
QUALIFIED TYPES: THEORY AND PRACTICE

by

Ma.rk Prulip Jones

Technical Monograpll PRG-I06
ISBN 0-902928-83-X

July 1992

Oxford University Computing La.bora.tory
Progra.mming Research Group
II Keble Roa.d
Oxford OXI 3QD
England

Copyright © 1992 Mark Philip Jones

Oxford Univen;ity Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OX! 3QD
England

Qualified Types:

Theory and Practice

Mark Philip Jones

Keble College, Oxford

•

A tbesis submitted in partial fulJilment of tbe requirements

for the degree of Doctor of Pbilosophy

at the University of Oxford

July 1992

with corrections, September 1992

1 Qualified Types: Theory and Practice

Mark Philip Jones

Keble College, Oxford

A thesis submitted in parUal fulfilment of the requirements

[or the degree of Doctor of Philosophy

at the University of Oxford

July 1992

Abstract

This thesis describes (\ type system that combines ML-style polymorphism with
a general approach to overloading. The central idea is to use qualified types that
include predicates and restrict the set of types at which an object can be used to
particular instances of a polymorphic type. Different applications of qualified types
can be obtained by changing the underlying system of predicates. We illustrate this
with examples including type classes, explicit subtyping and extensible records.

Much of the thesis deals with a simple, implicitly typed, functional language.
Extending the Damas/Milner approach to type inference, we define an ordering
between the constrained type schemes used in our system and show that the set
of all possible typing!! for a given term h3.8 a greatest element with respect to this
ordering. Furthermore, this principal type scheme can be calculated using a type
inference algorithm.

Using IUl abstract notion of evidence, we show how the meaning of a program in this
system can be described by translating it into a language that includes constructs
for manipulating evidence values. Since any given term may have many distinct
translations it is necessary to give coherence conditions which guarantee that the
meaning of a term is well defined. This thesis introduces a new technique for
establishing results of this kind, using a semantic interpretation of the ordering
relation on type schemes.

We also address more practical issues concerning the use of qualified types, both
for the general system and for specific applications. This includes a promising new
representation for extensible records, b3.8ed on the use of evidence. In addition, we
describe the implementation of type classes in Haskell and Gofer, an experimental
system developed by the author.

5

10

15

20

25

Contents

1 Introduction
1.1 Type systems for programming languages.
1.2 Type inference and polymorphism.
1.3 The choice between 'all' and lone'
1.4 Qualified types .
1.5 OutJine of thesis.

2 Predicates
2.1 Basic definitions.
2.2 Type classes ...

2.2.1 Class declarations.
2.2.2 Instance declarations
2.2.3 Superdasses
2.2.4 The entailment relation for type classes

2.3 Sublyping .
2.4 Extensible records .

3 Type inference tor qualified types
3.1 An extension of ML with qualified types

3.1.1 Type expressions
3.1.2 Terms .
3.1.3 Typing rules.

3.2 Understanding type schemes
3.2.1 Constrained type schemes
3.2.2 Examples .
3.2.3 Properties of the (:~) ordering
3.2.4 Generalisation.........

3.2.5 Ordering of type assignments

3.3 A syntax-directed approach
3.3.1 Syntax-directed typing rules .
3.3.2 Properties of the syntax-directed system

1

1

2

3

4

7

7

10

11

12

12

13

18

19

19

20

21

22

23

24

25

26

27

27

~

3.3.3 Relationship with original type system
3.4 Type inference.

3.4.1 Unification .
3.4.2 A type inference algorithm
3.4.3 Principal type schemes .
3.4.4 Decidability of type inference problems

3.5 Related work.

4 Evidence
4.1 Simple implementations of overloading
4.2 O\'erloading made explicit .
4.3 Predicate entailment with evidence
4.4 Evidence, predicates and implementations
4.5 Type classes and dictionaries. . . .
4.6 Subtyping and coercion .
4.7 Implementation of extensible records

5 Semantics and coherence
5.1 A version of polymorphic A-calculus with qualified types
5.2 Translation from OML to or
5.3 The coherence problem
5.4 A definition of equality for or terms

5.4.1 Uniqueness of evidence .
5.4.2 Reduction of OP terms .
5.4.3 Equalities between or terms

5.5 Ordering and conversion functions.
5.5.1 Motivation and conversions between type schemes
5.5.2 Conversions between constrained type schemes.
5.5.3 Conversions between type assignments

5.6 Syntax-directed translation ..
5.7 Type inference and translation.
5.8 Coherence results

5.8.1 Equality of conversions.
5.8.2 Equality of translations.
5.8.3 A weaker notion of ambiguity

5.9 Comparison with related work

6 Theory into practice
6.1 E\'idence parameters considered harmful

6.1.1 Simplification .
6.1.2 Unnecessary polymorphism

ii

28

29

29

30

32

34

35

37

38

39

42

44

45

47

48

52

55

57

59

60

60

61

62

65

65

67

69

71

73

75

75

76

77

78

80

80

81

83

~

6.1.3 The monomorphism restriction . 84
6.1.4 Constant and locally·constant overloading 84
6.1.5 A template-based implementation 86

6.2 Satisfiabili ty 88
6.3 Incorporating tbe rule of subsumption 91

7 Type classes in Haskell 93
7.1 Context reduction. . . 94
7.2 Implementation of type classes in HTC . 97

7.2.1 Implementation of HTC dictionaries 98
7.3 The problem of repeated construction .. 101
7.4 Repeated construction caused by recursion 102

7.4.1 Recursion in the definition of overloaded functions. 102
7.4.2 Mutually recursive groups of functions 105
7.4.3 The need for a form of full-laziness 106
7.4.4 Recursion in dictionary constructors 109

7.5 Other opportunities for shared dictionaries 110
7.5.1 Simple examples , . 111
7.5.2 Sharing in hierarchies . 113
7.5.3 Repetition in superclass hierarchies 116

7.6 Alternative implementations of dictionary construction 119

8 Type classes in Gofer 121
8.1 The basic principles of GTC, 122
8.2 The Gofer implementation of dictionaries . . 125

8.2.1 A notation for records with subtyping. 125
8.2.2 Dictionaries as records 126
8.2.3 An optimisation to reduce the number of dictionary parameters 128

8.3 A concrete implementation. 129
8.3.1 Representation of dictionaries . . 129
8.3.2 Abstract machine support 131
8.3.3 Some comments on performance. 134

9 Summary and future work 136
9.1 Towards a categorical semantics 137
9.2 Constructor classes 140
9.3 Reasoning in the presence of overloading 142

A Proofs 144

References 170

iii

Summary of notation

Substitutions

R, S, T, U, ... Substitutions (capture avoiding) of types for type variables.

id

RS

S[Ttlt), "., 'Tn/t,,]

h/t" ... , T./t.J

S[T;/t;]

[T;/t;]

R",S

Terms

E, F""

X, y, ...

EF

h.E

let x = E in F

The identity substitution.

Composition of substitutions Rand S.

Substitution mapping each tj to 'Til and any other variable t

to St.

Abbreviation for id[rI/t11 ••• , 'Tn/t"l.

Substitution mapping each tj to Tj as i ranges over some (im~

pHcit) set of index values, and any other variable t to St.

Abbreviation for id[r;jt;].

Equality of substitutions, ignoring 'new' variables, Section 3.4.2,

page 32.

Term expressions.

Term variables, Section 3.1.2, pa.ge 20.

Application of E to F, Section 3.1.2, page 20.

A-abstraction, Section 3.1.2, page 20.

Local definition of x in F, Section 3.1.2, page 20.

iv

>.•.E Evidence abstraction, Section 4.2, page 41.

If v = VI, ... , v. is a. list of evidence va.riables, then >.v.E is
used as a.n abbreviation for AV]o •.• >.v•.E, Section 4.2, page 42.

Ee Evidence a.pplication, Section 4.2, page 41.

If e = el,"" e. is a list of evidence expressions, then Ee
is used as an abbreviation for (... (Eel)" .)c•• Section 4.2,
page 42.

FV(E) Term variables a.ppearing free in E, Section 3.1.2, page 20.

IE/·IF Capture free substitution of E for each free occurrence of %

in F, Section 3.1.2, page 20.

id The identity term Ax.x.

Erase E Erasure of E, Section 5.2, page 57.

Predicates and evidence

1r, 'K', . ..

P, Q, R, ...

e, f, g, ...

u, v, w, ...

v:P

EV(e)

o
P,Q

PII-Q

Predicates.

Predicate sets/assignments.

Evidence expressions (also used to represent lists of evidence
expressions), Section 4.2, page 41.

Evidence variables (also used to represent lists of evidence
variables), Section 4.2, page 41.

Predicate assignment. If v = Vt, ... , u. is a list of evidence
variables and P = 1rl, •.• , 7fn is a list of predicate5, then v: P
is used as a.n abbreviation for the predicate assignment Vt :

1rl, •.• , v. :7fn, Section 4.2, page 42.

Type variables appearing free in Q', Section 4.2, page 41.

The empty set/predicate assignment, Section 2.1, page 8.

Union (concatenation) of P and Q, Section 2.1, page 8.

Predicate entailment, Section 2.1, page 8.

v

PIt-e:Q Construction of evidence f' for Q from predicate assignment
P, Section 4.2, page 41.

PI-e=/:Q Evidence equality judgement, Section 5.4.1, page 60.

Types and type schemes

G, 7},...	 OML Type schemes, Section 3.1.1, page 19.

OP types, Section 5.1, page 55.

P. p',... Qualified. types, Section 3.1.1, page 19.

T, v, /1,... Simple types, Section 3.1.1, page 19,

t, 0', fl, /,... Type variables, Section 3.1.1, page 19.

'VT.a Polymorphic type, Section 3.1.1, page 19.

P =} a	 Qualified type, Section 3.1.1, page 19.

If a = Q => T and P, Q are predicate sets then P => a is used
as an abbreviation for (P, Q) => a, Section 3.1.1, page 19.

If P = 1ft, ••• ,11'"11 is a list of predicates, then P => a is llsed as
an abbreviation for 11'"1 => .,. => 11"". => p, Section 4.2, page 42,

(Pia) Constrained type scheme, Section 3.2.1, page 22.

Type The set of all simple type expressions, Section 3.1.1, page 20.

TV(a) Type variables appearing free in a, Section 3.1.l, page 19.

AV(a) Ambiguous type variables in a, Section 5.8.3, page 78.

Gen(A,p) Generalisatjon of p with respect to A, Section 3.2.4, page 25.

(P Ia) :s; (Q I~)	 Order;ng on constrained type schemes, Section 3.2.1, page 22.

C: (Q I~) ~ (P Ia) Conversion C from (Q I~) to (P Ia), Section 5.5, page 66.

C' 0 C Composition of conversions, Section 5.5, page 66.

T !!.. T'	 Most general unifier U of T and T', Section 3.4.1, page 30.

vi

Typing judgements and related notation

A, A',... Type assignments, Section 3.1.3, pa.ge 20.

dam A Domain of type assignment A, Section 3.1.3, page 20.

A z , z:o Type assignment obtained from A by adding a new binding
for x, Section 3.1.3, page 20.

A(z) Value assigned to x in type assignment A, Section 3.1.3, page 20.

P IA l- E : (J Typing judgement, Section 3.1.3, pa.ge 21.

PIA f! E: (J Syntax-directed typing judgement, Section 3.3.1, page 27.

P) A ~ E: (J Type inference a.lgorithm judgement, Section 3.4.2, page 30.

P IA f- E -...+ F: (7" Typed tra.nslation judgement, Section 5.2, page 58.

P IA f- E t> F : 0" Typed reduction judgement, Section 5.4.2, page 6l.

P IArE ~ F: (T Typed equality judgement, Section 5.4, page 60.

l- E = F Equa.lity of terms in a.ll applicable contexts, Section 5.4, page 60.

vii

Acknowledgements

One small page is not enough to do justice to the people that have helped me,
either diredly or indirectly, with the development a.nd production of this thesis.
In the first place, my thanks go to my college and my department for the facilities
tha.t they have provided for my use, and to Richard Bird and Bernard Sufrin for
their guidance as my supervisors during the past three years. I am also pleased
to acknowledge the support of the Science and Engineering Research Council of
Great Britain, without whose funding this work could never have been completed.

Particular thanks to Phil Wadler whose own work provides much of the motivation
for this lhl'sis and whose comments, during an enlightening week a.t the University
of Glasgow in July 1990, helped me to develop the original definitions on which it
is based. I am also very grateful to Simon Peyton Jones, Satish Thatte, Ignacio
Trejos-Zelaya and Wayne Luk for their comments and interest in my work.

Thanks aliO to the ever-growing number of Gofer users for their feedback and
suggestiOrli during the past year. I am happy that this part of my work has
already been useful to others and also grateful for the opportunities and contacts
that it ha-. given me in return.

On a personal note, I would like to thank my parents for their love and support.
A final and special thank-you to my wife, Melanie, for reminding me of the better
things in life and for believing in me when I didn't.

viii

Chapter 1

Introduction

1.1 Type systems for programming languages

Many programming languages rely on the use of a system of types to distinguish
between different kinds of value. This in turn is used to identify two classes of
program; those which are well-typed and accepted by the type system, and those
that it rejects. Many different kinds of type system have been considered but, in
each case, the principal benefits are the same:

•	 The ability to detect program errors at compile time: A type dis
cipline can often help to detect simple program errors such as passing an
inappropriate number of parameters to a function.

•	 Improved performance: IT, by means of the type system, it is possible to
ensure that the result of a particular calculation will always be of a certain
type, then it is possible to omit the corresponding runtime checks that would
otherwise be needed before using that value. The resulting program will
typica.lly be slightly shorter a.nd faster.

•	 Documentation: The types of the values defined in a program are often
useful as a simple form of docuI1lentation. Indeed, in some situa.tions, just
knowing the type of an object can be enough to deduce properties about its
behaviour (Wadler, 1989).

The main disadvantage is that DO effective type system is complete; there will
always he programs tbat are rejected hy the type system, even though they would
have produced well-defined results jf executed without consideration of the types
of the terms involved. For example, the expression;

1 + (if True then 1 else "str")

1

~

has a well·defined numeric value, but will not be accepted. in many typed languages
because the values 1 and "str" in the two branches of the conditional do not have
the same lype. More sophisticated type systems might accept the expression above,
but would reject similar expressions obtained by replacing the constant True with
increasingly complicated boolean-valued expressions.

For most of the work in this thesis we concentrate on type systems for sta.tically
typed languages. The most important factors to be considered in the design of
such systems are:

•	 Flexibility: The type system should not impose too ma.ny restrictions on
the programmer and should accept a reasonably large class of programs.

•	 Effective type checking: There should be an effective process for deter
mining whether or not a particular program is acceptable. For example, it is
not usually acceptable for a compiler to enter a non-terminating computation
in an attempt to determine whether a given program is acceptable.

•	 Intuitive behaviour: The programmer should be able to predict which
programs will be accepted and which will not.

•	 Accuracy: The types assigned to objects should accurately reflect the prop
erties of those objects. The desire for more detailed types (that give more
information about the corresponding families of values) must be balanced
with the aim of maintaining effective type checking.

1.2 Type inference and polymorphism

In his seminal paper "A Theory of Type Polymorphism in Programming" (1978),
Milner observed that, in many cases, there is no need to mention the types of the
objects appearing in an expression since they may be inferred from context. Using
a simple implicitly typed language based on the untyped .A-calculus, he showed how
a type inf~rence algorithm could be used to calculate valid typings for programs
without explicit type annotations. In later work (Damas and Milner, 1982) it was
established that the typing that Milner's algorithm assigns to a given term (if any
typing is possible) is, in a very precise sense, the most general typing that can be
obtained for that term, extending an earlier result due to Hindley (1969).

Another significant feature of Milner's work was its formal treatment of polymor
phism: The ability to treat some terms as having many different types. Opportuni
ties for polymorphism occur when the type of a term is not completely determined
by its context. For example, using the notation of a modern functional language,

2

~

we can consider a function length that takes a list of values as its argument and
returns the length of the list (an integer) as its result:

length [I o
length (x : xs) = I + length xs

The values held in the list (represented by the variable x in the second line of the
definition) are not actually used in the calculatjon. Hence the length function can
be treated as having type [a]--+ Int for any type a, where Int denotes the type of
integers, [a] denotes the type of lists with members of type ", and a --+ b denotes
the type of functions mapping values of type a to values of type b. Rather than
picking anyone particular type of this form, we say that length has a type seheme
\fa. [a] --+ Int, using explicit universal quantification as in (Damas and Milner,
1982) to indicate that the choice of a is arbitrary. Following Strachey (1967), this
is often described as parnmetric polymorphism since the set of types represented
by a type scheme can be obtained by choosing different values for the quantified
type variables (the parameters) in the type part of the type scheme.

More generally, if Type denotes the set of all first-order types, and f(t) is an
element of Type (possibly involving the type variable t), then an object with type
scheme \fLj(t) can be treated as having any of the types in the set

{f(T) I T E Type},

where j(T) is obtained by substituting T for tin j(t) in the obvious way. Treating
the elements of Type ~ type schemes with no quantified variables, each T E Type
corresponds to the singleton set of types {T}. With this in mind, the elements of
Type are often referred to ~ monotypes.

1.3 The choice between 'all' and 'one'

While convenient for many programs, there are also examples that cannot be
described comfortably using either parametric polymorphic types or monotypesj
the choice between 'all' and 'one' is too severe. What type, for example, should
be assigned to the addition function (+)1 We would certainly hope to be able to
use the same operator to add both integer and floating point numbers, but the
standard HindleyJMilner type system gives only two options:

•	 The simplest solution is to use distinct monotyped function symbols for each
variant of the addition function that is required. However, the use of several
different symbols describing a single concept seems unnatural and may not be
practical in situations where any significant number of variations is required.

3

~

Furthermore, we will typically need. to repeat the definitions of any values
defined , either directly or indirectly, in terms of addition for each different
choice of that function .

•	 An alternative approach would be to treat addition as having a polymorphic
type - for example, (Va.a -+ a -+ a) - but this makes the type system
unsound, or at least, reduces its ability to detect type errors involving the
use of addition since there are types a on which the addition operator is
undefined. As a result , there are programs that will be accepted by the type
system, and yet result in a run-time type error. Note that the implementation
of addition will typically involve the use of distinct sections of code for each
different type for which the function is defined. This is in stark contrast to
the length function described above where the same code can be used for
every different choice of type, and is an example of what is commonly called
ad-hoc polymorphism.

In the past, many language designers have side-stepped these issues; typical ap
proaches include: treating all kinds of numeric values as the elements of a single
type, relying OD implicit coercions between numeric values of different kinds or us
ing somewhat ad-hoc techniques to determine which particular version of a function
is needed in a given context.

There ha"e also been a number of attempts to solve these problems using con
strained type system.s in which the range of type variables may be restricted to
particular families of types. We mention in particular the work of Kaes (1988)
and Wadler and Blott (1989) on parametric overloading, of Mitchell (1984) and
Fuh and Mishra (1989, 1990) on subtyping and of Harper and Pierce (1990) on
extensible records. These papers provide much of the motivation for this thesis
and their examples will be used to illustrate some of the applications of our work.

1.4 Qualified types

This thesis develops a general approach to constrained type systems based on the
use of qualified types and providing an intermediate level between monomorphic
and polymorphic typing disciplines. For example, if 71"(t) is a predicate on types,
then we can use a type scheme of the form Vt.1t(t) ::::} f(t) to represent a set of
types:

{fiT) I T is a type such that ~(T) holds}.

For example, we might write the type of the addition function described in the
previous section a.s Vt.Num t :::::> t -+ t -+ t where Num t is a predicate that is

J

4

true exactly when t is a numeric type. Many further examples will be given in
later chapters.

The use of qualified types may be thought of in two ways: Either as a restricted
form of polymorphism, or as an extension of the use of monotypes, commonly
described as overloading, in which a function may have different interpretations
according to the types of its arguments.

The main benefits of using qualified types are:

•	 A general approach that includes familjar type systems as special cases. Re
sults and tools developed for the general system are immediately applicable
to each particular application.

•	 A flexible treatment of predicates on types and inferences between them that
is largely independent of any single type system.

•	 More accurate assignment of types to objects without losing the ability to
support effective type checking.

•	 The ability to include local constraints as part of the type of an object. This
enables the definition and use of polymorphic overloaded value; within a
program.

•	 A precise treatment of the relationship between implicit and explicit over
loading. This is particularly useful for describing the implementation of
systems supporting qualified types.

1.5 Outline of thesis

This thesis addresses both theoretical and practical issues concerning the use and
application of qualified types and we begin by summarising the contents of the
following chapters.

The choice of a suitable language of predicates is clearly an important part of
any application of qualified. types. Chapter 2 introduces a formal framework for
predicate systems and specifies some simple properties which they are expected to
satisfy. We illustrate these definitions by giving systems of predicates which can
be used to describe the use of type classes, subtyping and extensible records.

Chapter 3 describes an extension of Milner's type system which includes support
for overloading based on the use of qualified types and parameterised by an arbi
trary system of predicates. We define an ordering On the set of type schemes and
show that there is a type inference algorithm which calculates principal types, i.e.
greatest possible typings with respect to this ordering.

5

~

The next two chapters re-examine and extend the work of Chapters 2 and 3, using
the concepL of evidence introduced in Chapter 4 to give a semantic interpretation
for overloading. We show how the definition of predicate systems can be extended
to describe the construction of evidence and suggest suitable choices of evidence
for particular applications. In the case of type classes and subtyping, these include
well-known techniques which are already used in the implementa.tion of such sys
tems. Previous work with extensible records does not appear to have made use
of analogous techniques, but we show how the concept of evidence leads us to a
promising new implementation.

Chapter 5 shows how the semantics of prograrTlE in the language described in Chap
ter 3 can be captured by translating them into a language with explicit constructs
for manipulating evidence values. Each source tenn may have many different
translations and it is necessary to show that these are sema.ntica.lly equivalent in
order to prove that the meaning of the original term is well-defined. We accom
plish this by identifying a particular principal translation and showing how any
other translation can be 'expressed in terms of this. These results depend on a
notion of uniqueness of evidence, a property of the predicate system which mUllt
be verified independently for each application of qualified types. The most impor
tan t and novel aspect of our approach is the use of conversions to give a semantic
interpretation for the ordering relation between type schemes.

The following three chapters deal with more practical issues and we adopt a
less rigourous approach with the emphasis on concrete implementation techniques
rather than the formal properties of the type systems involved. Chapter 6 begins
the transition from theory to practice by describing a number of extensions to the
type systems presented in the previous chapters. Each of these might potentially
be used to provide more accurate type checking, simplified principal types or more
efficient implementations.

In Chapter 7 we focus on the system of type classes used. in the functional pro
gramming language Haskell and describe some useful optimisations to the original
implementation suggested by Wadler and Blott (1989). In particular, we concen
trate on the task of trying to minimise the construction of dictionary values which
play the role of evidence in this particular application.

Chapter 8 outlines an alternative approach to type classes as implemented in Gofer,
a small, experimental system developed by the author. We discuss the relationship
between the two approaches and show how the system of type classes in Gofer lends
itself to a remarkably clean and efficient implementation.

Finally, Chapter 9 outlines severa.l ideas for further work motivated by the issues
raised in the preceding chapters.

6

Chapter 2

Predicates

The key feature of a system of qualified types that distinguishes it from other
systems based solely on parametric polymorphism is the use of a language of
predicates to describe sets of types (or more generaJ!y, relations between types).
Exactly which sets of types and relations are useful will (of course) Yary from one
application to another and it does not seem appropriate to base a general theory
on any particular choice. OUf solution, outlined in this chapter, is to work in a
framework where the properties of a (largely unspecified) language of predicates
are described in terms of an entailment relation that is expected to satisfy a few
simple laws. In this way, we are able to treat the choice of a language ofpredicates
as a parameter for each of the type systems described in subsequent chapters.
This approach also has the advantage that it enables us to investigate how the
properties of particular type systems are affected by properties of the underlying
systems of predicates.

The basic notation for predicates and entailment is outlined in Section 2.1. The
remaining sections illustrate this general framework with applications to: Haskell
style type classes (Section 2.2), subtyping (Section 2.3) and extensible records
(Section 2.4). Although we consider each of these examples independentlYI this
work opens up the possibility of combining elements of each in a single concrete
programming language.

2.1 Basic definitions

For much of this thesis we deal with an abstract language of predicates on types.
The exact form of individual predicates is not significant but, in practical applica
tions , they are often written using expressions of the form 'tr = P Tl ... Til where
p is a predicate symbol corresponding to an n-place relation between types: The

7

l

predicate 11' represents the assertion that the types denoted by the type expressions
TI, •.. ,T.. are in this relation. The only condition imposed on the set of predicates
is that it be closed under substitutions mapping type variables (and hence type
expressions) to type expressions, i.e. for any such substitution S and any predicate
11" as above, the expression:

S" = P (ST,) ... (ST.)

should also be a predicate.

Properties of predicates are captured by an entailment relation ft- between (finite)
sets of predicates. An entailment of the form P It- {11"} indicates that the predicate
11" can be inferred from the predicates in P. In practice, we often write 11" as an
abbreviation for the singleton predicate set {11"} and hence write this entailment
as P It- 'If. More generally, we expect the entailment relation between arbitrary
finite sets of predicates to satisfy:

Pit- Q ¢> II" E Q. P It- ~. (set- entail)

This is ofLen used implicitly in the definition of entailment for particular appli
cations of qualified types. Thus we describe only the rules for entailments of the
form P ft- 11" and use (sct-fntail) to extend this to the desired relation between
predicate sets.

The only other properties that we assume about entailment are as follows:

•	 Monotonicity. P It- pi whenever P ;;2 pl. By (sft~fntail), this is equivalent
to saying that p It- 'If for each 11" E P.

•	 Transitivity. If P It- Q and Q It- R, then Pit- R.

•	 Closure property. If P It- Q, then SP It- SQ for any substitution S. This
condition is needed to ensure that the system of predicates is compatible
with tbe use of parametric polymorphism.

A number of other useful properties of It- follow directly from these laws. For
example, taking pi = P in the definition of monotonicity gives P It- P, showing
that It- is reflexive. Furthermore, taking pi = 0 we find that P It- 0 for all P.
Some additional derived properties are given below.

In the following, we write P, Q for the union of predicate sets P and Q and use
P, 11' as an abbreviation for P \ {11'}. The principal reason for this choice of notation
(rather than the conventional P U Q) is to a.void any preconceptions about the
properties of the (_,_) operator. This will be convenient in later work (Cha.pters 4
and 5 in particular) where we consider entailments between ordered collections of
predicates.

8

With this in mind, we reformulate the properties of predicate entailment given
above so that we do not need to rely on any particular interpretation of 0 and (-,_)
in format proofs. A suitable collection of rules is given in Figure 2.1 and these are
usually taken used as part of definition of entailment in specific applications.

Monotonicity: (id) PH-P

(te"")

(fst)

PH-0

P, Q H- P

(snd) P, Q H- Q

(univ)
PH-Q PH-R

PH- Q,R

Tr-ansitivity: (trans)
PH-Q QH-R

PH-R

Closure property: (close) PH-Q
SP H- SQ

Derived rules: (dist)

(cut)

PH- Q P'H- Q'

P,P'H-Q,Q'

PH- Q P, Q H- R
PH-R

Figure 2.1: Rules for predicate entailment.

Notice the law (univ) which 1S needed to establish the derived rules of distributivity
(dist) and the cut rule (cut). For the special case of predicate sets, all three of
these rules can be proved using monotonicity, transitivity and (set-entail) and
hence the rules in Figure 2.1 may seem unnecessarily complicated. However, the
benefits of this approach will become more apparent in later chapters.

For the purposes of entailment, we can treat (-, _) as an associative opera.tor: It is a
s;mple exercise to show that P, (Q, R) H- (P, Q), Rand (P, Q), R H- P, (Q, R) for
any P, Q and R. By (trans), ;tfollows that (P, Q), Rand P, (Q, R) are equivalent
in the sense that:

P' H- P, (Q, R) *> P' H- (P, Q), R and P, (Q, R) H- P' *> (P, Q),R H- P'.

The equivalence of P, 0 and 0, P to P can be established in a similar way, so that
ocan be treated as an identity for (-, _).

9

2.2 Type classes

Much of the original motivation for qualified types came from the study of type
classes, introduced by Wadler and Blatt (1989) and adopted as part of the stan
dard for the programming language Haskell (Hudak et a1. , 1992). Type classes are
particularly useful for describing the implementation of standard polymorphic op
erators (such as computable equality), but they can also be used as a more general
tool for the development of clear, modular programs (Jones, 1990).

In this section we sketch the principal components of a system of type classes and
describe the corresponding system of predicates. The use and implementation of
type classes is considered in more depth in Chapters 4, 7 and 8.

2.2.1 Class declarations

Broadly speaking, a type class represents a family of types (the instances of the
class) together with an associated set of member functions defined for each instance
of the class. For each class C and type T I a predicate or the rorm C T represents the
assertion that T is an instance of the class C. This notation rollows the concrete
syntax of Haskell (were it not ror the use of a limited character set, these predicates
might well have been written in the form T E C). A standard example is the set of
types whose elements may be tested for equality. The following class declaration
illustrates how this can be defined in the concrete syntax of Haskell:

class E.q a where

(==) :: a -) a -) Bool

The definition is in two parts:

•	 The expression Eq a in the first line introduces a name Eq for the class and
indicates that the type variable a will be used to represent an arbitrary
instance of the class in the following part of the definition.

•	 The second line gives the names of the member functions of the class. In
this case we have a single member function, represented by the infix operator
symbol (••). The type signature a -) a -) Bool indicates that, for each
instance a of Eq, the equality operator is defined as a. runction taking two
arguments or type a and returning a boolean value of type Boo1.

The equality opera.tor (==) will now be treated as having the (qualified) type:

(==) Eq a -) a -) a -) Bool

10

Note the convention that all free variables in a type expression are impUcitly bound
by a universal quantifier at the outennost level. Thus (••) is 'polymorphic' in a,
but the choice of types for a is restricted to instances of Eq.

Even before we have defined a single instance of the class, we can use the (-=)
operator, either directly or indirectly, in the definition of other values. Forexample:

member % [] False
member % (y:ys) %==y I I member x ys

%S 'subset f ye all (,% -) member % ye) xs

The restriction to lists of values whose type is an instance of Eq is reflected by the
types assigned to these functions:

member Eq a =) a -) raJ -) Bool
subset Eq a => [aJ -> [a] -> 8001

2.2.2 Instance declarations

The instances of a class are defined by a collection of instance declarations as
illustrated by the following examples. An implementation of the equalily function
on integers, supplied by a built-in primitive primEqInt with monomorphic type
Int -) Int -) Bool, can be included as part of the definition of (==) using the
declaration:

instance Eq Int where
c==) primEqInt

The same function might also be used, indirectly, to define an equality operation
on values of type Char representing characters:

instance Eq Char where
c == c ' = ord c == ord c'

(ord c gives the integer code corresponding to the character c,)

Instances of a class may also be given for standard and user-defined algebraic data

types as in the following definition of equality on lists:

instance Eq a => Eq [a] where
[] [] True
[] cy:ys) False
(%:%5) [] False
(%:%5) Cy: ys) %==y U %S·""y8

11

The expression Eq a z) Eq [aJ in the first line indicates that the definition of
equality on lists depends on the definition of equality on the elements held in the
lists: If a is an instance of Eq, then so is [aJ.

Note that the set of types defined by a finite collection of instance declarations
may be infinite (but recnrsively enumerable).

2.2.3 Superclasses

The system of type classes used in Haskell also supports a mecha.nism for defining
hierarchies of classes using a notion of superclasses. For example, a simple dec·
laration for the class Ord (whose instances are those types with elements ordered
using the «:::) operator) might be:

class Eq a :::) Ord a where

«=) :: a -) a -) Boo1

indicating that every instance of Ord should also be an instance of Eq. (Note that,
in this situation, the :::) symbol should be read as 2 not implication; to say that
Eq is a superclass of Ord means that tEOrd implies tEEq and not the converse.)

2.2.4 The	 entailment relation for type classes

The definilion of the predicate entailment relation It- depends on the information
provided by the class and instance declarations appearing in a program. The
relevant details can be represented by a set r which we call a type class environment
containing two kinds of term:

Class P =} 11"	 corr~ponding to the first line of a class declarationj each of
the classes in P is a superclass of the class named by 11".

Inst P:::} 11"	 corresponding to the first line of an instance declaration; if
there is an instance for each predicate in P, then there is an
instance for 11".

For example, the type class environment for the declarations above is:

{Class {} =} Eq a,
Class {Eq aj =} OnI a,
Inst {} =} Eq Int,
Inst {} =} Eq Char,
Inst {Eq aj =} Eq ral j

12

l

The definition of predicate entaihnent for type classes is given by the rules in
Figure 2.2, combined with the general rules in Figure 2.2. These rules are param
eterised by the choice of a fixed type class environment r (with type variables in
r interpreted as meta-variables of the inference rules).

PI+- 11' (Class P' =? '11") E r 11" E pi
(super)

P 1+-11"

P If- P' (Ins! P' '* T) E r
(ins!)

Plf-T

Figure 2.2: Rules for type class entailment

The main advantages of this treatment of type classes are:

•	 The current version of Haskell makes a number of (largely syntactic) restric
tions on the form of class and instance declarations and limits lype classes
to a single parameter. On the other hand, the framework described here
makes no assumptions about the elements of a type class environment and
can be used to reason about 'multiple parameter classes' with predicates of
the form C Tl .•• T•.

•	 The same ideas can be used to describe alternatives to the Haskell approach
to type classes. Chapter 8 deals with one interesting example of this.

•	 There is a natural and direct treatment of superclasses as part of the defini
tion of 1+-. This is in contrast with the approach described in (Chen, Hudak
and Odersky, 1992) where superclasses are encoded using class sets, and with
other proposals, for example (Blott, 1991), that do not formalise the use of
superclasses. One notable exception is the paper by Nipkow and Snelting
(1991) that uses a sort hierarchy to model superclasses.

2.3 Subtyping

In many programming languages, it is possible for functions expecting real number
arguments to be applied to integer values, even though the two kinds of number
may have different representations. This is often dealt with by considering the
type of integers lnt to be a subtype of the type of real numbers Real, written
lnt ~ Real, indicating that every integer can be treated as a real number by
applying a suitable coercion function.

13

In this section we outline a simple approach to subtyping using predicates of the
form a ~ f to represent the assertion that a is a subtype of.,.. A simple definition
of entailments between such predicates might be based on the rules in Figure 2.3
as in (Mitchell, 1984) and later extended in (Jategaonkar and Mitchell, 1988; Fuh
and Mishra, 1989, 1990; Mitchell, 1991). Notice the rule (arrow) that descrihes

(reft) Plt-O'~O'

Plt-O'cp Plt-P<;T
(trans-<;)

Plt-O'~.,.

Plt-aCd PH-.,./C.,.
(arrow)

Pit- (0" ~ T') <; (0' ~ T)

Figure 2.3: Rules for structural subtyping

the way in which inclusions between function types are determined by inclusions
between their component types. For example, if Int ~ Real, we can deduce:

(Real ~ Int) <; (lnt ~ Int) and (lnt ~ Int) (;; (lnt ~ Real),

corresponding to the coercions obtained by composing on the right or left respec
tively with a coercion from Int to Real.

The system of predicates described above can be used both in languages that

allow only explicit coercions and in those which allow implicit coercions. A simple

application of the former might be to use an addition function:

add :: 'tIa.a ~ Real ~ a --. a -10 Real

to add two integers together, obtaining a rea] number as the result. In simple
languages, functions like add might be provided as built-in primitives. The benefit
of using qualified types is that other functions defined in tenus of these primitives
may also be overloaded. For example:

double .. 't/a.a 5;:;: Real ~ a --. Real
double x add x x

There is nothing to prohibit the use of a primitive function:

coerce :: 't/a.'t/b.a ~ b::::} a --. b

that can be used at any point in a program where a coercion is required.

14

More sophisticated systems, including all of those cited above, allow the use of
implicit coercions: H E is a term of type a and a ~ ai, then the tenn E can also
be treated as a term of type rI. This is in contrast with a system that permits
only explicit coercions where it might be necessary to write coerce E to obtain a
term of type rI. In these systems, the addition of two integers to obtain a real
result can be described without explicit overloading using a function:

add :: Real -t Real -t Real

with two implicit coercions from Int to Real. As a further example, the coerce
function described above can be implemented by the standard lidentity function"
~x.x (but of course, there is no practical use for coerce in a system tbat already
has implicit coercions!).

In this thesis we concentrate on type systems suitable for languages with explicit
coercions. Section 6.3 outlines the extensions needed to support the us€ of implicit
coercions and describes some of the problems that can occur.

2.4 Extensible records

A record is a collection of values (known as fields), possibly of different types,
each of which is associated with a distinct element I drawn from some specified
set of labels. Simple examples include the empty record () (with no fields) and
(x = 1, y = True) which has two fields labelled % and y containing an integer and
a boolean value respectively.

There has been considerable interest in the use of records to model features of ob
ject oriented programming languages including inheritance and subtyping. A num~

ber of different approaches have been considered including (Wand, 1987; Cardelli,
1988; Stansifer, 1988; Remy, 1989; Cardelli and Mitchell, 1990).

The approach described in this section is based on work described by (Harper
and Pierce, 1990). This system, in common with some of the other approaches
mentioned above, provides a system of extensible records, the key feature being
tha.t any record which does not have a field corresponding to a particular label
may be extended to include such a field. Tbis operation on record values is often
described as polymorphic e%tenaion since it can be applied to a.ny type of record
except those which already contain a field with tbe particular label concerned. As
such, this is a natural application for qualified types.

For reasons of space, we can only sketch the basic ideas here. Further details and
a discussion of the relationsnip between this approach and those of other systeTrul
of extensible records are given in (Harper and Pierce, 1990).

15

To begin with we will assume that the language of expressions includes record
expressions described by the syntax:

p ::: 0 empty record
p\l rr.strictlon
(p/I:,) extension
p.1 selection

where (p \ l) gives the result of removing the field labelled I from the record p,
(p II = eo) gives the result of adding a field I with value e to the record p and (p./)
returns the value of the field labelled I in the record p. Not all of the expressions
permitted by this syntax are well-formed, but we will rely on the use of types and
predicates to detect such errors rather than on purely syntactic conditions.

It is often con venient to use the following abbreviations for record expressions:

(, : ,)	 WI,:')
(2'1 = el, ... , x.. = en, X..+1 = e.. +l) «Xl = el, ... , X .. = eft) I X..+l = f ..+l)

Note that the order of fields in a record is not significant so that, for example, the
expressions (:l: = 2, Y= 3) and (y = 3, x = 2) represent the same record.

The types of record expressions are written in a similar way:

r :::	 0 empty ruord
(rll:u) extension

r \ I restriction

where () is the unit type of the empty record, r \ I is the same as the record type
r but without the field labelled I and (r I I: 0") is the same as the record type
r but with an additional field labelled I of type 0". As with record expressions
above, not all of the type expressions permitted by this syntax are well~formed.

In addition, there is a non-trivial equivalence between valid record types. For
example, (r I I : a) \ I is equivalent to r, and (r I 1: a) \ I' is equivalent to
(r \ I' II;u), assuming that I i- I'.
The proass of determining exactly which labels are bound and which are unbound
in any particular record can be described using predicates of the form:

record r indicating that r is a well-formed record type.

r hasI:t indicating that a record of type r has a field labelled I of type t.
r lacks I indicating that a record of type r does not have a field labelled 1.

16

The intuitive meanings of these predicates are formalised by the rules in Figure 2.4.

Record formation: P It- record 0
p It- record r P It- r lacks 1

p It- record (r II: t)

p It- record r P It- r has 1
p It- record r \ 1

Absent fields: P It- 0 lacks 1

p It- record r \ I

P It- r \ I lacks I

p It- r lacks I
p It- r \ I' lacks I

p It- r lacks I
Pit- (r 11':t') lacks I

I # I'

I # I'

Present fields:
p It- record (r II:t)

Pit- (r II:t) has I:t

Pit- r has I:t
p It- r \ I' has I: t

1# I'

Plt-rhasl:t
Pit- (r 11':t') has I:t

1# I'

Figure 2.4: Pred..icate enta.ilment for extensible records

Predicates of the form (r has 1: t) and (r lacks /) are also useful in qualified tYpe8.
For exa.mple, the primitive operations of record restriction, extension and selection
can be represented by families of functions (indexed by la.bels) of type:

(_ \ I) :: Vr.Vt.(r has l:t);} r --> r \ I
(_11 =_) :: Vr.Vt.(r lacks I);} r --> t --> (r II:t)
(_.1) :: Vr.Vt.(r has I:t);} r --> t

The following function definition provides another simple example:

f :: Vr.(r has z:Int, r lacks y);} r --> (r I y:Int)
f r = (r I y = r.x + 1)

17

Chapter 3

Type inference for qualified types

This chap~er describes an ML-like language (i.e. implicitly typed A-calculus with
local definitions) and extends the framework of (Milner, 1978; Damas and Milner,
1982) with support for overloading using qualified types and an arbitrary system
of predicates of the form described in the previous chapter. The resulting system
retains the flexibility of the ML type system, while allowing more accurate descrip
tions of the types of objects. Furthermore, we show that this approach is suitable
for use in a langua.ge based on type inference, in contrast [or example with more
powerful languages such as the polymorphic A-calculus that require explicit type
annotations.

Section 3.1 introduces the basic type system and Section 3.2 describes .an ordering
on types, used to determine when one type is more general than another. This is
used to investigate the properties of polymorphic types in the system.

The development of a type inference algorithm is complicated by the fact that
there are many ways in which the typing rules in our original system can be
applied to a single term, and it is not clear which of these (if any!) will result
in an optimal typing. As an intermediate step, Section 3.3 describes a syntax
directed system in which the choice of typing rules is completely determined by
the syntactic structure of the term involved, and investigates its relationship to the
original system. Exploiting this relationship, Section 3.4 presents a type inference
algorithm for the syntax-directed system which can then be 1:lsed to infer typings
in the original system. We show that the set of all derivable typings for a term
can be characterised by a single principal type scheme that is calculated by this
algorithm. In addition, we describe the relationship between the decidability of
type checking and the decidability of a. property of predicate entailment.

In subsequent chapters, we extend the results presented here to describe the rela
tionship between implicitly overloaded terlhS and their translations in a language
with explicit overloading. Detailed proofs for these extensions are included in Ap

18

pendix A from which it is possible to derive the simpler results of this chapter.
Proofs for the results of this cbapter may also be found in (Jones, 19m).

3.1 An extension of ML with qualified types

This section descri bes an extension of the core of the ML type system with support
for overloading using qualified types. For ease of reference we will call this system
OML, .an abhreviation of 'Overloaded ML',

3.1.1 Type expressions

Following the definition of types and type schemes in ML we consider a structured
language of types, the principal restriction being the inability to support functions
with either polymorphic or overloaded arguments:

T ..- r type variables
T T function types

p .. P=>T qualified types
(f .. VT.p type schemes

Here t ranges over a. given (countably infinite) set of type variables and P and
T range over finite sets of predicates and finite sets of type variables rl'3pectively.
The --t symboJ is treated as a right associative infix binary operator. Additional
type constructors such as those for lists, pairs and record types will be used as
required. The set of type variables appearing (free) in an expression X is denoted
TV(X) and is defined in the obvious way. In partieul", TV(VT.p) = TV(p) \ T.
It is convenient to introduce some abbreviations for qua.lified type and type scheme
expressions. In particular, if p == (P => T) and C1 == 'VT.p, then we write:

Abbreviation Qualified type
T 0=>T

'-=>p (.-,P)=>T
P' => p (P', P) => T

Abbreviation Type scheme

P V0.p
'It.(f V(TU {t}).p

'VT',C1 V(T U T').p

With these abbreviations, we will treat the => symbol aB a right associa.tive binary
operator, with --+ binding more tightly than ::>.]n addition, if {ail is an indexed
set of type variables, then we write 'Vaj.p as an abbreviation for 'V{aj },p. As usual,
type schemes are regarded as equal if they are identical up to renaming of bound
variables.

19

Using this notation, any type scheme can be written in the form Voi.P =? 1",
representing the set of qualified types:

{[To/a;]? => [To/O;]T I Ti E Type}

where [1";jad is the substitution mapping each of the variables OJ to the corre
sponding type 1"j and Type is the set of all simple type expressions i.e. those
represented by 1" in the grammar above.

3.1.2 Terms

As in (Milner, 1978; Damas and Milner, 1982; Clement et al., 1986), we use a term
language based on simple untyped A-calculus with the addition of a let construct to
enable the definition and use of polymorphic (and in this case, overloaded) terms.
Specifically, the terms of OML are given by the syntax:

E ::= z variable
EF application
>.x.E abstraction
let x = E in F local definition

Here x ranges over some given (countably infinite) set ofterm variables. Wewrite
FV(E) for the set of all free (term) variables appearing in the term E, and write
[E/x]F for the term obtained by substituting E for each free occurrence of x in
F. This may involve renaming of bound variables to avoid capt UTe problems.

Note that we do not provide constructs for the introduction of new overloadings
such as inst and over in (Wadler and Blott, 1989). As a result, if none of the
free variables for a given term have qualified (i.e. overloaded) types, then no
overloading will be used in the expression.

3.1.3 Typing rules

A type assignment is a (finite) set of typing statements of the form x: t7 in which no
term variable x appears more than once. If A is a type Msignment, then we write
dam A = {x I (x: 0'") E A}, and if x is a term variable with z (j dom A, then
we write A,x:O'" as an abbreviation for the type assignment Au {x:O'"}. The type
Msignment obtained. from A by removing any typing statement for the variable
x is denoted AS'. Any type assignment A can be interpreted as a function which
~signs a type expression to each element of dom A. In particular, if (x :0'") E A,
then we write A(x) = u.

20

A typing is an expression of tbe form PIA f- E: (j representing the assertion that
a term E has type (j when tbe predicates in P are satisfied and the types of free
varia.bles in E are as specified in the type assignment A. The typing rules for this
system are given in Figure 3.1. Most of these are similar to the usual rules for the
ML type system; only the rules (::::}I) and (~E) for dealing with qualified types
and the (\II) rule for polymorphic generalisation involve the predicate set. Note
the use of the symbols r, p and (j to restrict the application of certain rules to
specific sets of type expressions.

Standard rules:

Qualified types:

Polymorphism:

Local Definition:

(var)

(~E)

(~I)

(=>E)

(=>1)

('IE)

(VI)

(let)

(z:,,) E A

PIA~z:"

PIA~E:T'~T PIA~F:T'

PIA ~ EF: T

PIAz,z:r'l- E: r

PIA~>.•.E:T'~T

PIA~E:".=>p PII-".

PIA~E:p

P,"'IA~ E:p

PIA~E:".=>p

PIA~E:Vo.."

PIA~ E: IT/o.I"

PIA ~ E:" all TV(A) U TV(P)

P IA ~ E : Va."

PIA~E:" QIA.,z:,,~F:T

P, QIA ~ (let. - E in F) : T

Figure 3.1: Typing rules for OML.

3.2 Understanding type schemes

In order to find all of the ways in which a particular term E can be used with
a given type assignment A, we need to find a representation (including a test for

21

membership) for sets of the form:

((PI") I PIA~ E:,,},

where (Pja) denotes a pair consisting of a predicate set P and the type scheme
a. As a first step in this direction 1 we define a proorder (:5.) on such pairs and
investigate a number of properties of this ordering.

Our principal motivation in the definition of ($) is that a statement of the form

(P' I IT') S; (P I,,) should mean that it is possible to use an object which can be

treated as having type a in an environment satisfying the predicates in P whenever

an object of type u' is required in an environment satisfying the predicates in P'.

In such a. case we refer to the former as being more general than the latter.

3.2.1 Constrained type schemes

A typing of the form P j A f- E : a assigns a type scheme a to the term E
and constrains uses of this typing to environments satisfying the predicates in P.
Motivated by this observation, and by our comments in the introduction above,
we introduce a convenient notation for such pairs:

Definition 3.1 A constrained type scheme is an expression of the form (P Iu)
where P is a set of predicates and (7 is a type scheme.

Note that a type scheme (7 may be treated as an abbreviation for the constrained
type scheme (01")'

Definition 3.2 A qualified type R => p is said to be a generic instance of the
constroined type scheme (PIVo;.Q =? T) if there are typeE Ti such that:

R ft- P, [r,/o,]Q and I' = [T;/O,JT.

In particular1 note that P =? T is a generic instance of Q => II if and only if P It- Q
and /I = 1.

Every constrained type scheme has at jeast one generic instance: Given a con

strained type scheme (P Iu), where u ::::. Vo;.P' ::::> T and any types T; E Type,

then ((P,h/o,]P') => [T,/O;}T) is a generic instance of (Plu).

The generic instance relation can be used to define a general ordering (:5.) on

constrained type schemes in the following manner:

Definition 3.3 The constrained type scheme (Q I '1) i8 said to be more general
than a constrained type scheme (P 1(7), written (P 1(7) S; (Q I~), if every generic
instance of (P Ia) is a generic instance of (Q 1'1).

22

Since every type scheme u is equivalent to a constrained type scheme of the form
(01 u) and every qualified type p is equivalent to a type scheme of the form V0.p,
the ordering defined above can also he IJsed to compare type schemes and qualified
types as well as constrained type schemes. For example:

•	 (P I ,,) ~ (Q I ~) indiCAtes that the type scheme ~ (in an environment
satisfying Q) is more general than u (in an environment satisfying P).

•	 (P I u) .$ '7 indicates that '7 is more general than u (in an environment
satisfying P).

•	 u .$ '7 indicates that '7 is more general than u in any environment.

Note that Definition 3.3 is equivalent to saying that (P 1u) 5 (Q 111) jf and only
if the set of generic instances of (P Iu) is a suhset of the generic instances of
(Q I'1). With this insight, it is straightforward to show that ($) is a preorder on
constrained type schemes and that a qualified type p is a generic instance of the
type scheme u if and only if p .$ (7,

3.2.2 Examples

To illustrate the definition of (5), consider the system of type classes descdbed in
Section 2.2 with a type class Eq that includes the type of integers (i.e. fI- Eq lnt).
Given this assumption, is is straightforward to show that:

In! ~ Int ~ (Va.Eq a => a ~ a) ~ (Va. a ~ a).

The presence of free variables warrants careful attention. Consider the fact that:

(Va.Eq b => a ~ a) ~ (Va.a ~ a).

Both type schemes can he instantiated to any type of the form T ---. T, bu t while
this is possible in any environment for the right hand side, the left haDd side can
only be instantiated in an environment satisfying Eq h. On the other hand, the
type schemes (Va.Eq a => a a) and (Va.Eq b => a ---. a) are incomparable: --t

The first can only be instantiated to the type T --t T in an environment satisfying
Eq T, but can be instantiated to lnt ---. lnt in any environment (assuming again
that It- Eq lnt). The 6eoond can be instantiated to any type of the form T ---. T,

but only in environments satisfying Eq b.

23

3.2.3 Properties of the ($) ordering

We begin by defining an equivalence relation on constrained type schemes:

(Plu)"'(QI~) .. (Plu)::;(QI~) A (QI~)::;(Plu).

Note in particular that, if a = 'in;.? => I. then a ~ 'v'.B;.[,B;fad(P => r) for any

distinct variables {3i which do not appear free in o.

The following properties are easily established:

•	 If p is a qualified type and P is a set of predicates, then (P Ip) ::::' P => p.

•	 If a is a type scheme and P is a set of predicates, then (P I(7) :5 u.

•	 If a' ~ u and P' II- P, then (P'I"') ~ (Plu).

•	 If none of the variables OJ appear in P, then the constrained type scheme
(P IVa,.p) is equivalent to the type scheme Va,.P =? p.

The definition of ($) given above is an extension of the ordering relation described
in (Damas and Milner, 1982). In the latter system, we find that TV(a') 0;: TV(a)
whenever (J" $" u' and this leads to a simple syntactic characterisation of the or
dering relation between type schemes. This property fails to hold in the current
system. For example, given a unary predicate symbol Any such that H-- Any a for
any type at we have:

(Va.a ~ a) ~ (Va.Any b =? a ~ a),

where the lype variable b appears free on the right hand side but does not appear
on the lefl hand side. It is however possible to obtain the following syntactic
characterisation of the instance ordering provided we make a simple assumption
about the bound variables used in the type schemes involved:

Proposition 3.4 SUPPOSf that a = Va;.Q => II, a' = V{3j.Q' => v' and that none
of thf variablfs {3j appears frff in a, P or P'. Then (P' I0') ~ (P 10) if and only
if there are typfS 'T; such that:

v' = hla;]v and P', Q' II- P,[T;/a,]Q.

The application of a substitution S to a constrained type scheme (P 10) is defined
by S(P Ia) = (SP ISu). The next proposition shows thaI the ordering between
constrained type schemes is preserved by substitutions; this is particularly impor
tant for our treatment of polymorphism.

Proposition 3.5 For any substitution S and constrained type schemes (P I0) and
(QI~):

(Plu) ~ (QI~) =? S(Plu)::; S(QI~).

24

3.2.4 Generalisation

Given a derivation PIA f- E : T', it is useful to have a notation for the most general
type scheme that can be obtained for E from this derivation using the rules (=> l)
and (VI) given in Figure 3.1:

Definition 3.6 The generalisation of a qualified type p with respect to a type as
signment A is written Gen(A,p) and defined by:

Gen(A.p) = V(TV(p) \ TV(A)).p.

In other words. if {n;} = TV(p) \ TV(A), then Gen(A,p) = Vn;.p. ThefoUowing
propositions describe the interaction of generalisation with predicate entailment
and substitution.

Proposition 3.7 Suppose that A is a type assignment, P and pi are sets of pred
icates and T' is a type. Then Gen(A, pI => ,) $ Gen(A, P => '1") whenerer pi It- p.

Proposition 3.8 If A is a type assignment, p is a qualified type and S is a suh
stitution, then:

Gen(SA,Sp) ~ S(Gen(A,p)).

Furthermore, there is a substitution R such that:

RA = SA and SGen(A,p) = Gen(RA, Rp).

3.2.5 Ordering of type assignments

The definition of constrained type schemes and the ordering (:5) extends naturally
to an ordering on (constrained) type assignments.

Definition 3.9 If A and A' are type assignments and P, pi are sets oj predicates,
then we say that (P IA) is more general than (P'I A'), written (P' IA'I ~ (P IA),
if dam A = dam A' and (P'IA'(x)) ~ (PIA(x)) for each x Edam A.

For much of our work, we will only use two special cases of (Pi IA') :$ (P IA):

•	 If P = P' = 0, then we write A' :S A, indicating that the types assigned to
variables in A are more general than the corresponding types ill A' in any
environment.

•	 If P = 0, then we write (PI I AI) :S A. This is similar to A' :$ A, but
restricted to environments wbich satisfy the predicates P'.

25

The results of Section 3.2.1 can be used to establish the following properties about
the ordering on type assignments:

•	 The ordering on type assignments is reflexive , transitive and preserved by
substitutions.

•	 If A is a type assignment and P is a set of predicates, then (PI A)::; A.

•	 If A' S; A and P' It- P, then (P' IA') S; (P IA).

•	 If AI ~ A, then A~ ::; Ar.

•	 If A'S; A,u' ~uandx ¢ dom A,then (A',x:".') ~(A,x:u).

3.3 A syntax-directed approach

The typing rules in Figure 3.1 provide clear descriptions of the treatment of each
of the symaetic constructs of the term and type languages. Unfortunately, they
are not suitable for use in a type inference algorithm where it should be possible
to determine an appropriate order in which to apply the typing rules by a simple
analysis of the syntactic structure of the term whose type is required.

In this section, we introduce an alternative set of typing rules with a single rule
for each syntactic construct in the tenn language. We refer to this as the syntax
directed system because it has the following important property:

All typing derivations for a given term E (if there are any) have the same
structure, uniquely determined by the syntactic structure of E.

We regard the syntax-directed system as a tool for exploring the type system
of Section 3.1 and we establish a congruence between the two systems so that
results about one can be translated into results about the other. The advantages
of working with the syntax-directed system are:

•	 The rules are better suited to use in a type inference algorithmj having found
types for each of the subterms of a given term E , there is at most one rule
which can be used to obtain a type for the term E itself.

•	 Only type expressions are involved in the matching process. Type schemes
and qualified types can only appear in type assignments.

•	 There are fewer rules and hence fewer cases to be considered in formal proofs.

26

I

A similar approach is described in (Clement et al., 1986) which gives a deterministic
set of typing rules for ML and outlines their equivalence to the rules in (Damas
and Milner 1982).

3.3.1 Syntax-directed typing rules

The typing rules for the syntax-directed system are given in Figure 3.2. Typings
and derivations in this system are written with a superscript as in P I A fJ' E : T

where T ranges over the set of type expressions rather than the set oftype schemes
as in the typing judgements of Section 3.1. Other than this, the main differences
between the two systems are in the rules (var)' and (let)' which use the operations
of instantiation and generalisation introduced in Sections 3.2.1 and 3.2.4.

(z:o-) E A (P"" T) s: 0
(var)'

PIA~x:T

PIA~ E:T'-+T PIA~ F:T'
(-+E)'

PIA~ EF:T

PIAs1x:T'f! E:1'
(-+1)'

PIA~ Ax.E:T'-+r

P IA t! E : l' pI IAS1 x :0' f! F : 1" 0';:: Gen{ A, P ==:- T)
(let)'

P' IA ~ (let x = E in F) : T'

Figure 3.2: Syntax-directed inference system.

3.3.2 Properties of the syntax-directed system

The following proposition illustrates the parametric polymorphism present in the
syntax-directed system; instantiating the free type variables in a deri\'able typing
with arbitrary types produces another derivable typing.

Proposition 3.10 If P IA f! E: l' and 5 is a substitution, then SP IS.4 f! E: 51'.

A similar result is established in (Damas, 1985) where it is shown that for any
derivation A I- E : l' in the usual (non-deterministic) ML type system and any
substitution S, there is a derivation SA I- E : S1' which can be chosen in such
a way that the height of the latter is bounded by the height of the former. This
additional condition is needed to ensure the validity of proofs by induction on the

27

size of a derivation. This complication is avoided by the syntax-directed system;
the derivations in Proposition 3.10 are guaranteed to have the same structure
because the term E is common to both.

The syntax-directed system also has a form of polymorphism over the sets of envi·
ronments in which a particular typing can be used, as described by the following
proposition:

Proposition 3.11 If P IA ~ E: T and Q II- P, then QI A ~ E : T.

Recall that the basic intuition in the definition of the ordering on type schemes
was that a' ::; a should mean that, at lea.st for the purposes of type inference, it is
possible to use an object of type a whenever with an object of type a' is required.
In much the same way, if the type assignments A and AI are such that A' ::; A (so
that the type assigned to each variable in A is more general than t he corresponding
type in A'l, then we would expect that any typing which can be derived using A'
could also be derived from A. The following proposition establishes a slightly more
general form of this result:

Proposition 3.12 If P IA' ~ E: T and (P IA') :s A, then P IA ~ E : T.

The hypo~hesis (P I A') ::; A means that the types assigned to variables in A
are more general than those given by A' in any environment which satisfies the
predicates in P. For example:

(Eq Intll(==): Int ~ Int ~ Baal}) :s H==): Va.Eq a => a ~ a ~ Baal}.

Using the result of Proposition 3.12, we can confirm the intuition that it should
be possible to replace an integer equality function of type Int -. Int -. Bool with
a generic equality function of type Va. Eq a ::::} a _ a _ Baal in any environment
which satisfies Eq Int.

Corollary 3.13 IfPIA'~ E:T and A':S A, then PIA ~ E: 7".

This follows directly from Proposition 3.12; (P IAI) ::; A' for any type assignment
A' and predicates P and hence AI::; A implies (PIA')::; A.

3.3.3 Relationship with original type system

In order to use the syntax·djrected system as a tool for reasoning about the type
system described in Section 3.1, we need to investigate the way in which the
existence of a derivation in one system determines the existence of derivations in
the other.

28

Our first result establishes the soundness of the syntax-directed system with re
spect to the original typing rules, showing that any derivable typing in the former
system is aJso derivable in the latter.

Theorem 3.14 If PIA ~ E: T, then PIA r E: T.

The translation of derivations in the original type system to those of the syntax
directed system is less obvious. For example, if P IA l- E : u, then it will not in
general be possi ble to derive the same typing in the syntax-directed system because
u is a type scheme, not a simple type. However, for any derivation PIIA f! E: T,

theorem 3.14 guarantees the existence of a derivation P' I A l- E : T a.nd hence
01 ArE: Gen(A,?' => T') by definition 3.6. The following theorem shows that
it is always possible to find a derivation in this way such that the inferred type
scheme Gen(A, pi::::} r') is more general than the constrained type scheme (P Iu)
determined by the original derivation.

Theorem 3.15 If P IA l- E : u, then there Ul a set of predicates P' and a type T

such that P'IA ~ E: T and (PI") 5 Gen(A,P' => T).

3.4 Type inference

This section describes an algorithm which calculates a typing for a given term,
using an extension of Milner's algorithm W to support qualified types. We show
that the typings produced hy this algorithm are derivable in the syntax-directed
system and that tbey a.re, in a certain sense, the most general typings possi ble.
Combining this with the results of the previous section, the algorithm can be used
to reason about the type system in Section 3.1.

3.4.1 Unification

This section describes the unification algorithm which is a central component of
the type inference algorithm. A substitution S is called a unifier for the type
expressions T and T' if ST = ST'.

Theorem 3.16 (Robinson, 1965) There is an algorithm whose input is a pair
of type expressions i and T' such that either:

the algorith m fails and there art no unifiers for T and T',

or	 the algon'thm succeeds u1£th a substitution U as ita result and the unifiers of
T and T

f are precisely those substitutions of the form RU for any substitution

29

R. The substitution U is called a most general unifier for rand T ' , and is
denoted mgu(r,r').

In the following, we write T !!., r' for the assertion that the unification algorithm
succeeds by finding a most general unifier U for r and r.

3.4.2 A type inference algorithm

Following lhe presentation of (Remy, 1989), we describe the type inference algo
rithm using the inference rules in Figure 3.3. These rules use typings of the form

wPITA I- E : T where P is a set of predicates, T is a substitution, A is a type
assignment, E is a term and T is a simple type expression. The typing rules can be
interpreted as an attribute grammar in which A are E inherited attributes, while
P, T and i are synthesised.

(let)W

(varr

(~E)W

(~l)W

PI TA i" E: T

PITAi"

(x:Vo;.P '* T) E A {3; new

[{3;/o;JPIA i" x: [{3;/O;IT

E : T QIT'TA ~ F: T' T'T!!., T' --+ a Q new

U(T'P,Q)IUT'TAi" EF: Uo

PIT(A:",x:o)~ E:T anew

PI TA i" Ax.E: To ~ T

P'IT'(TA.,X:<7) i" F:T' <7= Gen(TA,P,*T)

P'I T'TA i" (let x = E in F): T'

Figure 3.3: Type inference algorithm W.

The algorithm may also be described in a mOre conventional style as the function
W defined in Figure 3.4 , the relationship between these two presentations being
that PITA ~w E: T if and only if W(A,E) succeeds with result (P, T,v) (note
that the evaluation of W A E will only terminate successfully jf each unification
is successful).

One of the advantages of the presentation of type inference in Figure 3.3 is that
it highlights the relationship between Wand the syntax-directed type system, as
illustrated by the following theorem:

Theorem 3.11 If PI TA i" E: T, then PI TA ~ E: To

30

W A. ([{3;jadP, id, IPda,]T)
where (Va,.P;} T) ; A.

(3, new variables

W A (EF) (U(T'P, Q), UT'T, Ua)
where (T,P,T) ; W A E

(T',Q,T') ; W(TA)F
o =: new variable
U ; mgu (T'T) (T' -+ a)

W A (>..•. E) ; (P, T, Ta -+ T)
where (P, T, T) = W (A., .,a) E

a = new variable

W A (let. = E in F) ; (P', T'T,T')
where (P, T, T) ; WAE

" ; Gen(TA,P => T)
(PI, T', T') = W (TA.,z:,) F

Flgure 3.4: The type inference algorithm expressed as an (almost) functional pro
gram. A full functional definition would require a more formal treatment of 'new'
variables.

31

Combining this with the result of theorem 3.14 gives the following important corol
lary.

Corollary 3.18 II PI TA I'" E: T, then PI TA r E: T.

With the exception of (let)W, each of the rules in Figure 3.3 introduces I new'
variables; i.e. variables which do not appear in the hypotheses of the rule nor
in any other distinct branches of the complete derivation. Note that it is always
possible to choose type variables in this way because the set of type variables is
assumed to be countably infinite. In the presence of new variables, it is convenient
to work with a weaker form of equality on substitutions, writing S:::::: R to indicate
that St = Rt for all but a finite number of new variabJes t. In most cases, we can
treat 5 Rj R as S = R1 since the only differences between the substitutions occur
at variables which are not used elsewhere in the algorithm.

This nota.tion enables us to give an accurate statement of the following result which
shows that the typings obtained by Ware, in a precise sense, the most general
derivable typings for a given term.

Theorem 3.19 Suppose that P ISA ~ E: T. Then QITA I'" E: v and there is a
substitution R such that S ~ RT, T = Rv and P It- RQ.

Combining the result of theorem 3.19 with that of theorem 3.15 we ohtain a similar
completeness result for W with respect to the type system of Section 3.1.

Corollary 3.20 Suppose that P ISA r E: a. Then Q I TA I'" E: v and there is
a substitution R such that S '" RT and (Pia) <;; RGen(TA, Q =;. v).

3.4.3 Principal type schemes

Extending the standard notion of well-typed terms to the current framework, we
will say that a term E is well-typed under a given type assignment A if there is
a predicate set P and a type scheme (1 such that P I A I- e : CT. The main aim
in this section is to investigate the relationship between well-typed terms and the
type inference algorithm described above.

The concept of a principal type scheme, originally introduced in the study of
combinatory logic (Curry and Feys, 1958; Hindley, 1969), is particularly useful for
this work, corresponding to the most general derivable typing with respect to (:=;)
under a given type assignment.

Definition 3.21 A principal type scheme for a term E under a type assignment
A is a constrained type scheme (P Ia) such that P IArE: a, and (P' Ia') <;; (P Ia)
whenever pi IA I- E : (1/.

32

The following result gives a sufficient condition for the existence of principal type
schemes by showing how they can be constructed from typings produced by W.

Corollary 3.22 If Q ITA ,..W E : v. then Gen(TA, Q '* v) ;" a principal type
scheme for E under TA.

Combining this with Corollary 3.20 gives a necessary condition for the existence of
principal type schemes: a term is well· typed if and only if it has a principal type
scheme which can be calculated using the type inference algorithm.

Corollary 3.23 (Principal type theorem) Let E be a term and A an arbitrary
type assignment. Then the following conditions are equivalent:

(I)	 E is weI/-typed under A.

w(2)	 Q I TA I- E: II for some Q and II and there is a substitution R such that
RTA = A.

(3)	 E has a principal typing under A.

It is straightforward to show that (I) implies (2) and that (9) implies (I) using
Corollary 3.20 and the definition of principal types respectively. OnlJ the proof
that (21 implies (3) requires a little more attention. Writing TJ = Gen(TA, Q => II),

the main difficulty is to establish that RTJ ~ (P I0') for any P and (J such that
P IA,.. E : a. By Corollary 3.20 it follows that R'~ ~ (Pia) for some substitution
R' such that R'TA = A. However, the only free variables in TJ also appear free 1n
TA and hence it follows that R~ = R'~ ~ (P Ia) as required.

The same argument can also be used to solve the problems posed at the beginning
of Section 3.2. More precisely we can show that

{(Pia) I PIAI-E:a}={(Pla) I (Pla)~R~},

assuming that Q I TA"" E: v, ~ = Gen(TA, Q '* v) and that R is a substitution
such that RTA = A. (Strictly speaking, our argument shows only that the left hand
side is a subset of the right hand side. The reverse inclusion can be established
using the definition of the ordering relation and the soundness results given above.)

On the other hand! if the type inference algorithm fails, or if there is no substitution
R which satisfies RTA = A, then Corollary 3.20 allows us to deduce that:

{(Pia) I PIAI-E:a}=0.

(Assume that the right hand side is non·empty and argue by contradiction.)

33

3.4.4 Decidability of type inference problems

We are now in a position to exploit the results presented above to obtain results
about the type system of OML, and its suitability for concrete implementations.
Typical problems that we might have Lo deal with include:

•	 Given a particular term E and a type assignment A, determine whether E
is well-typed under A. This is (essentially) the strong type inference problem
.., d"'cribed by (Tiuryn, 1990).

•	 Given a predicate set P, a type assignment A, a term E and a type scheme
a, determine whether there is a derivation for P IA I- E : a.

For practical purposes, it is essential that there is an effective algorithm which can
be used to answer these questions.

From the form of the type inference algorithm described here it is clear that the
process of determining whether a given term has a principal type scheme under a
particular assumption is indeed decidable, given the effective algorithm guaranteed
by Theorem 3.16 for calculating most general unifiers. By Corollary 3.23, this is
equivalent to deciding whether a give term is well-typed and hence tbe strong type
inference problem for OML is decidable.

There are two cases to consider for the second problem. IT there is no principal
type for a term E under· the assignment A, then the set of derivable typings of the
form P IA I- E : a is empty as above - there are no derivations of this form.

For the second case, if Q I TA I-w E : v for some Q, T and v and there is
a substitution R such that RTA = A then the problem of discovering whether
P I A I- E : a reduces to that of determining whether (P I (1) .:S Rt]. Writing
a = Voi.QI => v' and a l = R't] = Vf3j.QII => where the variables OJ do not VII

appear free in a' or P, this is equivalent to finding types Tj such that:

v' ~ h//1j]v" and P, Q' It- h/l1ijQ".
If we write lid ~ TV(v') n {/1;} and {6,} ~ {/1j} \ TV(v'), then we can solve
the first equation by finding types T; such that v' = [T;!'n]V". Such a solution (if
it exists) is uniquely determined and can be calculated using a simple matching
algorithm. It remains to find types Tf' such that P, Q' fr [Tt fbI, rAli.!:] Q".

Talcing a moment to reorganise the notation used here, the problem of determining
whether a particular typing judgement P IA I- E : a can be derived. is decidable if,
for any predicate sets Rand R' and any set of variables ai, it is decidable whether
there are types Tj such that R fr h/adR'. In fact) for reasons we describe in
Section 5.8.2, we will usually only be interested in terms for which the principal
type scheme Gen(TA, Q => v) satisfies TV(Q) ~ TV(v). In this case, we require
only that determining whether R fr R' is decidable for any choice of Rand R'.

34

3.5 Related work

As we have already noted, the results described in this chapter a.re based very
firmly on the work of Milner and Damas on the development of type inference for
ML. The possibility of extending their system to include support for overloading
was actually suggested by Milner (1978) but left as a topic for further research.
One early approach was described by Damas (1985), allowing a single va.riable to
be treated as ha ving several different types in any given type assignment. The main
weakness with this system is that it is no longer possible to represent all typings
of a term by a single principal type scheme, leading to a potential combinatorial
explosion for typing terms with local definitions.

Type inference in the presence of constraints on types (corresponding to our use
of predicate sets in the typing rules for OML) has been widely studied in the
particular ca.'e of subtyping (Mitchell,1984, 1991; Fuh and Mishra, 1989,1990). In
contrast with OML , each of these systems includes support for implicit coercions,
an issue we disc uss further in Section 6.3. Each of these papers uses a form
of untyped >.-calculus without local definitions, although the more recent papers
include some comments about how these extensions might be dealt with. There
is no provision for including constraints as part of the type of an ohjed, although
Fuh and Mishra (1990) certainly hint at this idea.

Other interesting examples of type inference in the presence of constraints include
the work of Ohori and Buneman (1988, 1989) on type systems for object oriented
programming and database applications and of Thatte (1991) on type isomor·
phisms. Adapting the results from earlier verBions of our work presented in (Jones
1991b, 1992a), Odersky (1992) has described another example which uses type
constraints to record information about sharing, motivated by insights from the
study of linear logic. Systems of type inference with constraints have also been
used to explore type systems for polymorphic references and assignment (Leroy
and Weis, 1990; Wright 1992).

Extending and generaUsing the work of Kaes (1988), Wadler and Blott (1989)
introduced the use of predicated types in their description of type classes. Using
type class constraints in type expressions and providing rules which could be used
to move constraints on a typing into the type of an object, Wadler and Blatt were
able to give a satisfactory treatment of polymorphic local definitions within their
framework. Further developments of this work were described in (Blott, 1991) and
have been used as a basis for the static semantics of Haskell given in (Peyton Jones
and Wadler, 1992).

A closely related system was described by Smith (1991) whose main contribution
was to show how the Wadler and Blott framework might be extended to include
subtyping with implicit coercions. Another significant difference in Smith's work

35

was to permit only satisfiable sets of constraints in the type of an object. Using
a rather stronger notion of well-typed terms, Volpa.no and Smith (1991) showed
that typability in the Wadler and Blott system is undecida.ble (without restrictions
sucb as those used in Haskell on the form of overloading that is permitted). We
discuss this more fully in Section 6.2.

An alterna.tive formulation of type inference for type classes in Haskell was de
scribed by Nipkow and Snelting (1991) using a combination of Damas·Milner typ~

ing and order sorted unification which provides sufficient conditions to gua.rantee
the existence of principal types. Unfortunately, it is not clear how their framework
might be extended to our more general system.

In a recent paper, Kaes (1992) outlines a general purpose approach to systeIl1S of
constrained type inference which is very similar to the framework described here,
based on essentially the same set of typing rules as used for our presentation of the
syntax-directed system in Section 3.3. However, much of Kaes work is concerned
with establishing the decidability of particular systems of predicates.

36

Chapter 4

Evidence

\Vhile the results of the preceding chapter provide a satisfactory treatment of type
inference with qualified types, we have not yet made any attempt to discuss the
semantics or evaluation of overloaded terms. For example, given a generic equality
operator (==) of type Va.Eq a => a --+ a --+ Baal and integer valued expressions
E and P, we can determine that the expression E === F has type Bool in any
environment which satisfies Eq Int. However, this information 1S not sufficient to
determine the value of E ;::= F; this is only possible if we are also provided with
the value of the equality operator which makes Int an insta.nce of Eq.

OUf aim in the next to chapters is to present a general approach to the semantics
and implementation of objects with qualified types based on the concept of evi
dence. The essential idea is that an object of type 11' =} f7 can only be used if we
are also supplied with suitable evidence that the predicate 11' does indeed hold. In
this chapter we concentrate on the role o(evidence for the systems o(predicates
described in Chapter 2 and then, in the following chapter, extend the: results of
Chapter 3 to give a semantics for OML.

As an introduction, Section 4.1 describes some simple techniques used in the im
plementation of particular (orms of overloading and shows why these methods
are unsuitable for the more general systems considered in this tbesis. Our solu
tion, presented in Section 4.2, is to extend the language of terms with constructs
that permit the use and manipulation o(evidence values, exploiting the symme
try between typed calculi and simple logical systems to guide us to a satisfactory
(ormulation. The benefit o(this approach is that it provides, at the very least, a
good indication that Our definitions are natural (in an informal sense) and hence
that they will not cause unnecessary complications in subsequent work. Similar
ideas are used to motivate the extension of the predicate entailment relation to
describe the construction o(evidence as described in Section 4.3.

The definitions for the treatment o(evidence can also be motivated by more prac

37

tical concerns. Section 4.4 outlines the range of possible choices of evidence in
particular app}jcations and, in the following sections, we show how established
techniques used in the implementation of type classes (Section 4.5) and subtyp
ing (Section 4.6) can be treated as particular instances of our a.pproach. For the
special case of the sy"tem of extensible records, we have been unable to find any
previously documented implementation that makes use of analogous concepts, an
observation which may at first sight appear to contradict our claims about the
generality of the concept of evidence. However, as described in Section 4.7, choos
ing suitable evidence values for the system of predicates outlined in Section 2.4
leads us to discover a promising new representation for extensible records.

4.1 Simple implementations of overloading

In simple cases, the type of a particular term may be sufficiently well determined to
enable an occurrence of an overloaded function to be replaced by the appropriate
implementation. We might, for example, treat the expression 2 == 3 a.s if it had
been written as primEqlnt 2 3 where primEqlnt is the primitive equality test on
integers with type Int -.. Int -.. Bool.

The situation is more complicated when overloading is combined with polymor
phism, since it may not always be possible to determine completely which version
of an overloaded operator is required in a particular context. For example, recall
the definition of the member function in Section 2.2:

member x [] Fa.lse
member x (y:ys) x==y I I member x ys

In a large program, this function might be used with many different types of
list, each requiring a different implementation of (--) and so requiring a different
version of member for each case. Implementations based on this approach win be
considered in more detail in Section 6.1.5.

Another possibility is to adopt a run-time representation that uses tags to indicate
the type of each object. Primitive overloaded functions can be implemented by
scrutinising the tags of its arguments and applying the appropriate definition for
values of that type. [n this case, the role of the type system is simply to ensure
that the evaluation of "'a well-typed expression does not go wrong" in the sense
that no primitive overloaded operator is ever a.pplied to a value for which it is not
defined. The implementation of 'polymorphic equality' in Standard ML of New
Jersey (Appel, 1992) is based on this technique a.nd a similar proposal (which a.lso
supports the use of other common overloaded operators) has been suggested for
use in future version" of Haskell (Wadler, 1991).

38

An interesting variation on this technique would he to store the implementation
of frequently used overloaded operators as part of the concrete representation of
each run-time object. This would work particularly well in systems such as tbose
described by (Johnsson, 1987; Peyton Jones, 1992) where each object includes a
pointer to a vector of code addresses that could be used to store entry points to the
implementation of specific overloaded operators. This would help to reduce some
of the 'interpretive overhead' associated with the use of tagged data structures
and would open up the possibilities for further optimisations. For example, the
equality test stored with a.n empty list need not be the full definition of equality
on lists, but simply a test to determine whether a second list is empty or not.

The main problems with these techniques are as foUows:

•	 Only certain kinds of overloading can be dealt with in this way. Inparticular,
it is not suitable for functions (or as a special case, constant values) for
which the required overloading cannot be determined from the type of its
arguments. For example, a function f :: 'Va.Int ~ a => Int -+ a cannot be
implemented in this way since it is not possible to evaluate expressions of the
form f n (for integer values n) without more infonnation about the context
in which this expression appears to indicate what the result type should be.

•	 The need to include type information in the representation of an object may
compromise run-time perfonnance.

• One of the arguments to an overloaded function must he (at least partially)
evaluated in order to determine which implementation of the overloaded
function should be used. This may not be acceptable in the context of a
non-strict language where the implementation for a particular instance of an
overloaded function may not itself be strict in the argument that is evaluated.

For our purposes, the first of these three problems is by far the most significant
since it implies that we cannot expect to find a general implementation of qualified
types based on the methods described in this section. On the other hand, having
identified this problem, it seems reasonable to expect that the implementation of
a function with a qualified type will (in general) require additional parameters to
provide information about the context in which its result will be used.

4.2 Overloading made explicit

There is a well known relationship, often described as the Curry-Howard isomor
phism (Howard, 1980), between the terms of simply typed ~-ca.lculus and the

39

derivations of propositions in a formulation of propositional calculus. In particu
lar, the use of hypotheses in a derivation corresponds to occurrences of variables in
lambda-terms, while the type of each term can be identified with the proposition
established by the corresponding derivation. We can highlight this relationship by
writing the inference rules for the two systems side by side as follows:

A,z:O'f-x:O' A,S f-S

Af-E:a---+T Af-F:a Af-S=>T Af-S
A f- EF: r Af- T

A,x:a f- E: T A,Sf- T

A f- AX: a.E : 0' ---+ T Af-S=>T

In particular, the rule for typing applications corresponds to the logical rule of
modus ponens, while the rule for typing abstractions yields a form of the deduction
theorem. Another significant feature of the correspondence is that the familiar
concepts of /3. and 1J-reduction can also be interpreted as proof-theoretic reductions
between derivations.

In the terminology of (Girard, Lafont and Taylor, 1989), the Curry-Howard iso
morphism highlights implicit symmetries between the language of terms and the
underlying logic, and they argue that the design of each of these facets should be
influenced by consideration of the other. As a further illustration, the polymorphic
A-calculus, originally formulated by Girard (1971) and independently by Reynolds
(1974), includes constructs for type application and abstraction, corresponding
respectively to the rules for eliminating and introducing (second order) universal
quantification in a formulation of predicate calculus:

A f- E : '1t.a A f- '1t.S

A f- Er: [r/t]a A f- [T/tIS

A f- E : a t rt TV(A) Af-B tnotfreein A
A f- >.t.E : '1t.a A f- '1t.S

The principal feature that distinguishes a system of qualified types from other
typing disciplines is the typing rules (=> E) and (=>1).

PIAf-E: .. =>a PH-"(=>E) P, .. IAf-E:.,. (=>1)

PIAf-E:a PIAf-E: .. =>.,.

Considering the correspondence between terIDB and logics illustrated by the exam
ples above leads us to a natural extension of the term language that makes the
role of evidence explicit. The main features of this system are as follows:

40

•	 Evidence expressions: A language of evidence erpn:ssioJ1.9 e denoting evi
dence values, including a (countably infinite) set of evidence variables v, dis·
joint from the sets of term and type variables. The set of evidence variables
appearing (free) in an abject X (in particula.r, in an evidence expression)
will be denoted EV(X).

•	 Evidence construction: A predicate assignment is a collection of elements
of the farm (v: 1r) in which no evidence variable appears mare than once.
TlJe It- relation is extended to a three place relation P It- e: 1r and we treat
this with mare operational significance, as an assertion that it is possible
to 'construct' evidence e for the predicate 1r in any environment binding
tlJe variables in the predicate assignment P to appropriate evidence values.
Notice that predicates now playa similar role for evidence expressions as
types for simple 'x-calculus terms.

The domain of a predicate assignment P is the set of all evidence variables
appearing in P and will be denoted by dom P.

•	 Evidence abstraction: The use of (=}I) corresponds to an evidence ab
straction of the form ,xv: 1r. E.

P,V:1I",P'IA~E:q

p,rlA ~ AV:1I".E: 11" '* q

Informally, an implicitly overloaded term E' of type 1r => u is represented by
a term of the form ,xv: 1r.E with explicit treatment of overloading where v
is an evidence variable and E is a. term of type u corresponding to E' using
v in each place where evidence for 11" is needed.

•	 Evidence application: In a similar way, the use of (=>E) corresponds to
an evidence application of the farm Ee:

PIA~ E:1I",*q Pit- e:1I"

PIA~Ee:q

Informally, an object of type 11' => u can be used. as an object of type u by
applying it to suitable evidence for 11'.

•	 Evidence reduction: To describe the way that evidence values are manip
ulated during the execution of a program, the standa.rd rules of computation
must be augmented by a variant of .a-reduction for evidence abstraction and
a.pplica.tion:

(kE)e t>p, [e/v]E.

41

With the explicit use of evidence expressions, the order of the predicates in the
type of an object (and hence the order of the evidence parameters taken by an
overloaded value) can no longer be ignored; if E has type "'1 ::::? 1r;l => t7 and el,

e2 are evidence expressions for 1r1 and 1r2 respectively, then Eel C2 will be a term
of type 0, but the tenn Ee2el will not (in general) be well-typed. Fortunately, we
can easily accommodate the necessary changes by dropping the assumption that
the (_, _) operator on predicates and predicate assignments is commutative and
idempotent, treating it simply as an associative binary operator with a left and
right identity 0. In simpler terms, we work with lists of (labelled) predicates rather
than predicate sets as in Chapter 3.

The only place that we have actually treated (..., _) as anything other than a purely
formal symbol was in the formulation of (=*"I) in Figure 3.1 where we wrote P, 1r to
denote a predicate set containing the predicate 1r. With the weaker interpretation,
this would require 1f to be the last element in a list of predicates. This is easily
remedied by writing the corresponding predicate assignment in the form P, 11: 1f, pI
as in the second version of (=*" I) above.

In practice, it is convenient to blur the distinction between sequences and indi
vidual objects. In particular, the followiug abbreviations will be very useful in
subsequent work:

Object Expression Abbreviation
Predicate assignment Vl: 1fl,···,V.. :1f. v:P
Evidence assignment el:1rl, •• ·, ell :1r.. e:P
Qualified type 1rl =*" ... => 1rII => P P,,*p
Evidence application ((Ee,) .. .)e. Ee
Evidence abstraction A", Av•. E Av.E

where P = 1rl,"" 1r. is a list of predicates, v = V:L, ••• , v.. is a list of evidence
variables and e = e}, ... , ell is a list of evidence expressions. When writing a
predicate assignment in the form v: P we assume implicitly that v does not include
any duplicates. In particular, for a predicate assignment of the form v: P, W : Q,
we assume that the sets of variable in v and ware disjoint. When there is no
particular need to explicitly mention tbe domain of a predicate assignment we will
often write just P in place of v: P, and we will also allow P to be treated as a list
of predicates without explicitly removing the evidence variables.

4.3 Predicate entailment with evidence

The properties of predicate entailment described in Chapter 2 must also be ex
tended to deal with predicate assignments and evidence expressions. A suitable

42

set of rules is given in Figure 4.1, most of which are straightforward generalisations
of the original rules for predicate entailment given in Figure 2.1.

Standard properties: (id)

(tenn)

(fst)

(snd)

(univ)

(trans)

(close)

Evidence variables: (evars)

Derived rules: (rename)

(dist)

(cut)

v:PlI-v:P

v:P1I-0

v:P, w: Q II- v:P

v:P,w:QII- w:Q

v:PII-e:Q v:PlI-e':R
v:pft- e:Q,e':R

v:pft- e:Q v':Qft- e':R

v:P II- [e/v'Je':R

v:PII- e:Q

v:SP II- e:SQ

v:P II- e: Q
EV(e) <;; v

v:PII- e:Q

woP II- [w/vJe:Q

v:Pft-e:Q v':P'ft-e':Q'

v:P,v':P' ft- e:Q,e':Q'
v:Pft- e:Q v:P,w:Qft-e':R

v: P II- [e/wJe':R

Figure 4.1: Rules for predicate entailment with evidence.

Note that there are two rules which do not have counterparts in the original system
with implicit overloading:

•	 Rule (evars) specifies that the only evidence variables that can appear in
the evidence expression e given by an entailment P ft- e: 1f are those which
appear in tbe domain P. This is analogous to the result that all of the
free variables appearing in a term that is well-typed under a given type
assignment A must appear in the domain of A.

•	 Rule (rename) can be used to rename the evidence variables bound in a par
ticular predicate assignment and can be thought of as a form of O'·conversion.

43

This rule will often be used implicitly to justify the process of combining two
entailments such as v: P It- e: 0 and Vi: pi It- el : Of in the rule (dist); if any
of the variables in Vi clash with those in v, then we can pick new evidence
variables w' and obtain v: P, Wi: pi It- e: 0, [w' / v'] e': Q'.

In particular applications, we will usually assume that all of the rules in Figure 4.1
are (implicitly) included as part of the definition of It-.

4.4 Evidence, predicates and implementations

Having motivated the definition and use of evidence in a fairly abstract way it
is important to examine its role in particular applications of qualified types. On
an informal level, an overloaded value of type Vo i .? => , can be interpreted as
a function I mapping (,3,ch collection of predicates of the form [T,/cr.]? to an
implementation with type [,,/a;],. Quite how much of I is dealt with at compile
time (type-checking) and how much is implemented at Cllll·time varies according to
the choice of evidence values that provides an intermediate step between predicates
and implementations.

I
Predicates Implementations

~~

Evidence

(S and V are the static and dynamic components of I respectively.) In the simplest
(and most abstract) case we can use the predicates themselves as evidence values
taking the static component S to be the identity and setting V = I. For example,
we might implement the function J :: Va.lnt ~ a => lnt -+ a mentioned in
Section 4.l by snpplying the predicate lnt ~ a (with a bound to the appropriate
type) as an additional parameter from which the required overloading can be
determined.

Moving towards the other extreme, we might use terms as evidence values, taking
S as the function that maps each predicate of the form Eq, to a term representing
the equality function on objects of type ,. In this case, the dynamic component
V is (essentially) the identity.

These two extremes highlight a distinction made by Thatte (1992) between pre
scriptive and descriptive type systems i.e. those in which meaning and well-typing
can be treated independently and those in which they are inseparable. As Tbatte

44

points out, any system in which the overloading of values cannot be completely
determined during type checking will include elements of the prescriptive approach
(in other words, having a non-trivial dynamic component) and hence most will fall
somewhere between these two alternatives. For example, Thatle giVe! a (largely
prescriptive) treatment of type class overloading based on the use of types as
evidence values. The static component is the function that maps each class con
straint of the form eTta the type T. The dynamic component is described using
a polymorphic fixed-point operator and a new typecase construct to allow the
definition of functions from types to values by 'pattern matching' on the form of
a type expressions.

In the following sections we describe some specific (descriptive) choices of evidence
values for each of the systems of predicates described in Chapter 2.

4.5 Type classes and dictionaries

In this section, we provide a brief indication of the use of evidence in the imple
mentation of systems of type classes as described in Section 2.2, a topic we discuss
in much greater detail in Chapters 7 and 8.

Following (Wadler and Blott, 1989) we refer to the evidence for a predicate of the
form eTas a dictionary. In the special case of the dass Eq there is only one
member function (the equality operator (=-») and an obvious choice of dictionary
for a predicate Eq a is an equality test function with type a -) a -) Bool con
structed using the definitions given in the corresponding instance decla.rations. For
example, we might use primEqlnt as evidence for Eq Int and eqLi8t primEqlnt
as evidence for Eq [Int] where eqList is the function:

eqList .. (a -) a -) BoolJ -) [a] -) [a] -) Bool
eqList eq [] [] • True
eqList eq [] (y:y.) False
eqList eq (x: xs) (] • False
eqList eq (x: xs) (y:y.) ~ eq x y lk eqList eq xs Y8

derived directly from the instance declaration for equality on lists.

Type classes with more than one member function can be dealt with using a
dictionary that includes implementations for each member. The member functions
themselves can be implemented as selector functions that extract the appropriate
value from a dictionary. Superclasses can also be dealt with in this framework;
for example, we might store a dictionary for an instance Eq a as a component of
the dictionary for the instance Ord a. These extensions are discussed more fully
in later chapters.

45

The rules for predicate entaihnent for type classes given in Section 2.2.4 can be
extended to describe the construction of dictionaries. As a first step we use type
class environments containing elements of the form:

Class P ~ 7f	 representing a class declaration. Given a dictionary d : 1f,

the superclass dictionary for a predicate 1f' appearing in P
is denoted d:rr'.

D: Inst P ~ 11' representing an instance declaration. D is a dictionary con
structor function that maps a collection of dictionaries e: P
to a dictionary De for 11'.

Dictionary expressions are written using the grammar:

d ::= v dictionary variable
d.1I' 8upe1-dass selection
De dietiona1"y consh'Uction

and the rules for dictionary construction with respect to an arbitrary type class
environment r are given in Figure 4.2.

Pit- d:,,(sup,r)	 (Class Q,,,-', Q' =>,,-) E r
Pit- (d.,,-'):,,-'

Pl+-e:p l

(inst)	 (D:Jnst P' =>,,-) E r
P It- De:,,

Figure 4.2: Rules for type class entailment.

For exa.mple, the type class environment corresponding to the instance declarations
in Section 2.2 is:

(Class 0 => Eq a,
Class (Eq a) => Ord a,
primEqInt :Inst 0 ~ Eq Int,
eqChar: Inst 0 ~ Eq Char,
eqList :lnst (Eq a) => Eq la]}

where eqList is the function defined above and eqChar is the function:

eqChar Char -) Char -) Bool

eqChar c c 1 primEqInt (ord c) (ord c')

derived from the instance declaration for equality on characters. In this simple
case, the equality operator can be implemented as an identity function:

46

(D") (a -> a -) Bool) -) (a -) a -) Bool)
(==) oq • eq

As a more interesting example, the II.QIDber function can be implemented using:

member .. (a -) a -) Bool) -) a -> [a] -) Bool
member eq x [] • False
member eq x (y;ys) • eq x y II member eq x ys

4.6 Subtyping and coercion

This section outlines a treatment for systems of subtyping based on the approach
described in Section 2.3 using coercion Junctions mapping values of type q to
values of type cr' as evidence for predicates of the form q ~ IT. Instead of working
directly with the coercions themselves we use a language of coercion expressions
with syntax:

e ::= v coercion variable
id trivial coercion
e --+ e Junction coercion
eo e composition of coercions

The rules used to define the entailment rela.tion in Figure 2.3 are extended to those
in Figure 4.3 which also de;cribe the ca.lcula.tion of the coercion corresponding to
a given predicate.

(...fi) Pit- id:lT ~ IT

Plt-e:a~b Plt-f:b~c
(trans-~)

PIt-(foe):a~c

Plt-e:a~c Plt-f:d~b
(arrow)

Pit- (e --> I):(c --> d) ~ (a --> b)

Figure 4.3: Rules for structural subtyping with coercion.

Writing C for the set of all coercions we define the meaning of a coercion expression
(with respect to an environment,., mapping coercion variables to elements of C)
using:

[v) = ~[v]

[id) = AU

If --> 9) = AUx'[9I(h(U) x))

If 0 91 = k[91(UI x)

47

Using the obvious definitions, it is straightforward to establish the soundness of
the rules in Figure 4.3 with respect to this interpretation.

4.7 Implementation of extensible records

Type systems with extensible records have been studied by a number of researchers
but there have been surprisingly few attempts to describe how these systems might
be dealt with in concrete implementations.

If the type of a given record is fully determined at compile time, it may be possible
to arrange for the values in each field to be held in contiguous storage locations,
with the fi~ld corresponding to a given label at a fixed offset from the start of the
record. For the general case, it is common to represent records as lists of label and
value pairs; extracting a value from a record involves scanning the list to locate a
pair with a. given label. In principle, this might fail if no appropriately labelled j~

found, bm in practice. the type system can be used to ensure that this does not
happen.

Recently, Remy (1992) has proposed a representation that stores the values held in
a record a~ an array together with a pointer to a header (shared by other records
with the 'same field structure) that is used to determine offsets into the array for
each label. Extending a record with a new field is potentially expensive since it
requires the calculation of a new header.

Independently of the work described here, Ohori (1992) gives a compilation method
for a calculus of records which has much in common with the approach described
below. Other than this, we are not aware of any previous work that makes use of
concepts analogous to evidence in the implementation of extensible records. One
simple (prescriptive) approach would be to consider a system in which the evidence
for a predicate of the form (r lacks l) is the function:

(_11=_) :: 'It. r ~ I ~ (r II: t)

In a similar way, evidence for a predicate of the form (r has 1: t) might be given
by the pair of functions:

(_ \ I) :: r ~ r \ I
(_.1) :: r~t

While reasonable from a theoretical point of view, these choices are not particularly
useful for practical work since they do not say anything about how these operations
are actually implemented.

In the rest of this section we outline a new implementation of extensible records
that provides constant time selection and relatively inexpensive implementations of
extension a.nd restriction. In particular, there is no need to inclnde any information

48

about labels (either directly or as part of some header) in the representation of a
record. We retain the efficiency of the implementation of records in the simple case
where all the fields are known, with the additional benefit of supporting proper
extensible records.

This representation was discovered by considering how the rules for predicate en
tailment given in Figure 2.4 might be extended to describe the construction of
evidence. Whilst it would be wrong to draw any firm conclusions from this sin
gle example, we hope that similar considerations of evidence values might also
be helpful in the discovery of concrete implementations for other applications of
qualified types.

We assume that all records can be represented by arrays of equally sized cells. The
fields in a record will be stored in such an array in increasing order of their labels.
This relies on the choice of an arbitrary total order < on the set of labels - we
illustrate this here with a lexicographic ordering. As a simple example, the record
(w = 2, Y = 3, % = True) might be represented by:

~~ True 3I I
There is no need to include representations for the labels since the positions of each
field are completely determined by the set of labels {w, :x, y} and this informatjon
can be obtained from the type of the record, (w : Int, y : Int, :x : BOQ/). More
precisely, if L gives the set of labels in a record, then the position at which the
value associated with label I can be found is given by pas I L, the number of
elements in the set {1' I 1/ E L, l' < I}.

The following diagram illustrates the process of extending a record with a new
field:

I ... ~I ... [:IEI ... s::=J
/ / \ \

1-'.. · I~I ... ~ ... I~

Note that all of the fields with lab€'ls that are less than that of the field being in
serted remain in the same position in the array while the other entries a.re shifted
up one position. If the set of labels in the original record is L, then a field labelled 1
should be inserted in position pos I L as defined above. (For simplicity, we assume
that the number of fields in a given record is stored as part of the concrete repre
sentation for record values. This ensures that the implementation can determine
how much storage space should be allocated to hold the extended record.) The
reverse process can be used to remove a field from a given record.

49

Suitable forms of evidence for the three kinds of predicate introduced in Section 2.4
are as follows:

•	 The evidence for a predicate of the form record r is the set of labels appearing
in r which, by the comments above, completely determines the structure of
records of type r.

•	 Tl].e evidence for a predicate of the form r has I: t is an integer that specifies
the position of the field labelled I in a record of type r.

•	 The evidence for a predicate of the form r lacks I is an integer that gives the
position at which a field with label I could be inserted into a record of type
r.

The definition of predicate entailment in Figure 2.4 is extended to describe the
calculation of evidence values in Figure 4.4. Note that all of the comparisons
between labels can be evaluated during the type checking process (so there is no
need for a runtime representation of labels or of <).

The only kind of predicates used in the (qualified) types of programs involving
records are those of the form r has I : t and r lacks I and hence the form of
evidence expressions needed for the execution of a program can be described by
the syntax:

e .. - 0 zero offset
n offset tJanable

e +1 successor
e - 1 predecessor

In the special case of a record whose structure is completely determined at compile
time, simple constant folding techniques can be used to calculate integer offsets
for each field without any run-time cost.

50

Record formation: P H-- {} :record 0
P If- L: record r I <f- L

PH-- LU {/}:record (r 1/:1)

P If- L: record r IE L
PH-- L \ {I} :record r \ I

Absent fields: PH-- 0: 0 lacks I

P H-- L:record r \ I

PH-- n:(r \ I lacks I)

PH-- n:(r lacks I)

PH-- m:(r \ I' lacks I)

n=poslL

{n,m-
n - 1,

I < I'
fI < 1

PH-- n:(r lacks I)

P H- m: « r II': I') lacks I)
{m- n, I < I'

n+l,ll<l

Present fields:
PH-- L:record (r 11:1)

PH-- n:«r 11:1) has 1:1)

P H- n: (r has I: I)

PH-- m:(r \ {,·has 1:1)

n=poslL

{n,m-
n 1,

I < I'
I' < 1

PH-- n:(r has 1:1)

PH-- m:«(r 11':1') has 1:1)
{

m=
n, I < I'
n+l,I'<1

Figure 4.4: Predicate entailment for extensible records wjth evidence.

51

Chapter 5

Semantics and coherence

The principal aim of this chapter is to show how the concept of evidence can be
used to give a semantics for OMI, progri'lffis with implicit overloading.

Outline of chapter

'rVe begin by describing a version of the polymorphic 'x-calculus called Of' that
includes the constructs for evidence application and abstraction de::criued in the
previous chapter (Section 5.1). One of the main uses of OP is as the target of
a translation from OML with th~ semantics of each OML t,erm being defined by
those of its translation. In Section 5.2 we show how the OML typing derivations for
a term E can be interpreted as OP derivations for terms with explicit overloading,
each of which is a potent.ial translation for E. It is immediate from this construc
lion that every well-typed OML term has a translation and that an translations
obtained in this way are well-typed in OP.

Given that each GML typing typically has many distinct derivations it follows that
there will also be many distinct translations for a given term and it is not clear
which should be chosen to represent the original term. The OP term corresponding
to the derivation produced by the type inference algorithm in Section 3.4 gives one
possible choice but it seems rather unnatural to base a. definition of semantics on
any particular type inference algorithm. A better approach is to show that any
two translations of a term are semantically equivalent so that an implementation
is free to use whichever translation is more convenient in a particular situation
while retaining the same, well-defined semantics. In the words of (Breazu-Tannen
et al., 1989), we need to show that 'the meaning of a term does not depend on the
way that it was type checked', a property that they call coherence.

As we demonstrate in Section 5.3, there are examples for which a term may have

52

semantically distinct translations and hence we cannot hope to establish a general
coherence theorem. Instead, we settle for the less ambitious goal of disoovering
oonditions that are sufficient to ensure that the semantics of a term are well
defined. Tests for these conditions would then be included as part of the type
checking phase in a concrete implementation so that we reject not only those
programs that do not type-check, but also those for which coherence cannot be
guaranteed.

As part of this process, we need to specify exactly what it means for two terms to be
equivalent. Rather than working with any particular semantic model, Section 5.4
gives a syntactic definition of (typed) equality between terms. This means that our
results are valid in a model for which the axioms and rules used in the definition
of equality are themselves valid. Clearly, it is preferable to make thIS definition
as weak as possible. permitting a larger class of models, while at the same time
retaining enough structure to give a useful and sensible characterisation of the
equality between terms. One limitation of our framework is that we include an
axiom for l3-conversion, ()"z.E)F = (F/z]E, which is not sound in modeffi of
the .\-calculus with call-by-value semantics and hence our results are restricted to
languages with lazy or call-by-name semantics. We discuss this point more fully
in Section 5.9.

We have already seen how the type inference algorithm can be used to describe
the relationship between the set of all OML typings for a term and a particular
principa.l type scheme. It therefore seems sensible to extend the results or Chapter 3
in an attempt to de$cribe the relationship between arbitrary translations and the
translation determined by this algorithm. As a first step, Section 5.S describes
a semantic interpretation for the ordering relation ($) used extensiwly in our
treatment of type inference. The basic idea is that an ordering of the form (7 2: (7'

can be described by a conversion; a closed OP term C of type (7 -+ (7'. The only
effect of a conversion is to change the way in which evidence parameters are dealt
with so that, if E is a term of type (7, then CE gives essentially the sa.me term,
repackaged with the less general type fl.

Using the properties of conversions we extend the results for the syntax-directed
system and the type inference algorithm in our earli~r work to include the cal
culation of translations. These are described in Sections 5.6 and 5.7 respectively
and we show that any translation of a term can be written in the form C(.\w.E')v
where C is a conversion of a particular type, E' is the translation produced by
the type inference algorithm and v, ware fixed collections of evidence variables.
Hence the task of establishing the equivalence of two arbitrary translations reduces
to showing the equivalence of two tenns of the fonn C1()"w.E')v and G;(.\w.E')v
where C1. and q are conversions of a particular type. One obvious approach is to
find conditions that guarantee that these conversions are equivalent.

53

Section 5.8 investigates this possibility to obtain sufficient conditions for the equiv
alence of a pair of conversions and hence to guarantee coherence. in particular,
we show that the type system is coherent for any term with an unambiguous prin
cipal type scheme (a simple syntactic condition), generalising an earlier result in
(Blatt, 1991) for the special case of a system of type classes. In addition, we show
how our results can be adapted to applications where the restriction to terms with
unambiguous type schemes is too severe. For example, we are able to give a sat
isfactory treatment of coherence for the system of extensible records described in
Sections 2.4 and 4.7 despite the fad that the primitive field restriction operator
has an ambiguous type.

Detailed proofs for the results of this chapter are included in Appendix A.

Section 5.1:

OP: A polymorphic A-

calculus with Bupport

for overloading.

Section 5.4:

Equalities between OP

terms.

I---

r--

Section 5.2:
Tran6lationB of OML
terms in OP.

Section 5.5:
Conversions: an inter
pretation of (:$) using
OP terms.

j
Section 5.6:
Translation in the
syntax-directed system.

1
Section 5.7:

Type inference and

translation.

1
Section 5.8:
Coherence resu!tB.

r--

Figure 5.1: Outline of chapter

54

Section 5.3:

The coherence problem:

not all translations are

equivalent.

5.1	 A version of polymorphic >.-calculus with
qualified types

This section describes a version of the polymorphic 'x-calculus extended with con
structs for evidence application and abstraction. For ease of reference) we call the
type system presented here OP, intended as a mnemonic for 'Overloaded Polymor
phic 'x-calculus'. The set of types in OP is defined by the grammar:

(J ::==	 t type variables
(J --+ (J	 function types
Vt.a	 polymoryhic types
1f' => a	 qualified types

This is considerably more flexible than the structured la.nguage of types used in
Chapter 3 since there is no distinction between simple types and type schemes.
In particular, OP a.llows functions with polymorphic and/or overloaded values as
their arguments. Note that constrained type schemes of the form (P Iu) introduced
in Section 3.2.1 can be written as the type P "* u in this more general system.

The terms of 0 P are given by expressions of the form:

E ::= z term variables
EF application
h.E abstraction
Ee evidence application
~v.E evidence abstraction
letz=EinF local definition

Unlike most presentations of polymorphic '\-calculus we do not include constructs
for type abstraction and application that are typically used to make the treatment
of polymorphism explicit; such features are not required for the work described
here l and would be an unnecessary distraction from our study of overloading. Nev
ertheless, we would expect the results described here to extend to such systems
if required in later work. For example, (Peyton Jones and Wadler l 1990) point
out that explicit use of type abstraction and application may provide useful in
fonnation to guide program transformation and code generation in an optimising
compiler.

The typing rules for OP are given in Figure 5.2. Strictly speaking, there is no
need to include the let construct here since the typing rules of OP are sufficiently
powerful to allow functions with polymorphic overloaded arguments and hence we
can encode let x = E in F as ('\~.F)E. The most important benefit of including
the let construct is tbat it makes it much easier to treat the implicitly typed

55

Standard rules: (var)
(x:,,) E A

PIA~x:"

(~E)
PIA~E:,,'~" PIA~F:,,'

PIA~EF:"

(~I)
PIA,x:u'l- E: C1

PIA ~ !.x.E: ,,' ~"

Qualified types: (=>E)
PIA~E:1r=>" Plt-e:1r

PI A ~ Ee : "

(=>I)
P, V:1r, P'IA I- E: a

P,P'IA ~ !.v.E: 1r =>-"

Polymorphism: ('IE)

('II)

P IA ~ E : '11."

PIA ~ E: [r/tl"

PIA~ E:" t If. TV(A) U

P IA ~ E : 'It."

TV(P)

Local definition: (let)
PIA~E:" QIA~I%:O' I- F: a'

P, QIA ~ (let x - E in F) : cr'

Figure 5.2: Typing rules for OP.

56

language of Chapter 3 as a (proper) sublanguage of OP. Another advantage is
that it may sometimes be possible to generate better code for let expressions than
for the equivalent term using a A-abstraction (Peyton Jones, 1987).

5.2 Translation from OML to OP

From the definitions in the Sections 3.1 and 5.1 it is dear that every OML type
scheme can be treated as an OP type. Furthermore, the typing rules of OML
are a just a restricted version of the rules for OP, except that derivations in the
latter involve predicate assignments rather than predicate sets and require explicit
evidence abstraction and application in the rules (:::}l) and (:::}E) respectively.
To formalise these ideas, we define a function Preds that maps each predicate
assignment to the corresponding predicate set:

Preds (P, P') Pred5 P U Preds P'

Preds (t>,,,.) = {".}

Preds 0 = 0

and a function Erose that maps OP terms with explicit overloading to terms in
OML by deleting all occurrences of evidence variables and expressions:

Erase (x) x

Erase (EF) (Erase E) (Erase F)

Erase (.Ix.E) .\x.(Erase E)

Erase (let x = E in F) = let x = (Erase E) in (Erase F)

Erase (Ee) Era5e E

Era.. Pt>.E) = Erase E

Similar tools are used in the investigation of the relationship between languages
with implicit polymorphism (much like OP, but without overloading) a.nd lan
guages that use abstraction and application over types to make the use of poly
morphism explicit (the standard example being Girard's 'System F'). See (Mitchell,
1990) for further details.

The correspondence between GML and OP suggested by the informal comments
above can now be described by the following theorem:

Theorem 5.1 If P I A I- E : a in GML, then there is an OP term £' and a
predicate assignment P' 5uch that P =::: Preda P', E = Erase E' and P'IA I- E': a
using a derivation of the same strocture.

The proof is straightforward, using induction on the structure of P IArE: a.
The term £I in the statement of the theorem wiU be referred to as a. translation

57

of E and we use the notation P/ IA I- E "-+ E' : a to refer to a translation of a
term in a specific context. Note that, in the general case, an OML term will have
many distinct translations in any given context, each corresponding to a different
derivation of P IA I- E : a in OML.

The translations of OML terms can also be characterised more directly using the
hybrid of the typing rules [or OML and OP given in Figure 5.3. It is straightforward

(x:a)EA
(var)

P!Af-x--...x:a

PIAI-E E':r'--+r PIAI-F"-+F':'T'
(~E)

PIA f- EF --... E'F': r

P IA,.., z :r/ I- E"-+ E ' : r
(~l)

PIA I- Az.E"'-+ Az.g: r ' --+ r

PIAf-E--...E':~:;.p Plt-e:~
(:;.E)

PIA f- E--... E'e: p

P,v:~,P'IA f- E--... E': p
(:;.1)

P, P'I A f- E --... Av.E' : ~ :;. p

P IA f- E --... E' : Vt.a
('IE)

PIA f- E--... E': [r/I]a

PIAf-E--...E':a
(VI) t ¢ TV(A) 1\ I ¢ TV(P)

PIA f- E--... E': VI.a

P IA I- E"-+ E' : a Q J An z: a I- F F' : 'T
(let)

P, QIA f- (let x ~ E in F) --... (let x ~ E' in F') : r

Figure 5.3: Original type rules with translation

to show that P'I A I- E E ' : a according to the original definition of translations
above if, and only if, the same judgement can be derived from these rules. In
particular, we mention the following two theorems, the first of which establishes
a soundness property indicating that any derivation using the rules includes both
an OML derivation for the term involved and an OP derivation for its translation.

Theorem 5.2 If P I A I- E "'-+ E' : a using the rules in Figure 5.9, then E :;
Erase E' and there are derivations P IA I- E' : a in OP and Preds P IA I- E : a
in OML each with the same structure as the first derivation.

58

The second result shows that it is always possible to obtain a translation of a well
typed OML term using the rules given above (essentially by copying the structure
of the original derivation):

Theorem 5.3 If P IA f- E : (J in GML, then there i~ a derivation P'I A f- E
E' : (J for ~ome predicate a.s.signment P' with P ::: Pred.s pi and some OP term E 1

such that E =:::. Erase E'.

The proofs for both of these results are straightforward and follow directly from
the construction of the rules in Figure 5.3.

5.3 The coherence problem

The principal motivation for introducing OP was to enable the semantics of OML
terms with implicit overloading to be described by the semantics of their transla
tions in OP. In order to justify this approach we must show that:

•	 For each OML term E there is an OP term E that is a translation of E.
This follows directly from Theorem 5.3. Moreover, there is an effective way
of calculating a translation for any well-typed term using the derivation given
by CoroHary 3.20 to guide the construction of the translation.

•	 Any translation of an OML term E is well-typed in OP. This has already
be(-n established in Theorem 5.2.

•	 The mapping from terms to translations must be well-defined. More accu
ratelYl we must show that any translations E, and Ez of an 01.lL term E
given by derivations P IA f- E"-"I" E1 : (J and P IA f- E Ez : (J are, in some
precise sense, equivalent.

Whilst the first two properties have already been established, it is relatively simple
to show that the third result does not hold in general. As an example, consider
the term out (in x) under the evidence assignment P = {u: C Int,v: C Bool}
and the type assignment:

A::: {x: Int, in: Va.C a * Int -t a, out: Va.C a:::::} a -t Illt}

where C is a unary predicate symbol. Instantiating the quantified type variable
in the type of in (and hence also in that of out) with the types Int and Baal leads
to the following derivations with translations which are clearly not equivalent:

PIA r out (in x)~ oul u (in u x): Int

P IA rout (in x) ~ oul v (in v x) : Int

59

Given this example, we cannot hope to establish the general coherence result
in the third item abovej i.e. that all translations of an arbitrary OML term are
semantically equivalent. In the rest of this chapter we work towards a more modest
goal - to identify a collection of OML terms for which the coherence property can
be established.

5.4 A definition of equality for OP terms

Before we can establish sufficient conditions to guarantee coherence, we need to
specify formally what it means for two terms (specifically, two translations) to
be equivalent. Tbis section gives a syntactic characterisation of (typed) equaHty
belween OP terms using judgements of the fonn P I A I- £ = F : a (with the
implicit side-condition that both PIA I- £: a and PIA I- F: a). Our task in the
remaining sections of this chapter can now be described formally as:

Given derivations P I A I- £ .-.....+ £1 : a and P I A I- £.-.....+ ~ : f1 determine
sufficient conditions to guarantee that P IA I- £1 = ~ : a.

One of the reasons for including type information as part of the definition of
equality is to avoid making unnecessary constraints on the choice of semantic
model. Given a judgement P I A I- E = F : a we require only that £ and F
have the same meaning (which must be an element of the type denoted by a) in
environments that satisfy P and A. This is in contrast with an untyped judgement
of the form E ::;:: F that might be expected to hold in any semantic model, without
consideration of the types of the objects involved.

5.4.1 Uniqueness of evidence

Another reason for using predicate assignments in the definition is to enable us to
capture the 'uniqueness of evidence'j to be precise, we require that any evidence
values e and f constructed by entailments P ft- e: Q and P ft- f: Q are semantically
equivalent, in which case we write P I- e ::;:: f : Q. Since we only intend such
judgements to be meaningful when both entailments hold, the definition of equality
on evidence expressions can be described directly using:

PI- e ;J:Q "" Pit- e:Q A Pit- J:Q.

This condition is essential if any degree of coherence is to be obtained. Without
it, for example, it would be possible to have semantically distinct implementations
of an overloaded operator that cannot be distinguished either by name or by type.

60

Uniqueness of evidence does not follow directly from the definition of It- and it
is important to verify that this property holds for the predicate systems used in
particular applications of qualified types. This! in turn, influences the design of
particular predicate systems. For example l in the system of type classes described
in Section 4.5, uniqueness of evidence is dealt with by ensuring that there is at
most one definition that makes a given type an instance of a particular class.

5.4.2 Reduction of OP terms

In conunon with many treatments of typed .A-calculi, we will define the equality
relation between terms using a notion of reduction between terms. More precisely,
we use a judgement of the form P IA f- E t> F : u to describe a (typed) reduction
from E to F with the implicit side condition that P IA f- E : u. There is no need
to include P IA r F : IT as a second side condition since it can be shown that this
condition is implied by the first. This is a consequence of the subject reduction
theorem - 'reduction preserves typing! - which is proved using standard techniques
as in (Hindley and Seldin. 1986).

'(rie split the definition of reduction into three parts, tbe first of which appears
in Figure 5.4. We include the familiar definitions of ,8~conversion for evidence
and term abstractions and let expressions and a rule of 17-conversion for evidence
abstractions.

(iJ) PIA~(-'z.E)F to> [F/z]E:<7

(iJ,) P IA ~ (-'v.E)e to> (e/v]E: <7

(iJ- let) PIA ~ (let z ~ E in F) to> [E/x]F: <7

v '!- EV(E)
(~,)

PIA ~ (Av.Ev) to> E: <7

Figure 5.4: Rules of computation

One unfortunate consequence of our approach is that the axiom (,8) is not SQund in
models of the .A-ca.lculus with call-by-va.lue semantics and hence our results can only
be applied to languages with lazy or ca.1l-by-name semantics. This limitation stems
more from the difficulty of axiomat ising ca.ll-by-value equality than from anything
implicit in our particular application; for example, Ohori (1989) mentions similar
problems in his work to describe a simple semantics for ML Polymorphism. This
issue will be discussed more fully in Section 5.9.

61

A second collection of rules in Figure 5.5 is used to describe tbe renaming of bound
variables in A-abstractions, evidence abstractions and let expressions. Any such
renaming is permitted so long as we avoid clashes with free variables.

(.)
z ¢ FV(>.y.E)

PIA ~ (>.y.E) l> (>.z.[zjy]E): (1

(.,)
v ¢ EV(>.w.E)

PIA ~ (>.w.E) l> (>.v.[vjwIE): (1

(.-Iet)
z ¢ FV(>.y.E)

PI A ~ (let y = E in F) l> (let z = E in [zjyJF): (1

Figure 5.5: Rules for renaming bound variables

The final group of rules in Figure 5.6 are closely modelled on the original typing
rules for OP in Figure 5.2. Their main application is to allow the reduction of
subterms within a given term.

5.4.3 Equalities between OP terms

As we have already mentioned, equalities between OP terms will be represented
by judgements of the the form P J A f- E = F ; (1 with the implicit side condition
that both'P I A ~ E : (1 and P I A ~ F : (1. Figure 5.7 gives the definition of
the equality between terms as the transitive, symmetric closure of the reduction
relation described in the previous section. The first two rules ensure that equality
is an equivalence relation. There is no need to include reflexivity here sjnce this
is a direct consequence of the structural rules in Figure 5.6. The last rule shows
how reductions give rise to equalities. Note that in this case there is no need to
establish that both P IA ~ E : (1 and P IA ~ F : (1 since the latter follows from
the former by the subject reduction theorem mentioned above.

In practice, many of the rules used in the definition of equality above will be used
implicitly in tbe proof of equalities between terms. The following example uses
all three of the rules in Figure 5.7 as well as subject reduction to justify the fact
that the intermediate steps are well-typed and illustrates the layout that we use
for such proofs:

PIAf-let z = E in [FjzIF' = [Ejz]([Fjz]F') (jJ-Iet)
[iEjz]Fjz]F' (substitution)

= let z = [Ejz)F in F' : (1 (jJ-Iet)

62

(Z:<7) E A

PIAf-. t>r:<7

PIAf-Et>E':<T'~<7 PIAf-Ft>F':<7'

P IA f- EF t> E'F' : <7

PIA"z:<T'f-E t>E':<7

PIAf-A•.E t>A•. E':<T'~<7

l

P IA f- E t> E' : ~ =} <7 P f- e = e': 1l"

PIA f- Ee = E'e': <7

P,v:~,P'IAf-E t>E':<7

P,P'IA f- Av.E t> Av.E': ~=} <7

PIA f- E t> E': Vt.<7

PIA f- E t> E': Ir/ll<7

PIA f- E t> E': <7 I rt TV(A) U TV(P)

PIA f- E t> E': Vt.<7

P IA f- E t> E': <7 P IA" <:<7 f- F t> F' :r

P IA f- (let. - E in F) t> (let. - E' in F') : r
 I

Figure 5.6: Stnleturallaws for red.uetions between terl11B.

PIAf-E=F:<7

PIAf- F=E:<7

PIAf-E=E':<7 PIAf-E'=E":<7

PIAf-E=E":<7

PIAf-Et>F:<7

PIAf-E=F:<7

Figure 5.7: Definition of equality between terms

63

Notice that the context in which this equality is established (given by P, A and
0') is not significant. Examples like this are quite common and we will often avoid
mentioning the context altogether in such situations, writing f- E = F to indicate
that E and F are equivalent in the sense that PIA f- E = F : 0' for any choice of
P, A and u for which the implicit side conditions hold.

The following proposition records some useful properties of let expressions indud·
ing the result above, each of which follows directly from C{J-let).

Proposition 5.4 For any OP terms E, E' and F and distinct term variables z
and y such that y ¢ FV(E):

1. r (let Z = E in [F/z]F') = (let z = [E/z]F in F').

2. r Ay.(let z = E in F) = (let z = E in Ay.F).

3. r EOet y = E' in F') = (let y = E' in EF').

4. r (let y = E' in F')E = (let y = E' in F' E).

The last three parts of this proposition are fairly standard, but the first is less
familiar and it is worth illustrating why it is important in our work. Consider a
system of type classes with a type class Eq such that 0 It- e: Eq lnt and an equality
function (==):: Va.Eq a:::} a _ a _ Bool used in the OML term:

let / = (AZ.Ay.Z == y) in /23

Since the local definition for function / is only ever applied to integer values, it
is sufficient to treat / as having type lnt _ lnt _ Bool, witb a corresponding
translation:

let / = (AZ.Ay.(==) e Z y) in /23

However, the type inference algorithm uses f ;: Va.Eq a => a --+ a _ Baal and
results in a translation of the form:

let / = (AV.AZ.Ay.(==) v Z y) in / e 23.

The following calculation shows that these translations are equal and hence that
it is possible to eliminate the evidence abstraction used in the second case.

r let! = (AV.AZ.Ay.(==) v Z y) in / e 2 3
= let / = (AV.AZ.Ay.(==) v Z y) in [(e/f]U 2 3) (substitution)

let / = [AV.AZ.Ay.(==) v Z y/f]U e) in /23 (Prop. 5.4(1))
let / = (AV.AZ.Ay.(==) v Z y) e in /23 (substitution)
let / = (AZ.Ay.(==) e Z y) in /23 (/1)

As in the last step here, many equalities between tenns can be obtained by re-
placing one subterm with an equivalent term. These steps are justified by the
structural rules in Figure 5.6 and will often be used implicitly in proofs.

64

5.5 Ordering and conversion functions

5.5.1 Motivation and conversions between type schemes

One of the most important tools in the trea.tment of type inference described in
Chapter 3 is the ordering relation:'; used to describe when one (constrained) type
scheme is more general than another. For example, assuming that 0 It- Eq Int, the
ordering:

Int ---+ Int -+ BOQI S Va.Eq a => a ---+ a ---+ Bool

might be used to justify replacing an integer equality function, say primEqlnt,
of type In! ---+ Int --+ Bool with a generic equality function (==) with the more
general type Va.Eq a ;;;:} a a --+ Bool. While valid in OML, this breaks --t

down in OP due to the presence of evidence abstraction and application: Simply
replacing primEqlnt with (==) in primEqlnt 2 3 does not even give a weH·typed
expression! The correct approach would be to replace primEqlnt by (==) e where
011- e:Eq Int.

This section describes an interpretation of orderings between type schemes as terms
of OP that can be used to deal with examples like this. For each a' :S a we identify
a particular collection of terms that we call conversion.!l from a to 17' • Each such
conversion is a closed OP term C: a ---+ a' and hence any term of type (J can
be treated as having type 17

1 by applying the conversion C to it. One possible
conversion for the example above is:

(.Iz ...) : (Va.Eq a ~ a a Baal) (In! Int Baal)

Note that the type of this conversion (as in the general case) cannot be expressed
as an OML type scheme since it uses the richer structure of OP types.

For the purposes of type inference it would be sufficient to take any term C of
type (J --+ a' as a conversion for a' :S a since CE has type a' for any term E of
type a. This is clearly inadequate if we are also concerned with the semantics
of the terms involved:; we can only replace E with CE if we can gua.rantee that
these terms are equivalent, except perhaps in their use of evidence abstraction and
application. More formally, we need to ensure that Erose (CE) = Erase E for aU
OP terms E (or at least, all those occurring as translations of OML terms). Since
Erase (CE) = (Erase C) (Erase E), the obvious way to ensure that this oondition
holds is to require that Erase C is equivalent to the identity term t'd = Az.X.

It is tempting to define the set of conversions from a to a' as the set of all closed
OP temlB C:a --+ d for which Erase C is equivalent to id. In practice it is more
convenient to choose a more conservative definition that gives a little more insight
into the structure of conversions. The following definition is very closely modelled
on the syntactic characterisation of the $ ordering in Proposition 3.4.

65

Definition 5.5 (Conversions - preliminary version)
lSuppose that a = (Voi.Q ::::} r} and a = (VPj.Q' ::::} r'} and that none of the

van'ables ~j appear free in a. A closed OP tern! C of type (7 ---+ (7' such that
Erase C is equivalent to id is called a conversion from a to tr, written C: (7 ~ a',
if there are types ri, evidence variables v and evidence expressions e such that:

"Q'H-e:IT,/a;JQ, T';[T;/a;)T and f-C;.\x ..\v.ze.

Note that v and e are lists of evidence variables and expressions respectively.
As a result, expanding the abbreviations introduced in Section 4.2, the equiv
alence above takes the form I- C = AX.AVl AV.... xel ... em. It is straightfor
ward to verify that Ax.Av.xe .1S itself a conversion from (7 to tr; it is obvious that
Erase (,\Z.AV.ze) ::::: AX.X and the following derivation establishes the required
typing:

v:Q'lx:a I- x: a ,,; ('1a,.Q => T)
v: Q' Ix :" f- x : (Va;. Q => T)

('IE)
v: Q'I x :" f- x : [T,/a;)(Q => T)

(=>E)
v: Q' Ix:" f- xe : [T;/a;IT

T' ; [T,/a;)T
v:Q'lx:al-xe :rl

(=>I)
0lz:a r .\v.xe: Q'::::} r'

(VI)
01 x :a I- .\ v .xe : a'

(-"I)
010 f- .Ix ..\v.xe:" -" '"

It follows that any OP term with type a ---+ tr that is equivalent to .\z ..\v.ze will
also be a conversion from a to tr. On the other hand, we cannot assume that
all conversions from a to tr will be equivalent to this particular term since there
may be more than one possible choice for the types rj and hence for the evidence
expressions e in the definition above.

The following proposition establishes some simple properties of conversions that
will be useful in subsequent work.

Proposition 5.6 Suppose that a, a' and a" are type schemes. Then:

1.	 id:(1 ~ a where id = .\x.x is the identity term.

2.	 IfC:a ~ a l and C':al
~ tr', then CloC:a ~ tr' where C'o C = '\z.C1(Cz).

3.	 If (1 is a tyPe scheme and r is a type, then id:Vt.(7 ~ [rltla. In particular,
id:Gen(A,p) ~ p.

66

As with many of the results in this chapter, Proposition 5.6 extends earlier results
from Chapter 3. In this particular case, the first two parts of the proposition
correspond to the result that the ordering on type schemes is reflexive and transi·
tive. From a categorica.l perspective, these results can be used to show that there
is a category whose objects are type schemes and whose arrows are (equivalence
classes of) conversions. The only additional properties needed to justify this are
that the composition of equivalence classes is well-defined and associative with
(the equivalence class of) id as unit, each of which is easily verified.

The following two propositions are useful for obtaining conversions between type
schemes obtained. using generalisation as described in Section 3.2.4. The first
proposition deals with the interaction between generaJisation and entailment, ex
tending the result of Proposition 3.7.

Proposition 5.7 Suppose that P and pi are predicate sets such that Vi: pI H- e: P.
Then:

(~x.~v'.ze):Gen(A,P=> r) ~ Gen(A, P' => r)

for any type assignment A and type T.

The second result is useful when applying substitutions to type schemes obtained
by generalisation, extending the result of Proposition 3.8:

Proposition 5.8 If A is a type assignment, p is a qualified type and S is a sub·
stitution, then:

id:SGen(A,p) ~ Gen(SA,Sp).

Furthermore, there is a substitution R such that:

RA = SA and SGen(A,p) = Gen(RA, Rp).

5.5.2 Conversions between constrained type schemes

The definition of conversions between type schemes extends to conversions between
constrained type schemes. The obvious way to define a conversion for an ordering
of the form (P' I<1') ::; (P I..) is as a term of type (P I..) ~ (P' I..'), writing (P I ..)

as an abbrevia.tion for tbe OP type P => cr.

Definition 5.9 (Conversions - general version)
Suppose that .. = (Va;.Q => r) and <7' = (V(Jj.Q' => r') and that none 01 the
variables j3j appear free in cr, P or P. A dosed OP term C of type (P I cr) -+

(PI Icr') such that Emse C is equivalent to id is called a conversion from (P Icr)
to (Pi I17'), written C: (P Icr) 2: (Pi Icr"), if there are types Ti, evidence variable.s v
and wand evidence expressions e and f such that:

v: P, w: Q' I/- e: P,!: [r,fa;]Q, r' = [r;fa;]r and f- C = \x.~v.Aw.xel.

67

Note that the definition of conversions between simple (i.e. unconstrained) type
schemes is a just special case of this, obtained by taking P = P = 0.
it is immediate from the definition of conversions tha.t (P I0") ~ (Pi IiT) if and
only if there is a conversion C: (P I0") ~ (Pi I0"') (this may require renaming the
bound variables of ff to apply the definition of conversions). It follows that we
can extend aU of the properties of ($:) described in Section 3.2.3 to include the
use of conversions as illustrated by the foUowing three propositions.

For example, we have already mentioned that a qualified type of the form P ::::} P
is equivalent to the constrained type scheme (Pip). This is reflected, in a slightly
more genera.l form, by the fotlowing proposition:

Proposition 5.10 For any qualified type p and predicate assignments v: P and
w: Q there are conversions:

id:(P,Q[p)~(P[Q=>p) and id:(P[Q=>p)~(P,Q[p).

In particular, taking P = 0, the~ a~ conversions:

id:(Plp) ~ P => p and id:(P => p) ~ (P[p).

Another useful result is that (P' I 0"') :s; (P I0") whenever 0"' :5 0" and pi It- P.
Extending this to describe the conversions involved gives:

Proposition 5.11 If C: (H [0') ~ (H' I0") and v': P' H- e : P, then there is a
conversion:

Adv'.C(xe):(P,H[O') ~ (P',R'[O").

In particular, taking R =0 = R', if C:O" ~ iT and v': P' H- e: P, then:

Adv'.C(xe):(P[O') ~ (1"10").

We have already indicated that the ordering on constrained type schemes is pre
served by su bstitutions (Proposition 3.5). The corresponding resul t for conversions
is:

Proposition 5.12 Sllppose that P and P' are p~dicate assignments, 0" and 0"' are
type schemes and that C:(P[O') ~ (P'IO"). Then:

C:S(PIO') ~ S(P'IO")

for any substitlltion S of types for type variables.

68

In Proposition 5.6 We showed that, for the special cage of (unconstrained) type
schemes, reflexivity of (~) corresponds to the identity conversion while transi
tivity of (~) corresponds to composition of conversions. The next two proposi
tions provide simHar constructions, the first of which shows how the definitions of
Proposition 5.6 extend to a category with arbitrary constrained type schemes as
its objects.

Proposition 5.13 For any type scheme (I and predicates P there is a conversion:

id:(PI,,) ~ (PI,,)·

Furthennore, if C:(PI") ~ (P'l,,') and C':(P'I,,') ~ (P"I,,"), then:

(C'o C):(PI") ~ (P"l,,")·

The next result gives an alternative way to extend Proposition 5.6, this time to de
scribe a category whose objects are type schemes and whose arrows are conversions
between type schemes with respect to an arbitrary fixed predicate assignment:

Proposition 5.14 For any type scheme (I and predicate assignment v~P there is
a conversion:

(Ax.AV.x):" ~ (PI"),

Furthennore, ifC:" ~ (PI,,') and C':u' ~ (Plu"), then:

(Ax.Av.C'(Cxv)v):" ~ (PI"").

5.5.3 Conversions between type assignments

The definition of conversions can be extended to an ordering between type assign
ments. In fact, for the purposes of this work, it is sufficient to consider only the
case of orderings of the form A ? A' and A? (P IA'), the first of which is just a
special case of the second with P = 0.

One simple approach would be to define a conversion for an ordering A :?: (P IA')
as a function that gives a conversion from A{ z) to (P IA'{z») for each z E dom A.
However, whereas we might use a conversion C:(I 2 (P I0-') to treat a term of type
(I as having type ai, we will typically use a conversion between type as~ignments

to simultaneously replace each Occurrence of a variables mentioned in the type
assignment with an appropriate new term. From this perspective it seeITUl more
sensible to think of a conversion between type assignments as a tenn substitution.

Furthermore, the translations of a term are calculated with respect to a particular
predicate assignment (the first component in a derivation v: P IA I- E E' ; a)

69

and may involve the evidence variables in the domain of that assignment. It is
therefore necessary to specify these variables explicitly as part of the type of the
conversion.

Definition 5.15 (Conversions between type assignments)

A substitution C is a conversion from a type assignment A to a constrained type

assignment (v: P IA'), written C: A ~ (v: P IA'), if:

•	 dam A = dam A' .

•	 For each x E dom A there is a conversion (.\x ..\v.Cx):A(x)?: (PIA'(x)).
On the other hand, if x ¢ dom A, then C(x) = x.

Note that. a conversion between type assignments is not itself a term. The expres
sion C(x) appearing in the above definition denotes an application of a (meta
linguistic) substitution to a particular va.riable.

Continuing with the example above and assuming that 0 I+- e: Eq Int, one possible
conversion for the type assignment ordering

{(==): Int ~ Int ~ Bool} S; {(==): lIa.Eq a"" a ~ a ~ Bool}.

would be the substitution that maps (==) to (==) e but leaves every other variable
unchanged. To see how this might be used, consider an OP term in which the
(==) has been treated as having type [nt -+ Int -+ Bool. IT we replace this
integer equality function by a generic equality fuuction with the more general
type, then we need to include the evidence e for Eq Int with every use of (==).
This is precisely the effect obtained by applying the conversion substitution to the
original term.

Suppose that C: A ?: (v: P I A'). Since every conversion is a closed OP term, it
follows that the only variable that appears free in a term of the form C(x) is the
variable x itself. The following results are easily established using this observation:

Proposition 5.16 Suppose that C: A ?: (v: P IA') and write C~ for the substitu
tion such that Cr(x) '" x and CrE '" CE for any term E such that x ¢ FV(E).
Then:

1. C(!.x.E) = !.x.CrE,

2. C(let x = E in F) = (let x = CE in CrF),

3. C", :(A"" x :0') ?: (v: P IA~, x :0') for any type scheme 0', and

4· [E/')(CrF) = (C[E/x))F for any terms E and F.

70

Another useful consequence of the definition of conversions between type assign
ments is summarised by the following proposition:

Proposition 5.17 If C: A ~ A', then C: A ~ (v: P I A') for any predirote
assignment v: P.

To see this, suppose that C: A 2: A'SO that (Ax .Cx): A(x) 2: A'(x) for every x E
dom A. By Proposition 5.14 there is a conversion (Ax.AV.X):A}(x) ~ (PIA'(x»
and hence (Ax.>.v.Cx):A(x);:> (PIA'(x)).

5.6 Syntax-directed translation

The next two sections follow the development of Chapter 3 to describe the re
latiomhip between an arbitrary translation of an OML term and the translation
corresponding to the derivation constructed by the type inference algorithm.

We begin by extending the resltlts of Section 3.3 to describe the construction of
translations for the syntax-directed system using the typing rules in Figure 5.8.

(X:(Vai.Q => v») E A PH- e:[r;faiIQ
(vaT)'

P IA ~ x ~ xc : [ri/a.]v

PIAf!E~E':r'_r PIAt.!F~F':r'
(~E)'

PIA ~ EF~ E'F': r

P IAS", x: r' f! E"--+ E' : r
(~l)'

PIAf.! AX.E---...+Ax.E':r'---+r

V': P' IA f! E ~ E' : r l P J AS". x: (J" t.! F ~ F' : r
(let)'

PIA ~ (let x = E in F)~ (let x = Av'.E' in F'): r
where (J" == Gen(A, pi => r')

Figure 5.8: Syntax-directed typing rules with translation

As before, the structure of a derivation P IA t.! E ~ E' : T is uniquely determined
by the syntactic structure of the OML term E. Note however that the transla
tion E' need not be uniquely detennined since there may be distinct choices for
the evidence values e introduced by (var)'. This of course is the source of the
incoherence in the translation sema.ntics of OML.

71

It is straightforward to show that the rules in Figure 5.8 are sound with respect to
those in Figure 5.3 by induction on the structure of syntax-directed derivations.

Theorem 5.18 If PI A ~ E ~ E': T, then PIA ~ E ~ E': T.

The reverse process, to establish a form of completeness property by showing that
every translation and typing obtained using the general rules in Figure 5.3 can,
in some sense, be desc.ribed by a syntax-directed derivation is considerably more
difficult. As a first step, we can extend the properties of the original syntax
directed system outlined in Section 3.3.2 to include the calculation of translations.
More precisely, if v: PIA ~ E""'-+ E' : 1", then each of the following results can be
established by induc.tion on the structure of this derivation (see the appendix for
further details):

•	 EV(E') <;: v. (Proposition 5.19)

•	 5P ISA f! E E ' : 5r for any substitution S. (Proposition 5.20)

•	 If Qff- "P, then QIA ~ E~ [e/vIE': T. (Proposition 5.21)

•	 If C:A' ~ (v:PIA), then v:PIA' ~ E~ E": T (Proposition 5.22)
and v: P IA' t-- eE' = Elf: 1".

The first of these results is an immediate consequence of the rule (evars) de
scribed in Section 4.3 and the following three propositions a.re direct extensions of
Propositions 3.10, 3.11 a.nd 3.12 respectively. Also, as an immediate corollary of
Propositions 5.17 and 5.22 we obtain (with the same hypothesis as above):

•	 If C:A 1
~ A, then v:PIA' f! E""'-+ E": 1" (Corollary 5.24)

and v: PIAl t-- eE' = EI/: 1".

Using these results, we can establish the following theorem as an extension of
Theorem 3.15, again by structural induction on the derivation in the hypothesis:

Theorem 5.25 If v : P! A t-- E £I : u, then there is a predicate assignment
v' : pi, a Iype r ' and a term Elf such that Vi: pi IA ~ E __ E" : r ' and v : P IA I
C(Av'.E"}v = E': u where C:Gen(A, P' => T'} ~ (Plu).

Note that the OP term Av'.EIf appearing in this result can be treated as having
type Gen(A, pi => r') (using the soundness result, Theorem 5.18, from above),
Furthennore, since e: Gen(A, p' => 1"/) ~ (P 1u) and v gives evidence variables
for P, it follows that e(Av'.E")v can be treated as having type u as required,

72

5.7 Type inference and translation

It is reasonably easy to extend the definition of the type inference algorithm
given in Section 3.4 to include the calculation of a translation using the rules
in Figure 5.9. As before, these rules can be interpreted as an attribute gram·
mar. The type assignment A and OML term E in a judgement of the form
PITA I-w E E' : T are inherited. attributes, while the predicate assignment
P, substitution T, OP translation E' and type T are synthesised.

(x :Voi.P ~ T) E A 13. and v new
(var)W

v:[l3i/n;JPIA f'!' x~ xv: l/3;/ni]T

PITA~ £ £':7 QrT'TA~ F F':T' T'T!!..,'-tO
(--+E)W

U(T'P, Qll UT'TA f'!' EF ~ E'F': Un
where a is a new variable

PIT(Arl%:O)~ E E':T anew

(--+I)W

P\TA~ >..z,E >..x.E'; Ta--+ T

v:PI TA ~ E E': T pll T'(TAr,x:a) ~ F F': if

(let)W

P'I T'TA f'!' (let x = E in F) ~ (let x = ~v.E' in F): T'

where a = Gen(TA,P => T)

Figure 5.9: Type inference algorithm with translation

The following theorem shows that any typing and translation that is obtained
using the type inference algorithm can also be derived using the rules for the
syntax-directed system described in the previous section.

Theorem 5.26 If PI TA f'!' E ~ E': T, then PI TA ~ E ~ E': r.

Combining this result with Theorem 5.18 we obtain:

CnrnlIary 5.27 If PITA f'!' E~ E': T, then PITA ~ E~ E': T.

This result is important because it shows that the 'translation' E' of an OML
term E produced by the algorithm above is A valid translation of E (in the sense
of Section 5.2) and hence, in particular, that it is a well-typed OP term.

73

Given that the a.lgorithm described above calculates a principal type scheme for
each weU·typed OML term (as in Section 3.4.3), we will refer to the translations
produced by this algorithm as principal translations. The following theorem pro
vides further motivaUon for this terminology, extending the result of Theorem 3.19
and showing that every translation obtained using the syntax-directed system can
be expressed in terms of a. principal translation.

Theorem 5.28 Suppose that v: P ISA ~ E ~ E' ; T. Then w: Q I TA ~w E ~

E" : v and the,e is a suhstilution R such that S ~ RT, ' == Rv, v: P ft- e: RQ
and v :PISA ~ E' = [e/w]E": To

Finally, we can use this result to describe the relationship between arbitrary trans·
lations of an OML term and a principal translation:

Theorem 5.29 If v : P I SA ~ E ~ E' : a, then w: Q I TA ~w E ~ E" : v
j07' some w : Q, T, Ell and v and there is a substitution R and a conversion
C: RGen(TA, Q => v) ~ (P la) such that S '" RT and

v:PISA ~ C(Aw.E")v = E': a.

It is instructive to include the proof of tbis result here as an illustration of how
the results in this and preceding sections can be used.

First of all, by Theorem 5.25, if v: P ISA f- £ £' : a, then v': pll SA ~ £ F' :
T' and v:P ISA ~ C'(Av'.F')v = E' : a for some C': Gen(SA, P' => T') ~ (P la).
Next, by Theorem 5.28 w: Q I TA f-w £ E'I : v and there is a substitution R
such thatS ~ RT, " = Rv, v':P' ft- e:RQ and v':P'ISA f- [e/w]£"= F': a,
from which it follows that 01SA ~ Av'.([e/w]E") = Av'.F': Gen(SA,P' => T').

Note that:

RGen(TA, Q => v)
~ Gen(RTA,RQ=> Rv) (Prop. 5.8, conversion id)

Gen(SA, RQ => T') (S '" RT and T' = Rv)
~ Gen(SA, P' => T') (Prop. 5.7, conversion AX.AV'.xe)
~ (Pia) (using conversion C')

Composing these conversions we obtain:

C:RGen(TA,Q => v) 2: (Pia)

where C = AX.C'(Av'.:re), and then:

v:PISA ~ C(Aw.E")v = (h.C'(Av'.ze))(AW.E")v (definition of C)
= C'(Av'·le/w]E")v (using (fJ) and (fJ,))

C'(AV'.F')V
£':0'

which completes the proof.

74

5.8 Coherence results

Theorem 5.29 is important because it shows that &Dy translation of an OML term
E in a particular context can be written in the form C(>.w.E')v where E' is
a principal translation and C is the corresponding conversion. Applied to two
arbitrary derivations v: P IA I- E E{ : u and v: P IA f- E Ei : u, it foUows
that:

v:PIAf-E;=C,(,\w.E')V:<7 and v:PIAf-E;=C,(.\w.E')v:<7

where Ct and 02 a.re conversions from the principal type scheme to (P 1(1). One
obvious way to ensure that these translations are equa.l is to show that I- Ct = 02.

5.8.1 Equality of conversions

Ta.king a more slightly more general view, suppose that C:t, G.J a.re conversions from
q to (Pi Iu'). Without loss of generality, we ca.n assume that q = (Voj.Q ~ v)
and 0'1 = (VO;.QI => v') where the variables oj only appear in (Q' :::} v'). Using
the definition of conversions, it follows that:

v' = IT;(a;]v and v':P',w':Q'1+- e:P,f:[T;(a;]Q

for some types 'Tj and that r C. == AX.AV'.AW'.xef. Similarly for 02 there are types
'T: such that:

v' == ['TUO:i]V and v':P',w':Q'H- e':P,!':['TI/o:dQ

and r 02 :::::- AZ.AV'.AW'.ze'j'. Clearly, it is sufficient to show e = e! and f == f'
to prove that the these two conversions are equivalent. The first equality is an
immediate consequence of the uniqueness of evidencej both e and e' are evidence
for the predicates P under the evidence assignment Vi: pi, w': Q' and hence must
be equivalent. The same argument cannot in general be applied to the second
equality since the predicates ['T;jO:ilQ may not be the same as those in ['TUo:dQ
due to differences between the types 'Tj and 'T:. Nevertheless, since ['T;jo:;]v ==
v' :::::: ['Ti/Oi]V, it follows that 'To' == 'Tf for all OJ E TV(v). Notice then that, if
{a;} n TV(Q) ,; TV(v), the two predicate sets [T;(a;jQ and [TI/O;]Q must be
equal and hence f ==1' as required. We will give a special name to type schemes
with this property:

Definition 5.30 (Unambiguous type schemes) A type scheme q =Vo:i.Q :::}
v is unambiguous if (ad n TV(Q)'; TV(v).

75

This definition coincides with that of an unambiguous type scheme in the treatment
of type classes in Haskell, motivating our use of tbe same term here. Using this
terminology, the discussion above shows that all conversions from an unambiguous
type scheme to an arbitrary constrained type scheme are eqnivalent:

Proposition 5.31 If~, c; : (P I 0') ~ (Pi I 0") are conversions and 0' is an
unambiguous typc schcme then l- ~ = C2 •

5.8.2 Equality of translations

As an immediate corollary, it follows that, if the principal type scheme for a term
E is unarnbiguoWl, then any two translations of E must be equivalent:

Theorem 5.32 If v : P I A l- E ---.... E{ : (j and v : P I A l- E E~ : (j and the
principal type scheme of E in A is unambiguous, then v: P IA l- E{ = E~ : (j.

This generalises an earlier result established by Blott (1991) for the special case
of the type system in (Wadler and Blott, 1989).

Theorem 5.32 is wellwsuited to use in concrete implementations of qualified types.
The first step in type-checking any given source program is to use the type inference
algorithm to calculate a principal type (and a corresponding translation that can
be used to implement that program). If the program does not have a principal type,
then it cannot be well-typed (Corollary 3.23) and will be rejected. If the principal
type is Dot unambiguousJ then we cannot guarantee a well-defined semantics and
the program must again be rejected. For example, the principal type scheme of the
term out (in x) in the example in Section 5.3 is Va.C a'::::;' Int which is ambiguous.
It follows that this program should be rejected since it is not possible to determine
which overloading is required.

Practical experience with a concrete implementation of type classes based on syn
tax of Haskell (Jones, 1991c) suggests that the restriction to terms with unam
biguous types does not usually cause any significant problems. However, examples
using multiple parameter type classes (as described in Section 2.2.4) often lead to
ambiguity since the mechanism for defining the corresponding relations between
ty~ is ra.ther weak. Some suggestions for improving this will be described in
Section 6.2.

From a theoretical point of view, there is no need to require that all of the types
in the type assignment A are unambiguous. For example, if (x : (j) E A and 0' is
ambiguous, then the principal type of a term involving x given by the algorithm in
Figure 5.9 will also be ambiguous, whereas a term that does not involve x would
not be affected by this ambiguity. Nevertheless 1 in a practical implementation it
will usually be sensible to avoid including any variable with an ambiguous type in

76

a type assignment since any object defined in tenus of those variables is essentially
useless. In particular, in the rule for typing let expressions:

PITA~ E:T P'IT'(TA.. z:C1)~ F:T'

PI T'TA ~ (let z = E in F): T'

it would be reasonable to reject a program (or at least generate a warning message)
if the inferred type scheme (1 = Gen(TA, P => T) is not unambiguous.

Note that Theorem 5.32 gives a condition that is sufficient, but not necessary,
to guarantee coherence. Thus a concrete implementation based on the approach
outlined above can be expected to reject some terms that have a well-defined
meaning despite the fact that they have an ambiguous principal type. A well known
example of this is the Haskell term [] "',., [] that has an ambiguous principal type
Eq [a] :::) Bool, but evaluates to True for any choice of type a. On the other
hand, this fact cannot be established using the definition of equality in Section 5.4
and we might conjecture that the restriction to terms with unambiguous principal
types is both necessary and sufficient to guarantee coherence with respect to such
a formulation of provahle equality. We will not consider this possibility any further
here.

The restriction to unambiguous type schemes simplifies several aspects of our treat
ment of qualified types. For example, it restores the property of Damas-Milner
typing, mentioned in Section 3.2.3, that TV(a) ~ TV(u') whenever u ~ tT. This
makes it possible to give a more convenient syntactic characterisation of the (~)

ordering. A second example is that the task of determining whether a particular
OML typing P IA I- E : a is derivable is decidable if the process of determining
whether Q I+- R for any given Q and R is decidable, assuming that the principal
type of E in A is unambiguous (see the comments in Section 3.4.4).

5.8.3 A weaker notion of ambiguity

Unfortunately, the restriction to unambiguous type schemes is too severe for some
applications of qualified types. For example, in the system of extensible records
described in Section 2.4, we suggested that the primitive operation of record re
striction might be represented by a family of functions:

(_ \ I):: I/r.I/I.(r has 1:1) => r --> r \ I.

But this type scheme is ambiguous, and hence any values defined using this oper
ator might also have ambiguous principal types. Notice however that, assuming
we follow the approach suggested in Section 4.7, the evidence for a predicate of
the form (r has 1: t) is independent of the type t. Hence, repeating the argu
ment in Section 5.8.1, we can guarantee a well-defined semantics for any term

77

whose principal type scheme 17 == (VQj.Q => II) is unambiguous in the sense that
{ai} n A V(Q) ;;; TV(") where A V(P) is defined hy:

AV(0) = 0

AV(P,P') = AV(P)UAV(P')

AV(r has H) = TV(r)

AV(rlacksl) = TV(r)

With this weaker definition, the type of the record restriction operator given above
is unambiguous.

The same approach can be adapted to any system of predicates by defining AV(Q)
as a subset of TV (Q) such that, if P It- e: 5Q and P It- eJ

: S Q for some
substitutions S and 5' such that Sa = Sa for each Q E AV(Q), then Pre == e':
SQ. The simplest possihle choice would he to take A V(Q) = TV(Q) although it
would obviously be preferable to give a definition that makes A V(Q) as small as
possible to increase the class of programs that will be accepted by the type system.

5.9 Comparison with related work

A number of researchers have investigated the coherence properties of particular
type systems using a process of normalisation of typing derivations. Examples of
this include systems with explicit subtyping (Breazu-Tannen et al., 1989i CuneD
and Ghelll, 1990), a form of implicit suhtyping called scaling (Thatte, 1990) and
an earlier treatment of type classes (Blolt, 1991). The basic idea in each case is
to give a collection of reduction rules and prove that they are confluent, that they
preserve meaning and that any reduction sequence terminates (and hence, that the
rules are strongly normalising). The confluence property guarantees the existence
of a unique normal form and the fact that meaning is preserved by reduction is
then sufficient to guarantee coherence.

In the work described in this chapter, the rules for reductions between terms in
Section ·5A.2 correspond to reductions between derivations and the formulation of
the syntax-directed system can be thought of as a means of identifying the 'normal
forms' of a derivation. From this perspective, Theorem 5.25 can be interpreted
as a proof that the reduction process terminates and that it preserves meaning.
However, having established that the coherence property does not hold in the
general case (Section 5.3) we do not guarantee the existence of unique normal
forms or confluence.

The most important and novel feature of our work is the use of conversions to give
a semantic interpretation to the ordering between constrained type schemes. In
effect, a conversion acts as a record of the way in which one derivation is reduced

78

to another. Some of this information is lost because we do not distinguish between
conversions that are provably equal but l as we have seen, we retain sufficient detail
to establish useful conditions that guarantee coherence.

Our use of conversions is closely related to the discussion of the relationship be
tween two versions of the pure polymorphic >.-calculus, one with explicit type
abstraction and application, the other without I described by Mitchell (1988) using
retyping junctions. Mitchell used these retyping functions (corresponding to our
conversions) to describe minimal typings for a restricted set of terms, but it is
not clear how his results might be extended to deal with larger classes of terIrul.
Many of the difficulties are caused by the flexibility of the language of types in
the systems considered by Mitchell (essentially the same as those in OP but with
out qualified types of the form 11' :::::> 0'"). We have avoided these problems here
by working with a source language based on a more restricted collection of type
schemes.

One of the biggest limitations of oUI work is caused by the decision to include
tJ-reduetion in the definition of equality (Section 5.4.2). As an immediate conse
quence, the results in this chapter cannot be applied to languages with call-by-value
semantics. The same problem occurs in other work, including the coherence proof
in (Blott, 1991). One possibility would be to rework the.e results using an ax
iomatisation of equality for call-by-value semantics such as that given by Riecke
(1990), but it would clearly be preferable to find a single formulation that can be
used for both cases. We might therefore consider ways of avoiding tJ-reduction
altogether. For example, a conversion Ar,).v.re could be treated I not as a term of
OP itself, but as a function in the meta-language, mapping each term E to the
OP term Av.Ee. Unfortunately, while this would eliminate many applications of
tJ-reduetion 1 there are several others for which there is no obvious alternative_

Another promising approach to establish coherence properties would be to use
ideas from category theory as in (Reynolds, 1991) for a language with intersec
tion types and subtyping and in (Hilken and Rhydeheard 1 1991) for a system of
type classes. One of the main attradions of the categorical approach from the
theoretical standpoint is the increased generality resulting from a higher level of
abstraction. The main benefit from a practical point of view is likely to be the
'variable-free' approach which avoids some of the messy technical details involving
free and bound variables. As mentioned in Section 5.5, our treatment of conver
sions has a strong categorical flavour and we would hope to be able to extend the
techniques developed here to provide a more general treatment of coherence for
qualified types. Section 9.1 sketches some simple first steps towards this goal.

79

Chapter 6

Theory into practice

This chapter describes a number offeatures that might be useful in practical work
with qualified types. We adopt a less rigourous approach than in previous chapters
and we do not attempt to deal with all of the technical issues that are involved.

Section 6.1 suggests a Dumber of techniques that can be used to reduce the size of
the predicate set in the types calculated by the type inference algorithm, resulting
in sma.ller types that are often easier to understand. As a further benefit, the
number of evidence parameters in the translation of an overloaded term may also
be reduced, leading to a potentially more efficient implementation.

Section 6.2 shows how the use of information about satisfiability of predicate sets
may be used to infer more accurate typings for some terms and reject others for
which suitable evidence values cannot be produced.

Finally, Section 6.3 discusses the possibility of adding the rule of subsumption to
the type system of OML to allow the use of implicit coercions from one type to
another within a given term.

It would also be useful to consider the task of extending the language of OML terms
with constructs that correspond more closely to concrete programming languages
such as recursion, groups of local binding and the use of explicit type signatures.
One example where these features have been dealt with is in the proposed static
semantics for Haskell given in (Peyton Jones and Wadler, 1992) hut, for reasons
of space, we do not consider this here.

6.1 Evidence parameters considered harmful

Using the algorithm described in Section 5.7 enables us to calculate, not just the
principaJ type scheme of an OML term, but also a principal translation that can be
used to implement that term. Assuming that the coherence conditions descrihed in

80

the previous chapter are satisfied, the principal translation is semantically equiva
lent to any other translation but it is not necessarily the best choice for an efficient
implementation. This section describes some of the problems associated with the
use of evidence parameters and suggests ways of obtaining alternative translations
that can be used, either to reduce the number of parameters that axe required, or
to eliminate the use of evidence parameters altogether,

6.1.1 Simplification

With the implementation described in the previous chapter, an OML term E of
type ("taj.Q ~ £.') is implemented by a translation of the form),w.E' where w is a
collection of evidence variables for Q and E' is an OP term corresponding to E that
uses these variables to obtain appropriate evidence values. More succinctly, the
translation of a term whose type is qualified by a set of predicates Q requires one
evidence abstraction for each element of Q. One obvious way to reduce the number
of evidence parameters in this situation is to find a smaller set of predicates Q'
that is equivalent to Q in the sense that each set entails the other. IT the original
translation is),w,E' and tV': Q' H- f: Q, then we can treat the term as having
type (T/aj.Q' ~ £.') with translation),tV',().tV,E')j which, using C8~), is equivalent
to),w',[//w]E1 In this situation we have a compromise between reducing the•

number of evidence parameters required, and the cost of constructing the evidence
f for Q from evidence for Q'.

We will refer to the process of finding a suitahle choice of predicates Q' from a.

given collection of predicates Q as simplification. One way to extend our current

type inference algorithm to support this feature would be to allow the rule:

w:QITA~W E--...E":. w:QIt-f':Q' w':Q'lt-f:Q
(simp)

w':Q'ITA~ E--...lfJwJE":.

to be used at any stage in the type inference process to simplify the inferred
predicate assignment.

Soundness of (simp) follows irrunediately from Theorem 5.18 using the entailment
w' : Q' H- f : Q. The other entailment, tV: Q H- f' ; Q', is needed to ensure
that the type inference algorithm still calculates principal types, even though the
evidence f' that it constructs is not actually used in the resulting translation.
In order to establish this property it is sufficient to show that the conclusions of
Theorem 5.28 a.re preserved hy (simp). More precisely, it is sufficient to show that,
jf Pit- e: RQ. P ISA ~ E' = [eJw]E" : r and w: Q and w': Q' are related as above,
then Pit- [eJw]f':RQ' and PISA ~ E'= [[eJw]f'/w1(lfJwJE"):r. Verification
of this fact is stra.ightforward a.nd we do not include full details here. The proof

81

relies an the equality w: Q I- w = If'/W'lf : Q which fallows from uniqueness of
evidence by composing the twa entailments above to obtain the second evidence
expression.

The fact that the algorithm obtained hy adding (8irnp) to the rules in Figure 5.9
is non-deterministic does nat cause any problems in practice. First of all, any
two applications of (simp) fonowing one after the other can be reduced to a single
application using the transitivity of 1+-. Furthermore, since the only place that
the predicate assignments are actually used in the type inference algorithm is in
the rule for typing let expressions, the only place where there is any benefit from
using (simp) is immediately before using the typing for a term E in the typing
of an expression of the form let x = E in F. Finally, the choice of Q' in the
formulation of (simp) above is arbitrary. More realistically, a suitable simplifica·
tion for a predicate assignment might be obtained using a function simplify such
that simplify(w : Q) returns a pair (w' : Q', f) containing a simplified predicate
assignment Wi: QI and evidence f satisfying the conditions above. Given these ob
servations, simplification might be dealt with using a deterministic type inference
algorithm that does not include (simp) and in which (let)""" is replaced by:

w:QITA~ E......."E':r PIITI(TAz,x:a)fl'" P......."FI:r'

P'I T'TA I'" (let % ~ E in F) ~ (let % ~ ~w'.[f fw]E' in F) : r'

where u = Gen(TA, Q' "" r) and (w': Q', f) ~ sirnpliJy(w: Q).

Apart from reducing the number of evidence parameters required, simplification

can sometimes help to avoid the kind of ambiguity problems described in Sec

tion 5.8.2. For a simple example, suppose that Any is a unary predicate symbol

such that 01+- e: Any r for any type r. Then a term with an ambiguous principal

type scheme Va.Any a ~ II where a ¢ TV(II) can be treated as having the unam

biguous type scheme Va.lI. Notice that this example can also be dealt with using

the approach outlined in Section 5.8.3 by defining AV(Any r) = 0.

We have not yet discussed how a simplification of a particular predicate assign

ment might he calculated. Of course, this will typically vary from one system of

predicates to another and the task of finding an optimal assignment QI with which

to replace a given assignment Q may he intractable. One fairly general approach

is to determine a minimal subset QI ~ Q such that Q' H- Q. To see that this is

likely to be a good choice, note that:

•	 Q ft- Q' by monotonicity of H- and hence Q' is equivalent to Q as required.

•	 Since Q' ~ Q, the number of evidence abstractions required using Q' is less
than or equal to the number required when using Q.

•	 The construction of evidence for a predicate in Q using evidence for Q' is
trivial for each predicate that is already in Q'.

82

6.1.2 Unnecessary polymorphism

The principal motivation fOT including the let construct in OML was to enable the
definition and use of polymorphic and overloaded values. In practice, the same
construct is also used for a number of other purposes:

•	 To avoid repeated evaluation of a value that is used at a number of points
in an expression.

• To	 create cyclic data structures (when combined with recursion in a 000

strict language).

•	 To enable the use of identifiers as abbreviations for the subexpressions of a
large expression.

Unfortunately, the use of evidence parameters for the value defined in a let ex
pression may mean that the evaluation of an overloaded term will not behave as
intended in these situations. For example, if f:Va.C a=> lnt --+ 0, then we have
a principal translation of the form:

let x = /0 in (x, x) "" let x = ().v.f v 0) in (x e, x e)

that treats x as a value of type Va.C a => a so that the evaluation of x e in
the translation is no longer shared. The problem here is that the type system
allows a stronger degree of polymorphism than the programmer might anticipate
(or require). The principal type of this expression is Va.Vb.(C a, C b) => (a, b)
and not Va.C a => (a, a) as might be expected.

If it is known that the value produced by this expression will be only used in
situations where both components of the pair are expected to have the same type,
then we might use the following translation to guarantee shared evaluation:

let x =/ 0 in (x, x) "" letx =/ e 0 in (x, x)

Note that this is only provably equal to the principal translation if we use the less
general typing above.

In a more general situation, this optimisation can only be applied to an expression
of the form let x = E in F if we can guarantee that the same evidence values
will be used for each occurrence of x in F. For example, if there is only one
occurrence of x in F, then this condition certainly holds. While there is no problem
with shared evaluation in this case, it is still useful to avoid redundant evidence
parameters. A slightly more sophisticated version of this optimisation is described
in Section 6.1.4 which describes a technique that can be used to detect a subset of
evidence parameters, that can be guaranteed to have constant values.

83

6.1.3 The monomorphism restriction

In practical programming languages such as Haskell or ML, top-level declarations
are treated as let expressions in which the scope of the defined varia.ble is Dot

fully determined at compile-time. As a result, we cannot hope to a.pply the kind
of optimisations described in the previous section.

The solution to this problem used in the current version of Haskell is to provide a
second form of local definition, let poly x = E in F in which the variable x may
be ~signed a polymorphic, but unqualified type in the expression F:

P IA I- E "--' E' : C7 Q IA" z: C7 I- F,,--, F' : T ,,= V T. T'

P, QIA I- (let poly x = E in F),,--, (let x = E' in P'): T

Note that we use the keyword poly to distinguish between the two forms of local
definition. The current version of Haskell uses a more sophisticated. rule although
the basic principle is the same: a local definition of the form let x = E in F is
treated as a let poly binding jf E is not a lambda abstraction and no explicit
type signature has been declared for the variable x. Otherwise, the definition is
treated as a standard let construct.

The fact that none of the predicates P used in the typing for E can be included in
the type scheme u means that the degree of polymorphism (roughly corresponding
to the number of type variables in T) may be limited since (VI) cannot be used
to quantify over any type variable in P. This aspect of the Haskell type system
is usually referred to as the monomorphism restriction since, in the extreme case,
u may be restricted to be a monomorphic type. The main advantage is that the
translation does not introduce additional evidence parameters.

Type inference for expressions involving the let poly construct is reasonably
straightforward. The only complication is that, having calculated a derivation
P IA .-w E ""-+ E' : r' for E we must use the simplification process described in
Section 6.1.1 to minimise TV(P). This is necessary to ensure that we assign a.s
general a type as possible to the variable declared in the local definitioDi it is not
just the predicates themselves that serve a.s constraints on the typing, but also the
type varia.bles that they involve. This requires an extra condition on the predica.te
entailment relation, namely that for any predicate set P, there is an equivalent set
Po such that TV(Po)';; TV(Q) [or any Q equivalent to P.

6.1.4 Constant and locally-constant overloading

This section describes a simple method for detecting when the values passed for a
particular evidence parameter are the same for each use of a variable bound to an

84

overloaded value. We begin by recalling the (let) rule that is used for typing local
definitions in the type system of Chapter 3:

P IArE:" Q IA" z : "r E' :T

P, Q IA r (let z = E in E') :T

This rule allows some of the predicates constraining the typing of E (Le. those in
P) to be retained as a constraint on the environment in the conclusion of the rule
rather than being included in the type scheme 17. However, in the corresponding
rule (let)- for the syntax-directed system, all of the predicates constraining the
typing of E are included into the type Gen(A, P => 1") that is inferred for E:

P IA ~ E : T P'I A., z: Gen(A, P =} T) ~ E' : or'

P'I A ~ (let z = E in E') : T'

Note that this requires the use of evidence parameters for all predicates in P, even
if the evidence supplied for some of these parameters is the same for each use of
x in E', In particular, this includes constant evidence (corresponding to constant
predicates; i.e. predicates with no free type variables) and locally constant evidence
(corresponding to predicates, each of whose free variables appears free in A).

From the relationship between the type inference algorithm W and the syntax
directed system, it follows that W has the same behaviourj indeed, this is essential
to ensure that W calculates principal types: If x ¢ FV(E'), then none of the
environment constraints described by P need be reflected by the constraints on
the complete expression in P'.

However, if x E FV(E'), it is possible to find a set F ~ P such that r H- F and
hence the type scheme assigned to % can be replaced by Gen(A, (P \ F) =* 'T),
potentially decreasing the number of evidence parameters required. by x. To see
this, suppose that Gen(A, P ::::} r) = Vai.P ::::} 'T. A straightforward induction,
based on tbe hypothesis that z E FV(E'), sbows that P' It- h/o;!P for some
types 'Ti' H we now define:

FP(A, P) = {(v: If) E P I TV(lf) <;; TV(A) J free predicates
BP(A,P) = P \ FP(A,P) bound pndicates

then F = FP(A, P) is the largest subset of P that is guaranteed to be unchanged
by tbe substitution [T;/O;], with the remaining elements of P in B = BP(A, Pl.
These observations suggest that (let)' might be replaced by:

PIA~ E:T P'IA~ E':T'=-'--,-;....,.,..-----,::-:----=c".------, (l,I)/
P'I A ~ (let z = E in E') : T'

85

if x ¢ FV(E') (the typing judgement involving E serves only to preserve the
property that all subterms of a well-typed term are also well-typed) and:

PIA~ E:r P'IA... : Gen(A.B=}r)~ E':r' P'1t- F (let).'
P'I A ~ (let. = E in E') : r'

where F =FP(A, P) and B = BP(A, P) in the c",e where. E FV(E').

Top level declarations can be dealt with using just (let)b', since the scope of such
a declaration can be taken to include all terms that might reasonably be evaluated
within its scope, which of course includes terms involving the variable x.

6.1.5 A template-based implementation

Since the use of evidence parameters seems to cause so many problems, we might
consider whether it is possible to find an alternative approach to translation that
avoids the use of evidence parameters altogether. For example, one simple alter
native to the implementation of type classes described in Section 4.5 that a.voids
the use of evidence parameters is to treat the bodies of cl ass and instance decla
rations as templates (i.e. macros) for the generation of function definitions. With
this approach, the expression [1.3]·" [2 .4J might be implemented as eqListInt
[1,3] [2,4] using the following definitions generated from the instance declara
tions for equality on integers and on lists:

eqlnt Int -) Int -) Eool
eqlnt primEqlnt

eqListInt [Int] -) [Int] -) Bool
eqListlnt [] [) True
eqListInt [] (y:yo) False
eqListInt (x:xo) [] ,.. False
eqListInt (x:xs) (y:yo) .. eqlnt ::r y .t.t eqListInt ::rs ys

Distinct versions of each overloaded function such as mem.ber and subset may
also be needed, but only for those instances of Eq for which they are specifically
required in a given source program; for example, it might be necessary to generate
code for finding members of lists of type [[lntJ] but not for lists of type [lnt].

This template-based approach can be adapted to any application of qualified types.
One simple way to describe the construction of suitable 'translations' for a given
term is with a type inference algorithm using judgements of the form P IA ~ E
E' : u with B where B is a collection of bindings of the form x' = xe. The value

86

hound to x' will he a speciansed version of the overloaded operator 'Z with evidence
parameters e. For example, the rule for inferring the type of a variable is as:

(z: (Va;.P => T)) E A (3;, v and z' Dew

[f3;/a;]PIA ~ z -. z': 1J1;/a;Jr with {x' = xv}

A simple optimisation to this rule would be to translate any variable z for which
the corresponding predicate set P is empty as itself, rather than introducing a new
variable Xl.

It is straightforward to recast the rules (-I), (-E) and (simp) in this framework,
and we will not include the details here. The rule for local definitions is more
interesting and produces a translation of the form (let D in F) where D is a set
of bindings x = E of expressions to variables:

v:PI TA I" E-. E': T with B

<7 = Gen(TA,P => r)

QI T'(TA.,x:<7) I" F-. F': v with B'

let x = E in F
QfT'TAf'" -. : 1I with BuB;

let {x' = [e/vJE' 1 (x' = xe) E B'} in F'

(B; is used as aD abbreviation for the set {(y' = ye) E B' 1 y t x }.) The
number of bindings in the translation of a local definition (and indeed, the size
of the binding sets B) can often be reduced by simplifying binding sets. For
example, a binding of the form ~ = xl can be eliminated if we already have a
binding x; = ze where e and I are equivalent.

These rules do not produce genuine translations of OML terms (in the sense of
Section 5.2). However, it is relatively easy to show how they correspond to the
principal translations used in Chapter 5 by treating binding sets as substitutions.

There are three significant problems with the template-based implementation:

•	 It may Jead to a code explosion; a small increase in the size of the input
program may result in a much larger increase in the compiled version.

•	 Some important optimisations, particularly that. of eliminating redundant
bindings as described ahove, may be expensive to implement.

•	 Binding sets B must be included in the compiled representation of top-level
definitions, and passed to a sophisticated linker with the ability to replicate
and instantiate sections of parameterised code before obtaining object code
in a suitable form for a conventional linker. In some cases, it may also be
necessary to include additional information in the interfaces for program
modules.

87

Despite this, it still seems likely that a satisfactory, general purpose implemen
tation based on this approach may be possible. For example, as we describe in
Chapter 8. the implementation of type classes in Gofer is closely related to the
template-based approach (working at the level of classes rather than individual
functions) but almost completely avoids the three problems mentioned above.

6.2 Satisfiability

One of the most important features of the systems of qualified types described in
this thesis is the ability to move 'global' constraints 00 a typing derivation into
the type of an ohject using (:::::} I):

P,~IArE:p

PIArE:~".p

This is essential in many situations where overloading is combined with polymor
phism: Without the ability to move predicates from the first component of a typing
PI A f- E: p into the type of an object we would not be able to apply (VI) for any
type variables appearing in TV(P), severely limiting the use of polymorphism.

On the other hand, with the formulation of the typing rules used in the previous
chapters there is no attempt to guarantee that the predicates introduced into the
type of an object using (:::::}I) are satisfiable. As we have already mentioned, an
object of type 7r ~ P can only be used if we can provide evidence for the predicate
7r. If no such evidence can be obtained, then any object with this type is useless.

This problem was noted by Volpano and Smith (1991) for the special case of the
system of type classes described in (Wadler and Blott, 1989). With this in mind,
they gave a stronger definition of well-typing that includes testing for satisfiability
of an inferred type scheme and showed that this makes the process of determining
whether a particular term is well-typed undecidable in an restricted version of the
Wadler-Blott system. The framework used in this thesis allows us to separate
typability from predicate entailment and to identify the problem as undecidability
of the latter. Nevertheless, the difficulty remains.

On the one hand we could simply ignore the problem since it will never be possible
to resolve the overloading for an object with an unsatisfiable type scheme and hence
any attempt to use it will fail. On the other hand, it would certainly be nseful
if the type system could be used to identify such objects at the point where they
are defined and produce suitable error diagnostics to assist the programmer. One

88

possibility would be to modify the role for typing let expressions with~

PIAf-E:u QJA.,x:uf-F:r Posa'u

P, Q IA f- (let x : E in F) : r

to ensure satisfiability with respect to a fixed set of predicates Po, where:

.,.Po ,at (Va,.P =} r) "",.Po It- [",ladP.

The following properties of this relationship between predicate sets and type
schemes are easily established and show that this notion of satisfiabi/ity is well
behaved with respect to our use of polymorphism, entailment and ordering:

• If P sat (1, then SP sat Su for any substitution S.

• If P sat u and Q H-- P, then Q sat u.

• If P sat u' and (1 2: (P 1£1'), then P sat u.

We conjecture that, if we restrict our attention to derivations P IA f- E : u for
which Po H-- P, then the development of a principal type algorithm and coherence
conditions described in the previous chapters will extend naturally to deal with
this extension. Note however that we will require decidability of Po sat u for
arbitrary Po and (1 to ensure decidability of type checking.

Another, more positive, application of satisfiability that does not appear to have
been considered elsewhere is to allow the use of more accurate types for partic
ular objects. As an example, consider the function >.r.{r.l, r.l) using the record
selection operator described in Section 2.4 which has principal type scheme:

Vr.VoVb.(r ha' I:a, r ha' I:b) =} r ~ (a, b).

On the other hand, for any given record type r, the types assigned to the variables
a and b must be identical since they both correspond to the same field in r. It
would therefore seem quite reasonable to treat f a'l having a principal satisfiable
type scheme:

Vr.Va.(r ha' 1:0) =} r ~ (a, aj.

To see how this might be dealt with more formally, recall the treatment of the
ordering between type schemes in Section 3.2.1. Writing the set of generic instances
of a type scheme as:

[Va,.P =} rl : {Q =} [";fadr I ", E Typ", Q It- [";fodP),

the ordering on type schemes is described by:

.,.

(1 S £1' lui'; (u'].

89

In a similar way can define the generic satisfiable instances of a type scheme with
respect to a. predicate set Po as:

[VOi. P => r]i:;/ {Iv;/O';]T I v; E Type, Poll- [v;fa;]P}

and defwe a satisfiability ordering, again with respect to Po, by:

(j <Uf I
-Po (j ¢? [(j]~:f ~ [a']i\.t

We can formalise the notion of principal satisfiable type in the same way as in
Section 3.4,3 using the (~p~t) ordering in place of (~). For the example above,
both of the type schemes given are principal satisfiable type schemes for the term
.\r.(r.l, d). The first of these is the type scheme that would be obtained using
Our type inference algorithm, but it would clearly be preferable if the algorithm
could be modified to give the second alternative, Further investigation is needed
to discover effective procedures or heuristics for calculating more informative types
that can be used to support this extension.

The use of prjncipal satisfiable type schemes would also be useful to eliminate some
of the problems with terms that would otherwise have ambiguous principal types.
One application where this would be particularly useful is for work with multiple
parameter type classes where ambiguities often seem to occur. For example, in
(Jones, 1990), we presented a type class for describing duality between lattices
wi th a definition of the form:

class Dual b a => Dual a b where camp :: a -> b

where comp represents a complement function, One of the simplest instances for
this class is:

instance Dual Baal Bool where

camp True .. False

camp False = True

Unfortunately, even simple terms involving camp have ambiguous principal type
schemes. For example:

camp, camp :: (Dual a b. Dual b c) .) a -> c

Despite this, if the above declaration is the only instance of Dual that ma.tches
the predicate Dual Baal a. then there is only one possible interpretation for the
expression let f • camp . camp in f False and tbe ambiguity can be a.voided.

90

As we have shown in this section, predicate satisfiability h~ several attractive
applications, but we should also mention some of the difficulties of using infor
mation of this kind in concrete implementations. For example, ~ highlighted in
(Jones, 1990), a system of type cl~ses can be used to write programs that are
highly modular and easily extended. In particular, the complete set of instance
declarations making up the definition of a particular overloaded operator may be
distributed across a number of distinct program modules that may not be visible
to the compilation system when processing particular modules. As a result, it
will often not be possible to use infonnation about satisfiability. For example, it
would probably not be sensible to treat the member function defined in a module
containing only the definitions:

class Eq a where (c:) :: a -) a -) Baal
member x [] z False
member x (y:ys) ~ x==y I I member x ys

as being ill-typed, simply because the module does not define any instances of Eq.

6.3 Incorporating the rule of subsumption

Although we have indicated how systems of predicates can be used to describe
subtyping(Section 2.3), the type systems presented in Chapters 3 and 5 ca.n only
be used to reason a.bout languages with explicit coercions. More precisely, for
derivation P IA f- E £I : (7, the translation E' will only involve a. coercion if one
of the free variables appearing in E is assigned a qualified type in A that involves
a predicate of the form -r' ~ -r.

More flexible systems of subtyping allow coercions to be used at arbitrary points
in a translation using the rule of subsumption:

PIA~E:T' PIt-,'C,

PIA~E:T

The corresponding rule for translations which makes the process of inserting coer
cions explicit is:

PIA f- E E'; r' Pit- c:r' ~ r

PIA ~ E--.. cIE1:'
where e[E'] denotes the application of the coercion c to the term E'.
Follow each application of one of the other typing rules with an implicit coercion,
it is straightforward to see tha.t, for any term E whose free variables appear in the

91

domain of a type assignment A and for any type T, there is a predicate set P such
that P IA I- E : T. However, the predicate sets involyed in these typings may not
be satisfiable or may be unnecessarily complex. Thus the most difficult problem
for type inference using the rule of subsumption is the need to reject terms with
unsatisfiable type schemes (as described in the last section) and to minimise the
use of coercions. These issues are discussed more fully in (Fuh and Mishra, 1989,
1990; Mitchell, 1991; Smith 1991).

The coherence of languages with explicit typing and subsumption has been es
tablished by Breazu-Tannen et at. (1989) and by Curien and Ghelli (1990). On
the other hand, the task of ensuring coherence for an implicitly typed language
with subsumption is likely to be considerably more difficult. In the first instance,
it seems unlikely that a system that allows user-defined coercions will be able to
guarantee the 'uniqueness of evidence' condition that is central to the work in
Chapter 5. It is also possible that the ambiguity condition formulated in Sec~

tion 5.8.2 may be too restrictive in same cases. For example, Fuh and Mishra
(1989) indicate that the recursively defined term:

napply = .\f.,\z.>.n.if n == 0 then z else f (napply f z (n -1))

has the (rather complex) principal type scheme:

V{O',,8,vr,v,v}.(~r ~ v,f3 ~ v,v ~ ~,v ~ a)::::} (a --+ (3) -i (vr --+ Int --+ ~).

This type is ambiguous since v appears only in the predicate set of the type
scheme and furthermore, as Fuh and Mishra point out, any attempt to eliminate
this type variable would be unsound because it would not be possible to capture
the relationship between the types assigned to 0, f3, v~ and v.

92

Chapter 7

Type classes in Haskell

This chapter expands on the implementation of type classes in Haskell using dictio
nary values as proposed. by Wadler and Blatt (1989) and sketched in Section 4.5.
For brevity, we refer to this a.pproach to the use of type classes as HTe. The
main emphasis in this chapter is on concrete implementation and we adopt a. less
rigourous a.pproach to formal properties of HTC than in previous chapters. In
particula.r, we describe a. number of optimisations that are necessary to obta.in an
efficient implementation of HTC ~ i.e. to minimise the cost of overloading. We do
Dot consider the more general problems associated with the efficient implementa
tion of non-strict funetionallanguages like Haskell which are beyond the scope of
this thesis.

Section 7.1 describes an important aspect of the system of type classes in Haskell
which means that only a particularly simple form of predicate exprESsion can be
uaed in the type signature of an overloaded function. The set of predicates in
a Haskell type signature is usually referred to as the contel':t and hence we will
use the term contel':t reduction to describe the process of reducing the context to
an acceptable form. Context reduction usually results in a small context, acts as
a partial check of satisfiability and helps to guarantee decidability of predicate
entailment. Unfortunately, it can also interfere with the use of data abstraction
and limita the possibilities for extending the Haskell system of type classes.

The main ideas used in the implementation of HTC are described. in Sectjon 7.2
including the treatment of default definitions which were omitted from our pre
vious descriptions. Section 7.3 highlights the importance of finding translations
that minimise the amount of dictionary conatruction used during the execution of
a program. Section 7.4 concentrates on an important special case - sharing dictio
nary values in recursive programs to avoid repeating the construction of the same
dictionaries on each recursive call of a particular function. Other opportunities
for sharing are described. in Section 7.5, with particular attention to sharing in hi

93

erarchies of dictionaries. Finally, Section 7.6 outlines a rather different approach,
suggesting an implementation of dietionary construetors as memo functions.

Some of the exampl~ used in this chapter (each of wbich is written using the
concrete syntax of Haskell) are degenerate and are unlikely to be of use in practical
applications. Nevertheless, we believe that they are representative of the kind
of problems that can occur in such programs. '1Ne a.re particularly concerned
with the use of type classes for large programming projects where a system of
modules supporting some form of separate compilation is essential. This imposes
an additional restriction on the compilation system: It is clearly unacceptable to
adopt a system in which the ability to obtain an efficient implementation of a
function relies on access to the source code for a value defined in another module.

7.1 Context reduction

An imporLant aspect o[the Haskell system is that only predicates of the form
C a (where C is a type class name and a. is a type variable) may appear in the
contexts of overloaded functions. Any other context obtained during the typt:'
inference process must be reduced to this form using rules derived from the class
and instance declarations appearing in the program concerned. As an example,
given the function definition:

f x ys = [xl == ys

we may infer that f has type a. -> [aJ -> Bool with the context Eq [a] (i.e. for
any type a such that [a] is an instance of Eq). Using the corresponding instance
declaration this constraint is reduced to Eq a and the actual typing that will be
used for f is:

f :: Eq a. => a. -> [aJ -> Bool

This process can be thought of as a partial attempt to check for satisfiability of
the predicate Eq [a.]; had there been no instance for equality on lists, an error
condition would be signaled by the type checker. On the other hand, no attempt
is made to determine whether there is any type a for which the final context Eq a
holds.

One advantage of context reduction is that it usually resultll in fairly simple con
texts in inferred type signatures and deals naturally witb the process of eliminating
predicates for specific instances of classes that can be statically determined during
type-che<:king. The restriction to predicates of the form C a is also useful as a
simple means of ensuring the decidability of type checking (or more accurately,

94

of predicate entailment), where each of the predicates in the context part of an
instance declaration must be of this form for some type variable a appearing in
the type expression to the right of the .) symbol. A simple argnment on the
structure of the type expressions involved can be used to prove that any attempt
to construct a dictionary for a given predicate will terminate. Several researchers,
for example (Volpano and Smith, 1991), have considered what extensions can be
made to the form of Haskell instance declarations without loosing this property.

Another motivation for the use of context reduction in Haskell was to attempt to
minimise the number of dictionary parameters used in the translations of over
loaded functions. Unfortunately, there are also a number of examples where the
number of dictionary parameters may actually be increased. For example, a func
tion with inferred context Eq (a.b) could be implemented using a single dictionary
parameter for this instance, but the corresponding HTC context is (Eq a. Eq b)
which leads to a translation with two dictionary arguments.

In many cases, the contexts obtained by the reduction process are quite natural,
but there are also some examples where the contexts are less easy to justify. For
example, consider the following program which might be used to define subset
inequality and set equality on an abstract data type of sets:

data Set a :: Set [a]

instance Eq a =) Ord (Set a) where

Set l:S <= Set ys all ('l: -) member l: ys) l:S

instance Ord (Set a) =) Eq (Set a) 'Where
l: == y = l: <= Y &:&: y <c l:

The use of the predicate Ord (Set a) in the !!econd instance declaration reflects
the fact that the ordering function « ...) is used to compare set values in the
definition of (=..) on sets. This context is not legal in Haskell and the declaration
must be rewritten as:

instance Eq a =) Eq (Set a) where
l: == Y l: <= Y &:&: Y <= l:

Given only this declaration, it is not particularly clear why the context Eq a should
be necessary.

Another problem with context reduction is that it interferes with the use of data
abstraction. Consider an HTC program that makes considerable use of the equality
operation on sets defined above and hence containing many functions whose type
signatures include predicates of the form Eq a as a result of comparisons between

95

sets. Suppose that we decide to change the representation of sets to use ordered
lists with the subset ordering defined hy:

instance Ord a => Ord (Set a) where
Set IS <- Set ys compare XS Y8

where compare [] yo - True
compare (x: xs) [) - False
compare (x: xs) (y' yo) x=-y - compare xs ys

x<y • False
y<x c compare (x:%s) ys

To make this work we must now rewrite each predicate of the form Eq a in the
original program arising out of a comparison between sets .as Ord a. This breaks
a fundamental principle of abstraction; it should be possihle to change the im
plementation of an abstract datatype without a.ny changes to the programs that
make use of that code.

By contrast, had we avoided the use of context reduction, the only place t1lat
any changes would be necessary would be in the implementation of the abstract
datatype, replacing the original instance declaration with that given ahove. This
is the only place where a predicate of the form Eq a must be replaced by Ord a;
at every other point in the program the use of an equality operation on sets is
reflected by the predicate Eq (Set a) that does not need to he changed.

To preserve true ahstraction we should not allow a program module containing
the definition of an abstract datatype to export the context part of any instance
declarations for objects of that type. For the example above, the interface for a
module defining the set datatype might contain the definitions:

data Set a abstract datatype of sets
inst ance Eq (Set a) equality
instance Ord (Set a) ordering

and each use of one of the set operations reflected by the use of predicates of
the form Eq (Set a) or Ord (Set a). Note that it would then be possible for
a program using this interface to access the set datatype to be accepted by the
compilation system, but generate a link-time error if a dictionary for a particular
instance Eq (Set t) cannot be constructed. This is analogous to attempting to
create an executable version of a program without linking in an appropriate library.

Using context reduction in the type inference process will sometimes result in
inferred typings that are not principal. For example, the principal type of the
expression (\xs -> XS.= []) is Eq [a] -> [aJ -> Bool, but the Haskell typing
is Eq a -> [aJ -> Bool. This is of little practical concern with the current defi
nition of Haskellj even though the predicates Eq a and Eq [aJ are not equivalent

96

(the second may be inferred from the first, but the converse dO€2!l not hold), the
restrictions on the form of Haskell instance declarations ensure that whenever one
holds, then so does the other. On the other hand, if the syntax of instance declara
tions were to be relaxed, as suggested by a number of researchers and implemented
in Gofer, then the loss of principal types would become more significant. For ex·
ample, in a program containing the instance declarations of the fonn:

instance Eq lnt where .
instance Eq [lot] where .
instance Eq [Bool] where .

the expression (\X8 -) xS""'[]) would not be acceptable unless we allowed a
predicate of the form Eq [a] as part of its type.

Anotber way in which context reduction can limit the form of instance declarations
that can be used is illustrated by an extension implemented as part of Haskell B.
(Augustsson, 1991) that allows overlapping instance declarations such as:

instance Class Char where ...
instance Class a ~) Class (a] where
instance Class [Char] where ...

This feature might, for example, be used to define a function show that produces
a printable representation of certain objects, printing strings (represented by lists
of characters) in the form "xyz" but using the standard notation such as [x J Y•zJ
for other kinds of list. Unfortunately, the use of context reduction means that we
cannot guarantee uniqueness of evidence needed as part of the framework used to
establish coherence in Chapter 5. For example, the expression:

let f xs .. Show (xs ++ xs) in f "Xl'

could result in a translation that eva.luates to "XX " or in an alternative that pro
duces II [I X I • I X I] II, depending on the way that this expression is type checked.
The problem is caused by the fact that context reduction allows a predica.te of the
form Eq [a] to be reduced to Eq a before the type a is known.

7.2 Implementation of type classes in HTC

This section outlines a simple implementation of type classes in HTC based on the
original approach described by Wadler and Blott (1989) and subsequently in more
detail by HiUIlIIlond and Blott (1989).

97

As a preliminary we mention one feature of the Haskell system of type classes
that was not mentioned in earlier chapter I namely the ability to support the use
of default definitions. For example, the definition of the class Eq given in the
standard prelude for Haskell (Hudak et aL, 1992) is a little more complex than the
definition used in Sectjon 2.2:

class Eq a where
(==), C/=) a -> a -> Baal member functions
x /= y not (x-=y) default definitions

Note that Eq has two member functions but includes a default definition for the
(/-) operator in terIrul of (....) I so that only the latter need be specified to define an
instance of Eq. Alternative definitions for (/=) can be provided in specific instances
by giving an appropriate definition in the corresponding instance declaration. The
most common reasons for overriding a default definition are to give a more efficient
implementation or to specify a different semantics for the value in question.

In a similar way, the full definition of the class Ord includes default definitions for
all of its member functions except «=) so that, only this single function needs to
be defined to construct an instance of the class:

class Eq a =) Ord a where

«), «=), (», (>=) :: a -> a -> Eool-- member functions

max, min a -> a -> a

x < y x <= Y II x f- y -- default definitions
x)a: y Y <= x
X) Y 'i < x
max x y x >= y x

Y >:0: X = Y
miD x y x <:0: Y = X

Y <= x = Y

Note how the assumption that Eq is a superclass of Ord is used in the default
definition for «) which uses both «=-) from Ord and (/1/£) from Eq.

7.2.1 Implementation of HTC dictionaries

The general form of evidence for a type class constra.int in HTC is a dictionary
containing implementations for each of the member functions for tha.t instance.

98

For example, the following type definition gives a suitable representation for dic
tionaries for the class Eq:

data EqO a • EqDict	 (a -> a -> 8001) -- (••)

(a -, a -, Baal) -- (fa)

An overloaded value of type Eq a ..> sometype can now be implementtd as a
function of type EqD a -) sometype where the additional parameter supplies the
appropriate dictionary value. Member functions are treated in the same way,
implemented as dictionary selector functions:

eq, neq .. EqD a -> (a -> a -> Bool)
eq (EqDict e n) ... e extract definition of (....)
oeq (EqDict e n) = n extract definition of (Is)

These operations are used to access the values of member functions in the imple
mentation of other kinds of overloaded functions. For example, the definitions of
member and subset in Section 2.2.1 might be implemented using the translations:

member ..	 EqD a -, (a -, [aJ -, Baal)
member d x [] •	 False
member d x (y:ys) =	 eq d % Y II mSlnber % ys

subset	 EqD a -, ([aJ -, raJ -, Baal)
subset d xs ys •	 all (\% -> member d % ys) %9

As a further example, the default definition of (f ..) can be implemented using:

defNeq .. EqD a -) (a -> a -> 8001)

defNeq d x Y "II: not (eq d % y)

Each instance declaration in a given program is used to generate a corresponding
dictionary constructor. A simple example is given by the dictionary constructor
for the instance Eq Jnt:

eqDlot EqD lot

eqDlot .. EqDict primEqInt (defNeq eqDlot)

This results in a cyclic data structure, using the dictionary eqDInt that is being
defined to obtain the correct parameterisation for defNeq.

99

The same approach can be used in more general examples and, in the case of a
parameterised dictionary constructor, a local definition must be used to obtain the
required cyclic data structure and avoid a potential space leak1

:

eqDList EqD a -> EqD raj

eqDList d ~ let d1 = EqDict (eqList d) (defNeq dl) in dl

Following (Wadler and Blott, 1989), a suitable definition for the eqList function
used above can be derived from the instance declaration for Eq [a] giving:

eqList .. EqD a -> raj -> raJ -> Boo1

eqList d [J [) True

eqList d [J (y:ys) .. False

eqList d (x:xs) [J False

eqList d (x:xs) (y: ys) eq d x y tt eq (eqDList d) xs ys

The implementation of superclasses in HTC is straightforward if we allow the
dictionary ror a particular instance of a class to include dictionaries for each of its
superclasses, in addition to the implementations for each of its member functions.
For example, the following data type definition and the associated family of selector
functions provide a representation for dictionaries of the the class Ord:

data OrdD a = OrdDict (a -) a
(a -) a

-) Baal)
-) Baal)

-
__

«)
«0)

(a -)
(a -)

a
a

-) Baal)
-) Baal)

-
__

(»
(>0)

(a -) a -) a) - max
(a -) a -) a) - min
(EqDict 0) - superclass Eq

lessThan (OrdDict It le gt ge mx mn sceq) =It
lessOrEq (OrdDict It le gt ge mx mn sceq) = le

scEqOfOrd (OrdDict It Ie gt ge mx mn sceq) = sceq

Note in particular the function scEqOfOrd :: OrdD a -) EqD a which extracts
the superclass dictionary for Eq a from the dictionary for Ord a. As an illustration

'The I,t construct in Haskell introduces a potentially recursive group of local hindings and
corre6ponds to the Ietrec or vhererec constructs in other languages. It should not be confused
with the let const.ruct used in the formal treatment oC GML.

100

of the use of scEqOfOrd, the default definition of «) in the definition of Ord can
he implemented as:

defLessTban d % Y 2 lessOrEq d x y tt neq (scEqOfOrd d) x y

Dictionary constructor functions are defined in the same way as before, taking care
to give appropriate values for superclass dictionaries. For example, the instance
declaration:

instance Ord a -> Ord [a.] where
[) <'" xs - True
(x:xs) <"" [) .. False
(x:xs) <.::: (y:ys) x<y I I (x"y t& xs<-ys)

can be used to generate a dictionary constructor of the fonn:

ordDList DrdD a -> DrdD (a)
ordDList d • let d1 "" OrdDict (detLessTban d1)

(ltDrEqList d)

(defHin dl)

(eqDList (scEqOfDrd d)) in dt

7.3 The problem of repeated construction

The performance of any implementation of HTC using dictionaries is very much
dependent on the costs associated with dictionary construction and selection of
member functions. A typical implementation will store the components of a dic
tionary in a contiguous array, for which the process of selecting a member function
has an obvious and efficient implementation. Construction of a dictionary amounts
to allocation and initialisation of the values to be held in it. This too can be im
plemented reasonably efficiently in constant time, particularly if heap space is
allocated directly from a contiguous block of free memory. Even so, dictionary
construction is still likely to be (at least) an order of magnitude more expensive
than member function selection, and it is difficult to see how this might be reduced.

While it is obviously sensihle to try to minimise the cost of each of these individua.l
operations, it is also sensible to try and minimise the number of times that they are
actually needed. The same idea motiva.tes standard optimisation techniques such
as corrunon subexpression elimination in imperative languages and full laziness in
non-strict functiona.l languages.

101

There are a. number of additional reasons why dictionary construction should be
kept to a minimum:

•	 Allocation of dictionaries in the heap reduces the amount of heap availahle
for other parts of the program.

•	 The number of garbage collections required. increases with heap use and hence
with greater rates of dictionary construction.

•	 Multiple copies of a single dictionary are redundant and waste heap space.

•	 The evaluation of a value held in a dictionary cannot be shared with physi
cally distinct copies of the same dictionary.

The following sections describe a number of situations jn which dictionary con~

struction can be reduced by careful sharing of dictionary values.

7.4 Repeated construction caused by recursion

Functional programs typically make extensive use of recursion so it is particularly
important to ensure that such programs can be implemented. efficiently. In a.
dictionary-based implementation of HTC, special precautions must be taken to
avoid repeating the construction of dictionaries for each recursive function call.

Section 7.4.1 shows both how this problem can occur and how it it can be avoided.
by using a slightly more sophisticated translation. The same techniques are ex
tended to groups of mutually recursive overloaded functions in Section 7.4.2. We
also highlight two issues that do not seem to have been noticed elsewhere; the need.
for a. restricted form of full-laziness as described in Section 7.4.3. and the problems
caused by (indirectly) recursive dictionary constructors illustrated in Section 7.4.4.

7.4.1 Recursion in the definition of overloaded functions

Recall the recursive definition of the equality on lists given in Section 7.2 in which
the translation of the equation (%:%s)·_(y:ys) • x".y ot.t: %9--yS is given by:

eqList d (x: xs) (y:ys) = eq d % Y U: eq (eqDList d) xs ys

Since the dictionary expression eqDList d appears on the right hand side of this
definition. the construction of this dictionary will be once repeated for each element
of the argument list in an expression such as [1,2.3J-=[1,2,3].

In this example, we can use a form of partial evaluation or some other compiler
driven transformation, based on the calculation:

102

eq (eqDList d) • eq (let dl • EqDict (eqList d) (deflleq d1) i. d1)
• let dl c EqDict (eqList d) (detNeq dl) in eq d1
... eqList d.

Substituting this into the definition above gives:

eqList d (%:%9) (y;ye) • eq d x y ~ eqList d xs ya

which does not involve eqDList and 80 avoids the need for dictionary construc
tion altogether. Whilst this approach is useful in particular cases, the calculations
required will typically require the use of arbitrarily complex laws that the com~

pilation system cannot reasonably be expected to apply. If for example, we had
used the line:

(xoxs)==(y:y.) x=~y && not (%9/=yS) -- rather perverse~

as part of the definition of equality on lists, then it would not be possible to avoid
the repeated construction of a dictionary value without using a law of the form
not (not x) = x.

A more practical solution, described in (Peyton Jones and Wadler, 1992) in a
slightly different form, is to move the translation of the equality on lists into the
definition of the dictionary constructor. In so doing, the problematic expression
eqDList d can be replaced with a direct reference to the dictionary being con~

strueted:

eqDList :: EqD • -> EqD ra]

eqDList d = let dl .. EqDict eqList (defNeq dl)

eqList r] () ... True

eqList (x:xs) (y:ys) = eq d x y tt eq dl xs ys
in dl

Having written the definition in this way, we can obtain an equivalent translation
by lifting the definition of eqList to give a new top-level function. This kind of
tra.nsformation will in any case be used in any implementation that incorporates
some form of lambda lifter, but is also useful in the discussion of mutually recursive
functions in the next section.

eqDList .. EqD a -> EqD ra]

eqDList d ~ let dl c EqDict (eqList d dl) (detNeq dl) in dl

103

eqList EqD a -> EqD [a] -> [a] -> [a] -> 8001
eqList d 41 0 [] True

eqList d dl (x:xs) (y:ys) • eq d x y tt eq dl xs ys

Notice that with this formulation, the equality test eqList is parameterised by
dictionaries for the actual overloa.dings required, and not (as might be implied by
context reduction) from some smaller group of dictionaries from which they may
be constructed.

In general, the translation of a recursively defined overloaded function f that uses
dictionaryalues dl', ... , din I constructed from dictionary parameters dl, ... , dn

must be written in the form:

f d1 ... dn let dl J

din' •

in
let f' xl ... xk = expr
in f'

where the use of dictionary con:struetor functions is restricted to the right hand side
of the definitions of dl', ... , dm '. Recursive calls to f in the original definition
must be replaced by calls to f' in expr. This en:sures that the values of any
constructed dictionaries are sha.red by all recursive calls to f and, at the same1

time, guarantees that none of these dictionary values will be constructed more
than once for any single redex of the form f dl ... dn.

As it stands, there is little to be gained by using this tra.nslation for recursive
functions that do not involve dictionary construction. For example, rewriting the
translation of member as:

member :: EqD a -) (a -) raJ -) Bool)

member d • let member J x [J ~ False

member' x (y:ys) • eq d x y I I member' x ys

in member'

gains very little except perhaps in an implementation that does Dot rely on lambda
lifting due to the reduced number of arguments to l1eJDber ' . In any other imple
mentation, the use of lambda lifting results in a final program of the form:

member d • member' d

104

member I d x 0 • False
member' d x (y:ys) • eq d x y I I member' d x Y8

where the definition of member' is now precisely that given in the original trans
lation in Section 7.2 and the equation for member results in an additiona.l (sma.ll)
run-time overhead unless special care is taken to eliminate that equation using
f]-reduction as described by (Peyton Jones, 1987).

7.4.2 Mutually recursive groups of functions

The same basic ideas can be extended to groups of mutually recursive definitions,
although in this case, it is easier to give the translations in their lifted (orm rather
than using local definitions. To illustrate this, consider the mutually recursive
functions defined by:

f, g Eq a =) a -) a -) Baal
f x Y x===y II g x y

g x Y [xl == [yl II f x y

Using the standa.rd process we infer that f has type a -) a -) Baal for any type
a such that Eq a, whilst g has the same type but restricted to those types a such
that Eq [a). This leads to the following translations:

f, g EqD a -) a -) a -) Sool
f d x Y eq d x y II g d x Y
g d x Y eq (eqDList d) [xl [yl IIfdxy

Note that the construction of the dictionary eqDList d will potentially he repeated
each time that the function g is called. This can be avoided (at the expense of an
additional dictionary parameter) using a more sophisticated translation such as:

f, g .. EqD a -) a -) a -) Baal
f d = fl d (eqDLi9t d)
g d . gl d (eqDLi9t d)

fl, gl .. EqD a -) EqD [a] -) a -) a -) Baal
f1 d dl x Y = eq d x y II gl d dl x Y
gl d dl x Y . eq dl [xl [yl II fl d dl x Y

In this example, we can think of f and g as corresponding to entry points to
the system of equations defined by the original equations while fl and gl can be
thought of as transitions within that system. The construction of eqDList d can

105

only occur on entry to the system of equations, either through f or through g,
and hence will no longer be repeated with each recursive call as in the original
translation.

The translation given above is essentially equivalent to that suggested in (Peyton
Jones and Wadler, 1992) which, for the current example, would be:

f d = let fl x y · eq d x y II gl x y
gl x Y · eq dl [x] [y] II fl x y
dl · eqDList d

in fl

g d = let fl x y = eq d x y II gl x y

gl x Y = eq dl [x] [y] II fl x y
dl = eqDList d

in gl

One obvious advantage of our formulation is that it automatically avoids the du
plication of the code for t.he functions fl and gl in t.he example above.

7.4.3 The need for a form of full-laziness

The following example illustrates the need. for (at lea'lt a restricted form of) full
laziness to avojd repeated dictionary construction in certain situations. This pro
vides motivation for including the more general transformations as a part of the
compilation system in a dictionary based implementation of HTC.

Consider a function doToOne of type Eq a => a -) Boo1 whose implementation
uses the dictionary parameter corresponding to the instance Eq a to construct
one or more additional dictionaries. The exact definition of this function is not
important; a simple example having the required properties is:

doToOne :: Eq a ~> a -> Boo1
doToOne x = [x] == [x]

The fact that the implementation of doToOne involves the construction of a dic
tionary will (in general) be hidden from the compilation system if the definition
of doToOne appears in an external module.

Now suppose that we define a function doToList given by:

doToList " Eq a => [a] -> [Baal]
doToList [] = []
doToList (x:xs) • doToOne x : doToList xs

106

Notice that doToLis't is equivalent to the function map doToOne (and indeed, the
definition of doToList might even be generated automatically by a sophisticated
compiler that unrolls the definition of map in an attempt to optimise the expression
map doToOne).

The translation of doToList is as follows:

doToList EqD • -) [aJ -) [Bool]

doToList d[] .[]

doToList d (x:~s) ~ doToOne d x : doToList d xs

Any attempt to evaluate the complete list produced by an application of this
function will repeat the construction of the redex doToOne d (and hence repeat
the dictionary construction in doToOne) for each element of the argument list.

Happily, the same observation also makes the solution to this problem quite obvi
ous. The essential step is to abstract not just the appropriate dictionaries required
as in Section 7.4.1, but also the application of each overloaded operator to its dic
tionary arguments. For the current example, this gives the translation:

doToList ;: EqD a -) [a] -) [Bool]
doToLis't d = doToList!

where doToList' [] . []
doToList l (x:u) doToOne' x doToList' xs
doToOne' "" doToOne d

An additionn.l benefit of this translation is that the garbage collector can reclaim
the storage used for dictionary values as soon as the implementations of the ap
propriate member functions have been extracted from it.

The second translation of doToList is exactly what we might expect to ohtain
using a translation to fully· lazy form as described in (Holst, 1990; Peyton Jones and
Lester, 1991). The basic motivation for such transformations is that no expression
need be evaluated more than once after its free variables have heen bound to
particular values. Given the translation of a particular function in the form:

t dl ... dn = let fl xl ... xm a expr in t'

any occurrences of an overloaded function applied to dictionary values constructed
from dl, ... , dn will be a free expression in tbe definition of f' and hence will be
abstracted (possibly as part of some enclosing maximally free expression) by the
transformation to fully-lazy form.

Since every overloaded function can be expected to make use of at least one over
loaded operator, even if dictionary construction is not involved, it it is sensible

107

to extend the transformation given in Section 7.4.1 so that the translation of any
overloaded function takes the form:

f d1 ... dn .. let dl ... -- diet ionary values'

elm' •

in
let 01 == -- overloaded functions

op •
in
let fl xl ... xk a expr -- function definition
in fl

where 01, ... , op are the overloaded operators abstracted from expr.

In justifying the optimisation for the example above, we have implicitly assumed
that the translation of doToOne was written in such a way as to guarantee that
doToOne d is a redex. A suitable translation with this property for the sample
definition of doToOne given above:

doToOne :: EqD a -> a -> Bool
doToOne d = let doToOne l x ~ eqdl [x] [x]

eqd1 = eq d1
d1 = eqDList d

in doToOne '

As a further example, a revised translation for member that makes use of the
optimisa.tions described in this chapter is:

member :: EqD a -> (a -> [aJ -> Bool)
member d = let member' x [] .. False

member' x (y:y6) .. eqd x y II member' x ys
eqd .. eq d

in member'

The only overloaded function involved here is a member function eq that is im~

plemented as a selector function and does not require any form of dictionary con~

struction. Nevertheless, this definition is still an improvement over the previous
versions since it ensures that the selection from the dictionary (i.e. evaluation of eq

108

d) is evaluated at most once, after which the remaining portions of the dictionary

d may be discarded as described above.

In the interests of clarity, we will generally avoid giving full translations in the

following sections, safe in the knowledge that these can in any case be obtained

from the translations given using a standard transfonnation to fully~la.zy form.

As a. final comment, it is interesting to return to tbe observation made at the

beginning of this section tha.t doToList is equivalent to m.ap doToOne. Had we

used this equivalence to define doToList, then the translation obtained would be:

doToList :: EqD a -) raJ -) [8001)
doToList d ~ map (doToOne d)

Note that the redex doToOne d will now only be constructed a single time. Thus
the use of higher order functions may ultimately give better performance tban
the explicit recursive definitions obtained by unrolling in a system that does not
implement at least the restricted form of full laziness described in this section.

7.4.4 Recursion in dictionary constructors

The same kinds of problem described above in the context of recursive user de
fined overloaded functions can also occur with compiler generated functions such
as the dictionary constructors corresponding to each instance declaration in a
given program. A similar range of techniques must therefore be used to avoid
unnecessary repeated construction of dictionary values. The problems discussed
in this section do not appear to be widely known and (for example) are not dealt
with in translations given in (Peyton Jones and Wadler, 1992).

As an example, consider the type of arbitrary branching labelled trees defined by:

data Tree a = Node a [Tree aJ

The standard definition of equality on trees of this kind is described by the follow~

ing instance declaration:

instance Eq a -) Eq (Tree a) vhere

Node x xs == Node y ys = xaay tt XS==Y9

Using the approach described in Section 7.4.1, we obtain the following definition
for the corresponding dictionary constructor:

eqDTree :: EqD a -> EqD (Tree a)

eqDTree d = let d1 ~ EqDict (eqTree d) (defNeq d1) in dl

109

eqTree :: EqD a -) Tree a -) Tree a -) Baal

eqTree d • let eqTree' (Node x xs) (Node (y ya)

= eq d x y ik eq d2 xs Y8

d2 • eqDList (eqDTree d)

in eqTree J

Unfortunately, this definition will potentially repeat the construction of the dic
tionaries eqDTree d and eqDList (eqDTree d) for each individual node in the
tree.

A more efficient implementation can be obtained by providing eqTree with access
to the dictionary eqDTree d as well as the dictionary parameter d from which it
is obtained:

eqDTree d = let dl s EqDict eqTree (defNeq dl)

d2 = eqDList dl

eqTree (Node x xs) (Node y ys)

=eqdxy U eq d2 xs ys

in dl

Lifting out the definition of eqTree gives:

eqDTree d = let d1 ~ EqDict (eqTree d d2) (defNeq dl)

d2 = eqDList dl

in d1

eqTree d d2 (Node ••sJ (Node y ys)

~eqdxy ik eq d2 xs ys

This shows that an efficient implementation of equality on trees should be param·
eterised by dictionaries that reflect the actual overloadings required (i.e. Eq a and
Eq [Tree a]) rather than by dictionaries from which those overloadings may be
obtained (i.e. Eq aJ.

7.5 Other opportunities for shared dictionaries

In the previous section, we focussed on the use of a syntactic condition - func·
tional dependency and, in particular. recursion - to detect places in a given source
program where repeated dictionary construction can be avoided. By contrast, this
sectioll describes a number of situations in which the information produced by the
type checker can be used to discover further opportunities for shared dictionaries.

110

Unfortunately, there are also a number of examples in which repeated construction
seems to be unavoidable.

7.5.1 Simple examples

The translation of the definition of & particular function is in part determined
by the algorithm used to reduce an inferred context to the form required. in an
implementation of HTC. It is often the case that there a.re several different ways
of reducing a given context to an acceptable fonn, yielding translations that are
operationally distinct, although (one would hope!) semantically equivalent. As a
simple example, consider the function defined by:

f Eq a =) a -) a -> Baal
f	 x Y [xl==[yl && [y]=-[xl

From this definition, we may infer that f has type a -) a -> Baal with context
(Eq [aJ. Eq [a]) in which the repeated predicate corresponds to the repeated
use of (==) in the definition. There are two ways of reducing this context to the
single predicate Eq a:

•	 Olle possibility is to reduce each predicate separately to give (Eq a, Eq a)
and then simplifying to Eq a. This corresponds to the translation:

f EqD a -) a -) a -) Baal

f d % Y • eq (eqDList d) [xl [yl U eq (eqDList d) [yl [x]

that (potentially) repeats the construction of the dictionary eqDList d.

•	 A more efficient translation can be obtained by explicitly sharing a single
dictionary for Eq [al between its two uses. This corresponds to simplifying
the original context first to Eq [a] and then reducing this to Eq a:

f EqD a -> a -> a -> Baal

f d x Y eq dl [xl [yl U eq dl [y] [xl

vhere dl = eqDList d

Note that tbe second translation can he obtained from the first using an optimisa
tion based on common subexpression elimination (Aho, Sethi and Ullman, 1986).
Such techniques are not generally used in the implementation of non·strict func
tionallanguages since they can introduce unanticipated (and of course, unwanted)
space leaks (Peyton Jones, 1987, Section 23.4.2).

111

A rather more tricky problem is illustrated hy the following pair of definitions:

g (Eq a. Eq b) ~) a -) b -) 8001
g x y [x]==[x] && [y]==[y]

h Eq a =) a -) Bool
h x g x x

whose translations are as follows:

g' :: EqD a -) EqD b -) a -) b -) Bool
g' da db x y • eq (eqDList da) [x] [xl U eq (eqDList db) [y] [yl

h' EqD a -) a -) Bool
h' da x g' da da x x

The expressions (eqDList da) and (eqDList db) in the translation of g win both
result in the construction of a dictionary, even if da and db are equal as in the
translation of h.

It is relatively easy to construct examples in which the number of times that a
dictionary will be constructed is exponential in the depth of the calling graph.
To illustrat.e this point consider the family of functions with g_O :: g, h_O .. h
and functions g_n and h_n for positive natural numbers n given by the pseudo
definition:

g_n .. (Eq a. Eq b) -) a -) b -) Bool
g_n x y • h_(n-l) x && h_(n-l) y

h_n Eq a =) a -> 8001
h_n x r= g_n x I

Then the evaluation of h_3 1 and h_6 1 will repeat the construction of eqDList
eqDlnt 8 and 64 times each respectively.

For this particular example, it is possible to reduce the problems of repeated
construction by giving explicit type signatures g_n :: Eq a ...> a -) a -) Bool
(for each n) that (when combined with the optimisations described in Section 7.4)
will avoid the construction of all but one dictionary. There are two problems with
this solution; first of all, a restricted typing may place an unacceptable limit on an
otherwise general purpose function. SecondlYt it may be unreasonable to expect
a prograrruner both to determine when such a problem occurs and then to choose
the hest places to insert suitahle type signatures.

112

An alternative approach is to use a second set of functions in the transla.tion of this
family of definitions, that separates the construction of dictionaries from their use.
To begin with, we introduce the following variants of the translations given above
that use additional dictionary parameters to avoid the construction of dictionary
values:

g_oJ J g_n' .. EqD [a] -> EqD [a] -> • -> b -> Bool -- n)=!
g_O' dla dlb x Y = eq dla [x] [x] tt eq dlb [y] [y]
g_n' dla dlb x y • h_Cn-l), dla x tt h_Cn-l)' dlb y

h_n' EqO [a] -) a -) Bool -- 0>""0

h_n J dla x .. g_n J dla. dla x

Given these definitions, we can recode the translations of each of g_n and h_n as:

g_n .. EqO a -) EqO b -> a -> b -) Bool -- n>"'O
g_n da db • g_n' CeqDLi5t da) CeqDLi5t db)

h_n EqO a -> a -) Bool -- n>=O
h_n da h_n' CeqDList da)

Using the analogy of Section 7.4.2, the functions in the second group of definitions
may be thought of as a entry points to those in the first. In order to be able to de
tect opportunities for this kind of optimisation, the compilation system will require
a sophisticated analysis, working at the level of complete source modules rather
than single groups of mutually recursive definitions as in the previous sections.
Even then, the translation given above can only be produced if the definitions for
all of the functions involved appear in a single module.

7.5.2 Sharing in hierarchies

In the c~e of the example f in the previous section, the compilatioD system need
only detect identical predicates in the inferred context to obtain the required traus
latian In general, the construction of a dictionary will require the construction of a
small hierarchy of dictionary values, both as superclass dictionaries and as param
eters to dictionary constructors. It is tberefore possible that the inferred context
for a given predicate may contain two predicates for which the corresponding dic
tionary hierarchies are not disjoint. In such cases, it is clearly desirable to arrange
for the overlapping portions to be shared between each dictionary construction.

As a simple example, consider the function:

f x Y5 Z5S [x] <=ys " [ys] "zss

113

lhal haslype a -> [al -> [[all -> Bo01 for any lype a such that Ord [a] and
Eq [[all. The corresponding HTC lyping is:

f :: Ord a -> a -) raJ -) [[a]] -> Baal

and we have a. translation of the form:

f d . let fJ % ya zss = lessOrEq dl [x] Y8 1I eq d2 [ys] zss
dl ~ ... dictionary for Ord raJ . . .
d2 • ... dictionary for Eq [[all ...

in f'

There are two ways to construct suitable dictionaries dl and d2 from a. dictionary
d for Ord a. Considering each dictionary separately, we obtain:

dl :: ordDList d Eq a

d2 = eqDList (eqDList (scEqOfOrd d» / "-. "!
d: :Drd a Eq [al Eq [al

"-. / I
dl: :Drd [al d2: :Eq [[all

The diagram on the right illustrates the corresponding hierarchy (lines marked
with arrow heads indicate the use of dictionary constructors, other lines correspond
to superclass inclusions; an expression of the form d: : Ord a indicates that d is
a dictionary for the instance Ord a). Note that this requires two copies of the
dictionary for Eq [a].

As an alternative, we CAn construct the dictionary for d2 using part of the hierarchy
constructed for d1:

Eq a

dl ordDList d / "-.
d: :Drd a Eq [al

d2 eqDList (scEqOfOrd d1)

"-.dl: :Drd /[a] '"d2: :Eq [[all

Unfortunately, it is not always possible to arrange for all of the overlapping parts
of a dictionary hierarchy to be shared using only the standard form of dictionary
constructor functions. To illustrate this, suppose that a program contains the
declarations:

class Eq a => Demo a where .'.

instance Demo a ~> Demo raJ where

114

and suppose that the inferred context for a function f is (Ord [aJ. Demo raJ).
The corresponding HTC context is (Ord a. Demo a) and the translation of f win
be of the form:

f OrdD a -) DemoD a -) ...
f od dd let dl = ordOList od dictionary for Ord [~

d2 = demoDList dd dictionary for Demo raJ
in

... dl ... d2 ...

where demoDList is the dictionary constructor corresponding to the instance dec
laration for Demo given above. Note that the construction of dl is completely
independent from that of d2. Even if we assume that the dictionaries od and
dd share the same superclass dictionary for the instance Eq a, the full hierarchy
needed still duplicates the dictionary for Eq raJ as shown in the following diagram:

r-)q~
od: :Ord a Eq Cal Eq Cal dd: :Oemo a

~/ ~/
dl::Ord [aJ d2::0emo [aJ

This problem can be solved by applying the same technique to dictionary construc
tor functions as was used with ordinary functions in Section 7.5.1. Specifically, we
provide two 'entry points' for each dictionary constructor, one of which takes ad
ditional parameters as required to avoid construction of any auxiliary dictionaries.
The appropriate definitions for instances of the form Ord [aJ are as follows:

ordDList OrdO a -> OrdO Cal
ordDList d • ordDList' d (eqDList (scEqOtOrd d))

ordOList' :: OrdO a -> EqO Cal -> OrdO [aJ
ordDList J d dl ¥ d2 where d2 • OrdDict (defLessThan d2)

(listLessOrEq d)

dl

Note that the definition of ordDList is equivalent to the previous definition given
in Section 7.2. The dictionary constructors for instances of the fonn Demo [aJ are
defined in a similar way, with types:

115

demoDList •• DemoD a -> DemoD [a]
demoDList' :: DemoD a -> EqD [a] -> DemoD [al

U5ing these functions, there are a number of waY5 of defining a translation for f
which en5ures that a single dictionary for Eq [aJ is shared between the dictionaries
for Ord[a] and Demo [aJ, one of which is:

f DrdD a -> DemoD a -> ."
f od dd = let dl ~ ordDList l od ed dict for Drd [al

d2 ~ demoDList' dd ed dict for Demo [a]
ed • eqDList (sqEqOfOrd od) diet for Eq [al

in
..• dl ... d2 '"

The collection of dictionaries used in this definition is illustrated by:

/Er~

od: :Ord a ed: :Eq [a] dd: :Demo a

1/ ""'I
dl: :Drd [al d2::Demo [a]

7.5.3 Repetition in superclass hierarchies

A particularly important special case of the kind of problems described in the
previous section occurs in the ronstruction of the superclass hierarchy for a. given
dictionary. To illustrate the basic problem, consider the following simple hierarchy
of clas5es and superdasses, based on an example given in (Wadler and Blott, 1989)
to illustrate the use of superclasses.

class Top a where

t :: a -) a

class Top a ==> Left a where Top a

1 :: a -> a

Left a Right a

class Top a ""> Right a where

/
"'"r :: a -> a /

Bottom a

class (Left a. Right a) ~> Bottom a where "'"

b :: a -) a

116

As before, we introduce an representation for the diction;:~ries of each of these
classes, including a. collection of superclass selectors.

data TopD a = TopDict (a -> a)

data LeftD a = LeftDict (a -> a) (TopO a)
data RightD a '" RightDict (a -> a) (TopO a)
data BottomD a ~ BottomDict (a -) a) (LEftD a) (RightD a)

scTofL (LeftDict 1 td) • td -- superclass selectors
scTofR (RightDict r td) • td

scLofB (BottomDict b ld rd) = ld
scRofB (BottomDict b ld rd) = rd
scTofB = scTofL . seLofB

For convenience, we have included the selector scTofB that returns a dictionary
for Top a from a dictionary for Bottom a. Note that we could have equally well
defined this by scTofB ,. scTofR . scRofB, corresponding to a second patb be
teen the two dictionaries in the diagram above.

Now suppose that we have a program containing instance declarations of the form
C a =) C [a] for each of the classes Top, Left, Right and Bottom. Assuming
that the implementations for the member functions in each of these instances are
described by functions tList, lList, rList and bList respectively, the corre
sponding dictionary constructors a.re:

topDList .. TopD a -> TopO [a]
topDList td ,. TopDict (tList td)

leftDList LeftO a -> LettO raJ
leftDList ld • LeftOict (lList ld) (topOList (scTofL ld»

rightDList RightO a -> RightO raJ
rightDList rd ~ RightDict (rList rd) (topDList (scTofR rd»

bottomDList :: BottomD a -) BottomD [a]

bottomOList bd = BottomDict (bList bd) CleftDList (ocLofB bd»

(rightDList (scRofB bd»

Any attempt to construct a dictionary for an instance of the form Bottom [a]
using just these functions will require the construction of two distinct dictionaries
for Top [a], one as a superclass of the dictionary for Left [aJ and the other as
a superclass of the dictionary for Right [a].

117

This problem can be solved using the same techniques as in the previous sectionsj
providing a second set of dictionary constructors that use additional parameters
to avoid dictionary construction:

topDList' :: TopD a -> TopD [aJ

topDList J td • TopDict (tList td)

leftDList' :: LeftD a -> TopD [aJ -> L.ftD [aJ

leftDList' ld td • LeftDiet (lLiot ld) td

rightDList' :: RightD a -> TopD [oj -> RightD [oj

rightDList' rd td • RightDict (rList rd) td

bottomDList' :: BottomD 0 -> LeftD [oj -> RightD [oj

-) BottomD [a]

bottomDList' bd Id rd = BottomDict (bList bd) ld rd

Using these functions we can implement the original set of dictionary constructors
in such a way that the same dictionary for Top [aJ is shared between both the
Left and Right superclasses of Bottom [a]:

topDList topDList'

leftDList ld ~ lEftDList' Id (topDList' (scTofL ld))

rightDList rd ~ rightDList rd (topDList' (scTofR rd))
'

bottomDList bd = bottomDList' bd ld rd

whEre	 rd = rightDList' (oeRofB bd) td
ld = leftDList} (seLofB bd) td
td = topDList' (seTofB bd)

If the example above seems rather artificial, it is perhaps worth pointing out that
the standard prelude in Haskell defines a rather more complicated hierarchy of
standard classes:

Eq Tu:t

/ '"/ /
Ord Hum

'" Real Fractional '"
Integral RealFrac Floating

/ '" / '"/
RealFloat '"

118

Now consider an insta.nce of the form RealFloat (Complex a) where Complex a
is the type of complex numbers where the real and imaginary parts are elements of
some numeric type a (ranging over those types in the class RealFloat). Evaluating
the complete dictionary structure for this example without taking the precautions
described in this section will re~lUlt in the construction of seventeen dictionaries
(only nine are actually required) including four distinct copies of the dictionary
for Eq (Complex a).

1.6	 Alternative implementations of dictionary
construction

The examples in the previous sections suggest that complex optimisation tech
niques must be used to minimise the amonnt of construction (Section 7.4) and
duplication (Section 7.5) of dictionaries in an efficient implementation of HTC.
This leads us to consider alternative implementations of dictionary construction
that limit the impact of these problems even if such optimisations are not used.

One possibility is to implement dictionary constructors as (lazy) memo functions.
With this scheme, each dictionary constructor ma.intains a set of pointers to pre
viously constructed (and possibly only partially evaluated) dictionaries for specific
instances that are still present in the heap. The compiled code for a parame
terised dictionary code firsts checks the pointer set to see if the dictionary to be
constructed has already been allocated in the heap. A previously constructed dic
tionary is returned if possible l although a new dictionary will be built (and added
to the appropriate pointer set) if necessary_

While this would certainly improve the space cost of dictionary construction, it
is not at all clear what effect it would have on the time required to 'construct'
a single dictionary. Except in the case of very small pointer sets, it is unlikely
that searching the pointer set could he implemented more efficiently than a linear
sequence of machine instructions to huild a dictionary value in the heap.

A number of interesting variations on this scheme can be obtained by modifying
the behaviour of the garbage collector:

•	 As -it stands, we would expect the pointer to a given dictionMy to be removed
from the pointer set when the storage for that dictionary is reclaimed during
garbage collection.

•	 Alternatively, we could arrange to retain all dictionaries during garbage col
lection, possibly taking the opportunity to move them out of the gMbage
collected beap altogether. Thus, once a particular dictiona.ry has been con
structed, it will rema.in in storage (even if it is never used again) until the

119

program terminates, and will be shared by every subsequent attempt to con
struct the same dictionary.

•	 In an attempt to reduce the cost of examining the pointer set to determine
whether a particular dictionary has aJready been constructed, we might also
consider a hybrid of the implementation approaches that have been discussed
in which:

Dictionaries are initially allocated on the heap without any attempt to
detect repeats.

At most one copy of any given dictionary is retained during garbage
collection.

This scheme still suffers from many of the defects cited in Section 7.3, but
does go some way towards eliminating the costs (in terms of both space and
repeated evaluation) of maintaining distinct versions of a single dictionary.

Practical experience is needed to investigate the absolute costs of each of these
alternatives, and to determine what (if any) performance gains can be achieved.

120

Chapter 8

Type classes in Gofer

This chapter describes GTe, an alternative approach to the use of type classes
that avoids the problems associated with context reduction, while retaining much
of the flexibility of HTC. In addition, GTe benefits from a remarkably clean and
efficient implementation that does not require sophisticated compile-time analysis
or transformation. As in the previous chapter we concentrate more on implemen
tation details than on formal properties of GTe.

An early description of GTe was distributed. to the Haskell mailing list in February
1991 and subsequently used as a basis for Gofer, a small experimental system
based. on Haskell and described in (Jones, 1991c). The two languages are indeed
very close, and many programs that are written with one system in mind can be
used with the other with little or no changes. On the other hand, the underlying
type systems are slightly different: Using explicit type signature declarations it is
possible to construct examples that a.re well typed in one but not in the other.

Section 8.1 describes the basic principles of GTC and its relationship to HTC.
The only significant differences between the two systems are in the methods used
to simplify the context part of an inferred type. While HTC relies on the use of
context reduction, GTC adopts a weaker form of simplification that does not make
use of the information provided in instance declarations.

Section 8.2 describes the implementation of dictionaries used in the current version
of Gofer. As an alternative to the treatment of dictionaries as tuples of values in the
previous chapter, we give a representation which guarantees that the translation
of each member function definition requires at most one dictionary parameter.
This scheme is not restricted to implementations of GTC and would be equally
well-suited to an implementation of HTC.

Finally, Section 8.3 describes the concrete implementation of type class overloading
used in the current version of Gofer, including the representation and abstract
machine support for dictionary values.

121

8.1 The basic principles of GTe

Studying the examples in the previous chapter we can identify a simple idea that
can be used to avoid the problems of context reduction in many of these cases: The
translation of an overloaded. function should be parameterised with the dictionaries
that will actually be required, rather than some set of dictionaries from which they
may be constructed. This is the principal motivation for the development of GTe.
The inferred context of an overloaded function can be simplified by removing
duplicates and eliminating predicates that can be obtained from a superclass or for
which the overloading required. is completely determined (if, for example, the type
at which an overloaded function is used is a monotype). The following definitions
illustrate each of these techniques:

exl :: Eq a => a -> Baal -- inferred context: (Eq " Eq .)
ex! x - x,o"",x II x....x

ex2 :: Ord a ~> a -> Baal -- inferred context: (Eq 0, Ord 0)

ex2 x •];"'''''X II x<-x

ex3 :: Int -> Bool -- inferred context: (Eq Int, Ord Int)
ex3 x .. x==4 II x<~2

In addition, the process of context reduction in HTC allows the use of instance
declarations to replace a given predicate with (zero or more) predicates on simpler
types. This is illustrated by the following example:

ex4 .. Eq a -> a -> Baal inferred context; (Eq (aJ)

ex4 x • (xJoo(xJ using HTC

Notice that this is exactly the point at which dictionary constructor functions (and
hence dictionary construction) are introduced; using the techniques described in
the previous section we obtain the translation:

ex4 :: EqD a -> a -> Baal

ex4 da = let dla = eqDList d

ex4' x s eq dla [x] (xJ

in ex4'

The fact that this requires the construction of a dictionary is hidden. As a result,
many implementations will implement the expression (ex4 0 .u: ex4 1) using the
transla.tion (6x4 eqDlnt 0 &It ex4 eqDlnt 1) which repea.ts the construction of
a dictionary for Eq [Iut].

122

To determine the type of a function using GTC we follow essentially the same
process as above except that we do not allow the use of instance dedarations to
simplify a context where this would require the use of a dictionary constructor
function. Thus the types assigned to each of the functions 8:11, eJ:2 and e:l3 using
GTC are the same as those given above, but the typing for 8:14 becomes Eq [a.]
=) a. -) Bo01 with translation:

e:l4 :: EqD [aJ -) a. -) Bo01
ex4 d x = eq d [x] [x]

It is no longer necessary to arrange for 8:14 d to be treated as a redex (and indeed,
to do so might result in a less efficient implementation since no work can be shared
in this way). Notice that, in contrast with GTC, it is the responsibility of the caller
(and not of the function being called) to construct whatever dictionary values are
required.

The formal definition of predicate entailment (with respect to a type class environ
ment f) in GTC is given by extending the standard rules for predicate entailment
with the rule:

PH- d:,,' (Class Q,,,,Q' =} "') E r
PH- (d."):,,

This is the same as the rule (super) in Figure 4.2. Note however that we do not
include any rule corresponding to (inst) and hence the definition of I+- does not
make use of the information supplied by instance declarations. As a result, the
dictionary values obtained using this weaker definition of predicate entaihnent do
not involve dictionary construction.

Dictionary constructor functions will only be used to obtain dictionaries for specific
(usually monotype) instances of a class. In addition, the construction of these dic
tionaries can be performed at compile-time or at run~time treating the dictionaries
as top-level constants. The formal details of dictionary construction for GTC (in
cluding the construction of recursive dictionary structures in Section 8.2.2) will
not be described here, The basic principles can be illustrated by considering the
expression [[1 .2]] == [[2]] which has inferred typing Eq [[lnt]] ::I) Bool, in
dicating that a dictionary for Eq [[lnt]] is needed. The expression can then be
evaulated using the translation eq eqDListListlnt [[1,2]] [[2JJ with dictio
nary constants defined by:

eqDlnt .. EqD Int dictionary for Eq lnt
eqDlnt details as before

eqDListlnt EqD [Int] dictionary for Eq [lnt]
eqDListlnt • eqDList eqDlnt

123

eqDLiatListInt •• EqD [[Int]] dictionary for Eq [[Int]]
eqDListListInt eqDList eqDListIntE

Note that this corresponds very closely to the template-based approach described
in Section 6.1.5, except that it works at the level of classes, defining separate
dictionaries for each instance rather than individual functions. On the other hand,
the code defining the equalHy on lists is shared between all dictionaries for instances
of Eq for types of the form [a], avoiding the potential code explosion caused by
the naive implementation of the template-hased approach.

The fact that the ex4 function requires the construction of a dictionary is reflected
by the predicate Eq [aJ in its type. In particular applications, to evaluate the
expression (8x4 0 U ex4 1) for example, we can pass the appropriate dictionary
value to ex4 using the translation (ex4 eqDListlnt 0 tt ex4 eqDListlnt 1)
and sharing a single copy of the dictionary. On the other hand! if we use ex4 in a
definition such as:

ex5 :: Eq [a] ~> a -> Bool
ex5 x .. 9%4 x ,k,k ex4 x

where the required overloading for ex4 is not fully determined, then the constraint
Eq [a] in the type of ex4 is passed onto the callers of ex5 as reflected by the type
signature.

In this way, GTC pushes the process of dictionary construction up through the call
tree towards the root which is usually required to have a particular monomorphic
type. As we move up the tree, the set of instances of overloaded operators that
are actually required in the lower portions of the tree becomes increasingly well~

defined so that, by the time we reach the root, the translated progra.m involves
only constant dictionaries and all overloading has been resolved.

As a further illustration of the way in which GTC avoids the problem of re
peated construction, consider the functions doToOne and doToList described in
Section 7.4.3. The GTC typings for these functions are:

doToOna Eq [a] => a -> Bool
doToList :: Eq [a] => [a] -> Bool

and the corresponding translations are:

doToDne .. EqD [a] -> a -> Bool
doToDne dl21 X • eq dla [x] [x]

doToList •• EqD [a] -> [a] -> Bool
doToList dl21 [] . []

doToList dl21 (x:xs) ~ doToOne dl21 x : doToList dla xs

124

Even if these two definitions, neither of which involves the construction of a dic
tionary, appear in separate modules and are called from a third, there will still
be no danger of repeated construction. A tra.nsformation to fully-lazy form might
still be useful, for example, to avoid the repeated evaluation of eq d1a, but this is
no longer essential for an efficient implementation.

8.2 The Gofer implementation of dictionaries

This section describes an alternative to the representation of dictionaries as fixed~

sized tuples of values as used in the description of HTC in the previous chapter.
This representation has been used as the basis for the concrete implementation of
Gofer described in the next section. Fonnal properties of the underlying predicate
system (such as verification of uniqueness of evidence) will not be addressed here.

8.2.1 A notation for records with subtyping

For convenience we will describe the representation of dictionaries in Gofer using

a simple form for record values with implicit subtyping.

Record values will be denoted by expressions of the form:

{ 11 :: vl, ... , In • vn }

where 11, ... , 1n are distinct labels a.nd vl, ... , vn are expressions whose values
are associated with the corresponding labels in the record. In a similar way, we
will write the type of this record as:

{ 11 " tl •...• In :: tn }

where tl, ... , tn are the types of the expressions vl, ... , vn respectively. As
before, the order in which the components of a record or record type are listed
has no bearing on the value of type denoted. Thus b-l, y.,2} and {y-2, x.t}
represent the same record whose type may be written as either {x: : Int, y:: lnt}
ody: :lnt. <: :lot}.

For the purposes of this work, we assume that the sets of label and funetion names
used in a particular program are disjoint and we write the operation of record
selection (extracting the value associated with label 1 in a record r) as (l r)
ra.ther than r.l as used, for example, in Section 2.4.

Following Cardelli (1988), we say that a record type r is a subtype of another
record type s if every labelled field in s also appears with the same type in r.
In other words, a value of type r can be used in any situation where a value of

125

type s is required. For example, {x: : Int, y:: Int} is a subtype of {x: : Int} and
elements of either type can be used as arguments of the function:

xPlusOne :: {x: :Int} -) Int
xPlusOne rac ~ % rec ~ 1

The record type formed by combining all of the fields in a record of type r with
another of type s with disjoint sets of labels will be written sir. Note that r is a
subtype of s if and only if r is equivalent to sIs' for some s'.

8.2.2 Dictionaries as records

As in the representation for dictionaries in HTC, the dictionary value correspond
ing to a particular instance of a type class must contain implementations for each
of the member functions at that instance. In the special case of the class Eq, we
can describe this by saying that the type of a dictionary for an instance of the
form Eq t must be a subtype of EqD t where:

type EqD a ={ eq a -) a -) Bool.

neq a -) a -) Baal}

Not surprisingly, the default definition for the (I.) operator takes the same form
as in the implementation of HTC:

defNeq .. EqD a -) (a -) a -) Baal)
defNeq d x y not Ceq d x y)

The dictionaries corresponding for particular instanc€:'3 of Eq add additional fields
to the record structure of EqD t. In the special case of equality on integers, no
additional structure is necessary and the following definition suffices:

eqDlnt .. EqD Int
eqDlnt • { eq • primEqlnt. neq • defNeq eqDlnt }

In general, the dictionary for a given instance of a class also includes dictionaries
for each predicate in the context part of the instance declaration. In the case
of equality on lists, any dictionary for an instance of the form Eq [a] will also
contain a dictionary for Eq a:

type EqDList •• EqD raJ I { eqa :: EqD • }

126

eqOList :: EqD a -> EqOList a
eqDList d ,. let dl ::t {	 eq • eqList dl.

neq • defNeq dl.

eqa = d }

in dl

eqList :: EqOList a -> [a] -> [a] -> Bool

eqList d [] [] • True

eqList d [] (y:ys) • False

eqList d (>:15) [] .. False

eqList d (.:xs) (y:ys) • eq (eqa d) x y it eq d xs ys

As a further example, consider the definition of equality on trees described in
Section 7.4.4. The COrrect instance declaration for GTe is as follows:

instance (Eq a, Eq [Tree a)) => Eq (Tree a) vhere

Node 1 xs == Node y ys = x==y 11 xs==ys

The context part of this declaration is justified by the fact that, in order to compare
two trees of type Tree a, we need to be able to compare values of type a and lists
of type [Tree a). The corresponding implementation is given by:

type EqOTree a =EqO (Tree a) f { eqa EqO a.
EqO [Tree a] }e~

eqDTree :: EqD a -> EqD [Tree a] -> EqO (Tree a)

eqDTree d df = let dl c { eq ~ eqTree dl. neq • defNeq d1,

eqa • d, eqf c df }

in dl

eqTree .. EqOTree a -> Tree a -> Tree a -> Bool

eqTree dl (Node x xs) (Node y ys)

• eq.(eqa dl) • Y 11 eq (eqf dl)

To illustrate the use of the dictionary constructors in these examples l the follow
ing definitions show how we can obtain dictionary values for a function using an
equality test on trees of type Tree [Int):

dl = eqOLi st d2 :: EqOList (Tree [Int])

d2" eqDTree d3 dl :: EqOTree [Int]

d3 .. eqDList d4 :: EqDList Int

d4 ,.. eqDlnt EqO Int

127

These definitions can be expanded, either at compile-time or run-time, to obtain:

dl .. { eq .. eqList dl. neq - defNeq dl, eqa • d2 }
d2 .. { eq .. eqTree d2. neq defNeq d2. eqa • d3, eqf • dl }D

d3 = { eq = eqList d3, neq a defNeq d3, eqa • d4 }
d4 = { eq • primEqlnt. neq • defNeq d4 }

Superclasses are implemented in much the same way as before. For example, the
type of a dictionary for an instance Ord t will be a subtype of OrdD t where:

type OrdD a .. { It :: a -> a -> Bool, Ie :: a -) a -) Bool,

gt :: a -> a -> Baal, ge :: a -) a -) Bool,

mx :: a -> a -> a, mn :: a -) a -) a.

sceq :: EqD a }

It is interesting to note that the definitions of eqList and eqTree given above do
not appear to follow Our general rule that efficient implementations of overloaded
functions should be parameterised by the complete set of dictionaries that they
require. For example, the definition of eqList is parameterised by a dictionary
for Eq [a], but there is no longer any need to add another dictionary parameter
for Eq a since this can be obtained from the eqa field of the first dictionary. In a
similar way, every function used to implement a member function in a particular
class can be given a tra.nslation that requires at most one dictiona.ry parameter.

8.2.3	 An optimisation to reduce the number of dictionary
parameters

As we have described it above, the GTC system does not make use of the infor
mation supplied in instance declarations to simplify the. the context part of a.n
inferred type. In some cases, this may mean that the GTC translation of an expres
sion requires more dictionary parameters than the corresponding HTC translation
(the reverse is also true - see the discussion in Section 7.1). As an example,
consider the function defined by f x .. x""""x ,U: [x] [x] that has GTC typing
(Eq a, Eq [a]) ~> a -> Bool with a translation requiring two dictionary pa~

rameters, while the HTC typing is Eq a -) a -) Bool and leads to a translation
requiring only one parameter.

The current implementation of Gofer takes advantage of the representation for dic
tionaries described here to support an optimisation that can often reduce the size
of cOntexts in inferred types and hence reduce the number of dictionary parameters
needed. To see how this is possible, note that any dictionary d for an instance of
the form Eq [a] contains a dictionary eqa d for Eq a. ThuB the example above

128

can be treated as ha.ving type Eq [a] ..> a -> Baal with translation:

f .. EqDList .-) a -> Baal
f db x .. eq (eqa ell.) x x tt eq dl. [xl [xl

More generaUy, the reduction process can be described by extending the definition
of predicate entailment with the rule:

P It- ~ (Insl P' "" ~) E r ~'E P'

P I+- 1('

In retrospect, it is not clear whether this idea should be used since it makes the rules
for simplifying contexts somewhat less intuitive and can sometimes break the use of
data abstraction in much the same way as context reduction in HTC (Section 7.1).
It is likely that this optimisation will not be supported in future versions of Gofer
except, perhaps, when the simplified context is specificaUy requested by an explicit
type signature declaration provided by the programmer.

8.3 A concrete implementation

Despite the use of variable size records and subtyping, it is relatively straight
forward to obtain an efficient mapping of the implementation described in the
previous section onto a conventional machine. This section describes the approach
taken in the Current implementation of Gofer and highlights some further advan
tages of the representations chosen for the GTe approach to type classes.

8.3.1 Representation of dictionaries

For each class there is a corresponding record type ClassD a whose components
are the member functions and super class dictionaries common to aU instances
of that class. Every dictionary for an instance of this class will hav.e a type of
the form ClassD tlSpecifics t where the record type Specifics t contains
values determined by the form of the instance declaration used to construct the
given dictionary. As a result, every dictionary for an instance of the class can
be represented by an array of values with an initial portion corresponding to the
type ClassD t and a second corresponding to Specifics t. There is no need. to
store the labels for the fields in each record since each label can be associated with
a fixed offset in a dictionary of the appropriate subtype of ClassD t. Thus the
potentially expensive operation of searching for the value of a field in a labelled
record can be implemented by a simple array access.

129

The following diagram illustra.tes one possible concreie representation for the dic
tionary values d1. d2J d3 and d4 used. in the previous section to give an equality
test on trees of type Tree [lnt]. In each case, the implementations of (••) and
U=) are held in the first and second positions respectively so that, for any instance
Eq t, the appropriate definition of either operator can always be extracted from
the corresponding position in the dictionary, regardless of the type t.

d1 :;:. e<J.DList d2 EqDList (Tree [lnt])
d2 "" e<J.DTree d3 d1 : : EqDTree [lnt]
d3 ::II 8<J.DList d4 .. EqDList lnt
d4 = 8<J.Dlnt .. EqDlnt	 d4::Eq Jnt

The fact that GTe treats dictionary values as constants whose structure and
mutual dependencies can be fully determined at compile time (or perhaps, in a
system with separate compilation, at link time) has a number of useful ~enefits:

•	 The complete set of dictionaries required in any given program ca.n be ca.l~

cuiated., and a suitable a.mount of storage can be allocated and initialised
at link time. There is DO need to store dictionary va.lues witbin the main
garbage collected heap.

•	 Dictionary constructor functions (such as eqDLi st and eqDTree) are replaced
by a general dictionary construction mechanism within the compilation sys
tem that is nsed whenever the type inference system can determine that a
specific instance of a. given class is needed. By implementing this as a memo
function along the lines suggested in Section 7.6, we can guarantee that there
is at most one dictionary for any gil/en instance of a class and hence avoiding
the problems described. in Section 7.5. Using this technique, collections of

130

mutually recursive dictionary values such as the example illustrated above
can be constructed without any risk of non-termination. The use of memo
functions within the compilation system obviously has no impact on the
performance of the compiled program.

A further small, but useful, benefit of this approach is that there is no need
to provide a runtime representation for dictionary constructor functions such
as eqDList and eqDTree.

•	 There is no need for delayed evaluation (using closures for example) of dic
tionary expressions; each dictionary COnstant will already be in weak head
normal form (in the sense that each of its components may be accessed with
out further evaluation). In particular, there is no need to check to see if
a dictionary value has been evaluated before extracting a value from it, as
would typically be expected in a system using la.~y evaluation. Note that
this only applies to the dictionaries themselves and not to the values that
they contain which will still need to be evaluated at runtime in the usual
manner.

8.3.2 Abstract machine support

The current implementation of Gofer is based on an abstract machine with a small
instruction set, similar in many ways to the Chalmers G-Machine (Augustsson,
1984; Johnsson, 1984), but extended with a single instruction to support GTC
overloading. The same basic approach should also be applicable to other families
of abstract machine such as TIM (Fairbairn and Wray, 1987) and the Spineless
Tagles. G·machine (Peyton Jones, 1992).

The Gofer abstract machine evaluates an expression held as a (potentially cyclic)
graph, 'unwinding l tbe spine of the outermost function application, and recording
each function argument on a stack. The value at the head of the application point!
to a set of machine instructions that carry out an appropriate graph rewrite using
the valnes held on the stack. (The stack is also used to record temporary values
during each rewrite.) This evaluation process continues until the expression graph
has been reduced to the required normal form. See (Peyton Jones, 1987) for further
details and background.

To give a flavour of the Gofer abstract machine, the definition of function com
position given by compose f g x • f (g x) might be compiled to the following
sequence of machine instructions:

compose:	 LOAD argument x arguments f, gJ X on stack

LOAD argument g

HKAP 1 apply g to •

131

LOAD argument f

MKAP 1 apply f to (g xl
UPDATE root overwrite redex for lazy evalua.tion

Rrn1RII

The LOAD instruction used here pushes a specified value onto the top of the stack
and the MKAP n instruction replaces the top n+ 1 values on the stack by the result
of appling the top value to the remaining D arguments. A number of a.dditional
instructions are used to implement pattern matching, local definitions and certain
optimisations, whose description is beyond the scope of this thesis.

Dictionaries and overloading are supported by adding a single instruction, DICT
n, that replaces the value on the top of the stack (which must be a pointer to a
dictionary) with the value stored in the nth position of the dictionary. The same
instruction can therefore be used to access both class members and superdass
or instance specific dictionaries. The type checking process ensures that DICT
instructions are only executed when the value on the top of the stack is indeed
a pointer to a dictionary, in the same way that we normally expect it to ensure
that KKAP instructions are only ever executed when the value on the top of the
stack is a function. For example, the lambda expression (\x -> x .. I:: x) has type
Eq a a> a -> Bool with translation C\d x -> eq d x x), and compiles to the
following code:

LOAD argument x second argument to (....)
LOAD argument ::r: first argument to (••)
LOAD argument d fetch dictionary for Eq a
DICT 1 member function in first slot
IlKAP 2 apply member to args
UPDATE root
RETURN

As a second example, including the use of DIeT instructions to access superclass
dictionaries, consider the function:

f Eq (aJ -> a -> a -> (a] -> Bool
f x Y xs - x==y I I IS== (y]

which has translation:

f EqDList a -> a -> a -> [aJ -> Bool
f dla x y xs eq (eqa dIal x y I I eq dla xs (y]

132

The following sequence of instructjons gives one possible implementa.tion for this
function:

CONST [] ; push constant [] onto stack

LOAD argument y

CONST (:) ; push constant (:) onto stack

IIKAP 2 ; NB. [y] abbreviates y : []

LOAD argument J:S

LOAD argument d ; fetch dictionary for Eq [a]

OHIT 1 ; eJ:tract definition of (~~)

MKAP 2 ; and apply to J:S and [y]

LOAD argument y

LOAD argument J:

LOAO argument d ; fetch dictionary for Eq [a]

OICT 3 ; get subdictionary for Eq a
OICT 1 ; eztract definition of (••)
MKAP 2 i and apply to J: and y
CONST II
IIKAP 2
UPDATE root
REITUllIl

Note that there is no need to provide a runtime representation for member func
tions and superclass or instance specific dictionary selectorsj each of these is im~

plemented using the DICT instruction that can typically be implemented very com·
pactty and efficiently as a single jnstruction on many conventional machines.

A pa.rticularly useful optimisation when generating code that makes use of over
loaded functions at specific instances of a class can be described by a simple peep
hole optimisation. If d is a pointer to a partkular fixed dictionary, then the
sequence of instructions:

CONST d push dictionary onto stack
DICT m eztract mth element

is used to access the mth element d [m] of the dictionary pointed to by d. Since type
checking (and hence, construction of dictionary values) is completed before code
generation, it is possible to determine the value of d [m] and, if it is a constant,
replace the jnstructions above with the single instruction:

CONST d[m] j push mth element of dictionary d

133

Note that, in the special case where d[m] is itself a dictionary, this instruction
might in turn be combined with a further DICT instrudion using the same opti
misation. For example, using this technique, the code for (\n -) n-=O) might
be:

INT
"LOAD
CaNST
MKAP

o
argument n
primEqlnt
2

push integer constant onto

integer equality test

stack

UPDATE
RETURN

root

which completely avoids any ofthe costs of defining (='1::) as an overloaded function.

Optimisations of this kind were described in (Wadler and Blott, 1989; Hammond
and Blott, 1989), but it is pleasing to see how easily they can be implemented on
the abstract machine described in this section.

8.3.3 Some comments on performance

]n an attempt to gain some insight into the costs of GTC overloading using dictio
nary parameters, the current version of Gofer includes implementations of generic
equality and ordering functions of type a -> a -> Bool and of monomorphic inte
ger arithmetic functions of type Int -> Int -> Int as built~in primitives. Using
these functions, we have been able to compare the perfonnance of overloaded pro
grams with the corresponding alternatives using generic or monomorphic functions.
]n each case, these programs have been run using the same version of the Gofer
system (by selecting between different versions of the standard prelude) so tha.t
fa.ctors such as the performance of the graph reduction engine, memory allocation
and garba.ge collection are common to both.

Whilst more detailed investigation is needed before drawing firm conclusions, our
experience so far suggests that the overloaded versions of the progra.ms considered
actually run faster and use less memory (by a fador of two in some cases)! The
prioGipal reasons for this appear to be:

• There is no need. for any run-time type checking with the overloaded version
of the program. On the other hand, an attempt to compare two integer
values, for example, using the generic equality function must first evaluate
both of its arguments and check that they are indeed integer values before
the required comparison can be made.

• Evaluation and storage for	 the values of member functions is shared between
all uses of any given dictionary.

134

This is a very promising result, suggesting that the use and implementation of
overloaded functions need not have the significant clfect on performance that was
anticipated with early implementations of Haskell (Hammond and Hiott, 1989).
However, further investigation is needed before any firm conclusions can be drawn
from these results.

It is also important to make sure that the number of dktionary parameters used
in the translations of individual functions, and the number of dictionary constants
used in the tra.nslations of complete programs are not too large. Our experience
with Gofer suggests that neither of these potential problems occurs in practical
applications.

135

Chapter 9

Summary and future work

10 this thesis we have developed a general formulation of overloading based on the
use of qualified types. Applications of qualified types can be described by choosing
an appropriate system of predicates and we have illustrated this with particular
examples including Haskell type classes, explicit subtyping and extensible records.
We have shown how these ideas can be extended to construct a system that com
bines ML~style polymorphism and overloading in an implicitly typed programming
language. Using the concept of evidence we have extended this work to describe
the semantics of overloading in this language, establishing sufficient conditions to
guarantee that the meaning of a given term is well-defined. Finally, we have de
scribed techniques that can be used to obtain efficient concrete implementations
of systems based on this framework.

From a theoretical perspective, some of the main contributions of this thesis are:

•	 The formulation of a general purpose system that can be used to describe a
number of different applications of overloading.

•	 The extension of standard results, for example the existence of principal
types, to the type system of OML.

•	 A new approach to the proof of coherence, based on the use of conversions.

From a practical perspective, we mention:

•	 The implementation of overloading using the template-based approach, and
tb.e closely related implementation of type class overloading in Gofer.

•	 A new implementation for extensible records, based on the use of evidence.

• The use of information about satisfiability of predicate sets to obtain more
informative inferred types.

136

Throughout this thesis we have concentrated on the use of polymorphism and
qualified types in implicitly typed, purely functional languages using extensions
of Milner's framework. Nevertheless, the basic features of qualified types can also
be incorporated in other type systems - for example, in explicitly typed polymor
phic A-calculus as illustrated in (Jones, 1992a). The same techniques should, in
principle, extend to other kinds of language although we have not attempted to
investigate this here.

The foHowing sections describe three additional areas for further study, outlining
some preliminary ideas in each case.

9.1 Towards a categorical semantics

This section sketches a simple categorical semantics for a version of simply typed
A-calculus that supports qualified types but not polymorphism. It is hoped that
the ideas described here will serve as a useful starting point for future work, to
extend the semantics to include polymorphism and generalise the coherence results
in Chapter 5 to a wider class of semantic models.

We write S x T for the product of two objects Sand T and fst : S x T ---lo S
and snd: S x T T for the first and second projects respectively. The universal ---lo

property for products ensures that, for any f: X Sand g: X T, there is a ---lo ---lo

unique 'rrow (I, g) : X ---> S x T such th.t fst· 1], g) ~ f and sud· 1], g) ~ g.
In particular, for any pair of arrows f :X ---+ Sand 9 : Y T, there is a unique ---lo

.rrow (I x g) ~ if· fst.g· sud):X x Y ---> S x T such that: f· fst ~fst. (f x g)
and g' sud ~ .md . (J x g).

Definition 9.1 A categorical model of a predicate system consists of a category
Pred with a terminal object 0 and binary product (_, _) whose objects and arrows
represent predicates (or predicate assignments) and entailments respectively.

Entailments of the form v : P It- e : Q are described by arrows P ~ Q and
the basic rules of predicate entailment are sununarised in the right band column
of Figure 9.1 with the corresponding rules from Figure 4.1 on the left. A full
treatment would require a notion of substitution on objects of Pred but we do
not consider this here and hence there is nO rule corresponding to (close). More
significantly, since the categorical form of predicate entailments is variable-free
there is no need to include rules corresponding to (evars) and (rename).

137

(id) v:P II- v:P p~p

(!mn) v:P1I-0 P~0

Us!) v:P,w:Q It- v:P F,Q!!!...P

("d) v:P,w:Q II- w:Q P,Q~Q

(vuiv)
v:PlI-e:Q v:PlI-f:R

v:P II- e: Q.J:R

P--'--+Q P....!.....R

P~Q,R

(trans)
v:PlI-e:Q w:QlI-f:R

v:PII- [e/wlJ:R

P--'--+Q Q""!""'R

P~Q....!-R

Figure 9.1: Categorical interpretation of predicate entailment.

Definition 9.2 A categorical model of simply typed A-calculus with qualified type8
con81sts of:

•	 A predicate system Pred as in Definition 9.1.

•	 A cartc8ian closed category C such that any ob}ects A and B have a product
A x B, an erponential (A -. B] and an arrow eval:rA -10 B] X A -t B. The
adjoint transpose of an arrow f : C x A -t B i.B written),1 : C -t [A -10 B]
an.d is the unique arrow with the property that f = eval . ().I x id).

•	 A Junctor e: Pred -10 C mapping predicates to evidence value8 that pre8erves
tenninals and finite products (in particular, we require e(p, Q) ~ fP X eQ).
For any entailment P ~ Q, the arrow ep ~ eQ should be uniquely
detennined by P and Q alone to guarantee 'uniquene.'Js of evidence '.

Each typing judgement P IA I- E : T corresponds to an arrow fP x A ~ T.
The complete set of typing rules are given in Figure 9.2, again with the categorical
semantics in the right hand column and the corresponding typing rule on the left.

The task of establishing coherence is equivalent to showing that any two arrows
E	 E'E:P x A --> T and E:P x A --> T such that Erase(E) = Erase(E') are equal.

This corresponds very closely to a standard notion of coherence in category theory.
For example, MacLane (1971) refers to a coherence theorem as an assertion that
'every diagram (of a certain class) commutes'.

138

P IA, x: r f- x: r f:P x (A x T) .~, T

PIAf-x:r £P x A ~ T

PIA, y:r' f- x: r £P x (A x T) j~' £P x A ~ T

PIAf-E:r'-H f:P x A ..£. [T' ---> T]

PIAf-F:r' £P x A....!..... T1

PIAf-EF:r £P x A <!4 [T' -. T] X T' ~ T

PIA,x:r'f-E:r f:P x (A x T') ..£. T

PIA f- Ax.E: T' ---> r t:P x A '~) [T' ~ Tj
where s: (A x B) x C ~ A x (B x C)

PIA f- E: Q,*p t:P x A ..£. [[Q ---> RI
Pfl- e:Q P-'!""Q

PIAf-Ee:p t:P x A (E~") [f:Q ---> RI x [Q ~ R

P,v:QIAf- E:p [(P,Q) x A..£. R

P IA f- .Iv.E : Q '* p t:P x A '~) [f:Q ---> RI
where r:(f:P x A) x f:Q ~ [(P, Q) x A

Figure 9.2: Categorical semantics {or qualified types

139

9.2 Constructor classes

Throughout this thesis we have used predicates on types to assign types to over
loaded values and we have seeD many examples where this is useful. On the other
hand, there are some examples where an apparently natural application of over
loading that cannot be described in a. convenient manner in this way. Tills section
describes an extension that allows the use of predicates on a language of type
constructors, including types as a special case, resulting in a much more flexible
system.

As an example, consider the standard map function used to apply a function to each
of the elements of a given list. Using the definition given in the Haskell standard
prelude (Hudak et aI., 1992), this function has type (a -) b) -) ([aJ -) [bJ)
and satisfies the familiar laws:

map f . map g map (f . g)

map id "" id

In categorical terms t this shows that there is a functor from types to types whose
object part maps any given type a to the list type raJ and whose arrow part
maps each function f :: a -) b to the function map f :: raJ -) [b]. Similar
constructions are used with a wide range of other datatypes. For example:

data Tree a Leaf a Tree a :~: Tree a

mapTree .. (a -) b) -) (Tree a -) Tree b)
mapTree f (Leaf x) = Leaf (f x)
mapTree f (1 :~: r) • mapTree f 1 :~; mapTree f r

The mapTree function has a similar type to that of map and also satisfies the
functor laws given above. With this in mind, it seems a shame tha.t we have to use
different names for each of these variants. A more attractive solution would allow
the use of a single name, relying on the types of the objects involved to determine
which particular version of map is required in any given situation.

It is rather difficult to give a satisfactory definition of map using the system of type
classes. A much hetter approach is to notice that eacb of the types for which the
map function is required is of the form (a -) b) -) (f a -) f b) where a and b
are arbitrary types and f ranges over a set of type constructors that includes the
list constructor (writing List a as aDo abbreviation for [a]) and Tree:

class Functor f where map :: (a -) b) -) (f a -) f b)

140

instance Functor List where
map f 0 . []
map f (1:18) ~ f 1 : map f 19

instance Functor Tree vbere
map f (Leaf x) • Leaf (f x)
map f (1 :": r) = map f 1 :": map f r

Functor is a simple example of a constructor class. One of the most important
properties that we need to guarantee is that aU of the instances of a partkular
class have the same kind. We formalise this idea, writing Type for the kind of
all types and 11':1 -+ 11':2 for the kind of a function that takes something of kind
11':1 and returns something of kind 11':2' Similar systems of kinds have been used in
other applications - for example in (Bruce et aJ. 1990) and (Barendregl, 1991).
Note that our system includes Haskell type classes as a special case; a type class
is simply a constructor class for which each instance has kind Type.

The elements of each constructor class are written using constructor expressions
of the form:

C ::= X constants
a variables
C C' applications

Note that this does not include a List and Tree have kind Type -> Type. The
kinds of constructor applications can be obtained using the rule:

C:: 11':' -+ II': C':: 11':'

C C/::II':

The task of checking that a given type expression is well-formed can DOW be refor
mulated as the task of <:he<:king that a given constructor e:xpression is well-kinded
with kind Type. Standard techniques can be used to implement kind inference
so that there is no need for the programmer to specify the kinds of constructor
variables.

The type inference algorithm, existence of prin<:ipal types and coherenc.e criteria
in Chapter 5 can be extended to deal with a system of constructor classes based
on the ideas outlined here. Construdor classes appear to have many applications,
including a flexible treatment of monadi<: programming as described by Wadler
(1992) based on the use of overloading. A preliminary version of this framework
has been implemented as an extension of the Gofer system, including the first
con<:rete implementation of monad comprehensions (Wadler, 1990) known to us at
the time of writing. Further details may be found in (Jones, 1992h) and we hope
to expand on this work in a subsequent paper.

141

9.3 Reasoning in the presence of overloading

One of the IDD!lt attractive fea.ture:! of purely functional programming languages
is the opportunity to use equational reasoning in program development and trans
formation (Bird and Wadler, 1989). Equational reasoning in the presence of over
loading is much more difficult since it may not always be clear which particula.r
definition of a. symbol is intended in a. given situation. For example, in a system
of type classes, it is not possible to place any semantic restriction on the defini
tions given in a.ny particular instance other than ensuring that they yield values
of the correct types. Furthermore, in the development of a large program, the in
stance declarations used to construct the definition of a single overloaded operator
may be distributed across a. number of separate program modules. This makes it
very difficult for a programmer to know what properties can be assumed about
overloaded functions.

Following suggestions made in (Wadler and Blott, 1989), one approach to this
problem is to adopt a programming methodology in which:

•	 Each class declaration is accompanied by a number of algebraic laws con~

straining the values of its member functions.

•	 Each instance declaration is accompanied by a proof of the laws in the par~

ticular instance being defined.

Such laws can of course be written as program comments, but it might be preferable
to extend the syntax of the language with a concrete syntax for la.ws:

•	 Progranuners would be encouraged to state laws formally using a uniform
syntax, rather than a variety of ad~hoc annotations.

•	 The type checker can be used to ensure that the laws given are type correct,
and hence detect some meaningless or erroneous Jaws.

•	 It is unlikely that the proofs for each law could he constructed automatically
for each instance declaration. On the other hand, machine readable Jaws in
a given program might well be used in conjunction with an au tomated proof
checker or with machine assisted tools for program derivation and proof.

The following example illustrates one possible syntax for writing the functor laws
mentioned in the previous section:

MapCompose :: Functor f '* (b ~ c) ~ (a ~ b) ~ Law (f a -> f c)
MapCompose f 9 '* map f . map 9 = map (f . 9)

Mapld Functor f '* Law (f a -> fa)
Mapld =} map id = id

142

This notation is particularly attractive since it allows each law to be named (for
reference in a proof), enables us to specify the free variables explicitly and to
indicate the expected type for each variable and for the values on either side of
the law. In practice, it should be possible to obtain appropriate typings using the
type inference mechanism, without requiring explicit declarations.

Unfortunately, the task of choosing an appropriate collection of laws may not
always be so easy. For example, the law:

EqRefie:rive Eq a => a --t Law Bool
EqRefie:rive x => (x==x)= True

is not valid in a language with a non-strict semantics unless we restrict restrict x
to finite values not involving the semantic bottom element (for example. consider
the Haskell expressions [0 ..]==[0 ..] and (1/0)==(1/0»). This is just as much
of a problem when overloading is not involved and is simply a reflection of the fact
that the properties of familiar mathematical functions are not always shared by
their computable counterparts.

143

Appendix A

Proofs

This appendix contains detailed proofs for many of the results given in the body of
this thesis, particularly for those in Chapter 5. Most of these are direct extensions
of the results described in Chapter 3 and proofs (or the latter may be obtained
from the proofs given here by ignoring tbe use of translations, equalities between
terms and conversions. For convenience, we repea.t the statement of each result in
a box at the beginning of t.he corresponding prooL

Proposition 3.4 Suppose that a = Va;,Q ::::} II, (7' = \;/{3j.Q' ::} Vi and that
none of the variahles {3j appears /ree in a, P or P'. Then (Pi I/7') :s (P I/7)
if and (mly if there are types Tj such that:

v' = [r;/"dv and P', Q' It- P, [ro/adQ.

Suppose lhat (P'I<T') S (Plq)· Clearly (Q' => v') S q' and hence (P', Q' => v') S
(Plu) by transitivity of:S. It follows that there are types r; such tha.t:

v' = [ro/ai]v and P', Q' It- P, [r;/ai]Q.

For the converse, suppose that Vi = [rda;]v, pi, Q' ft- P, [rdailQ and R:::} J1:5
(Pi 10-'). Then there are types r; such that

I' = [rJ//i;]v' and R It- P',lrj/aj)Q'

and hence:
I' = [rj//ij],} = [rj//ijJ([r;/a;]v) = [v,/a,]v

where Vi = {r;l.8jJri and the last step a.bove is justified by the hypothesis that
none of .8j is free in u.

144

In a. similar way, using the tra.nsitivity of 1+-:

R	 It- P',[rJ/p;]Q'
; [rJ/p;](p',O') (none of (3j free in PI)
It- [rJ/p;]{P,[r;/a,]Q) (closure property)

P,[rJ/p;]{[rda,]Q) (none of P; free in P)
; P,lvda,]Q (none of P; free in Q)

It follow, that R ;} I' ~ (P Ia) and hence (,ince R ;} I' was arbitrary) that
(P'la') ~ (Pia). 0

Proposition 5.6 Suppose that a, cT and el' aT"f" type schemes. Then:

1.	 id:a ~ a where id::::= Ax.x is the identity tenn.

2.	 If C: a C a' and C' ; a' ~ if', then C'o C: a ?: (Til where C' 0 C =
.Ix.C'{Cx).

3.	 If (T is a type scheme and T is a type, then id: Vt.a ~ [rllj(T. In
particular, id:Gen(A,p) C p.

The first and second parts are straightforward (the second being a special case of
Proposition 5.13) and we omit their proofs here.

For the third part, ,uppose that a ; 'Ia,.Q ;} v. If t <t TV{a), 'hen 'It.a ;
a = [1'lt]a and the result is immediate from the first part. We can therefore
assume that t E TV(a) (and hence that t <t {a,l). Pick new variahles P, and let
S; [l9da,]. Then

[r/t]a; [r/t]('Ia,.Q;} v); [r/t]('Ip,'sQ;} Sv) ; 'IP,.{S'Q => S'v)

where S'; S[r/t]; Ir/t,Pda;). Clearly none of P, appear free in 'It.a and the
entailment w: 5 'Q It- w :5'Q follows by (id). Hence Ax.Aw.zw is a conversion for
Vt.a ~ [1' jt]u which, using (11.), is equivalent to id ::::= AX.X. 0

145

Proposition 5.7 Suppose that P and P' a~ predicate sets such that
v':PH- e:P. Then:

(>.x.>.v'.xe):Gen(A,P=> T) ~ Gen(A,P'=> T)

for any type assignment A and type T.

Write Gen(A, P => T) = (Va;.P => T) and Gen(A, P' => T) = (V{3;.P' => T') where
{a;} = TV(P => T) \ TV(A) and {{3;} = TV(P' => T) \ TV(A). Clearly none of
{3j appears free in Gen(A, P::::} T). Furthermore:

T = [a,/a;]T and v':P' It- e':[ada;]P'

and hence
(>.x.>.v'.xe): Gen(A, P => T) ~ Gen(A, P' => T)

as required. 0

Proposition 5.8 If A is a type assignment, p is a qualified type and 5 is
a substitution, then:

id:SGen(A,p) ~ Gen(SA,Sp).

Furthermore, there is a substitution R such that:

RA = SA and SGen(A,p) = Gen(RA, Rp).

First part: Let S be a substitution, {a;} = TV(p) \ TV(A) and choose new
variables ,. not involved in S so that:

SGen(A,p) = V,;.S[-Yda;](p) = 'h.Rp

where R = S[-y,/a;]. Similarly, writing {3; = TV(Sp) \ TV(SA) we have:

Gen(SA, Sp) =V{3;.sp.

To begin with, note that none of the variables {3j appears free in SGen(A,p).
To see this, suppose that {3 E TV(SGen(A,p». Then {3 E TV(S5) for some
5 E TV(p) \ {a;}. This in turn implies that 5 E TV(A) and hence that {3 E
TV(S5) ~ TV(SA). It follows that {3 '/. {{3;} = TV(Sp) \ TV(SA).

146

Suppose that P = (P ~ T) and note that:

ST = ISa,hoJ(RT)
v:SP It- v:SP (using (id))

= v:[Sa;/id RP

Thus (~z.~v.%V): SGen(A,p) 2 Gen(SA, Sp) which (by (q,)) is equivalent to id.
Second part: From above SGen(A,p) = 'V"!i.Rp and by definition, none of O:j

appeazs free in A so RA = S[I,/a,jA = SA.

We claim that Gen(RA,Rp) = SGen(A,p) and cleazly it sulli"", to show that

hl = TV(Rp) \ TV(SA):

• To show hd ,; TV(Rp) \ TV(SA): For each a; E TV(p) we have Ra; = Ii
and hence "Yi E TV (Rp). Furthermore, since Ii is a new variable not involved
in S, I' '!- TV(SA) .

• To show TV(Rp)\ TV(SA)'; hl: Suppose I E TV(Rp)\ TV(SA). Then
I E TV(Ra) for some a E TV(p). Note that a '!- TV(A) (otherwise
Ra = Sa and so IE TV(Raj = TV(Sa) ,; TV(SAj, contradicting the
hypothesis that I '!- TV(SA)). It follows that a E TV(p) \ TV(A) = {ad
and hence I E TV(R,,;j = {Ra;l = hl.

This establishes the claim above and completes the proof of the proposition. 0

Proposition 5.10 For any qualified type p and predicate a~~ignments v: P
and w: Q there are conversion8:

id : (P,Qlp)2(PIQ=>p)
id (PIQ=>p)2(P,Qlp).

In particular, taking P ;::: 0J there are conversiofl.sJ:

id:(Plp) 2 P ~ p and id:(P ~ p) 2 (Pip)·

Let p = QI ==> 'T and pick evidence va.riables Wi (or Q', disjoint from v and w. By
(id) we have:

v:P,w:Q,w':QH- v:P,w:Q,w':Q

Thus .\x ..h ..\w..\w'..rvtUw' is a conversion for both cases a.nd, using (1Jf), is equiv·
alent to id = ..\z.:e. 0

147

Proposition 6.11 [f C: (R Iu) ~ (R' I0") and v': P' It- e: P, then there ;.,
a conversion:

.\x.'\v'.C(u):(P,Rlu) ~ (P',R'lu').

In particular, taking R;::: 0;::: Fr, ijC:q ~ tT and v':P' tt- e:P, then:

.\x.'\v'.C(u):(Plu) ~ (P'lu').

Suppose that (1 = VOj.Q ::;. v and (1' ;::: Vaj.Q' => v' where the variables oj appear
only in Q' => v'. Taking the hypothesis C: (R Iu) ~ (R' Iu') it follows from the
definition oC conversions that Vi ;::: [rdailv, u': R\ w': Q' tt- f: R~ g: [Tdai~ and

J- C;::: >..x.>..u'.>..w'.xfg

for some Til I, 9 and Wi, u' (disjoint from v'). Furthermore, v': pI tt- e: P and
hence by (dist):

v': P, s': R', w': Q' It- e: P ,f: R, g: [r;ja;]Q.

Finally, note that:
I- C(u) ~ '\s'.'\w'.xefg

and hence:
f- J..z.>..v'.C(xe) ;:::)"z.>"v'.}..1J'.>"w'.xefg

gives the required conversion. 0

Proposition 5.12 Suppose that P and pi arf prfdicate a.ssignments, u and
u' aIT type schemes and that C:(Plu) ~ (P'lq'). Then:

C:S(Plu) ~ S(P'lu')

for any substitution S of types for type variables.

Suppose tha.t (1;::: Voj.Q::::} v and q';::: Vaj.Q' => v' where DODe of the variables
oj appears free in (1, P or pI and none of 0'; or oj is involved in S. Hence:

S(Plu) = (SplV",.SQ ~ Sv)

S(P'lq') ~ (SP'lVaj.SQ' ~ Sv')

148

Given that C:(Plu) 2 (P'Iu'), there are types ri such that:

v'= [T,la,]v and v':P',w':Q'1I- e:P'!:ITJa;]Q

and such that I- C =).~.>.v'.>.w'.xef. Applying S to the above we obtain:

Sv' ~ S(ITJa,)v)
[SrJa,](Sv) (none of OJ involved in S)

v':SP', Wi: SQ' = S(v':P', Wi: Q')
II S(e:P'!:ITJa,JQ)
~ e:SP,!:[Srda;](SQ)

(closure property)
(none of OJ involved in S)

Hence C:S(Plu) 2 S(P'Iu') as required. 0

Proposition 5.13 For any type scheme u and predicates P there is a con
version:

id:(PI<7) 2 (PI<7)·

FurthermoTe, ijC:(PI<7) 2 (P'I<7') and C':(P'Ia') 2 (P"Ia"), then:

(C' 0 C):(PI<7) 2 (P"Iu")·

For the first part note tha.t id: (J ~ (J by Proposition 5.6(1) and v: P ft- 1': P by
(id). The result follows from Proposition 5.11 since I- >.x.>.v.id(rv) == id.

Now suppose that:

(J = 'VC1.i.Q => V, (1' == Vaj.Q' => v' and a" = VaZ.Q" ~ Vi

where the variables aj appear only in Q' => v' and the variables a~ appear only
in Q" => v//. By definition of conversions:

v'~hla;]v and v':P',w':Q'lI-e:P,!:[TJa;]Q

for some Til e and w' (disjoint (rom v) such that r C = AX.AV'.AW'.zef. In a
similar way,

v" = [;} /ajlv l and VII: pi, w": Q" It- e': pi, f': [T}/ajl Q'

for some ;}, e' and w" (disjoint from v) such that r C' = AX.AV".AW".xe'f'.

Since none of aj a.ppear free in v:

v" ~ [TIlai]v' ~ [rilaiJ([r;la,]v) ~ [T!'fa;]v

149

where Ti' = [TJ;aj]T;. In a similar way, applying [Tf/ail to first of the predicate
entailments above and noting that none of aj appear in P,P' or Q we obtain:

v': P, w': [Ti/ai] Q' II- e: P,!: [T!,/a;]Q.

Hence (by transitivity) we have:

v": P', w": Q" II- Ie' /v'J'/w1(e :P,f:[T:,/a;JQ).

To complete the proof, notice that:

~ ~x.C'(Cx)	 = ~x.~v".~w".(Cx)e'J' (properly of C')
= >.x.>. v".>' w".(>. v'.>' w'.xeJ)e'J' (properly of C)
= ~x.~v".~w".[e'/v''!'/w'J(xeJ) (by ({3,))

which is the required conversion. D

Proposition 5.14 For any type scheme (7' and predicate assignment v: P
there is a conversion:

(Ax.~v.x):u2: (Plu).

Furthermore,	 if C:u 2: (Pier) and C':er 2: (Pier'), then:

(~x.~v.C'(Cxv)v):(Plu) 2: (P"lu").

For the first part note that id : (] ~ q by Proposition 5.6(1) and v: P It- 0 by
(term). The result follows from Proposition 5.11 since I- >.x.>.v.id(x) = >.x.>.v.x.

Now suppose that:

q = 'Vai.Q =? v, = 'Vaj.Q' =? v' and (]" ='Va~.Q" =? v fl
(7"

where the variables aj appear only in Q' =? v' and the variables aZ appear only
in Q" =} v". By definition of conversions:

v' = [T;/a;)v and v:P, w': Q' II- e:[T;/a;]Q

for some Ti, e and Wi (disjoint from v) such that I- C =>.x.>.v.>.w'.xe. In a similar
way,

v" = [TJ;aj]v' and v:P,w":Q"1t- e': [TJ/ajl Q'

for some Tj, e' and w" (disjoint from v) such that I- C' = >'x.>'v.>'w".xe'.

150

Since none of oj appear free in v:

v" = [Tj/OjJV' = [Tj/Oj]([T;/O;]V) = [T!'/o;)v

where rt' = [rJ/aj]ri. In a similar way, applying [rJ/ojl to first of the predicate
entailments above and noting that none of oj appear in P, P or Q we obtain:

v: P, w': [Tj/Oj]Q' It- e: [T!' /0;) Q.

From the second entailment (using v:P It- v:P and combining using (univ)):

v: P, Wi': Q" It- v:P, e': [rJ/ojlQ'.

Hence by transitivity we obtain:

v: P, w": Q" It- Ie' /w']e: IT;' /o;JQ).

To complete the proof, notice that:

f- h.AV.C'(Cxv)	 = h.,xv.,xw".(Cxv)e' (property of C')
= >.x.>.v.>.w".p.w'.xe)e' (property of C)
= >.x.>.v.>.w".[e' /w']xe (by «(3,))

which is the required conversion. 0

Theorem 5.18 If PIA ~ E~ E': T, then PIA f- E ~ E': T.

By induction on the structure of P I A r" E "-+ E' : r. The proofs for the cases
where the last rule in the dedvation is (-+E)A or (_d)A are straightforward. The
remaining cases are:

Case (var)': We have a dedvation of the form:

(x:(Vo;.Q => v)) E A Pit- e:[T;/o;JQ

PIA.~ x~ xe: [T;/O;JV

Hence we can construct the required derivation:

(x: (Vo;.Q => v)) E A (
var)

PIAf-x~x:VOi.Q=>V (VE)
P IA f- x ~ x: [T;/O;JQ => h/o;Jv Pit- e:[T;/a;)Q (=>E)

PIA f- x ~ xe: h/o;]v

151

Case (let)-: We have a derivation of the form:

V': pll A f.! E "'-+ E' : r' P IA~ I X : a' f.! F "'-+ F' : r

PIA ~ (let x = E in F)~ (let x = ~v'.E' in F'): T

where (l = Gen(A , pi => r'). Hence we can construct the derivation:

v':P'IA f.! E"'-+ E' : r'
---,-~-.-:-:::----;:::---; induction
Vi: P'I A I- E "'-+ E' : r '

.".,---,..,.---;o---:-c=~,-----; ('* I) •01 A I- E "'-+ >'v'.E' : P' => r' PI An x:a' r F"'-+ F ' : r
--'--;;-;-;-;--;;---;--cc-;:;;--;-- ('<II) induction

01A r E~ ~v'.E': CT' (let)PI A., x:'" r F~ F': T

PIA r (let x = E in F)~ (let x = ~v'.E' in F'): T

This completes the proof. 0

Proposition 5.19 If PIA ~ E~ E': T, then EV(E') <; dom P.

By induction on the structure of P I A ~ E"'-+ E' : r. The proofs for the cases
where the last rule in the derivation is (--+E)- or (--+/)- are stra.ightforward and
the prooffor the case (var)' follows directly from (evar.'l).

In the remaining case we have a derivation of the form:

v':pIIA f! E"'-+ E' : r' PIA:&,,:r:u'f F"'-+ F': r

PIA ~ (let x = E in F) ~ (let x = ~v'.E' in F'): T

where .' = Gen(A, P' '* T'). By induction EV(F') <; dom P and EV(E') <; .'
and hence EV(~.'.E') = 0. It follows that:

EV(let x = ~.'.E' in F') = EV(F') <; dom P

which completes the proof. 0

152

Proposition 5.20 If P IA ~ E E' : T and S is an arhitrary suhstitution

a/types/or type variahles, then SPISA ~ E~ E': ST.

By induction on the structure of P I A f..!' E E' : r. The proofs for the cases
where the last rule in the derivation is (---tE)· and (-I). are straightforward. The
remaining cases are:

Case (var)·; We have a derivation of the form:

(x:(Va.Q '* v» E A P II- e:[Tlo]Q

PIA ~ x ~ xe: [Tlo]v

Pick new variables f3 not involved in S so that:

S(Vo.Q =} v)	 ~ S(Vo.Q'* v)
~ S(ViJ.[;3/oJ(Q =} v))
~ ViJ.S[iJ/o](Q =} v)

and hence (x: (ViJ.S[iJ/ol(Q '* v»)) E SA. Note also that:

SP II- e:S([TlaJQ) (by (close)
e :S[STla]Q

~ e:[STliJ](S[iJlalQ)

Hence, by (var)·;

SPISA ~ x ~ xe: [STliJJ(S[;3/a]v)

which is the derivation required since S[TliJJ(S[jJ/a)v) ~ S([T/aJv).

Case (let)': We have a derivation of the form:

Vi: Pi! A ~ E l:;" : r' P IA~, %: u' ~ F F' : T

P IA ~ (let x ~ E in F) ~ (let x ~ ~v'.E' in F') : T

where u' = Gen(A, P' => r'). By Proposition 5.8 there is a substitution R
such that:

RA ~ SA and Gen(SA, RP' =} RT') ~ SGen(A, P' =} T').

153

Write a = Gen(SA, RP' => RT') = SeT'. The required derivation can now be
constructed:

v':F'IAI-'.E",E':T' (a) PIA.,Z:u'I-'.F",F':T (b)
v"RPIRAI-' E", E" RT' SPISA x'Sa'l' F", F'· ST . • . (c) .,.. . (d)
v':RP'ISA I' E", E': RT' SPISA x:al' F", F': ST

., (let)·
SF ISA I-' (let x = E in F) '" (let x = ~v'.E' in F') : ST'

(Steps (a) and (b) are obtained by induction whilst (c) and (d) are justified
by the equalities SA = RA and a = S,,' respectively.)

This complet.es the proof. 0

Proposition 5.21 If v : P I A 1-' E E' T and Q It- e: P the~
Q IA J! E", [elvie' : T.

By induction on the structure of v: P IA J..! E E' : T. Th~ proofs for the cases
where the last rule in the derivation is (-tE)' and (-tl)J are straightforward. The
remaining cases are:

Case (var)': We have a derivation of the form:

(x: (Va.P' => T')) E A v:P It- e':[T/a]P'

v:plAI-' x"'xe':[T/a]T'

By transitivity of It- we have Q It- [e/v]e' : IT/a]P' and hence there is
a derivation Q I A f-' x '" x([e/v]e') : [T/a]T'. The result follows since
x([e/v]e') '" [e/vJ(xe').

Case (let)': We have a derivation of the form:

v': P' IA f.! E £' : T' v: P IA~l:l:u' t! F F' : T

PIA I-' (let x - E in F)'" (let x - ~v'.E' in F'): T

where u' = Gen(A , pi => T '). By induction, Q IA$' x: a' J..! F [e/v]F' : T

and hence:

Q IA I-' (let x = E in F) '" (let x = ~v'.E' in [e/v]F') : T.

154

By Proposition 5.19, EV(E') <;; v' (i.e. EV(),v'.E') = 0) and so,

[e/vl(let x =),v'.E' in F') '" let x = [e/vJ(),v'.E') in [e/v]F'
== let x = Av'.E' in [e/vIF'

as required.

This completes the proof. 0

Lemma 5.23 Suppose that A and A' are type assignments) P and Q are
predicate sets and that v : P I A f-' E "'-+ g : T for some type r. Then
v: P' IA f! E ""--+ E' : " for some pi and I' (instances of P and r respectively
under a single substitution) and

id:G,n(A',Q,P'=> T') ~ (Q/G,n(A,P=>T)).

1
Let p = (P ~ T), 0 = TV(p) \ TV(A) and S = [iJ/o) where iJ are new variables.
By Proposition 5.20, v: SP ISA t1' E'""-+ E' : ST, but none of 0 appear free in A
and hence this derivation is

v:P'IA f.! E.-....+ E': "

where P' = SP and T' = ST. Note tbat G,n(A,p) = ('1o.p) = (ViJ.Sp) and
that Gen(A', Q, P' :::> I'} ::::: VI·p. Q, Sp for some variables I since each variable f3
appears free in Sp but not in A'. It follows from the trivial observations:

w, Q, v, SP It- 1fJ/iJ, 1hJ(w: Q, v: SP)
T' = fiJ!iJ,1h](ST')

th.t G'n(A', Q, P' => T') ~ (Q I G'n(A, P => T)) witb conversion A••),v.),x.xwv
which, by (7]e), is equivalent to id::::: Ax.x. 0

155

P'oposition 5.22 If v: PI A' f' E ~ E': rand C: A ~ (v:P I A'), then
u: P IA t! E -....+ E" : T with v: P IA I- GE' = E" : 'T.

By induction on the structure of v: P IA' ~ E E' : T. For convenience, we write

v: P IA f-! E""" E" = Cg : T as an abbreviation for the two judgements in the
conclusion of the proposition.

Case (var)': We have a. derivation of the form:

(<:(Vo;.Q' =} v')) E A' v:P It- e':[r}/o;]Q'

v:PIA'1! x xe' : [T;/Oj]V'

Suppo," A(.) ~ Vo,.Q =} v. By hypothesis, C:A ~ (v:PIA') and so

(h ..\v.C.):(Vo;.Q =} v) ~ (PIVo;.Q' =} v').

By Proposition 5.6(3) we have:

id:(Vo;.q =} v') ~ [r;/o;J(Q' =} v'J
and so by Proposition 5.11:

id:(PIVo;.Q' =} v') ~ (PI [r}/o;J(Q' =} v'J).

Composing with AX.AU.eX gives:

(A•.AV.C.):(Vo,.Q =} v) ~ (Plh/oi](Q' =} v')).

Hence there are types ii, evidence variables v' and evidence expressions e
such that:

v:P,v':!r;/oiJQ'1t- e:!r;/o;]Q,

[r}/o;lv' ~ [r;/o;]v

and I- Ox ::; AV'.XC.

By hypothesis, v: P It- e': [r;/oIlQ' and hence v: P It- [e'/v']e: [r;/o;]Q
using (cut). By (var)', v:PIA ~. ~ .([e'/v']e): Ir;/o;)v but [rj/aj]v' ~
[r;jO';]v and so this derivation is:

v: PI A f' • ~ .([e' /v')e) : [r}/o;]v'.

Finally, Dote that:

v:PIA~C(xe') ~

~

~

(C.)e'
().v'.xe)e'
[e'/v1(xe)
.([e'/v']e): !r;/oiJv'

(substitution)
(~ e. ~ AV'.xe)
(P.)
(substitution)

which establishes the required equa.lity.

156

Case (--+E)': We have a derivation of the form:

v: P IA' f! E"-t E' : T' -t TV: P IA' f! F""-+ F' : T'

v:PIA' f! EF"-t E'F': T

By induction there are derivations:

v: P IA to! E "-t E" ::;: CE' : T' -t T
1v: P IA ~ F"-t FII ::;: CF' : T .

Using (-t E)' we obta.in:

v:PIA f! EF"-t E"F": T

and v:PI A ~ C(E'F') = (CE')(CF') = E"F": T.

Case (--+/)': We have a derivation of the form:

v:PIA~,X:T' f! E"-t E': T

v:PIA' f!)"x.E""-+)"x.E': T' -!' T

By hypothesis, C:A ~ (v:PIA') and hence by Proposition 5.16(3):

C.:(A.,X:T') ~ (v:PIA~,x:T').

By induction, v: P IAz, x: T' ~ E"-t E" ::;: CrE' : T a.nd hence:

v:PjAJ f!)"x.E ""-+)"x.E': T' --+ T

with:

v:PIA~ C(>.x.E'))"z.CrE' (Proposition 5.16(I)
::;:)"x.E" : T' --+ T (~ C, E' = E").

Case (Jet)': We have a derivation of the form:

vl:P')A'f! E"-tE':T' PIA~,X:tY~ F"-tF':T

P IA' '" (let x - E in F) "'" (let x _ ~v'.E' in F') : T

where rT ::;: Gen(A, P' =} T'). By Lemma 5.23, v': pili A' ~ E""-+ E' : T" for

some P" and T" and id:o 2: (P I0

/
) where 0 = Gen(A', P, P" => r"). We also

have id: (P Iu') ~ (P I(P' =} T'» (Proposition 5.6(3) and Proposition 5.11)
and hence:

id:u ~ (PIP' =} T').

157

Note that v: PI v': P" It- v': p" and that C: A ~ (v: P, v': P"I A') and so
there is a derivation:

v':P"/A' f!	 E ~ E': Til

V: P, V'; pill A' f! E ~ E' : Til Proposition 5.21

v:P, v':P")A f! E ~ Elf = GE': T" induction

It follows that 0/ A I- AvJ.v'.GE' == AV.Atl'.E" : q. Next we consider the
derivation:

v:PIA~,x;q' ~ F ~ F': T.

Note that Glxv/x]: (A .. x: u) ~ (v: P IA:, x: u') and hence by induction
v: P IAZI %: q ~ F ~ F" : T with v: P IAz, x: q I- (C[xv jxjF') == Fit: T. It
follows from (let)' that:

v;PIAf! (let x :::::Ein F)~{let x =.>..v ..>..v'.E"in F"}:'1"

Finally, we ha.ve:

v:PIA r	 G(let x = AvJ.E1 in F I
)

let x:::: Au'.GE' in GzF' (Prop. 5.16(2»)
~ let x:= {Av.Av'.GE')v in CzF' (13,)
~	 let %:::::: (>..v.Av'.E")t! in CzF'

let x = [AV.AV'.E"jx]{xv) in CzF' (substitution)
let x ~ Av.Av'.E" in !zv/x](G.F'1 (Prop. 5.4(1))

;:;	 let x = AV.AV'.E" in G[xvjxJF' (Prop. 5.16(4»
~ let x = AV.AV'.gJ in F".

This completes the proof. 0

158

Theorem 5.25 If v: P I A I- E",-" E' : (I, then there itJ a predicate MtJign
ment v': pi, a type 7 1 and a term E" tJuch that Vi: Pi) At! E",-" E" : 7' and
v: PI A j- Cpu'.E")v = E' : u where C: Gm(A, P' ~ T') 2 (Plu).

By induction on the structure of v: P IA f- E",-" E' ; a.

Case (var): We have a derivation of the form:

(z:u) E A

v:PIAf- x",-" z:a

Write u = 'Vai.'V!3i.P where P = (Q ~ v), {a,} <;; TV(p) and none of the
variables (3j appears free in p. Pick new variables I'i, OJ and let S denote the
substitution [-ri/a;,8;/!3i). By (;d), v':SQ It- v':SQ and so:

v':SQIA f.! z xv'; S/,.I.

Note that (z: u) E A, so TV(u) <;; TV (A) and TV(Sp) \ TV(A) = ,i.
Thus:

Gen(A,SQ ~ Sv) = Gen(A,Sp)

'V'i.SP

'V'i.[-r;/ai]p (none of!3, free in p)

'r/Oi'P (renaming bound variables)
'Vai.'V!3,.p (none of !3, free in p)

= a.

Note that (~z.~v.z):u 2 (Plu) and hence:

(~dv.z):(SQ ~ Sv) 2 (Plu).

which satisfies the theorem since v: P IA f- (Ax ...\ v.z)(AVi .xv')v :::: X : a using
(P), (P,) and (~,).

Case (-+E): We have a derivation of the form:

v; P IA f- E",-" E' : 7' -+ TV: P IA I- F F' ; 7'

v: P IA j- EF ~ E' F' : T

By induction, v': P' 1 A f-' E "'-" E" : /,.I' and C: Gen(A, P' =:- /,.II) 2: (v :
PI7' --+ T) such that v: PIA f- C(,\v'.E")v = E' : T' - T. Writing
Gen(A, p' ~ /,.I') = 'r/Oi.PI ~ /,.I', it follows that there are types Tj such that:

v:PH-e':[-r;/Q'i]P', T
I
-l>7 = [7;/Oi]/,.I' and f-C=..\x.Av.ze'.

159

Applying the substitution [T;/O:il to the syntax-directed derivation for E
gives:

v':frola;]P'lfrolai)A ~ E--... E": frola;]v'

None of OJ appears free in A and hence this is equivalent to:

v':[T;jo:,IP'IA f! E-...A E": T1
...... T.

Note also that:

v:PIA ~ E' = C(,\v'.E")v = (,\x.,\v.ze')(,\v'.E")v = [,'lv']E": T' ~ T.

By a similar argument I vl/:fVj/.B1Iplr IA ~ F Fir: T' for some {3j, vn pll,
F", e" and VII (disjoint from v'), such that;

v:P I+- el/:[vJ/,8JI p " and v:PIA f- F' = [ell/vl/IF": r'.

Let Z= (v':X,v": Y) where X = frola,]P' and Y = [vdl1;]P" and hence
Z I+- 1/' : X and Z ft- v": Y. By Proposition 5.21 we can construct the
following derivation:

Vi: X IA ~ E E" : T' --+ T VII; Y IA f! F F/I : T'
ZIAf! E-...AEfI:r'--+T Z!Af! F F";T1

::..c..:.:..:....;:..-....::::-,...,..,.,---::::::-----,::::':::::::-:----'----'-_ (~ E)'
ZIA ~ EF--... E"F": T

Furthermore, v: P It- e': X, e": Y and so:

('\x.'\v.ze',"):Gen(A,(X, Y) ~ T) ~ G,n(A,P ~ T)

by Proposition 5.7. Note that id:G'n(A,P ~ T) ~ (PIT) and hence:

('\x.'\v.ze',"):G,n(A,(X, Y) ~ T) ~ (v:PIT)

Finally, we have:

v:PIA	 f- (AZ.Av.ze'e")(Av'.AV".E"F")v
::; (>.v'.Avl/.EIIF")e'e ff ({3)
=	 ["Iv', '''lv''J(E''F") (11,)

([,'I v'I£")([,"I v"IF")
=	 E'F1

: T.

which establishes the required equality, the penultimate step being justified
by the observation that EV(E") ~ '0' and EV(F") ~ v",

160

Case (-+/): We have a derivation of the form:

v:PIAS",x:r' f- E.-.....+ E': r

v:PIA f- Ax.E.-.....+ Ax.E': r' --+ r

By induction, v' : pi I A~, z : r' f-' E .-.....+ E" : II and C : Gen(A, P' ::::}
II) ~ (P I r) such that v: P I A~,z: r' f- C(Av'.E")v = E' : r. Writing
Gen(A, P' ==> II) = 'Vcz;.P' ==> II it follows that there are types ro such that:

v: Pit- e': [r;fadP', r = [r;/czjJIl and f- C = AX.AV.U'.

Note that
v:PIAnx:r'f- g	 ::: C(Av'.E")v

= (),x.),v.xe')(),v'.E")v
= [e'/v'lE":T

and hence PIA I- Ax.fe//v/]E/I = Ax.E': r' _ r.

Applying [r;/a;J to the (syntax·directed) derivation for E above and noting

that none of the variables a; appear free in A we obtain v': [r;/a,]P'1 An x:

r ' f! E E": r. Hence by (-/)';

v':[rdczi)P'IA ~ Ax.E.-.....+ Ax.EtI
: r' _ r.

Composing the conversions:

C: Gen(A,rT;/".]P'=?T'-->T)~Gen(A,P=?(T'-->T))(Prop. 5.7)
id : Gen(A, P =? (T' --> T)) ~ P =? (T' --> T) (Prop. 5.6)
id: P =? (T' --> T) ~ (PIT' --> T) (Prop. 5.10)

we obtain:

C: Gen(A, [T;fa;]?' =? T' --> T) ~ (P IT' --> T).

This conversion satisfies the theorem since:

v:PIA ~ C(),v'.),x.E")v =	 (Ax.),v.xe')(),v'.),x.E")v
(Av'.Ax.E")e' (by (f3), (f3.))
[e'/v'](h.E") (by (f3.))

=	 Ax.[e'/v'lE" (substitution)
Ax.E' : r' _ r.

Case (let): We have a derivation of the form:

v: P IA ~ E --... E' : (1 w: QIA" x: (1 ~ F --... F' :T

v:P,w:QIA ~ (let x = E in F)--... (let x = E' in F'): T

161

By induction, v'; P' IA ~ E.-.....+ E": 1/' and v: P IA f- C'(>.v'.E")v = E' : (7

where C':a'? (P 1(1) and <1' = Gen(A, P' =>- .').

Similarly, w': Q'I A,., Z:(7 f! F F": 'T' and w: Q IA,:r, x: a f- C(>.w'.F")v =

F': T' wh"e C: Gen((A.,xo<1), Q'=>- T')? (QIT).

By Lemma 5.23, w': Q"IA,:r,z:O' f! F.-.....+ F"; 'Til where:

id: Gen(A, P, Q" =>- T") ? (P IGen((A., XO(1), Q' =>- T')).

We can now construct the following derivation:

w':Q"IA,.,z:O' f! ~ F": 'Til (a)

FIIv'P w"Q"IA z, f F,.II
• . ,.	 ., .v • (h)

v':P'IAf! E.-.....+ E":II' v:P.w' :Q"[A,:r,z:(7'f! F.-.....+ FI/f: 'Til)
----'=-'-~=::..-,----;:------~~,,---~=------~;;-;--'-=::::____:: (let •
v:P,W':Q"IA f- (let x = E in F) (let x =),v'.E" in Fill): 'T"

The step labelled (a) is justified using Proposition 5.21. The step labelled
(b) is justified by Proposition 5.22 using the observation that:

[C'zv/z]:A.. XO<1'? (v:PIA.,xo<1).

The term Fill which appears as a result of this step is related to the term F"
by the equality v: PI A f- [C'xv/zJF" = Fill : Til.

The process of establishing the necessary conversion for this derivation is
straightforward but requires several steps.

By Proposition 5.10 id: (Q IT) ? (Q =>- T) and composing with C we ohtain:

C: Gen((A.. XO(1), Q' =>- T')? (Q =>- T).

Noting that v: P It- v: P we can extend this to:

~z.~v.C(zv):(PI Gen((A.. xo<1), Q' =>- T'))? (P IQ =>- T)

and	 then compose this with the conversion id above to give:

~z .~v.C(zv): Gen(A, P, Q" =>- T") ? (P IQ => T).

By Proposition 5.10:

id:(PIQ=>-T)?(P,QIT)

a.nd composing these last two we obtain the required conversion:

h.~ v.C(zv): Gen(A, P, Q" =>- T") ? (P, Q IT).

162

It remains to 5how t.hat this conversion relates the tra.nslation of Jet x =

E in F in the original derivation to that in the (syntax-directed.) derivation
given above:

v: P, w: Q IA r ('\x.'\v.C(xv))('\v.'\w'.let x ~ '\v'.E" in F"')vw

(by ((3) and ((3,))

C(Aw'.let x = Av'.E" in F"')w

(Proposition 5.4, parts (2), (3) aod (4))

= let x = Av'.E" in C(Aw'.F"')w

(using I- [C'xv(x]F" = Fill)

::::; let x = Av/.EIf in C(Aw'.[C'xv(x]F")w

(x ¢ FV(C) ~ 0)

~ let x ~ ,\v'.E" in [C'xv(x](C(.Iw'.F")w)

(Proposition 5.4(1))

let x ~ ['\v'.E"(x)(C'xv) in C('\w'.F")w

(substit.ut.ion)

let x = C'(Av'.E/I)v in C(Aw'.F")w

(using r C'('\v'.E")v ~ E')

let x ~ E' in C('\w'.F")w

(using r C('\w'.F")v ~ F')

E1let x = in F1
: r

Case (::::} E): We have a derivation of the form:

v:PIArE E':,,=>p v:PIt-e:"

v:PIA r E E'e: p

By induction, v/: P/ I A ~ E.-...,jo E" : 1/ and v: P I A I- C(Av'.£i')v = E1
:

" => P where C: Cen(A, P' => v') '" (P I" => pl. By Proposition 5.10:

id:(PI" => p) '" (P,"lp)

and by Proposition 5.11 (using v:Plt- v:P,e:7l"):

('\x.'\v.xve):(P,"lp) '" (Pip).

163

Composing these two conversions with C gives:

(AZ.Av.Czve):Gen(A,1" => v') 2: (Pip)

which yields the required equality:

v:PIA r (h.Av.Czve)(Av'.E")v = C(Av'.E")ve = E'e: p.

Case (~l): We have a derivation of the form:

v: P, W:lI", u:P'IA f- E E': p

v:P,u:P' !Af-E AW.E':lI"=>p

By induction, Vi : P' I A f-' E __ E" : v' and v : P, w : '11", u : pi I A f
C(Av'.E")vwu = E' : p where C: Gen(A, P' => v') 2: (P,."., P' I pl. It is
straightforward to show that:

(h.AV.AU.AW.ZVWU):(P,""'P'\p) 2: (P,P'I.". => p)

which, composing with C, gives C' = A:e.AV.AU.AW.Cxvwu such that:

C':Gen(A,P' => v') 2: (P,P'I.". => pl·

To complete the proof for this case, note that:

v: PI A f- C'().v'.E")vu :::: AW.C(AV'.E")vwu = Aw.E' : 11" => P

using ({3) and ({3,).

Case ("IE): We have a derivation of the Corm:

v: P IArE ~ E' : Vt.u

v: P IArE ~ E' : [T / t]u

By induction, Vi: P' I A I-" E __ E" : v' and v: P I A f- C().v'.E")v =
E': Vt.a where C: Gen(A, P' => Vi) ~ (v: P l'it.a). By Proposition 5.6,
id:Vt.u 2: [T/tJU and hence hy Proposition 5.11, id:(PIVt.u) 2: (PI [T/tJU).
Composing with C we obtain:

C:Gen(A, 1" => v') 2: (PI[T/tJU)

and the result follows since, using the equality given above:

v:PIA r C(Av'.E")v = E': [T/tJU.

164

Case (VI): We have a derivation of the form:

v:PIArE~E':u

v:PIA r E~ E': 1I!.u

where t " TV(A) and t " TV(P). By induction, v': I" IA t' E"" E" : .'
.nd v:PIA I- C(Av'.E")v= E':uwhere C:Gen(A,P'=> .') ~ (Plu).

Write Gen(A, P' => .') = (lIa,.I" => v) and suppose that u = (lIfJj.Q => .)
where none of Pj appears free in Gen(A, P'::::} tI'). Note that if t f/ TV(u),
then Vt.u = 17 and the result is immediate. We can therefore assume that
t E TV(u) and hence that t" {a,}.

Since C: Gen(A, P'::::;. ti'} ~ (Plu), there are types 'T"j such that:

• = [T,/,,;].', v:P, w: Q fI- e: [T,/a;]I" and r C = Ax.Av.Aw.ze.

Note th.t [T;/a,) = [T;/a, , t/t] (becau,e t " {a;}) and th.t t does not
appear free in P by hypothesis. Furthermore, t does not appear free in
Gen(A, P' => .') since th.t would contradict the hypothesis that t ¢ TV(A).
These obser"Nttions are exactly what is needed to show that:

C:Gen(A,I" => .')?: (v:PIII!.u),

and the equality v: P I A I- c(Avl.E")v = E' : Vt.u needed to complete the
proof follows directly from above.

This completes the proof. 0

Theorem 5.26 If PI TA ~ E~ E': T, then PI TA t' E~ E': T.

By induction on the structure of PITA ~ E El
: -r. The proofs for the cases

where the last rule in the derivation is (var)W or (_+l)W are straightforward. The
remaining cases are:

Case (-t E) w: We have a derivation of the form:

PITA~ E E':'T" QIT'TA~ P P':r' T''T"fGT'-tet

U(T'P, Q}I UT'TA ~ EF~ E'F': Ua

165

where a is a new variable. By induction, PITA 1-' E E' : T and

hence UT'P, UQ I UT'TA f' E ~ E' : UT'T hy Proposition 5.19 (apply
ing the substitution UT') and by Proposition 5.21 (using the entailment
UT' P, UQ It- UT' Pl. Note that UT'T = UT' -. Ua hy definition of U and
hence we have UT'P, UQI UT'TA f.! E E': UT' --+ Ucr..

By a similar argument, UT'P, UQ I UT'TA ~ F F' : Ur' and hence by
(-.E)·weohtain UT'P, UQI UT'TA ~ EF~ E'F': Ua.

Case (let)w: We have a derivation of the form:

v:PITA~ E E':r P/IT'(TAz,x:u)~ F~ F':r'

P'I T'TA I'" (let 7 = E in F) ~ (let 7 =),v.E' in F): T'

where u ::; Gen(TA, P ~ r). By Proposition 5.8, there is a substitution R
such that RTA = T'TA and Gen(T'TA,R(P=> T)) = T'Gen(TA,P=>T).
Write u' ;::; Gen(T' TA, R(P ~ r» ;:: T'a. The required derivation can now
be cODstructed:

"PITAI'" E~ E"T P'IT'(TA 7'(7)1'" F~ r'T'
. • . (aj "'. . (h)

v:PITAr E~ £':, P'IT'TAz,x:T'ur F F':,I)

(c

v'RPt T'TA f
,

E~ E'· RT P'I T'TA 7'<7') f
I

F ~ F" T' . . z, . . (let)'
P'I T'TA ~ (let 7 - E in F) ~ (let 7 _),v.E' in F) : T'

where (a) and (b) are justified by induction and (c) follows from T'u = 01.

This completes the proof. 0

Theorem 5.28 Suppose that v: P ISA ~ E ~ E' : T. Then w: Q I TA ~
wE..,..... £i' : v and there is a substitution R !Juch that S ~ RT) , = Rv,
v:PIt- e:RQ and v:PISA ~ E' = [e/w]E": To

By induction on the structure of v: P ISA ~ E E' : T.

Case (var)': Suppose that (x:a) E A where u = (Veri'P => T). Pick new van·
abIes {3; so that S17 = V{3;.S[,B,/a;](P => T). We therefore have a derivation
of the form:

(7:S17) E SA v:P It- e: [T;/{3,](S[,B;/a;] Q)
v:PISA ~ 7~ xc: [T;/{3;](S[,B;/a;]v)

166

Since (.:(V'Ct'i'P =} 7")) E A and {3i are new variables we have a derivation:

u':[;3;/a;]QIA '"' Z~ zu: 1;3;/a;]v,

Let R = S[r; / ;3;] and note that R '" S, Furthermore:

[T;/;3;]{S[;3;/a;]v) = Sh/a;]v =S[T;/;3;](I;3;/a;lv) =R([;3;/a;lv)

and, in a similar way:

u: P H- e: [T;/ ;3;](S/;3;/a;1 Q) = e: R([iJ;/ad Q),

Finally note that [e/v](.v) == u which gives the required equality.

Case (--+E)': We have a derivation of the form:

v: P ISA ~ E E' : 7"' --+ 7" v: P ISA ~ F F' : 7"'

v:PISA~ EF~E'F':T

By induction, Vi: P' I TA ~ E E" : 11' and there is a substitution R such
that S ~ RT, 7"' --+ 7" = RlI', v:P Ir e' : RP' and:

u:PISA f- E' = [,'/u1E": T' => T.

Writing SA = R(TA) we have u : P IR(TA) f-' F ~ F' : T' and hence hy
induction v": P"l TI(TA) ~ F F" : 11" and there is a suhstitution RI such
that R:::::l R'T', 7"' = R'lI", v:P Ir e":R'plI and:

v: PISA I- pi = [e"/v"]F": 7"/.

Note that (without loss of generality) we can assume that the evidence vari
ables v, v' and v" are pairwise disjoint.

Pick a new variable 0' and let R" = R'[7" /o'}. Note that:

R"(T'v)	 = RI/TllI

= R'T'lI
Rv=
7"' --+ T=
HI'; -+ R"n
R"(v' ~ a)=

and hence R" is a unifier of Till and 11' -+ 0'. It follows that Till!!. (11' --+ a)
for some most general unifier U such that R" = V'V for some V'.

167

By (-+E)W t there is a derivation:

U(vl:T'pl,v":PI/)IUTITA~ EF"'-tE"F": Uo.

Not.lhat S '" RT '" R'T'T '" U'(UT'T), U'(Ua) = R"a = T and:

v:P	 It- e':Rpl, e":IrP" (by (di8t»)
e/: R'T'P', e":R' pn (R '" R'T')
RI/(e' : T'P',e":P") (R" '" 11:)
UIU(e ' : T'P', e":P") (R"=U'U)

FinaIly\ the required equality can be established using:

"P IA ~ [e' Iv', e"lv"J(E"F") = ([e'l v']E")([e" Iv"IF") = E' F' : T.

Case (-+I)&: We have a derivation of the form:

v: P ISAt, x: r' j! E"'-t E' : r

P!SA j!)"x.E"'-t)"x.E': r'-+ r

Let Cl be a new variable and set S' ::;::: S(T'la] so that the derivation for
E can be written as v : P 1 S'(Ar , Z : 0) 1-& E "'-t E' : T. By induction,

wv': P' I T(A.·, Z: 0) I- E"'-t E" : v and there is a substitution R such that
S':::;- RT\ T:= Tv, v:P It- e':RP' and:

v:PISA"X:T' ~ E' = [e'lv']E": T

from which it follows that:

v:PISA ~ [e'lv']('\z.E") = '\z.[e'lv']E" = '\z.E': T' --> T.

By {_I)w, there is a derivation v': P' I TA I-w)"z.E "'-t >.x.E" : To -+ v.
Note that S ~ S' :::::: RT, v: P It- e': RP' and:

R(Ta -+ v)::;::: RTa-+ Rv::;::: T' -+ T.

Case (let)': We have a. derivation of the form:

w: Q ISA ~ E ~ E' : v v: P ISA" z: <1 ~ F F' : T

v:PISA ~ (let z = E in F)~ (let z = '\w.E' in F'): T

where (J = Gen(SA, Q ::::} v). By induction, w': Q' I TA ~ E"'-t E" : ,; and
there is a substitution R such that S :::::: RT, v = Rv' , 10: Q It- J': RQ' and
w:QISA ~ E' = [f'lw']E": v.

168

Writing TJ:::: Gen(TA, Q/ ==} II') we have:

R~ =	 RGen(TA, Q' "" v')
2 Gen(RTA,RQ' "" Rv') (Proposition 5.8, conversion id)

= Gen(SA, RQ' "" Rv) (S '" RT)

= Gen(SA, RQ' "" v) (v= Rv')

2 Gen(SA, Q "" v) (Proposition 5.7, conversion >..x.)..w.xJ')

:;:: u.

Composing these conversions we obtain (>..z.>"w.xf'): RTJ ~ q a.nd hence:

R(TA.,x:~) = (RTA.,z:R~) = (SA.,z:R~) 2 (SA.,z:,,)

with conversion substitution [>..w.xJ'/z]. It follows from Corollary 5.24 that:

v:PIR(TA.,z:~)~ F~Fu:T

where v: P ISAz, x:u I- [>..w.x!, /z]F' ==: F" : 1'.

By induction, v': P'I T'(TA .. , x:TJ) f!' F Fill: 1" and there is a substitution

R' such that R R:: R'T', 1':::: R'1", v:P ft- e':R!P' and v:PISA.. ,:z:u l

F":;:: [e'/v/lF"': 1'. By (let)W there is a derivation:

Vi: P'l T'TA ~ (let z = E in F) (let x:::: >"w'.E" in Fin): 1".

Note that R' satisfies S >:::: RT R:: R'(T' T), l' :::: R'1'/ and v: P ft- e': R'P'.
Finally, we consider:

.:PIA	 f- [e'/v'](let x = >..w'.E" in Fill)
:::: let x = >..w'.E" in [e'/v'JF III (v' ¢ EVpw'.EU

) = 0)
= let x = >..w'.E" in F" (f- F U = [e'/v1F"')
= let x = >"w'.E" in [>..w.xJ'/x]F' (f- [Aw.zJ'/z)F' = FU

)

= let z = [Aw'.Eu/z](Aw.zJ') in F' (Proposition 5.4(1)
= let x = >"w.{>..w'.E")J' in F' (substitutioD)
= let z = Aw.[t'/w1Eu in F' ({3.)
:::: let x :::: E' in F' (f- E' =[t'/w']EU

)

which establishes the required equality.

This completes the proof. 0

169

References

A. Aho, R. Sethi and J. Ullman (1986). Compilers, principles, technique$ and
tools. Addison Wesley.

A. Appel (1992). Compiling with continuations. Cambridge University Press.

L. Augustsson (1984).	 A compiler for lazy ML. In ACM Symposium on Lisp and
Functional Programming Languages. Austin, Texas. ACM Press.

L.	 Augustssan (1991). Haskell B. user's manual. Draft notes included as part of
the distribution for Haskell B. and LML. December 1991.

H. Barendregt (1991).	 Introduction to generalised type systems. Journal of func
tional programming, volume 1, part 2. Cambridge University Press, April
1991.

R.S. Bird and	 P. Wadler (1989). Introduction to functional programming. Pren
tice Hall International, 1989.

S.M. Blatt (1991). An approaclJ to overloading with polymorphism. Ph.D. thesis,
Department of computing science, University of Glasgow, July 1991 (draft
version).

V. Breazu-Tannen, T. Coquand, C.A. Gunter and A. Scedrov (1989).
Inhezitance and coercion. In IEEE Symposium on Logic in Computer Sci
ence, Asilomar, California, June 1989.

K.B. Bruce, A.R.	 Mey", and J.C. Mitchell (1990). The semantics of second order
lambda calculus. In G. Huet (ed.), Logical Foundations 0/ Functional Pro
gramming, Addison Wesley, 1990.

L.	 Cardelli (1988). A semantics of multiple inheritance. Information and Compu~

tation, 76.

L. Cardelli and J.C. Mitchell (1990). Operation, on records. In Fifth Interna
tional Conference on Mathematical Foundations of Progmmming Language

170

Semantics. Lecture notes in computer science 442, Springer Verlag, 1990.
(An earlier version appeared as Technical report 48, Digitial Equipment Cor·
poration, Systems Researcb Center, August 1989.)

K. Chen, P. Hudak and M. Odersky (1992). Parametric type classes (extended
abstract). In ACM Conference on LISP and functional programming San
Francisco, California, June 1992.

D. Clement, J. Despeyroux, T. Despeyroux and G. Kahn (1986). A	 simple ap
plicative language: Mini-ML. In ACM symposium on LISP and functional
programming, Cambridge, Massachusetts, August 1986.

P.-L. Curien and G. Ghelli (1990). Coherence of subsumption. In Fifteenth Col
loquium on Trees in Algebra and Programming. Lecture notes in computer
science 431, Springer Verlag.

H.B. Curry and R. Feys (1958). Combinatory logic. North Holland, AIIL'lterdam.

L.	 Damas (1985). Type assignment in progranuning languages. PhD thesis, Uni
versity of Edinburgh, CST-33-85.

L.	 Damas and R. Milner (1982). Principal type schemes for functional programs.
In 8th Annual ACM Symposium on Principles of Programming languages,
Albuquerque, New Mexico, January 1982.

J.	 Fairbairn, and S. Wray (1987). Tim: a simple\ lazy abstract machine to execute
supercombinators.]n Functional Programming Languages and Computer
Architecture. Lecture notes in computer science 274, Springer Verlag.

Y.-C. Fub and P. Mishra (1989). Polymorphic subtype inference: Closing the
theory·practice gap. Lecture notes in computer science 352, Springer Verlag.

Y.~C.	 Fuh and P. Mishra (1990). Type inference with subtypes. Theoretical com
puter sciencc, 73.

J.-Y. Girard (1971). Une extension de l'interpretation de GOdel a{'analyse et son
application al'elimination des coupures dans l'analyse et la theorie de types.
Fensta.d (ed.), Proceedings of the Scandanavian logic symposium. North
Honand.

J.-Y.	 Girard, P. Taylor and Y. Lafont (1989). Proofs and types. Camhridge tracts
in theoretical computer science. Cambridge University Press.

K.	 Hammond and S. Blott (1989). Implementing Haskell type classes. Proceed
ings of the 1989 Glasgow Workshop on Functional Programming, Fraser
burgh, Scotland. Workshops in computing series\ Springer Verlag.

171

R.W.	 Harper and B.C. Pierce (1990). Extensible records without subsumption.
Technical report CMU-CS-90-102, Carnegie Mellon University, School of
computer science, February 1990.

B. Hilken and D. Rhydeheard (1991). Tow..,.ds a categorical semantics of type
classes. In Thwretical aspeds of computer software. Lecture notes in com
puter science 526, Springer Verlag.

J.R.	 Hindley (1969). The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146, December 1969.

J.R.	 Hindley and J.P. Seldin (1986) Introduction to combinators and A-calculus.
London mathematical society student texts 1. Cambridge University Press.

C.K. Holst (1990). Improving full	 laziness. Proceedings of the 1990 G/..,gow
Workshop on Functional Programming, Ullapool, Scotland. Workshops in
computing series, Springer Verlag.

W.A. Howard (1980). The formulae-as-types notion of construction. ill Seldin,
J.P. and Hindley, J.R. (ed.s), To H.B. Curry: Essays on combinatory logic,
lambda calculus and formalism. Academic Press.

P.	 Hudak, S.L. Peyton Jones and P. Wadler (eds.) (1992). Report on the pro
gramming language Haskell, version 1.2, ACM SIGPLAN notices, 27, 5,
May 1992.

L.A. Jategaonkar and J.C. Mitchell (1988). ML with extended pattern matching
and subtypes (preliminary version). In ACM conference on LISP and Func
tional Programming, Snowbird, Utah, July 1988.

T.	 Johnsson (1984). Efficient compilation of lazy evaluation. In SIGPLAN '84
symposium on compiler construction. Montreal, Canada.

T.	 Johnsson (1987). Compiling lazy functional languages. PhD thesis, Program
ming methodology group, Chalmers University, Goteborg, Sweden.

M.P. Jones (1990). Computing with lattices: An application of type classes. Tech
nical report PRG-TR-1l-90, Programming Research Group, Oxford Univer~

sHy Computing Laboratory, June 1990. Submitted. in revised fonn for pub
lication in the Journal of Functional Programming.

M.P. Jones (199Ia). Towards a theory of qualified types. Technical report PRG
TR-6-91, Programming Research Group, Oxford University Computing Lab
oratory, April 1991.

172

M.P. Jones	 (199Ib). Type inference for qualified types. Technical report PRG
TR·IO·91, Programming Resea.rch Group, Oxford University Computing
Laboratory, June 1991.

M.P. Jones (1991c). An introduction to Gofer. Included as part of the distribution
for Gofer version 2.21. November 1991.

M.P. Jones (19923,). A theory of qualified types. In European symposium on pro
gramming, Rennes, France, February 1992. Lecture notes in computer sci
ence 582, Springer Verlag,

M.P. Jones (1992b). Programming with constructor classes (preliminary sum
mary). In Draft Proceedings of the Fifth Annual Glasgow Workshop on
Functional Programming, Ayc, Scotla.nd, July 1992.

S.	 Kaes (1988). Parametric polymorphism. In European symposium on pTOgram~

ming, Nancy, France. Lecture notes in computer science 300, Springer Verlag.

S.	 Kaes (1992). Type inference in the presence of overloading, subtyping and re
cursive types. In A CM Conference on LISP and functional programming San
Francisco, Californja, June 1992.

X. Leroy and P. Weis (1991). Polymorphic type inference and assignment. In 18th
Annual A CM Symposium on Principles of Progrnmming langlAages, Orlando,
Florida, January 1991.

S. MacLane (1971).	 Categories for the working mathematician. Graduate texts in
mathematics, 5. Springer Verlag.

R. Milner (1978). A theory of type polymorphism in programming. Journal of
ComplAter and System Sciences, 17, 3.

J.C.	 Mitchell (1984). Coercion and type inference (summary). In 11th Annual
A eM symposium on Principles of Programming LanglAages. Salt Lake City,
Utah, January 1984.

J.C.	 Mitchell (1988). Polymorphic type inference and containment. Information
and complAtation, 76, 1988. Included, with corrections, in G. Huet (ed.),
Logical FOlAndations of FlAnctional Programming, Addison Wesley, 1990.

J.C. Mitchell (1990). A type-inference approach to reduction properties and se
mantics of polymorphic expressions. In G. Huet (ed.), Logical Foundations
of Functional Programming, Addison Wesley, 1990.

J.C. Mitchell (1991). Type inference with simple subtypes. Journal of flAnetional
programming, volume 1, part 3. Cambridge University Press. July 1991.

173

T.	 Nipkow and G. Snelting (1991). Type classes and overloading resolution via
order-sorted unification. In 6th A CM conference on Functional Program
ming Languages and Computer Architecture, Cambridge, MA, August 1991.
Lecture notes in computer science 523, Springer Verlag.

M.	 Odenky (1992). Observers for linear types. In European symposium on pro
gramming, Rennes, France, February 1992. Lecture notes in computer sci
ence 582, Springer Verlag.

A. Ohori and P. Buneman (1988). Type inference in a database programming lan
guage. In ACM conference on LISP and Functional Programming, Snowbird,
Utah, July 1988.

A. Ohori (1989). A simple semantics for ML polymorphism. In 4th International
Conference on Functional Progrnmming Languages and Computer Architf£
ture. Imperial College, London, September 1989. ACM Press.

A. Ohori and P. Buneman (1989). Static type inference for parametric classes. In
Prot••dings OOPSLA '89, ACM SIGPLAN notices, October 1991.

A. Ohori (1992). A compilation method for ML-style polymorphic record calculi.
In 19th Annual Symposium on Principles of Programming Languages, Santa
Fe, New Mexico, January 1992.

S.L.	 Peyton Jones (1987). The implementation of functional programming lan
guages. Prentice Hall International.

S.L. Peyton Jones and D. Lester (1991). A modular fully·lazy lambda lifter in
Haskell. Software - Practice and Experience, 21(5).

S.L. Peyton Jones and P. Wadler (1992). A static semantics for Haskell (draft).
Manuscript, Department of Computing Science, University of Glasgow,
February 1992.

S.L.	 Peyton Jones (1992). Implementing lazy functional languages an stock hard
ware: the spineless tagless G-machine. Journal of functional progrnmming
(to appear). Cambridge University Press.

D.	 Remy (1989). Typechecking records and variants in a natural extension of ML.
In Sixteenth Annual A eM Symposium on Principles of Programming Lan
guages. Austin, Texas, January 1989.

D.	 Remy (1992). Efficient representation of extensible records. In ACM SIG
PLAN workshop on ML and its applications. San Francisco, June 1992 (To
appear).

174

J.C. Reynolds	 (1974). Towards a theory of type structure. Paris colloquium on
programming. Lecture notes in computer science 19, Springer-Verla.g.

J .C. Reynolds (1991). The coherence of language; with intersection typ~. In The
oretical aspects of computer software. Lecture notes in computer science 526,
Springer Verlag.

J.G. Riecke (1990). A complete and decidable proof system for call-by-value equal
ities (preliminary report). In 17th International Colloquium on Automata,
Languages and Programming, Warwick University, England, July 1990. Lec
ture notes in computer science 443, Springer Verlag.

J.A. Robinson	 (1965). A machine-oriented logic based on the resolution principle.
Journal 0/ the Association for Computing Machinery, 12, 1965.

G.	 Smith (1991). Polymorphic type inference for languages with overlQa.ding and
subtyping. PhD thesis, Department of Computer Science, C...ornell University,
Ithaca, New York. August 1991.

R.	 Stansifer (1988). Type inference with subtypes. In Fifteenth Annual ACM
Symposium on Principles of Programming Languages. San Diego, California,
January 1988.

C.	 Strachey (1967). Fundamental concepts in programming languages. Interna
tional summer school in computer programming, Copenhagen.

S.	 Thatte (1990). Type inference and implicit scaling. In European Symposium on
Programming. Lecture notes in computer science 432, Springer Verlag.

S. Thatte (1991). Coercive type isomorphism. In 5th ACM ConfefT!nce on Func
tional Programming Languages and Compute.r Architecture, Cambridge, MA,
August 1991. Lecture notes in computer science 523, Springer Verlag.

S.	 ThaUe (1992). Typechecking with ad hoc polymorphism (preliminary report).
Manuscript, Department of mathematics and computer science, Clarkson
University, Potsdam, NY. May 1992.

J.	 Tiuryn (1990). Type inference problems: A survey. In Mathematical Founda.
tions of Compute.r Science. Lecture notes in comput.er science 4,52, Springer
Verlag.

D.	 Volpano and G. Smith (1991). On the complexity of ML typability with over
loading. In 5th A CM conference on Functional Programming Languages and
Computer Architecture. Lecture notes in computer science 523. Springer
Verlag.

175

P. Wadler and S. Bloll (1989). How to make ad-hoc polymorphism less ad-hoc.
In Sixteenth A nnual A eM Symposium on Principles of Programming lan
guages, Austin, Texas, January 1989. ACM Press.

P. Wadler (1989). Theorems for !ree! In Fourth ACM conference on Functional
Programming Languages and Computer Architecture. London, September
1989. Addison Wesley.

P. Wadler (1990). Comprehending monads. In ACM conference on LISP and
Functional Programming, Nice, France, June 1990.

P. Wadler (l991). Simplified overloading for Haskell 2. Distributed to the Haskell
mailing list, April 1991.

P. Wadler (1992).	 The essence of functional programming. In 19th A nnual Sym
posium on Principles of Programming Languages, Santa Fe, New Mexico,
January 1992.

M. Wand (1987). Complete type inference for simple objects. In IEEE Symposium
on Logic in Computer Science. Ithaca, New York, June 1987.

A.K.	 Wright (1992). Typing references by effect inference. In European sympo
sium on programming, Rennes, France, February 1992. Lecture notes in
computer science 582, Springer Verlag.

176

