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Abstract 

This thesis describes (\ type system that combines ML-style polymorphism with 
a general approach to overloading. The central idea is to use qualified types that 
include predicates and restrict the set of types at which an object can be used to 
particular instances of a polymorphic type. Different applications of qualified types 
can be obtained by changing the underlying system of predicates. We illustrate this 
with examples including type classes, explicit subtyping and extensible records. 

Much of the thesis deals with a simple, implicitly typed, functional language. 
Extending the Damas/Milner approach to type inference, we define an ordering 
between the constrained type schemes used in our system and show that the set 
of all possible typing!! for a given term h3.8 a greatest element with respect to this 
ordering. Furthermore, this principal type scheme can be calculated using a type 
inference algorithm. 

Using IUl abstract notion of evidence, we show how the meaning of a program in this 
system can be described by translating it into a language that includes constructs 
for manipulating evidence values. Since any given term may have many distinct 
translations it is necessary to give coherence conditions which guarantee that the 
meaning of a term is well defined. This thesis introduces a new technique for 
establishing results of this kind, using a semantic interpretation of the ordering 
relation on type schemes. 

We also address more practical issues concerning the use of qualified types, both 
for the general system and for specific applications. This includes a promising new 
representation for extensible records, b3.8ed on the use of evidence. In addition, we 
describe the implementation of type classes in Haskell and Gofer, an experimental 
system developed by the author. 
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page 32. 
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P, Section 4.2, page 41. 

PI-e=/:Q Evidence equality judgement, Section 5.4.1, page 60. 
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If P = 1ft, ••• ,11'"11 is a list of predicates, then P => a is llsed as 
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(Pia) Constrained type scheme, Section 3.2.1, page 22.
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Chapter 1 

Introduction 

1.1 Type systems for programming languages 

Many programming languages rely on the use of a system of types to distinguish 
between different kinds of value. This in turn is used to identify two classes of 
program; those which are well-typed and accepted by the type system, and those 
that it rejects. Many different kinds of type system have been considered but, in 
each case, the principal benefits are the same: 

•	 The ability to detect program errors at compile time: A type dis
cipline can often help to detect simple program errors such as passing an 
inappropriate number of parameters to a function. 

•	 Improved performance: IT, by means of the type system, it is possible to 
ensure that the result of a particular calculation will always be of a certain 
type, then it is possible to omit the corresponding runtime checks that would 
otherwise be needed before using that value. The resulting program will 
typica.lly be slightly shorter a.nd faster. 

•	 Documentation: The types of the values defined in a program are often 
useful as a simple form of docuI1lentation. Indeed, in some situa.tions, just 
knowing the type of an object can be enough to deduce properties about its 
behaviour (Wadler, 1989). 

The main disadvantage is that DO effective type system is complete; there will 
always he programs tbat are rejected hy the type system, even though they would 
have produced well-defined results jf executed without consideration of the types 
of the terms involved. For example, the expression; 

1 + (if True then 1 else "str") 

1 
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has a well·defined numeric value, but will not be accepted. in many typed languages 
because the values 1 and "str" in the two branches of the conditional do not have 
the same lype. More sophisticated type systems might accept the expression above, 
but would reject similar expressions obtained by replacing the constant True with 
increasingly complicated boolean-valued expressions. 

For most of the work in this thesis we concentrate on type systems for sta.tically 
typed languages. The most important factors to be considered in the design of 
such systems are: 

•	 Flexibility: The type system should not impose too ma.ny restrictions on 
the programmer and should accept a reasonably large class of programs. 

•	 Effective type checking: There should be an effective process for deter
mining whether or not a particular program is acceptable. For example, it is 
not usually acceptable for a compiler to enter a non-terminating computation 
in an attempt to determine whether a given program is acceptable. 

•	 Intuitive behaviour: The programmer should be able to predict which 
programs will be accepted and which will not. 

•	 Accuracy: The types assigned to objects should accurately reflect the prop
erties of those objects. The desire for more detailed types (that give more 
information about the corresponding families of values) must be balanced 
with the aim of maintaining effective type checking. 

1.2 Type inference and polymorphism 

In his seminal paper "A Theory of Type Polymorphism in Programming" (1978), 
Milner observed that, in many cases, there is no need to mention the types of the 
objects appearing in an expression since they may be inferred from context. Using 
a simple implicitly typed language based on the untyped .A-calculus, he showed how 
a type inf~rence algorithm could be used to calculate valid typings for programs 
without explicit type annotations. In later work (Damas and Milner, 1982) it was 
established that the typing that Milner's algorithm assigns to a given term (if any 
typing is possible) is, in a very precise sense, the most general typing that can be 
obtained for that term, extending an earlier result due to Hindley (1969). 

Another significant feature of Milner's work was its formal treatment of polymor
phism: The ability to treat some terms as having many different types. Opportuni
ties for polymorphism occur when the type of a term is not completely determined 
by its context. For example, using the notation of a modern functional language, 
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we can consider a function length that takes a list of values as its argument and 
returns the length of the list (an integer) as its result: 

length [I o 
length (x : xs) = I + length xs 

The values held in the list (represented by the variable x in the second line of the 
definition) are not actually used in the calculatjon. Hence the length function can 
be treated as having type [a]--+ Int for any type a, where Int denotes the type of 
integers, [a] denotes the type of lists with members of type ", and a --+ b denotes 
the type of functions mapping values of type a to values of type b. Rather than 
picking anyone particular type of this form, we say that length has a type seheme 
\fa. [a] --+ Int, using explicit universal quantification as in (Damas and Milner, 
1982) to indicate that the choice of a is arbitrary. Following Strachey (1967), this 
is often described as parnmetric polymorphism since the set of types represented 
by a type scheme can be obtained by choosing different values for the quantified 
type variables (the parameters) in the type part of the type scheme. 

More generally, if Type denotes the set of all first-order types, and f(t) is an 
element of Type (possibly involving the type variable t), then an object with type 
scheme \fLj(t) can be treated as having any of the types in the set 

{f(T) I T E Type}, 

where j(T) is obtained by substituting T for tin j( t) in the obvious way. Treating 
the elements of Type ~ type schemes with no quantified variables, each T E Type 
corresponds to the singleton set of types {T}. With this in mind, the elements of 
Type are often referred to ~ monotypes. 

1.3 The choice between 'all' and 'one' 

While convenient for many programs, there are also examples that cannot be 
described comfortably using either parametric polymorphic types or monotypesj 
the choice between 'all' and 'one' is too severe. What type, for example, should 
be assigned to the addition function (+)1 We would certainly hope to be able to 
use the same operator to add both integer and floating point numbers, but the 
standard HindleyJMilner type system gives only two options: 

•	 The simplest solution is to use distinct monotyped function symbols for each 
variant of the addition function that is required. However, the use of several 
different symbols describing a single concept seems unnatural and may not be 
practical in situations where any significant number of variations is required. 
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Furthermore, we will typically need. to repeat the definitions of any values 
defined , either directly or indirectly, in terms of addition for each different 
choice of that function . 

•	 An alternative approach would be to treat addition as having a polymorphic 
type - for example, (Va.a -+ a -+ a) - but this makes the type system 
unsound, or at least, reduces its ability to detect type errors involving the 
use of addition since there are types a on which the addition operator is 
undefined. As a result , there are programs that will be accepted by the type 
system, and yet result in a run-time type error. Note that the implementation 
of addition will typically involve the use of distinct sections of code for each 
different type for which the function is defined. This is in stark contrast to 
the length function described above where the same code can be used for 
every different choice of type, and is an example of what is commonly called 
ad-hoc polymorphism. 

In the past, many language designers have side-stepped these issues; typical ap
proaches include: treating all kinds of numeric values as the elements of a single 
type, relying OD implicit coercions between numeric values of different kinds or us
ing somewhat ad-hoc techniques to determine which particular version of a function 
is needed in a given context. 

There ha"e also been a number of attempts to solve these problems using con
strained type system.s in which the range of type variables may be restricted to 
particular families of types. We mention in particular the work of Kaes (1988) 
and Wadler and Blott (1989) on parametric overloading, of Mitchell (1984) and 
Fuh and Mishra (1989, 1990) on subtyping and of Harper and Pierce (1990) on 
extensible records. These papers provide much of the motivation for this thesis 
and their examples will be used to illustrate some of the applications of our work. 

1.4 Qualified types 

This thesis develops a general approach to constrained type systems based on the 
use of qualified types and providing an intermediate level between monomorphic 
and polymorphic typing disciplines. For example, if 71"(t) is a predicate on types, 
then we can use a type scheme of the form Vt.1t(t) ::::} f(t) to represent a set of 
types: 

{fiT) I T is a type such that ~(T) holds}. 

For example, we might write the type of the addition function described in the 
previous section a.s Vt.Num t :::::> t -+ t -+ t where Num t is a predicate that is 
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true exactly when t is a numeric type. Many further examples will be given in 
later chapters. 

The use of qualified types may be thought of in two ways: Either as a restricted 
form of polymorphism, or as an extension of the use of monotypes, commonly 
described as overloading, in which a function may have different interpretations 
according to the types of its arguments. 

The main benefits of using qualified types are: 

•	 A general approach that includes familjar type systems as special cases. Re
sults and tools developed for the general system are immediately applicable 
to each particular application. 

•	 A flexible treatment of predicates on types and inferences between them that 
is largely independent of any single type system. 

•	 More accurate assignment of types to objects without losing the ability to 
support effective type checking. 

•	 The ability to include local constraints as part of the type of an object. This 
enables the definition and use of polymorphic overloaded value; within a 
program. 

•	 A precise treatment of the relationship between implicit and explicit over
loading. This is particularly useful for describing the implementation of 
systems supporting qualified types. 

1.5 Outline of thesis 

This thesis addresses both theoretical and practical issues concerning the use and 
application of qualified types and we begin by summarising the contents of the 
following chapters. 

The choice of a suitable language of predicates is clearly an important part of 
any application of qualified. types. Chapter 2 introduces a formal framework for 
predicate systems and specifies some simple properties which they are expected to 
satisfy. We illustrate these definitions by giving systems of predicates which can 
be used to describe the use of type classes, subtyping and extensible records. 

Chapter 3 describes an extension of Milner's type system which includes support 
for overloading based on the use of qualified types and parameterised by an arbi
trary system of predicates. We define an ordering On the set of type schemes and 
show that there is a type inference algorithm which calculates principal types, i.e. 
greatest possible typings with respect to this ordering. 
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The next two chapters re-examine and extend the work of Chapters 2 and 3, using 
the concepL of evidence introduced in Chapter 4 to give a semantic interpretation 
for overloading. We show how the definition of predicate systems can be extended 
to describe the construction of evidence and suggest suitable choices of evidence 
for particular applications. In the case of type classes and subtyping, these include 
well-known techniques which are already used in the implementa.tion of such sys
tems. Previous work with extensible records does not appear to have made use 
of analogous techniques, but we show how the concept of evidence leads us to a 
promising new implementation. 

Chapter 5 shows how the semantics of prograrTlE in the language described in Chap
ter 3 can be captured by translating them into a language with explicit constructs 
for manipulating evidence values. Each source tenn may have many different 
translations and it is necessary to show that these are sema.ntica.lly equivalent in 
order to prove that the meaning of the original term is well-defined. We accom
plish this by identifying a particular principal translation and showing how any 
other translation can be 'expressed in terms of this. These results depend on a 
notion of uniqueness of evidence, a property of the predicate system which mUllt 
be verified independently for each application of qualified types. The most impor
tan t and novel aspect of our approach is the use of conversions to give a semantic 
interpretation for the ordering relation between type schemes. 

The following three chapters deal with more practical issues and we adopt a 
less rigourous approach with the emphasis on concrete implementation techniques 
rather than the formal properties of the type systems involved. Chapter 6 begins 
the transition from theory to practice by describing a number of extensions to the 
type systems presented in the previous chapters. Each of these might potentially 
be used to provide more accurate type checking, simplified principal types or more 
efficient implementations. 

In Chapter 7 we focus on the system of type classes used. in the functional pro
gramming language Haskell and describe some useful optimisations to the original 
implementation suggested by Wadler and Blott (1989). In particular, we concen
trate on the task of trying to minimise the construction of dictionary values which 
play the role of evidence in this particular application. 

Chapter 8 outlines an alternative approach to type classes as implemented in Gofer, 
a small, experimental system developed by the author. We discuss the relationship 
between the two approaches and show how the system of type classes in Gofer lends 
itself to a remarkably clean and efficient implementation. 

Finally, Chapter 9 outlines severa.l ideas for further work motivated by the issues 
raised in the preceding chapters. 
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Chapter 2 

Predicates 

The key feature of a system of qualified types that distinguishes it from other 
systems based solely on parametric polymorphism is the use of a language of 
predicates to describe sets of types (or more generaJ!y, relations between types). 
Exactly which sets of types and relations are useful will (of course) Yary from one 
application to another and it does not seem appropriate to base a general theory 
on any particular choice. OUf solution, outlined in this chapter, is to work in a 
framework where the properties of a (largely unspecified) language of predicates 
are described in terms of an entailment relation that is expected to satisfy a few 
simple laws. In this way, we are able to treat the choice of a language ofpredicates 
as a parameter for each of the type systems described in subsequent chapters. 
This approach also has the advantage that it enables us to investigate how the 
properties of particular type systems are affected by properties of the underlying 
systems of predicates. 

The basic notation for predicates and entailment is outlined in Section 2.1. The 
remaining sections illustrate this general framework with applications to: Haskell
style type classes (Section 2.2), subtyping (Section 2.3) and extensible records 
(Section 2.4). Although we consider each of these examples independentlYI this 
work opens up the possibility of combining elements of each in a single concrete 
programming language. 

2.1 Basic definitions 

For much of this thesis we deal with an abstract language of predicates on types. 
The exact form of individual predicates is not significant but, in practical applica
tions , they are often written using expressions of the form 'tr = P Tl ... Til where 
p is a predicate symbol corresponding to an n-place relation between types: The 

7 

l 



predicate 11' represents the assertion that the types denoted by the type expressions 
TI, •.. ,T.. are in this relation. The only condition imposed on the set of predicates 
is that it be closed under substitutions mapping type variables (and hence type 
expressions) to type expressions, i.e. for any such substitution S and any predicate 
11" as above, the expression: 

S" = P (ST,) ... (ST.) 

should also be a predicate. 

Properties of predicates are captured by an entailment relation ft- between (finite) 
sets of predicates. An entailment of the form P It- {11"} indicates that the predicate 
11" can be inferred from the predicates in P. In practice, we often write 11" as an 
abbreviation for the singleton predicate set {11"} and hence write this entailment 
as P It- 'If. More generally, we expect the entailment relation between arbitrary 
finite sets of predicates to satisfy: 

Pit- Q ¢> II" E Q. P It- ~. (set- entail) 

This is ofLen used implicitly in the definition of entailment for particular appli
cations of qualified types. Thus we describe only the rules for entailments of the 
form P ft- 11" and use (sct-fntail) to extend this to the desired relation between 
predicate sets. 

The only other properties that we assume about entailment are as follows: 

•	 Monotonicity. P It- pi whenever P ;;2 pl. By (sft~fntail), this is equivalent 
to saying that p It- 'If for each 11" E P. 

•	 Transitivity. If P It- Q and Q It- R, then Pit- R. 

•	 Closure property. If P It- Q, then SP It- SQ for any substitution S. This 
condition is needed to ensure that the system of predicates is compatible 
with tbe use of parametric polymorphism. 

A number of other useful properties of It- follow directly from these laws. For 
example, taking pi = P in the definition of monotonicity gives P It- P, showing 
that It- is reflexive. Furthermore, taking pi = 0 we find that P It- 0 for all P. 
Some additional derived properties are given below. 

In the following, we write P, Q for the union of predicate sets P and Q and use 
P, 11' as an abbreviation for P \ {11'}. The principal reason for this choice of notation 
(rather than the conventional P U Q) is to a.void any preconceptions about the 
properties of the (_,_) operator. This will be convenient in later work (Cha.pters 4 
and 5 in particular) where we consider entailments between ordered collections of 
predicates. 
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With this in mind, we reformulate the properties of predicate entailment given 
above so that we do not need to rely on any particular interpretation of 0 and (-,_) 
in format proofs. A suitable collection of rules is given in Figure 2.1 and these are 
usually taken used as part of definition of entailment in specific applications. 

Monotonicity: ( id) PH-P 

(te"" ) 

(fst) 

PH-0 

P, Q H- P 

(snd) P, Q H- Q 

(univ) 
PH-Q PH-R 

PH- Q,R 

Tr-ansitivity: (trans) 
PH-Q QH-R 

PH-R 

Closure property: (close) PH-Q 
SP H- SQ 

Derived rules: (dist) 

(cut) 

PH- Q P'H- Q' 

P,P'H-Q,Q' 

PH- Q P, Q H- R 
PH-R 

Figure 2.1: Rules for predicate entailment. 

Notice the law (univ) which 1S needed to establish the derived rules of distributivity 
(dist) and the cut rule (cut). For the special case of predicate sets, all three of 
these rules can be proved using monotonicity, transitivity and (set-entail) and 
hence the rules in Figure 2.1 may seem unnecessarily complicated. However, the 
benefits of this approach will become more apparent in later chapters. 

For the purposes of entailment, we can treat (-, _) as an associative opera.tor: It is a 
s;mple exercise to show that P, (Q, R) H- (P, Q), Rand (P, Q), R H- P, (Q, R) for 
any P, Q and R. By (trans), ;tfollows that (P, Q), Rand P, (Q, R) are equivalent 
in the sense that: 

P' H- P, (Q, R) *> P' H- (P, Q), R and P, (Q, R) H- P' *> (P, Q),R H- P'. 

The equivalence of P, 0 and 0, P to P can be established in a similar way, so that 
ocan be treated as an identity for (-, _). 
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2.2 Type classes 

Much of the original motivation for qualified types came from the study of type 
classes, introduced by Wadler and Blatt (1989) and adopted as part of the stan
dard for the programming language Haskell (Hudak et a1. , 1992). Type classes are 
particularly useful for describing the implementation of standard polymorphic op
erators (such as computable equality), but they can also be used as a more general 
tool for the development of clear, modular programs (Jones, 1990). 

In this section we sketch the principal components of a system of type classes and 
describe the corresponding system of predicates. The use and implementation of 
type classes is considered in more depth in Chapters 4, 7 and 8. 

2.2.1 Class declarations 

Broadly speaking, a type class represents a family of types (the instances of the 
class) together with an associated set of member functions defined for each instance 
of the class. For each class C and type T I a predicate or the rorm C T represents the 
assertion that T is an instance of the class C. This notation rollows the concrete 
syntax of Haskell (were it not ror the use of a limited character set, these predicates 
might well have been written in the form T E C). A standard example is the set of 
types whose elements may be tested for equality. The following class declaration 
illustrates how this can be defined in the concrete syntax of Haskell: 

class E.q a where
 
(==) :: a -) a -) Bool
 

The definition is in two parts: 

•	 The expression Eq a in the first line introduces a name Eq for the class and 
indicates that the type variable a will be used to represent an arbitrary 
instance of the class in the following part of the definition. 

•	 The second line gives the names of the member functions of the class. In 
this case we have a single member function, represented by the infix operator 
symbol (•• ). The type signature a -) a -) Bool indicates that, for each 
instance a of Eq, the equality operator is defined as a. runction taking two 
arguments or type a and returning a boolean value of type Boo1. 

The equality opera.tor (==) will now be treated as having the (qualified) type: 

(==) Eq a -) a -) a -) Bool 
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Note the convention that all free variables in a type expression are impUcitly bound 
by a universal quantifier at the outennost level. Thus (••) is 'polymorphic' in a, 
but the choice of types for a is restricted to instances of Eq. 

Even before we have defined a single instance of the class, we can use the (-=) 
operator, either directly or indirectly, in the definition of other values. Forexample: 

member % [] False 
member % (y:ys) %==y I I member x ys 

%S 'subset f ye all (,% -) member % ye) xs 

The restriction to lists of values whose type is an instance of Eq is reflected by the 
types assigned to these functions: 

member Eq a =) a -) raJ -) Bool 
subset Eq a => [aJ -> [a] -> 8001 

2.2.2 Instance declarations 

The instances of a class are defined by a collection of instance declarations as 
illustrated by the following examples. An implementation of the equalily function 
on integers, supplied by a built-in primitive primEqInt with monomorphic type 
Int -) Int -) Bool, can be included as part of the definition of (==) using the 
declaration: 

instance Eq Int where 
c==) primEqInt 

The same function might also be used, indirectly, to define an equality operation 
on values of type Char representing characters: 

instance Eq Char where 
c == c ' = ord c == ord c' 

(ord c gives the integer code corresponding to the character c,)
 

Instances of a class may also be given for standard and user-defined algebraic data
 
types as in the following definition of equality on lists:
 

instance Eq a => Eq [a] where 
[] [] True 
[] cy:ys) False 
(%:%5) [] False 
(%:%5) Cy: ys) %==y U %S·""y8 
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The expression Eq a z) Eq [aJ in the first line indicates that the definition of 
equality on lists depends on the definition of equality on the elements held in the 
lists: If a is an instance of Eq, then so is [aJ. 

Note that the set of types defined by a finite collection of instance declarations 
may be infinite (but recnrsively enumerable). 

2.2.3 Superclasses 

The system of type classes used in Haskell also supports a mecha.nism for defining 
hierarchies of classes using a notion of superclasses. For example, a simple dec· 
laration for the class Ord (whose instances are those types with elements ordered 
using the «:::) operator) might be: 

class Eq a :::) Ord a where
 
«=) :: a -) a -) Boo1
 

indicating that every instance of Ord should also be an instance of Eq. (Note that, 
in this situation, the :::) symbol should be read as 2 not implication; to say that 
Eq is a superclass of Ord means that tEOrd implies tEEq and not the converse.) 

2.2.4 The	 entailment relation for type classes 

The definilion of the predicate entailment relation It- depends on the information 
provided by the class and instance declarations appearing in a program. The 
relevant details can be represented by a set r which we call a type class environment 
containing two kinds of term: 

Class P =} 11"	 corr~ponding to the first line of a class declarationj each of 
the classes in P is a superclass of the class named by 11". 

Inst P:::} 11"	 corresponding to the first line of an instance declaration; if 
there is an instance for each predicate in P, then there is an 
instance for 11". 

For example, the type class environment for the declarations above is: 

{Class {} =} Eq a, 
Class {Eq aj =} OnI a, 
Inst {} =} Eq Int, 
Inst {} =} Eq Char, 
Inst {Eq aj =} Eq ral j 

12 
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The definition of predicate entaihnent for type classes is given by the rules in 
Figure 2.2, combined with the general rules in Figure 2.2. These rules are param
eterised by the choice of a fixed type class environment r (with type variables in 
r interpreted as meta-variables of the inference rules). 

PI+- 11' (Class P' =? '11") E r 11" E pi
(super) 

P 1+-11" 

P If- P' (Ins! P' '* T) E r
(ins! ) 

Plf-T 

Figure 2.2: Rules for type class entailment 

The main advantages of this treatment of type classes are: 

•	 The current version of Haskell makes a number of (largely syntactic) restric
tions on the form of class and instance declarations and limits lype classes 
to a single parameter. On the other hand, the framework described here 
makes no assumptions about the elements of a type class environment and 
can be used to reason about 'multiple parameter classes' with predicates of 
the form C Tl .•• T•. 

•	 The same ideas can be used to describe alternatives to the Haskell approach 
to type classes. Chapter 8 deals with one interesting example of this. 

•	 There is a natural and direct treatment of superclasses as part of the defini
tion of 1+-. This is in contrast with the approach described in (Chen, Hudak 
and Odersky, 1992) where superclasses are encoded using class sets, and with 
other proposals, for example (Blott, 1991), that do not formalise the use of 
superclasses. One notable exception is the paper by Nipkow and Snelting 
(1991) that uses a sort hierarchy to model superclasses. 

2.3 Subtyping 

In many programming languages, it is possible for functions expecting real number 
arguments to be applied to integer values, even though the two kinds of number 
may have different representations. This is often dealt with by considering the 
type of integers lnt to be a subtype of the type of real numbers Real, written 
lnt ~ Real, indicating that every integer can be treated as a real number by 
applying a suitable coercion function. 

13 



In this section we outline a simple approach to subtyping using predicates of the 
form a ~ f to represent the assertion that a is a subtype of.,.. A simple definition 
of entailments between such predicates might be based on the rules in Figure 2.3 
as in (Mitchell, 1984) and later extended in (Jategaonkar and Mitchell, 1988; Fuh 
and Mishra, 1989, 1990; Mitchell, 1991). Notice the rule (arrow) that descrihes 

(reft) Plt-O'~O' 

Plt-O'cp Plt-P<;T
(trans-<; ) 

Plt-O'~.,. 

Plt-aCd PH-.,./C.,.
( arrow) 

Pit- (0" ~ T') <; (0' ~ T) 

Figure 2.3: Rules for structural subtyping 

the way in which inclusions between function types are determined by inclusions 
between their component types. For example, if Int ~ Real, we can deduce: 

(Real ~ Int) <; (lnt ~ Int) and (lnt ~ Int) (;; (lnt ~ Real), 

corresponding to the coercions obtained by composing on the right or left respec
tively with a coercion from Int to Real.
 

The system of predicates described above can be used both in languages that
 
allow only explicit coercions and in those which allow implicit coercions. A simple
 
application of the former might be to use an addition function:
 

add :: 'tIa.a ~ Real ~ a --. a -10 Real 

to add two integers together, obtaining a rea] number as the result. In simple 
languages, functions like add might be provided as built-in primitives. The benefit 
of using qualified types is that other functions defined in tenus of these primitives 
may also be overloaded. For example: 

double .. 't/a.a 5;:;: Real ~ a --. Real 
double x add x x 

There is nothing to prohibit the use of a primitive function: 

coerce :: 't/a.'t/b.a ~ b::::} a --. b 

that can be used at any point in a program where a coercion is required. 
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More sophisticated systems, including all of those cited above, allow the use of 
implicit coercions: H E is a term of type a and a ~ ai, then the tenn E can also 
be treated as a term of type rI. This is in contrast with a system that permits 
only explicit coercions where it might be necessary to write coerce E to obtain a 
term of type rI. In these systems, the addition of two integers to obtain a real 
result can be described without explicit overloading using a function: 

add :: Real -t Real -t Real 

with two implicit coercions from Int to Real. As a further example, the coerce 
function described above can be implemented by the standard lidentity function" 
~x.x (but of course, there is no practical use for coerce in a system tbat already 
has implicit coercions!). 

In this thesis we concentrate on type systems suitable for languages with explicit 
coercions. Section 6.3 outlines the extensions needed to support the us€ of implicit 
coercions and describes some of the problems that can occur. 

2.4 Extensible records 

A record is a collection of values (known as fields), possibly of different types, 
each of which is associated with a distinct element I drawn from some specified 
set of labels. Simple examples include the empty record () (with no fields) and 
(x = 1, y = True) which has two fields labelled % and y containing an integer and 
a boolean value respectively. 

There has been considerable interest in the use of records to model features of ob
ject oriented programming languages including inheritance and subtyping. A num~ 

ber of different approaches have been considered including (Wand, 1987; Cardelli, 
1988; Stansifer, 1988; Remy, 1989; Cardelli and Mitchell, 1990). 

The approach described in this section is based on work described by (Harper 
and Pierce, 1990). This system, in common with some of the other approaches 
mentioned above, provides a system of extensible records, the key feature being 
tha.t any record which does not have a field corresponding to a particular label 
may be extended to include such a field. Tbis operation on record values is often 
described as polymorphic e%tenaion since it can be applied to a.ny type of record 
except those which already contain a field with tbe particular label concerned. As 
such, this is a natural application for qualified types. 

For reasons of space, we can only sketch the basic ideas here. Further details and 
a discussion of the relationsnip between this approach and those of other systeTrul 
of extensible records are given in (Harper and Pierce, 1990). 
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To begin with we will assume that the language of expressions includes record 
expressions described by the syntax: 

p ::: 0 empty record 
p\l rr.strictlon 
(p/I:,) extension 
p.1 selection 

where (p \ l) gives the result of removing the field labelled I from the record p, 
(p II = eo) gives the result of adding a field I with value e to the record p and (p./) 
returns the value of the field labelled I in the record p. Not all of the expressions 
permitted by this syntax are well-formed, but we will rely on the use of types and 
predicates to detect such errors rather than on purely syntactic conditions. 

It is often con venient to use the following abbreviations for record expressions: 

(, : ,)	 WI,:') 
(2'1 = el, ... , x.. = en, X..+1 = e.. +l) «Xl = el, ... , X .. = eft) I X..+l = f ..+l) 

Note that the order of fields in a record is not significant so that, for example, the 
expressions (:l: = 2, Y= 3) and (y = 3, x = 2) represent the same record. 

The types of record expressions are written in a similar way: 

r :::	 0 empty ruord 
(rll:u) extension 

r \ I restriction 

where () is the unit type of the empty record, r \ I is the same as the record type 
r but without the field labelled I and (r I I: 0") is the same as the record type 
r but with an additional field labelled I of type 0". As with record expressions 
above, not all of the type expressions permitted by this syntax are well~formed. 

In addition, there is a non-trivial equivalence between valid record types. For 
example, (r I I : a) \ I is equivalent to r, and (r I 1: a) \ I' is equivalent to 
(r \ I' II;u), assuming that I i- I'. 
The proass of determining exactly which labels are bound and which are unbound 
in any particular record can be described using predicates of the form: 

record r indicating that r is a well-formed record type. 

r hasI:t indicating that a record of type r has a field labelled I of type t. 
r lacks I indicating that a record of type r does not have a field labelled 1. 
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The intuitive meanings of these predicates are formalised by the rules in Figure 2.4. 

Record formation: P It- record 0 
p It- record r P It- r lacks 1 

p It- record (r II: t) 

p It- record r P It- r has 1 
p It- record r \ 1 

Absent fields: P It- 0 lacks 1 

p It- record r \ I 

P It- r \ I lacks I 

p It- r lacks I 
p It- r \ I' lacks I 

p It- r lacks I 
Pit- (r 11':t') lacks I 

I # I' 

I # I' 

Present fields: 
p It- record (r II:t) 

Pit- (r II:t) has I:t 

Pit- r has I:t 
p It- r \ I' has I: t 

1# I' 

Plt-rhasl:t 
Pit- (r 11':t') has I:t 

1# I' 

Figure 2.4: Pred..icate enta.ilment for extensible records 

Predicates of the form (r has 1: t) and (r lacks /) are also useful in qualified tYpe8. 
For exa.mple, the primitive operations of record restriction, extension and selection 
can be represented by families of functions (indexed by la.bels) of type: 

(_ \ I) :: Vr.Vt.(r has l:t);} r --> r \ I 
(_11 =_) :: Vr.Vt.(r lacks I);} r --> t --> (r II:t) 
(_.1) :: Vr.Vt.(r has I:t);} r --> t 

The following function definition provides another simple example: 

f :: Vr.(r has z:Int, r lacks y);} r --> (r I y:Int) 
f r = (r I y = r.x + 1) 
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Chapter 3 

Type inference for qualified types 

This chap~er describes an ML-like language (i.e. implicitly typed A-calculus with 
local definitions) and extends the framework of (Milner, 1978; Damas and Milner, 
1982) with support for overloading using qualified types and an arbitrary system 
of predicates of the form described in the previous chapter. The resulting system 
retains the flexibility of the ML type system, while allowing more accurate descrip
tions of the types of objects. Furthermore, we show that this approach is suitable 
for use in a langua.ge based on type inference, in contrast [or example with more 
powerful languages such as the polymorphic A-calculus that require explicit type 
annotations. 

Section 3.1 introduces the basic type system and Section 3.2 describes .an ordering 
on types, used to determine when one type is more general than another. This is 
used to investigate the properties of polymorphic types in the system. 

The development of a type inference algorithm is complicated by the fact that 
there are many ways in which the typing rules in our original system can be 
applied to a single term, and it is not clear which of these (if any!) will result 
in an optimal typing. As an intermediate step, Section 3.3 describes a syntax
directed system in which the choice of typing rules is completely determined by 
the syntactic structure of the term involved, and investigates its relationship to the 
original system. Exploiting this relationship, Section 3.4 presents a type inference 
algorithm for the syntax-directed system which can then be 1:lsed to infer typings 
in the original system. We show that the set of all derivable typings for a term 
can be characterised by a single principal type scheme that is calculated by this 
algorithm. In addition, we describe the relationship between the decidability of 
type checking and the decidability of a. property of predicate entailment. 

In subsequent chapters, we extend the results presented here to describe the rela
tionship between implicitly overloaded terlhS and their translations in a language 
with explicit overloading. Detailed proofs for these extensions are included in Ap
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pendix A from which it is possible to derive the simpler results of this chapter. 
Proofs for the results of this cbapter may also be found in (Jones, 19m). 

3.1 An extension of ML with qualified types 

This section descri bes an extension of the core of the ML type system with support 
for overloading using qualified types. For ease of reference we will call this system 
OML, .an abhreviation of 'Overloaded ML', 

3.1.1 Type expressions 

Following the definition of types and type schemes in ML we consider a structured 
language of types, the principal restriction being the inability to support functions 
with either polymorphic or overloaded arguments: 

T ..- r type variables 
T .... T function types 

p ..  P=>T qualified types 
(f .. VT.p type schemes 

Here t ranges over a. given (countably infinite) set of type variables and P and 
T range over finite sets of predicates and finite sets of type variables rl'3pectively. 
The --t symboJ is treated as a right associative infix binary operator. Additional 
type constructors such as those for lists, pairs and record types will be used as 
required. The set of type variables appearing (free) in an expression X is denoted 
TV(X) and is defined in the obvious way. In partieul", TV(VT.p) = TV(p) \ T. 
It is convenient to introduce some abbreviations for qua.lified type and type scheme 
expressions. In particular, if p == (P => T) and C1 == 'VT.p, then we write: 

Abbreviation Qualified type 
T 0=>T 

'-=>p (.-,P)=>T 
P' => p (P', P) => T 

Abbreviation Type scheme 

P V0.p 
'It.(f V(TU {t}).p 

'VT',C1 V( T U T').p 

With these abbreviations, we will treat the => symbol aB a right associa.tive binary 
operator, with --+ binding more tightly than ::>. ]n addition, if {ail is an indexed 
set of type variables, then we write 'Vaj.p as an abbreviation for 'V{aj },p. As usual, 
type schemes are regarded as equal if they are identical up to renaming of bound 
variables. 
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Using this notation, any type scheme can be written in the form Voi.P =? 1", 
representing the set of qualified types: 

{[To/a;]? => [To/O;]T I Ti E Type} 

where [1";jad is the substitution mapping each of the variables OJ to the corre
sponding type 1"j and Type is the set of all simple type expressions i.e. those 
represented by 1" in the grammar above. 

3.1.2 Terms 

As in (Milner, 1978; Damas and Milner, 1982; Clement et al., 1986), we use a term 
language based on simple untyped A-calculus with the addition of a let construct to 
enable the definition and use of polymorphic (and in this case, overloaded) terms. 
Specifically, the terms of OML are given by the syntax: 

E ::= z variable 
EF application 
>.x.E abstraction 
let x = E in F local definition 

Here x ranges over some given (countably infinite) set ofterm variables. Wewrite 
FV(E) for the set of all free (term) variables appearing in the term E, and write 
[E/x]F for the term obtained by substituting E for each free occurrence of x in 
F. This may involve renaming of bound variables to avoid capt UTe problems. 

Note that we do not provide constructs for the introduction of new overloadings 
such as inst and over in (Wadler and Blott, 1989). As a result, if none of the 
free variables for a given term have qualified (i.e. overloaded) types, then no 
overloading will be used in the expression. 

3.1.3 Typing rules 

A type assignment is a (finite) set of typing statements of the form x: t7 in which no 
term variable x appears more than once. If A is a type Msignment, then we write 
dam A = {x I (x: 0'") E A}, and if x is a term variable with z (j dom A, then 
we write A,x:O'" as an abbreviation for the type assignment Au {x:O'"}. The type 
Msignment obtained. from A by removing any typing statement for the variable 
x is denoted AS'. Any type assignment A can be interpreted as a function which 
~signs a type expression to each element of dom A. In particular, if (x :0'") E A, 
then we write A(x) = u. 
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A typing is an expression of tbe form PIA f- E: (j representing the assertion that 
a term E has type (j when tbe predicates in P are satisfied and the types of free 
varia.bles in E are as specified in the type assignment A. The typing rules for this 
system are given in Figure 3.1. Most of these are similar to the usual rules for the 
ML type system; only the rules (::::}I) and (~E) for dealing with qualified types 
and the (\II) rule for polymorphic generalisation involve the predicate set. Note 
the use of the symbols r, p and (j to restrict the application of certain rules to 
specific sets of type expressions. 

Standard rules: 

Qualified types: 

Polymorphism: 

Local Definition: 

(var) 

(~E) 

(~I) 

(=>E) 

(=>1) 

('IE) 

(VI) 

(let) 

(z:,,) E A 

PIA~z:"
 

PIA~E:T'~T PIA~F:T'
 

PIA ~ EF: T
 

PIAz,z:r'l- E: r 

PIA~>.•.E:T'~T 

PIA~E:".=>p PII-".
 

PIA~E:p
 

P,"'IA~ E:p
 

PIA~E:".=>p
 

PIA~E:Vo.."
 

PIA~ E: IT/o.I"
 
PIA ~ E:" all TV(A) U TV(P)
 

P IA ~ E : Va."
 

PIA~E:" QIA.,z:,,~F:T 

P, QIA ~ (let. - E in F) : T 

Figure 3.1: Typing rules for OML. 

3.2 Understanding type schemes 

In order to find all of the ways in which a particular term E can be used with 
a given type assignment A, we need to find a representation (including a test for 
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membership) for sets of the form: 

((PI") I PIA~ E:,,}, 

where (Pja) denotes a pair consisting of a predicate set P and the type scheme 
a. As a first step in this direction 1 we define a proorder (:5.) on such pairs and 
investigate a number of properties of this ordering.
 

Our principal motivation in the definition of ($) is that a statement of the form
 
(P' I IT') S; (P I,,) should mean that it is possible to use an object which can be
 
treated as having type a in an environment satisfying the predicates in P whenever
 
an object of type u' is required in an environment satisfying the predicates in P'.
 
In such a. case we refer to the former as being more general than the latter.
 

3.2.1 Constrained type schemes 

A typing of the form P j A f- E : a assigns a type scheme a to the term E 
and constrains uses of this typing to environments satisfying the predicates in P. 
Motivated by this observation, and by our comments in the introduction above, 
we introduce a convenient notation for such pairs: 

Definition 3.1 A constrained type scheme is an expression of the form (P Iu) 
where P is a set of predicates and (7 is a type scheme. 

Note that a type scheme (7 may be treated as an abbreviation for the constrained 
type scheme (01")' 

Definition 3.2 A qualified type R => p is said to be a generic instance of the 
constroined type scheme (PIVo;.Q =? T) if there are typeE Ti such that: 

R ft- P, [r,/o,]Q and I' = [T;/O,JT. 

In particular1 note that P =? T is a generic instance of Q => II if and only if P It- Q 
and /I = 1.
 

Every constrained type scheme has at jeast one generic instance: Given a con

strained type scheme (P Iu), where u ::::. Vo;.P' ::::> T and any types T; E Type,
 
then ((P,h/o,]P') => [T,/O;}T) is a generic instance of (Plu).
 

The generic instance relation can be used to define a general ordering (:5.) on
 
constrained type schemes in the following manner:
 

Definition 3.3 The constrained type scheme (Q I '1) i8 said to be more general 
than a constrained type scheme (P 1(7), written (P 1(7) S; (Q I~), if every generic 
instance of (P Ia) is a generic instance of (Q 1'1). 
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Since every type scheme u is equivalent to a constrained type scheme of the form 
(01 u) and every qualified type p is equivalent to a type scheme of the form V0.p, 
the ordering defined above can also he IJsed to compare type schemes and qualified 
types as well as constrained type schemes. For example: 

•	 (P I ,,) ~ (Q I ~) indiCAtes that the type scheme ~ (in an environment 
satisfying Q) is more general than u (in an environment satisfying P). 

•	 (P I u) .$ '7 indicates that '7 is more general than u (in an environment 
satisfying P). 

•	 u .$ '7 indicates that '7 is more general than u in any environment. 

Note that Definition 3.3 is equivalent to saying that (P 1u) 5 (Q 111) jf and only 
if the set of generic instances of (P Iu) is a suhset of the generic instances of 
(Q I'1). With this insight, it is straightforward to show that ($) is a preorder on 
constrained type schemes and that a qualified type p is a generic instance of the 
type scheme u if and only if p .$ (7, 

3.2.2 Examples 

To illustrate the definition of (5), consider the system of type classes descdbed in 
Section 2.2 with a type class Eq that includes the type of integers (i.e. fI- Eq lnt). 
Given this assumption, is is straightforward to show that: 

In! ~ Int ~ (Va.Eq a => a ~ a) ~ (Va. a ~ a). 

The presence of free variables warrants careful attention. Consider the fact that: 

(Va.Eq b => a ~ a) ~ (Va.a ~ a). 

Both type schemes can he instantiated to any type of the form T ---. T, bu t while 
this is possible in any environment for the right hand side, the left haDd side can 
only be instantiated in an environment satisfying Eq h. On the other hand, the 
type schemes (Va.Eq a => a a) and (Va.Eq b => a ---. a) are incomparable: --t 

The first can only be instantiated to the type T --t T in an environment satisfying 
Eq T, but can be instantiated to lnt ---. lnt in any environment (assuming again 
that It- Eq lnt). The 6eoond can be instantiated to any type of the form T ---. T, 

but only in environments satisfying Eq b. 
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3.2.3 Properties of the ($) ordering 

We begin by defining an equivalence relation on constrained type schemes: 

(Plu)"'(QI~) .. (Plu)::;(QI~) A (QI~)::;(Plu). 

Note in particular that, if a = 'in;.? => I. then a ~ 'v'.B;.[,B;fad(P => r) for any
 
distinct variables {3i which do not appear free in o.
 

The following properties are easily established:
 

•	 If p is a qualified type and P is a set of predicates, then (P Ip) ::::' P => p. 

•	 If a is a type scheme and P is a set of predicates, then (P I(7) :5 u. 

•	 If a' ~ u and P' II- P, then (P'I"') ~ (Plu). 

•	 If none of the variables OJ appear in P, then the constrained type scheme 
(P IVa,.p) is equivalent to the type scheme Va,.P =? p. 

The definition of ($) given above is an extension of the ordering relation described 
in (Damas and Milner, 1982). In the latter system, we find that TV(a') 0;: TV(a) 
whenever (J" $" u' and this leads to a simple syntactic characterisation of the or
dering relation between type schemes. This property fails to hold in the current 
system. For example, given a unary predicate symbol Any such that H-- Any a for 
any type at we have: 

(Va.a ~ a) ~ (Va.Any b =? a ~ a), 

where the lype variable b appears free on the right hand side but does not appear 
on the lefl hand side. It is however possible to obtain the following syntactic 
characterisation of the instance ordering provided we make a simple assumption 
about the bound variables used in the type schemes involved: 

Proposition 3.4 SUPPOSf that a = Va;.Q => II, a' = V{3j.Q' => v' and that none 
of thf variablfs {3j appears frff in a, P or P'. Then (P' I0') ~ (P 10) if and only 
if there are typfS 'T; such that: 

v' = hla;]v and P', Q' II- P,[T;/a,]Q. 

The application of a substitution S to a constrained type scheme (P 10) is defined 
by S(P Ia) = (SP ISu). The next proposition shows thaI the ordering between 
constrained type schemes is preserved by substitutions; this is particularly impor
tant for our treatment of polymorphism. 

Proposition 3.5 For any substitution S and constrained type schemes (P I0) and 
(QI~): 

(Plu) ~ (QI~) =? S(Plu)::; S(QI~). 
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3.2.4 Generalisation 

Given a derivation PIA f- E : T', it is useful to have a notation for the most general 
type scheme that can be obtained for E from this derivation using the rules (=> l) 
and (VI) given in Figure 3.1: 

Definition 3.6 The generalisation of a qualified type p with respect to a type as
signment A is written Gen(A,p) and defined by: 

Gen(A.p) = V( TV(p) \ TV(A)).p. 

In other words. if {n;} = TV(p) \ TV(A), then Gen(A,p) = Vn;.p. ThefoUowing 
propositions describe the interaction of generalisation with predicate entailment 
and substitution. 

Proposition 3.7 Suppose that A is a type assignment, P and pi are sets of pred
icates and T' is a type. Then Gen(A, pI => ,) $ Gen(A, P => '1") whenerer pi It- p. 

Proposition 3.8 If A is a type assignment, p is a qualified type and S is a suh
stitution, then: 

Gen(SA,Sp) ~ S(Gen(A,p)). 

Furthermore, there is a substitution R such that: 

RA = SA and SGen(A,p) = Gen(RA, Rp). 

3.2.5 Ordering of type assignments 

The definition of constrained type schemes and the ordering (:5) extends naturally 
to an ordering on (constrained) type assignments. 

Definition 3.9 If A and A' are type assignments and P, pi are sets oj predicates, 
then we say that (P IA) is more general than (P'I A'), written (P' IA'I ~ (P IA), 
if dam A = dam A' and (P'IA'(x)) ~ (PIA(x)) for each x Edam A. 

For much of our work, we will only use two special cases of (Pi IA') :$ (P IA): 

•	 If P = P' = 0, then we write A' :S A, indicating that the types assigned to 
variables in A are more general than the corresponding types ill A' in any 
environment. 

•	 If P = 0, then we write (PI I AI) :S A. This is similar to A' :$ A, but 
restricted to environments wbich satisfy the predicates P'. 
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The results of Section 3.2.1 can be used to establish the following properties about 
the ordering on type assignments: 

•	 The ordering on type assignments is reflexive , transitive and preserved by 
substitutions. 

•	 If A is a type assignment and P is a set of predicates, then (PI A)::; A. 

•	 If A' S; A and P' It- P, then (P' IA') S; (P IA). 

•	 If AI ~ A, then A~ ::; Ar. 

•	 If A'S; A,u' ~uandx ¢ dom A,then (A',x:".') ~(A,x:u). 

3.3 A syntax-directed approach 

The typing rules in Figure 3.1 provide clear descriptions of the treatment of each 
of the symaetic constructs of the term and type languages. Unfortunately, they 
are not suitable for use in a type inference algorithm where it should be possible 
to determine an appropriate order in which to apply the typing rules by a simple 
analysis of the syntactic structure of the term whose type is required. 

In this section, we introduce an alternative set of typing rules with a single rule 
for each syntactic construct in the tenn language. We refer to this as the syntax
directed system because it has the following important property: 

All typing derivations for a given term E (if there are any) have the same 
structure, uniquely determined by the syntactic structure of E. 

We regard the syntax-directed system as a tool for exploring the type system 
of Section 3.1 and we establish a congruence between the two systems so that 
results about one can be translated into results about the other. The advantages 
of working with the syntax-directed system are: 

•	 The rules are better suited to use in a type inference algorithmj having found 
types for each of the subterms of a given term E , there is at most one rule 
which can be used to obtain a type for the term E itself. 

•	 Only type expressions are involved in the matching process. Type schemes 
and qualified types can only appear in type assignments. 

•	 There are fewer rules and hence fewer cases to be considered in formal proofs. 
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I 

A similar approach is described in (Clement et al., 1986) which gives a deterministic 
set of typing rules for ML and outlines their equivalence to the rules in (Damas 
and Milner 1982). 

3.3.1 Syntax-directed typing rules 

The typing rules for the syntax-directed system are given in Figure 3.2. Typings 
and derivations in this system are written with a superscript as in P I A fJ' E : T 

where T ranges over the set of type expressions rather than the set oftype schemes 
as in the typing judgements of Section 3.1. Other than this, the main differences 
between the two systems are in the rules (var)' and (let)' which use the operations 
of instantiation and generalisation introduced in Sections 3.2.1 and 3.2.4. 

(z:o-) E A (P"" T) s: 0
(var)' 

PIA~x:T 

PIA~ E:T'-+T PIA~ F:T' 
(-+E)' 

PIA~ EF:T 

PIAs1x:T'f! E:1' 
(-+1)' 

PIA~ Ax.E:T'-+r 

P IA t! E : l' pI IAS1 x :0' f! F : 1" 0';:: Gen{ A, P ==:- T)
(let)' 

P' IA ~ (let x = E in F) : T' 

Figure 3.2: Syntax-directed inference system. 

3.3.2 Properties of the syntax-directed system 

The following proposition illustrates the parametric polymorphism present in the 
syntax-directed system; instantiating the free type variables in a deri\'able typing 
with arbitrary types produces another derivable typing. 

Proposition 3.10 If P IA f! E: l' and 5 is a substitution, then SP IS.4 f! E: 51'. 

A similar result is established in (Damas, 1985) where it is shown that for any 
derivation A I- E : l' in the usual (non-deterministic) ML type system and any 
substitution S, there is a derivation SA I- E : S1' which can be chosen in such 
a way that the height of the latter is bounded by the height of the former. This 
additional condition is needed to ensure the validity of proofs by induction on the 
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size of a derivation. This complication is avoided by the syntax-directed system; 
the derivations in Proposition 3.10 are guaranteed to have the same structure 
because the term E is common to both. 

The syntax-directed system also has a form of polymorphism over the sets of envi· 
ronments in which a particular typing can be used, as described by the following 
proposition: 

Proposition 3.11 If P IA ~ E: T and Q II- P, then QI A ~ E : T. 

Recall that the basic intuition in the definition of the ordering on type schemes 
was that a' ::; a should mean that, at lea.st for the purposes of type inference, it is 
possible to use an object of type a whenever with an object of type a' is required. 
In much the same way, if the type assignments A and AI are such that A' ::; A (so 
that the type assigned to each variable in A is more general than t he corresponding 
type in A'l, then we would expect that any typing which can be derived using A' 
could also be derived from A. The following proposition establishes a slightly more 
general form of this result: 

Proposition 3.12 If P IA' ~ E: T and (P IA') :s A, then P IA ~ E : T. 

The hypo~hesis (P I A') ::; A means that the types assigned to variables in A 
are more general than those given by A' in any environment which satisfies the 
predicates in P. For example: 

(Eq Intll(==): Int ~ Int ~ Baal}) :s H==): Va.Eq a => a ~ a ~ Baal}. 

Using the result of Proposition 3.12, we can confirm the intuition that it should 
be possible to replace an integer equality function of type Int -. Int -. Bool with 
a generic equality function of type Va. Eq a ::::} a _ a _ Baal in any environment 
which satisfies Eq Int. 

Corollary 3.13 IfPIA'~ E:T and A':S A, then PIA ~ E: 7". 

This follows directly from Proposition 3.12; (P IAI) ::; A' for any type assignment 
A' and predicates P and hence AI::; A implies (PIA')::; A. 

3.3.3 Relationship with original type system 

In order to use the syntax·djrected system as a tool for reasoning about the type 
system described in Section 3.1, we need to investigate the way in which the 
existence of a derivation in one system determines the existence of derivations in 
the other. 
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Our first result establishes the soundness of the syntax-directed system with re
spect to the original typing rules, showing that any derivable typing in the former 
system is aJso derivable in the latter. 

Theorem 3.14 If PIA ~ E: T, then PIA r E: T. 

The translation of derivations in the original type system to those of the syntax
directed system is less obvious. For example, if P IA l- E : u, then it will not in 
general be possi ble to derive the same typing in the syntax-directed system because 
u is a type scheme, not a simple type. However, for any derivation PIIA f! E: T, 

theorem 3.14 guarantees the existence of a derivation P' I A l- E : T a.nd hence 
01 ArE: Gen(A,?' => T') by definition 3.6. The following theorem shows that 
it is always possible to find a derivation in this way such that the inferred type 
scheme Gen(A, pi::::} r') is more general than the constrained type scheme (P Iu) 
determined by the original derivation. 

Theorem 3.15 If P IA l- E : u, then there Ul a set of predicates P' and a type T 

such that P'IA ~ E: T and (PI") 5 Gen(A,P' => T). 

3.4 Type inference 

This section describes an algorithm which calculates a typing for a given term, 
using an extension of Milner's algorithm W to support qualified types. We show 
that the typings produced hy this algorithm are derivable in the syntax-directed 
system and that tbey a.re, in a certain sense, the most general typings possi ble. 
Combining this with the results of the previous section, the algorithm can be used 
to reason about the type system in Section 3.1. 

3.4.1 Unification 

This section describes the unification algorithm which is a central component of 
the type inference algorithm. A substitution S is called a unifier for the type 
expressions T and T' if ST = ST'. 

Theorem 3.16 (Robinson, 1965) There is an algorithm whose input is a pair 
of type expressions i and T' such that either: 

the algorith m fails and there art no unifiers for T and T', 

or	 the algon'thm succeeds u1£th a substitution U as ita result and the unifiers of 
T and T 

f are precisely those substitutions of the form RU for any substitution 
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R. The substitution U is called a most general unifier for rand T ' , and is 
denoted mgu(r,r'). 

In the following, we write T !!., r' for the assertion that the unification algorithm 
succeeds by finding a most general unifier U for r and r. 

3.4.2 A type inference algorithm 

Following lhe presentation of (Remy, 1989), we describe the type inference algo
rithm using the inference rules in Figure 3.3. These rules use typings of the form 

wPITA I- E : T where P is a set of predicates, T is a substitution, A is a type 
assignment, E is a term and T is a simple type expression. The typing rules can be 
interpreted as an attribute grammar in which A are E inherited attributes, while 
P, T and i are synthesised. 

(let)W 

(varr 

(~E)W 

(~l)W 

PI TA i" E: T 

PITAi" 

(x:Vo;.P '* T) E A {3; new 

[{3;/o;JPIA i" x: [{3;/O;IT 

E : T QIT'TA ~ F: T' T'T!!., T' --+ a Q new 

U(T'P,Q)IUT'TAi" EF: Uo 

PIT(A:",x:o)~ E:T anew 

PI TA i" Ax.E: To ~ T 

P'IT'(TA.,X:<7) i" F:T' <7= Gen(TA,P,*T) 

P'I T'TA i" (let x = E in F): T' 

Figure 3.3: Type inference algorithm W. 

The algorithm may also be described in a mOre conventional style as the function 
W defined in Figure 3.4 , the relationship between these two presentations being 
that PITA ~w E: T if and only if W(A,E) succeeds with result (P, T,v) (note 
that the evaluation of W A E will only terminate successfully jf each unification 
is successful). 

One of the advantages of the presentation of type inference in Figure 3.3 is that 
it highlights the relationship between Wand the syntax-directed type system, as 
illustrated by the following theorem: 

Theorem 3.11 If PI TA i" E: T, then PI TA ~ E: To 
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W A. ([{3;jadP, id, IPda,]T) 
where (Va,.P;} T) ; A. 

(3, new variables 

W A (EF) (U(T'P, Q), UT'T, Ua) 
where (T,P,T) ; W A E 

(T',Q,T') ; W(TA)F 
o =: new variable 
U ; mgu (T'T) (T' -+ a) 

W A (>..•. E) ; (P, T, Ta -+ T) 
where (P, T, T) = W (A., .,a) E 

a = new variable 

W A (let. = E in F) ; (P', T'T,T') 
where (P, T, T) ; WAE 

" ; Gen(TA,P => T) 
(PI, T', T') = W (TA.,z:,) F 

Flgure 3.4: The type inference algorithm expressed as an (almost) functional pro
gram. A full functional definition would require a more formal treatment of 'new' 
variables. 
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Combining this with the result of theorem 3.14 gives the following important corol
lary. 

Corollary 3.18 II PI TA I'" E: T, then PI TA r E: T. 

With the exception of (let)W, each of the rules in Figure 3.3 introduces I new' 
variables; i.e. variables which do not appear in the hypotheses of the rule nor 
in any other distinct branches of the complete derivation. Note that it is always 
possible to choose type variables in this way because the set of type variables is 
assumed to be countably infinite. In the presence of new variables, it is convenient 
to work with a weaker form of equality on substitutions, writing S:::::: R to indicate 
that St = Rt for all but a finite number of new variabJes t. In most cases, we can 
treat 5 Rj R as S = R1 since the only differences between the substitutions occur 
at variables which are not used elsewhere in the algorithm. 

This nota.tion enables us to give an accurate statement of the following result which 
shows that the typings obtained by Ware, in a precise sense, the most general 
derivable typings for a given term. 

Theorem 3.19 Suppose that P ISA ~ E: T. Then QITA I'" E: v and there is a 
substitution R such that S ~ RT, T = Rv and P It- RQ. 

Combining the result of theorem 3.19 with that of theorem 3.15 we ohtain a similar 
completeness result for W with respect to the type system of Section 3.1. 

Corollary 3.20 Suppose that P ISA r E: a. Then Q I TA I'" E: v and there is 
a substitution R such that S '" RT and (Pia) <;; RGen(TA, Q =;. v). 

3.4.3 Principal type schemes 

Extending the standard notion of well-typed terms to the current framework, we 
will say that a term E is well-typed under a given type assignment A if there is 
a predicate set P and a type scheme (1 such that P I A I- e : CT. The main aim 
in this section is to investigate the relationship between well-typed terms and the 
type inference algorithm described above. 

The concept of a principal type scheme, originally introduced in the study of 
combinatory logic (Curry and Feys, 1958; Hindley, 1969), is particularly useful for 
this work, corresponding to the most general derivable typing with respect to (:=;) 
under a given type assignment. 

Definition 3.21 A principal type scheme for a term E under a type assignment 
A is a constrained type scheme (P Ia) such that P IArE: a, and (P' Ia') <;; (P Ia) 
whenever pi IA I- E : (1/. 
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The following result gives a sufficient condition for the existence of principal type 
schemes by showing how they can be constructed from typings produced by W. 

Corollary 3.22 If Q ITA ,..W E : v. then Gen(TA, Q '* v) ;" a principal type 
scheme for E under TA. 

Combining this with Corollary 3.20 gives a necessary condition for the existence of 
principal type schemes: a term is well· typed if and only if it has a principal type 
scheme which can be calculated using the type inference algorithm. 

Corollary 3.23 (Principal type theorem) Let E be a term and A an arbitrary 
type assignment. Then the following conditions are equivalent: 

(I)	 E is weI/-typed under A. 

w(2)	 Q I TA I- E: II for some Q and II and there is a substitution R such that 
RTA = A. 

(3)	 E has a principal typing under A. 

It is straightforward to show that (I) implies (2) and that (9) implies (I) using 
Corollary 3.20 and the definition of principal types respectively. OnlJ the proof 
that (21 implies (3) requires a little more attention. Writing TJ = Gen( TA, Q => II), 

the main difficulty is to establish that RTJ ~ (P I0') for any P and (J such that 
P IA,.. E : a. By Corollary 3.20 it follows that R'~ ~ (Pia) for some substitution 
R' such that R'TA = A. However, the only free variables in TJ also appear free 1n 
TA and hence it follows that R~ = R'~ ~ (P Ia) as required. 

The same argument can also be used to solve the problems posed at the beginning 
of Section 3.2. More precisely we can show that 

{(Pia) I PIAI-E:a}={(Pla) I (Pla)~R~}, 

assuming that Q I TA"" E: v, ~ = Gen( TA, Q '* v) and that R is a substitution 
such that RTA = A. (Strictly speaking, our argument shows only that the left hand 
side is a subset of the right hand side. The reverse inclusion can be established 
using the definition of the ordering relation and the soundness results given above.) 

On the other hand! if the type inference algorithm fails, or if there is no substitution 
R which satisfies RTA = A, then Corollary 3.20 allows us to deduce that: 

{(Pia) I PIAI-E:a}=0. 

(Assume that the right hand side is non·empty and argue by contradiction.) 
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3.4.4 Decidability of type inference problems 

We are now in a position to exploit the results presented above to obtain results 
about the type system of OML, and its suitability for concrete implementations. 
Typical problems that we might have Lo deal with include: 

•	 Given a particular term E and a type assignment A, determine whether E 
is well-typed under A. This is (essentially) the strong type inference problem 
.., d"'cribed by (Tiuryn, 1990). 

•	 Given a predicate set P, a type assignment A, a term E and a type scheme 
a, determine whether there is a derivation for P IA I- E : a. 

For practical purposes, it is essential that there is an effective algorithm which can 
be used to answer these questions. 

From the form of the type inference algorithm described here it is clear that the 
process of determining whether a given term has a principal type scheme under a 
particular assumption is indeed decidable, given the effective algorithm guaranteed 
by Theorem 3.16 for calculating most general unifiers. By Corollary 3.23, this is 
equivalent to deciding whether a give term is well-typed and hence tbe strong type 
inference problem for OML is decidable. 

There are two cases to consider for the second problem. IT there is no principal 
type for a term E under· the assignment A, then the set of derivable typings of the 
form P IA I- E : a is empty as above - there are no derivations of this form. 

For the second case, if Q I TA I-w E : v for some Q, T and v and there is 
a substitution R such that RTA = A then the problem of discovering whether 
P I A I- E : a reduces to that of determining whether (P I (1) .:S Rt]. Writing 
a = Voi.QI => v' and a l = R't] = Vf3j.QII => where the variables OJ do not VII 

appear free in a' or P, this is equivalent to finding types Tj such that: 

v' ~ h//1j]v" and P, Q' It- h/l1ijQ". 
If we write lid ~ TV(v') n {/1;} and {6,} ~ {/1j} \ TV(v'), then we can solve 
the first equation by finding types T; such that v' = [T;!'n]V". Such a solution (if 
it exists) is uniquely determined and can be calculated using a simple matching 
algorithm. It remains to find types Tf' such that P, Q' fr [Tt fbI, rAli.!:] Q". 

Talcing a moment to reorganise the notation used here, the problem of determining 
whether a particular typing judgement P IA I- E : a can be derived. is decidable if, 
for any predicate sets Rand R' and any set of variables ai, it is decidable whether 
there are types Tj such that R fr h/adR'. In fact) for reasons we describe in 
Section 5.8.2, we will usually only be interested in terms for which the principal 
type scheme Gen(TA, Q => v) satisfies TV(Q) ~ TV(v). In this case, we require 
only that determining whether R fr R' is decidable for any choice of Rand R'. 
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3.5 Related work 

As we have already noted, the results described in this chapter a.re based very 
firmly on the work of Milner and Damas on the development of type inference for 
ML. The possibility of extending their system to include support for overloading 
was actually suggested by Milner (1978) but left as a topic for further research. 
One early approach was described by Damas (1985), allowing a single va.riable to 
be treated as ha ving several different types in any given type assignment. The main 
weakness with this system is that it is no longer possible to represent all typings 
of a term by a single principal type scheme, leading to a potential combinatorial 
explosion for typing terms with local definitions. 

Type inference in the presence of constraints on types (corresponding to our use 
of predicate sets in the typing rules for OML) has been widely studied in the 
particular ca.'e of subtyping (Mitchell,1984, 1991; Fuh and Mishra, 1989,1990). In 
contrast with OML , each of these systems includes support for implicit coercions, 
an issue we disc uss further in Section 6.3. Each of these papers uses a form 
of untyped >.-calculus without local definitions, although the more recent papers 
include some comments about how these extensions might be dealt with. There 
is no provision for including constraints as part of the type of an ohjed, although 
Fuh and Mishra (1990) certainly hint at this idea. 

Other interesting examples of type inference in the presence of constraints include 
the work of Ohori and Buneman (1988, 1989) on type systems for object oriented 
programming and database applications and of Thatte (1991) on type isomor· 
phisms. Adapting the results from earlier verBions of our work presented in (Jones 
1991b, 1992a), Odersky (1992) has described another example which uses type 
constraints to record information about sharing, motivated by insights from the 
study of linear logic. Systems of type inference with constraints have also been 
used to explore type systems for polymorphic references and assignment (Leroy 
and Weis, 1990; Wright 1992). 

Extending and generaUsing the work of Kaes (1988), Wadler and Blott (1989) 
introduced the use of predicated types in their description of type classes. Using 
type class constraints in type expressions and providing rules which could be used 
to move constraints on a typing into the type of an object, Wadler and Blatt were 
able to give a satisfactory treatment of polymorphic local definitions within their 
framework. Further developments of this work were described in (Blott, 1991) and 
have been used as a basis for the static semantics of Haskell given in (Peyton Jones 
and Wadler, 1992). 

A closely related system was described by Smith (1991) whose main contribution 
was to show how the Wadler and Blott framework might be extended to include 
subtyping with implicit coercions. Another significant difference in Smith's work 
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was to permit only satisfiable sets of constraints in the type of an object. Using 
a rather stronger notion of well-typed terms, Volpa.no and Smith (1991) showed 
that typability in the Wadler and Blott system is undecida.ble (without restrictions 
sucb as those used in Haskell on the form of overloading that is permitted). We 
discuss this more fully in Section 6.2. 

An alterna.tive formulation of type inference for type classes in Haskell was de
scribed by Nipkow and Snelting (1991) using a combination of Damas·Milner typ~ 

ing and order sorted unification which provides sufficient conditions to gua.rantee 
the existence of principal types. Unfortunately, it is not clear how their framework 
might be extended to our more general system. 

In a recent paper, Kaes (1992) outlines a general purpose approach to systeIl1S of 
constrained type inference which is very similar to the framework described here, 
based on essentially the same set of typing rules as used for our presentation of the 
syntax-directed system in Section 3.3. However, much of Kaes work is concerned 
with establishing the decidability of particular systems of predicates. 
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Chapter 4 

Evidence 

\Vhile the results of the preceding chapter provide a satisfactory treatment of type 
inference with qualified types, we have not yet made any attempt to discuss the 
semantics or evaluation of overloaded terms. For example, given a generic equality 
operator (==) of type Va.Eq a => a --+ a --+ Baal and integer valued expressions 
E and P, we can determine that the expression E === F has type Bool in any 
environment which satisfies Eq Int. However, this information 1S not sufficient to 
determine the value of E ;::= F; this is only possible if we are also provided with 
the value of the equality operator which makes Int an insta.nce of Eq. 

OUf aim in the next to chapters is to present a general approach to the semantics 
and implementation of objects with qualified types based on the concept of evi
dence. The essential idea is that an object of type 11' =} f7 can only be used if we 
are also supplied with suitable evidence that the predicate 11' does indeed hold. In 
this chapter we concentrate on the role o( evidence for the systems o( predicates 
described in Chapter 2 and then, in the following chapter, extend the: results of 
Chapter 3 to give a semantics for OML. 

As an introduction, Section 4.1 describes some simple techniques used in the im
plementation of particular (orms of overloading and shows why these methods 
are unsuitable for the more general systems considered in this tbesis. Our solu
tion, presented in Section 4.2, is to extend the language of terms with constructs 
that permit the use and manipulation o( evidence values, exploiting the symme
try between typed calculi and simple logical systems to guide us to a satisfactory 
(ormulation. The benefit o( this approach is that it provides, at the very least, a 
good indication that Our definitions are natural (in an informal sense) and hence 
that they will not cause unnecessary complications in subsequent work. Similar 
ideas are used to motivate the extension of the predicate entailment relation to 
describe the construction o( evidence as described in Section 4.3. 

The definitions for the treatment o( evidence can also be motivated by more prac

37 



tical concerns. Section 4.4 outlines the range of possible choices of evidence in 
particular app}jcations and, in the following sections, we show how established 
techniques used in the implementation of type classes (Section 4.5) and subtyp
ing (Section 4.6) can be treated as particular instances of our a.pproach. For the 
special case of the sy"tem of extensible records, we have been unable to find any 
previously documented implementation that makes use of analogous concepts, an 
observation which may at first sight appear to contradict our claims about the 
generality of the concept of evidence. However, as described in Section 4.7, choos
ing suitable evidence values for the system of predicates outlined in Section 2.4 
leads us to discover a promising new representation for extensible records. 

4.1 Simple implementations of overloading 

In simple cases, the type of a particular term may be sufficiently well determined to 
enable an occurrence of an overloaded function to be replaced by the appropriate 
implementation. We might, for example, treat the expression 2 == 3 a.s if it had 
been written as primEqlnt 2 3 where primEqlnt is the primitive equality test on 
integers with type Int -.. Int -.. Bool. 

The situation is more complicated when overloading is combined with polymor
phism, since it may not always be possible to determine completely which version 
of an overloaded operator is required in a particular context. For example, recall 
the definition of the member function in Section 2.2: 

member x [] Fa.lse 
member x (y:ys) x==y I I member x ys 

In a large program, this function might be used with many different types of 
list, each requiring a different implementation of (--) and so requiring a different 
version of member for each case. Implementations based on this approach win be 
considered in more detail in Section 6.1.5. 

Another possibility is to adopt a run-time representation that uses tags to indicate 
the type of each object. Primitive overloaded functions can be implemented by 
scrutinising the tags of its arguments and applying the appropriate definition for 
values of that type. [n this case, the role of the type system is simply to ensure 
that the evaluation of "'a well-typed expression does not go wrong" in the sense 
that no primitive overloaded operator is ever a.pplied to a value for which it is not 
defined. The implementation of 'polymorphic equality' in Standard ML of New 
Jersey (Appel, 1992) is based on this technique a.nd a similar proposal (which a.lso 
supports the use of other common overloaded operators) has been suggested for 
use in future version" of Haskell (Wadler, 1991). 
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An interesting variation on this technique would he to store the implementation 
of frequently used overloaded operators as part of the concrete representation of 
each run-time object. This would work particularly well in systems such as tbose 
described by (Johnsson, 1987; Peyton Jones, 1992) where each object includes a 
pointer to a vector of code addresses that could be used to store entry points to the 
implementation of specific overloaded operators. This would help to reduce some 
of the 'interpretive overhead' associated with the use of tagged data structures 
and would open up the possibilities for further optimisations. For example, the 
equality test stored with a.n empty list need not be the full definition of equality 
on lists, but simply a test to determine whether a second list is empty or not. 

The main problems with these techniques are as foUows: 

•	 Only certain kinds of overloading can be dealt with in this way. Inparticular, 
it is not suitable for functions (or as a special case, constant values) for 
which the required overloading cannot be determined from the type of its 
arguments. For example, a function f :: 'Va.Int ~ a => Int -+ a cannot be 
implemented in this way since it is not possible to evaluate expressions of the 
form f n (for integer values n) without more infonnation about the context 
in which this expression appears to indicate what the result type should be. 

•	 The need to include type information in the representation of an object may 
compromise run-time perfonnance. 

• One of the arguments to an overloaded function must he (at least partially) 
evaluated in order to determine which implementation of the overloaded 
function should be used. This may not be acceptable in the context of a 
non-strict language where the implementation for a particular instance of an 
overloaded function may not itself be strict in the argument that is evaluated. 

For our purposes, the first of these three problems is by far the most significant 
since it implies that we cannot expect to find a general implementation of qualified 
types based on the methods described in this section. On the other hand, having 
identified this problem, it seems reasonable to expect that the implementation of 
a function with a qualified type will (in general) require additional parameters to 
provide information about the context in which its result will be used. 

4.2 Overloading made explicit 

There is a well known relationship, often described as the Curry-Howard isomor
phism (Howard, 1980), between the terms of simply typed ~-ca.lculus and the 
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derivations of propositions in a formulation of propositional calculus. In particu
lar, the use of hypotheses in a derivation corresponds to occurrences of variables in 
lambda-terms, while the type of each term can be identified with the proposition 
established by the corresponding derivation. We can highlight this relationship by 
writing the inference rules for the two systems side by side as follows: 

A,z:O'f-x:O' A,S f-S 

Af-E:a---+T Af-F:a Af-S=>T Af-S 
A f- EF: r Af- T 

A,x:a f- E: T A,Sf- T
 

A f- AX: a.E : 0' ---+ T Af-S=>T
 

In particular, the rule for typing applications corresponds to the logical rule of 
modus ponens, while the rule for typing abstractions yields a form of the deduction 
theorem. Another significant feature of the correspondence is that the familiar 
concepts of /3. and 1J-reduction can also be interpreted as proof-theoretic reductions 
between derivations. 

In the terminology of (Girard, Lafont and Taylor, 1989), the Curry-Howard iso
morphism highlights implicit symmetries between the language of terms and the 
underlying logic, and they argue that the design of each of these facets should be 
influenced by consideration of the other. As a further illustration, the polymorphic 
A-calculus, originally formulated by Girard (1971) and independently by Reynolds 
(1974), includes constructs for type application and abstraction, corresponding 
respectively to the rules for eliminating and introducing (second order) universal 
quantification in a formulation of predicate calculus: 

A f- E : '1t.a A f- '1t.S
 
A f- Er: [r/t]a A f- [T/tIS
 

A f- E : a t rt TV(A) Af-B tnotfreein A 
A f- >.t.E : '1t.a A f- '1t.S 

The principal feature that distinguishes a system of qualified types from other 
typing disciplines is the typing rules (=> E) and (=>1). 

PIAf-E: .. =>a PH-"(=>E) P, .. IAf-E:.,. (=>1)
 
PIAf-E:a PIAf-E: .. =>.,.
 

Considering the correspondence between terIDB and logics illustrated by the exam
ples above leads us to a natural extension of the term language that makes the 
role of evidence explicit. The main features of this system are as follows: 
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•	 Evidence expressions: A language of evidence erpn:ssioJ1.9 e denoting evi
dence values, including a (countably infinite) set of evidence variables v, dis· 
joint from the sets of term and type variables. The set of evidence variables 
appearing (free) in an abject X (in particula.r, in an evidence expression) 
will be denoted EV(X). 

•	 Evidence construction: A predicate assignment is a collection of elements 
of the farm (v: 1r) in which no evidence variable appears mare than once. 
TlJe It- relation is extended to a three place relation P It- e: 1r and we treat 
this with mare operational significance, as an assertion that it is possible 
to 'construct' evidence e for the predicate 1r in any environment binding 
tlJe variables in the predicate assignment P to appropriate evidence values. 
Notice that predicates now playa similar role for evidence expressions as 
types for simple 'x-calculus terms. 

The domain of a predicate assignment P is the set of all evidence variables 
appearing in P and will be denoted by dom P. 

•	 Evidence abstraction: The use of (=}I) corresponds to an evidence ab
straction of the form ,xv: 1r. E. 

P,V:1I",P'IA~E:q 

p,rlA ~ AV:1I".E: 11" '* q 

Informally, an implicitly overloaded term E' of type 1r => u is represented by 
a term of the form ,xv: 1r.E with explicit treatment of overloading where v 
is an evidence variable and E is a. term of type u corresponding to E' using 
v in each place where evidence for 11" is needed. 

•	 Evidence application: In a similar way, the use of (=>E) corresponds to 
an evidence application of the farm Ee: 

PIA~ E:1I",*q Pit- e:1I"
 

PIA~Ee:q
 

Informally, an object of type 11' => u can be used. as an object of type u by 
applying it to suitable evidence for 11'. 

•	 Evidence reduction: To describe the way that evidence values are manip
ulated during the execution of a program, the standa.rd rules of computation 
must be augmented by a variant of .a-reduction for evidence abstraction and 
a.pplica.tion: 

(kE)e t>p, [e/v]E. 
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With the explicit use of evidence expressions, the order of the predicates in the 
type of an object (and hence the order of the evidence parameters taken by an 
overloaded value) can no longer be ignored; if E has type "'1 ::::? 1r;l => t7 and el, 

e2 are evidence expressions for 1r1 and 1r2 respectively, then Eel C2 will be a term 
of type 0, but the tenn Ee2el will not (in general) be well-typed. Fortunately, we 
can easily accommodate the necessary changes by dropping the assumption that 
the (_, _) operator on predicates and predicate assignments is commutative and 
idempotent, treating it simply as an associative binary operator with a left and 
right identity 0. In simpler terms, we work with lists of (labelled) predicates rather 
than predicate sets as in Chapter 3. 

The only place that we have actually treated (..., _) as anything other than a purely 
formal symbol was in the formulation of (=*"I) in Figure 3.1 where we wrote P, 1r to 
denote a predicate set containing the predicate 1r. With the weaker interpretation, 
this would require 1f to be the last element in a list of predicates. This is easily 
remedied by writing the corresponding predicate assignment in the form P, 11: 1f, pI 
as in the second version of (=*" I) above. 

In practice, it is convenient to blur the distinction between sequences and indi
vidual objects. In particular, the followiug abbreviations will be very useful in 
subsequent work: 

Object Expression Abbreviation 
Predicate assignment Vl: 1fl,···,V.. :1f. v:P 
Evidence assignment el:1rl, •• ·, ell :1r.. e:P 
Qualified type 1rl =*" ... => 1rII => P P,,*p 
Evidence application ( (Ee,) .. .)e. Ee 
Evidence abstraction A", Av•. E Av.E 

where P = 1rl,"" 1r. is a list of predicates, v = V:L, ••• , v.. is a list of evidence 
variables and e = e}, ... , ell is a list of evidence expressions. When writing a 
predicate assignment in the form v: P we assume implicitly that v does not include 
any duplicates. In particular, for a predicate assignment of the form v: P, W : Q, 
we assume that the sets of variable in v and ware disjoint. When there is no 
particular need to explicitly mention tbe domain of a predicate assignment we will 
often write just P in place of v: P, and we will also allow P to be treated as a list 
of predicates without explicitly removing the evidence variables. 

4.3 Predicate entailment with evidence 

The properties of predicate entailment described in Chapter 2 must also be ex
tended to deal with predicate assignments and evidence expressions. A suitable 
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set of rules is given in Figure 4.1, most of which are straightforward generalisations 
of the original rules for predicate entailment given in Figure 2.1. 

Standard properties: (id) 

(tenn) 

(fst) 

(snd) 

(univ) 

(trans) 

(close) 

Evidence variables: (evars) 

Derived rules: (rename) 

(dist) 

(cut) 

v:PlI-v:P
 

v:P1I-0
 

v:P, w: Q II- v:P
 

v:P,w:QII- w:Q
 

v:PII-e:Q v:PlI-e':R 
v:pft- e:Q,e':R 

v:pft- e:Q v':Qft- e':R 

v:P II- [e/v'Je':R 

v:PII- e:Q 

v:SP II- e:SQ 

v:P II- e: Q 
EV(e) <;; v 

v:PII- e:Q
 

woP II- [w/vJe:Q
 

v:Pft-e:Q v':P'ft-e':Q' 

v:P,v':P' ft- e:Q,e':Q' 
v:Pft- e:Q v:P,w:Qft-e':R 

v: P II- [e/wJe':R 

Figure 4.1: Rules for predicate entailment with evidence. 

Note that there are two rules which do not have counterparts in the original system 
with implicit overloading: 

•	 Rule (evars) specifies that the only evidence variables that can appear in 
the evidence expression e given by an entailment P ft- e: 1f are those which 
appear in tbe domain P. This is analogous to the result that all of the 
free variables appearing in a term that is well-typed under a given type 
assignment A must appear in the domain of A. 

•	 Rule (rename) can be used to rename the evidence variables bound in a par
ticular predicate assignment and can be thought of as a form of O'·conversion. 
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This rule will often be used implicitly to justify the process of combining two 
entailments such as v: P It- e: 0 and Vi: pi It- el : Of in the rule (dist); if any 
of the variables in Vi clash with those in v, then we can pick new evidence 
variables w' and obtain v: P, Wi: pi It- e: 0, [w' / v'] e': Q'. 

In particular applications, we will usually assume that all of the rules in Figure 4.1 
are (implicitly) included as part of the definition of It-. 

4.4 Evidence, predicates and implementations 

Having motivated the definition and use of evidence in a fairly abstract way it 
is important to examine its role in particular applications of qualified types. On 
an informal level, an overloaded value of type Vo i .? => , can be interpreted as 
a function I mapping (,3,ch collection of predicates of the form [T,/cr.]? to an 
implementation with type [,,/a;],. Quite how much of I is dealt with at compile
time (type-checking) and how much is implemented at Cllll·time varies according to 
the choice of evidence values that provides an intermediate step between predicates 
and implementations. 

I 
Predicates Implementations 

~~
 
Evidence 

(S and V are the static and dynamic components of I respectively.) In the simplest 
(and most abstract) case we can use the predicates themselves as evidence values 
taking the static component S to be the identity and setting V = I. For example, 
we might implement the function J :: Va.lnt ~ a => lnt -+ a mentioned in 
Section 4.l by snpplying the predicate lnt ~ a (with a bound to the appropriate 
type) as an additional parameter from which the required overloading can be 
determined. 

Moving towards the other extreme, we might use terms as evidence values, taking 
S as the function that maps each predicate of the form Eq, to a term representing 
the equality function on objects of type ,. In this case, the dynamic component 
V is (essentially) the identity. 

These two extremes highlight a distinction made by Thatte (1992) between pre
scriptive and descriptive type systems i.e. those in which meaning and well-typing 
can be treated independently and those in which they are inseparable. As Tbatte 
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points out, any system in which the overloading of values cannot be completely 
determined during type checking will include elements of the prescriptive approach 
(in other words, having a non-trivial dynamic component) and hence most will fall 
somewhere between these two alternatives. For example, Thatle giVe! a (largely 
prescriptive) treatment of type class overloading based on the use of types as 
evidence values. The static component is the function that maps each class con
straint of the form eTta the type T. The dynamic component is described using 
a polymorphic fixed-point operator and a new typecase construct to allow the 
definition of functions from types to values by 'pattern matching' on the form of 
a type expressions. 

In the following sections we describe some specific (descriptive) choices of evidence 
values for each of the systems of predicates described in Chapter 2. 

4.5 Type classes and dictionaries 

In this section, we provide a brief indication of the use of evidence in the imple
mentation of systems of type classes as described in Section 2.2, a topic we discuss 
in much greater detail in Chapters 7 and 8. 

Following (Wadler and Blott, 1989) we refer to the evidence for a predicate of the 
form eTas a dictionary. In the special case of the dass Eq there is only one 
member function (the equality operator (=-») and an obvious choice of dictionary 
for a predicate Eq a is an equality test function with type a -) a -) Bool con
structed using the definitions given in the corresponding instance decla.rations. For 
example, we might use primEqlnt as evidence for Eq Int and eqLi8t primEqlnt 
as evidence for Eq [Int] where eqList is the function: 

eqList .. (a -) a -) BoolJ -) [a] -) [a] -) Bool 
eqList eq [] [] • True 
eqList eq [] (y:y.) False 
eqList eq (x: xs) (] • False 
eqList eq (x: xs) (y:y.) ~ eq x y lk eqList eq xs Y8 

derived directly from the instance declaration for equality on lists. 

Type classes with more than one member function can be dealt with using a 
dictionary that includes implementations for each member. The member functions 
themselves can be implemented as selector functions that extract the appropriate 
value from a dictionary. Superclasses can also be dealt with in this framework; 
for example, we might store a dictionary for an instance Eq a as a component of 
the dictionary for the instance Ord a. These extensions are discussed more fully 
in later chapters. 
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The rules for predicate entaihnent for type classes given in Section 2.2.4 can be 
extended to describe the construction of dictionaries. As a first step we use type 
class environments containing elements of the form: 

Class P ~ 7f	 representing a class declaration. Given a dictionary d : 1f, 

the superclass dictionary for a predicate 1f' appearing in P 
is denoted d:rr'. 

D: Inst P ~ 11' representing an instance declaration. D is a dictionary con
structor function that maps a collection of dictionaries e: P 
to a dictionary De for 11'. 

Dictionary expressions are written using the grammar: 

d ::= v dictionary variable 
d.1I' 8upe1-dass selection 
De dietiona1"y consh'Uction 

and the rules for dictionary construction with respect to an arbitrary type class 
environment r are given in Figure 4.2. 

Pit- d:,,(sup,r)	 (Class Q,,,-', Q' =>,,-) E r 
Pit- (d.,,-'):,,-'
 

Pl+-e:p l
 

(inst)	 (D:Jnst P' =>,,-) E r 
P It- De:,,

Figure 4.2: Rules for type class entailment. 

For exa.mple, the type class environment corresponding to the instance declarations 
in Section 2.2 is: 

(Class 0 => Eq a, 
Class (Eq a) => Ord a, 
primEqInt :Inst 0 ~ Eq Int, 
eqChar: Inst 0 ~ Eq Char, 
eqList :lnst (Eq a) => Eq la]} 

where eqList is the function defined above and eqChar is the function: 

eqChar Char -) Char -) Bool
 
eqChar c c 1 primEqInt (ord c) (ord c')
 

derived from the instance declaration for equality on characters. In this simple 
case, the equality operator can be implemented as an identity function: 

46 



(D") (a -> a -) Bool) -) (a -) a -) Bool) 
(==) oq • eq 

As a more interesting example, the II.QIDber function can be implemented using: 

member .. (a -) a -) Bool) -) a -> [a] -) Bool 
member eq x [] • False 
member eq x (y;ys) • eq x y II member eq x ys 

4.6 Subtyping and coercion 

This section outlines a treatment for systems of subtyping based on the approach 
described in Section 2.3 using coercion Junctions mapping values of type q to 
values of type cr' as evidence for predicates of the form q ~ IT. Instead of working 
directly with the coercions themselves we use a language of coercion expressions 
with syntax: 

e ::= v coercion variable 
id trivial coercion 
e --+ e Junction coercion 
eo e composition of coercions 

The rules used to define the entailment rela.tion in Figure 2.3 are extended to those 
in Figure 4.3 which also de;cribe the ca.lcula.tion of the coercion corresponding to 
a given predicate. 

(...fi) Pit- id:lT ~ IT 

Plt-e:a~b Plt-f:b~c 
(trans-~) 

PIt-(foe):a~c 

Plt-e:a~c Plt-f:d~b
(arrow) 

Pit- (e --> I):(c --> d) ~ (a --> b) 

Figure 4.3: Rules for structural subtyping with coercion. 

Writing C for the set of all coercions we define the meaning of a coercion expression 
(with respect to an environment,., mapping coercion variables to elements of C) 
using: 

[v) = ~[v]
 

[id) = AU
 
If --> 9) = AUx'[9I(h(U) x))
 
If 0 91 = k[91(UI x)
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Using the obvious definitions, it is straightforward to establish the soundness of 
the rules in Figure 4.3 with respect to this interpretation. 

4.7 Implementation of extensible records 

Type systems with extensible records have been studied by a number of researchers 
but there have been surprisingly few attempts to describe how these systems might 
be dealt with in concrete implementations. 

If the type of a given record is fully determined at compile time, it may be possible 
to arrange for the values in each field to be held in contiguous storage locations, 
with the fi~ld corresponding to a given label at a fixed offset from the start of the 
record. For the general case, it is common to represent records as lists of label and 
value pairs; extracting a value from a record involves scanning the list to locate a 
pair with a. given label. In principle, this might fail if no appropriately labelled j~ 

found, bm in practice. the type system can be used to ensure that this does not 
happen. 

Recently, Remy (1992) has proposed a representation that stores the values held in 
a record a~ an array together with a pointer to a header (shared by other records 
with the 'same field structure) that is used to determine offsets into the array for 
each label. Extending a record with a new field is potentially expensive since it 
requires the calculation of a new header. 

Independently of the work described here, Ohori (1992) gives a compilation method 
for a calculus of records which has much in common with the approach described 
below. Other than this, we are not aware of any previous work that makes use of 
concepts analogous to evidence in the implementation of extensible records. One 
simple (prescriptive) approach would be to consider a system in which the evidence 
for a predicate of the form (r lacks l) is the function: 

(_11=_) :: 'It. r ~ I ~ (r II: t) 

In a similar way, evidence for a predicate of the form (r has 1: t) might be given 
by the pair of functions: 

(_ \ I) :: r ~ r \ I 
(_.1) :: r~t 

While reasonable from a theoretical point of view, these choices are not particularly 
useful for practical work since they do not say anything about how these operations 
are actually implemented. 

In the rest of this section we outline a new implementation of extensible records 
that provides constant time selection and relatively inexpensive implementations of 
extension a.nd restriction. In particular, there is no need to inclnde any information 
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about labels (either directly or as part of some header) in the representation of a 
record. We retain the efficiency of the implementation of records in the simple case 
where all the fields are known, with the additional benefit of supporting proper 
extensible records. 

This representation was discovered by considering how the rules for predicate en
tailment given in Figure 2.4 might be extended to describe the construction of 
evidence. Whilst it would be wrong to draw any firm conclusions from this sin
gle example, we hope that similar considerations of evidence values might also 
be helpful in the discovery of concrete implementations for other applications of 
qualified types. 

We assume that all records can be represented by arrays of equally sized cells. The 
fields in a record will be stored in such an array in increasing order of their labels. 
This relies on the choice of an arbitrary total order < on the set of labels - we 
illustrate this here with a lexicographic ordering. As a simple example, the record 
(w = 2, Y = 3, % = True) might be represented by: 

~~ True 3I I 
There is no need to include representations for the labels since the positions of each 
field are completely determined by the set of labels {w, :x, y} and this informatjon 
can be obtained from the type of the record, (w : Int, y : Int, :x : BOQ/). More 
precisely, if L gives the set of labels in a record, then the position at which the 
value associated with label I can be found is given by pas I L, the number of 
elements in the set {1' I 1/ E L, l' < I}. 

The following diagram illustrates the process of extending a record with a new 
field: 

I ... ~I ... [:IEI ... s::=J 
/ / \ \ 

1-'.. · I~I ... ~ ... I~ 

Note that all of the fields with lab€'ls that are less than that of the field being in
serted remain in the same position in the array while the other entries a.re shifted 
up one position. If the set of labels in the original record is L, then a field labelled 1 
should be inserted in position pos I L as defined above. (For simplicity, we assume 
that the number of fields in a given record is stored as part of the concrete repre
sentation for record values. This ensures that the implementation can determine 
how much storage space should be allocated to hold the extended record.) The 
reverse process can be used to remove a field from a given record. 
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Suitable forms of evidence for the three kinds of predicate introduced in Section 2.4 
are as follows: 

•	 The evidence for a predicate of the form record r is the set of labels appearing 
in r which, by the comments above, completely determines the structure of 
records of type r. 

•	 Tl].e evidence for a predicate of the form r has I: t is an integer that specifies 
the position of the field labelled I in a record of type r. 

•	 The evidence for a predicate of the form r lacks I is an integer that gives the 
position at which a field with label I could be inserted into a record of type 
r. 

The definition of predicate entailment in Figure 2.4 is extended to describe the 
calculation of evidence values in Figure 4.4. Note that all of the comparisons 
between labels can be evaluated during the type checking process (so there is no 
need for a runtime representation of labels or of <). 

The only kind of predicates used in the (qualified) types of programs involving 
records are those of the form r has I : t and r lacks I and hence the form of 
evidence expressions needed for the execution of a program can be described by 
the syntax: 

e .. - 0 zero offset 
n offset tJanable 

e +1 successor 
e - 1 predecessor 

In the special case of a record whose structure is completely determined at compile
time, simple constant folding techniques can be used to calculate integer offsets 
for each field without any run-time cost. 
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Record formation: P H-- {} :record 0 
P If- L: record r I <f- L 

PH-- LU {/}:record (r 1/:1) 

P If- L: record r IE L 
PH-- L \ {I} :record r \ I 

Absent fields: PH-- 0: 0 lacks I 

P H-- L:record r \ I 

PH-- n:(r \ I lacks I) 

PH-- n:(r lacks I) 

PH-- m:(r \ I' lacks I) 

n=poslL 

{n,m-
n - 1, 

I < I' 
fI < 1 

PH-- n:(r lacks I) 

P H- m: « r II': I') lacks I) 
{m- n, I < I' 

n+l,ll<l 

Present fields: 
PH-- L:record (r 11:1) 

PH-- n:«r 11:1) has 1:1) 

P H- n: (r has I: I) 

PH-- m:(r \ {,·has 1:1) 

n=poslL 

{n,m-
n  1, 

I < I' 
I' < 1 

PH-- n:(r has 1:1) 

PH-- m:«(r 11':1') has 1:1) 
{ 

m= 
n, I < I' 
n+l,I'<1 

Figure 4.4: Predicate entailment for extensible records wjth evidence. 
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Chapter 5 

Semantics and coherence 

The principal aim of this chapter is to show how the concept of evidence can be 
used to give a semantics for OMI, progri'lffis with implicit overloading. 

Outline of chapter 

'rVe begin by describing a version of the polymorphic 'x-calculus called Of' that 
includes the constructs for evidence application and abstraction de::criued in the 
previous chapter (Section 5.1). One of the main uses of OP is as the target of 
a translation from OML with th~ semantics of each OML t,erm being defined by 
those of its translation. In Section 5.2 we show how the OML typing derivations for 
a term E can be interpreted as OP derivations for terms with explicit overloading, 
each of which is a potent.ial translation for E. It is immediate from this construc
lion that every well-typed OML term has a translation and that an translations 
obtained in this way are well-typed in OP. 

Given that each GML typing typically has many distinct derivations it follows that 
there will also be many distinct translations for a given term and it is not clear 
which should be chosen to represent the original term. The OP term corresponding 
to the derivation produced by the type inference algorithm in Section 3.4 gives one 
possible choice but it seems rather unnatural to base a. definition of semantics on 
any particular type inference algorithm. A better approach is to show that any 
two translations of a term are semantically equivalent so that an implementation 
is free to use whichever translation is more convenient in a particular situation 
while retaining the same, well-defined semantics. In the words of (Breazu-Tannen 
et al., 1989), we need to show that 'the meaning of a term does not depend on the 
way that it was type checked', a property that they call coherence. 

As we demonstrate in Section 5.3, there are examples for which a term may have 
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semantically distinct translations and hence we cannot hope to establish a general 
coherence theorem. Instead, we settle for the less ambitious goal of disoovering 
oonditions that are sufficient to ensure that the semantics of a term are well
defined. Tests for these conditions would then be included as part of the type 
checking phase in a concrete implementation so that we reject not only those 
programs that do not type-check, but also those for which coherence cannot be 
guaranteed. 

As part of this process, we need to specify exactly what it means for two terms to be 
equivalent. Rather than working with any particular semantic model, Section 5.4 
gives a syntactic definition of (typed) equality between terms. This means that our 
results are valid in a model for which the axioms and rules used in the definition 
of equality are themselves valid. Clearly, it is preferable to make thIS definition 
as weak as possible. permitting a larger class of models, while at the same time 
retaining enough structure to give a useful and sensible characterisation of the 
equality between terms. One limitation of our framework is that we include an 
axiom for l3-conversion, ()"z.E)F = (F/z]E, which is not sound in modeffi of 
the .\-calculus with call-by-value semantics and hence our results are restricted to 
languages with lazy or call-by-name semantics. We discuss this point more fully 
in Section 5.9. 

We have already seen how the type inference algorithm can be used to describe 
the relationship between the set of all OML typings for a term and a particular 
principa.l type scheme. It therefore seems sensible to extend the results or Chapter 3 
in an attempt to de$cribe the relationship between arbitrary translations and the 
translation determined by this algorithm. As a first step, Section 5.S describes 
a semantic interpretation for the ordering relation ($) used extensiwly in our 
treatment of type inference. The basic idea is that an ordering of the form (7 2: (7' 

can be described by a conversion; a closed OP term C of type (7 -+ (7'. The only 
effect of a conversion is to change the way in which evidence parameters are dealt 
with so that, if E is a term of type (7, then CE gives essentially the sa.me term, 
repackaged with the less general type fl. 

Using the properties of conversions we extend the results for the syntax-directed 
system and the type inference algorithm in our earli~r work to include the cal
culation of translations. These are described in Sections 5.6 and 5.7 respectively 
and we show that any translation of a term can be written in the form C(.\w.E')v 
where C is a conversion of a particular type, E' is the translation produced by 
the type inference algorithm and v, ware fixed collections of evidence variables. 
Hence the task of establishing the equivalence of two arbitrary translations reduces 
to showing the equivalence of two tenns of the fonn C1()"w.E')v and G;(.\w.E')v 
where C1. and q are conversions of a particular type. One obvious approach is to 
find conditions that guarantee that these conversions are equivalent. 
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Section 5.8 investigates this possibility to obtain sufficient conditions for the equiv
alence of a pair of conversions and hence to guarantee coherence. in particular, 
we show that the type system is coherent for any term with an unambiguous prin
cipal type scheme (a simple syntactic condition), generalising an earlier result in 
(Blatt, 1991) for the special case of a system of type classes. In addition, we show 
how our results can be adapted to applications where the restriction to terms with 
unambiguous type schemes is too severe. For example, we are able to give a sat
isfactory treatment of coherence for the system of extensible records described in 
Sections 2.4 and 4.7 despite the fad that the primitive field restriction operator 
has an ambiguous type. 

Detailed proofs for the results of this chapter are included in Appendix A. 

Section 5.1:
 
OP: A polymorphic A-

calculus with Bupport
 
for overloading.
 

Section 5.4:
 
Equalities between OP
 
terms.
 

I---

r--

Section 5.2: 
Tran6lationB of OML 
terms in OP. 

Section 5.5: 
Conversions: an inter
pretation of (:$) using 
OP terms. 

j 
Section 5.6: 
Translation in the 
syntax-directed system. 

1 
Section 5.7:
 
Type inference and
 
translation.
 

1 
Section 5.8: 
Coherence resu!tB. 

r--

Figure 5.1: Outline of chapter 
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5.1	 A version of polymorphic >.-calculus with 
qualified types 

This section describes a version of the polymorphic 'x-calculus extended with con
structs for evidence application and abstraction. For ease of reference) we call the 
type system presented here OP, intended as a mnemonic for 'Overloaded Polymor
phic 'x-calculus'. The set of types in OP is defined by the grammar: 

(J ::==	 t type variables 
(J --+ (J	 function types 
Vt.a	 polymoryhic types 
1f' => a	 qualified types 

This is considerably more flexible than the structured la.nguage of types used in 
Chapter 3 since there is no distinction between simple types and type schemes. 
In particular, OP a.llows functions with polymorphic and/or overloaded values as 
their arguments. Note that constrained type schemes of the form (P Iu) introduced 
in Section 3.2.1 can be written as the type P "* u in this more general system. 

The terms of 0 P are given by expressions of the form: 

E ::= z term variables 
EF application 
h.E abstraction 
Ee evidence application 
~v.E evidence abstraction 
letz=EinF local definition 

Unlike most presentations of polymorphic '\-calculus we do not include constructs 
for type abstraction and application that are typically used to make the treatment 
of polymorphism explicit; such features are not required for the work described 
here l and would be an unnecessary distraction from our study of overloading. Nev
ertheless, we would expect the results described here to extend to such systems 
if required in later work. For example, (Peyton Jones and Wadler l 1990) point 
out that explicit use of type abstraction and application may provide useful in
fonnation to guide program transformation and code generation in an optimising 
compiler. 

The typing rules for OP are given in Figure 5.2. Strictly speaking, there is no 
need to include the let construct here since the typing rules of OP are sufficiently 
powerful to allow functions with polymorphic overloaded arguments and hence we 
can encode let x = E in F as ('\~.F)E. The most important benefit of including 
the let construct is tbat it makes it much easier to treat the implicitly typed 
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Standard rules: (var) 
(x:,,) E A 

PIA~x:" 

(~E) 
PIA~E:,,'~" PIA~F:,,' 

PIA~EF:" 

(~I) 
PIA,x:u'l- E: C1 

PIA ~ !.x.E: ,,' ~" 

Qualified types: (=>E) 
PIA~E:1r=>" Plt-e:1r 

PI A ~ Ee : " 

(=>I) 
P, V:1r, P'IA I- E: a 

P,P'IA ~ !.v.E: 1r =>-" 

Polymorphism: ('IE) 

('II) 

P IA ~ E : '11." 

PIA ~ E: [r/tl" 

PIA~ E:" t If. TV(A) U 

P IA ~ E : 'It." 

TV(P) 

Local definition: (let) 
PIA~E:" QIA~I%:O' I- F: a' 

P, QIA ~ (let x - E in F) : cr' 

Figure 5.2: Typing rules for OP. 
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language of Chapter 3 as a (proper) sublanguage of OP. Another advantage is 
that it may sometimes be possible to generate better code for let expressions than 
for the equivalent term using a A-abstraction (Peyton Jones, 1987). 

5.2 Translation from OML to OP 

From the definitions in the Sections 3.1 and 5.1 it is dear that every OML type 
scheme can be treated as an OP type. Furthermore, the typing rules of OML 
are a just a restricted version of the rules for OP, except that derivations in the 
latter involve predicate assignments rather than predicate sets and require explicit 
evidence abstraction and application in the rules (:::}l) and (:::}E) respectively. 
To formalise these ideas, we define a function Preds that maps each predicate 
assignment to the corresponding predicate set: 

Preds (P, P') Pred5 P U Preds P'
 
Preds (t>,,,.) = {".}
 
Preds 0 = 0
 

and a function Erose that maps OP terms with explicit overloading to terms in 
OML by deleting all occurrences of evidence variables and expressions: 

Erase (x) x
 
Erase (EF) (Erase E) (Erase F)
 
Erase (.Ix.E) .\x.(Erase E)
 
Erase (let x = E in F) = let x = (Erase E) in (Erase F)
 
Erase (Ee) Era5e E
 
Era.. Pt>.E) = Erase E
 

Similar tools are used in the investigation of the relationship between languages 
with implicit polymorphism (much like OP, but without overloading) a.nd lan
guages that use abstraction and application over types to make the use of poly
morphism explicit (the standard example being Girard's 'System F'). See (Mitchell, 
1990) for further details. 

The correspondence between GML and OP suggested by the informal comments 
above can now be described by the following theorem: 

Theorem 5.1 If P I A I- E : a in GML, then there is an OP term £' and a 
predicate assignment P' 5uch that P =::: Preda P', E = Erase E' and P'IA I- E': a 
using a derivation of the same strocture. 

The proof is straightforward, using induction on the structure of P IArE: a. 
The term £I in the statement of the theorem wiU be referred to as a. translation 
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of E and we use the notation P/ IA I- E "-+ E' : a to refer to a translation of a 
term in a specific context. Note that, in the general case, an OML term will have 
many distinct translations in any given context, each corresponding to a different 
derivation of P IA I- E : a in OML. 

The translations of OML terms can also be characterised more directly using the 
hybrid of the typing rules [or OML and OP given in Figure 5.3. It is straightforward 

(x:a)EA
(var) 

P!Af-x--...x:a 

PIAI-E .......... E':r'--+r PIAI-F"-+F':'T' 
(~E) 

PIA f- EF --... E'F': r 

P IA,.., z :r/ I- E"-+ E ' : r 
(~l) 

PIA I- Az.E"'-+ Az.g: r ' --+ r 

PIAf-E--...E':~:;.p Plt-e:~ 
(:;.E) 

PIA f- E--... E'e: p 

P,v:~,P'IA f- E--... E': p
(:;.1) 

P, P'I A f- E --... Av.E' : ~ :;. p 

P IA f- E --... E' : Vt.a 
('IE) 

PIA f- E--... E': [r/I]a 

PIAf-E--...E':a 
(VI) t ¢ TV(A) 1\ I ¢ TV(P)

PIA f- E--... E': VI.a 

P IA I- E"-+ E' : a Q J An z: a I- F .......... F' : 'T 
(let) 

P, QIA f- (let x ~ E in F) --... (let x ~ E' in F') : r 

Figure 5.3: Original type rules with translation 

to show that P'I A I- E .......... E ' : a according to the original definition of translations 
above if, and only if, the same judgement can be derived from these rules. In 
particular, we mention the following two theorems, the first of which establishes 
a soundness property indicating that any derivation using the rules includes both 
an OML derivation for the term involved and an OP derivation for its translation. 

Theorem 5.2 If P I A I- E "'-+ E' : a using the rules in Figure 5.9, then E :; 
Erase E' and there are derivations P IA I- E' : a in OP and Preds P IA I- E : a 
in OML each with the same structure as the first derivation. 
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The second result shows that it is always possible to obtain a translation of a well
typed OML term using the rules given above (essentially by copying the structure 
of the original derivation): 

Theorem 5.3 If P IA f- E : (J in GML, then there i~ a derivation P'I A f- E ......... 
E' : (J for ~ome predicate a.s.signment P' with P ::: Pred.s pi and some OP term E 1 

such that E =:::. Erase E'. 

The proofs for both of these results are straightforward and follow directly from 
the construction of the rules in Figure 5.3. 

5.3 The coherence problem 

The principal motivation for introducing OP was to enable the semantics of OML 
terms with implicit overloading to be described by the semantics of their transla
tions in OP. In order to justify this approach we must show that: 

•	 For each OML term E there is an OP term E that is a translation of E. 
This follows directly from Theorem 5.3. Moreover, there is an effective way 
of calculating a translation for any well-typed term using the derivation given 
by CoroHary 3.20 to guide the construction of the translation. 

•	 Any translation of an OML term E is well-typed in OP. This has already 
be(-n established in Theorem 5.2. 

•	 The mapping from terms to translations must be well-defined. More accu
ratelYl we must show that any translations E, and Ez of an 01.lL term E 
given by derivations P IA f- E"-"I" E1 : (J and P IA f- E ......... Ez : (J are, in some 
precise sense, equivalent. 

Whilst the first two properties have already been established, it is relatively simple 
to show that the third result does not hold in general. As an example, consider 
the term out (in x) under the evidence assignment P = {u: C Int,v: C Bool} 
and the type assignment: 

A::: {x: Int, in: Va.C a * Int -t a, out: Va.C a:::::} a -t Illt} 

where C is a unary predicate symbol. Instantiating the quantified type variable 
in the type of in (and hence also in that of out) with the types Int and Baal leads 
to the following derivations with translations which are clearly not equivalent: 

PIA r out (in x)~ oul u (in u x): Int
 
P IA rout (in x) ~ oul v (in v x) : Int
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Given this example, we cannot hope to establish the general coherence result 
in the third item abovej i.e. that all translations of an arbitrary OML term are 
semantically equivalent. In the rest of this chapter we work towards a more modest 
goal - to identify a collection of OML terms for which the coherence property can 
be established. 

5.4 A definition of equality for OP terms 

Before we can establish sufficient conditions to guarantee coherence, we need to 
specify formally what it means for two terms (specifically, two translations) to 
be equivalent. Tbis section gives a syntactic characterisation of (typed) equaHty 
belween OP terms using judgements of the fonn P I A I- £ = F : a (with the 
implicit side-condition that both PIA I- £: a and PIA I- F: a). Our task in the 
remaining sections of this chapter can now be described formally as: 

Given derivations P I A I- £ .-.....+ £1 : a and P I A I- £.-.....+ ~ : f1 determine 
sufficient conditions to guarantee that P IA I- £1 = ~ : a. 

One of the reasons for including type information as part of the definition of 
equality is to avoid making unnecessary constraints on the choice of semantic 
model. Given a judgement P I A I- E = F : a we require only that £ and F 
have the same meaning (which must be an element of the type denoted by a) in 
environments that satisfy P and A. This is in contrast with an untyped judgement 
of the form E ::;:: F that might be expected to hold in any semantic model, without 
consideration of the types of the objects involved. 

5.4.1 Uniqueness of evidence 

Another reason for using predicate assignments in the definition is to enable us to 
capture the 'uniqueness of evidence'j to be precise, we require that any evidence 
values e and f constructed by entailments P ft- e: Q and P ft- f: Q are semantically 
equivalent, in which case we write P I- e ::;:: f : Q. Since we only intend such 
judgements to be meaningful when both entailments hold, the definition of equality 
on evidence expressions can be described directly using: 

PI- e ;J:Q "" Pit- e:Q A Pit- J:Q. 

This condition is essential if any degree of coherence is to be obtained. Without 
it, for example, it would be possible to have semantically distinct implementations 
of an overloaded operator that cannot be distinguished either by name or by type. 
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Uniqueness of evidence does not follow directly from the definition of It- and it 
is important to verify that this property holds for the predicate systems used in 
particular applications of qualified types. This! in turn, influences the design of 
particular predicate systems. For example l in the system of type classes described 
in Section 4.5, uniqueness of evidence is dealt with by ensuring that there is at 
most one definition that makes a given type an instance of a particular class. 

5.4.2 Reduction of OP terms 

In conunon with many treatments of typed .A-calculi, we will define the equality 
relation between terms using a notion of reduction between terms. More precisely, 
we use a judgement of the form P IA f- E t> F : u to describe a (typed) reduction 
from E to F with the implicit side condition that P IA f- E : u. There is no need 
to include P IA r F : IT as a second side condition since it can be shown that this 
condition is implied by the first. This is a consequence of the subject reduction 
theorem - 'reduction preserves typing! - which is proved using standard techniques 
as in (Hindley and Seldin. 1986). 

'(rie split the definition of reduction into three parts, tbe first of which appears 
in Figure 5.4. We include the familiar definitions of ,8~conversion for evidence 
and term abstractions and let expressions and a rule of 17-conversion for evidence 
abstractions. 

(iJ) PIA~(-'z.E)F to> [F/z]E:<7 

(iJ, ) P IA ~ (-'v.E)e to> (e/v]E: <7 

(iJ- let ) PIA ~ (let z ~ E in F) to> [E/x]F: <7 

v '!- EV(E)
(~, ) 

PIA ~ (Av.Ev) to> E: <7 

Figure 5.4: Rules of computation 

One unfortunate consequence of our approach is that the axiom (,8) is not SQund in 
models of the .A-ca.lculus with call-by-va.lue semantics and hence our results can only 
be applied to languages with lazy or ca.1l-by-name semantics. This limitation stems 
more from the difficulty of axiomat ising ca.ll-by-value equality than from anything 
implicit in our particular application; for example, Ohori (1989) mentions similar 
problems in his work to describe a simple semantics for ML Polymorphism. This 
issue will be discussed more fully in Section 5.9. 
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A second collection of rules in Figure 5.5 is used to describe tbe renaming of bound 
variables in A-abstractions, evidence abstractions and let expressions. Any such 
renaming is permitted so long as we avoid clashes with free variables. 

(.) 
z ¢ FV(>.y.E) 

PIA ~ (>.y.E) l> (>.z.[zjy]E): (1 

(.,) 
v ¢ EV(>.w.E) 

PIA ~ (>.w.E) l> (>.v.[vjwIE): (1 

(.-Iet) 
z ¢ FV(>.y.E) 

PI A ~ (let y = E in F) l> (let z = E in [zjyJF): (1 

Figure 5.5: Rules for renaming bound variables 

The final group of rules in Figure 5.6 are closely modelled on the original typing 
rules for OP in Figure 5.2. Their main application is to allow the reduction of 
subterms within a given term. 

5.4.3 Equalities between OP terms 

As we have already mentioned, equalities between OP terms will be represented 
by judgements of the the form P J A f- E = F ; (1 with the implicit side condition 
that both'P I A ~ E : (1 and P I A ~ F : (1. Figure 5.7 gives the definition of 
the equality between terms as the transitive, symmetric closure of the reduction 
relation described in the previous section. The first two rules ensure that equality 
is an equivalence relation. There is no need to include reflexivity here sjnce this 
is a direct consequence of the structural rules in Figure 5.6. The last rule shows 
how reductions give rise to equalities. Note that in this case there is no need to 
establish that both P IA ~ E : (1 and P IA ~ F : (1 since the latter follows from 
the former by the subject reduction theorem mentioned above. 

In practice, many of the rules used in the definition of equality above will be used 
implicitly in tbe proof of equalities between terms. The following example uses 
all three of the rules in Figure 5.7 as well as subject reduction to justify the fact 
that the intermediate steps are well-typed and illustrates the layout that we use 
for such proofs: 

PIAf-let z = E in [FjzIF' = [Ejz]([Fjz]F') (jJ-Iet) 
[iEjz]Fjz]F' (substitution) 

= let z = [Ejz)F in F' : (1 (jJ-Iet) 
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(Z:<7) E A
 

PIAf-. t>r:<7
 

PIAf-Et>E':<T'~<7 PIAf-Ft>F':<7'
 

P IA f- EF t> E'F' : <7
 

PIA"z:<T'f-E t>E':<7
 
PIAf-A•.E t>A•. E':<T'~<7
 

l
 

P IA f- E t> E' : ~ =} <7 P f- e = e': 1l"
 

PIA f- Ee = E'e': <7
 

P,v:~,P'IAf-E t>E':<7
 

P,P'IA f- Av.E t> Av.E': ~=} <7
 

PIA f- E t> E': Vt.<7
 

PIA f- E t> E': Ir/ll<7
 

PIA f- E t> E': <7 I rt TV(A) U TV(P)
 

PIA f- E t> E': Vt.<7
 

P IA f- E t> E': <7 P IA" <:<7 f- F t> F' :r
 

P IA f- (let. - E in F) t> (let. - E' in F') : r
 I 

Figure 5.6: Stnleturallaws for red.uetions between terl11B. 

PIAf-E=F:<7
 

PIAf- F=E:<7
 

PIAf-E=E':<7 PIAf-E'=E":<7
 

PIAf-E=E":<7
 

PIAf-Et>F:<7
 

PIAf-E=F:<7
 

Figure 5.7: Definition of equality between terms 
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Notice that the context in which this equality is established (given by P, A and 
0') is not significant. Examples like this are quite common and we will often avoid 
mentioning the context altogether in such situations, writing f- E = F to indicate 
that E and F are equivalent in the sense that PIA f- E = F : 0' for any choice of 
P, A and u for which the implicit side conditions hold. 

The following proposition records some useful properties of let expressions indud· 
ing the result above, each of which follows directly from C{J-let). 

Proposition 5.4 For any OP terms E, E' and F and distinct term variables z 
and y such that y ¢ FV(E): 

1. r (let Z = E in [F/z]F') = (let z = [E/z]F in F'). 

2. r Ay.(let z = E in F) = (let z = E in Ay.F). 

3. r EOet y = E' in F') = (let y = E' in EF'). 

4. r (let y = E' in F')E = (let y = E' in F' E). 

The last three parts of this proposition are fairly standard, but the first is less 
familiar and it is worth illustrating why it is important in our work. Consider a 
system of type classes with a type class Eq such that 0 It- e: Eq lnt and an equality 
function (==):: Va.Eq a:::} a _ a _ Bool used in the OML term: 

let / = (AZ.Ay.Z == y) in /23 

Since the local definition for function / is only ever applied to integer values, it 
is sufficient to treat / as having type lnt _ lnt _ Bool, witb a corresponding 
translation: 

let / = (AZ.Ay.(==) e Z y) in /23 

However, the type inference algorithm uses f ;: Va.Eq a => a --+ a _ Baal and 
results in a translation of the form: 

let / = (AV.AZ.Ay.(==) v Z y) in / e 23. 

The following calculation shows that these translations are equal and hence that 
it is possible to eliminate the evidence abstraction used in the second case. 

r let! = (AV.AZ.Ay.(==) v Z y) in / e 2 3 
= let / = (AV.AZ.Ay.(==) v Z y) in [( e/f]U 2 3) (substitution) 

let / = [AV.AZ.Ay.(==) v Z y/f]U e) in /23 (Prop. 5.4(1)) 
let / = (AV.AZ.Ay.(==) v Z y) e in /23 (substitution) 
let / = (AZ.Ay.(==) e Z y) in /23 (/1) 

As in the last step here, many equalities between tenns can be obtained by re-
placing one subterm with an equivalent term. These steps are justified by the 
structural rules in Figure 5.6 and will often be used implicitly in proofs. 
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5.5 Ordering and conversion functions 

5.5.1 Motivation and conversions between type schemes 

One of the most important tools in the trea.tment of type inference described in 
Chapter 3 is the ordering relation:'; used to describe when one (constrained) type 
scheme is more general than another. For example, assuming that 0 It- Eq Int, the 
ordering: 

Int ---+ Int -+ BOQI S Va.Eq a => a ---+ a ---+ Bool 

might be used to justify replacing an integer equality function, say primEqlnt, 
of type In! ---+ Int --+ Bool with a generic equality function (==) with the more 
general type Va.Eq a ;;;:} a a --+ Bool. While valid in OML, this breaks --t 

down in OP due to the presence of evidence abstraction and application: Simply 
replacing primEqlnt with (==) in primEqlnt 2 3 does not even give a weH·typed 
expression! The correct approach would be to replace primEqlnt by (==) e where 
011- e:Eq Int. 

This section describes an interpretation of orderings between type schemes as terms 
of OP that can be used to deal with examples like this. For each a' :S a we identify 
a particular collection of terms that we call conversion.!l from a to 17' • Each such 
conversion is a closed OP term C: a ---+ a' and hence any term of type (J can 
be treated as having type 17

1 by applying the conversion C to it. One possible 
conversion for the example above is: 

(.Iz ...) : (Va.Eq a ~ a .... a .... Baal) .... (In! .... Int .... Baal) 

Note that the type of this conversion (as in the general case) cannot be expressed 
as an OML type scheme since it uses the richer structure of OP types. 

For the purposes of type inference it would be sufficient to take any term C of 
type (J --+ a' as a conversion for a' :S a since CE has type a' for any term E of 
type a. This is clearly inadequate if we are also concerned with the semantics 
of the terms involved:; we can only replace E with CE if we can gua.rantee that 
these terms are equivalent, except perhaps in their use of evidence abstraction and 
application. More formally, we need to ensure that Erose (CE) = Erase E for aU 
OP terms E (or at least, all those occurring as translations of OML terms). Since 
Erase (CE) = (Erase C) (Erase E), the obvious way to ensure that this oondition 
holds is to require that Erase C is equivalent to the identity term t'd = Az.X. 

It is tempting to define the set of conversions from a to a' as the set of all closed 
OP temlB C:a --+ d for which Erase C is equivalent to id. In practice it is more 
convenient to choose a more conservative definition that gives a little more insight 
into the structure of conversions. The following definition is very closely modelled 
on the syntactic characterisation of the $ ordering in Proposition 3.4. 
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Definition 5.5 (Conversions - preliminary version)
lSuppose that a = (Voi.Q ::::} r} and a = (VPj.Q' ::::} r'} and that none of the 

van'ables ~j appear free in a. A closed OP tern! C of type (7 ---+ (7' such that 
Erase C is equivalent to id is called a conversion from a to tr, written C: (7 ~ a', 
if there are types ri, evidence variables v and evidence expressions e such that: 

"Q'H-e:IT,/a;JQ, T';[T;/a;)T and f-C;.\x ..\v.ze. 

Note that v and e are lists of evidence variables and expressions respectively. 
As a result, expanding the abbreviations introduced in Section 4.2, the equiv
alence above takes the form I- C = AX.AVl .... AV.... xel ... em. It is straightfor
ward to verify that Ax.Av.xe .1S itself a conversion from (7 to tr; it is obvious that 
Erase (,\Z.AV.ze) ::::: AX.X and the following derivation establishes the required 
typing: 

v:Q'lx:a I- x: a ,,; ('1a,.Q => T) 
v: Q' Ix :" f- x : (Va;. Q => T) 

('IE) 
v: Q'I x :" f- x : [T,/a;)( Q => T) 

(=>E) 
v: Q' Ix:" f- xe : [T;/a;IT 

T' ; [T,/a;)T
v:Q'lx:al-xe :rl 

(=>I)
0lz:a r .\v.xe: Q'::::} r' 

(VI)
01 x :a I- .\ v .xe : a' 

(-"I)
010 f- .Ix ..\v.xe:" -" '" 

It follows that any OP term with type a ---+ tr that is equivalent to .\z ..\v.ze will 
also be a conversion from a to tr. On the other hand, we cannot assume that 
all conversions from a to tr will be equivalent to this particular term since there 
may be more than one possible choice for the types rj and hence for the evidence 
expressions e in the definition above. 

The following proposition establishes some simple properties of conversions that 
will be useful in subsequent work. 

Proposition 5.6 Suppose that a, a' and a" are type schemes. Then: 

1.	 id:(1 ~ a where id = .\x.x is the identity term. 

2.	 IfC:a ~ a l and C':al 
~ tr', then CloC:a ~ tr' where C'o C = '\z.C1(Cz). 

3.	 If (1 is a tyPe scheme and r is a type, then id:Vt.(7 ~ [rltla. In particular, 
id:Gen(A,p) ~ p. 
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As with many of the results in this chapter, Proposition 5.6 extends earlier results 
from Chapter 3. In this particular case, the first two parts of the proposition 
correspond to the result that the ordering on type schemes is reflexive and transi· 
tive. From a categorica.l perspective, these results can be used to show that there 
is a category whose objects are type schemes and whose arrows are (equivalence 
classes of) conversions. The only additional properties needed to justify this are 
that the composition of equivalence classes is well-defined and associative with 
(the equivalence class of) id as unit, each of which is easily verified. 

The following two propositions are useful for obtaining conversions between type 
schemes obtained. using generalisation as described in Section 3.2.4. The first 
proposition deals with the interaction between generaJisation and entailment, ex
tending the result of Proposition 3.7. 

Proposition 5.7 Suppose that P and pi are predicate sets such that Vi: pI H- e: P. 
Then: 

(~x.~v'.ze):Gen(A,P=> r) ~ Gen(A, P' => r) 

for any type assignment A and type T. 

The second result is useful when applying substitutions to type schemes obtained 
by generalisation, extending the result of Proposition 3.8: 

Proposition 5.8 If A is a type assignment, p is a qualified type and S is a sub· 
stitution, then: 

id:SGen(A,p) ~ Gen(SA,Sp). 

Furthermore, there is a substitution R such that: 

RA = SA and SGen(A,p) = Gen(RA, Rp). 

5.5.2 Conversions between constrained type schemes 

The definition of conversions between type schemes extends to conversions between 
constrained type schemes. The obvious way to define a conversion for an ordering 
of the form (P' I<1') ::; (P I..) is as a term of type (P I..) ~ (P' I..'), writing (P I .. ) 

as an abbrevia.tion for tbe OP type P => cr. 

Definition 5.9 (Conversions - general version) 
Suppose that .. = (Va;.Q => r) and <7' = (V(Jj.Q' => r') and that none 01 the 
variables j3j appear free in cr, P or P. A dosed OP term C of type (P I cr) -+ 

(PI Icr' ) such that Emse C is equivalent to id is called a conversion from (P Icr) 
to (Pi I17'), written C: (P Icr) 2: (Pi Icr"), if there are types Ti, evidence variable.s v 
and wand evidence expressions e and f such that: 

v: P, w: Q' I/- e: P,!: [r,fa;]Q, r' = [r;fa;]r and f- C = \x.~v.Aw.xel. 
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Note that the definition of conversions between simple (i.e. unconstrained) type 
schemes is a just special case of this, obtained by taking P = P = 0. 
it is immediate from the definition of conversions tha.t (P I0") ~ (Pi IiT) if and 
only if there is a conversion C: (P I0") ~ (Pi I0"') (this may require renaming the 
bound variables of ff to apply the definition of conversions). It follows that we 
can extend aU of the properties of ($:) described in Section 3.2.3 to include the 
use of conversions as illustrated by the foUowing three propositions. 

For example, we have already mentioned that a qualified type of the form P ::::} P 
is equivalent to the constrained type scheme (Pip). This is reflected, in a slightly 
more genera.l form, by the fotlowing proposition: 

Proposition 5.10 For any qualified type p and predicate assignments v: P and 
w: Q there are conversions: 

id:(P,Q[p)~(P[Q=>p) and id:(P[Q=>p)~(P,Q[p). 

In particular, taking P = 0, the~ a~ conversions: 

id:(Plp) ~ P => p and id:(P => p) ~ (P[p). 

Another useful result is that (P' I 0"') :s; (P I0") whenever 0"' :5 0" and pi It- P. 
Extending this to describe the conversions involved gives: 

Proposition 5.11 If C: (H [0') ~ (H' I0") and v': P' H- e : P, then there is a 
conversion: 

Adv'.C(xe):(P,H[O') ~ (P',R'[O"). 

In particular, taking R =0 = R', if C:O" ~ iT and v': P' H- e: P, then: 

Adv'.C(xe):(P[O') ~ (1"10"). 

We have already indicated that the ordering on constrained type schemes is pre
served by su bstitutions (Proposition 3.5). The corresponding resul t for conversions 
is: 

Proposition 5.12 Sllppose that P and P' are p~dicate assignments, 0" and 0"' are 
type schemes and that C:(P[O') ~ (P'IO"). Then: 

C:S(PIO') ~ S(P'IO") 

for any substitlltion S of types for type variables. 
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In Proposition 5.6 We showed that, for the special cage of (unconstrained) type 
schemes, reflexivity of (~) corresponds to the identity conversion while transi
tivity of (~) corresponds to composition of conversions. The next two proposi
tions provide simHar constructions, the first of which shows how the definitions of 
Proposition 5.6 extend to a category with arbitrary constrained type schemes as 
its objects. 

Proposition 5.13 For any type scheme (I and predicates P there is a conversion: 

id:(PI,,) ~ (PI,,)· 

Furthennore, if C:(PI") ~ (P'l,,') and C':(P'I,,') ~ (P"I,,"), then: 

(C'o C):(PI") ~ (P"l,,")· 

The next result gives an alternative way to extend Proposition 5.6, this time to de
scribe a category whose objects are type schemes and whose arrows are conversions 
between type schemes with respect to an arbitrary fixed predicate assignment: 

Proposition 5.14 For any type scheme (I and predicate assignment v~P there is 
a conversion: 

(Ax.AV.x):" ~ (PI"), 

Furthennore, ifC:" ~ (PI,,') and C':u' ~ (Plu"), then: 

(Ax.Av.C'(Cxv)v):" ~ (PI""). 

5.5.3 Conversions between type assignments 

The definition of conversions can be extended to an ordering between type assign
ments. In fact, for the purposes of this work, it is sufficient to consider only the 
case of orderings of the form A ? A' and A? (P IA'), the first of which is just a 
special case of the second with P = 0. 

One simple approach would be to define a conversion for an ordering A :?: (P IA') 
as a function that gives a conversion from A{ z) to (P IA'{z») for each z E dom A. 
However, whereas we might use a conversion C:(I 2 (P I0-') to treat a term of type 
(I as having type ai, we will typically use a conversion between type as~ignments 

to simultaneously replace each Occurrence of a variables mentioned in the type 
assignment with an appropriate new term. From this perspective it seeITUl more 
sensible to think of a conversion between type assignments as a tenn substitution. 

Furthermore, the translations of a term are calculated with respect to a particular 
predicate assignment (the first component in a derivation v: P IA I- E ......... E' ; a) 
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and may involve the evidence variables in the domain of that assignment. It is 
therefore necessary to specify these variables explicitly as part of the type of the 
conversion. 

Definition 5.15 (Conversions between type assignments)
 
A substitution C is a conversion from a type assignment A to a constrained type
 
assignment (v: P IA'), written C: A ~ (v: P IA'), if:
 

•	 dam A = dam A' . 

•	 For each x E dom A there is a conversion (.\x ..\v.Cx):A(x)?: (PIA'(x)). 
On the other hand, if x ¢ dom A, then C(x) = x. 

Note that. a conversion between type assignments is not itself a term. The expres
sion C(x) appearing in the above definition denotes an application of a (meta
linguistic) substitution to a particular va.riable. 

Continuing with the example above and assuming that 0 I+- e: Eq Int, one possible 
conversion for the type assignment ordering 

{(==): Int ~ Int ~ Bool} S; {(==): lIa.Eq a"" a ~ a ~ Bool}. 

would be the substitution that maps (==) to (==) e but leaves every other variable 
unchanged. To see how this might be used, consider an OP term in which the 
(==) has been treated as having type [nt -+ Int -+ Bool. IT we replace this 
integer equality function by a generic equality fuuction with the more general 
type, then we need to include the evidence e for Eq Int with every use of (==). 
This is precisely the effect obtained by applying the conversion substitution to the 
original term. 

Suppose that C: A ?: (v: P I A'). Since every conversion is a closed OP term, it 
follows that the only variable that appears free in a term of the form C( x) is the 
variable x itself. The following results are easily established using this observation: 

Proposition 5.16 Suppose that C: A ?: (v: P IA') and write C~ for the substitu
tion such that Cr(x) '" x and CrE '" CE for any term E such that x ¢ FV(E). 
Then: 

1. C(!.x.E) = !.x.CrE, 

2. C(let x = E in F) = (let x = CE in CrF), 

3. C", :(A"" x :0') ?: (v: P IA~, x :0') for any type scheme 0', and 

4· [E/')(CrF) = (C[E/x))F for any terms E and F. 
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Another useful consequence of the definition of conversions between type assign
ments is summarised by the following proposition: 

Proposition 5.17 If C: A ~ A', then C: A ~ (v: P I A') for any predirote 
assignment v: P. 

To see this, suppose that C: A 2: A'SO that (Ax .Cx): A(x) 2: A'(x) for every x E 
dom A. By Proposition 5.14 there is a conversion (Ax.AV.X):A}(x) ~ (PIA'(x» 
and hence (Ax.>.v.Cx):A(x);:> (PIA'(x)). 

5.6 Syntax-directed translation 

The next two sections follow the development of Chapter 3 to describe the re
latiomhip between an arbitrary translation of an OML term and the translation 
corresponding to the derivation constructed by the type inference algorithm. 

We begin by extending the resltlts of Section 3.3 to describe the construction of 
translations for the syntax-directed system using the typing rules in Figure 5.8. 

(X:(Vai.Q => v») E A PH- e:[r;faiIQ
(vaT )' 

P IA ~ x ~ xc : [ri/a.]v 

PIAf!E~E':r'_r PIAt.!F~F':r' 
(~E)' 

PIA ~ EF~ E'F': r 

P IAS", x: r' f! E"--+ E' : r 
(~l)' 

PIAf.! AX.E---...+Ax.E':r'---+r 

V': P' IA f! E ~ E' : r l P J AS". x: (J" t.! F ~ F' : r 
(let )' 

PIA ~ (let x = E in F)~ (let x = Av'.E' in F'): r 
where (J" == Gen(A, pi => r') 

Figure 5.8: Syntax-directed typing rules with translation 

As before, the structure of a derivation P IA t.! E ~ E' : T is uniquely determined 
by the syntactic structure of the OML term E. Note however that the transla
tion E' need not be uniquely detennined since there may be distinct choices for 
the evidence values e introduced by (var)'. This of course is the source of the 
incoherence in the translation sema.ntics of OML. 
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It is straightforward to show that the rules in Figure 5.8 are sound with respect to 
those in Figure 5.3 by induction on the structure of syntax-directed derivations. 

Theorem 5.18 If PI A ~ E ~ E': T, then PIA ~ E ~ E': T. 

The reverse process, to establish a form of completeness property by showing that 
every translation and typing obtained using the general rules in Figure 5.3 can, 
in some sense, be desc.ribed by a syntax-directed derivation is considerably more 
difficult. As a first step, we can extend the properties of the original syntax
directed system outlined in Section 3.3.2 to include the calculation of translations. 
More precisely, if v: PIA ~ E""'-+ E' : 1", then each of the following results can be 
established by induc.tion on the structure of this derivation (see the appendix for 
further details): 

•	 EV(E') <;: v. (Proposition 5.19) 

•	 5P ISA f! E ........... E ' : 5r for any substitution S. (Proposition 5.20)
 

•	 If Qff- "P, then QIA ~ E~ [e/vIE': T. (Proposition 5.21) 

•	 If C:A' ~ (v:PIA), then v:PIA' ~ E~ E": T (Proposition 5.22) 
and v: P IA' t-- eE' = Elf: 1". 

The first of these results is an immediate consequence of the rule (evars) de
scribed in Section 4.3 and the following three propositions a.re direct extensions of 
Propositions 3.10, 3.11 a.nd 3.12 respectively. Also, as an immediate corollary of 
Propositions 5.17 and 5.22 we obtain (with the same hypothesis as above): 

•	 If C:A 1 
~ A, then v:PIA' f! E""'-+ E": 1" (Corollary 5.24) 

and v: PIAl t-- eE' = EI/: 1". 

Using these results, we can establish the following theorem as an extension of 
Theorem 3.15, again by structural induction on the derivation in the hypothesis: 

Theorem 5.25 If v : P! A t-- E ........... £I : u, then there is a predicate assignment 
v' : pi, a Iype r ' and a term Elf such that Vi: pi IA ~ E __ E" : r ' and v : P IA I
C(Av'.E"}v = E': u where C:Gen(A, P' => T'} ~ (Plu). 

Note that the OP term Av'.EIf appearing in this result can be treated as having 
type Gen(A, pi => r') (using the soundness result, Theorem 5.18, from above), 
Furthennore, since e: Gen(A, p' => 1"/) ~ (P 1u) and v gives evidence variables 
for P, it follows that e(Av'.E")v can be treated as having type u as required, 
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5.7 Type inference and translation 

It is reasonably easy to extend the definition of the type inference algorithm 
given in Section 3.4 to include the calculation of a translation using the rules 
in Figure 5.9. As before, these rules can be interpreted as an attribute gram· 
mar. The type assignment A and OML term E in a judgement of the form 
PITA I-w E ....... E' : T are inherited. attributes, while the predicate assignment 
P, substitution T, OP translation E' and type T are synthesised. 

(x :Voi.P ~ T) E A 13. and v new
(var)W 

v:[l3i/n;JPIA f'!' x~ xv: l/3;/ni]T 

PITA~ £ ........ £':7 QrT'TA~ F ........ F':T' T'T!!..,'-tO
(--+E)W 

U(T'P, Qll UT'TA f'!' EF ~ E'F': Un 
where a is a new variable 

PIT(Arl%:O)~ E ........ E':T anew

(--+I)W 

P\TA~ >..z,E ........ >..x.E'; Ta--+ T
 

v:PI TA ~ E ........ E': T pll T'(TAr,x:a) ~ F ....... F': if

(let)W 

P'I T'TA f'!' (let x = E in F) ~ (let x = ~v.E' in F): T' 

where a = Gen(TA,P => T) 

Figure 5.9: Type inference algorithm with translation 

The following theorem shows that any typing and translation that is obtained 
using the type inference algorithm can also be derived using the rules for the 
syntax-directed system described in the previous section. 

Theorem 5.26 If PI TA f'!' E ~ E': T, then PI TA ~ E ~ E': r. 

Combining this result with Theorem 5.18 we obtain: 

CnrnlIary 5.27 If PITA f'!' E~ E': T, then PITA ~ E~ E': T. 

This result is important because it shows that the 'translation' E' of an OML 
term E produced by the algorithm above is A valid translation of E (in the sense 
of Section 5.2) and hence, in particular, that it is a well-typed OP term. 
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Given that the a.lgorithm described above calculates a principal type scheme for 
each weU·typed OML term (as in Section 3.4.3), we will refer to the translations 
produced by this algorithm as principal translations. The following theorem pro
vides further motivaUon for this terminology, extending the result of Theorem 3.19 
and showing that every translation obtained using the syntax-directed system can 
be expressed in terms of a. principal translation. 

Theorem 5.28 Suppose that v: P ISA ~ E ~ E' ; T. Then w: Q I TA ~w E ~ 

E" : v and the,e is a suhstilution R such that S ~ RT, ' == Rv, v: P ft- e: RQ 
and v :PISA ~ E' = [e/w]E": To 

Finally, we can use this result to describe the relationship between arbitrary trans· 
lations of an OML term and a principal translation: 

Theorem 5.29 If v : P I SA ~ E ~ E' : a, then w: Q I TA ~w E ~ E" : v 
j07' some w : Q, T, Ell and v and there is a substitution R and a conversion 
C: RGen(TA, Q => v) ~ (P la) such that S '" RT and 

v:PISA ~ C(Aw.E")v = E': a. 

It is instructive to include the proof of tbis result here as an illustration of how 
the results in this and preceding sections can be used. 

First of all, by Theorem 5.25, if v: P ISA f- £ ......... £' : a, then v': pll SA ~ £ ......... F' : 
T' and v:P ISA ~ C'(Av'.F')v = E' : a for some C': Gen(SA, P' => T') ~ (P la). 
Next, by Theorem 5.28 w: Q I TA f-w £ ......... E'I : v and there is a substitution R 
such thatS ~ RT, " = Rv, v':P' ft- e:RQ and v':P'ISA f- [e/w]£"= F': a, 
from which it follows that 01SA ~ Av'.([e/w]E") = Av'.F': Gen(SA,P' => T'). 

Note that: 

RGen(TA, Q => v) 
~ Gen(RTA,RQ=> Rv) (Prop. 5.8, conversion id) 

Gen(SA, RQ => T') (S '" RT and T' = Rv) 
~ Gen(SA, P' => T') (Prop. 5.7, conversion AX.AV'.xe) 
~ (Pia) (using conversion C') 

Composing these conversions we obtain: 

C:RGen(TA,Q => v) 2: (Pia) 

where C = AX.C'(Av'.:re), and then: 

v:PISA ~ C(Aw.E")v = (h.C'(Av'.ze))(AW.E")v (definition of C) 
= C'(Av'·le/w]E")v (using (fJ) and (fJ,)) 

C'(AV'.F')V 
£':0' 

which completes the proof. 
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5.8 Coherence results 

Theorem 5.29 is important because it shows that &Dy translation of an OML term 
E in a particular context can be written in the form C(>.w.E')v where E' is 
a principal translation and C is the corresponding conversion. Applied to two 
arbitrary derivations v: P IA I- E ......... E{ : u and v: P IA f- E ....... Ei : u, it foUows 
that: 

v:PIAf-E;=C,(,\w.E')V:<7 and v:PIAf-E;=C,(.\w.E')v:<7 

where Ct and 02 a.re conversions from the principal type scheme to (P 1(1). One 
obvious way to ensure that these translations are equa.l is to show that I- Ct = 02. 

5.8.1 Equality of conversions 

Ta.king a more slightly more general view, suppose that C:t, G.J a.re conversions from 
q to (Pi Iu'). Without loss of generality, we ca.n assume that q = (Voj.Q ~ v) 
and 0'1 = (VO;.QI => v') where the variables oj only appear in (Q' :::} v'). Using 
the definition of conversions, it follows that: 

v' = IT;(a;]v and v':P',w':Q'1+- e:P,f:[T;(a;]Q 

for some types 'Tj and that r C. == AX.AV'.AW'.xef. Similarly for 02 there are types 
'T: such that: 

v' == ['TUO:i]V and v':P',w':Q'H- e':P,!':['TI/o:dQ 

and r 02 :::::- AZ.AV'.AW'.ze'j'. Clearly, it is sufficient to show e = e! and f == f' 
to prove that the these two conversions are equivalent. The first equality is an 
immediate consequence of the uniqueness of evidencej both e and e' are evidence 
for the predicates P under the evidence assignment Vi: pi, w': Q' and hence must 
be equivalent. The same argument cannot in general be applied to the second 
equality since the predicates ['T;jO:ilQ may not be the same as those in ['TUo:dQ 
due to differences between the types 'Tj and 'T:. Nevertheless, since ['T;jo:;]v == 
v' :::::: ['Ti/Oi]V, it follows that 'To' == 'Tf for all OJ E TV(v). Notice then that, if 
{a;} n TV( Q) ,; TV(v), the two predicate sets [T;(a;jQ and [TI/O;]Q must be 
equal and hence f ==1' as required. We will give a special name to type schemes 
with this property: 

Definition 5.30 (Unambiguous type schemes) A type scheme q =Vo:i.Q :::} 
v is unambiguous if (ad n TV(Q)'; TV(v). 
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This definition coincides with that of an unambiguous type scheme in the treatment 
of type classes in Haskell, motivating our use of tbe same term here. Using this 
terminology, the discussion above shows that all conversions from an unambiguous 
type scheme to an arbitrary constrained type scheme are eqnivalent: 

Proposition 5.31 If~, c; : (P I 0') ~ (Pi I 0") are conversions and 0' is an 
unambiguous typc schcme then l- ~ = C2 • 

5.8.2 Equality of translations 

As an immediate corollary, it follows that, if the principal type scheme for a term 
E is unarnbiguoWl, then any two translations of E must be equivalent: 

Theorem 5.32 If v : P I A l- E ---.... E{ : (j and v : P I A l- E ........... E~ : (j and the 
principal type scheme of E in A is unambiguous, then v: P IA l- E{ = E~ : (j. 

This generalises an earlier result established by Blott (1991) for the special case 
of the type system in (Wadler and Blott, 1989). 

Theorem 5.32 is wellwsuited to use in concrete implementations of qualified types. 
The first step in type-checking any given source program is to use the type inference 
algorithm to calculate a principal type (and a corresponding translation that can 
be used to implement that program). If the program does not have a principal type, 
then it cannot be well-typed (Corollary 3.23) and will be rejected. If the principal 
type is Dot unambiguousJ then we cannot guarantee a well-defined semantics and 
the program must again be rejected. For example, the principal type scheme of the 
term out (in x) in the example in Section 5.3 is Va.C a'::::;' Int which is ambiguous. 
It follows that this program should be rejected since it is not possible to determine 
which overloading is required. 

Practical experience with a concrete implementation of type classes based on syn
tax of Haskell (Jones, 1991c) suggests that the restriction to terms with unam
biguous types does not usually cause any significant problems. However, examples 
using multiple parameter type classes (as described in Section 2.2.4) often lead to 
ambiguity since the mechanism for defining the corresponding relations between 
ty~ is ra.ther weak. Some suggestions for improving this will be described in 
Section 6.2. 

From a theoretical point of view, there is no need to require that all of the types 
in the type assignment A are unambiguous. For example, if (x : (j) E A and 0' is 
ambiguous, then the principal type of a term involving x given by the algorithm in 
Figure 5.9 will also be ambiguous, whereas a term that does not involve x would 
not be affected by this ambiguity. Nevertheless 1 in a practical implementation it 
will usually be sensible to avoid including any variable with an ambiguous type in 
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a type assignment since any object defined in tenus of those variables is essentially 
useless. In particular, in the rule for typing let expressions: 

PITA~ E:T P'IT'(TA.. z:C1)~ F:T'
 

PI T'TA ~ (let z = E in F): T'
 

it would be reasonable to reject a program (or at least generate a warning message) 
if the inferred type scheme (1 = Gen( TA, P => T) is not unambiguous. 

Note that Theorem 5.32 gives a condition that is sufficient, but not necessary, 
to guarantee coherence. Thus a concrete implementation based on the approach 
outlined above can be expected to reject some terms that have a well-defined 
meaning despite the fact that they have an ambiguous principal type. A well known 
example of this is the Haskell term [] "',., [] that has an ambiguous principal type 
Eq [a] :::) Bool, but evaluates to True for any choice of type a. On the other 
hand, this fact cannot be established using the definition of equality in Section 5.4 
and we might conjecture that the restriction to terms with unambiguous principal 
types is both necessary and sufficient to guarantee coherence with respect to such 
a formulation of provahle equality. We will not consider this possibility any further 
here. 

The restriction to unambiguous type schemes simplifies several aspects of our treat
ment of qualified types. For example, it restores the property of Damas-Milner 
typing, mentioned in Section 3.2.3, that TV(a) ~ TV(u') whenever u ~ tT. This 
makes it possible to give a more convenient syntactic characterisation of the (~) 

ordering. A second example is that the task of determining whether a particular 
OML typing P IA I- E : a is derivable is decidable if the process of determining 
whether Q I+- R for any given Q and R is decidable, assuming that the principal 
type of E in A is unambiguous (see the comments in Section 3.4.4). 

5.8.3 A weaker notion of ambiguity 

Unfortunately, the restriction to unambiguous type schemes is too severe for some 
applications of qualified types. For example, in the system of extensible records 
described in Section 2.4, we suggested that the primitive operation of record re
striction might be represented by a family of functions: 

(_ \ I):: I/r.I/I.(r has 1:1) => r --> r \ I. 

But this type scheme is ambiguous, and hence any values defined using this oper
ator might also have ambiguous principal types. Notice however that, assuming 
we follow the approach suggested in Section 4.7, the evidence for a predicate of 
the form (r has 1: t) is independent of the type t. Hence, repeating the argu
ment in Section 5.8.1, we can guarantee a well-defined semantics for any term 
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whose principal type scheme 17 == (VQj.Q => II) is unambiguous in the sense that 
{ai} n A V(Q) ;;; TV(") where A V(P) is defined hy: 

AV(0) = 0
 
AV(P,P') = AV(P)UAV(P')
 
AV(r has H) = TV(r)
 
AV(rlacksl) = TV(r)
 

With this weaker definition, the type of the record restriction operator given above 
is unambiguous. 

The same approach can be adapted to any system of predicates by defining AV( Q) 
as a subset of TV (Q) such that, if P It- e: 5Q and P It- eJ 

: S Q for some 
substitutions S and 5' such that Sa = Sa for each Q E AV( Q), then Pre == e': 
SQ. The simplest possihle choice would he to take A V( Q) = TV( Q) although it 
would obviously be preferable to give a definition that makes A V( Q) as small as 
possible to increase the class of programs that will be accepted by the type system. 

5.9 Comparison with related work 

A number of researchers have investigated the coherence properties of particular 
type systems using a process of normalisation of typing derivations. Examples of 
this include systems with explicit subtyping (Breazu-Tannen et al., 1989i CuneD 
and Ghelll, 1990), a form of implicit suhtyping called scaling (Thatte, 1990) and 
an earlier treatment of type classes (Blolt, 1991). The basic idea in each case is 
to give a collection of reduction rules and prove that they are confluent, that they 
preserve meaning and that any reduction sequence terminates (and hence, that the 
rules are strongly normalising). The confluence property guarantees the existence 
of a unique normal form and the fact that meaning is preserved by reduction is 
then sufficient to guarantee coherence. 

In the work described in this chapter, the rules for reductions between terms in 
Section ·5A.2 correspond to reductions between derivations and the formulation of 
the syntax-directed system can be thought of as a means of identifying the 'normal 
forms' of a derivation. From this perspective, Theorem 5.25 can be interpreted 
as a proof that the reduction process terminates and that it preserves meaning. 
However, having established that the coherence property does not hold in the 
general case (Section 5.3) we do not guarantee the existence of unique normal 
forms or confluence. 

The most important and novel feature of our work is the use of conversions to give 
a semantic interpretation to the ordering between constrained type schemes. In 
effect, a conversion acts as a record of the way in which one derivation is reduced 
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to another. Some of this information is lost because we do not distinguish between 
conversions that are provably equal but l as we have seen, we retain sufficient detail 
to establish useful conditions that guarantee coherence. 

Our use of conversions is closely related to the discussion of the relationship be
tween two versions of the pure polymorphic >.-calculus, one with explicit type 
abstraction and application, the other without I described by Mitchell (1988) using 
retyping junctions. Mitchell used these retyping functions (corresponding to our 
conversions) to describe minimal typings for a restricted set of terms, but it is 
not clear how his results might be extended to deal with larger classes of terIrul. 
Many of the difficulties are caused by the flexibility of the language of types in 
the systems considered by Mitchell (essentially the same as those in OP but with
out qualified types of the form 11' :::::> 0'"). We have avoided these problems here 
by working with a source language based on a more restricted collection of type 
schemes. 

One of the biggest limitations of oUI work is caused by the decision to include 
tJ-reduetion in the definition of equality (Section 5.4.2). As an immediate conse
quence, the results in this chapter cannot be applied to languages with call-by-value 
semantics. The same problem occurs in other work, including the coherence proof 
in (Blott, 1991). One possibility would be to rework the.e results using an ax
iomatisation of equality for call-by-value semantics such as that given by Riecke 
(1990), but it would clearly be preferable to find a single formulation that can be 
used for both cases. We might therefore consider ways of avoiding tJ-reduction 
altogether. For example, a conversion Ar,).v.re could be treated I not as a term of 
OP itself, but as a function in the meta-language, mapping each term E to the 
OP term Av.Ee. Unfortunately, while this would eliminate many applications of 
tJ-reduetion 1 there are several others for which there is no obvious alternative_ 

Another promising approach to establish coherence properties would be to use 
ideas from category theory as in (Reynolds, 1991) for a language with intersec
tion types and subtyping and in (Hilken and Rhydeheard 1 1991) for a system of 
type classes. One of the main attradions of the categorical approach from the 
theoretical standpoint is the increased generality resulting from a higher level of 
abstraction. The main benefit from a practical point of view is likely to be the 
'variable-free' approach which avoids some of the messy technical details involving 
free and bound variables. As mentioned in Section 5.5, our treatment of conver
sions has a strong categorical flavour and we would hope to be able to extend the 
techniques developed here to provide a more general treatment of coherence for 
qualified types. Section 9.1 sketches some simple first steps towards this goal. 
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Chapter 6 

Theory into practice 

This chapter describes a number offeatures that might be useful in practical work 
with qualified types. We adopt a less rigourous approach than in previous chapters 
and we do not attempt to deal with all of the technical issues that are involved. 

Section 6.1 suggests a Dumber of techniques that can be used to reduce the size of 
the predicate set in the types calculated by the type inference algorithm, resulting 
in sma.ller types that are often easier to understand. As a further benefit, the 
number of evidence parameters in the translation of an overloaded term may also 
be reduced, leading to a potentially more efficient implementation. 

Section 6.2 shows how the use of information about satisfiability of predicate sets 
may be used to infer more accurate typings for some terms and reject others for 
which suitable evidence values cannot be produced. 

Finally, Section 6.3 discusses the possibility of adding the rule of subsumption to 
the type system of OML to allow the use of implicit coercions from one type to 
another within a given term. 

It would also be useful to consider the task of extending the language of OML terms 
with constructs that correspond more closely to concrete programming languages 
such as recursion, groups of local binding and the use of explicit type signatures. 
One example where these features have been dealt with is in the proposed static 
semantics for Haskell given in (Peyton Jones and Wadler, 1992) hut, for reasons 
of space, we do not consider this here. 

6.1 Evidence parameters considered harmful 

Using the algorithm described in Section 5.7 enables us to calculate, not just the 
principaJ type scheme of an OML term, but also a principal translation that can be 
used to implement that term. Assuming that the coherence conditions descrihed in 
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the previous chapter are satisfied, the principal translation is semantically equiva
lent to any other translation but it is not necessarily the best choice for an efficient 
implementation. This section describes some of the problems associated with the 
use of evidence parameters and suggests ways of obtaining alternative translations 
that can be used, either to reduce the number of parameters that axe required, or 
to eliminate the use of evidence parameters altogether, 

6.1.1 Simplification 

With the implementation described in the previous chapter, an OML term E of 
type ("taj.Q ~ £.') is implemented by a translation of the form ),w.E' where w is a 
collection of evidence variables for Q and E' is an OP term corresponding to E that 
uses these variables to obtain appropriate evidence values. More succinctly, the 
translation of a term whose type is qualified by a set of predicates Q requires one 
evidence abstraction for each element of Q. One obvious way to reduce the number 
of evidence parameters in this situation is to find a smaller set of predicates Q' 
that is equivalent to Q in the sense that each set entails the other. IT the original 
translation is ),w,E' and tV': Q' H- f: Q, then we can treat the term as having 
type (T/aj.Q' ~ £.') with translation ),tV',().tV,E')j which, using C8~), is equivalent 
to ),w',[//w]E1 In this situation we have a compromise between reducing the• 

number of evidence parameters required, and the cost of constructing the evidence 
f for Q from evidence for Q'.
 

We will refer to the process of finding a suitahle choice of predicates Q' from a.
 
given collection of predicates Q as simplification. One way to extend our current
 
type inference algorithm to support this feature would be to allow the rule: 

w:QITA~W E--...E":. w:QIt-f':Q' w':Q'lt-f:Q 
(simp)

w':Q'ITA~ E--...lfJwJE":. 

to be used at any stage in the type inference process to simplify the inferred 
predicate assignment. 

Soundness of (simp) follows irrunediately from Theorem 5.18 using the entailment 
w' : Q' H- f : Q. The other entailment, tV: Q H- f' ; Q', is needed to ensure 
that the type inference algorithm still calculates principal types, even though the 
evidence f' that it constructs is not actually used in the resulting translation. 
In order to establish this property it is sufficient to show that the conclusions of 
Theorem 5.28 a.re preserved hy (simp). More precisely, it is sufficient to show that, 
jf Pit- e: RQ. P ISA ~ E' = [eJw]E" : r and w: Q and w': Q' are related as above, 
then Pit- [eJw]f':RQ' and PISA ~ E'= [[eJw]f'/w1(lfJwJE"):r. Verification 
of this fact is stra.ightforward a.nd we do not include full details here. The proof 
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relies an the equality w: Q I- w = If'/W'lf : Q which fallows from uniqueness of 
evidence by composing the twa entailments above to obtain the second evidence 
expression. 

The fact that the algorithm obtained hy adding (8irnp) to the rules in Figure 5.9 
is non-deterministic does nat cause any problems in practice. First of all, any 
two applications of (simp) fonowing one after the other can be reduced to a single 
application using the transitivity of 1+-. Furthermore, since the only place that 
the predicate assignments are actually used in the type inference algorithm is in 
the rule for typing let expressions, the only place where there is any benefit from 
using (simp) is immediately before using the typing for a term E in the typing 
of an expression of the form let x = E in F. Finally, the choice of Q' in the 
formulation of (simp) above is arbitrary. More realistically, a suitable simplifica· 
tion for a predicate assignment might be obtained using a function simplify such 
that simplify( w : Q) returns a pair (w' : Q', f) containing a simplified predicate 
assignment Wi: QI and evidence f satisfying the conditions above. Given these ob
servations, simplification might be dealt with using a deterministic type inference 
algorithm that does not include (simp) and in which (let)""" is replaced by: 

w:QITA~ E......."E':r PIITI(TAz,x:a)fl'" P......."FI:r'
 

P'I T'TA I'" (let % ~ E in F) ~ (let % ~ ~w'.[f fw]E' in F) : r' 

where u = Gen( TA, Q' "" r) and (w': Q', f) ~ sirnpliJy( w: Q).
 
Apart from reducing the number of evidence parameters required, simplification
 
can sometimes help to avoid the kind of ambiguity problems described in Sec

tion 5.8.2. For a simple example, suppose that Any is a unary predicate symbol
 
such that 01+- e: Any r for any type r. Then a term with an ambiguous principal
 
type scheme Va.Any a ~ II where a ¢ TV(II) can be treated as having the unam

biguous type scheme Va.lI. Notice that this example can also be dealt with using
 
the approach outlined in Section 5.8.3 by defining AV(Any r) = 0.
 

We have not yet discussed how a simplification of a particular predicate assign

ment might he calculated. Of course, this will typically vary from one system of
 
predicates to another and the task of finding an optimal assignment QI with which
 
to replace a given assignment Q may he intractable. One fairly general approach
 
is to determine a minimal subset QI ~ Q such that Q' H- Q. To see that this is
 
likely to be a good choice, note that:
 

•	 Q ft- Q' by monotonicity of H- and hence Q' is equivalent to Q as required. 

•	 Since Q' ~ Q, the number of evidence abstractions required using Q' is less 
than or equal to the number required when using Q. 

•	 The construction of evidence for a predicate in Q using evidence for Q' is 
trivial for each predicate that is already in Q'. 
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6.1.2 Unnecessary polymorphism 

The principal motivation fOT including the let construct in OML was to enable the 
definition and use of polymorphic and overloaded values. In practice, the same 
construct is also used for a number of other purposes: 

•	 To avoid repeated evaluation of a value that is used at a number of points 
in an expression. 

• To	 create cyclic data structures (when combined with recursion in a 000

strict language). 

•	 To enable the use of identifiers as abbreviations for the subexpressions of a 
large expression. 

Unfortunately, the use of evidence parameters for the value defined in a let ex
pression may mean that the evaluation of an overloaded term will not behave as 
intended in these situations. For example, if f:Va.C a=> lnt --+ 0, then we have 
a principal translation of the form: 

let x = /0 in (x, x) "" let x = ().v.f v 0) in (x e, x e) 

that treats x as a value of type Va.C a => a so that the evaluation of x e in 
the translation is no longer shared. The problem here is that the type system 
allows a stronger degree of polymorphism than the programmer might anticipate 
(or require). The principal type of this expression is Va.Vb.(C a, C b) => (a, b) 
and not Va.C a => (a, a) as might be expected. 

If it is known that the value produced by this expression will be only used in 
situations where both components of the pair are expected to have the same type, 
then we might use the following translation to guarantee shared evaluation: 

let x =/ 0 in (x, x) "" letx =/ e 0 in (x, x) 

Note that this is only provably equal to the principal translation if we use the less 
general typing above. 

In a more general situation, this optimisation can only be applied to an expression 
of the form let x = E in F if we can guarantee that the same evidence values 
will be used for each occurrence of x in F. For example, if there is only one 
occurrence of x in F, then this condition certainly holds. While there is no problem 
with shared evaluation in this case, it is still useful to avoid redundant evidence 
parameters. A slightly more sophisticated version of this optimisation is described 
in Section 6.1.4 which describes a technique that can be used to detect a subset of 
evidence parameters, that can be guaranteed to have constant values. 
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6.1.3 The monomorphism restriction 

In practical programming languages such as Haskell or ML, top-level declarations 
are treated as let expressions in which the scope of the defined varia.ble is Dot 

fully determined at compile-time. As a result, we cannot hope to a.pply the kind 
of optimisations described in the previous section. 

The solution to this problem used in the current version of Haskell is to provide a 
second form of local definition, let poly x = E in F in which the variable x may 
be ~signed a polymorphic, but unqualified type in the expression F: 

P IA I- E "--' E' : C7 Q IA" z: C7 I- F,,--, F' : T ,,= V T. T'
 

P, QIA I- (let poly x = E in F),,--, (let x = E' in P'): T
 

Note that we use the keyword poly to distinguish between the two forms of local 
definition. The current version of Haskell uses a more sophisticated. rule although 
the basic principle is the same: a local definition of the form let x = E in F is 
treated as a let poly binding jf E is not a lambda abstraction and no explicit 
type signature has been declared for the variable x. Otherwise, the definition is 
treated as a standard let construct. 

The fact that none of the predicates P used in the typing for E can be included in 
the type scheme u means that the degree of polymorphism (roughly corresponding 
to the number of type variables in T) may be limited since (VI) cannot be used 
to quantify over any type variable in P. This aspect of the Haskell type system 
is usually referred to as the monomorphism restriction since, in the extreme case, 
u may be restricted to be a monomorphic type. The main advantage is that the 
translation does not introduce additional evidence parameters. 

Type inference for expressions involving the let poly construct is reasonably 
straightforward. The only complication is that, having calculated a derivation 
P IA .-w E ""-+ E' : r' for E we must use the simplification process described in 
Section 6.1.1 to minimise TV(P). This is necessary to ensure that we assign a.s 
general a type as possible to the variable declared in the local definitioDi it is not 
just the predicates themselves that serve a.s constraints on the typing, but also the 
type varia.bles that they involve. This requires an extra condition on the predica.te 
entailment relation, namely that for any predicate set P, there is an equivalent set 
Po such that TV(Po)';; TV(Q) [or any Q equivalent to P. 

6.1.4 Constant and locally-constant overloading 

This section describes a simple method for detecting when the values passed for a 
particular evidence parameter are the same for each use of a variable bound to an 
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overloaded value. We begin by recalling the (let) rule that is used for typing local 
definitions in the type system of Chapter 3: 

P IArE:" Q IA" z : "r E' :T
 

P, Q IA r (let z = E in E') :T
 

This rule allows some of the predicates constraining the typing of E (Le. those in 
P) to be retained as a constraint on the environment in the conclusion of the rule 
rather than being included in the type scheme 17. However, in the corresponding 
rule (let)- for the syntax-directed system, all of the predicates constraining the 
typing of E are included into the type Gen(A, P => 1") that is inferred for E: 

P IA ~ E : T P'I A., z: Gen( A, P =} T) ~ E' : or'
 

P'I A ~ (let z = E in E') : T'
 

Note that this requires the use of evidence parameters for all predicates in P, even 
if the evidence supplied for some of these parameters is the same for each use of 
x in E', In particular, this includes constant evidence (corresponding to constant 
predicates; i.e. predicates with no free type variables) and locally constant evidence 
(corresponding to predicates, each of whose free variables appears free in A). 

From the relationship between the type inference algorithm W and the syntax
directed system, it follows that W has the same behaviourj indeed, this is essential 
to ensure that W calculates principal types: If x ¢ FV(E'), then none of the 
environment constraints described by P need be reflected by the constraints on 
the complete expression in P'. 

However, if x E FV(E'), it is possible to find a set F ~ P such that r H- F and 
hence the type scheme assigned to % can be replaced by Gen(A, (P \ F) =* 'T), 
potentially decreasing the number of evidence parameters required. by x. To see 
this, suppose that Gen(A, P ::::} r) = Vai.P ::::} 'T. A straightforward induction, 
based on tbe hypothesis that z E FV(E'), sbows that P' It- h/o;!P for some 
types 'Ti' H we now define: 

FP(A, P) = {(v: If) E P I TV(lf) <;; TV(A) J free predicates 
BP(A,P) = P \ FP(A,P) bound pndicates 

then F = FP(A, P) is the largest subset of P that is guaranteed to be unchanged 
by tbe substitution [T;/O;], with the remaining elements of P in B = BP(A, Pl. 
These observations suggest that (let)' might be replaced by: 

PIA~ E:T P'IA~ E':T'=-'--,-;....,.,..-----,::-:----=c".------, (l,I)/ 
P'I A ~ (let z = E in E') : T' 
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if x ¢ FV(E') (the typing judgement involving E serves only to preserve the 
property that all subterms of a well-typed term are also well-typed) and: 

PIA~ E:r P'IA... : Gen(A.B=}r)~ E':r' P'1t- F (let).'
P'I A ~ (let. = E in E') : r' 

where F =FP(A, P) and B = BP(A, P) in the c",e where. E FV(E'). 

Top level declarations can be dealt with using just (let)b', since the scope of such 
a declaration can be taken to include all terms that might reasonably be evaluated 
within its scope, which of course includes terms involving the variable x. 

6.1.5 A template-based implementation 

Since the use of evidence parameters seems to cause so many problems, we might 
consider whether it is possible to find an alternative approach to translation that 
avoids the use of evidence parameters altogether. For example, one simple alter
native to the implementation of type classes described in Section 4.5 that a.voids 
the use of evidence parameters is to treat the bodies of cl ass and instance decla
rations as templates (i.e. macros) for the generation of function definitions. With 
this approach, the expression [1.3]·" [2 .4J might be implemented as eqListInt 
[1,3] [2,4] using the following definitions generated from the instance declara
tions for equality on integers and on lists: 

eqlnt Int -) Int -) Eool 
eqlnt primEqlnt 

eqListInt [Int] -) [Int] -) Bool 
eqListlnt [] [) True 
eqListInt [] (y:yo) False 
eqListInt (x:xo) [] ,.. False 
eqListInt (x:xs) (y:yo) .. eqlnt ::r y .t.t eqListInt ::rs ys 

Distinct versions of each overloaded function such as mem.ber and subset may 
also be needed, but only for those instances of Eq for which they are specifically 
required in a given source program; for example, it might be necessary to generate 
code for finding members of lists of type [[lntJ] but not for lists of type [lnt]. 

This template-based approach can be adapted to any application of qualified types. 
One simple way to describe the construction of suitable 'translations' for a given 
term is with a type inference algorithm using judgements of the form P IA ~ E ........ 
E' : u with B where B is a collection of bindings of the form x' = xe. The value 
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hound to x' will he a speciansed version of the overloaded operator 'Z with evidence 
parameters e. For example, the rule for inferring the type of a variable is as: 

(z: (Va;.P => T)) E A (3;, v and z' Dew 

[f3;/a;]PIA ~ z -. z': 1J1;/a;Jr with {x' = xv} 

A simple optimisation to this rule would be to translate any variable z for which 
the corresponding predicate set P is empty as itself, rather than introducing a new 
variable Xl. 

It is straightforward to recast the rules (-I), (-E) and (simp) in this framework, 
and we will not include the details here. The rule for local definitions is more 
interesting and produces a translation of the form (let D in F) where D is a set 
of bindings x = E of expressions to variables: 

v:PI TA I" E-. E': T with B
 
<7 = Gen(TA,P => r)
 

QI T'(TA.,x:<7) I" F-. F': v with B'
 

let x = E in F 
QfT'TAf'" -. : 1I with BuB; 

let {x' = [e/vJE' 1 (x' = xe) E B'} in F' 

(B; is used as aD abbreviation for the set {(y' = ye) E B' 1 y t x }.) The 
number of bindings in the translation of a local definition (and indeed, the size 
of the binding sets B) can often be reduced by simplifying binding sets. For 
example, a binding of the form ~ = xl can be eliminated if we already have a 
binding x; = ze where e and I are equivalent. 

These rules do not produce genuine translations of OML terms (in the sense of 
Section 5.2). However, it is relatively easy to show how they correspond to the 
principal translations used in Chapter 5 by treating binding sets as substitutions. 

There are three significant problems with the template-based implementation: 

•	 It may Jead to a code explosion; a small increase in the size of the input 
program may result in a much larger increase in the compiled version. 

•	 Some important optimisations, particularly that. of eliminating redundant 
bindings as described ahove, may be expensive to implement. 

•	 Binding sets B must be included in the compiled representation of top-level 
definitions, and passed to a sophisticated linker with the ability to replicate 
and instantiate sections of parameterised code before obtaining object code 
in a suitable form for a conventional linker. In some cases, it may also be 
necessary to include additional information in the interfaces for program 
modules. 
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Despite this, it still seems likely that a satisfactory, general purpose implemen
tation based on this approach may be possible. For example, as we describe in 
Chapter 8. the implementation of type classes in Gofer is closely related to the 
template-based approach (working at the level of classes rather than individual 
functions) but almost completely avoids the three problems mentioned above. 

6.2 Satisfiability 

One of the most important features of the systems of qualified types described in 
this thesis is the ability to move 'global' constraints 00 a typing derivation into 
the type of an ohject using (:::::} I): 

P,~IArE:p 

PIArE:~".p 

This is essential in many situations where overloading is combined with polymor
phism: Without the ability to move predicates from the first component of a typing 
PI A f- E: p into the type of an object we would not be able to apply (VI) for any 
type variables appearing in TV(P), severely limiting the use of polymorphism. 

On the other hand, with the formulation of the typing rules used in the previous 
chapters there is no attempt to guarantee that the predicates introduced into the 
type of an object using (:::::}I) are satisfiable. As we have already mentioned, an 
object of type 7r ~ P can only be used if we can provide evidence for the predicate 
7r. If no such evidence can be obtained, then any object with this type is useless. 

This problem was noted by Volpano and Smith (1991) for the special case of the 
system of type classes described in (Wadler and Blott, 1989). With this in mind, 
they gave a stronger definition of well-typing that includes testing for satisfiability 
of an inferred type scheme and showed that this makes the process of determining 
whether a particular term is well-typed undecidable in an restricted version of the 
Wadler-Blott system. The framework used in this thesis allows us to separate 
typability from predicate entailment and to identify the problem as undecidability 
of the latter. Nevertheless, the difficulty remains. 

On the one hand we could simply ignore the problem since it will never be possible 
to resolve the overloading for an object with an unsatisfiable type scheme and hence 
any attempt to use it will fail. On the other hand, it would certainly be nseful 
if the type system could be used to identify such objects at the point where they 
are defined and produce suitable error diagnostics to assist the programmer. One 
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possibility would be to modify the role for typing let expressions with~ 

PIAf-E:u QJA.,x:uf-F:r Posa'u 

P, Q IA f- (let x : E in F) : r 

to ensure satisfiability with respect to a fixed set of predicates Po, where: 

.,.Po ,at (Va,.P =} r) "",.Po It- [",ladP. 

The following properties of this relationship between predicate sets and type 
schemes are easily established and show that this notion of satisfiabi/ity is well
behaved with respect to our use of polymorphism, entailment and ordering: 

• If P sat (1, then SP sat Su for any substitution S. 

• If P sat u and Q H-- P, then Q sat u. 

• If P sat u' and (1 2: (P 1£1'), then P sat u. 

We conjecture that, if we restrict our attention to derivations P IA f- E : u for 
which Po H-- P, then the development of a principal type algorithm and coherence 
conditions described in the previous chapters will extend naturally to deal with 
this extension. Note however that we will require decidability of Po sat u for 
arbitrary Po and (1 to ensure decidability of type checking. 

Another, more positive, application of satisfiability that does not appear to have 
been considered elsewhere is to allow the use of more accurate types for partic
ular objects. As an example, consider the function >.r.{r.l, r.l) using the record 
selection operator described in Section 2.4 which has principal type scheme: 

Vr.VoVb.(r ha' I:a, r ha' I:b) =} r ~ (a, b). 

On the other hand, for any given record type r, the types assigned to the variables 
a and b must be identical since they both correspond to the same field in r. It 
would therefore seem quite reasonable to treat f a'l having a principal satisfiable 
type scheme: 

Vr.Va.(r ha' 1:0) =} r ~ (a, aj. 

To see how this might be dealt with more formally, recall the treatment of the 
ordering between type schemes in Section 3.2.1. Writing the set of generic instances 
of a type scheme as: 

[Va,.P =} rl : {Q =} [";fadr I ", E Typ", Q It- [";fodP), 

the ordering on type schemes is described by: 

.,.

(1 S £1' lui'; (u']. 
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In a similar way can define the generic satisfiable instances of a type scheme with 
respect to a. predicate set Po as: 

[VOi. P => r]i:;/ {Iv;/O';]T I v; E Type, Poll- [v;fa;]P} 

and defwe a satisfiability ordering, again with respect to Po, by: 

(j <Uf I
-Po (j ¢? [(j]~:f ~ [a']i\.t 

We can formalise the notion of principal satisfiable type in the same way as in 
Section 3.4,3 using the (~p~t) ordering in place of (~). For the example above, 
both of the type schemes given are principal satisfiable type schemes for the term 
.\r.(r.l, d). The first of these is the type scheme that would be obtained using 
Our type inference algorithm, but it would clearly be preferable if the algorithm 
could be modified to give the second alternative, Further investigation is needed 
to discover effective procedures or heuristics for calculating more informative types 
that can be used to support this extension. 

The use of prjncipal satisfiable type schemes would also be useful to eliminate some 
of the problems with terms that would otherwise have ambiguous principal types. 
One application where this would be particularly useful is for work with multiple 
parameter type classes where ambiguities often seem to occur. For example, in 
(Jones, 1990), we presented a type class for describing duality between lattices 
wi th a definition of the form: 

class Dual b a => Dual a b where camp :: a -> b 

where comp represents a complement function, One of the simplest instances for 
this class is: 

instance Dual Baal Bool where
 
camp True .. False
 
camp False = True
 

Unfortunately, even simple terms involving camp have ambiguous principal type 
schemes. For example: 

camp, camp :: (Dual a b. Dual b c) .) a -> c 

Despite this, if the above declaration is the only instance of Dual that ma.tches 
the predicate Dual Baal a. then there is only one possible interpretation for the 
expression let f • camp . camp in f False and tbe ambiguity can be a.voided. 
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As we have shown in this section, predicate satisfiability h~ several attractive 
applications, but we should also mention some of the difficulties of using infor
mation of this kind in concrete implementations. For example, ~ highlighted in 
(Jones, 1990), a system of type cl~ses can be used to write programs that are 
highly modular and easily extended. In particular, the complete set of instance 
declarations making up the definition of a particular overloaded operator may be 
distributed across a number of distinct program modules that may not be visible 
to the compilation system when processing particular modules. As a result, it 
will often not be possible to use infonnation about satisfiability. For example, it 
would probably not be sensible to treat the member function defined in a module 
containing only the definitions: 

class Eq a where (c:) :: a -) a -) Baal 
member x [] z False 
member x (y:ys) ~ x==y I I member x ys 

as being ill-typed, simply because the module does not define any instances of Eq. 

6.3 Incorporating the rule of subsumption 

Although we have indicated how systems of predicates can be used to describe 
subtyping(Section 2.3), the type systems presented in Chapters 3 and 5 ca.n only 
be used to reason a.bout languages with explicit coercions. More precisely, for 
derivation P IA f- E ........ £I : (7, the translation E' will only involve a. coercion if one 
of the free variables appearing in E is assigned a qualified type in A that involves 
a predicate of the form -r' ~ -r. 

More flexible systems of subtyping allow coercions to be used at arbitrary points 
in a translation using the rule of subsumption: 

PIA~E:T' PIt-,'C, 

PIA~E:T 

The corresponding rule for translations which makes the process of inserting coer
cions explicit is: 

PIA f- E ........ E'; r' Pit- c:r' ~ r
 

PIA ~ E--.. cIE1:' 
where e[E'] denotes the application of the coercion c to the term E'. 
Follow each application of one of the other typing rules with an implicit coercion, 
it is straightforward to see tha.t, for any term E whose free variables appear in the 
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domain of a type assignment A and for any type T, there is a predicate set P such 
that P IA I- E : T. However, the predicate sets involyed in these typings may not 
be satisfiable or may be unnecessarily complex. Thus the most difficult problem 
for type inference using the rule of subsumption is the need to reject terms with 
unsatisfiable type schemes (as described in the last section) and to minimise the 
use of coercions. These issues are discussed more fully in (Fuh and Mishra, 1989, 
1990; Mitchell, 1991; Smith 1991). 

The coherence of languages with explicit typing and subsumption has been es
tablished by Breazu-Tannen et at. (1989) and by Curien and Ghelli (1990). On 
the other hand, the task of ensuring coherence for an implicitly typed language 
with subsumption is likely to be considerably more difficult. In the first instance, 
it seems unlikely that a system that allows user-defined coercions will be able to 
guarantee the 'uniqueness of evidence' condition that is central to the work in 
Chapter 5. It is also possible that the ambiguity condition formulated in Sec~ 

tion 5.8.2 may be too restrictive in same cases. For example, Fuh and Mishra 
(1989) indicate that the recursively defined term: 

napply = .\f.,\z.>.n.if n == 0 then z else f (napply f z (n -1)) 

has the (rather complex) principal type scheme: 

V{O',,8,vr,v,v}.(~r ~ v,f3 ~ v,v ~ ~,v ~ a)::::} (a --+ (3) -i (vr --+ Int --+ ~). 

This type is ambiguous since v appears only in the predicate set of the type 
scheme and furthermore, as Fuh and Mishra point out, any attempt to eliminate 
this type variable would be unsound because it would not be possible to capture 
the relationship between the types assigned to 0, f3, v~ and v. 
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Chapter 7 

Type classes in Haskell 

This chapter expands on the implementation of type classes in Haskell using dictio
nary values as proposed. by Wadler and Blatt (1989) and sketched in Section 4.5. 
For brevity, we refer to this a.pproach to the use of type classes as HTe. The 
main emphasis in this chapter is on concrete implementation and we adopt a. less 
rigourous a.pproach to formal properties of HTC than in previous chapters. In 
particula.r, we describe a. number of optimisations that are necessary to obta.in an 
efficient implementation of HTC ~ i.e. to minimise the cost of overloading. We do 
Dot consider the more general problems associated with the efficient implementa
tion of non-strict funetionallanguages like Haskell which are beyond the scope of 
this thesis. 

Section 7.1 describes an important aspect of the system of type classes in Haskell 
which means that only a particularly simple form of predicate exprESsion can be 
uaed in the type signature of an overloaded function. The set of predicates in 
a Haskell type signature is usually referred to as the contel':t and hence we will 
use the term contel':t reduction to describe the process of reducing the context to 
an acceptable form. Context reduction usually results in a small context, acts as 
a partial check of satisfiability and helps to guarantee decidability of predicate 
entailment. Unfortunately, it can also interfere with the use of data abstraction 
and limita the possibilities for extending the Haskell system of type classes. 

The main ideas used in the implementation of HTC are described. in Sectjon 7.2 
including the treatment of default definitions which were omitted from our pre
vious descriptions. Section 7.3 highlights the importance of finding translations 
that minimise the amount of dictionary conatruction used during the execution of 
a program. Section 7.4 concentrates on an important special case - sharing dictio
nary values in recursive programs to avoid repeating the construction of the same 
dictionaries on each recursive call of a particular function. Other opportunities 
for sharing are described. in Section 7.5, with particular attention to sharing in hi
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erarchies of dictionaries. Finally, Section 7.6 outlines a rather different approach, 
suggesting an implementation of dietionary construetors as memo functions. 

Some of the exampl~ used in this chapter (each of wbich is written using the 
concrete syntax of Haskell) are degenerate and are unlikely to be of use in practical 
applications. Nevertheless, we believe that they are representative of the kind 
of problems that can occur in such programs. '1Ne a.re particularly concerned 
with the use of type classes for large programming projects where a system of 
modules supporting some form of separate compilation is essential. This imposes 
an additional restriction on the compilation system: It is clearly unacceptable to 
adopt a system in which the ability to obtain an efficient implementation of a 
function relies on access to the source code for a value defined in another module. 

7.1 Context reduction 

An imporLant aspect o[ the Haskell system is that only predicates of the form 
C a (where C is a type class name and a. is a type variable) may appear in the 
contexts of overloaded functions. Any other context obtained during the typt:' 
inference process must be reduced to this form using rules derived from the class 
and instance declarations appearing in the program concerned. As an example, 
given the function definition: 

f x ys = [xl == ys 

we may infer that f has type a. -> [aJ -> Bool with the context Eq [a] (i.e. for 
any type a such that [a] is an instance of Eq). Using the corresponding instance 
declaration this constraint is reduced to Eq a and the actual typing that will be 
used for f is: 

f :: Eq a. => a. -> [aJ -> Bool 

This process can be thought of as a partial attempt to check for satisfiability of 
the predicate Eq [a.]; had there been no instance for equality on lists, an error 
condition would be signaled by the type checker. On the other hand, no attempt 
is made to determine whether there is any type a for which the final context Eq a 
holds. 

One advantage of context reduction is that it usually resultll in fairly simple con
texts in inferred type signatures and deals naturally witb the process of eliminating 
predicates for specific instances of classes that can be statically determined during 
type-che<:king. The restriction to predicates of the form C a is also useful as a 
simple means of ensuring the decidability of type checking (or more accurately, 
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of predicate entailment), where each of the predicates in the context part of an 
instance declaration must be of this form for some type variable a appearing in 
the type expression to the right of the .) symbol. A simple argnment on the 
structure of the type expressions involved can be used to prove that any attempt 
to construct a dictionary for a given predicate will terminate. Several researchers, 
for example (Volpano and Smith, 1991), have considered what extensions can be 
made to the form of Haskell instance declarations without loosing this property. 

Another motivation for the use of context reduction in Haskell was to attempt to 
minimise the number of dictionary parameters used in the translations of over
loaded functions. Unfortunately, there are also a number of examples where the 
number of dictionary parameters may actually be increased. For example, a func
tion with inferred context Eq (a.b) could be implemented using a single dictionary 
parameter for this instance, but the corresponding HTC context is (Eq a. Eq b) 
which leads to a translation with two dictionary arguments. 

In many cases, the contexts obtained by the reduction process are quite natural, 
but there are also some examples where the contexts are less easy to justify. For 
example, consider the following program which might be used to define subset 
inequality and set equality on an abstract data type of sets: 

data Set a :: Set [a] 

instance Eq a =) Ord (Set a) where
 
Set l:S <= Set ys all ('l: -) member l: ys) l:S
 

instance Ord (Set a) =) Eq (Set a) 'Where 
l: == y = l: <= Y &:&: y <c l: 

The use of the predicate Ord (Set a) in the !!econd instance declaration reflects 
the fact that the ordering function « ...) is used to compare set values in the 
definition of (=.. ) on sets. This context is not legal in Haskell and the declaration 
must be rewritten as: 

instance Eq a =) Eq (Set a) where 
l: == Y l: <= Y &:&: Y <= l: 

Given only this declaration, it is not particularly clear why the context Eq a should 
be necessary. 

Another problem with context reduction is that it interferes with the use of data 
abstraction. Consider an HTC program that makes considerable use of the equality 
operation on sets defined above and hence containing many functions whose type 
signatures include predicates of the form Eq a as a result of comparisons between 
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sets. Suppose that we decide to change the representation of sets to use ordered 
lists with the subset ordering defined hy: 

instance Ord a => Ord (Set a) where 
Set IS <- Set ys compare XS Y8 

where compare [] yo - True 
compare (x: xs) [) - False 
compare (x: xs) (y' yo) x=-y - compare xs ys 

x<y • False 
y<x c compare (x:%s) ys 

To make this work we must now rewrite each predicate of the form Eq a in the 
original program arising out of a comparison between sets .as Ord a. This breaks 
a fundamental principle of abstraction; it should be possihle to change the im
plementation of an abstract datatype without a.ny changes to the programs that 
make use of that code. 

By contrast, had we avoided the use of context reduction, the only place t1lat 
any changes would be necessary would be in the implementation of the abstract 
datatype, replacing the original instance declaration with that given ahove. This 
is the only place where a predicate of the form Eq a must be replaced by Ord a; 
at every other point in the program the use of an equality operation on sets is 
reflected by the predicate Eq (Set a) that does not need to he changed. 

To preserve true ahstraction we should not allow a program module containing 
the definition of an abstract datatype to export the context part of any instance 
declarations for objects of that type. For the example above, the interface for a 
module defining the set datatype might contain the definitions: 

data Set a abstract datatype of sets 
inst ance Eq (Set a) equality 
instance Ord (Set a) ordering 

and each use of one of the set operations reflected by the use of predicates of 
the form Eq (Set a) or Ord (Set a). Note that it would then be possible for 
a program using this interface to access the set datatype to be accepted by the 
compilation system, but generate a link-time error if a dictionary for a particular 
instance Eq (Set t) cannot be constructed. This is analogous to attempting to 
create an executable version of a program without linking in an appropriate library. 

Using context reduction in the type inference process will sometimes result in 
inferred typings that are not principal. For example, the principal type of the 
expression (\xs -> XS.= []) is Eq [a] -> [aJ -> Bool, but the Haskell typing 
is Eq a -> [aJ -> Bool. This is of little practical concern with the current defi
nition of Haskellj even though the predicates Eq a and Eq [aJ are not equivalent 
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(the second may be inferred from the first, but the converse dO€2!l not hold), the 
restrictions on the form of Haskell instance declarations ensure that whenever one 
holds, then so does the other. On the other hand, if the syntax of instance declara
tions were to be relaxed, as suggested by a number of researchers and implemented 
in Gofer, then the loss of principal types would become more significant. For ex· 
ample, in a program containing the instance declarations of the fonn: 

instance Eq lnt where . 
instance Eq [lot] where . 
instance Eq [Bool] where . 

the expression (\X8 -) xS""'[]) would not be acceptable unless we allowed a 
predicate of the form Eq [a] as part of its type. 

Anotber way in which context reduction can limit the form of instance declarations 
that can be used is illustrated by an extension implemented as part of Haskell B. 
(Augustsson, 1991) that allows overlapping instance declarations such as: 

instance Class Char where ... 
instance Class a ~) Class (a] where 
instance Class [Char] where ... 

This feature might, for example, be used to define a function show that produces 
a printable representation of certain objects, printing strings (represented by lists 
of characters) in the form "xyz" but using the standard notation such as [x J Y•zJ 
for other kinds of list. Unfortunately, the use of context reduction means that we 
cannot guarantee uniqueness of evidence needed as part of the framework used to 
establish coherence in Chapter 5. For example, the expression: 

let f xs .. Show (xs ++ xs) in f "Xl' 

could result in a translation that eva.luates to "XX " or in an alternative that pro
duces II [I X I • I X I] II, depending on the way that this expression is type checked. 
The problem is caused by the fact that context reduction allows a predica.te of the 
form Eq [a] to be reduced to Eq a before the type a is known. 

7.2 Implementation of type classes in HTC 

This section outlines a simple implementation of type classes in HTC based on the 
original approach described by Wadler and Blott (1989) and subsequently in more 
detail by HiUIlIIlond and Blott (1989). 
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As a preliminary we mention one feature of the Haskell system of type classes 
that was not mentioned in earlier chapter I namely the ability to support the use 
of default definitions. For example, the definition of the class Eq given in the 
standard prelude for Haskell (Hudak et aL, 1992) is a little more complex than the 
definition used in Sectjon 2.2: 

class Eq a where 
(==), C/=) a -> a -> Baal member functions 
x /= y not (x-=y) default definitions 

Note that Eq has two member functions but includes a default definition for the 
(/-) operator in terIrul of (.... ) I so that only the latter need be specified to define an 
instance of Eq. Alternative definitions for (/=) can be provided in specific instances 
by giving an appropriate definition in the corresponding instance declaration. The 
most common reasons for overriding a default definition are to give a more efficient 
implementation or to specify a different semantics for the value in question. 

In a similar way, the full definition of the class Ord includes default definitions for 
all of its member functions except «=) so that, only this single function needs to 
be defined to construct an instance of the class: 

class Eq a =) Ord a where
 
«), «=), (», (>=) :: a -> a -> Eool-- member functions
 
max, min a -> a -> a
 

x < y x <= Y II x f- y -- default definitions 
x )a: y Y <= x 
X ) Y 'i < x 
max x y x >= y x 

Y >:0: X = Y 
miD x y x <:0: Y = X 

Y <= x = Y 

Note how the assumption that Eq is a superclass of Ord is used in the default 
definition for «) which uses both «=-) from Ord and (/1/£) from Eq. 

7.2.1 Implementation of HTC dictionaries 

The general form of evidence for a type class constra.int in HTC is a dictionary 
containing implementations for each of the member functions for tha.t instance. 
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For example, the following type definition gives a suitable representation for dic
tionaries for the class Eq: 

data EqO a • EqDict	 (a -> a -> 8001) -- ( ••)
 
(a -, a -, Baal) -- (fa)
 

An overloaded value of type Eq a ..> sometype can now be implementtd as a 
function of type EqD a -) sometype where the additional parameter supplies the 
appropriate dictionary value. Member functions are treated in the same way, 
implemented as dictionary selector functions: 

eq, neq .. EqD a -> (a -> a -> Bool) 
eq (EqDict e n) ... e extract definition of (.... ) 
oeq (EqDict e n) = n extract definition of (Is) 

These operations are used to access the values of member functions in the imple
mentation of other kinds of overloaded functions. For example, the definitions of 
member and subset in Section 2.2.1 might be implemented using the translations: 

member ..	 EqD a -, (a -, [aJ -, Baal) 
member d x [] •	 False 
member d x (y:ys) =	 eq d % Y II mSlnber % ys 

subset	 EqD a -, ([aJ -, raJ -, Baal) 
subset d xs ys •	 all (\% -> member d % ys) %9 

As a further example, the default definition of (f .. ) can be implemented using: 

defNeq .. EqD a -) (a -> a -> 8001)
 
defNeq d x Y "II: not (eq d % y)
 

Each instance declaration in a given program is used to generate a corresponding 
dictionary constructor. A simple example is given by the dictionary constructor 
for the instance Eq Jnt: 

eqDlot EqD lot
 
eqDlot .. EqDict primEqInt (defNeq eqDlot)
 

This results in a cyclic data structure, using the dictionary eqDInt that is being 
defined to obtain the correct parameterisation for defNeq. 
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The same approach can be used in more general examples and, in the case of a 
parameterised dictionary constructor, a local definition must be used to obtain the 
required cyclic data structure and avoid a potential space leak1 

: 

eqDList EqD a -> EqD raj
 
eqDList d ~ let d1 = EqDict (eqList d) (defNeq dl) in dl
 

Following (Wadler and Blott, 1989), a suitable definition for the eqList function 
used above can be derived from the instance declaration for Eq [a] giving: 

eqList .. EqD a -> raj -> raJ -> Boo1
 
eqList d [J [) True
 
eqList d [J (y:ys) .. False
 
eqList d (x:xs) [J False
 
eqList d (x:xs) (y: ys) eq d x y tt eq (eqDList d) xs ys
 

The implementation of superclasses in HTC is straightforward if we allow the 
dictionary ror a particular instance of a class to include dictionaries for each of its 
superclasses, in addition to the implementations for each of its member functions. 
For example, the following data type definition and the associated family of selector 
functions provide a representation for dictionaries of the the class Ord: 

data OrdD a = OrdDict (a -) a 
(a -) a 

-) Baal) 
-) Baal) 

- 
__ 

«)
«0) 

(a -) 
(a -) 

a 
a 

-) Baal) 
-) Baal) 

- 
__ 

(»
(>0) 

(a -) a -) a) -  max 
(a -) a -) a) -  min 
(EqDict 0) -  superclass Eq 

lessThan (OrdDict It le gt ge mx mn sceq) =It 
lessOrEq (OrdDict It le gt ge mx mn sceq) = le 

scEqOfOrd (OrdDict It Ie gt ge mx mn sceq) = sceq 

Note in particular the function scEqOfOrd :: OrdD a -) EqD a which extracts 
the superclass dictionary for Eq a from the dictionary for Ord a. As an illustration 

'The I,t construct in Haskell introduces a potentially recursive group of local hindings and 
corre6ponds to the Ietrec or vhererec constructs in other languages. It should not be confused 
with the let const.ruct used in the formal treatment oC GML. 
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of the use of scEqOfOrd, the default definition of «) in the definition of Ord can 
he implemented as: 

defLessTban d % Y 2 lessOrEq d x y tt neq (scEqOfOrd d) x y 

Dictionary constructor functions are defined in the same way as before, taking care 
to give appropriate values for superclass dictionaries. For example, the instance 
declaration: 

instance Ord a -> Ord [a.] where 
[) <'" xs - True 
(x:xs) <"" [) .. False 
(x:xs) <.::: (y:ys) x<y I I (x"y t& xs<-ys) 

can be used to generate a dictionary constructor of the fonn: 

ordDList DrdD a -> DrdD (a) 
ordDList d • let d1 "" OrdDict (detLessTban d1) 

(ltDrEqList d) 

(defHin dl)
 
(eqDList (scEqOfDrd d)) in dt
 

7.3 The problem of repeated construction 

The performance of any implementation of HTC using dictionaries is very much 
dependent on the costs associated with dictionary construction and selection of 
member functions. A typical implementation will store the components of a dic
tionary in a contiguous array, for which the process of selecting a member function 
has an obvious and efficient implementation. Construction of a dictionary amounts 
to allocation and initialisation of the values to be held in it. This too can be im
plemented reasonably efficiently in constant time, particularly if heap space is 
allocated directly from a contiguous block of free memory. Even so, dictionary 
construction is still likely to be (at least) an order of magnitude more expensive 
than member function selection, and it is difficult to see how this might be reduced. 

While it is obviously sensihle to try to minimise the cost of each of these individua.l 
operations, it is also sensible to try and minimise the number of times that they are 
actually needed. The same idea motiva.tes standard optimisation techniques such 
as corrunon subexpression elimination in imperative languages and full laziness in 
non-strict functiona.l languages. 
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There are a. number of additional reasons why dictionary construction should be 
kept to a minimum: 

•	 Allocation of dictionaries in the heap reduces the amount of heap availahle 
for other parts of the program. 

•	 The number of garbage collections required. increases with heap use and hence 
with greater rates of dictionary construction. 

•	 Multiple copies of a single dictionary are redundant and waste heap space. 

•	 The evaluation of a value held in a dictionary cannot be shared with physi
cally distinct copies of the same dictionary. 

The following sections describe a number of situations jn which dictionary con~ 

struction can be reduced by careful sharing of dictionary values. 

7.4 Repeated construction caused by recursion 

Functional programs typically make extensive use of recursion so it is particularly 
important to ensure that such programs can be implemented. efficiently. In a. 
dictionary-based implementation of HTC, special precautions must be taken to 
avoid repeating the construction of dictionaries for each recursive function call. 

Section 7.4.1 shows both how this problem can occur and how it it can be avoided. 
by using a slightly more sophisticated translation. The same techniques are ex
tended to groups of mutually recursive overloaded functions in Section 7.4.2. We 
also highlight two issues that do not seem to have been noticed elsewhere; the need. 
for a. restricted form of full-laziness as described in Section 7.4.3. and the problems 
caused by (indirectly) recursive dictionary constructors illustrated in Section 7.4.4. 

7.4.1 Recursion in the definition of overloaded functions 

Recall the recursive definition of the equality on lists given in Section 7.2 in which 
the translation of the equation (%:%s)·_(y:ys) • x".y ot.t: %9--yS is given by: 

eqList d (x: xs) (y:ys) = eq d % Y U: eq (eqDList d) xs ys 

Since the dictionary expression eqDList d appears on the right hand side of this 
definition. the construction of this dictionary will be once repeated for each element 
of the argument list in an expression such as [1,2.3J-=[1,2,3]. 

In this example, we can use a form of partial evaluation or some other compiler 
driven transformation, based on the calculation: 
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eq (eqDList d) • eq (let dl • EqDict (eqList d) (deflleq d1) i. d1) 
• let dl c EqDict (eqList d) (detNeq dl) in eq d1 
... eqList d. 

Substituting this into the definition above gives: 

eqList d (%:%9) (y;ye) • eq d x y ~ eqList d xs ya 

which does not involve eqDList and 80 avoids the need for dictionary construc
tion altogether. Whilst this approach is useful in particular cases, the calculations 
required will typically require the use of arbitrarily complex laws that the com~ 

pilation system cannot reasonably be expected to apply. If for example, we had 
used the line: 

(xoxs)==(y:y.) x=~y && not (%9/=yS) -- rather perverse~ 

as part of the definition of equality on lists, then it would not be possible to avoid 
the repeated construction of a dictionary value without using a law of the form 
not (not x) = x. 

A more practical solution, described in (Peyton Jones and Wadler, 1992) in a 
slightly different form, is to move the translation of the equality on lists into the 
definition of the dictionary constructor. In so doing, the problematic expression 
eqDList d can be replaced with a direct reference to the dictionary being con~ 

strueted: 

eqDList :: EqD • -> EqD ra]
 
eqDList d = let dl .. EqDict eqList (defNeq dl)
 

eqList r] () ... True
 

eqList (x:xs) (y:ys) = eq d x y tt eq dl xs ys 
in dl 

Having written the definition in this way, we can obtain an equivalent translation 
by lifting the definition of eqList to give a new top-level function. This kind of 
tra.nsformation will in any case be used in any implementation that incorporates 
some form of lambda lifter, but is also useful in the discussion of mutually recursive 
functions in the next section. 

eqDList .. EqD a -> EqD ra]
 
eqDList d ~ let dl c EqDict (eqList d dl) (detNeq dl) in dl
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eqList EqD a -> EqD [a] -> [a] -> [a] -> 8001 
eqList d 41 0 [] True 

eqList d dl (x:xs) (y:ys) • eq d x y tt eq dl xs ys 

Notice that with this formulation, the equality test eqList is parameterised by 
dictionaries for the actual overloa.dings required, and not (as might be implied by 
context reduction) from some smaller group of dictionaries from which they may 
be constructed. 

In general, the translation of a recursively defined overloaded function f that uses 
dictionary ....alues dl', ... , din I constructed from dictionary parameters dl, ... , dn 

must be written in the form: 

f d1 ... dn let dl J 

din' • 

in 
let f' xl ... xk = expr 
in f' 

where the use of dictionary con:struetor functions is restricted to the right hand side 
of the definitions of dl', ... , dm '. Recursive calls to f in the original definition 
must be replaced by calls to f' in expr. This en:sures that the values of any 
constructed dictionaries are sha.red by all recursive calls to f and, at the same1 

time, guarantees that none of these dictionary values will be constructed more 
than once for any single redex of the form f dl ... dn. 

As it stands, there is little to be gained by using this tra.nslation for recursive 
functions that do not involve dictionary construction. For example, rewriting the 
translation of member as: 

member :: EqD a -) (a -) raJ -) Bool)
 
member d • let member J x [J ~ False
 

member' x (y:ys) • eq d x y I I member' x ys
 
in member'
 

gains very little except perhaps in an implementation that does Dot rely on lambda 
lifting due to the reduced number of arguments to l1eJDber ' . In any other imple
mentation, the use of lambda lifting results in a final program of the form: 

member d • member' d 
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member I d x 0 • False 
member' d x (y:ys) • eq d x y I I member' d x Y8 

where the definition of member' is now precisely that given in the original trans
lation in Section 7.2 and the equation for member results in an additiona.l (sma.ll) 
run-time overhead unless special care is taken to eliminate that equation using 
f]-reduction as described by (Peyton Jones, 1987). 

7.4.2 Mutually recursive groups of functions 

The same basic ideas can be extended to groups of mutually recursive definitions, 
although in this case, it is easier to give the translations in their lifted (orm rather 
than using local definitions. To illustrate this, consider the mutually recursive 
functions defined by: 

f, g Eq a =) a -) a -) Baal 
f x Y x===y II g x y 

g x Y [xl == [yl II f x y 

Using the standa.rd process we infer that f has type a -) a -) Baal for any type 
a such that Eq a, whilst g has the same type but restricted to those types a such 
that Eq [a). This leads to the following translations: 

f, g EqD a -) a -) a -) Sool 
f d x Y eq d x y II g d x Y 
g d x Y eq (eqDList d) [xl [yl IIfdxy 

Note that the construction of the dictionary eqDList d will potentially he repeated 
each time that the function g is called. This can be avoided (at the expense of an 
additional dictionary parameter) using a more sophisticated translation such as: 

f, g .. EqD a -) a -) a -) Baal 
f d = fl d (eqDLi9t d) 
g d . gl d (eqDLi9t d) 

fl, gl .. EqD a -) EqD [a] -) a -) a -) Baal 
f1 d dl x Y = eq d x y II gl d dl x Y 
gl d dl x Y . eq dl [xl [yl II fl d dl x Y 

In this example, we can think of f and g as corresponding to entry points to 
the system of equations defined by the original equations while fl and gl can be 
thought of as transitions within that system. The construction of eqDList d can 
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only occur on entry to the system of equations, either through f or through g, 
and hence will no longer be repeated with each recursive call as in the original 
translation. 

The translation given above is essentially equivalent to that suggested in (Peyton 
Jones and Wadler, 1992) which, for the current example, would be: 

f d = let fl x y · eq d x y II gl x y 
gl x Y · eq dl [x] [y] II fl x y 
dl · eqDList d 

in fl 

g d = let fl x y = eq d x y II gl x y 

gl x Y = eq dl [x] [y] II fl x y 
dl = eqDList d 

in gl 

One obvious advantage of our formulation is that it automatically avoids the du
plication of the code for t.he functions fl and gl in t.he example above. 

7.4.3 The need for a form of full-laziness 

The following example illustrates the need. for (at lea'lt a restricted form of) full 
laziness to avojd repeated dictionary construction in certain situations. This pro
vides motivation for including the more general transformations as a part of the 
compilation system in a dictionary based implementation of HTC. 

Consider a function doToOne of type Eq a => a -) Boo1 whose implementation 
uses the dictionary parameter corresponding to the instance Eq a to construct 
one or more additional dictionaries. The exact definition of this function is not 
important; a simple example having the required properties is: 

doToOne :: Eq a ~> a -> Boo1 
doToOne x = [x] == [x] 

The fact that the implementation of doToOne involves the construction of a dic
tionary will (in general) be hidden from the compilation system if the definition 
of doToOne appears in an external module. 

Now suppose that we define a function doToList given by: 

doToList " Eq a => [a] -> [Baal] 
doToList [] = [] 
doToList (x:xs) • doToOne x : doToList xs 
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Notice that doToLis't is equivalent to the function map doToOne (and indeed, the 
definition of doToList might even be generated automatically by a sophisticated 
compiler that unrolls the definition of map in an attempt to optimise the expression 
map doToOne). 

The translation of doToList is as follows: 

doToList EqD • -) [aJ -) [Bool] 

doToList d[] .[] 

doToList d (x:~s) ~ doToOne d x : doToList d xs 

Any attempt to evaluate the complete list produced by an application of this 
function will repeat the construction of the redex doToOne d (and hence repeat 
the dictionary construction in doToOne) for each element of the argument list. 

Happily, the same observation also makes the solution to this problem quite obvi
ous. The essential step is to abstract not just the appropriate dictionaries required 
as in Section 7.4.1, but also the application of each overloaded operator to its dic
tionary arguments. For the current example, this gives the translation: 

doToList ;: EqD a -) [a] -) [Bool] 
doToLis't d = doToList! 

where doToList' [] . [] 
doToList l (x:u) doToOne' x doToList' xs 
doToOne' "" doToOne d 

An additionn.l benefit of this translation is that the garbage collector can reclaim 
the storage used for dictionary values as soon as the implementations of the ap
propriate member functions have been extracted from it. 

The second translation of doToList is exactly what we might expect to ohtain 
using a translation to fully· lazy form as described in (Holst, 1990; Peyton Jones and 
Lester, 1991). The basic motivation for such transformations is that no expression 
need be evaluated more than once after its free variables have heen bound to 
particular values. Given the translation of a particular function in the form: 

t dl ... dn = let fl xl ... xm a expr in t' 

any occurrences of an overloaded function applied to dictionary values constructed 
from dl, ... , dn will be a free expression in tbe definition of f' and hence will be 
abstracted (possibly as part of some enclosing maximally free expression) by the 
transformation to fully-lazy form. 

Since every overloaded function can be expected to make use of at least one over
loaded operator, even if dictionary construction is not involved, it it is sensible 
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to extend the transformation given in Section 7.4.1 so that the translation of any 
overloaded function takes the form: 

f d1 ... dn .. let dl ... -- diet ionary values' 

elm' • 

in 
let 01 == -- overloaded functions 

op • 
in 
let fl xl ... xk a expr -- function definition 
in fl 

where 01, ... , op are the overloaded operators abstracted from expr. 

In justifying the optimisation for the example above, we have implicitly assumed 
that the translation of doToOne was written in such a way as to guarantee that 
doToOne d is a redex. A suitable translation with this property for the sample 
definition of doToOne given above: 

doToOne :: EqD a -> a -> Bool 
doToOne d = let doToOne l x ~ eqdl [x] [x] 

eqd1 = eq d1 
d1 = eqDList d 

in doToOne ' 

As a further example, a revised translation for member that makes use of the 
optimisa.tions described in this chapter is: 

member :: EqD a -> (a -> [aJ -> Bool) 
member d = let member' x [] .. False 

member' x (y:y6) .. eqd x y II member' x ys 
eqd .. eq d 

in member' 

The only overloaded function involved here is a member function eq that is im~ 

plemented as a selector function and does not require any form of dictionary con~ 

struction. Nevertheless, this definition is still an improvement over the previous 
versions since it ensures that the selection from the dictionary (i.e. evaluation of eq 
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d) is evaluated at most once, after which the remaining portions of the dictionary
 
d may be discarded as described above.
 

In the interests of clarity, we will generally avoid giving full translations in the
 
following sections, safe in the knowledge that these can in any case be obtained
 
from the translations given using a standard transfonnation to fully~la.zy form.
 

As a. final comment, it is interesting to return to tbe observation made at the
 
beginning of this section tha.t doToList is equivalent to m.ap doToOne. Had we
 
used this equivalence to define doToList, then the translation obtained would be:
 

doToList :: EqD a -) raJ -) [8001) 
doToList d ~ map (doToOne d) 

Note that the redex doToOne d will now only be constructed a single time. Thus 
the use of higher order functions may ultimately give better performance tban 
the explicit recursive definitions obtained by unrolling in a system that does not 
implement at least the restricted form of full laziness described in this section. 

7.4.4 Recursion in dictionary constructors 

The same kinds of problem described above in the context of recursive user de
fined overloaded functions can also occur with compiler generated functions such 
as the dictionary constructors corresponding to each instance declaration in a 
given program. A similar range of techniques must therefore be used to avoid 
unnecessary repeated construction of dictionary values. The problems discussed 
in this section do not appear to be widely known and (for example) are not dealt 
with in translations given in (Peyton Jones and Wadler, 1992). 

As an example, consider the type of arbitrary branching labelled trees defined by: 

data Tree a = Node a [Tree aJ 

The standard definition of equality on trees of this kind is described by the follow~ 

ing instance declaration: 

instance Eq a -) Eq (Tree a) vhere
 
Node x xs == Node y ys = xaay tt XS==Y9
 

Using the approach described in Section 7.4.1, we obtain the following definition 
for the corresponding dictionary constructor: 

eqDTree :: EqD a -> EqD (Tree a)
 
eqDTree d = let d1 ~ EqDict (eqTree d) (defNeq d1) in dl
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eqTree :: EqD a -) Tree a -) Tree a -) Baal
 
eqTree d • let eqTree' (Node x xs) (Node (y ya)
 

= eq d x y ik eq d2 xs Y8
 
d2 • eqDList (eqDTree d)
 

in eqTree J
 

Unfortunately, this definition will potentially repeat the construction of the dic
tionaries eqDTree d and eqDList (eqDTree d) for each individual node in the 
tree. 

A more efficient implementation can be obtained by providing eqTree with access 
to the dictionary eqDTree d as well as the dictionary parameter d from which it 
is obtained: 

eqDTree d = let dl s EqDict eqTree (defNeq dl)
 
d2 = eqDList dl
 
eqTree (Node x xs) (Node y ys)
 

=eqdxy U eq d2 xs ys
 
in dl
 

Lifting out the definition of eqTree gives: 

eqDTree d = let d1 ~ EqDict (eqTree d d2) (defNeq dl)
 
d2 = eqDList dl
 

in d1
 

eqTree d d2 (Node ••sJ (Node y ys)
 
~eqdxy ik eq d2 xs ys
 

This shows that an efficient implementation of equality on trees should be param· 
eterised by dictionaries that reflect the actual overloadings required (i.e. Eq a and 
Eq [Tree a]) rather than by dictionaries from which those overloadings may be 
obtained (i.e. Eq aJ. 

7.5 Other opportunities for shared dictionaries 

In the previous section, we focussed on the use of a syntactic condition - func· 
tional dependency and, in particular. recursion - to detect places in a given source 
program where repeated dictionary construction can be avoided. By contrast, this 
sectioll describes a number of situations in which the information produced by the 
type checker can be used to discover further opportunities for shared dictionaries. 
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Unfortunately, there are also a number of examples in which repeated construction 
seems to be unavoidable. 

7.5.1 Simple examples 

The translation of the definition of & particular function is in part determined 
by the algorithm used to reduce an inferred context to the form required. in an 
implementation of HTC. It is often the case that there a.re several different ways 
of reducing a given context to an acceptable fonn, yielding translations that are 
operationally distinct, although (one would hope!) semantically equivalent. As a 
simple example, consider the function defined by: 

f Eq a =) a -) a -> Baal 
f	 x Y [xl==[yl && [y]=-[xl 

From this definition, we may infer that f has type a -) a -> Baal with context 
(Eq [aJ. Eq [a]) in which the repeated predicate corresponds to the repeated 
use of (==) in the definition. There are two ways of reducing this context to the 
single predicate Eq a: 

•	 Olle possibility is to reduce each predicate separately to give (Eq a, Eq a) 
and then simplifying to Eq a. This corresponds to the translation: 

f EqD a -) a -) a -) Baal
 
f d % Y • eq (eqDList d) [xl [yl U eq (eqDList d) [yl [x]
 

that (potentially) repeats the construction of the dictionary eqDList d. 

•	 A more efficient translation can be obtained by explicitly sharing a single 
dictionary for Eq [al between its two uses. This corresponds to simplifying 
the original context first to Eq [a] and then reducing this to Eq a: 

f EqD a -> a -> a -> Baal
 
f d x Y eq dl [xl [yl U eq dl [y] [xl
 

vhere dl = eqDList d
 

Note that tbe second translation can he obtained from the first using an optimisa
tion based on common subexpression elimination (Aho, Sethi and Ullman, 1986). 
Such techniques are not generally used in the implementation of non·strict func
tionallanguages since they can introduce unanticipated (and of course, unwanted) 
space leaks (Peyton Jones, 1987, Section 23.4.2). 
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A rather more tricky problem is illustrated hy the following pair of definitions: 

g (Eq a. Eq b) ~) a -) b -) 8001 
g x y [x]==[x] && [y]==[y] 

h Eq a =) a -) Bool 
h x g x x 

whose translations are as follows: 

g' :: EqD a -) EqD b -) a -) b -) Bool 
g' da db x y • eq (eqDList da) [x] [xl U eq (eqDList db) [y] [yl 

h' EqD a -) a -) Bool 
h' da x g' da da x x 

The expressions (eqDList da) and (eqDList db) in the translation of g win both 
result in the construction of a dictionary, even if da and db are equal as in the 
translation of h. 

It is relatively easy to construct examples in which the number of times that a 
dictionary will be constructed is exponential in the depth of the calling graph. 
To illustrat.e this point consider the family of functions with g_O :: g, h_O .. h 
and functions g_n and h_n for positive natural numbers n given by the pseudo
definition: 

g_n .. (Eq a. Eq b) -) a -) b -) Bool 
g_n x y • h_(n-l) x && h_(n-l) y 

h_n Eq a =) a -> 8001 
h_n x r= g_n x I 

Then the evaluation of h_3 1 and h_6 1 will repeat the construction of eqDList 
eqDlnt 8 and 64 times each respectively. 

For this particular example, it is possible to reduce the problems of repeated 
construction by giving explicit type signatures g_n :: Eq a ...> a -) a -) Bool 
(for each n) that (when combined with the optimisations described in Section 7.4) 
will avoid the construction of all but one dictionary. There are two problems with 
this solution; first of all, a restricted typing may place an unacceptable limit on an 
otherwise general purpose function. SecondlYt it may be unreasonable to expect 
a prograrruner both to determine when such a problem occurs and then to choose 
the hest places to insert suitahle type signatures. 
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An alternative approach is to use a second set of functions in the transla.tion of this 
family of definitions, that separates the construction of dictionaries from their use. 
To begin with, we introduce the following variants of the translations given above 
that use additional dictionary parameters to avoid the construction of dictionary 
values: 

g_oJ J g_n' .. EqD [a] -> EqD [a] -> • -> b -> Bool -- n)=! 
g_O' dla dlb x Y = eq dla [x] [x] tt eq dlb [y] [y] 
g_n' dla dlb x y • h_Cn-l), dla x tt h_Cn-l)' dlb y 

h_n' EqO [a] -) a -) Bool -- 0>""0 

h_n J dla x .. g_n J dla. dla x 

Given these definitions, we can recode the translations of each of g_n and h_n as: 

g_n .. EqO a -) EqO b -> a -> b -) Bool -- n>"'O 
g_n da db • g_n' CeqDLi5t da) CeqDLi5t db) 

h_n EqO a -> a -) Bool -- n>=O 
h_n da h_n' CeqDList da) 

Using the analogy of Section 7.4.2, the functions in the second group of definitions 
may be thought of as a entry points to those in the first. In order to be able to de
tect opportunities for this kind of optimisation, the compilation system will require 
a sophisticated analysis, working at the level of complete source modules rather 
than single groups of mutually recursive definitions as in the previous sections. 
Even then, the translation given above can only be produced if the definitions for 
all of the functions involved appear in a single module. 

7.5.2 Sharing in hierarchies 

In the c~e of the example f in the previous section, the compilatioD system need 
only detect identical predicates in the inferred context to obtain the required traus
latian In general, the construction of a dictionary will require the construction of a 
small hierarchy of dictionary values, both as superclass dictionaries and as param
eters to dictionary constructors. It is tberefore possible that the inferred context 
for a given predicate may contain two predicates for which the corresponding dic
tionary hierarchies are not disjoint. In such cases, it is clearly desirable to arrange 
for the overlapping portions to be shared between each dictionary construction. 

As a simple example, consider the function: 

f x Y5 Z5S [x] <=ys " [ys] "zss 
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lhal haslype a -> [al -> [[all -> Bo01 for any lype a such that Ord [a] and 
Eq [[all. The corresponding HTC lyping is: 

f :: Ord a -> a -) raJ -) [[a]] -> Baal 

and we have a. translation of the form: 

f d . let fJ % ya zss = lessOrEq dl [x] Y8 1I eq d2 [ys] zss 
dl ~ ... dictionary for Ord raJ . . . 
d2 • ... dictionary for Eq [[all ... 

in f' 

There are two ways to construct suitable dictionaries dl and d2 from a. dictionary 
d for Ord a. Considering each dictionary separately, we obtain: 

dl :: ordDList d Eq a 

d2 = eqDList (eqDList (scEqOfOrd d» / "-. "! 
d: :Drd a Eq [al Eq [al 

"-. / I 
dl: :Drd [al d2: :Eq [[all 

The diagram on the right illustrates the corresponding hierarchy (lines marked 
with arrow heads indicate the use of dictionary constructors, other lines correspond 
to superclass inclusions; an expression of the form d: : Ord a indicates that d is 
a dictionary for the instance Ord a). Note that this requires two copies of the 
dictionary for Eq [a]. 

As an alternative, we CAn construct the dictionary for d2 using part of the hierarchy 
constructed for d1: 

Eq a 

dl ordDList d / "-. 
d: :Drd a Eq [al

d2 eqDList (scEqOfOrd d1) 

"-.dl: :Drd /[a] '"d2: :Eq [[all 

Unfortunately, it is not always possible to arrange for all of the overlapping parts 
of a dictionary hierarchy to be shared using only the standard form of dictionary 
constructor functions. To illustrate this, suppose that a program contains the 
declarations: 

class Eq a => Demo a where .'.
 
instance Demo a ~> Demo raJ where
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and suppose that the inferred context for a function f is (Ord [aJ. Demo raJ). 
The corresponding HTC context is (Ord a. Demo a) and the translation of f win 
be of the form: 

f OrdD a -) DemoD a -) ... 
f od dd let dl = ordOList od dictionary for Ord [~ 

d2 = demoDList dd dictionary for Demo raJ 
in 

... dl ... d2 ... 

where demoDList is the dictionary constructor corresponding to the instance dec
laration for Demo given above. Note that the construction of dl is completely 
independent from that of d2. Even if we assume that the dictionaries od and 
dd share the same superclass dictionary for the instance Eq a, the full hierarchy 
needed still duplicates the dictionary for Eq raJ as shown in the following diagram: 

r-)q~ 
od: :Ord a Eq Cal Eq Cal dd: :Oemo a 

~/ ~/ 
dl::Ord [aJ d2::0emo [aJ 

This problem can be solved by applying the same technique to dictionary construc
tor functions as was used with ordinary functions in Section 7.5.1. Specifically, we 
provide two 'entry points' for each dictionary constructor, one of which takes ad
ditional parameters as required to avoid construction of any auxiliary dictionaries. 
The appropriate definitions for instances of the form Ord [aJ are as follows: 

ordDList OrdO a -> OrdO Cal 
ordDList d • ordDList' d (eqDList (scEqOtOrd d)) 

ordOList' :: OrdO a -> EqO Cal -> OrdO [aJ 
ordDList J d dl ¥ d2 where d2 • OrdDict (defLessThan d2) 

(listLessOrEq d) 

dl 

Note that the definition of ordDList is equivalent to the previous definition given 
in Section 7.2. The dictionary constructors for instances of the fonn Demo [aJ are 
defined in a similar way, with types: 
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demoDList •• DemoD a -> DemoD [a] 
demoDList' :: DemoD a -> EqD [a] -> DemoD [al 

U5ing these functions, there are a number of waY5 of defining a translation for f 
which en5ures that a single dictionary for Eq [aJ is shared between the dictionaries 
for Ord[a] and Demo [aJ, one of which is: 

f DrdD a -> DemoD a -> ." 
f od dd = let dl ~ ordDList l od ed dict for Drd [al 

d2 ~ demoDList' dd ed dict for Demo [a] 
ed • eqDList (sqEqOfOrd od) diet for Eq [al 

in 
..• dl ... d2 '" 

The collection of dictionaries used in this definition is illustrated by: 

/Er~
 
od: :Ord a ed: :Eq [a] dd: :Demo a 

1/ ""'I 
dl: :Drd [al d2::Demo [a] 

7.5.3 Repetition in superclass hierarchies 

A particularly important special case of the kind of problems described in the 
previous section occurs in the ronstruction of the superclass hierarchy for a. given 
dictionary. To illustrate the basic problem, consider the following simple hierarchy 
of clas5es and superdasses, based on an example given in (Wadler and Blott, 1989) 
to illustrate the use of superclasses. 

class Top a where
 
t :: a -) a
 

class Top a ==> Left a where Top a
 
1 :: a -> a
 

Left a Right a
 
class Top a ""> Right a where 

/ 
"'"r :: a -> a /

Bottom a
 

class (Left a. Right a) ~> Bottom a where "'"
 
b :: a -) a 
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As before, we introduce an representation for the diction;:~ries of each of these 
classes, including a. collection of superclass selectors. 

data TopD a = TopDict (a -> a) 

data LeftD a = LeftDict (a -> a) (TopO a) 
data RightD a '" RightDict (a -> a) (TopO a) 
data BottomD a ~ BottomDict (a -) a) (LEftD a) (RightD a) 

scTofL (LeftDict 1 td) • td -- superclass selectors 
scTofR (RightDict r td) • td 

scLofB (BottomDict b ld rd) = ld 
scRofB (BottomDict b ld rd) = rd 
scTofB = scTofL . seLofB 

For convenience, we have included the selector scTofB that returns a dictionary 
for Top a from a dictionary for Bottom a. Note that we could have equally well 
defined this by scTofB ,. scTofR . scRofB, corresponding to a second patb be
t ......een the two dictionaries in the diagram above. 

Now suppose that we have a program containing instance declarations of the form 
C a =) C [a] for each of the classes Top, Left, Right and Bottom. Assuming 
that the implementations for the member functions in each of these instances are 
described by functions tList, lList, rList and bList respectively, the corre
sponding dictionary constructors a.re: 

topDList .. TopD a -> TopO [a] 
topDList td ,. TopDict (tList td) 

leftDList LeftO a -> LettO raJ 
leftDList ld • LeftOict (lList ld) (topOList (scTofL ld» 

rightDList RightO a -> RightO raJ 
rightDList rd ~ RightDict (rList rd) (topDList (scTofR rd» 

bottomDList :: BottomD a -) BottomD [a]
 
bottomOList bd = BottomDict (bList bd) CleftDList (ocLofB bd»
 

(rightDList (scRofB bd»
 

Any attempt to construct a dictionary for an instance of the form Bottom [a] 
using just these functions will require the construction of two distinct dictionaries 
for Top [a], one as a superclass of the dictionary for Left [aJ and the other as 
a superclass of the dictionary for Right [a]. 
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This problem can be solved using the same techniques as in the previous sectionsj 
providing a second set of dictionary constructors that use additional parameters 
to avoid dictionary construction: 

topDList' :: TopD a -> TopD [aJ
 
topDList J td • TopDict (tList td)
 

leftDList' :: LeftD a -> TopD [aJ -> L.ftD [aJ
 
leftDList' ld td • LeftDiet (lLiot ld) td
 

rightDList' :: RightD a -> TopD [oj -> RightD [oj
 
rightDList' rd td • RightDict (rList rd) td
 

bottomDList' :: BottomD 0 -> LeftD [oj -> RightD [oj
 
-) BottomD [a]
 

bottomDList' bd Id rd = BottomDict (bList bd) ld rd
 

Using these functions we can implement the original set of dictionary constructors 
in such a way that the same dictionary for Top [aJ is shared between both the 
Left and Right superclasses of Bottom [a]: 

topDList topDList'
 
leftDList ld ~ lEftDList' Id (topDList' (scTofL ld))
 
rightDList rd ~ rightDList rd (topDList' (scTofR rd))
'
 
bottomDList bd = bottomDList' bd ld rd
 

whEre	 rd = rightDList' (oeRofB bd) td 
ld = leftDList} (seLofB bd) td 
td = topDList' (seTofB bd) 

If the example above seems rather artificial, it is perhaps worth pointing out that 
the standard prelude in Haskell defines a rather more complicated hierarchy of 
standard classes: 

Eq Tu:t 

/ '"/ / 
Ord Hum 

'" Real Fractional '" 
Integral RealFrac Floating

/ '" / '"/
RealFloat '" 
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Now consider an insta.nce of the form RealFloat (Complex a) where Complex a 
is the type of complex numbers where the real and imaginary parts are elements of 
some numeric type a (ranging over those types in the class RealFloat). Evaluating 
the complete dictionary structure for this example without taking the precautions 
described in this section will re~lUlt in the construction of seventeen dictionaries 
(only nine are actually required) including four distinct copies of the dictionary 
for Eq (Complex a). 

1.6	 Alternative implementations of dictionary 
construction 

The examples in the previous sections suggest that complex optimisation tech
niques must be used to minimise the amonnt of construction (Section 7.4) and 
duplication (Section 7.5) of dictionaries in an efficient implementation of HTC. 
This leads us to consider alternative implementations of dictionary construction 
that limit the impact of these problems even if such optimisations are not used. 

One possibility is to implement dictionary constructors as (lazy) memo functions. 
With this scheme, each dictionary constructor ma.intains a set of pointers to pre
viously constructed (and possibly only partially evaluated) dictionaries for specific 
instances that are still present in the heap. The compiled code for a parame
terised dictionary code firsts checks the pointer set to see if the dictionary to be 
constructed has already been allocated in the heap. A previously constructed dic
tionary is returned if possible l although a new dictionary will be built (and added 
to the appropriate pointer set) if necessary_ 

While this would certainly improve the space cost of dictionary construction, it 
is not at all clear what effect it would have on the time required to 'construct' 
a single dictionary. Except in the case of very small pointer sets, it is unlikely 
that searching the pointer set could he implemented more efficiently than a linear 
sequence of machine instructions to huild a dictionary value in the heap. 

A number of interesting variations on this scheme can be obtained by modifying 
the behaviour of the garbage collector: 

•	 As -it stands, we would expect the pointer to a given dictionMy to be removed 
from the pointer set when the storage for that dictionary is reclaimed during 
garbage collection. 

•	 Alternatively, we could arrange to retain all dictionaries during garbage col
lection, possibly taking the opportunity to move them out of the gMbage 
collected beap altogether. Thus, once a particular dictiona.ry has been con
structed, it will rema.in in storage (even if it is never used again) until the 
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program terminates, and will be shared by every subsequent attempt to con
struct the same dictionary. 

•	 In an attempt to reduce the cost of examining the pointer set to determine 
whether a particular dictionary has aJready been constructed, we might also 
consider a hybrid of the implementation approaches that have been discussed 
in which: 

Dictionaries are initially allocated on the heap without any attempt to 
detect repeats. 

At most one copy of any given dictionary is retained during garbage 
collection. 

This scheme still suffers from many of the defects cited in Section 7.3, but 
does go some way towards eliminating the costs (in terms of both space and 
repeated evaluation) of maintaining distinct versions of a single dictionary. 

Practical experience is needed to investigate the absolute costs of each of these 
alternatives, and to determine what (if any) performance gains can be achieved. 
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Chapter 8 

Type classes in Gofer 

This chapter describes GTe, an alternative approach to the use of type classes 
that avoids the problems associated with context reduction, while retaining much 
of the flexibility of HTC. In addition, GTe benefits from a remarkably clean and 
efficient implementation that does not require sophisticated compile-time analysis 
or transformation. As in the previous chapter we concentrate more on implemen
tation details than on formal properties of GTe. 

An early description of GTe was distributed. to the Haskell mailing list in February 
1991 and subsequently used as a basis for Gofer, a small experimental system 
based. on Haskell and described in (Jones, 1991c). The two languages are indeed 
very close, and many programs that are written with one system in mind can be 
used with the other with little or no changes. On the other hand, the underlying 
type systems are slightly different: Using explicit type signature declarations it is 
possible to construct examples that a.re well typed in one but not in the other. 

Section 8.1 describes the basic principles of GTC and its relationship to HTC. 
The only significant differences between the two systems are in the methods used 
to simplify the context part of an inferred type. While HTC relies on the use of 
context reduction, GTC adopts a weaker form of simplification that does not make 
use of the information provided in instance declarations. 

Section 8.2 describes the implementation of dictionaries used in the current version 
of Gofer. As an alternative to the treatment of dictionaries as tuples of values in the 
previous chapter, we give a representation which guarantees that the translation 
of each member function definition requires at most one dictionary parameter. 
This scheme is not restricted to implementations of GTC and would be equally 
well-suited to an implementation of HTC. 

Finally, Section 8.3 describes the concrete implementation of type class overloading 
used in the current version of Gofer, including the representation and abstract 
machine support for dictionary values. 
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8.1 The basic principles of GTe 

Studying the examples in the previous chapter we can identify a simple idea that 
can be used to avoid the problems of context reduction in many of these cases: The 
translation of an overloaded. function should be parameterised with the dictionaries 
that will actually be required, rather than some set of dictionaries from which they 
may be constructed. This is the principal motivation for the development of GTe. 
The inferred context of an overloaded function can be simplified by removing 
duplicates and eliminating predicates that can be obtained from a superclass or for 
which the overloading required. is completely determined (if, for example, the type 
at which an overloaded function is used is a monotype). The following definitions 
illustrate each of these techniques: 

exl :: Eq a => a -> Baal -- inferred context: (Eq " Eq .) 
ex! x - x,o"",x II x....x 

ex2 :: Ord a ~> a -> Baal -- inferred context: (Eq 0, Ord 0)
 
ex2 x • ];"'''''X II x<-x
 

ex3 :: Int -> Bool -- inferred context: (Eq Int, Ord Int) 
ex3 x .. x==4 II x<~2 

In addition, the process of context reduction in HTC allows the use of instance 
declarations to replace a given predicate with (zero or more) predicates on simpler 
types. This is illustrated by the following example: 

ex4 .. Eq a -> a -> Baal inferred context; (Eq (aJ)
 
ex4 x • (xJoo(xJ using HTC
 

Notice that this is exactly the point at which dictionary constructor functions (and 
hence dictionary construction) are introduced; using the techniques described in 
the previous section we obtain the translation: 

ex4 :: EqD a -> a -> Baal
 
ex4 da = let dla = eqDList d
 

ex4' x s eq dla [x] (xJ
 
in ex4'
 

The fact that this requires the construction of a dictionary is hidden. As a result, 
many implementations will implement the expression (ex4 0 .u: ex4 1) using the 
transla.tion (6x4 eqDlnt 0 &It ex4 eqDlnt 1) which repea.ts the construction of 
a dictionary for Eq [Iut]. 
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To determine the type of a function using GTC we follow essentially the same 
process as above except that we do not allow the use of instance dedarations to 
simplify a context where this would require the use of a dictionary constructor 
function. Thus the types assigned to each of the functions 8:11, eJ:2 and e:l3 using 
GTC are the same as those given above, but the typing for 8:14 becomes Eq [a.] 
=) a. -) Bo01 with translation: 

e:l4 :: EqD [aJ -) a. -) Bo01 
ex4 d x = eq d [x] [x] 

It is no longer necessary to arrange for 8:14 d to be treated as a redex (and indeed, 
to do so might result in a less efficient implementation since no work can be shared 
in this way). Notice that, in contrast with GTC, it is the responsibility of the caller 
(and not of the function being called) to construct whatever dictionary values are 
required. 

The formal definition of predicate entailment (with respect to a type class environ
ment f) in GTC is given by extending the standard rules for predicate entailment 
with the rule: 

PH- d:,,' (Class Q,,,,Q' =} "') E r 
PH- (d."):,, 

This is the same as the rule (super) in Figure 4.2. Note however that we do not 
include any rule corresponding to (inst) and hence the definition of I+- does not 
make use of the information supplied by instance declarations. As a result, the 
dictionary values obtained using this weaker definition of predicate entaihnent do 
not involve dictionary construction. 

Dictionary constructor functions will only be used to obtain dictionaries for specific 
(usually monotype) instances of a class. In addition, the construction of these dic
tionaries can be performed at compile-time or at run~time treating the dictionaries 
as top-level constants. The formal details of dictionary construction for GTC (in
cluding the construction of recursive dictionary structures in Section 8.2.2) will 
not be described here, The basic principles can be illustrated by considering the 
expression [[1 .2]] == [[2]] which has inferred typing Eq [[lnt]] ::I) Bool, in
dicating that a dictionary for Eq [[lnt]] is needed. The expression can then be 
evaulated using the translation eq eqDListListlnt [[1,2]] [[2JJ with dictio
nary constants defined by: 

eqDlnt .. EqD Int dictionary for Eq lnt 
eqDlnt details as before 

eqDListlnt EqD [Int] dictionary for Eq [lnt] 
eqDListlnt • eqDList eqDlnt 
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eqDLiatListInt •• EqD [[Int]] dictionary for Eq [[Int]] 
eqDListListInt eqDList eqDListIntE 

Note that this corresponds very closely to the template-based approach described 
in Section 6.1.5, except that it works at the level of classes, defining separate 
dictionaries for each instance rather than individual functions. On the other hand, 
the code defining the equalHy on lists is shared between all dictionaries for instances 
of Eq for types of the form [a], avoiding the potential code explosion caused by 
the naive implementation of the template-hased approach. 

The fact that the ex4 function requires the construction of a dictionary is reflected 
by the predicate Eq [aJ in its type. In particular applications, to evaluate the 
expression (8x4 0 U ex4 1) for example, we can pass the appropriate dictionary 
value to ex4 using the translation (ex4 eqDListlnt 0 tt ex4 eqDListlnt 1) 
and sharing a single copy of the dictionary. On the other hand! if we use ex4 in a 
definition such as: 

ex5 :: Eq [a] ~> a -> Bool 
ex5 x .. 9%4 x ,k,k ex4 x 

where the required overloading for ex4 is not fully determined, then the constraint 
Eq [a] in the type of ex4 is passed onto the callers of ex5 as reflected by the type 
signature. 

In this way, GTC pushes the process of dictionary construction up through the call 
tree towards the root which is usually required to have a particular monomorphic 
type. As we move up the tree, the set of instances of overloaded operators that 
are actually required in the lower portions of the tree becomes increasingly well~ 

defined so that, by the time we reach the root, the translated progra.m involves 
only constant dictionaries and all overloading has been resolved. 

As a further illustration of the way in which GTC avoids the problem of re
peated construction, consider the functions doToOne and doToList described in 
Section 7.4.3. The GTC typings for these functions are: 

doToOna Eq [a] => a -> Bool 
doToList :: Eq [a] => [a] -> Bool 

and the corresponding translations are: 

doToDne .. EqD [a] -> a -> Bool 
doToDne dl21 X • eq dla [x] [x] 

doToList •• EqD [a] -> [a] -> Bool 
doToList dl21 [] . [] 

doToList dl21 (x:xs) ~ doToOne dl21 x : doToList dla xs 
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Even if these two definitions, neither of which involves the construction of a dic
tionary, appear in separate modules and are called from a third, there will still 
be no danger of repeated construction. A tra.nsformation to fully-lazy form might 
still be useful, for example, to avoid the repeated evaluation of eq d1a, but this is 
no longer essential for an efficient implementation. 

8.2 The Gofer implementation of dictionaries 

This section describes an alternative to the representation of dictionaries as fixed~ 

sized tuples of values as used in the description of HTC in the previous chapter. 
This representation has been used as the basis for the concrete implementation of 
Gofer described in the next section. Fonnal properties of the underlying predicate 
system (such as verification of uniqueness of evidence) will not be addressed here. 

8.2.1 A notation for records with subtyping 

For convenience we will describe the representation of dictionaries in Gofer using
 
a simple form for record values with implicit subtyping.
 

Record values will be denoted by expressions of the form:
 

{ 11 :: vl, ... , In • vn } 

where 11, ... , 1n are distinct labels a.nd vl, ... , vn are expressions whose values 
are associated with the corresponding labels in the record. In a similar way, we 
will write the type of this record as: 

{ 11 " tl •...• In :: tn } 

where tl, ... , tn are the types of the expressions vl, ... , vn respectively. As 
before, the order in which the components of a record or record type are listed 
has no bearing on the value of type denoted. Thus b-l, y.,2} and {y-2, x.t} 
represent the same record whose type may be written as either {x: : Int, y:: lnt} 
ody: :lnt. <: :lot}. 

For the purposes of this work, we assume that the sets of label and funetion names 
used in a particular program are disjoint and we write the operation of record 
selection (extracting the value associated with label 1 in a record r) as (l r) 
ra.ther than r.l as used, for example, in Section 2.4. 

Following Cardelli (1988), we say that a record type r is a subtype of another 
record type s if every labelled field in s also appears with the same type in r. 
In other words, a value of type r can be used in any situation where a value of 
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type s is required. For example, {x: : Int, y:: Int} is a subtype of {x: : Int} and 
elements of either type can be used as arguments of the function: 

xPlusOne :: {x: :Int} -) Int 
xPlusOne rac ~ % rec ~ 1 

The record type formed by combining all of the fields in a record of type r with 
another of type s with disjoint sets of labels will be written sir. Note that r is a 
subtype of s if and only if r is equivalent to sIs' for some s'. 

8.2.2 Dictionaries as records 

As in the representation for dictionaries in HTC, the dictionary value correspond
ing to a particular instance of a type class must contain implementations for each 
of the member functions at that instance. In the special case of the class Eq, we 
can describe this by saying that the type of a dictionary for an instance of the 
form Eq t must be a subtype of EqD t where: 

type EqD a ={ eq a -) a -) Bool.
 
neq a -) a -) Baal}
 

Not surprisingly, the default definition for the (I.) operator takes the same form 
as in the implementation of HTC: 

defNeq .. EqD a -) (a -) a -) Baal) 
defNeq d x y not Ceq d x y) 

The dictionaries corresponding for particular instanc€:'3 of Eq add additional fields 
to the record structure of EqD t. In the special case of equality on integers, no 
additional structure is necessary and the following definition suffices: 

eqDlnt .. EqD Int 
eqDlnt • { eq • primEqlnt. neq • defNeq eqDlnt } 

In general, the dictionary for a given instance of a class also includes dictionaries 
for each predicate in the context part of the instance declaration. In the case 
of equality on lists, any dictionary for an instance of the form Eq [a] will also 
contain a dictionary for Eq a: 

type EqDList •• EqD raJ I { eqa :: EqD • } 
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eqOList :: EqD a -> EqOList a 
eqDList d ,. let dl ::t {	 eq • eqList dl.
 

neq • defNeq dl.
 
eqa = d }
 

in dl 

eqList :: EqOList a -> [a] -> [a] -> Bool
 
eqList d [] [] • True
 
eqList d [] (y:ys) • False
 
eqList d (>:15) [] .. False
 
eqList d (.:xs) (y:ys) • eq (eqa d) x y it eq d xs ys
 

As a further example, consider the definition of equality on trees described in 
Section 7.4.4. The COrrect instance declaration for GTe is as follows: 

instance (Eq a, Eq [Tree a)) => Eq (Tree a) vhere
 
Node 1 xs == Node y ys = x==y 11 xs==ys
 

The context part of this declaration is justified by the fact that, in order to compare 
two trees of type Tree a, we need to be able to compare values of type a and lists 
of type [Tree a). The corresponding implementation is given by: 

type EqOTree a =EqO (Tree a) f { eqa EqO a. 
EqO [Tree a] }e~ 

eqDTree :: EqD a -> EqD [Tree a] -> EqO (Tree a)
 
eqDTree d df = let dl c { eq ~ eqTree dl. neq • defNeq d1,
 

eqa • d, eqf c df }
 
in dl
 

eqTree .. EqOTree a -> Tree a -> Tree a -> Bool
 
eqTree dl (Node x xs) (Node y ys)
 

• eq.(eqa dl) • Y 11 eq (eqf dl) 

To illustrate the use of the dictionary constructors in these examples l the follow
ing definitions show how we can obtain dictionary values for a function using an 
equality test on trees of type Tree [Int): 

dl = eqOLi st d2 :: EqOList (Tree [Int])
 
d2" eqDTree d3 dl :: EqOTree [Int]
 
d3 .. eqDList d4 :: EqDList Int
 
d4 ,.. eqDlnt EqO Int
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These definitions can be expanded, either at compile-time or run-time, to obtain: 

dl .. { eq .. eqList dl. neq - defNeq dl, eqa • d2 } 
d2 .. { eq .. eqTree d2. neq defNeq d2. eqa • d3, eqf • dl }D 

d3 = { eq = eqList d3, neq a defNeq d3, eqa • d4 } 
d4 = { eq • primEqlnt. neq • defNeq d4 } 

Superclasses are implemented in much the same way as before. For example, the 
type of a dictionary for an instance Ord t will be a subtype of OrdD t where: 

type OrdD a .. { It :: a -> a -> Bool, Ie :: a -) a -) Bool,
 

gt :: a -> a -> Baal, ge :: a -) a -) Bool,
 
mx :: a -> a -> a, mn :: a -) a -) a.
 
sceq :: EqD a }
 

It is interesting to note that the definitions of eqList and eqTree given above do 
not appear to follow Our general rule that efficient implementations of overloaded 
functions should be parameterised by the complete set of dictionaries that they 
require. For example, the definition of eqList is parameterised by a dictionary 
for Eq [a], but there is no longer any need to add another dictionary parameter 
for Eq a since this can be obtained from the eqa field of the first dictionary. In a 
similar way, every function used to implement a member function in a particular 
class can be given a tra.nslation that requires at most one dictiona.ry parameter. 

8.2.3	 An optimisation to reduce the number of dictionary 
parameters 

As we have described it above, the GTC system does not make use of the infor
mation supplied in instance declarations to simplify the. the context part of a.n 
inferred type. In some cases, this may mean that the GTC translation of an expres
sion requires more dictionary parameters than the corresponding HTC translation 
(the reverse is also true - see the discussion in Section 7.1). As an example, 
consider the function defined by f x .. x""""x ,U: [x] ...... [x] that has GTC typing 
(Eq a, Eq [a]) ~> a -> Bool with a translation requiring two dictionary pa~ 

rameters, while the HTC typing is Eq a -) a -) Bool and leads to a translation 
requiring only one parameter. 

The current implementation of Gofer takes advantage of the representation for dic
tionaries described here to support an optimisation that can often reduce the size 
of cOntexts in inferred types and hence reduce the number of dictionary parameters 
needed. To see how this is possible, note that any dictionary d for an instance of 
the form Eq [a] contains a dictionary eqa d for Eq a. ThuB the example above 
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can be treated as ha.ving type Eq [a] ..> a -> Baal with translation: 

f .. EqDList .-) a -> Baal 
f db x .. eq (eqa ell.) x x tt eq dl. [xl [xl 

More generaUy, the reduction process can be described by extending the definition 
of predicate entailment with the rule: 

P It- ~ (Insl P' "" ~) E r ~'E P'
 
P I+- 1('
 

In retrospect, it is not clear whether this idea should be used since it makes the rules 
for simplifying contexts somewhat less intuitive and can sometimes break the use of 
data abstraction in much the same way as context reduction in HTC (Section 7.1). 
It is likely that this optimisation will not be supported in future versions of Gofer 
except, perhaps, when the simplified context is specificaUy requested by an explicit 
type signature declaration provided by the programmer. 

8.3 A concrete implementation 

Despite the use of variable size records and subtyping, it is relatively straight
forward to obtain an efficient mapping of the implementation described in the 
previous section onto a conventional machine. This section describes the approach 
taken in the Current implementation of Gofer and highlights some further advan
tages of the representations chosen for the GTe approach to type classes. 

8.3.1 Representation of dictionaries 

For each class there is a corresponding record type ClassD a whose components 
are the member functions and super class dictionaries common to aU instances 
of that class. Every dictionary for an instance of this class will hav.e a type of 
the form ClassD tlSpecifics t where the record type Specifics t contains 
values determined by the form of the instance declaration used to construct the 
given dictionary. As a result, every dictionary for an instance of the class can 
be represented by an array of values with an initial portion corresponding to the 
type ClassD t and a second corresponding to Specifics t. There is no need. to 
store the labels for the fields in each record since each label can be associated with 
a fixed offset in a dictionary of the appropriate subtype of ClassD t. Thus the 
potentially expensive operation of searching for the value of a field in a labelled 
record can be implemented by a simple array access. 
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The following diagram illustra.tes one possible concreie representation for the dic
tionary values d1. d2J d3 and d4 used. in the previous section to give an equality 
test on trees of type Tree [lnt]. In each case, the implementations of (••) and 
U=) are held in the first and second positions respectively so that, for any instance 
Eq t, the appropriate definition of either operator can always be extracted from 
the corresponding position in the dictionary, regardless of the type t. 

d1 :;:. e<J.DList d2 EqDList (Tree [lnt]) 
d2 "" e<J.DTree d3 d1 : : EqDTree [lnt] 
d3 ::II 8<J.DList d4 .. EqDList lnt 
d4 = 8<J.Dlnt .. EqDlnt	 d4::Eq Jnt 

The fact that GTe treats dictionary values as constants whose structure and 
mutual dependencies can be fully determined at compile time (or perhaps, in a 
system with separate compilation, at link time) has a number of useful ~enefits: 

•	 The complete set of dictionaries required in any given program ca.n be ca.l~ 

cuiated., and a suitable a.mount of storage can be allocated and initialised 
at link time. There is DO need to store dictionary va.lues witbin the main 
garbage collected heap. 

•	 Dictionary constructor functions (such as eqDLi st and eqDTree) are replaced 
by a general dictionary construction mechanism within the compilation sys
tem that is nsed whenever the type inference system can determine that a 
specific instance of a. given class is needed. By implementing this as a memo 
function along the lines suggested in Section 7.6, we can guarantee that there 
is at most one dictionary for any gil/en instance of a class and hence avoiding 
the problems described. in Section 7.5. Using this technique, collections of 
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mutually recursive dictionary values such as the example illustrated above 
can be constructed without any risk of non-termination. The use of memo 
functions within the compilation system obviously has no impact on the 
performance of the compiled program. 

A further small, but useful, benefit of this approach is that there is no need 
to provide a runtime representation for dictionary constructor functions such 
as eqDList and eqDTree. 

•	 There is no need for delayed evaluation (using closures for example) of dic
tionary expressions; each dictionary COnstant will already be in weak head 
normal form (in the sense that each of its components may be accessed with
out further evaluation). In particular, there is no need to check to see if 
a dictionary value has been evaluated before extracting a value from it, as 
would typically be expected in a system using la.~y evaluation. Note that 
this only applies to the dictionaries themselves and not to the values that 
they contain which will still need to be evaluated at runtime in the usual 
manner. 

8.3.2 Abstract machine support 

The current implementation of Gofer is based on an abstract machine with a small 
instruction set, similar in many ways to the Chalmers G-Machine (Augustsson, 
1984; Johnsson, 1984), but extended with a single instruction to support GTC 
overloading. The same basic approach should also be applicable to other families 
of abstract machine such as TIM (Fairbairn and Wray, 1987) and the Spineless 
Tagles. G·machine (Peyton Jones, 1992). 

The Gofer abstract machine evaluates an expression held as a (potentially cyclic) 
graph, 'unwinding l tbe spine of the outermost function application, and recording 
each function argument on a stack. The value at the head of the application point! 
to a set of machine instructions that carry out an appropriate graph rewrite using 
the valnes held on the stack. (The stack is also used to record temporary values 
during each rewrite.) This evaluation process continues until the expression graph 
has been reduced to the required normal form. See (Peyton Jones, 1987) for further 
details and background. 

To give a flavour of the Gofer abstract machine, the definition of function com
position given by compose f g x • f (g x) might be compiled to the following 
sequence of machine instructions: 

compose:	 LOAD argument x arguments f, gJ X on stack
 
LOAD argument g
 
HKAP 1 apply g to •
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LOAD argument f 

MKAP 1 apply f to (g xl 
UPDATE root overwrite redex for lazy evalua.tion 

Rrn1RII 

The LOAD instruction used here pushes a specified value onto the top of the stack 
and the MKAP n instruction replaces the top n+ 1 values on the stack by the result 
of appling the top value to the remaining D arguments. A number of a.dditional 
instructions are used to implement pattern matching, local definitions and certain 
optimisations, whose description is beyond the scope of this thesis. 

Dictionaries and overloading are supported by adding a single instruction, DICT 
n, that replaces the value on the top of the stack (which must be a pointer to a 
dictionary) with the value stored in the nth position of the dictionary. The same 
instruction can therefore be used to access both class members and superdass 
or instance specific dictionaries. The type checking process ensures that DICT 
instructions are only executed when the value on the top of the stack is indeed 
a pointer to a dictionary, in the same way that we normally expect it to ensure 
that KKAP instructions are only ever executed when the value on the top of the 
stack is a function. For example, the lambda expression (\x -> x .. I:: x) has type 
Eq a a> a -> Bool with translation C\d x -> eq d x x), and compiles to the 
following code: 

LOAD argument x second argument to (.... ) 
LOAD argument ::r: first argument to (••) 
LOAD argument d fetch dictionary for Eq a 
DICT 1 member function in first slot 
IlKAP 2 apply member to args 
UPDATE root 
RETURN 

As a second example, including the use of DIeT instructions to access superclass 
dictionaries, consider the function: 

f Eq (aJ -> a -> a -> (a] -> Bool 
f x Y xs - x==y I I IS== (y] 

which has translation: 

f EqDList a -> a -> a -> [aJ -> Bool 
f dla x y xs eq (eqa dIal x y I I eq dla xs (y] 
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The following sequence of instructjons gives one possible implementa.tion for this 
function: 

CONST [] ; push constant [] onto stack
 
LOAD argument y
 
CONST ( :) ; push constant (:) onto stack
 
IIKAP 2 ; NB. [y] abbreviates y : []
 
LOAD argument J:S
 
LOAD argument d ; fetch dictionary for Eq [a]
 
OHIT 1 ; eJ:tract definition of (~~)
 

MKAP 2 ; and apply to J:S and [y]
 
LOAD argument y
 
LOAD argument J:
 
LOAO argument d ; fetch dictionary for Eq [a]
 
OICT 3 ; get subdictionary for Eq a 
OICT 1 ; eztract definition of (••) 
MKAP 2 i and apply to J: and y 
CONST II 
IIKAP 2 
UPDATE root 
REITUllIl 

Note that there is no need to provide a runtime representation for member func
tions and superclass or instance specific dictionary selectorsj each of these is im~ 

plemented using the DICT instruction that can typically be implemented very com· 
pactty and efficiently as a single jnstruction on many conventional machines. 

A pa.rticularly useful optimisation when generating code that makes use of over
loaded functions at specific instances of a class can be described by a simple peep
hole optimisation. If d is a pointer to a partkular fixed dictionary, then the 
sequence of instructions: 

CONST d push dictionary onto stack 
DICT m eztract mth element 

is used to access the mth element d [m] of the dictionary pointed to by d. Since type 
checking (and hence, construction of dictionary values) is completed before code 
generation, it is possible to determine the value of d [m] and, if it is a constant, 
replace the jnstructions above with the single instruction: 

CONST d[m] j push mth element of dictionary d 
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Note that, in the special case where d[m] is itself a dictionary, this instruction 
might in turn be combined with a further DICT instrudion using the same opti
misation. For example, using this technique, the code for (\n -) n-=O) might 
be: 

INT 
"LOAD 
CaNST 
MKAP 

o 
argument n 
primEqlnt 
2 

push integer constant onto 

integer equality test 

stack 

UPDATE 
RETURN 

root 

which completely avoids any ofthe costs of defining (='1::) as an overloaded function. 

Optimisations of this kind were described in (Wadler and Blott, 1989; Hammond 
and Blott, 1989), but it is pleasing to see how easily they can be implemented on 
the abstract machine described in this section. 

8.3.3 Some comments on performance 

]n an attempt to gain some insight into the costs of GTC overloading using dictio
nary parameters, the current version of Gofer includes implementations of generic 
equality and ordering functions of type a -> a -> Bool and of monomorphic inte
ger arithmetic functions of type Int -> Int -> Int as built~in primitives. Using 
these functions, we have been able to compare the perfonnance of overloaded pro
grams with the corresponding alternatives using generic or monomorphic functions. 
]n each case, these programs have been run using the same version of the Gofer 
system (by selecting between different versions of the standard prelude) so tha.t 
fa.ctors such as the performance of the graph reduction engine, memory allocation 
and garba.ge collection are common to both. 

Whilst more detailed investigation is needed before drawing firm conclusions, our 
experience so far suggests that the overloaded versions of the progra.ms considered 
actually run faster and use less memory (by a fador of two in some cases)! The 
prioGipal reasons for this appear to be: 

• There is no need. for any run-time type checking with the overloaded version 
of the program. On the other hand, an attempt to compare two integer 
values, for example, using the generic equality function must first evaluate 
both of its arguments and check that they are indeed integer values before 
the required comparison can be made. 

• Evaluation and storage for	 the values of member functions is shared between 
all uses of any given dictionary. 

134 



This is a very promising result, suggesting that the use and implementation of 
overloaded functions need not have the significant clfect on performance that was 
anticipated with early implementations of Haskell (Hammond and Hiott, 1989). 
However, further investigation is needed before any firm conclusions can be drawn 
from these results. 

It is also important to make sure that the number of dktionary parameters used 
in the translations of individual functions, and the number of dictionary constants 
used in the tra.nslations of complete programs are not too large. Our experience 
with Gofer suggests that neither of these potential problems occurs in practical 
applications. 
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Chapter 9 

Summary and future work 

10 this thesis we have developed a general formulation of overloading based on the 
use of qualified types. Applications of qualified types can be described by choosing 
an appropriate system of predicates and we have illustrated this with particular 
examples including Haskell type classes, explicit subtyping and extensible records. 
We have shown how these ideas can be extended to construct a system that com
bines ML~style polymorphism and overloading in an implicitly typed programming 
language. Using the concept of evidence we have extended this work to describe 
the semantics of overloading in this language, establishing sufficient conditions to 
guarantee that the meaning of a given term is well-defined. Finally, we have de
scribed techniques that can be used to obtain efficient concrete implementations 
of systems based on this framework. 

From a theoretical perspective, some of the main contributions of this thesis are: 

•	 The formulation of a general purpose system that can be used to describe a 
number of different applications of overloading. 

•	 The extension of standard results, for example the existence of principal 
types, to the type system of OML. 

•	 A new approach to the proof of coherence, based on the use of conversions. 

From a practical perspective, we mention: 

•	 The implementation of overloading using the template-based approach, and 
tb.e closely related implementation of type class overloading in Gofer. 

•	 A new implementation for extensible records, based on the use of evidence. 

• The use of information about satisfiability of predicate sets to obtain more 
informative inferred types. 
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Throughout this thesis we have concentrated on the use of polymorphism and 
qualified types in implicitly typed, purely functional languages using extensions 
of Milner's framework. Nevertheless, the basic features of qualified types can also 
be incorporated in other type systems - for example, in explicitly typed polymor
phic A-calculus as illustrated in (Jones, 1992a). The same techniques should, in 
principle, extend to other kinds of language although we have not attempted to 
investigate this here. 

The foHowing sections describe three additional areas for further study, outlining 
some preliminary ideas in each case. 

9.1 Towards a categorical semantics 

This section sketches a simple categorical semantics for a version of simply typed 
A-calculus that supports qualified types but not polymorphism. It is hoped that 
the ideas described here will serve as a useful starting point for future work, to 
extend the semantics to include polymorphism and generalise the coherence results 
in Chapter 5 to a wider class of semantic models. 

We write S x T for the product of two objects Sand T and fst : S x T ---lo S 
and snd: S x T T for the first and second projects respectively. The universal ---lo 

property for products ensures that, for any f: X Sand g: X T, there is a ---lo ---lo 

unique 'rrow (I, g) : X ---> S x T such th.t fst· 1], g) ~ f and sud· 1], g) ~ g. 
In particular, for any pair of arrows f :X ---+ Sand 9 : Y T, there is a unique ---lo 

.rrow (I x g) ~ if· fst.g· sud):X x Y ---> S x T such that: f· fst ~fst. (f x g) 
and g' sud ~ .md . (J x g). 

Definition 9.1 A categorical model of a predicate system consists of a category 
Pred with a terminal object 0 and binary product (_, _) whose objects and arrows 
represent predicates (or predicate assignments) and entailments respectively. 

Entailments of the form v : P It- e : Q are described by arrows P ~ Q and 
the basic rules of predicate entailment are sununarised in the right band column 
of Figure 9.1 with the corresponding rules from Figure 4.1 on the left. A full 
treatment would require a notion of substitution on objects of Pred but we do 
not consider this here and hence there is nO rule corresponding to (close). More 
significantly, since the categorical form of predicate entailments is variable-free 
there is no need to include rules corresponding to (evars) and (rename). 
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( id) v:P II- v:P p~p 

(!mn) v:P1I-0 P~0 

Us!) v:P,w:Q It- v:P F,Q!!!...P 

("d) v:P,w:Q II- w:Q P,Q~Q 

(vuiv) 
v:PlI-e:Q v:PlI-f:R 

v:P II- e: Q.J:R 

P--'--+Q P....!.....R 

P~Q,R 

(trans) 
v:PlI-e:Q w:QlI-f:R 

v:PII- [e/wlJ:R 

P--'--+Q Q""!""'R 

P~Q....!-R 

Figure 9.1: Categorical interpretation of predicate entailment. 

Definition 9.2 A categorical model of simply typed A-calculus with qualified type8 
con81sts of: 

•	 A predicate system Pred as in Definition 9.1. 

•	 A cartc8ian closed category C such that any ob}ects A and B have a product 
A x B, an erponential (A -. B] and an arrow eval:rA -10 B] X A -t B. The 
adjoint transpose of an arrow f : C x A -t B i.B written ),1 : C -t [A -10 B] 
an.d is the unique arrow with the property that f = eval . ().I x id). 

•	 A Junctor e: Pred -10 C mapping predicates to evidence value8 that pre8erves 
tenninals and finite products (in particular, we require e(p, Q) ~ fP X eQ). 
For any entailment P ~ Q, the arrow ep ~ eQ should be uniquely 
detennined by P and Q alone to guarantee 'uniquene.'Js of evidence '. 

Each typing judgement P IA I- E : T corresponds to an arrow fP x A ~ T. 
The complete set of typing rules are given in Figure 9.2, again with the categorical 
semantics in the right hand column and the corresponding typing rule on the left. 

The task of establishing coherence is equivalent to showing that any two arrows 
E	 E'E:P x A --> T and E:P x A --> T such that Erase(E) = Erase(E') are equal. 

This corresponds very closely to a standard notion of coherence in category theory. 
For example, MacLane (1971) refers to a coherence theorem as an assertion that 
'every diagram (of a certain class) commutes'. 
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P IA, x: r f- x: r f:P x (A x T) .~, T 

PIAf-x:r £P x A ~ T 

PIA, y:r' f- x: r £P x (A x T) j~' £P x A ~ T 

PIAf-E:r'-H f:P x A ..£. [T' ---> T] 

PIAf-F:r' £P x A....!..... T1 

PIAf-EF:r £P x A <!4 [T' -. T] X T' ~ T 

PIA,x:r'f-E:r f:P x (A x T') ..£. T 

PIA f- Ax.E: T' ---> r t:P x A '~) [T' ~ Tj 
where s: (A x B) x C ~ A x (B x C) 

PIA f- E: Q,*p t:P x A ..£. [[Q ---> RI 
Pfl- e:Q P-'!""Q 

PIAf-Ee:p t:P x A (E~") [f:Q ---> RI x [Q ~ R 

P,v:QIAf- E:p [(P,Q) x A..£. R 

P IA f- .Iv.E : Q '* p t:P x A '~) [f:Q ---> RI 
where r:(f:P x A) x f:Q ~ [(P, Q) x A 

Figure 9.2: Categorical semantics {or qualified types 
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9.2 Constructor classes 

Throughout this thesis we have used predicates on types to assign types to over
loaded values and we have seeD many examples where this is useful. On the other 
hand, there are some examples where an apparently natural application of over
loading that cannot be described in a. convenient manner in this way. Tills section 
describes an extension that allows the use of predicates on a language of type 
constructors, including types as a special case, resulting in a much more flexible 
system. 

As an example, consider the standard map function used to apply a function to each 
of the elements of a given list. Using the definition given in the Haskell standard 
prelude (Hudak et aI., 1992), this function has type (a -) b) -) ([aJ -) [bJ) 
and satisfies the familiar laws: 

map f . map g map (f . g)
 

map id "" id
 

In categorical terms t this shows that there is a functor from types to types whose 
object part maps any given type a to the list type raJ and whose arrow part 
maps each function f :: a -) b to the function map f :: raJ -) [b]. Similar 
constructions are used with a wide range of other datatypes. For example: 

data Tree a Leaf a Tree a :~: Tree a 

mapTree .. (a -) b) -) (Tree a -) Tree b) 
mapTree f (Leaf x) = Leaf (f x) 
mapTree f (1 :~: r) • mapTree f 1 :~; mapTree f r 

The mapTree function has a similar type to that of map and also satisfies the 
functor laws given above. With this in mind, it seems a shame tha.t we have to use 
different names for each of these variants. A more attractive solution would allow 
the use of a single name, relying on the types of the objects involved to determine 
which particular version of map is required in any given situation. 

It is rather difficult to give a satisfactory definition of map using the system of type 
classes. A much hetter approach is to notice that eacb of the types for which the 
map function is required is of the form (a -) b) -) (f a -) f b) where a and b 
are arbitrary types and f ranges over a set of type constructors that includes the 
list constructor (writing List a as aDo abbreviation for [a]) and Tree: 

class Functor f where map :: (a -) b) -) (f a -) f b) 
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instance Functor List where 
map f 0 . [] 
map f (1:18) ~ f 1 : map f 19 

instance Functor Tree vbere 
map f (Leaf x) • Leaf (f x) 
map f (1 :": r) = map f 1 :": map f r 

Functor is a simple example of a constructor class. One of the most important 
properties that we need to guarantee is that aU of the instances of a partkular 
class have the same kind. We formalise this idea, writing Type for the kind of 
all types and 11':1 -+ 11':2 for the kind of a function that takes something of kind 
11':1 and returns something of kind 11':2' Similar systems of kinds have been used in 
other applications - for example in (Bruce et aJ. 1990) and (Barendregl, 1991). 
Note that our system includes Haskell type classes as a special case; a type class 
is simply a constructor class for which each instance has kind Type. 

The elements of each constructor class are written using constructor expressions 
of the form: 

C ::= X constants 
a variables 
C C' applications 

Note that this does not include a List and Tree have kind Type -> Type. The 
kinds of constructor applications can be obtained using the rule: 

C:: 11':' -+ II': C':: 11':' 

C C/::II': 

The task of checking that a given type expression is well-formed can DOW be refor
mulated as the task of <:he<:king that a given constructor e:xpression is well-kinded 
with kind Type. Standard techniques can be used to implement kind inference 
so that there is no need for the programmer to specify the kinds of constructor 
variables. 

The type inference algorithm, existence of prin<:ipal types and coherenc.e criteria 
in Chapter 5 can be extended to deal with a system of constructor classes based 
on the ideas outlined here. Construdor classes appear to have many applications, 
including a flexible treatment of monadi<: programming as described by Wadler 
(1992) based on the use of overloading. A preliminary version of this framework 
has been implemented as an extension of the Gofer system, including the first 
con<:rete implementation of monad comprehensions (Wadler, 1990) known to us at 
the time of writing. Further details may be found in (Jones, 1992h) and we hope 
to expand on this work in a subsequent paper. 
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9.3 Reasoning in the presence of overloading 

One of the IDD!lt attractive fea.ture:! of purely functional programming languages 
is the opportunity to use equational reasoning in program development and trans
formation (Bird and Wadler, 1989). Equational reasoning in the presence of over
loading is much more difficult since it may not always be clear which particula.r 
definition of a. symbol is intended in a. given situation. For example, in a system 
of type classes, it is not possible to place any semantic restriction on the defini
tions given in a.ny particular instance other than ensuring that they yield values 
of the correct types. Furthermore, in the development of a large program, the in
stance declarations used to construct the definition of a single overloaded operator 
may be distributed across a. number of separate program modules. This makes it 
very difficult for a programmer to know what properties can be assumed about 
overloaded functions. 

Following suggestions made in (Wadler and Blott, 1989), one approach to this 
problem is to adopt a programming methodology in which: 

•	 Each class declaration is accompanied by a number of algebraic laws con~ 

straining the values of its member functions. 

•	 Each instance declaration is accompanied by a proof of the laws in the par~ 

ticular instance being defined. 

Such laws can of course be written as program comments, but it might be preferable 
to extend the syntax of the language with a concrete syntax for la.ws: 

•	 Progranuners would be encouraged to state laws formally using a uniform 
syntax, rather than a variety of ad~hoc annotations. 

•	 The type checker can be used to ensure that the laws given are type correct, 
and hence detect some meaningless or erroneous Jaws. 

•	 It is unlikely that the proofs for each law could he constructed automatically 
for each instance declaration. On the other hand, machine readable Jaws in 
a given program might well be used in conjunction with an au tomated proof 
checker or with machine assisted tools for program derivation and proof. 

The following example illustrates one possible syntax for writing the functor laws 
mentioned in the previous section: 

MapCompose :: Functor f '* (b ~ c) ~ (a ~ b) ~ Law (f a -> f c) 
MapCompose f 9 '* map f . map 9 = map (f . 9) 

Mapld Functor f '* Law (f a -> fa) 
Mapld =} map id = id 

142 



This notation is particularly attractive since it allows each law to be named (for 
reference in a proof), enables us to specify the free variables explicitly and to 
indicate the expected type for each variable and for the values on either side of 
the law. In practice, it should be possible to obtain appropriate typings using the 
type inference mechanism, without requiring explicit declarations. 

Unfortunately, the task of choosing an appropriate collection of laws may not 
always be so easy. For example, the law: 

EqRefie:rive Eq a => a --t Law Bool 
EqRefie:rive x => (x==x)= True 

is not valid in a language with a non-strict semantics unless we restrict restrict x 
to finite values not involving the semantic bottom element (for example. consider 
the Haskell expressions [0 .. ]==[0 .. ] and (1/0)==(1/0»). This is just as much 
of a problem when overloading is not involved and is simply a reflection of the fact 
that the properties of familiar mathematical functions are not always shared by 
their computable counterparts. 
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Appendix A 

Proofs 

This appendix contains detailed proofs for many of the results given in the body of 
this thesis, particularly for those in Chapter 5. Most of these are direct extensions 
of the results described in Chapter 3 and proofs (or the latter may be obtained 
from the proofs given here by ignoring tbe use of translations, equalities between 
terms and conversions. For convenience, we repea.t the statement of each result in 
a box at the beginning of t.he corresponding prooL 

Proposition 3.4 Suppose that a = Va;,Q ::::} II, (7' = \;/{3j.Q' ::} Vi and that 
none of the variahles {3j appears /ree in a, P or P'. Then (Pi I/7') :s (P I/7) 
if and (mly if there are types Tj such that: 

v' = [r;/"dv and P', Q' It- P, [ro/adQ. 

Suppose lhat (P'I<T') S (Plq)· Clearly (Q' => v') S q' and hence (P', Q' => v') S 
(Plu) by transitivity of:S. It follows that there are types r; such tha.t: 

v' = [ro/ai]v and P', Q' It- P, [r;/ai]Q. 

For the converse, suppose that Vi = [rda;]v, pi, Q' ft- P, [rdailQ and R:::} J1:5 
(Pi 10-'). Then there are types r; such that 

I' = [rJ//i;]v' and R It- P',lrj/aj)Q' 

and hence: 
I' = [rj//ij],} = [rj//ijJ([r;/a;]v) = [v,/a,]v 

where Vi = {r;l.8jJri and the last step a.bove is justified by the hypothesis that 
none of .8j is free in u. 
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In a. similar way, using the tra.nsitivity of 1+-: 

R	 It- P',[rJ/p;]Q' 
; [rJ/p;](p',O') (none of (3j free in PI) 
It- [rJ/p;]{P,[r;/a,]Q) (closure property) 

P,[rJ/p;]{[rda,]Q) (none of P; free in P) 
; P,lvda,]Q (none of P; free in Q) 

It follow, that R ;} I' ~ (P Ia) and hence (,ince R ;} I' was arbitrary) that 
(P'la') ~ (Pia). 0 

Proposition 5.6 Suppose that a, cT and el' aT"f" type schemes. Then: 

1.	 id:a ~ a where id::::= Ax.x is the identity tenn. 

2.	 If C: a C a' and C' ; a' ~ if', then C'o C: a ?: (Til where C' 0 C = 
.Ix.C'{Cx). 

3.	 If (T is a type scheme and T is a type, then id: Vt.a ~ [rllj(T. In 
particular, id:Gen(A,p) C p. 

The first and second parts are straightforward (the second being a special case of 
Proposition 5.13) and we omit their proofs here. 

For the third part, ,uppose that a ; 'Ia,.Q ;} v. If t <t TV{a), 'hen 'It.a ; 
a = [1'lt]a and the result is immediate from the first part. We can therefore 
assume that t E TV(a) (and hence that t <t {a,l). Pick new variahles P, and let 
S; [l9da,]. Then 

[r/t]a; [r/t]('Ia,.Q;} v); [r/t]('Ip,'sQ;} Sv) ; 'IP,.{S'Q => S'v) 

where S'; S[r/t]; Ir/t,Pda;). Clearly none of P, appear free in 'It.a and the 
entailment w: 5 'Q It- w :5'Q follows by (id). Hence Ax.Aw.zw is a conversion for 
Vt.a ~ [1' jt]u which, using (11.), is equivalent to id ::::= AX.X. 0 
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Proposition 5.7 Suppose that P and P' a~ predicate sets such that 
v':PH- e:P. Then: 

(>.x.>.v'.xe):Gen(A,P=> T) ~ Gen(A,P'=> T) 

for any type assignment A and type T. 

Write Gen(A, P => T) = (Va;.P => T) and Gen(A, P' => T) = (V{3;.P' => T') where 
{a;} = TV(P => T) \ TV(A) and {{3;} = TV(P' => T) \ TV(A). Clearly none of 
{3j appears free in Gen(A, P::::} T). Furthermore: 

T = [a,/a;]T and v':P' It- e':[ada;]P' 

and hence 
(>.x.>.v'.xe): Gen(A, P => T) ~ Gen(A, P' => T) 

as required. 0 

Proposition 5.8 If A is a type assignment, p is a qualified type and 5 is 
a substitution, then: 

id:SGen(A,p) ~ Gen(SA,Sp). 

Furthermore, there is a substitution R such that: 

RA = SA and SGen(A,p) = Gen(RA, Rp). 

First part: Let S be a substitution, {a;} = TV(p) \ TV(A) and choose new 
variables ,. not involved in S so that: 

SGen(A,p) = V,;.S[-Yda;](p) = 'h.Rp 

where R = S[-y,/a;]. Similarly, writing {3; = TV(Sp) \ TV(SA) we have: 

Gen(SA, Sp) =V{3;.sp. 

To begin with, note that none of the variables {3j appears free in SGen(A,p). 
To see this, suppose that {3 E TV(SGen(A,p». Then {3 E TV(S5) for some 
5 E TV(p) \ {a;}. This in turn implies that 5 E TV(A) and hence that {3 E 
TV(S5) ~ TV(SA). It follows that {3 '/. {{3;} = TV(Sp) \ TV(SA). 
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Suppose that P = (P ~ T) and note that: 

ST = ISa,hoJ(RT) 
v:SP It- v:SP (using (id)) 

= v:[Sa;/id RP 

Thus (~z.~v.%V): SGen(A,p) 2 Gen(SA, Sp) which (by (q,)) is equivalent to id. 
Second part: From above SGen(A,p) = 'V"!i.Rp and by definition, none of O:j 

appeazs free in A so RA = S[I,/a,jA = SA.
 
We claim that Gen(RA,Rp) = SGen(A,p) and cleazly it sulli"", to show that
 
hl = TV(Rp) \ TV(SA):
 

• To show hd ,; TV(Rp) \ TV(SA): For each a; E TV(p) we have Ra; = Ii 
and hence "Yi E TV (Rp). Furthermore, since Ii is a new variable not involved 
in S, I' '!- TV(SA) . 

• To show TV(Rp)\ TV(SA)'; hl: Suppose I E TV(Rp)\ TV(SA). Then 
I E TV(Ra) for some a E TV(p). Note that a '!- TV(A) (otherwise 
Ra = Sa and so IE TV(Raj = TV(Sa) ,; TV(SAj, contradicting the 
hypothesis that I '!- TV(SA)). It follows that a E TV(p) \ TV(A) = {ad 
and hence I E TV(R,,;j = {Ra;l = hl. 

This establishes the claim above and completes the proof of the proposition. 0 

Proposition 5.10 For any qualified type p and predicate a~~ignments v: P 
and w: Q there are conversion8: 

id : (P,Qlp)2(PIQ=>p) 
id (PIQ=>p)2(P,Qlp). 

In particular, taking P ;::: 0J there are conversiofl.sJ: 

id:(Plp) 2 P ~ p and id:(P ~ p) 2 (Pip)· 

Let p = QI ==> 'T and pick evidence va.riables Wi (or Q', disjoint from v and w. By 
(id) we have: 

v:P,w:Q,w':QH- v:P,w:Q,w':Q 

Thus .\x ..h ..\w..\w'..rvtUw' is a conversion for both cases a.nd, using (1Jf), is equiv· 
alent to id = ..\z.:e. 0 
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Proposition 6.11 [f C: (R Iu) ~ (R' I0") and v': P' It- e: P, then there ;., 
a conversion: 

.\x.'\v'.C(u):(P,Rlu) ~ (P',R'lu'). 

In particular, taking R;::: 0;::: Fr, ijC:q ~ tT and v':P' tt- e:P, then: 

.\x.'\v'.C(u):(Plu) ~ (P'lu'). 

Suppose that (1 = VOj.Q ::;. v and (1' ;::: Vaj.Q' => v' where the variables oj appear 
only in Q' => v'. Taking the hypothesis C: (R Iu) ~ (R' Iu') it follows from the 
definition oC conversions that Vi ;::: [rdailv, u': R\ w': Q' tt- f: R~ g: [Tdai~ and 

J- C;::: >..x.>..u'.>..w'.xfg 

for some Til I, 9 and Wi, u' (disjoint from v'). Furthermore, v': pI tt- e: P and 
hence by (dist): 

v': P, s': R', w': Q' It- e: P ,f: R, g: [r;ja;]Q. 

Finally, note that: 
I- C(u) ~ '\s'.'\w'.xefg 

and hence: 
f- J..z.>..v'.C(xe) ;::: )"z.>"v'.}..1J'.>"w'.xefg 

gives the required conversion. 0 

Proposition 5.12 Suppose that P and pi arf prfdicate a.ssignments, u and 
u' aIT type schemes and that C:(Plu) ~ (P'lq'). Then: 

C:S(Plu) ~ S(P'lu') 

for any substitution S of types for type variables. 

Suppose tha.t (1;::: Voj.Q::::} v and q';::: Vaj.Q' => v' where DODe of the variables 
oj appears free in (1, P or pI and none of 0'; or oj is involved in S. Hence: 

S(Plu) = (SplV",.SQ ~ Sv)
 
S(P'lq') ~ (SP'lVaj.SQ' ~ Sv')
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Given that C:(Plu) 2 (P'Iu'), there are types ri such that: 

v'= [T,la,]v and v':P',w':Q'1I- e:P'!:ITJa;]Q 

and such that I- C = ).~.>.v'.>.w'.xef. Applying S to the above we obtain: 

Sv' ~ S(ITJa,)v) 
[SrJa,](Sv) (none of OJ involved in S) 

v':SP', Wi: SQ' = S(v':P', Wi: Q') 
II S(e:P'!:ITJa,JQ) 
~ e:SP,!:[Srda;](SQ) 

(closure property) 
(none of OJ involved in S) 

Hence C:S(Plu) 2 S(P'Iu') as required. 0 

Proposition 5.13 For any type scheme u and predicates P there is a con
version: 

id:(PI<7) 2 (PI<7)· 

FurthermoTe, ijC:(PI<7) 2 (P'I<7') and C':(P'Ia') 2 (P"Ia"), then: 

(C' 0 C):(PI<7) 2 (P"Iu")· 

For the first part note tha.t id: (J ~ (J by Proposition 5.6(1) and v: P ft- 1': P by 
(id). The result follows from Proposition 5.11 since I- >.x.>.v.id(rv) == id. 

Now suppose that: 

(J = 'VC1.i.Q => V, (1' == Vaj.Q' => v' and a" = VaZ.Q" ~ Vi 

where the variables aj appear only in Q' => v' and the variables a~ appear only 
in Q" => v//. By definition of conversions: 

v'~hla;]v and v':P',w':Q'lI-e:P,!:[TJa;]Q 

for some Til e and w' (disjoint (rom v) such that r C = AX.AV'.AW'.zef. In a 
similar way, 

v" = [;} /ajlv l and VII: pi, w": Q" It- e': pi, f': [T}/ajl Q' 

for some ;}, e' and w" (disjoint from v) such that r C' = AX.AV".AW".xe'f'. 

Since none of aj a.ppear free in v: 

v" ~ [TIlai]v' ~ [rilaiJ([r;la,]v) ~ [T!'fa;]v 

149 



where Ti' = [TJ;aj]T;. In a similar way, applying [Tf/ail to first of the predicate 
entailments above and noting that none of aj appear in P,P' or Q we obtain: 

v': P, w': [Ti/ai] Q' II- e: P,!: [T!,/a;]Q. 

Hence (by transitivity) we have: 

v": P', w": Q" II- Ie' /v'J'/w1(e :P,f:[T:,/a;JQ). 

To complete the proof, notice that: 

~ ~x.C'(Cx)	 = ~x.~v".~w".(Cx)e'J' (properly of C') 
= >.x.>. v".>' w".(>. v'.>' w'.xeJ)e'J' (properly of C) 
= ~x.~v".~w".[e'/v''!'/w'J(xeJ) (by ({3,)) 

which is the required conversion. D 

Proposition 5.14 For any type scheme (7' and predicate assignment v: P 
there is a conversion: 

(Ax.~v.x):u2: (Plu). 

Furthermore,	 if C:u 2: (Pier) and C':er 2: (Pier'), then: 

(~x.~v.C'(Cxv)v):(Plu) 2: (P"lu"). 

For the first part note that id : (] ~ q by Proposition 5.6(1) and v: P It- 0 by 
(term). The result follows from Proposition 5.11 since I- >.x.>.v.id(x) = >.x.>.v.x. 

Now suppose that: 

q = 'Vai.Q =? v, = 'Vaj.Q' =? v' and (]" ='Va~.Q" =? v fl 
(7" 

where the variables aj appear only in Q' =? v' and the variables aZ appear only 
in Q" =} v". By definition of conversions: 

v' = [T;/a;)v and v:P, w': Q' II- e:[T;/a;]Q 

for some Ti, e and Wi (disjoint from v) such that I- C =>.x.>.v.>.w'.xe. In a similar 
way, 

v" = [TJ;aj]v' and v:P,w":Q"1t- e': [TJ/ajl Q' 

for some Tj, e' and w" (disjoint from v) such that I- C' = >'x.>'v.>'w".xe'. 
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Since none of oj appear free in v: 

v" = [Tj/OjJV' = [Tj/Oj]([T;/O;]V) = [T!'/o;)v 

where rt' = [rJ/aj]ri. In a similar way, applying [rJ/ojl to first of the predicate 
entailments above and noting that none of oj appear in P, P or Q we obtain: 

v: P, w': [Tj/Oj]Q' It- e: [T!' /0;) Q. 

From the second entailment (using v:P It- v:P and combining using (univ)): 

v: P, Wi': Q" It- v:P, e': [rJ/ojlQ'. 

Hence by transitivity we obtain: 

v: P, w": Q" It- Ie' /w']e: IT;' /o;JQ). 

To complete the proof, notice that: 

f- h.AV.C'(Cxv)	 = h.,xv.,xw".(Cxv)e' (property of C') 
= >.x.>.v.>.w".p.w'.xe)e' (property of C) 
= >.x.>.v.>.w".[e' /w']xe (by «(3,)) 

which is the required conversion. 0 

Theorem 5.18 If PIA ~ E~ E': T, then PIA f- E ~ E': T. 

By induction on the structure of P I A r" E "-+ E' : r. The proofs for the cases 
where the last rule in the dedvation is (-+E)A or (_d)A are straightforward. The 
remaining cases are: 

Case (var)': We have a dedvation of the form: 

(x:(Vo;.Q => v)) E A Pit- e:[T;/o;JQ 

PIA.~ x~ xe: [T;/O;JV 

Hence we can construct the required derivation: 

(x: (Vo;.Q => v)) E A (
var)

PIAf-x~x:VOi.Q=>V (VE) 
P IA f- x ~ x: [T;/O;JQ => h/o;Jv Pit- e:[T;/a;)Q (=>E) 

PIA f- x ~ xe: h/o;]v 
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Case (let)-: We have a derivation of the form: 

V': pll A f.! E "'-+ E' : r' P IA~ I X : a' f.! F "'-+ F' : r 

PIA ~ (let x = E in F)~ (let x = ~v'.E' in F'): T 

where (l = Gen(A , pi => r'). Hence we can construct the derivation: 

v':P'IA f.! E"'-+ E' : r' 
---,-~-.-:-:::----;:::---; induction 
Vi: P'I A I- E "'-+ E' : r ' 

.".,---,..,.---;o---:-c=~,-----; ('* I) •01 A I- E "'-+ >'v'.E' : P' => r' PI An x:a' r F"'-+ F ' : r 
--'--;;-;-;-;--;;---;--cc-;:;;--;-- ('<II) induction 

01A r E~ ~v'.E': CT' (let)PI A., x:'" r F~ F': T 

PIA r (let x = E in F)~ (let x = ~v'.E' in F'): T 

This completes the proof. 0 

Proposition 5.19 If PIA ~ E~ E': T, then EV(E') <; dom P. 

By induction on the structure of P I A ~ E"'-+ E' : r. The proofs for the cases 
where the last rule in the derivation is (--+E)- or (--+/)- are stra.ightforward and 
the prooffor the case (var)' follows directly from (evar.'l). 

In the remaining case we have a derivation of the form: 

v':pIIA f! E"'-+ E' : r' PIA:&,,:r:u'f F"'-+ F': r 

PIA ~ (let x = E in F) ~ (let x = ~v'.E' in F'): T 

where .' = Gen(A, P' '* T'). By induction EV(F') <; dom P and EV(E') <; .' 
and hence EV(~.'.E') = 0. It follows that: 

EV(let x = ~.'.E' in F') = EV(F') <; dom P 

which completes the proof. 0 
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Proposition 5.20 If P IA ~ E ........ E' : T and S is an arhitrary suhstitution
 
a/types/or type variahles, then SPISA ~ E~ E': ST. 

By induction on the structure of P I A f..!' E ........ E' : r. The proofs for the cases 
where the last rule in the derivation is (---tE)· and (-I). are straightforward. The 
remaining cases are: 

Case (var)·; We have a derivation of the form: 

(x:(Va.Q '* v» E A P II- e:[Tlo]Q 

PIA ~ x ~ xe: [Tlo]v 

Pick new variables f3 not involved in S so that: 

S(Vo.Q =} v)	 ~ S(Vo.Q'* v) 
~ S(ViJ.[;3/oJ(Q =} v)) 
~ ViJ.S[iJ/o](Q =} v) 

and hence (x: (ViJ.S[iJ/ol(Q '* v»)) E SA. Note also that: 

SP II- e:S([TlaJQ) (by (close) 
e :S[STla]Q 

~ e:[STliJ](S[iJlalQ) 

Hence, by (var)·; 

SPISA ~ x ~ xe: [STliJJ(S[;3/a]v) 

which is the derivation required since S[TliJJ(S[jJ/a)v) ~ S([T/aJv). 

Case (let)': We have a derivation of the form: 

Vi: Pi! A ~ E ........ l:;" : r' P IA~, %: u' ~ F ........ F' : T
 

P IA ~ (let x ~ E in F) ~ (let x ~ ~v'.E' in F') : T
 

where u' = Gen(A, P' => r'). By Proposition 5.8 there is a substitution R 
such that: 

RA ~ SA and Gen(SA, RP' =} RT') ~ SGen(A, P' =} T'). 
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Write a = Gen(SA, RP' => RT') = SeT'. The required derivation can now be 
constructed: 

v':F'IAI-'.E",E':T' (a) PIA.,Z:u'I-'.F",F':T (b) 
v"RPIRAI-' E", E" RT' SPISA x'Sa'l' F", F'· ST . • . (c) .,.. . (d) 
v':RP'ISA I' E", E': RT' SPISA x:al' F", F': ST 

., (let)· 
SF ISA I-' (let x = E in F) '" (let x = ~v'.E' in F') : ST' 

(Steps (a) and (b) are obtained by induction whilst (c) and (d) are justified 
by the equalities SA = RA and a = S,,' respectively.) 

This complet.es the proof. 0 

Proposition 5.21 If v : P I A 1-' E ....... E' T and Q It- e: P the~ 
Q IA J! E", [elvie' : T. 

By induction on the structure of v: P IA J..! E ....... E' : T. Th~ proofs for the cases 
where the last rule in the derivation is (-tE)' and (-tl)J are straightforward. The 
remaining cases are: 

Case (var)': We have a derivation of the form: 

(x: (Va.P' => T')) E A v:P It- e':[T/a]P' 

v:plAI-' x"'xe':[T/a]T' 

By transitivity of It- we have Q It- [e/v]e' : IT/a]P' and hence there is 
a derivation Q I A f-' x '" x([e/v]e') : [T/a]T'. The result follows since 
x([e/v]e') '" [e/vJ(xe'). 

Case (let)': We have a derivation of the form: 

v': P' IA f.! E ....... £' : T' v: P IA~l:l:u' t! F ......... F' : T
 

PIA I-' (let x - E in F)'" (let x - ~v'.E' in F'): T 

where u' = Gen(A , pi => T ' ). By induction, Q IA$' x: a' J..! F ....... [e/v]F' : T 

and hence: 

Q IA I-' (let x = E in F) '" (let x = ~v'.E' in [e/v]F') : T. 
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By Proposition 5.19, EV(E') <;; v' (i.e. EV(),v'.E') = 0) and so, 

[e/vl(let x = ),v'.E' in F') '" let x = [e/vJ(),v'.E') in [e/v]F' 
== let x = Av'.E' in [e/vIF' 

as required. 

This completes the proof. 0 

Lemma 5.23 Suppose that A and A' are type assignments) P and Q are 
predicate sets and that v : P I A f-' E "'-+ g : T for some type r. Then 
v: P' IA f! E ""--+ E' : " for some pi and I' (instances of P and r respectively 
under a single substitution) and 

id:G,n(A',Q,P'=> T') ~ (Q/G,n(A,P=>T)).

1
Let p = (P ~ T), 0 = TV(p) \ TV(A) and S = [iJ/o) where iJ are new variables. 
By Proposition 5.20, v: SP ISA t1' E'""-+ E' : ST, but none of 0 appear free in A 
and hence this derivation is 

v:P'IA f.! E.-....+ E': " 

where P' = SP and T' = ST. Note tbat G,n(A,p) = ('1o.p) = (ViJ.Sp) and 
that Gen(A', Q, P' :::> I'} ::::: VI·p. Q, Sp for some variables I since each variable f3 
appears free in Sp but not in A'. It follows from the trivial observations: 

w, Q, v, SP It- 1fJ/iJ, 1hJ(w: Q, v: SP) 
T' = fiJ!iJ,1h](ST') 

th.t G'n(A', Q, P' => T') ~ (Q I G'n(A, P => T)) witb conversion A•• ),v.),x.xwv 
which, by (7]e), is equivalent to id::::: Ax.x. 0 
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P'oposition 5.22 If v: PI A' f' E ~ E': rand C: A ~ (v:P I A'), then 
u: P IA t! E -....+ E" : T with v: P IA I- GE' = E" : 'T. 

By induction on the structure of v: P IA' ~ E ........ E' : T. For convenience, we write
 
v: P IA f-! E""" E" = Cg : T as an abbreviation for the two judgements in the 
conclusion of the proposition. 

Case (var)': We have a. derivation of the form: 

(<:(Vo;.Q' =} v')) E A' v:P It- e':[r}/o;]Q' 

v:PIA'1! x ........ xe' : [T;/Oj]V'
 

Suppo," A(.) ~ Vo,.Q =} v. By hypothesis, C:A ~ (v:PIA') and so 

(h ..\v.C.):(Vo;.Q =} v) ~ (PIVo;.Q' =} v'). 

By Proposition 5.6(3) we have: 

id:(Vo;.q =} v') ~ [r;/o;J(Q' =} v'J 
and so by Proposition 5.11: 

id:(PIVo;.Q' =} v') ~ (PI [r}/o;J(Q' =} v'J). 

Composing with AX.AU.eX gives: 

(A•.AV.C.):(Vo,.Q =} v) ~ (Plh/oi](Q' =} v')). 

Hence there are types ii, evidence variables v' and evidence expressions e 
such that: 

v:P,v':!r;/oiJQ'1t- e:!r;/o;]Q, 

[r}/o;lv' ~ [r;/o;]v 

and I- Ox ::; AV'.XC. 

By hypothesis, v: P It- e': [r;/oIlQ' and hence v: P It- [e'/v']e: [r;/o;]Q 
using (cut). By (var)', v:PIA ~. ~ .([e'/v']e): Ir;/o;)v but [rj/aj]v' ~ 
[r;jO';]v and so this derivation is: 

v: PI A f' • ~ .([e' /v')e) : [r}/o;]v'. 

Finally, Dote that: 

v:PIA~C(xe') ~ 

~ 

~ 

(C.)e' 
().v'.xe)e' 
[e'/v1(xe) 
.([e'/v']e): !r;/oiJv' 

(substitution) 
(~ e. ~ AV'.xe) 
(P.) 
(substitution) 

which establishes the required equa.lity. 
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Case (--+E)': We have a derivation of the form: 

v: P IA' f! E"-t E' : T' -t TV: P IA' f! F""-+ F' : T' 

v:PIA' f! EF"-t E'F': T 

By induction there are derivations: 

v: P IA to! E "-t E" ::;: CE' : T' -t T 
1v: P IA ~ F"-t FII ::;: CF' : T . 

Using (-t E)' we obta.in: 

v:PIA f! EF"-t E"F": T 

and v:PI A ~ C(E'F') = (CE')(CF') = E"F": T. 

Case (--+/)': We have a derivation of the form: 

v:PIA~,X:T' f! E"-t E': T 

v:PIA' f! )"x.E""-+ )"x.E': T' -!' T 

By hypothesis, C:A ~ (v:PIA') and hence by Proposition 5.16(3): 

C.:(A.,X:T') ~ (v:PIA~,x:T'). 

By induction, v: P IAz, x: T' ~ E"-t E" ::;: CrE' : T a.nd hence: 

v:PjAJ f! )"x.E ""-+ )"x.E': T' --+ T 

with: 

v:PIA~ C(>.x.E') )"z.CrE' (Proposition 5.16( I) 
::;: )"x.E" : T' --+ T (~ C, E' = E"). 

Case (Jet)': We have a derivation of the form: 

vl:P')A'f! E"-tE':T' PIA~,X:tY~ F"-tF':T
 

P IA' '" (let x - E in F) "'" (let x _ ~v'.E' in F') : T
 

where rT ::;: Gen( A, P' =} T'). By Lemma 5.23, v': pili A' ~ E""-+ E' : T" for
 
some P" and T" and id:o 2: (P I0 

/
) where 0 = Gen(A', P, P" => r"). We also
 

have id: (P Iu') ~ (P I(P' =} T'» (Proposition 5.6(3) and Proposition 5.11) 
and hence: 

id:u ~ (PIP' =} T'). 
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Note that v: PI v': P" It- v': p" and that C: A ~ (v: P, v': P"I A') and so 
there is a derivation: 

v':P"/A' f!	 E ~ E': Til 

V: P, V'; pill A' f! E ~ E' : Til Proposition 5.21 

v:P, v':P")A f! E ~ Elf = GE': T" induction 

It follows that 0/ A I- AvJ.v'.GE' == AV.Atl'.E" : q. Next we consider the 
derivation: 

v:PIA~,x;q' ~ F ~ F': T. 

Note that Glxv/x]: (A .. x: u) ~ (v: P IA:, x: u') and hence by induction 
v: P IAZI %: q ~ F ~ F" : T with v: P IAz, x: q I- (C[xv jxjF') == Fit: T. It 
follows from (let)' that: 

v;PIAf! (let x :::::Ein F)~{let x =.>..v ..>..v'.E"in F"}:'1" 

Finally, we ha.ve: 

v:PIA r	 G(let x = AvJ.E1 in F I
) 

let x:::: Au'.GE' in GzF' (Prop. 5.16(2») 
~ let x:= {Av.Av'.GE')v in CzF' (13, ) 
~	 let %:::::: (>..v.Av'.E")t! in CzF' 

let x = [AV.AV'.E"jx]{xv) in CzF' (substitution) 
let x ~ Av.Av'.E" in !zv/x](G.F'1 (Prop. 5.4(1)) 

;:;	 let x = AV.AV'.E" in G[xvjxJF' (Prop. 5.16(4» 
~ let x = AV.AV'.gJ in F". 

This completes the proof. 0 
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Theorem 5.25 If v: P I A I- E",-" E' : (I, then there itJ a predicate MtJign
ment v': pi, a type 7 1 and a term E" tJuch that Vi: Pi) At! E",-" E" : 7' and 
v: PI A j- Cpu'.E")v = E' : u where C: Gm(A, P' ~ T') 2 (Plu). 

By induction on the structure of v: P IA f- E",-" E' ; a. 

Case (var): We have a derivation of the form: 

(z:u) E A 

v:PIAf- x",-" z:a 

Write u = 'Vai.'V!3i.P where P = (Q ~ v), {a,} <;; TV(p) and none of the 
variables (3j appears free in p. Pick new variables I'i, OJ and let S denote the 
substitution [-ri/a;,8;/!3i). By (;d), v':SQ It- v':SQ and so: 

v':SQIA f.! z ........ xv'; S/,.I.
 

Note that (z: u) E A, so TV(u) <;; TV (A) and TV(Sp) \ TV(A) = ,i. 
Thus: 

Gen(A,SQ ~ Sv) = Gen(A,Sp) 

'V'i.SP
 
'V'i.[-r;/ai]p (none of!3, free in p)
 
'r/Oi'P (renaming bound variables) 
'Vai.'V!3,.p (none of !3, free in p) 

= a. 

Note that (~z.~v.z):u 2 (Plu) and hence:
 

(~dv.z):(SQ ~ Sv) 2 (Plu).
 

which satisfies the theorem since v: P IA f- (Ax ...\ v.z)( AVi .xv')v :::: X : a using 
(P), (P,) and (~,). 

Case (-+E): We have a derivation of the form: 

v; P IA f- E",-" E' : 7' -+ TV: P IA I- F ....... F' ; 7'
 

v: P IA j- EF ~ E' F' : T 

By induction, v': P' 1 A f-' E "'-" E" : /,.I' and C: Gen(A, P' =:- /,.II) 2: (v : 
PI7' --+ T) such that v: PIA f- C(,\v'.E")v = E' : T' - T. Writing 
Gen(A, p' ~ /,.I') = 'r/Oi.PI ~ /,.I', it follows that there are types Tj such that: 

v:PH-e':[-r;/Q'i]P', T 
I 
-l>7 = [7;/Oi]/,.I' and f-C=..\x.Av.ze'. 
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Applying the substitution [T;/O:il to the syntax-directed derivation for E 
gives: 

v':frola;]P'lfrolai)A ~ E--... E": frola;]v' 

None of OJ appears free in A and hence this is equivalent to: 

v':[T;jo:,IP'IA f! E-...A E": T1 
...... T. 

Note also that: 

v:PIA ~ E' = C(,\v'.E")v = (,\x.,\v.ze')(,\v'.E")v = [,'lv']E": T' ~ T. 

By a similar argument I vl/:fVj/.B1Iplr IA ~ F ........ Fir: T' for some {3j, vn pll, 
F", e" and VII (disjoint from v'), such that; 

v:P I+- el/:[vJ/,8JI p " and v:PIA f- F' = [ell/vl/IF": r'. 

Let Z= (v':X,v": Y) where X = frola,]P' and Y = [vdl1;]P" and hence 
Z I+- 1/' : X and Z ft- v": Y. By Proposition 5.21 we can construct the 
following derivation: 

Vi: X IA ~ E ....... E" : T' --+ T VII; Y IA f! F F/I : T' 
ZIAf! E-...AEfI:r'--+T Z!Af! F F";T1 

::..c..:.:..:....;:..-....::::-,...,..,.,---::::::-----,::::':::::::-:----'----'-_ (~ E)'
ZIA ~ EF--... E"F": T 

Furthermore, v: P It- e': X, e": Y and so: 

('\x.'\v.ze',"):Gen(A,(X, Y) ~ T) ~ G,n(A,P ~ T) 

by Proposition 5.7. Note that id:G'n(A,P ~ T) ~ (PIT) and hence: 

('\x.'\v.ze',"):G,n(A,(X, Y) ~ T) ~ (v:PIT) 

Finally, we have: 

v:PIA	 f- (AZ.Av.ze'e")(Av'.AV".E"F")v 
::; (>.v'.Avl/.EIIF")e'e ff ({3) 
=	 ["Iv', '''lv''J(E''F") (11,) 

([,'I v'I£")([ ,"I v"IF") 
=	 E'F1

: T. 

which establishes the required equality, the penultimate step being justified 
by the observation that EV(E") ~ '0' and EV(F") ~ v", 
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Case (-+/): We have a derivation of the form: 

v:PIAS",x:r' f- E.-.....+ E': r 

v:PIA f- Ax.E.-.....+ Ax.E': r' --+ r 

By induction, v' : pi I A~, z : r' f-' E .-.....+ E" : II and C : Gen(A, P' ::::} 
II) ~ (P I r) such that v: P I A~,z: r' f- C(Av'.E")v = E' : r. Writing 
Gen(A, P' ==> II) = 'Vcz;.P' ==> II it follows that there are types ro such that: 

v: Pit- e': [r;fadP', r = [r;/czjJIl and f- C = AX.AV.U'. 

Note that 
v:PIAnx:r'f- g	 ::: C(Av'.E")v 

= (),x.),v.xe')(),v'.E")v 
= [e'/v'lE":T 

and hence PIA I- Ax.fe//v/]E/I = Ax.E': r' _ r.
 

Applying [r;/a;J to the (syntax·directed) derivation for E above and noting
 
that none of the variables a; appear free in A we obtain v': [r;/a,]P'1 An x:
 
r ' f! E ......... E": r. Hence by (-/)';
 

v':[rdczi)P'IA ~ Ax.E.-.....+ Ax.EtI 
: r' _ r. 

Composing the conversions: 

C: Gen(A,rT;/".]P'=?T'-->T)~Gen(A,P=?(T'-->T))(Prop. 5.7) 
id : Gen(A, P =? (T' --> T)) ~ P =? (T' --> T) (Prop. 5.6) 
id: P =? (T' --> T) ~ (PIT' --> T) (Prop. 5.10) 

we obtain: 

C: Gen(A, [T;fa;]?' =? T' --> T) ~ (P IT' --> T).
 

This conversion satisfies the theorem since:
 

v:PIA ~ C(),v'.),x.E")v =	 (Ax.),v.xe')(),v'.),x.E")v 
(Av'.Ax.E")e' (by (f3), (f3.)) 
[e'/v'](h.E") (by (f3.)) 

=	 Ax.[e'/v'lE" (substitution) 
Ax.E' : r' _ r. 

Case (let): We have a derivation of the form: 

v: P IA ~ E --... E' : (1 w: QIA" x: (1 ~ F --... F' :T 

v:P,w:QIA ~ (let x = E in F)--... (let x = E' in F'): T 
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By induction, v'; P' IA ~ E.-.....+ E": 1/' and v: P IA f- C'(>.v'.E")v = E' : (7 

where C':a'? (P 1(1) and <1' = Gen(A, P' =>- .').
 
Similarly, w': Q'I A,., Z:(7 f! F ......... F": 'T' and w: Q IA,:r, x: a f- C(>.w'.F")v =
 
F': T' wh"e C: Gen((A.,xo<1), Q'=>- T')? (QIT).
 

By Lemma 5.23, w': Q"IA,:r,z:O' f! F.-.....+ F"; 'Til where: 

id: Gen(A, P, Q" =>- T") ? (P IGen((A., XO(1), Q' =>- T')). 

We can now construct the following derivation: 

w':Q"IA,.,z:O' f! ~ ......... F": 'Til (a)
 
FIIv'P w"Q"IA z, ..... f F ......... .,.II
• . ,.	 ., .v • (h) 

v':P'IAf! E.-.....+ E":II' v:P.w' :Q"[A,:r,z:(7'f! F.-.....+ FI/f: 'Til ) 
----'=-'-~=::..-,----;:------~~,,---~=------~;;-;--'-=::::____:: (let • 
v:P,W':Q"IA f- (let x = E in F) ......... (let x = ),v'.E" in Fill): 'T" 

The step labelled (a) is justified using Proposition 5.21. The step labelled 
(b) is justified by Proposition 5.22 using the observation that: 

[C'zv/z]:A.. XO<1'? (v:PIA.,xo<1). 

The term Fill which appears as a result of this step is related to the term F" 
by the equality v: PI A f- [C'xv/zJF" = Fill : Til. 

The process of establishing the necessary conversion for this derivation is 
straightforward but requires several steps. 

By Proposition 5.10 id: (Q IT) ? (Q =>- T) and composing with C we ohtain: 

C: Gen((A.. XO(1), Q' =>- T')? (Q =>- T). 

Noting that v: P It- v: P we can extend this to: 

~z.~v.C(zv):(PI Gen((A.. xo<1), Q' =>- T'))? (P IQ =>- T) 

and	 then compose this with the conversion id above to give: 

~z .~v.C(zv): Gen(A, P, Q" =>- T") ? (P IQ => T). 

By Proposition 5.10: 

id:(PIQ=>-T)?(P,QIT) 

a.nd composing these last two we obtain the required conversion: 

h.~ v.C(zv): Gen(A, P, Q" =>- T") ? (P, Q IT). 

162 



It remains to 5how t.hat this conversion relates the tra.nslation of Jet x = 

E in F in the original derivation to that in the (syntax-directed.) derivation 
given above: 

v: P, w: Q IA r ('\x.'\v.C(xv))('\v.'\w'.let x ~ '\v'.E" in F"')vw 

(by ((3) and ((3,)) 

C(Aw'.let x = Av'.E" in F"')w 

(Proposition 5.4, parts (2), (3) aod (4)) 

= let x = Av'.E" in C(Aw'.F"')w 

(using I- [C'xv(x]F" = Fill) 

::::; let x = Av/.EIf in C(Aw'.[C'xv(x]F")w 

(x ¢ FV(C) ~ 0) 

~ let x ~ ,\v'.E" in [C'xv(x](C(.Iw'.F")w) 

(Proposition 5.4(1)) 

let x ~ ['\v'.E"(x)(C'xv) in C('\w'.F")w 

(substit.ut.ion) 

let x = C'(Av'.E/I)v in C(Aw'.F")w 

(using r C'('\v'.E")v ~ E') 

let x ~ E' in C('\w'.F")w 

(using r C('\w'.F")v ~ F') 

E1let x = in F1 
: r 

Case (::::} E): We have a derivation of the form: 

v:PIArE ..... E':,,=>p v:PIt-e:" 

v:PIA r E ..... E'e: p 

By induction, v/: P/ I A ~ E.-...,jo E" : 1/ and v: P I A I- C(Av'.£i')v = E1 
: 

" => P where C: Cen( A, P' => v') '" (P I" => pl. By Proposition 5.10: 

id:(PI" => p) '" (P,"lp) 

and by Proposition 5.11 (using v:Plt- v:P,e:7l"): 

('\x.'\v.xve):(P,"lp) '" (Pip). 
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Composing these two conversions with C gives:
 

(AZ.Av.Czve):Gen(A,1" => v') 2: (Pip)
 

which yields the required equality:
 

v:PIA r (h.Av.Czve)(Av'.E")v = C(Av'.E")ve = E'e: p. 

Case (~l): We have a derivation of the form: 

v: P, W:lI", u:P'IA f- E ........ E': p
 

v:P,u:P' !Af-E ........ AW.E':lI"=>p
 

By induction, Vi : P' I A f-' E __ E" : v' and v : P, w : '11", u : pi I A f
C(Av'.E")vwu = E' : p where C: Gen(A, P' => v') 2: (P,."., P' I pl. It is 
straightforward to show that: 

(h.AV.AU.AW.ZVWU):(P,""'P'\p) 2: (P,P'I.". => p) 

which, composing with C, gives C' = A:e.AV.AU.AW.Cxvwu such that: 

C':Gen(A,P' => v') 2: (P,P'I.". => pl· 

To complete the proof for this case, note that: 

v: PI A f- C'().v'.E")vu :::: AW.C(AV'.E")vwu = Aw.E' : 11" => P 

using ({3) and ({3,). 

Case ("IE): We have a derivation of the Corm: 

v: P IArE ~ E' : Vt.u 

v: P IArE ~ E' : [T / t]u 

By induction, Vi: P' I A I-" E __ E" : v' and v: P I A f- C().v'.E")v = 
E': Vt.a where C: Gen(A, P' => Vi) ~ (v: P l'it.a). By Proposition 5.6, 
id:Vt.u 2: [T/tJU and hence hy Proposition 5.11, id:(PIVt.u) 2: (PI [T/tJU). 
Composing with C we obtain: 

C:Gen(A, 1" => v') 2: (PI[T/tJU) 

and the result follows since, using the equality given above: 

v:PIA r C(Av'.E")v = E': [T/tJU. 
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Case (VI): We have a derivation of the form: 

v:PIArE~E':u 

v:PIA r E~ E': 1I!.u 

where t " TV(A) and t " TV(P). By induction, v': I" IA t' E"" E" : .' 
.nd v:PIA I- C(Av'.E")v= E':uwhere C:Gen(A,P'=> .') ~ (Plu). 

Write Gen(A, P' => .') = (lIa,.I" => v) and suppose that u = (lIfJj.Q => .) 
where none of Pj appears free in Gen(A, P'::::} tI'). Note that if t f/ TV(u), 
then Vt.u = 17 and the result is immediate. We can therefore assume that 
t E TV(u) and hence that t" {a,}. 

Since C: Gen(A, P'::::;. ti'} ~ (Plu), there are types 'T"j such that: 

• = [T,/,,;].', v:P, w: Q fI- e: [T,/a;]I" and r C = Ax.Av.Aw.ze. 

Note th.t [T;/a,) = [T;/a, , t/t] (becau,e t " {a;}) and th.t t does not 
appear free in P by hypothesis. Furthermore, t does not appear free in 
Gen(A, P' => .') since th.t would contradict the hypothesis that t ¢ TV(A). 
These obser"Nttions are exactly what is needed to show that: 

C:Gen(A,I" => .')?: (v:PIII!.u), 

and the equality v: P I A I- c(Avl.E")v = E' : Vt.u needed to complete the 
proof follows directly from above. 

This completes the proof. 0 

Theorem 5.26 If PI TA ~ E~ E': T, then PI TA t' E~ E': T. 

By induction on the structure of PITA ~ E ....... El 
: -r. The proofs for the cases 

where the last rule in the derivation is (var)W or (_+l)W are straightforward. The 
remaining cases are: 

Case (-t E) w: We have a derivation of the form: 

PITA~ E ....... E':'T" QIT'TA~ P ....... P':r' T''T"fGT'-tet 

U(T'P, Q}I UT'TA ~ EF~ E'F': Ua 
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where a is a new variable. By induction, PITA 1-' E ........ E' : T and
 
hence UT'P, UQ I UT'TA f' E ~ E' : UT'T hy Proposition 5.19 (apply
ing the substitution UT') and by Proposition 5.21 (using the entailment 
UT' P, UQ It- UT' Pl. Note that UT'T = UT' -. Ua hy definition of U and 
hence we have UT'P, UQI UT'TA f.! E ........ E': UT' --+ Ucr..
 

By a similar argument, UT'P, UQ I UT'TA ~ F ........ F' : Ur' and hence by 
(-.E)·weohtain UT'P, UQI UT'TA ~ EF~ E'F': Ua. 

Case (let)w: We have a derivation of the form: 

v:PITA~ E ........ E':r P/IT'(TAz,x:u)~ F~ F':r'
 

P'I T'TA I'" (let 7 = E in F) ~ (let 7 = ),v.E' in F): T' 

where u ::; Gen( TA, P ~ r). By Proposition 5.8, there is a substitution R 
such that RTA = T'TA and Gen(T'TA,R(P=> T)) = T'Gen(TA,P=>T). 
Write u' ;::; Gen( T' TA, R(P ~ r» ;:: T'a. The required derivation can now 
be cODstructed: 

"PITAI'" E~ E"T P'IT'(TA 7'(7)1'" F~ r'T' 
. • . (aj "'. . (h)

v:PITAr E~ £':, P'IT'TAz,x:T'ur F .......... F':,I )

(c

v'RPt T'TA f
, 

E~ E'· RT P'I T'TA 7'<7') f 
I 

F ~ F" T' . . z, . . (let)' 
P'I T'TA ~ (let 7 - E in F) ~ (let 7 _ ),v.E' in F) : T' 

where (a) and (b) are justified by induction and (c) follows from T'u = 01. 

This completes the proof. 0 

Theorem 5.28 Suppose that v: P ISA ~ E ~ E' : T. Then w: Q I TA ~ 
wE..,..... £i' : v and there is a substitution R !Juch that S ~ RT) , = Rv, 
v:PIt- e:RQ and v:PISA ~ E' = [e/w]E": To 

By induction on the structure of v: P ISA ~ E ........ E' : T.
 

Case (var)': Suppose that (x:a) E A where u = (Veri'P => T). Pick new van· 
abIes {3; so that S17 = V{3;.S[,B,/a;](P => T). We therefore have a derivation 
of the form: 

(7:S17) E SA v:P It- e: [T;/{3,](S[,B;/a;] Q) 
v:PISA ~ 7~ xc: [T;/{3;](S[,B;/a;]v) 
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Since (.:(V'Ct'i'P =} 7")) E A and {3i are new variables we have a derivation: 

u':[;3;/a;]QIA '"' Z~ zu: 1;3;/a;]v, 

Let R = S[r; / ;3;] and note that R '" S, Furthermore: 

[T;/;3;]{S[;3;/a;]v) = Sh/a;]v =S[T;/;3;](I;3;/a;lv) =R([;3;/a;lv) 

and, in a similar way: 

u: P H- e: [T;/ ;3;](S/;3;/a;1 Q) = e: R([iJ;/ad Q), 

Finally note that [e/v](.v) == u which gives the required equality. 

Case (--+E)': We have a derivation of the form: 

v: P ISA ~ E ......... E' : 7"' --+ 7" v: P ISA ~ F ......... F' : 7"'
 

v:PISA~ EF~E'F':T 

By induction, Vi: P' I TA ~ E ......... E" : 11' and there is a substitution R such 
that S ~ RT, 7"' --+ 7" = RlI', v:P Ir e' : RP' and: 

u:PISA f- E' = [,'/u1E": T' => T. 

Writing SA = R( TA) we have u : P IR( TA) f-' F ~ F' : T' and hence hy 
induction v": P"l TI( TA) ~ F ......... F" : 11" and there is a suhstitution RI such 
that R:::::l R'T', 7"' = R'lI", v:P Ir e":R'plI and: 

v: PISA I- pi = [e"/v"]F": 7"/. 

Note that (without loss of generality) we can assume that the evidence vari
ables v, v' and v" are pairwise disjoint. 

Pick a new variable 0' and let R" = R'[7" /o'}. Note that: 

R"(T'v)	 = RI/TllI 

= R'T'lI 
Rv= 
7"' --+ T= 
HI'; -+ R"n 
R"(v' ~ a)= 

and hence R" is a unifier of Till and 11' -+ 0'. It follows that Till!!. (11' --+ a) 
for some most general unifier U such that R" = V'V for some V'. 
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By (-+E)W t there is a derivation: 

U(vl:T'pl,v":PI/)IUTITA~ EF"'-tE"F": Uo. 

Not.lhat S '" RT '" R'T'T '" U'(UT'T), U'(Ua) = R"a = T and: 

v:P	 It- e':Rpl, e":IrP" (by (di8t») 
e/: R'T'P', e":R' pn (R '" R'T') 
RI/(e' : T'P',e":P") (R" '" 11:) 
UIU(e ' : T'P', e":P") (R"=U'U) 

FinaIly\ the required equality can be established using: 

"P IA ~ [e' Iv', e"lv"J(E"F") = ([e'l v']E")([e" Iv"IF") = E' F' : T. 

Case (-+I)&: We have a derivation of the form: 

v: P ISAt, x: r' j! E"'-t E' : r 

P!SA j! )"x.E"'-t )"x.E': r'-+ r 

Let Cl be a new variable and set S' ::;::: S(T'la] so that the derivation for 
E can be written as v : P 1 S'( Ar , Z : 0) 1-& E "'-t E' : T. By induction, 

wv': P' I T(A.·, Z: 0) I- E"'-t E" : v and there is a substitution R such that 
S':::;- RT\ T:= Tv, v:P It- e':RP' and: 

v:PISA"X:T' ~ E' = [e'lv']E": T 

from which it follows that: 

v:PISA ~ [e'lv']('\z.E") = '\z.[e'lv']E" = '\z.E': T' --> T. 

By {_I)w, there is a derivation v': P' I TA I-w )"z.E "'-t >.x.E" : To -+ v. 
Note that S ~ S' :::::: RT, v: P It- e': RP' and: 

R(Ta -+ v)::;::: RTa-+ Rv::;::: T' -+ T. 

Case (let)': We have a. derivation of the form: 

w: Q ISA ~ E ~ E' : v v: P ISA" z: <1 ~ F ...... F' : T 

v:PISA ~ (let z = E in F)~ (let z = '\w.E' in F'): T 

where (J = Gen(SA, Q ::::} v). By induction, w': Q' I TA ~ E"'-t E" : ,; and 
there is a substitution R such that S :::::: RT, v = Rv' , 10: Q It- J': RQ' and 
w:QISA ~ E' = [f'lw']E": v. 
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Writing TJ:::: Gen( TA, Q/ ==} II') we have: 

R~ =	 RGen( TA, Q' "" v') 
2 Gen(RTA,RQ' "" Rv') (Proposition 5.8, conversion id)
 
= Gen(SA, RQ' "" Rv) (S '" RT)
 
= Gen(SA, RQ' "" v) (v= Rv')
 
2 Gen(SA, Q "" v) (Proposition 5.7, conversion >..x.)..w.xJ')
 
:;:: u.
 

Composing these conversions we obtain (>..z.>"w.xf'): RTJ ~ q a.nd hence: 

R(TA.,x:~) = (RTA.,z:R~) = (SA.,z:R~) 2 (SA.,z:,,) 

with conversion substitution [>..w.xJ'/z]. It follows from Corollary 5.24 that: 

v:PIR(TA.,z:~)~ F~Fu:T 

where v: P ISAz, x:u I- [>..w.x!, /z]F' ==: F" : 1'.
 

By induction, v': P'I T'( TA .. , x:TJ) f!' F .......... Fill: 1" and there is a substitution
 
R' such that R R:: R'T', 1':::: R'1", v:P ft- e':R!P' and v:PISA.. ,:z:u l

F":;:: [e'/v/lF"': 1'. By (let)W there is a derivation:
 

Vi: P'l T'TA ~ (let z = E in F) ........ (let x:::: >"w'.E" in Fin): 1".
 

Note that R' satisfies S >:::: RT R:: R'(T' T), l' :::: R'1'/ and v: P ft- e': R'P'. 
Finally, we consider: 

.:PIA	 f- [e'/v'](let x = >..w'.E" in Fill) 
:::: let x = >..w'.E" in [e'/v'JF III (v' ¢ EVpw'.EU 

) = 0) 
= let x = >..w'.E" in F" (f- F U = [e'/v1F"') 
= let x = >"w'.E" in [>..w.xJ'/x]F' (f- [Aw.zJ'/z)F' = FU 

) 

= let z = [Aw'.Eu/z](Aw.zJ') in F' (Proposition 5.4(1) 
= let x = >"w.{>..w'.E")J' in F' (substitutioD) 
= let z = Aw.[t'/w1Eu in F' ({3.) 
:::: let x :::: E' in F' (f- E' =[t'/w']EU 

) 

which establishes the required equality. 

This completes the proof. 0 
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