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Abstract 

In this thesis, we develop a mat.hematical formalism for the specification and proof 
of correctness of probabilistic communicating processes. This formalism combines 
a notion of proba.bilistic correctness with the theory of concurrency provided by the 
language of Communicating Sequential Processes (CSP). 

We first present the semantics of a model in which processes a.re defined as 
probability measures on the space of infinite traces. The model contains definitions 
for prefixing, probabilistic choice, hiding, simple parallel composition, sequential 
composition, interleaving, relabelling and recursion. These operators are defined as 
functions (mostly transformations) of probability measures. Although the ~mantics 

of this model is very different from that of other models of esp, it has almost the 
same algebraic properties as the traces model. Examples are given which use these 
algebraic properties as well as the probabilistic properties of the processes. 

In the second part of the thpsis we present the semantic" of a model in which 
processes are defined as conditional probability measures. This enables 1jS to giv,," 
definitions for external choice and alphabetised parallel composition, as well as 
prefixing, probabilistic choice, relabelling and recursion. Again we show that this 
semantics satisfies the appropriate algebraic laws. We also present a, set of proof 
roles which provide a link between the process algebra and behavioural specifica~ 

tions. A significant case study is IIsed to demonstrate the applicability of the model 
and the proof rules. 
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Chapter 1 

Introduction 

Handomised algorithms are increasingly being used in distributed systems, for in­
stance to solve prohlems like lO,l,d- balancing !Pu90] and self-stabilisation [HermgO]. 
Not only are these algorithms often sinlpler and faster than any deterministic al­
ternative but sometil11e~ no such alternative exists, as in the case of randomiscd 
consenSllS [AH90]. This is typically so when identical components in ident.ical situ­
ations have to make different decisions for the system to progress. 

A mathematical formalism for thl' specification of systems involving randomi­
sation must be based on a notion of probabilistic correctness. For a deterministic 
algorithm the statement that it is correct in that it has or achieves a certllin prop­
erty is either true of false. Moreover, if the propert}' is to be achieved, this is 
guaranteed to happen within a finite nnmber of steps. By contrast, a randomiscd 
algorithm is correct if it has or achieves a property with probability 1. So t.here may 
be possible behaviours of the algorithm which violate the property in que~tion; only 
the probability that they will happen i.s O. Also, if the property is to be lIchieved, 
we cannot give a finite bOl1nd on when this will happen, only that it will be within 
a finite expected number of steps. 

The langnage of Commnnicating Sequential Processes (CSP) [Iloa~jJ provides 
a mathematical formalism for the specification of deterministic distribntcd systems. 
Its main advanta.ges are sl1pport for algebraic reasoning and an effeclive treatment of 
concurrency. Our aim is to constrnct a probabilistic version of CSP which combines 
these advantages with a notion of probabilistic COrrectness. 

Chapter:l of this thesis contains some measnre thoory which we will [leed to for­
malise this notion. Chapter 3 presents a small model which differs from standard 
esp in that it has a probabinstic choice operator instead of the internal choice 
operator of esp, no external choice. and a parallel composition operator only for 
processes which synchronise on every action. Proo~sses are defined as probability 
measures on the space of infinite !'races and operators as fnnetions (mostly transfor­
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matiom) of probability measures. We chose to work with infinite rather than finite 
traces because many probabilistic considerations are about asymptotic behaviours 
and thtls involve taking limits to infinity and cannot be expressed in terms of finite 
traces. Also by defining all probabilities on one infinite-dimensional space, rather 
than ou many different finite-dimensional spaces, we can use standard concepts of 
con vergence of probability mea.sur<'s which are crucial for the definition of recursion. 
as pre'3ented in chapter 4. In chapter 5 we give examples to show how to prove t.hat 
probabilistic processes have the properties that distinguish them from determinist.ic 
processes. 

Chapters 6 and 7 extend the model to include alpiJabetised parallel composi­
tion and external choice. Tbe model of chapter 7 df'fines processes as conditional 
probability me<l~ures. This is motivated by our Il/Jderstnllding of external choice in 
a probabilistic context: given that the environmf'nt has chosen a certain action, a 
process offering external choice will engage in this action with probability 1. Thns 
external choice is most naturally defined as a conditional probability and all the 
definitions given in chapter 3 can be modified to apply to conditional probabilities, 
too. Chapter 8 contains a set of proof rule:, hased on the model in d.lapter 7. W<, 
use t.hese rules as well as the th('()ry developed in the earlier chapters in chapter.g 
where we present the formal specification and proof of correctness of a randomised 
consensus protocol. The algorithm is a variation of an algorithm deviSf>d by Aspnes 
and Herlihy [AI-I90j. Our version is guaranteed to terminate only if the scheduling 
of the components of the protocol is independent of the state of the components, 
but the expected number of steps to termination is O( n 2 

), as opposed to O(2n) for 
the original algorithm. and O(rl1) for the best previouslY known algorithm. 



Chapter 2 

Preliminary Material 

2.1 Probability Theory 

This section contains definitions and results from probability theory which we will 
need later. Proofs of the results can be found in Billingsley[Bi79] or Shiryayev[Sh84] 
(or indeed in any good textbook on probability theory). 

Let n be a set of points. A O"-field :F defined on n is a family of sets on n which 
contains n and is closed uuder the formation of complements as well as finite and 
countable unions. (A field is dosed only under complementation and finite unions.) 
Members of a a-field are called mmsurable sets. The pair (0, F) constitutes a 
measurable spaCE. A probability space consists of a measurable space (O.F) and a 
probability measure P defined on :T. A probability meas'U7~ P on a field or O"-field 
:F is iI function P : :F __ IR wbich satisfies the following couditions: 

1. '1AEF· O"PA"I, 

2. P 0 = 0, P fl = I, 

3. if (A" )n:N forms a disjoiut. seqtleuce of F-sets (and, if F i8 only a field, UnA" E 
F) then 

PU.A. ~ LPA. 

The last condition is called countahle. additil,jty. If a function P ; F -4 IR satisfies 
conditions 1. and 2. and is finitely additive then it can be shown that it i~ CQuntably 
additive if and only if it is continuous in the sense that 

A. I A => P A. I P A 

meaning if (Aft ),,:N is a, sequence of sets such tha.t An +1 C An and A = nn An. then 
the probabilities P An approach P A from above. 
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To reason about a q-field it is sometimes useful to know that it is a monotonic 
class, which is a collection M of subsets of n such that if (An),,:N is a sequence of 
sets in n and A., ! A or An T A, then A E M. (An T A means that (An)n:N is 
a sequence of sets such that A..+1 :) A" and A = Un A".) lt can be shown that 
a necessary and sufficient condition for a field Fa to he a u-l1eld is that it is a 
monotonic class. 

A q-fieJd is generated by a collection of sets it it is the smallest u-field which 
contains those sets. A set A is a support of a measure P if P A = 1. 

Extension of measure 

The following theorem is important for us because it impljl."S that to prow' equality 
of two measures defined on au-field F it suffices to prove that thpy agree on a 
:<iubset of the sets in F, namely on a field Fa which generate..8 F. 

The Extension Theorem A probability measure on a field Fa ha." a unique ex­
tension to the q-field F generated by Fa. 0 

For a proof of this theorem see [Bi79J. It can also be shown that if the q-field F 
is generated by a class 'P of subsets of 0 which is dosed under finite intersectious, 
then to prove equality of two meaSUH.-'S on F it suffices to show that they agree on 
P. 

Measurable functions 

Given two measurable spaces (O,F) and (O',F'), a function j: n __ 0' is said to 
be measurable F IF' if for all sets A E F' the inverse image j-l A is an element of 
F . If (rV, F ' ) = (IR, n), ; .e. t he real line with the u-neld generated by the opeu 
intervals, then j is called a random variable. If the range of j is a finite set of 
points, f i<; called a ~~imph junction or st"mplt' mndom variable and can be uniquely 
written in the form 

f ~ L: a, lA, 
':01 

where {a, I 0 ~ i -:; n} is the r<lnge of j, A, = j-1(1;. and (4, is the indicator 
junction, defined as 

1 if 1t E A
 
fA U == { 0 otherwise.
 



2.1 Probability Theory 5 

We will need the following results about random variables, which we quote from 
[Sh84], 

Theorem 2.1.1 Any non-negative measurable function 1: n --+ R+ is the limit of 
a monotone increasing sequence of non-negative simple functions. 0 

Theorem 2.1.2 If1 and 9 are measurable functions: n _ Rand k E R then each 
of the functions 

j+k,kj,j+g,jg 

is measurable. o 

Theorem 2.1.3 The limit lim .. 1 of a convergent sequence (1.. )",N of random vari~ 

abIes is measurable (i.e. a random variable). 0 

To prove a function measurable it suffices to show that I-I A' E F for each 
A' E A' where A' generates F'. Also if 1 is measurable FIF' and l' is measurable 
F'IF" then the function 1; l' obtained by composing 1 and l' is measurable FI F" 
[B;79]. 

Transformation of measure 

Given a measure P on (n, F) and an F IF-measurable function 1 we can transform 
P into a measure P' on (n',p) by setting 

P'A " p r'A 

for any set /1 E :F'. pi is a measure since p' A is well defined for all sets A E :P and 
conntable additivity of p' follows from that of P. r is called the measure induced 
by j. 

We use transformation functions to define most of the operators in all[ language. 
Often the laws that link differeut operators foHow from the fact that different com­
binations of transformation functions are the same; obviously jf 1 ; 9 = g; 1 then 
the measure induced by 1 ; 9 is the same as the measure induced by 9 ; f. 

Linear combination of measures 

Lemma 2.1.4 If P and Q are probability measures and 0 ~ p ~ I then the 
function R : F _ [0, 1J defined by 

RA p PA+(l-p) Q A 

is also a measure. o 
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Proof Clearly R n = 1, R 0 = 0 and 0 ~ R A ~ ] for all other sets A E T. It 
remains to show that R is countably additive: for a djsjoin~ sequence (A,,),,:N of 
sets 

R(UA.)	 p P(UA.) + (I-p) Q(UA.)
 

pI:: PA.+(I-p)I::QA.
 
by coulltable additivity of P. Q 

I:: (p PA. +(I-p) QA.) 

I:: R A•. 

o 

Integration 

In connection with product rnf"asur~8 it will prove usefnl to use the notation of 
integrals. Integration of a simple function f with respf"ct to a measure P is defined 
by .Jf(a)P(da) L,u,pr'a,. 

i::=1 

The definition of the integral of an arbitrary non-negative measurable function 
f : n --+ R is based on the fact that every such function i:'i the limit of a monotonic 
increasing sequeuce of simple functions. 

J[( u}P( du) '" ,up {J ,(u)P( da) I ' "f,' a ,;mple function}. 

We will need the following simple form of a change of variable: if P' is a mcasllre 
induced by the function h : n --+ n then 

J[(a)P'(da) = Jf(h(w))P(dw). 

For insta.nce the probability of a set of traces A can be written as the integral of 
IA' Suppose that 

JIA(u)P'(du) = JIA(h(w))P(dw). 

Since 1,-IA(W) = IA(h(w)) this rnean8 that pi is an induced measure: 

P'A = JIA(u)P'(dal = Jh-'A(W)P(dw). 
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VVeak Convergence 

In chapter 4 we will construct the fixed point of a recursive equation as the limit 
of a convergent sequence of measures. The standard concept of convergence in the 
space of measures is weak convergence, which is usually defined as follows [Sh84J: 
Let 0 be a metric space under metric 6. Let:F be the a-field of subsf'ls of n 
which is generated by the open sets with respect to 6. Let (P~)~:N be a sequence of 
probability measures on (0, :F). 

Definition 2.1.5 The sequence of probability measures (P,•.) .. :N converges weakly 
to the probability measure P (notation P" ~ P) if 

hfIX)P.(dx) ~ hflx)Pldx) 

for every function f in the class 1[(0) of continuous bounded functions on n. 

Textbook exampIe~ like the law of large uumbers motivate use of weak comergence, 
but we will wait lIntil chapter 4 to give one arising from the semantics of probabilis­
tic communicating processes. The following theorem which we quote from [Sh84] 
provides us with two alternative coudit.ions which we will find marl" con"enient to 
usc tban definition 2.1.5. 

Theorem 2.1.6 The following statements are equivalent. 

1. Fr, ~ P. 

2. Jim sup p .. A ::;: P A for every closed set A. 

3.liminfPn A ~ PAforcveryopensctA. 

o 

Product Measure 

Let A x B denote the Cartesian product of two set:;: 

AxB'" j(u,"lluEAA "EBI· 

Given two probability spaccs (Ox, F x , Px ) and (Oy, Fl'. Pr) we const.ruct the 
product space (OXy,:FXY , Pxy) as follows. The ~et OXY consists of lhe pairs of 
points in flxxf!y. The a-field Fxy is generated by the mea.surablc recfl1ngles which 
are sets of the form AxE where A E:Fx and B EF~·. These sets have probability 

PxyAx B -= PxA PyE. 

0 
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This definition gives a countably additive function on the field of finite disjoint 
unions of measurable rectangles. By the extension theorem it extends uniquely to 
a measure on the a-field F xy which is generated by the measura.ble rectangles. 

For general E E F Xy this measure can be written as 

PnE = J PxE,Py(dy) 

where we adopt the notatiou E~ = {r I (x, y) E E} so that E~ represents a section 
through the set E at y, If E = .4 x B then 

E ~ {A if Y E B 
~ - 0 otherwise 

and hence P:rE, = IB(y)Px/1 so that as required 

PxrAxB = JI8(yjPxAPy(dy) = PxAPyB. 

By Fubini's theorem the order of integration is reversible, i.e. 

J PxE,Py(dy) ~ J P,E,Px(dx). 

We will use (Px x P y ) as an alternative notation for the product mea.sure. (This 
form is clearer if we distinguish measures not by snbscripts but by different upper 
case letters.) 

Conditional probability measures 

In cllapter 7 we will model dependence on an environment by defining a process as 
a conditional probability mea..,ure, 

Definition 2.1.7 A conditional probahility measure (cpm) is a function of two 
parameters, P : F x n -----+ [0,1], such that 

• for fixed yEn and varying A E F, P(A, y) is a probability mea.~ure aud 

• for fixed A E F and varying yEn, P(.4, y) is a. F-mea..'iurable random 
variable. 

o 

To give a semantics for a language in t.erms of conditional probability measures 
we also require products, trallsformations and linear combinations of conditional 
probahility measures. 
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Product of cpm's 

Let Px and P r be two cpm's and let f : n -) nand 9 : n ........ n be two measurable 
functions on traces. We define the product of Px and Py with respect to f and 9 
to be the function which, for given z, is tbe product measure of Px given f z and 
P r giveng:;. 

Lemma 2.1.8 The function P : Fn x n -) [0, I) defined for all E E :FXY and 
zEn by 

P(E,z) '" JPx(E,,Jz)Py(dy,g,) 

is it conditional probability mea.sure. o 

ProoF For fixed z, f z and 9 z are fixed, so that P(E,::) is simply the product. 
measure of Px given f z and P y given !l z. 

For fixed A E:F. Px(A.z) and Py(A,:;) are random variables. Sincef and 9 
are measurable, it follows that Px(A,f z) and Py(A,g z) are also random Yariables. 
Let J\1 be the class of sets such that for fixed E E M the function Pxt"{E, z) is a 
random variable. The class Ai: contains the measurable rectangles: 

PxdA x B, z) = Px(A,J z) Py(B,g z) 

is a product of random variables and hence itself a random variable. Any set E 
in the field generated by the measurable rectangles can be expressed as a disjoint 
union. U Ei say, of rectangles such that Pxy(E, z) = L Pxy(E" z). As a sum of 
random variables is itself a random variahle and M contains the field generated by 
the measurable rectangles. Thns it is enongh to show that M is a monotonic class 
to deduce that :Fxr <; M. Suppose that (E~ ),,,N is a sequence of sets ill M such 
that E~ 1 E. Then Pxy(E~, z) 1 Pxy(E, z) for all z . Thus Pxy(E, z) is the limit 
of a sequence of random variables and hence itself a random variable. Therefore 
EE,I.1, 0 

Transformation of cpm 

Lemma 2.1.9 Let f, !l : n -) n be two :F-measurable fnnctions. Given two cpm's 
P and Q set 

P'(A,z) '" I'M!(z) p(r' A,gz) + I('~'Jl'(z) Q(A, z). 

for all A E :F and zEn. The function pi is 1\ cpm. o 
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Proof Reca.ll that IB(z) denotes the indicator function which has value 1 if z E B 
and 0 otherwise. For fixed B and variable z this is a random variable and for fixed 
z and variable B this is a point measure. So I is a cpm. Since for fixed z the 
function pl(A,z) is either PU-1A,gz) or Q(A,z) and both P and Q are cpm's, 
P' is a probability measure for fixed z. For fixed A, P' is a sum of t.wo random 
variables arid hence itself a random variable. 0 

Sums of cpm's 

Lemma 2,1.10 Let {S.} he a partition of nand {P;} a set of cpm's. Then the 
fundion defined '</ A E F. yEn as 

P(A,y) L: [s,(V) Pi(A,v) 

is also a cpm. D 

Proof For ca,ch y there exists exactly one i such that yES;. This gives P( A, y) 
P,CA, y) ......hich is a cpm by definition of P" For fixed A, peA, y) is a sum of produets 
of random variahles which is again a random variable. 0 

We will give reference to some other standard results of probability, like the 
Borel-Cantelli lenunas and the law of large numbers, as and when they are needed. 

2.2 Notation 

In CSP jHoa85] each process is parametriscd by an alphabet, or set of actions which 
it can perform. We use a universal (non-empty, finite or countable) alphabet 1: 
instead, and wh(~re necessary, as in alphabetised parallel composition, explicitely 
restrict a process to a suhset of E. 'We usually use the letters a or e for actions. 
and B, C or D for sets of actions. 

Seqllences of actions are called tracf.,~. The following is an informal summary of 
the notation we use for traces and operations on traces. (For the formal definitions 
see [H0a.85J.) The notation is used both for finite aud infinite traces, unless otherwise 
stated. 
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o the empty trace, 
(a) the trace containing only a,
 
t ,<; concatenation of traces t and s (where t finite),
 
#t the length of a trace i (#i = 00 if t infinite),
 
tTl, n <it (n+l)lh element of a trace t (the first element is always ~),
 

i rn restriction of a trace t to its first n actions,
 
t rB restriction of a trace t to actions in the set B,
 
t 1B the number of elernents of B conta.ined in t,
 
t < u t is a proper prefix of u,
 

t",n: N a finite trace t repeated n times (to = 0),
 
i'" a finite trace t repeated infinitely many times,
 
tIn, n ~ #t i after n, i.e'. I with its first 71 steps removed.
 

By B- and Bw we denote the set of finite and infinite traces respectively made 
up of elements of B. rsually we use the letters t, s for finite traces and the letters 
u, lJ for infinite traces. 

From now on we use n to denote the set of infinite traces. We int.roduce a 

special 'unobservable' action T to encode as infinite traces with a tail (T}'" all finite 
traces after which a process may terminate. So 

Il " EW u {t(T)W 1/ E E"). 

We nse another special action, J. to mark the snccessfnl termination of a process. 
We write E,.. a."i ~horthand for L U {T} and 

I'" E" u { /, I t E ':" " .< E {T r)·~, 

We will need a restriction function which adds a tail of T'S where r produces a 
finite trace: 

,rB if z 1B = 00 
lI'Ell·z1B ~ { (d B)(T)W otherwise. 

Given a trace tEE;, let 

5(1) " {"Ill u> I} 
denote the set of infinite traces which are extensions of t. If t consists of a single 
element a we leave out the brackets and write Sea). Note that the only trace 
leading on from a T is the tail of T'S: S(ieT)) = {l(T)"'}. Also if tEl:- then S(tT) 
can be expressed as a difference of sets with T-free prefixes: 

5(/(7)) = 5(/) - U5(1(,)).
<,. 

Sets of traces with a common prefix belong to the family of cylinder ,~rts which 
are sets defined by a predicate on a finite number of dimensiom in an infinite­
dimensional space; using a sel of k distinct indices {n; 1 a < i ~ k} and a set 
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H ~ E t • a cylinder set can be ..... ritten as {u n I (un" .... U"t) E H}. i.c. the 
traces in thi, set are constrained only on the 1... tnples picked out by the index set. 

From now on let F denote the a-field gent"rated by the sets of infinite tract's 
with a common prefix. As a a-field, F is closed under the formation of finite and 
countable unions. It also contains the empty set (0 = nC 

) and is closed under finite 
and countable inter~pctions because An LJ = (.tt" U BC)". Vle u:;p thr symbol =: 
to dellote that two syntactic expressions are equivalent in that they have thr "amp 
semantlCS. 



Chapter 3 

A Model Without External
 
Choice
 

In this chapter We present the semantics for Ii small language which W(~ call PCSPo. 
The:'" syntax of PCSPo contains a subsd of t.he COl1Strods of C8P [HaaS5]. There 
is no external choice, and parallel composition is restricted to fully synchronised or 
simple parallel composition. because alphabetised parallel composition would remit 
in extf'wal choice between unsynchronised actions. Internal (or non-deterministic) 
choice has been turned into probabilistic choice by adding a subscript to indicate 
the probability with which the choice is made. Similarly interleaving now has a 
probability attached to it. 

P ,,~	 STOP I SKIP I X I a ~ P! P ,n Q I P\B I f(P) I 
P II Q I P; Q I P, III Q I ~ X • P I (X, ~ P,). 

Clause X introdllces variables from a set VAR; tbe::;e are reqnired for the treat­
ment of mutual recursion presented in chapter 4. The semantics of each variable is 
determined by a binding ..... hich maps each variablf' to an element of the space PM 
of prohability measures on (n.F). Let RNDo be the domain of all bindings. 

BNDn 2c V4R~ PM. 

The semantics of a PCSPo term P is a function of the set of free variahle> appearing 

,':;	 in P. For example. tbe semantics of a ---+ X is parametrised by p[X], thl'semantics 
of X in the current binding p. Given p Wf' can associate a X with a measure in 
PM. Thus the semantic function for terms must be of type 

PCSP, - END, ~ PM. 

RathPr than clogging our notation with an explicit symbol for t.his runction we 
overload the meaning of the denotational brackets and simply write ~PJp to denote 
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the semantics of a term P in a binding p. The semantics may be evaluated by 
associating each free variable X with its value p[Xi in the current binding. We 
write p[ Y / Xl to change the binding p by associating the variable X with a new 
measure Y: 

p[YjXIIZI ~	 Y if Z ~ X
 
p!ZI otherwise.
 

This enables us to define syntactic substitution P[Q/XJ, where all occurrences of 
the variable X are replaced by the term Q, as having semantics 

[P[Qj XI!I' "	 IPjp[[Qlpj Xl· 

Even though we need free variables to be a.ble to define mutual recursion. we will 
ultimately bp interested only in terms which represent proCc,~5es_ These terms 
contain no free variables and are therefore independent of the current binding. 
Thus when defining a process we <:an omit the binding parameter. Also it turns 
out that. up until recursion the parameter p is carried through the proof of every 
algebraic equivalence without ever changing. So for simplicity's sake we omit p in 
these proofs - they could be made rigorous simply by inserting p to the right of 
each term in denotational brackels. 

We now present the semantics of PCSPo. Let A be an arbitrary set in F. 

3.1 Atoms 

The process STOP deadlocks immediately, i.e. jt never does anything. This be­
haviour corresponds to the point measure which gives probability 1 to the trace of 
unobservable actions and probability 0 to everything else: 

if(T}"EA
\STOP!p4 "	 { ~ otherwise. 

As in C:SP we distinguish between deadlock and succes:>ful termination, which is 
marked by the special action J. Once a process has performed this adion it cannot 
do anything else (although potentially another process can take over). The process 
SKIP does nothing but terminate su<:cessfully. 

!SKIPlp A " {l if (.I)(T)" E A 
o otherwise. 
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3.2 Prefixing 

The expression a --t P denotes a process which first performs the observable action 
a and then behaves as process P. Vle lise the function prefi~fl.' which prefixe5 a trace 
with an a. t.o define the probability measure denoted by a ~ P as a transformation 
of the measure denoted by P. 

la ~ Pip A '" IPlp prefix;;' A 

where 

preji~. : f! --t n
 
VuEn prcfix.(u) = {a}IL
 

The following lemma show~ that this is a valid definition. 

Lemma 3.2.1 The function prefix" is mC3-'iurable. o 

Proof "VIt'f' :>how that the inverse image of each generating ~et i~ in F. For a 
non-empt,y sequence t E r:; the set Sit) has inverse image 

if f{) = a
prejix;;'S(I) = {~(1/1) 

otherwise. 

Also prefi;r;ln = prejix.-IS(a) U U'~4prefix4-IS(c) = n. o 

Using the above expression for the inverse image of S(t) we can write it.s prob­
ability as 

la ~ P!S(t) = {[PIS(1/1) if 10 ~ a 
o otherwise. 

So a ~ P must do a as its first step, and the probability of any further steps 
depends on P. This is analogoHs to the behaviour of a -) P in other models of 
CSP. 

3.3 Probabilistic Choice 

\\le write P pn Q for a process w!lieh behaves like P with probability p and like 
Q with probability I-p. This corresponds to the weighted average of t.he nl{'asures 
ofPandQ. 

IP,n QlpA '" p!PlpA + (l-p)!QlpA 
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It follows from lemma 2.1..1 that [P ~n Q~ is a mea.sure. Probabilistic choice 
satisfies similar laws as the choice operator in the traces model of CSP: 

Lemma 3.3.1 

ProbabiliBtic choice is idempotent a.ud commuta.tive.
 

Ll l' ,n P " p.
 

L2 l' ,n Q " Q ,_,n p.
 

A choice with probability 1 if' certainty.
 

L3 l' ,n Q " P.
 

The associative law holds if the weights attached to the choices are adjusted appro­
priately. II is expressed most neatly in the following, slightly unusual. form: 

L4 (P p/(I_q1rl Q) l-qn R =- (R q/(I_~)n Q) l_pn P. 

Prefixing distributes through cboice. 

LS a~lp,n Q) = (a~p),n (a~Q). 

o 

Proof Laws 1 to 3 follow immediately from the definitiou. The measuref; for both 
sides of law 4 expand to 

piPlA + (l-p-q)[QH + qlRjA. 

Prefixjng distribut.es through probabilistic choicp because 

I, - (1' ,n Q)J A	 IP ,n QI pccjix;:' ,1 

p [PI pnjix;:'A+(J-p) [Ql p,~jiz,-'.4 

p [a_PI A+(1-p) [a~ QI A 
I(a _1') ,n (a _ Q)I A. 

o 

Binary non-deterministic choice call be generalised to n~. Pi where the Pi are 
PCSPo terms and the P, are probabilities, that is 0 ::; p, ~ 1 and LI Pi = 1. 
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3.4 Hiding 

Hiding, or removing a set of observable actions from the traces, enables us to ab­
stract from unnecessary detail in the hehaviour of a process. The expression P\B, 
where B ~ ~, denotes a process which behaves like P without tbe actions in B. 
Using the function hideB which removes all actions in B from the traces, we define 
the semantics of P\B as a transformatiou of the measure denoted by P. The prob­
ability of a set of traces after biding is the probability of all the traces containing 
actions in B which it conld have stemmed from. So 

[P\B]p A " [PIp hid'B' A 

where 

hitleR: 0 n---jo 

V'llEn hidq~('ll) - 'lllB' 

Lemma 3.4.1 The function hitle. is measurable. o 

Proor Consider the inverse image of the generating set S(t) where t E r:;. If t 
contains any element of B then hirie'B1S(t) = 0. Otherwise suppose that I contains 
only visible actions. Then the inverse image of S(i) consists of all the infinit.e traces 
which, after hiding of B, bep;in with t. Each such trace "U must have a finit.e prefix 
s such that hidq;l (s) = t. i.e. hideB (u) 2 t if and only jf there exists an !i such that 
u > s and hideB(s) = I. 

hid'B' 5(t) (u I hid'B(u) > I)
 
U 5(s).
 

h,de/1(.)=1 

Since there are only conntably mau)' finite traces the set U S(.~) i:; at worsl a count­
able union of F-sets and hence itself in F. 

If t euds in a tail ofT's we can write S(i) = S(t'(T)) where t' ==: t r~, Since 

5(t'(r) ) 5(t') - U 5(1'(,))
 
"#'1
 

it follows that 

hid'B'5(1'(r)) ~ hid'B'5(1') - U hid'B'S(t'(,))
 
_'I'"
 

which. as a difference of measurable sets. is also measurable. Thus the (nverse image 
of every generating set is measurable. 0 
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The argument concerning traces ending in a tail of T'S can be used for any 
transformation function. So for the remaining operators we only need to prove 
measurability for sets with T- free prefixes. 

Lemma. 3.4.2 

Hiding everything produces a process which docs nothing. 

Ll PIE = STOP. 

Hiding not.hing changes nothing. 

L2 PI0 = P.
 

Hiding does not affect. a process which does nothing.
 

L3 STOPIB '" STOP.
 

Hiding first one set of actions and t.hen another is the same as hiding t,hf' union of
 
both sets.
 

L4 {PIB)I C '" PIB U C.
 

Hidden actions disa.ppear; other actions are unaffected.
 

L5 (a _ P) III '" { a ~ PIB if a <t B 
P\B otherwise. 

Hiding distributes through probabilistic choice. 

L6 (P ,n QlIll '" PIB ,n QIB. 
o 

Proof For law 1 note that hideEu = (T)'" for all u. Therefore 

hid,-l A = {fl if (T)- .E A 
~ 0 otherwise. 

So 

fPIEI A [P!hid,;;' A
 

I if (T)- E A
 
{ o otherwise
 

[STOP] A 
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Law 2 follows from the fact that hide, = id, the identity function on traces. For 
law 3 note that {r)'"' E A {:::;I (T}'"' E hides I A so that 

ISTOP\BI A ~ [STOP] Md,.' A 

I if (r)w E ,I 
= { 0 otherwise 

= [STOP! A. 

Law 4 holds because hidf'B ; hidec = hide8uc and law 5 because 

'h'd _ {hides; prefixa if a ¢ B 
prefiTIL' 1 e.S - hideB otherwise. 

The proof of the law that hiding distributes through choice is similar to t.he proof 
that prefixing distributes through choice. 0 

3.5 Simple Parallel Composition 

In simple parallel composition two processes must cooperate on every act lOU that is 
performed. We would expect the probability that the parallel system PI) Qpprform~ 

an action to be the product of the probabilities with which the componertts P and 
Q perform this action. So it Sf'f:ffiS natural to define the measure for PIIQ as a 
transformation of the product measure ([P] x [Q]), This transformation uses a 
function par which maps a pair of traces 1.0 t.he longest trace up to which they 
agree. If that is a finite trace it. adds a tail of unobservable actions. This reflects 
the fact that for the parallel system to perform an infinite trace tJ. both component 
processes must perform 'U. If the component processes set out to perform traces 
which differ after 11 steps the parallel system will deadlock at that point. 

IPIIQ!p A '= ([Plpx[Q[p) par-'A 

where 

pl1r: oxn _ fl: 

if u = v 
\l'u.vEn ·par(tt,v) = {~ur'l)CT)<.J if tJ. rn = t' in. 1\ 'II .. i- u... 

Lemma 3.5.1 The function pal' is measurable. o 

Proof Consider t,he inverse image of the set of extensions of a 7"-free trace lEE"'. 

par-' S(l) (Cu,,,) I pac(u,") > I} 
{( u, ") I (u ~ " A " > f) V 

(3,,· ur,,~ "r" A". #". A(ur")(r)w> t)} 
S(t)xS(I). 
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By the same argument which we used in lemma 3.4.1 it follows that the set of 
extensions of a trace ending in T also has a measurable inverse image. Thus paT is 
measurable. 0 

Note that if t is T-(ree then the inverse image of S(t(T)) can be written a!'l 

par-'S(t(r)) = S(t(r))xS(t(r)) U UU S(t(e))xS(t(g)) 
< 9#-' 

where e,9 E E T • So the probability of deadlock in a parallel system derives from 
the probability that the components deadlock individually or that they attempt to 
do different things. 

As in esp, parallel composition in PCSPo is not idempotent. as is shown by the 
two coin-tossing processes in parallel (example 5.3). The following lemma shows 
which law~ do hold. 

Lemma 3.5.2
 

Parallel composition is commntative and associative.
 

LI PIIQ '" QIIP­

L2 PII(QIIR) '" (PIIQ)IIR
 

A process in parallel with STOP can do nothing.
 

L3 PIISTOP '" STOP.
 

Parallel composit.ion distributes through probabilistic ,hoice.
 

L4 (P ,n QIIiR '" PIIR ,n QIIR.
 

If two parallel processes an> both prepared to perform the same a.ction, they will
 
synchronise in doing so.
 

LS (a _ PIII(a ~ Q) '" a ~ (PIIQ).
 

If two parallel processes attempt to perform different actions, they deadlock.
 

L6 a ¥ b => (a ~ P)II(b ~ Q) '" STOP.
 
o 
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Proof La.w 1 follows from the symmetry of par and f'ubini's theorem. To prove 
that parallel composition is associative we show that (id, par) ; par = (par. id) ; par: 
For all u, v, w E fl 

((id,par); pa;)(a,v,w) 

par(u, 11) if v = tV
 

{ par(a,(vln)(T)") ifvrn~wrn"v.;tw.
 

U if u = v = w 
{ (ufa)(T)" ifarn ~ vrn~wrn" (a.;t v. V v,;tw, V ,,;t w.) 

(par, id); par)(a, v, wi. 

To pro ....e Law ;3 we write 

[PIISTOPjA 

([Pj x ISTOP~) p.,.-' A
 

(IPj x [STOP!) par-' An (ri x {(r)"))
 

,inee ([Pj x [STOPj) (ri x {(T)"}) ~ 1
 
I if (T)" E A
 

{ o otherwlsf'
 

since (Tt E A "" (ri x {(T)")) <;; pa,.-' A 

[STOPj A. 

Parallel composition distributes through probabilistic choice (law 4) hecause 

[PII(Q,n R)I A 

j[p,n Qi (par-'A), [RHdz) 

p j [Pi (par-' A), [R] (dz)+ (1-1') j [Qi (par-' A), [Rj (d,) 

[p/lQ,n PIIRIA. 

Distributivity in the other direction is simply a consequence of symmetry. For law 5 
it is straight.forward to check that (prefixa, prefi:r¢) ;par = par; prrfi:ra. To prove Law 
6, note that ((prefixa, prefixc) ; par)( u, v) = par( (a) u, (c) v) = (7)"'" for aU u, v E fl. 
Thus the inverse of any set A through this transformation is n x n if A. contains 
(7}'" and empty otherwise. Hence 

[(a - PHI(b - Q)J A
 
[Pirl[QlrI if (T)" E A
 

{ [Pj0 [Qj0 olherwioe.
 

[STOPi A. 

o 
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Simple parallel composition is very restrictive because it requires processes to 
synchronise on every action. Alphabetised parallel composition would allow some 
actions to be performed internally by one process without the participation of oth 
ers. Unfortunately, this cannot be modelled. as a transformation of measure because 
if two processes each set out to perform an internal action the two actions can hap· 
pen in either order, and the pair of component trace:. beginning with these iuternnl 
actions is related to more than one trace of the parallel system. So there is no 
function from pairs of component traces to system traces which could be used to 
induce a measure for the parallel system. We will invest.igate ot.her ways of defining 
alphabetised parallel composition in chapters 6 and 7. but we cannot incorporate 
it into PCSPo. 

3.6 Sequential Composition 

We denote sequeutial composition of two processes P and Q by P; Q. Like parallel 
composition, it is defined a..,,, a tram,formation of the product measure: 

[P;Qlp A '" ([Plpx[Qlp) "q-'A 

where SEq if' a function which cuts the tail off its first argument at the v and 
concatenates it with the second argument: 

seq: OxO -. S1
 

if II v-free
 
"iu,t'ES1· scq(u,v) = {(Ufn)v ifurnv-frec /\u l1 =./. 

Lemma 3.6.1 The function seq is measurable. o 

Proof For alt tEE· 

"q-'S(I) {(u,v) I (u > I Au ,1-f,ee) V 

(3n·urnv·frce /\u,,=v/\(tlrn)v> t)} 

{(u,v) I (,,1#1 ,1-f'ee Au> t) V 

(30::; n < #t· !lIn ..I-free /\ Un = ..I 1\ (u[n)v > In. 

So if t is v·free the inver;;e image seq-1S(t) contains all the pairs of sequences 
where the first sequence begins with a prefix of t followed by ./ and the second 
sequence makes up the resl of 1. It also contains the pairs of sequences where 
the first argument contains the whole of I. (not necessarily followed by ..I), and the 
second sequence is arbitrary: 

#1-1 

"q-'S(I) = U S«tln)(,1))xS(tln)US(t)xf! jf t ,1-f'ee. 
11==0 
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If t does contain a ,I then il must stem from the st'Cond argument of Slq because 
seq removes the first J. So 

• 
seq-'S(t) - U S((/[n)(J))xS(tjn) if t rk ,I-free 1\ t" = ,l • 

.. =0 

In either case the inverse image is a finite union of measurable rectangles and thus 
a measurable set. Hence Sf;q is measurable. 

Lemma 3.6.2 

SKIP is the ideut,ity of sequential composition and STOP is the zero.
 

Ll SKIP; P =' 1'; SldP = P.
 

L2 STOP; I' =' STOP.
 

Sequential composition is a.<;sociativc. 

L3 (I'; Q) ; R =' 1'; (Q ; H).
 

It distributes through probi'lbilistic choice in both directions.
 

L4 (p,n Q); R '" (I'; H) ,n (Q; H).
 

L5 p;(Q ,n R) =' (I'; Q) ,n (I'; H).
 

Prefixing and sequential cotllposition can bC' performed in either order. 

L6(,,~P);Q "'a~(P;Q). 

Sequential composition dist.ributes through hiding. 

L7 If J" Jj then (I'; Q)IB = (pIIJ); (QIB). 

o 

Proof To prove Law 1 we first deal with ""KIP; P. 

liSMp! x [I'll scq-',1 

liSKIPI xip~) (s,q-' An {(J)(T)"} xO) 
';nce IISMp!x[p!) {(J)(T)W}XO = 1 

([SlOP! x [PI) {(J)(T)W) x A 

since "i u En· S€q( (,1)(T)"', 11) = u 

[SlOP! {(J)(T)W) Iri A 

[PI A. 
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Now consider P; SKiP. If tEE; is ';-free we have 

~j-l 

[P; SKlP! S(t) L [PI S((t[n)(J)) [SKIP! S(t/n) + [PIS(t) 
~==O 

[P! S(t) 

since if 0 S 11. < #t then [SfdP~ S( tin) = O. If ti is the first.; in l then 

•
[P:S/\IP] Sit) L [P]S«tln)(J)) [,'il\'/P!S(t/n) 

..==0 

[PIS«(tlk)(J)) [SJ(/PjS(t/k), 

We wiU prove in lemma, :1.6.3 that. no process can ever do anything visible after 

terminating. It follows that if tl; = .; then 

[P!S(t) = {[nS((Ilk)(J)) ifl/(k+l)«T)w 
o otherwise. 

Also [SkIP] S(tl k) = t if tl(k + 1) < (rJ'" and 0 otherwise. So for a trace t which 
contains,j as jts (k + 1)th (·lcment 

[PIS((tlk)(J)) is/\IP]S(t/k) = [P!S(I), 

So the second half of law 1 holds, too. 

To prove Law 2 we use the fact that {(r)""} x 11 is the support of the product 
measure and hence 

[STOP; Pi A	 = ([STOPI' [P~) ,,,q-' A
 

= ([STOp!xIP!)("q-'An{(T)W}Xn),
 

Since srq-l (rJW = {(';J (r)W} x {(rJ""} U {(T )'"'} x 11 the int.ersection is non-empty if 
and only if (r)W E A. So 

[STOP' P! ,I	 = {I if (T)W EA 
, 0 otherwise 

= [STOPI A, 

Associativity of sequential composition follows if we can show that (seq, Id): seq = 

(id, seq) ; seq. Given u, v. 'u' E n we have 

seq(se.q(u,v),w)
 

seq(u,w) ifu ';-free
 
= { .9e.q«urn)v,w) ifurn.';-free /l.u,,=';
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u if tL ../ -free 
(u rn)u if tI rn ../-free A tL" =../ A v ../-free 

{ (urn)(urm)w if tL rn ../-free A tL" = ../ A v rm ../-free A v", = ../ 
if tL ../-free 

{ (ufn)seq(v,w) if '/1 rn ../-free Au" = ../ 

seq( u, ..;eq( v, w)). 

The proofs of Laws 4 and 5 follow along the same lines as the corresponding 
distributivity laws for parallel composition. For Law 6 it is easily checked that 
(pl"f'.jiXa, id) ; seq = .'.eq; prefix4' To prove Law 7 we show that seq; hideB 
(hide8' hideB) ; Sl:q, For all 11, v E n 

(srq;hideB)(tL,r) 

hideB'/1 jf tI ../-frec 
{ hideB((utll)v) if(1!rn) ../-fr~ Au" =../" 

hidf'Jju if u ../-frce{ ((hidfBtI) rm)(hidc8t') if (hideRuHm. ../-free A (hidf.B"/1)m::../' 

(( hides, hide8) ; seq)( tI, r)" 

o 

A process which terminates can never do auything dse, Accordingly, the prob­
ability of a visi ble action happening after ../ ough t to be 7..ero, This is expressed by 
the termination conslr"ainl: let U be the set of traces which contain a vi:;ible event 
after ../, 

U '" {t(/)u I t ,f-rree Auf- (T)"). 

The following lemma asserts that all the measures representing PCSPo·processes 
assign this set probability zero. 

Lemma 3.6.3 V P E pesp,· [Pi U = o. 

Proof We use structnral induction. Clearly 

[STOPi u ~ [SKIP] U = o. 

Consider now t he operators which are transformations of measure and suppose thaI 
their arguments satisfy the constraint. A violation of the constraint can arise only jf 
the inverse image of U through the transformation function contains traces outside 
U, because only they can have non-zero probability, However, it is easily checked. 
that if f is any funtion defined so far (id, pr-ejixa , hide8, par or Mq), or one of the 
functions defined in the next two sections (interleave or a. relabelling fundion) then 

0 
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U 
cf u" ~ 

or, if f is binary, 

f [lexu e ~ [Ie. 

So all the transformation functions defined in this model presen"e the termination 
constraint. Probabilistic choice preserves the constraint because the snm of two 
null-sets is again a null-set. It will he shown iu chapter 4 that a. recursively defined 
process is the limit of a sequence of iterates which consist of some combination of 
the above functions applied to STOP a finite nnmber of times. So the: termination 
constraint i" satified by each iterate and preserved in the limit. 0 

3.7 Prioritised Interleaving 

Interleaving is similar to completely unsynchronised parallel composition in that 
the ordering of action::; by different processes is entirely arbitrary. We will give a 
definition for the interleaving operator which works because it makes an assumption 
about this ordering, nam('ly t.hat we know the 8.'iymptotic frequency of actions by 
P and Q in the interleaved traces. This can be interpreted as knowledge ahout 
the relative speed of the component process('s or, equivalently, that each process is 
scheduled some fixed proportion of t,he time. 

We writ.e P pili Q to indicate that P and Q are interleaved in such a way that at 
each step P has a chance p of perforrrUng t.he next action. More succinctly, we say 
that P and Q are interleaved wit.h P having priority p. If P deadlocks, Q proceeds 
on it.s own (irrespective of P's priorit.y) and vice versa. If both P and Q deadlock 
the whole system deadlocks. If P has priorit.y 1 t.hen Q can only do something if P 
deadlocks. This is simila.r t.o t.he notion of process priority which [SS901 model in 
the context of PCCS. The syst.em terminat.es successfully only when both P and 
Q are prepared t.o terminate. If only one process is prepared to termInate, t.hen the 
other process takes over until it, t.oo, can t.erminate. In effect. the action J is the 
only adion on which the proC('sses must. synchronise. 

The semantics of t.his operator involves a. transformation function intel"leave and 
a. coin.tossing process T(p). 

IP, III Qlp A ([PIp x [Qlp x T(p)) inlerl",,,e-' A. 

The process T(p) chom;es between a 0 and a I with probability p and I-p respec­
tivelyat. each st.ep. Once we have defined recursion we will be able to write 

T(p) " [pX.((o~x),n(l~Xm. 
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For our present purpose it suffices to know that for any T-free trace t E r.:; which 
contains k O's we have 

T(p) S(I) " p'(l-p)#'-'. 

As long as neither P nor Q have deadlocked or terminated, P is allowed to make a 
step whenever T(p) chooses Dand Q is allowed a step whenever T(p) chooses 1. The 
function interleave takes two traces of actions and interleaves them as determined 
by a trace of D's and 1's, i.e. it is of type 

flx!1xBW -fl. 

Let d E :8'" and suppose that u and v are 1"- and ..I -free up to at least d 10 and d 10 
respp-ctively. Then there exists a unique sequence of pairs of booleans and actions, 
such that the sequence of hooleans is d and the sequence of actions labelled 0 is 
u and the sequence of actions labelled 1 is v. To express this formally It>! zip be 
the function which transforms a pair of sequences into a sequence of pilirs, and 
let Jr1' 11"2 be projection functions such that for any two sequences J, , we have 
Jr1(zip(l, r) = 1 a.nd Jr2(zip(l, '")) = T. Then for u and v as above we define 

interlea1Je( u, v, d) - 71:: 

where;; E (8 x L:)W 
1\ 1l"1;: = d 
A .,(zr{O}xE) ~" 

A <,(d{l}xE) ~ v 

If 1l is T- and ..I-free only up to some up n < d 10 and Un = ./ and v is T- and ..I-free 
up t.o that point then tllf' interleaved trace follows d unt.il jnst. before Un is chosen 
and continues as the remainder of v. 

interleave(u, v, d) = (1I"2z)(t'j«1l"lz11) 

,.... here :; E (8 x L:)" 
A «, z)(O) < d 
A .,rd{O} xE)(-,) <" 
A .,rd{l}xE) < v 

If everything is as in the last case except that 1ln = 1" t.hen the interleave trace 
cannot terminate successfully. \Ve therefore define 

int,d,""e(u.",d) ~ «"j("/((,,z)ll)f{-'}')
 
where Z E (8 x L:t
 

A (" z)(O) < d
 
A <,rzr{O} XE)(T) < u
 
A .,(zr{l) xE) < v
 

The cases where t he first ... or ..I to be chosen by d stems from v are treated 
accordingly. 
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Lemma 3.7.1 The function interleave is measurable. o 

Proof Let tE1:- be T-free. Then 

interleave- l S( t)
 

U S(.-,(zip(d,t)f({O}xE)))
 

lE.'- xS(.-,(zip(d,t)f({I}xE)))
 

xS(d)
 
#1-1 

U U U 
11",,0 dEBn 

S(z,(zip(d, 1)f({O) XE))(T)) US(z,(zop(d, ')friO} xE)(J») 

xSI z,lzip( d, t) II {I} x E»)( 'I n)) 

xSI d(O» 

U S(z,lzip(d, I) I( {D) U E))(tln)) 

xS(z,(zip( d, t)f( {I} x E»)(T» U S(z,1 zip(d, I) f( {I Jx E))(J)) 

xS(d(I» 

As a countable union of sets of traces with a common prefix the inverse image of 
S(t) is a measurable set. If l ends in .; the only difference is that the component 
traces ending in T are not in the inverse image. A set of traces with a prefix that 
is not T-free can be expressed as the difference of sets with T-free prefixes and is 
therefore also measurable. Heuce the function interleave is measurable. 0 

Using the above expre.ssion for interleat'e-1S(t) we can give an explicit exprC9­
sion for its probability. Each term in the nnion over all d E 18#1 has probability 

P'"(l-p )'"IP!S(z,(zip( d, t) I( {OJ x E»)) IQIS(z,lzip( d, I) I({I} x E)))(3.1) 

Similarly for the other terms. Note that p = 1 reduces the sum over all these terms 
10 

#1-1 

IP!S(t) + L IPIS((tfn)(J»)US((Iln)(T» IQIS(tln). 
11",,0 

So, a.c; mentioned earlier. if P has priority 1 then Q can only do something jf P 
deadlocks or termiuates. Interleaving satisfies the following laws: 

Lemma 3.7.2
 

Interleaving is commutative, associative and distributes through choice.
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LI P, III Q =" Q '-. III P. 

L2 (P ,n Q), III R =" (P ,III R) ,n (Q, III R). 

L3 (P ,10-0 III Q) " III R =" (R ,1,-.111 Qj H III P. 

The process SKIP leaves the remaining component to run on its OWn. 

L4 SKIP, III P '" P (even ;[ p ~ 1'). 

L5 (a~P),1I1 (b~ Q) '" (a~(P,111 (b~ Q)),n (b~(a~P),111 Q))). 

o 

Proof Commuta.tivity LS obvious, and distrLbutivity through choice can be proved 
in the same way iL'l the corresponding law for parallel composition. 

Associativity can be proved by induction. The base cases are the probabilities 
of SO, S(T) and S(/). Assuming that the law holds for any S(t) where t E r:; it 
can be shown to hold for S«(a)l) by expanding the inverse image of S((II)t) twice 
using formula 3.1 and regrouping the resulting term.,. 

For law 4 note that VuE ,11, dEB'"' . inlerleave{ (,/) (T)"', it, d) = u. Also the 
product measure (ISKIPI x [PI x T(p)j h., ,upport {(-I) (T)"} X (I X (I. 1herefore 

[SKIP, III PI A
 
(ISKIPI x [PI x T(p)) (;n!c"/ca,,-' An {(-1)(T)"} x (I x (I)
 

~ (ISKIPi x [PlxT(p)){(-1)(T)"}xAxf)
 

[Pi A.
 

For law 5 it is easy to check the following two identities; 

(prefixa, id, prefiX{)); interleave inLerleave ; prefix", 

(id, prefixb, prefix]); inte.rleal!e interleave; prefixb. 

Also, it follows from the recursive definition of T(p) and law 1 of thc recursion laws 
(4.2.9) that 

T(p) A ~ p T(p) prcfix;' A + (l-p) T(p) I,re]ix,-'A. 
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Using these facts we can write 

I(a ~ P) ,III (0 ~ QIJA 
p (I PI x 10 ~ QI x T(p)) (prefix:' , ,d, p"'fi",-')( ,nlerlwve-IA) 

+ (J - p) (Ia ~ PJ x 1QI x T(p)) (,d, p"'fix,-" prefi,,-I)( ,nterleave-I A) 

p (IPI x 10 ~ QJ x T(p)) ,nl"lea"e-'(p"'fix:' A) 

+ (l-p) (Ia ~ PlxIQ!xT(p)),nl"leave-'(p"'fix,'A)
 

piP, III (0 ~ Q)! p,·rfix.-' A
 

+ (I-p) I(a ~ P) r III QI P"fix,-'A
 

[(a~(P, III (o~ Q)) ,n(o~«a~ PI ,III Q)))! A.
 

o 

3.8 Relabelling 

Let / : E~ _ r~ be a function which relabels visible events but does not affect.,.. or 
./, 

a=T ¢:} f(a)===T 
a=./ <> /(a)=.f. 

Lift / to sequences: 

VaEfl ViEN·/(v), =/(v,). 

Then f can be used to define a probability measure 

l!(P)!p A = IPlp /-1 A. 

Lemma 3.8.1 The function / is measurable. o 

Proof The function / applied to a trace does not affect the length of the trace. 
Thus the inverse ima.ge /-1 S(i) is of the form U~ S(5) where #5 = #t and /(5) = I.. 
This is a measurable set. 0 

Rdabelling sat.isfies the following laws: 

Lemma 3.8.2
 

A process which does nothing remains unchanged by relabelling.
 

L1 !(STOP) " STOP. 
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R.elabelling a process first by one function and then another is the same as relabelling 
a process with the combined relabelling function. 

L2 f(g(P)) -= (g ;f)P. 

Relabelling distributes through the following operators: 

L3 f(a ~ P) -= f(a) ~ f(P).
 

L4 f(P,n QJ " f(P) ,n f(Q)·
 

L5 f(P II Q) '= f(P) IIf(Q) iff is I-I.
 

L6 f(P; Q) '= f(P) ;I(Q).
 

L7 f(P, III Q) " f(P), iii f(Q)· 
o 

Proof Law 1 holds because 

~f(STOP)D A ~ [STOPll u-' An {(T)W}) ~ [STOPH A. 

Law 2 is obvious. Law ;j holds because prf.fi;x~ ; / = f ; p1'tjiX!(a)_ Law 4 follows 
becall;';e 

I!(p,n Q)DA ~ p~Plr'A+(I--p)[Qllr'A ~ I!(p),n J(Q)JA. 

Laws 5 to 7 hold because 

p(tr; / (J.J); par if J is 1-1 

seq :1 (J.f); srq since(a=,/ ¢} !(a)=,J) 

inter/eavE; f U,J, !'d): interleave. 

o 



Chapter 4 

Recursion 

In this chapter we introduce operators for single aud mutual recursion in PCSPo. 
The semantics of a recursi ....e definition relies on the fact that the sequence of in­
creasingly many unfoldiugs of the recursion converges. In the first section of this 
chapter we define weak com'crgence in the space PM of probability measures on 
(O,:F) and show that a stronger concept of convergence would be unsuitable. In 
other models of CSP as well as other languages convergence is defined either with 
respect to a partial order (as in [HoaS5l and [JPS9j) or with respect to a metric (as 
in [ReR88] and [OS91]). In both cases a fixed point theorem exists which yields a 
sufficient condition for the validity of a recursive definition which is easy to check. 

A partial order on prohability measures can easily be defined if the underlying 
space is ordered. For instance, given two measures P, Q on (IR, R) we could define 
P to be below Q if V I : IR· P( -00, x J :::; Q( -00, :c]. However, the space of infinite 
sequences of actions is not ordered in a way which would have an intuitive appeaL 
[JP89] solve the problem by basing the semantics of their probabilistic language on 
evaluations rather than measures. Evaluations are like measures, but are defined 
only on a restricted class of sets and need not have total mass 1. One evaluation is 
defined to be below another if the "probabilities" assigned by the former are always 
less than those assigned by the latter. However, as the authors remark, it is more 
natural to use measures than evaluations. This is what we will do. 

In the second section of this chapter we will define a metric and show that 
con vergence respect to this metric is the same as weak convergence. This will enable 
us to take (almost) the standard approach towards establishing a sufficient condition 
{or the validity of single recursion. In the third section we extend this approach to 
mutua.l recursion. In the last section we establish proof rules for recursion induction. 
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4.1 Weak Convergence 

To define weak convergence in the spa.ce PM in the sense of definition 2.1.5 we use 
a metric 6 on sequences which depends on the length of the longest prefix up to 
which they agree: 

Vu,vEll· o(u,v) ~ mjn{T·lurn~vrnl· 

The open halls in this space a.re the sets with fixed prefixes. Taking finite a.nd 
countable unions as well as finite intersections of these sets yields the cylinder sets 
as open sets which, as required, are the generating sets of T. They are a.ctually 
e1open, because the complement of a cylinder set is also a cylinderset. Therefore it 
follows from theorem 2.1.6 that a sequence (P")"'N of measures in PM converges 
weakly to a measure P only jf for all cylinder sets A 

lim sup P"A = lim inf PnA = Jim P"A = P A. 

To see why a concept stronger than weak convergence would be unsuitable con­
sider Il X • (Z -+ X. From our understanding of standard CSP we expect this to 
denote the process which performs infinitely many a's. In the probahili~tic model 
this is the poin t measure 

P A _ {I if (n)" EA 
- 0 otherwisc. 

We also expect Ii. X. II - X to he the limit of the sequence (P,,) where tht> process 
Pn performs n a's aud then stops: 

P A ~ {l if (n)'(r)" EA 
n 0 otherwise. 

The sequence {Pn } converges on all sets with fixed prefixes: 

r P _ if t < (n)"S( ) {I
l~n n t - 0 otherwise. 

However, it does not converge on all A E :T. Consider the probabilities assigned by 
the P" to the singleton set which contains just the infinite seqnence of a·s. Writing 
{(a)'"'} = ntS(a)t and using the fact that Vk > n' P"S(a)t = 0 we have 

li:n P, (n,S(n)') ~ O. 

Not only is this different from P{ {a)W} 1 but it also means that the pointwise limit 
of the sequence of P,,'s assigns 0 to all sets in T and thus fails to be a measure at 
all. By contrast, if we use weak convergence then because {(a)W) is a closed set alt 
that is required according to theorem 2.1.6 is that 

lim sup p. {(n)") <; P {(n)") 

which is true. 
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4.2 Single Recursion 

Let P be a term possibly containing the free variable X. We write p X _ P to 
denote a process that behaves as P with X representing a recursive invocation of 
the process. 

To give a. semantics to this expression first consider the semantics of P with a 
binding p. U we regard p[X~ as being variable, [Pip becomes a function whose 
argument is the measure to he bound to X: 

Definition 4.2.1 If P is a PCSPo term possibly containing the free variable X 
then 

MIX,Plp = ), YIPlp[Y/X). 

o 

Any free ~'ariables other than X are bound by p as usual. We can now give the 
semantics of the recursion operator: 

[pX. P]p == the unique fixed. point of the mapping M(X, P)p. 

Not all fixed points are unique. For example, every measure is a fixed point of the 
mapping M(X, X)p, corresponding to the recursion p X -X. The rest of this section 
serves to estahlish conditions for the existence and uniqueness of fix-ed points, based. 
on the following theorem: 

The Banach Fixed Point Theorem If (M, d) is a complete metric space and 
F : M ....... M is a contraction map, then F has a unique fixed point jix(F). Fur­
thermore, for all S in M, jix(F) = limll~C>:l F"(S). 0 

For a proof of this theorem see for instance [Su75]. 

There are two candidates for a suitable metric for PM. The first one takes the 
weighted sums of all the differences in the probabilities given by the measures P 
and Q to sets with increasingly longer T-free prefixes: 

~ 1
 
dIP, Q) = L 2" L IP Sit) - QS(t)l·
 

n=l tEEn 

It is easily checked that this defines a metric. Note that VP, Q. d(P, Q) S; 2. The 
secona metric is based on the length of the longest r-free traces up to which P and 
Q agree in probability: 

d'(P, Q) = inf {Z-"IVt n:"· PS(t) = QS(t)}. 
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(For both metrics we could have included traces ending in T in the definition. 
This would have heen topologically equivalent since the probability of any set of 
traces with a prefix ending in T is completely determined by the probabilities of the 
sets of traces with T-free prefixes. The definition which involves only T-free traces 
considerably simplifies the proof of clanse 5 (concerning a Lipschitz condition (or 
parallel composition) of lemma 4.2.5 but the other definition would enable liS to 
prove a similar clause for sequeutial compositiou. However, since this proof would 
involve two pages of rather unpleasant algebra and the clause is of minor importance, 
we have chosen to use the simpler definition.) 

In the following we will show (lemma 4.2.2) that convergence in d is equivalent 
to weak can vergence. Convergence in d' implies convergence in d but not vice versa 
(lemma 4.2.3). This means lhat d admits a wider variety of recursive definitions. 
For example, we wilt be able to deduce (from lemmas 4.2.5 and 4.2.7) thaI the term 
(a _ X) pn X corresponds to a contraction map with respect to d but not with 
respect to d'. Therefore we nc-ed to use d. On the other hand, some expressions, 
like a _ (XIiXlIX), which we would expect to be well-defined recursions, are not d­
contractions. However. they arc d'-contractions which together with lemma 4.2.3 is 
snfficient to assert that a sequence of iterates of this map is also a Cauch)" sequence 
with respect to d. So we also need d'. 

Informally, the difference between the two metrics lies iu the way they regard 
probabilistic choice. Take for instance the processes 

P ­ [a _ STOP~ 

Q ~ [( a ~ STOP) ,n STOPI 
R _ ISTOP~. 

The metric d considers P and Q to be nearer to each other than P and R: 

d(P,Q) (1-p)/2 

d(P,R) ~ 1/2. 

The metric d' classes Q and R as equany far apart from P: 

d'(P, Q) ~ 1 

d'(P,R) ~ 1. 

Lemma 4.2.2 Convergence in d is equivalent. to weak convergence. o 

Proof A sequence of probability measures (PllkN converges in d if and only if it 
converges on all sets with fixed prefixes. 

lim. d(P., P) ~ 0 .. '<ItEl:~ . lim. p.S(t) ~ P S(t). 
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Since these sets are cylindersets, convergence on all cylindersets implies convergence 
in d. 

For the reverse implication we use the fact that every cylinderset can be written 
as a countable disjoint union of sets with fixed prefixes. So for any cylinderset A 
we can write A =UoS; where Vi· S, E {S(t) I tEI::+} and i=fj =} s,nS, =0. 
Therefore 

lim.. P~A lim" P" U,S; = lim" E, PnS, = E; P Sj 
PA. 

o 

Lemma 4.2.3 Convergence in dl implies convergence in d. o 

Proof We show that a Cauchy sequence with respect to d' is also a Cauchy se­
quence with respect to d. First note that V P, Q. d(P, Q) s: 2dl (P, Q) because 

d'(P.Q)=!- '* 'VIEE"·PS(ll=QS(I)
2" 

which means all terms in d(P, Q) involving traces of length Jess than n+1 are zero 
and 

~ ~ 1 l
d(P,Q) = 2 -..E, 2' 

1 ,E IP 5(1) - Q 5(111 < "- 2- ~ 2l: 2"
.I:=n+l 

If (P.. )",N is a d'-Cauchy sequence then 

Vl>O,3N,Vm,n>N· d'(Pn,Pm )<4t: 
which implies d(Pn,Pm ) < t:. So (Pn)",N is also a d-Cauchy sequence. o 

Theorem 4.2.4 The space PM is complete in the metric d. o 

Proof A metric space is complete if every Cauchy seqnence converges. Let (P" ).. ,N 

be a Cauchy sequence in PM, that is 

V,>O,3N,Vn,m>N· d(P.,Pml<<. 

If this holds, then V1/., m > IV the difference in probabilities assigned by p .. and 
Pm to any set S(I) with l of length k can be at most 2.l:t:. Since 2"( can be 
made arbitrarily small, (P"SU)kN is a Cauchy seqnence in R. So we can define 
a function Q : :F -Jo [0, I] which assigns to each S(t) the limit lim" p .. S(t) and 
is finitely additive. Then Q is a probability measure on the field of all cylinder 
sets. By the extension theorem, there exists a unique probability measure P on the 
a-field:F which is generated by the cylindersets, snch that P agrees with Q on all 
cylindersets. But then P is the limit of the Canchy sequence (Pn),,:N. Hence PM 
is d·complete. 0 
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Now we need to investigate which PCSPo terms repre:lent contraction maps. A 
fnnction l' ; PM _ PM satisfies a Lipschitz condition with constant k if 

IIX, Y E PM· d(F X,F Y) <: k d(X, Y). 

Let r(F) denote the smallest such k; 

rtF) ;= in[{kIIlX,YEPM· d(FX,F Y) <: kd(X,Y)}. 

The function F is a contraction map if r(1') < 1, non-expanding if d1') = 1 and 
cxpanding if r( F) > 1. 

In other models of CSP, prefixing is a contraction map <Ind all other operators 
except the hiding operators arc non-expanding. This is sufficient to turn the com­
position of any opera.tor with the prefixing operator into a contraction map because 
the composition of two functions corresponds to the multiplication of their Lipschitz 
conditions: for any measures X, Y 

d(F(G X},F(G Y))	 <: rtF) dIG X, G Y)
 

<: "(F) "(G) d(X, Y)
 
<: d(X, Y) ;fc(F) r(G) < I.
 

In the probabilistic model, parallel composition can actually expand the distance 
between measures, as the following example may illustrate; 

Consider the parallel composition of a. proce.'lS with itself, that if! let l' == 
M(X, XIIX)p. Let 

P ;= [0 ~ STOPi 

Q ;= I( 0 ~ STOP) ,n STOPI· 

Then 

FP [XIIXlp[P/X] [0 ~ STOPl 

FQ IXIIXlp[Q/Xj [(" ~ STOP) "n STOP~ 

and d( P, Q) = (l-p)/2 whe,eas d(F P, F Q) = (1- p')/2. So 

d(F P,F Q) ~ (l+p) d(P, Q). 

i.e. if p is large p<lrallel composition almost doubles the distance between P and Q. 
However, the fact that a function l' is an expansion map does not matter as 

long as r(1') is bOllnded and can be compensated for by a contraction map G, such 
that r( F) r( G) < 1. The following theorem establishes such bounds. 
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Lemma 4.2.5 Let P, Q be terms possibly involving the term variable Z and let 
F and G be the corresponding semantic functions, that is let 

F " M(Z,P)p 

G " M(Z,Q)p. 

Consider a semantic function H such that 

L H is constant w.r.t. p[Z]' Then r(H)~..: O. 

2. H=M(Z,Z)p. Thenr(H)=1. 

3. H = M(Z, a ~ Pll" Then r(H) ~ 1/2 ,(F). 

4. H = ,\f(Z, P ,n (J)p. Then dH) = p rtF) + (1-1') r(G). 

5.	 H =M(Z,PIIQ)p. Then r(H) 5 r(F)+r(G). 
o 

Proof Let X. Y be probability measures. If lJ is constant then 

d(HX,H Y) = O. 

If H is the identity function then 

d(H X. H Y) = d(X, Y). 

For the third case remember that for l E 1:", n > 0 

p"lix.-' S(t) = {S(t/l) if," = ao otherwise. 

Therefore 

dlH X,H Y) d([a ~ P!p[X/Z],[a ~ I'jp[l'/ZII 
~ II: 2" I: IF X pre/ix;'S(t) - F Y prejix;'S(t)1 

""'\ tEE" 

~ 1
I: ?" I: IF X 5(1/1) - F Y S(I/Ill 
,,"'I ~ tf1err.-1 

/0"'0 

~ _1_ " IF X 5(,) - F Y S(s)[ 
L.J 2m+1 L.J 

m=O 6E:£;m 

~ d(FX,Fy). 
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For the last step we could disregard m = 0 because s E EO {:} 8 = () and F X SO = 

F Y SO = O. For an expression with probabilistic choice tbe metric dis 

d(HX,H y) ~ fl. L IpFX S(I)+(1-p)GX S(I) 
71=1 2 IEEn 

-pFY S(t)-(I-p)G Y S(t)1 

$ p d(FX,F Y)+(l-p) d(GX,GY). 

To show that parallel composition has Lipschitz condition at most the sum of the 
Lipschitz conditions of its components is slightly more involved. Note that for a T­

free trace t the inverse image pa7·- 1S(t) is simply S(t)xS(t). So if H is t,hf'~emantjc 

function corresponding to the parallel composition PII Q of the PCSPo-terms P and 
Q we get 

00 1 
d(H X,H y) ~ L-;; L IFXSIt) GXS(I)-FYS(t) GYS(t)l·

2"=1 IEr: n 

The terms in this summation are of the form la,bI - uJ b2 1 where at. aJ' b, and b2 

are probabilities. Writing 

albl - a2 b2 = '2I (al - G2)(bl + b2) + 2I (at + a2)(bl - b·l ) 

we can derive the inequality 

1
la,b, - a,b,1	 " '21 la, - a,l(b, + b,) + (a, + a,)lb, - 1>,11 

$ la, - a,1 + Ib, - b,l· (4.1) 

The last step follows because bl + b1 ~ 2 and at + a2 ~ 2. Using this inequality we 
can split d(H X. H Y) into two sums, one involving only terms in F and the other 
only involving terms in G. This leads to 

d(HX,HY) 

< f ~ L	 (IF X Set) - F Y' S(tll + IG X S(I) + G Y S(tlll
2,,=1 lEE" 

$ d(FX,Fy)+d(GX,GYl 

$ reF) d(X, Y)+r(G) d(X, Y). 

So r(H) < reF) + ,·(Gj. 
o 
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Lemma 4.2.5 provides a simple rule to determine whether a PCSPo-term is a 
contraction map w.r.t. d. It shows that, unlike in other metrically based CSP 
models, ungua.rded recursion may sometimes be well-defined in the probabilistic 
model. For example, 

Ir«a ~ (XIiSTOP)) ,n(XIlX)) < P2(1 +0)+(1-p)2 

< 1
. 
If p > 3'

2 

However, some expressions, like a ~ (X II XliX), which we would expect to provide 
well-defined recursions, are not contraction maps with respect to d, The next lemma 
shows that all guarded recursions are contraction maps with resped. to d'. Thus 
the fixed-point theorem applied to (PM, it) together with lemma 4.2.3 ensure that 
any guarded recursion is well-defined. 

The metric d' is analogous to the metrics which have been llsed for the nn­
timed and timed models of CSP (for a summary d. [Re88]) in that it depends 
solely OIl the number of steps up to which the behaviour of two processes is in­
distinguishable. Not surprisingly it is also an an ultra-metric (i.e. V X, r, Z E 
PM· d'(X, Y)::S: max (d'(X, V), d/(Y,Z))). In the non-probahilistic models a 
function is a contraction map if and only if it increa.5es the number of steps U[1 

to which the behaviour of two processes is indistinguishable. This is also true of 
functions which are d'-contractions. We therefore adopt the standard terminology 
for such functions ([Ros82], [Hoa85]): 

Definition 4.2.6 Let P be a PCSPo-term possibly involving a free variable Z. We 
say that P is constructive if M(Z, P)p is a d'-contraction, and non-desf.ruciive if 
M(Z, P)p is non-expanding with respect to d'. 0 

So in a probabilistic context a function is constructive if and only if it. increases the 
length of the traces up to which two processes agree in probability: 

Pi, co",tmctive ..." d'(IPlp[X/Z],IPJp[Y/ZI) < d'(X. Y) 

..." (VtEl:" . X Sri) = Y Sri) 

"" 'I s E l:"+1 ·IPJp[X / Z] 5(.,) = [Plp[ Y / Z] 5(8)). 

Similarly for non-destructive terms. 
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Lemma 4.2.7 

1. STOP and SKIP are constructive. 

2. The free variablc X is non-destructive. 

3. a -+ P i3 constructive if P is non~dest.ructive. 

4. p,n Q, P II Q and P; Q are cOllstructi ve if P and Q are constructiR 

o 

Proof Let X, Y be two measures and suppose that "It E En. X S(I.) = Y 5(1). 
Let .... E EIL+I. Clallsc31 and 2 follow directly. Clause 3 follows bccause prefix;;18(s) 
gives a set with a fixed prefix of length n: 

{ ~Plp[X / Z] .1'(,/1) if.so=a[a ~ Pjp[X /Z] .1'(,,) 
otherwise 

{ ~Plp[Y /Z] .1'(,/1) ifso=a 

otherwise 

since s/l E ~" 

[a ~ Plp[Y/ZjS(s), 

Let sEEn. Probahilistic choice is non-destructive becausc it does not affect the 
Sis), 

[p,n Qip[X/Z]S(s) ~ pIPlp[X/ZIS(s) + (l-p)lQlp[X/Z]S(s) 

p[pJp[ Y/ Z] .1'(,) + (1- p)[Qlp[ Y / Z] Sis) 
[P ,n Qlp[Y/ZJS(s), 

For parallel composition recall that d l only compares T-free ,~. For these 

[PIIQlp[XjZ]S(s) ~ [Plp[X/ZjS(,) [QJp[X/ZJS(s) 
~ [Plp!Y/Z]S(,) IQ]p[Y/Z] .1'(,) 

= /PIIQlp[Y/Z]S(s). 

For the proof for sequential composition assume that. s ./~ and T-free. Then 

IP; Qlp[X /Z]S(s) 
.-,
I: [Plp[X / Z! S(sfk(J)) IQlp[X / Z] S(,/k) + [Plp[X / Z] Sis) 
h"O .-,
I: [Plp[ Y / Z] S(d k(~)) [Qlp[ Y / Z] S(s/k) + [Plp[Y / Z] SCsi ,., 
[P; Qlp[Y /ZJ .1'(,). 

Similarly for traces ending in ,J. o 
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We combine lemmas 4.2.5 and 4.2.7 to characterise a class of recursive expres­
sions which are well-defined. 

Theorem 4.2.8 Suppose that P is a PCSPo expression possibly containing the 
free varia.ble X. If r(M(X, P)p) < 1 or if P is constructive with respect to X then 
the semantics 

1"X'Plp 

is well defined. for all bindings p. o 

For weU·defined Il X • P the laws li$ted below apply. The first two, concerning 
the unfolding of recursion and the changing of bound variables, are completely 
standard and follow directly from the semantics. The la.st one is particnlar to the 
probabilistic model and follows from t.he last theorem. 
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Lemma 4.2.9 

Ll ~X.P =' P[I'X.P/Xj. 

L2 If Y is not free in P then Jj X • P ::::::: Jj Y • P. 

L3 IfM(X,P)p is acontractionmapw.r.t. dthenJjX.(P"n X) ~X.P. 

o 

Law 1 justifies the use of recursive equations as process definitions. Since P _ 
Q[P/X] if and only if P == 11X. Q we write P = Q[P/X] as an alternative to 
p = 11 X • Q. SO for example P = a _ P and P :3. Jj X • a _ X are equivalent 
definitions. The e<]uational definitiou is more cancIs£', especially in the case of 
mutual recursion. 

4.3 Mutual Recursion 

To give a semantics to mutual recursion we closely follow the approach which [DS91] 
presented for timed CSP. \Ve use the same syntax and translate the semantics frorn 
the domain of sets of timed traces to the domain of probabMtt)' measures. 

A term P may be ddined by a v£'ctor of mntually recursive equations with an 
initial index j E I to indicate the. starting point of the recursion: 

P "" (Xi ~ Pi), i E l. 

Each term P, may contain calls to any of the variables Xl" The index set I need 
not be finite. 

As an example, consider the process-algebra representation of a random walk 
on the natural numbers: tbe walk starts off at the origin: 

CT ~ CTo· 

At the origin it either goes up or it stays at the origin. At any other point it either 
goes up or down. Any alt.ernative is chosen with probability 1/2. 

around _ eT In up _ CTCTe o 1, 
CTo dOll.'n - CTn_1 in up - CTn+1 Jl > o. 

The semantic domain required to model a solution for a vector of mutnally 
recursive equations is PM'; t.his is a product space with one copy of the model 
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PM for each i E I. For any I, this domain is a complete metric space, with the 
following metric on vectors. 

d(V,IV) =0 ,up {d(V;,W,lliEI}. 

To construct a semantic function for vectors of terms, we extend the use of bindings 
to include mappings from vectors of variables to vectors of processes. We overload 
the mapping notation (definition 4.2.1) with 

Definition 4.3.1 If P a vector of PCSPo terms, and X is a vector of variables 
indexed by the set I, then 

M(X,P)p =0 >.Y·IPJp[YjXj. 

is the mapping corresponding to the ~emantics of P as a function of the processes 
bound to X. 0 

Definition 4.3.2 If P is a vector of PCSPo terms, then 

[(X, = P;);Ip =0 Sj where S ;, a fixed po;nt of M(X, Pip. 

o 

This semantics is well-defined if all fixed points of the mapping Af( X, P)p agree 
on the j component, which is trivia.lly the case if M(X, P)p has only one fixed point. 
For this to be true, jt is sufficient that every Pi be a contraction mapping for every 
Xl with respect to d, 3-'l this turns P into a coutraction mappiug for X with respect 
to d. It is also sufficient if every P, is constructive for every X)l as this turns Pinto 
a contraction mapping for X with respect to d!, which implies convergence with 
respect to d. [DS91] show that this condition can be weakened in the following way. 

A partial ordering -< on a set. I is a well-ordering if and only if there is no infinite 
strictly descending sequence (S,)"N slIch that 'if i : N. 5'+1 -< 5,. 

Definition 4.3.3 If -< is a partial ordering on I. and i is an element of I, then the 
initial segment ofi in ( l. -<) is defined by seg( i) == {j: I I j -< i}. 0 

Definition 4.3.4 A vector of terms P is constructive for a vector of variables X 
if there is a well-ordering -< of the indexing set I such that 

vj. i : [ . j 1. seg( i) :::} P, is constructive for Xj 

Vj, i : [. j E seg(i) :::} Pi is non-destructive for Xj. 

o 
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Any mutual recursion in which the vector of terms is constructive for the fe-ctor of 
\'ariables has a well-defiued semantics. 

Theorem 4.3.5 (Unique Fixed Point Theorem) If a vector of terms P is con­
structive for the vector of variables X, then the mapping M(X, P)p has a unique 
fixed point in Ph/I. 0 

The proof of tbis theorem is giveu in [Dav91]. From it we deduce the coroiJary: 

Corollary 4.3.6 If a vector of terms P is constructive for vector of variables X, 
then the recursion I' X. P is well-defined. 0 

4.4 Recursion Induction 

The bare-hands approach to proving that a recursively defined process P ha:;; a 
property R invol ves three proof obligations: 

1.	 R is a satisfiable predicate (that is 3 p. R(P)). 

2.	 R is continuons
 
(so if (P,) is.li convergent sequence then Vi· R(P;):;. R(lim P;)),
 

3.	 There exists a convergent sequence (Pi) such that P, ~ P and Vl·R(P i ). 

The theory of recursion inductiou, as presented by [RosS2J and extended to timed 
CSP by [Re8S] and [DS9lj, simplifies these obligations by cstablishing 

* a criterion for the continuity of a predicate which is easily checked, 

* an inference rule which reduce~ the third obligation to one step. 

We apply this approach to the probabilistic model. 

We identify predicates ou measures with mappings from PM to the space of 
truth values TV == {tnu:,Jalse.}. We use the metric d' to define the open sets 
of PM to be those generated by the open balls, and define the open sels of TV 
as {0, {false}, {true, false}} (this is the Sierpinsky topology). We now show that a 
predicate is continuous if we only ut"("d to look at sets with fixed prefixes to establish 
whether it holds of a process. 

Theorem 4.4.1 If R is a mapping from the complete metric space (PM. d') to TF 
such that for any P in PM 

R(P)=fal.<c => (3u,N·\lIEE"·PS(t)=P'S(t)=>R.(P')~f.I.<e) 

then R is continllous.	 o 
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Proor A mapping between two topological spaces is continuous if the inverse image 
of every open set is open. Recall that the metric d' depends on the length of tbe 
longest prefix up to whicb P and pi agree in probability. 

d'(P,Q) = in! (T"I'tt E );'. #t <; n "" P S(t) = Q S(t)). 

The above condition impli{'s that wh{'never R(P) is false it is false of aU measures 
in tbe open ball {P'ld(P, P') < 2n +I 

}. Thus R is continuous. 0 

The following theorem is laken from [RosS2]. 

Theorem 4.4.2 Let M = (A, d) be a complete metric space, a.nd let TV be thf' 
topological space ({ trTlf,jalse), T) with the Sierpinsky topology. If F : AI -; TV 
is continuous and the set {a E A I F( a) = tru.e} is nonempty, then 

('tx,A·F(x) =tr,,"" F(C(x))=f,,,e) "" F(fix(C))~h'ue 

for any cont.raction mapping C: J'-'I ---Jo M. o 

This allows us to postulate the following inference rule. 

Suppose that n is a satisfiable and continuous predicatt> and that the PCSPo' 
term P is r.omltructive for the variable X. Then 

Rule 4.4.3 

vy, PM· R( l') "" R([PJp[Y/Xi) 

R([~ X • Pip) 

o 

Proof If P is constructive then AY . [P~p[ Y / Xl is a contraction mapping. We 
have assumed that R is satisfia.ble, continuous and that V Y : PM· R( Y) =} 

R([P]p[Y / Xl). Therefore by theorem 4.4.2 the rule is sound. 0 

This rule can be ext.ended to mllhlally recursive equations as shown by [DS91J. 
If P is a vector of mutually recursive processes which is constructive for the vector 
of variables X then to establish that a vector of predicates R correctly describes 
tbe fixed point of M(X.P) it is sufTicif'nt 1.0 show that each R, is continuous arld 
satisfiable and that R is presf'fved by AI (X, Pl. 

Rule 4.4.4 

('t;. R,(Y,)) ",,'tj. R,([P,Ip[Y/XIl 

R(I~X,P~p) 

o 



Chapter 5 

Examples 

At the beginning of this theJ'lis we claimed that the specification of probabilistic 
processes must be linked to a notion of probabilistic correctness which requires that 
a property be satisfied with probability 1. hl this chapter we give examples of some 
typical properties of probabiliJ'ltic processes and show how the semantics of PCSPo 
enable us to reason about them. 

A property which holds of all traces except possibly a set of traces of zero 
probability iJ'l said to hold of almost all traces. 

5.1 Fairness 

The first property we consider is fairness: if a probabilistic choice of finitely many 
branches is executed infinitely often then almost all traces contain every branch 
infinitely often: the probability that from some point onwards one branch is over­
looked forever is zero. This coincides with the notion of extreme fairness introduced 
by [Pnu83J. The probability that a process is fair can be evaluated with the help of 
the following lemma, 'Nhich we quote from [Bi79]. 

The Second Borel-Cantelli Lemma If (An) is a sequeuce of independent events 
and Ln P An diverges then P(lim sup" An) = L 0 

(Note that "event" here means "a set of points in a probability space", not to be 
confused with "event" as a synonym for action.) 

Lemma 5.1.1 Let 

P = n
pn 

(an - P) where 0 ~ 11 < N, the an are distinct and p, > o. 



5.1 Fairness 48 

Then P is fair in the sen~e that almost all traces of P contain f'very a" infinitely 
often, i.e. 

vo <:" < N . [PI lim ,up{a I a, = a.) = 1. 

o 

Proof Let A; be the set of traces whose (i+l)lh element is a". 

A, = {a I a, = a.} = U 5(8(a.)) . 
• EE' 

For all sEE' we have 11'15(8(".)) ~ p.IpI5(s). AI,o LEE' [pI5(s) = 1. Hence 

[PIA, = L [pI5(s(".)) = P• 
• EE' 

Similarly. it can be shown that if i f:. j then any A,. A] arc independent" i.e. 
P(A; I AJ ) = p". Consider the set 

= = 
lim sup A; nU A, 

;0:1 ~o:, 

consisting of all the tra,ces which contain an. infinitely often. The A, are independent 
and t.he sum L, [P]A, = L, p" diverges. Therefore by the Borel-Cantelli lemma 
[P] (lim sup, A;) = 1. Hence P is fair. 0 

This result can easily be generalised: Suppose PJ = np" P" where each P" 
contains only prefixing and a recursive invocation of P'. Let t(P,,) be the trace 
which P" performs in one unfolding of the recursion and let f be a function such 
that V n-f(a,,) = t(P,,). Lifting f to sequences we can write V A· [P']A = [P]J-1 A. 
In particular, the set. of traces which contain t(P,,) infinitely often has inverse imagf' 
(limsup,A i ) where A; 8.<; defined above. Hence it also has probability 1. 

As a concrete example of a process of this form considf'r a communications 
medium which loses input with probability p. Since we are not interested in the 
nature of the data which is being transmitted, we model this simply as a process 
which can perform two actions: in and out, f'uch that the probability of an in being 
followed by out is 1-p. 

P = in _ (P pn out -+ P). 

Since probabilistic choice distributes through prefixing we can write 

P = (in _ P) pn (m _ OU/ -+ Pl. 

From the generalisation of lemma .5.1.1 it follows that P will perform (in, out) 
infinitely often with probahilit.y 1. In other words we know that P will never 
stop producing output altogether - if this was not true, it wonld be impossible to 
implement a working communications protocol around P. 
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5.2 The Asymptotic Frequency of an Action 

When we defined the interleaving operator we claimed that the asymptotic fre­
quency of heads in the traces of a coin-tossing process is the same as the probability 
with which a head appears at each throw. This example shows bow to substantiate 
this claim. 

An action a oCCurs with asymptotic frequency 1 in an infinite trace u if the ratio 
of occurrences of a to the length of successively longer prefixes of u tends towards 
the limit I: 

lim (ulnlL{a) ~ I. 
II-~"" n 

Note that this limit does not exist for every trace. A counterexample is provided 
by the trace (a,b,b,a,a,a,a, ... ) in which each run of a's is followed by twice as 
many b's and vice versa. 

We say that the process P performs a with asymptotic frequency I if the prob­
ahility of the traces in which a occurs with asymptotic frequency I is 1: 

P {u I tim (uln)L{a)n_= n l} = 1. 

The set of these traces is measurable because it can be expressed in terms of cylinder 
sets as follows: 

{u I lim (u InH{a) = I}
"'_00 n
 

(u InH{a) I

{uIV,>O·3N·Vn>N· " -I <'}[

n Am 
m=l 

where 

.4 m = U n{UII(ulnH(a}_II<~}· 
N=On>N n m 

In the following lemma we show that the processes which we considered in the 
previous section not only perform every branch infinitely often, but with a constant 
asymptotic frequency: 

Lemma 5.2.1 Let 

P = n,," (a", -t P) where 0 ~ n < N, the a", are distinct and P. > O. 

Then P performs each a.. with asymptotic frequency p ... o 
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Proof Consider the set R(i,j) of traces which contain a run of j actions other 
than all after the jth all' 

R(O,j) " {u I (a t))l{a.) = 0" a, = ao } 

R(i,j) " {t(ao}.(ao)a 1#. =j" sl{a.} ~ 0" tl{ao} = i-I} i > O. 

Then IFI R(O,j) = Po(l-po)' and for i > 0 

~ (d k -I) ; . jIFI R(i,j) E k (I-po) Po (I-po) p. 

(l-po)'po' 

Thus [PI R(i,j) is independeut of i. Similarly it can be shown that the proba­
bilities of two different runs are independent of each other. Let V, be a random 
variable which records the number of actions other than an in the jlh run, that is 
V;(u) = LJj lR(;"I(u), The sequence (V;) is a sequence of independent, identically 
distributed random variables, each of which has expected valne 

E(V) ~	 Lj(l-po)'p. ~ (I-po)
 
}=o P"
 

This translates int.o an expected ratio of the nnmber of all's to the length of each 
run of l/(E( V) + 1) = P.. , The strong law of large numbers (cf. [Bi79J) applies to 
give 

' Vl + + ViIPHa I .,mI . (a) = E(V)) = I, 
'-H'O	 1 

i.e. the a.'lymptotic ratio of a.. 's in all runs is the same as the expected ratio in each 
run. Now 

V,+ ... +V,() 
. u	 = x
• 

.. 3j,,';', ... j;. a E R(l,j,) n R(2,j,) n ... n R(i,j,)
 

,,(afL:oidi)l{a.)' ~x
 

• 
" (arLjd i)l{a.) ~ I 

• 
!\Lj!=ix

• 
So 

. V,+ ... + V.(a)~E(V)hm	 . 
i~1X>	 1 
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. (uri(E(V) +l))) J{a. I 1 
:::;. ,1m . 

' ..... 00 I 

r (uli(E(V)+I)))J{a.J 
=> ;'...~ i(E(V)+I) (E(V)+I) 

r (urk)J{a.J 
:::;. /;:.~ k =p.. 

Hence as required 

[PJ{u I ._0:>lim (uri)){a.)
i = P.. } = 1. 

o 

As in the preceeding section, this lemma can be generalised to processes of the 
form pI = n"n POl where p .. contains only prefixing and a rer:ursive invocation of 
P'. Since the asymptotic frequency of each trace I.(P,,) is Pn it follows that the 
asymptotic frequency of any single action of pI is L," (Pnl #t( p.. )). 

5.3 Deadlock 

In this section we show t.hat if one of the branches of a probabilistic choice ends 
in deadlock, then a repeated execution of this choice will eventually deadlock with 
probability 1. 

Lemma 5.3.1 Let P = npnP.. where PrJ> 0, Po = STOP and for all n> 0, p .. 
contains only prefixing and a recursive invocation of P. Then P will deadlock with 
probability 1. 0 

Proof The set D of a,I1 traces after which P may deadlock can be written as 

D = U A. 
t=O 

where At = UIE:r;I: S(t(T)) denotes the set of traces such that P deadlocks after k 
steps. Then 

[PI A, = (I-Po)' Po 

and 
~ 

IPID I: IPI A, l. 
/;=0 

o 
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We can use this lemma to prove, for example, that two coin-tossing processes 
will eventually deadlock when put in parallel: let P = hd p,n tl P and---t ---t 

Q = hd _	 Q fn tl _ Q. From the laws of parallel composition it follows that 

P 1\ Q "	 hd ~ (P II Q) ,n (t/ ~ (P 1\ Q) ,n STOP)
 

whe,e s = pq, r = (l-p)(l-q)/(l-pq)_
 

This is of the form described by lemma 5.3.1. The result follows. 

5.4 Random Walk on the Positive Integers 

In [Hoa85], p.174, the example of a counter which can move up or around at ground­
level and up or down above ground-level is used to show how different algebraic 
representations of a process can be proved equivalent algebraically. H instead of 
deterministic choice we use probabilistic cboice with probability 1/2 the process 
becomes a random walk on the natural numbers: let C £ eTa where 

CTo = around _ CTo ,n up ---t CT1 

CT,. = down CT"'_ l tn up ---t CT..+ 1 , n > O.---t 

For an alt.ernative representati~n of this proC"ess, take 

ZERO	 around _ ZERo!n up POS; ZERO
• 

---t 

POS down _ SJ(IP tn up ---t POS ; pas. 

and put 

c;, ~ ZERO, C.+. = POS; C._ 

The proof that "r/ n.C.. = CT.. follows along the same lines as for the original example 
(cf. [Roo82]) because all the relevant laws for deterministic choice are replaced by 
corresponding laws for probabilistic choice. Instead of repeating it here we prove 
that the counter eventually returns to zero with probability 1. The probability of 
eventual return to zero is the sum of the probabilities of the first return to zero 
occurring after n steps, which we denote by T .... Clearly, the probability of first 
return to zero at step 1 is the probability of staying at zero at step 1, i.e. 

c, = ICI S(around) = 21 

If the first return to zero happens at some later stage there must have been the 
same number of up's as doum's and no around. Moreover, up until the last step 
there must always have been more up's than down's. So the probability of first 
return to zero after an odd number of steps is 
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r~ ..+l = 0 

and the probability of first return to zero after an even number of steps is 

r,. = EICIS(t) where #t ~ 2n" !lap = tldown" 11 aroand = 0 , 
"'1k<2n· (tlk)lap>(tlk)ldoum. 

Every set Set) where t is a trace of length 2n bas probability (1/2)110 and rZ n is this 
number multiplied by the number of traces t which satisfy the above constraints. 

The number of traces can be determined by the following standard approach 
(cL [FeI57]): let Sj, represent the difference between the number of up's and down's 
after the first k steps. So So = 0 and St - St_l = ±l. We represent a sequence 
of up's and down's by a polygonal line whose vertices have abscissas 0,1, ,.. k and 
ordinates So,S) ••. St. Such nn~ are called paths. 

height (k,h) 

no. of steps 

Figure 5.1: A path 

A path from the origin to an arbitrary point (k. h) exists only if k = j + j a.nd 
h = i - j where i,j are the nnmhers of up's a.nd down's respectively. In this ca.'3e 
there are 

i+ j )_( k)N". = ( i - (k+h)/2 

ways of getting from the origin to (k, h). [( the sta.rting point is (k1 , hd and the 
end point (k], h~) there are Nt2-tl.~-Jil ways of getting from one to the olher. 

However, we are only interested in those paths which do not cross the x-axis. 
Their number can be determined with the help of the reflection principle, which we 
quote Crom [FeI57), 

The Reflection principle Let A = (k'H h,,) and B = (k~. hh) be two integral 
points such that kb > k" ;:: 0 and hb > 0, hG > O. By reflection on the x-axis is 
meant the point A' = (kG' -h,,) The number of paths from A to B which touch or 
cross the x-axis equals the number of paths from AI to B. 0 
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height I A 

B 

no. of steps 

A' 

Figure .5.2: The reflection principle 

As an immediate consequence the number of paths from A to B which do not 
touch the x·axis can be calculated as the total number of paths from A to B minus 
the number of paths from A' to B. 

The paths which start at the origin and first return to it at step 2n must all pass 
through the points (1,1) and (2n -1,1). Between these two points the number of 
paths which do not touch the x-axis is 

2n - 2N2.._ 2 ,O _ N2 .. _ 2 ,2 = (2n - 2 ) (2n; 2 ) _
n-l n ( n - 1 ) 

So 

'h ~ ~ (2n -2) (~)'". 
n n - 1 2 

To sum all the return probabilities we factorise this expression into 

1( ) h ( 2n) '"T2n = 2" U2n_2 - 'U2n were U2n = n 2­

(It can be shown that 1/2 U2 .. is the probability of no return in the first 2n steps. 
SO T2 .. is the probahility of no retnrn up to 2n - 2 steps minus the probability that 
the process still hasn't returned to zero at 2n steps.) It follows that 

= 1 1
r j + L T2n '2+'21lo = 1. 

..=1 

Hence the process is certain to return to zero eventually. 
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5.5 An Interesting Fixed Point 

This example stems from [RosS8] who used it to demonstrate that the failures­
divergences model witb infinite traces can cope witb unbounded non-determinism, 
but that transfini te induction may be needed to compute the fixed point of a recur­
sion in this model. Replacing non-deterministic choice by probabilistic choice gives 
a recursive proce5s definition in the probabilistic model whose fixed poiIJt can be 
computed by ordinary induction, but whose form is still somewhat surprising. Let 
Q be a process which offers an unbounded probabilistic choice of performing some 
finite number of a's: 

Q == n"" Qn where n 2 0, Qo == STOP and Q,.+l =. (I -) Qn' 

Let 

p ~ (a. ~ P) II Q. 

We show that 
J .. +1 

P = n,. Q. wheee Q. " above, qo = Po, and q.+, ~ II (1 - L p,) L p,. 
j=O t=o 1=0 

The predicate R( Y) == (Y = [nq" Qn~) is satisfiable and continuous and the term 
((! -. X) II Q is constructive for the variable X. We can therefore apply the 
inference rule for recnrsion induction (4.4.3). Its antecedent requires t.hat 

'0';', PM· R(Y) => R(Ia. ~ X II Qlp[Y IX]). 

Suppose that Y = [n
q

" Q,J. Substituting for X in a ---) X II Q gives 

(a ~ n,.Q.) II Q '" (n,.a. ~ Q.) II (n.. Q,) 
since -+ distributes over n 
n,.lQ.+, II n.. Q.) 
since a _ Q.. = Qn+l and n distributes over II 

- n,.n.. (Q•., II Q.) 
since n distributes over II and is associative. 

From the laws which relate prefixing and parallel composition it follows that if 
m > n then Qm II Qn = Qn' Gathering all the terms in Qn and using the fact that 
the probabilities of identical choices add up we get 

n,.n..(Q.+, II Q.) '" n,.Q. whew 

ro ~ Po, r.+. ~ q.( L p,) + ( L q')P.+l' 
t= .. +1 !-=n+l 
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Substituting for q.. and for L~ ..+l qt = 1 - L!=:o qt = nj=:o(l - Lt=oPl:) we get 

.. -I J .. 00 .. J 

r.+, = (IT (l - L P.) L P.)( L p.) + IT (1 - L P.) P.+, 
j""O .=0 !=o .=:,,+1 1=:0 t=o 
.. j ,,+1

IT(1- L p,) LP' = q.+,. 
1=0 l:=O l:=0 

So the antecedent is true. We deduce that 

P '" pX'((a~X)IIQ) '" n,.Q•. 
At first it ma.y seem surprising that the probabilities with which P chooses a certain 
number of a's are different from the probabilities with which Q chooses bnt this 
is explaine<J by the fact that P chooses not only once, but several times over. For 
instance, supposing that to begin with P chooses to do three a's. After it has done 
one a it chooses again and run~ this second choice in parallel with the first. If the 
second choice is of less than two a's, P can't do the three u's which it originally set 
out to do. 

5.6 Probabilistic vs. Non-deterministic Choice 

In the two examples in this section we take a process in tbe failures-divergences 
model and compare it with its probabilistic analogue, whicb we obtain by snbsti­
tuting probabilistic choice for non-deterministic choice. We have not attempted to 
formalise the relation between the probabilistic and the failures-divergences model, 
but these examples show some important differences between the two models which 
make it un likely that the models can be related to each other by a simple abstraction 
function. 

The first example shows the difference between non-deterministic and proba· 
bilistic choice as far as asymptotic behaviour is concerned. Consider the process 
P = 0 --t P n 1 ----10 P in the failures- divergences model. This can choose to perform 
1 forever; so hiding 1 would lead to divergence. By contrast, the PCSPo-process 
P = 0 ......... P pn 1 ----10 P where p f- 0 is fair in the sense that almost all traces of 
P conta.in 0 infinitely often (as shown in lemma 5.1.1). So we would expect that 
hiding t would result in the process which performs 0 forever, Q = 0 ----10 Q, say. 
This is indeed the case: consider the probability of the set of sequences starting 
witb nO's after hiding 1. 

IP\{I}!S(O)'	 IPI(U~~oU,"o ... Ui.:"oS( (I)" (0) (I)" (0) ... (I )'" (0)) 

Lo,(l-pr'p Lo,(I-p)"p ... Lo.(1-P)'"p 
I. 
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From 'he f.d th.t S(O)' ~ {(O)-} => [P\{I))S(O)' ~ [P\P)) {(O)w) it follow, 
that lP\{l}] {(O)'"'} = 1. Therefore all sets not conta.ining the infinite sequence of 
D's have probability zero and V A En 

I if (0)- E A 
[P\P)) A { o otherwise
 

[QI A.
 

So P\P}" Q. 
Our second example shows that using probabilistic choice eliminates the prob­

lems of unbounded non-determinism. The problems caused by unbounded non­
determinism in the failures-divergences model are demonstrated by the following 
process. Let 

Qu ~ STOP. Q.+, ~ a ~ Q• •nd p. ~ n.>. Qi. 

Then p. C;; p.+" U~, p. ~ STOP .nd P.\{a} ~ CHAOS w th.t U(P.I{a}) i 
(U PII )\ {a}. 1n the probabilistic analogue the problem disappears. Let 

P II == nl'n.. _n Qi where Vk· L"PII,k = 1. 

Now lim [P.l ~ [~X. a ~ XI so that 

lim!P.\{a}! ~ lim [STOPI [STOPI I(~X, a ~ X)I{aH. 

5.7 Discussion 

We have defined the semantics of a probabilistic language which features a subset 
of the operators of esp, with probabilistic choice substituted for non-deterministic 
choice. Processes are defined as probability measures on infinite sequences of actions 
and operators as transformations or linear combinations of measures. 

We have given examples which show that this semantics enables us to reason 
about important properties such as livcness, asymptotic frequencies of aclions, fair­
ness and probabilistic correctnes:'l. We have also proved the validity of algebraic 
laws which are important for reasoning about parallel systems in general. The laws 
of PCSPo are the same as those of the corr~ponding subset of operators of the 
traces model of CSP, with two exceptions: parallel composition is idempotent in 
the traces model, but not in PCSPo, and unguarded recursion may he wf'll~defined 

in PCSPo, but not in the trace; model. Like the traces model, the probabilistic 
model does uot distinguish between deadlock and divergence; the infinite sequencp 
of unobservable events is used to model both. 
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It would be interesting to determine the precise relation between PCSPo and 
other models of CSP. It is possible that the relation between PCSPo and the 
traces model could be charaderised by a projection function which maps each set 
of extensions of a finite trace of positive probability to a trace of the corresponding 
process in the traces model, but we have not looked at this in detail. 

The main disadvantage of PCSP01 which limits its usefulness, is that it lacks 
the operators for general paranel composition and external choice. This problem is 
addressed in the remainder of the thesis. 



Chapter 6 

Alphabetised Parallel 
Composition 

In this chapter we investigate a way of defining the parallel composition of processes 
which syuchrouise on only some actions and perform others independently. The 
relative order of unsyuchronised actions is arbitrary, which means thai parallel 
composition in general cannot be characterised by a function which maps pairs of 
traces into single ones, but only by a relation between pairs of traces and possible 
interleavings of unsynchronised adions. 

Recall that given a measure P and a function F a new measure pi can be defined 
by setting 

P'A =- P F-1A 

for all A E F. For a function the inverse images of disjoint sets are disjoint or, 
equivalently, 

VAEF· r'Anr'A'~0 

so that for any disjoint sets A and B 

P'(A U B)	 pr'(AUB) p(r'AUr'B) PF-'A+PF-'B 

P'A + P'B. 

If F is a relation disjoiutedness is not always preserved under the inverse image 
which, at first sight, means that it cannot be nsed for a transformation of measure. 
However, we will show that the lluhset of sets for which disjointedness is preserved 
forms a a-field,:F' say. Therefore WP C<ln use the definition above (with F arelation) 
Lo define a probability measure P' on the restricted u-field F'. 

This and other results about the transformation of measure with relalions form 
the first section of this cbapt.er. We will u:-e these in the second section, where we 
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define the semantics of an extended version of PCSPo which includes alphabetised 
parallel composition, based on a transformation relation. In the third section we 
give an example to show how to use the extended model. The last section we discuss 
the advantages and disa.dvantages of this approach. 

6.1 Transformation of Measure with Relations 

In this section we wilt prove that the sets whose disjointedness is preserved uuder 
the inverse image of a relation form a u-field. In the first lemma these sets are 
described a.'l the sets whose inverse image is disjoint from the inverse image of their 
complement. In the second and third lemma we find alternative representations of 
this u-field which enable us to identify sets in this u-field more easily. 

Lemma 6.1.1 Given measurable spaces (!1,F) and (!1' . .F'), and a relation R 
fl +-+ fl' the collection of sets 

M := {A:Plw'AnW'A'~0i\W'AE.F} 

is au-field.	 o 

Proof The class M is obviously dosed under complementation. We show tha.t JVf 
is also closed under finite unions and that it is a monotone class. Let A, BE M. 
Then 

W'(A U B) n W'(A uBI' 
(W' A u W' B) n R-'(A U B)' 
(W' An W'(.4 u Bn u (R-' B) n W'(A u Bn 

~ (W'AnW'A')U(W'BnR-'B') 

0. 

and R-t(A u B) = R- 1 .4 U R-1 BE F. So A U B EM. Let (B,kN be a. sequence 
of sets in M such that B" lB. Then 

R-1 B n R- 1 Be =	 R-1U"B" n R-ln"B~
 

U" R-1B" n R-1n"B:
 
U.(W' B. n W'nmB~)
 

~ U.(W'B.nW'B;) 

0. 

Also R- l B U"R-t B.. E F. So B E M, M is a monotone class and hence a 
a-field. o 
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Note that M is always non-empty, but that it can be trivial. 

Lemma 6.1.2 Let M, " {A , :p I (W'; R)(A (han R) = (A nran R) E Fl· Then 
M,=M. 0 

Proof By the definition of inverse x R y .;::. y R-1x which implies 

BnRAI0 .. W'BnAI0. (6.1 ) 

We first show that M 1 ~ M. For .4 E M 1 

(R-' ; R)( A n ran R) = (A n ran R)
 

=> (R- I ;R)(AnranR)n(A'nranR)~0
 

because (A nranR)n (A e n ranR) = 0 

=> (A n ran R) n (n-' ; R)(A' n ran R) ~ 0
 
hy 6.1
 

=> (n- ' ; R)(A n ranR) n (n- ' ;R)(A' nran R) = 0
 
by assumption
 

=> n-'(AnranR)nn-'(A'nranR) =0
 
=> n-' An R-' A' = 0.
 

Conversely, to show that M ~ M 1 we show that A ¢ M 1 => A ¢ M. 

A<f.M,
 

.. (n- I ;R)(Anran R)::J Anran R
 

=> (W'; R)(A n ran R) n (A n ran R)' 10
 

=> W'(AnranR)nW' (AnranR)'10
 

=> n-' An R-1(A' U (ran R)') 10
 

=> n-'AnR-1 A'10
 
since R- t A 2 R-l(A n ran R) and R-1(AC U (ran R)C) = R-1AC. 

So equality holds_ o 

Yet another equivalent definition of M is formulated. in terms of the transitive 
closure of (R- t ; R). For til E n let 

Tw " U(W';R)"w . 
.. ~o 

Lemma 6.1.3 Let M, ~ {T A I A E :P 1\ W' A E Fl. Then M, = M,. 0 
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Proof 

A E M, ¢> (W'; R)(A n "0 R) = (A n "0 R) 

¢> TA=A 

{:} AEM2 · 

o 

6.2 The Extended Model 

If we are to add an operator based on a transformation relation to our model then 
the a-field on which a process is defined must be made explicit. In the following 
we define a, a-field for every exi~ting PCSPo construct, writing Q"[P~ for the a-field 
on which the measure denoted by P is defin.ed. Apart from being para.metrised 
by a a-field the definitions of processes and operators remain unchanged. So to 
prove that all the PCSPo-laws still hold in the extended model we only need to 
add proofs concerning the equality of the a-fields. Where the law dep~nds on the 
commutativity of two transformation functions, f and 9 say, equality of the a-fields 
follows immediately. Therefore we need to reconsider only the proofs of those laws 
which do not foUow from the commutativity of transformation functions. 

Having determined the effect of relational transformations on PCSPo we define 
alphabetised parallel composition based aD a relation, mergeB,c, and show tha.t it 
satisfies all the laws we would expect it to hold. 

The Semantics of PCSPo with Variable a-fields 

The processes STOP and SKIP are defined on the standard a-field. 

alSTOPI '" :F 

alSKIPI '" :F. 

The a-field of a _ P contains all the standard sets of traces not beginning with a 
and the sets of alP] prefixed by a. 

ala ~ PI '" {A;:F I prejix.- l A E alPiJ· 
P pn Q is defined only for arguments with identical q-fidds: let u[P] = dQ]' 
Then 

alP ,n QI '" aIPI(= alQI) 
For any law involving probabilistic choice, equality of the a-fields aD the right and 
left-hand sides of the equatiou is obvious. The reason we do not allow probabilistic 
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choice between processes with differing O"-fields, is that even though it could be 
defined on the intersection of these fields, this would distroy law 3, namely that 
p,n Q ~ P. 

The l1-field of X\B, where B 5; E, must be such that un hiding B yields a set 
in ~[PI. 

~IP\BI '" {A' F I hid,.' E ~IPI}· 

To prove that q[P\E] = a[STOP) note that since hideil A = n if (7)'" E A, 
ootherwise, and nand 0 a.re contained in any a-field on n it follows that {A : 
Fhid'E' E ~IP)} = 1'. We have ~IP\0J = ~[PI because hid" = id. 

The l1-field for simple parallel composition is 

~[PIIQI '" (A, F I par-'A E ~[Plx~[QIJ 

It will turn out that simple parallel composition is a special case of alphabetised 
parallel composition. So we need not prove it.s laws separately. 

The sequential composition of P and Q has l1-field 

~[P;QI '" {A,Flseq-'AE~IPlx~[QI} 

To show that ~[SKIP; PI ~ u1PI recall that SKIP\(E - (/}) ~ SKIP. This 
allows us to write 

A E ~!SK[P; PI 
.. (seq-'; (hid'E'{_). id))A E Fx~[PI 

.. (hide;;'U); id)((s,q-'A) nran(hid'"_{_l>id)) E Fx~[PI 

.. (hide;;~{_);id)({(/)(T)W}xA U{(T)W}x!l)EFx~[PI 

assuming w.o.Lo.g. that (r)W E A 

.. A E a[PI· 

So l1[SKIP; PI = l1[P]. A similar argument can be used 1.0 show that a[P j Slap] 
~ ~[PJ and that ,,[STOP; Pi ~ ,,[STOPj. 

The l1-field for interleaving is 

~[P r iii Q) '" (A, F I intarlaav,-'A E ~[Plx~[QJ x F) 

The only law for which we need to prove equality of the a-fields is STOPp III P == P. 
This proof is very similar to the proof that SKIP; P == P. 

If we allowed relational transformations in recursive process definitions then 
each unfolding of the recursion could change the underlying O"-field. Howe\'er, con­
vergence is defined only for sequences of measures which have the same underlying 
a-field. So we allow recursive processes only if they are defined on the full a-field 
F. That is, we cannot ha.ve recursive calls to parallel processes unless they are fully 
synchronised or form a master-slave system (where the actions of one component 
are a subset of the actions of the other). 
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Alphabetised Parallel Composition 

Alphabetised parallel composition is denoted by 

P Bile Q 

where B, C are sets of actions. Both contain T. The processes Pand Q synchronise 
only on actions in the intersection of Band C. E....ents outside B happen without the 
participation of P, with a probability and ordering entirely determined by Q, and 
events outside C happen without the participation of Q, with a probability entirely 
determined by P. The semantics of this operator is defined as a transformation of 
the product measure ([P]px [Q~p) with the relation merycB,C: 

alP ,lie QI 
== {A::F I mcrgcB,lcA n mcrgcB",tcA c = 0 1\ mergeB~c E 17gP] X17[Q]} 

II A E alP Bile QI IP Bile Qlp A '= (IPlpx IQlp) m,rgeii,'c A, 

The relation mcrycB,c maps a pair of traces to the longest trace up to which they 
agree On the order of actions in B n C. 

mergCB,C: !1x11 H 11 

Vu.v E !1 . 

u!E mcrycB.c(U.V) 

<> (wE(BUC)w!lwIBSu!lwfCS v ) 

V (w =t(T)w!lt E (BUC)"!I 1[B <U !lilC < v 

!I II, E (B U C) , (t( e»)I B 1. U V (I( ,»)1 C 1. v), 

]f wand w' are two possible mergings of the traces u, v then mergeB~C{w} n 
mergei1c{ Wi} is not empty. So the restriction of the 17-field on which parallel 
composition is defined means that in a parallel system probabilities are known only 
for the set of all possible orderings of unsynchronised actions, but not for individual 
orderings within that set. 

Note that mergcE.,E. = par and that if B ~ Cor C ~ B then mergeB,C is a 
function. We could have used a slightly different definition in which a merging w 

of two traces u. v has to satisfy til rB = u /\ w rC = v. The difference matters only 
if u and tJ have tails of unsyuchronised actions in B - C and C - B respectively. 
The definition we use allows mergings in which actions in u always ha....e precedence 
over actions in v (or the olher way round). Thus a sequence w containing only a 
finite number of actions iu v and the same tail as u would be a possible merging. 
The alternati ....e definition excludes this possibility. it implies t.hat infiuite overtaking 
would always have zero probability simply because the traces resulting from infinite 
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overtaking would be outside the range of merge. We have opted for a relation which 
does not have this implicit fairness property. 

The laws for alphabetised parallel composition are the same as those in the 
traces model of CSP with one important exception: associativity holds only in 
special cases. 

Lemma 6.2.1 

Ll P Bile Q = Q Bile P. 

L2 B <;: c,* P Bile STOP", STOP. 

L3 B <;: C <;: D '* 
P BlleuD (Q eliD 0) '" (P Bile Q) BueliD O. 

L4 (P ,n Q) B lie 0 '" P Bile 0 ,n Q Bile O. 

L5 P	 Bile (Q ,n 0) '" P Bile Q ,n P Bile O. 

L6 a	 E Bn C ~ 

(a~P)Blle(a~Q) '" a~(PBlleQ)· 

L7 a E B n C, b E B - C '* 
(b~P)Btle(a~Q) '" b~IPBllea~Q). 

L8 a,bEBne,alb,* 
(b~P)Blle(a~Q) '" STOP. 

o 

Proof Law 1 follows from the symmetry of merge and Fubini's theorem. For law 
2 note that since ran hider, = {(r)"'J and mergeB,c(u, (7)"') = (7)'" for all t.! E n it 
follows that (id, hidt:r,); mergeB,C is a function. Thus 

alP Bile STOPI = alP Bile (STOP\E)] = :F = aISTOPJ. 

For an sets A E :F we have 

IP RlicSTOP!A =	 (IPlxISTOP!) mer9'B,'CA 

(IPI x [STOP!) (mer9'B,'eA n In x {(T)W})) 

,ince (IPjxISTOPIHn x ((T)')) = 1 

IPI n ISTOPH(T)w} ;( (T)w E A 
{ o otherwise 

,;nce (Tt E ,4 '" ,"cry,-' An (ll x ((Tt)) 10 
= [STOP! A. 



6.2 The Extended Model 66 

To see why pa.rallel composition with merge is not always associative consider the 
composition of three processes on sets B, C and D where (B U C) S; D. Then 
(mergeB.e, id); mergeBue,D is a relation whereas (id, mergee,o); mergeB,O is a func­
tion. Hence the two sides cannot be the same. Only if B ~ C C; D are the 
transformations on both sides functions. In this special case we can write for all 
u, v, wEn 

mergeBuC,D( mergeB,c( U, v), w)
 

mergeC,l)(v,w) if t'ECWAvfB=u
 

mergee,D(t(r)', w) ;f lEe A IrB < U A I < v
 
{ 

A 'ie E C'I(e)IB f u V I(e) f v 

w if wE DWA WrC:S.I,A wrB:S. u 

l(r)W ;f IED'AtrC<VAtrB<u 
{ 

A 'i e ED· I( elr B f u V I(elr C f " V I (e) f v. 

Evaluation of merges.cuo( u, mergeC,l) (v, w)) leads to the same expression. 

Probabilistic choice is defined only between processes with identical u-fields. So 
for law 4 ..'ume tballYlPI = IYIQI. Tben 

IYI(P en Q) Bile O! 
= {A: F I merges,leA n merges.1cA c = 0 A mergen,le E <T[P~ X<T[On 

= d(P Bile 0) en (Q Bile 0)1· 

The proof of equality in probability follows along the same lines as the proof in 
section 3.5 that probabilistic choice distributes over simple parallel composition. 
Similarly for law 5. 

Law 6 follows if we can show that for a E B n C 

(prefixa,prefixa); mergeB,C = mergeB,C; prefixa. 

This is true because V u, v E n 
w E (merge8,c(prefixa 1 prefixal)( 11.. v)
 

<=> wE mergeB,e((a)u,(a)v)
 

.. (wE(BUC)"AwIB:S;(a)uAWrC:S;(a)v)
 

V(w =1(r)'A I E (BUC)" A trB< (a)uA qc < (a)v 

A 'i e E (B U C).( I( e) IrB f (a) u V (I( em C f (a) v)
 

<=> w = (a}w l A Wi E mergeB,c(u, v)
 

<=> wE prefixa(mergeB,c(u, v)).
 

Similarly, it can be shown that if a E B n C and b E B - C then 

(prefiXb,prefix",); mergeB,c = (id,prefix",); mergeB,C; prefixb 
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and law 7 follows. For law 8 note tha.t if a #- b and a, b E B n C then for all 
U,v E [} 

(m,rg'B,c(pre}ix.. pr<jir.))(u,v) = (T)". 

So 

[(6 _ P)Bllc(a - Q)IA { 
([PlxIQIl OxO 
([Plx[QI) 0 

if(T)"EA 
otherwise 

ISTOPIA. 

o 

6.3 The Loss Rate of a Pipe 

Consider a pipe of two media with loss rates p and q. (The loss rate is the long term 
or asymptotic frequency with which a medium loses data.) We model the media in 
the same way as in tbe example of section 5.1. 

P = in --+ (P pn mid -----I P) 

Q = m;d_(Q,noul_Q). 

In a way similar to the example of section 5.2 it can be shown that t~ese two 
processes have indeed the required loss rales. The process P Bile Q w~ere B = 

{in, mid}, C = {mid, out}, forms a pipe which inputs data on channel in, passes 
it on internally on channel mid and outputs it on channel out. We would like to 
know the overall loss rate of the pipe. 

in p mid Q out 

Figure 6.1: The pipe 

The loss rate equals 1 minus the success rate, which is the asymptotic ratio of 
outputs to inputs in the infinite traces. To determine the latter consider the set 
R(i,j) of traces which contain j internal communications before the first output 
and i inputs before the jth internal communication. Any such trace has a prefix t 
snch that 

t",-, ~ out A tHout) = 1 /I tHmid} =j /I
 

t,+,_1 = mid /I (tid j)Hmid} = 0 /I (t[d j)Hin} ~ i.
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Then the smallest superset of S(t) to which we can assign a probability is 

TS(t) = {sul(s[a=tra~s[c=trC) 

V (sfa ~ (tfi+ ma ~ s[C = (tri+ jHC ~ ul{mid) = 0)). 

Then R(i,j) = Ul TS(t) (where t as above) is the smallest measurable set con­
taining all the traces we are interested in. Note for example that R(2, 1) contains 
traces beginning with (in, in, mid, in, out) where the last in has nothing to do with 
the output but just happened to be input while the previous message was still in 
the pipe. It, a.lso contains (in, mid){in)"'. 

IP Bile QI R(;,j)	 (IPlxIQ!) merg'i/cRU,j) 

([Plx[QI) (A,xS((mid)'(outi) U A,xS((midi')) 

where 

At = {sul#s='i+j f\Si+J_l = mid f\s!{mid} =jl\s!{in) = i} 
A, = {sUn/"l#s=i+j~Si+,_,=mid~sl{mid}=j~sHin}~i}. 

Since [P]A:z = 0 we are left with 

j) -1)p'_'(l_P)j q'-'(I_q).IPI,', [QIS((midij(out)) = (i+ (i ­
,- J 

Taking the sum over all j then gives the probahility of i inputs being needed to 
produce an output. Let U be a random variable recording the number of in's up 
to the first out. Then U has expectation 

E(U) = j) -1)pi_'(I_P)' q'-'(l-q) ift (i+ (: =
;:lJ=1 J 

~ to (i+ :- I) p'(I-p)' q'-'(I-q)( i +j) 

~(l-p)' qH(I-q)jtoe~i)pi 

(I-q)fq' U+I) 
(l-p) j=O 

1 

(1- q)(l-p)' 

Thus the success rate of the pipe is 11 E( U) = (l- q)(I- p) and the loss rate is 
p + q- pq (which is as we would have expected from combinatorial arguments). 
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6.4 Discussion 

We have presented an extension of PCSPo which includes an operator for alphabe­
tised pa.rallel composition. This operator is defined as a transforrna.tion of measure 
hased on the relation merye. We have shown that a relation can be used for a trans­
formation of measure if restricted those sets for which probabilities are defined. For 
a system of parallel processes this means that we can no longer assign a probability 
to every set in F , but only to sets which contain all alternative interleavings of 
unsynchronised actions. We have given an example to show that this still allows 
us to deduce an interesting property of a parallel system from the properties of its 
components. 

However, even though the extended model euables us to reason about a wider 
class of processes than PCSPo it is not really useful without an operator for external 
choice. If a proce:ss offers external choice we can sa.y that with probability 1 it will 
do one of two actions, but we cannot a priori give the probability of either one 
being chosen. We could assign probabilities to those sets only which contain both 
branches of the choice, but for most processes this will leave us with little more than 
the trivial u-field {Q,0}. So in the next chapter we will try a different approach, 
which allow us to define both alphabetised parallel composition and external choice. 



Chapter 7 

A Model with External Choice 

In CSP the term e : E ~ Pe denotes d process which offers deterministi.c or external 
choice. Such a process will participate in whatever action e its environment offers, 
as long a.'; e is in E, and then behave like p•. If the environment offers an action 
outside E the system will deadlock. This behaviour cannot be described in PCSPo, 
because the probability with which a PCSPo-process decides what to do is always 
independent of its environment. External choice f€quires a notion of dependence 
or conditioning on the environment. In this chapter we formalise this notion by 
defining a process as a conditional probability measure. The idea is that if a process 
P is offered a sequence!! E n by its environment, we know the probability with 
which it performs a set A E F. We use this to define the semantics of a second 
language, PCSP, which differs from PCSPo in that it contains operators for external 
choice and alphabetised parallel composition, but lacks the operatorn for sequential 
composi60u. hiding and interleaving. 

The syntax of the language PCSP contains the following constructs: 

P 0:=	 STOP I X I a ~ PIP ," Q I ' , E ~ P, IPs 0 Q I
 
P II Q I P .lIe Q I I(P) I ~ X • P I (X, = Pi)
 

Let CM be the space of conditional probability measures. Like the semantics or 
other models the semantics of a PCSP-term P is parametrised by a binding for its 
free variables. Let BlVD be the domain of all bindings of variables to cpm's: 

BND " VAH ~ eM 

We use round brackets ~~ for a semantic runction which defines the meaning of 
PCS? terms: 

~D "	 PCSP ~ BND ~ CM 

We will show that the cpm's representing processes have two additional properties: 
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1.	 If offered y by its environment, a process P can either perform y or deadlock 
at some point. So 

P({y}uu.{(yrn)(T)-),Y) = I. 

2.	 For fixed t E I;~ the probability P (S(t), y) is constant if y rangc50ver the 
set of extemions of t. Intuitively, the probability of n actions happening to 
begin with depends on whether the environment initially offers these actions, 
bnt not on what it offers thereafter. 

We now give the semantics of pesp. All definitions are for any F-set A and trace 
yEn. 

7.1 STOP 

As always, the simplest process is STOP, which deadlocks no matter what the 
environment offers (and is therefore constant wit.h respect to y): 

qSTOPDp (A,y) " IA(Tt. 

7.2 Prefixing 

If the environment offers an a E I:, the probability of a P performing a set---1' 

A is the probability of P performing prefix;:l A, which depends on the second and 
further actions offered by the environment. If the environment does not offer a, 
then a -----) P beha...'es like STOP. We therefore define 

qa ~ PDp (A, y) 

" ISI.I(Y) qP~p (prefix.-' A, y/I) + Is(ol'(Y) ~STOP~p (A, y). 

It follows from lemma 2.1.9 that this defines a cpm. 

7.3 External Choice 

For a set of visible actions E define f : E -----) p. to be the process which, when 
offered an action e in E, performs f with probability 1 and then behaves like Pe 
conditioned on the sewnd and fnrther steps of the environment. When offered an 
action ontside E the process deadlocks. 

qe, E ~ P,~p (A.y) 

" L ISI<)(Y) qP,~p (prefix,-' A. y/J) + L IS1 ,1(1I) qSTOPDp (A,g). 
tEE	 'i~ 
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It follows frum lemma 2.1.10 that this is a cpm. Note that STOP and a --+ P are 
special cases of external choice with E = 0 and E = {a} respectively. 

We adopt a special notation for communication. Let c.v denote an action with 
two components. The first component, c, is the name of the channel on which the 
communication takes place. The second component, v, is the value of the message 
which passes. A process which first outputs v on channel c and then behaves as P 
is defined 

c!v -; P == c.v --+ P. 

A process which is initially prepared to input any value commnnicable on channel 
c is defined 

c?x --t p% ::>: d: {e I chan(e):::: c} --+ P"u.q(d). 

where chan(c.v} = c and msg(c.v) = t'. 

7.4 Probabilistic choice 

As before we write P pn Q to denote probabilistic choice. Its semantics in terms 
of conditional probabilities hardly needs explanation: it equals the weighted sum 
of the cO!lditional probabilities of the component processes. 

Op,n QDp(A,y) ;'; pW~p(·4,y)+(1-p) OQDp(A,y). 

For fixed y, GP ,n QD is a weighted sum of probability measures, and thus itself a 
probability measure by lemma 2.1.4. For fixed A it is a sum of random variables 
and thus itself a random variable. Therefore it is a cpm. 

All the laws which hold in PCSPo also hold in pesp. Additionally there is a 
law which relates probabilistic and external choice: 

Lemma 7.4.1 

Ll P ,n P " P. 

L2 P ,n Q " Q ,_,n P. 

L3 P ,n Q " P. 

L4 (P ,/(>-.In Q) ,_.n R " (R o/(>-,In Q) ,-,n P. 

Proba.bilistic choice distributes over external choice and prefixing: 



L5 "E_(P, ,n Q,) = ("E_P,),n ("E_(j,). 

L6 a _ (P ,n Q) = (a _ P) ,n (a - Q). 

o 

Proof Laws 1 to 3 are obvious. The proof of associativity (law 4) is the same as 
in PCSPo if we snbstitute cpms for probability measures. For law 5 note that 

0" E - (P, ,n Q,)~ (.4. y) 

L Is(,)(y) ~P, ,n Q,~ (p"jiz;' A, y/l) + L Is(,,(y) OSTOP~(A, y) 
eEl' <I/. E 

p (I: ISI'I(Y) or,D Ipnjiz,-'A, y/1) + L ISI<)IY) aSTOP~ (.4.y) 
tEE <'/.E 

+ (I-p) 

(I: IsI'I(Y) aQ,~ (pr,jiz,-' A. y/l) + L IsI'I(V) aSTOP~ (A,y» 
tEE filE 

a(" E - P,) ,n (e' E - Q.)~ (A.y) 

Law 6 is it special case of law 5. o 

7.5 General Choice 

The general choice operator in CSP denotes external choice between processes 
rather than actions. The same is true for general choice in PCSP. We write 
P sO Q for a process which behaves like P when off('f('n. a trace iII S, and like Q 
when offered it trace in Sf: 

ap 5 0 Q~p (A, y) " I.,(y) ap~p (A.y) + Is·(Y) aQ~p (A, y) 

where S must be such that for any trace t E ~~ 

yESnS(t)AzES'nS(t) => ~1'~(S(f).y)~aQ~(S(t).z). 

The fact that tbis is a cpm follows from lemma 2.1.10. 

To see why not all sets S are admissible suppose u _ P S(a,b) 0 STOP to be a 
valid process definition, Then au _ P S(d) 0 STOP~ (S(a). =) would he 1 if =1 = b 
and 0 if Xl -I b. This violates the rule that an action, u, must no! depend on 
anything that might happen afterwards, b. 

General choice satisfies most of the laws which WI' would expect it to, bnt in 
one respect it is different from other modf'ls of esp. In the failufe-s-di\'C'rgences 
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model [HoaSS] the choice betwe€n identical initial actions degenerates into non­
deterministic choice: 

a~POa~Q	 '" (a~p)n(a~Q)
 

'" a~ (pn Q).
 

In the probabilistic model, a process with a general choice between two branches 
beginning with a will also do an a first, but then the choice of P or Q depends on 
the second slep of the environment: 

a ........ PsDa---+Q::;:: a-(P,refiril1S DQ )
 

The other laws for general choice are similar to those for probabilistic choice. This 
is to be exprocted since the semantics of both operators are defined in terms of sums 
of cpm's. 

Lemma 7.5.1 

Ll PsO P '"	 P. 

L2 P sO Q '" Q 5' 0 P.
 

L3 P 00 Q '" P.
 

L4 (Ps,O Q)s,O R '" Ps,ns,O (Qs,O R).
 

Probabilistic and general choice distribute over each other.
 

L5 P sO (Q,n H) '" (P sO Q),n (P sO H). 

L6 (P sO Q),n H '" (p,n H) sO (Q,n H). 

The next law is the probabili~tic analogue of the eSP-law Po STOP:::: P. 

L7 P (5(,1l' 0 STOP", P. 

L8 US;2 {ulUo E E-D} and S';2 {ul"" E D- E) then 

("E~P,)sO (d,D~Q,) '" d,EuD~H, 

P",OQ, if dEE n D 
where, {or S = prejixilS. Rtf. == Ptf. if dEE - D

{ Q, ifdED-E. 
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As a corollary to law 8 we can write 

L9 a -----Jo P sO a -+ Q :::::: a --+ (P pr<fi.%;I S 0 Q). 
o 

Proof Law 1 follows directly (rom the definition: 

Is(y) app(A,y)+!s'(y) ~PP(A,y) ~ app(A,y) 

Symmetry (law 2) is obvious, as is law 3. In the proofs of associativity (law 4) and 
dislribulivity (law .j) we suppress the arguments (A, y) which are carried through 
the whole proof unchanged. 

a(ps,O Q)s,O R~	 Is, (Is, ap~ + Is! ~QP) + lSi aRp
 
Is,ns, ~P~ + Is,'ns, OQ~ + Is{ aR~
 

OP SlnS2 0 (Q S2 0 RlD· 
To prove that general choice distributes over non-deterministic choice simply expand 
and regroup the terms: for law 5 we get 

ap sO (Q,n RlD	 ~ Is app+ Is, (p aQP+(I-p) aR~) 

= p (Is ap~ + Is, OQP) + (I-p) (IsOP~ + Is,IRP) 

= a(psoQ),n (PsO R)~. 

Similarly for law 6. To prove law 7 rl'caJl that ror any process P and for all yEn 
we have OPP ({y) U U. {(y In)(T)W), y) = 1. Aeemd;ngly, app ({ (T)w), (T)W) = 1 for 
any P, i.e. no process can do anything when t.he environment. offers it (T)"'. So 

aPD (A, (T)W) = aSTOP~ (A, (T)W). 

Law 7 rol\ows. For law 8 we expand 

a(e .E~ P,) sO (d. D~ Q,)P (A,y) 

lsi y) (:z ISI'I( y) ap,p (prefix,-' A, yl I) +:z ISI'I( yJaSTOPP (.1, y» 
eEE	 .tE 

+ Is, (y)(:Z ISI'I( y) aQ,~ (prefix,' A, y/l) +:z Isl'l( y) ~STOP~ (A, y» 
<lED	 diD 

:z IS1'I(yHIs(y) ap,p (prefix,' A, yI I) + Is« y) OQ,~ (preft'" A, yjl» 
dEEnD 

+ 2: IsI'I(y) (Is(y) ~p,p (prefix,' A. y/l) + Is'(y) OSTOPP lA, y» 
dEE-D 

+ 2: IS1'I(y) (ls(Y) ~S1'Opp (A, y) + Is'(y) OQ,P (prefix,' A,y/l» 
dED-E 

+ 2: IS1'I(y) aSTOP~ (A, y). 
dtEuD 
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Since S 2 {u 1Uo E E - D} a.nd SC 2 {u I Uo E D - E} this simplifies to 

L I;(,)(y) (ls(Y) ~Pd~ (prefix,' A, y/l) + Is'(y) ~Qd~ (prefix,' A, yfl)) 
dEEnO 

+ L ls(d)(y!aPdD(pr,fix,'A, y/l) 
dEE-D 

+ L ls(d)(Y) ~QdD (pr'fix,' A, ufl)) 
dED-E 

+ L IS(d)(Y) ~STOP~ (A, y) 
di-EuD 

~d, EUD~ Rd~ (A,y) 

where Rd is the same as in law 8. D 

If {S,loSt<~ is a finite part.ition of n Wf> write 

Os, p, 

for the prefix form of general choice. Also, if all tbe branches of the choice are 
guarded and the sets au which they are wnditioncd coincide with the guards, we 
can omit the sels: for example a -I P 0 b -I P == a ---l' P S(t>j 0 b -I P. 

7.6 Simple Parallel Composition 

Two processes which operate in locksl,ep parallel must synchronise with each other 
and wiih their common environment at. every step. Thus if the environment offers 
a trace! to the parallel system P II Q, then the components behave as P given 
z and Q given z, and interact in the same way as the corresponding prohabiJ-ity 
measures in the model PCSPo. That is we define simple para.llel composition as a 
transformation of cpm's based on the fuuction par: 

~p II Q~p (A,z) " J~P~p ((par-'A)"z)~Q~p (dy,z). 

We hal'e already shown in chapter 3 that par is mt'--<l.8urablt> (FxF)jF. Therefore 
by lemmas 2.1.9 and 2.1.8 the above defines a cpm. 

Not surprisingly all the la .....s for simple paralle! composition which hold in PCSPo 
also hold in PCSP, but additionally there is a law (law 8) which relates pa.rallel 
composition to eX\'f;rnal choice. 

Lemma 7,6,1 

LI P II Q 0= Q II P. 
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L2 P II (Q II R) " (P II Q) II R. 

L3 P II STOP " STOP. 

L4 (P ,n Q) II R " P II R ,n Q 11 R. 

L5 P II (Q ,n R) " P II Q ,n P II R. 

L6 (a~P)II(a~Q)" a~(PIIQ). 

L7 a I' b "" (a ~ P) 11 (b ~ Q) " STOP. 

L8 (f' E~ P,) II (g, G~ Qd) " d, EnG~ (Pd II Qd)' 
o 

We will show in the uext .~ection that simple parallel composition is a special case 
of alphabetised parallel composition. So the laws for ~jmpJe parallel composition 
need not be proved separately. 

7.7 Alphabetised Parallel Composition 

Let Band C be two sets of actions snch that 1" E B ~ E T , 1" E C ~ ET • We 
write P Bile Q to denote the parallel composition of two processes P and Q such 
that P can perform actions in Band Q can perform actions in C and P aud Q 
synchronise on actions in the intersection B n C. The environment. of this system 
participates in every action and can be thonght of as a scheduler or adversary. If 
the environment offer.~ a trace z E E T to the system, then the component P is 
affected only by the steps in z which are elements of B. So it behaves as P given 
zrB, provided z rB is infinite. If it is finite then P cannot do anything beyond zf B. 
i.e. it behaves as P given (zt B)(1")"". Apart from the fact that the sequence offered 
by the environment determines how the actions performed by different components 
are to be interleaved we want parallel composition to work in the same way as in 
chapter 6, that is the probability that the system performs a sequence of actions 
shonld be the product of the probabilities with which the wmponents take part. 
We therefore define parallel composition as a transformation of the prod1Jl:t of the 
component cpm's, based on a fnnction which merges two sequences T and y as far 
as possible in accordanf£ with the seqnence offered by the environment. 

OP Bile QDp(A,z) = JOp~p«(cpa'·ii.'c.,A),.zlB) ~QDp(dy,zlC) 
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where 

cparB.C,z ; fI: x (1 _ fI: 

'<Ix, YEn cparB.C.z(X, y) = mergeB,LT(x, mergeC.ET(Y'z)) 

(Recall that 1 is the restriction fnnction which adds a tail of r's where f produces 
a finite trace.) 

To show that the above tri\nsformation defines a cpm we only need to prove 
that cpar is a measurable function. 

Lemma 7.1.1 The function cp(JrB,C,: is measurable FxF/F. o 

Proof Wt fIrst expand the definition of cpa"'8.c,z: 

Cpar8.C,.( x, y) 

mergeB,ET(x,z) if de:s y 
{ mergeB,E,(x, (z In)(T)") if (=[nHC < y A (zfn + 1) I C f. y 

z if::fB:$x/\zfCS;y 
(zln)(T)" if(zlnHB<xA(ztnHC<y

{ 
A ((zln + IHB f. x v (zln + 1)IC f. y) 

If t is a finite trace such that 1 1.. z and -, :I fl· t < (zfn )(r)'" thf'.n cparii.1c,zS( t) = 0. 
Otherwise, if I. is r-frcc then we must have t = z f#t and 

cp"ii.'c"S(t) = S(tlB)xS(IIC), 

If t contains a tail of r's then :1 i' E r:. such that t' < t < t'(r)'" and 

cparii.1c,zS(t) = cp(Jrn,'c,zS(t'J - U... ,.cparii,lc,zS(r.'(e)) 

which, as a differl'nce of measurable sets, is also measurable. So cparB,C,z is mea­
surable. 0 

Lemma 7.7.2 Simple parallel composition is equivall'nt to alphabetised paralll'1 
composition which is synchronised on all actions: P II Q == P E..II ET Q. D 

Proof Note that '<I x, yEn 

Cpa"ET,ET'Z(X, y) 

z if x = y = x 
{ (zln)(T)" if xln = rln = yin A (=" ¥ z" V z, ¥ y"), 

par(par(x,y),x) 
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By definition 

qP II Q~(A, z) = JqP~((pa,-IA).,zHQ~(dy,z). 

The support of the product measure is Tx T where T == {z} UU.. {(zrn)(r}"'}. But 

x,y E T ~ 

par(x,y) = par(par(x,y),z) = Cpa1!:..-,E.,.,...(X,y). 

Therefore 

OP II Q~(A, z) Jap~(( cpa''';E",A)" z) ~Q~(dy, z) 

~P dE, QD(A, z). 

D 

Lemma 7.7.3
 

Ll PBlleQ" QBlleP'
 

L2 (P Bile QJ BucilD R " P Blleun (Q eli D R).
 

L3 B <:: C =} P Bile STOP" STOP.
 

L4 (p,n Q)BllaR" PBlleR,n Q.lleR. 

L5 P .lIe(Q ,n R) " P Bile Q ,n P Bile R. 

L6 a E Bn C ~ 

(a~P)Blle(a~Q)" a~(PBlleQ)· 

L7 a E B n C, bE B - C =} 

(b~P)Blle(a~Q)" b~(PBllea~Q). 

L8 a,bEBnC,a1'b=} 

(b ~ P) Bile (a ~ Q) " STOP. 

L9 b E B '. C, c E C - B =} 

(b~P)Blle(c~Q)" b~(PBllec~Q)S('IDc~((b~P)BlleQ)· 

The last four Ja.ws a.re generalised by the following: 
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LlO Let E and D be sets of visible actions such that E C Band Dee. Then 

(v ,E~ P')Bllc(d ,D~ Q,) '" g' G~ P' Bile Q' 

whe«	 G = (EnD)u(E-C)u(D-B) 
P' == P~ if 9 E E, P otherwise 
Q' == Q, if 9 E D, Q otherwise. 

o 

Proal Symmetry follows from the symmetry of cpar and Fubini's theorem. For 
associativity we first prove that 

(cparB,C,u, id) ; cparBuC,D,,, = (id, Cpare,D, .. ); cparB,CuD,,., 

Expanding the left hand side we get 'r/ x, y, :: E n 
cparBUC,D,,,( cparB,C,,,' id)(7, y,::) 

cparRUc,D, .. (-U. or) ifllrBS:xl\llrCS:y 
cparBuC,D ... « II rn)( r)W, z) ;{ (u rn Jr B < Z 1\ (u I,,) 1c < y

{ 
1\ ((uln+l)IB 10 Z V (uln+l)fC 10 y) 

'U if u rB :$ x 1\ II res; y /\ u fD s: z 

(uln)(r)" ;{(ul"JrB<zl\(ul"JrC<yl\(ulllj[D<z 

{ 1\ ((uln+1JrB f Z V (uln+1JrC f y 
V (urn+l)lD f z). 

Because of the symmetry of cpar we can write 

cparB ,CvD, .. (id, cparc,D, .. )(:C, y, z) = cparcvD,B ... ( cparC,D,,,, id)( y, z,:c) 

and use the above formula to expand it and show equality. It follows that 

(cparB},.. (cparB'0c,D,llAL)I = «( cparB,C,u' id) ; CparBue,D, .. )-1 A)I,: 

= «(id, cpare,D,,,); cparB,cVD, .. )-l A)r,: 

= (cpare,ID,. (cparii.lcUD, .. A)or)z' 

This together with Fubini's theorem allows us to prove associativity: 

~(P Bile QJ BuciiD RD(A,v)

JqP B II c QD (( epar';~c.D .• AL, ,,1 B U C) GRD (d=, ul D) 

JJqQD (( epari.'c .• ( cpari~CD .• AU,. vl C) qPD (dx, u 1B) qRD (dz, ul D) 

JJqQD (( cparC.'D .• ( eparii.'cuo .• AJ,)" ul C) ~RD (dz, u 1D) qPD (dx, ul B)
 

J~ Q cliD RD (( ep"ri.'cuo .• AI" ul CUD) qPD (dx, ul B)
 

qP Bil euD (Q clio R)D (A, "I·
 

http:epari.'c.�
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For law 3 note that 

~P Bile STOPP (A,z) J app (( ,pa'B,\",A)" zl B) aSTOPp (dy, '1 C) 

app « <pa'B'e.,A),'I", zl B) 
since Vz· aSTOPp({(T)"),O) = 1 

aPD (n, zl B) if (T)" E A 
{ ~PH0, zl B) nthe,wise 

since eparB,c,z(J:, (T)"') = {T)W if B <;:: C 

aSTOP~ (A, 01 BI 
aSTOPD(A,o). 

The proofs of distributivity of alphabetised parallel composition over probabilistic 
choice follow along the sanw lines as the proofs of the corresponding laws for simple 
paraHel composition in PCSPo. Since laws 6 - 9 are special cases of law 10 the 
latter is the only one which remains to be proven. Let aPD = ae : E..........,. p.~ a.nd tet 
~QD = ~d , D ~ Q,~. By definitinn 

aPBllcQD(A,z) = Japp((cpa'·B.'e.,A),,'IB)~Q~(dY,'IC). 

1£ Zo = e E EnD then (z1 B)o = f and (zl C)o = e. Therefore in this casf' 

~P Bile QD(A,o)
 

J ~e ~ P,D(<pa'B.'e.,A).. zlB) ~e ~ Q,~(dw,zl C)
 

J ap,D (prejix;' (cpacB.'e., A)"I.' (zl B)/ I) aQ,D( dw, (zl C)/I)
 

J ap ,0 (,pa'·B,C"/1 (prejix; 1 A)., (z/ I) I B) aQ,D( dw, (z /1)1 C)
 

ap, Bile Q,D (preji,,-' A, z/I)
 

~e ~ (P, Bile Q,)~(A,z).
 

If"" = e E E - C then (zl B)o = e and zl C = (z/l)l C. The"foce 

ap Bile QD (A, z)
 

J ae ~ P,~ «,pa'B~e.,A)" (zl B» N~(dy, zl C)
 

J W,D(pcejix;'(cpa'ii.'e.,A),,(zl B )/I) ~QD(dy,zl C)
 

J ap,D (cpa'B.e.,/,(pceji,,-' A)" (z/I)I B) aQD( dy, (z /1)1CI
 

ap, Bile QD(pcejix,-'A,z/l)
 

ae ~ (P, Bile Q)D (A, z).
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Sim.ilarly ir ~ = e E D - B then 

qP Bile QD(A,z) = q, ~ (P Bile Q,)D(A,z). 

If", E (B - E) n G then (zl B), = Zo and (zl G), = ",. So 

qP Bile QD(A,z) = JqSTOPD ((,paro.'c"A)"(zlB)) qQ~(dy,zlG). 

Also ZQ E (B - E) n C => cparB,c,.(T)"", y):::: {T)'" for all y. Therefore it follows 
that cpaTB",lc,.A;2 {(T)"'}xfl ¢:> (T}'" E A and 

qP Bile QD(A,z) ~ qSTOP~(A,z). 

The same is true if ZQ E (C - D) n B. Finally, if Zo E (D u C)~ then 

qP BII c QD (A, z)	 ~ JOSTOP~ (( cpaTo,'c., A)" (zl B)) qSTOPD( dy, zl G) 

= QSTOP~(A,z) 

since {(1)""} X{(T)"'} E cparii,lc,z A¢:> (T)'" EA. Drawing all these cases together, 
we get 

QPBli c Q~(A,z)	 = L IS('I(z)q, ~ (P, Bile Q,)DIA,z) 
eE£nD 

+ L IS('I(z)q'~IP'BiieQ)D(A,z) 
eEE-C 

+ L Is(,)(z)~, ~ (P Bile Q,)D(A,z) 
eED-B 

+ L Is(,)(z)qSTOPD(A,z) 
eEr:-G 

wheee G = (E n D) U IE - G) U (D - B). Thus as ecquieed 

~p Bile QD(A,z) = ~9' G~ IP' Bile Q')~(A,z) 

where p', QJ as defined in Law 10. o 

We write liB P; for the prefix form of parallel composition. Each component 
process P; may 'perform only actions which are in the corresponding set fl,. The 
behaviour of the whole system is the pairwisl? evaluation of the parallel composition 
components (by associativity). 



7.8 Relabelling 

RecaIl tha.t given a. cpm P and functions f and 9 a cpm P' can be defined as a 
transformation of P by setting P'(A,z)'= PU-1A,g z). For the prefixing operator 
we use 9 z = prejix;lz. For parallel composition we use 9 z = (xl B,zl C) which 
is an element of cparii1c zZ' An a.ttempt to define hiding or sequential composition 
similarly fails because th'ere is no sensible way of select.ing an element of the inverses 
of hide and seq. 

hide"B1 z (ululB~zJ 

seq-Iz U.S((zrn)(J))x(z/n) U (z}xf!. 

However. we can define relabelliug if we restrict oursPives to injective relabelling 
functions. Let f : I: --+ I: be such a. function, which is lifted to sequences in the 
usua.l way. Then 

I1I(P)~p(A,z) '" ~P~p U-'A,j-'z) 

defines a. cpm. 

It is easily checked that rela.belling satisfies the following laws: 

Lemma 7.8,1
 

Ll f(STOP) '" STOP.
 

L2 f(g(P)) = (g;f)P.
 

L3 f(" E ~ p.) = "f(E) ~ f(P) •.
 

L4 f(P ,n Q) = f(P) ,n f(Q)·
 

L5 f(PBllcQ) = f(P) J(B1IIJlC) f(Q)· 
o 

7.9 Conditional 

We use an infix-notation for conditiona.ls. For a. boolean expression b and processes 
P, Q define 

P <l b t> = {QP~ if b = true 
Q QD QQ~ othe,wi,e. 
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7.10 Recursion 

To give a semantics to recursion in terms of cpm's we use the same approach as in 
chapter 4: we define the semantics of a recursive expression to be the fixed point 
of an eqnation and use a metric on the space of cpm's and the Banach Fixed Point 
Theorem to establish conditions of well-definedness. 

Let P be a term possibly containing tbe free variable X. As before, we write 
J.l X • P to denote a process that behaves a.s P with X representing a recursive 
invocation of the process. To define its semantics we regard ~P~p as a function of 
the cpm to be bound to the variable X in P: 

Definition 1.10.1 If P is a PCSP term possibly conta.ining the free variable X 
'hen M(X,P)p"'\ Y '~PDp[YIX]. 0 

We can then define 

~J.l X • PDp == the unique fixed point of the mapping M(X, P)p. 

We llse two metrics which are closely related to the ones we used for the semantics 
of PCSPo• Given two cpm's P and Q define 

6(P. Q) " 
~ 1 

,up L :;-;IP(S(z r
zE};'" ,.=0 -

n), z) ­ Q(S(z fn), z)1 

and 

6'(P,Ql " inr {2-' IVz E EW 
• P(S(z[n),z) = Q(S(zrn),z)}. 

Theorem 1.10.2 The spa.ce CAl is complete in the metric Ii. o 

Proof Let (P;).N be a Ii-Ca.uchy sequence of cpm's, i.e. 

V,>O,3N,N· Vn,m>N· 6(P.,Pm)<<. 

This implies that for ever)' z E I:'" 

~ 1 
L,IP.(S(dk),z)- Pm(S(zrk),z)1 < ,. 
1=0 2 

SinceP.. (S(t).=) = 0 for any i- t ... we have 

~ 1
 
L 2' L IP.(S(I),z) - p .. (S(I).z)1 < "
 
<=0 leE.!: 
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that is (or every:! E I:'"' the sequence of p .. '5 given z is a sequence of probability 
measures which is a Cauchy sequence with respect to the metric d. By theorem 4.2.4 
this converges to a probability measure, P given z, say. For all z E I:'" and all 
cylinder sets A E :F w€ have P.. (A, z) --+ P(A, z). Hence for a fixed cylinderset 
A, P(A, z) is a random variable. Also if A" TA then P(A .. , z) --+ P(A, z) and as 
a function of z, P(A, z) is the limit of the random variables P(A", z) and hence 
itself a random variable. Hence the class of sets for which P is a random variable 
contains the cylinder sets and is a monotonic class. Hence it contains:F. So P is a 
cpm and the limit of the sequence (P.. ).. :N. Therefore eM is b-complete. 0 

The following theorem establishe~ Lip~chit;>; bounds on the operators of PCSP. 

Lemma 7.10.3 Let P, Q be terms possibly involving the term variable Z and let 
F and G be the corresponding semantic functions, that is let F == M(Z,P)p and 
G == M(Z, Q)p. Consider a, semantic function H such that 

1.	 H is constant with respect to pOZ~. Then r(H) = O. 

2.	 H ~ M(Z, Z)p. Then r(H) ~ 1. 

3.	 H = M(Z,a ~ Pip. Then r(H) ~ 1/2 rtF). 

4.	 H ~ M(Z, e: E ~ P,)p. Then r(H) ~ 1/2 mH'Edr(F,» where
 
F, " M(Z, P,)p.
 

5.	 H = M(Z,P ,n Q)p. Then r(H) ~ p r(F) + (l-p) riG). 

6.	 H ~ M(Z, P 5 0 Q)p. Then r(H) ~ mH(r(F), r(G)). 

7.	 H = M(Z, P Bile Q)p. Then r(H) < 2(r(F) + riG)). 

o 

Proof Let X, Y be cpm's. If H is constant then 6(H X, H Y) = O. If II is the 
identity function then 6(H X, H Y) = b(X, Y). For H = M(Z, t : E --+ p.)p and 
F. == M(Z, p.)p we have 

fJ(H X,H Y) 
~	 1 

,up L:­
zEl:'" ,,=1 2" 

(I L: [5('I(z)( F,X (prefix;' S(z I"), x/I) - F, Y (prefix;' 5(, In), z / I) 
'EE 

+ L: 15('I(z)(aSTOP~ (S(z [n),z) - ~STOP~ (S(z In), ,)1) 
.~E 
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00 I
 
:<; ,up L~
 

·/IEE'" .. =1 

L IS('I(,)I F,X (prefiz;' 5(, In), ,/1) - F, Y (prefiz,-' 5(ztn), '/ j)1 
,eE 

I 
:<; -2 m• x6(F,X,F,Y).

'eE 

So r(lI) ~ 1/2 max,eE:(r(F,)). The Lipschitz condition for prefixing arises as a 
special case of this rule. For an expression with probabilistic choice the metric 6 is 

6(HX,II Y) 
I 

'lip L00 - Il,(F X (5('ln),,) - F Y (5(:ln),:)) 
zEE'" .. =1 2" 

+(1- p) (G X (5(: I"),:) - G Y (5(, In)" )11 

S p6(FX,F Y)+(I-p)6(GX,G Y). 

For general choice, i.e. if H = M(Z, P 5 0 Q)p, Wf'; hav~ 

6(8 X,II Y) 
I 

sup L00 

-IIs(,)(F X (5(ztn), ,) - F Y 5(, In), ,i)
zEE~ """I 2" 

+ls,(,)(G X (5('ln),,) - G Y (5('1,,), z))1 

S m.x(6(F X, F Y),6(G X,G Y)). 

So r(II1= m.x(r(F),r(GJ). 

To determine the Lipschitz condition of parallel composition recall that for T-free 
z, i.e. jf z E E.... , then 

~p 811e QO (5(, In), ,) = QPO (5((, In) I B), ,) B) aQO (5«(z InHC), ,) C). 

Therefore if f{ = M(Z,P 8ile Q)p then 

6(II X. f{ Y) 
1 

'up L
00 

2.(1 F X (5(('lnJlB),,)8) G X (5(z[n)fC),:)Cll) 
zEE"" ..=1 

-F Y (5((zl")18).:)8) G Y (5(zln)fC),,(C) 
I 

< ,up L00 

-(IF X (S(,lnHB),z)B) - F Y (5((:I,,)fB),,) 8)1 
zE:r'" 11.=[ 2" 

+1 G X (S((z I") I C),z) C) - G Y (5(z I"JlC), ,) C)I) 

where the last. step follows from the inequality 4.1. Suppose that the first k elements 
of a trace z are in B and the next j in C -B. Then for n. < k, (zrnHB = {:rBHn. 



7.10 Recursion 87 

For k S n < k + j, (, rn) rB = (, rB) [k. Also L~~;. 2-' S 2.2-'. Thereafter 
(z rn) rB s (z rB) rn - j) a.nd for any subsequence of z consisting of i actions in 
C - B we have 2-" < 2.2-(II-jl. Hence 

Ii(H X,H Y)
 
~ 1
 

S ,up I: 2--;; IF X (5(,rn),,)-F Y (5(zrn),z)1
 
zEB'" _=1 2
 

00 1 
+ ,up L22'IG X (5(,rn),z) - G Y (5(zrn),')1 

zEC.... II =1 .. 

S Ii(F X, F Y)+Ii(G X, G Y). 

So r(H) < 2(r(F) + r(Gl). o 

As in chapter 4, the Lipschitz hounds for fJ mean that even unguarded recursion 
is sometimes well defined. However. we still need fJ' to show that guarded recursion 
is always well defined. 

Definition 7.10.4 Let P be a PCSP-term possibly involving a free variable Z. 
We say that P is constr11ctive if M(Z, P)p is a contraction map w.r.t. 6\ and non­
destructive if M(Z, P)p is non-expanding w.r.t. fJ'. 0 

This means that 

P is constructive 

.. 1i'(~PDp[X/ ZJ, OPDp! Y / Z]) < 1i'(X, Y) 

.. ('h E E"· X (5(, rn), ,) = Y (5(dn), ,) 

=> V, E E" . OPDp[X /ZJ(5(d n+ 1), z) = OPDp! Y / ZI(5(z rnt 1), z)). 

Similarly for non-destructive terms. 

Lemma 7.10.5 

1. STOP is constructive. 

2. X is non-destructive. 

3. a ~ P is constructive jf P is non-destructive. 

4. e : E ~ P e is constructive if every P~ is non-destructive. 

5. P pn Q, P sO Q, P II Q and P Bile Q are constructive if P and Q are 
constructive. 

o 



7.10 Recursion 88 

Proof Let X, Y be two cpm's and suppose that Vz E E""· X (5(z rn),z) = 
Y (S(z rn), .. ), Cla.uses 1 and 2 follow directly. For clause 4 (whicb implies clause 
3) note that 

a, ;E ~ P,Op[X / Z] (5(, in + 1), z)
 

qP~Op[X/Z] (5((z/IHn),z) if", E E
 
{ o otherwise
 

~P~Op[Y/Z] (5((,/I)1n),z) if", E E
 
{ o otherwise
 

q,; E ~ P,Op[Y/Z] (5(zrn + 1),z).
 

The proof that probabilistic choice is non-destructive is the same as in chapter 4 
if we substitute (5«z/l) ~n), z) for the probability measures used in the argument 
there. The proof t.hat general choice is non-destructive follows if we substitute the 
appropriate indicator functions for the probability of dwice. 

For alphabetised parallel composition we get 

~P811e QOp{X/Zj(5(zrn),') 
qPOp[X / Zj (5(z rn) rB), zl B) ~ QDp[X / Z] (5((z rn) rC), zl C) 
qPOp[ Y / Zj (5«(z rn) IB), '1 B) qQOp[Y / Z] (5«(z rn) i C), zl C) 

qP Bile QOp[Y/Z](5(,rn),z). 

This completes the proof. o 

We combine the last two lemmas to cha.racterise a class of recursive expressions 
which are well-defined. 

Theorem 7.10.6 Suppose that P is a peS? expression possibly containing the 
free variable X. If r(M(X, P)p) < 1 or if P is constructive with respect to X then 
the semantics 

~~ X • POp 

is well defined for all bindings p. o 

For weJl-defined JJ X • P the same laws apply for PC5P as for PC5Po. 

Lemma 7.10.7 

L6 pX. P '" Pip x. PIX]. 

LT If Y is not free in P then JJ X • P == JJ Y • P. 
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L8 If M(X, P)p is a 5-contraction map then 1J X • (p,n X) == 1J X • P. 
o 

We treat mutual recursion in the same way as in cbapter 4, substituting cpm's 
for probability measures as appropria.te. Furthermore, the simila.rity between the 
metric d' on PM and 5' on CM means that recursion induction on cpm's can be 
treated in the same way as recursion induction on probability measures. So we will 
be able to use the following two rules: Suppose that R is a satisfiable and continuous 
predicate and that the PCSP-term P is constructive for the variable X. Then 

Rule 7.10.8 

V~', PM· R(Y) => R(OPDPlY IXIJ 

R(~~ X • PPp) 

o 

If P is a vector of mutually recursive processes which is constructive for the vector 
of variables X then to establish that a vector of predicates R correctly describes 
the fixed point of M(X, P) it is sufficient to show that each R; is continuous and 
satisfiable and that R is preserved by M(X, P). 

Rule 7.10.9 

(Vi· RJ Y,)) => Vj' Rj(OP,Pp[YIXIJ 

R(O~X, PPp) 

o 

7.11 Two Common Properties of PCSP-processes 

We can now prove that all PCSP-processes have tht> following two properties. 

Lemma 7.11.1 

1. If P is a PCSP-term theu Vy E n 

OPP({y}UU.{(y[n)(T)"J,y) ~ 1. 

2.	 If lEE; and y> I then OPP (5(1), y) = OPP (5(1), I(T)"I. 
o 
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Proof We prove both properties by structural induction. Consider property 1. It 
is obviously true of STOP. For the every operator, suppose that property 1 is true 
of the arguments. Then for external choice 

0' :E ~ P,p ({y) U U. {( y in )(T)"), y) 
'" I: ISI,}(y/l) OP,p (prefix;'{y/I) U U.{(y/I InleT)"}, y/I) 

,eE 

+I: Isl,}(y) OSTOPP ({y) U U. {( yin )(T)"), y) 
'OE 

I. 

The proofs for probabilistic and general choice follow immediately from the induc­
tive hypothesis. For parallel composition we have 

cparii.'c.,({y}uU.{(yln)(T)")) ~	 B"xC". 

Hence 

OP,lIc QP({y} uU.{(yln)(r)"},y)	 = ~PP(aw,ylB) ~QP(C",Y1C) 

= I. 

The proof for relabelling follows because the relabelling function f is 1-1 and maps 
T to itself. Hence 

;-'({y}UU.{lYln)(r)")) = ir'Y}UU.{((r'Y)ln)(T)"}. 

A well defined recursive process J.l X • P is the limit of a sequenc.e of iterates. 
(POSTOPP )"N '"y, each of which satisfies pcoperty 1. Since {y) U U. {( y In )(r)") 
is a closed set, we deduce from theorem 2.1.6 that 

~I'X • pp ({y) U U. {(y In )(T)"), y) 

2: lim supF'OSTOPP({y} uU.{(yln)(r)"},y)
 

= I.
 

Now consider property 2. It is obviously true of STOP. It is true of all processes 
if t = O. For non-empty I, suppose that it holds of the arguments of each PCSP­
operator. If lQ E E then 

~, : E ~ P,D (S(t), y)	 P,(S(t/I), y/I)
 

OP,P(S( 1/1), (I/I)(r)")
 
~, : e ~ P,p (S(I), I(T)").
 

If lQ ¢ E then the process behaves as STOP and property 2 js also true. For 
probabilistic choice the proof follows directly from the inductive hypothesis. For 
general choice we have 

wsO QP (S(I), y) = /sly) OPD (S(I), y) + /s'(y) OQD (5(1), y). 
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If 5 n Set) ~ 0 thi, hecomes 

OP s 0 QD (S(t), Y)	 OQ~ (S(t), Y)
 

OQ~(S(t),t(T)-)
 

OP sO QD(S(t), I(T)-). 

Similarly if se n 5(t) =	 0. If 5(i) intersects both 5 IYld 5 e then by definition 

YESnS(t)i\zES'nS(t) => OPD(S(I),y)~OQ~(S(I),z). 

Hence the above steps also apply to this case. For parallel composition we have 

~P Bile QD (S(t), y)	 ~ OP~ (S(t rB), yl B) OQD (5(1 IC), y1 C) 
~ OPD (S(t IB), (tf B)(T)-)OQD (5(1 IC), (It C)(T)") 

~ oP Bile Q~ (S(t), I(T)"). 

The case of relabelling is easily checked. Finally, recursive processes satisfy property 
2. because the probability of S(t ) is preserved in the limit. Tbis conclndes the prooL 

o 



Chapter 8 

Proof Rules 

The description of an algorithm in CSP process algebra is a specification at an inter­
mediate level of abstraction. At a higher level of abstraction. the properties which 
the algorithm is designed to achieve provide predicates upon process behaviours. 
If it ca.n be shown that such a predicate holds of every possible behaviour of the 
algorithm we say that the algorithm satisfies the predicate. At a lower level of 
abstraction lies a (deterministic) implementation in, say, occam. 

In the traces model of esp, a bebaviour is just a finite trace. In the failures­
divergences model it is represented as a failure, that is as a trace combined with 
refusal sets. In the timed model, a, beha,viour is a timed failure. In all these models 
the semantics of a process is the set of aU possible hehaviours of that process. 
Thus to characterise when a process P with semantics T[PJ satisfies a specification 
expressed as a predicate R with free variable u, it is sufficient to set 

PsatR = (uETlp!""R(u)). 

In the probabilistic model a process behaviour is an infinite trace. The semantics 
of a process is not the set of all possible behaviours, but a cpm which assigns a 
probability to every behaviour. One way of defining wben a PCSP~process satisfies 
a specification wonld be to derive the set of possible behaviours from the cpm 
and use it in a definition of the above form. However, we can give a more direct 
definition. If a predicate describes all the possible behaviours of a process, then the 
probability of any behaviour for which the predicate is false must be zero. So we 
say 

P sat R = 't zEn· ~P~ (R, zl = 1 

where we follow the convention of writing just R for the set {u I R( un. Note that 
since every process behaves like STOP wben offered {or)"" by the environment, i.e. 
't P E eM· P( {(r)W), (r}W) = 1, it follows that P sat R "" R( (r}W) = tru'. So 
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typically R is a predicate of the form (tto = T) V R'(u), that is a predicate which 
constrains what a process may do if it does anything at all. Such a comtraint is 
called a safety property, as opposed to a liveness property which asserts that a 
process will do something. 

If a safety property is violated, then at some finite point some undesired be­
ha.viour occurs which is irremediable. For instance, the statement that. certaiD 
actions always happen in the same order constitutes a safety property because once 
the order has been violated, it cannot be restored by any later actions. 

By contrast, aliveness property caD be satisfied at some point in the future no 
matter what ha.ppens initially. Typicalliveness properties are fairness, asymptotic 
behaviours, starvation freedom and termination. These observations motivate the 
following definitions which we adopt from Alpern and Schneider [AS85]. 

Definition 8.0.2 A predicate R upon infinite sequencE'S with freP variable u rep­
resents a safety property jf 

If,,:n· ~RI") => 3n:N·S(urn)nR~0. 

o 

Definition 8.0.3 A predicate R upon infinite sequences with free variable u rep­
resents a Iiveness property if 

1ft E j;'. S(t)nR¥0. 

o 

Since these definitions arc expressed in terms of infinite traces they (annot be 
used in a semantics which is based on finite traces, like the traces model or the 
failures-divergences modeL In the traces model it is impossible to reason about 
liveness properties. In the failures-divergences model. liveness properties are ex­
pressed in terms of refusal sets. It would be interesting to investigate the differences 
between these alternative concepts of liveness, but we have not had time to address 
this issue. 

8.1 Safety Properties 

We now present an inference rule for each clause in the syntax of PCSP, expressing 
the properties of a process in terms of predicates with several components. For com­
pound processes, the antecedent of the rule will consist of component specifications 
for the component processes. 

The definition of sat gives rise to the usual logical rules: 
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Psat R P sat R 
P sat T R""T 

P sat true P sat (R A T) Psat T 

The null specification is true of any process because {u I true} = n a.nd 

y, Efl· GP~ (fl, z) = I. 

Each gOil.l may be addressed separately because 

'h E fl . GPD (R, ,) = I A GPD ( T, ,) ~ I 

'* 'hE fl·GPD(Rn T,,)~ I. 

We may wpaken any specification already established beca.use 

V'Efl·GPD(R,z)=IAR<; T "" VZEfl'GP~(T,z)~ I. 

The process STOP is unwilling to participate in any external activity. The first 
visible action performed by a -+ P must be a and the subsequent behaviour is that 
of P. So the inference rules for STOP and a -+ Pare 

P sat R 

STOP satu = (r)' o ~ P sat ("" = r) V (uo ~ a II R(u/l» 

These last two rules are special cases of the following: 

TIe E E· p. sat R, 

, : E ~ P, sat ("0 ~ r) V ("" E Ell R%( u/l» 

To shu..... that this is sound let R("u) == (Uo = r) V (Uo E E /\ R« It/l )). Then 
Yz E f! 

~" E ~ P,D (R, z) 

L 151 '1(' )GP,~ (prcfiz,-' R, z/ I) + L ISI,I(' )GSTOPD (R. z) 
.EE 'fE 

L ISI,}(z)QP,~(R"z/l) + L ISI'I(z)GSTOPD(R.z) 
.EE tfE 

I. 

Any behaviour of the pruhabilistic choice P pn Q must arise from either P or Q. 
This gives rise to the inference rule 

Psat R
 
Q sat T
 

P ,n Q sat (R V T) 
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This is sound becaus~ for all zEn 

OP ,n QD (RU T,z)	 p~PD(RUT,z)+(I-p)~QD(RUT,z) 

p ~PD (R, z) + (l-p) ~QD (T, z) 

1. 

A process offering external choice also behaves like one of its components. So the 
same inference rule applies as for probabilistic choice. 

Psat R
 
Qsat T
 

P s D Q sat (R V T) 

This rule can be strengthened if we make the anleccdents d~pend on tile traces 
offered by the environment, in which case w~ havf> to abandon the sat-nQtation in 
the antecedent part of the rule. 

'f z E S . OPD (R, z) ~ 1
 
'fz E S'· OQD(T,z) = 1
 

PsD Qsat(RV 1') 

The soundness of this rule (as of the weaker one) follows immediately from the 
definition of general choice: 

~PsD QD(RUT,z) ls(z)OP~(RU T,z)+Is,~QD(RUT,z) 

1. 

In simple parallel composition P 11 Q processes P and Q must ::;ynchronise on 
every action. Thus the parallel system can do only what both of them are prepared 
to do: 

P sat R 
Q sat T 

PII Qsat(RA T) 

By definition, 

OF II QD(R n T,z) J~PD(par-'(RnT)),,') OQD(dy,z). 

We prove that 

~P~(R,,)~lA~QD(T,z)=1 => RxT<C:,par-'(RnT). 
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We know that if a. process attempts to perform a trace, u say, then the environment 
can forO) it to stop by offering a trace z which disagrees with u from some point 
onwards. Therefore if P sat R and R(u) then R must also be true of aU prefixes of 
u followed by (T)"' 

Psat R => (R(u) => 'In· R((urn)(T)")). 

AlsoVv'par(u,v)= u V3n'par(u,v)=(ufn)('r)"". Thusu E R=>par(u,v)E R. 
Applying the same argument to l' E T we get 

uER/\vE T ~ par(u,I')ERnT. 

Therefore 

P sat R A Q sat T 

=> OP II QD IR n T. ,) 

~ 

IOPDx~QD)(par-'(RnT),,) 

IOPDxOQD)(RxT,:) 

~PDIR,:) OQDIT,:) 
1. 

The generalised versioll of this inference rule i" 

P sat R A (u E W) 
Qsat T A Iu E C") 

P Bll c QsatRlv!B)AT(u1 C ) 

The proof of soundness of this rule has to take account of Band C but, apart 
from that follows along similar lines as the previous proof. Since Rand T arc 
'prefix-dosed' we have 

u E R /\ u E B"" II vET A v E ~. 

=> rparB.c.,lv,")E (wIR(wlfl)ATlwIC)). 

So 

(Rnfl")xITnC") <; rparB,'c.,{wIRlwIBjAT(wlC)). 

Therefore 

P sat (R A u E B") A Q sat (T A vEe") 

=> ~PBllcQD({uIR(u1fl)A T(u1e)),z) 

(OPD x ~QD)(rparB.'C.'{w I R(w1fl) A Tlw! e)},,) 

~ OPD (R. '1 B) ~QD (T, zl e). 
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The following proof rnle enables us to show that a recursive process ~atisfies a 
predicat.e upon traces. let R be a safety property. Then 

X sat R ==? P sat R 

~X.PsatR 

To show that this is sound we show that it is a special instance of the proof 
rule 7.10.9 (for predicates upon recursive processes). By definition, if X E eM 
then 

X ,at R ¢> \I y E lJ· X (R, y) = l. 
Wc know that R is 'prefix-closed' in the seuse that auy visible prefix of an element 
of R followed by (T)w is itself an element of R. Let 

T(X) cC \lyElJ·X(R,y)~l. 

Then T is a satisfiable predicate upon processes, becanse STOP sat R. If T( X) is 
false, then X must assign positive probability to some behaviour which violates R. 
Since R is a safety property this mnst be apparent at some finite point, and T is 
false of every process in the oprn ball of processes which agree with X np to that 
point. So T is continuous and the above proof rule is an instance of rule 7.10.9. 

8.2 Liveness Properties 

The proof rules presented ill the last section arf' most useful for safety properties. 
For liveness properties we have to assume t.hat the environment docs not block 
the progress of the system whose properties we are t.rying to prove, i.e. that t.he 
environment resolves every external choice on which the system depf'nds. but ac­
cepts every internal (that is: probabilistic choice) made by the system. It t.urns out 
that any process combined with such all environment caIl be modelled simply a.:; a 
probability measure, rather thall as a cpm. 

In this section we identify a subset of PCSP which has a well-defined semant.ics 
both in CM and in PM. Wf> show that thf' semantics @ of a construd in t.his 
subset of the language is related to its semantics as givC'n by [~ by a transformation 
function on traces. We then show that the assumption we make of the environment 
of a process to analyse its liveness properties results in a system that bdongs t.o 
this subset of PCSP. So to analyse liveness properties we never have to consider 
cpm's, but only simple probability measures. That is, the same techniques which we 
used in chapter 5 to prove liveness properties of the rather limited class uf PCSPo 
processes can also be used to analyse processes in generaL 

First note that every probability measure can be used to induce a conditional 
probability mea.sure. 
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Lemrnll 8.2.1 If P is a probability measure in PM, then the function defined as 

Q (A, y) ~	 P cond;' A 

where 

cond,(x) ==	 par(x,y) 

is a cpm.	 0 

Proof Wf> know that par is mt>,(lsurable (FxT)!F. Hence condJl is mea.surahle 
F!F. So for fixed y, P cond;l A induces a probability measure. It remains to prove 
that for fixed A E F the function P cond;l A is F-measurable. Let C denote lhf' 
class of sets such that for C E C the functiou P cond;l Cis F-mea,surable. Suppose 
first that C = S'(t) where I is T-fn~e. Then 

cDOr'S(I) = {SII) ;f Y E 5(1)

) I/J otherwlse .
 

Therefore P rond,-tS(t) = fS(l)(Y) PS(t), ..... hich is a simple random variable. If t 
is not T-free, the ....alue of P COrld,-IS(t) can be computed as the differencf' of the 
probabilities of r-free traces, i.e. as a difference of simplf' random variables. So 
in this case, too, P cond,-IS(t) is a simple random variable. So C contains a.ll the 
sets with fixed prefixes. It is easily sho ..... n that C is closed under finite unions and 
countable intersections. Therefore it is a monot.one class and hence C = F. 0 

So for every probability meaflure we can construct. a corresponding cpm. How­
ever, what we really need is to identify when a cpm has a corresponding proba.bility 
measure. 

Lemma 8.2.2 A PCSP-process OPD has a corresponding probability measure [P] 
if and only if 

Vn,N I: OP~(S(I), I(T)") <: l. 
lEE" 

o 

Proof If t is a r-free trace of length n then condl(~).. S(t) = S(l). Therf'fore if OPO 
is a PCSP-process with a correspondinp; probability measure [PR thcn 

IP!S(I) =	 [PI cond;(:).S(I)
 

OP~ (5(1), I(T)").
 

This means that 

L'EE"qPD(S(I).I(T)") <: 1 

or elS(" ~P] would not b~ a probability measure.	 o 
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The next lemma provides a rule hy which the existence of a probability measure 
corresponding to a cpm can be checked syntactically rather than by recourse to the 
semantics. 

Lemma 8.2.3 [f P isa PC:S'P-term containing only STOP, _, "n, II ana possibly 
variables bound by recursion, then the semantics of P in PCSP and PCSPo are 
related by 

~P~(A,y) = [Pleond,-'A. 

o 

Proof We use structural induction. To deal with STOP, note that (T)'" E A-<=> 
(r)w E cond;lA. Therefore 

~STOPD(A,y)	 IA((T)')
 

(ond;l,4((r)W)
 

[STOP] cond;' A.
 

To show tha.t the equality is prf'sf'rved hy all the other operators, suppose tha.t 
~PD(A, y) ~ [Pleond;' A. Note that 

. I _ {condr/1 ; prejixa jf Yo = a 
prefi'Xa , coni 11' - d h . con (T)~ at erwlse. 

So 

~a~P~(A.y) I s(.)( y) ~P~ (prefix;' A, y(1) + I s(.), (y) ~STOr~ (A, y) 

by definition 

Is(.)( y) QPD (prefix;' A, y/l) + [S(')' (y) ~P~ (A, (Tt) 

[P] cond;/1(prejixa-
1 .4) if !AI = a 

{ [P] cond(~)~ A otherwi~e 

[PH prefix.-' (cand,-' A) 

[0 ~ Pi (eond,-'A). 

For probabilistic choice suppose that P and Q satisfy the hypot.hesis. Then 

~p,n QD(A,y)	 p ~PD (A, y) + (l-p)~QD (,I, y)
 

[PI cond;' A + (1- p)[QI eond;' ,I
 

[P "n Q] cond;l A.
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For parallel composition note that par; conti, = (conti,. cond,) ; par. Therefore 

~F II QD (A, y) J~FD ((par-I A)., y) ND(du, y) 

JIFI «(cond;', id)(par-' A))".,,(w) IQidw 

change of variable 

JIFi ((eond;', eond;')(par-' A))w IQi dw 

J[PI (par-'( eond;' A))w IQldw 

IP II Qj eond;' A. 

If in addition to the above operators a term P contains a free variable X such thai 
the recursion p X. P is well-defined, then the Banach Fixed Point Theorem assures 
us that 

~~ X • PDp (A, y) ~	 li..~ F"~STOPDp (A, y)
 

whm F =.\ y. ~PDp[YIX]
 

}i..~ G"[STOP]cond;l A
 

whc;e G =.\ Y . [P]p[Y IXl
 
I~X, Pip eond;'A.
 

This completes the proof.	 0 

8.3 A Self-stabilising Tokenring 

This self-stabilising algorithm is due to [Herm90J. Its purpose is to pass a token 
around a cyclically arranged group of processes. Thc process in pos~ession of the 
token ca.n. execute some task without interference from any other process. For onr 
purposes tht'; nature of the task is immateriaL Each process is iu one of two states; 
it altcrnately reads the state of its left-hand neighbour and pa.s~C'S its own state to 
its right-hand neighbour. Every process which is in "the same state as its left-hand 
neighbour is said to have a token. A process which doesn't have the token keeps 
its state. A process which has a token changes state with probability 1/2. This 
causes the token to pass to the next process. The total number of processes must 
be odd. so that under normal conditions all neighbouring processes bar one pair are 
in different states. 

We will prove this algorithm to be self-stabilising in the sense that whatever 
their initial states, the processes eventually reach a state wbere exactly one token 
exists (i.e. spurious tokens disappear) and which is live in the sense that each 
process is guaranteed to receive the token infinitely often. 
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TU,S) i.SU) ~ (T( i Ell 1,5[01SU)]) ",n T( i ffi 1,5[11S( i)]l 
<lS(i 81) ~ SU)C> 

TU Ell 1,5)) 

where S[bjS(i)] denotes the state S with its i~h element overwritten with the value 
b. To prove that TS == T we use rec.ursion induction. Given a vector of processes 
Y define 

(R(Y))(i,S) '= ((Y)(,.S) ~ ~IIBJP(i,Sm 

where 

j.PS(,) if i ::j j 

j.P(i,S) = j!m~ (j.Po 1/2n j.p} if j = i. 
<lS(j 8 1) ~ S(j)c>{ 

j.PSlJ )) 

The predic.ate R is continuous and satisfiable. Let X be i\ vector of term varia.bles 
and let F be the fnnctiou which corresponds to one nnfolding of the recursion. 

(F X),.s ='.8(i) ~ «(X),ml.S[o/S(;1l1"n(X),@1.S[I/S(;1l
 
<lS(i 81) ~ S(i)1>
 

(X);ffiLS ). 

Since F is constructive the mapping M(X, F)p has a unique fixed point. We can 
therefore use rule 7.10.9 to show that R holds of the fixed point of M(X, F)p. 
Suppose that 

IIi, S . (Y),.s = ~IIB j.P(i, S)~, 
where j.P(i,S) as defined ahov£'. We need to show that this implies 

II i, 5 . (qFDp[YI XlJ,.s = OIl8JP( i, S)D· 

This is true if we can argue syntactically thi\t 

(1I"S·X,.s '" IIBJP(i,S)) => (lIi,S·(FX),.s - liB, j.P(i,S)). 

Substituting for X in F we get. 

(FXks 

'" i.S( i) ~ «IIBJPU Ell I, S[OIS( i)])) l/,n (IIBJPU ffi I,S[IIS( i)])) 
<lSU 81) ~ S(i)1> 
(IIBJPU ffi 1,5))). 
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O,P!-...l 

Figure 8.L A tokeuring 

Let the processes in the ring be numbered a to N, N even, and let the input 
channel to each process have the same number as the process (see Fig. 8.3). The 
tokenring consists of the N + 1 processes operatiug in parallel: 

T = liB, ;.P 

where 0 ~ i ~ Nand B, = {j.6 I j = i EB 1 V j == i /\ b E {a, I}}. The algorithm 
could start in any state, but for simplicity's sake we assume that every process 
starts oul. in state a. The first process starts the cycle of communication. 

O.P = a!a..--.+ a.po 

i.P = i.Po i> O. 

Every other process first asks for input from its left-hand neighbour aud outputs 
its ownstate to its right-hand neighbour. Then it decides whether or uot to change 
~tate. Let EEl and e denote addition and subtraction modulo N +1. For m E {a, I}, 
a ::; j ~ N define 

j'Pm = j?/..--.+ j EB l!m ........ (j.Po 1/2n j.p]
 
<J/ = m[> 

j.Pm ). 

To analyse the tokenring, we first of all show that it. can be represented in the 
following sequential form: Let S E {a, 1}N+l denote the (N +I)-tuple of the states 
of the processes. For a ~ i .:'S N define 

TS ~ T(O, {O}N") 
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Since )! distribu tes through <H> we can bring every process not indexed by j 
outside the if-statement and write 

(F X)(i.Sj '" ;.s(i) ~ (IIB,j.Q) 

where 

j,PS(j)	 if j ¥ i,j 'I' ; Ell 1 

i.P01 !:zn i,PI if j = i 
<lS(; 81) ~ S(i)e> 

j.Q i,PS(i) 

j ffl1.S(i if' 1) - ( j tB l.Po I/:ln i ffi 1. PI iC j = j f!J I 
<lS(i) ~ 5(; Ell 1)e> 

i fIJ 1. PS('E!ll)) 

By law 9 for alphabetised parallel composition 

;.S(i) ~ (i.Q B,IIB,.,; Ell l.Q)	 '" (;!S(i) ~ i.Q) B,IIB,., (i?x ~ ;'B l.Q) 

'" ;.P(;, 5) B,II B,., i Ell l.P(i,S). 

Hence 

(F X),.s '" II B,j.P(i,S). 

So the antecedent oC the proof rule for mutual recursion is true and we deduce that 
Y is the unique fixed point of M(X, F)p. Therefore Vi,S· 

T(i,S) '" IIB,j.P(i,S). 

In particular 

TS '" liB, j.P(O, {OJ''+'). 

Also 

T = II . PBj J. 

- liB, j.P(O,{Oj"+'). 

ThereCore T::= TS. Since TS does nol contain any external choice, it can be 
analysed as a probability measure rather than a cpm. Rather than repeAting t.he 
proof of Correctness given in [Herm90J we present a.n alternative proof which is 
slightly shorter. The difference is that [Herm90J start Crom first principles, whereas 
the proof given here exploits some general results about finite Markov chains. 

Theorem 8.3.1 The tokenring is self-stabilising and Iive_	 o 
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Proof Clearly communication in the tokenring happens in rounds: 

PHu, n I chan(u.) = n mod (N+l)J ~ 1. 

A cOmrtlunication on channell affects only state 5(1). Therefore in Olle round of 
communication each part of the state may change at most once. Let A(k, 5) he the 
set of traces such that the states commnnicated in round k are 5: 

A,:k.S) " {u, n I \10 SiS N· msg(u'(NH)+') ~ S(i)
 

A chan(u.) = n mod (N +1)}.
 

Let t(S) be the number of tokens in the ring. If the total number of processes is 
odd. tht>n at least one process must have a token and the total number of tokens is 
always Qdd, because new tokens cau only be generated two at a time. 

The probability that the state of the tokenring is 5' in round k + I given that 
it was S in round k is 

[TI(A(k+ 1),5') I A(k,S)) 

= {r if i(S).= i A \lj. S(j (1) = S(j) "" S'(j) ~ S(j) 
o othcC\','lse. 

Since there are only finitely many states, and the transition probability from one 
to the next does not depend on any previous states the sets A(k, S) form a finite 
Markov chain. From a one-token state, only two transitions are possible. Both are 
again one-token states. So the ~et of sta.tes in which exactly one process ha.s the 
token is a closed set in the seuse that the transition probabilities from any element of 
this set tD any element outside this set are all zero. A state ha.<; more than one token 
if the<eeri,tj, k such that (w.o.l.o.g)j < k and S(j) = s(je1) and S(k) = S(k81). 
Suppose1hat there is no token between j andk, i.e. V [.j < l < k ==> 5(l) i- 5(/81). 
From 5. the ring can progress to the state 5' = 5[jS(k)jS(k)) with non-zero 
probability. If j = k -I, i.e. if the tokens are adjacent, then the change (rom 5(k) 
to l3(k) makes them disappcar. If k - j > 1, i.e. if the tokens are more than 1 
apart, then S' has a token at j + 1 and k. that is the distance between the tokens 
has decreased by one. It follows that any state 5 with non-adjacent tokens j, k such 
that k -j > 1 has a non-zero probability of a transition in k - j + 1 steps to a state 
with two adjacent tokens at k and k -1, and hence a non-zero, k - j step transition 
probability to a state with fewer tokens. Therefore all states with more than one 
token are transient in the sense that the probability of eventual return to this fiitate 
is strictly less than one. In a finite Markov chain the probability of staying forever 
in a set of transient sta.tes is zero [FelS7]. So the tokenring will eventua.lly end up 
in a state where exactly one process has the token, and from that point onwards 
the only other states it can visit are those where exactly one process has the token. 
Thus the tokenring is guaranteed to stabilise. (The result about transient states 
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means that the invariant proved by [Herm90], namely that the algorit1lm never 
increases the number of tokens, only needs to hold in the specia.l case where the 
number of tokens is one.) 

The dosed set by itself represents a finite irreducible Markov chain, in which 
all states are persistent [FeI57]. i.e. all states are visited infinitely often. So the 
tokenring is live in the sense that every process is guaranteed to receive the token 
infinitely often. 0 



Chapter 9 

Randomised Consensus 

To illu~lrate th(" application of peS? we give a formal specification and proof of 
correctness of a ('OUM'USUS protocol. The specification i~ given at two levels of ab­
stractiQIl. At t.he top level the properties of a consensus protocol are defined by 
predicates upon traces. At a lower level a randomised algorithm which satisfies 
these properties is presented in the notation of pesp. This algorithm is a vari­
ation of an algorithm which was developed by Aspnes a.nd Herlihy [AngO]. Our 
version has the same safety properties, but slightly different livencss properties: 
whereas Lhe algorithm by Aspncs and Herlihy is guaranteed to terminate under all 
circnmstances, t.he one used here terminates with probability 1 if the scheduling is 
independent of the state of the processes involved in the protocol. As a result we 
are a.ble to reduce the expected number of steps to termination from Aspnes aud 
Hedihy,'s 0(2") to 0("'). 

A ClJIlSt'11SUS protocol is a procedure whereby N communicating processes which 
start out with conflicting preferences all corne to agree on the same prefereuce. The 
final preference is called the decision m{ue. A consensus protocol must be 

1.	 consistent: no two processes choose different decision values. 

2.	 valid: the decision value was some process's initial preference. and 

3.	 terminating: every process that docs not fail compldes the procedure in finite 
expected time. 

These properties represent the most abst-ract or high-level specification of the con­
sensus protocol. An algorithm which the processes follow to reach a decision is 
correct if it satisfies the high level specification. To formalise this specification we 
use some shorthand for certain predicates: We write a(u) to say that an action a 
occurs in a trace u: 

a(u) == 3nEN,u~=a 
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To say that a trace u contains actions a and b and a occurs before b we define 

(a before h)( u) == 3 n, mEN· u.. := a 1\ Urn := b 1\ n < m 

For convenience, we also define after: 

(a aft" b)(u) = (b befo,e a)(u) 

Since it would be cumbersome to carry the dummy variable u aU through the 
specification and proofs, we suppress it from now on. We write a before h before c 
a.'> shorthand for a before b 1\ b before c. Since the protocol consists of a collection 
of identical components, channels are indexed: we write i.c.t1 to say that v is 
communicated on channel c belonging to the i th component. Free variables for 
channel indices or message values can always be taken to be universally quantified. 

9.1 Specification 

The protocol eonsists of N processors which communicate by reading and writing N 
shared registers. Let 1 deuote the set of indices {i lOs i < j\'}, Fig 9.1 shows the 

Processors Registers 

D
 
~wn'te [ i.R 

Lt. read 

n 
D j.R 

Figure 9.1: Channels connecting i.P 

communication in which prou>_'isor i.P, i E /, can engage. It can read t.he values 
stored by register j.R, j E I, via the channel i.j.read. It can write values to the jth 

register via channel i.write. Finally it can communicate its decision about its final 
preference to the environment via channel i.decide. Each register stores a preference 
value and a round number. For simplicity's sake we assume that preference values 
are boolean and round numbers are natural numbers. The final decision consists of 
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just a preference value. Thus the set of actions which the process i.P can perform 
is 

E, ~	 (i.j.read.(v,r) Ij E I A v E iliA r E!'I)
 

U {i.write.(v,r) I v E B 1\ r E N}
 

U {Uecide.(v)lvEIII)U{T). 

Correspondingly, the set of adious performed by the j'h register is 

C, '" (i.j.Twd.(v,r) I iE I A vEIIIA rE!'I) 

U (j.write(" r) 1 v E III ArE !'I) U {r}. 

The consenslls protocol C'P is the parallel composition 

CP '"	 <lIB, U) Bile <lleJR)
 

where B = UB;, C = UC;.
 

We now give the formal definitions of its properties. Unless otherwise stated, the 
indices i,i, k range over I, preference values v over the boo leans, and roundnumbers 
r over the natural numbers. 

Safety 

A decision appears in the tra<:e::; as a decide-event. It is valid only if it was some 
processor's initial prefcr<~nce. The initial preference of a processor is the one which 
it writes to the register in round 1. Thus if a valid trace coutains a decide-event 
with value v then it must also coutain a first-round write-event with value v: 

VS ==	 (i.decide.(v) => 3j .j.w6te.(v,l) before i.decide.(v)). 

Consistency requires that aU processors make the same decision. So no consistent 
trace contains decide-events with different preference values: 

rs '"	 ~(i.de";de.(l) A j.decide.(Oj). 

ObViously validity and consistency are safety properties in the sense of defini­
tion 8.0.2. 

Li"'eness 

The protocol terminates if every process which is scheduled infinitely often must 
come to a decision. Thus thl" traces of a terminating protocol are described by 

TS(u) =- 'Vi·(urB, infinite => 3v· i.decide.(TJ)) 

This is obviously a livel1C'Ss properLy in the sense of definition 8.0.3. 
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Vle now specify an algorithm which enables the processors to reach a decision. 
Each processor chooses au initial preference value for round 1 and writes it into its 
register. From round 1 until it can decide each processor alternately reads all the 
registers and, based on the values it has just rcad. writes a new preference value a.nd 
ronndnumber. Let v and r be vectors of IV preferred val lies and N roundnumbcrs 
respectively. Suppose that processor i.P has just read the values 1:1, r from the 
registers. If according to these values it is is leader 1 that is one of the processors 
with the highest roundnumher, and all dissenting processors trail by at lea'll two 
roundnumbers, it cau decide on a final preference. The condition for this case is 

exp resse<! b.r 

i .ran_decide( v. r) 1', > 11\ 'rtj. (r) ~ r, 1\ (tJ = tl, V r, > r)+11). 

If a. processor cannot decide it adopts if possible the preference of the leaders. 
If the leaders do n<,t. have a common preferenc.e, it sticks to it.s own preference, 
hut randomly either adva.nces to the next round or stays at the same n:l1lnd. L('t 
leade,s_og,ed v, v, r) denote the fact that based on the observed values tl and r 

the leade.rs all prefer the same value II: 

Icadu',;;_agrn(u,v,r) == 'rt.i' (r) = max(r)::::> 'Lj = 1'). 

Then the processors are described by 

I.P	 i.wrilt!(l\l) --I i.P(0,0.0) 

~n i. wrilF!(O, 1) --I i.P(0, 0, OJ 

i.P( v, r,J)	 i.j.rwd?(v,r) --I i.P(v',r',j + 1) j < N 

where v' = v U {j .......... v}, r' = r U {j 1--+ r} 

i.P(v,r,N) i.dccide!(v;) _ IDLE
 

<Ji.col'Ldecide(v, r) t>
 

(i.write!(l',r, + 1) - i.P(0,0,O)
 

<J 3 v . leade1's-agree( v, v, r) c>
 

(i.wrifcl(v;,r,) ~ i.P(0,0,O))
 

,n (i.write'(v"r, + I) ~ i.P(0,0,O))).
 

The process IDLE can be any process which does not affect the state of the protocol, 
and Ileed not be specified explicitely. A register starts in round O. Afte' the first 
write it always produces the value that was last written t.o it. 

;.R =	 ;.R(O,O) 
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i_R(tt, r) ::.c; j.wn'te?(v', rl) -lo j.R(v l
, r') 

o 
O'EI i.j. read!( v, r) -lo j .R( v, 1'). 

9.2 Proof of Correctness 

We will 5how that the protocol IS correct in the sense that it satisfies the safety 
properties, i.e. 

CP sat VS A CS. 

As explained in section 8.2, we can only reason about the livencss properties of a 
system ifwe assume that. it jives in an environment which resolves every external 
choice on which the system depends, hut accepts every internal choice of the system. 
In the case of the randomised consensus protocol the only choice to he resolved by 
the environment concerns the interleaving of the processors; given the opportunity 
to take a step, each processor will determine internally what this step should be. 
This means that we make an assumption about the probability distribution D which 
determines the interleaving and for which we have to show that 

[CPIIDITS ~ 1. 

To show that the safety properties are satisfied we first list the predicates PSi 
which are satisfied by the processors and the predicates RSj which are satisfied by 
the registers. 

After the first round any value read from a register mnst be the last value that 
was written to it: 

RSj == i.j.read(v, r) =>
 
r=OV
 

j,·write.(v,r) before i.j.read(v,r) 1\
 
l l--., :3 Vi, r ( Vi #- V V r #- r) 1\• 

i.write.(v. r) before j.wrile.(t,l, r l ) before i.j.read(v, r)). 

We write i.Read(v, r) to say t,hat processor i.P has consecutively read all the 
registers and thus obtained the values (v, r): 

,.Ilead(., r)( u) '" 3 mEN, \I j . (u rB,)m+, = i.j.r<ad.( Vj, r,). 

We extend our notatiou and write 'i.Read(v,r) before a, meaning that aU the 
readings i.j.read(v" r,) were taken before the action a happened. Similarly for 
a before i.Read(v,r), a after i.Read(v,r) and i.Read(v,r) after a. 
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A processor i. P can decide only if it has read the regi::;te-rs and i can_decide(v, r) 
is true: 

PSI, == i.decide.(v) ~ 

3v,r· i.decide.(v} after i.Read(v,r) 

1\ Vi = V 1\ i.can_decide(n,r). 

Before writing a. new value a processor must have read all the registers. It it switched 
preference it must have seen all the leaders disagree with its old preference. If it 
kept its own preference and advanced its roundnnmber. it cannot have seen the 
leaders agree on the opposite preference. If it. kept its own preference and did not 
advance its ronndnumbf>r, the ]('aders did not have a common preference, 

PS2i == i.wrilt',(l'.r+l):::} 

:lv,,.· i.u'ri/('.(L','T'+l) after ·j.Read(v.r) 1\ -'i.ran_deC'ide(v,r) 

1\ ((I'. i (' 1\ 7', = r 1\ leaders_llgree(v.v,r}) 

V (1', = l' 1\ r, = r 1\ -,lEuders_agree( L - v, v, ,.)) 

V (1', = V 1\ 1', = 1'+11\ -,31} ·/eadfTLugru(q,n,r))). 

After a process has decided it cannot write any more values 

PS3 j ='= ---'(i.write.(v, r) after i.decide.(w)). 

Let PS, == PSI. 1\ PS2 j 1\ PS3,. By the inference rule for parallel composition, 

Vi· i.P sat PSi A Cu E LJ~)
 

Vj ·j.R sat RSj 1\ (u E Gt)
 

(i/o, i.P) II (II,; j.R) sat PS,( u1 Bi) A RS,( ul C,) 

.....e know that the behaviour of the protocol restricted to the alphabet or a com­
ponent mnst satisfy the same preclicate as that component. The remainder of the 
proof of correctness is based on only one other proof mle, namely 

P sat R 
R~T 

P sat T, 

We first note that the predicates .....e are considering are such that if they hold of a 
trace restricted to the alphabet of a component they also hold of the unrestricted 
trace, i,e, 

RS,(ul C,) <> RSj(u) 

PSi(ulB,) <> PSiCU). 

Thus all we need to show is t.ha.t the simple conjunction of the predicates PSi and 
RSj implies validity and consistency. 
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Validity 

Recall that a consensus protocol is valid only if the decision value was the iuitial 
preference of at least one process: 

VS =. (i.drcide,(v) ::::} 3j· j.u.'1'ile.(v, 1) before i.decide.(l))). 

From PSI, we know that at the earliest a process can decide after rouud 2, and the 
decision value is always the value last written. 

i.decidt,(v) :::} 3r' > 1· i.write(v,r' ) before i.decide.(v). 

Lemma 9.2.1 states t h<'lt a process can only write a value iu a round r' above round 
r > 0 if at least one process preferred that value in r. 

Lemma 9.2.1 V i,j . PS, 1\ RS
J 

==> (31, r' > r > O· i.ll'rit.('.( 1J, r') ::::} 3j . j w6te.( v, r) before i. wri1.e.( v, r')). 
o 

Proof Suppose that i.P is the first processor t.o write p in a round r' which is 
above r: 

3i,r' > r· i.wrif.e.(v, r ' ) (9.1) 

1\ Vj . -.( r N > r 1\ j. write.( v, rll) before i wrile.( v, r' )). (9.2) 

Line 9.1 and PS2 j together imply that 

3 t:1, r . i. write.( 11, r'l after i. flead( tJ, r) 1\ r, '2: r 1\ ..... lwdrrs_agrH:(l- v, 1.1, t"). 

If the leaders do not agree on I-v alleast one leadf'r prefers p. Also since i.P has 
a.lready reached round r t.he leaders must have at least. round number r, giving 

3), rl/ 2: r > 0 . i.j .read( v, r") before i. write.( v. r'). 

By RSj the fae\. that i.P has read (1', r") from thl" jlh register and r" 2: r > 0 
means that process j.P wrote these values beforehand: 

3j, r" 2: r> o· j.write.( v, r") before i.write.( v, r'). 

Since i.P is the first. proCf~~S to write v in a round strictly above r (line 9.2) it. 
follows that r" = r, i.e. 

3j . j .write.( v, r) before j. write.( v, r'). 

o 
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Lemma. 9.2.1 implies that if a process writes v in round r' then in every round below 
r' from round I upwards at lea.<;t one process must also have written v. Thus 

Vi,j· PS, 1\ RSj => VS. 

Hence the protocol is valid: 

CP sat VS. 

To prove that the protocol i:'i consistent we use two corollaries of lemma 9.2.1. 
Firstly, the contrapositive of lemma 9.2.1 implies that if all processes that complete 
round r prefer the same value then all processes that complete a higher round also 
prefer that value. (This cquivalellt to saying that if no processor prefers v in round 
r then no processor prefer:'i l' in a round above r, which i:'i the form we use in the 
corollary). 

Corollar-y 9.2.2 Vi,j· PS, 1\ RS~ 

=> (-,3i·i.write.(L'.r)=>-,3i,r'>r·i.wnte.(v,r'). o 

Secondly, lemma 9.2.1 implies tllat the first processor to write v in round r does so 

before any processor can wri(.e v in a. higher round. 

Cor-ollary 9.2.3 Vi, j . PS, 1\ RS) 

=> (i. write.( c. r) 1\ ..... 3 k . k. wrlte.( v, r) before i. wI·itt.{ v, r) 

=> Vr' > r' i.TI\rile.(t', r) before j.write.(I), r'»). o 

The protocol is consistent if CP sat CS where 

CS == -.(i.decide.(v) I\j.drcide.(I-v)). 

In the next lemma. we show that if a process decides v in round r + 1 then all 
processes which complete round r prefer v (even if they reach r only after the fir:'it 
process decided). 

Lemma 9.2.4 'r:I'i,j. PS, 1\ RS} 

=> (i.decide.(v) after i.Read(v, r) 1\ rj ~ r 1\ -,3 v, r' > r . i. wnte..(f, r') 
=> ..... 3j ·}.write.(1- v,r». 

o 

Proof The hypothesis a.nd PSI, together imply that 

i.Read(v,r) 1\ r; = r 1\ v, = v 1\ i.ca1Ldccide(v,r). (9.3) 
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If the conclusion is false there must be a processor j.P which was the first to prefer 
I-v in round r. 

3) ·j.write.(l- v, 1') 1\ ..., 3 k . k. wrile.{l- u, 1') before j.write .(I-v, 1'). (9.4) 

This processor could have preferred either value in round l' -1. Suppose it preferred 
1 - v in round r - 1. Then line 9.3 implies 

i . 1JJrite (v, 1') before i.j. read( Vj, rJ before j.wn'tc(l- v, l' - 1). 

because reading (1- v, r--l) from the /h register would have prevented i.P from 
deciding. Also, by PS2J and HSj , 

:3 v', T ' . j .wrile(I - I.', r- 1) before j .Head(v', T ' ) before j . write (1- v, 1') 

1\ ·u: = v 1\ 1': = r 1\ v; = I - v 1\ 1'; = l' - 1 

i.e. for j.P to proceed to round r it must read the registers after writing I-v in round 
1'-1. Thqefore it must SL'e that loP prefers u in round 1'. Since by assumption j.P 
is the nrst process to prefer I-1J in round l' (or higher, by corollary 9.2.3), it must 
see that the leaders prefer v. But then it cannot write I-v iu round 1', contradicting 
the assumption (9.4). Suppose therefore that j.P preferred v in round r-l. 

3 v', T1 . j.w1itc( v, 1'-1) before j .Read( v', T') before j.w1'ite( I - v, r) 

1\~=vl\~=rl\~=vl\~=r-l. 

By PS2
J 

it could switch to preferring I-v in round r only if it saw the leaders prefer 
I-v. Then the leaders could at most have roundnumber 1'-1 since by assumption 
j.P is the first process to prefer I-v in round l' (or higher, by corollary 9.2.3). But 
j.P itself is already at round 1'-1 and prefers v. Thus it cannot see the leaders 
prefer	 )-v, again contradicting the a'lSumption (9.4). 

It follows that it is impossible for j.P to prefer I-v iu round T. 0 

Lemma 9.2.4 and corollary 9.2.2 imply that if a processor decides v in round 
l' + 1, say, then all processors prefer v in round l' and all higher rounds, By PSI;, 
a processor can only decide the value it last Wrote. Cousistency follows. 

Liveness 

It remains to prove that every processor which is given the opportunity to take 
infinitely many steps will event.ually decide. We first show that if the processors 
agr~ (or the first time in round l' then they decide at most two rounds later. 

Lemma 9.2.5 Vi,j' PSi 1\ HSJ 

:::::> 3i· i.write.(v, 1') 1\ ...,3j. j.write.(I-v, 1') 
::? ..., 3 i . (3 q . i. wril.e.(q, r + 2) V i.decide.(1- v». o 
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Proof Suppose that the conclusion is false, i.e. that the process does get to write 
a value in round ,. + 2 or decides on 1 - v. By corollary 9.2.2 the assl.lmption 
..., ::J j . j.write.( 1- v, r) implies that no process can write 1- v in or above round r. 
Therefore the only possihle decision is v. Thus we are left with the possibility that 
a processor reaches round r + 2 without deciding. Let i.write.(v, r+2) be the first 
write in round r+2. We know from PS3i that i.P cannot have decided hefore this 
round. So we have 

3 i· i.wrile.( 11, r+2) /\ 

...,3 k· k.wrilc.(v,r+2) before i.write.(v, r+2) /\ 

---,3 q . i.decidi:.( q) before i.write.( v, r +2). 

Together with PS, this implies that 

:::it,V,r· i.WT·itc.(v,r+2) after i.Rcad(v,r) t\ 

-,i.calLdecide(v,r)/\Vk'1"j, S; r+l t\" =r+1. 

Expanding the la..-,.t line gives 

3j.(r, > 'i /\ (rJ > ri+1 V Til -::f v)) /\ Vk 'rj, S; r+1/\ r, = r+ 1 

So we are left with ::Jj . ,. :$ 1; S; 7'+1 /\ v] -::f v. But this contradicts the fact that 
at and ahove round l' all processes prefer v. Hence no process ca.n write a. value in 
round r +2. 0 

Thus to prove that the prot.ocol terminates we only nL'€d to show that it will 
eventually get to a round where all processes agree. This depends to some ext.ent on 
how the processors are interleaved. An interleaving which can take account of the 
state of the processors can force the protocol to continue forever, as in figure 9.2. 

This strategy works only if the interleaving can take account of the processor's 
decision whether or not to advance its roundnumber upon ohserving disagreement. 
This is not the case if the interleaving of the processors is independent of the choice 
of event by the processors. More formally we assume that the protocol runs in 
an environment D such that if a, b are two events in the alphabet Bi of the i~h 

processor then for all 0 :$ j < N 

IC? II DIU" 1u,+. E B,Jllu 1u, = aj)
 
IC? II DH{" I ",+. E B,)I(" 1", = b)
 

Ideally we would like to prove that [CP !I D~ TS = 1 for any D which satisfies 
the independence assumption. However, as in the proof of the original algorithm, 
we shall be limited to a worst case argument. If we assume that the scheduling 
is independent of the st.a.te of the processors the hest strategy of the scheduler to 
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( Suppose that j.P and k.P are the only leaders in round 
k.wri!e.(I, r-l), r ­ 1 and that they disagree. Suppose also that k. P 
k.j .nnd.(O, r-2), reads j. R before j.P writes to it in round r ­ 1. Then 
k.k. nad.( 1, r -1), k.P believes itself to be the only leader. Its next step 

will be a write with the same preference and an increased 
roundnumber. 

j.wrile.(O, r-l), Now j.P is allowed to write its r-l-round preference 
j.k.nad.(l, r-l), and read thc registers. j.P observes disagreement aod 
j.j.r",d.(O, r-l), may decide to stay in round r-l, but if it is forced to 
j. wr~te.(O, r -1), go 00 reading it will eventually advance to round r. 

j. wrife,(O, r). 
j.k. r"d.(I, r -t), Now it is allowed one more reading which will lead it to 
j.j.read.(O, r), believe that it. is the only leader in round r. Letting k.P 
k.write.(I,r) do its wriLe for round r will r~start the procedlJre. 

Figure 9.2: A non-terminating interleaving 

delay termination is to choose all processes equally often. Otherwise a. subset of 
the processors is going to get ahead of the others aud become leaders. The fewer 
leaders l,here are t.he more likely they are to agree. We therefore suppose that the 
processors run in lock;;tep. 

D = Do 
0; ~ a: B, -t D'fDl 

where ffi denotes addition modulo .V. It can be shown (using recursion induction) 
that the parallel system CP II D contains no external choice. It can therefore be 
analysed. as a probability measure on t.he space of infinite traces. 

With lockst.ep interlea.viug, every processor takes oue reading of the registers 
and do~ one write in every N(N + 1) steps of the protocol. Let N(N + l) steps 
be a cycle. Let A(n) denote the set of trac£'5 such that in the nth cycle the leaders 
have reached agreement. 

Aln) ~ {u 10r,p,i·i.U'ril"(",r)("I(nN(N+I))) 

A ~ oj· j.writ•.(v,r)(ul(nN(N + I)))}. 

The pwoability that the procCijses will eventually reach agreemen t can be ca.lculated 
as 
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ICPIID!TS

E(ICPIIDi (A(n) IA(n-l)') glCPIiDI (AU), I AU-In). 

If there is no a.greement in the (n - l)th cycle then there must be at least two 
Leaders with differing preferences. Let I be the number of leaders and let k be the 
nnmber of leaders whose preference is 1. The probability of agreement in the n Lh 

cycle given disagreement in the (n _1)th cycle can be calculated as the probability 
that at least one of the leaders prf'ferring 1 gets ahead and none of the olhers. which 
is (1 - p")p'-", or vice versa.. Now 

(1- p")pl-" + p.l:(1- p'-t)	 = l _ 2pl + pl-t
 

2 2p l/2 - 2p!
 

2 2pJti/2 _ 2pN.
 

The last step holds only if 12 210g p (l/2) but jf p 2 1/2 this is always true. This 
gives us a lower bound for [CPIID](A(n) I A(n - I)C). It follows that the rcal value 
of [CPIID](A( n) I A( n - 1)"), 8 say, is a strictly positive quantity. Hence 

iCPIIDjTS L(I - 6)"6 

I. 

We can now choose p so M to maximise the lower bound for 8: 

p = 2-2/ 8 

giving 8 :::: 1/2. Then the expected number of cycles to reach agreemenl" 1/8, is 
less than 2 and the expected Humber of steps to reach agreement is O(1l2). This 
concludes our analysis 

9.3 Discussion 

We have used the case study of a raudomised consensus protocol to demonstrate 
the applicability of the process algebra and proof rules which we developl'd in the 
earlier chapters. This has been successful because the process algebra ha'i proved 
expressive enough to capture the algorithm which implements the protocol, a.nd the 
proof rules have been sufficieut to enable us to give a formal proof of correctness 
for the safety properties of the protocol. For the liveness properties we ha.ve had 
to take recourse to a slightly informal worst-case argument. It may be possible 
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to give il. proof of termination which would be valid for any scheduler rather than 
just the lockstep scheduler, but it would be much more complicated. However, the 
worst-case argument has been sufficient to show that our formalism is capable of 
addressing all the issues involved in reasoning about randomised algorithms. 

The s~mantics of the original algorithm were given in terms of I/O automata 
[LM87]. The proof of c.orrectness was informal, but it c.ontained essentially the 
same a.rguments which we used, too. The differences are due mainly to the faet 
that our algorithm is simpler. It is also faster than the original algorithm, which 
has a Worst-case running time of O(2 ft 

) steps, and also better than the original 
algorithm combined with the weak shared coin protoc.ol described in [AR90], whicb 
has an expected running time of O( n 4 ) steps. One has to bear in mind that this 
speed-up and simplification is achieved at the cost of guaranteeing termination only 
for a scheduler which cannot take advautage of the state of the processors. V\-'e feel 
that the SImplification and increased efficiency justify this reasonable assumption. 



Chapter 10 

Discussion 

10.1 Conclusions 

In this thesis we have presented a mathematical formali:-;m for the spC('ification and 
proof of correctness of probabilistic communicating pron:',$ses. We have defined a 
proc{'.5S algebra which is based on esp. the main difference being that probabilistic 
choice is substituted for non-deterministic choice. We have given a semantics in 
terms of probability measures on the space of infinite tracf!S for a model which 
contains probabilistic choice and all other eSP-operators except external choice and 
alphabetised parallel composition. We have shown that this semantics preserves all 
the algebraic laws which hold in other models of CSP. 

To define the semantic-s of recursion we have used two metries on the space 
of prohability mea.<;ures on infinite traces. Convergence with respect to t.he first 
metric is eqnivalent to weak convergence of probability measures, and we have llsed 
it to show that under ('('rtain conditions, recursive definitions containing unguarded 
variables as hranches of a probabilistic choic.e are well~defined_ Convergence with 
respect to the second metric implies weak convergence. The second metnc is an 
nltra-metric like the ones used in other models of CSP and has allowed us to show 
that any guarded recursion involving parallel or sequential composition is well~ 

defined. 

We have given examples to show how this model enables us to reason about 
the propertil?.5 of probabilistic processes, especially liveness properties such as the 
asymptotic frequency of events. 

To be able to reason effectively abont concurrency in general, we have defined 
a semantics for a second model in terms of conditional probability measuITS. This 
model contains operators for external choice and alphabetised parallel composit.ion, 
but not for sequential composition, hiding or interleaving. Like the llrst model it 
preserves all the laws for the operators it contains. Again, we have defined recursi\'e 
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pracesst's by taking reconrse to two metrics. 

We have given proof rules to relate the process algebra to more abstract speci­
ficatiom defined in terms of predicates upon infinite traces. We have proved each 
rnle to be sound. This has enabled liS to reason about safety properties. To rea­
son ab<Jut hveness properties it is necessary to make some assumptions about the 
environment of a system, namely that the environment does not block the system 
and that it resolves all the external choices on which the system depends. \!lie. have 
shown l.hat given such an environment, the resulting system has a well-defined se­
mantics both in the first and in the second model, which means the techniques we 
used to Analyse livcness properties in the first model are also applicable to systems 
specified in the second model. 

We have demonstrated the usefulness of our approach by giving formal treat­
ments of' a. self-stabilising tokenring and of a randomised consensus protofol. 

10.2 Related Work 

There exists several formali.'>m" for the specification of probabilistic processes. rc­

flecting the varid,y offonnal methods in general. Broadly speaking. all prohabiJisti, 
languagc3 define the semantics of choice and parallel composit,jon in \.crms of sums 
and products of probabilities respectively. Differences arise in the treatment of ex­
ternal choice and unsynchronised parallel composition, as well as in the methods of 
defining fixed point.'> and equivalences betwCf'n processes. 

Glabbeek et. a!. [GSST90] present three semantic models for pees. a proba­
bilistic dialect of Milner's sees [Mi89]. The semantics of these models are based 
on proba.bili:'itic labeled tra.nsition systf'ms, which are e~~entially state transition 
systems with probabilities attached 1.0 each hranch. Differences between the mod­
els arise from the treatment of choice: in the 'reac.tive' model the probabilit.ies of 
all transitions with the same action sum to 1, whereas in the 'generat.ive' model 
the probabilities for all transitions sum to 1. The former can he nnderstood a'i a 
mixture of internal and ext.ernal choice, in thf' sense that the choice of adion is 
made externally but the choice of transition with a given action is made internally. 
Parallel composition is deflIlf'd as lockstep interleaving: a t.ransition in <I parallel 
system is labelled by a pair of actions (with the product of their individnal proba­
bilities). They can happen in either order. but both must happen before th(~ next 
transition. This seems a very restridive view of parallel composition. Equivalence 
between processes is established by probabilistic bisimulation (due to Larsen and 
Skou [LS89]), which is an itnalog of strong hisimulation. This leads to very line 
distinct.lons between processf'S; for instance it rules out the law of distributivity of 
probabilistic choice over prdixing. We think that these distinctions are unnecessar­
ily strong. 



Jou and Smolka [JS90] illvestigate weaker concepts of process equivalence for 
the generative model. Nearest to PCSP is their concept of trace equivalence, which 
means that for two proceSSei P and Q each transition path has the same probability, 
whether it starts at P or at Q. However, this kind of equivalence is not a congruence, 
i.e. P and Q are not necessarily interchangeable in any expression. The paper 
also presents a sound and complete axiomatisation of finite serial processes in the 
generative model wit.h respect to probabilistic bisimulation. The only laws that 
hold for probabilistic choice are symmetry. associativity and idempoteme. As in 
PCSP, every guarded recursive call has a well-defined fixed point, bound variables 
can be substituted for, and the unfolding of recursive calls preserves equivalence. 
There are no laws for parallel composition. 

Jones and Plotkin [JP89] aim to provide a general framework for t.he semantics 
of probabilistic programming languages, which they hase on evalui\tiom. These' 
are functions similar to probahility measures but defined only on open sels rather 
than the general Borel sets. Unlike probability measures, evaluations can pa...<;ily he 
partiallY ordered and can therefore be used to construct i\ probabilistic powf'rdo­
main, £(P). The authors show that the structnre a.'lSociated with [( P) is a monad 
and that recnrsive domain equations involving £(P) can be solved in a ciltf'gorical 
setting. They then present the semantics of a probabilistic programming language 
consisting of atomic commands, seqnential composition, if-statement.s, while-loops, 
probabilistic choice and parallel composition. The latter is parametrised Oil a prob­
abilistic scheduler which decides, given a state, which process runs next. There is 
no constrnct for input or external choice. Thns the expressiveness of their la,nguage 
is about the same as that in the simple model which we presented in chapter 3. 

Ra.o[Ra.o90] presents a prohabilistic extension to UNITY[CM88J. He introduces 
probabilistic assignment, which probabilistically chooses one of a list of a finite 
nnmber of possiblC' f'xpressions to assign lo a variable. The probability with which 
an expression is chosen is arbitrary and cannot be made explicit. The only prob­
ahilistic property important for Rao is that in an infinite trace of executions of a 
probabilistic assignment each rxpression will be chosen infinitely oftcn. He defines 
the weakest precondition of the probabilistic assignment itS the one which holds of 
every branch. This enahles him to extend the usual UNITY proof rnles for safety 
properties to probabilistic programs. He thell defines the weakest probabill8lic pre­
condition as one which must hold of at least one branch and uses it. to develop a set 
of proof rules for liveness properties, which hold with probability 1. His approach 
is closest to own in that he also lJse~ infinit.e traces and const.rnds separate proof 
rules for safety a.nd livenC'ss properties. Howf'ver, we think that to throwaway 
any possibility of reasoning abont specific probabilities is nnnecessarily restrictive. 
For instance, it means that probabilistic UNITY cannot be used to prove that the 
probability of return to the origin in a random walk is I, because this is true if the 
probability with which a step is maDe in either direction is 1/2, but not. ot.herwise. 
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Also, even where it can be shown that a property is achieved witb probability 1, 
it may he ~esirable to calculate something like the expected number of executions 
until it is achieved, which is impossible without using explicit probabilities. Apart 
from tb<l.t. differences between Rao's approach and ours reflect the general differ­
ences between UNITY and esp. For instance, the consensus protocol could be 
specified in terms of probabilistic assignments rather that in terms of communica­
tions over channels, though of course control over the probabilities would be lost. 
Also, ·CNITY does not allow compositional proofs for concurrent systems in the 
way th<l.t CSP does. 

10.3 Future Work 

There are some qlle~tion~ yf't to be investigated regarding the models pre:o;ented in 
this thesis, notably whether the laws and proof rules are complete, and the precise 
relation of these models to othcr models of esp. 

It would be nice to have a semantics for a probabilistic model which contained 
the full range of CSP operators, including probabilistic choice, external choice, 
general parallel composition, s('quential composition and hiding. For the reasons 
given in chapter 3 it is not possible to express external choice and genera.l parallel 
composition in terms of probability measurcs. and for the reasons given in chapter 7 
it is not possihle to give a semantics to sequential composition and hiding in terms 
of conditional prohability measure. One would therefore have to look at entirely 
different semantics to the ones considered here. 

There is also a nced for an entirely different prohabilistic model. in which the 
probability concerns not the choice of action, but the time at which it happens. 
Such a model would for instance address the probabilistic aspect.s of the Ethernet 
protocoL which are left out of the formal specification pn'sented by Davics[Dav9lJ. 
Work in this direction has already begun [SNH92J. 
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