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Abstract

In this thesis, we develop a mathematical formalism for the specification and proof
of correctness of probabilistic communicating processes. This formalism combines
a notion of probabilistic correctness with the theory of concurrency provided by the
language of Communicating Sequential Processes {CSP).

We first presert the semantics of a model in which processes are defined as
probability measures on the space of infinite traces. The model contains definitions
for prefixing, probabilistic choice, hiding, simpie parallel composition, sequential
composition, interleaving, relabelling and recursion. These operators are defined as
fanctions (mostly transformations) of probability measures. Although the semantics
of this model is very different from that of other models of CSP, it has almost the
same algebraic properties as the traces model. Examples are given which use these
algebraic properties as well as the probabilistic properties of the processes.

In the second part of the thesis we present the semantics of a model in which
processes are defined as conditional probability measures. This enables us to give
definitions for cxternal choice and alphabetised parallel composition, as well as
prefixing, probabilistic choice, relabelling and recursion. Again we show that this
semanlics satisfics the appropriate algebraic laws. We also present a set of proof
rnles which provide a link between the process algebra and behavioural specifica-
tions. A significant case study is used to demonstrate the applicability of the model
and the proof rules.
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Chapter 1

Introduction

Randomised algorithnis are increasingly being used in distributed systems, for in-
stance to solve problems like load- balancing [Pug0] and sell-stabilisation [Herm90)].
Not only are these algorithms often simpler and faster than any deterministic al-
ternative but sometimes no such alternative exists, as in the case of randomised
consensus {AH90]. This is typically so when identical components in identical situ-
ations have to make different decisions for the system to progress.

A mathematical formalism for the specification of systems involving randomi-
sation mus{ be based on a notion of probabilistic correctness. For a deterministic
algorithm the statement that it is correct in that it has or achieves a certain prop-
erly is either true of false. Morcover, if the property is to be achieved, this is
guaranteed to happen within a finite nnmber of steps. By contrast, a randomised
algorithm is correct if it has or achieves a property with probability 1. So therc may
be possible behaviours of the algorithm which violate the property in question; only
the probability that they will happen is 0. Also, if the property is to be achieved,
we cannot give a finite bound on when this will happen, only that it will be within
a finite expected number of steps.

The langnage of Commnnicating Sequential Processes (SF) [Iloas)] provides
a mathematical formalisin for the specification of deterministic distribnted systems.
Its main advantages are support for algebraic reasoning and an efleclive treatment of
concurrency. Qur aim is to constznct a probabilistic version of €SP which combines
these advantages with a notion of probabilistic correctness.

Chapter 2 of this thesis contains some measnre theory which we will need to for-
malise this notion. Chapler J presents a small model whick differs from standard
CSFP in that it has a probabilistic cheoice operator instead of the internal choice
operator of CSP, no external choice. and a parallel composition operalor only for
processes which synchronise on every action. Processes are defined as probability
measures on the space of infinite traces and operators as {nnctions {mostly transfor-
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mations) of probability measures, We chose 1o work with infinite rather than finjte
traces because many probabilistic considerations are about asymptotic behaviours
and thus jnvolve taking limits to infinity and cannot be expressed in terms of finite
traces. Also by defining all probabilities on one infinite-dimensional space, rather
than ou many different finite-dimensional spaces, we can use standard concepts of
convergence of probability measures which are crucial for the definition of recursion.
as pregented in chapter 4. In chapter & we give examples to show how to prove that
probabilistic processes have the properties that distinguish them from deterministic
processes,

Chapters 6 and 7 extend the model to include alplhabetised paraliet composi-
tion and external choice. The model of chapter 7 defines processes as conditional
probability measures. This is motivated by our understanding of externai choice in
a probabilistic context: given that the environment has chosen a certaim actron, a
process offering external choice will engage in this action with probability 1. Thns
external choice is most naturally defined as a conditional probability and all the
definitions given in chapter 3 can be modified to apply to conditional probabilities,
teo. Chapter 8 contains a set of proof rules hased oo the model in chapter 7. We
use these rules as well as the theory developed in the earlier chapters in chapter-9
where we present the formal specification and proof of correctness of a randomised
consensus protocol. The algorithm is a variation of an algorithm devised by Aspnes
and Herliby [AH90]. Our version is guaranteed to terminate only if the scheduling
of the components of the protocol is independent of the state of the components,
but the expected number of steps to termination is (J(n?), as opposed to 3{2") for
the original algorithm. and O{n?) for the best previeusly known algorithm.



Chapter 2

Preliminary Material

2.1 Probability Theory

This section contains definitions and results from probability theory which we will
need later. Praofs of the results can be found in Billingsley[Bi79] ar Shiryayev[Sh84)
(or indeed in any good textboak on probability theory).

Let  be a set of points. A o-field F defined on £ is a family of sets on ( which
contains § and is closed uuder the formation of complements as well as finite and
countable unions. (A field is closed only under complementation and finite unions.)
Members of a o-field are called miegsurable sets. The pair (§1,F) constilules a
measurable space. A probability space consists of a measurable space (§2.F) and a
probability measure P defined on F. A probability measure P on a field or o-field
F is a function P : F — R wbich satisfies the following couditions:

1L.LYAeF- 05 PAL],
2 P0=0 PO=1,

3. i (A, ) forms a disjoiut sequeuce of F-sets {and, i F is only a field, U, 4, €
F} then

PUA, = L.PA,

The last condition is called countedle additivity. If a function P : F — R satisfies
conditions 1. and 2. and is finitely additive then it can be shown that it s countably
additive if and orly 1 it 15 continuous in the sense that

AlA = PALPA

meaning if (Apn)g.N 15 & sequence of sets such that A3 C A, and 4 =, A, then
the probabilities P A, approach F A from above.
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To reason about a o-field it is sometimes useful to know that it is a monetonic
class, which is a collection M of subsets of {2 such that if (A4,),.n 15 a sequence of
sets in 2 and 4, | Aor A, T A, then 4 € M. (4, T A means that (A, ). is
a sequence of sets such that 4,4, 3 A4, and A = |J, A,.) It can be shown that
a necessary and sufficient condition for a field Fy to he a o-Reld is that it is a
monoctonic class.

A o-field is generated by a collection of sets jt it is the smallest o-field which
contains those sets. A set A is a support of a measure Pif P4 =1.

Extension of measure

The following theorem is important for us because it implies that to prove equality
of two measures defined on a o-feld F it suffices to prove that they agree on a
subset of the sets in F, namely on a field 7y which generates F.

The Extension Theorem A probability measure on a field 7, has a unique ex-
tension to the o-field F generated by Fy. 0

For a proof of this theorem sce [Bi79). It can also be shown that if the o-feld F
is generaled by a class P of subsets of Q which is closed under finite intetsectious,
then to prove equality of two measures on F il suffices to show that they agree on

P.

Measurable functions

Given two measurable spaces (€1, ) and (£, '), a function f: £} — ' is said to
be measurable F/F" if for all sets A € F' the inverse image f~' A is an element of
F .Y, F) = (R.R), ie. the real line with the o-field generated by the opeu
intervals, then f is called a random variable. If the range of [ is a finite set of
points, f is called a simple function or simple mndom variable and can be uniquely
written in the form

n

f= ZG,IA‘

=1

where { g, | 0 € i < 2} is the range of f, A, = f~'a;, and [, is the indicator
Sfunction, defined as

[y = 1 fnued
A T 1 0 otherwise .
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We will need the following results about random variables, which we quote from
[Sh84]:
Theorem 2.1.1 Any non-negative measurable function f : @ — R* is thelimit of

a monotone increasing sequence ol non-negative simple functions. a

Theorem 2.1.2 If f and g are measurable functions: 2 — R and £ € R then each
of the functions :

Sk K, f+a. fg

1s measurable. [m]

Theorem 2.1.3 The [imit lim, f of a convergent sequence (f, ).y of random vari-
ables is measurable (i.c. a random variable). a

To prove a function measurable it suffices to show that f~'A’ € F for each
A" ¢ A where A’ generates F'. Also if f is measurable F/F' and [’ is measurable
F'fF" then the function f; [’ obtained by composing f and f’ is measurable /"
{Bi79].

Transformation of measure

Given a measure P on (92, F} and an F/F -measurable function [ we can transform
P into a measure P’ on (¥, ') by setting

PA = PJTA

for any set A € F'. P is a measure since F'A is well defined for all sets A £ F' and
conntable additivity of P follows from that of P. P is called Lthe measure induced
by f.

We use transformation functions to define most of the operators in out language.
Often the laws that link different operators follow from the fact that different com-
binations of transfermation functions are the same; obviously if { ;¢ = ¢; f then
the measure induced by f ; g is the same as the measure induced by g;/.

Linear combination of measures

Lemma 2.1.4 If F and @ are probability measures and 0 < p < ! then the
function B : F — [0, 1) defined by

RA = pPA+(1-p)Q A

is also a measure. o
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Proof Clearlly RO =1, R0 =0and 0 < R A <1 forall other sets A € F. It
remains to show that R is countably additive: for a disjcint sequence (A,)n.x of
sels

R(UAn) = p P(UAH)'*(lAP) Q(UAR]
= pL PA+(1-p) L QA
by countable additivity of P. @
= Y RA.
i
Integration

In connection with product ineasures it will prove useful to use the notation of
integrals. Integration of a simple function f with respect to a measure P is defined

by
Jrmpia) & e P,

The definition of the integral of an arbitrary non-negative measurable function
f 0 — R is based on the fact that every such function is the limit of a monatonic
increasing sequeuce of simple functions.

jf[u}P(du) 2 sup {/ s(u)P(du) | s < f,s a simple function}.

We will need the following simple form of a change of veriable: if P’ is a measure
induced by the function & : 2 —  then

[1@P(dr) = [fih(w))Pldu).

For instance the probability of a set of Lraces A can be written as the inlegral of
14. Suppase that

jf,(u)P‘(du} = /IA(h(ur)]P(dw).
Since fi-1,4(w) = Ly(A(w)) this means that P is an induced measure:

PA = /IA(u)P’(du) = /h-u(w)P(dw).
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Weak Convergence

In chapter 4 we will construct the fixed point of a recursive equation as the limit
of a convergent sequence of measures. The standard concept of convergence in the
space of measures is weak convergence, which is usually defined as follows [Sh84):
Let Q be a metric space under metric §. Let F be the o-field of subsels of (}
which is generated by the open sets with respect to 8. Let (P, },.n be a sequence of
ptobability measures on (2, F).

Definition 2.1.5 The sequence of probability measures (P.)..n converges weakly
to the probability measure P {notation P, 3 P) if

[ H@Pudn) [ fla)Pie)
for every function f in the class C(£1) of continuous bounded functions on 1. ]

Textbaok examples like the law of large uumbers motivate use of weak convergence,
but we will wait until chapter 4 to give one arising from the semantics of probabilis-
tic communicating processes. The following theorem which we quote frem [Sh84)
provides us with two alternative couditions which we will find more canvenient to
use than definition 2.1.5.

Theorem 2.1.6 The following statements are equivalent.
1. P, S P.
2. limsup P. A < P A for every closed set A.

3. iminf P, A > P A for every open sct A.

Product Measure
Let Ax B denote the Cartesian product of two sets:
AxB = {{u,v})|u€AAvE B}

Given two probability spaces (Qx, Fx, Px) and (v, Fy, Py} we construct the
product space (Qyy,Fxy.Pyy) as follows. The set 1xy consists of lhe pairs of
points in @y x§ly. The o-field Fyxy is generated by the measurablc rectangles which
are sets of the form Ax B where A € Fy and B € Fy. These sets have probability

PyyAx B = PxA PyB.
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This definition gives a countably addilive function on the field of finite disjoint
unions of measurable rectangles, By the extcnsion theorem it extends uniquely to
a measure on the o-field Fxy which is gencrated by the measurable rectangles.

For general £ € Fxy this measure can be written as
PxyE = /PxEyPY(d!I)

where we adopt the notatiou E, = {r [ {7.y) € E} so that E, represents a section
through the set E at y. If E = Ax B then

B - A ifyehB
v B  otherwise

and hence Py E, = [g(y)Px A sa that as required
PrydxB = /lg(y]PxA Py(dy) = PxA PyB.

By Fubini's theorem the arder of integration is reversible, i.e.

[ BB Prigy) = [ PrEpx(dn).

We will use (Py x Py) as an alternative notation for the product measure. (This
form is clearer if we distinguish measures not by snbscripts but by different upper
case letiers.)

Conditional probability measures

In chapter 7 we will model dependence on an environment by defining a process as
a conditional probability measure.

Definition 2.1.7 A conditional probability measure (cpm) is a function of two
parameters, P : F x £ — [0,1], such that

* for fixed y € Q and varying 4 € F, P(A,y) is a probability measure aud

* for fixed A € F and varying y € Q, P(4,y) is a F-measurable random
variable.
a

To give a semantics for a language in terms of conditional probability measures
we also require products, transformations and linear combinations of conditional
probability measures.
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Product of cpm’s

Let Py and Py be two cpm’s and let f: 11 — 1 and g : 1 — {1 be two measurable
functions on traces. We define the product of Py and Py with respect to [ and ¢
to be the function which, for given z, is tbe product measure of Py given fz and
Py given g .

Lemma 2.1.8 The function P : Fyxy xQ — [01] defined for all £ € Fxy and
z €l by

P(E,2) = /Pg-(E,,fz)Py(dy,gz)

is a conditional probabilily measure, i

Proof For fixed z, [z aud gz are fixed, so thay P(E, z) is simply the product.
measure of Px given f z and Py given g 2.

For fixed A € F. Px(A.z) and Py(A,:) are random variables. Since f and g
are measurable, it follows that Px (A, f z) and Py(A, g z} are also random variables.
Let M be the class of sets such that for fixed £ € M the function Pxy(F,z) is a
random variable. The class M contains the measurable rectangles:

Pxy(Ax B,z)= Px(A,fz) Py(B,g:)

is a product of random variables and hence itself a random variable. Any set E
in the field generated by the measurable rectangles can be expressed as a disjoint
union, |J E; say, of rectangles such that Pxy(F.z) = & Pyyr(E,, z). Asasum of
random variables is itself a random variahle and M contains the field generated by
the measurable rectangles. Thus it is enongh to show that M is a monotonic class
to deduce that Fxy € M. Suppose that {E,).n is 2 sequence of sets in M such
that £, | £. Then Pxy(E,,z) | Pxy(E,7) forall z . Thus Pxy (£, z) is the limit
of a sequence of random variables and hence itself a random variable. Therefore

Eem. )

Transformation of cpm

Lerama 2.1.9 Let [, g : Q2 — Q be two F-measurable fnnctions. Given iwo ¢pm's
P and @ set

.P'(A,Z) = Innf(z) P(f_lA!gZ) + I(ranf)‘(z) Q(A,Z)

for all 4 € F and z € §). The function P'is a cpm. ]
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Proof Recall that Ig(z) denotes the indicator function which has value1if z € B
and (0 otherwise, For fixed B and variable z this is 2 random variable ard for fixed
z and variable B this is a point measure. So [ is a cpm. Since for fixed z the
function P'(A,z) is either P(f~'4,gz) or @(A,z) and both P and Q are cpm’s,
P’ is a probahility measure for fixed z. For fixed A, P’ is a sum of two random
variables and hence itself a random variable. ]

Sums of cpm’s

Lemma 2.1.10 Let {S;]} be a partition of  and {P;} a set of cpm’s. Then the
function defired YA € F.y € (1 as

PiAy) = 3 Is(y) PilA,y)
is also a cpm. u

Proof Forcach y there exists exactly one 1 such that y € ;. This gives P(A,y} =
P,(A, y)which is a cpm by definition of P,. For fixed A, P(A, y)is a sum of products
of random variahles which is again a random variable. a

We will give reference to some other standard results of probability, like the
Borel-Cantelli lemmas and the law of large numbers, as and when they are needed.

2.2 Notation

In CSP Hoa85] each process is parametrised by an alphaebet, or set of actions which
it can perform. We use a universal (non-empty, finite or countable) alphabet 3
instead, and where necessary, as in alphabetised parallel composition, explicitely
restrict a process to a subset of £. We usually use the letters a or e for actions.
and B, C or D for sets of actions.

Sequences of actions are called traces. The following is an informal summary of
the notation we use for traces and operations on traces. (For the formal definitions
see [Hoa85].) The notation is used both for finite aud infinite traces, unless otherwise
stated.
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() the empty trace,

(a} the trace containing only a,

ts concatenation of traces ¢ and s (where ¢ finite),
#i the length of a trace ¢ {#¢ = oc il ¢ infinite),
la, n < #1 {n+1)*" element of a trace ¢ (the first element is always ),
iln restriction of a trace 1 to its first n actions,
1B restriction of a trace | to actions in the set B,
il B the number of elements of B contained in ¢,
<y ! 15 a proper prefix of u,

t",a: N a finite trace ¢ repeated n times (£ = {)),

v a finite trace t repeated infinitely many times,

t/n,n<#t 1 alter n,ic. £ with its first n steps removed.

By B~ and B“ we denote the set of finite and infinite traces respectively made
up of elements of B. Usually we use the letiers ¢, s for finite traces and the letters
#, v for infinite traces.

From now on we use 2 to denote the set of infinite traces. We introduce a
special ‘unebservable’ action T to encode as infinite traces with a tail {r)* all finite
traces after which a process may terminate. So

= BYu{#nv|ter )
We nse another special action, v, to mark the snccessinl termination of a process.
We write £, as shorthand for U {r} and

o2 ZTu{ts|teX Aase {r}"}
We will need a restriction [unction | which adds a tail of 7’s where | produces a
finite trace:

z1B ifz|B =

Vzel-z18 = {[2[3)(7)"’ obtherwise .

Given a trace ¢ € Z7, let
Sy = {v:f1lu>t}

denote the set of infinite traces which are extensions of t. If t consists of a single
element a we leave out the brackets and write S{a}. Note that the only trace
leading on from a T is the tail of 7’s: S{t{r}) = {¢{r)}*}. Also if t € X" then §(¢7)
can be expressed as a difference of sets with 7-[ree prefixes:

S(t(r)) = S(1) = {J S(t{e)).
e#ET

Sets of traces with a common prefix belong to the family of eylinder sets which
are sets defined by a predicate on a finite number of dimensions in an infinite-
dimensional space; using a set of k distinct indices {n; | 0 < i < k} and a set
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H © TF, acylinder set can be written as { & : 10| (wy,... . u, ) € H}. ic. the
traces in this set are constrained only ou the k-tnples picked out by the index set.

From now on let F denote the o-field generated by the sets of infinite traces
with a commen prefix. As a o-field, F is closed under the formation of finite and
countable unions. [t also contains the empty set (# = §1°) and is closed under finite
and cauntable intersections because AN B = (A° U B°)°, We use the symbol =
to denote that two syntactic expressions are equivalent in thal they have the <ame
semantics.



Chapter 3

A Model Without External
Choice

In this chapter we present the semantics for a small language which we call PCSP,,
The syntax of PCSP, contains a subset of the constructs of CSP [Hoa83). There
is no external choice, and parallel composition is restricted to fully synchronised or
simple parallel composition, because alphabetised paralle] composition wouid resnlt
in external choice between unsynchronised actions. Internal (or non-deterministic)
choice has been turned into probabilistic choice by adding a subscript to indicate
the probability with which the choice is made. Similarly interleaving now has a
probability attached to it.

P u= STOP|SKIP|X|a— PP, Q|P\B|f(P)]
PUQIP;QIP,1QIuX P|(Xi=F).

Clavse X introduces variables from a set VAH; these are reqnired for the treat-
ment of mutual recursion presented in chapter 4. The semantics of each variable is
determined by a binding which maps each variable to an element of the space PA
of probability measures on ({1, 7). Let BN}, be the domain of all bindings.

BND, = VAR~ PM.

The semantics of a PCSPy term P is a function of the set of free variahles appearing
in P. For example, the semantics of @ — X is parametrised by p[X], the semantics
of X in the current binding p. Given p we can associate & — X with a measure in
PM. Thus the semantic function for terms must be of type

PCSPy — BND, — PM.

Rather than clogging our notation with an explicit symbol for this function we
overload the meaning of the denotational brackets and simply write [ P]p to denote
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the semantics of a term P in a binding p. The semantics may be evaluated by
associating each free variable X with its value p[X] in the current binding. We
write g[Y/X] to change the binding g by asseciating the variable X with a new
measure Y:

plY/X)[Z2] = ¥ ifZ2=X
plZ] otherwise .

This enables us to define syntactic substitution P[@/X], where all occurrences of
the variable X are replaced by the term @. as having semantics

[PlQ/IXT)e = [POllQDo/ X].

Even though we need free variables to be able to define mutual recursion. we will
ultimately be interested only in terms which represent proccsses. These terms
contain no free variables and are therefore independent of the current binding.
Thus when defiuing a process we can omit the binding parameter. Also it turns
out that up until recursion the parameter p is carried through the proof of every
algebraic equivalence without ever changing. So for simplicity’s sake we omil p in
these proofs - they could be made rigorous simply by inserting p to the right of
each term in denotational brackets.

We now present the semantics of PCSF,;. Let A be an arbitrary set in F.

3.1 Atoms

The process STOP deadlocks immediately, i.e. it never does anything. This be-
haviour corresponds to the point measure which gives probability 1 to the trace of
unobservable aclions and probability 0 to everything else:

. 1 if{rnveAd

5TOP]p A = { 0 otherwise .

As i CS5P we distinguish between deadlock and successful termination, which is
marked by the special action . Once a process has performed this action it cannot
do anything else {although potentially another process can take over). The process
SKIP does nothing but terminate successfully.

1 () {r) € A

[SKIP]p A = { 0 otherwise .



3.2 Prefixing 15

3.2 Prefixing

The expression & — P denotes a process which first performs the observable action
a and then behaves as process P. We use the {function prefiz,, which prefixes a trace
with an g, to define the probability measure denoted by a — P as a transformation
of the measure denoted by P.

[e — Plp A = [Plo prefir,’ A

where

prefir, 0 — Q2
VYueQ prefiz.du) = {a)u.

The following lernma shows that this is a valid definition.

Lemma 3.2.1 The function prefiz, is measurable. O

Proof We show that the inverse image of each generating set is in . TFor a
non-empty sequence ¢ € B the set S(¢) has inverse image

1 Sty i =a
prefiz " S(t) { 0 otherwise .
Also prefir71Q = prefir]' S{a) U U,z prefiz;'S{e) = 2. o

Using the above expression for the inverse image of S(¢) we can write its prob-
ability as

[« — PiS(1) = {(E]PESUH) o= a

otherwise .

So @ — P must do a as its first step, and the probability of any further steps
depends on P. This is analogous to the behaviour of 2 — P in other models of

CSP.

3.3 Probabilistic Choice

We write P ;M @ for a process which behaves like 7 with probability p and like
@ with probability 1—p. This corresponds to the weighted average of the measures
of P and Q.

[P.n QleA = pPle A+ (1-p) [@]e A
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It follows from lemma 2.1.4 that [P ,71 @} is 2 measure. Probabilistic choice
satigfies similar laws as the choice operator in the traces model of CSP:

Lemma 3.3.1

Probabilistic choice is idempotent aud commutative,
L1 P,nP =P

L2 P,NQ = QN P

A choice with probability 1 is certainty.
L3P,MQ = P

The associalive law holds if the weights attached to the choices are adjusted appro-
priately. It is expressed most neatly in the following, slightly unusual, form:

La (P g Q) ral R = (R yoopyn @) 1,0 Pl
Prefixing distributes through choice.

L5 ¢ =(P,N Q) = (a— P),N(ea—Q)
a

Proof Laws 1 to 3 follow immediately from Lhe definitiou. The measures for both
sides ol law 4 expand to

PIPIA + (1 —p~g}[Q]4 + ¢l R} A.
Prefixing distributes through probabilistic choice because
fe— (P, A = [P,0Qf prefir]' A
p [P] prefis]' A+ (1-p) (@] prefiz]'A
ple—=PlA+(1-p)fe—=Q] A
[(a = P),1 (a— Q)] A

I

I

a

Binary non-deterministic choice can be generalised to |_|F' P; where the P; are
PCSPy terms and the p, are probabilities, that is 0 < p, <1 and ¥, ;i =1L
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3.4 Hiding

Hiding, or removing a set of observable actions from the traces, enables vs io ab-
stract from unnecessary detail in the hehaviour of a process. The expressien P\ B,
where B C T, denotes a process which behaves like P without tbe actions in B.
Using the function hidey which removes all aclions in B from the traces, we define
the semantics of P\ B as a transformaliou of Lhe measure dencted by P. The prob-
ability of a set of traces after biding is Lthe probability of all the traces conlaining
actions in B which it conld have stemmed from. 5o

[P\Blp A = [Plp hidez' A
where

hideg : @ — {2
Yue) - hideglu) = ul B¢

Lemma 3.4.1 The function hide is measurable. w

Proof Consider the inverse image of the generating set S(t) where ! € 7. If ¢
contains any element of B then kidez' S(t) = B. Otherwise suppose that i contains
only visible actions. Then the inverse image of S(1) consists of all the infinite traces
which, after hiding of B, begin with t. Each such trace « must have a finite prefix
s such that kideg(s) = ¢, i.e. hideg(u) > [ if and only if there exisis an ssuch that
u > s and hideg(s) = (.

hidez'S(tY = [u| hidep(u) > 1}

== U S(s).

Rrdeg(a)y=1

Since there are only conntably mauy finite traces the set (J §(#) is at worsl a count-
able unjon of F-sets and hence itsell in F.

If t euds in a tail of 7's we can write S(t) = §(¢'{r)) where ' = {[Z. Since

S(n) = S - U St{en
edr

it follows that

hideg' §(1'(7)) = hideg'S(t") — | ) hidez'S(t'{e))
e

which, as a difference of measurable sets, is also measurable. Thus the inverse itnage
of every gencrating set is measurable. 0
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The argument concerning traces ending in a tail of v's can be used for any
transformation function. So for the remaining operators we only need to prove
measurability for sets with 7-free prefixes.

Lemuma 3.4.2

Hiding everything produces a process which does nothing.
L1 P\X = STOP.

Hiding nothing changes nothing.

L2 P\p = P.

Hiding does not affect a process which does nothing.

L3 STOP\B = STOP.

Hiding first one set of actions and then another is the same as hiding the union of
both sets.

L4 (P\B\NC = PABUC.
Hidden actions disappear; other actions are unaffected.

_ | e—P\B ifa¢ B
Ls (a=P)AB = { P\RB otherwise .
Hiding distributes through probabilistic choice.

L6 (P, N QN\B =P\B,N Q\B.

Proof For law 1 note that hidegu = {7} for all u. Therefore

Q i (v e A

@ otherwise .

hides'A = {

[P\R] A = [Plhideg® A

{1 iF(r«eA

0 otherwise

{STOP] A.

il
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Law 2 follows from the fact that hidey = id, the identily function on traces. For
law 3 note that {7}* € A < {r}* € hideg'4 so that
[STOP\B} A = [STOF] hideg'A
B { 1 if{r~eA

0 otherwise

= [STOP] A.
Law 4 holds because ktdeg ; hidecs = hideg,- and law 5 because
o _ hideg ; prefiz, ladg B
prefis, ; hidey = { hideg otherwise .

The proof of the law that hiding distributes through choice is similar to the proof
that prefixing distributes through cheice. O

3.5 Simple Parallel Composition

In simple parallel comiposition two processes must cooperate on every actiou that is
performed. We would expect the probability that the parallel system P|| ¢ performs
an actiot to be the produet of the probabilities with which the components P and
Q perfortn this action. So it seens natural to define the measure for P||@ as a
transformation of the product measure ([P] x [@]). This transformation uses a
function par which maps a pair of traces to the longest trace up to which they
agree. If that is a finite trace it adds a tail of unobservable actions. This reflects
the fact that for the parallel system to perform an infinite trace v both component
processes must perform u. If the component processes set out to perform traces
which differ after n steps the parallel system will deadlock at that point.

Pl@le A = ([Plox[Qp) par™'A
where

pur: =) = N

u fu=12

Vu.v €St -por(uv) = {(ufu](‘r)"" ifufn=vfnAn, # ..

Lemma 3.5.1 The function per is measurable. O

Proof Consider the inverse image of the set of extensions of a 7-free trace 1 € 1*,
par~'S(1) {(u, ) | par(a,v) > ¢}
{luy)[{u=vAu>{)V
(Br-ufn=12vln A u, &£ v, Afu]a))¥ > 1)}
= S(1)yx8(1).

I
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By the same argument which we used in lemma 3.4.1 it fellows that the set of
extensions of a trace ending in 7 also has a measurable inverse image. Thus par is
measurable. ]

Note thal if ¢ is 7-free then the inverse image of S(¢(7}) can be written as

par 'S(t(r)) = S(r)xS(try) U YU S(ee))xS(tig))

€ g¥e

where e,9 £ E,. So the probability of deadlock in a parallel systern derives from
the probability that the components deadlock individually or that they attempt to
do different things.

As in €SP, parallel composition in PCSP, is not idempotent, as is shown by the
two coin-tossing processes in parallel {example 5.3). The following lemma shows
which laws do hold.

Lemma 3.5.2

Parallel composition is commntative and associative.
L1 Pl@ = Q| P.
L2 P|(QI#) = (P

A process in paralle] with STQP can do nothing.

L3 P|STOP = STOPF.

Parallel composition distributes through probabilistic choice.
L4 (PO Q)R = PIR,N Q|R.

If two parallel processes are both prepared to perform the same action, they will
synchronise in doing so.

L5 (e Plll(a = @) = a— (P|Q).
If two paralle] processes attempt to perform different actions, they deadlock.

Lé afb= (a— P)|(b—= Q) = STOP.
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Proof Law 1 follows from the symmetry of par and Fubini’s theorem. To prove
that parallel composition is associative we show that (id, par); par = (par. id); par:
For all ,v,w € §2

((id, par) ; par}u, v, w)

_ par(u,v) ife=mw
- par(u, (vin)(7)*) Hovln=wlnA v, #w,
u fu=v=w
(ufn){r) fufn=vin=wlnA(u Z v, Voa # w, V i, & )

((par,id}; par)(u, v, w).
To prove Law 3 we write
[PIISTOF]A
= ([P} =[STOP]) par—'A
= ([P} x{STOP]) par ' AN (O x{{r}*]D
since ([P] = [STOP]) (x {{r*}) =1
_ { 1 if{r}*ecA
0 otherwise
since {7} € A & (Qx{{r)*}) C par™"4
= [STOr] A.

Parallel compaosition distributes through prebabilistic choice (law 4) because

[PI(Q,N R)Y 4
[17,1 Q) (o™ 4). [R] (d:)

p [ [P) (par™ ), [R] (de} + (1-p) [ 1Q] (par™ 4}, [] (2)
fPi@.n PlR] A

Distributivity in the other direction is simply a consequence of symmetry. For law &
it is straightforward to check that {prefiz,, prefiz,); par = par; prefiz,. Toprove Law
6. note that ({prefir,, prefiz.) : par)(u, v) = par({a)u.{c)v) = {r}* for all u, v € L}
Thus the inverse of any set A through this transformation is 8 x ) il 4 contains
{r}* and cmpty othcrwisc. Hence

[(a—=P)l(6— Q)] A

{ (P10 [Q10 if ()~ c 4
TPI0TQ]® otherwise .

[STOP] A.
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Simple parallel composition is very restrictive because it requires processes to
synchronise on every action. Alphabetised parallel composition would allow some
actions to be performed internally by one pracess without the participation of oth-
ers. Unfortunately, this cannot be modelled as a transformation of measure because
if two processes each set out to performn an internal action the two actions can hap-
pen In either order, and the pair of component traces beginning with these iuternal
actions is related to more than one trace of the parallel system. So there is no
function from pairs of component traces to system traces which could be used to
induce a measure for the parallel system. We will investigate other ways ol defining
alphabetised parallel composition in chapters 6 and 7. but we cannot incorporate
it into PCSP,.

3.6 Sequential Composition

We denote sequeutial composition of two ptocesses P and @ by P; @. Like parallel
composition, it is defined as a transformation of the producl measure:

[F;Q)p 4 = (IPlpx[Qlp) seq™' A
where seq is a function which cuts the tail off its first argument at the v and
concatenates it with the second argument:

seg: OxQ — §)
u if « -free

Yur €80 - seqfu,v) = { (u]nyo if ufn v-ree A, = .

Lemma 3.6.1 The function seq is measurable. O

Proof Forall f € T~
seg'S(t) = {(u,v)|{u>FtAuvfree)V
(An-ufn /-free Aw, =+ Alufn)e > t1}
{{u,v) [ {ul#t vfree Au>t)V
(F30< n < #t-uln vfree Auy =v A (u]n)e > 0]

il

So if ¢ is v-free the inverse image seq™'S(1) contains all the pairs of sequences
where the first sequence begins with a prefix of ¢ followed by + and the second
sequence makes up the rest of 1. It also contains the pairs of sequences where
the first argument contains the whole of ¢ {not necessarily followed by v), and the
second sequence is arbitrary:

#e-1

seg'S(H = | SU{tIa) ) xSt niuS(t) =0 if & v-free .
n=0
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If ¢ does contain & v then it must stem from the second argument of seq because
seq removes the first v. So

&
seq”'S(t) = U ((¢TR){v})xS(¢/n) if tlk v-free Aty =,

In either case the inverse image is a finite union of measurable rectangles and thus
a measurable set. Hence seq is measurable. o

Lemma 3.6.2
SK{P is the ideutity of sequential composition and STOP is the zera.

L1 SKIP;P = P;SKIP = P.

L2 STOP; P = STOP.

Sequential composition is associative.

L3 (F,Q); R = P;{¢ R

It distributes through probabilistic choice in both directions.
L4 (P,n Q); R = (P )0 (@;R).

(P5@Q),N (£ R).

Prefixing and sequential epniposition can be performed in either order.

L5 P;(Q,0 R

L6 (a > P); @ =a— (F; Q).
Sequential compaosition distributes through hiding.

L7 Ifv & B then (P; Q\B = (P\D):(Q\D).

Proof To prove Law 1 we first deal with SKTP; P.
([SKIP] = [P]) seg7' A

([SKIPT={P]) (seq” AN {{/){r)“} x D)

since ([SKFP] < [P} {{("}{m}*}=xQ =1

(ISKIP)<[PY) {{v}{7)*} > A

since Vu € - seq((VH{r)*, u) = u

[SKIP{(/)(m)~} [P] A

[P A

il
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Now consider P, SKIP. If t € X7 is v-Iree we have

#i-1

Z [P S((¢rn){v)) [SKIP] S(t/n) + [P]S(2)
iP1s(

i

[P SKIP]S(t)

since if 0 < = < #¢ then [SKIP] S(i/n) =0. I ; is the first v in { then

[P:SKIP] (1)

g [PLS({(tin){(v}) [SKIP)S(t/n)
[P)S((tTh}V)) [SKIP] S(L/k).

We will prove in lemma 3.6.3 that no process can ever do anything visible after
terminaling. It [ollows that if ¢ = v then

(F15() { [PISUTRI) 4/ (k 4 1)< ()

atherwise .

Also [SKIP] S(t/k) =1l t/(k+1) < {7}* and 0 otherwise. So for a trace ¢ which
contains v as its (k + 1)*" clement

[PIS(eTk){v}) [SKIP) S(E/k) = [P]S(2).

S0 Lthe second half of law 1 holds, too.

To prove Law 2 we use the fact that {{(r}*]} x is the support of the product
measure and hence

[sTOP; P A (ISTOP]~[P]) seq™' A
([STOP] %[ P]) (seq~ AN {{7}*} Q).

Since seg™ {7 = [{V){r)*} x {{r}*} U {{r}*} x 0 the intersection is nen-empty if
v € A

and only if (7} So
. _ 1 if{rived
[STOP; PTA = { 0 otherwise
= [STOP] A.

Associativity of sequential composition follows if we can show that (seq, rd): seq =
(id, seq) ; seq. Given u, v, w € {} we have

seq(seq(u, v), w)
_ seq{u, w) if u v-free
- seqi{uln)v,w) ifufn /free Au, =
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u if u v-free

= (ufn)e if uln v-free Au, =v A v -free
(uln)(v[m)w ifufnvfeee Aup=v Avfm /-free Av,=v
u if v /-free
{ufn)seg(v,w) if ufn J/-free Au, =V

= seq(u,seq(v,w}).

The proofs of Laws 4 and 5 follow along the same lines as the corresponding
distributivity laws for parallel composition. For Law 6 it is easily checked that
(prefiz,, id) ; seq = seq; prefir,. To prove Law 7 we show that seq ; tidey =
(hideg, hideg) ; seq. Far all u,v € 2

(seq ; hideg){u, v)

hidegnu il u v-free

hideg((u]n)v) if (uln) v-free Au, =

hidegu if u /-free

{(hidegu)[m){hidegv) i (hidegu)[m v-[ree A (hidegu)m = v.

= ((hideg, hideg) ; seq)(u, v).
[}

A process which terminates can never do auything else. Accordingly, the prob-
ability of a visible action happening after v ought to be zero. This is expressed by
the termination consirainl: let U/ be the set of traces which contain a visible event
after v,

U = {({Su|! slree Au#{r)"}]

The following lernma asserts that all the measures representing PCSPy-processes
assign this set probability zero.

Lemma 3.6.3 VP € PCSPy- [P}l = 0. m]
Proof We use structaral induction. Clearly
[STOP)U = [SKIP|U = 0.

Consider now the operators which are transformations of measure and suppose that
their arguments satisfy the constraint. A violation of the constraint can arise only if
the inverse image of U/ through the transformation function contains traces outside
U, because only they can have non-zero probability. However, it is easily checked
that if f is any funtion defined so far (id, prefiz,, hideg, par or seq), or ane of the
functions defined in the next two sections (interleave or a relabelling funclion) then
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fucu
or, if f is binary,
fUuxus ¢ v

Sa all the transformation functions defined in this mode] preserve the termination
constraint. Probabilistic choice preserves the constraint because the snm of two
null-sets is again a null-set. It will he shown iu chapter 4 that a recursively defined
pracess is the limit of a sequence of iterates which censist of some combination of
the abave functions applied to STOP a finite nnmber of times. So the termination
constraint is satified by each iterate and preserved in the limit, o

3.7 Prioritised Interleaving

Interleaving is similar to completely unsynchronised parallel composition in that
the ordering of aclions by diflerent processes is entirely arbitrary. We will give a
definition for the interleaving operatar which works because it makes an assumption
about this ordering, namely that we know Lhe asymptotic frequency of actions by
P and ( in the interleaved traces. This can be interpreted as knowledge ahout
the relaljve speed of the component processes or, equivalently, that each process is
scheduled some fixed proportion of the time.

We write P, ||| @ to indicate that P and ¢} are interleaved in such a way that at
each step P has a chance p of performing the next action. More succinctly, we say
that Pand @ are interleaved with P having priority p. Il P deadlocks, @ proceeds
on its own (irrespective of P’s priority) and vice versa. If both P and @ deadlock
the whole system deadlocks. If P has priority 1 then @ can only do something if P
deadlocks. This is similar to the notion of process priority which [$590] model in
the context of PCCS. The system lerminates successfully only when both P and
@ are prepared to terminate. If only one process is prepared to terminate, then the
ather pracess takes over until it, too, can terminate. In eflect. the action v is the
only action on which the processes must synchronise.

The semantics of this operator inveolves a transformation function inferleave and
a coin-tossing process T(p).

(Pl @l A = ([Plex[Qlox T(p)) interleave™ A.

The process T'(p) chooses between a 0 and a 1 with probability p and 1—p respec-
tively at each step. Once we have defined recursion we will be able to write

T(p) 2 [pX+({0— X),N (1= X)].
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For our present purpaose it suffices to know that for any v-free trace ¢ € L2 which
contains k 0's we have

T(p) 8ty = p'(1-p*t.
As long as neither P not ¢ have deadlocked or terminated, P is allowed to make a
step whenever T'(p) chooses 0 and & is allowed a step whenever T(p) chooses 1. The
function interleave takes two traces of actions and interleaves them as determined
by a trace of 0’s and 1’s, i.e. it is of type

Ox0OxBY — 1.

Let d € B* and suppose that u and v are 7- and /-ree up to at least d [Oand d [0
respectively. Then there exists a unique sequence of pairs of booleans and actions,
such that the sequence of hooleans is d and the sequence of actions labelled @ is
u and the sequence of actions labelled 1 is v. To express this formally let zip be
the function which transforms a pair of sequences into a sequence of pairs, and
let 7y, ® be projection functions such that for any two sequences /, r we have
m(zip(l,r)} = 1 and my(zip(l, r}) = r. Then for u and v as above we define

interleave(u,v,d) = m=z
where = € (BxE)*

Ame=4d

ATy (z[{0}xE) < u

Ar(z[{1}xE) £ v
If  is 7- and v-free only up tosome up n < d]0 and v, = / and v is 7- and /-ree
up to that point then the intcrleaved trace follows & until jnst before u, is chosen
and continues as the remainder of ».

taterfeave{n,v,d) = (mz){v/({m z[1)
where z € (Bx E)*
Amy 2){0) < d
Arg(z[{O) xE}NV) < u
Am(zl{l}xE)<w
If everylhing is as in the last case except that u, = 7 then the interleavc trace
cannot terminale successfully. We therefore define

interfeave(u, v, d) = [mz)(v/((m ) DT{/})
where 7 € (BxE)"
Ay 2}{0) < 4
Amg(z[{0)xE)7) < u
Amp(z[{1}=xE) < v
The cases where the first 7 or ¥ to be chosen by d stems from v are treated
accordingly.
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Lemma 3.7.1 The function inierleave is measurable. ]

Proof Lett € £ be r-free. Then

interleave ™ S(t)
= U Stmlzip(d, )1({0} xE)))
L xS (ma(zip(d, 1) {({1} x L))
x §(d)
#1-1

vy U

a=0 deB™
S{ma(zip(d, ) [{{0} x Z)N{7)) U S{ma(zip(d. ) [{{0} x Z))(v})
xS(mz(zip(d, 1) ({1} x Z)) {1/ 7))
x S(d{0))
U S{my{zip(d. 1)[({0} U E))(¢/n))
xS{ma{zip(d, 1) [({1] x E)){r}) U S(mal zip(d, ) I{{1] xZ)){V))
xS(d{1}))
As a countable union of sets of traces with a common prefix the inverse image of
S(1) is a measurable set. If { ends in v the only difference is that the component
traces ending in T are not in the inverse image. A set of traces with a prefix that

is not 7-free can be expressed as the difference of sets with r-free prefixes and is
therefore also measurable. Heuce the function interfeave is measurable. O

Usirg the above expression for interfeave ' §(1) we can give an explicit expres-
sion for its probability. Each term in tlie nnion over all d € B*' has probability

pO(1—p) B[ PES (ma(ip(d, ) [{{0} x £))) [QFS(mat zip(d, £) [ ({1} x 1)) (3.1)
Similarly {or the other terms. Note that p = 1 reduces the sum over all these terms

to

#1-1

[PIS(8) + 30 IPIS((ttn) ) U S((ETn) () [Q] S(¢/n).

n=0
So, as mentioned earlier. if P has priority 1 then § can only do something if P
deadlocks or termiuates. Interleaving satisfies the following laws:
Lemma 3.7.2

Interleaving is commutative, associative and distributes through choice.
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L1 Pl @ = @il P.
L2 (P, Q) Il B = (P, B),N(Q. Il A)
L3 (P ol @)l B = (Ropsll @) sl P

The process SKTF leaves the remaining component to run on its own.

L4 SKIP .|| P = F (even if p =1).

Li(a= Pl (6= Q) = (a—= (Pl (6 @)),0 (¢~ ((a— P),IIl @))).
a

Proof Commutativity is obvious, and distributivity through choice can be proved
in the same way as the corresponding law for paraltel composition.

Associativily can be proved by induction. The base cascs are Lhe probabilities
of §{}, 5{r) and S{v). Assuming that the law holds for any 5(¢} where { € T* i}
can be shown to hold lor 5({e}!) by expanding the inverse image of §({e}t) twice
usicg formula 3.1 and regrouping the resulting terms,

For law 4 note that Yu € 0, d € B - interleave{{v){(7}*, u,d} = u. Also the
product measuce ([SKIP]x[P[x T(p)) has support {{){7}*}x 2 x Q. Therefore

[S&ip, ||| Pl A

{([SKIP]x[P]x T(p)) (interleave ™ A (3 {{w){r "} x 1= (1)
{([SKIP] x[PIx T(p) { (v} } x Ax 0

[P} A.

It

For law 5 it is easy to check the following twe identities:

{prefiz,, id, prefizy) ; interleave = inlerleave ; prefiz,

(id, prefizs, prefiz; ) ; interleave = interleave ; prefiz;.

Also, it foilows from the recursive definition of T(p} and law 1 of the recusion laws
(4.2.9) that

T(p) A = p T(p) prefizg' A+ (1-p) T{p) prefiz' A
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Using these facts we can write

[(ﬂ = )l (b — QA
p ([PIx[¢ — QI xT{p)) (prefir]', id, prefizy ){interleave ™ A)

+ {1-p) ([a — P]x{Q1 = T(p)) (id, prefiz] ", prefiz] ") interleave ™' A)
= p{[PIx[t — @) Tip)) interleave™" (prefiz]' A}

+ {(1-p)(fe = PI=[Q1x T(p)) interleave™ (prefiz,' A)
= p [P, I} (4 — Q) prefir,' A

+(1=p) [(a = P),[I| QF prefir;' A
= [la= (P, (d—@Q)),N(b—({am P), [} Q1] A

3.8 Relabelling

Let f : . — X, be a function which relabels visible events but does not affect 7 or
a=7 & fla)=r7
a=v & fla)=v.
Lift f to sequences:
Yee N Vie N-f(u), = flu)
Then f can be used Lo define a probability measure
[(P)le A = [Plp S 4
Lemma 3.8.1 The [unction f is measurable. m]

Proof The function f applied to a trace does not affect the length of the trace.
Thus the inverse image f~'5(1) is of the form |J, §(s) where #s = #! and f(s) = t.

This is a measurable set. a

Relabelling satisfies the following laws:

Lemma 3.8.2

A process which does nothing remains unchanged by relabelling.

L1 j(STOP) = STOP.
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Relabelling a process first by one function and then another is the same as relabelling
a process with the combined relabelling function,

L2 f(a(P)) = (gif)P.

Relabelling distributes tbrough the following operators:
L3 fla = P) = [(a) = f(F).

L4 f(P,0 Q) = [(P),N [(Q)

Ls f(P| @) = f(P)IIS1Q)  iffislL

Lé f(P:Q) = J(P);f(Q)

LT (P, @) = J(P),il f1Q)

Proof Law 1 holds because
[FISTOPY] A = [STOP]{f'An{{r)*}) = [STOP] A.

Law 2 is obvious. Law 3 holds because prefiz, ; f = [ : prefigyia). Law 4 follows
because

Ve, ela = plPI/ A+ (0-p) QIS A = [f(P},N [(@)] 4
Laws 5 to 7 hold because

pars f = (f,f}; par if f1s1-1
seq i f (f.[); seq since (a=v < fla) =)
interleqve ; f (f,f.id); interleave.

1l



Chapter 4

Recursion

In this chapter we introduce operators for single aud mutual recursion in PCSP,.
The semantics of a recursive definition relies on the fact that the sequence of in-
creasingly many unfoldiugs of the recursion converges. In the first section of this
chapter we define weak convergence in the space PM of probability measures on
(©}, F) and show that a stronger concept of convergence wonld be unsuitable. In
other models of CSP as well as other languages convergence is defined either with
respect to a partial order (as in [Hoa83} and [JP89]) or with respect to a metric (as
in [ReR88] and [D591]). In both cases a fixed point theorem exists which yields a
sufficient condition for the validity of a recursive definition which is easy to check.

A partial order on prohability measures can easily be defined if the underlying
space is ordered. For instance, given two measures P, @ on (R, R) we could define
P to bebelow Q if ¥r:R: P(—c0,z] < @{—~co, zr]. However, the space of infinite
sequences of actions is not ordered in a way which would have an intuitive appeal.
[JP89] solve the problem by basing the semantics of their probabilistic language on
evaluations rather than measures. Evaluations are like measures, but are defined
only on a restricted class of sets and necd not have total mass 1. One evaluation is
defined to be below another if the “probabilities” assigned by the former are always
less than those assigned by the latter. However, as the authors remark, it is more
natural to use measures than evaluations. This is what we will do.

In the second section of this chapter we will define a metric and show that
convergence respect to this metric is the same as weak convergence. This will enable
us to take (almost) the standard approach towards establishing a sufficient condition
for the vahdity of single recursion. In the third section we extend this appreach to
mutual recursion. In the last section we establish proof rules for recursion induction.
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4.1 Weak Convergence

To define weak convergence in the space PM in the sense of definition 2.1.5 we use
a metric § on sequences which depends on the length of the Jongest prefix up to
which they agree:

Yu,vefl - &u,v) = min{27" |ufn=1vir}

The open balls in this space are the sets witk fixed prefixes. Taking finite and
countable unions as well as finite intersections of tbese sets yields the cylinder sets
as open sets which, as required, are the generating sets of F. They are actually
clopen, because the complement of a cylinder set is also a cylinderset. Therefore it
follows from theorem 2.1.6 that a sequence (P, }..n of measures in PM converges
weakly to a measure P only if for all cylinder sets A

lim sup P4 = lininf P4 = lim P,A = PA.

To see why a concept stronger than weak convergence would be unsuitable con-
sider u X + @ — X. From our undersianding of standard CSP we expert this to
denote the process whick performs infinitely many a’s. In the probabilistic model
this is the point measure

1 if{a)* € A
pa = { 0 otherwisc .
We also expect u X » a — X to be the limit of the sequence ( P,) where the process
P, performs n» a’s aud then stops:
P A - {1 il (a)*(riv e A

0 otherwise .

The sequence {P,} converges on all sets with fixed prefixes:

lim Pa S(t) = { 1 ift < {a)

0 otherwise .

However, il does not converge on all A € F. Consider the probabilities assigned by
the P, to the singleton set which contains just the infinite seqnence of a's. Writing
{{a)*} = N, 5(a)* and using the fact that Y& > n- P,5{a}* = 0 we have

lim P, (NeS(a)*) = 0.

Not only is this different from P{{a}“], but it also means that the pointwise lmit
of the sequence of P, ’s assigns 0 to all sets in F and thus fails 1o be a measure at
all. By contrast, if we use weak convergence then because {{a)*} is a closed set all

that is required according to theorem 2.1.6 is that
lim sup P, {{a)“} < P {{a}*}

which is true.
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4.2 Single Recursion

Let P be aterm possibly containing the free variable X. We write p X » P to
denote a process that behaves as P with X representing a recursive invocation of
the process.

To give a semantics to this expression first consider the semantics of P with a
binding p. If we regard p{X] as being vadable, [P]p becomes a function whose
argument is the measure to he bound to X:

Definition 4.2.1 If P is a PCSF, term possibly containing the free variable X
then

M(X,P)p = AY [Pla[¥/X].
]

Any free variables other than X are bound by g as usual. We can now give the
semantics of the recursion operator:

[zX+P]p = the unique fixed point of the mapping M(X, P)p.

Not all fixed points are unique. For example, every mieasure is a fixed point of the
mapping M{X, X)p, corresponding to the recursion g X « X. The rest of this section
serves to estahlish conditions for the existence and uniqueness of fixed points, based
on the [ollowing theorem:

The Banach Fixed Point Theorem If (M,d) is a complete metric space and
F: M - M is a contraction map, then F has a unique fixed pomnt fiz{F}. Fur-
thermore, for all S in M, fix(F) = im,_ .. F*(5). u]

For a proof of this theorem see for instance [Su?5|.

There are two candidates for a suitable metric for PM. The first one takes the
weighted sums of all the differences in the probabilities given by the measures P
and @ to sets with increasingly longer 7-free prefixes:

(P.Q) & X ox 3 IPS(H) - QS().

It is easily checked that this defines a metric. Note that VP, Q- (P, Q) < 2. The
second metric is based on the length of the longest -free traces up to which P and
¢} agree in probability:

d'(P,Q) = inf {27*|VieT".PS(t)= QS()).
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{For both metrics we could have included traces ending in 7 in the definition.
This would have heen topologically equivalent since the probability of any set of
traces with a prefix ending in 7 is completely determined by the probabilities of the
sets of traces with 7-free prefixes. The definition which involves only r-free traces
considerably simplifies the proof of clanse 5 (concerning a Lipschitz condition for
parallel composition) of lemma 42,5 but the other definition would enable us to
prove a similar clause for sequeutial composition. However, since this proof would
involve two pages of rather unpleasant algebra and the clause is of minor importance,
we have chosen to use the simpler definition.)

In the following we will show (lemma 4.2.2) that convergence in d is equivalent
to weak convergence. Convergence in d* implies convergence in d but not vice versa
(lemma 4.2.3). This means that d admits a wider variely of recursive definitions.
For example, we will be able to deduce (from lemmas 4.2.5 and 4.2.7} thal the term
(e = X'}, X corresponds to a contraction map with respect to d but not with
respect to d’. Therefore we nced to use d. On the other hand, some expressions,
like a — (X|[X]I.X), which we would expect to be well-defined recursjons, are not d-
contractions. However, they are d'-contractions which together with lemma 4.2.3 is
snfficient to assert that a sequence of iterates of this map is also a Cauchy sequence
with respect to d. So we also nced &',

Informally, the difference between the two metrics lies iu the way they regard
probabilistic choice. Take for inslance the processes

F 2 [a — STOP]
Q@ & [(a—STOP),N STOP]
R = [SToP].

The metric d considers P and Q to be nearer to each other than P and R:

(P, Q) = (i-p)f2
d(P,R) 1/2.

il

The metric d’ classes @ and [T as equally far apart from P:

d'(P,Q) = 1
d(P.R) = 1

Lemma 4.2.2 Convergence in d is equivalent to weak convergence. u]

Proof A sequence of probability measures { P, ),y converges in d if and only if it
converges on all sets with fixed prefixes.

lim, d(P,,P)=0 & VteX. lim, P,S(1)=P5(¢).
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Since these sets are cylindersets, convergence on all cylindersets implies convergence
in d.
For the reverse implication we use the fact that every cylinderset can be written
as a countable disjoint union of sets with fixed prefixes. So for any cylinderset A
we can write A =1); §; where Vi S, e {S(1)[te B }landi#i= 85N5 =0
Therelore
limy, P,A = lim, P,US5 = lim, ¥, P8 = 5;P5;
= PA
[m]

Lemma 4.2.3 Convergence in d' implies convergence in d. 0

Proof We show that a Cauchy sequence with respect to d' is alse a Cauchy se-
quence with respect to d. First note that ¥ P, @ - d(P, @) < 2d'(P, @) because

&(P.Q) =§1; = Yte T PS(t) = QS(1)

which means all terms in d(P, @) involving traces of length less than n+1 are zero
and

o 1 > 1 1
drRQ) = ¥ g 2 IPSN-QSMHI < ¥ 72 =245
k=n+1 ek k=n41
If (Pn)nn is a d'-Cauchy sequence then
Ve 03N Vm,r>N. &P, P,) < %G
which implies d{ Py, P} < €. So (P, ). is also a d-Cauchy sequence. ]
Theorem 4.2.4 The space M is complete in the metric d. ]

Proof A metric space is complete if every Cauchy seqnence converges. Let (P, )n.n
be a Cauchy sequence in PM, that is

Ye»> 0, AN Vrnom >N d(P,P,) < e

I this holds, then Vn,m > N the difference in probabilities assigned by P, and
FPr toany set S(t) with ¢ of length k can be at most 2f¢. Since 2f¢ can be
made arbitrarily small, (P,5(t))..n is a Cauchy seqnence in R. So we can define
a function @ : F — [0,1] which assigns to each $(¢) the limit lim, P,S$(t) and
is finitely additive. Then @ is a probability measure on the field of all cylinder
sets. By the extension theorem, there exists a unique probability measure P on the
o-fieid F which is generated by the cylindersets, snch that P agrees with @ on all
cylindersets. But then P is the limit of the Canchy sequence ( P, )n.n. Hence PM
is d-complete. o
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Now we need to investigate which PCSP, termns represent contraction maps. A
fonction F: PM — PM satisfies a Lipschitz condition with constant k if

YX,YePM - FX FY) <kdX,Y)

Let r(F) denote the smallest such &:
F(F) = inf {k|VYX.Y €PM - d(F X,F ¥} < k d(X,Y)}.

The function F' is a coealrection map if r(F} < 1, non-expanding if r(F) =1 and
crpanding if r(F) > 1.

In other models of CSP, prefixing is a contraction map and all other operators
except the hiding operators are non-expanding., This is sufficient to turn the com-
position of any operator with the prefixing operator into a contraction map because
the composition of twoe functions corresponds to the multiplication of their Lipschitz
conditions: for any mcasures X, ¥

AF(GXLF(GY)) < r(F)d(GX,GY)
#(F) r{G) d(X, Y)
AX.¥Y) i r(F)r(G) <1.

IA I IA

In the probabilistic model, parallel composition can actually expand the distance
between measures, as the following example may illustrate:

Consider the parallel composition of a process with itsell, that islet F =

M(X, X[ X)p. Let

P = [ea — STOP]
@ = (e — STOF) ,n STOP].
Then
FP = [X)X]p[P/X] = [a — STOP]

FQ = [X|X][@/X] = [{« — STOP) ;-1 STOP]
and d(P, Q) = (1—p)/2 whereas d(F P, F @) = (1-p?}/2. So
d(FP,.FQ) = {1+p)d(P, Q).

i.e. if p is large parallel composition almost doubles the distance between F and Q.

However, the fact that a furetion F is an expansion map does not matter as
long as r(F}) is bounded and can be compensated for by a contraction map G, such
that #(F) r{G) < 1. The following theorem establishes such bounds.
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Lemma 4.2.5 Let P, { be terms possibly involving the term variable Z and let
F and G be the corresponding semantic functions, that is let

F = M(Z P)p
G M(Z,Q)p.

Consider a semantic function H such that

i

Ih

1. H is constant w.r.l. p[Z]. Then +(H) = 0.
2 H=M(Z,Z)p. Then r(H)=1.
3. H=M({Z,a = P)p. Then r(H) =1/2 r(F).

b

H=M(Z,P,N Q)p. Then r(H) =p r(F)+ (1-p) r(G).

“«

11 =M(Z,P|Q)p. Then r(H) < r(F)+ r(G).

Proof Let X. ¥ be probability measures. If / is constant then
dHX. HY)=0.

If H is the identity function then
dif X.H Y)=4d(X,Y).

For the third case remember that for t € £*, n >0

{ 5(t/1) fh=e

prefiz;t S(t) ] otherwise .
Therefore
dH X HY) = dfa = Plp(X/Z],[a — Ppl¥/2])

- Zg—ln S 1F X prefir]iS(t) - F Y prefiz;'S(1)]|
a=l

{ELT
o l B
= Yo ¥ IFXSW)-FY S(1))
n=1"~ :,rl‘gi’;”
=1 . ,
= Ygom o [FXS(s)=FY S(s)]
m=0 2€EM

1
= —d(FX.FY)
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For the last step we could disregard m = O hecause s € Z° & s = (}and FX () =
FY S(} = 0. For an expression with probabilistic choice the metric d is

dHX HY)

5: S pFX S()+{1-p)G X S(¢)

n= 1 tEE™

—pFY S(t) = (1-p) G ¥ S(1)|
< pdFX,FY)+(1—-p) (G X,GY).

To show that paralle] composition has Lipschitz condition at most the sum of the
Lipschitz conditions of its components is slightly more involved. Note that for a -
free trace { the inverse image par~'5(¢) is simply S{f}x$(1). So if H Is thesemnantic
function corresponding to the parallel composition P|i@Q of the PCSPy-terms P and

2 we get

dAHX.HY) = i

n=1

STIFXSit) GXS()— FYS{t) GYS(t)

teEn

=

The terms in this summation are of the form |a; 8 — e;5,| where ¢, ;. b, and b,
are probabilities. Wriling

1 1
ayhy — amyby = 3 (e — a)(by + ba) + 3 (a1 + a){b1 ~ by)
we can derive the inequality

1
lahy — by < '5! la — aaf{bi 4 83) + (a1 + )by — b2 |
< Jar — ap| + by — by, (41)
The last step [ollows because b, + h; < 2 and a, + a3 < 2. Using this inequality we

can split d(H X . H Y) into two sums, one involving only terms in F and the other
only involving terms in (. This leads to

dH X H Y)

< z Z(|FXS(.€ ~FYS(|+|GX S+ GY S(8))
:l lEE"

< HFX.FY}+d(GX.GY)

A

< HF) d(X.¥)+ r(G) d(X, Y).
So r(H) < r(F) + (G,
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Lemma 4.2.5 provides a simple rule to determine whether a PCSPp-term is a
contraction map w.r.t. d. It shows that, unlike in other metrically based C'SP
models, unguarded recursion may sometimes be well-defined in the probabilistic
model. For example,

r((a ~ (XISTOP)) ,NXIX) < p3(140)+(1-p)2

1 if 2

< 1 P > -3-

However, some expressions, like & — (X | X || X ), which we would expect to provide

well-defined recursions, are not contraction maps with respect to 4. The next lemma

shows that all guarded recursions are contraction maps with respecl. to d'. Thus

the fixed-point theorem applied to {PM, d') together with lemma 4.2.3 ensure that
any guarded recursion is well-defined.

The meiric d' is analogous to the metrics which have been used for the un-
timed and timed models of CSP (for a summary cf. [He88)) in that it depends
solely on the number of steps up to which the behaviour of two processes is in-
distinguishable. Not surprisingly it is also an an ultra-metnic {ie. YX. ¥, 2 €
PM - d{X,Y) £ max (d'(X,Y), d'(Y,Z))). In the non-probabilistic madels a
function i a contraction map if and only if it increases the number of steps up
to which the behaviour of two processes is indistinguishable. This is also true of
functions which ate d’-contractions. We therefore adopt the standard terminology
for such functions ([Ros82], [Hoa85]):

Definition 4.2.6 Let P be a PCSP;-term possibly involving a free variable Z. We
say that P is constructive if M(Z,P)p is a d'-contraction, and non-destruclive if
M(Z, P)p is non-expanding with respect to d'. 0

So in a probabilistic context a function is constructive if and only if it increases the
length of the Lraces up o which two processes agree in probability:

P is constructive < d'{[Pip[X/Z],[PlelY/2]) < d'(X.Y)
& (VIEE"- X S(t) = Y 5(0)
=Yg T [Plp[X/Z] Si(s) = [P)elY/Z) S(s))

Similarly for non-destructive terms.
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Lermma 4.2.7
1. STOP and SKIP are constructive.
2. The free variable X is non-destructive,
3. 2 — P is constructive il £ is non-destructive.

4. P 0@, P||Q and F; @ are constructive if P and ¢ are constructive.
a

Proof Let X, Y be two measures and suppose that Vi € E°- X S(1) =V S(4).
Let = € £**'. Clauscs 1 and 2 lollow directly. Clause 3 follows bocause prefir;! 9(s)
gives a set with a fixed prefix of length =:

[a — Pla[X/Z]S(s) = {WPEP[X/ZJS (s/1) fs=a

otherwise
[Plol¥Y /2] S(s/1) fso=a
0 otherwise

since s/1 € X°
[a = Plo[Y/Z]5(s).

Let § € ™, Probabhilistic choice is non-destructive because it does not affect the
S(s):

[P0 QlpX /2] S(s)

p[Plp[X /2] S(s) + (1—p){ Qo[ X / Z] 5(s)
PPl Y /2] S(s) + (1~ pi{ QT Y /2] Ss)
[P .1 QlalY /Z]S(s).

For parallel compasition recal) that d’ onlv compares 7-{ree s. For these

[PIIQUA(X /2] 51(s) [P1lX/Z)S(s) [Q1pIX /2] 5(s)

[Plol ¥ /21 5(s) [QLalY /2] 5(s)

[P QLelY /2] 5{s)

For the proof for sequential composition assume that ¢ - and r-free. Then
[P; QlplX /2] S(s)

n-1

= 3 [PIp[X/2) S(stk(v}) [Q)o[X [ Z) S(s/k) + [Pp[X /2] S(4)

k=0

= EEPHP[Y/Z]S(SM(J)) QLY /2] S(s/k) + [PlelY /2] 5(s)

=0
= [P Qlp[Y/Z]5(s).

Similarly for traces ending in . a

i

il
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We combine lemmas 4.2.5 and 4.2.7 to characterise a class of recursive expres-
siong which are well-defined.

Theorem 4.2.8 Suppose that P is a PCSP, expression possibly containing the
free variable X. If r(M (X, P)p) < 1 or if P is constructive with respect to X then
the semantics

[uX.Plp
is well defined for all bindings p. o

For well-defined g X - P the laws listed below apply. The first two, concerning
the unfolding of recursion and the changing of bound variables, are completely
standard and follow direcily from the semantics. The last one is particnlar to the
probabilistic model and follows from the last theorern.
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Lemma 4.2.9

L1 gX+P = PlpX+P/X]

L2 If Y is not free in P then u X « P

uY P

L3 If M(X, P)p is a contraction map w.r.t. d then g X«(P ;N X) = puX.P.

[n]

Law 1 justifies the use of recursive equations as process definitions. Since P =
Q[P/X]if and only if P = p X « Q we write P = @Q[P/X] as an alternative to
P=2pXeQ Soforexample P=a — Pand P= uX+a — X are equivalent
deflinitions. The equational delinition is more concise, especially in the case of
mutunal recursion.

4.3 Mutual Recursion

To give a semantics to mutual recursion we closely follow the approach which [}891]
presented for timed CSP. We use the same syntax and translate the semantics from
the domain of sets of timed traces to the domain of probabdsy measures.

A term P may be delined by a vector of mntually recursive equations with an
mitial index ;7 € F to indicate the starting point of the recursion:

P = {X.‘ZP,')J icl.

Each term P, may contain calls to any of the variables X,. The index set / need
not be finite,

As an example, consider the process-algebra representation of a random walk
on the natural numbers: the walk starts off at the origin:

CT = CTy.

At the omigin it either goes up or it stays at the origin. At any other point il either
goes up or down. Any alternative is chosen with probability 1/2.

CTe = around — (T, 1M oap— cT
CT., = down — CT,_, 1 up = CTan n >0,

The semantic domain required to model a solution for a vector of mutnally
recursive equations is PM'; this is a product space with one copy of the model



4.3 Mutual Recursion 44

PM for each i € [. For any I, this domain is a complete metric space, with the
foilowing metric on vectors.

d(V.W) = sup {d(Vi:, W,)|iel}

To construct a semantic function for vectors of terms, we extend the use of bindings
to include mappings from vectors of variables to vectors of processes. We overload
the mapping notation (definition 4.2.1) with

Definition 4.3.1 If P a vector of PC5P; terms, and X is a vector of variables
indexed by the set [, then

M(X,P)p = AY [Plo{Y/X].

is the mapping corresponding to the semantics of P as a function of the processes
bound to X. ]

Definition 4.3.2 Il P is a vector of POSF, terms, then
[{x, = P);lp = S; where 8 s a fixed point of M( X, P)p.
[m)

This semantics is well-defined if ail fixed points of the mapping M (X, P)p agree
on the j component, which is trivially the case f M{ X, P)p has only one fixed point.
For this to be true, it is suflicient that every F; be a contraction mapping for every
X, with respect to d, as this turns P into a contraction mappiug for X with respect
to d. It is also sufficient il every P, is constructive for every X, as this turns P into
a contraction mapping for X with respect to d', which implies convergence with
respect to d. [D591] show that this condition can be weakened in the following way.

A partial ordering < on a set [ is a well-ordering if and only if there is no infinite
strictly descending sequence (s,),.n such that ¥i:Nes,, <5,

Definition 4.3.3 If < is a partial ordering on f. and 1 is an element of [, then the
initial segment of i in {7, <) is defined by seg(i) = {f:1|j < <}. ]

Definition 4.3.4 A vector of terms F is constructive for a vector of variables X
il there is a well-ordering < of the indexing set [ such that

¥ij.i:1-7 ¢seg(i) = P, is constructive for X;

(4)
Yj,i:f-j €segli) = P;is non-destructive for X;.
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Any mutual recursion in which the vector of terms is constructive for the vector of
variables has a well-defiued semantics,

Theorem 4.3.5 {(Unique Fixed Peint Theorem} if a vector of Lerms P is con-
structive for the vector of variables X, then the mapping M(X, P)p has a unigue
fixed point in PA ', a

The proof of this theorem is giveu in [Dav9l]. From it we deduce the coroilary:

Corollary 4.3.6 [f a vector of terms P is constructive for vector of variables X,
then the recursion g X « P is well-defined. m]

4.4 Recursion Induction

The bare-hands approach to proving that a recursively defined process P has a
property R involves three proof obligations:

1. R is a satisfiable predicate (that is 2 P - R(P)),

2. R is continuons
(so if (P,) is a convergent sequence then Vi . R(F;) = R(lim P;)),

3. There exists a convergent sequence (£;) such that P, = P and ¥z -R(F;).

The theory of recursion inductiou, as presented by [Ros82] and extended to Limed
CSP by [Re88] and [DSO1], simplifics these obligations by cstablishing

* a criteriop for the continuity of a predicate which is easily checked,
* an inference rule which reduces the third obligation to one step.

We apply this approach to the probabilistic model.

We identily predicates ou measures with mappings from PM to the space of
truth values TV = {iruc, fulse}. We use the metric d' to define the open sets
of PM to be those generated by the open balls, and define the open sets of TV
as {0, {false}, {{rue, false}} (this is the Sierpinsky topology). We now show that a
predicate is continuous if we anly ueed to look at sels with fixed prefixes te establish
whether it holds of a process.

Theorem 4.4.1 If R is a mapping from the complete metric space ( PM . d") to TV
such that for any P in PM

R(P)=false = (Iu:N-Yie 5" PS(t)=P'S(t)= R(P) =false)

then R s continuous. [m]
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Proof A mapping between two topological spaces is continuous if the inverse image
of every open set is open. Recall that the metric d' depends on the length of the
longest prefix up to which P and P’ agree in probability.

&(P,Q) = inf (27°|VieX - <a=PS8(t)=0Q 51}

The ahove condition implies that whenever R(F) is false it is false of all measures
in the open ball {P'|d(P, P’} < 2**'}. Thus R is continuous, 0

The following theorem is taken from {Ros32].

Theorem 4.4.2 Let M = (A, d) be a complete metric space, and let T'V be the
topological space ({frue, false}, T) with the Sterpinsky topology. If F: M — TV
is continuous and the set {a € A | F{a) = true} is nonempty, then

(Vz:A-F(z) =tree = F(C(2))=tree) = F(fiz(C)) = true
for any contraction mapping ¢ : M — M, ]

This allows us to postulate the following inference rule.

Suppose that f is a satisfiable and continuous predicate and that the PCSP,-
term P is constrictive for the variable X'. Then

Rule 4.43
VY : PM - R(Y) = R(PlpY /X))
R([e X+ Plo)

O

Proof If P is consiructive then A Y - [Pa[Y/X] is a contraction mapping. We
have assumed that R is satisfiable, continuous and that YV : PM - R(Y) =
R([PJp(Y /X]}). Therelore by theorem 4.4.2 the rule is sound. 8]

This rule can be extended to mutually recursive equations as shown by [DS91).
If P isa vector of mutually recursive processes which is constructive for the vector
of variahles X then to cstablish that a vector of predicates R correctly describes
the fixed point of M({X.P) it is sufficient to show that each R, is continuous and
satisfiable and that R is preserved by M (X, P).

Rule 4.4.4
(Vi-B(Y)) = V- B[P IplY/X])
Rifpg X+ Plp)




Chapter 5

Examples

At the beginning of this thesis we claimed that the specification of probabilistic
processes must be linked to a notion of probabilistic correctness which requires that
a property be satisfied with probability 1. In this chapter we give exarnples of some
typical properties of probabilistic processes and show how the semantics of PCSPy
enable us to reason about them.

A property which holds of all traces except possibly a set of traces of zero
probability is said to hold of almost all traces.

5.1 Fairness

The first property we consider is fairness: if a probabilistic choice of finitely many
branches is executed infinitely often then almost all traces contain every branch
infinitely often: the probability that from some point onwards one branch is over-
looked forever is zero. This coincides with the notion of extreme fairness introduced
by [Pnu83]. The probability that a process is fair can be evaluated with the help of
the following lemma, which we quote from [Bi79].

The Second Borel-Cantelli Lemma If (4,) s a sequeuce of independent events
and 3=, F A, diverges then P(lim sup, 4,) = L. ]

(Note that “event” here means “a set of points in a probability space”, not to he
canfused with “event” as a synonym for action.)

Lemma 5.1.1 Let

P = [, (8. —= P} where0 £ n < N, the a, are distinct and p, > 0.
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Then F is fair in the sense that almost all traces of P contain every a, infinitely
often, i.e.

VO<a< N« [P]lim sup{e| v =a.} =1.

Proof Let A; be the set of traces whose (.i-\—l)”rl element is a,.

Ay = {u |y =a.} = ) S(s{a.))

€L
For all s € ©* we have [P]S(s(a,)) = p[P}S(s). Also X cx. [P]S(s) = 1. Hence
1Pid = 3 [PIS(s{an)) = pa.
e

Similarly, it can be shown that if 7 # j then any A4, 4, are independent, ie.
P(A; | A))= p.. Consider the set

limsup A; = m U A
1 i=1 k=1
consistingof all the traces which contain a, infinitely often, The A, are independent
and the sum ¥, [P]A, = ¥, p. diverges. Therefore by the Borel-Cantelli lemma
[P](limsup, A;) = 1. Hence P is fair. D

This result can easily be generalised: Suppose P’ = [7, P. where each P,
contains only prefixing and a recursive invocation of P, Let ¢(P,) be the trace
which P, performs in one unfolding of the recursion and let f be a function such
that ¥ n-f(a,) = £(F,). Lifting [ to sequences we can write V A- [P']A = [P]/ " A.
In particular, the set of traces which contain ¢(F,} infinitely often has inverse image
(lim sup, A;) where A; as defined above. Hence it also has probability 1.

As a concrete example of a process of this form consider a communications
medium which loses input with probability p. Since we are not interested in the
nature of the data which is being transmitted, we model this simply as a process
which can perform two actions: in and out, such that the probability of an in being
followed by out 1s 1 —p.

P = in - {P ,Mout = P).
Since probabilistic choice distributes through prefixing we can write
P = (imn— P),JT (in— out — P).

From the generalisation of lemma 5.1.1 il follows that P will perform {in, out)
infinitely often with probability |. In other words we know that P will never
stop producing oulput altogether - if this was not true, it wonld be impossible to
implement a working communications protocol around P,
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5.2 The Asymptotic Frequency of an Action

When we defined the interleaving aperator we claimed that the asymptotic fre-
quency of heads in the traces of a coin-tossing process is the same as the probability
with which a head appears at each throw. This example shows how to substantiate
this claim.

An action @ occurs with asymptotic frequency ! in an infinite trace u if the ratio
of accurrences of a to the length of successively longer prefixes ol % tends towards
the hmit I

(uln)]{a}

lm ————= = [

f-so0 1
Note that this limit does not exist for every trace. A counterexample is provided
by the trace (@, 4,b,a,a,4a,a,...} in which each run of &'s is followed by twice as
many b’s and vice versa.

We say that the process P performs a with asymptotic frequency [ if the prob-
ahility of the traces in which a occurs with asymptotic frequency { is 1:

P{u|"}i_'n010M:l} = 1

The set of these traces is measurable because it can be expressed in terms of cylinder
seta as follows:

(o i (810
- {u|Vc>O-E!N-Vn>N-M—I‘<E}
- A an
where "~
4n = U Ninl M_m;ﬂ—}.
2o

In the following lemma we show that the processes which we consideted in the
previous section not only perform every branch infinitely often, but with a constant
asymptotic frequency:

Lemma 5.2.1 Let
P = [']P“(a. — P) whered < n < N, the a, are distinct and p, > 0.

Then F performs each g, with asymptotic frequency p,. m)
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Proof Consider the set R(t,j) of traces which contain a run of j actions other
than a, after the i*" a,.

£(0,7) {ul(uti)l{e} =0Au = a}

k(i) {t{an)slozu | #s=FAsl{a} =0At]{a.}=i~1} i>0
Then [P} £(0,7) = pa(1—~pn)’ and for i > 0
f: (i th- 1)(1—11")‘?5 {1-pa)pa

k=0 k
= (l"pn)',pn-

(L}

iP ARG, 1)

Thus [P} R(:,j) is independent of i. Similarly it can be shown that the proba-
bilities of two different runs are independent of each other. Let V, be a random
variable which records the number ol actions other than g, in the ¢*® run, that is
Vi{u) = T, 7 Ir(iy)(u). The sequence (V;) is a sequence of indepeudent, identically
distributed random vartables, each of which has expected valne

_pﬂ)
Pz

2 1
E(Y) = Zj(l‘pnypn = (
=0

This translates into an expected ratio of the nurnber of a.’s to the length of each
run of 1/(E{V) + 1) = p.. The strong law of large numbers {(cf. [Bi79]) applies to
give
Vit.. 1V,
(P u | im 2y = BV = L

i.e. the asympiotic ratio of a,’s in all runs is the same as the expected ratio in each
run. Now

V+...+ ¥V,

& ik, k- u€R(LHNREZ,P)N...ARG)
L IS+ L)

N PR TICS

i
AY =iz
£

So

t—oo
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o GBLHEV) 1) ) _

= nm ; 1
(B D))
= MmTTHEWV+D) CEWAD

e

Hence as required

[P]I{ulilj’rgw=p,.} = 1

[w]
As in the preceeding section, this lemma can be generalised to processes of the
form P’ =[], P. where P, contains only prefixing and a recursive invocation of

P'. Since the asymptotic frequency of each trace {(P,) is p, it follows lhat the
asymptotic frequency of any single action of P is ¥, (g, /#1{Fa))-

5.3 Deadlock

In this section we show that if one of the branches of a probabilistic choice ends
in deadlock, then a repeated execution of this choice will eventually deadlock with
probability 1.

Lemma 5.3.1 Let P = [—IP“ P, where pyp >0, P, = STOP and for all n> 0, P,
contains only prefixing and a recursive invocation of P. Then P will deadlock with
probability 1, [}

Proof The set D of all traces after which P may deadlock can be written as

where Ay = U,exr S{(U{7)) denotes the set of traces such that P deadlocks after k
steps. Then

[PlA: = {(1-po)* po

and

IFID = Y [PlA. = L.
£=0
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We can use this lemma to prove, for example, that two coin-tossing processes
will eventually deadlock when put in parallel: let P = hd - P .0 # — P and
Q=hd - Q,N t— Q. From the Jaws of parallel composition it lollows that

PIiQg = M- (PIQ) .0 M- (P|Q). N STOP)
where 5 = pg, r=(1-p)}{1-¢)/(1-pq)-
This is of the form described by lemma 5.3.1. The result follows,

5.4 Random Walk on the Positive Integers

In [HoaB3), p.174, the example of a counter which can move up or around at ground-
level and up or down above ground-level is used to show how different algebraic
representations of a process can be proved equivalent algebraically. If instead of
deterministic choice we use probabilistic cboice with probability 1/2 the process
becomes a random walk on the natural numbers: let C = CT, where

CTy, = around - CTy 3 oup — CT

CT, = down — CTy_y 1N up — CThyy, n>0.
7
For an alternative representation of this process, take

ZERO = around — ZERO %l_l up — PO5 ; ZERO
POS down — SKIP iNoup — POS ; POS.

and put
Go = ZERO, Coyy = POS . C,.

The proof that ¥ n.C, = CT, follows along the same lines as for the original example
(cf. [Ros82]) because all the relevant laws for deterministic choice are replaced by
corresponding laws for probabilistic choice. Instead of repeating it here we prove
that the counter eventually returns to zero with probability 1. The probability of
eventual return to zero is the sum of the probabilities of the first return to zero
occurring after n steps, which we denote by r,. Clearly, the probability of first
return to zero at step 1 is the probability of staying at zero at step 1, i.e.
n = [C] S{arourd) = %
If the first teturn to zera happens at some later stage there must bave been the
same number of up’s as down’s and no around. Moreover, up until the last step
there must always have been more up’s than down’s. So the probability of first
return to zero after an odd number of steps is
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a1 = D
and the probability of first return to zero after an even number of steps is

rin = 3 JC1S(¢} where #t =2n A tlup=1t]|down A L]laround=0
t

AVE<2n- (11k)]up > (11k)] down.
Every set 5(i) where ¢ is a trace of length 2n bas probability (1/2)** and n, is this
number multiplied by the number of traces ¢ which satisfy the above constraints.

The number of traces can be determined by the flollowing standard approach
(cf. [Fel57)}: let s, represent the difference between the number of up’s and down’s

after the first £ steps. So 5 = 0 and s — s,_; = £1. We represent a sequence
of up’s and down’s by a polygonal line whose vertices have abscissas 0,1,... k and
ordinates sg, %) ... 3. Such hnes are called paths.

no. of steps

Figure 5.1: A path

A path from the origin to an arbitrary point (k, k) exists only if £ = i+ j and
h =i — j where 1,7 are the nnmhers of up's and down’s respectively. In this case
there are

Nep = (’J,”) = ((k+kh)/2)

ways of getting [rom the origin to (k, h). [ the starting point is (%, ;) and the
end point (k;, hy) there are Ni,_, 4,4, ways of getting from one to the other.

However, we are only interested in those paths which do not cross the z-axis.
Their number can be determined with the help of the reflection principle, which we
quote from [Fel57):

The Reflection principle Let 4 = (k,,k,) and B = (k,}) be two integral
points sach that 4 > &, > 0 and A, > 0,h, > 0. By reflection on the z-axis is
meant the paint A" = (&,,—h,). The number of paths from A to B which touch or
cross the z-axis equals the number of paths from A’ to B. ]
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height § A

B

1

no. of steps

>,

Figure 5.2: The reflection principle

As an immediate consequence the number of paths from A to B which do not
touch the r-axis can be calculated as the total number of paths {rom A to B minus
the number of paths from A’ to A.

The paths which start at the origin and first return to it at step 2n must ail pass
through the points (1,1) and (2n — 1,1). Between Lhese two points the number of
paths which do not touch the r-axis is

2n —2 2n — 2
Nopw2o— MNannz = ( nn—-l )‘( nn )

So
1{2n -2 (1)"‘
T = = - .
= n\in—1 2
To sum all the return probabilities we factorise this expression into

1 2n —2n
ry, = E(u2"_2—uh) where ug, :( o )2 B

{It can be shown that 1/2 u,, is the probability of no return in the firsL 2n steps.
So 13, is the probahility of no retnrn up to 2» — 2 sleps minus the probability that
the process still hasn’t returned to zero at 2n steps.) It follows that

il 1 1
4 Z W= A4y = 1.
n n;1r2 3T g

Hence the process is certain to return to zero eventually.
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5.5 An Interesting Fixed Point

This example stems from [Ros88] who used it to demonstrate that the failures-
divergences model with infinite traces can cope with unbounded non-determinism,
but that transfinite induction may be needed to compute the fixed point ol a recur-
sion in this model. Replacing non-deterministic choice by probabilistic cheice gives
a recursive process definition in the probabilistic model whose fixed point can be
computed by ordinary induction, but whose form is still somewhat surprising. Let
@ be a process which offers an unbounded probabilistic choice of performing some
finite number of a’a:

Q 2 [, @ wheren >0, Q= STOP and Quys 2 0 - Q..
Let

P =ia—P}Q.
We show that

n 2 41
P =[], 6 where §, as above, go = py, and gny1 = IHO-3m3 e
j=0 k=0 i=0

The predicate R( Y} 2 (Y = [[],, @.[) is satisfiable and continuous and the term
{a = X) || Q@ is constructive for the variable X. We can therefore apply the
inference rule for recnrsion induction (4.4.3). Its antecedent requires that

YY:PM-R(Y)=R{le— X | QlelY/X)]).
Suppose that ¥ = [[], @] Substituting for X in a — X || Q gives
(e =1, @ IlQ = (Mye— @I {TT,Q)

since — distributes over M

Mo, (@nar 1T, Q%)

since @ — (= (nyq and {1 distributes over ||

Mo, (Qass 11 @)

since M distributes over || and is associative.

11

From the laws which relate prefixing and paraliel composition it follows that if
m > n then Qn || @ = @n. Gathering all the terms in €), and using the fact that
the probabilities of identical cheices add up we get

I'—|‘..1 |_|“(Qn+l | Q) = |_|,.,1 Q. where

oo o
70 = Po, Tat1 = Gnl E pe)+( E % )Pas-
E=n+l k=n+41
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Substituting for g, and for T3t @ =1 - Yoo g = [Tfeo(l — Yioo i) we get

Tagl = (H(l—kzpk)kz:m( Z Pl—)+H(1*2Pi ) Pat1
=0 =0 o k=n+1 ]
a1l

i

H I—ZPt)EM = fat1-

So the antecedent is true. We deduce that
P o= pXe(a=X)Q) = N,0

At first it may seern surprising that the probabilities with which P chooses a certain
number of o's are different from the probabilities with which @ chooses bnt this
is explained by the fact that P chooses not only once, bul several tirmes over. For
instance, supposing that to begin with P chooses to do three a’s. After it has done
one a it chooses again and runs this second choice in parallel with the first. If the
second choice is of less than two a's, P can’t do the three a’s which it originally set
out to do,

5.6 Probabilistic vs. Non-deterministic Choice

In the two examples in this section we take a process in tbe {ailures-divergences
model and compare it with its probabilistic analogue, whicb we obtain by snbsti-
tuting probabilistic choice for non-deterministic choice. We have not attermpted to
formalise the relation between the probabilistic and the failures-divergences model,
but these examples show some important differences bet ween the two models which
make it unlikely that the models can be related to each other by a simple abstraction
function,

The first example shows the difference between non-deterministic and proba-
bilistic choice as far as asymptotic behaviour is concerned. Consider the process
P =0-+ PN 1 — Pin the failures- divergences model. This can choose to perform
1 forever; so hiding 1 would lead to divergence. By contrast, the PCSFy-process
P=0-~P _,N1— P where p # 0 is fair in the sense that almost all traces of
P contain 0 infinitely often (as shown in lemma 5.1.1). So we would expect that
hiding 1 would result in the process which performs 0 forever, @ =0 — @, say.
This is indeed the case: consider the probability of the set of sequences starting
witb n (s after hiding 1.

[P\{1}]5¢0)"

il

HPH(U”—O S USRS 0){1)={0) ... (1}"{9})
Z,0-p)p o (0—p)%p . 2, (=) p
= 1
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From the fact that S{0)* | {(0)*} = [P\{1}]S{0)* | [P\{1}] {{0)~} it follows
that [ P\{1}]{{0)“} = 1. Therefore all sets not containing the infinite sequence of
@’s have probability zero and YA € }

rima = [ RO
= [Q]A.
Se P\ {1} =@.

Our second example shows that using probabilistic choice eliminates the prob-
lems of unbounded non-determinism. The problems caused by unbounded non-
determinism in the failures-divergences model are demonstrated by the fallowing
process. Let

QCI = STOPv Qn-H =a— Qﬂ and P = ﬂ,)nQi-

Then Py T Pasys L%, Py = STOP and Pu\{a} = CHAOS so that L(P.\{a}) #
{J P)\{a}. In the probabilistic analogue the problem disappears. Let

P,=
Now lim [P} = [u X + ¢ — X so that
lim[P\{a}} = Hm[STOP] = [STOP] = [(uX »e — X)\{al].

Q; where VE-3 paa=1

Prna—-n

5.7 Daiscussion

We have defined the semantics of a probabilistic language which features a subset
of the operators of CSP, with probabilistic choice substituted for non-deterministic
choice. Processes are defined as prebability measures on infinite sequences of actions
and operators as transformations or linear combinations of measures.

We have given examples which show that this semantics enables us to reason
about important properties such as liveness, asymptotic frequencies of aclions, fair-
ness and probabilistic correciness. We have also proved the validity of algebraic
laws which are important for reasoning about parallel systems in general. The laws
of PCSF, are the same as those of the corresponding subset of operatars of the
traces model of CSP, with two exceptions: parallel composition is idempotent in
the traces model, but not in PCS5F;, and unguarded recursion may he well-defined
in PCSFy, but not in the traces model. Like the traces model, the probabilistic
mode] does uot distinguish between deadlock and divergence; the infinite sequence
of unobservable events is used to model both.
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It would be interesting to determine the precise relation between PCSPp and
other models of CSP. It is possible that the relation between PCSP, and the
traces model could be characterised by a projection function which maps each set
of extensions of a finite trace of positive probability to a trace of the corresponding
process in the traces model, but we have not looked at this in detail.

The main disadvantage of PCSF;, which limits its usefulness, is that it lacks
the operators for general parallel composition and external choice. This problem is
addressed in the remainder of the thesis.




Chapter 6

Alphabetised Parallel
Composition

In this chapter we investigate a way of defining the parallel composition of processes
which syuchrouise on only some actions and perform others independently. The
relative order of unsyuchronised actions is arbitrary, which means that parallel
composition in general cannot be characterised by a function which maps pairs of
traces into single ones, but only by a relation between pairs of traces and possible
interleavings of unsynchronised actions.

Recall that given a measure P and a function F a new measure P’ can be defined
by setting

PA = PF'A
for all A € . For a function the inverse images of disjoint sets are disjoint or,
equivalently,

YAeF . PlANF A=)
so that for any disjoint sets A and B

P(AUB) = PF'AUB) = P(F'AUF™'B) = PFA+PF'B
P'A+ PB.

If F is a relation disjoiutedness is not always preserved under the invense image
which, at first sight, means that it cannot be nsed for a transformation of measure.
However, we will show that the suhset of sets for which disjointedness is preserved
forms a o-field, 7' say. Therefore we can use the definition above (with F arelation}
to define a probability measure P’ on the restricted o-field F”.

This and other results about the transformation of measure wilh relalions [orm
the first section of this chapter. We will use these in the second section, where we
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define the semantics of an extended version of PCSFy which includes alphabetised
parallel composition, based on a transformation relation. In the third section we
give an example to show how to use the extended model. The last section we discuss
the advantages and disadvantages of this approach.

6.1 Transformation of Measure with Relations

In this section we will prove that the sets whose disjointedness is preserved vuder
the inverse image of a relation form a o-field. In the first lemma these sets are
described as the sets whose inverse image is disjoint from the inverse image of their
complement. In the second and third lemma we find altetnative representations of
this o-field which enable us to identify sets in this o-field more easily.

Lemma 6.1.1 Given measurable spaces (§2,F) and {Q', '}, and a relation R :
1 & U the collection of sets

M 2 {A:F|RANRA =0A R A€ F)

is a a-field. =

Proof The class A is obviously closed under complementation. We show that M
is also closed under finite unions and that it is a monotone class. Let A, B € M.
Then

RMAUB)N R AU B)
(BFTAURT'B)NRY(AUB)*

(RTTAN A (AU BYYU(RT'B)Nn R™1{AU BY)
(RUANRTAYU(RT'BNR'BY)

9.

and RFYAUB)= RAUR?'B€eF. So AU € M. Let (B,);.n be a sequence
of sets in AM such that B, 1 B. Then

R'BAR'B = R'U,B,NR'N,B;
U BB, N RN, B
Un(R-1B, N B0, BE)
Un(R™' B, N R7'B;)

9.

Also R7'B = J,R7'B, € F. So B € M, M is a monotone class and hence a
a-field. [m]

inN

n oo

il
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Note that A is always non-empty, but that it can be trivial.

Lemma 6.1.2 Let M; = {4: F | (R~ ;A{ANran R) = (ANran R) € F}. Then
Ml —_—M m]

Proof By the definition of inverse £ R y < y R~z which implies
BNRA#0® & R'BnA#4. (6.1)
We first show that Ay C M. For 4 ¢ M,

(R'; R)(ANran R) = (A Nran })

= (R R)(ANranR)N{A°Ncan R) =@
because (ANran )N (A°NranR) =@

= (AN ranB)N(R™; R)(A*Nran R) =0
by 6.1

= (R, R)(ANranR)N (R ; RMA NtanR) =0
by assumption

= R 'AnNranf}n B (A*NranR) =@

= RTANRT'A°=0

Caonversely, to show that M C A4, we show that A€ M, = A & M.

A M,
(R ;R)(ANtan R) D ANran R

(A7 ; R)Y{ANran )N (ANran R)* £ 0

R ' ANran R)N A7 (ANran R)S £

RYAMA (AU (ran R)) # 49

RYANRTA #£9

since R7'A D R™Y{ANran R)and R™'{A*U (ran R)¢) = R™'4°.

TR

So equality holds. a

Yet another equivalent definition of M s formulated in terms of the transitive
closure of (R~ ; R). For w € Q let

Tw = U(R71 s R w.

w20

Lemma 6.1.3 Let M= {TA|AeF AR 'A¢F). Then M; = M, o
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Proof
AeM, & (R';R{AnranR)=(ANranR)
& TA=A
& A€M,

6.2 The Extended Model

If we are to add an operator hased on a transformation relation to our model then
the o-field on which a process is defined must be made explicit. In the following
we define a o-field for every existing PCSP; construct, writing ¢[P] for the o-field
on which the measure denoted by P is defined. Apart from being parametrised
by a o-field the definitions of processes and operators remain unchanged. So fo
prove that all the PCSP;-laws still hoid in the extended model we only need to
add proofs concerning the equality of the o-fields. Where the law depends on the
commulativity of Lwo transformation functions, f and g say, equality of the o-fields
follows immediately. Therefore we need to reconsider only the proofs of those laws
which do not follow from the commutativity of transformation functions.

Having determined the effect of relational transformations on PCSP, we define
alphabetised parallel composition based on a relation, mergeg o, and show that it
satisfies all the laws we would expect it to hold.

The Semantics of PCSP, with Variable o-fields

The processes STOP and SKIP are defined on the standard o-field.

JsTOP] = F
J[SKIP] = F.

Ip

I

The o-field of a — P contains all the standard sets of traces not beginning with a
and the sets of o[ P} prefixed by a.

oa— Pl = {A:F|prefis; A € [ PY).

P N @Q is defined only for arguments with identical #-fields: let o[ P] = ofQ].
Then

a[P,n QF = o[Pl(=<[QD

For any law involving probabilistic choice, equality of the o-fields on the right and
left-hand sides of the equatiou is obvious. The reason we do not allow probabilistic
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choice between processes with differing o-fields, is that even though it could be
defined on the intersection of these fields, this would distroy law 3, namely that
Pyn@ = P

The o-field of X\ B, where B € X, must be such that unhiding B yields a set

in o[ P}.

a[PA\B} = {A:F|hideg' € o[P]}.
To prove that o[P\E] = o[STOP] note that since hideg’A = R if {1} € A,
@ otherwise, and 1 and @ are contained in any o-field on Q it follows that {A :
Fhideg" € o[ P}} = F. We have o[P\B} = o[P] because hidey = id.

The o-field for simple parallel composition is

alP|@] = {A:F|par~'AcolPlxalQl}
It will turn out that simple parallel composition is a special case of alphabetised
parallel composition. So we need not prove its laws separately.

The sequential composition of P and @ has o-field

o[P;Q] = {A:F|seg'Aco[P]xo[Q]]
To show that ¢[SKIP ; P] = o[P] recall that SKTP\(E — {v}) = SKIP. This
allows us to write
A € o[SKIP; P}
s (seq”';(hideg! ,,id))A € Fxo[P]
= (hidcx_i{‘,} s id)((seq ' A) Nran(hideg_(1y,id)) € F xo[P]
& (hidegloy s id)({{vVH{r)} x4 U{(n)"} Q) € Fxo[P]
assuming w.o.l.o.g. that {T}* € A
& Aco[P].
So o[SKIP ; P] = ofP]. A similar argument can be used to show that [P ; SKIP]
= o[P] and that ofSTOP; P] = o[STGP].
The o-field for interleaving is
[P, 1 QT = {A:F|interleave ' A € o[P}xo]Q] x F}
The only law for which we need to prove equality of the o-fields is STOF, || P = P.
This proof is very similar to the proof that SKIP; P = P.

If we allowed relational transformations in recursive process definitions then
each unfolding of the recursion could change the underlying o-field. However, con-
vergence is defined only for sequences of measures which have the same underlying
o-field. So we allow recursive processes only if they are defined on the full 7-field
F. That is, we cannot have recursive calls to parallel processes unless they are fully

synchronised or form a master-slave system (where the actions of one component
are a subset of the actions of the other).
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Alphabetised Parallel Composition

Alphabetised parallel composition is denoted by

Pglle@

where B, € are sets of actions. Both contain 7. The processes Pand (¢ synchronise
only on actions in the intersection of B and C. Events outside B happen without the
participation of P, with a probability and ordering entirely determined by &, and
events outside ' happen without the participation of ¢}, with a probability entirely
determined by P. The semantics of this operator is defined as a transformation of
the produci measure ([P]px [@]p) with the relation merges o:

e[ lic Q1
2 {4:F | mergeg'cAn mergeg A = O A mergep's € o[ Pl xa[Q])

VAealPylic Q1 - [P pllc Qlr A = ([Plox[Q1p) mergeg'c A.

The relation mergeg ¢ maps a pair of traces to the longest trace up to which they
agree on the order of actions in B (.

memgeg ¢ : Sl x{l = )
Yuvefl-
w € mergeg c(u,v)
& (we(BUCFAwIBESurw[( <)
Viw=t{r"Ale (BUCTAB<untC<r
AVYeec (BUC)-(tHe)IBLuv (t{e))IC £ v}

If w and w' are two possible mergings of the traces u,v then mergegls{w} N
merge;'c{w'} is not empty. So the restriction of the o-field on which parallel
compasition is defined means that in a parallel system probabilities are known only
for the set of all possible orderings of unsynchronised actions, but not for individual
orderings within that set.

Note that mergeg, x, = par and that if B € C or € C B then mergeg ¢ is a
function. We could have used a slightly different definition in which a merging w
of two traces u, v has to satisfy w[B = u A w[C = v. The difference matters only
if u and v have tails of unsyuchronised actions in 8 — € and " — B respectively.
The definition we use allows mergings in which actions in # always have precedence
over actions in v (or the olther way round). Thus a sequence w containing only a
finite number of actions iu v and the same tail as ¥ would be a possible merging.
The alternative definition exciudes this possibility. [t implies that infinite overtaking
would always have zero probability simply because the traces resulting from infinite
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overtaking would be outside the range of merge. We have opted for a relation which
does oot have this implicit fairness property.

The laws for alphabetised parallel composition are the same as thase in the
traces model of CSP with one important exception: associativity holds only in
special cases.

Lemma 6.2.1
L1 PB”cQ = QHIICP'
L2 BC C= P STOP = STOP.

L3 BCCCD=
Pelleun (@ cllp O = (Pl @) pucllp ©-

L4 (PN Q)plle @ = Pyl 00 @glie O
Ls P 4llo (@1 O) = Pylle @0 Pylle O

L6 acBNC =
(e = P)gllela— Q) = a— (Pl Q)

LT ecBNnC,beB-C=>
(b—)P)B“C(a—r Q) = b—f[PB”Ca—vQ}.

L8 a,bcBNC,atb=
(b= P) glle(a— Q) = STOP.

[m]

Proof Law 1 follows from the symmetry of merge and Fubini’s theorem. For law
2 note that since ran hidey = {{r}~} and mergeg c(u, {r)~) = (v}« for allu € N it
follows that (id, kideg) ; merges ¢ is a function. Thus
[P 4llc STOP] = o[P || (STOP\g)] = F = o[STOP].
For all sets A € F we have
[P glle STOP)A = ([F}x[STOP]) mer‘geE}CA
= ([PIx[STOP]) (mergezlc AN (82 x {{r)*}))
since ([P] < [STOP(Q x {{r}*]}) =1
[PIQ[STOP] {(r)*} if{ri~e A
0 otherwise
since (7} € 4 & merge AN (1 x {{7}*]) £
= [STOP] 4.
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To see why parallel composition with merge is not always associative consider the
composition of three processes on sets B, C and D where (B U C) € D. Then
(mergey ¢, id); mergep,c,p is a relation whereas (id, mergec p); mergeg p is a func-
tion. Hence the two sides cannot be the same. Only if B C C C D are the
transformations on both sides functions. In this special case we can write for all
u,v,wEfl

mergesue,p(mergep clv, v), w)
{ mergec plv, w) freEC“AvIB=u
mergee p(t{r}*, w) {teC AtIB<unt<y
AVee C-t(e}[BLuvi{e)dv
{w if weDAaw!lC<vAawlB<u

trye il reDAIC<vAl[B<eu
AVee D-t{e}y[BLuvi{e)]C4LvVi{e)£v.
Evaluation of mergep cup{t, merges (v, w)) leads to the same expression.

Probabilistic choice is defined only between processes with identical o-fields. So
for law 4 assume that o{P] = ¢[Q]. Then

of(7 ;1 @) 5llc O
= {A:F | mergeg'c AN mergepc A° = B A mergeg: € e[ P]xe[0]}
= ol(Ppllc 0) 1 (@ 5l O
The proof of equality in probability follows along the same lines as the proof in
section 3.5 that probabilistic choice distributes over simple paraltel composition.
Similarly for law 5.
Law 6 follows il we can show that fora e BN C

(prefiz,, prefiz,) ; mergeg o = mergen ¢ ; prefir,.
This is true because Vu, v € )
w € (menges ol prefiz,, prefiz,))u. v)
& w € mergegcl{a)u,{a}v)
& (we(BUCY AwlB<{ajuAwl[C < (a)v)
V{w=tr*Atc(BUC) AL[B <{a)unit|C < {a)v
AVe€ (BUCHt(e))B £ (a)uV (t{e))[C £ (a}v)
< w=/{a}w' A w' € mergeg c(u,v)
& w € prefiz,(mergep o(u,v)).
Similarly, it can be shown that if e € BN C and d € B — C then

(prefizy, prefiz,) ; mergeg,c = (id, prefiz, ) ; mergeg ¢ ; prefiz
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and law 7 follows. For law 8 note that if ¢ 3 & and a,b5 € BN C then for all
u,v €N

(mergen c(prefiz,, prefini))(u,v) = (n)*.

[ (PIXIQD @xQ i (rv e A
[ = P) gilc e — Q)JA = {([Puxwu)a it €

[STOP]A.

6.3 The Loss Rate of a Pipe

Counsider a pipe of two media with loss rates p and g. (The loss rate is the lng term
or asymptotic frequency with which a medium loses data.) We model] the media in
the same way as in the example of section 5.1.

P = in— (P, mid— P)
Q mid — (Q M out — Q).

In a way similar to the example of section 5.2 it can be shown that these two
processes have indeed the required loss tates. The process P gl @ whee B =
{in,mid}, C = {mid, out}, forms a pipe which inputs data on channel is, passes
it on internally on channel mid and outputs it on channel out. We would like to
know the overall loss rate of the pipe.

il

in mid Q out

Figure 6.1: The pipe

The loss rate equals 1 minus the success rate, which is the asymptotic ratio of
outputs to inputs in the infinite traces, To determine the latter consider the set
R(3,7) of traces which contain j internal communications before the first output
and i inputs before the jth internal communication. Any such trace has a prefix ¢
snch that

tpcr=out A tlfout}=1 A i[{mid} =7 A
tpjor=mid A [{{fi+5) 1 {mid} =0 A (tTi+5) ] {in}=i.
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Then the smallest superset of 5(¢) to which we can assign a probability is

TS(t) = {sul|(s[B=t[BAs[C=¢[(C)
V(sIB=(t1i+5)[BASIC=(t]i+7)[C A ul{mid} =0)}.
Then R(i,7) = |J, T5(t) (where ¢ as above) is the smallest measurable set con-
taining all the traces we are interested in. Note for example that R(2,1) contains
traces beginning with {in, in, mid, in, out) where the last in has nothing to do with
the output but just happened to be input while the previous message was still in
the pipe. It also contains {in, mid}{in)*,

[P sl @1 R(i,5) = ([PIx[Q1) mergep!cR(4, 5}
(IPF> QD (Aux S({midy (out})) U Ay x S((mid)’))

where

fsul#s =i+ A8, =mid As|{mid) =7 As]{in} =i}
{s{in}{#s=i+iAsy 1 =mid As|{mid} =jAs|{in}=1i}

Ay
A

i

Since [P]4z = 0 we are left with
P14 @ sty (o) = (P TIpo0mpy o000

Taking the sum over all j then gives the probahility of ¢ inputs being needed to
produce an output. Let U be a random variable recording the number of in’s up
to the finst out. Then I/ has expectation

- E5 raowy om0 600
- S0y 0=, 3 ()

1=l =0
e IR

.

(1-g)(1-p)

Thus the success rate of the pipe is 1/E{I/) = (1 - ¢)(1 - p) and the loss rate is
P + ¢— pg {(which is as we would have expected from combinatorial arguments).
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6.4 Discussion

We have presented an extension of PCSP, which includes an aperator for alphabe-
tised parallel composition. This operator is defined as a transformation of measure
hased on the relation merge. We have shown that a relation can be used for a trans-
formation of measure il restricted those sets for which probabilities are defmed. For
a system of parallel processes this means that we can no longer assign a probability
to every set in JF, but only to sets which contain all alternative interleavings of
unsynchronised actions. We have given an example to show that this still allows
us to deduce an interesting property of a parallet system from the propetties of its
components.

However, even though the extended maodel euables us to reason about a wider
class of processes than PCSP, it is not really useful without an operator for external
choice. IT a process offers external choice we can say that with probability 1 it will
do one of two actions, but we cannot a priori give the probability of either ane
being chosen. We could assign probabilities to those sets only which contain both
branches of the choice, but for most processes this will leave us with little more than
the trivial o-field {2,0). So in the next chapter we will try a different approach,
which allow us to define both alphabetised paralle]l composition and external choice.



Chapter 7

A Model with External Choice

In CSP theterm ¢ : E — P, denotes a process which offers determiniatic or external
choice. Such a process will participate in whatever action e its environment offers,
as long as e is in £, and then behave like P,. I the environment offers an action
outside F the system will deadlock. This behaviour cannot be described in PCSF,
because the probability with which a PC5Py-process decides what to do is always
independent of its environment. External choice requires a notion of dependence
or conditioning on the environment. In this chapter we formalise this notion by
defining a process as a conditional probability measure. The idea is that if a process
P is offered a sequence y € 1 by its environment, we know the probability with
which it performs a set 4 € F. We use this to define the semantics of 2 second
language, PCSP, which differs from PCSF, in that it contains operators for external
choice and alphabetised parallel composition, but lacks the operators for sequential
composition. hiding and interleaving.

The syntax of the language PCSP contains the following constructs:
P o= STOP|X|a>P|P,NQ|e:E-P |PsOQ|
PlQiPglle @IFP) nX+P{X.=P)

Let CM be the space of conditional probability measures. Like the semantics of
other models the semantics of 2 PCSP-term P is parametrised by a binding for ita
{ree variables. Let BND be the domain of all bindings of variables to cpm’s:

BND = VAR CM

We use round brackets {) for a semantic function which defines the meaning of

PCSP terms:
h = PCSP— BND— CM

We will show that the cpm’s representing processes have two additional properties:
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1. If offered y by its environment, a process P can either perform y ordeadlock
at some point. So

PytulUu{(uln)(m)*},y) = L

2. For fixed ¢ € 37 the probability P (S(#), y) is constant if y ranges over the
set of extensions of £. Intuitively, the probability of » actions happening to
begin with depends on whether the environment initially offers these actions,
bnt not ont what it offers thereafter.

We now give the semantics of PCSP. All definitions are for any F-set A and trace
y €N

7.1 STOP

As always, the simplest process is STOP, which deadlocks no matter what the
environment offers (and is therefore constant with respect to y):

(STOPp (Ay) 2 In(r)~.

7.2 Prefixing

If the environment offers an @ € X, the probability of ¢ —+ P performing a set
A is the probability of P performing prefiz; ' 4, which depends on the second and
further actions offered by the environment. If the environment does nol offer e,
then @ — P behaves like STOP. We therefore define

Ja = Pl (A y)
= Isyly) (Php (prefic; A, y/ 1) + Isqaye(y) (STOP)p (A, y).

It follows from lemma 2.1.9 that this defines a cpm.

7.3 External Choice

For a set of visible actions F define ¢ : E — P, to be the process which, when
offered an action e in F, performs e with probability 1 and then behaves like P,
conditioned on the second and {nrther steps of the environment. When offered an
action ontside E' the process deadlocks.

le:E— Plp(4.y)

2 Y Isqa(9) WPDp (prefir A y/1) + Y Isi(v) (STOPYe (Aug).
11y 12
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It follows from lemma 2.1.10 that this i8 a cpm. Note that STOP and ¢ — P are
special cases of external choice with £ = and E = {a} respectively.

We adopt a special notation for communication. Let ¢.v denote an action with
two components. The first component, c, is the name of the channel on which the
communication takes place. The second component, v, is the value of the message
which passes. A process which first outputs v on channel ¢ and then behaves as P
is defined

clo P = cv— P

A process which is initially prepared o input any value cormmnnicable on channel
¢ is defined

€’z — P, = d:{e|chan(e) = c} = Pusgra)

where chan{c.v} = ¢ and msg(c.v) = v.

7.4 Probabilistic choice

As before we write P ,MN Q to denole probabilistic choice. Its semantics in terms
of conditional probabilities hardly needs explanation: it equals the weighted sum
of the conditional probabilities of the component processes.

(P, Qe (A y) = p{Ple(A ¥+ (1-p) (Qo(4,y).

For fixed y, (P ,M @ is a weighted sum of probability measures, and thus itself a
probability measure by lemma 2.1.4. For fixed A it is a sum of random variables
and thus itself a random variable. Therefore it is a cpm.

All the laws which hold in PCSFPy also hold in PCSFP, Additionally there is a
law which relates probabilistic and external choice:

Lemma 7.4.1

L1 P,n P

Il
i

L2 P, Q = Q.0 P

L3 P01 Q

il
T

L4 (P g @)1 R = (R yapl @)D P

Probabilistic choice distributes over external choice and prefixing:




LS e: E—{P .1 Q) = (e: £ — P.),M (e: E— QL)

L6 a— (P, Q) = (e— P),0 (e — Q)
]

Proof Laws 1 to 3 are obvious. The proof of associativity (law 4) is the same as
m PCSP; if we snbstitute cpms for probability measures. For law 5 note that

e B — (£t Q) (A )
S Is(a(w) (P 50 Qb (prefiz]* A u/1) + 3 Ise(y) (STOP)(A

il

eeF < E
= p (3 Istoly) AP (prefiz, " A y/1) + 3 Isgoy () (STOP) (A.y)
eC B gk
+ (1—p)
(3 Ts(9)AQeD (prefic] A y/1) + 3 Tsio(y) (STOP) (A y))
e E cdE

= {(e: F=PFP),N(e:F—@Q)) (A y)

Law 6 is a special case of law 5. a

7.5 General Choice

The general choice operator in CSP denotes external choice between processes
rather than actions. The same i1s true for general choice in PCSP. We write
P ;0 @ for a precess which behaves like P when offered a trace in 5, and like @
when offered a trace in 5%

£ s0Qe (Ay) = Isty) (Phe (A.y) + Is-(3) (QDr (A, y)
where § must be such that for any trace t € 53
yeSNS(t)AzeS NS = (P)SH),y) = (QD(S(1).=

The fact that this is a cpm follows from lemma 2.1.10.

To see why not all sets 5 are admissible suppose @ — P 5,y O STOP to be a
valid process definition. Then (o — P 5,4, 0 STOP)(S5{a). z) wonld be 13l 2 =
and 0 if z; # b. This violates the rule that an action, a. must not depend on
anything that might happen afterwards, b.

General choice satisfies most of the laws which we would expect it to, bnt in
one tespect it s different from other models of CSP. [n the failures-divergences
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mode] [Hoa85] the choice between identical initial actions degenerates into non-
deterministic choice:

a—=Ple— = {(a— P)N{a— Q)
a— (PN Q).

il

In the probabilistic model, a process with a general choice between two branches
beginning with ¢ will also do an a first, but then the choice of P or @ depends on
the second siep of the environment:

e—PsDa— @ =a— (P, 0:00)

The other laws for general choice are similar to those for probabilistic choice. This
is to be expected since the scmantics of both operators are defined in terms of sums
of cpm’s.

Lemma 7.5.1

l
v

LzPSDQEQchP.

P.

L3 Pgso @
L4(P51DQ]%DREPSLF‘S:D(QSQDH)'
Probabhilistic and general choice distribute over each other.

Ls PO (Q,N R) (PsO@),N(PsDC R).

il

LB(PSEIQ),HR (Pﬁﬂ H)SD(QPH R).

il

The next law 1s the probabilistic analogue of the CSP-law PO STOP = P.
LT F(g(,.nc OsSTOFP = P.

L8 IS D {uluge E— D} and 57 2 {uluy € D — E} then
(e :E—-P)sD (d:D—- Q) = d:-FUD— Ry

PiaD@Qe fde END
where, for §' = prefiz;'S. Ry = { Py fde E-D
Q. ifdeD-E.
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As a corollary to law 8 we can write

L9 a— P a—@Q = a— (P, ;-;00).

Proof Law 1 follows directly [rom the definition:

Is(y) (P) (Ag) + [s<(v) (PD(A,5) = (P}H{A,9)
Symmetry (Jaw 2)is obvious, as is law 3. In the proofs of associativity (law 4) and
distributivity (law %) we suppress the arguments (A, y} which are carried through
the whole proof unchanged.
((Fs0 Q)50 R) = I (s, (P)+ 15y (D) + Is; ()
= Isns, (P) + Isins, (Q) + Tsp (R)
= []P S1nSz a (Q 5 o R)D
To prove Lthat general choice distributes over non-deterministic choice sirnply expand
and regroup the terms: for law 5 we get
IPsD(Q,0 R = Is (P)+ 1 (p 1QD+(1-p) (D)
p (Us (P) + Is- QD) + (1-p) (Is(P) + Is<(R])
(P sD QY (PsO R).

Similarly for law 6. To prove law T recall Lthat for any process P and for all y € 0

we have (P} ({y} UU,{{yTn){T}*}, y) = 1. Accordingly, (P}{{{r}“}.{r}*)=1 for
any P, i.e. no process can do anything when the environment offers it {r}*. So

(P) (A, {r)¥) = (STOP) (A, {r)*).

Law 7 follows. Forlaw # we expand

((e:E— Po)s0 (d:D— Qb (A, y)
= Is(y) (1 Isga (@) (P (prefie. A, y/1) + 3 I (9)(STOP) (A, y))

+ Isc(;e)?z Isqay(y) 1Qa) (prefizy ' A, y/lf)Efr 2 sy} (STOP (A, y))
deD g
= d%ﬂjlsw)(y)(Is(y)[]F'etl) (prefisy' A, 91} + Ts-(9){QuD (prefi] ' A, y/ 1))
{EEZBISM(y) (Is(y) (Pab (prefiz; A, y/1) + Lsc(3)|STOP) (A, 3))
+JEDZ_EIS(J)(1¢') {s(x)(STOPY (A, y) + I5:(4)( Qb {prefiz; ' A y/1})

+ z Ts(ay () ISTOP) (A, v).
dgELD
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Since § 2 {ul v € £ — D} and §° 2 {u | yp € D — E} this simplifies to

N Ba(9) Us(y) (P) (prefizi A, y/1) + Ise(y) (Qub (prefizi A, y/1))
de &R

+ Y0 s (y) (Peb (prefisT* A, y/1)
deE-D
+ Y Isay(w) (Qa (prefisi* A, /1)
de-FE
+ 2 IS(J)(y) (1STOP) (A, v)
dgEUD
= ﬂd:EUD—a Rd[] (A,y)

where B, is the same as in law 8. a

T£ {5, }oc,ca is a finile partition of (1 we write

Os, 7

for the prefix form of general choice. Also, if all the branches of the choice are
guarded and the sels ou which they are conditioned coincide with the guards, we
can omil the sets: fot examplea = PO b2 P=a— P50 b — P

7.6 Simple Parallel] Composition

Two processes which operate in lockstep paralle] must synchronise with each other
and with their common environment at every step. Thus if the environment offers
a trace z to the parallel system P || @, then the components behave as P given
z and @ given z, and interact in the same way as the corresponding prohabihity
measures in the model PCSP,. That is we define simple parallel composition as a
transformmation of cpm’s based on the fuuction par:

0P Qo (4,2) = [(Php (ipar™ A}y, 2)(QDp (dy. 2).

We hare already shown in chapter 3 that par is measurable (F x F}/F. Therefore
by lemmas 2.1.9 and 2.1.8 the above defines a cpm.

Not surprisingly all Lthe laws for simple parallel composition which hold in PCSPy
also hold in PCSP, but additionally there is a law {law 8) which relales parallel
composition to external choice.

Lemma 7.6.1

L1PiQ = QP
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Lz PI(QIA) = (PlQ)] &

L3 P|| STOP = STOP.

La (P, Q)| R = PR, QY &

Ls Plf(@, R) = P{Q,n P| A&

L6 (a—=Plfi(a> Q) = a—(P) Q).
LT a#b = {a—=P)|| (b= Q) = STOF.

LB (e: £ P)||(g:G—=Qu) = d: ENG — [Py Q)
m]

We will show in the uext section that simple parallel composition is a special case
of alphabetised parallel composition. So the laws for simple parallel composition
need not be proved separately.

7.7 Alphabetised Parallel Composition

Let B and C be two sets of actions snch that r € BC E,, r ¢ C CL,. We
write P gl|» @ to denote the parallel composition of two processes P and @ such
that P ean perform actions in B and @ can perform actions in €' and P aud ¢
synchromise on actions in the intersection B N C'. The environmenl of this system
participates in every action and can be thonght of as a scheduler or adversary. If
the environment offers a trace z € L, to the system, then the compaonent P is
affected only by Lhe steps in z which are elements of B. So it behaves as P given
z[ B, provided zf B is infinite. If it is finite then P cannot do anything beyond 218,
i.e. it behaves as P given {z[B)({r)“. Apart from the fact that the sequence offered
by the environment determines how the actions performed by different components
are to be interleaved we want parallel composition to work in the same way as in
chapter 6, that is the probability that the system performs a scquence of actions
shonld be the product of the probabiiities with which the components take part.
We therefore define parallel composition as a transformation of the product of the
component cpm’s, based on a fnnction which merges two sequences 7 and y as far
as possible in accordance with the seqnence offered by the environment.

P pll Qo (4,z) = j(]PDP ((epargly . A),,218) 1Q)p (dy, 21 C)
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where

cparg o, : {tx 1 — {1

Vz,ye - cpargc.{z,y) = mergegy, (2, mergecr (v, 2))
(Recall that 1 is the restriction fnnction which adds a tail of r’s where | produces
a finite trace)

To show Lhat the above transformation defines a cpmm we only need to prove
that cpar is 2 measurable function.

Lemma 7.7.1 The function eparg ¢ . is measurable F x FfF. o

Proof W first cxpand the definition of cparg.c,.:

eparge T, )

_ mergeg x. (£,2) fzjC <y

h { mergep g (2, (2[n){r)*}) (=M C<yAlzln+DIC Ly
{z fz[B<zAz[C <y

Il

(zfa){ry f(zfn)[B<zA(z]n}C <y
AM(zint D)IB £2V (sl + DIC £ 3)

Il ¢ is a finite trace such that { ¢ z and ~3n-t < (z[r){r)* then cparg s, S(t) = 0.
Otherwise, if  is T-free then we must have t = z[#¢ and

cparge S(1) = S(H[B)xS{z{C).
If ¢ contains a tail of 7's then 3t € £* such that ¢ < ¢ < ¢'{1}* and
cparg.‘ﬁ"zs(t) = Cparg,lc,:s(i’J - U,#,CPGTE‘IC‘ZS(#(E))

which, as a difference of measurable sets, is also measurable. So cparg ¢ ;. is mea-
surable. 0

Lemma 7.7.2 Simple parallel composition is equivalent to alphabetised parallel
composition which is synchronised on all actions: P || @ = Py |y @ O

Proof Note that Vz,y € 0

pars, 5. (2, 4)
z fr=y=:
(z[n)ry Hzin=sln=ylnA(zn #rnVz#uy)

par(par(z,y), z)
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By definition
Pl = [(P)(para),,2) (Qidy,2).
The support aof the product measure is Tx T where T = {z}UU.{(z[n){r}*}. But

z,yeT =
Pﬂf'(-“’ay) = par(par(t,y),z) = CP“’ET.Eﬁz(‘-"ry}-

Therefore
(P Q(A2) = [1PM(eparslc, .A)y 2) (Q)(dy, 2)
= (P llp. QN A2
]
Lemma 7.7.3

L1 Pyl @ = Qglic P

L2 (Pylle @) sucllo B = Pglloun (R clip H)-
L3 BC C= P, STOP = STOP.

L4 (PN Q)gllc B = Pyl A,N @plle A
L5 P gllc(@,0 AY = Pylle Q0 Pylicfi.

L6 acBNC=>
(a_'P)B“c(a_’Q) = “_’(PH”CQ)'

LT ceBNC,0eB-C=
(b_’P)B”r:(ﬂ—’Q] = b_’(PB“(:‘I—’Q)-

L8 wbecBNC,afb=
(b— P) gllp (a = Q) = STOP.

L9 beB--C,ceeC—-—B=
(b= Pyglle(e—=Q) = b= (Pgllge— @) siyOe —((b— Plgllc @)

The last four laws are generalised by the following:
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L10 Let E and I} be sets of visible actlions such that £ C B and D ¢ €. Then
(e: F+Plgleg(d:D—=Qu) = g:G— Pyl @

where G = (ENDU(E-Clu(D-8)
P' = P,ifg e E, Potherwise
Q = @,ifge D, Q otherwise .

a

Proof Symmetry follows from the symmetry of cpar and Fubini’s theorem. Far
associativity we first prove that

(eparg.c,y. id) : cparpucp. = (id.cpargpu); cparg cup,e-

Expanding the left hand side we get ¥z,y,2 € (2

CPargLe, bl cPare s 1N T, ¥, 2)
cparpuc.palt. 7) fufB<znu[C Ly

{ cparpocpa((ulni{n)®, z) if (efr)[B<zA(uin)]C <y

Al(ufa+)IB £z v (ula+)IC £y)
u fefB<srulC<yAulD<
(ufa)(r} if(ule)iB<zna(un)]C<yAlun)]D <z
Aflufn+1)|B £V (uln+D)[C £y
Viulnt 1} D &£ 2).

Because of the symmmetry of cpar we can write

1l

eparg,cup,s(id, cparc pa}(z, y,2) = cparcup.p.e(cparc,o., id)(y, 2, 7)
and use the above formula to expand it and show equality. It follows that

(Cparg‘lc‘u[CPGTELI;c'_D,gA)z)z = (((Cpﬂra.c'-« ‘d) H CpaTBuC,D,u)AI A]s.z
(((id, cparc.p,4) s epars,cup,a) ™ A)x.:
= (cparE,]D'.{cpar,}_](-Up.,A),)z.

This together with Fubini’s theorem allows us to prove associativity:

(P gllc @) gucllp f(A v)
JUP sllc @ (epariic p ). w1B U C) (8D (dz,u1 D)

[ Qb ((eparsle sleparziep.AL)e w1 C) (P (dz. 1 B) (B)(dz, u1 D)
[ [ 1@V (eparcy, teparicn . A)s b, w1C) (R (d2, w1 D) GPY (dz, ul B)

J0Q clip B ((cpors’cup by w1 C U D) (PY (dz, 41 B)
(P glloup (@ cllp BN (A u).

i

It

il

Ih

I



http:epari.'c.�

7.7 Alphabetised Parallel Composition 81

For law 3 note that

1P pllc STOP) (4,2) = [(Ph((cpargly, A),,21B) (STOP) (dy,:1 C)

= (P)((eparglo Az, 21 8)
since ¥z - {STOP)({{r)*}.z} =1
{ (P)(R,21B) if{r}v € A
- {P)(9,z18) otherwise
since eparp ¢ (z, {t)*)={r)* f BC C
= (STCOP)(A,=18)
= (STOP){A,=).

The proofs of distributivity of alphabetised parallel composition over probabilistic
choice follow along the same lines as the proofs of the corresponding laws for simple
parallel composition in PCSP,. Since laws 6 — 9 are special cases of law 10 the
latter is the only one which remains to be proven. Let (P) = (¢ : E -~ P, and let
(@) =(d: D — ). By definition

P alic @A) = [(PYUepwrslo Ay, =1 B) (Q)(dy, 21 C)
2z =e€ END then (z1B})g = ¢ and {z]1 C)p = e. Therefore in this case

(P slle @A)
[ e = P (epars’c A, 1 B) e = Q)(dw,21C)
[P (prefieZ* (cparsle, A)ars (21 B)/1) 1Q:Nduw {21 C)/1)
f(IP::D(CPG’E.C.zﬂ(PTeﬁIZIA)w: (z/1)1B) (Qel dw, (2/1)1C)
1P. gllc Qb (prefir, ' A, 2/1)
(e — (P pllc QI (A,2).
Hxp=e¢e€ #— Cthen (z]1B)y=e and z1C = (z/1)1 C. Therefore

(P 5l @D (A 2)

= [le = P ((epary’s A)y. (1 B)) (Q)dy, 1 C)

fﬂPeD(P'rtfﬁﬂf:l(cparﬁ,lc‘,/i)w(21 B)/1) (&h(dy, z1C)

[P (eparn caplprefie A)y. (/1)1 B) (QU(dy. (/1)1 C)
= (P 5l Q) (profis; ' 4,2/1)
{e = (P. gllc QN (A,2).

fl

It
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Similarly il 3 = e € D — B then
(P pllc Q(A,2) = (e~ (Pyllc QA 2).
If zp€ (B-E)n C then (z1B)y = z and {21C)p = 2. So
1P gllc Q(A,2) = [(STOPY(cpargle. Ay (:18)) (Qb(dy, £1C).

Also 7y € (B~ EYNC = eparg,e.({r}*,y) = {v)* for all y. Therefore it follows
that epargl , A2 {{r)*} xR & (7)* € 4 and

1P sle (A, 2) = (STOP)(A,:
The same is true if zp € (C — DYN B. Finally, if z € (DU C)° then

17 pllc QD (A, 2} = fﬂSTOPD((CPﬂTE,'cEA)w( B)) (STOP)(dy, 21C)
= (STOP)(A,z)

since {{r}]*} x {(r)*} € cparg’s.A & (1)* € A. Drawing all these cases together,
we get

(Pslle @A 2y = 3. Isa(e ~ (P glle QD (A, 2)

ee END

+ 3 fsalede — (Pe gl QMDA 2)

ecE—-C

+ ): fsu)(’-’)ﬂf-’-—'(f’ glle @0(A, 2)

ecD-B

+ Y is@(z)STOP)(4, )
¢eL-G

where F = (EN D)V (E - C)U{D - B). Thus as required

(P sllc QM (A ) = g: G~ (P glle @W(A.2)
where P/, ' as defined in Law 10. I}

We write “B P; for the prefix form of parallel composition. Each component
process P; may perform only actions which are in the corresponding set B,. The
behaviour of the whole system is the pairwise evaluation of the parallel compaosition
components {(by associativity).



7.8 Relabelling

Recall that given a cpm P and functions f and g a cpm P’ can be defined as a
transformation of P by setting P'(A4,z) = P(f~'A, g z). For the prefixing cperator
we use g z = prefiz;'z. For parallel composition we use g z = (21 B,z1C) which
is an element of eparg’.,z. An attempt to define hiding or sequential composition
similarly fails because there is no sensible way of selecting an element of the inverses
of Aide and seq.

hideg'z = {u|u]B =z)
seq 'z = U S((zIn)(vNx{z/n}u {2} =0

However, we can define relabelliug if we restrict ourselves to injective relabelling
functions. Let f : & — T be such a function, which is lifted to sequencss in the
usual way. Then

V(Pp{A,z) = (Php (F7Af73)

defines a cpm.

It is easily checked that relabelling satisfies the following laws:
Lemma 7.8.1

L1 f(STOP) = STOP.

L2 f(g(P)) = (g:f)P.

L3 fle: £~ P.) = ¢: f(E) - f(P)..

L4 fiP,n @) = f{P),N flQ)

SPY jmllyey (@)

L5 f(Ppls Q)

7.9 Conditional

We use an infix-notation for conditionals. For a boolean expression b and processes

P, @ define

wase @ = ({3 L
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7.10 Recursion

To give a semantics to recursion in terms of cpm’s we use the same approach as in
chapter 4: we define the semantics of a recursive expression to be the fixed point
of an egnalion and use a metric on the space of cpm’s and the Banach Fixed Point
Theorem to establish conditions of well-definedness.

Lei P be a term possibly containing the free variable X. As before, we write
# X ¢ P to denote a process that behaves as £ with X representing a recursive
invocation of the process. To define its semantics we regard (P)p as a function of
the ¢pm to be bound to the variable X in P:

Definition 7.10.1 If P is a PC5P term possibly containing the free variable X
then M(X,Plp =AY -(P)p]Y/X] n]

We can then define
(X +Plp = the unique fixed point of the mapping M( X, P)p.

We use two metrics which are closely related to the ones we used for the semantics
of PCSP,. Given two cpm’s P and @ define

§.Q) = smp 5 IPS(:In).5) - QUS(zn), 2
and

§P.Q) = inf {27"{Vz e Z¥- P(S(z]n), z) = Q(S{z[n), 2}}.
Theorem 7.10.2 The space CA is complete in the metrie . =

Proof Let (P;).~ be a §-Cauchy sequence of cpm’s, i.e.
Ve>0,IN:N.Ynm>N- §P, Pn) <e

This implies that for every z € ¥
¥ G5 1PA(S(:18). ) = PulS(aTH) )] <
Since P, (S(#).z) = 0 for any { & r we have

5

E=0D

1

2} z IP‘.(S(!],;’) - Pln(s“)“':)' < €

LETE
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that is lor every z € L“ the sequence of P,’s given z is a sequence of probability
meastires which is a Cauchy sequence with respect to the metric d. By theorern 4.2.4
this converges to a probability measure, P given z, say. For all z € I and all
cylinder sets 4 € F we have P.(A,z) — P(A,z). Hence for a fixed cylinderset
A, P(A,z) is a random variable. Also if A, T A then P(A.,z) — P(A4,:) and as
a function of z, P(A,z) is the limit of the random variables P{A,, z) and hence
itself a random wariable. Hence the class ol sets for which P is a random variable
contains the cylinder sets and is a monotonic class. Hence it contains F. So P is a
cpm and the limit of the sequence (P,),.n. Therelore CM is §-complete. m]

The following theorem establishes Lipschitz bounds on the operators of PCSP.

Lemma 7.10.3 Let P, () be terms posstbly involving the term variable 7 and let
F and G be the corresponding semantic functions, that is let 7 = M(Z.P)p and
G=M(Z,Q)p. Consider a semantic function H such that

1. H is constant with respect to p(Z)). Then r(f} = 0.
2. H=M(Z,Z)p. Then r(H)=1.
3. H=M(Z,a— F)p. Then f{H) < 1/2 r(F).

4. H=M(Z,e: E— P,)p. Then r(H) < 1/2 max.cg(r(F.)) where
Fez= M(Z,P.)p.

5 H=M(Z,P,NQ)p. Then r(H}=p r(F)+ (l-p) r(G).
6. H=M(Z.Ps0Q)p. Then r(H) < max(r(F), r(G)).

7. H=M(Z,Pgl;@)p. Then r(H) < 2(r(F)+ r(G)).
[m]

Proof Let X, Y be cpm’s. Il H is constant then 6(H X, H ¥) =10, I[ ] is the
identity function then 8(H X . H Y} =46(X,Y). For H = M(Z,¢: F — P,)p and
F.=M(Z,P,)p we have

(1 3 Tsqa(2)(FoX (prefiz]' S(zn),2/1) — F, Y (prefiz]" S(z[n), 2/1))

ceeE

+ 3 Is(2)((STOP) (S(21n}, z) — (STOP) (S(21n), 2))])
efE
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x ]
< sup 3=
:/1eE™ azy 2"

Y Is2)FeX (prefiz,  S(z[n), 2/1) ~ F. Y (prefiz]' S(zn), /1)

eEE

1
< ErPeaécﬁ(F,X,F,Y).

So r(H) < 1/2 max,ce(r(F.}). The Lipschitz condition for prefixing arises as a
special case of this rule. For an expression with probabilistic choice the metric § is

5(H X, H Y)
= sup E— | p(F X (S(z[n),z} - F Y (S(:[n), =)
H1-p) (G X (S(21n),2) =G ¥ (§(z1n), 2))
p&(FX.FY)+(1-p) §(G X,G Y).
For genetal choice, i.e. if # = M{(Z, P 5D Q)p, we have

1A

(0 X, 0 Y)
- supzz—lfg 2)F X (S(z{n)z) = F Y S(z[n),2))
ZET~ 4o
+ise(z)(G X (S(zIn),z)— G ¥ (S(zn), z))]
< max{(§(F X, F Y),6(G X,G Y)).

So r(H}= max (r[F), r{G)).
To determine the Lipschitz condition of parallel composition recall that for r-free
z,1.e. if z € I¥, then

(P gllc @V(S(z[n},z) = (PY(S{(z[n)1B), 21 BY @) (S{(z[r)}[C). z1C}.
Therefore if # = M(Z. P 4l Q)o then
§H X. 8 Y}
= zsgzg;l (LF X (S((zTn)[B),218) G X (§{(=[n}] C),s1C)))
—F Y (5((zI»)[B).218) G Y (S{(zIn) [ C}.21C)
< ZS;PWE (IF X (S{zIn}IB).21B)~ F Y (5{(zIn)[B), 21 B)|
H G X (S((2In) 10210~ G Y (S{(z =) C), z10))

where the last step follows from the inequality 4.1. Supposc that the first £ elements
of a trace r arein B and the next j in C'— B. Then for n < &, (z[n)|B = (2] B}[n.
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Fork <n<k+j (z[a)[B = (z[B)[k. Also £t 9-2 < 2.9, Thereafter

(zIn)[B < (2| B)[In — j) and for any subsequence of » consisting of i actions in
C — B we have 27 < 2.2-(=J), Hence

§H X,H Y)
< sup ):22—1an X (S(z[n),2) = F Y (S(z[n), 2)]

+zs?£i2%f6 X (8(z[n),z) — G Y (8(z]n),2)
< §(F X, F Y)+8G X, G v).
So r(H) < 2(r(F) + (). O

As in chapter 4, the Lipschitz bounds for § mean that even unguarded recursion
is sometimes well defined. However, we still need § to show that guarded recursion
is always well defined.

Definition 7.10.4 Let P be a PCSP-term possibly involving a free variable Z.
We say that P is conaiructive if M(Z, P)p is a contraction map w.r.t. &, and non-
destructive f M{Z, P)p is non-expanding w.r.t. &' 9]

This means that

P is constructive
e SUP)AX/Z]PblY 12]) < (X, V)
@ (Vz2e T X (8(z[a),z) = Y (S(z]n), z)
= Vze I - (PYo[X/Z](S(zIn+1),2) = (PhplY/Z](S(z[n+1),2)).

Similarly for non-destructive terms.
Lemma 7.10.5
1. STOPF is constructive.
2. X is non-destructive.
3. a — P is constructive if P is non-destructive.

4. ¢: E — P, is constructive if every P, is non-destructive.

5 P,N@, PO @, P| @and P gll. Q are constructive if P and ) are
constructive.
a
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Proof Iet X, Y be two cpm’s and suppose that ¥z € Z¥ - X (S(z[n),z) =
Y (§(zIn),z). Clauses 1 and 2 follow directly. For clause 4 {which implies clause
3) note that

Qe £ — P)plX/Z) (S(z[n+1),2)
{ (PubplX/2) (5((2/1)In),2) € E
0

otherwise

{ (PabolY /2] (S((z/)In),2) H o€ F
0

otherwise

= {e: B — Ppp{Y/2] (S(z[n +1),2).
The proof that probabilistic choice is non-destructive is the same as in chapter 4
if we substitute (§((z/1)[n), z) for the probability measures used in the argument

there. The proof that general choice is non-destructive follows il we substitute the
appropriate indicator functions for the probabilily of choice.

For alphabetised parallel composition we get

1P plic @e(X/2]{S(z]n},z)

(PIAX /21 (S((21n)[B). 21B) (@)X /2] (S((2[n)[ C), 1C)
(PhalY /2](S((z[n) [ B), 21 B) (@Qbe[Y /2] (S((2]n)]C"),21C)
(P gllc QolY/2](S(z1n),2).

This completes the proof. u]

I

We combine the last two lemmas to characterise a class of recursive expressions
which are well-defined.

Theorem 7.10.6 Suppose that P is a PCSP expression possibly containing the
free vadable X. If r(M(X, P)p} < 1 or if P is constructive with respect to X then
the semantics

(X« Plp
is well defined for all bindings p. O
For well-defined y X"+ P the same laws apply for PCSP as for PCSF,.
Lerima 7.10.7
L6 uX-P = PluX-.P/X].

LT Y isnotfreein Pthen py X« P = u Y. P.
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L8 If M{X,P)p is a é-contraction map then p X « (P ;1 X) = puX «P.
]

We treat mutual recursion in the same way as in cbapter 4, substituting cpm’s
for probability measures as appropriate. Furthermore, the similarity between the
metric &' on PM and § on CM means that recursion induction on cpm’s can be
treated in the same way as recursion induction on probability measures. So we will
be able to use the lollowing two rules: Suppose that R is a satisfiable and continuous
predicate and that the PCSP-term P is constructive for the variable X. Then

Rule 7.10.8
YY:PM.R(Y)= R((P)p[Y/X])
R((s X « Php)

a

If P is a vector of mutually recursive processes which is constructive for the vector
of variables X then to establish that a vector of predicates R correctly describes
the fixed point of M{X, P) it is sufficient to show that each R; is continzous and
satisfiable and that R is preserved by M{X, P).

Rule 7.10.9

(Vi RBi(¥)) = V- Ri((PhelY /X))
R({p X « P)p)

7.11 Two Common Properties of PCSP-praocesses
We can now prove that all PCSP-processes have the following twa properties.
Lemma 7.11.1

1. H Pisa PCSP-term theu Vy e 1
P){p}uUa{(zin)(m*hy) = 1

2 1f4 € E2 and y > ¢ then (PY(S(2), ¥) = (P)(S(t).L(r}).



7.11 Two Comnmmon Properties of PCSP-processes 920

Proof We prove both properties by structural induction. Consider property 1. It
is obviously trme of $TOP. For the every operator, suppose that property 1 is true
of the arguments. Then for external choice

fe:E-+ Py ({v}ulUa{(gln){m}} 9)
3 Isoy{w/1) (P (prefiz. {y/1} UUL{(¥/11n){m)*}, 9/ 1)

+ 3 s {y) (STOPY ({y} U Ua{(yT){r)"}, y)
¢gE
= 1.

ih

The proofs for probabilistic and general choice follow immediately from the induc-
tive hypothesis. For parallel composition we have

epargc, ({v} U U {{g[n)(r)~}) = B*xC¥.
Hence

(75l @y} UL w) = (P)(B 91 B) (Q)(C*¥1C)
= L

The proof for relabelling follows because the relabelling function f is 1-1 and maps
T 1o iteell, Hence

FUybuladiyta)n=y) = {90l 0 indr)-)

A well defined recursive process p X » P is the limit of a sequence of itcrates.
(F*§STOP}).n say, each of which satisfies property 1. Since {y} U U, {{y[=){r}*}
is a closed set, we deduce from theorem 2.1.6 that

(e X « P)({y} U Un{lyln){)" ] )
2 lim sup FYSTOP) ({v} UUn{{y[n)(r)} 9}
= L
Now consider property 2. It is abviously true of STOP. It is true of all processes
if £ = {}. For non-empty ¢, suppose that it holds of the arguments of each PCSP-
operator. If & € F then
(e B — PL(S(t),y) = PAS{/1),9/1)
= (PDS(/1), (/1) )
= (e E - P (S(tr))
if & ¢ E then the process behaves as STOP and property 2 is also true. For

probabilistic choice the proof follows directly from the inductive hypothesis. For
general choice we have

(P sOQ)(S(t),y) = Is(y) PY(S() ) + Is={y) (QH(S(1), 9).
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I{ SN S(t) = B this becomes

(P s0QD(S(t)y) (@ {5(thy)

Qb (5(¢), (r)*)

(P s 0 QY(S(t), (7))

Similarly if ¢ S5(¢) = 0. If $(2) intersects both § and S° then by definilion
yESNS()AzeSNS(E) = (PIS(H),y) = (QD(S(£). 2).

Hence the above steps also apply to this case. For parallel composition we have

(P gllc QDLS(t),9) (PY(S(eTB), y1 BY (@D (S(tC), 41 C)

(PYSUTB), (BN QD (SETCYL LT CK 7))
(F gllc @V(S(2), H{7)"}).

The case of relabelling is easily checked. Finally, recursive processes satisly property

2, because the probability of §(¢) is preserved in the limit. This conclndes the proof.
m]

il



Chapter 8

Proof Rules

The description of an algorithm in CSP process algebra is a specification at an inter-
mediate level of abstraction. At a higher level of abstraction. the properties which
the algorithm is designed to achieve provide predicates upon process behaviours.
If it can be shown that such a predicate holds of every possible behaviour of the
algorithm we say that the algorithm satisfies the predicate. At a lower level of
abstraction lies a {determinislic) implementation in, say, occam.

In the traces model of CSP, a behaviour is just a finite trace. In the failures-
divergences model it is represented as a failure, that is as a trace combined with
refusal sets. In the timed model, a behaviour is a timed failure. In all these models
the semantics of a process is the set of all possible hehaviours of that process.
Thus to characterise when a process P with semantics T[P] satisfies a specification
expressed as a predicate ff with free variable u, it is sufficient to set

Psat R = (ue Tlp]= R(u)).

In the probabilistic model a process behaviour is an infinite ttace. The semantics
of & process is not the set of all possible behaviours, but a cpm which assigns a
probability to every behaviour. One way of defining when a PCSP-process satisfies
a specification wonld be to derive the set of possible behaviours from the cpm
and use it in a definition of the above form. However, we can give a more direct
definition. If a predicate describes all the possible behaviours of a process, then the
probatility of any behaviour for which the predicate is false must be zero. So we
say

Psat R = Vze Q- (P)(R,z)=1

where we follow the convention of writing just R for the set {u | R(u)}. Note that
since every process behaves like STOP when offered {7)“ by the environment, i.e.
YP e CM . P({{r)*},{r)¥) = L, it follows that P sat K = R({r}*) = true. So
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typically R is a predicate of the form (uw = 7) V R'(u), that is a predicate which
constrains what a process may do if it does anything at all. Such a constraint is
called a safety property, as opposed to a liveness property which asseris that a
process will do something.

If a safety property is violated, then at some finite point some undesired be-
haviour occurs which is irremediable. For instance, the statement thal certain
actions always happen in the same order constitutes a safety property because once
the order has been violated, it cannot be restored by any later actions.

By contrast, a liveness property can be satisfied at some point in the future no
matter what happens initially. Typical liveness properties are [airness, asymptotic
behaviours, starvation freedom and termination. These observations motivate Lthe
following definitions which we adopt from Alpern and Schneider [A585].

Definition 8.0.2 A predicate R upon infinite sequences with free variable v rep-
resents a safely property if

Yu:Q: -Ru) = In:N-Szfn)nR=0
a

Definition 8.0.3 A predicate R upon infinite sequences with {ree variable u rep-
resents a liveness property if

VieT S{H)NR#0.
a

Since these definitions are expressed in terms of infinite traces they cannot be
used in a semantics which is based on finite traces, like the traces model or Lhe
fatlures-divergences model. In the traces model it 1s impossible to reason about
liveness properties. In the failures-divergences model. liveness properties are ex-
pressed in terms of refusal sets. 1t would be interesting to investigate the differences
between these alterpative concepts of liveness, but we have not had time to address
this issue.

8.1 Safety Properties

We now present an inference rule for each clause in the syntax of PCSP, expressing
the properties of a process in terms of predicates with several components. For com-
pound processes, the antecedent of the rule will consist of component spexifications
for the component processes.

The definition of sat gives rise to the usual logical rules:
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Psat R P sat A
Psat T R=T
P sat true Psat(RAT) Psat T

The null specification is true of any process hecause {u | frue} = Q and
VieQ- (P)(R,z)=1.
Each goal may be addressed separately because
VeeQ-(P)(R,z) =1 A{P)(T,2) =1
= VYzeQ (PHRARNT,z)=1.
We may weaken any specification already established because
ViR (P (Rz)=1ARCT = VzeQ-(P)(T.z)=1

The process STOP is unwilling to participate in any external activity. The first
vistble action performed by & — P must be g and the subsequent behaviour is that

of P. Sothe inference rules for STOP and a — P are
P sat R

STOP sat u = {7}* a— Psat {w=7)V(uw=a A R(u/l))

These last two rules are special cases of the following:
Yee E- P, sat R,
e E— Posat (ug=71)V (19 € E A Ry {uf1))

To show that this is sound let R(u) = (w = 1) V (g € E A R (u/1)).

Yze
fle: £ — P)(R.z)
= 3 dsy (2P (prefiz, 'R, 2/1) + ¥ I (2)ISTOP) (R. 2)

eCE e E

= Z 15('}(Z)GP50(RH ;/1) + Z ]S(p}(:mSTOPD(H,:)
o E -3

= 1.

Then

Any behaviour of the probabilistic choice P ,1N @ must arise from either P or Q.

This gives rise to the inference rule

Psat R
@sat T

P NQ@sat(ffv T)
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This is sound because for all z € §]

PAPIRUT,2) + (1-pH(QI(RU T, 2)
pAPI(R, 2z} + (1-p) (@M T, 2)
1.

PN QY(RUT,2)

A process offering exlernal choice also behaves like one of its components. So the
same inference rule applies as for probabilistic choice.

Psat R
@Gsat T

P s QSat(R\/T}

This rile can be strengthened if we make the antecedents depend on the traces
offered by the environment, in which case we have to abandon the sat-notation in
the antecedent part of the rule.

Yze§ (P)(Rz)=1
Vze S (QUT.z) =1

PsO Qsat(Rv T

The soundness of this rule (as of the weaker one) follows immediately from the
definition of general choice:
(PsD @QYRUT,z) = L()P){RUT, )+ Ls(QY(RUT,2)
= 1.
In simple parallel composition P || @ processes P and @ must synchronise on

every action. Thus the parallel system can do only what both of them are prepared
to do:

Psat R
G sat T

Pl Qsat(RAT)

By definition,

P QMNRNT.2) = [(Ph((par™ (RN T)),.2) (Q)(dy,2)
We prove that

(P)(R,z) =1A(Q)(T,z)=1 = RxT Cpar'(RNT).
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We know that if a process attempts to perform a trace, u say, then the environment
can force it to stop by offering a trace z which disagrees with u from some point
anwards. Therefore if P sat R and R(u) then R must also be true of all prefixes of
u followed by ('r)"":

Psat 8 = (R(u) = ¥a-R((uln){r}*)).

Also Wv-par{u, v} = u V In-par(u,v) = (a[n){r}*. Thusu € R = par(u,v)€ R.
Applying the same argument to v € T we get

veRAve T = por(v,v)€c ANT.
Therefore

Psat B AQsat T
= (P QMRNT. 2}

I

((P)= QD) (par (RN T).2)
({Ph (@D AT, 2)

(PD (R QDT )
1.

1A

The generalised version of this inference rule is

Psat R A (v € BY)
@sat T A {ue€ C)

Pglle @sat R{ul By A T(u]C}

The proof of soundness of this rule has to take account of B and C but apart
from that follows along similar lines as the previous proof. Since K and T arc
"prefix-closed’ we have

uERAVEB " AveTAvE (Y
= epargc.lu.v)€ {w|R(w1B)A T(u]C)}.

So
(ROB)X(TACY) C cpargle fw | R{wl B) A T(w1C)).

Therelore

Psat (RAue BYYAQsat (T Ave O}
= (P gilc QUu | R(s1B) A T(x1C)}.2)
= (IP) < (Q)) (cparg i {w | R(w]1B) A T(w]1C)},2)
< {P)(R.1B)(@)(T,21C).
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The following proof rnle enables us to show that a recursive process satishies a
predicate upon traces. let R be a safety property. Then

Xsat H= Psat R
uX+PsatR

To show that this is sound we show that it 1s a special instance of the proof
rule 7.10.9 {for predicates upon recursive processes). By definition, if X € CM
then

XsatR < VyeQl-X(R,y)=1

We know that £ is *prefix-closed’ in the seuse that auy visible prefix of an element
of R followed by (7}* is itsell an element of R. Let

T(X) = ¥yeQ - X(Ry =1

Then T is a satisfiable predicate upon processes, because STOP sat R. [ T(X) is
false, then X must assign positive probability to some behaviour which viclates £,
Since R is a safety property this must be apparent at some finite point, and T is
false of every process in the open ball of processes which agree with X np to that
point. So 7 is contimous and the above proof rule is an instance of rule 7.10.9.

8.2 Liveness Properties

The proof rules presented in Lhe last section are most useful for safety properties.
For liveness properties we have to assume that the environment docs not block
the progress of the system whose properties we are lrying to prove, i.e. that the
environment resolves every external choice on which the system depends. but ac-
cepts every internal (that is: probabilistic choice) made by the system. It turns out
that any process combined with such an environment can be modelled simply as a
probability measure, rather than as a cpm.

In this section we identify a subset of PCSP which has a well-defined semantics
both in CM and in PM. We show that the semantics {J of a construct in this
subset of the language is related to its senantics as given by [] by a translrmation
[unction on traces. We then show that the assumption we make of the enviconment
of a process to analyse its livencss properties results in a system that belongs to
this subset of PCSP. So to analyse liveness properties we never have Lo consider
cpm’s, but only simple probability measures. That is, the same techniques which we
used in chapter 5 to prove liveness properties of the rather limited class of PCSP,
processes can also be used Lo analyse processes in general.

Tirst note that every probability measure can be used to induce a conditional
probability measure.
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Lemmue 8.2.1 If P is a probability measure in PM, then the function defined as
Q(Ay) = P cond'A

where
condy(z) = par(z,y)

is a cpm, a}

Proof We know that par is measurable (F x F)/F, Hence cond, is measurable
F[F. Sofor fixed y, P cond;" 4 induces a probability measure. It retnains to prove
that for ixed A € F the function P cond;? 4 is F-measurable. Let C denote the
class of sets such that for " € C the functiou P cond, " is F-measurable. Suppose

first that " = 5(1} where  is 7-free. Then

- S(1) if y € 5(¢)

cond, S (1) { ] otherwise .
Therefore P mnd’“S(t} = Isy{y) P 5(¢), which is a simple random variable. If ¢
is not r-free, the value of P cond?S(t) can be computed as the difference of the
probabilities of 7-free traces, i.e. as a dilference of simple random variables. So
in this case, toa, P rand;‘S(i) is a simple random variable. So C contains all the
sets with fixed prefixes. It is easily shown that C is closed under finite unions and
countabie intersections. Therefore it is a monotone class and hence € = F. o

So for every probability measure we can construct a correspending epm. How-
ever, what we really need is to identify when a cpm has a corresponding probability
measure,

Lemma 8.2.2 A PCSP-process {P)) has a corresponding probability measure [P]
if and only if
Yn:N- Y (PNS(O,Hr)7) £ 1

teLn

a

Proof Iftisa 7-free trace of tength » then cond,‘(r‘)_S[t) = §(1). Tkerefore if {P)

is a PCSP-process with a corresponding probabilily measure [P] thew
[PES(4) [P] condy )y S[.i)
(PS8 4{7)7).

This means that
Lresn{PD(S(L). E(r)™) < 1

or else [P] would not be a probability measure. a
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The next lemma provides a rule hy which the existence of a probability measure
corresponding to a cpm can be checked syntactically rather than by recourse to the
semantics.

Lemma 8.2.3 If Pisa PCSP-term containing only STOP, —, ;11, || and possibly
variahles bound by recursion, then the semantics of P in PCSP and FCSP, are
related by

(PNAY) = [Flcond]'A,
]

Proof We use structural induction. To deal with STOP, note that {r}* € A <
{r}* € eond; ' A. Therefore

La({my)
]cvnd;'A((T)w)
[sror] cond;lA.

(STOP) (A, y)

To show that the equality is preserved hy all the other operators, suppose that
(PHA, v) = {Plcond; " A. Note that

condypy s prefiz, Hyw=a

prefir, ; cond, = { cond,- otherwise .

So
(e — Ph(A.y)

Iso () (PY (prefie]’ A, y/1) + Iso)e (v) (STOP) (A, y)
by definition
= ]S(n)(y) GPD (P’fﬁx:lAs y/]-) + [S(ft)"(y) GPD(A\<T)W)
_ 1P} comsz_.',]1 (prefir'4) fw=2

1P} cona’(;;_, 4 otherwise
= [P]prefir; (cond 1 A)

= [a — Pl{cond, A).
For probabilistic choice suppose that P and @ satisfy the hypothesis. Then

£,0 Ay = p(Ph(4,y)+({1-p)QD(A y)
[Pl cond A+ (1—p)[Q] cond;lfl
[P Q] cond, ' A.
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For parallel composition naote that par; cond, = (cond,, cond, ) ; par. Therefore
PIRNAY) = [1P)((parA)., 1) (Q)du,5)
= [ [PY(cond",id)(par™ A))eungyuy 1@}

change of vatiahie
[ UPY((cond;, cond, *)(par™ 4)}u, [Q1dw

[ 121 (par™ (cond;* 4)),, [Qhdw
[P 1 Q] cond;' A

If in addition to the above operators a term P contains a free variable X such that
the recursion @ X + P is well-defined, then the Banach Fixed Point Theorem assures
us that

WX P (43) = Jim FISTOPDp (A,3)
where F =AY -(P)p[Y /X]
= lim G"[8TOP]cond;’ A
where G =AY . [P]p[Y/X]
= [ugX+ Plpcond’ 4

This completes the proof. a

8.3 A Self-stabilising Tokenring

This self-stabilising algorithm is due to [Herm90]. Its purpose is to pass a token
around a cychically arranged group of processes. The process in possession of the
token can execute some Llask without interference from any other process. For onr
purposes the nature of the task is immaterial. Each process is iu one of two states;
it alternately reads the state of its left-hand neighbour and passes its own state to
its right-hand neighbour. Every process which is in the same state as its left-hand
neighbour is said to have a token. A process which doesn’'t have the token keeps
its stale. A process which has a token changes state with probability 1/2. This
causes the token to pass to the next process. The total number of processes must
be odd. so that under normal conditions all neighbouring processes bar one pair are
in different states.

We will prove this algerithm to be sell-stabilising in the sernse that whatever
their initial states, the processes eventually reach a state where exactly one token
exists (i.e. spurious tokens disappear) and which is live in the sense that each
process is guaranteed to receive the token infinitely often.
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T(,8) = 86y — (TG LSO/SEN) =0 T L, 5(1/5(1)
aS(ie 1) = §()e
T(id1,8))

where 5[b/5{i)] denotes the state § with its i*" element overwritten with the value
b. To prave that T'S = T wc use recursion induction. Given a vector of processes

Y define
(RIY)(,8) = ((Y)us =(llg,i-P(x. 5N

where
i-Psg) ifi#
JPGS) = Jhi— (J-FPa 10 j-P4 ifj=i
S e = Sy
3-Psiy)

The predicate R is continuous and satisfiable. Let X be a vector of term variables
and let F be the Innctiou which corresponds to one nnfolding of the recursion.

(FX)s = i50) = (X)a,spysinjre (X e stizsy
as(iel) - S(i)e
(X )igrs)-

Since F is constructive the mapping M(X, F)p has a unique fixed point. We can
therefare use rule 7.10.9 to show that R holds of the fixed point of M(X, F)p.
Suppose that

VS - (¥)os = (s 5.P(L )
where §.P({,5) as defined ahove. We need to show that this umplies

Vi, S - ({FDe[¥/ X])s = llg, 5-P(5, 5)).
This is true if we can argue syntactically that

(VIS Xos = llg i PULS) = (VS (FX)s = Yz i.P(0,5)).
Substituting for X in F we get

(FX)is
= i5(0) = (lls, 2 PED LSO/ 10 (s, 5P 1.S[L/S()]))
aS(igl) = S(ie
(s, 4. P& 1,5)).
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Figure 8.1: A tokeuring

Let the processes in the ring be numbered 0 to &, N even, and let the input
channel to each process have the same nuomber as the process (see Fig. 8.3). The
tokenring consists of the ¥ + 1 processes operatiug in parallel:

T = ”H, i.P

where 0< i < Nand B,={j.b|j=i®1Vji=1iAbe€{0,1}}. The algorithm
could start in any state, butl for simplicity’s sake we assume that every process
starts oul in state (. The first process starts the cycle of communication.

0P = 00 —0F5
iP = 1.5 1> 0.

Every other process first asks for input from its left-hand neighbour aud outputs
its own state to its right-hand neighbour. Then it decides whether or uot to change
state. Let @ and © denote addilion and subtraction modulo N +1. Form € {0,1},
0 < j < N define

P = U@ Um = (G.Pa P
F.Pa)

To analyse the tokenring, we first of all show that it can be represented in the
following sequential form: Let S ¢ {0,1}¥ denote the (N +1)-tuple of the states
of the processes. For 0 < i < N define

TS = T(0.{0}™
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Since || distributes through <> we can bring every process not indexed by 7 = {
outside the if-statement and write

(F XYisy = iﬁ“)“(”a,i-@)

where
3-Psi) ifj#ij#idl
I‘.Po],lgr.l 1P1 lfj=i
‘ aS{(is 1) = S
iQ = l‘.Ps(,‘)

POLSGE ) o (i @1Py s i®LP Hj=idl
as(i) = S(i @ >
i@ 1.Psqn)

By law 9 for alphabetised paralle] composition

P5() = (8.Q p gy, iB1.Q) = (i15() = 1.Q) g5, (72 = i91.Q)
= iP(i, ) pllp,, 19 1-P(,S5).

Iit

Hence
(FX)s = ||B‘_j.P(£,S).

So the antecedent of the proof rule for mutual recursion is true and we deduce that
Y is the unique fixed point of M(X, F)p. Therefore ¥1,5-

T(.5) = g, i-P(S).
In particular
TS = [l 3P0, (0™,

Also

~3
)

ly, 3.7
lls, 3.P(0, {0}**).

Therefore T = T5. Since TS5 does nol contain any external choice, il can be
analysed as a probability measure rather than a cpm. Rather than repeating the
proof of correctness given in [Herm90] we present an alternative proof which is
shightly sharter. The difference is that {Herm90] start from first principles, whereas
the proof given here exploits some general results about finite Markov chains.

Theorem 8.3.1 The tokenring is sell-stabilising and live. D
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Proof Clearly communication in the tokenring happens in rounds:
[Z]{u: Q| chan(u,) =n mod (N+1)}] = 1.

A comruunication on chanpel i affects only state S(i). Therefore in one round of
communication each part of the state may change at most once. Let 4(k, §) he the
set of traces such thal the states commnuicated in round k are S:

AkS) = {u:Q|V0<i< N msg(ugnpy) = S(4)
A chan(u,) = n mod (N +1)}.

Let #(5) be the number of tokens in the ring. I the total number of processes is
odd, thenat least one process must have a token and the total number of tokens is
always odd, because new tokens cau only be generated two at a time.

The probability that the state of the tokenring is $’ in round &k + 1 given that
it was S in round k is

[T1(AGk +1),57) | Ak, 5))
_ {;’ HHS) =i AVi-SHel)=5) =5} =50)

0 otherwise .

Since there are only finitelv many states, and the transition probability from one
to the next does not depend on any previous states the sets A(k,S) form a finite
Markov chain. From a one-token state, only two transitions are possible. Both are
again one-token stales. So the set of states in which exactly one process has the
token is a closed set in the seuse thal the transition probabilities from any element of
this set 1o any element outside this set are all zero. A state has more than one token
if thereexist 3, k such that (w.o.lo.g) j < k and 5(7) = $(7©1) and S(k) = S{ko1).
SupposeLthat there is no token between j andk, ie. Vi-j <l < k = S(I} £ S(I21).
From S, the ring can progress to the state ' = S[/S(k)/5(k)] with non-zero
probability. If j = k — 1, i.e. if the tokens are adjacent, then the change from S(k)
to /S{k)makes them disappear. If £ — f > 1, i.e. il the tokens are more than 1
apart, then S’ has a token at j + 1 and k, that is the distance between the tokens
has decreased by one. It follows that any state 5 with non-adjacent tokens j, k such
that £ —j > 1 has a non-zero probability of a transition in k — j 4+ 1 steps to a state
with two adjacent tokens at & and k£ — 1, and hence a non-zero, k — 3 step transition
probabilty to a state with fewer tokens. Therefore all states with more than one
token are lransient in the sense that the probability of eventual return to this state
is strictly less than one. In a finite Markov chain the probability of staying forever
in a setof transient states is zero (Fel57]. So the tokenring will eventually end up
in a stale where exactly one process has the token, and from that point onwards
the only other states it can visit are those where exactly one process has the token.
Thus the tokenring is guaranteed to stabilise. (The result about transient states
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means that the invariant proved by [Herm90], namely that the algorithm never
increases the number of tokens, only needs to hold in the special case where the
number of takens is one.}

The closed set by itself represents a finite irreducible Markov chain, in which
all states are persistent [Fel37]. i.e. all states are visited infinitely often. So the
tokenring is live in the sense that every process is guaranieed to receive the token
infinitely often. D



Chapter 9

Randomised Consensus

To illustrate the application of PCSP we give a formal specification and proof of
correctoess of a cousensus protocol. The specification is given at two levels of ab-
straction. At the top level the properties of a consensus protocol are defined by
predicates upon traces, At a lower level a randomised algorithm which satisfies
these properties is presented in the notation of PCSP. This algorithm is a vari-
ation of an algorithm which was developed by Aspnes and Herlihy [AH90]. Our
version has the same salety properties, but slightly different liveness properties:
whereas the algorithm by Aspnes and Herlihy is guaranteed to terminate under all
cirenmistances, the one used here terminates with probability 1 if the scheduling is
independent of the state of the processes involved in the protocol. As a result we
are able to reduce the expected number of steps to termination [rom Aspnes aud
Herlihys's O(2") to O(n?).

A consensus protacolis a procedure whereby ¥ communicating processes which
start out with conflicting preferences all come to agree on the same prelereuce. The
final preference is called the decigion value. A consensus protocel must be

1. consistent: no two processes choose different decision values,
2. walid: the decision value was some process’s initial preference, and

3. lerminating: every process that docs not fail completes the procedure in finite
expected time.

These properties represent the most absiract or high-level specification of the con-
sensus protocol. An algorithm which the processes follow to reach a decision is
correct if it satisfies the high level specification. To formalise this specification we
use some shorthand for certain predicates: We write a{u) to say that an action «
occurs in a trace u:

an) = InelN.-u, =g
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To say that a trace u contains actions ¢ and b and a occurs before b we define
(a before 8)(u) = Sn,meN-u, =aAhu,=bAn<m

For convenience, we also define after:
(a after b)(u} = (& before a){u)

Since it would be cumbersome to carry the dummy variahle u all through the
specification and proofs, we suppress it from now on. We write a before § before ¢
as shorthand for a before b A § before ¢. Since the protocol consists of a cllection
of identical components, channels are indexed: we write i.c.v to say that » is
communicated on channel ¢ belonging to the i** component. Free variables for
channel indices or message values can always be taken Lo be universally quantified.

9.1 Specification

The protocot consists of ¥ processors which communicate by reading and writing N
shared registers. Let [ deuote the set of indices {i | 0 < i < ¥}, Fig 9.1 shows the

Processors Registers
i.decide Lwrite
P iR
i.i.read

Figure 9.1: Channels connecting i.P

communication in which processor ¢.P, i € [, can engage. 1t can read the values
stored by register j.R, § € I, via the channel 1.j.read. It can write values to the ¢*h
register via channel {.write. Finally it can communicate its decision about its final
preference to the environment via channel i.decide. Each register slores a preference
value and a round nurnber. For simplicity’s sake we assume that preference values
are boolean and rouwnd numbers are natural numbers. The final decision consists of
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just a preference value. Thus the set of actions which the process i. P can perforin
is
B, = [ijread(v,r)ljelAveEBATeN}
U {i.write.(v,7) |v € B A r € NJ
U {i.decide.(v) | v € BYU {r].
Correspondingly, the set of actious performed by the j'! register is
C, 2 {ijread(v,r)|i€IAvEBATecN}
U {j.uwrite(e,7) |veBAre NJU{T]

The consensus protocol ('P is the parallel composition
P 2 (g, i-P) pllc (e, B)
where B = UB;1 C= UCj.
i j
We now give the formal definitions of its propertics. Unless otherwise stated, the

indices ,j, k range over [, preference values v over the booleans, and roundnumbers
r over the natural numbers.

Safety

A decision appears in the traces as a decide-event. It is valid only if it was some
processar's initial prefecrence, The initial preference of a processor is the one which
it wriles to the register in round 1. Thus if a valid trace coutains a decide-event
with value v then it must also coutain a first-round wrife-event with value v:

VS = (idecide.(v) = I j.write.(v,1) before i decide.(v)].

Consistency requires that all processors make the same decision. So no consistent
trace contains decide-cvents with different preference values:

05 = —(i.decide{)) A j.decide.(0)).

Obviously validity and consistency are safety properties in the sense of defini-
tion 8.0.2,

Liveness

The protocol terminates if every process which is scheduled infinitely often must
come to a decision. Thus the traces of a terminating protocol are described by

TS(u) = Vi-(u[B, infinite = Jv - i.decide.(v))

This is obviously a liveness property in the sense of definition 8.0.3.




The Algorithm

We now specify an algorithm which enables the processors to reach a decision.
Each processor chooses au initial preference value for round 1 and writes il into its
register. From round 1 until it can decide cach processor altcrnately reads all the
registers and, based on the values it has just read. writes a new preference value and
ronndnumber, Let v and r be vectors of ¥ preferred values and N roundnumbers
respectively. Suppose that processor i.P has just read the values »,r from the
registers. Il according to these values it is a [eader, that is one of the processors
with the highest roundnumher, and all dissenting processors trail by at leasl two
roundnumbers, it cau decide on a final preference. The condition for this case is
expressed by

fean_decide(v.r) = > 1AV -(r, < A(y =1V >n41)).

H a processor cannot decide it adopts il possible the preference of the leaders.
I the leaders do not have a common preference, it sticks to its own preference,
but randomly either advances to the next round or stays at the same rownd. Let
leaders_agree( v, v, r) denote Lhe fact that based on the observed vilues v and »
the leaders all prefer the same value v:

leaders_agree{v,v,r) = Vj-(r, =max(r)= v, =)
Then the processors are described by
P = iwritel(1,1) — . P(0,0.0)
P fowrile!(0,1) — i P(B,0,0)
i.P(v,r,7) = ijreed?(v,r) = PV, F 5+ 1) j< N

where v’ =vU {j—~ v}, ¢ =rU{j—r}
i.deeidel(v;) — IDLE

At.can_decide(v,r) >
(f.writel{v,r, + 1) — 1.P(0,0,0)

<31 - leaders_agree(v, v, r) >
(i.writel{v,r) — 1.P(@,0,0))

o1 (fowrite)(v,r, + 1) — i.P(9,0,0))).

i.P{v,r, N)

The process fDLE can be any process which does not aflect the state of the protocel,
and need not be specified explicitely. A register starts in round 0. Afte- the first
write it always produces the value that was last written to it,

iR = j.R(0,0)
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JoR(nr) = jawrited(v, ') — fR(Y. 1)
a
Cles ij-read (v, 7] — 7. R(v, 7}

9.2 Proof of Correctness

We will show that the protocol is correct in the sense that it satisfies the safety
properties, i.e.

CP sat VS A CS.

As explained in section 8.2, we can only reason about the livencss properties of a
system f we assume that it lives in an environment which resolves every external
choice on which the system depends, but accepts every internal choice of the system.
In the case of the randomised consensus protocol the only choice to be resolved by
the environment concerns the interleaving of the processors; given the opportunity
to take a step, each processor will determine internally what this step should be.
This means that we make ar assumption about the probability distribution £ which
determines the interleaving and for which we have to show that

[cP| D] TS = 1

To show that the safety properties are satisfied we first list the predicates PS;
which are satisfied by the processors and the predicates RS5; which are satisfied by
the registers.

After the first round any value read from a register mnst be the last valuc that
was written to it:
RS = ijoread(v,r) =
r=0V
j.uwrite.(v,r) before i j.read (v, r) A
AELI (CE TR EIE
j.write.(v.r) before j.write.(v', r') before i.j.read(v, r)).

We write i.Read({v,r) to say that processor t.F has consecutively read all the
registers and thus obtained the values (v, r):

iRead{v, r){(u) = Im e NV (u[B)my, = i.j.read v, 1,).

We extend our notatiou and write i.Read{v,r) before a, meaning that all the
reading i.j.read(v,, r,) were taken before the action a happened. Similarly for

e befare i Read{v,r), a after . Read(v, r) and i.Read(v,r) after a.
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A processor i. P can decide only if it has read the registers and i.can_decide(v, r)
is true:

PS1, = i.decide(v) =
Jv,r - i.decide (v} alter i. Head(v,r)
A = v A fLean_decide(v,r).
Before writing a new value a processor must have read all the registers. 11 it switched
preference it must have seen all the leaders disagree with its old preference. If it
kept its own preference and advanced its roundnnmber, it cannot have seen the
leaders agree on the opposite preference. If it kept its own preference and did not
advance its ronndnumber, the leaders did aot have a common preference.
PS2; = dawrile(v.r+1) =
Jv,r - fwvite (v, r+]1) after i Read{v. ) A —i.can_decide(v, r)
A, # v A r,=r Aleaders_agree(v.v,7})
V(e =vAn=rAleaders_agree(l —v v, v))
Ve, =vAr=r+1A—3g leaders_agree(q.v,r))).
After a process has decided it cannot write any more valucs
PS53; = —(i.write.(v.r) after i.decide.{w)).
Let 5, = PS1; A P52; A P53,. By the inference rule for parallel composition,
Vi i.P sat PS; A (v € BY)
Vji-j.Rsat 85 A (v e C¥)
(Mg, i-#) I U, 7.1) sat PS.(u]B:) A RS{u1C))

we know that the behaviour of the protocol restricted to the alphabet of a com-
ponent mnst satisfy the same predicate as that component. The remainder of the
proof of correctness is based on ouly one other proof rnle, namely

P gat R
R=T

Psat T.

We first note that the predicales we are considering are such that if they hold of a
trace restricted to the alphabet of a camponent they also hold of the unrestricted
trace, 1.e.

RS(W1G) & RS(w)

PSi(v1B)} < PSi(u).
Thus all we need to show is that the simple conjunction of the predicates PS; and
RS; implies validity and consistency.



9.2  Proof of Correctness 112

Validity

Recall that a consensus protocol is valid only if the decision value was the iuitial
preference of at Jeasl one process:

VS = (idecide.(v) = 3j-j.wrilev,]) before i.decide.(v)).

From PS]1, we know that at the earliest a process can decide after rouud 2, and the
decision value is always the value last writlen.

t.decide.(v) = 37" > |- i write(v,r') before i decide.(2).

Lemma §.2.1 states thal a process can only wrile a value iu a round r' above round
r > 0 1f at least one process preferred thal value in r.

Lemma 9.2.1 ¥i,7- PS, A RS,

= (3, > r> 0 swritef(v,r) = 35 j.write.(v, r) before i write.(v, 7).
|

Proof Suppose that i{.I is the fivst processor to write p in a round ' which is
above r:

Jir > redwrite (v, ') (9.1)
AYy - =(r" > r A joaorite {v, ") before i.write.(v, 7)) (9.2)

Line 9.1 and PS2; together imply that
Jo,7 - iwrile(, ') after i. Read(v, v} A 1, > r A —leaders_agree(l1—v, v, r).

If the leaders do not agree on 1—1v at least one leader prefers p. Also since i. P has
already reached round r the leaders must have at least round number r, giviog

3,7 > r > 0-1i.j.read(v, ") before i write (v, r').

By RS; the fact that i.P has read (v, r*) from the j'" register and " > r > 0
means that process j.P wrote these values beforehand:

3j,r" > r > 0-jwrite. (v, r") before i.write (v, 7).

Since i.P is the first process to write » in a round strictly above r (line 9.2) it
follows that " = r, i.e.

3;  j.write.(v.7) before i.write. (v, 7).
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Lemma 9.2.] implies that if a process writes v in round 7' then in every round below
r’ from round | upwards at least one process must also have written v. Thus

vi,j P5 ARS = V5.
Hence the protocol is valid:

CP sat VS,

To prove that the protocol is consistent we use two corollaries of lernma 9.2.1.
Firstly, the contrapositive of lemma 9.2.1 implies that if all processes that complete
round r prefer the same value then all processes that complete a higher round also
prefer that value. (This cquivalent Lo saying that if no processor prefers vin round
r then no processor prefers v in a round above r, which is the farm we use in the
corollary).

Corollary 9.2.2 Vi j . PS5, A RS,
= (=37 -iwridefv.t) = -3 > dwrite (v, 7). a

Secondly, lemma. 9.2.1 implies that the first processor to write v in round r does so
before any processor can wrile v in a higher round.

Corollary 9.2.3 Vi j- PS, A RS,
= (i.write.(c,r) A =3k k.write.(v, r) before i .write (v, r)
= ¥ r' > riwrie.(v,r) before j.write.(v, r')). ]

The protocol is consistent if CP sat CS where
CS = =(idecide.(v) A j.decide(1—v))

In the next lemma we show that if a process decides v in round r + 1 then all
processes which complete round r prefer v (even il they reach r only after the first
process decided).

Lemma 9.2.4 Vi,7-PS, A 15,
= (i.decide.(v) after i.Read{v, P} Ari=r A =Fu,r >r iwrte(r,r)
= —=3dj jowrite.(l — v, r)).

Proof The hypothesis and PS1, together imply that

t.Read(v,?) Ari=r A v, =vA ican_decide(v, r). (9.3)
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If the conclusion is false there must be a processor j.P which was the first to prefer
l—vin round .

3 jowrite.(l~v,7) A =3k - k.write. (1 - v, r) before j.write.(1—v,r). (9.4)
This processor could have preferred either value in round r—1. Suppose it preferred
1 — v inround r—1L. Then line 9.3 implies

i.write(v, r) before i.j.read(v;, r,) before j.writc(1—v,r — 1).

because reading (1 — v, r—1) from the j*! register would have prevented i.P fram
deciding. Also, by P52, and RS;,

Jo'. ' jowrile{1— v, r—1) before j.Read(v', 7'} before ;. write(1—v,r)
Av=vArn=rAg=1l-vAr =r—1

i.e. for j.P 1o proceed to round r it must read the registers after writing 1—v in round
7—1. Therefore it must sce that . P prefers v in round r. Since by assumption j.P
is the first process to prefer 1— v in round r (or higher, by corollary 9.2.3), it must
see that the leaders prefer . But then it cannot write 1-v iu round r, contradicting
the assumption (9.4). Suppose therefore that j. P preferred v in round r—1,

v’ ¥ - jowrite(v, r—1) before j.Read{v’', r") before j.write(1—v,r)
Av=vAr=rAv=0AT =r—1.
By P52, it could switch to preferring 1—v in round r only if it saw the leaders prefer
1—v. Then the leaders could at most have roundnumber -1 since by assumption
j.P is the first pracess to prefer 1—v in round r (or higher, by corollary 9.2.3). But

j-P itsell is already at round r—1 and prefers v. Thus it cannot see the leaders
prefer 1-v, again contradiciing the assumplion (9.4).

It follows that it is impossible for j.P to prefer 1-v iu round r. -

Lemma 9.2.4 and corollary 9.2.2 imply that if a processor decides v in round
T + 1, say, then all proccssors prefer v in round r and all higher rounds. By P51;,
a processor can only decide the value it last wrote. Cousistency follaws.

Liveness

It remains to prove that every processor which is given the opportunity to take
infinitely many steps will eventually decide. We first show that if the processors
agree for the first time in round r then they decide at most two rounds later.

Lemma 9.2.5 Vi,5- PS; A RS,
= Ji-fwrite(v,r) A-Tj-jowrde(l—v, )
= -3¢ (d¢q iwrde(q,r+ 2)V idecide.(1—v)). a
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Proof Suppose that the conclusion is false, i.e, that the process does get to write
a value in round r+2 or decides on 1—v. By corollary 9.2.2 the assumption
—~3j-7.write.(l —w, r) implies that no process can write 1 — in or above round r,
Therefore the only possihle decision is #. Thus we are left with the possibility that
a processor reaches round r + 2 without deciding. Let i.write.(v, r+2) be the first
write in round r+2. We know from FPS$3; that {.P cannot have decided hefore this
round. So we have

Ji-iwrite. (v, 7+2) A
-3k - kwrite.(v,r+2) before i.write.(v, r+2) A
-3 ¢ - i.decide.{q) before i.write (v, r+2).

Together with P.S, this implies that

Ji, 0,7 1write. (v, r+2) after i.Read(v,7) A
—tf.can_decide(v, 7T} AVE - <r+ 1A =1r+1.

Expanding the last line gives
i (> Aln>rntlvy Fo))AYE - n<r+lAn=r+1l

So we are left with 3, -» <7, < r+1 A 9, # v. But this contradicts the fact that
at and above round r all pracesses prefer v. Hence no process can write a value in
round r + 2. a

Thus to prove that the protocol terminates we only need to show that it will
eventually get to a round where all processes agree. This depends to some extent on:
how the processors are interleaved. An interleaving which can take account of the
state of the processors can force the protocol to continue forever, as in figure 9.2.

This strategy works only if the interleaving can take account of the processor’s
decision whether or not to advance its roundnumber upon ohserving disagreement.
This is not the case if the interleaving of the processors is independent of the choice
of event by the processors. More formally we assume that the prolocol runs in
an environment I? such that if a, b are two events in the alphabet B; of the i*"
processor then for all0 <j < N

[CP{| D({e| tngr € B} x| wa = a}}
= [CP Y D)({x | uays € B} {u] 4, = b}

Idcally we would like to prove that [CP )| D] TS = I for any D which satisfies
the independence assumption. However, as in the proof of the original algorithm,
we shall be limited to a worsl case argument. If we assume that the scheduling
is independent of the state of the processors the hest strategy of the scheduler to
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{

. Suppose that j.P and k.P are the only leaders in round
k.write (1, 7—1), r—1 and that they disagree. Suppose also that k. P
k.j.rwd(0,r—2), reads j.R before j.P writes to it in round r—1. Then
k.k.read(1,7=1), k.P believes itself to be the only leader. Its next step

will be a write with the same preference and an increased
roundnumber.
Jowritef0,7—1), Now j.P is allowed to write its 7-- l-round preference
j.k.7ead.(1,7—1), and read the registers. j.P observes disagreement and
j.J.read{0,7r—1), may decide to stay in round r— 1, but if it is forced to
Jowride (0,7 -1}, go on reading it will eventually advance to round r.

J-write.(0, 1),

j.k.read.(1,r—1), Now it is allowed one more reading which will lead it to
J.j.read (0, 7), believe that it is the only leadcr in round r. Letting k. P
kowrite.(1,1) do its write for round r will restart the procedure.

)

Figure 9.2: A non-terminating interleaving

delay termination is to choose all processes equally often. Otherwise a subset of
the processors is going to get ahead of the others and become leaders. The fewer
leaders there are the more likely thev are to agree. We therefore suppose that the
processors run 1n lockstep.

D = DU
D; ac: B, —+ D.@]

I!

where ¢ denotes addition modulo V. Tt can be shown (using recursion induction)
that the parallel system CP || I contains no external choice. It can thereforc be
analysed as a prohability measure on the space of infinite traces.

With lockstep interleaviug, every processor takes oue reading of the registers
and does one write in every N(¥ + 1) steps of the protocol. Let N(N + 1) steps
be a cyde. Let A(n) denote the set of traces such that in the n'" cycle the leaders
have reached agreement.

Aln) = {u|3r,p,7-ifwrite o, r){ul(=N(N +1}))
A= 3 e jontev, r)(u [{aN(N + 1))}

The probability that the processes will eventually reach agreement can be calculated
as
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[CP|D)TS
= i‘ ([[C'PHD]I (A(n) | A(n — 1)) ﬁ [CPID] (AG) | A(i — ]]‘)) ‘

n=1 i=1

If there is no agrecment in the {n — 1)™ cycle then there must be at least two
[caders with differing preferences. Let [ be the number of leaders and let k be the
nnmber of leaders whose preference is 1. The probability of agreement in the n't
cycle given disagreement in the (n — )*® cycle can be calculated as the probability
that at least one of the leaders preferring 1 gets ahead and none of the others, which

is (1 — p*)p'~*, or vice versa. Now

(l_p&)pl-k+pk(1_pf—i) — pi_gpi_i_pi—t
2 2p|’/2 _ 2p.‘
2 2p.~f2 . 2PN'

The last step holds only if { > 2log,(1/2) but if p = 1/2 this is always true. This
gives us a lower bound for [CPD](A{r} | A(n —1)°). It [ollows that the real value
of [CP||D](A{r) | A(n —1)7), & say, is a strictly positive quantity. Hence

[cPD}TS S (-8
= 1.

We can now choose p so as to maximise the lower bound for §:
P 2-'2,’N

giving & > 1/2. Then the expected number of cycles to reach agreement, 174, is

less than 2 and the expected number of steps to reach agreement is O(n?). This

concludes our analysis.

9.3 Discussion

We have used the case study of a raudomised consensus protocol to demonstrate
the applicability of the process algebra and proof rules which we developed in the
earlier chapters. This has been successful because the process algebra has proved
expressive enough to capture the algorithm which implements the protocol, and the
proof rules have been sufficient to enable us to give a formal proof of correctness
for the safety properties of the protocol. For the liveness properties we have had
to take recourse to a slightly informal worst-case argument. It may be possible
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to give a proof of termination which would be valid for any scheduler rather than
just the iockstep scheduler, but it would be much more complicated. However, the
worst-case argument has been sufficient to show that our formalism is capable of
addressing all the issues involved in reasoning about randomised algorithms.

The semantics of the original algorithm were given in terms of /0 automata
[LM87]. The proof of cotrectness was informal, but it contained essentially the
same arguments which we used, too. The differences are due mainly to the fact
that our algorithm is simpler. It is also faster than the original algorithm, which
has a worst-case running time of {)(2") steps, and also better than the original
algorithm combined with the weak shared coin protocol described in [AH90], which
has an expected running time of ()(n*) steps. One has to bear in mind that this
speed-up and simplification is achieved at the cost of guaranteeing termination only
for a scheduler which cannot take advautage of the state of the processors. We feel
that the smplification and increased cfficiency justify this reasonable assumption.



Chapter 10

Discussion

10.1 Conclusions

In this thesis we have presented a mathematical formalism for the specification and
proof of correctness of probabilistic communicating processes, We have defined a
process algebra which is based on CSP, the main difference being that probabilistic
choice is substituted for non-deterministic choice. We have given a semantics in
terms of probability measures on the space of infinite traces for a model which
contains probabilistic choice and all other CSP?-operators except external choice and
alphabetised parallel composition. We have shown that this semantics preserves all
the algebraic laws which hold in other models of CSP.

To define the semantics of recursion we have used two metrics on the space
of prohability measures on infinite traces. Convergence with respect to the first
metric 1s eqrivalent to weak convergence of probability measures, and we have used
it to show that under certain conditions, recursive definitions containing unguarded
variables as hranches of a probabilistic choice are well-defined. Convergence with
respect to the second metric implies weak convergence. The second metric is an
nltra-metric ke the ones used in other models of C5P and has allowed us ta show
that any guarded recursion involving parallel or sequential composition is well-
defined.

We have given examples to show how Lhis model enahles us Lo reason about
the properties of probabilistic processes, especially liveness properties such as the
asymptotic frequency of events.

To be able to reason effectively abont concurrency in general, we have defined
a semantics for a second model in terms of conditional probability measures. This
model contains operators for external choice and alphabetised parallel compusition,
but not for sequential composition, hiding or interleaving. Like the frst model it
preserves all the laws for the operators it contains. Again, we have defined recursive
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processes by taking reconrse to two metrics.

We have given prool rules to relate the process algebra to more abstract speci-
ficatiomns defined in terms of predicates upon infinite traces. We have proved each
role to be sound. This has enabled us to reason about safety properties. To rea-
son about liveness properties it is necessary to make some assumptions about the
environment of a system, namely that the environment does not block the system
and that it resolves all the external choices on which the system depends. We have
shown that given such an environment, the resulting system has a well-defined se-
mantics hoth in the first and in the second model, which means the techniques we
used to analyse liveness properties in the first model are also applicable to systems
specified in the second model.

We have demonstrated the usefulness of our approach by giving formal treat-
ments of a self-stabilising tokenring and of a randomised consensus protocol.

10.2 Related Work

There exists several formalisms for the specification of probabilistic proccsses. re-
flecting the varicty of formal methods in general. Broadly speaking, all probabilistic
languages define the semantics of choice and parallel composition in terms of sums
and products of probabilities tespectively. Differences arise in the treatment of ex-
ternal choice and unsynchronised paralle] composition, as well as in the methbods of
defining fixed points and equivalences belween processes.

Glabbeek et. al. [GS55T90] present three semantic models for PCCS. a proba-
bilistic dialect of Milner’s SCCS [Mi89]. The semantics of these models are based
on probabilistic labeled transition systems, which are essentially stale tranosition
systems with probabilities attached to cach hranch. Differences between the mod-
els arise frorn the treatment of choice: in the ‘reactive’ model the probabilities of
all transtions with the same action sum to 1, whereas in the ‘generative’ model
the prebabilities for all transitions sum to 1. The former can he nnderstood as a
mixture of internal! and external choice, in the sense that the choice of action is
made externally but the choice of transition with a given action is made internally.
Parallel composition is defined as lockstep interleaving: a transition in a parallel
system is Jabelled by a pair of actions (with the product of their individnal proba-
bilities). They can happen in either order. but oth must happen befare the next
transition. This seems a very restrictive view of parallel composition. Equivalence
between processes is established by probabilistic bisimulation (due to Larsen and
Skou [L589]), which is an analog of strong hisimulation. This leads to very fine
distinclions between processes; for instance it rules out the law of distributivity of
probabilistic choice over prefixing. We think that these distinctions are unnecessar-
ily stxong.



Jou and Smolka [JS90] investigate weaker concepts of process equivalence for
the generative model. Nearest ta PCSP is their concept of trace equivalence, which
means that for two processes I and  each transition path has the same probability,
whether it starts at Por at . However, this kind of equivalence is not a congruence,
ie. P and ¢ are not necessarily interchangeable in any expression. The paper
also presents a sound and complete axiomatisation of finite serial processes in the
generative model with respect to probabilistic bisimulation. The only laws that
hold for probabilistic choice are symmetry, associativity and idempotence. As in
PCSP, every guarded recursive call has a well-defined fixed point, bound variables
can be substituted for, and the unfolding of recursive calls prescrves equivalence.
There are no laws for parallel composition.

Jones and Plotkin [JP89] aim to provide a general framework for the semantics
of probabilistic programming languages, which they hase on evaluations. These
are functions similar to probability measures but defined only on open sels rather
than the general Iorel sets. Unlike probability measures, evalnalions can easily be
partially ordered and can therefore be used to constrnct a probabilistic powerdo-
main, £{#). The authors show that the structnre associated with £{) isa monad
and that reenrsive domain equations involving £(P) can be solved in a categorieal
sctting. They then present the semantics of a probabilistic programming language
consisting of atomnic commands, seqnential cornposition, il-statements, while-loops,
probabilistic choice and parallel composition. The latter is parametrised on a prob-
abilistic scheduler which decides, given a state, which process runs next. There is
no constrncl far input or external choice. Thns the expressiveness of their language
is about the same as that in the simple modet which we presented in chapter 3.

Rao[Rao90] presents a prohabilistic extension to UNITY[CMS8E]. He introduces
probabilistic assignment, which probabilistically chooses one of a list of a finite
nnmber of possible expressions to assign o a variable. The probability with which
an cxpression is chosen is arbitrary and cannot be made explicit. The only prob-
abilistic property important for Rao is that in an infinite trace of executions of a
probabilistic assignment each expression will be chosen infinitely often. He defines
the weakest precondition of the probabilistic assignment as the one which holds of
every branch. This enahles him to extend the usual UNITY proof rnles for safety
properties to probabhilistic prograins. He then defines the weakest probabibstic pre-
condition as onc which must hold of at least one branch and uses it to develop a set
of proof rules for liveness propertics, which hold with probability 1. His approach
is closest to own in that lic also uses infinite traces and constrncts separate proof
rules for safety and liveness propertjes. However, we think that Lo throw away
any possibility of reasoning abont specific probabilities is nnnecessarily restrictive.
For instance, it means that probabilistic UNITY cannot be used to provethat the
probability of return to the origin in a random walk is 1, because this is true if the
probability with which a step is made in either direction is 1/2, but not otherwise.
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Also, even where it can be shown that a property is achieved witb probability 1,
it may be desirable to calculale something like the expected number of executions
until it is achieved, which is impossible without using explicit prebabilities. Apart
from that, differences between Rao's approach and ours reflect the general differ-
ences between UNITY and CS5P. For instance, the consensus protocol could be
specified in terms of probabilistic assignments rather that in terms of communica-
tions over channels, though of course control over the probabilities would be lost.
Also, UNITY does not allow compositional proofs for concurrent systems in the
way that CSP daes.

10.3 Future Work

There are some questions yet to be investigated regarding the models presented in
this thesis, notably whether the laws and proof rules are complete, and the precise
relation of these models to other models of CSP.

It would be nice to have a semantics for a probabilistic model which contained
the full range of CSP operators, including probabilistic choice, external choice,
general parallel composition, sequential compeosition and hiding. For the reasons
given in chapter 3 it is not possible to express external choice and general parallel
composition in terms of probability measures, and for the reasons given in chapter 7
it is not possihle to give a semantics Lo sequential composition and hiding i terms
of conditional prohability measure. One would therefore have to lock at entirely
different semantics to the ones considered here.

There is also a nced for an entirely different prohabilistic model, in which the
probability concerns not the choice of action, bul the time at which it happens.
Such a model would for instance address the probabilistic aspects of the Ethernct
protocal. which are left oul of the formal specification presented by Davies[Dav9l].
Work in this direction has already begun [SNH92).
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