proof. Since Rand T arc
'prefix-dosed' we have

u E R /\ u E B"" II vET A v E ~.

=> rparB.c.,lv,")E (wIR(wlfl)ATlwIC)).

So

(Rnfl")xITnC") <; rparB,'c.,{wIRlwIBjAT(wlC)).

Therefore

P sat (R A u E B") A Q sat (T A vEe")

=> ~PBllcQD({uIR(u1fl)A T(u1e)),z)

(OPD x ~QD)(rparB.'C.'{w I R(w1fl) A Tlw! e)},,)

~ OPD (R. '1 B) ~QD (T, zl e).

8.2 Liveness Properties 97

The following proof rnle enables us to show that a recursive process ~atisfies a
predicat.e upon traces. let R be a safety property. Then

X sat R ==? P sat R

~X.PsatR

To show that this is sound we show that it is a special instance of the proof
rule 7.10.9 (for predicates upon recursive processes). By definition, if X E eM
then

X ,at R ¢> \I y E lJ· X (R, y) = l.
Wc know that R is 'prefix-closed' in the seuse that auy visible prefix of an element
of R followed by (T)w is itself an element of R. Let

T(X) cC \lyElJ·X(R,y)~l.

Then T is a satisfiable predicate upon processes, becanse STOP sat R. If T(X) is
false, then X must assign positive probability to some behaviour which violates R.
Since R is a safety property this mnst be apparent at some finite point, and T is
false of every process in the oprn ball of processes which agree with X np to that
point. So T is continuous and the above proof rule is an instance of rule 7.10.9.

8.2 Liveness Properties

The proof rules presented ill the last section arf' most useful for safety properties.
For liveness properties we have to assume t.hat the environment docs not block
the progress of the system whose properties we are t.rying to prove, i.e. that t.he
environment resolves every external choice on which the system depf'nds. but ac­
cepts every internal (that is: probabilistic choice) made by the system. It t.urns out
that any process combined with such all environment caIl be modelled simply a.:; a
probability measure, rather thall as a cpm.

In this section we identify a subset of PCSP which has a well-defined semant.ics
both in CM and in PM. Wf> show that thf' semantics @ of a construd in t.his
subset of the language is related to its semantics as givC'n by [~ by a transformation
function on traces. We then show that the assumption we make of the environment
of a process to analyse its liveness properties results in a system that bdongs t.o
this subset of PCSP. So to analyse liveness properties we never have to consider
cpm's, but only simple probability measures. That is, the same techniques which we
used in chapter 5 to prove liveness properties of the rather limited class uf PCSPo
processes can also be used to analyse processes in generaL

First note that every probability measure can be used to induce a conditional
probability mea.sure.

8.2 Li:,encss Properties	 98

Lemrnll 8.2.1 If P is a probability measure in PM, then the function defined as

Q (A, y) ~	 P cond;' A

where

cond,(x) ==	 par(x,y)

is a cpm.	 0

Proof Wf> know that par is mt>,(lsurable (FxT)!F. Hence condJl is mea.surahle
F!F. So for fixed y, P cond;l A induces a probability measure. It remains to prove
that for fixed A E F the function P cond;l A is F-measurable. Let C denote lhf'
class of sets such that for C E C the functiou P cond;l Cis F-mea,surable. Suppose
first that C = S'(t) where I is T-fn~e. Then

cDOr'S(I) = {SII) ;f Y E 5(1)

) I/J otherwlse .

Therefore P rond,-tS(t) = fS(l)(Y) PS(t), hich is a simple random variable. If t
is not T-free, thealue of P COrld,-IS(t) can be computed as the differencf' of the
probabilities of r-free traces, i.e. as a difference of simplf' random variables. So
in this case, too, P cond,-IS(t) is a simple random variable. So C contains a.ll the
sets with fixed prefixes. It is easily sho n that C is closed under finite unions and
countable intersections. Therefore it is a monot.one class and hence C = F. 0

So for every probability meaflure we can construct. a corresponding cpm. How­
ever, what we really need is to identify when a cpm has a corresponding proba.bility
measure.

Lemma 8.2.2 A PCSP-process OPD has a corresponding probability measure [P]
if and only if

Vn,N I: OP~(S(I), I(T)") <: l.
lEE"

o

Proof If t is a r-free trace of length n then condl(~).. S(t) = S(l). Therf'fore if OPO
is a PCSP-process with a correspondinp; probability measure [PR thcn

IP!S(I) =	 [PI cond;(:).S(I)

OP~ (5(1), I(T)").

This means that

L'EE"qPD(S(I).I(T)") <: 1

or elS(" ~P] would not b~ a probability measure.	 o

8.2 Ljveness Properties	 99

The next lemma provides a rule hy which the existence of a probability measure
corresponding to a cpm can be checked syntactically rather than by recourse to the
semantics.

Lemma 8.2.3 [f P isa PC:S'P-term containing only STOP, _, "n, II ana possibly
variables bound by recursion, then the semantics of P in PCSP and PCSPo are
related by

~P~(A,y) = [Pleond,-'A.

o

Proof We use structural induction. To deal with STOP, note that (T)'" E A-<=>
(r)w E cond;lA. Therefore

~STOPD(A,y)	 IA((T)')

(ond;l,4((r)W)

[STOP] cond;' A.

To show tha.t the equality is prf'sf'rved hy all the other operators, suppose tha.t
~PD(A, y) ~ [Pleond;' A. Note that

. I _ {condr/1 ; prejixa jf Yo = a
prefi'Xa , coni 11' - d h . con (T)~ at erwlse.

So

~a~P~(A.y) I s(.)(y) ~P~ (prefix;' A, y(1) + I s(.), (y) ~STOr~ (A, y)

by definition

Is(.)(y) QPD (prefix;' A, y/l) + [S(')' (y) ~P~ (A, (Tt)

[P] cond;/1(prejixa-
1 .4) if !AI = a

{ [P] cond(~)~ A otherwi~e

[PH prefix.-' (cand,-' A)

[0 ~ Pi (eond,-'A).

For probabilistic choice suppose that P and Q satisfy the hypot.hesis. Then

~p,n QD(A,y)	 p ~PD (A, y) + (l-p)~QD (,I, y)

[PI cond;' A + (1- p)[QI eond;' ,I

[P "n Q] cond;l A.

8.3 A Self-stabilising Tokenring	 100

For parallel composition note that par; conti, = (conti,. cond,) ; par. Therefore

~F II QD (A, y) J~FD ((par-I A)., y) ND(du, y)

JIFI «(cond;', id)(par-' A))".,,(w) IQidw

change of variable

JIFi ((eond;', eond;')(par-' A))w IQi dw

J[PI (par-'(eond;' A))w IQldw

IP II Qj eond;' A.

If in addition to the above operators a term P contains a free variable X such thai
the recursion p X. P is well-defined, then the Banach Fixed Point Theorem assures
us that

~~ X • PDp (A, y) ~	 li..~ F"~STOPDp (A, y)

whm F =.\ y. ~PDp[YIX]

}i..~ G"[STOP]cond;l A

whc;e G =.\ Y . [P]p[Y IXl

I~X, Pip eond;'A.

This completes the proof.	 0

8.3 A Self-stabilising Tokenring

This self-stabilising algorithm is due to [Herm90J. Its purpose is to pass a token
around a cyclically arranged group of processes. Thc process in pos~ession of the
token ca.n. execute some task without interference from any other process. For onr
purposes tht'; nature of the task is immateriaL Each process is iu one of two states;
it altcrnately reads the state of its left-hand neighbour and pa.s~C'S its own state to
its right-hand neighbour. Every process which is in "the same state as its left-hand
neighbour is said to have a token. A process which doesn't have the token keeps
its state. A process which has a token changes state with probability 1/2. This
causes the token to pass to the next process. The total number of processes must
be odd. so that under normal conditions all neighbouring processes bar one pair are
in different states.

We will prove this algorithm to be self-stabilising in the sense that whatever
their initial states, the processes eventually reach a state wbere exactly one token
exists (i.e. spurious tokens disappear) and which is live in the sense that each
process is guaranteed to receive the token infinitely often.

8.3 A Self-stabih,ing Tokenring lO2

TU,S) i.SU) ~ (T(i Ell 1,5[01SU)]) ",n T(i ffi 1,5[11S(i)]l
<lS(i 81) ~ SU)C>

TU Ell 1,5))

where S[bjS(i)] denotes the state S with its i~h element overwritten with the value
b. To prove that TS == T we use rec.ursion induction. Given a vector of processes
Y define

(R(Y))(i,S) '= ((Y)(,.S) ~ ~IIBJP(i,Sm

where

j.PS(,) if i ::j j

j.P(i,S) = j!m~ (j.Po 1/2n j.p} if j = i.
<lS(j 8 1) ~ S(j)c>{

j.PSlJ))

The predic.ate R is continuous and satisfiable. Let X be i\ vector of term varia.bles
and let F be the fnnctiou which corresponds to one nnfolding of the recursion.

(F X),.s ='.8(i) ~ «(X),ml.S[o/S(;1l1"n(X),@1.S[I/S(;1l

<lS(i 81) ~ S(i)1>

(X);ffiLS).

Since F is constructive the mapping M(X, F)p has a unique fixed point. We can
therefore use rule 7.10.9 to show that R holds of the fixed point of M(X, F)p.
Suppose that

IIi, S . (Y),.s = ~IIB j.P(i, S)~,
where j.P(i,S) as defined ahov£'. We need to show that this implies

II i, 5 . (qFDp[YI XlJ,.s = OIl8JP(i, S)D·

This is true if we can argue syntactically thi\t

(1I"S·X,.s '" IIBJP(i,S)) => (lIi,S·(FX),.s - liB, j.P(i,S)).

Substituting for X in F we get.

(FXks

'" i.S(i) ~ «IIBJPU Ell I, S[OIS(i)])) l/,n (IIBJPU ffi I,S[IIS(i)]))
<lSU 81) ~ S(i)1>
(IIBJPU ffi 1,5))).

8.3 A Self-stabilising Tokenring 101

O,P!-...l

Figure 8.L A tokeuring

Let the processes in the ring be numbered a to N, N even, and let the input
channel to each process have the same number as the process (see Fig. 8.3). The
tokenring consists of the N + 1 processes operatiug in parallel:

T = liB, ;.P

where 0 ~ i ~ Nand B, = {j.6 I j = i EB 1 V j == i /\ b E {a, I}}. The algorithm
could start in any state, but for simplicity's sake we assume that every process
starts oul. in state a. The first process starts the cycle of communication.

O.P = a!a..--.+ a.po

i.P = i.Po i> O.

Every other process first asks for input from its left-hand neighbour aud outputs
its ownstate to its right-hand neighbour. Then it decides whether or uot to change
~tate. Let EEl and e denote addition and subtraction modulo N +1. For m E {a, I},
a ::; j ~ N define

j'Pm = j?/..--.+ j EB l!m (j.Po 1/2n j.p]

<J/ = m[>

j.Pm).

To analyse the tokenring, we first of all show that it. can be represented in the
following sequential form: Let S E {a, 1}N+l denote the (N +I)-tuple of the states
of the processes. For a ~ i .:'S N define

TS ~ T(O, {O}N")

103 8_3 A Self-stabilising Tokenring

Since)! distribu tes through <H> we can bring every process not indexed by j
outside the if-statement and write

(F X)(i.Sj '" ;.s(i) ~ (IIB,j.Q)

where

j,PS(j)	 if j ¥ i,j 'I' ; Ell 1

i.P01 !:zn i,PI if j = i
<lS(; 81) ~ S(i)e>

j.Q i,PS(i)

j ffl1.S(i if' 1) - (j tB l.Po I/:ln i ffi 1. PI iC j = j f!J I
<lS(i) ~ 5(; Ell 1)e>

i fIJ 1. PS('E!ll))

By law 9 for alphabetised parallel composition

;.S(i) ~ (i.Q B,IIB,.,; Ell l.Q)	 '" (;!S(i) ~ i.Q) B,IIB,., (i?x ~ ;'B l.Q)

'" ;.P(;, 5) B,II B,., i Ell l.P(i,S).

Hence

(F X),.s '" II B,j.P(i,S).

So the antecedent oC the proof rule for mutual recursion is true and we deduce that
Y is the unique fixed point of M(X, F)p. Therefore Vi,S·

T(i,S) '" IIB,j.P(i,S).

In particular

TS '" liB, j.P(O, {OJ''+').

Also

T = II . PBj J.

- liB, j.P(O,{Oj"+').

ThereCore T::= TS. Since TS does nol contain any external choice, it can be
analysed as a probability measure rather than a cpm. Rather than repeAting t.he
proof of Correctness given in [Herm90J we present a.n alternative proof which is
slightly shorter. The difference is that [Herm90J start Crom first principles, whereas
the proof given here exploits some general results about finite Markov chains.

Theorem 8.3.1 The tokenring is self-stabilising and Iive_	 o

8.3 A Self-sta.bilising Tokenring 104

Proof Clearly communication in the tokenring happens in rounds:

PHu, n I chan(u.) = n mod (N+l)J ~ 1.

A cOmrtlunication on channell affects only state 5(1). Therefore in Olle round of
communication each part of the state may change at most once. Let A(k, 5) he the
set of traces such that the states commnnicated in round k are 5:

A,:k.S) " {u, n I \10 SiS N· msg(u'(NH)+') ~ S(i)

A chan(u.) = n mod (N +1)}.

Let t(S) be the number of tokens in the ring. If the total number of processes is
odd. tht>n at least one process must have a token and the total number of tokens is
always Qdd, because new tokens cau only be generated two at a time.

The probability that the state of the tokenring is 5' in round k + I given that
it was S in round k is

[TI(A(k+ 1),5') I A(k,S))

= {r if i(S).= i A \lj. S(j (1) = S(j) "" S'(j) ~ S(j)
o othcC\','lse.

Since there are only finitely many states, and the transition probability from one
to the next does not depend on any previous states the sets A(k, S) form a finite
Markov chain. From a one-token state, only two transitions are possible. Both are
again one-token states. So the ~et of sta.tes in which exactly one process ha.s the
token is a closed set in the seuse that the transition probabilities from any element of
this set tD any element outside this set are all zero. A state ha.<; more than one token
if the<eeri,tj, k such that (w.o.l.o.g)j < k and S(j) = s(je1) and S(k) = S(k81).
Suppose1hat there is no token between j andk, i.e. V [.j < l < k ==> 5(l) i- 5(/81).
From 5. the ring can progress to the state 5' = 5[jS(k)jS(k)) with non-zero
probability. If j = k -I, i.e. if the tokens are adjacent, then the change (rom 5(k)
to l3(k) makes them disappcar. If k - j > 1, i.e. if the tokens are more than 1
apart, then S' has a token at j + 1 and k. that is the distance between the tokens
has decreased by one. It follows that any state 5 with non-adjacent tokens j, k such
that k -j > 1 has a non-zero probability of a transition in k - j + 1 steps to a state
with two adjacent tokens at k and k -1, and hence a non-zero, k - j step transition
probability to a state with fewer tokens. Therefore all states with more than one
token are transient in the sense that the probability of eventual return to this fiitate
is strictly less than one. In a finite Markov chain the probability of staying forever
in a set of transient sta.tes is zero [FelS7]. So the tokenring will eventua.lly end up
in a state where exactly one process has the token, and from that point onwards
the only other states it can visit are those where exactly one process has the token.
Thus the tokenring is guaranteed to stabilise. (The result about transient states

8.3 A Self-stabilising Tokenring 105

means that the invariant proved by [Herm90], namely that the algorit1lm never
increases the number of tokens, only needs to hold in the specia.l case where the
number of tokens is one.)

The dosed set by itself represents a finite irreducible Markov chain, in which
all states are persistent [FeI57]. i.e. all states are visited infinitely often. So the
tokenring is live in the sense that every process is guaranteed to receive the token
infinitely often. 0

Chapter 9

Randomised Consensus

To illu~lrate th(" application of peS? we give a formal specification and proof of
correctness of a ('OUM'USUS protocol. The specification i~ given at two levels of ab­
stractiQIl. At t.he top level the properties of a consensus protocol are defined by
predicates upon traces. At a lower level a randomised algorithm which satisfies
these properties is presented in the notation of pesp. This algorithm is a vari­
ation of an algorithm which was developed by Aspnes a.nd Herlihy [AngO]. Our
version has the same safety properties, but slightly different livencss properties:
whereas Lhe algorithm by Aspncs and Herlihy is guaranteed to terminate under all
circnmstances, t.he one used here terminates with probability 1 if the scheduling is
independent of the state of the processes involved in the protocol. As a result we
are a.ble to reduce the expected number of steps to termination from Aspnes aud
Hedihy,'s 0(2") to 0("').

A ClJIlSt'11SUS protocol is a procedure whereby N communicating processes which
start out with conflicting preferences all corne to agree on the same prefereuce. The
final preference is called the decision m{ue. A consensus protocol must be

1.	 consistent: no two processes choose different decision values.

2.	 valid: the decision value was some process's initial preference. and

3.	 terminating: every process that docs not fail compldes the procedure in finite
expected time.

These properties represent the most abst-ract or high-level specification of the con­
sensus protocol. An algorithm which the processes follow to reach a decision is
correct if it satisfies the high level specification. To formalise this specification we
use some shorthand for certain predicates: We write a(u) to say that an action a
occurs in a trace u:

a(u) == 3nEN,u~=a

9.1 Specification 107

To say that a trace u contains actions a and b and a occurs before b we define

(a before h)(u) == 3 n, mEN· u.. := a 1\ Urn := b 1\ n < m

For convenience, we also define after:

(a aft" b)(u) = (b befo,e a)(u)

Since it would be cumbersome to carry the dummy variable u aU through the
specification and proofs, we suppress it from now on. We write a before h before c
a.'> shorthand for a before b 1\ b before c. Since the protocol consists of a collection
of identical components, channels are indexed: we write i.c.t1 to say that v is
communicated on channel c belonging to the i th component. Free variables for
channel indices or message values can always be taken to be universally quantified.

9.1 Specification

The protocol eonsists of N processors which communicate by reading and writing N
shared registers. Let 1 deuote the set of indices {i lOs i < j\'}, Fig 9.1 shows the

Processors Registers

D

~wn'te [i.R

Lt. read

n
D j.R

Figure 9.1: Channels connecting i.P

communication in which prou>_'isor i.P, i E /, can engage. It can read t.he values
stored by register j.R, j E I, via the channel i.j.read. It can write values to the jth

register via channel i.write. Finally it can communicate its decision about its final
preference to the environment via channel i.decide. Each register stores a preference
value and a round number. For simplicity's sake we assume that preference values
are boolean and round numbers are natural numbers. The final decision consists of

9.1 Specification	 108

just a preference value. Thus the set of actions which the process i.P can perform
is

E, ~	 (i.j.read.(v,r) Ij E I A v E iliA r E!'I)

U {i.write.(v,r) I v E B 1\ r E N}

U {Uecide.(v)lvEIII)U{T).

Correspondingly, the set of adious performed by the j'h register is

C, '" (i.j.Twd.(v,r) I iE I A vEIIIA rE!'I)

U (j.write(" r) 1 v E III ArE !'I) U {r}.

The consenslls protocol C'P is the parallel composition

CP '"	 <lIB, U) Bile <lleJR)

where B = UB;, C = UC;.

We now give the formal definitions of its properties. Unless otherwise stated, the
indices i,i, k range over I, preference values v over the boo leans, and roundnumbers
r over the natural numbers.

Safety

A decision appears in the tra<:e::; as a decide-event. It is valid only if it was some
processor's initial prefcr<~nce. The initial preference of a processor is the one which
it writes to the register in round 1. Thus if a valid trace coutains a decide-event
with value v then it must also coutain a first-round write-event with value v:

VS ==	 (i.decide.(v) => 3j .j.w6te.(v,l) before i.decide.(v)).

Consistency requires that aU processors make the same decision. So no consistent
trace contains decide-events with different preference values:

rs '"	 ~(i.de";de.(l) A j.decide.(Oj).

ObViously validity and consistency are safety properties in the sense of defini­
tion 8.0.2.

Li"'eness

The protocol terminates if every process which is scheduled infinitely often must
come to a decision. Thus thl" traces of a terminating protocol are described by

TS(u) =- 'Vi·(urB, infinite => 3v· i.decide.(TJ))

This is obviously a livel1C'Ss properLy in the sense of definition 8.0.3.

The Algorithm

Vle now specify an algorithm which enables the processors to reach a decision.
Each processor chooses au initial preference value for round 1 and writes it into its
register. From round 1 until it can decide each processor alternately reads all the
registers and, based on the values it has just rcad. writes a new preference value a.nd
ronndnumber. Let v and r be vectors of IV preferred val lies and N roundnumbcrs
respectively. Suppose that processor i.P has just read the values 1:1, r from the
registers. If according to these values it is is leader 1 that is one of the processors
with the highest roundnumher, and all dissenting processors trail by at lea'll two
roundnumbers, it cau decide on a final preference. The condition for this case is

exp resse<! b.r

i .ran_decide(v. r) 1', > 11\ 'rtj. (r) ~ r, 1\ (tJ = tl, V r, > r)+11).

If a. processor cannot decide it adopts if possible the preference of the leaders.
If the leaders do n<,t. have a common preferenc.e, it sticks to it.s own preference,
hut randomly either adva.nces to the next round or stays at the same n:l1lnd. L('t
leade,s_og,ed v, v, r) denote the fact that based on the observed values tl and r

the leade.rs all prefer the same value II:

Icadu',;;_agrn(u,v,r) == 'rt.i' (r) = max(r)::::> 'Lj = 1').

Then the processors are described by

I.P	 i.wrilt!(l\l) --I i.P(0,0.0)

~n i. wrilF!(O, 1) --I i.P(0, 0, OJ

i.P(v, r,J)	 i.j.rwd?(v,r) --I i.P(v',r',j + 1) j < N

where v' = v U {j v}, r' = r U {j 1--+ r}

i.P(v,r,N) i.dccide!(v;) _ IDLE

<Ji.col'Ldecide(v, r) t>

(i.write!(l',r, + 1) - i.P(0,0,O)

<J 3 v . leade1's-agree(v, v, r) c>

(i.wrifcl(v;,r,) ~ i.P(0,0,O))

,n (i.write'(v"r, + I) ~ i.P(0,0,O))).

The process IDLE can be any process which does not affect the state of the protocol,
and Ileed not be specified explicitely. A register starts in round O. Afte' the first
write it always produces the value that was last written t.o it.

;.R =	 ;.R(O,O)

9.2 Proof of Correctness 110

i_R(tt, r) ::.c; j.wn'te?(v', rl) -lo j.R(v l
, r')

o
O'EI i.j. read!(v, r) -lo j .R(v, 1').

9.2 Proof of Correctness

We will 5how that the protocol IS correct in the sense that it satisfies the safety
properties, i.e.

CP sat VS A CS.

As explained in section 8.2, we can only reason about the livencss properties of a
system ifwe assume that. it jives in an environment which resolves every external
choice on which the system depends, hut accepts every internal choice of the system.
In the case of the randomised consensus protocol the only choice to he resolved by
the environment concerns the interleaving of the processors; given the opportunity
to take a step, each processor will determine internally what this step should be.
This means that we make an assumption about the probability distribution D which
determines the interleaving and for which we have to show that

[CPIIDITS ~ 1.

To show that the safety properties are satisfied we first list the predicates PSi
which are satisfied by the processors and the predicates RSj which are satisfied by
the registers.

After the first round any value read from a register mnst be the last value that
was written to it:

RSj == i.j.read(v, r) =>

r=OV

j,·write.(v,r) before i.j.read(v,r) 1\

l l--., :3 Vi, r (Vi #- V V r #- r) 1\•

i.write.(v. r) before j.wrile.(t,l, r l) before i.j.read(v, r)).

We write i.Read(v, r) to say t,hat processor i.P has consecutively read all the
registers and thus obtained the values (v, r):

,.Ilead(., r)(u) '" 3 mEN, \I j . (u rB,)m+, = i.j.r<ad.(Vj, r,).

We extend our notatiou and write 'i.Read(v,r) before a, meaning that aU the
readings i.j.read(v" r,) were taken before the action a happened. Similarly for
a before i.Read(v,r), a after i.Read(v,r) and i.Read(v,r) after a.

9.2 Proof of Correctness 111

A processor i. P can decide only if it has read the regi::;te-rs and i can_decide(v, r)
is true:

PSI, == i.decide.(v) ~

3v,r· i.decide.(v} after i.Read(v,r)

1\ Vi = V 1\ i.can_decide(n,r).

Before writing a. new value a processor must have read all the registers. It it switched
preference it must have seen all the leaders disagree with its old preference. If it
kept its own preference and advanced its roundnnmber. it cannot have seen the
leaders agree on the opposite preference. If it. kept its own preference and did not
advance its ronndnumbf>r, the]('aders did not have a common preference,

PS2i == i.wrilt',(l'.r+l):::}

:lv,,.· i.u'ri/('.(L','T'+l) after ·j.Read(v.r) 1\ -'i.ran_deC'ide(v,r)

1\ ((I'. i (' 1\ 7', = r 1\ leaders_llgree(v.v,r})

V (1', = l' 1\ r, = r 1\ -,lEuders_agree(L - v, v, ,.))

V (1', = V 1\ 1', = 1'+11\ -,31} ·/eadfTLugru(q,n,r))).

After a process has decided it cannot write any more values

PS3 j ='= ---'(i.write.(v, r) after i.decide.(w)).

Let PS, == PSI. 1\ PS2 j 1\ PS3,. By the inference rule for parallel composition,

Vi· i.P sat PSi A Cu E LJ~)

Vj ·j.R sat RSj 1\ (u E Gt)

(i/o, i.P) II (II,; j.R) sat PS,(u1 Bi) A RS,(ul C,)

.....e know that the behaviour of the protocol restricted to the alphabet or a com­
ponent mnst satisfy the same preclicate as that component. The remainder of the
proof of correctness is based on only one other proof mle, namely

P sat R
R~T

P sat T,

We first note that the predicatese are considering are such that if they hold of a
trace restricted to the alphabet of a component they also hold of the unrestricted
trace, i,e,

RS,(ul C,) <> RSj(u)

PSi(ulB,) <> PSiCU).

Thus all we need to show is t.ha.t the simple conjunction of the predicates PSi and
RSj implies validity and consistency.

9.2 Proof of Correctness 112

Validity

Recall that a consensus protocol is valid only if the decision value was the iuitial
preference of at least one process:

VS =. (i.drcide,(v) ::::} 3j· j.u.'1'ile.(v, 1) before i.decide.(l))).

From PSI, we know that at the earliest a process can decide after rouud 2, and the
decision value is always the value last written.

i.decidt,(v) :::} 3r' > 1· i.write(v,r') before i.decide.(v).

Lemma 9.2.1 states t h<'lt a process can only write a value iu a round r' above round
r > 0 if at least one process preferred that value in r.

Lemma 9.2.1 V i,j . PS, 1\ RS
J

==> (31, r' > r > O· i.ll'rit.('.(1J, r') ::::} 3j . j w6te.(v, r) before i. wri1.e.(v, r')).
o

Proof Suppose that i.P is the first processor t.o write p in a round r' which is
above r:

3i,r' > r· i.wrif.e.(v, r ') (9.1)

1\ Vj . -.(r N > r 1\ j. write.(v, rll) before i wrile.(v, r')). (9.2)

Line 9.1 and PS2 j together imply that

3 t:1, r . i. write.(11, r'l after i. flead(tJ, r) 1\ r, '2: r 1\ lwdrrs_agrH:(l- v, 1.1, t").

If the leaders do not agree on I-v alleast one leadf'r prefers p. Also since i.P has
a.lready reached round r t.he leaders must have at least. round number r, giving

3), rl/ 2: r > 0 . i.j .read(v, r") before i. write.(v. r').

By RSj the fae\. that i.P has read (1', r") from thl" jlh register and r" 2: r > 0
means that process j.P wrote these values beforehand:

3j, r" 2: r> o· j.write.(v, r") before i.write.(v, r').

Since i.P is the first. proCf~~S to write v in a round strictly above r (line 9.2) it.
follows that r" = r, i.e.

3j . j .write.(v, r) before j. write.(v, r').

o

9.2 Proof of Correctness 113

Lemma. 9.2.1 implies that if a process writes v in round r' then in every round below
r' from round I upwards at lea.<;t one process must also have written v. Thus

Vi,j· PS, 1\ RSj => VS.

Hence the protocol is valid:

CP sat VS.

To prove that the protocol i:'i consistent we use two corollaries of lemma 9.2.1.
Firstly, the contrapositive of lemma 9.2.1 implies that if all processes that complete
round r prefer the same value then all processes that complete a higher round also
prefer that value. (This cquivalellt to saying that if no processor prefers v in round
r then no processor prefer:'i l' in a round above r, which i:'i the form we use in the
corollary).

Corollar-y 9.2.2 Vi,j· PS, 1\ RS~

=> (-,3i·i.write.(L'.r)=>-,3i,r'>r·i.wnte.(v,r'). o

Secondly, lemma 9.2.1 implies tllat the first processor to write v in round r does so

before any processor can wri(.e v in a. higher round.

Cor-ollary 9.2.3 Vi, j . PS, 1\ RS)

=> (i. write.(c. r) 1\ 3 k . k. wrlte.(v, r) before i. wI·itt.{ v, r)

=> Vr' > r' i.TI\rile.(t', r) before j.write.(I), r'»). o

The protocol is consistent if CP sat CS where

CS == -.(i.decide.(v) I\j.drcide.(I-v)).

In the next lemma. we show that if a process decides v in round r + 1 then all
processes which complete round r prefer v (even if they reach r only after the fir:'it
process decided).

Lemma 9.2.4 'r:I'i,j. PS, 1\ RS}

=> (i.decide.(v) after i.Read(v, r) 1\ rj ~ r 1\ -,3 v, r' > r . i. wnte..(f, r')
=> 3j ·}.write.(1- v,r».

o

Proof The hypothesis a.nd PSI, together imply that

i.Read(v,r) 1\ r; = r 1\ v, = v 1\ i.ca1Ldccide(v,r). (9.3)

9.2 Proof of Correctness	 114

If the conclusion is false there must be a processor j.P which was the first to prefer
I-v in round r.

3) ·j.write.(l- v, 1') 1\ ..., 3 k . k. wrile.{l- u, 1') before j.write .(I-v, 1'). (9.4)

This processor could have preferred either value in round l' -1. Suppose it preferred
1 - v in round r - 1. Then line 9.3 implies

i . 1JJrite (v, 1') before i.j. read(Vj, rJ before j.wn'tc(l- v, l' - 1).

because reading (1- v, r--l) from the /h register would have prevented i.P from
deciding. Also, by PS2J and HSj ,

:3 v', T ' . j .wrile(I - I.', r- 1) before j .Head(v', T ') before j . write (1- v, 1')

1\ ·u: = v 1\ 1': = r 1\ v; = I - v 1\ 1'; = l' - 1

i.e. for j.P to proceed to round r it must read the registers after writing I-v in round
1'-1. Thqefore it must SL'e that loP prefers u in round 1'. Since by assumption j.P
is the nrst process to prefer I-1J in round l' (or higher, by corollary 9.2.3), it must
see that the leaders prefer v. But then it cannot write I-v iu round 1', contradicting
the assumption (9.4). Suppose therefore that j.P preferred v in round r-l.

3 v', T1 . j.w1itc(v, 1'-1) before j .Read(v', T') before j.w1'ite(I - v, r)

1\~=vl\~=rl\~=vl\~=r-l.

By PS2
J

it could switch to preferring I-v in round r only if it saw the leaders prefer
I-v. Then the leaders could at most have roundnumber 1'-1 since by assumption
j.P is the first process to prefer I-v in round l' (or higher, by corollary 9.2.3). But
j.P itself is already at round 1'-1 and prefers v. Thus it cannot see the leaders
prefer)-v, again contradicting the a'lSumption (9.4).

It follows that it is impossible for j.P to prefer I-v iu round T. 0

Lemma 9.2.4 and corollary 9.2.2 imply that if a processor decides v in round
l' + 1, say, then all processors prefer v in round l' and all higher rounds, By PSI;,
a processor can only decide the value it last Wrote. Cousistency follows.

Liveness

It remains to prove that every processor which is given the opportunity to take
infinitely many steps will event.ually decide. We first show that if the processors
agr~ (or the first time in round l' then they decide at most two rounds later.

Lemma 9.2.5 Vi,j' PSi 1\ HSJ

:::::> 3i· i.write.(v, 1') 1\ ...,3j. j.write.(I-v, 1')
::? ..., 3 i . (3 q . i. wril.e.(q, r + 2) V i.decide.(1- v». o

9.2 Proof of Correctness 115

Proof Suppose that the conclusion is false, i.e. that the process does get to write
a value in round ,. + 2 or decides on 1 - v. By corollary 9.2.2 the assl.lmption
..., ::J j . j.write.(1- v, r) implies that no process can write 1- v in or above round r.
Therefore the only possihle decision is v. Thus we are left with the possibility that
a processor reaches round r + 2 without deciding. Let i.write.(v, r+2) be the first
write in round r+2. We know from PS3i that i.P cannot have decided hefore this
round. So we have

3 i· i.wrile.(11, r+2) /\

...,3 k· k.wrilc.(v,r+2) before i.write.(v, r+2) /\

---,3 q . i.decidi:.(q) before i.write.(v, r +2).

Together with PS, this implies that

:::it,V,r· i.WT·itc.(v,r+2) after i.Rcad(v,r) t\

-,i.calLdecide(v,r)/\Vk'1"j, S; r+l t\" =r+1.

Expanding the la..-,.t line gives

3j.(r, > 'i /\ (rJ > ri+1 V Til -::f v)) /\ Vk 'rj, S; r+1/\ r, = r+ 1

So we are left with ::Jj . ,. :$ 1; S; 7'+1 /\ v] -::f v. But this contradicts the fact that
at and ahove round l' all processes prefer v. Hence no process ca.n write a. value in
round r +2. 0

Thus to prove that the prot.ocol terminates we only nL'€d to show that it will
eventually get to a round where all processes agree. This depends to some ext.ent on
how the processors are interleaved. An interleaving which can take account of the
state of the processors can force the protocol to continue forever, as in figure 9.2.

This strategy works only if the interleaving can take account of the processor's
decision whether or not to advance its roundnumber upon ohserving disagreement.
This is not the case if the interleaving of the processors is independent of the choice
of event by the processors. More formally we assume that the protocol runs in
an environment D such that if a, b are two events in the alphabet Bi of the i~h

processor then for all 0 :$ j < N

IC? II DIU" 1u,+. E B,Jllu 1u, = aj)

IC? II DH{" I ",+. E B,)I(" 1", = b)

Ideally we would like to prove that [CP !I D~ TS = 1 for any D which satisfies
the independence assumption. However, as in the proof of the original algorithm,
we shall be limited to a worst case argument. If we assume that the scheduling
is independent of the st.a.te of the processors the hest strategy of the scheduler to

9.2 Proof of Correctness 116

(Suppose that j.P and k.P are the only leaders in round
k.wri!e.(I, r-l), r ­ 1 and that they disagree. Suppose also that k. P
k.j .nnd.(O, r-2), reads j. R before j.P writes to it in round r ­ 1. Then
k.k. nad.(1, r -1), k.P believes itself to be the only leader. Its next step

will be a write with the same preference and an increased
roundnumber.

j.wrile.(O, r-l), Now j.P is allowed to write its r-l-round preference
j.k.nad.(l, r-l), and read thc registers. j.P observes disagreement aod
j.j.r",d.(O, r-l), may decide to stay in round r-l, but if it is forced to
j. wr~te.(O, r -1), go 00 reading it will eventually advance to round r.

j. wrife,(O, r).
j.k. r"d.(I, r -t), Now it is allowed one more reading which will lead it to
j.j.read.(O, r), believe that it. is the only leader in round r. Letting k.P
k.write.(I,r) do its wriLe for round r will r~start the procedlJre.

Figure 9.2: A non-terminating interleaving

delay termination is to choose all processes equally often. Otherwise a. subset of
the processors is going to get ahead of the others aud become leaders. The fewer
leaders l,here are t.he more likely they are to agree. We therefore suppose that the
processors run in lock;;tep.

D = Do
0; ~ a: B, -t D'fDl

where ffi denotes addition modulo .V. It can be shown (using recursion induction)
that the parallel system CP II D contains no external choice. It can therefore be
analysed. as a probability measure on t.he space of infinite traces.

With lockst.ep interlea.viug, every processor takes oue reading of the registers
and do~ one write in every N(N + 1) steps of the protocol. Let N(N + l) steps
be a cycle. Let A(n) denote the set of trac£'5 such that in the nth cycle the leaders
have reached agreement.

Aln) ~ {u 10r,p,i·i.U'ril"(",r)("I(nN(N+I)))

A ~ oj· j.writ•.(v,r)(ul(nN(N + I)))}.

The pwoability that the procCijses will eventually reach agreemen t can be ca.lculated
as

9.3 Discussion	 117

ICPIID!TS

E(ICPIIDi (A(n) IA(n-l)') glCPIiDI (AU), I AU-In).

If there is no a.greement in the (n - l)th cycle then there must be at least two
Leaders with differing preferences. Let I be the number of leaders and let k be the
nnmber of leaders whose preference is 1. The probability of agreement in the n Lh

cycle given disagreement in the (n _1)th cycle can be calculated as the probability
that at least one of the leaders prf'ferring 1 gets ahead and none of the olhers. which
is (1 - p")p'-", or vice versa.. Now

(1- p")pl-" + p.l:(1- p'-t)	 = l _ 2pl + pl-t

2 2p l/2 - 2p!

2 2pJti/2 _ 2pN.

The last step holds only if 12 210g p (l/2) but jf p 2 1/2 this is always true. This
gives us a lower bound for [CPIID](A(n) I A(n - I)C). It follows that the rcal value
of [CPIID](A(n) I A(n - 1)"), 8 say, is a strictly positive quantity. Hence

iCPIIDjTS L(I - 6)"6

I.

We can now choose p so M to maximise the lower bound for 8:

p = 2-2/ 8

giving 8 :::: 1/2. Then the expected number of cycles to reach agreemenl" 1/8, is
less than 2 and the expected Humber of steps to reach agreement is O(1l2). This
concludes our analysis

9.3 Discussion

We have used the case study of a raudomised consensus protocol to demonstrate
the applicability of the process algebra and proof rules which we developl'd in the
earlier chapters. This has been successful because the process algebra ha'i proved
expressive enough to capture the algorithm which implements the protocol, a.nd the
proof rules have been sufficieut to enable us to give a formal proof of correctness
for the safety properties of the protocol. For the liveness properties we ha.ve had
to take recourse to a slightly informal worst-case argument. It may be possible

9.3 Discu.sion 118

to give il. proof of termination which would be valid for any scheduler rather than
just the lockstep scheduler, but it would be much more complicated. However, the
worst-case argument has been sufficient to show that our formalism is capable of
addressing all the issues involved in reasoning about randomised algorithms.

The s~mantics of the original algorithm were given in terms of I/O automata
[LM87]. The proof of c.orrectness was informal, but it c.ontained essentially the
same a.rguments which we used, too. The differences are due mainly to the faet
that our algorithm is simpler. It is also faster than the original algorithm, which
has a Worst-case running time of O(2 ft

) steps, and also better than the original
algorithm combined with the weak shared coin protoc.ol described in [AR90], whicb
has an expected running time of O(n 4) steps. One has to bear in mind that this
speed-up and simplification is achieved at the cost of guaranteeing termination only
for a scheduler which cannot take advautage of the state of the processors. V\-'e feel
that the SImplification and increased efficiency justify this reasonable assumption.

Chapter 10

Discussion

10.1 Conclusions

In this thesis we have presented a mathematical formali:-;m for the spC('ification and
proof of correctness of probabilistic communicating pron:',$ses. We have defined a
proc{'.5S algebra which is based on esp. the main difference being that probabilistic
choice is substituted for non-deterministic choice. We have given a semantics in
terms of probability measures on the space of infinite tracf!S for a model which
contains probabilistic choice and all other eSP-operators except external choice and
alphabetised parallel composition. We have shown that this semantics preserves all
the algebraic laws which hold in other models of CSP.

To define the semantic-s of recursion we have used two metries on the space
of prohability mea.<;ures on infinite traces. Convergence with respect to t.he first
metric is eqnivalent to weak convergence of probability measures, and we have llsed
it to show that under ('('rtain conditions, recursive definitions containing unguarded
variables as hranches of a probabilistic choic.e are well~defined_ Convergence with
respect to the second metric implies weak convergence. The second metnc is an
nltra-metric like the ones used in other models of CSP and has allowed us to show
that any guarded recursion involving parallel or sequential composition is well~

defined.

We have given examples to show how this model enables us to reason about
the propertil?.5 of probabilistic processes, especially liveness properties such as the
asymptotic frequency of events.

To be able to reason effectively abont concurrency in general, we have defined
a semantics for a second model in terms of conditional probability measuITS. This
model contains operators for external choice and alphabetised parallel composit.ion,
but not for sequential composition, hiding or interleaving. Like the llrst model it
preserves all the laws for the operators it contains. Again, we have defined recursi\'e

10.2 Rel,ted Work 120

pracesst's by taking reconrse to two metrics.

We have given proof rules to relate the process algebra to more abstract speci­
ficatiom defined in terms of predicates upon infinite traces. We have proved each
rnle to be sound. This has enabled liS to reason about safety properties. To rea­
son ab<Jut hveness properties it is necessary to make some assumptions about the
environment of a system, namely that the environment does not block the system
and that it resolves all the external choices on which the system depends. \!lie. have
shown l.hat given such an environment, the resulting system has a well-defined se­
mantics both in the first and in the second model, which means the techniques we
used to Analyse livcness properties in the first model are also applicable to systems
specified in the second model.

We have demonstrated the usefulness of our approach by giving formal treat­
ments of' a. self-stabilising tokenring and of a randomised consensus protofol.

10.2 Related Work

There exists several formali.'>m" for the specification of probabilistic processes. rc­

flecting the varid,y offonnal methods in general. Broadly speaking. all prohabiJisti,
languagc3 define the semantics of choice and parallel composit,jon in \.crms of sums
and products of probabilities respectively. Differences arise in the treatment of ex­
ternal choice and unsynchronised parallel composition, as well as in the methods of
defining fixed point.'> and equivalences betwCf'n processes.

Glabbeek et. a!. [GSST90] present three semantic models for pees. a proba­
bilistic dialect of Milner's sees [Mi89]. The semantics of these models are based
on proba.bili:'itic labeled tra.nsition systf'ms, which are e~~entially state transition
systems with probabilities attached 1.0 each hranch. Differences between the mod­
els arise from the treatment of choice: in the 'reac.tive' model the probabilit.ies of
all transitions with the same action sum to 1, whereas in the 'generat.ive' model
the probabilities for all transitions sum to 1. The former can he nnderstood a'i a
mixture of internal and ext.ernal choice, in thf' sense that the choice of adion is
made externally but the choice of transition with a given action is made internally.
Parallel composition is deflIlf'd as lockstep interleaving: a t.ransition in <I parallel
system is labelled by a pair of actions (with the product of their individnal proba­
bilities). They can happen in either order. but both must happen before th(~ next
transition. This seems a very restridive view of parallel composition. Equivalence
between processes is established by probabilistic bisimulation (due to Larsen and
Skou [LS89]), which is an itnalog of strong hisimulation. This leads to very line
distinct.lons between processf'S; for instance it rules out the law of distributivity of
probabilistic choice over prdixing. We think that these distinctions are unnecessar­
ily strong.

Jou and Smolka [JS90] illvestigate weaker concepts of process equivalence for
the generative model. Nearest to PCSP is their concept of trace equivalence, which
means that for two proceSSei P and Q each transition path has the same probability,
whether it starts at P or at Q. However, this kind of equivalence is not a congruence,
i.e. P and Q are not necessarily interchangeable in any expression. The paper
also presents a sound and complete axiomatisation of finite serial processes in the
generative model wit.h respect to probabilistic bisimulation. The only laws that
hold for probabilistic choice are symmetry. associativity and idempoteme. As in
PCSP, every guarded recursive call has a well-defined fixed point, bound variables
can be substituted for, and the unfolding of recursive calls preserves equivalence.
There are no laws for parallel composition.

Jones and Plotkin [JP89] aim to provide a general framework for t.he semantics
of probabilistic programming languages, which they hase on evalui\tiom. These'
are functions similar to probahility measures but defined only on open sels rather
than the general Borel sets. Unlike probability measures, evaluations can pa...<;ily he
partiallY ordered and can therefore be used to construct i\ probabilistic powf'rdo­
main, £(P). The authors show that the structnre a.'lSociated with [(P) is a monad
and that recnrsive domain equations involving £(P) can be solved in a ciltf'gorical
setting. They then present the semantics of a probabilistic programming language
consisting of atomic commands, seqnential composition, if-statement.s, while-loops,
probabilistic choice and parallel composition. The latter is parametrised Oil a prob­
abilistic scheduler which decides, given a state, which process runs next. There is
no constrnct for input or external choice. Thns the expressiveness of their la,nguage
is about the same as that in the simple model which we presented in chapter 3.

Ra.o[Ra.o90] presents a prohabilistic extension to UNITY[CM88J. He introduces
probabilistic assignment, which probabilistically chooses one of a list of a finite
nnmber of possiblC' f'xpressions to assign lo a variable. The probability with which
an expression is chosen is arbitrary and cannot be made explicit. The only prob­
ahilistic property important for Rao is that in an infinite trace of executions of a
probabilistic assignment each rxpression will be chosen infinitely oftcn. He defines
the weakest precondition of the probabilistic assignment itS the one which holds of
every branch. This enahles him to extend the usual UNITY proof rnles for safety
properties to probabilistic programs. He thell defines the weakest probabill8lic pre­
condition as one which must hold of at least one branch and uses it. to develop a set
of proof rules for liveness properties, which hold with probability 1. His approach
is closest to own in that he also lJse~ infinit.e traces and const.rnds separate proof
rules for safety a.nd livenC'ss properties. Howf'ver, we think that to throwaway
any possibility of reasoning abont specific probabilities is nnnecessarily restrictive.
For instance, it means that probabilistic UNITY cannot be used to prove that the
probability of return to the origin in a random walk is I, because this is true if the
probability with which a step is maDe in either direction is 1/2, but not. ot.herwise.

10.3 Future Work 122

Also, even where it can be shown that a property is achieved witb probability 1,
it may he ~esirable to calculate something like the expected number of executions
until it is achieved, which is impossible without using explicit probabilities. Apart
from tb<l.t. differences between Rao's approach and ours reflect the general differ­
ences between UNITY and esp. For instance, the consensus protocol could be
specified in terms of probabilistic assignments rather that in terms of communica­
tions over channels, though of course control over the probabilities would be lost.
Also, ·CNITY does not allow compositional proofs for concurrent systems in the
way th<l.t CSP does.

10.3 Future Work

There are some qlle~tion~ yf't to be investigated regarding the models pre:o;ented in
this thesis, notably whether the laws and proof rules are complete, and the precise
relation of these models to othcr models of esp.

It would be nice to have a semantics for a probabilistic model which contained
the full range of CSP operators, including probabilistic choice, external choice,
general parallel composition, s('quential composition and hiding. For the reasons
given in chapter 3 it is not possible to express external choice and genera.l parallel
composition in terms of probability measurcs. and for the reasons given in chapter 7
it is not possihle to give a semantics to sequential composition and hiding in terms
of conditional prohability measure. One would therefore have to look at entirely
different semantics to the ones considered here.

There is also a nced for an entirely different prohabilistic model. in which the
probability concerns not the choice of action, but the time at which it happens.
Such a model would for instance address the probabilistic aspect.s of the Ethernet
protocoL which are left out of the formal specification pn'sented by Davics[Dav9lJ.
Work in this direction has already begun [SNH92J.

Bibliography

[AH90] J. Aspnes and M. Herlihy, Fa."t Randomized Consensus Using Shared Atern­
ary. J. Algorithms. 11 (1990), 441-461.

[AS85] B. Alpern and F.ll. Schneider, Defining Liveness, Inf. Proe. Lettcr!; 21
(1985), 181-185.

[Di79] P. BiUingslry, Probability and Measure, Wiley, 1979.

[CM88] K.M. Chandy a.nd J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

[Ch90] I. Christoff. Testing Equivalences and Fully Abstract Models for Probabilis­
tic Processes, Concur 90, Theorie- of Concurrency, Unification and Extension,
Sp,inger Verlag LNCS 458 (1990).

(Da.v9l] J. Davies, Specificaf,ioll and ProoIin Real-time Systems, Oxford University
D.Phil thesis 1991.

[D591J J. Davies, S. Schneider, Recursion Indnction [or Real-time Processes, sub­
mitted for publication.

[FeI57] W. Feller, An Inl,roductioIJ to Probability Theory and itt' Applications, vol­
ume I, Wiley, 2 edition, 1957.

[GSST90] R.J. van Glabbeek, S.A. Smolka, B. Steffen and C. Tofts, Reactive, Gen­
erative and Stratified ,\.fodels of Probabilistic Processes, IEEE Symp. on Logic
in Computer Science, Philadelphia, PA., USA, June 1990.

[Herm90] T. Herman, Probabilistic Self-Stabilization, Inr. Proe. Letters 3·) (1990),
63-67.

[Hoa8S] C.A.R. Hoare, CommuIJicating Sequenf,ial Procest'es. Prentice-Hall, 1985.

[JP89] C. Jones atld G. Plotkin, A ProbabilisUc Powerdomaln of Evaluations, Pro­
ceedings of 4th Annnal Symposium on Logic in Compnter Science, 1989.

123

10.3 Bibliogrrr~aPl?:h";y':.- 124_

[JS90J C. Jou and S.A. Smolka. Equivalences, Congruences. and Complete Ax­
iomatjzations for Probabilistic Processes, Concur 90, Theories of Concurrency,
Unifica.tion and Extf'nsion, Springer Verlag LNCS 458 (1990).

[LS89] K.G. Larsen and A. Skou, Bisimulation through Probabilistic Testing, Pro­
ceedings of 16th ACM Symp. on Principles of Programming Languages, Austin,
TX (1989).

[LM87] N.A. Lynch and M. 1-lf'rritt, Introduction to the Theory of Ncsted Tra,ns~

aclioIJs, Technical Report MITjLCSjTR-387, MIT La,boratory for Computer
Science, April 1986.

[Mi89] R. Milner, Communication and Concurrency, Prmtice-Hall, 1989.

[Pnu83J A. Pnueli, On the Extremely Fair Treatment of Probabilistic Algorithms,
Proceedings of the 15th AnnuAl Symposium on tbe TIJf'rJrY of Computing,
(1983),27S-290.

[Pu90J W. Pugh, Skip Lists.' A. Proba,bilistic AlternatJ've to Balanced Trees, Com·
munications of the ACM. June 1900, Vol. 33, 668-676.

[Rao90] J.R. Rao, Reasoning about Probabilistic Parallel Programs. submitted to
AeM Trans. on Programming Languages and Systems.

[Re88] C.M. Reed, A Uniform All1t.hcmatical Theory for Real-time Distributed
Computing, Oxford University D.Phil thesis 1988.

[Ros82] A.W. Roscoe, A Mathcma,ticaJ Theory of Communicating Processes, Ox­
ford University D.Pltil thesis 1982.

[Ros88J A.W. Roscoe, Unbounded Nondet.errninjsm in CSP, Technical Monograph
PRG-67, 27-S0, July lOSS.

[RcHS8] G.M. Reed and A.W.Roscoe, A Timed Model [or Communicating Sequen·
tial Processf'''', Proceedings of ICALP'86, Springer LNCS 226 (1986),314-323;
Theoretical Computer Science 58 (1988), 249-26l.

[Sh84J A.N. Shiryayev, Probability, Springer Verlag, 1984.

[SS901 S.A. Smolka nnd B. Steffeu. Priorily as Extremal Probability. Concur 90.
Theories of ConclJrren,y. Unification and Extension, Springer Verlag LNCS 458
(1990).

[SNH92] E.Y. S0renseu, J. Nordahl a.nd N.H. Hansen, From CSP A10deJs to Markov
Models, To appear in IEEE transactions on Software Engineering.

