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Abstract

A specification method for business processes is presented, in which not
only the processes but also the database integrity constraints are specified
in Z based on the structnre of an Entity-Relationship data model. The for-
mality of Z facilitates strict reasoning about the correctness of the processes
with respect to the database integrity constraints.

In this method, as in VDM, one can proceed towards the correct specifi.
cation of a process by checking a series of proof obligations. The precondition
of a process is determined as one attempts to discharge the proof obligations.

During the specification activity computer support may be useful. The
requirements for and a prototype of a support tool are also presented. Such
a tool might be integrated into existing CASE (Computer Alded Sofltware
Engineering) tools, such as the Information Engineering Facility.
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Chapter 1

Introduction

1.1 Background

There have been several attempts to apply the Z specification method [Spivey
92] to the development of business application systems [Woodeock 92, Karal
91]. Compared with other formal methods, such as VDM [Janes 86], one
of the benefits obtained through the Z method is that the precondition of
business processes can be calculated fram the overall specification by means
of the schema calculus. This feature not only allows us to concentrate on
the heart of the specification before dealing with error case analysis. but also
provides an opportunity to employ logical analysis tools, such as theorem
provers [Neilson & Prasad 91], in the specification activity.

On the other hand, there is a well-known and widely-used method, called
Entity-Relationship (ER) data modelling [Chen 76], {for data aralysis and
database design of business application systems. The ER model gives us
a specification tool for describing several structures of data to be stored in
a database. Furthermore, some methodologies with CASE tools, such as
Information Engineering [Napier 91, Texas Instruments 88)], regard the ER
data model as a basis for process description as well as for data specification.

Meanwhile there have been some attempts to describe certain kinds of
static business rules in terms of the database (DB) integrity constraints
{Sanders & Short 92, Nijssen & Halpin 89, Ginbayashi & Hashimoto 911,
These trials seem reascnable since there are lots of business rules which
must not be violated by any process and should be treated as attached to
data rather than each process.

Formalizing the ER model nsing 7 is a promising approach to making
formal methods more applicable in industry. Within the Oxford Univer-
sity Programming Research Group (PRG) some research has been done
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in this area [Josephs & Redmond-Pyle 91a, Josephs & Redmond-Pyle 91b,
Karal 91], Compared with procedural specification languages (e.g. SQL),
one advantage of using a declarative specification language such as Z is that
the specification written in it can be completely independent of its imple-
mentation. This separation of concerns is important because:

e Manipulation of specification, such as precondition calculation, should
be done without considering any implementation details.

¢ There should be plenty of room for choice in implementation and op-
timization.

As the major result of this series of research in PRG. a library of generic Z
schemas has been ubtained, which can be used as standard schemas in ER
tnodelling [Josephs & Redmond-Pyle 91h).

1.2 Motivation

By combining the research results stated in the preceding section, one can
approach the activity of specifying business application systems as follows:

e Write a specification of a system in terms ol ER data model, DB
integrity constraints and processes,

¢ Translate the specification into Z schemas by using a certain set of
slandard schemas.

o Prove the correctness of the specification by means of Z schema cal-
culation.

There are two approaches to proving correctness. One is to calculate
precondition schemas from process schemas and simplify them by logical and
mathematical reduction laws, such as in [Neilson & Prasad 91]. However,
this approach may lead us to unnecessarily complicated calculations because
a process schema must describe all its effects on the entire database even if
it changes just a small part.

The other approach is to break down the correctness proof inte a humber
of proof obligations according to the structure of the ER data model, Here
we can proceed towards the correct specification of a process by discharging
those proofl obligations one by one aud strengthening its precondition if
necessary. Note that the use of proof obligations is also characteristic of
VDM.
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The purpose of our study is to investigate the validity of the second ap-
proach and propose a reasonable method for finding the correct specification
of business processes.

1.3 Overview
Here is a brief summary of the remaining chapters and appendices:

Chapter 2 gives ap introductory definition of business processes and an
overview of ER data modelling.

Chapter 3 introduces 4 set of standard Z schemas which express ER model,
DB integrity constraints and business processes. This is an extensjon
of the results obtained in [Josephs & Redmaoud-Pyle 91a. Josephs &
Redmond-Pyle 91b].

Chapter 4 explains the structured proof obligations for the correctness of
business processes with some examples.

Chapter 5 considers the requirements of a support tool for the specification
activity based on the resuits of our research.

Chapter 8 concludes the report with a summary of our research and some
suggestions for future work.

Appendix A shows the syntax of a specification document which a support
tool should read.

Appendix B contains the Orwell source code of the tool prototype. {Or-~
well is a functional programming lauguage [Wadler & Miller 80, Bird
& Wadler 88].}



Chapter 2

Business Processes and ER
Data Models

2.1 What are Business Processes?

To begin with, let us consider an example of a banking system. A typical
process which is meaningful for people in a bank is a transactiou on a certain
account, such as paymeut or withdrawal of a certain amount of money. The
bankers must keep track of the balance of every account and are necessarily
very anxious not to pay more money than permitted on each account. In
other words, they are interested in the data to be stored in their database
and how to control changes to the data in executing a transaction. They
are not interested, however, in any implementation details such as a certain
sequential access to required data in a network database or technignes for
exclusive control on the database.

As an appropriate tool for specifying the strncture of stored data from
such a user’s point of view, the Entity-Relationship(ER} data model [Chen
76] has been widely accepted because of both its ease of use and conceptual
clarity.

On the other hand, it is only recently that the importance of process
modelling from the bnsiness point of view has been recognized [Napier 91,
Texas Instruments 88]. There might be several possible ways of defining a
business process:

» a computing process just corresponding to a transaction in a business
sense. {Business View)

¢ the smallest cycle which end users can recognize. (HCI View)
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¢ a process which updates a database maintaining integrity constraints
on the database. (Database View)

¢ adata processing component unit of a business function. (Information
Engineering View)

among others. In this dissertation, we shall adopt the third one {i.e. Database
View}and try to specify such a process in terms of entities and relationships.

2.2 ER Data Model

As the ER data model is broadly known, we do not inspect it in detaill here
but ttlustrate the model by an example adopting the notation in the Infor-
mation Engineering Facility (IEF TM) [Texas Instruments 88]. Figure 2.1
shows an example of a simple banking systern.

s name
Customer| o vip

IsQOwnedBy r

5 CurrentAccoulteny | rontAcconnt | » balance
IsAccount L
Account
. ) | ¢ balance
¢ balauce DepositAccount Deposit Account | ¢ depositDate
IsAccount ¢ interest

Figure 2.1: Example of ER diagram
In this diagram, the following objects are defined:

¢ Four entities: Customer, Account. CurrentAccount, DepositAccount.
{Their attributes, in other words, data items, can be seen near them.)

¢ Three relationships: IsQwnedBy (between Account and Customer),
CurrentAccountlsAccount (between CurrentAccount and Account),
DepositAccountlsAccount (between Deposit Account and Account).

The diagram also implies that the following constraints always hold:

¢ The relationship IsOwnedBy is a cne-to-many correspondence between
the current set of all instances of Account and that of Customer.
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¢ The relationship CurrentAccountIsAccount is a one-to-one correspon-
dence between tbe current set of all instances of CurrentAccount and
that of Account.

¢ The relationship DepositAccountIsAccount is a one-to-one correspon-
dence between the current set of all instances of Deposit Account and
that of Account.

The first constraint, for example, means that each customer may own one or
more accounts while each account is always owned by exactly one customer.

Unfortunately, however, such kinds of constraints expressed by the ER
diagram can cover only a small portion of business rules. For example, we
can consider a business rule in the banking system saying that

for every CurrentAccount whase owner is a VIP (represented
by an attribute vip having the valne yes), its balance can go
overdrawn by up to £1G0.

This and even more complicated rules ought to be expressed by formal (or
informal) text accompanying the diagram. In general, these business rales
can be expressed by some conditions between several entities and relation-
ships and therefore regarded as DB integrity constraints in a “subsystem”
[Josephs & Redmond-Pyle 91a] or a “subject area” [Napier 91, Texas In-
struments 88]. For example, the above rule can be captured within Cus-
tomerCurrent AccountSubsystem as illustrated in Figure 2.2, We will see a
formal specification of this rule in Section 3.2.

Note that although IEF TM provides the useful notion of ‘subtype’, we
shall not use it in this dissertation so as to keep things as simple as possible.
The constraints for a ‘subtype’ must instead be expressed as DB integrity
constraints. Also note that we shall not consider many-to-many carrespon-
dences because a many-to-many correspondence between two entities can
always be replaced with an additional entity (representing the Cartesian
product of those two entities) and two one-to-many correspondences as il-
lustrated in Figure 2.3.

Now. let us consider a business process which changes the state of a
database. Since the database consists of a number of entities and relation-
ships, the process is broken down into parallel subprocesses each of which
acts on an entity or relationship.

Since each entity is essentially a file, i.e. a finite set of records, the
subprocess on the entity can be implemented by a parallel execution of
several basic operatious, of which there are three kinds:

¢ Modify existing records in the file.
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: Customer :

: IsOwnedBy Current Account —~ CureentAccount
5{ IsAccount ™ urren
: Account | I--

: DepositAccount -, \ U
bom R -i Deposit Account !
IsAccount o p

Figure 2.2: Example of Subsystem

» Insert new records in the file.

» Delete existing records from the file.

In these operations, two things must be specified: (1) how to identify the
existing record(s) to modify or delete using input data and data stored in
the database and (2) how to determine the new data of the record(s) to
modify or insert using input data and data stored in the database.

For example, a process Withdraw in the banking system would modify
a certain record in CurrentAccount snch that (1) the record is identified by
inputting its ID number, CurrentAccountld, and (2) its balance is decreased
by the inputted amount of money.

Similarly, subprocesses on relationships also consist of basic operations
as follows:

¢ Modify existing links in the relationship.
o Insert new links in the relationship.

¢ Delete existing liuks from the relationship.

In summary, the total business process is specified by several smhpro-
cesses, each of which is a combination of three kinds of basic operation on
a certain entity or relationship.
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R

ExF
R1 4 R2

Figure 2.3: Resolution of Many-to-Many Correspondence



Chapter 3

Formalizing Business
Processes using Z

In this chapter a set of standard Z schemas which can be used te specify
business processes is introduced. As seen in the preceding chapter, abusiness
process can be specified with its effects on each component of the ER data
model. To begin with, therefore, we shall see several standard schemas which
specify each component of the ER data model. Next, schema expressions
for DB integrity constraints, the whole database and business processes are
each considered.

Note that these standard schemas should be considered as patterns or
forms used in the activity of specification rather than some sort of fixed,
complete parts (such as abstract data types). For example, even when two
different processes affect the same entity, we write two different schemas to
specily their effects on the entity, although they have the same pattern.

3.1 Translating ER Diagrams into Z

An ER model consists of many entities and relationships. Each entity has
several attributes and each occurrence of the entity has a record (i.e. a tuple
of its attribute values). Therefore, it is reasonable to specify eachentity with
two schemas:

¢ a record schema which specifies the structure of attributes and con-
straints on each record.

« a table schema which specifies the set of all existing occurrences (i.e.
the table) and constraints on them (such as volumetric constraints).
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as in {Josephs & Redmond-Pyle 91a].

Here, however, we shall break down these two schemas into six classes
of schemas for the purpose of using them in constructing proof obligations
in a uniform way which will be stated in Chapter 4. These six classes are:

for each attribute, an attribute schema which specifies the attribute
and its type.

for each attribute, an attribute constraint schema which specifies all
constraints on the attribute, if any.

a record schema which specifies all the attributes possessed by an
entity.

arecord constraint schema which specifies all constraints on the record,
if any.

a tahle schema which specifies all existing occurrences.

a table constraint schema which specifies all constraints on the table,
if any.

Similarly, we shall describe a relationship with two separate schemas:

arelationship schema which specifies a partial function from its detail
entity to its master entity.

]

arelationship constraint schema which specifies “cardinality constraints
[Nijssen & Halpin 89], such as in one-to-one correspondences. and all
other constraints on the partial function.

3.1.1 Attributes

For each entity E and its attribute z of type T', we set up an attribute
schema and an attribute constraint schema, if there are any constraints on
z, of the following forms:

s

(7]

zofE
: T
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zof EConstrainis
zofE

{constraints)

For example, if entity DepositAccount has an attribute balance the value
of which must be a positive integer, then

balanceofDepositAccount
balanee : 2

balanceofDeposit AccouniConstraints
r balanceofDepositAccount

balance > 0

If DepositAccount has also other attributes depositDate of type Date
and interest of type InterestType with no constraints this time, we have
only one schema for each:

[Date, Interest Type]

depositDateofDeposit Account
depositDate : Date

inlerestofDeposit Account
r interest : InterestType

3.1.2 Records

For each entity E, we set up a record schema and a record constraint schema,
if there are any constraints on each record, of the following forms:

ERecord
rofEConstraints  (or zofE il there are no constraints on z)
yofEConstraints  (or yofE if there are no constraints on y)
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 ERecordConsirainis
FRecord

(constraints)

where z,y,... are attributes of E.

For example, if the entity DepositAccount has just three attributes
balance, depositDate and interest, and if deposiiDale and interest are in-
terdependent, then

— Deposit AccountRecord
belanceofDeposit AccountConsiraints
deposit DateofDeposit Account
interestofDeposit Account

__ DepositAccount RecordConstraints
DepositAccount Record

P(depositDate, interest)

where P(depasitDate, interest) is a predicate describing the interdependency
between these two attributes.
3.1.3 Tables

For each entity E, we set up a table schema and a table constraint schema,
if there are any constraints on the table, of the following forms:

(F1d)

ETable

knounkE : F EId
tableE : EFId + FERecord

( knounf = dom table
[¥ ERecard | §ERecord € ran tableE « ERecordConstraints,
‘ if there are any constraints on the record }

— ETableConstraints
ETable

(constraints)
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For example, if the number of all occurrences of DepositAccount is lim-
ited to MarDepositAccounts, then

[ DepositAccountld)

— DepositAccount T able
knoumDeposit Account : F DepositAccountld
table Deposit Account : DepositAccountld + Deposit AccountRecord

knownDeposit Account = dom table Deposit Account

¥ DepositAccountRecord |
8 DepositAccountRecord € ran table DeposiiAccount »
DepositAccountRecordConsirainis

__DepositAccount TableConstrainis
DepositAccount Table

#knownDeposit Account < MaxDepositAccounts

3.1.4 Relationships

For each relationship R hetween the detail entity E and the master entity
F, we set up a relationship schema and a relationship constraint schema. of
the following forms:

R Relationship
R:Eld + Fld

RConstrainis
R Relationship

knownkE : F Eld
knownkF : F FId

dom R C knewnFE
ran R C knounF
(counstraints)

Note that R can always be defined as a partial function since we omit the
many-to-many correspondence case as explained in Section 2.2.
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For example, the relationship IsOwnedBy in Section 2.2 can be specified
as follows:

IsOwned By Relationship
IsOwnedBy - Accountld + Customerld

IsOuwned ByConstrainis
IsQumed ByRelationship
nownAccount : F Accountid
kmounCustomer : F Customerld

dom Is OwnedBy = knownAccount
ran IsQwnedBy C knownCustomer

We should also note that a cardinality constraint: “each Customer may own
one or more Accounts” is guaranteed by both the functionality of JsCwnedBy
and the first predicate in the constraint schema while the other cardinality
constraint: “each Account is always owned by exactly one Customer” is
guaranteed by both the functionality of fsOwnedBy and the two predicates.

3.2 Expressing DB Integrity Constraints in Z

As suggested in Section 2.2, DB integrity constraints can be expressed within
subsystems or “subject areas”. For example, constraints for the ‘subtype’
CurrentAccount of Account can be expressed as [ollows:

CurrentAccount IsSubtypeofAccount
AccountTable

Current Account Table

Current AccountlsAccount Relalionship

tableCurrentAccount ; (A CurrentAccount Record e 8 AccountRecord)
C CurrentAccountlsAccount § tableAccount

where it is assumed that CurrentAccouniRecord contains all components of
Account Record.

In general, an integrity constraint on a subject area which consists of
entities Fy,..., E; and relationships Ry,..., R; can be expressed in the fol-
lowiag form:
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_IC
E) Table

E; Table
Ry Relationship

R, Relationship

(constraints)

The other example of an integrity constraint about VIP stated in Sec-
tion 2.2 can be expressed as follows:

— RuleofVipHasLargeOverdraftLimit
CustomerTable

CurrentAecount Table
IsOunedByRelationship
CurrentAccountIsAccount Relationship

¥ ¢ : Customerld; a : CurrentAccountld |
¢ € knounCusiomer A a € knownCurrentAccount A
a — ¢ € CurrentAccountlsAccount 5 IsOunedBy A
(tableCustomer c).vip = yes »
(tableCurrentAccount a).balance > -100

3.3 Definition of DB

Since the database of the system reflects the ER data model, we can define
the whole database consisting of entities Ey, ..., F,, relationships &, ..., R,
and integrity constraints Iy, ..., ICy with the following form:

— DB

E| TableConstraints (or E; Table if there ate no constraints on the table)

E, TableConstraints (or E, Table if there are no constrainls on the table}
Ry Constraints

Ry, Constraints

IC]_

1C,
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For example, the database of the banking example is as follows:

— BankingDB

CustomerTable

AccountTable

CurrentAccount Table

DepositAccount TableConstraints

IsOwned ByConstraints

CurrentAccountlsAccountConsirainis

DepositAccountils AccountConstraints

CurrentAccount lsSubtypeofAccount

DepositAccount [sSublypeofAccount

RuleofVipHasLargeOverdraftLimit
RuleofNon VipHasSmallQverdraft Limit

3.4 Expressing Business Processes in Z

As we have seen in Section 2.2, an entire process can bhe broken down into
parallel subprocesses. each of which updates a certain entity E or a certain
relationship R. Next, each subprocess is broken down into parallel basic
operations {Jp’s) each of which in turn modifies, inserts, or deletes some
records {or links) in entity E (or relationship ). Furthermore, each basic
operation on an entity of type ‘modify’ or ‘insert’ can be broken down into
atomic operations, each of which modifies or creates just one value of a
certain attribute. ‘

It is worthwhile noticing that the constraints which must be preserved
by each process and operation vary according to the layer of data and pro-
cesses. Each atomic operation on a certain attribute has to preserve the
constraints of the attribute, but may possibly violate other constraints at
a higher level than the attribute level. Each basic operation Op on some
records in a certain entity has to preserve the constraints of the records
which it tries to modify or insert but may possibly violate the constraints
of the entity table {such as volumetric constraints) and the DB integrity
constraints. Each subprocess acting on an entity has to maintain the con-
straints of the entity table, and only the entire process has to care about
the DB integrity constraints.

Consequently, at the record level for instance, we would write a schema
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Op
AFRecord

which would be promoted up first 10 a subprocess on ETable and then to a
process on DB, rather than a schema

Op
ADB

or

— Op
A ETable

3.4.1 Attribute Level

For each atomic operation of any process P, we set up one attributeoperation
schema as follows:
If the operation modifies the value of attribute r of entity E, then

ModifyzofEinP
AzofE

{scope in DI)
(input data)

{preconditions)
(how z' is determined}

I the operation creates the value of attribute r of entity E, then
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CreatezofEinP
[~ aofEr

(scope in DB)

(input data}

{preconditions)
(how z' is determined)

where zofF' is an attribute schema defined as in Section 3.1.1. (scope in DB)
is a set of schema references to some schemas in DB of beflore-state, which
are needed to describe {preconditions) and (how z’ is determined). (input
data) isa set of declarations of some global input data which are needed to
describe (preconditions) and (how z’ is determined).

Note that here we use rofE instead of zofEConstraints. [t means that
these operations have not yet been guaranteed to maintain the constraints
on z. The next chapter will examine how these operations are proved to
preserve the constraints (See Section 4.2).

For example, the process Withdraw in the banking system modifies the
attribute balance of CurrentAccount by subtracting the inputted amount of
money from the present value of this attribute, so we have:

ModifybalanceofCurrent Accountin Withdraw
AbalanceofCurrent Account
amount? : N

balance’ = balonce — amount?

3.4.2 Record Level

For each basic operation of any process P, we set up one record operation
schema as follows:
If the operation modifies the record(s) of entity E, then

— Modify ERecordinP
AFERecord
{scope in DB)
(input data)
ModifyzofEinP
ModifyyofEinP

ModifyzofEinP

{preconditions)
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If the operation inserts the record(s) of entity E, then

Create ERecordin P
r ERecord’
(scope in DB)
(input data)
CreatexofEinP
CreateyofEinP

CreatezofEinP

{preconditions}

where ERecord is a record schema defined as in Section 3.1.2. z,y....,z are
attributes of E and MedifyzofEinP. ..., Modifyzof EinP, CreatezofEinP, . . .,
Createzof EinP are attribute operation schemas as defined in the preceding
section. {scope in DB} is a set of schema references to some schemas in DB
of hefore-state, which are needed to describe (preconditions). (input data)
contains some global input data needed to describe (preconditions).

Also note that here we use ERecord instead of ERecordConstraints, It
means that these operations have not yet been guaranteed to maintain the
constraints on the record {See Section 4.3).

For example, the process Witkdraw in the banking system modifies a cer-
tain record of CurrentAccount which consists of just one attribute balanee,
s0 we have:

ModifyCurrentAccount Recordin Witkdraw
A CurrentAccount Record
ModifybalanceofCurrent Accountin Withdraw

3.4.3 Table Level

For ecach subprocess on entity E of any process PP, we set np one subprocess
schema as follows:
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SubprocessonEinP

AETable

(scope in DB)

aly ..., 0,7 Fld

B?,..., bn?: Eld

aly...,al t Eld
(other input data)

(preconditions)
{m?,...,a8.7} C knownE
disjoint ({517, ..., b 7}, knownk’)
{a17,...,¢t?} € knounFE
disjoint {{a1?,..., 8,7}, {17, ... ci?}}
knownE' = (knownE\ {a7,...,c?) U {b7,..., 5,7}
JA ERecord | a7 — 8 ERecord € tableE A
a,? +— 8 ERecord’ € tableE’ »
ModifyF RecordyinP

IA ERecord | a,? — 8ERecord € tableE A
an? +— 8 ERecord’ € tableE" »

ModifyE Record, inP
3 ERecord’ | by? v @ERecord’ € tableE’ »
Create ERecord,inP
3 ERecord’ | b, ? v 8 ERecord’ € tableE' o
Create ERecordyinP
{a?,...,a, 7, 01,07} €@ lobleE’ =
{a17,...,8,.7,%...., T} 4 lableE

where ETable is a table schema as defined in Section 3.1.3. ModifyERecord;inP,
..., ModifyERecord,inP are the record operation schemas (as defined in
the preceding section) which describe how the records associated with the
ID's, a7, ..., a,?, are modified respectively. CreateERecordiinP, ...,
Create ERecord,, inP are the record operation schemas (as defined in the pre-
ceding section) which describe how the records associated with the ID’s, 5,7,
.., b7, are created respectively. ¢,7, ..., ¢ 7 are the IIV’s associated with
the records to be deleted. (preconditions) is a set of preconditions including
all preconditions obtained in the analysis of its basic operations and atomic
operations. (scope in DB) is a set of schema references to some schemas
in DB of before-state, which are needed to describe (preconditions). (other
input data) contains all input data for all the record operation schemas and
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all the attribute operation schemas, and other global input data needed to
describe (preconditions).

Also note that here we use ETable instead of ETableConstraints. It
means that this subprocess has not yet been guaranteed to maintain the
constraints on the table (See Section 4.4).

For example, the process Withdraw in the banking system modifies a
certain record of CurrentAccount of which ID is inputted, so we have:

SubprocessonCurrent Accountin Withdraw
[ ACurrentAccountTable
etd? : CurrentAccountld
amount? : N

etd? € knownCurrentAccount
knounk' = knownkE
3 A CurrentAccount Record |
eid? v 8CurrcniAeeouniRecord € table CurrentAccount A
eid? — 8CurrentAccountRecord’ € tubleCurrentAccouni’ «
ModifyCurrentAccount Recordin Withdraw -
{eid?} « tableCurrentAccount’ =
{eid?} < tableCurrentAccount

3.4.4 Relationships

For each subprocess on relationship R of any process P, we set up one sub-
process schema as follows:

__SubprocessonRinP
A RRelationship
(scope in DB)
InputDataForModifyRinP : Eld + FId
InputDataForinsertRinP : Eid « FId
InputDataForDelete RinP : F Eld

(preconditions)
dom InputDetaForModifyRinP C dom R
disjoint (dom InputDataForinsertRinP, dom R)
InputDataForDeleteRinP C dom R
disjoint {dom InputDataForinsertRinP. InputDataForDelete RinP)
R' = ((InputDalaForDeleieRinP € R) U
InputDalaForInsertRinP) @
Inpul DataForModifyRinP
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where E is the detail entity and F is the master entity of R. RRelationship
is a relationship schema defined asin Section 3.1.4. (scope in DB) is a set of
schema references to some schemas in DB of before-state, which are needed
to describe (preconditions).

Also note that here we use HRelationship instead of RRelationshipCon-
straints. It means that this subprocess has not yet been guaranteed to
maintain the constraints on the relationship (See Section 4.5).

For exammple, the process CreateNewAecount in the banking system would
insert a new link into the relationship IsOwnedBy, so we have:

— SubprocessonlsOuned ByinCreate NewAccount
AlsOuwnedByRelationship

cid? : Customerld

newaid? : Aecountld

newaid? ¢ dom IsQunedBy
IsOwnedBy' = IsOwnedBy U {newaid? — cid?)

3.4.5 Business Processes updating DB

Assume that a business process P affects only entities £y,..., E;, and re-
lationships Ry, ..., f;. Then we can define the substantial part of P by
specifying its effects on Ey, ..., E,, f1, ..., R; as follows:

T 2 SubprocessonEyinP A -« A SubprocessonE;inP A
SubprocessonByinP A - - A SubprocessonR;inP A
Global PrecondittonyinFP A - - A GlobaiPreconditionginP

where SubprocessonEyinP, . .., SubprocessonE;inP, SubprocessonRyinP, .. .,
and SubprocessonfjinF are subprocess schemas as defined in Section 3.4.3,
3.4.4. GlobalPreconditionyinP, ..., and GlebalPrecondition inP describe
the preconditions which arise not from a particular entity or relationship
affected by P but from some constraints of relationships unchanged or DB
integrity constraints (See Section 4.6, 4.7).

Meanwhile the entire process P can also be defined as follows:

P=ADBATA(Aspere SETable) A (A,ipern = RRelationship)

In principle, once the entire process is defined, the precondition of the
process can be obtained by Z schema calculation. However, we do not take
this approach, the reason for which will be stated in the next chapter.




Chapter 4

Proof Obligations

4.1 Structural Checking / Precondition Calcula-
tion

As overviewed in Section 1.2, there may be two approaches to ensire the
correctness of the specification of business processes:

¢ Once the Z specification for the entire process P is obtained. its pre-
condition can be calculated by Z schema calculation and simplified
by logical and mathematical laws. Then we can compare it with the
desired precondition which P should have and can strengthen the spec-
ification if necessary {(e.g. by adding error handling [Woodcock §2]).

¢ As we have seen in the preceding chapter, the constraints which the
process P has to preserve are structured and layered corresponding to
the structure of the ER data model. Therefore we can construct a
series of proof obligations through which the specification is corrected
and strengthened by adding some preconditions {in its meaning in
VDM [Jones 86}) if necessary. These proof obligations are all of the
same form:

IAPASUI\PIF I

where { and P are a constraint schema and an operation schema re-
spectively at the appropriate level. Z(/ \ P) means that ali compo-
nents of / which are not contained in P remain unchanged.

In the first approach, since the ertire process can be defined as follows
(See Section 3.4.5):

23
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P =ADB A T A (Auerg SETable) A (A, penp ERRelationship)

T = SubprocessonEyinP A -+ A SubprocessonE,inP A
SubprocessonRyinP A -« - A SubprocessonBinP A
GlobalPreconditionyinP A - - - A GlobalPreconditionginP,

we need 1o calculate pre P.

However, this calculation cannot be broken down since pre (P A Q) is
not equal to (pre P) A (pre @) in general. In consequence, we are forced to
manipulate the huge schema P, which seems unduly complicated when onlv
a small number of entities and relationships are affected by the process.

On the contrary, one of the benefits we can enjoy from the second ap-
preach, i.e. structural checking, is that this form of proof obligations can be
broken down in a structural way.

The final proof obligation is:

DBATAZ(DB\ T)r DI

which means that if a state of DB satisfies all constraints, so does its state
after the process operates upon part of it (and the rest is left unchanged}.
Since DB is defined as follows (See Section 3.3):

DB = Ey TableConstrainis A ... A E, TableConstraints A
Ry Constraints A ... A R, Conslraint A
Iy A ON TG,

by Break-down Lemtna 1 below, the final proof obligation can be broken
down into:

Ey TableCongtramnts A T A Z(Ey TableConstramis \ T) - E, TableConsiraints’

E, TableConstrainis A T A Z(Eq TableConstraints \ T}t £, TableConstrainis’
Ry Constraints A T A Z( Ry Constraints \ T)+ R, Constrainis’

R Constraints A T A Z(Rn Constrainds \ T)F R, Constraints’
IC A TAZUIC\ TV IC]

[Ce A T AZ(IC\ TYF IC]

Furthermore, by Break-down Lemma2 below, these obligations resull in:
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For all E affcted by P,
ETableConsiraints A SubprocessonEinP b ETableConstraints’

For all R between E and ¥ such that onie or more among these three are aflected by
RConstraints A EffectonRofP A EffecionEefP A EffectonFofP & EConstraints’

where  EffectonRofP = { SubprocessonRinP, if P affects R

ZRRelatronship, otherwise
_ [ SubprocessonEanP, if P affects E
EffectonEofP = { =ETable, otherwise
_ [ SubprocessonFinP, if P affects F
EffectonFofP = { ZFTable, otherwise

For all IC contaiuing some entity or relationship which is aflected by P,
1C A (Agunsc EffectonEofP) A (A g, nic EffectonRofP) r IC*

b ; i p
where  EffectonEofP = { SubprocessonEwn P, if P affects |k

=ZFETable, otherwise
_ [ SubprocessonRiaP, if P affects R
EffectonRofP = { ZRRelationship, otherwise

In the following sections, we further break down the obljgations regarding
to eutity tables according to the layer structure of attributes, records and
tables.

Break-down Lemma 1 Lel Ij and I; be constraint schemas both of which
an operation schema P mus! preserve. Then, {f we can prove

AAPAEL\PYFI and
LAPAE(L\ P)F I

then we can prove
(AALRYAPAZ{OLANR)\PYFT[ AL

Break-down Lemma 2 Let [ be a constraint schema which an operation
schema P must preserve. Let Py be the purt of P which satisfies P+ Py and
I\ P=1I\ P (ie. the part within I}. Then, if we can prove

IAPLAST\POFT,
then we can prove

IAPAEINPIFI.
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The proof of each lemma is obvious.

Another benefit from structural checking compared with precondition
calculation is its ability to deal with nondeterminism properly. For example.
assume that [ and P are the following:

1
r:2

z>0

}J

I—J:’:Z

=1vz'=-1

In this case, on the one hand, the proof obligation degenerates into
PrI

since P does not refer to any compenent of I and neither does I'. Obviously
this proof obligation is not satisfied.
On the other hand, precondition caleulation in Z leads us to

pre (P A AT)
z:2
z>0

Az 2|z >0z =1V = -1

r:2

z>0

and it might be concluded that P is correct.

Consequently, as far as the correctness of a specification is concerned,
constraiuts have to be checked (as in VDM), rather than assuming a suffi-
ciently strong precondition is intended (as in Z).
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4.2 Attribute Level

As we have seen in Section 3.4.1, an operation schema at the lowest level is
of the following forms:

— Modifyzof EinP

AzofE

(stope in DB)
(input data)

(preconditions)
(how 2’ is determined)

_ CreatexofEinP
zofE'

(scope in DB)
(input data)

{ preconditions)
{how z' is determined)

The proof obligation for each of these operations is:

zofEConstraints A ModifyrofEinP t zofEConstraints’
CreatezofEinP v rofEConstraints’

only when zofEConsiraints exists.

If the proof obligation cannot be discharged, it is necessary to add some
preconditions (and possibly extend the scope in DB) to the operation schema
so that the proof obligation becomes provable Lhis time.

For example, the process Create NewDepositAccount in the banking sys-
tem inserts a new record in DepositAccount. The value of the attribute
balance of the record is determined to be equal to the inputted data amount?,
50 we have:

_ CreatebalanceofDeposit AccountinCreate New Deposit Account
balanceofDepositAceount!
amount? : N

balance’ = amount?
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Since the attribute balance of DepositAccount has a constraint schema
balanceafDeposit AccountConstraints which describes “balence > 07 as in
Section 3.1.1, we have a proof obligation:

CreatebalanceofDeposit AccountinCreate NewDeposit Account
F balanceofDepositAccountConstrainis’

Comparing the schemas on both sides, it becomes clear that the proof obli-
gation cannot be proved unless the precondition: “amount? > 0” is added to
the left hand side. Consequently, we must strengthen the operation schema
as follows:

CreatebalanceofDeposit AccountinCreale NewDeposit Account
balanceofDepositA ccount”
amount? : N

amouni? > 0
balance’ = amount?

4.3 Record Level

As we have seen in Section 3.4.2, an operation schema at the record level
takes one of the following forms:

ModifyE ReeordinP
AFRecord

(scope in DB)
{(input data)
ModifyzofEinP
ModifyyofEin P

ModifyzofEinP

(preconditions)
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— CreateERecordin P
ERecord’

{scope in DB)
(input data)
CreatezofEinP
CreateyofEinP

Createzof EinP

(preconditions)

Note that once all the proof obligations for its atomic operations (i.e. Modi-
fyzofEinP, ..., ModifyzofEinP, Createzof EinP, ..., CreatezofEinF} have
beeu checked as in the preceding section, ERecord’ is guaranteed since
ERecord contains all constraints just at attribute Jevel.

The proof obligation for each of these operations is:

ERecordConstraints A ModifyERecordinP - ERecordConstrainis’
CreateE RecordinP - ERecordConstraints’

only when ERecordConstrainis exists.

We may have to add some preconditions to the operation schema if the
proof obligation cannot be proved.

For example, the process CreateNewDepositAccount in the banking sys-
tem inserts a new record in DepositAccount. We assume that all its atomic
operations have already been guaranteed Lo preserve their constraints. Then
the operation at the record Jevel is as fallows:

Crreate Deposit Account Recordin Create NewDeposit Account
DepositdccountRecord’

CreatebalanceofDepositAccountin CreateNewDeposit Account
Createdeposit DateofDeposit Accountin Crente NewDeposit Account
CreateinterestofDepositAccountinCreate New Deposit Account

Since DepositAccountRecord has a constraint schema DepositAceount Record-
Constraints which describes “P(depositDate, interest)” as in Section 3.1.2,
we have a prool obligation:

Create Deposit Account Recordin Create NewDeposit Account
F DepositAccount RecordConstraints’
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Comparing the schemas in both sides, it may be concluded that the precondi-
tion: “P(today?, interest?)” is necessary in the left hand side. Consequently,
we may strengthen the operation schema as follows:

— Create Deposit A ccount RecordinCreate NewDeposit Aecount
DepasitAccount Record’

CreatebalanceofDeposit AccountinCreale NewDeposit Account
CreatedepositDateofDeposit AccountinCreate NewDeposit Account
CreateinterestofDeposit AccountinCreate NewDeposit Account

P(today?, interest?)

4.4 Table Level

As we have seen in Section 3.4.3, a subprocess schema at the table level is
of the following forms:
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— SubprocessonEin P

AFETable

(scope in DB)

&7, ....0,7 Eld

b, . b7 Eld

..., Eld
(other input data)

(preconditions)
{a17,...,0,7} C knownkE
disjoint {{&7.....bn 7}, knownkE)
{a1?,....cx?} C knownE
disjoint {({a?,. .., 8.7}, {a?, ..., &P
knownFE’ = (knownE\ {a? .., a?Hu{H?,.. ., 0.7)
A FERecord | a7 — 8ERecord € tableE A
ay? — GERecord’ € tableE' o
ModifyERecord inP

3 A FRecord | a,7 v @ ERecord € tableE A
@,? v 8ERecord’ € tableE! o
ModifyERecord, inP
3 ERecord’ | 517 — 8 ERecord” € tableE' »
Create ERecord, inP

3 ERecord" | b, v+ 8ERecord’ € tableE' »
CreateERecord, ,inP
{a17,...,a,7, 47, ..., 07} Q tableE' =
{a?l,..., a0 a7, .., 0,7} a table&

Note that once all the proof obligations for its atomic operations and ba-
sic operations (i.e. ModifyERecordyinP, _. .| ModifyERccord,inP, Create-
ERecordyinP, ..., CreateERecordy, inP ) have been checked as in Section 4.2,
4.3, ETable’ is guaranteed since ETable contains all constraints just at at-
tribute level and record level.

The proof obligation for this subprocess is:

ETable Constraints A SubprocessonEinP + ETable Constraints’

only when ETableConstrainls exists.
We may have to add some preconditions to the subprocess schema if the
proof obligation cannot be proved.
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For example, the process Create NewDepositAccount in the banking sys-
tem inserts a new record in DepositAccount, We assume that all its atomic
operations and the basic operation have already been guaranteed to preserve
their constraints. Then the subprocess at the table level is as follows:

— SubprocessonDeposit AccountinCreate NewDeposiiAccount
A DepositAceount Table

eid? : DepositAccountld

amount? ; N

today? : Date

interest? : Interest Type

amount? >0
P(today?, interest?)
eid? ¢ knounDepositAccount
knounDepositAccount’ = knownDepositAccount U {eid?}
3 DepositAccountRecord’ |
eid? — @ Deposit Account Record' € table DepositAccount’ «
Create Deposit AccountRecordinCreate NewDeposit Accournt
{eid?} a tableDepositAccount’ = tableDepositAccount

Note that here the preconditions found so far {t.e. amount? > 0 and
P(today?, interest?)} appear in the predicate part.

Since DepositAccount Table has a constraint schema DepositA ccountTable-
Constraints which describes “# known DepositAccount € MarDepositAccounts”
as in Section 3.1.3, we have a proof obligation:

DepasitAccount Table Constraints A
Subprocesson DepositAccountinCreate New Deposit Account
+ DepositAccount TableConstruints’

Comparing the schemas in both sides, it may be concluded that the precon-
dition: “ftknounDepositAccount < MazDepositAecounts—1" is necessary in
the left hand side. Consequently, we may strengthen the subprocess schema
as follows:
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— SubprocessonDeposit AccountinCreate New DepositAccount
ADepositAccount Table

eid? : DepositAccountld

amount? : N

today? : Date

inlerest? : Interest Type

amount? > 0
FP(today?, interest?)
# knounDeposit Account < MazDeposilAccounts — 1
eid? ¢ knownDeposit Account
knownDepositAccount’ = known DepositAccount U {eid?}
3 DepasitAccountRecord” |
eid? — 8 DepositAccount Record” € tableDeposit Account’ s
Create DepositAccount RecordinCreate New Deposit Account
{eid?} 4 tableDeposit Account’ = table DepositAccount

4.5 Relationships

As we have seen in Section 3.4.4, a subprocess schema on a relationship R
between entities E and F is of the following forms:

— SubprocessonRin P
A RRelationship
(scope in DB)
InputDataForModifyRinP : EId + Fid
InputDataForinsertRinP : Eld — Fld
InputDataForDelelteRinP : ¥ Eld

{preconditions)
dom InputDataForModifyRinF C dom R
disjoint (dom InputDataForInsertRinP, dom R)
InputDataForDeleteRinP C dom R
disjoint {dom InputDataForInsertRinP, Input DataForDelete Rin P
R' = ((InputDataForDeleie RinP g R) U
InputDataForinsertRinP) ¢
Input DatgForModifyRinP

Note that RRelationship’ is always guaranteed since RRelationship contains
just (partial) functionality of R. Instead there is always the constraint
schema RConsirginis.
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The proof obligation for this subprocess is:

RConstraints A SubprocessonRinP A EffectonEofP A Effecion FofP
t RConstraints’

SubprocessonEinF, if P affects E
=ETable, otherwise

SubprocessonFinP,  if P affects F
ZFTable, otherwise

where  EffectonEofP = {

EffectonFofP = {

Here the effects on E and F of the process have to be taken into account
since R(Constraints contains the referential integrity and other constraints,
which can be affected by inserting or deleting some occurrences of E or F.
If the proof obligation cannot be discharged. we may have to add some
preconditions to the subprocess schema.
For example, the process CreatcNewAecount in the banking system in-
serts a new link in the relationship IsOwnedBy as in Section 3.4.4:

SubprocessonlsQuned ByinCreate NewAccount
A lsQwnedByRelationship

cid? 1 Customerld

newatd? ;: Accountid

newaid? ¢ dom IsCwnedBy
IsOwnedBy' = IsOwnedBy U {newaid? — cid?}

At the same time, the process inserts a new record in Account as follows:

SubprocessonAccountinCreate NewAccount
AAccount Table

newaid? ; Accountld

amount? : N

newaid? ¢ knownAcecount
knownAccount’ = knounAccount |) { newaid?}
3 AccountRecord’ |
newaid? — 8 AccountRecord’ € table Accouni’ »
Creote Account Recordin Create NewAccount
‘ {newaid?} < tableAceount’ = tableAccount

Here we assume that CreateAccountRecordinCreate NewAccount is de-
fined somewhere. We also assume that the entity Customer remains un-
changed under this process. Then the proof obligation is:
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IsOwned ByConstraints A SubprocessonlsQuned ByinCreate NewAccount A
SubprocessonAccountinCreate NewAecouni A ZCustomerTable
 IsQuned ByConstrainis’

Comparing the schemas in both sides, it may be concluded that the precon-
dition: “cid? € knownCustomer” is necessary in the left hand side. Conse-
quently, we must add not only this precondition but also a schema reference
CustomerTable as a part of (scope in DB) to the subprocess schema as
follows:

— Subprocesson{sCumed ByinCreateNewAccount
A lsOwnedByRelationship

CustomerTable

cid? : Customcerld

newdid? ; Accountld

cid? € knounCustomer
newaid? ¢ dom IsOunedBy
IsCumedBy' = IsOunedBy U {newaid? — cid?}

4.6 Unchanged Relationships

As mentioned in the preceding section, the referential integrity and some
other constraints in a refationship R between E and F can be affected when
the process P changes either ETable or FTable. Since they can he affected
even when R itself remains unchanged, we must have proof obligations for
such cases as follows:

RConstraints A EffectonEofP A EffectonFofP A ZR Relationship
F RConstraints’

SubprocessonEinP, il P affects E
ZETable, otherwise

where  EffectonEofP = {

SubprocessonFinP, if P affects F
=FTable, otherwise

EffectonFofP = {

If the proof obligation cannot be discharged, we may have toset up some
global precondition schema GlobalPrecondition as in Section 3.4.5 rather
than add some predicates to either SubprocessonEinP or SubprocessonFinP
since the precondition should be attributed to neither E nor F.

Once such a precondition schema has been established, the proof obli-
gation becomes of form:
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RConstraints A EffectonFofFP A EffectonFofP A ZR Relationship A
GlobalPrecondilion
+ RConstraints’

Otherwise we may find that we have missed some subprocesses of the
process. In such a case, we must specify those subprocesses and check the
proci obligations again which could be spoiled by this modification.

For example, the process CreateNewCustomer in the banking system
inserts a record in the entity Customer:

. SubprocessonCustomerinCreate NewCustomer
ACustomerTable

newcid? : Customerld

name? : Name

vip? : YesNo

newcid? ¢ knownCustomer
known Customer’ = knouwnCustiomer U {newcid?}
1 CustomerRecord’ |
newcid? — #CustomerRecord” € tableCustomer’ »
CreateCustomerRecordinCreate NewCustomer
{newcid?} < tableCustomer’ = table Customer

Here we assume that CreeleCustomerRecordinCreateNewCustomer is de-
fined somewhere.

Also assume that the relationship 1sQwnedBy has the constraint: “the
number of customers who owns no accounts is limited to 1007, i.e.

IsOunedByConsiraints
IsOwnedByRelationship
knownAceount : F Accountld
knownCustomer : F Customerld

dom IsOwnedBy = knownAccount
ran IsOwnedBy C knownCustomer
#(knownCustomer \ ran IsOwnedBy) < 100

We also assume that the entity Account and the relationship IsOwnedBy
remain unchanged under this process. Then the proof obligation is:

IsOumnedByConstraints A SubprocessonCustomerinCreate NewCustomer A
ZAccountTable A Z1sOQunedByRelationship
F IsOwned ByConstraints’
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Comparing both sides, it may be concluded that the precondition:
“#(knownCustomer \ ran IsOwnedBy) < 99" is necessary in the left kand
side. Consequently, we may set up a global precondition schema, such as:

GlobalPrecondition,
CustomerTable
IsOwnedByRelationship

#{knownCustemer \ ran [sOwnedBy) < 99

Now the new proof obligation is:

IsOwnedByConsiruints A SubprocessonCustoinerinCreateNewCustomer A
Z Account Table A Z{sOwnedByRelationship A GlobalPrecondition,
F IsOwned ByConstraints’

which can be proved.

4.7 DB Integrity Constraints

If the process P affects some entity or relationship within a subject area on
which some DB integrity constraint IC is specified. it could be violated by
the process. The proof obligation is as follows:

IC A (AEinrc SubprocessonEin P} A (A piojo SubprocessonRinP) A
(Aoﬂ:rEl‘n[C EETable) A (AuihtrRinJ'C ERREIU{IDﬂSh!p)
FICt

If the proof obligation cannot be proved, we may have to set up some
global precondition schema GlobalPrecondition or find some mistake in the
specification.

Once such a precondition schema has been established. the proof obli-
gation becomes of form:

IC A (Aginrc SubprocessonEinP) A (A pingc SubprocessonllinP ) A
(Aotherginic SETable) A (A perninic = R Relationship) A
GrobalPrecondition
FIc

For example, the process Withdraw in the banking system modifies a
recard in the entity CurrentAccount as defined in Section 3.4.3:
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— SubprocessanCurrent Accountin Withdraw
ACurrentAccountTable

eid? : CurrentAccountld

amount? : N

eid? € knownCurrentAccount
knownE' = knownk
JA CurrentAccountRecord |
etd? 1+ @ CurrentAccountRecord € tableCurrent Account A
etd? — @CurrentAccountRecord’ € tableCurrentAccount’ o
ModifyCurrentAccountRecordin Withdraw
{eid?} @ tableCurrentAccount’ =
{eid?} <4 tableCurrentAccount

The process may violate the DB integrity constraint RuleofVipHas Large Over-
draftLimil since it specifies a constraint among Customer, Current Account,
IsOwnedBy and CurrentAccountIsAccount as in Section 3.2:

RuleofVipHasLargeOverdraft Limit _
CustomerTable

CurrentAccount Table
IsOwned By Relationship

Current AccountisAccouni Relationship

¥ ¢ : Customerld; a : CurrentAccountld |
¢ € knownCustomer A a € knounCurrentAceount A
a — ¢ € CurrentdccountfsAccount ; IsQuned Dy A
(tableCustomncr c).vip = yes o
(tableCurrentAccount a).balance > —100

We assume that the other entity Customer and the two relationships remain
unchanged under this process. Then the proof obligation is:

RuleofVipHasLargeOverdraftLimit A
SubprocessonCurrent Accountin Withdraw A
ECustomerTable A EIsOwned ByRelationship A
Z CurrentAccountis AccountRelationship

F RuleofVipllasLargeQverdraftLimit’

Comparing both sides, we may set up a global precondition schema, such
as:
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_ Rlobal Preconditions
Custorner Table
CurrentAccount Table
IsOumedByRelationship
CurrentAccountisA coountflelationship
eid? 1 CurrentAccountfd

amount? : N

eid? € knounCurrentAccount
¥ ¢ : Customerfd |
c € knownCustomer A
eid? — ¢ € CurrentAccountisAccount ; [sOwnedBy A
(tableCustomer c).vip = yes ¢
amount? < (tableCurrentAccount eid?).balance 4 100

Now the new proof obligation is:

RuleofVipHaslLarge OverdraftLimit A
SubprocessonCurrent Accountin Withdraw a
= Customer Table A = IsOwnedByRelationship A
=Current AccountlsAccount Relationship A GlobalPrecondition,
b RuleofVipHaslLarge OverdraftLimit’

which can be proved.

4.8 Example: Resident Registration System

In this section, the typical usage of the proof obligations introduced so far
is illustrated with an example of a city office system. This system maintains
some information on residents who live in the city. The ER data model for
this system is shown in Figure 4.1.

Translation of the ER mode! into Z is as follows:

Basic Types:

[Name, Address)
RelType ::= Spouse | Sibling | Child | - --

Attributes:

addressofFamily
|—addre.;.s : Address
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R Re t
e address | Family H presen 4 Householder |* name
IsMemberof{
* name

Person

» reltoHouseholder

Figure 4.1: ER diagram for Resident Registration System

nameoflfouseholder

rname : Name
rameofPerson
rname : Name

reltoHouseholderofPerson
rreltoHousehoIder : RelType

Records:

FamilyRecord
I—addressofPamily

Householder Record
” nameofHouscholder

PersonRecerd
|7 nameofPerson

reltoH cuseholderofPerson

Entity Tables:

[Familyld, Householderld, Personld)
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Family Table
known Family : F Familyld

table Family : Familyld + FamilyRecord
knowni Family = dom table Family

Householder Table
FknownHousehaider : F Householderld
table Householder : Householder]d v [louseholderRecord

krnaunflouseholder = dom fable Householder

PersonTable
rJcncnunP.«erson : F Personld
tabiePerson : Persanld + PersonRecord

knounPerson = dom lable Person

Relationships:

RepresentRelationship
Represent : Householderld « Familyld

RepresentConstraints

RepresentRelationship

knownllouseholder : F Hlouseholder!d
knownFamily : F Familyld

dom Represent = knownHouseholder
ran Represent = knownFamily
Represent € Householderld v Familyld

Note that this constraints implies that the relationship is a one-to-ane cor-
respondence.

IsAfemberofRelationship
IsMemberof : Personld +~ Familyld
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— IsMemberofConstraints
IsMemnbergfRelationship

krownPerson : F Personld
knownFamily : F Familyld

dom IsMemberof = knownPerson
ran JsMemberof C knownFamily

Note that this constraints implies that the relationship is a one-to-many
correspondence.

Besides the ER data model, we consider one integrity constraint as fol-
lows:

DB integrity constraint:

— RuleofMonogamy
PersonTuable
FamilyTable
IsMemberofRelationship

Y fid : Familyld | fid € knounFamily
#{pid : Personld |
pid € knownPerson A
pid ~ fid € IsMemberof A
(table Person pid).reltoHouseholder = Spouse} < 1

Note that this rule says that every householder has at most one spouse in
his or her family.

DB:

CityOffice DB
FamilyTable
Householder Tabie
PersonTable
RepresentConstraints
IsMemberofConstraints
RuleofMonogamy

Now we consider one process in this system as follows:

Process: HouseholderMoveOut
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This process must update the database appropriately when a householder
moves out of the city.

[Fiest Try]

At first, we would think that this process is realized by just deleting the
occurrence of Householder, i.e.

[nput Data:  hkid? : Householderld

Subprocess on entity:  Delete Householder

—_ Deleteflousehalder
AHouseholder Table
hid? . Householderld

hid? € knownHouseholder
knownfouseholder’ = knownHouseholder \ {hid7)}
table Householder’ = {hid?7} 4 table Householder

Here comes the stage where we have to clieck somie proof obligations. At
first, we get a checklist showing which constiraints we need to prove to be
preserved by the process with a flag indicating whether the obligation has
already been proved or not. At present, just one constraint among the three
can be affected. so the checklist is as follows:

List of Proof Obligations: on RepresentConstraints, -not yet

The whole expression of this proof obligation and the (partialj expansion of
each side are as follows:

RepresentConstraints A Delete Householder A
ZFamily A = Represent Relationship
 RepresentConstraints’

Lis
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A Householder Table

Z Family

Z RepresentRelationship
hid? . Houscholderld

dom Represent = knownHouseholder

tran Represent = knownFamily

Represent € Householderld + Familyld

hid? € knownHouseholder

knownHouseholder' = knownHouseholder \ {hid?}
table Housc holder’ = {kid?} < lable Householder

RIIS

RepresentRelationship’
knownHouseholder’ : F Householderld
knownFamily’ : F Familyld

dom Represent’ = knownHouseholder’
ran Represent’ = knownFamily'
Represent’ € Householderld -+ Familyld

Here we may find that “dom Represent’ = knownMouseholder™ itn RHS
does not hold since Hepresent is left unchanged while knownHauseholder is
changed. To make it correct, it is not sufficient to delete a link in Represent
since “ran Represent’ = knownFamily'™ does not hold after that as Represent
is injective.

We need the [ollowing case analysis:

Case 1 There remain one or more other persans in the family. In this case,
one ol them must become the new householder and other persons, if
any, must change their relto Householder values.

Case 2 There is no one else in the family. In this case, the family itself
must be deleted.

Here we continue to think abont Case 1.

[Second Try]
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Inpnt Data:  hid? : Householderid
pid? . Personid (new householder)
newrels? ; Personld «+ RelType

Subprocesses on entities: Deleteds ModifyPerson
ModifyHouseholder

ModifyreltoHouseholderofPerson

AreltoHouscholderofPerson

rel : RelType
relio Householder’ = rel

45

Note that the variable rel is used as a parameter here since we want Lo use

this atomic operation for every person in the family.

nameofPersonl/nchanged
,_E nameofPerson

— ModifyPersonRecord

A PersonRecord
ModifyreltoHouseholderofPerson
namcofPersonlinchanged
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— Deleted ModifyPerson
APersonTable
Householder Table
Represent Relationship
IsMemberofRelationship
hid? : Householderld
pid? : Personld

newrels? : Personld + RelType

hid? € knownHouseholder
pid? € knownPerson
dom newrels? C knounPerson
pid? ¢ dom newrels?
3fid : Familyld | hid? — fid € Represent »
pid? — fid € IsMemberof A
(¥ pid : Personld | pid € dom newrels? »
pid — fid € IsMemberof)
knownPerson’ = knownPerson \ {pid?}
¥ pid : Personld; rel: RelType | pid — rel € newrels? »
(3 A Personflecord |
pid — 8 PersonRecord € tablePerson A
pid — 8PersonRecord’ € table Person' e
ModifyPersonRecord)
dom rewrels? 4 table Person' =
{dom newrels? U {pid?}) 4 table Person

Here rel is used as a parameter to ModifyPersonRecord,

ModifynameofHouseholder
AnameofHouseholder
PersonTable

pid? : Personld

pid? € knownPerson
name’ = (tablePerson pid?).name

ModifyHouseholder Record

A Householder Record
ModifynameofHouseholder
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— ModifyHouseholder

A Householder Tabie

Person Fable

hid? : Householderld
pid? : Personld

hid? € knownHouscholder

pid? € knownPerson

knownHousehalder’ = knouwnHouseholder

3 A HouseholderRecord |
hid? — 8 HouseholderRecord € tablelouseholder A
hid? — 8 HouseholderRecord' € tableHouseholder’ o

ModifyHouseholder Record
{hid?} 4 tableHouseholder’ = {hid?} a tubleHouseholder

Here the precondition and the scope of the atomic operation are collecied
in this subprocess schema.

Since there is no constraint at attribute level nor record level, we have had
no proof obligation so far.
However, here comes the checklist:

List of Proof Obligations:  on RepreseniConstrainls,  -not yet
on fsMemberofCanstrainis, -not yet
on RuleofMonogamy, -not yet

The first obligation is:

RepresentConstraints A ModifyHoeuseholder A
ZFamily A = RepresentRelalionship
+ RepresentConstraints’

and it can be proved obviously since knownfouscholder is unchanged.

The second obligation is:

TIsMemberofConstraints A Deletele ModifyPerson A
EFamily A ZlsMemberofRelationship
b IsMemberofConstraints’

but “dom IsMemberof’ = knoumPerson’™ in RHS does not hold since [s-
Memberof is left unchanged while knownPerson is changed.
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We may find that it is needed to delete a link in IsMemberof.
[Third Try]

We specify the additional subprocess with the rest remaining.

Input Data: hid? : Householderld
pid? : Personld (new householder)
newrels? : Personld — RelType

Subprecesses on entities: Delete& ModifyPerson
Modifylfouseholder

Subprocess on relationship:  DeletelsMemberofLink

DeletelsMemberofLink
AlsMemberofRelationship
pid? : Personld

pid? € dom IsMemberof
IsMemberof’ = {pid?} € IsMemberof

Now the checklist becomes as follows:

List of Proof Obligations:  on RepreseniConsiruints,  -already OK
on [sMemberofConstraints, -not yet
on RuleofMonogamy, -not yet

Note that the first obligation is marked OK sinte nothing has been changed
from the second try with respect to this constraint.

The second obligation is:

IsMemberofConstrainis A Delete& ModifyPerson A
DeleteIsMemberofLink A ZFamily
b IsMemberofConstraints'

This time, it is QK.
The third obligation is:

RuleofMonogamy A Deleted: ModifyFPerson A
DeletelsMemberofLink A = Family
v RuleofMonogamy’
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It cannot be proved, We need to set up a global precodition schema here.
[Fourth Try]

We specify the additional precodition schema with the rest remaining,

Input Data: hid? : Houscholderid
pid? : Personld (new householder)
newrels? ;: Personfd « RelType

Subprocesses on entities: Delete& ModifyPerson
ModifyHouseholder

Subprocess on relationship:  DeletelsMemberoflink

Global precendition:  LimitenNewSpouse

— LimitonNewSpouse _
PersonTable
RepresentRelationship
IsMemberofRelationship

hid? 1 Householderid

pid? : Personld

newrels? : Personld + RelType

3fid : Familyld | hidT — fid € Represent »

#{pid : Personld; rel : RelType |

pid — rel & newrels? A rel = Spouse » pid}+
#{pid : Personld |

pid € knounbPerson A

pid — fid € [sMemberof A

pid ¢ (dom newrels?)U {pid?} A

(tablePerson pid).reltoHouseholder = Spouse} < 1

Note that this precondition is equivalent to saying that the number of the
persons whose reltoHouseholder become Spouse is at most one.

The checklist becomes:

List of Proof Obligatious: on RepresentConstraints, -already OK
on IsMemberofConstraints, -already OK
on RuleofMonogamy, -not yet



50 CHAPTER 4. PROOF OBLIGATIONS

Note that adding some global precondition schemas does not spoil any proof
obligations already proved so far.

The last obligation ia:

RuleofMonogamy A Deletele ModifyPerson A
DeleteIsMemberofLink A ZFamily A LimitonNewSpouse
t RuleofMonogamy’

and it becomes Ok,

Finally, we have the whole process as follows:

Householder Move Out =
Deletels ModifyPerson A Modifylfouseholder A
Delete [sMemberofLink A LimitonNewSpouse

which has been proved to preserve all constraints in DB.

Furthermore, the total precondition of this process can be shown by collect-
ing all the preconditions obtained so far as follows:

the precondition of HouseholderMoveOut
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Householder Table
PersonTable
RepresentRelationship
IsMemberofRelationship
hid? : Householder]d
pid? : Personld

newrels? : Personld — RelType

hid? € knounHouseholder
pid? € knownPerson
dom neurels? C knownPerson
pid? ¢ dom newrels?
pid? ¢ dom fsMemberof
I fid : Familyld | hid? — fid € Represent o
pid? — fid € IsMemberof A
{(Vpid : Personld | pid € dom newrels? »
pid — fid € IsMemberof)
A fid : Familyld | hid? — fid € Represent »
#{pid : Personld; rel : RelType |
pid — rel € newrels? A rel = Spouse o pid}+
#{pid : Personld |
pid € knounPerson A
pid — fid € IsMemberaf A
pid ¢ (dom newrels?}U {pid?} A
(table Person pid).reltoHouseholder = Spouse} <1

We can proceed similarly also in Case 2.



Chapter 5

Support Tool

In this chapter, a computer tool supporting our activity of specifying busj-
ness processes is introduced. Firstly, several requirements for such a tool
are discussed, and secondly, an informal specification of its prototype is pro-
posed. Finally, an example of execution of the prototype is introduced. The
source code of the prototype in the functional programming language Orwell
[Wadler i Miller 90, Bird & Wadler 88| is shawn in Appendix B,

5.1 Requirements
Qur specification activity consists of the following steps:

Step 1 We draw an ER diagram to illustrate the ER data model.

Step 2 Dased on the ER diagram, we specify the following objects in the
database:

¢ all entities (with attributes and constraints).
s all relationships (with constraints).

e all DB integrity constraints {with subject areas and predicates).
Step 3 For each business process to be considered, we specify:

+ input data and output data.

« basic operations on entities (with update-type, target occurrences,
preconditions and how to determine the new values of all the at-
tributes).

52
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o basic operations on relationships (witl update-type, target occur-
rences, preconditions and new orcurrences to which links must be
made]).

+ global preconditions {with scopes and predicates).

Step 4 For each business process, we check the correctness of the specifi-
cation according to the proof obligations explained in Chapter 4, i.e.

e checking each basic operation on an entity (with regard to the
attribute constraints and record constraints, if any).

» checking each suhprocess on an entity, i.e. the collection of all
the hasic operations on the entity {with regard to the entity table
constraints, if any).

e checking each subprocess on a relationship. i.e. the collection of
all the basic operations on the relationship (with regard to the
relationship constraints).

If some constraint is foend not to be preserved, the operation can be
modified by adding appropriate preconditions.
Furthermore,

» checking the other relationship constraints which could be vio-
lated.

e checking cach DB integrity constraint which could be violated.

If some constraint is found not to be preserved, the process can be
strengthened hy adding appropriate global precondition schemas or
some missing subprocesses may be found.

Step 5 Once the correctness of the process is proved, the whole process and
precondition of the process should be presented iu a suitable form.

Asfor Step 1, many kinds of CASE tools are available, such as [EF TM{Texas
Instruments 88]. They provide us with a nice graphical interface not only
for drawing the ER diagrams but alse for many other data input and tool
operations.

In Step 2 and Step 3, our tool should support such a nice vser interface
as the CASE tools have, or provide some file interface to input a specification
file prepared outside the tool (<[, Appendix A).

For Step 4 and Step 5, our tool should have the following facilities:

s general Z schema manipulations: Display, Expand. etc.
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« translation of the process specification based on ER model into Z
schemas,

» assistance for checking the proof obligations, such as automatic reduc-
tion,

¢ interactive modification of the process specification.

» keeping track of both the list of proof obligations and the modification
of the specification during Step 4.

e file interface to output a specification file in an appropriate form.

Note thal it seems reasonable to allow the user to judge whether or not
each proofl obligation is OK. This is because we are often confronted with
mistakes or flaws in our specification and it is difficult for the rool to amend
them alone. Therefore. some kind of rigid theorem prover, such as zedB
[Neilson & Prasad 91|, is not actually required.

5.2 Specification
The prototype of our tool has the following functions:
1. reading a specification file

¢ command line: readspec filename

¢ parameters: filename s the name of a specification file to be read.

¢ function: The information on a business process is inputted from
a text file written in the form described in Appendix A.

2. listing names of all schemas

+ command line; schemaliat

¢ parameters: none

e function: The list of names of all schemas the tool has created so
far is displayed with sequential numbers in the following form:

0. (name of schema)
1. (name of schema)

(number). (name of schema)
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For example,

0. CustomerRecord
[. AccounLRecord

3. showing the definition of schemas

e command line: view par

e parameters: par must be an integer indicating a certain schema
in the list shown by the command schemalist.

¢ function: The definition of the schema designated by the number
paris displayed in its vertical form as follows:

neme of schema)

{definrlron of schema tn vertacal form)

4. showing the expanded form of schemas

e command line: view2 par

+ parameters: par must be an integer indicating a certain schema
in the list shown by the command schemalist.

o function: The expanded schema of the schema designated by the
number par is displayed in its vertical form as follows:

(name of schema)

(ezpanded schema in vertical form)

5. listing the proof obligations

s command line: checklist
e parameters: uone

e function: The list of the proof obligations is displayed with se-
guential numbers and flags indicating whether each obligation is
already checked or not as follows:

0. on {rame of constreinis) [by (rame of operation)] -(okflag)
1. on (name of constrants) [by (name of operation)] -(okflag)

(number). on (name of consirsints) [by (name of operation)] -( okflag)
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For example,

0. on AccountRecordConstraints by Create AccountRecord -already OK
1. on DepositdccountlsSubtypeofAccount -not yet

6. expandirg proof obligations

« command line: expand par

« parameters: par must be an integer indicating a certain proof
obligation in the list shown by the command checklist.

¢ function: The definition of the proof obligation designated by
the nuinber par and the expanded schemas of its both sides are
displayed as follows:

(definttion of proof obligation)

LHS

(expanded schema of lefl hand side in vertical form)

RHS

(ezpanded schema of right hand side in vertical form)

7. reducing proof obligations

¢ command line: reduce par

¢ parameters: par must be an integer indicating a certain proof
obligation in the list shown by the command checklist.

e function: The list of the declarations and predicates in the ex-
panded RIIS which are not contained in the expanded LHS of the
proof obligation designated by the number paris displayed with
sequential numbers in the following form:

Please check the following declarations and predicates in RHS:
0. {declaration)

(number). (declaration)
(number). (predicate}

(number). (predicate)
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If the list is empty, only the following message will appear:

OK, this proof obligation is satisfied.

8. ticking proof obligations

s command line: checkok par

s parameters: par must be an integer indicaling a certain proof
obligation in the list shown by the command checklist.

o function: The proof obligation designated by the number par is
recorded as already checked.

5.3 Example of Execution

Here is a series of interaction of the prototype in the banking example. The
specification of the system Is written in the text file banking . spec asfollows:

Banking System

DBName: BankDB

Entities:
Customer
Attributes:
name @ Name
vip : YesNo
Account
Attributes:
balance : Z
Currenticcount
Attributea:
balance ; 2
DepoaitAccount
Attributes:
balance : 2
AttributeConstrainta:
) balance > 0

depositDate : Date
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interest : IntereatType
RecordConstraints:

(0) P(depositDate, interest)

TableConstraints:

(0) ¢ knownDeposithccount <= MaxDepositAccount
Relaticnships:

TadenedBy : Account —+> Customer
Type: OptionalManytoDne
Constraints:
(a) #(knoenCustomer \ ran IsOwnedBy) <= 100

CurrentAccountYeAccount : CurrentAccount -+> Account
Type: OptionalOnetoOne

DepoaitAccountIshccount : Deposithccount -+ Account
Type: Dptionallnetolne

DBIntegrityConstrainta:

CurrentAccount IaSubtypeoficcount
ScopeE: CurrentAccount, Account
ScopeR: CurrentAccountlIshccount
Copstraints:
{0} tableCurrentdccount ;
(lambda CurrentAccountRecord € theta AccountRecord)
= CurrentAccountIlehccount ; tabledccount

Depogijticcount [aSubtypeoficcount :
ScopeE: DapesitAccount, Account
ScopeR: Depositdccountlshccount
Constrainta:
()] tableDepoaitAccount ;
(lambda DepositAccountRecord © theta AccountRecord)
=~ DepositAccountIesAccount ; tablehccounrt

Ruleaf¥ip :
ScopeE: Customer, CurrentAccount
ScopeR: 1sOwnedBy, CurrentAccountisAccount

Constrainta:

(Q} forall c:Customerld; a:Currenthccountld | 4
¢ in knosnCustomer /3
a in knownlurrenthccount /\
a |-» ¢ in CurrentAccountleAccount ; IsOenedBy /\
(xableCustomer c).vip = yea ©
(tableCurrentikccount a).balance >= -100

RuleofNonVip :

ScopeE: Customer, Currenticcount
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ScopeR: IallnedBy, CurrentdccountlIsAccount

Conetrainta:
(o) forall ¢:CuatomerlId; a:CurrentAccountId |
c in knownCustomer /3
a in knownCurrenticcount /\
a |-» ¢ in CurrentAccountIsAccount ; lallwnedBy /\
(tableCustomar c}.vip = no @
(tableCurrentAccount a).balance >= -10
Procesaa:
Withdrar
InputData:

a? : CurrentdccountId
amount? : Z

SubprocessesonEntities:
WithdravonCurrenthccount on Currenticcount

InputData:
a? ; Currentdccountld
amount? : Z

Preconditicens:
(0} a? ip knoenCurrenthccount

BasicOperations:

Modify Currenticcount
Target: a?
RecordOperation: WithdrawonCurrenticcountRecord
InputData:
a? : CurrenthccountId
Preconditionsa:
(0) a7 in dmownCurrentAccount
AtomicQperations:
balance by WithdrawonbalanceofCurrentiAccount
InputData: amount? : Z
Operation:
(o balance' = balance - amount?

In this execution, the process Withdraw is going to be checked.

? run tool

readspec filename/schemalist/view nuw/viev? num/

59
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checklist/erpand uum/reduce nua/checkok num/end => readspec banking.spec

readspec filename/schemalist/view num/vien2 num/
chacklist/expand num/reduce aum/checkok num/end => schemalist

0. vameofCustomar

1. wipofCustomer

2. CustomerRecord

3. CustomerTable

4. balanceofAccount

5. AccountRecard

6. AccountTable

7. balanceofCurrenthccount

8. CurrenticcountRecord

9. CurrenticcountTable

10. balancecfDepositAccount

11. balanceofDepositAccountConstraints
12. depositDateofDepogithccount

13. interestofDepositAccount

14. DepositAccountRecord

15. DepoasitAccountRecordConatiraints
16. DepozithccountTable

17. DeposithccountTablefonstraints

18. I=DwnedByRelationship

19. IsDwnedByConstraints

20. CurrentAccountIsAccountRelstionship
21, CurrenthccountIahccountConstraings
22. DepositAccountIsAccountRelationzhip
23. DeposithccountIsAccountConstrainta
24. CurrentAccountIsSubtypeofAccount
25, DepoaithccountIsSubtypacfhccount
26. RuleofVip

27. RuleofKonVip

28. BankDB

29. VWithdrawonbalanceofCurrentAccount
30. WithdrawonCurrentAccountRecord

31. WithdrawonCurrentAccount

readapec filename/schemalist/viee num/view2 nua/
checkliat/expand nua/reduce num/checkok num/end => view 31

WithdrawvonCurrenticcount

| Delta CurrentAccountTable
| a7 : CurrentAccountld
| amount? : I

| a? in knoenCurrentAccount
| knownCurrentAccount’® = knownfurrentAccount
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| exiats Delta CurrenticcountRecord |

| a? |-> theta CurrentiAccountRecord in tableCurrenticcount /\
] a? |-> theta CurrenticcountRecord’ in tableCurrentAccount’ @
| WithdravenCurrenticcountRecord

| { a? } <<| tableCurrentAccount’ = { a? } <<| tableCurrentAccaunt

readspec filename/schemalist/vie® num/view2 num/
checklist/expand nua/reduce num/checkok num/end => vies? 31

WithdraronCurrenticcount

| nornCurrentAccount : F CurrentAccountId

| tablaCurrentAccount : CurrentAccountld -+> CurrentAccountRecord
| knownCurrentAccount’ : F CurrentAccountId

| tableCurrentAcceunt® : Currenticcountld -+» CurrentAccountRecord
| a? ; Currentdccountld

| amount? : 2

| dmewnCurrentAccount = dom tableCurrenticcount

| knownCurrenticcount’ = dom tableCurrentAccount’

| a? in knownCurrenthccount

i JnownCurrenticcount’ = knownCurrentAccount

| exista Delta CurrentAccountRecord |

] a? )-> theta CurrentAccountRecord in tableCurrenthccount /\
| a? 1-> theta CurrenthccountRecord’ in tableCurrenthccount' d
i WithdravenCurrentAccountRecord

| { a? } <<| tableCurrentAccount’ = { a? } <<| tableCurrentAccount

readspec filename/achemalist/view num/view2 num/
chackliet /expand num/reduce num/checkok num/end => checklist

0. on CurrenticcountIshccountConstraints -not yet
1. on CurrentAccountIaSubtypeofAccount -not yet

2. on RuleofVip -not yet

3. on RuleofNon¥ip -npat yet

Here we learn that these four are the constraints which could be violated by
the process Withdraw. The first proof obligation is going to be expanded
and checked.

readapec filenama/achemaligt/viev num/view? num/
chacklist/expand nuw/reduce nua/checkok num/end => expand 0

CurrenthAccountIsiccountConstraints /\
Xi CurrenticcountlahccountRelationship /\
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WithdravonCurrentAccount /\ -
Xi AccountTable
| = GurrentAccountIeAccountConptraints?

Currenticcount leAccount : CurrenticcountId -+> AccountId
knownCurrentdccount : F Currenticcountld
knownhAcceunt : F Accountld

CurrentjicconntIehccaunt’® : CurrentAccountId -+> AccountId
tableCurrent Account : Currenticcountld =-+> CurrenthAccountRecord

!

|

|

|

|

| newnCurrentAccount' : F CurrenticcountId

| tableCurrenthccount’ : CurrentAccountIld —+» CurrenticcountRecord
| a7 : CurrenticcountId

| amount? : Z

| tableAccount : Accountld -+> AccountRecord

| knowniccount’ : F AccountId

| tableAccount’ : AccountId -+> AccountRecord

| dom CurrenthccountIsAccaunt 3 knownfurrenthceount

| ran CurrenticcountIsAccount eubsetaq knownhccount

| CurrentAccountIsAccount in CurrenticcountId >+> Accountld

| ImoenCurrertAccount = dom tableCurrenticcount

| knoenCurrentAccount’ = dom tableCurrentAccount’

| a? in mownCurrentAccount

| EnownfurrentAccount’ = knownCurrentAccount

| exists Delta CurrenticcountRecord |

| a? |-> theta CurrentAccountRecerd in tableCurrenticcount 7\
| a? |=> theta CurrentAccountRecord' in tableCurrentAccount’ @
| WithdravonCurrenticcountRecord

| { a? } <<| tableCurrenthccount’ = { a? } <<! tableCurrentAccount
| knowniccount = dom tableAccount

| knowniccount’® = dom tableAccount’

| CurrentAccountlphccount’ = CurrenticcountIeshccount

| knowmAccount' = knownAccount

| sableAccount’ = tableAccount

CurrentAccountIeAccount’ : Currénticcountld -+> Accountld
knownCurrentAccount’ : F Currenticcountld
knommdccount’ : F Accountld

dop CurrenticcountJedccount’ = knoenCurrenticcount’®
ran CurrentAccountledccount’ subseteq knownAccount'’
CurrentAccountIeAccount’® in CurrentAccountid >+> AccountlId
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readspec filenama/achemalist/vier num/view2 num/
checklist/expand num/reduce num/checkok num/end => reduce 0

Please check the following declarations and predicates in RHS:

0. dom CurrentiAccountlahccount’ = ImoenCurrenthccount’
1. ran CurrentAccountIahccount’ subseteq Imownkccount’
2. CurrentAccountIsAccount’ in CurreatAccountld >+> Accountld

Since all of these three predicates can be deduced from LHS here, the obli-
gation is QK.

readapec filenhame/echemalist/view nun/vievZ num/
checklist/expand nua/reduce num/checkeck nua/end => checkok 0

readspac filename/schemalist/vies nua/view2 num/
checklist/expand num/reduce num/checkok nua/end => checklist

0. on CurrentAccountlapccountConstraints -already OK
1. on CurrentAccountIsSubtypeaficcount -neot yet

2. oh RuleofVip ~not yet

3. on RuleofNonVip -not yet

The next proof obligation is going to be checked.

readspec filename/schemalist/vies nun/vies2 nun/
checklist/expand num/reduce num/checkok num/end => expand 1

CurrentAccountIaSubtypeofdccount /\
WithdravonGurrentAccount /\
Ii AccountTable /M
Ii CurrenticcountIgAccountRelationship
1= CurrentAccountIaSubtypeofhccount’

LHS

knoenCurrentiAccount ; F CurrentAccountld

tableCurrentAccount : CurrentAc¢countld =+> CurrentAccountRecord
knownAccount @ F Accountld

tablehccount : Accountld -+> AccountRecord
CurrentAccountlsiccount : CurrentAccountld —+> AccountId
knownCurrentAccount’ : F Currenthccountld

tableCurrentAccount® : CurrenthccountId -+> CurrenthccountRecord
a? : CurrentAccountlId
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| amount? : Z

| knownAccount' : F Accountld

| tableAccount' : Accountld —+> AccountRecord

| CurrenticcountIshccount’ ! CurrentAccountld =+> AccountlId

| knownCurrentAccount = dom tableCurrentdccount
| EnownAccount = dom tableAccount

| tableCurrentdccount ; (lambda CurrentAccountRecord @
| theta AccountRecord) = CurrenticcountIsAccount ; tableAccount
| knownCurrentdccount’ = dom tableCurrenthAccount’
| a? in knomnCurrentAccount

{ knownCurrentAccount’ = knownCurrentAccount
| exiets Delta CurrentAccountRecord |

| a? [-> theta CurrentAccountRecord in tableCurrentAccount /\
| a? |-> theta CurrenthccountRecord’ in tableCurrentAccount® €
| VithdragonCurrenticcountRecord

| { a? } ¢«<| tableCurrentdccount’ = { a? } <<| tableCurrentAccount

| knownAccount' = dom tablehccount’

| knowniccount’ = knownAccount

| tableAccount' = tableAccount

| CurrenticcountIshccount’ = CurrentAccount Ishccount

| ¥nownCurrentAccount’ : F CurrentdcecountId

| tableCurrentAccount’ : CurrentdccountId -+> CurrenticcountRecord
| knowniccount’ : F Accountld
|
|

tableAccount’ : Accountld -+> AccountRecord
CurrentAccountlahccount’ @ CurrentAccountId —+> AccountId

| knownCurrentdccount’ = dom tableCurrentAccount’

| knowniccount' = dom tableAccount’

| tableCurrenticcount’ ; (lamb<da CurrentAccountRecord @

| theta AccountRecord) = CurrentAccountIsAccount’ ; tableAccount'

readspec filepame/schemalist/view num/view2 num/
checklist/expand num/reduce num/checkok nua/end => reduce 1

Please check the following declarations and predicates in RHS:

0. tableCurrentpccount’ ; {(lambda CurrentAccountRecord &
theta AccountRecord} = CurrentAccountIsAccount’® ; tablehccount?’

Note that the first two predicates in RHS have been eliminated by the com-
mand reduce since they appear in LHS just as they are.
In order to make the last one true, however, we find that another subpro-
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cess (on Account) is needed. The following specification of the subprocess
Withdrawon Account is added to banking.spec with ‘AlreadyChecked’ data
and we have the new file banking2.spec:

¥ithdravonhccount on Account

Scopel: CurrentAccount
Scopel: CurrentAccountlIshccount
InputData:
a? 1 CurrenthccountId
amount? : Z

Preconditions:

(0) a? in nownCurrentAccount

BasicOperations:

Modify Account

Target: (CurrentAccountIsAccount a?)
RecordQperation: WithdravonhAccountRecord

ScapeE: CurrentAccount
ScopeR: CurrentAccountls
InputData:

a? ; CurrentAcco
Preconditions:

Account

untld

) a? in knownCurrentAccount

AtomicOperations:

‘balance by WithdrawonbalanceofAccount

InputData: amount? : Z
Operatien:
{0) balance” = balance - apount?

AlreadyChecked:

on CurrenthccountIsAccountConstr

aints

The new specification is checked as follows:

readepec filename/schemalist/vies num/vies2 num/

checklist/expand num/reduce hum/checkok num/end => readspec banking2.epec

readspec filename/schemalist/vier num/vies2 num/

checklist/expand num/reduce num/checkok num/end => checkliet

0.
t.
2.
3.

on IeDwnedByConstrainta -not yet
on CurrenthccountIsAccountConatraints
on DeposithccountIadccountConatrainta
on CurrentAccountIaSubtypecficcount

~not yet

-already OK
-not yet
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4. on DepoaithccountIaSubtypeofdccount -not yet
5. on Ruleef¥ip -not yet
6. on RuleoflonVip -not yet

Note that two additional obligations have appeared because of the new sub-
process on Account.

readepec filename/Bchemalist/view num/view2 nun/
checklist/expand num/reduce num/checkok num/end => expand 3

CurrentAccount [sSubtypeofAccount /\
Vithdravoniccomt /\
WithdrawgnfurrentAccount /\
Xi CurrenticcountIsAccountRelationship

|- CurrentAccountigSubtypeofAccount’

Inowniccount : F AccountId
tablekccount : AccountId -+> AccountRecord
knownCurrentAccount : F CurrentAccountld
tableCurrenticcount : CurrentAccobntld ~+> CurrentAccountRecord
CurrenthccountIshccount : CurrenticcountId -+> Accountld
knowndccount’ : F Accountld
tablekccount*® : AccountId -+> AccountRecord
a? : Currenticcountld
amount? : Z
knownCurrentiAccount’ : F CurrentiAccocuntld
tablefurrentdccount’ ;| CurrentAccountld -+> CurrentAccountRecord
CurrentAccountIgAccount’ : CurrentAccountId —+> Accountld
Jnovniccount = dom tablehccount
knownCurrentAccount = dom tableCurrentAccount
tableCurrenmtAccount : (lambda CurrentAccountRecord €
theta AccountRecord) = CurrentAccountlsiccount ; tableAccount
knovnAccount’ = dom tableAccount’
a? in knownCurrentAccount
knomAccount’ = knosnAccount
exipts Delta AccountRecord |
{CurrentAccountIehdccount a?) |-> theta AccountRecord in tablehccount /\
{CurrentAccountIsAccount a?) |-> theta AccountRecord' in tableAccount’ €
¥ithdravonkccountRecord
{ (CurrenticcountIsAccount a?) } <<| tableiccount’ = { (CurrentAccountIshccoun
a?} } <<} tableAccount
InovnCurrenticcount’ = doa tableCurrenticcount’
knevncCurrentiAccount’ = knownCurrentAccount
exists Delta CurrenticcountRecord |

_———— gt —— — o — —m et s e A ———
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| a7 |=> thata CurrenthccountRecord in tableCurrentAccount /\
| a? |-> theta CurrenthccountRecord’ in tableCurrenthccount’ &
| WithdrawonCurrentAccountRecord

| { a7 } <<] tablaCurrenthccount’ = { a? } «<| tablaCurrenticcount

| CurrentAccountlskccount' = Currenthccountlsihccount

| knownAccount’ : F AccountId

| tableAccount’ : AccountId -+> AccountRecord
| knoenCurrenthccount’' : F Currantdcceuntlqd
|
|

tableCurrenticcount’ : Currentdccountld -+> CurrentAccountRecord
CurrentAccountIshccount’ : CurrentAccountld -+> Accountld

| ¥nownAccount® = dom tableAccount’

| knownCurrentiAccount’ = dom tableCurrenthccount'

| tableCurrentdccount’ ; (lambda CurrentAc¢countRecord €

| theta AccountRecord) = CurrentdccountIsAccount’ ; tablehccount’

readspac filename/schemalist/vier num/viee? nun/
checklist /expand num/reduce num/checkok num/end => reduce 3

Please check the following declarations and predicates in RHS:

0. tableCurrentdccount’ ; (lambda CurrentAccountRecord €
theta AccountRecord} = CurrentAccountIsiccount’ ; tabledAccount’

Now we can deduce this from LIS and tick the obligation No.3.

readepec filename/schemalist/vievw num/viee2 num/
checkliat/expand num/reduce num/checkok num/end => checkek 3

Similarly, we can proceed towards the correct specification of Withdraw by
checking the remaining proof obligations, although we stop here.

readspec filename/achemalist/view num/view? num/
checklist/expand num/reduce num/checkok num/end => end

(125.28 + 2,20 CPU seconda, 183876 reductiona, 916444 cells)



Chapter 6

Conclusion

In this chapter, after summarizing the result of our work in the area of busi-
ness process specification, some remaining problems and several directions
for future work are proposed.

6.1 Summary

Business processes can be specified in Z based or the structure of an Entity-
Relationship (ER) data model. The purpose is to make the specification not
only formal enough to reason rigorously about. but also declarative and so
simpler to understand.

The interdependency among three things (the database integrity con-
straints, the business process and its precondition) has been explored. One
approach to making the interdependency clear is to obtain the precondi-
tion of the process from the other two by schema calculation in Z. This
seems quite simple and attractive in explaining the interdependency. Unfor-
tunately, however, soine weakness attached to the precondition calculation
have been recognized (See Section 4.1). We take another approach in which
the precondition is dealt with in a VDM-like manner, i.e. a precondition
which has been found is written explicitly in the process specification so as
to fulfii a proof obligation.

As a consequence, a much better way of doing the specification activity
has been found and a support tool for the activity has been desigued.

More precisely, the results of our work are as follows:

+ A specification method for business processes has been proposed, in
which a business process is specified as a collection of basic eperations
of three types (i.e. Modify, Insert or Delete) on entity records or
relationship links in an ER data model.
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¢ A method for translating the process specification into Z has been
proposed, which makes the specification more formal and uncovers
some hidden consequences.

¢ A method for ensuring the correctness of the specification has been
proposed, in which we can proceed towards the correct specification
finding preconditions by checking a series of proof obligations in a
bottom-up manner.

» A support tool for the specification activity has beer proposed, a pro-
totype of which has been developed.

6.2 Remaining Problems

6.2.1 HCI Consideration

So far we have ignored the existence of Human Computer Interaction {HCI)
in the business processes, However, even in the business application domain,
it is likely to be necessary for us to specify the HCIin an appropriate manner.

For example, the process HouseholderMoveQut in the city office system
in Section 4.8 is specified to get a Personld as input data because the new
householder must be specified. However, we seldom input such an ID number
directly partly because it is troublesome and partly because we do nol (and
need not) know the ID number in some cases. Instead, it is more likely
that firstly the system would show the list of persons in his/her family, and
then we would choose one person from the list by inputting the associated
rumber or clicking on a mouse.

One idea in taking the HCI into account is to separate two concerns: the
declarative specification and some specification for the dynamic behaviour
of the system including HCI. We can regard the declarative specification as
a total set of requirements and break down the set into some subsets, each
of which specifies the effect of operation during each interaction cycle.

In order to describe the dynamic behaviour, we need some appropriate
specification tool besides Z.

6.2.2 Output Consideration

We have also ignored the output processes of business systems. To specify
the output processes, we must investigate the following problems:

s Periodical and/or statistical processing

o Triggers for such processes
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¢ Requirements on some sequential order of output data

etc.

6.3 Future Works

6.3.1 Code Generation

If our specification methed is both powerful enough to express most kinds of
user’s requirement and formal enough to manipulate mechanically, we might
also wish for program code to be generated from its specification.

Moreover, since the precondition of a business process can easily be ob-
tained by our method as explained in Chapter 4, it seems more feasible to
generate a code, of the form:

IF (Precondition} THEN (AllOperations} ELSE (ErrorHandling)

In fact, however, there are lots of implementation details which we have
to decide in implementing business systems. Therefore, it is important to
identify which part of the system can be generated and which part cannot.

One interesting problem in code generation is how to serialize the sub-
processes of a certain process.

As we have seen 50 far, a business process is specified as a set of several
parallel subprocesses. When these subprocesses can be executed in parallel,
there might be no problem. However, in the case when we try to implement
them in some procedural language, the problem of serializing arises.

Actnally, there is a possibility that one subprocess refers to many records
in a database while another subprocess happens to refer to almost the same
set of records. In such a case, it is obviously better to mix these two subpro-
cesses 50 that they can share the data, the procedure to search the data and
the time in searching. In other words, there is a lot of room for optimization
in serializing subprocesses.

Fortunately, an algorithm to compile nonprocedural specifications into
procedural programs is known [Prywes & Pnueli 83]. We can hope that
the same algorithm can be applied also to the present problem with slight
maodification.

One thigg that we must notice is the fact that in our specification of
stbprocesses in Z the declaration part of schemas may contain sufficient
information for a compiler or a human to analyze the optimization of the
database accesses without considering the predicate part of the schemas,
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6.3.2 Animation of Specification

Even if code generation for a real system might be too difficult a challenge,
it is perfectly possible to generate the source code for an animation tool by
which the user can check whether the specification is desirable or not if our
specification method is powerful encugh Lo express any requirement for such
an animation tool. In other words, we may have a tool generator.

One interesting theme here is to find whether it is possible or 2ot to
specify the tool generator itself in our specification method. If it is pessible,
the tool generator can generate itsell. Furthermore, we may expect the tool
generator to generate even a better one than itself!
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Appendix A

Syntax of Specification Files

The notation used to describe the syatax is as follows:

nontermina! nonterminal
“literal™  literal

[pattern] optional
[patiern] Zero or more repetitions
Syntax

In the syntax below, any specific literal, word, id, item, ar comma_list must
be separated from others by one or more blank spaces. A blank space is a
space, tab or newline character.

spec -+ comment “DBMame:” db_spec
“Process:” pr_spec

comment — [word]

db_spec — dbname “Entities:” eniilies
[“Relationshipa:” relafionships)
[“DBIntegrityConstraints:” inlegritres)

dbname —d

entilies —+ entrly |entity]

entrly - entily_name “Attributes:” aiiribules
[“RecordConstraints:” record_constraints
[*“TableConstraints:” fable_comsirainis)

enfily_name — ad

atirtbutes — altribute |atirbule]

T4
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atiribuie — aitnbnle_name “:" atfribule_type
[“attributeCenstraints:” ailtribute_constrainis)

altribute_name — 1d

allribute_type — expresston

aliribute_conslrainis — predicales

record _constrainis  — predicates

{able_consirgints — predicales

predicates — predicale [predicate]

predicale — tlem expression

eIpression — word [word]

reletionships — relationskip freletionship|

reletionship — reletionshtp_name “:” detasl_name “~+>" masgler_name
“Type:” correspondence_iype

[*Constrainta:” constrainis]

relationship_name — id

delail_name — id

mester_name — 1

correspondence_type — “OnetoOne” | “OnetoOptionalOne” |
“OptionalOnetoOne” | “OptionalOnetoDptionalOne”™ |
“ManytoUne” | “ManytoOptionalOne” |

“Opt ionalManytoOna” | “OpticnalKanytoOptionalOne”

infegrities — nlegrity [integrity)

)

integrity — ntegrily_name
[“ScopeE:" enlity_name_hst]
|“ScopeR:” reiaftonship_name_lst]
“Constraints:” consiraints

integrity_name —ad
calily_name_list — comma-_hist jcommae_list]

relationship_name_list — comma_hst [comma_hsi|

pr_spec — praame
[“InputData:” mpui_data_ksi]
[“SubprocessesonEntities:” subprocessesonk)
[“subprocessesonRelationships:” subprocessesonR]
[“GlobalPreconditions:” global_preconditions)
[“AlreadyChecked:™ already_checked]
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prngme — id

mput_data_list — inpul_daia finpui_data]
inpul_dala — varigblc_name “:” varigble_type
variable_name — id

variable_type — exzpression

subprocessesonE — subprocessonE [subprocessonF]

subprocessonE  —  subprocess_name “on” entily_name
[“scopeE:™ entity.name_list]
[“ScopeR:” relglionship_name_.list]
[“InputData:” inpui_data_iisi)
[*Preconditions:” preconditions]
“BasicOperations:” basic.ops..onkE

subprocess_nome — 1d

precondriions — predicales

basi_ops_onE — basic_oponk [basic.op_onE]

basic_op_onE — wpdate_lype entrly_name

[enterface]

“Terget:” largel_record

[“RecordOperation:™ record_op]
updale_type  — “Modify” | “Insert” | “Delete”
interface — ezpression

targel_record -— ezpression

record _op -+ record_op_name
[*ScopeE:” entity_name_hisi]
[“ScopeR:” relalionship_name._ lisi]
[*InputData:” inpul_data_list]
[“Preconditions:” preconditions]
“AtomicOpsrations:” alomic_ops_onF

record_op_name — id

slomic_ops_onE — atomic_op_onE [atemic_op_onF]

stomic..op_onE -+ aitribyie_name “by” alomic.pp_nagme
[“ScopeR:” entity_name._iist]
[“ScopeR:” relotionship_name_tist]
[“Inputbata:” inpu!_daia_lst]
[‘Preconditions:” precondifions)
“Operation:” predicales

atomic..op_name —» td
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subprocessesonR — subprocesson R |subprocessonit|

subprocessonR — asnbprocess_name “on” relalionship_name
[“ScopaE:™ entily_name _list]
[“ScopaR:” relationship-name_lisi)
[“InputData:” inpul_dala._lisi]
[“Preconditions:” precondrtions)
“BasicDperations:” basic_ops_onl

basic_ops_onR — basic_op_onH [basic_op_onR|

basic_op_onR — update_lype relationship_name
“DataforUpdate:” defe_for_updale

data_for_updale — ezpression

global_preconditions — global_precondition Yglobal_precondition]

W, .m

global_precondition — precondilion_name
[“ScopeE:” entily_name_/isf]
[“Scopek:” relationship_name._list]
{“InputData:” tnpul_daia_list]
“praconditions:"” precondilions

precondihion_name — id

already_checked  — checked_constraint |checked_constraint|

checked_constraint — “on” constramn?_neme
[“oy” operation_name]

constraini_name — 1d

operglicn_name  — id

Lexical Grammar

Within word, item, comma_list, or id below, any literal, letier, digit, or
not_blank_space_char must not be separated by any blank spaces.

word — nol_blank_space_char [rol_blank_space_char]

item — (" digit |digit] *)"

comma_list — id [*,” id] [*,”]

id — letter | letter | digit | “-" |
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Orwell Source Code

Symbols for I notation

VWY VYV VYWV

symbolForfinite_get =
symbolFormesberahip_op =
eymbolForget_union =
symbelforapot =
symbolFormaplet =
symbolForpertial_function =

symbolForpartial_injection -
symbolfordem_anti_restriction =

Rule for naming 2 schemas (These

(These can be changed if neceapary.)

“EN

in

“" ]

<up
ngn

]y
e
a4
reg|

can be changed if necessary.)

> makeAttrSchemaName pntityName attributeName
= attributeName ++ "of” ++ entityName

>

v

v

v

v

v

makepttrConstaSchemaName entityName attributeName
= makeAttrSchemaNawe entityName attributeName ++ "Constraints"

makelecordSchemaName entityName

makeRecordConataSchemaName entityName
= makeRecordSchemaName entityName ++ "Constraints'

makeldName entityName = entityName ++ "“Id"
maleXnownName entityName = "known" ++ entityName
makeTableName entityName = "table" ++ entityName
makeTableSchemaName entityName = gntityName ++ “"Table"

makeTableConstsSchemaName entityName

= entityName ++ "Record"
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> = makeTableSchemaName entityBame ++ "Constrainte"

> makefelBame relationshipName = relationshipName

> make¢RelSchemaName relationshipName = relationshipBame ++ "Relationship"

> makeRelConstaSchemaName relationshipfame = relationshipBame ++ "Constrainta"
> makeIntegSchemaName integrityKBame = integrityName

Data structure
Gommon data structure

word == [char)

nameType == mord
expreseionType == [word]
typaType == expresaionType
predicateType == expreasionType

L L

Global sate

> etate == (dbST, prST, scST, <l5T)

> initialetate = {db0, prd, sac0, clo)

Data on DB

> dbST == (dbnameST, entitiesST, relationshipsST, integritiesST)

dbnameST nameType

entitieaST == [(nameType, entityData)]

entityData == (attributesType, recordConstaType, tableConstsType)
attributesType == [(nameType, typeType, constraintsType)]
recerdGonataType == constraintsType

tableConataType == conatraintaType

constraintsType == [predicateTypel

WoW W W W W W

> relationshipaST == [(nameType, relationshipData)]

> relationshipData == (detailEntityNameType, masterEntityNameType,

> correspondenceType, constraintaType)

> detailEntityNameType == nameTypa

> magterEntitylamaType == nameType

> correspondenceType ::= Onetolne | OptionalOnetolne | OnetoOpticnalOne |
> OptionalOneto0ptionalOne | Manytolne |

> DptionalManytoOne | ManytoDpticnalDne |

> OptionalManytoOptionaldne

> integritiesST == [(nameType, integrityData)]
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> integrityData == (scopeEType, scopeRType, constraintsType)
? scopeEType == [nameType]
> scopeRType »= [nameType]

> dbo = (", (1, 0O, D
Data on Process

> pr3T == (prmameType, inputDataType, subprocessesonEST, subprocessesonRST,
> globalPreconditionaST, alreadyCheckedST)

prmameTyps == nameType

inputDataType == [{(nameType, typeType)]

subprocessesonEST == [(nameType, eubprocessonEData)]

subprocessonFData == (entityNameType, mcopeEType, 2copeRType, inputDataType,

preconditionaType, [basicOperationonETypel)

entityNameType == nameType

preconditionsType == [predicateType]

basicOperationonEType == (updateType, interfaceType, targetType,

(recordOperationTypel)

updateTypa ::= Modify | [nsert | Delate

interfaceType == expressionType

targetType == expressionType

recordDperationType == (nameType, scopeEType, scopeRType, inputDataType,
preconditionaType, atomicOperationsST)

atomiclperationaST == {(attributeNameType, nameType, atowicOperationTypel]

attributeNameType == nameType

atomicOperationType == (acopeEType, acopeRType, inputDataType,
precenditionaType, operationType)

operationType s= [expresaionTypel

VWV VY VY VYV VY VY Y Y YV Y Y YWV

subprocesaasoni5T == [(nameType, subproceeeonRAData}]

subprocessonfData «= (relationahipNameType, scopeEType, scopeRType,
inputDataType, preconditionsType,
[basicOperationonRTypel)

relationshipNameType ==~ nameType

baeicOperationonRType == (updateType, dataForUpdateType)

dataForUpdateType == expressionType

VOV Yy VY VY

v

globalPreconditionsST == [(nameType, globalPreconditionData)]
globalPreconditionData == (scopeEType, ecopeRType, inputDataType,
> preconditionaType)

v

> alreadyCheckedST == [(constraintNameType, [operaticnNameType])]
constraintiameType == nameType
operationNameType == nameType

v v

>pro= (v, 3, 0, 0, 00, M

Data on Scheaas




> 8cST == (Bchemalist5T, expandedSchemalistST)

schemalistST == [(nameType, echemaType)]
schemaType == (inclType, declType, predType)
inclType == [achemaRefType)

schemaflefType == (deltaType, nameType, primeType)
declType == [(nameType, typeType)]

predType == [predicateTypel

VWV YW W

v

expandedSchemalistST == [(nameType, schewaType)]

v

deltaType =::= Delta | Xi | WoDelta
primeType ::= Prime | NoPrime

v

> 80 = ([], [}
Data on Checkliat
» clST == [praofObligationDatal

> proofUbligationData == (constraintNameType, [ocperationNameTypel,
> [schemaRefTypel, okflagType)

> okfiagType ::= Ok | Motyet

> ¢lo = []

Function

ReadSpec

> readSpec filename

> = (db, pr, s¢, cl)

> where {db, pr) = (parser . scanner) (filein filename)
> se = ([T, [

> cl = []

Syntax Analyser

» pcanner :: [char] => [vord]

> acanner = filter (*=[]) . foldr (breakonset [* ’, *\n’, ’\t’]} [[]]

> breakonset ae x xss = [[]J] ++ xss, if x $in as
> = {[x] ++ hd xss] ++ tl x8s, othervise

> parseonset as = filter ("=[1) . foldr (breakoneet as) {[I]

81
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> breakcnseq (zes, (1) x

> = {jpit xse ++ [last xss + [x]11, [1)

> breakonseq (xas, (a:as)) x

> = (xe8 ++ [[]], a&), if x = a

> = (ipnit xss ++ [last xes ++ [x]], (a:as)), othervise

v

parseonseq as = fat . foldl breakonseq ([[1]. as)

> parsaeoncomma_liet = filter ("=[]) . foldr {(breakon ',’) [[]] .
> makelist ","

%> paresoncomma_list = filter ("w[]) . foldr (breakon *,’} [[]] . concat

> breakonnn (] = []

> breakonnn (w:ws) = take n {(w:wa} : breakenn n {(drop n (w:ws))

> parsedef eq ve

> = [(hd (wss!0), wea'1)

> | was <- breakonn 2 (trans (foldr (breakon eq) {[]3 wa)>]

> where trans [id1, 1ist1] = [idl, listi]

> trans (idl:lietl:xs:xas) = idi:init lietl:trans ([last listl]:xs:xsa)
> breakonitem x xas = [[]] ++ xse, if itemform x

> = [[x] ++ hd xse] ++ t1 xsa, otherviee

> itemform x = (#x >= 3 & hd x = *(’ & last x = *)* & all iedigit (tl (init x)>}

> jedigit p = ('0’ <= p & p <= '9?)

> parsacnitem = filter ("=[]} . foldr breakonitem [[1]

> breakonseq? (x&s, as} x

> = {xap ++ [[x]}, t1 (dropwhile ("= x} as}), if r $in am

> = (init axse + [last xaz ++ [x]], as}, otherwise

> parseonlabel as a filter ("=[]) ., fst . foldl breakorseq2 ([{]], aa)

> pargeafterlabel label postparser wvee

> a {1, if *(label %in (map hd wes))

> a postparser (tl (hd [vs2 | we2 <- wes; hd w22 = label])), otherwise
Parser

> parser ws = {parse_db (wea ! 1)},
> parse_pr (wss ! 2})
> shere was = parseonseq ["DBYame:", "Process:"] ma

> parse_db ve = (dbname, entities, relationships, integrities)
> where ves = parszeonlabel ["Entities:", "Relationships:“,
> "DBIntegrityConstrainta:"] wa
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dbpame = hd ws
entitieg = parseafterlabel "Entities:" parse_entities wss
relationshipe = parseafterlabel "Relationshipa:”
parae_relationships wves
integrities = parseafterlabel "DBIntegrityConstraints:"
parse_integritiea waa

paree_ent ities we = [(name, parse_entityData we2)|

(name, ws2) <- parsedet “Attributea:" wa]

paree_entityData we = (parse_sttributes (wes ! 0},

recordConsts,
tableConsts)
vhere wse = pareeonlabel ["RecordConstrainte:", "TableConstraintsa:"] wma
recordConste = parseafterlabel "“RecordConstraints:"
parae_predicates wes
tableConsta = parseafterlabel "TableConstraints:"
parse_predicates ves

paree_attributes wa = [parse_attribute name vs2 |

(name, ws2) <- parsedef ":" ws]

parse_attribute name s = (name, type, attrConsts}

vwhere vea = parseonset ["AttributeConstrainta:"] wvs
type = wga ! D
attrConate = [], it & was <= |
= parse_predicates (vss ! 1}, othervise

> parse_predicates = parpeonitem

v

VWV V VYV VYV VY VYWYV Y VYV YVYY

paree_relationshipa wa = [(name, parse_relationshiplata we2)i

(name, wa2) <= paraedef ":" ws]

parse_relationshipData we = {(detail, master, corType, consts)

vhere wse = parfeoneeq [eymbolForpartial_function,
"Type:", "Constrainte:"] ws
detail = hd (wes ! 0)
master = hd (wes ! 1)
corType = Onetolne, if hd (wss ! 2) = "OnetoOne"
= (Optionallmetolne, if hd (was ! 2} = "OptionalOnetoOne"
= OnetoOptionalOne, if hd (wee ! 2) = "OnetolptionalOne"
= OptionalCnetoOptionallne,
if hd (wss ! 2) = "OptionalOnetofptionalOne"
= ManytoOne, if hd (was ' 2) = "ManytoOne"
OptionalManytoDne, if hd (wss ! 2) = "OptionalManytolne"
ManytoOptionalOne, if hd (wes ! 2) = "ManytoDptionalOne”
OptionalManytcOpticnalOne,
it hd (wae ! 2) = "DptionalManytoOptionalDne"”
conats = [], if & wes <= 3
= parse_predicates (wss ! 3), othervise
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> parse_integritiss wa = [(name, parse_integrityData we2)!

> (name, ve2) <- parsedef ":" wsl]

> parse_integrityData we = (scopeE, scopeR, conets)

> vhers wes = parseonlabel [“ScopeE:", "ScopeR:", "Constraints:"] va
> scopeE = parseafterlabel "ScopeE:” parseoncomma_list wae

> scopeR = parseafterlabel "ScopeR:" parseoncomsa_list ves

> consts = parseafterlabel “Constraints:" parse_predicates vss

> parse_pr ¥8 = (prname, inputData, subpraonE, subprgonR, globalPres, alreadyCh)
> vhere wea = paraseonlabel ["InputData:", "SubprocessesonEntities:",

> "SubprocessesonRelationshipe:",

> "GlobalPreconditions:", "AlreadyChecked:"] ws
> prname = hd wvs

> inputData = parseafterlabel "InputData:" parse_inputData vss

> subprsonE ™ parseafterlabel "SubproceszsesonEntities:”

> parse_subprocessesonE was

> subprsonR »= parseafterlabel "SubprocessesonRelationshipa:"

> parse_subprocessesonh ves

> globalPres = parseafterlabel "GlobalPreconditions:"

> parse_globalPreconditions wes

> alreadyCh = parseafterlabel '"AlreadyChecked:"

> parse_alreadyChecked vss

» parse_inputData ws = parsedef ":" pa

> parse_subprocessesonk ws = [{name, parse_subprocessonEData wa2}|
> (name, we2) <~ parsedef "on' ws]

> parse subprocessonEData vs = (entityName, ncopeE, scopeR, inputD, pres,
> basicOpe)
> shere wvas = parseonlabel [“ScopeE:", "ScopeR:", "lnputData:",

> "Precenditions:", "Basicharations:"] vs
> entityName = hd ws

> scopeE = parzeafterlabel "ScopeE:" parseoncomma_list wss

> scopeR = parseafterlabel “ScopeR:" parseoncomma_list wes

> inputD = parseafterlabel "IpputData:" parse_inputData sss

> pres = parseafterlabel "Preconditione:" parse_predicates wes
> basicOps = parseafterlabel "BasicDperations:"

> (pares_basicOpsonE entityName) vss

> parae_basicOpsonE entityNMame w3 = [parse_basicOponE update wa2l
> (update, ws2) <- parsedef entityName ws]

> parse_basicOponE update wa = (parse_update update,

> interface, target, record0p}

> vhere wss = parseonseq ["Target:", "RecordDperation:"] ws
> interface = wse ! 0

> target = g8s ! 1
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recordlp = [1, if # wse <= 2
= [parse_recordlp (ues * 2)], othervise

parse_update update = Modify, if update = "Modify"
= Insert, if update = "Insert"
= Delete, if update = "Delete”

parse_recordlp we = (name, scopaeE, scopeR, inputD, pres, atomicOpsa)
ghere wse = parseonlabel ["ScopeE:", "ScopeR:", "InputData:",
"Preconditions:", "AtomicDperations:"] wa
naze = hd s
acopeE = parseafterlabal "ScopeE:" parseoncomma_list ves
acopeR = parsecafterlabal "ScopeR:" parseoncomma_list wes
inputD = parseafterlabel "IuputData:" parse_inputData ees
prea = parseafterlabel "Preconditions:" paree_predicates wes
atomicQps = parsealfterlabel "Atomiclperations:"
paree_atomicllpe wes

parse_atomicOpe w8 = [parse_atomicOp attrName wa?2l
(attrName, we2} <- parsedef "by" wel

parse_atomicOp attrName we ™ {(attrName, name,
(scopeE, BcopeR, inputh, pree, ops})
ghere wds = parseonlabel ["ScopeE:™, "ScopeR:", "InputData:",
"Preconditions:", “"Operation:"] vs
name = hd vs
scopeE = parseafterlabel "ScopeE:" parseoncomma_list vss
scopeR = parseafterlabel "ScopeR:'" parseoncomma_liat uss
inputh = parseafterlabel "InputData:" paree_inputData wss
pres = parseafterlabel "Preconditiona:* parse_predicates wea
ops = parseafterlabel "Operation:" parse_predicates #ss

parse_subprocesaesonRk vs = [(name, parse_subprocessonRData vs2)|
(name, vs2) <- parsedef "on" s]

parse_subproceseonRData ws = (relName, scopeE, acopeR, inputD, pres,
basicllps)
vhere ves = parseonlabel ["ScopeE:". "Scopeh:", "InputData:”,
"Preconditions:”, "BasicOperations:"] ws
relName = hd wa
scopeE = parseafterlabel "ScopeE:” pareconcomma_ list wes
acopeR = parseafterlabel "ScopeR:” parseoncomma_list ves
inputD = parseafterlabel “InputData:" parse_inputlata wes
pree = parieafterlabel "Freconditione!:" parse_predicates wse
bapicOps = parseafterlabel "BasicOperations:"
{parse_baeicOpsoni relNase) wss

parse_basicOpsonR relRame we = [parse_baszicODponR update ws2]
(update, we2) <- parsedef relName we]
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> parse_basiclponR update vs = (parse_update update, dataforUpdate)
> where ¥ss = parseonseq ["DataforUpdate:"] ws
> dataforUpdate = was ! 1

> parse_globalPreconditions ws = [(name, parse_globalPreconditionData wa2)|
> (name, w82} <- parsedef "::" wal

> parse_globalPreconditionData we = {acopeE. scopeR, inputD, pres}
vhere wes = parsecnlabel ["ScopeE:", "ScopeR:", "lnputData:”,
"Preconditions:"} ws
pcopeE = parseaiterlabsl "ScopeE:" parseoncomma _list was
scopeR = parseafterlabel "ScopeR:" parseconcomma_list was
inputD = parseafterlabel "InputData:" parae_inputData wse
pres = parseafterlabel "Preconditione:" parse_predicates wsE

VoW W W VWV

> parse_alreadyChecked wa
> = [parse_ac wa2l
> ws2 <~ (filter ("=[1)} . foldr (breakon "on") [{1]) wel

> parse_ac w8 = (constName, opName)

> where wss = parseonseq ["by"] ws

> constName = hd (wss ! 0)

> opliame = [], if # was <= 1

> = [hd (wez ' 1}], othervise
Schema generator

> generateSchemas :: ptate -> state

> generateSchemas = generatePr . generateDB . generatelntegrities .
> generateRels . generateEntities

> generateEntities :: £tate -> atate

> generateEntities (db, pr, (8chemalist, expandedSchemalist}, cl)

> a (db, pr, (schemalist’, ¢rpandedSchemalist), cl)
> vhere (dbname, entities, rele, integs) = db
> gchemalist’ = concat {map generateEntity entities)

> generateEntity (entName, {attrs, recConsts, tableConsts))

> = concat [generatehtiribute entHame attr | attr <- attral ++
> generateRecord entName attrs recConsts ++

> generateTable entName recfonsta tableConats

generateAttribute entName {attrName, type, attrConsts)
o [makeAttributeSchema entName (attrName, typed] ++
consteSchema
vhere constsSchema = [1, if attrConsts = []
= [makeCongtrainteSchema

vV VY VY
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(makedttrConsieSchemallame entName attrName)
(makedttrSchemaName entlame attrName)
attrConsta), otherviee

makeptiributeSchema entName (attrName, type)
= (achemalame, (incl, decl, pred)}
where schemaliame = makedttrSchemaName entName attrName
incl = []
dec]l = {(attrlame, type)]
pred = []

makeConetraintaSchema name basclame consts
= (schemaNama, (incl, decl, pred))
where schemaName = name
incl = [(NoDelta, baseName, NoPrime)]
decl = []
pred = consts

generateRecord entName attrs recConsts
= [makeRecordSchema entName attrs] ++
consteSchena
vhere constsSchema = [], if recConats = []

= [makeConstraintaSchema
{makeRecordConstsSchenaliame entName)
(makeRecordSchemaName entName)
recConete], otherwise

makeRecordSchema entlame atirs
= (schemaName, (incl, decl, pred})
where schemalame = makeRecordSchemalame entMame
incl = [(NoDelta,
attrSchemaorConatsSchema entName attrMame attrConsts,
FoPrime) |
(attrName, type, attrConsts) <- attra)
decl = []
pred = []
attrSchemaarConetaSchema entName attrNase attrConsts
= makedttrSchemaName entHame attrName, if attrConsts = []
= makeAttrConataSchemaName entName attrName, othervise

ganerateTable entFame recConsts tableConsta
= [makeTableSchema entBame recConsts] ++
conatsSchema
where constsSchema = [], it tableConets = []
= [makeConstraintaSchema

(makeTableConatsSchemaName ent¥ame)
(makeTableSchemaName entNaae)
tableConats], etherviae
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> makeTableSchema entName recConats

> = (achemaName, (incl, decl, pred))

> where schenallame = makeTableSchemaName entName

> incl = []

> decl = [{makeKnownMame entName,

> [symbolForfinite_set,makeldName entName]),

> {makeTableName entBame,

> [makeIdName entBame, symbolForpartial function,

> recerdSchemaNane])]

> pred = [[makeEnovnName entName, "=", "dom",

> makeTableRame entName]] ++

> predConsts

> predtonsts = [1, if recConsta = []

> = [["forall", recordSchemaName, "|", "theta",

> recordSchemalame, symbolFormembership_op, "ran",
> makeTableName entNama, symbolForspot,

> makeRecordtonstaSchemaName entName]], otherwise
> recordSchemalName = makeRacordSchemaName entiame

> generateRela :: state -> state

> generateRels (db, pr, (echemalist, expandedSchemalist}, cl)
> = (db, pr, {pchemalist’', expandedSchemalist), cl}

> vhere {dbname, entities, rels, integs) = db

> achemaliat’ = schemalist ++

> concat (map generateRel rele)

> generateflel (relName, (detail¥ame, masterName, corType, relConsts))
> = [makaRelationshipSchema relName detailName masterName,

> makeRelationshipConstsSchema

> relHame detailName masterName corType relConsts]

>

> makefelationshipSchema relName detailName masterName

> = (schomaName, (incl, decl, pred))}

> vhere schemaName = makeRelSchemaName rellame

> incl = []

> decl = [(makeRelName ralName,

> [makeldName detaillame, symbolFerpartial_functien,
> makeIdName mastarlame])]

> pred = []

> wakeRelationshipConstsSchema rel¥ame detailName masterName corType relConsts
> = (schemaName, (incl, decl, pred))

> where schemaName = makeRelConateSchemalName relName

> incl = [{(NMoDelta, makeRalSchemaMama relName, NoPrime)]

> decl = [{makeKnownName detailName,

> [eymbolForfinite_set, makeldName detailNamel),

> (makeKnownName masterNanme,

> {eymbolForfinita_set, makeIdName masterName])]
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pred = [predlom, predRan] ++ predInjectivity ++ relConsts
predDom = ["dom", makeRelName relName, opDom,
makeKnoynfame detailName]
opDom = "=", if corType $in [OnetoOne, OptionalCnetolne,
ManytoOne, OptionalManytoOns]
= “gybseteq", sthervise
predRan = ["ran", makeRelName relName, opRan,
nakeRnownlame maeterName]
opRan = "a"  jf corType $in [OnetoDpe, OnetoOptionalCne,
Manytolne, ManytoOptionalOne]
= "aybseteq", othervise
predInjectivity = []1, if corType $in [ManytoOne, OptionalManytalne,
ManytolptionalOne,
OptiaonalManytolptionalDne]
= [[makeRelName relWName, eymbolFormembership_op,
makeldName detailName,
symbolFerpartial_injection,
makeldName masterName]], atherwise

generatelntegrities :: state -> atate

generatelntegrities (db, pr, (schemaliet, expandedSchemalist), cl)
= {(db, pr, (echemalist', expandedSchemalist), cl)
ghere {dbname, entities, rels, integs) = db
echemalist’ = schemalist ++
map (makeIntegritySchema schemalist) integs

makeIntegritySchema echemaliat (integName, (scopeE, scopeR, integlansts))
= (schemalName, (incl, decl, pred))
vhere schemaName = makeIntegSchemaName integName

incl = inclE ++ inclR

inclE = [(NoDelta, tableorCenets entName, NoPrime) |
entName <- scopeE]

tableorConsta entName

= makeTableSchemaName entName

inclR = [{NoDelta, makeRelSchemaName relName, NoPrime) |
relName <- scapeR]

decl = [1

pred = integConate

lockupSchema achemalist schemaName
= gchemaName $in [name | (name, data) <- schemalist]

generateDB :: state -> state

generateDB (db, pr, (schemalist, expandedSchemalist), cl)
= (db, pr, (schemalist’, expandedSchemaliet), cl)
vhere schemalist’ = schemalist ++
[makePBSchema schemaliat db]
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> makeDBSchema echemalist (dbname, entities, rels, integs)

> = (schemaMame, (incl, decl, pred))

> where scheaallame = dbname

> incl = inclE ++ inclR ++ inclIC

> inclE = [(NoDelta, tableorConets entName, NoPrime) |

> (entName, data) <- entities]

> tebleorConsts entName

> = makaeTableConetaSchemaMame entName,

> i? lookupSchema echemaliat

> (makeTablaeConstaSchemaName entName)
> = mnakaTableSchemaliame entName, otherwise

> inclR = [{KaDelta, makeRelConstsSchemaName relName, NoPrime) |
> (relName, data) <- rels]

> inclIC = [{NoDelta, makeIntegSchemaName integName, NoPrime) |
> (integName, data) <- intega]

> decl = {]

> pred = {]

> generatefr :: state -> state

> generatePr (db, pr, (schemalist, expandedSchemalist), cl)

> = (db, pr, {schemalist’, expandedSchemalist}, cl)

> vhere (prname, inputData, subproceseesonE, subprocessesonR,

> globalPreconditions, alreadyChecked) = pr

> schemalist' = schemaliBt ++

> concat (map generateSubprocessonk aubprocessesonE) ++
> rap makeSubprocessonfSchema subprocessesonR ++

> map makeGlobalPrecoenditionSchema globalPreconditions

> generateSubprocessonE (subproceseName, subprocessData)

> = concat [generateBagiclponE entName basicOp | basicOp <- basicOpe] ++
> [makeSubprocessonESchema subproceesName entName scopeE acopeR

> inputD pres basicOpsal

> where (entName, pcopeE, scopeR, inputD, pres, bazicOps) = subprocessData

v

generateBasicDponE entName {update, interface, target, recordOpData}

> = [], if update = Delete

> = generateRecordOp entName update (hd recordOpData), otherwvise

> Reneratelecordlp entName update (recordOpName, scopeE, scopeR, inputD,

> pres, atomicOpa)

> = [makeAtomicOpSchema entName update atomicOp |

> atomicOp <- atomicOps] ++

> [makeRecordOpSchema entName update recordDpName scopeE scopeR

> inputD pres atomicOps]

v

makeAtomicOpSchema entName update (attrName, atomicOpName, atomicOpData)
= (achemaFame, (incl, decl, pred)}
> where {scopeE, scopeR, inputD, pree, ope) = atomicOpData

v
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schenallame = atomicOpBame

incl = incldttr ++ inclSceope

inclittr = makelncllDelta update (makeAttrSchemalame entRame attrName}
inc¢lScope = makeInclScope scopeE acopeR

decl = inputD

pred = pres ++ opa

makeRecordlp3chema entName update recordCpRame scopeE scopeR
inputD pres atomicOps
= (pchemalName, (incl, decl, pred))
vhere achemalName = recordUplame
incl = inclRac ++ inclScope ++ inclitomicOps
inclRec = makelInclDelta update (makeRecordSchemaName entBame)
inclScope = makelInclScape scopeE scopeR
incldtomicOpe = [(NoDelta, atomicOpName, NoPrime) |
(attrName, atomicOpName, data) <- atomicOps]

decl = inputD
pred = pres

makelnclDelta update achemaName
= [{delta, schemalame, prime})]
where delta = Delta, if update = Modify
= NoDelta, if update = Insert
prime = Prime, if update = Insert
= NoPrime, if update = Modify

makelnclScope scopeE scopeR
w [(NoDelta, makeTableSchemaName ent, NoPrime) | ent <- acopeE] ++
[(NoDaelta, makeRelSchemaName rel, NoPrime) | rel <- scopef]

makeSubpr ocessonESchema subprocessName entName scopeE scopeR
inputD pres basiclps
= (schemaName, (incl, decl, pred))
where schemalame = subprocesgName
incl = inclTable ++ inclScope
inclTable = [(Delta, makeTableSchemaName entName, NoPrime)]
inclScope = makelnclScope scopeE scopeR
decl = inputD
pred = pras ++ opForKnownE ++ opsForTableE ++ unchangedfart
listofModifyTargete
= [target | (update, interface, target, data) <- basicOps;
update = Modify]
liatotInsertTargeta
= [target | (update, interface, target, data) <= hasicOps;
update = Insert]
lintofDeleteTargets
= {target | (update, interface, target, data) <- bamicOps;
update = Delete]
ImosnName = makeKnownName eatName
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> makeSetExp limt = ["{"] ++ hd list ++

v
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tableName = makeTableName entEame
recordSchemalame = makeRecordSchemaName entBame
apForKnownE
= [[knownName++" ", "=, gnownflamel],
if listofInsertTargets = [] & listofDeleteTargets = []
= [[mownName++"'", "= "(", kmownlame, "V\"] ++
makeSetExp listofDeleteTargets ++ [")", symbolForset_union] ++
make3etExp listofInsertTargets],
if listofInsertTargets "= [] & listofDeleteTargete "= []
= [[kmownRame++" ", "m"  JnounName, "\\"] ++
makeletExp listotDeleteTargets],
it listofInsertTargets = [] & listofDeleteTargets ~= []
= [[knovnName++"’", "= jmoynName, symbolForeet_union] ++
makeSetExp listofInsertTargets),
if lietofInsertTargets "= [] & listofDeleteTargets = []
opsForTableE = map (makeDpForTableE entName)
[(update, interface, target, recordlpName; |
(update, interface, target, recordOpbata) <- basicOps;
update "= Delete;
(recordipName, #copeE, scopeR, inputP, pres, atomiclps)
<- recerdOpData J
makelpForTableE entName (update, interface, target, recordUpKame)
= interface ++
[Yexigts™, "Pelta", recordSchemaName, "["] ++
target ++
[eymbolFormaplet, "theta", record3chemaName,
symbolForsembership_op, tableName, "/\\"] ++
target ++
[eymbolFormaplet, "theta", recordSchemaName++m ',
symbolForwenbership _op, tableName#+"'",
aymbolForepot, recordOpName], if update = Kodify
= interface ++
["existe", recordSchemalame++"*", "|"] ++
target ++
[symbolFormaplet, "theta", recordSchemaName++'" ',
aymbolFormembership_op, tableName++" ",
symbolForspot, recordipNake], if update = Insert
unchangedPart = [lhs ++ ["="] ++ rha]
lhs = [tableName ++ "'"], if listofModifyTargets = [1 &
liatofInsertTargets = []
= makeSetExp (listofModifyTargets ++ listofInsertTargeta) ++
[symbolFordom_anti_restriction, tableName++" "], otherwise
rha = [tableKame], it listofModifyTargets = [] &
listofDeleteTargets = []
= makeSetExp (listofModifyTargets ++ listefDeleteTargeta) ++
[symbelFordam_anti_restriction, tableNamel, otherwise

concat [[","] ++ ¢ | e <- t1 list] ++

[II}II]




> makeSubprocessonRSchema (esubprocesalame, data)
> w (pchemaNama, (incl, decl, pred))

> where {ral¥ame, scopeE, scopeR, inputD, pres, basicOps} = data

> schemaName = subprocesskame

> incl = inclRel ++ inclScope

> inclRel = [(Delta, makeRelSchemaName relHame, MoPrime)]

> inclScope = makeInclScope scopeE scopeR

> decl = inputb

> pred = pres ++ [opForRell

> opForflel = [makeRelMame relName++"'", "="] ++ deletelnsertModifyR

> deleteIlnsertModifyR = deletelnsertR, if listefMadifyData = []

> = ["("] ++ deleteInsertR ++ [")"] ++

> [4(+)"]) ++ dataExp listofModifyData, otherwise

> deleteInsertR = deleteR, if listofInsertData = [J

> = ["("] ++ deleteR ++ [")", symbolFerset_union] ++

> dataExp listofInsertData, othervise

> deleteR = [makeRelKame relNamel, if listefOeleteData = []

> = ["{"] ++ dataExp listofDeleteData ++

> [2ymbolFerdom_anti_reatriction, makeRelMame relName, "}"},

> othervise

> listofModifyData = [dataForUpdate | (update, dataForUpdate) <- basicOps;
> update = Medify]

> listofInsertData = [dataForUpdate | (update, dataForUpdate) <- basicOps;
> update = Insert]

> listofDeleteData = [dataForUpdate | (update, dataForUpdate) <- baeicDps;
> update = Delete]

> dataExp list = hd list, if tl list = []

> = ["("] ++ hd list ++

> concat [[eymbolForset_unjon] ++ data | data <— t1 list] ++
> ["}"]), othervisge

> makeGlobalPreconditionSchema (name, {acopeE, scopeR, inputD, pres))
> = (schemaName, {incl, decl, pred))

> where schemalName = name

> incl = makeInclScope acopeE scopell

> decl = inputD

> pred = pres

View

> wiew :! nameType —» atate —-» [char]

> view name (db, pr, {(schema, exp), ¢l)
> = "\n" ++ pame ++ "\n=\n" ++ showSchema {assoc schema name)

> showSchema :: achemaType => [char]

> shovSchema (incl, decl. pred)
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“++ phowSchemaRef s ++ "\n"| 3 <— incl] ++

"+iname++" : "++shagType typet+"\n"|(name,type) <- decll s+
++

"++ showErpinSchema pr ++ "\n"| pr <- pred} ++

vhere centerline = "|-——==—==—m-m—oeo \n", if pred "= []
- othervise

VvV VWV VY WY YW

v

showSchenaRef :: (deltaType, nameType, primeType) -> [char]

showSchemaRef (MoDelta, n, d) = n, if d = NoPrime
=qn o+ ", if d = Prime

VvV Vv

v

showType :: typeType -> [char]

v

showType type = makeliet " " type

v

showExpinSchema = showExp "I"
> ahowExp :: [char] => expredsionType -> [char]
shogEsp hdatr [] = "*

showExp hdetr (w:exp)
= g ++ "\n" ++ hdatr ++ "\t" ++ showEzp hdetr exp,

¥V VY v v

= g ++ " " ++ ghowExp hdstr exp, otherwvise

YiewZ
> view? :: nameType -» state -> ([char], state)

vien? name (db, pr, (schema, exp}, cl)
= ("\n" ++ name ++ "\pa\n" ++ showSchema sc,
(db, pr. {schema, exp’), cl))
where (sc, exp’) = assocexpand gchema exp name

VvV VYV

v

showSchemalef (Delta. n, d) = "Delta "++ showSchemaRef (KoDelta, n, d)
showSchemaRef (Xi, n, d) = "Xi "++ showSchemaRef (HaoDelta, n, d)

if % $in [eymbolForspot, "1, "/\\"]

apgsocexpand :: schemaliatST -> expandedSchemalistST ~> pameType ->

> (schemaType, expandedSchemaliatsT)

v

assocexpand achema exp name

> = (assoc exp name, exp), if name $in [nl{(r.d) <- exp]
> = assocexpSchema schema exp name (assoc schewa name), othervise

> assocexpSchema schema exp name (incl, decl, pred)

v v

where incl' = revsree incl2

a aspocexpSchema? schema exp name {incl’, decl, pred?®)



> (incl2, prad') = expDelta echema exp {incl, pred)

> axpDelta echema exp ([], pred) = ([], pred)

> axpDelta schema exp ({s:intl}, pred)

> = (setUnior incll incl2, eetUnion predl pred2)

> where (incli, predl) = f gchema exp e

> (incl2, pred2) = expDelta achema exp (incl, prad)

> f schema exp (MoDe¢lta, name, d) = ([{NoDelta, name, d)], [1)
> 1 schema exp {Delta,name,d)

> = ([(NoDelta,name,MoPrime), (NoDelta,name,Primel], [1}
> 1 echema exp (Xi, name, d)

> = ([(HoDelta, name, NoPrime), (NoDelta, name, Prime}],
> [Lver++'', "=, var]l

> (achemal, expl) <~ (assocexpand schema exp name];
> {incl3, decl3, predd) <- [echemall;

> (var,type) <- decl3l)

> aspocexpSchema? schema exp name {[], decl, pred)
> = (([], decl, pred), addpair (name, ([], decl, pred)) exp)

> aspocexpSchema2 achema exp name ({(d,n,p):incl), decl, pred)

> = aseocexpSchema? schema exp’ name (incl, eetUnion decl2 decl,
> setUnion pred2 pred)
> where ((incl’, decl’, pred’), exp’) = asspcexpand echema exp n

> decl? = decl’, if p = NoPrime

> [{name++"'", t) | (name, t) ¢- decl’], othervise

> pred2 = pred’, if p = NoPrime

> map (subet pairs) pred’, otherwise

> pairs = [(name, name++"'")[{name, t) <- decl’]

Schemalist
» schemaliat :: atate -> [char]

> schemaliat (db, pr, (schema, exp), cl})

> = "\n" ++ concat (zipwith f ([0..], schema})

> where £ i (name, data} = show i ++ ", “ ++ name ++ "\n*
Checkliat

> checkliat :: atate -> [char]

> checklist (db, pr, sc, cl)

> = "\n" ++ concat {2ipwith £ ([0..], c1})

> where f i (constName, opName, schemaRefs, okflag)
> = show i ++ ". on " + conatName ++

> g opName ++ "\t" ++ h okflag ++ "\n"
> g opRame = "", if opName = []
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> = "\tby " ++ hd opliame, otherwise
» h okflag = "-already DK", if okflag » Ok
> = "-pot yet", if okflag = Notyet

Generate Checklist
> genersteCheckliat :: state —> atate

> generateChecklist (db, pr, (schemalist, exp), cl}

> = (db, pr, (schemalist, exp}, cl’)

> where (prname, inputD, subE, subR, glebalPres, ac) = pr

> (dbname, sntities, rels, integs) = db

> ¢l = concat (map genCheckonE subE) ++

> concat {map makeCheckonR subH} ++

> concat (map makeCheckonUnchangedR rels) ++

> concat {map makeCheckonlC intege)

> genCheckonE (subprocessName, subprocessData)

> = genCheckonE2 pubprocessWName subprocessData

> genCheckonE?2 subprocessName (entRame, scopeE, scopeR, inut, pres,
> basicOps)
> = concat (map (genCheckenBasicOp entName) basicOps) ++

> makeChackonTable subprocessName entName

> makeCheckonTable subproceseName entName

> = [0, if ~(lookupSchema schemalist

> (makeTableConetsSchemaName entName))

> = [(makeTableConatsSchemaName entName,

> [subprocesshame] ,

> [(NoDelta, makaeTableConstaSchemaliame entName, NoPrime),

> (HoDalta, subproceszBame, HoPrimel],

> makaOktlag

> (makeTableConsteSchemaKame entHame, [subprocessNamel))],
> otherwise
> makeOkflag pair = Ok, if pair $in ac

> = Notyet, otherwise

> genCheckonBasicOp entName (update, interface, target, recardlp)

> = [], if update = Delete

> = genCheckonfecord entName update (hd record0p), otherwise
> genCheckonRecord entName update (recordOpName, ecopeE, scopeR, input,
> pres, atomicOps)
> = concat (map (makeCheckonAttribute entName update) atomicOps) ++
> makeChackonRecord reccerdipRame entName update

> makeCheckonRecord recordipiame entWame update

> = [], it ~(lookupSchema schemalist

> (makeRacordConsteSchemaName entName))

> = ((makeRecordConsteSchemaName entHame,

> [recordlplame],

> makeSchemaRef update {makeRecordConstsSchemaName entName)
> recordipName,

> makeDkflag

> (makeRecordConstsSchemalame entName, [recordOpName]))],
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othervise
makeSchemaRof update conatWame opName
= [(AcDelta, constlHame, NoPrime),
(NcDelta, oplame, NoPrime)], if update = Modify
= [(BobDelta, opRame, NoPrime)], if update = Insert
makeCheckondttribute antiame update (attrName, atomicOpfame, data)
= [1, it “{leokupSchema schemalist
(makehttrConstaSchemaName entName atirBame))
= [(makedttrConateSchemaName entName attrName,
[atomicDpName],
makeSchemaRef update (makeAttrConstsSchemaName entName attrName)
atomicOpName,
makeOkflag (makehttrConstsSchemaName entName attrName,
[atomicOpName]))], othervise
makeCheckonR (subprocessName, subprocessbDatal
= makeCheckonR2 subprocesgName subprocesaData
makeCheckonR2? subprocessName (relName, scopeE, scopeR, input, pres,
basicOpa)
= [(makeRelConataSchemalName relName,
[subpreceashame] ,
[(ReDelta, makeRelConstsSchemaName relName, NoPrime),
(NoDelta, subprocessRame, NoPrime},
findEffectonE
(hd [det | (det,mas,cor,consta) <- [assoc rele relName]l),
findEffectonE
(hd [mas | (det,mas,cer,conats} <- [amsoc rels relName]])],
makeOkflag (makeRelConstsSchemaName relName, [subprocessName]))]
makeCheckonlnchangedR (relName, (detName, masWName, corTipe, conste))
= [0, if relName $in (map fet affectedRa)
= [], if “(relName $in (map fst affectedRs)) &
“(detName $in (map fst affectedEs)}} &
“(masName $in (map fat affectedEs)}
= [(makeRelConstaSchemaNamq relName,
1,
[(NoDelta, mskeRelConstaSchenaMame relName, NoPrime),
{1i, makeRelSchemaName relName, RoPrime},
findEffectonE detName,
findEffectonE masName],
make(kilag (makeRelConsteSchemaName relName, []1))], othereise
1 indEffectonE entlame
= (NoDelta, assoc affectedEs entHame, NoPrime),
it entWame $in (map fst affectedEs)
= (Xi, makeTableSchemalame entName, NoPrime)}, otheruise
findEffectonR relName
= (HoDelta, assoc atfectedRs relName, NoPrime),
if relName $in {(map fat affectedRs)
= (Xi, makeRelSchemaName relBame, WoPrime}, otherwise
affectedEs = [(ent, name) |
(name, data) <- subE;
(ent, acopeE, scepeR, input, prea, basicips) <- [datal]
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> affactedRe = [(rel, name} |

> (name, data) <- aubR;

> (rel, acopeE, scopeR, input, pres, basicOps) <- [data]]
> makeCheckonlIC (integName, (acopeE, ecopeR, consts))

> = [(makeIntegSchemalame integlame,

> a,

> [(Wobelta, makeIntegSchemaMame integWame, NoPrima)] ++

> map findEffectonE scepeE ++

> map findEffectonh ecopefl,

> makeJkflag (makeIntegSchemaName integlame, []1)],

> if (notdigjoint scopeE (map fast affectedEs)) \/
> (notdisjoint scopeR (map fat affectedRa})
> = [], otherwise

Expand Proof Obligations

>

>
>
>
>
>
>
>
>
>
>
>
>

expand :: num -> state -> ([charl, state)

expand i {db, pr, (echema, exp}, cl)
= (gutput, (db, pr, (&chema, exp), cl)),
if ("LHStorProofObligation"+tshow i} $in (map fst schema)
» expand? i (db, pr, {schema, exp), cl), othervise
vhere output = *\n" ++ obligation ++
"\nLHS\n=\n"++ showSchema lhs ++
"\nRHS\n=\n"++ showSchema rhs
obligation = makelist " /\\\n" (map showSchemaflef schemaRefs) ++
"\n\ti- " ++ conmt ++ "’\p"
{conat, cpRame, schemaRefs, okflag) = cl1 ! i
1hg = agsoc exp ("LHSforProofObligation"++show i}
rha = apeoc exp ("RHSforProofObligation"++show i)

oxpand? i (db, pr, {achema, exp), <1}
= {output, {db, pr, (achema2, exp3), cl))
vhare output = "\n" ++ obligation ++
"\nLHS\n«\n"+ showSchema lhe2 ++
"\aRHS\n=\n*"++ showSchema rha2
gbligation = makelist " /\\\n" (map shouSchemaRef schemaRefs) ++
"\astl- " 4+ comat ++ "hpt
(const, opWame, schemaRets, okflag) = cl ! i
lha = (schemaRefs, (1, [1)
rhs = ([(NoDelta, const, Prime)], [1, [1)
schema2 = achema ++ [("LHSforProefObligation"++show i, lhs},
("RHSforProofObligation"++ghow i, rhe}]
{1he2, exp2) = assocexpand achema2 exp
("LHSforProofUbligation"++show i)
{rhe2, exp3) = amsocexpand achema2 exp2
("RHSforProofObligation"++show i)



Reduce
> reduce :: num => state =-> ([char], atate)

> reduce i (db, pr, (schema, exp), cl)

> = (msg, (db, pr, {schema, exp}, cl))}

> vhere mag = "\nPlease expand it first.\n",

> if “(("LHSforProofObligation*++show i) $in (map fat exp))
> = "\nOK, this proof obligation ia satiefied.\n”, if rest = []
> = “\nPleame check the following declarations " ++

> “apnd predicates in RHS:\n\n" ++

> concet (zipwith £ ({0..], rest)}, othervise

> reat » map show restdecl ++ map shovExpoutSchema restpred

> restdecl = setMinus decl2? decll

> restpred = getMinus pred2 pred1

> (incll, decll, predl) = aesoc exp ("LHSforProofObligation"++show i)
> (incl2, decl2, pred2) = assoc exp ("RHSforProofObligation"++show i)
> f j pred = phow j #+ ", " + pred ++ "\n"

> showExpoutSchema = shovExp ""

CheckOK

> checkok :: num =-> state -> ptate

> checkok i (db, pr, sc, cl)

> = (db, (prname, inputD, subE, subR, globalP, ac’), ac, cl’)
> where (prname, inputD, subE, subR, globalP, ac) = pr

> cl’ = take i cl #+

> [(const, opMame, schemaRefs, 0k)] ++

> drop (i + 1) cl

> (const, opName, achemaRefs, okflag) = cl ! i

>
>

ac' = ac, if (conet, opName) $in ac
= ac #+ [(const, opName)], othervise

Utility

> potdisjoint :: [a]l -> [a] -> bool

» notdisjoint xa ya = or (map (member xs) ys)
> where member xa y = y 3in xs

> strtonum :: [char] -> num

> atrtonum = foldl op 0
> where op n ch = 10 » n + code <h - code ’0Q°’

> makelist :: [char] -> [[char]] -> [char]
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> makalist ¢ ca = ", if cs = []

> = faldrl {op ¢) cB, otherviee
> shere op ¢ 8l a2 = gl ++ ¢ ++ a2
> addpair :: a -> [a] -> [a]

w

addpair x xs = [z] + ze

> getUnion :: [a] -> [a] -> {a]

» setlnion zs [] = xa

> setUnion z8 (y:ys) = setlnicn xe ya, if y %in xs
> = getUnion (xe++[y]) ye, otherwise

> setMinna :: [a] -> [a) -> [a]

> setMinus [1 ye = []

> setMinus (x:x8) y2 = setMinue x2 y8, if x $in ys
> = [x] ++ setMinue x8 y&, othervise
> subst :: [(a, a)] -> [a) -> [a]

A4

subst [J list = liat
aubst ({x,y):ps) liat = subst ps (substl (x,y} list)

v

aubst] (x,y> (1 = []

subst! (x,y) (c:cs)
= [y] ++ subatl (x,y) cs, it x = ¢
w [¢] ++ pubatl (x,y) c8, otherviee

L R L

> asgoc :: [(a, B)] ->a > b
> assoc xye x = hd [y[(x’, y) <- zya; x' = 1]

> delete :: a -> [a] -» [a]

> delete x [1 =[]

> delete x (y:ys) = delete x yB, if y= x

> = [y] ++ delete x ys, othervise

>

HMain

> command

> ::m End | ReadSpec [char] | Schemalist | View nameType | View2 nameType |
> Checklist | Expand num | Reduce num |

> CheckOX num | Showdb | Showpr | Showec | Showcl |

> Ryllced | Errorcmd [char]
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Showdb, Showpr, Showsc and Showcl are commands for debugging.
> loop &t = readedit prompt (execute st. readcmd st)

> prompt = "\nreadspac filename/achemalist/view pum/view2 num/\n" ++

> "checklist/axpand num/reduce num/checkok num/end => *

> readcmd et = analyse et . words

> analyse st [] = Nullcad

> analyse a8t [ced] = End, if cmd = “end"

> = Schemaliet, if cmd = "schemalist"

> = Checklist, if <md = "checklist”

> = Showdb, if ¢md = "shoedb”

> = Showpr, if ¢ed = "ghowpr"

> = Shovac, it ¢md = "ghowsc"

> = Skowel, if cmd = "showcl"

> = Errorcmd cmd, othervise

> analyse st [cad, par] = ReadSpec par, if cmd = "readspec"
> = View (tobevieved st par), if cod = "view"

> = Viev2 (tobevieved st par), if cmd = "view2"
> = Expand (tobeexpanded par), if cmd = "expand”
> = Reduce (tgbeexpanded par), if cmd = “reduce"
> = CheckOK (tobeexpanded par), if cmd = "checkok"
> = Errorcmd cmd, otherviee

> analyse st (cmd:par:pare:xs) = Errorcmd cmd

> tobeviewed (db, pr, (echema, exp), cl) x

> = fat (schema ! (Btrtonum x))

> tobeexpanded x
= strtopum x

> execute st End = end

> exacute st (ReadSpec filename)

> = write "" (loop (generateChecklist

> (generateSchemas (readSpec filename))})
> execute st Schemaliet = grite (schemalist st} {loop st)

> execute at {(View name} = yrite (view name 8t} (loop st)

> execute at (View2 name) = write (fst pair) (loop (snd pair))
> whare pair = (viev2 name et)

» execute st Checklist = grite (checklist st} {loop at)

> execute st (Expand i) = yrite (fst pair) (loop (end pair})
> where pair = (expand i st)

> execute st (Reduce i) = writa (fet pair) {(loop (end pair))
> where pair = (reduce i at)

> exacuta 8t {(CheckOK i) = grite "" (loop (checkok i st))

> exscute st Showdb = write (show db) (loop st)

> where (db, pr, s¢, cl) = st
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> exewte 8t Showpr = write (show pr) (loop at)

> shere (db, pr, sc, cl) = et

> execute at Showac = grita {shov sc) (loop Bt)

> where (db, pr, sc, <l) = at

> exemte st Showcl = write (show cl) (leop at)

> where (db, pr, s8c, cl) = at

> exewte st Nullced = loop st

> exequte at (Errorcmd cmd) = vrite ("The command '" ++ cmd ++ "' is unknosm\n")
> (loop st}

> run tool = loop initialstate (keyboard tool)

> tool= Falee

The tollowings are utility functione in [R.Pird & P.Wadler B8]:

> breakon a x xsa = [[]) ++ xea, if x = a
> = [[x)] ++ hd xas] ++ tl xse, othervise

> gords = filter ("= []). foldr (breakon ' ') [[}]
A» read msg g input = meg ++ line *++ "\n" ++ g line input2
A> vhere line = befere *\n' input

i inputZ = after ’\n' input

> before x = takewhile ("= x)
> afterx = tl , dropwhile {"= 1)

> write sag g input = meg ++ g input

> end input = "

Readedit (for the use of Backspace in command line)

> readedit mag g input = meg ++ printline ++ "\n" ++ g inputline input2
> ghere printline = printbs line 0

> inputline = fat (inputbe line)
>
>

line = before ’'\n’ input
input2 = after ’\n’ input

v

printbs :: string -> num -> string

> printbs "" clmn = "

> printbe {c:c8) clman = c:printbs ca {(clan + 1), it ¢ "= ?\b’

> = "\b \b" ++ printbs cs (clmn - 1}, if ¢ = ’\b’ & clan > O
> = printbs cs @, if c = *\b’ & clan = O

> inputbs :: string —> (atring, num)



> inputbs "" = ("*, 0)

> inputbs (c:ce) = ({cicei), level), if c¢ "= "\b’ & lavel = 0
> = (cal, level — 1), if ¢ "= *\b’ &k level > 0
> = (cal, leval + 1), if ¢ = "\b’

> whera (csl, lavel} = inputbs cs





