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Foreword 

This is the current version of a Base Standard for lhe Z notation and is distrihuted for review and 
commenl. This version has been specifically prepared for di.,triblltion ill the Seventh Z User Meeting 
in London on 14th-lMh D{'ccmber 1992, and will be illillie a~'ailable for general distrihution after that 
date. 

Th(' Z Base Stalldard is subj('cl to change durillg its r('~'iew by ,he Z Standanls Review Committl.'e a.nd 
th(' BSI Sta.ndards Panel now being forlll('d. New versiolls will be issued a,; nee<1ed. 

Comments on th.is version of the Z Ba~(' Standard a.re \wekollled and should be sent 10 

Editon Z Da..5[' Standard 
c/o Secrclary Z Standilrds Project 
Oxford Univer5ity Computing Laboratory 
Programming Research CW\IP 

J 1 Keble Road, Oxford OXl :lOD 
Fnited King:doill 

The Z Base Standard has been produced as part of trw work of the Z standards projecl, pilrt of th.e 
ZIP project (lED project No. 16:l9). 

Z B_ 5u.,,<1...... Ven;"n 1.0 prillleJ :10'" N"~e",h..r 199'l xiii 



o Introduction 

Z was originaUy de~'e1oped a.s a ~pecificution notation for preparing formal description~ of systems. 
without necessarily indica~ing how they will be implemented. This section iududeo a de~cription of the 
aims and objectives of formal specification notaLions, with special reference 10 Z. The design priuciples 
U6ed in the development of the Z sta.ndarrl are described. 

0.1 Not.ations for system description 

It i~ widely admowledg.,1l that natural langul:lges and similar inrormal notat.ions have many disad
vantage~ when used for I'.tJting technical descriptions. In using such langu<\ges it is difficliit to ....-ritll 
specific?tions with the required precisiol\. daril.... and economy of expres~ion and to transform them 
systematically and reliably into code or bardwarl:' Furthermore. it is impossible to C.-irry 0111 formal 
mathematical rea.soldng abont informally written descript.joll~. 

In contrast. specifications written in jorrno.{ notations can hI.! made prccise lI.Jld cleat. Inference rules 
diOrhed from their mathematical foundations enable designers to carry out malhematical reasoning and 
coll,;trUct proofs relating ~o th.e properties or l>ystem descriptiol\s. 

The advantages of fornlal notations W('fC recognisl.!d from an early ~tag(' in the history of computing. 
although it has taken considerahle time for their pract.ical application 10 bec.ollJe establi:ihed. Many of 
the ~arly luge-lOcale applications of formal notation were for the ~pecification of progranlmillg languages; 
formal descripl.ion& of syntax are now widespread and for ~ome languages there are format descriptioll~ 

of semantics. 

Formal notations are now being used in a wide and expa/lding variety of environments. especially in kef 
areas where the integrity of systems is criljcaJ. or where there is high int.ensily of use. For a discullsion 
of domains of application ror formal methods, S<"e [16]. 

Example3 of tne effective use of formal sjlecification notations are round in the following <U'eas: 

safet.y critical systems 
security systems 
the definition of standards 
hardware development 
operating systcms 
t.ransaction processing systems 

Descriptions of case stlldic5 rrom lhesl:' and other application areas for Z are listed in a Z Bibliogrnphll 
hy Bowen [2] 

0.2 Objectives of a specification notation 

The objectives of a formal specification notation art, lo assist in the productiou of dl'SCTiptions that 
ate complete, consistent and unambiguou~. To achieve th.ese objectives, a rormal specili~atjon not<\tioll 
needs to be: 

u..~ablc by th05C who read and wrill:' formaJ doclllJJeuts; 

z g...., S~andanl V"....."n 1.0 I"it""", 30,1, Nav"",I,.,.,. I99J 1 



o INTRODUCTION 

e1'pre88ivt',50 that it can be used for a wide range of applications; 

pred,se, 80 that it is possible to write descriptions that mean exa,ctly what is intended; 

given a mathematically 80UIld meaning, since mathemalical rea.~oning may be used in the dlC'vel· 
opment process; 

liuihbh, for defining sufficiently abstract models of s)"stems that specifications do not need to 
couta.jn unnecessary implementation details. 

0.3 Characteristics o( Z 

A central part of Z is taken from the matllernatics of Sl't t.hNry and first order predicate calculus. For 
th(" purposes o[syswm description additions ha\'e bren made to convelltional mathematics, including: 

a tyfH. sy81em which re(luires each variable to he a.%odated with a declared type. The ability to 
type-rhec.k a spl'cificalion helps in assuring that it is accu:ate and consistent; 

the Z schtma notallon. which provides a Lechnique for grouping together a,nd re-using common 
forms: 

a dedoctive 8y8tem which supports reasoning about Z .~pecificatjolls. 

In addition, the following have beoen dl'veloped to help in the pragmatic use of Z in de\'elopment projects: 

the capability for writing explanatory text as an integral part of a Z document. 

the inclusion within the standard of an agreed method of rl'presentlng text in compulers and 
transmitting it. 

0.4 Design principles 

The following design principles have been used in tIle development of the standard and are based Oil 

those used, explicitly or implicitly, in the original design of Z. 

Basis in mathematics. Z is based on a central core of mathematics and uses accepled mathematical 
concepts and notation. In addilion, there are means of definiug and checking the type8 of Z elemeuts 
and. by means of lhe Z 8chema, for ~tructuring specifications. 

Utility. All part5 of Z included in the standard will have beoen .shown to COlltribull' to tIle main 
objedivl"S of Zand will have beoeu used in ~igniflcanl case studi('s oc development projects. 

Simplidty. There is an objecti\·e to keep lhe Z notation as simple a..~ possihle. consislent with its 
on'rall objecti\u. 



0.5 Aims of standardisation 

0.5 Aims of standardisation 

The Z standard supports the following g£.>neraJ aims of standardisation as listed in the British Standards 
Institution Slandard for Standards [4]: 

provision of a medium for communication and interchangeability; 

support for tlw economic production of standardised products and services; 

the establishrnt>nt of meanB for ensuring consistent quality and fitness for purpose of goods and 
st>rvic£.>s; 

promotion of international trade. 

0.6 Validation of' the standard 

In order to L'alidale the standard, it is necessary 10 ensure that it is is appwpriate, consistent and 
complete. and is in accordance with t.he gem:ral understanding of the Z notation. In order to achieve 
this, the folloWing steps have been taken: 

t>xisting descriptions of the notation have been Ilsi'll as a ba5is for the document; 

alternative concepts and notations ha\'e bl'1:'n proposed where existing ones were considered defi
cient.; 

the standard is being reviewed by the Z Standards Ret'lew Committee, which includes experts in 
formal methods, users a.nd tool makers; 

the standard is bt':illg reviewed by the ZIP tools project to confirm lIlat it call be supported by 
tools; 

the mathematical part of the standard is being checked for soundness. 

0.7 History of Z 

This section (in preparation) will include a list of selected design papers on Z will identify some of the 
key decisions made during its development. 

Z 0- Sl.&ndwd v.....ool1 1.0 prilltrd 30Ih Nny~n,b"r 1~2 • 



1 Scope and conformance 

1.1 Scope or the Z Standard 

The Z standard defines the representation. structure am] meaniug of the forma! part of specifications 
written in t.he Z notation. 

Tn addition to defining the fonnal part of tile Z notation, the Z ~tanda.rd defines: 

a Library or Toolkit of mathematical functions for use in writing Z specifications; 

an Interchange Format for Z documents that enable~ them to ue prepared, stored and tran~rnitted 

within computer networks; 

a deductive system for formal reasoning about Z specifi('aUon~. 

A Z document may contain both formal and informal text. The !exis of the standard does not define how 
the Cormaland informal parts are delimited: this is defined in the (nterchange Formal. Tbe Interchange 
Format dOe! not define the structure of the informal part of a Z document. 

The standard does not define a method of using Z. 

1.2 Conformance 

!I. "pecifica\iou conforms to the standard for the Z notation if and only if the form;,.! t('xl is written in 
accordance wjth the syntax rules aud is well typed. 

A dednclive~ystem for Z conforms to the standard if and only ifits rules are sound wilh respect to ~lle 

semantics. 



2 Semantic Metalanguage 

In the following sections we describe the ml>talanguag€ us{·d for defining the semantics of Z. We include: 

the names of all met.alanguage symbols: 

the forms in which they are used; 

descriptions of their nwauing. 

Many of the s)'mbols used in the semantic metalanguage are derived from conventional mathematic., 
and are defilled informal!)'. Throughout the standard, the mathematical treatment ig based 011 the' 
Zermek-Fraenh·l (Zf) a,xioruatibation of set theory. Au inTroduction to ZF theory can be found in text 
books on set theory-see for exalnplr. F.uderton [6J or Hamiltoll [9]. 

In ",ddition to conventional mathematical symbols, w€ introduce and defllle a number of sp~cial symbols 
whicb allow cOllCise sernautic definitions to be written. \Vhere these arp similal to t.he ,ymbols of Z. 
Z-Jike symbols i!.re used and the following additional information is given: 

• definitions of ne ..... symbols in terms of basic s~·mbols. (or other new symbols) 

Note that.. although symbols similar to those of Z are used, the semantic metOl.langua);£ is not Z but 
standard mathematics, based on classical set theory. 

Naming conventions. The following naming conventions are nsed: 

npper-case letters A, B, C, . . are used for sets; 

lower-case letters %, y, ;:, ... are us€d for elements of sets. 

Commuting diagrams. In several of the following descriptions commuting diagrofIl8 are used to 
illllstrate relationships between the set constructors being defined. Commuting diagrams are graphs 
whose nodes are labelled witb sets. Nodes are connecte<! b~' arrOW5, each arrow beiug labelled with 
a relation between the sets at eMh end. A diagram IS said to commute when the composition of two 
different routes between nodes Yields the same result. 

Z B...... S'andacd V~nion 1.0 printn.! JOth Nonml>.T 1991 • 



2 SEMANTIC METALANGUAGE 

2.1 Definitions and declarations 

Variable~ and notations are introduced and named as follows: 

Table t: Declarations and ddinitions 

~aml' Symbol Example Description I 
declaration 

definition -

A:B 

A=B 

A is declared to be an I'lemcnt of the set B 

.4 is defined as B 

" Z R...... S,tu><lard V~... i"" J.O .,ri"W3Oth NiI,..,,,,u..r IfI9~ 



2.2 Sets 

2.2 Sets
 

The following sets .are predefined:
 

Table 2: Preddin('d sets 

~ame Forml Description 

empty set 

intep;ers 

~lrinll;s 

l

" , 
S 

tl:'! 5et having no clements. 

,-2,-1,0,1,2, .. 

lhe set of all strings of dara<::ters. I , 
--" 

Relationships betwC€n sets and th('ir rnembf'rs are written as rollows:
 

Tahle 3: RclalJOn~hips between sets and members
 

:'lame I Form ! Description 

membership I z E A I x is a member of A. 

fiUbset AS;; B I A is a sllbset or B i.e. .all elements of A are 
elements of e. 

equality A = B ; ,," A "d D "e e"o>' ;'e. A "d B hm tl" I 
same members. 

L
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2.3 Tuples and products 

2.3 Tuples and products 

The following C"on.!iIMldor"3 define tuples and products: 

Table 5: Tuples and products 

DefinitionFormName 

ordered list of Ihe elements .1'll ... , .1'n.!tuple < .1'1,' .• ,I", > 

the i!h member of a tuple.<,tuple projection 

7(", < ;rIo' .,X" .•• I", > = x, 
where 1 S; i ~ n 

the set of tllples < z", ... x'" >Cartesian product Al X ..• x An 
, such that 

XJ E At ,nd "d In E An I 
the set of tuples < Xl,' .. ,Z, >I~'-,." -,,, I, such that Xl ••.• ,Ii E A 

generalised producl A+ A' U A' u A' U 

Z B..... SI_dan! V..niob 1.(1 prinl<'d 30th N""~nol,...,- 19'il2 9 



2 SEMANTIC METALANGUAGE 

2.4 Relations 

In	 the following table, R,S denote binary relations, A and B denote sets. 

Tahle 6: Relations 

Name Form Definition 

binary relations A_B P(A x B) 

Identity relation 1, < x, Y >E 1A {:} x::o If" I E A 

domain dom R I Edam R ¢:} 3 y. < I. Y >E R 

range ran n yEranR ¢:} 3z.<x,y>ER 

converse n-' < x, y >E R-l ¢:} <y,x>ER 

backward composition RoS <x,y>ERoS 
, 

¢:)3z. <z,z>ES<z,y>E R 
I 

forward composition R;S SoR 

rUlge restriction R~A R; 1.4 

domain restriction A~R 1A; R 

relational override R<llS ((dom R  dam S) <J R) u S 

relational image 3(R)A ran(RolA) 



2.5 Set ~onstructors a!l relations 

2.5 Set constructors as relations 

Set constructors can be given relational equivalences. By explicitly defining the domain of fach con
stmetor an equivalent get-theoretic felation can be constructed. 

Table 7: Sel constructors defined as relations 

r N.. me Symbol IDomain Range Definition i 

1"'iO' U ~ PUX «Zt,J'1 >, Y >E (U) (:} Y '" J'I U 2:2 

I jllter~ection n I X x X PUK «Zt,X1>.y>E{(l) ¢} y=Zll-,x2 

subset 
;; I X 

pu,y <Z,y>E(Jl ¢} y<;;;;: 

clemellt 3 X UK <.r,Y>E(3) (:} yEx 

singleton {-} I X 
" 

PX < x,y >E {-} ¢} Y 0= {x} 

power P x PPUX < J'. Y >E P ¢} Y 0= P X 

relational imal!;l' 3(R) P dom H Pran R <z,Y>E:l(R) ¢> y0=3(Rl2: 

singleton image A(HI domR Pran R < Z, 1/ >E "(R) ¢} y = 3(RJ{.x} 

projection 'i XIX ... xX" IX; I «zt, ... ,x,,>,y>E{lr;) 

.1'+Cartl'~jan product x IIU.XJ+I <:,:,~.~"">'Y>EIX) I' 

¢}YO=:t"lX ... Xx" 
L' --C l _ J:
These relations will be used only when t.hey ha~'e well· defined domains.
 

The folloWing diagram SllOW5 commuting properties of relational constructors:
 

P4 _'(H) - PB 

/ 
{-J A(H) / 

/" 13 

/
.1--~-1/ B 
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2.6 Functions 

Compatible functions_ Two functions are said to be compatible if their union i5 a function. 

The set ofpilirs of compatible functions from A to B i~ defined as follows: 

CAB = dom(U t> A ...... B) 

The funclional forms of the sel ow~rators: llniO'fl, inl.ersecJian and set difference are defined only when 
lhe arguments are compatible{unc\ions \Vhen defined, they have the same value <>..Ii their set equivaJellts. 

Table 9: Compatible funerions 

Name 

Functional union 

Functional interseclion 

FUIlclionai difference 
i 

s) mbol_l DefiuitlOn 

u" ~8 o(u) 

n~B CA8 <l (n) 

-AB ICAB <l (\) 
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2 SEMANTIC METALANGUAGE 

2.7 Tuple and product constructors
 

The follo'llilng tuple and product constructors are used.
 

The relational tuple (R I , ••. , Rai is a relation from the comOlon domain of R I , ... , R. Lo the Carlrsi"'l!
 
product oft.heir ranges.
 

The relational product R I ;II, ••• ;II, R" is a relation from t.he Carteoian prOdlict of the domaius of 
R I , .... R. to the ca.rtesian product or their ral1ges. 

Table 10: Tuple and product construclor~ 

• 

~ 
~am Form Definition 

iOllal tuplerelat , (R,,, . ., R,,) < ;C,< !ll"'.,!I" »E (RI ., •.. No) 

¢} < Z.!l1 > E R, /\ ... /\ < ;C,!lTO > E 11" 

iona.] produdrela' R, , .. )( R~ (11"1; Rl .. · ·,1L"n ; Rn) I 
'al relational productgeD~1 R+ R U (RxR) U (RxRxR) U ... I 

I 
I 

The follQwing diagram shows relationships between the.~e constructors: 

8, 

./ 

;/

B l x ... x Bn I R, 

, c 

IR""~
 
" 

Aln .. nAn 



2.8 Promoted application 

Theorem 2.1 Relalionaltupling distribule~ through intersedion fl.j Jollows: 

t-(Rl. ..• R.. ) n (511 ••• ,5.. ) = (R1nSj, ... ,R.. nS.. ) 

The following diagram illustrates the properties of tile product constructor: 

BJx .. xB,. "", il, 
+ 

R, , , R. R. 

Al X .• , x A.. 1r, Ai 

Tlieorem 2.2 Prodv.ct (hstribv.tes through mll:'rBedion as JolI()w_~; 

t- R} x J( H.. n SI J( J( S. = R1 n Sl J( J( R.. ns.. 

2.8 Promoted application 

Promotcd application (R. S) is the relationaL analoguc of the S combinator in comhiJLatcry logic. 

Noh:: Promoted application is defined so that thc folJowiug equality hll(d~: 

(R. S)p = (Rp)(sp)
 

wbere R~ is the application of the fll!l(tion R to the argument f'
 

D~finition 2.1 The promoted application operator COns/MlelS 0 relation Jrom Iwo other rdation.~. 1/., 
eJJat is to apply the resv.1t oj R to the relJalt oj S: 

R.S =:: (Rj:;l nS;"",1):1f"2' 

Nole; If Rand 5 are fundion! and f' is in both of tlleir domains. then the tuple (p,(p, q») 
be1oll,gs to the first p;ut of this composite relation providing that that (p, q) is a member of 
tIle set R

I
, and p is Sf>. The tuple (p, q) belonp to the composite relation exactly wlwn for 

some p the tuple (p. (p, q)) belongs to the first part 

Promotcd application is disjunct;ve in bolh arguments. 

A derived form of promoted apptic<\tioIJ is the apply·lo-n function: (_n). 

Definition 2.2 The apply-lo-n JU1le/joll lake,; (J!J all argl1me'/lt a Jllllciioll and has as a 1Y'91llt Ihe ap
plica/ion oj that J1Jnc.tion 10 the element n II IS deJillfri CIS Jollou'$: 

(_n) == 0.11°) 

Note,; If pi!> a fUllclion and II i" an elclllE'nl of tI-'ll domain of p lh{,ll the followiilg I'ljllaJit~· 

holds: 

(_n)p = f'n. 

Z R-.. S(_d.."d Vrro;on I II 1'",,' ....1 :JO,h N,,,,rml,,,,. 1"91 " 



3 Semantic Universe 

This section defines a semantic universe within which lh.e meanings of Z specificatiou$ lie; it is hased 
OIL th.c Zermelo-Fnenkel axiomatisation of sets discussed in the last sectiolT. h contains the meaniugs 
of names, types, a.nd values used in a specification, as well as the e1lvironmerrt IIseJ 10 define the overall 
meanillg of a specificaliou. 

3.1 Names and Types 

D'lr first task in building our uuiverse is to explain the use of naml?$ and the notion of types. III Z, a 
!IalJ]e i.~ u~ed to denote an element, whicb may be a set, a tuple, a binding, or an element of a Riven type. 
These narn€~ come in three varieties: they may be the names of schemas, varia,hles, or const<luts. 'This 
partitioningof names is drpendent on the specification in questio11, the members of eadl set 110t heinF; 
Ji.~lingui6hahle in the concrHe s)'ntax. Abstractly, we have that onr set of names Nome. is partitioned 
into schema names. variable names, and constant names: 

(SchcmaName, Variable., COfl8lafll) partition Name.. 

In common with other specification and programming languages, hut unLike ZF set theory, the rules of 
Z reguire tbat every name introduced in a Z specification is given a particular type which determines 
the possibilities for the values that it may take. This type has several purposes, both practical and 
technical. It offers the usual advantages with which we are familiar in programming languilge5: it 
helps to make the specificatiou easier to understand, and it permits a certailT mechanical checking of 
a specification to be doue. It also guarantees l}lat Russell's paradox is avoided in a specificatioll, and 
that sets defined in comprehension exist. Fiually, it provides an insulation againsl tile details of the 
encoding of Z constructs in ZF set theory. 

The simplest types are given 8et name.B. which are useJ to introduce a.bstract objects into a. specification. 
or as tbe formal names of generic parameters. Their names are drawn from the set Constaflt. 

GweflSftName l:; Constant 

Note: The names for tlie set of integers 2 and the set of strings S are meln bers of tht> set 
of given set names. 

For more complicated type~, Z prO'o'ides three type constructors so that power set tYpes, Cartesian 
product types, and sch.ema type'S rna}' be introduced. If fl}, •.. , flm are names, alld T], .•. , T", represent 
tyP(·s. then the following all rt>present types: 

PTl, 
TjX ••. xrm, 
[ flJ : TJ; ... n", ; T", I. 

[very lype beioIll;s to the semantic set Typr.. whirh is partitioned into lhr foUr subspts (,'typf, Plypr. Ctypt:. 
alld StyTJt' represC'nting lhr given types, po""·er set tYPt>s, Cartesiall product I~·pl'.~. anrl- sc!lema type.~: 

«(,'type, Plype, Oy/}(,Stypc) partition TyVt,. 



3.2 Values in Z 

It is easy to think of something of given type at; an object. of power set type as a set. of Cartesian 
produCl as a tuple, but what about sOinething of schema type? As we can see from the above example, 
il is a function from variable names w types; such a funrtion is called a signature: 

Signature == Variable _ Type. 

Now we bave everything that we need in order to expiain the struclure of the set of typel. Consider 
power set types. From every type r, we can construct the unique type which is P Ti eVNy power set 
type P T is constructed in this way Crom a unique type r. Thus, the power set constructor is a b.jection 
between Type and Ptype. Similar arguments apply to the otber type constructors. We can sum this up 
by defining the following fOUl bijections with the partitions of Type 

givenT: GivenSetName ;-0 Gtypt 
pou'e,.T : Type -- Plyp"
':I','oouctT: Type+ -+ Clype 
sdl£maT; SignaturE .... Slype. 

For each specification th('re is a set of distinct given types. All other types u.~ed are cOllstruct..d from 
these given types using a unique combination of the type coustructors. This uniqueness is guaranteed 
because the type constructors arE' in bijection with the partitions of the set TylX. Tlwreiore the set 
TylX is the smallest set which is closed uuder these t:\'pe constructors. Type is the initial algebra OVN 
the signature given by r;ivenT. powerT, cproouc/T, scltemaT. 

3.2 Value:!! in Z 

As we said above, one of the purposes of ascribing a type 10 a variab]l:' is Lo dl:'terrnine which valucs 
the variable may take. To make this possible, ea.ch type has a sel of values associated with il, called 
ih carrier set. The values in the carrier set of a given type are regardl"d as atomic: objects. Each value 
in the carrier set of a non given type is modelled by a ZF set. The relationship between the types and 
values in a 9pecification is defined by the funclioll Carrier, whose definition we approach jndu(ti~·ely. 

Note: In Z a type is identified by its carrier set. l!l the previous examples T \V~ thl:' carrier 
set for some type. 

Definition 3.1 Foreach sp£cijieation there is a carner Junction u'hich maps ihe r;iven Iyp~s 10 demen/II 
oj Wo. 

CarTil'ro ; Gtyp"- ....... TV0
 

Now. suppose tbat 'I" is a given type; what is the carrier set of the power set type P r? It is simpl)' 
the set P(Carn"er r). In general, for a ]lower set type (1. w(' must calculate t}\e carrier spl by stripping 
off the pOWl'r Sl't constructor. calculatiu,I! the carrier set of this underlying typc. and t.hpn forming tllE' 
power set or lhe resull; formally. this is ~i'''Cll b:-' tbe expression 

(powerT- 1 i Carn'ero i P) (1. 

Similarly, if (T is a ('arlesian product of giw'Jl typ('s. tl}(,ll w(' should hreak it UJI inLo its constitucnt 
given types, work out their carrier spts, and th('n form tl}('ir Carf('lIian product, so that w('end up with 
a set of h\ple values: 

Z B,.,... Standard V~....,,'" I.IJ f>rin'~<t .Wth Non",L~r J ~11 17 



3 SEMANTIC UNIVERSE 

(cproductT- 1 i Carriert i X) u. 

Finally, if f1 is a schema type made out of given types, then we should obtain the underlying signature; 
this yil'lds a. function from names (.0 types, wllich we must turn into a fundiou from names to the carrier 
sets of these types; finally, .....e must form the schema product, so I,hal we end up with a .!let of functions 

from names to values: 

(schemaT- 1 ; 3{l x Carriero); XName) u. 

In tllis discussion, we havl;" heen assuming thaI, the type constructors are applied to given typc~, but hI 
I';l;"neral they are applied to arbitrary types. Since a type is made ont of a finite sequence of applications 
of the constructors, we can define the depth of a type to be the length of this sequence. :Kow we can 
l;ive our inductive definition using this notion of depth: 

Definition 3.2 

Carrier'+1 = 
Carrier; 
U pOUJerT- 1 ; Carrier;; P 
U cproductT- 1 ; Carriert ; X 
u schemaT-1 ; 3(1)( Carrier;); XName . 

Tn order to calculate the carrier set for a type 1'", we must apply Carrieri, where i is the depth of type 
1'". Notice that every carrier function whose domain contains r gives the same result for 1'": this justifies 
OUT gl;"neral definition. 

Definition 3.3 The genem/ carrier function which maps elements oj Typ<: to their earnersels i,~ defined 
as follows.' 

Carrier =. Carriero U Carnerl U Carrjer~ U 

The valUE'S .....hich may be used in a Z specification are those that arl' iu the carrier sets I,hat are a.~signed 

to the types. This sel is constructed from the elements of 11'0 using the type constructors, 

Definition 3.4 The set W oj all t'a/lles is the union oj all the carrier sels Jor th(' elements of Type: 

H' == Uran Carrier, 

Definition S.S A binding i.!l a finile mapping Jrom t'uriables to l'a/lles.' 

Binding == Variable ..... IV. 

Thl' carrier function is a Ilomomorphism between types and n'. Thus. we have thE' equations 

Cm'n'er(powerTT) = P(Carrier r) 
C(lrner(cprodllctT(Tj. T2)) = (Carrier 1'"1) X (Carrier T2) 
('rlrncr(BchcmaT u) = X,\'mlle(3(l x ('arrifT)a). 

Thi" is depict('n ill thl;" colTlJlluting diagrams in ngurl' l. 
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3 SEMANTIC UNIVERSE 

3.3 Elements in Z 

Each element in Z is represented by the pair cousisting of its tYpe and its value. The .semantic set Elm 
is a. set ortype-value pairs; this sel rna.y be considered as the relation betwee1l types and values in which 
a lype is rdated to a value if and only if the \'alue is a membcr of the ca.rrit>r .set of the type" 

Definition 3.6 A value is (In eltment of II type if and only if it is contained in the carn"er sel of tnf 
type: 

Elm;: Carrier; 3 . 

fhe -first and second projenions on a tuple are used to extract the type and value respectively. 

Definition 3.7 The type (Iud mlu" fum/ions an; projeclio1l1' from tne tuples In Elm: 

I 0: JrU:lm' 

11=- JrlE:lm' 

The type function is a surjection since the carrier set of each type i~ non·empty. Since the canier set of 
each type contains aC least one value, Elm contains at least one pair for each t.ype; thus, t is svr-julwc. 
Since the values that may be used in a specification are all to be found in the carrier set~, Elm contains 
at least one pair for each value; thus, v is sutjeelive. 

Definition 3.8 The membership reill/ion for elements 3 is Ihe lifltd form uf a type mlue pair: 

'3 == (powerT- 1 x 3) 

Suppose thaL we ha.ve a Z specification. It consists of a number or definitions which intronuc(" names. 
Each 1Iame may denote some value, and each name must have some type: Lhat is, each 1Iame may be 
associated with an element. We call such au assignment of elements to names a situatio1l. 

Definition 3.9 A situation is a finite mopping from vanables to clement"<: 

S'itualion =- Variable _ Elm . 

.\ sit.uation tells us two things about the names in a Specirlcation: their types and their values. If 
w~ think about the lypl' projection of each name. then we obtain a mapping from uames to types: a 
signature. If, on the other ha.nd ..... e think al>olll thl' \"a]lIe projection of each llame. then we obt.ain a 
mappillg ftorn names to values: a uinding. The signatnre and binding corresponding to a particular 
situation fan be extracted by the function:; l' and V respectin·ly. 

Definition 3.10 The T and \. fUlldirm,. an" defined (IS follou's: 

T=-3(IX/) 

~. ~ 3(1 x I')" 



3.4 Generics 

The following commnt.ing diagram illustrates the relationship between types and ,'aJu~s and thl'ir lifted 
forms as 6ignatUre5 Gnd bindings: 

P Variable 

""',

" Jom dom ~om 

", " SignCJturt T .,;;,tu~tiarj \' Hi'Hfmg 

I I I
 
r,1I1ranran I 

I 
P Type ~,------PElm PI" 

'( I) 3(") 

Sinl:e the prod ucl cons tfuctar and the i mage constructor pres~rve surjectivity, T is a. surjcni\·~ functiolL 
Our ue).t theorem follows from this. 

Theorem 3.1 The. type of the ~e! of situatiolls i" exactly the set 0/ JIgnature.s:: 

I- 3( TjSituation = SigrlCJlu~. 

3.4 Generics 

A Z expression that involves a generic insrantial.ion acquire;; a typ~ and a valuc that depends upoa thc 
type arLd value of tlle expression Ilsed in the instantlalioll. Thus if we S(!li' 0!N] we know tbis bas a 

clifTerent type from 0[P NJ. The various types that 0 ma~· take are represent.l.'d as a funclion from type 
to type. In rhe c,ase of 0. :hi" function takes au arbitrary pow('rset type to itself. III geMral, where 
a ii/:cneric definition conl(ljns a list of identifiers. the ....'lrious possible instantiations are afunctian from 
)ish of elemeuts to a ~ypc and value. TJ~e dl.'ment.!; which llIay appear as adual parameler5 of a gl.'neric 
defimlLon must be of powersel type 

3.4.1 Gel1eric Types 

For earh generic Iypf' th(' number of [ormal param('ll'fs is fix('d, and ('very possible> se(\lICIICl.' or powerset 
types with the right llulUbn of formal paramell'fS is ~i\·ell a type. So eadl gent.'ri(" t.¥lll' is a fnnction 
from fixed-leugth Gf'Iluences (lr power '').JJ('.~ to a t~·pe. 

Z B""" 5tlUld"n! V.....;m' '.0 prinL..<l."lOth Now",L..r l\1'!12 21 



3 SEMANTIC UNIVERSE 

Definition 3.11 For onll natuml number n > 0, tht Sit 0/ all generic typts with n paromt"ltrs is llefined 
{1.!J /01/0111$; 

Gt''LType. := PtIlIX" -+ TIIP'!. 

Definition 3.12 The.!Jet 0/ all gHliriC lypt.!J i.!J the union 0/ all tht stls 0/ fiXEd length gencrll' typu: 

Gell_Type :: TllpE U Gen_TyP'!] U Gtn_Type1 U. 

If X and Y Me generic formal parameters and a generic defmition declares r : X; 11 . }', Then an 
expression such as r E II or r = y would impose a mutual constraint ou the types that could be used 
10 instantiate X and Y, For:l E II, we haH the constraint that the types that Y may take all' the 
powef/:;et orthe types that X may take; for:l = y, we have tbe constraint that the types that Y may 
!ak~ must be the same as the l)'pes that X may take, 

The ddinition of generic types Ol.s total functions imposes the constmint that gell~ric defbdtions do not 
lr~at~ intet.relationships bet .....een t]le type of tbeir formll.! p"rflH\etNs. Such inter-rehllionships can 
'llways be eliminated within a specification. 

~ince all the type constructOl"S are bijections. th~n any iuter-relationship hetween Ihe type,;. of g~llerlc 

parameters i~ functional. Th~refore any dependent parameters are redundant since they can be uniquely 
d~terminedas functions of the olher parameters. For x E y the inter-relationship can b~ eliminated by 
removing }' as a formal gen~ric parameter ,lnd ddining y P X: for :l == 11 we call eliminate Y and 
definc y: X. 

3.4.2 Generic Element, 

As with generic types, for each g~neric element there i~ only one number of formal parilmeter6 that it 
can take; fnrthli'rmole every possible sequence of the corren number of elemem.s with powerset type is 
given a type and ,·alue. 

Definition 3,13 Generic element.!J urt' /lInclio"s from tlJple.!J 0/ ,oft riemenls 10 elements: 

Gen_Elm : P(Pelrn+ - Elm). 

~('t~ ill Z arc those- elements which have a power type: 

Definition 3.14 The si/ Pdm contai"$ (Iii clements which haFt power type; 

Prim =- Ptype <I Elm. 

I'hl.' rUllctions representing generic elemem~ are type consist~lll: a generic element, when iustalltiated 
wjlh IWO sequences of elements of thp same t~·pe. will give IWO elements of the sallle type. In order to 
'1<:'fine this property it is neces~ar\" to charact('ri.!Jf' the type part of fl generic I·lem('n\.. 

Dcfinition 3.1~ The /Wl('tlOrl T lokes a /lIll('lion from Iliph 0/ elfrwnt:< 10 dement.!J and rllJH'/I1' 'I 
1/f'l!(Tic typt: 

T -=- 3( It X I) U f 



3.5 Environments 

Definition 3.16 All genenc elements nfll'e a type parllrnlcn is fUf/ctional, i.e. contained in Gen_Type 

Gen_Elm == dom{r c> Gen_Type) . 

.A theorem similar to that for elements hold§ for generic elements: 

r 3(r)Gen_Elm = Grn_Type. 

3.5 Environments 

In l"der to give a JnC'anin/il t() the COTlstruet~ of Z. we need an environmcnt to rccord Ihe elemenls 
delloted by thc Tlames used in a Z specification. 

Definition 3.17 An f'Tll'ironmfnl is dejir,etl (J:< a finite pm'liet! function from name."'o gnUrlC elemenls: 

Ef/V == Nllme __ Gef/_Elm. 

Whether a Z specification is well t)'ped or not is a (Jues1.ion that is independeut of thc valuea or the 
declared variables. To be able to answcr tllis question it is TleCeSSar)' to have an environment in which 
the types of all names are recorded. 

Definition 3.18 A type-envirollmenl ib defined as a jif/llc Junell01] from n(lfflCS to generie typea: 

Tent' == Name __ Gen_Typ", 

Th~! simple relationship between the rid,er environment. ENV. and the one nsed just for 1)·JlP. checking, 
TENV, is given b.... the forgetful functioJJ T which throws away the \·alnes. 

Deftnition 3.19 Tne function T maJl.~ the $fcond e1CllIfTlt of e(Jcn tuple in an enVil'Onmeflt onto its 
corrtspanding genenc tyfX: 

T'= 30"4m< X r). 

TII(· following COIIJilllltiull; dia!!:nlln iJl\lst.rat.t'~ 1-he rel"lioJl~hlp hl'twl'en Lit!:' ('II~'iroJJllIent aud typc
Cll \'i ronment: 
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3 SEMANTIC UNIVERSE 

PNa.me 

d,/ ~m
 
Tenv T Env 

"" rail 

PGen_Type _-- powaGen_Elm
3(T) 

The functioD I used in the collstruction of T ran be shoWIl to be surjer-tive outo Type, so the followillg 
theorem holds. 

Theorem :J.2 ElJf!ry type environment ha.s at least one corrcspondmg 11I1l t'lwinmment: 

r 3(T)Env == Tenv. 

If T is a set or type environments, lhen 3(T-1)T is tbe corresponding ~el or meaning environments. 



4 Language Description 

This ~ec~ion provides all introdnction to the following section~ by illustrating how the the syntax and 
,~emantics of Z are defined. 

The following sections each define a major syntactic category: ezpr<:ssion, predicate, dec/am/lim, schemlJ 
lUi, .•chemlJ, pllragroph. \Vithin each there are subsections corre~ponding to the syntactic categories of 
the abstract syntax. Each definition follows a consistent pattern and is suh·dj.,.ided nnder tIle following 
headings: Abslract Syntax, Reprt:llenlation and Tronsjomlation, Type, at~d Vaille/M£tminy. At the end 
of each ~ection tables contain the definitions or the free variables of each element, together with their 
alphabeL wr.ere appropriate. Finally a t;;.bleof equivalenres for substitntion is given. 

A de'lotationa/ style of semamic description is used [21] and, as in the cu~(omary styl~ of writiIlf!, 
dl'notativnal semantics, semantic brackets are Ilsed to delimit text fOr which denotations au givell. The 
notatbll is extencied by providing different shapes of brackets for diffr-renl kinds oflanguageelcnlents a~ 

show]] in tlle following t.abk. Three t.ypes of sl'mantic functions are used, for Iype, value ilild meaniny. 
The different types are identified by s\lperscripts on the hrackets. 

Table 11: Semantic hrackets 

Bracket Argument Forms 

IT-I 
{-I 

Expre~sjon 

Predicate 

IT- r,IT- r,IT- I" 
{_IT,I_I"{_I M 

! 

I-I 
I-I 

I-t 

I-I 

Declaration 1_ IT, (_ 1M 

Schema 1_ IT" 1_ 1M 
' 

Schl'maText 1_ V, I_1 M 

Paragraph 1_ V,I_I M 

I 

I 

~ 
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4 LANGUAGE DESCRIPTION 

The following meta-variables will be u~d. 

Variable3 

E,x,y 

n,m 

a 

; 

, 
" " 
b 

f 

P,Q 

C,D 

51 

5,T 

Pa, 

Sort 

Expression 

Name 

String 

Number 

Tuple 

Set 

Binding 

Function 

PrediCaf.e 

Declaration 

Schema Text 

Schema 

Paragraph 
J 

4.1 Abstract syntax 

For each language element, ilS abstract syntax is defined ill a form of Bl\'F. The following example 
illustrates the style used. 

PQWERSET = P EXP 

In some cases symbols such as P are u~ed rather than key-words or other strurtmes in the syntax to 
make reading of the abstract syntiU easier. The romplete ahstract syntax is pr('sel1ted in an Anne;(. 

4.2 Representation and transformation 

For each la.nguage element a table is provided sh<1wing the production or productions, expressed j:;). the 
repr~l'ntationsyntax. of tlte language element being defined and t.be relationship between tbe concrete 
and abstract forms. 

Note: There may be more than one representation of an abstract syntax category; in such 
cases all forms are listed. In some cases the multiplicity of reprcsenlations is due to the fact 
that rome forms can be considered as abbn>\·iations of olhers. 
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4.3 Type 

The transformation is presented in a denotational style with different superscripts on the brackets to 
denote the type of argument. 

Table 12: Tra.nsformation Functions 

Bra.drets Argnment 

[-1' Expression 

[-1" Predicate 

[_1" Declaration 

1-1' Schema 

l_fT SchemaText 

(_f'A'R Paragraph 

The following example illustrates the tabular form in which the representation form i,s presented together 
with its transformatiolL to its abstract form: 

Production Concrete 
~ 

Abstra.ct 

'p' ,Expreuion5 P. P[.)' 

In this example the production for power set shows how a power set is represented i.e. as an expcession 
prefixed with the power set symbol. The second column is an example of this concrete form. In this 
CASe.5 is some elo:pression. The third celnron gives tlll' abstrMt form 01 this concrete expression. In this 
ca.se the form is an (abstract) powerset symhol followed by the abstract form of the expression 3. These 
two columns can be read a.s an equatioll in the form: 

I P .,j' P[·.. t· 

The r{'presentation s}'ntax is presented ill a complete form in a later Annex. 

4.3 Type 

The definition of the Z type system is by structural induction over lbe abstract representation of a Z 
specification. The well-typedness of a Z specification can be determined illdependenllJ of the value!! 
of the declared variables. So we see that tIle following d{'finitioll of l/Il' Z type system is entirely 
self-contained: giveu a Z sp<'cilication, the type definitions detE'fmine whether that !pecification is 
well·typ{'d. 

Note: It is important to note tltat a..~king whether a cl:'rtain sp('cificatioll is well-typed is 
d{'ridable. Askin!!; what lht' type of lI,ny lrtm in a given {'n~'ironmt'nl is likewise definable. 
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4 LANGUAGE DESCRIPTION 

Thi. is in marked contrast to evaluaLioll, where asking whethN a certain Ilame nl"y have a 
certain value is undecidable in general.
 

The fact that ""ell-typing is decidable is not quite as obvious as all that, bpcallse TENV
 
represents generic definitions using infinite objects. However, the infinite function from
 
tuples of powerset type to type can always be represented as a finitary expressioll.
 

Name Form Sort 

Expression Type [E DT Tenv -... Type 

I Predicate Type 

IDeclaration Type 

jP DT 

lD DT 

P Tenv 

Tenv __ Signalure 

Schema Type 

SchemaT"xt Type 

Paragraph Type 

IS V' 
(St l' 
{PaT V 

Tenv ..... Signature 

Teflv -+> Ten\' 

Tenv ...... Tenv 

I 

J 
The following example lllu!>trales the d"scriptlon of the tipe of" P0\louset' 

Type The type of the power set Psis the power set type (I( the type of the set s. 

ffP s TIT == (ITs ll' [> Plype); pOll'eTT 

Note: A power s"t Psis w"ll lyp"d only if $ hilS power set type. 

The type description contains an informal description, th" m... lh"rnatical definition of the type futl-:tion 
for the powerset and an explanation of when it is w"]]-lyp"d. This last explanation is duived Jirel::tly 
from the domain of the type function, 

4.4 Meaning 

The meanings of expression, predicate, dec/am/ion, schema an(l paT(lgmph are gi ..'en by the followirlg 
functions. 

Name Form Sort 

Ellpression Meaning [E DM Em' ..... Elm 

Predicate Meaning jP DM P EnlJ 

D«laration Meaning ID DM Env <-0 Situation 

Schema Meaning dS )MS Env ..... SitualioTI 

ScbemaText Meaning 1St jM Env <-0 Env 

Paragraph Meaning 4Par}M Ent' ~ Em' 



4.5 Value 

The mewinga of erpression, predicate, dedarQtion lUld schema are combined to provide a meanillg for a 
parllgraph. This meaning is a relation between environments. The meaning of a specification is defined 
as the image of the empty environment through the cOffip05ition of the paragraph relations. 

The folJoo.ving exa.mple iUusuates the description of the meaning of a simple declaration: 

Meani.ng The meaning of the simple declaration n .... ,. n", : .5 is a relation from the 
environment to those situations which associate each of tbe names n" ...• n", with one of 
the elements of the set expression .'I: 

(nIl ... n",: s DM = ITs DM ; ((n,",3), ...• (n",o,3»); {...}. 

Note: The simple declaration n, •. ..• n .... : .'I is value-defined exactly when the 
expressions is a non-empty set. 

The meaning description contains an informal description. the mathematical definilion of the meaning 
function for the declaration and an e.1lplanantion of when it is value-defined. This last explanation is 
derived directly from the domain of the meaning fnnction. 

4.5 Value 

The meaning functions for e.1lpreuions and predicates are defined in terms of their type and value. 
So the value functions are the primitives defined in the following sectiOns. These (unctiolls have tbe 
following structure: 

Name Form Sort I 
Expre5sion Value IE I" Erw _ lV 

Predicate Value {Fa" P Env 

I 

The following exampJe iIIunrales the description of the vfl.lue of a powersel: 

The value of the power set P II is the set of all the subsets of the \olue of .I: 

ITPIIUV = IT.s]"';P 

Note: A powerset P II is value-dt'fiued only if tlle e.1lpression s is value-defined. 

The value description contain!> an informal description, the mathematical definition of the value function 
for the powersel and an e.1lplanantion ofwht'll it is vahlp-denn('(\. This last explMfl.tiOIl is derived dir(lctly 
from ll\c domain of the va.lup function. 
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4 LANGUAGE DESCRIPTION 

4.6 F'tee variables. 

Ordinarily the definition of the free variables of an expression can be considered as a fnnctioll 011 the 
names of identifiers appearing ill the text of the expression and the variahle bound by Lhe declarations. 
In Z howe."er, tbe case is somewhat more complicated. The \lse of schema ref('rences as decl<lratlCns 
means that there is an implicit declaration. The names introdun'd by the declaration S wh('re 5" is a 
schema reference are not related to the name S but to its value in the particular environment within 
which it is heing evaluated. In other words the free variables of an expression depend OIL the text of th.
expression and the environment in which tlle expression is evaluated. 

We define the free variables of an expression 10 be a partial function from environment to sets of names: 

¢.(E): Env -++ P Name 

The set of names defined as the free variables for an expression for <I particular environment is the 
sI.naliest set of names which must be in the environment ill order for the expres6ion to be well-defined. 
However since local declarations do not introduce schema rderenc('s, the free variables of all exprellsion 
are unchanged by a local declaration. So in the definitions we omit the environment paramet.er as it 
has no effecl on the value of the free variables. 

Table 13: Free Variable Function 

Function Argnment 

¢, Expression 

¢. Predicate 

¢, Declaration 

¢. Schema 

¢, SchemaText 
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4.6 Free variabJes. 

AI. thlJ end of each section there is a table ddining the free variable for each comtruct within that 
category.	 The following example illustrates the definilion of the free variables of a power SlJt: 

Table 14: Ex:tra.cl from Table of Free Variahles 

--, 
Expression I Free Variables 

p:z I¢.z 

This CaIl also be read as an equation in the following form: 

'P,P" 'P,".0:::: 
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4 LANGUAGE DESCRIPTION 

4.7 Alphabet 

The syntactic categories of declaration, schema lext iUld schema are used to inlroducl' new !lames. 
These new names are called their alphabet. The alphabel is the set of the names in Ihl' sign:.ture as 
defined by the type rules (where applicable). 

Table 15: Alphabet Funcl.ion 

Function I Argument 

u I Declaration 

SchemaTeXl 
i 

Schema 

I 
~ 

Table 16: Extract from Table of Alphabets 

I
Declaraliou Alpha~t 

f--- I 
n" ...• nm:a I {n .. ,nm }

" 

This (an also be read as an equation iu \he following form: 

u(n" .. ,nm : 8) {n t , •• ,nm} 
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4.8 Substitution 

4.8 Substitution
 

The tables of semlUltic equivalences for substituted expressions are givl'n at the end of each section.
 
These tables indicate when one expr~6sion can hI' replaced by another .....ithout changing the meaning.
 

The follo..... ing example illustrates the semantic equivalence of substitution into a power set:
 

Ta.ble 17: Extra.cl from Table of Semnantic Equivalences 

Substitution 

b,OJ P s I:::~." I 

This can aho be read a.s a.n equation in the following form: 

bsP s P(bGs), 

where the symbol -= denotes semantic equivalence. 
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5 Expression 

5.1 Introduction 

As in computer languages, e.r:prc.5siun is a general form for defining values in Z. 

In the abslract syntax gi\'en below, tbe different kinds of Z ent.ity are listed. The enlities included jf: 

tite syntax, further defined in this chapter, may be subdivided as follow~: 

Elements: 

IDENT GENINST NUMBERL STRINGL 

These denote c!("mentary values. 

Set constructors: 

SETEXTN SETCOMP POWERSET 

These are used to conslruct sets from elements or SPI.'i 

Tuple eonstructors: 

TUPLE PRODUCT TUPLES ELECTION 

These are used to conslrucl tuples from clements or luples and sdecl clements from tnples. 

Binding constructors: 

BINDINGEXTN THETAEXP sCHEMAEXP BINDSELECTION 

These are used to construct bindings and select elements from bindings. 

Functional forms: 

FUNCTAPP DEFNDESCR 

These represent function application and definite description. 

Other Forms: 

IFTHENELSE EXPSUBsTITUTION 

These respectively represent a cOllditional expressiou and substituted expression. 

Arithmetic and other expressions 

In Z, facilities for defining arithmetic and Hring valued expressions such as those of programming 
languages are included in lhe Z Toolkit, where they are defilled in terms of other Z COllstrUcl.ions. 
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5.1 Introduction 

Abstract Syntax 

EXP ==	 IDENT
 
GENINST
 
NUMBERL
 
STRINGL
 
SETEXTN 
SETCOMP
 
POWERSET
 
TUPLE
 
PRODUCT
 
TUPLESELECTION
 
BINDINGEXTN
 
THETAEXP
 
SCHEMAEXP
 
BINDSElECTION
 
FUNCTAPP
 
OEFNDESCR
 
IFTHENELSE
 
EXPSU BSTITUTION
 

Stages of definition 

In this chapter definitions are built up in stages: first a. type june/ion is defined, then a v~lue junction. 
From thl"se. a meaning ju.nelion can be derived according to rules giveu below. 

Type function For any expression E, its type junctio11 [E]7 is a partial function {rom type
environments to types. The expression E is well-typed in l'-xactly those type-environment, contained in 
dom [E ]T. The tJlpe of an expression in a type-environment is the result of applying its type fundi on 
to that lype-environment. The type function for an expression E is constructed from the type functions 
for its Bub-expressions; thus the type of E is derived from the types of its sub-expressioIls. 

The t)'pl.' of an expression in an environment is its type evaluated in the corresponding restrkted type
TenvironlUent. The function T; [E H corresponds to the type function for E in the full meaning envi

ronml"nt, where T is the function that restricts an l'nvironment to its corresponding typNnvironment. 
An expression is well-typed in an em'ironment if and only if it is well-tYPl'd in the corresponding type 
environment. 

Value function For any l"xpression E. its value june/ion [E ]1' is a partial {unction from environments 
to values. The expression E is value-defined in exactly thOse environments contained in dom ITE ]1'. 
Thl' value of an expression in a environment is the result of the application of its valU!? function to that 
environment. 

Meaning function From lile type and value funclions for an expre~5ion E it is poosible to define 
a meaning funclion [E]M. The meaning of an expressioll is the pail of its lype and its valU!? The 
meaning funclion for an expression is COllstructed a.s follows: 
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5 EXPRESSION 

IE I" = (T; IE Dr , IE TI") 

The expression E is IDell-defined in exactly those environments contained in [he set: 

dom{T; [E]T . [E ]V) 

This is equal to the set: 

domT; [E]T n dom[E]V 

Thus an e.xpression is well-defined in those eu'..ironm<:'nts ill wiEch it is well-typed and i~ \·alu<:,·ddined. 

A result of this definition is that t.he 'ype of the meaning of an ~xpression in an environment i~ aJway~ 

the same a.s the type part or th'" expresGion wilen e\".]uat<:'J in the coTr0sponding lYP<:'·0l\vjHJlIm<:'IIt.: 

r- [E ]M ; I ;; T; [E ] r • 
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5.2 Identifier 

5.2 Identifier 

An identifier is a na.me used to refer to a. va,riable. Variables in Z ase mathematical variables and are 
nol the same as the programmiug variables used in programmiug languages. Z variables dEnote values 
which depend OD their environment. 

Abstract Synt&.Jt 

IDENT = VARNAME 

Note: A variable nam(' i~ composed or a b(l.~f_namt' suffixed by au)' number of decorolions. 

Representation Ilnd transformation 

Production 
, 

Conert>:e Abstract 

VarName " n 
I 

Type The type of an identifier is the type 1.0 which the identifier is mapped in the type-environment: 

Un TIT = (_ n). 

Note: An identifier is well· typed only if it is in the domain of the type environment. 

Value The value of an identifier is the eleml'nt mapped to the identifier in the environment: 

[n]V == (_n);v. 

Note: An identifier is value-defined ouly if it is in the domain of the type e!lvironmEnt. 
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5 EXPRESSION' 

5.3 Generic Inst.ant.iat.ion 

The generic insta.ntiation n [3" ... ,3,,) is the instantiation of the genericallY declared variahle n by by 
t11e lisl of~t expressions s" ...• s" Each ekment of the instantiation list gives a value to a gem'ric 
parameter of the generic definition. 

If the list of generic paramNets is omitted in lhe representalion form, they are inferred from the typing 
information in the context of use. The implicit parameters are the maximal sets of the appropriate 
type, which must be uniquely determined by the typing rules. 

Abstract Syntax A generic instantiation is const.ucted from a variable name and a list of ~xprf'~~ion.<.. 

GENINST = VARNAME [EXP.EXP •...• EXPj 

Representation and transformation ThC'fe are three ways ur instantiating g{'nerically declared 
\'ariabl<>s: hy a parameter list, by infix or b:. prefix mear,s. 

Production Cor,crel~ Abstract 

VOIr NiI me" l',Expression,{' ,,,E)(pression}'I' 
EKpressionl, InGen,Expression 

PreGen,Expression5 

nl.] .•, .....n] n ![6dt,[s.J.'~·, ... ,[3nt] 

Xl tPZ2 I I-'i>-) [Izd' .1,,1'1., i 14>-1 [[,I'I 

Note: The expression XItPZ2, where,p is an infix generic symbol is the variable dt-dared as 
(_I,b-) when in~tantiatecl with I,he parameter list [Xl, X)]. When ,p is a prefix generic symbol 
then ¢: is the variable declared a... (¢o-) when instantiated with the parameter list [x]. 

Type The type of a genl?ric instantiation n [s" . .. , sn] is obtained by applyi ng the functirm COIre· 
sponding to the generic type of the variable name n in the environment to the t;,'pes of the actual 
parameters 3\ •... ,3,,: 

r[n[s" ... ,sn]f == (_nj.([3, U, ... ,[8U7
) 

Note: A generic instantiation is well-typed only if the' variable Jlame is in the domalll of 
the type environment and if there is a correct number of set.lyped paramcte'rs. 

Value The value of a generic insta.ntiation n [3" ...• sn] is obtained by applying the functio~ cor· 
l<'Sponding to the generic meaning of the va.riable name n in the environment to the meanings of the 
actnal parameters 3" ...• 3,,: 

[n!...... , ••IJ" ~ (l_n).([.,JM"'''['oJM));" 

Note: A generic instantiation is ,,·alue·defined only if it is Wl'JI.typ('<:! and all its parameters 
are value defined. 
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5.4 Number Literal 

5.4 Number Literal
 

A number Iitera.l is an entity whose representation denotes its value in the world of integer;.
 

Ab5tract Syntax 

NUMBERL = NUMBER 

Note: A number is a sequence of digits 

Representation and transformation 

Production COncrete Abslract 
1---

NlJmber i , 

Type The type of a number literal is the giwn type of the integers. 

ITi ll7 = 2°; givcnT 

Note: A number li~era.l is always well-typed 

Value The value of a number literal is its representation. 

ITiD7 = iO 

Note: A number litera.l is always valne-defined 
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5 EXPRESSION 

5.5 String Literal 

A string literal is an entity whose representation denotes its value in the world S of strings of charact(,Ts. 

Abstract Syntax 

STRINGL = STRING 

Note: A string is a sequence of characters. 

Representation and transformation 

Produnion Abstract 

String : a 

Type The typl' of a sl,ring Jit"ra] is the set 5 of strings. 

[af = SOjgivenT 

Note: A string literal is always well-typed. 

Value The value of a string literal is its representation. 

ITa DT = 0° 

Note: A string literal is always value-defined. 
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5.6 Set Extension 

5.6 Set. Extension 

J. set extension {x" ... • x n} is a Sl't containing exactly thow elemenls denoted by X,," .,X". Since 
a 51't is charactl!rised by its member/;, tbe order and multiplicity of elements in x" . . ,:r-n is of no 
consequence. 

A bstrad Syn'tllJ( A set extension is cou~tructeJ from a Jist of expressiolls. 

SETEXTN = {EXP, EXP, ... , EXP} 

Representation and 'transformation There arc three kinds of 6e\.s which tan be cOj\~tructed by 
eJHl'nsion; sJmple sets. sequences and bags. 

Prodnction Concrete Ahstract 
, 

'{' ,ExprusionO,{' ,',ExpressionO} . T { XI, X~, . .. ,:r" ) {[ZIt,lxlIE, ... ,(x"r} I 

'(' ,ExpressionO,{',',ExprenionO} ,')' ( l'l,X2," .,X" ) [(II,x,),12,x,), ... ,I".x.)})' J 
'I' ,ExpressionO.{',',ExpressionO} ,'I' l XI·E:i,·· .,x.. I r(Ix" I)} _ {(X" I)} ~ .. _{(X., I)) 1£ 
~- I 

Note: The expression ( ZI,~, .. , Xn ) defines au explicit construction of a sequence, which 
can be regarded <\5 an ordered collection of its constitueuts. A sequence is modelled a.s a 
partial fuaction mappiug the Natural numbers 1, ... ,11 to the expressions II, X2, ", x" 
respectively. 

Note: The expression I :r-l, x2,' .• Tn I defines an e..xpficit cOtlstruction of a bag. A b/lg is a 
colledion of possibly multipl;"-occurring elements. A bag is modelled as a partial function 
mapping constituent expressious to tlle uumoer of times they occur within the bag. 

Type The type of CI. set extension {Xli' .. ,:t,,} is the power set type of the common type of x" ... ,2'". 

[{X" ... ,Zn}nT = ([2',ll'n . . nUx"ll');p01nerT 

Note: A set extension {x" . .. , z .. } is well t:yped only if all of the expressions x,. Z., ... , z" 
have the 9ame type. 

Note: If t represents the commou type of XI, Xl, . .• , x,. ,then P t represents the t)'pe of 
the Set { ZI,Z2•.. . ,X" }. P(l x I) repre!>ents the type of the sequence (XI,T~ •. . ,1.) and 
P(t x l) represents the type of the b<l.g 1"-""-1""'x,,), 
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5 EXPRESSION 

Value The value of a ~('t eXlension {z,t ... ,z,,} is the s('! of lhe value~ of z, •..• Z,,: 

[{,,,···,,"H" = (['.ll", .. ·,['" ll");{· ..) 

Note: Asetextensic,n {~I.Z~t., .• ;(:" }isvalue-definedonlyifallof z":z~•... ,:z,, are 
..... alUic-delined. 

Note: Two sets {.lL,.l:!•... ,x,,} and {Y"lt!h, ... ,y",} are equal if and anI.\' if for all;;, 
there exists Y, such that Xi = JI), 1 S. i ::; 11 and for all YJ there exist~ Xl such t],,,t 
Yj=r~, l::;j::;m 
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6.7 Set Comprehension 

5.7 Set Comprehension 

The set comprehension {St. z} is a set which contains exactly those elemeuts denoted b)' the expres
sion z when evaluated in each enrichment of the currenl environment hy the schema text St. 

Abstract Synt.ax A set comprehension is constructed from a schema text and an expreosion. 

SETCOMP =' {SCHEMATEXT. EXP} 

Representation and trl'l.D5(orml'l.tion There ar" two types of set which can be constructed by 
comprehension: a simple set (for which the expression part is optional) and a lambda expression. 

Production Concrete Abstract 

'{' ,SchemaTe:d..• ' .ExpressionO, '}' {Si. x} {[S,tT.[,l'l 
'{' ,5chemaText, I}' {St) Hs'tT,[(Sl),l' ) 

'A,' ,SchemaText, '.' ,Expression >..St. :s; HSIjST. ([(Sw l' .[>!'ll 

Note: If the expression part of t.he set comprehension is omitted then the defaull is the 
characteristic tuple of the schema texl. 

Note: A la.mbda. expression denotes a fuuction. The parameti>r is the characteristic tuple 
of the SchemaText. The domain is defined by tILe property of the SchemaText. The value of 
the function for a given parameter is defined by the \"alue of tbe Expression with respect to 
the value of the parameter. 

Type The type of a sel comprehension {St. z} is the power set type of tbe type of:r in the type
environment enriched by the declara.tion 5t: 

[{St. z} TIT = {St V; rrz TIT; powerT 

Note: A set comprehension {St. z} is well-typed only if 5t is well-typed and :r is well
typed in the current type-environment enriched by St. 

Value The value of a set comprehension {St. z}, is the set of the values denote by the expression 
z in each of the enrichments of the environment by the schema text 5t: 

V[{St. z} D = "(St}M i ffz tl 

"Note: A set comprehension is al .....ays value-defined. 
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5 EXPRESSION 

5.8 Power Set 

The power set P 8 is the sel of all subsets of the set s.
 

Abstral:t Syntax A power set is constructed from an expn·sslon.
 

POWERSET = P EXP 

Representation and transformatiQn 

COflcret(' I Ahstr~ct 

,p' ,Expression5 

Production 

p, P[st 
I 

Type The type of the power set P 8 is the power set t)'pe of the type of lhe set s. 

[P 8 r = ([S]7 [> Ptype); powerT 

Note: A power set P 8 is well typed only if 8 has power set trpe. 

Note: If P t represeMs the type of the set s, theu P P t r('presents the type of P s - it is a 
set of sets. So, the type of lhe elements of Psis the type of 8. 

Value The value of the power set P 8 is the set of all till' subsets of the value of 8: 

[P s]V = [8 r; P 

Note: A power set Psis value-defined on I}" if the expression 8 is value-defined. 



5.9 Tuple 

5.9 Tuple 

A tuple (;I:" ... ,z,,) is an ordered Colleclion of the clellLcnl.~ z" ...• z". TIle eleml'lIts z" ... ,z" are 
nol required Lo nave lhe samR t.ype. 

Note: Note tha.t the tnple5 (a,b.e) and ((o.b).e) are distinct: the first conI ail" three 
elements 0, b. t: wherRa.s the S&ond contains twO i'lpments (0, b), e. The expressim (a) is 
not a tllple; !l is the e)(pression 11 within p...r...nthe5e~. 

Abstract Syntax A tuple is con6truct('d from a list of lwo or more expf(·!;~jons. 

TUPLE = (EXP,EXP, ... ,EXP,EXP) 

Repr... ,.entation and transformation 

Produclion Coucrete Abstract 

'(' ,ExpressionO, .,' .E)(pres.sionO,{'.'.E)(pres.sionO} ,'}' (Xt, ... , x,,) Ilxd',··.,[,,1') 

Type The rypc of a tuple (z" ... ,;1:,,) i.o; the Cartesian product. type formed from the" types of 
;1:" ... , ;1:,,: 

[(z" ... ,z,,)ET ~ ([;1:,]7, . . ,ITz,,]"T);cprodudT 

Note: A tuple (;1:'" ... ,;1:,,) is well-typed only if all of z, •... , z" arc well-typed. 

Value The value of a. tuple (z" ... ,z,,) is the tuple formed from the values of %" •• • ,X,,: 

[(z", .. ,z,,)]\.1 = ([;1:, TI", ... ,[z" ]\.') 

Note: A tuple (;1:'" ... ,;1:,,) is valne-defined only jf all of z" ... ,z" are value-defined 

Note: 

Two tuples (Xl,X2,""X" ) alia (YI,Y2, ... ,Y", ) areeql1al if aud only if x, = y" 1:::; i:::; 
T1=rn 

Note: If x, E 8i for I $ r :::; n. then I.h.. tuple (X\,:f2 .... ,X" ) is an el~ment of 
81 x &2 )( .. , x s" . 



5 EXPRESSION 

5.10 Cartesian Product
 

The expression s, X .•• X s.. is the Cartesian product of the sets s" .. . ,s".
 

Note: Cartesian products with different !lumbers of terms are distiuct. 

Abstract Syntax A Cartesian Product is constructed from two or morl' expressions. 

PRODUCT = EXP X EXP X ... X EXP X EXP 

Representation and transformation 

IConcretc AbstractProduction I 

Expreuion2, 'x' ,Expression2.{' x· ,Expression2} SIX-'2 X ... XS" !"Yx ... xl'.l' I 

Type The type of a Cartesian product s, X .. X s" is thc power set t)'pe of the Cartesian product 
t.ype of tIle list of the uuderlying types of the elements s" . ..• s". 

[s, X ... X S.. ]T = ([S,]7 i powerT-t, ... ,[s" ]T; powerT- 1); cproduclT; pou'erT 

Note: A Cartesian product s, X ••. X s" is wl'll-typed only ifall of the elements (s". .• sn) 
Ilave power set types. 

Value The value of a Cartesian product s, X ••• X s" is the Cilrtesian product of the values of the 

sets (S" ... ,8,,): 

[s, x ... X Sn ]\1 ([s, r, ... ,[s" ]\1); X 

Note: A Cartesian product s, X ••. X s" is value-defined exactly only if all of thl' sets 

8""',Sn are value-defined. 
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5.11 Tupl~ Selection 

5.11 Tuple Selection
 

Th~ tuple selection t.i is the ith element in the tuple t.
 

Abstract Syntax A tuple selection is constructf'd from all expression and a number litera.!. 

TUPlESElECTION == EXP, NUMBERl 

Representation and transformation 

Production Concrpte Abstract] 

I E)(plession5, '.' .Numbed,1 I.• II J'.i 

Type The type of ~ Luple selection t.i is the Lype of t.he ith element of the tuple t. 

ITt,i nor == [t]T; rproou('IT-1 ; );, 

Note.: The ~uple selection t.i is well·typed onl)' if t has ~ Cartesian prod11ct type with at 
least i elements. 

Value The ....alue of a. tuple selection t.i is the v~lue of the ith dement of the tuple ~ 

[t.i]\I == [t n.... ; 11"; 

Note: The- tuple 5el~tion t.i is ,,~lue-define-d only if t has the value of a tuple with at [ea...~t 

i elements. 
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5 EXPRESSION 

5.12 Binding Extension 

A binding extension 4n, ....... z" ... ,n", ....... z",) is the binding which mi\ps the names """ ... ,nTn to 
the values of thl? expref;siolls Z, , ••• ,z", respectively. 

A bstract Syntax A binding extension is constructed from a list of names and expressions. 

BINDINGEXTN = qVARNAME ....... EXP, .. ,VARNAME ....... !:XP~ 

Repre.!ientation and transCormation 

Abstract '~IProduction Concrete 

E
'Q "V"N''''':~''ExP''''i~ Q n, ~ x" .. ,nm ~ xml ! 1n. ~l xd , ... ,nm ~[xml'l I 

I {',',VarNamt!,'''-'"',Exprt!ssionOj:t ' ~ I 

Type The type of a binding extension q n, ....... z" ...• n", ....... Z", ~ is the schema typ{' of t.he sign?· 
lure constructed from the mapping of the names n" .. .• n", to the types of dIe expressions z, •... , Z"', 

[4n, ....... Z" ... ,n"' ......... z..,,~ f';: ((n,O,[z,]T), ... ,(n",O,[zTn]T));{...};schemaT
 

Note: A binding extension q n, ....... Z" ..• , n", ....... z,.,.,. is Wl'JI.typed only if the expres5ions
 
z" ... ,Z", are all well-typed, and if the mapping from names to t:'l'pes is fuuctional.
 

Value The value of a binding extension G n, ....... z, •...• 1l", ....... Z"r. ~ is the binding constructed from 
the mapping of the names n" . .. , n", to the \'alne!> of the expressions z, •..• z",. 

[4n, ....... z" ...• n"' ....... z,.,,)]\.';: ((nt.[z,]\.') ..... (n~"~z,,,r·)};{... J
 

Note: A binding extension an, ....... z, •...• n,,, ....... z." ~ IS valne-defined only if lite ('xpr('s·
 
sions Z, •... ,z", are all value-defined, and if the mapping from narne~ to values ;5 fuuctional.
 

Note: Two bindings 1: and y with components nl • .• r1t are e(lual if and only if r.n, ;:
 
y.n" 1::; i::; k .
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5.13 The1.a Expression 

~.13 Theta Expression 

The theta expr~saion 8 5 is the binding whose type is constfucted from tbe signatuff' of 5 and whose 
value is the binding constructed from the m~pping of t.he names of the signature to their values in th(' 
environrneut. Tbe tbeta expression 8 S ~ is the binding ..... hose type is constructed from the signaturl' 
of S and whose value is the binding Wllstructed from the mapping of the names (,If the sigllature to Ihe 
values in the environment of thoBe na.mes when decoraled by~. 

A 09-expression is a .....ay of identifying a binding. A billJing can be wnstrnct.ed from variables in scope 
if f,); each named elem(,nt in the binding. there is the same name in the environment denotl!lg the sanlf' 
e-lement. 

Abstract Syntax A theta expre~sion is wllstructeu from a schema aud an optional detcration. 

THETAEXP =	 8 SCHEMA DECOR
 
8 SCHEMA
 

Note: The schema may it.self be decorated. Thus the following are permitted: 09 S q and 
09 (sq) ~. Only non-generic schemas may be nsed in thera expressiolls 

Representation and transformation 

Production Concrete Abstract 

'09' ,BasicSch,DecoTllion 09 S 'I 0(5)" , 

'09' ,BlSicSc:h '5 0[5)" 

Type The type of 8 5 q is the schema type wllstrncted from the signatnre of S whose components. 
when decorated by 'I, have the same non-generic type in the environment: 

[OS IT ((5 ]TS n 2); BchemaT 
[8S~ ]T ((5 pT$ n ;d; 3«(q)",' xl»); .'JchemaT 

Note: A thl'ta expression is well·typed only when each of the Jecoral,f'd versions of the 
na.mes of the signature of lhe schema are assigned non-generic types in lhe environment. and 
tbl'y have the same type as those of the signature. 

Note; The type of a theta f'xprl?S~ion 8 S q is not the lype taken from S decorawd by q. 

The decoration ~ does nol necessarily appear in I he re"'lIlting type. The llse of the hchema 
is to identify the type of the resulting binding. D('coratioll is used only to identify which 
names to look up in the environment; thus 8 S' and 8 S q are of tile same type ~\'('n jf' 
and q are different decoralions. 
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S EXPRESSION 

Value The value of the theta expression 0 S q is a bindiug of the nam<;s of the components of S to 
the values of the name!>. when decorated by q, in the environment: 

[8S i' T; (S DTs ; schemaT; Elm n ;;;;J; V
 

[8SQ ]V T; dS DTs ; schemaT; Elm n ;;J; 3({q V' x t')
 

Note: A well-typed theta expression is always value-defined. The value of the theta
expression does not have to satisfy the property of the schema. 
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5.14 Schema Expression 

5.140 Schema Expression 

A schema expression S is ~he set of bindings defined by the 6chema. The.~e bindings have 15 their type 
the scllema-type coIl.!;trucled from th(' signature of Sand th('y satisfy its property. 

Abstract Syntax A schema expression is l:onstructed from a schema. 

SCHEMAEXP = SCHEMA 

Representation and transformation 

Producliou Conuete Ahstract 

Schema 5 [51' 

Type The t,)'pe of a schema expression S is the power Se't lype' of the schema type comtrncted from 
th(' signature of the schema S: 

[S TI' :: dS D'7;:"i ; !JchemaT; powerT
 

Note: A 6chema expression S is well-typed only if the schema S is well· typed.
 

Note: The type of a schema expression is nol in the range of schcmaT: it is in the range of
 
sehemaT; powerT. The relationship b('tweeu ~ r-s and UITT is that of .•chemaT; powerT.
 

Value The valne of a 5chema expression S is the s('( of bindings defined by the schema S: 

ITs I" ~ A(IS D~' ; V) 

Note: A schema expression 5 is aJways value-<lefined. 
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5 EXPRESSION 

S.lS Binding Selection 

The bindiD~ selection b.n is the element to which the uame n is mapped in th€ binding b. 

Abstract Syntax A bi;lding ~elel:tion is construned from a binning and a name. 

BINDSElECTIQN = EXP. VARNAME 

Reprefienlation and tramitormat.ion 

Production Concrete Abstract 

Expreuion5. '.' .VarName '.n lbt".n 

Type The type of a binding selection b.n is the t)pe to which tht' name n is mapped in the signalure 
used to construct the schema type of the biuding b: 

[b.nf = [bTIT;Bcht:maT- 1 ;(_n) 

Note: A binding selection b.n is well-typed only jf thl? lype of b is a schema type; and the 
name 11. is in the domain of the signature from which the s<.:hema type is constructed. 

Value ThevaJue of a binding selection b.n is the vaJue to which lhe name n is mapped in the binding 

b' 

v[b. n n = [b]Y; (_ n) 

Note: A binding selection b.n is value·defined only jf tllt' binding b is \'alue-defined and the 
name n is in its domain. 
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5.16 Function Application 

5.16 Function Application 

Thl? function application 1 z is the result of applying the function 1 to tho:' argument z. 

Abstract Syntax A function applica.tion is consltucwd froill two expr('s~ion;;, a fllndion and it,.~ 

argument. 

FUNCTAPP EXPIEXP) 

Representation and transformation There afl~ four ways of represenlin,e; a funoioll application: 
a normal form, an infix form, a superscript and a postfix form. For functions (]edarcd fot Ij~e in postfix 
or infix form, underscores mdkate the posilions of the operands. The complete name of ~It~h a function 
illcludes the nndersrores aud surrounding parentheSf'5 ..... hich are omitted when the operand5 af\? suppliN] 
ill th .. form defillcd in tLJ(' declaration. 

Production Concrete Abstract I 
Expression4,b:presslon5 Iz [!l'([z]') 

Expression2,lnFun,Expression3 zo, (_¢  I[(z,,)]' 

Expression5,ExpreuionO (iter[zj(j([Rj() 

Expression5. Post Fun, I ~: ( _ ¢)[zl' 

Note: The function application x ¢ y is the inflx application of the fuuction ( _ ¢ _ ) applied 
to the pair of arguments (x, y). 

Note: The function application R" denotes the x·iteration of the relation R: il is an 
abbre\-'iation of the' ex.pression itcr x R. 

Note: The function application xc> is the postfix application of the functiou ( _ ¢) applied 
to the argument x. 

Type In the exprE"5sion I(z) the type of 1 mll.~t b(' tho:' pow~r sel t.\'pe of the Cartesian product type 
of a 2-tuple of types, and the type of the argument :t' must be lhe firsl lype iu tbis tuple: the type of 
I(z) is the second type in the tuple. 

H/(:r:)]7 = ([f]7; pou,crT- 1 ; cprodudT- l ; {-1) • Uz f 

Notel The function appLication f(x) is well-typed only if the typ(' of f is a power set type 
of a. pa.ir o(types with the first typl' in lhe pair the same as the type of z. 
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5 EXPRESSION 

Note: If·we evaluate the type of f. we get essentially a Sl't of pairs. where each pair 
comprises tbe type of an argument and the type of its result. If .....e next evaluate the t~'JH~ 

of tbe particular argument :r, then we can simply use the lype of f as a function to look np 
the type of the result corresponding to x. We say tnc the type of f is essentially a set of 
pairs, because we must 'lIfdo' the type constructors. 

Value The value of a function application /(z) is given by apVl~:ng the vdue of f to the value of the 
argument :t' 

[flz) U' 2 A([f I'. [z I'); (-)-' 

Note: A well-typed function applk<ltiou f(~) h defined if both f and x are defined and jf 
there is a unique tv such t.hat (z, w) E /. 

Note: In Z, a function is modelled hy its graph, whirh is a ~et of pajrs; the first el('m~1l1 

of each pair representing an argument, and the second llJe result for that argulllent. For 
the f~nction application /(x) to be dl'fined. f has only to be r\lnctional in tl\l' ,,'alue of r, 
Providing that 1: evaluates in the environment p to a value 1', and the value of fin p contains 
(v, UI), a.nd no 01 her pai r starting with 1I, 1hen the e.x jlressioll (f x) eval uates to lL'. So for 
a well·definl'd function application we would e.xpecl. an equality of the following form: 

If(z) I', = [f I', ([z I',) 

The promoted application of I( x) provides a satisfaclory mea.'1ing when the function appli. 
cation is well defined. It is necessary to decide wha.t lo do with (/ x) when / i~ not fnnctionaL 
at 1:. This a.rises if there are several different pairs in lhe value of f, each l)a~'ing the sa.me 
first element equal to the value of x Or if there is none, The definition provided does not 
prescribe a value for a function applied OUhlde its domain or where it is non-functional. 
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5.17 Definite Description 

5.17 Definite Description 

The definitl;' description ~ St • z is the eleml;'nt denoled by z in the unique enrichment ofthe environ
ment by the schema text St. 

Abstral;'t Syntax A definite dl;'!><:ription is conslructed from a schema. text and an expre~_\ioll. 

DEFNDESCR == JJ SCHEMATEXT • EXP 

Representation and transformation In t/ie representation form for definite descripll(Ju, lite ex 
pre.lsion part is optiona.l. 

i Production 1- Concret.e Abstract l 
'Ii' ,SchemaText, '.' ,ExpreHion /-ISI. E p[St]ST .[xf .<, I' 

~cnemaText jJSt ~[SlfT .[(81_~I 

Not(l: If the expression part of 1.l\O' definite description is omiu('d then thl' defaull. is the 
characteristic tnple of the schema text. 

Type The type of the term pSt. z is t.he type of x in the environment enriched by Bt: 

Hp St • z TIT := fSt V i [z ]T 

Note: The expression pSt. z is well-typed only if St is well· typed and z is weil-typed 
in thl;' environment enriched by St. 

Value The value of <I,. definite description pSt. z is the vahle of z in the unique enrichrnent of the 
environment by St: 

[p.St. z]V 2 1I((St ~M) j {_}-l i [x]V 

Notl;': A well· typed definite description pSt. z is value-defined if there is eXa.l:tly one 
defined enrichment of the environment by the scJwma text St and t}\e expression z is v-dlue
defined in that enriched euvironment. 

Note: This dl;'finition is not specific about thl;' value of a badly {ormed defllJjte description. 
If there is not an uniqne enrichment of the environment then the vaJue is not presClibed by 
this standa..rd. 
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5 EXPRESSION 

5.18 Conditional Expression 

The conditional expression if P then E, else E~ fl evaluates to the expression E, if the predicate P 
i~ true, otherwise it evaluates to the expression E~. 

Abstract Synlax A conditional expression is constructed from a predicate and two expressions. 

lFTHENELSE = if PRED then EXP else EXP fl 

Representation and transformation 

I'r~ducti.on . ." Concrete . ~bstr;j.ct __~I' 

1'11.Pred,cate,'Then',ExpresslOn ,'Elsc',ExpresslOn,'F1 II P ThcrJ:r ~fse y F1 If)prrthen[xj-else[y_J_J 

Type The type of the conditional expression if P then E, else E~ fi is tlw common t.ype of the 
expressions E, and E~ wheu the predicate P is well-typed: 

[if P then:r else y fl]T = (P DT <J ([X]T n [y DT) 

Note: The expression if P then E, else E~ fi is ""'ell-typed only when the predicate P is
 
well-typed and the expressions E, and E~ both have the same type,
 

Value The value of the conditional expression if P then E, else E~ fi is the '..alue of the expressions 
E, when the predicate P is true, otherwise it is the value of the expression E~: 

[ifPthen:relseyfi]1i = ({pl.... <J[X]Ii) u (~..,p~ ..... <J[yr) 

Note: The expression if P then E, else E~ fi is mille-defined only when the predicate
 
P is true and the expression E, is va.lue-defined or ""'hen the predicate ..,p is true and the
 
expression E, is ...·alue-defined.
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5,19 Substitution 

5.]9 Substitution 

The substituted exprE'ssion b0E evaluates to the expression E in the environment enriched by the 
binding b. 

Abstract Syntax A snustituted E'xpression is constmeted from a substitution exprel.ion and an 
expression. 

EXPSUBSTITUTION EXP 0 EXP 

Representation and trausformation 

Conere!eProduction Abstract -1 
Expression,'!;' ,Expression bGX [b)''4 ]' I' 

Type The type of the substitution b0E is tIle type of the expression E in the tyPe-envjrollmE'nt 
enriched by tbe bindillg b, 

ITb'::;Z]T = (t, ITb r; sehemaT-l);;p; [z TIT 

Note: The substitution b0E is well·typed only if b has schema-type and the expression E 
is well-typed in the type-environment enriched by the binding b. 

Value The value orthe suustitution b\~E is the value of the expn.'ssion E in the environment E'nriehed 
by the biuding b. 

MITboz I' ~ (1, ITb n ; (_,_)); e; IT. I' 

Note: The substitution br~E is value-defined only if b is value-defined and the expre."joll E 
is value-defiued ill the environment enriched by the binding b. 
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6 Predicate 

6.1 }ntroduc:tion 

r\ Predirn!e is the general form for expressing properties of the environment. These properties are 
relationships berween the \"alUe.5 of the variahles in the environment. A predicate may be constructed 
in a 1Iumb", of ways. They may be 5uh-dividf'd as follows: 

Elements: 

EQUALITY MEMBERSHIP 

These denote the equality and rnemhersllip reJation~ twlWeo"ll exp«,.~5ions. 

Constants: 

TRUTH FALSEHOOD 

These denote the predicates true and false 

Propositional Constructs: 

NEGATION CONJUNCTION DISJUNCTION IMPLICATION EQUIVALENCE 

These are predicates constructed using the propositionill connectjv{'s. 

Quantifications: 

UNIVERSALQUANT EXISTSQUANT UNIQUEQUANT 

These are predicates constructed using quantifiers. 

Schema Predicate: 

SCHEMAPRED 

This is a predicate composed from a schema. 

Substituted Predicate: 

PREDSUBSTITUTION 

Thi. is a predicate evalualed following a substitution, 
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6.1 Introduction 

Abstract Syntax 

PRED	 EQUALITY
 
MEMBERSHIP
 
TRUTH
 
FALSEHOOD
 
NEGATION
 
DISJU N CTION
 
CONJUNCTiON
 
IMPLICATION
 
EQUIVALENCE
 
UNIVERSALQUANT
 
EXISTSQUANT
 
UNIQUEQUANT
 
SCHEMAPRED
 
PREOSUBSTITUTION
 

The de.suiption of the meaning of a predicate can be Bplit into two parts. The first gives rules for 
determining whether it is well typed or not. The second determines whether the predicatt is supportcll 
ill the environment. A predicate is 6Tlpported in an environment if the ~'alues of the ~ub-~xpressions in 
the predicate are such that the predicate is true in that envirOllment without necessarily con~jdering 

whether it is well typed. 

The comhination of these two descriptions provides a meaning for predicates. 

6.1.1 Type 

Since in the abstriI.Ct syntax of Z we already know that 11. certain construct is a predicate, when consid_ 
ering the t)"pe of a predicate lhe onl)" matter of concern is whether it is well-typed, For Ihis reason we 
represent the t)'pe function of a predicate as the sel of type-environments in whidl it is ...ell-t.yped. 

T{PRED D P Tenv 

Note: In contrast to predicates. wllen considering the lyre of an expression. there are t .....o 
mallers of concern: whether the expression well typed and if so what is its type. Hrnce the 
use of a partial function whose doma.in is the set of environments in which it is well·typed. 

Note: The predicate (x = 1.') is meaningless if the expressions x and yare uot of tne same 
type. There is no meaningful way of comparing them. A predicate which is badly I)'ped in 
all environments has a type function which evaluates to the empty set. 

6.1.2 Value 

The value function for a. predicate is the set of envirOllmenls in whidl it)s stlJlported; 

IIfPRED H P EnlJ 
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B PREDICATE 

Note: The predicate .....(x E x) is supported in aJl envIronments. This is so because the 
axiom of regularity ensure!> that x E x is false and hence -(x E x) is true. 011 the other 
hand x E x is not well-typed 50 therefore .....(x E x) is not well-typed. 

B.I.! Meaning 

The environments in which a predicate holds (ha.s a true Jlleallill,R;) a.re I.'xactly those envirOllfilents in 
which the predicate is supported and is well-typed. 

~PRED llM == 3(Y-I){PRED ll"T n ~PRED llv 

Note: As indicated in the nore ahove rhe predicate ...,(~. E xl is supported bur llot well· 
typed. hence it is false in all ellvironmeJ,ts. The Hl('anillg of the predicate i.~ till' "mpt)" srl; 
«zEzDM~{}. 
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6.2 Equality 

6.2 Equality
 

Two expressions arc equal if they have the same valne and type.
 

Abstract Syntax An equality i~ constructed from two predica~e;;. 

EQUALITY = EXP = EXP 

Repr~sentation and transformation 

Production Concrete Abstracl 

Exprusion, '=' ,Expression tr = y]'" 1'\'=[,]' 

Type An equality z = y is well· typed In those environments in which the expressions z and y ha\'e 
the same type: 

~;t = y n7 = dOlU([;t]T n [y]T). 

Valu~ An equality z = y is supported in t.hose environments in which th.e expressiOIls z and y have 
the same values: 

(;t, = z, nil dom([z, ]11 n [z" IT"'). 
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6 PREDICATE 

6.3 Membership 

Tile membership relation :l: E y is true when the expression :l: is a member of the set denoted by the 
expres:;;ioll ~, 

Abstract Syntax A membership predicate is constructed from two expressions, 

MEMBERSHIP = EXP E EXP 

Representation and transformation TherE" are three w;tys in which the membf'f~hip prrodi(ale niJ'. 

be wri!t('n: ~sing the membership sign, using an infix relation and b,Y using d prefix reJalioJI. 

Production Concrete Abstract 

Expre.s.sion, 'E' ,Expression 

PreRel,Expression 

Expression,lnRel,Expression 

[x E yJP 

xpy 

px 

lIfE [yt 

[(x~Y)]£E ( _ p _ i I 
I,,!"E (p-) I 

'----

Note: The infix relation predicate ~py is true j! the expression :E is relal('d to the expression 
y by the relation p, i.e. if the tuple (x, y) h a mpmher of the relation p. 

Note: The prefix relation predicate px is trne if p holds for J:, i.e. if x is a member of the 
set p. 

Type A membership relation z E y is well-typ('d if and (Illly if the type of the expression y is the 
power set tHe of that of the expression z: 

~:l: E yn T = domlaz]T; PQIJ.'uT n [y]T). 

Value A membenhip relation:l: E y is supported in all tll05e en\'ironments ill whIch the values of the 
expressions :r is a member of the value of the expression y: 

a:l:, E:r~ f" = dom([zl]V n [z~]1I;3), 
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6.4 Truth Literal 

6.4 Truth Literal
 

The truth literal true represents thl? pr~dicate that always holds.
 

Ab8tract Syntax 

TRUTH = true 

Representation and trans(ormation 

Production COTl(rel.e AbstrMl 

'Iroe' true true 

Type The truth literal true is wen-~}'ped in all ~llvironment5: 

[true ll" = Tenv. 

Value The truth literal true is supported ill all environm~nts: 

{l1"ue IIv = Em... 
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6 PREOICATE 

6.5 False Literal
 

The false literal false represenls the predica.te tha.t never holds.
 

Abstract Syntax 

FALSEHOOD false 

Represelltation aDd transformation 

Production Concrete Abstract 

'false' false false 

Type The false literal false IS well· typed in all environments; 

f/aEst »T" = Tenv. 

Value The false literal. false is supported in no environment: 

{/al.tt» v = 0. 
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6.13 Negation 

6.6 Negation 

The negation ,P holds whenever the predicate P does nOLo 

Abstract Syntax A nega.tion is constructed from a predicate. 

NEGATION = -.PRED 

Repreiientation and traDstormation 

Production Concrete IAbstract 

...... '.BasicPred ..... P II -.{ P JP 

Type The negation -,p is well-typed exactly when tlie jJredicate Pis well-lY\lcd: 

{~PDT = IP V. 

Value The negalion -.P is supported in those em'ironment5 in which the predicate P is not supported: 

I~PD" = Env\{PD"· 
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6 PREDICATE 

6.7 Disjunction 

The disjuntlion P, V P3 holds whenever at least one of the predicates P, and P~ holds. 

Abstract Syntax A disjunction is constructed from two predicatf!s. 

DISJU~CTION = PRED V PRED 

Representation and transformation 

Production Concrete Abstract 

LogPred2, 'v' ,LogPred3 PI Ii P~ [PdPV [P2f!' 

Type The disjunction P, V P~ is well-typed exactly when both prerli<:ates p~ and P2 are well· typed: 

{P, V P2 V = {P, r- n {P2 r-. 

Value The disjunction P, V P, is supported in those Cl\vironmtnts in which one or hoth of thc 
prcdicates P, , P 2 are supported: 

{P, V P~}Y = {P, BY U {P~ BY. 
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6.8 Conjunction 

8.8 Conjunction 

The conjunction p. 1\ P~ holds if the predica.tes P, and P2 both hold. 

Abstract Syqtax A conjunction is constructed from two predicMes. 

CONJUNCTION =- PREO 1\ PRED 

Representation and transformation 

Production Conaete Abstract 

LQgPred3, 'fI' .Basic:;Pred PI fI P';/ [pdP I\[P2 t 
11'1 Rei Pred .Rel,O:preuiol'1,{Rel,Exprl!'uion} 

Predicate,{Sep,Predicate} 

XI PI X'J P2 ,P~_l X" 

P j SepP2Sl!'p .. SepP" 

[Xl PI x~JP I\[Z" P2 .. ,P"-l z,,JP ! 

rPdP 1\[ P:z]" 1\. "I\[P,,]" 
, 

I 
~ 

Note: In predicates Sep is equivalent 10 A; SUdl a conjunction has the lowest possible 
precedence and is equivalent to parenthesising the ~cparate predicates and conjoining them. 

Type The conjnnction of two predicates is well· typed exactly ......hen both predicate:;; are well-typed: 

T~P, 1\ P~ D ::::: (P, Dr n fP~ D.T, 

Value The conjunction of t ......o predicates is supported in tllOse environments in which both predicates 
are supported: 

V
~P, 1\ P2 D lP, D" nIP, D"· 
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6 PREDICATE 

6.9 Implication
 

The implit.ation P, => P" holds whenever the predicate P, does not hold or whenever the predicate P"
 
does hold.
 

Abstrad Syntax An implication is conslructed from two predicate-so
 

IMPLICATION = PRED => PRED 

Representation and transformation 

Product.iOII Concrete Abstract 

logPr~d2. '::)' .LogPr~dl PI ;=> P2 [PdF"=>(P2l" 

Type Thl'implication P, => P" is well· typed exactly when Dot.h predicates P, and P" are well-typed" 

{P, :} P... »7 = {P, D7 n {P" D7
, 

Value The implication P, => P" is true in those environmc-nLs in which tlJe nega.tioll of the predicate 
P, jj supported or the predicate P" is 5upported: 

V V{P, :} P" f' = {. P, D u (P" D . 
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6.10 Equivalence 

6.10 Equivalence
 

An equivalence P, ~ P~ hold9 whenever both predicates P, a.nd P~ hold or neither hold.
 

Abstract Syntax All equivalence is constructed from two predicates 

EQUIVALENCE ::=. PRED ~ PRED 

Representation and transformetion 

Production Concrete Abstract 

LOiPred, ''¢:}' ,LoiPredl PI ¢:> PJ [PdP ~lP2lP 

Type The equivalence P, ¢> P~ is well·typed exactly when both predicates P, a.nd P~ are well-typed: 

{P,~P~D7 {P, Dr n {P~ V. 

Value The equivalence P, ~ P~ is true in those environments in which hoth predicates P, and P~ 

imply each other; 

(P, ¢> P~ »11 fP, => p~DII n fP~=> P, »11. 
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6 PREDICATE 

6.11 Universal Quantification 

The uni versally quantified predicate V St • P holds if the predicate P holds for all possi ble com binations 
of values of the components of the schema. text St. 

Abstract Syntax A universal quantification is constructed from a schema text and a predicate. 

UNIVERSALQUANT = VSCHEMATEXT. PRED 

Representation and transformation 

Production Conc.rete Abstract 

''rI' ,SchemaText, '.' ,Predic.ate 'rISI_ P VrSt)"<;"T .[Pf" 

Type A universal quantification V St. Pis well· typed in those type-environments enriched by !.he 
schema text St in which the predicate P is well-typed: 

IV Stt P V = dom({St ~ 7 t> {P D7). 

Meaning Auniversal quantification V St • P is supported in those environments for which the pred
icate P is supported in every enrichment by the schema text St: 

{VSt'PD II = {-.3St·..,pn v . 

Note: This semantic definilion rests on the properties of de Morgan's Laws. 
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6.12 Existential Quantification 

6.12 Existential Quantification 

The existentially quantified predicate 3 St • P is true if the predicate P is true for at least one possible 
combination of ~'alues of the components of lhe 5cnema text St. 

A bstrad Syntax An existentia.l quantification is composed of a ~chema text and a predicate. 

eXISTSQUANT == 3SCHEMATEXT. PREO 

Representation and transformation 

Production Concrete Abstract 

'3' ,Schema Text, '.' ,PredicClte 38'. P 3lStlST e(P]p 

Type An existential quantification 3 St • P is well-typed in those type-environments eariched by the 
schema text 5t in whjch the predicate P is well-typed: 

(3St.PV = dom(St)Tl> {PDT). 

Value An existential quantification 3 St. P is suporled in those environments for which there exists 
an enrichment by the schema text St in which the predicate P is supported: 

~3StePDV = dom(5tV'''l> (PVI. 
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6 PREDICATE 

6.13 Unique Existential Quantification 

The unique existentially quantified predicate 3, S • P is true if the predicate P is true for exactly one 
possible combination of values of the components of tbe schema text S. 

Abstract Syntax A unique existential quantification is constructed from a schema text and a pred. 
icate. 

UNIQUEQUANT 3, S(HEMATEXT. PRED 

Representation and transformation 

Production COlicrete Abstract 

'3 1 ' ,SchemaText, '.' ,Predicate 3[ St. P 3.(St]ST .[PJP 

Type A unique existential quantification 3, St. P is well-typed in those type environmeuts tbat, 
when enriched by St, well-type P; 

{3, St. P]}'T = dom(SL V (> (P V). 

Value A unique existential quantification 3, St • P is supported in those environments for .....hich 
there is exactly one enrichment by the schema text St .....hich supports the predicate P, 

{3, St. P]}\i = dom(A({St}M (> {P ]}\i) i {_)-1), 
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6.14 Substitution 

6.14 Substitution 

Th@ substituted pr€dicate b7iP is true whenever the predicate is true in the environment enrich€d by 
the binding b, 

Abstract Syntax A ~ubstituted predicate is constructed from an expression and a predicate. 

PREDSUBST1TUT10N == EXP0PRED 

Representation and transformation 

Production Concrete Abstract 

Exprl!uion,'0' ,Predicate IJ",P ['l',[ pJ" 

Type The substituted predicate b,~P is well-typed in those type-enviwllnJents in which lhe binding 
b 1;; well-typed and when enriched by it the predicate P is well-typed: 

ib0P n7 = dom({l, [b n7 
; schemaT- 1

) i (!l (> ~P D7) 

Value The substituted predicate b",P is supported in t.hose environOlents in which the binding b is 
\'alue defined and when enriched by it support the predicate P: 

[b0pn" .:: dom({l,[b]M; {_._));(!It> {PD V 
) 
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8 PREDICATE 

6.15 Free Variables 

The	 free varia.blea of predicateli are detailed in the following table; 

Table 20: Predicates and their free variables 

Predicate Free Variables 

~=y (••_)U(••y) 

_Ey (••_) U (.,y) 

true { ) I 
fal!e { } 

~P ¢,P 

PvQ (.,P)U(.,Q) 

PAQ (.,P)U (.,Q) 

P=>Q (.,P)U (.,Q) 

P""Q (.,P)U (.,Q) 

'<1St. P rPt/.St u (rPpP \ oSt) 

3St. P rPt/.St u (¢pP \ oSt) 

3, St. P ¢t/.St u (¢pP \ oSt) 

S ¢.S U oS 

b0P ••bU(.,P\ob) 

Note: The free variables for the representation forms of these constructs are the same as for 
their abstract counterparts. For example: ¢.(~ p y) = ¢.((:z:,y) E p =0 ¢.(:z:,y) U ¢p. 
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7 Declaration 

7.1 Introduction 

A declaration is the general form for introducing new variables into the environmenl. A declaration 
may be a SIMPLEDECL, which explicitly introduces new variables by name, or a SCHEMAINCL which 
introduces the components of a schema, or a COMPNDECL which can be any combination of the other 
two. A declaration may also be evaluated following a substitution. 

Abstract Syntax 

DECL	 SIMPLEDECL
 
SCHEMAINCL
 
COMPNDECL
 
DECLSUBSTITUTION
 

When makin~ declarations, the problem is not so much wllether the declaration is well defined (although 
a declaration may fail to be defined). The problem is more to record the possible meanings of the newly 
declared name. A declaration denotes a signalure and a set of situations. 

7.1.1 Type 

The type ola declaration is a signature which records the types ofthe elements denoted by the variables 
introduced: 

(DECqT Tenv __ (Name -... T~) 

7.1.2 Meaning 

A declaration introduce5 names to the environment which can assume certain values. These values are 
not fixed. We can consider the meaning of a declaration as a set of situations, each one recording one 
set of values [or the new names. However, it is more convenient to consider the meaning of a declaration 
as a relation between environments and situations. 

(DECLD ..... : Env +-+ (Name -... Elm) 

The meanin~ of a declaration is partial because some declarations may fail - faT example n : s where 
$ is undefined, or if 8 is an empty set. 

We CiUl prove the following: 

I- (D]..... ; T ~ T; (D D7 



1.2 Simple Declarations 

7.2 Simple Declarations 

A simple dedaration n" ... n m : & introduces variables uamed n, •.. . non whose values a.re drawn from 
the set &. 

Abstract Syntax A simple declaration is constructed from a list of names and an expression. 

SIMPLEDECL := VARNAME, VARNAME, .. , VARNAME . EXP 

Repr€sentatron and trahsformntion 

~!ion IConcrete IAbstract I 
~edName'{"',DedName}, ';' ,EXpr~n:l•...• nk :[Bl~ I 

T)'pe The type of the simple declarationll" ... n on : s is the signature constructed frQffi the names 
n ... non and the underlying type of the set expression s. 

" 
7Un", . . ,n", : ~ ~7 '= U" D ; ((n,o,powl.'rT- 11,.", (n:',powerT-l»); {...}. 

Note: The simple declaration n .. nm:.s is well-t.yped ex<U;tly when the expression 8
" 

has power set type. 

Menning The meaning of the simple declaration n ... n m : " is a relation from the environment 
" 

to those situations wWch associate each of the names n" ... n m with one of the elemem6 of the set 
expre!sion s: 

dn" ... n",: &DM 
:= [& TIM: ((n ,O,3), .... (nmO,3)); {...}. 

Note: The simple dedara,tion n" .. . n,,, : & is \'alue-defined exactly when the exp'e~sion 

., is a non-empty set. 

Note: Suppose G is defined to be a given set. The type 6ystem defines the type of G to 
be pou'frT(givenT N). In this way a declaration sucll as :r : G defines the type of:r lo be 
gil.>t:lIT( G), as required: 
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7 DECLARATION 

7.3 Schema Inclusion 

The schemaindu&ion S introduce! ~he components of the schema and coutra..ins their values as in the 
schema. 

Abstract Syntax A llchema inclusion ill constructed from a schema. 

SCHEMAINCL ~ SCHEMA 

Represen~e.tion and transformation 

Production COllcre~e Abstrad 

Schema 5 [51" 

Type The signature of a schema inclusion is the signature of the included schema; 

(5V~ (51"'· 

Note: The schema inclusion S is well-typed exactly when the schema. S is well-~yped. 

Meaning The meaning or a schema inclusion is the relation from the environment to situa.tions as 
defined in the meaning or the schema. 

(51M = (51 M 
,. 

Note: The schema inclusion S is value-defined exa.ctly when the schema S js value-defined. 



1.4 Compound Declarations 

7.4 Compound DedaratioD9 

A compound decla.ration D,; D~ introduceli the names in the declarations D, and D,. 

Note: Variables may be introduced in local declarations morc than Oilce, prmidcJ that 
they have the same type. R.epea.ted dedaralioD5 do not add anything to the ~jgnature; 

however the constraint of the repeated declaration is conjoined with the constraints of aU 
the other dedarations. 

Abstract Syntax A compound dedaration is composed from a list of ba.sic declarations. 

COMPNDECl = DECl; DECl 

Representation and transformation 

, 
Production Concrete Ahstract 

Basic.Ded, ';' ,Basic.Dec.l,{'; ',BasicDed} D];D-:; .. ;Dn [D,jv; [D,jv; .. ;ID.J" 

Type The signature of a compound dedaulion D,; D~ is the join of the signatures of th~ declarations 
D, and D~: 

aD,; D'JD7 (~D, IT,~D, IT); u. 

Note: This declaratioll is well-typed only if both of D, and D", are well-typed and their 
signatures are type compatible. 

Meaning The value of a compound declaration is the sel of bindings that, when restricted to the 
alphabet of each component, satisJy that component: 

ID, ; D, 1M 
~ (~D, IM,~D, JM); u. 

Note: A componnd declaraticn D,; D", is value-defined only ifbotb the declarations D, 
and D'J are value-defined and if repeated declarations are value compatible. 

Note: Dnplicated declarations arC! significant in the evaluation of the characteristic luple. 
The representative term cC\J1 be a list of lerms which form part of the top level tuple. 
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7 DECLARATION 

7.5 Substituted Declarations 

The meaning oC tbe substituted declaration b0D is the same as the meaning oC the declaration D in 
t.he environment enriched by the binding b.
 

Abstract Syntax A substitnted declaration is composed of an expression and a declaration.
 

DECLSUBSTITUTION = EXP0DECL 

Representation and t.ransformation 

Production Contrete Abstract 

Expression,'0' ,Declaration b0D [bj'oIDj" 

Type The signature of the substituted declaration b",D II> the signature of the declaration D in tht 
type-environment enriched by the binding b. 

(b0D f = (I, [b]T i schemaT- 1) j ffi; (D DT 

A substituted declMation is well-typed only if lhe bindiug is well-typed and the declaration is well-typed 
in the enriched environment.. 

Meaning The situations of t.he substituted declaration bGD are the sitnatiolls or the declaration D 
in the environment enriched by the binding b. 

(boDDM = (1,[bIM;(_,_));<Jl;(DIM 
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7.6 Free Variables and Alphabet 

7.6 Free Variables and Alphabet 

The following tables define the free variables, alphabet and representative terms for declarations. 

Table 22; Dedarationi and their free variables 

Declaration Free VariableB Alphabel 

n" ... ,nm : .. .. {n, ,,, .. n",} 

S <I.S as 

D,; D. (<I,D,jU(<I,D,J (aD, )U(oD,,) 

I boD ¢,J.b U (¢JD \ ab) aD 
I 

I 

Table 23: Declarations and their n~presentative terms 

Declaration Representative Term 

'1] •••• ,'1"':8 Tll, ••• , TI", 

S 9S 

D]; lh D:,D: 
b0D D' 
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8 SchemaText 

8.1 Introduction 

A schema L",xt is thot; general way of enriching the enl/ironment by the new names introdnced, by a 
declaration and po~si bly constraini ng th(>ir values b)" a predicate. A $IM P LESCT Wilsistsof a decla.r ation 
and a CMPNDSCT consists of a declaration and a predicate. 

Ab8tract Syntax 

SCHEMATEXT SlMPLE5CT 
CMPNDSCT 
SCTSU BSTITUTION 

Given a certain en\'ironment, a schema text has the effect of defining a new en\ironment in which the 

ilil.IIle is now known. 

8.1.1 Type 

The type (,f a schema texl is a function from thl.' old typ-environrnent to the new one in which the 
names of the constitueJlt declaration arE' known: 

{SCHEMATEXT V Tem! -- TerlV 

8.1.2 Meaning 

The is l('preSl:!ntE'd as a relation belwei;'/l environments, for the samE' reason as the meaning of '" decla
ration os represented by a relation. 

(SCHEMATEXT}..... Env _ Em! 

We can prove the following 

I- (St }-.... j T f: 1'; (St }T 
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8 SCHEMATEXT 

8.2 Simple Schema Text
 

Abstract SyDtax A simple schema. text is constructed from a declara.tion.
 

SIMPLESCT = DECL 

Representation and transformatioD 

ConcreteProduction Abstra.ct I 
Declaration D IDJ' I 

Type A simple schema text D enriches lite type-environment by the signa.llue of the declMation D. 

{D r ~ (1, {D n ;lB, 

Note: The simple schema. text D is weU-typed exa.ctly when the decla.ra.tion Dis. 

Meaning A simple schema text D enriches the environment by a situa.tion of the decla.ration D. 

{D JM ~ (1, ID 1M); lB, 

Note: The simple schema text D is well-defined exa.ctly when the declaration Dis. 



8.3 Compollnd Schema Text. 

8.3 Compound S.::bema Text
 

Abstract Syntax A compound schema text is constructed from a declaration and a predicate.
 

CMPNDSCT = DECL PRED 

Rl!!presentation and transformation 

Concrete AbstractI Production 

I Declaration, 'I' ,Predicate IDj"IlPJPDIP 

Type A compollnd schema text DIP enriche~ the typl'-ell\'ironment by the sigllature of the decla
TaLlOn D. 

{D I PjT {DjTpIPr· 

Note: The compound schema text DIP is well-typed exactly when the declaration D is 
well-typed and the predicate P is well· typed in the environment emiched by the declaration 
D 

Meaning A compound schema text D J P enriches the en\'ironment by a situation of the declaration 
D which makes the predicate P true, 

M{D I p)M ~ {D)M P IP D • 

NotO!: The compound schema text DIP is well-defined only when the declaration D is 
well-defined and the predicate P is true in at least one enrichment of thl" environment by 
the declaration D . 
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8 SCHEMATEXT 

8.4 Sub5tituted Schema Text 

The meaning of the substituted schema text bGSt is the same as the meaning of the schema text St 
when evaluated in the environrnem enriched by the binding b.
 

Ab5trad Syntax A substituted schema text is constructed [rom an expression and a schema text.
 

SCTSUBSTITUTION = EXPGSCHEMATEXT 

Representation and tran5!ormation 

Production Concrete Abstract 

SctSubstitution bG51 [btorS'jST 

Type A ~uhstituted schema text enriches the t)'pe.environment ..... ith the signature of the substituted 
schema cOIl~tructed from the schema text. 

(b0S~ f .= (bQ(S~) V 

Meaning A substituted scllema text enriches tbe environment With the situatioas of the substituted 
schema conslructed from the 15chema text. 

I.o5t}M = 1.0(5') 1M 



8.5 Free Variables and Alphabet 

8.5 Free Variables and Alphabet 

Table 25: Schema Texts and their fr~ variableb 

Scherr.a Text Free Va.riabl~ Alphabet 

ID o,D oD 

DIP ¢"D u (¢pP \ DD) oD 

i",St 

L 
¢.b U (¢"St \ ab) oD 

The charact~ri~t;( tuple of a Bchema text i$ the tuple constructed from the represefitatiw terms of the 
declara;jon. 

Table 2(L Schema Texts ~ncl their ch.. racteristic tuples 

,------ i -, 

Schema Text I Characteristic Tuple 

D I(D')
 

DIP
 (D') Jb8St~ (S,') 
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9 Schema 

Abs~rac:t Syntax 

SCHEMA	 SDES
 
GENSDES
 
SCONSTRUCTION 
SNEGATION 
SDISJUNCTION 
SCONJUNCTIDN 
SIMPLICATION 
SEQUIVALENCE 
SPROJECTION 
SHIDING 
SUNIVQUANT 
SEXISTSQUANT 
SUNIQUEQUANT 
SRENAMING 
SCDMPDSITION 
SDE(ORATION 
SCHEMASU BSTITUTION 

Z provides a number of schema. operators that act OIl lhc underlying functions from names to type. In 
order to describe these opcratioIl!l, it is convenient to identify the type of a schema, not as an element 
of TYPE, but as a finite mapping from na.rnes to type. We shall call this the signa!ure of a schema 
expression, and is written ( r-s . 

qSCHEMA r-s Tuw _ Slgnaturt? 

qSCHEMA D....s Env ...... Situation 

We can define the relation between the em'ironment and the well-typed (thougb not necessarily well 
vaJued) bindings a.'l follows: 

TdS DJ.lTS =:::; T; dS D$ ; r- 1 

We can prove the rollowing: 

f- (8 D....s ~	 (8 loUTs 
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9.1 Schema Designator 

9.1 Schema Designator 

A schema. designator is a schema name u~ed to refer to schema. h may also contain a list of generic 
paramaters which instantiate a generically defined schema. 

Note: Since schema. names have global scope \here cannot be any overlap between lhe batie 
!l'i.ffiet; of "ariables anu schema names in a spl.!ciflcation. 

Abstract Syntax A schema designator is constructed from a schema name. 

SDES = WORD 

Representation and transformation 

Production Concrete Ab~tract 

Schema Name S S 

Type The signature of a schema reference is the signatnre of the type of t.he referenc~ in the type
environment. 

dS DTs = (1. SO) i powerT- 1 ; schonaT- I . 

Note: A schema reference is well-typed only if it ;5 in the domain of the type-environment. 

Meanin8 The meaning of a schema reference is the relation construcled from the the meaning of the 
reference in the environment. 

dS n....s = (1. S·) ;;. 

Note: A schema reference is well-defined only if it is in the domain of the environment. 
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9 SCHEMA 

9.2 Generic Schema Designator 

A generic 6chem& dee;igna.tor 5 [z" ... ,z..] is reference to a generically defined schema. 5 insta.nti&ted 
by the set p1l'&m&ten !2:" ... , z"l. 

Abstract Syntax A generic schema designator is construct.ed from a schema llame a.nd a list of 
expressions. 

GENSDES WORD [EXP, ... , EXPI 

Representation and transformation 

Production Concrete Abstra.ct 

SchemaName,,[,,Expression,{',' ,Expression}']' Sr"", ....~1 SI[x,]', .... [x.]'1 

Type 

[5[z" ... ,2:,,] }T$ ((1 • S°) • (:rlo ... , :r,,)) ; powcrT- 1 ; SChU1lUT- 1 . 

Meaning 

(5[2:" ... ,2:,,] }..... s ((1. S°). (:rI,""Z,,)) ;3. 

Note: 

GeMrically defined schemas must be instantiated. 

Z B~ ~'and""u "'~"jon LO prml"d Wth Nov<:",ber 1992 92 



9.3 Schema CClRstl'uction 

9.3 Schema Construction 

A schema construction (D I P) is a schema whose signature is that of the declaration D and whose 
componentti 5atisfy the constraint of the dedaratio!l. D and the predicate P. 

Ablltract Syntax A tichema conllf.luc1ion is compo.sed from a decliU'ation and a predicate. 

SCONSTRUCTION = (OECll PRED) 

Rep-rellentation and transformation 

Production COllcrete Abstrart 

'[' .Declaration, 'I' ,Predicate, 'l' 
'[' ,Declaration, Ll' 

[DIPJ 

[D) 

([Dj"IlPJ"1 

([Df'ltrue} 

Type The signat.ure of {D I P) is the same a.s that of the declaration D. 

Q(D I p}JT, = QD DT n ((D I p)T ;2). 

Meanin8 The value of the schema expression constructed from (D I P) is a ~t of bindings. Tlle 
binelings are constructed iu all enrichments of the environment by D which satisfy P: 

Q(DIP}jM, ~ QDjMn(D[PjM;2}. 

This is defined only in those environments in which the declaration D is defined and when enriched by 
it re~ult in the predicate P heing well-typed. 
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9 SCHEMA 

9.4 Schema Negation 

A ~thema ne.gatioD ...S i5 a schema which contains all the bindings of the same signature as those of 
the schema S but which a.re nol contained iu S.
 

Abstract Syntax A schema !legation is composed of a schema
 

SNEGATION = ....SCHEMA 

Reprellentation and transformation 

Production Concrete Ahstract 

'.., , ,LogSch4 "S "[SjS 

Type The signature of a negated schema .... S is the same signature as that of the schema, S: 

Q. S DTs = QS DTs. 

Meaning The bindings of a, negated schema.S are those bindings which have the same signature as 
S but are not bindings of S: 

Q.SDMs = (SDMTS\dSDMs. 

Note: This is simpler than in (Spivey, ]988), where thi.~ complement had to be combined 
with the global part of the ellvironment. This was necessary in tIle original semantics, 
because tl.e meaning of a schema involved not only the components of the schema, but also 
the global variables to which the ~chema might refer. 
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9_5 Schema Disjunction 

Q.5 Schema Disjunction 

The schema. disjunction 5, V 5~ is a schema whose signature is the join of the signatures of tn.€, two 
schema.s 5, a.nd 5~ and whose property is the disjunclion of thl? two schemas' properlies. 

Abstrad Syntax A sdema disjunction is compOlied of two schemas. 

SDISJUNCTION = SCHEMA V SCHEMA 

Represerltation and transformation 

Production Concrete Abslract 

logSd12, 'v' ,logSdl3 SI v 52 [SdSV [52t 

Type The signature of a schema disjuinction 5, V S~ is the join of the 1'0110 schemas 5, and S~ : 

~5, V S, VS = (as, DTs,dS, V"',; u. 

Note: The schema disjunction S, V 5~ is well-typed ouly ir the signature of tile two 
schemas S, and S~ are type compatibll? 

Meaning The bindings of a disjoined schema are all those witn. its signature which are l'xiensions of 
bindings in one or other of tn.e operand schemas: 

(5, V S~ DMs = (((5, D...nS,(S" DMS) U {(5, DMS,dS~ D.... 7s/); u. 
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9 SCHEMA 

9.6 Schema Conjunction 

Abstrad Syntax A schema conjunction is composed of two schema.'i 

SCONJUNCTION == SCHEMA A SCHEMA 

Representation and trandormation 

Production Concrele Abstract 

LogSch3, 'A' .LogSch4 SI AS] tS,IS AIS1]S 
.

Type The signature of a schema conjumtion 5, A 5, IS the joiJl of the (we sch~m.as 5, and S, : 

s~5, A 5, V = (d5, Vs. d5~ VS); u. 

Note: The schema conjunction 5, A 5, is well-lypcd only if the:- two sch('mas 5, and So 
are well· typed and their signatures ar(~ type compntibJe. 

Meaning The bindings of a conjoined schema are all thost" wit~1 its si.e;naturc which are extensjon~ or 
bindings in both of the operand schem.as: 

a5, A 5, DMs = (d5, DMs. ~5, DMS) i U. 

Note: Spivey (1988) has already remarked on the pimilarity with the semantics of the 
parallel composition operator in the traces model of CSP. 
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9.7 Schema Implication 

9.7 Schema Implication
 

Abstract Syntax A schema implication is composed of two schemas.
 

SIMPUCATION :::: SCHEMA ::} SCHEMA 

Production Concrete Abstrut 

LogSch2, '=:-' ,logSchl 51 =:- !n [5dS~[5,f; 

Type The signature of a schema implication 8, ~ 5, is the join or the two schemas 5, and 5, 

d5, ~ 5, DTs = (d5, DTS,{5, DTS); u. 

Note: The schema implication 8, ~ 5, is well· typed only if the two f'chemas 8, and 5, 
are well-typed and their signatures a.re type compatible. 

Meaning The meaning of the schema implication 8, ::} 5, is the same as the meaning of the schema 
disjunction .....5, V 5,: 

d5, ::} 5, DMs :::: «..., 5, V 5, DMs. 
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9 SCHEMA 

9.8 Schema Equivalence
 

Abstract Syntax A schema equivalence is composed of two 6cheHla.5.
 

SEQUIVAlENCE :::: SCHEMA ¢:> SCHEMA 

Represel1tation and transformation 

Production Concrete Abstract I 
logSo;;h, '~' ,logSo;;hl 5\ ~ 5 l IS,Js<>!.I,f I 

Type Tne signature of a schem<l ellulvalence S, ¢:> S~ i~ thl! jOi.l or thl! (\VO ;;(hl!ma.~ S, and S~ : 

~S, {} S~ Vs :::: (US, DTS.~S~ VI"); U. 

Not€: The schema equivalence S, <:> S~ is well.lypl!C only if the two schema.;; S, :>.ud S, 
are ....eU.typed and their 6jgnature~ are type comp<:.tibl<, 

Meaning The bindings are aj\ those with this signature which arl! extl!ll~ions or bindings in neither 
or bOlh oj Lhe operand sc1lema expressions; 

~S, {:} S7 DM 
$ :::: ~S, => S7 1\ S7 => S, )'''''$. 
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9.9 Schema Projection 

9.9 Schema Projection 

The tichema projection operator (n hides all the components of i~s fi.n;t argument except IhQl;@ which 
are al60 componeDts of its second argument.
 

Abstract Syntax A schema projection iti composed of two tichemal5.
 

SPROJECTION = SCHEMA r SCHEMA 

Representation and transformation 

Production Concrete Abstract 

CmpndSch2, 'f' ,LogSch SrT [Stl[Tt 

Type The signature of a projec(ion 5, r 5~ includes those names in both the domains of thetiignatures 
of 5, and 5~. Tbe type given to eacb such na.me is taken from 5,. Note that if na.mes are given types 
by both 5, and 5, th06e types must be the same (that is, the signatures must be consistmt): 

«5, r 52 r-s = «(5, VS,(5, )TS); n 

Meaning The value of the projection 5, r 5~ is the set of bindings which satisfy 5" retilricted. to the 
alphabet of 5~: 

(5, f 5, l··~s ((5, ) ....s.(5, D.MTS ); n. 

Note: Spivey (1988) gives two forms of projection operator used in a. schema expression 
such as S. r 5,.. The weak operator hides those components of 5, which are not in the 
signature of 52' The strong form requires the components to satisfy the axioms of 5~ as 
weU. We give the semantics for the weak operator. 
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9 SCHEMA 

9.10 Schema Hiding 

The hiding operator (\) takes a scbema expression as its first operand and an identifier list as its 
&ecODd operand. The result is a schema expression wbose componen~s are those of the operand schema 
p.xcJuding those aamed ill the list. 

Abstrac1. Synt&X A hiddell schema is composed of a schema and a list of naHlE:3. 

SHIOING = SCHEMA \ [VARNAME, ...• VARNAMEI 

Representation and transformation 

Production Concrete -'~r~ '1
 

CmpndSch1, '\' • 'f' ,VarNamelisl, 'J'. S \ ( rll, 112,· .• lim ) i [st\ < Ill, »2.· .. > rl", > 1
 

Type The signature of a schema lliding expression is the signature of S with IIle names from (n, , ...• n .. ) 

removed. Note tbat (n" ... , n,,) may contain names not in the signature of 8e: 

as\(n" ... ,nm)DTS = aSVs;({n" ... ,n",}-a) 

Meaning The value of the scherr.a S in which the components (n" ... , ''In) Ilave been hiddell 15 the 
set of bindings which satisfy S, ..... itb lhose components remo\"l~d; 

~S\(n" ... n",)DMS = aSDM 
$ ;({n" . n",}0C3) 

Note: If all the variables are hidden the result is a ~chema wi~h an ernptJ signature. 
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B.Il Schema Universal Quantification 

9.11 Schema Universal Quantification
 

Abstract Syntax A schema quantification is constructed from a schema text and a schema.
 

SUNIVQUANT = '\fSCHEMATEXT. SCHEMA 

Representation and transformation 

Concrete AbstractProduction 

'V' ,Schemo1Text, '.' ,Sch'!!ma "1St. S ~[SlJST .[st I 

'l'ype The signature of a universally quantified schema expression "1St. 5 is the signature of 5 with 
the narnell from the signature of 5t remoyed; 

("1St. S DTs ((S 1"', ((S') Dr,);~ 

Note: The signature is well-typed only when St and 5 is are well-typed and their signatures 
are compatible. 

Meaning The value of a univeflia.lly quantified schema expression "1St. 5 is tbe set of bindings witb 
the defined t1ignature such that, for all bindings of St, the union of the two bindings is aJ\ extension of 
S, 

(V St. 5 DMs = (-.3 5t • -.S DMs 

Note: Note that this definition takes advantage of de Morgan's Law. 
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9 SCHEMA 

9.12 Schema Existential Quantification 

Abtitrad Syntax A schema quantification is composed of a schema text and a schema. 

SEXISTSQUANT = 3 SCHEM..<\TEXT. SCHEMA 

Representation and transformation 

i 'T I 
Production I Concrete I Abstract I 

'3' ,SchemaTeltt. '.' ,Schema 3 S' • s i 3[SIJST .[5jSJ 
Type The signMure of an existentially quantified schema t'xpression 3 Sl • S is the signature of 5' 
with the names from the signatuf!;' of 51 removed; 

TS«3SL. S VS = (~S b , «(St) VS) ;'-. 

Note: The signature is well-typed only when St and S is are well-typed aud their signalure~ 

a.re compatible. 

Meaning The value of an existentially qualltified schema expresslOlI 3 St • S is the set of bindings 
with signature of SIess St, such that there is a binding of St so that the ul,:on of the t.wo billdings is 
an extension of S; 

M13St. S D • = (IS jM',I(St}D'v, ;-, 

Note: This definition should be cOlllrastpd with the an~logous expr('sslon for predicates 
(3 5/. p) where the well-typing of the predica\e is deci-i ..,j in the moclin"d environmellt. 



9.13 Schema Unique Existential QUllllti:8clltion 

9.13 Schema Unique Existential Quantification
 

Abstract Syntax A schema quantification is composed of a schema text and a schema.
 

SUNIQUEQUANT 3, SCHEMATEXT. SCHEMA:0; 

Representation and transformation 

Production Concrete Abstract 
I 

'3 1 ' ,Sch.emaText, '.' ,Sch.emil 31 SI. S 3,[5,]'7.[5]' j 

Type 

(3, Sf. S fS (IS V,, l(St) I T
.); 

Note: The signature is well-typed only when St and S is are well_t}lped and their signatlHes 
are compatible. 

Meaning The vaJue of an existentia.Jly quantified schema expression 3, St • S is the Set of bindings 
with signature of SIess St, such thai there exists a unique hinding of St so that the uni()n of the two 
bindings is an extension of S: 

(3, St • S n-....s = To he defined 
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9 SCHEMA 

9.14 Schema Renaming 

The renaming operation SInew/old] substituLes the new variable name for the old in the schema. 

Abstract Syntax A scnema renaming consists Df a schema and 'l. renaming tist. 

SRENAMING = SCHEMA RENAMELIST 

Representation and transformation 

Production Concrete Abstract 1 

Cmpnd Senl.Rena me List 5 [2:1/111> ZJ/1IJ," . X,./y,,] [5]"'< ~1/Y"~"/Y~l'''~''/YTl > i 

Type Sfhema renaming changes the names of ,he elements in the bindings, and hence the signature. 

(SIN/lIT, = (S IT,; 3({NljN, 1) 

Meaning 

QS(Nl] l ....s = QS ~ ....s i 3({Nl}}l x 1) 

Note: When more than one variable is to be substituted. the substitution is simultaneous. 
Anysubstitutions for non-existenl names are ignored. Each old Harne can only be substituted 
by one new name. Likewise. each ne ..... name can be a substitute for only one old name. 
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9 SCHEMA 

9.16	 Free Variables 

laou' .1./: .)l:oemi1.15 a.IlU ~neJT Iree vanaOles ana aJVllaDet 

Scftema. Free Va.riables Alphabet 

S {S} 

S[z" ...• z ..l {S} U o,z, u ... U 9,Z.. 

[d I p} ¢;(d I pI ad 

I~T ••T aT 

(SAT) t/>.SUt/>.T oSUoT 

(SVT) 9.S U ¢l.T oSUo.T 

(S=>T) tf>.SUo.T aSUoT 

(S<:>T) t/>.S U ¢,T 0.5 U oT 

CVSt. T) tf>dSt U tP.T o.T\o.Si 

(351. T) tPdSt U tP.T oT\o.St 

(3,5'. T) tf>JSt U ¢.T aT\oSt 
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10 Paragraph 

PAR = GIVENSETOEF 
GlQBAlPREO
 
GlOBAlDECl
 
GENERICDECl
 
GlOBAlDEF
 
GENERICDEF
 
CONJECTURE
 

Each paragraph of Z can do two things: Augment the environrn('nt by a declaration and 5trengthen the 
properly by a predicate. Each paragraph is considered iI.5 a r~lation between environmenl!>. The domain 
of thi8 relation containG aillhe ~nvironment8 in Wllich the paragraph is well-typed (\nd any predicates 
contained within it are true. These environments are related to those which include the new \"ariables 
declared in t.heir signature and which satisfy any properlY denoted by the paragraph. 

(PAR)7 Tenv _ TenlJ 

(PAR V" Env ..... Env 

WOe can prove the following 

I-(Por) .... ;T 0;;;; T;{Par)T 
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10.1 Given Seh 

10.1 Given Sets 

The given S4?'t definition [ XI' X~, . .. , Xn 1introduce6 the sets Xl' X~, ... , X" without determining 
their elements. 

Noh,: Distinctly named given seh have distinct types and hence are incomparable. 

Abstract	 Syntax 

GIVENSETDEF given [WORD, WORD, ...• WORD] 

Representation and tran!lformation 

Proiluction Concrete Abstract 

'l' ,Word,{',',Word}, 'J' [Xll X'l, ... ,X" J given (X...... X n ) 

Type The declaration of given sets given [Z], ...• ~,,1 causes the type environment to be suitably 
enriched. Each name is given the power set type of the given type of that name. These declarations over
ride the environment. Note that a given set definition orN results in N haVing ~he type poUleTT givenT N. 

(given(X I1 ... , X .. )}T = {t, ({X" ... , X n } <I givenT i powerT)"} ; iII 

Meaning To enrich the meaning environment, we construct a binding of the given 5et names (those 
in ran:J) to typed values in the world of set.'l-for this to be correct, the bindings must be such that the 
given sets do indeed have power set type. The environment is updated with thill binding. 

(given(X" ...• X n) V" = (1, ({Xu' ... X n } <I givenT i (powerT, Camer) )O} ; ~ 
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10 PARAGRAPH 

10.2 Constraint.s 

A Constrainl is a predicaLe appe1l'ing on its own as a paragraph. It denotes a property of the \'alues o( 
variables dedarl"d elsewhere with global scope. This property is conjoined to the global property. 

Abstract Syntax 

GLOBA.lPRED where PRED 

Represenh.tion and transformation 

Production Concrete Ab~tra.ct 

Predicate P where! prJ" 

Type A constraint adds nothing to the envirotlmellt, so it is that subset of the identity relation 
restricted to the environments in which the predicate is true. 

For the type environment: 

IP l' = ltp D' 

Meaning For meaning environment: 

IPI" = 'tP)M 
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10.3 Global Declaration 

10.3 Global Dec1aration 

An axioma.tic definition introduces variablefl and 8pedfies further properties of the elements denoted by 
them. 

Abstract	 Syntax 

GlOBAlOECl deCn SCHEMATEXT 

Representation and transCormation 

Prodnclion Concrete Abstract 

'AI' ,OeciPart, .~' ,AxiomP;lrt, .~' 

'AX' ,OeclPart, '00' 

'il' D .~' p'm' 

'A!' D 'ID' 

deCn [D]'D 

deCn [D]'D 

I [P]' 

I true 

The abstra.c:t fonn of lUl axiomatic definition is a pair of paragraphs, one containing a declaration and 
the other a predicate. H the AxiomPart is omitted the t.he abst.ract form is one declaration paragraph. 

Type When new variables are declared the environment is enriched by a function Cronl ~heir names 
to one from their empty generic parameter list to their meaning. We give as its value a set of bindings, 
one for ea.c:h name declared. In obtaining the binding, we enrich the environment with the declaration 
in 6uch a way that the constraint is satisfied. The names in the declaration are hound to their values 
in this enriched environment. Formally: 

(deCnDIP)' ~ (DIP)' 

Meaning 

{deCnD I P}.M {D I P)M 

Note The seLs from which the elemerl!s dennted by the van'able8 can be dmwn are defined by the 
conjunction of the constroint of the OeclPart and the property in the AxiomPart. 

The signature of the DedParl is jntned 10 the gloOOl signature. The canstmint III the DeciPart and the 
proprrty nf the AxiomPart are ClJnjoined to the gloOOl properly. 
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10 PARAGRAPH 

10.4 Generic Declarations 

<\. J!;enerjc ddinition of variables adds these variables to tht> dictimlary and maps them to a function 
rtDm all possible instantiations of their gt>nt>fic paramelers to tho;- \"aIu('s of the variables WITh these 
i l\~tantiations, 

Abstract Syntax 

GENERJCDECL gender /WORD, WORD, .. , WORD1 COil:;,t SCHEMATEXT 

Representation and transformation 

i'roduction I Concrete Abstract 
I 
1 

'GEN",GenFormals,'M.R' , I 'CEN' [ .r!> X'I,' .. X n J"~~' 

DeciPart,':;U', AxiomPart,'END' I D 'SI' P'END' 

'ill' ,GenFormals,'ill', J'<;;:11' I X" X". ", X. I'Jill;' 
DeciPart,'END' D 'END' 

~-------

Type 

._------------ ,_.---\ 
gendef ( X" X~, '" X,. ) 
const[ DjD where U·( 

gender ( X"XH".,X,,) 
cOrJ~tlDf' where tru," 

Value A genetic definition introdur.es a family of \'ariables, parameterJsed by tht> gelwric paramrlers 
of the list GenFormab. 

Note IrJ a GerJericDef, the DeciPart declare.. the n"rr,es of the lj[netlc l'DM(Ji/e8 who,<e tYPf._ can !-~ 

,jrknnirJed UpOrJ instantiation of the formal p(lra'fJicters, The preJwnlf ill Ihe A)(lomPart dehnlline~ th, 
(h ments denoted by the l)ariablf.~ for each vallie of the forma! pr/TI:mtltrs. 

flrcursive generic definitions (II"( TIC: allowed The geTl('MC deji'fJil,,;r; mu•• ~ nvt place any rest1'lC/'/)Il f),j 

th(' generic parameters 

\ fJfneric I'anable has g(obalscope. tlcluding the dec/a.m/jOTlli,./ ;'n lrhic.\ It is d~d(]nd arid any constnet 
on which i(.~ /lame is re-used for a IIXY)( vllrioble. 

The parametmJ of a generic definition arc local to the definition. but they can be instantiated by elements 
of set type 1I'nen the genen'c 1:ariable is uSfd. 

.\ generie definition does not give a single tYIJ£' rother. a fUTlr/ioil fl-om the generic pammeter.~ to tyP(S 
i" defined. 
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10.5 Global Deftnitions 

10.5 Global Definitions 

Abstract Syntax 

GLOBALDEF abbr WORD ;: EXP 

Representation and transformatlon 

Note: A Schema Defdefine& a new schema. There are two forms for a schema definitioll. The 
horizontal ill lhe primary form. The vertical form. using a Rcaema box, is given a meaning 
in terms of an equivalent horizontal definhion. 

Production Concrete AbstracL 

Schema Name, '::' ,Schema 

'sg(' ,Schema Name, 'U' ,DeciPart, 'SI',AxiomPart, '~.rr 

'SQi' ,S,.hemaName, 'U' ,OecIPart. 'El!.tl' 

ldent, '==' ,Expression 

Type When a schema Or variable is declared the name is added to the type-environment and is 
mapped to the type of the nherna or expression. 

labb,N;;XjT = (I,(N°,IXIT );{-});$ 

Meaning When a lO<::hema or variable is dedal'E!d the name of the schema is added to th~ environment 
and is mapped to the meaning of the schema or expression. 

labb,N;; X 1M = (l,(N°,IX 1M 
); {-}); ffi 

Note 

The hori::onh;Jl form of the definition defines the schema wilh name SchemaName as the schema 
denoted by the SchemaExpr. 

The ver1ical fOrT» of the definition defines the .~chema with name Schema Name as the schema 
denoted by the schema ezprtssion eonsl'f'\lcted from the schema le::t comprising the hori::ontal 
equioolent, of the DeclPart and the AkiomPart (see Vertical Form). 

A ScMmilName may be r.ued 10 definf' only one schema. within a specification. 

A Schema !uJ8 global scope uctpL urithin the te::1 of its definition. Recursive schema deftnilions are not 
allowed. The scope 0/ voriables introduced in the DeciPart is local 10 Ihe SchemaDef ond includes the 
AkiomPart. 
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ID PARAGRAPH 

10.6 Generic Definitions 

A generic definition of variables adds these variables to the environment and maps them to a fuuctioll 
from all possible instiUltiations of their generic parameters to the values of the variables with these 
instantiatiou•. 

Abstract Syntax 

GENERICDEF abbr WORD[WORD, WORD,. , .• WORD] EXP 

Representation and transformation 

-- -_ ..~ 

Production Concrete _Absuact I 
SchemaName,GenFOImals, '=:' ,Schema I 
's..c.H' ,SchemaName,GenFormals, 'll' ,DeciPart, ':U'.AxiomPart. '~' 

'ill', SchemaName,GenFormals, 'U' ,DeciPart, 'm' 
Ident,GenFormals, '==' ,Expression; 

Word, InGen, Word, '==' ,Expression 

PreGeu, Word, '==' ,Expression 

Type 

{abbrN[SlI' ..• Sm] =: X }M
 
I
 

I,
 
A( (1, liS, 0, Ply",O ;,), ... , ISm 0. Pt,,,,O ;.)) ; (. .j)); '((([S, TIT, ... , [S" n, IX JT))
 

);(fl 

Value 

Note In a GenericDef, the DeclPart declo,.,;,s the name,s of the generic variables whase types can be 
determined upon irutantiation of the fomlal pfJrumeter.~, 

An abb"';t>iation definition efJn be u,sed 10 define a pos.'Jibly generic variable which j.'J named by an i,ien
lifier Abbrev. 

The variable defined by the ezp,.,;,ssion CfJn IfJ/a: three forms: 

•	 POII~ibly Genen/:" Variable ldent.
 

p,.,;fu Generic Symbol PreGen,
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10.6 Generic Definitions 

/n~ Generic: Symbol InGen. 

/ro the latter two case8, tht: nomes of the gene"c parameters. Word indicate the positions of the
 
actual parameters which can be supplied when 'he ooriables are u..~ed.
 

A :!chemn may be defined with generic p6ramelt:r!l and when 1Ued it must be alway:! irlS/antialcd.
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11 Specification 

A specificatio!l is constructed from a seqnence of pa.ragraphs: 

Abstract Syntax 

SPEC ~ PAR .. , PAR 

Representation and tran9formation 

--J 
J 

1 Production Concrete Abstract 

I Paragraph} , PI Narrative., Narraltve P" [PI jPA:R and ... and [p"t'AR 
{Narratin,Parilgraph} , 
! Narrative} 

Type A specification is well-typl!d if the empty type environment is in the domain of tlle typing 
relation. 

Meaning The meaning of a specification is the S€t of environments which are relatl!d to the empty 
environment by the paragraphs of the text. These are all the environments which are enricbmenl~or the 
empty environment by the specification. A sequence of paragraphs can be composed together, 'l'h('y 
denote a Nlation between environments. This relation is the sequential composition of the relations 
denoted by the individual paragraphs. 

zmnPland ... andP" = A((P, Y" ; ... ; (P" )""')0 

Note A l l;pecifimtion consists of a slqlJenCe of paragrophl; separated by pUrQgrn]Jh separntm·s. Thel;e 
pamgmph "eparntors may include erplrwalory lut. The global signalufi lind p"operty are eOTlstrllcled 
from the mcaningl; of these paragraphs. 

.4 paragraph is eilher a definition or a cOllstmint. 

A definition introduces IJal;ic types, l;chemOl;, or t'anable." (named ell'11Unf,~. sets luples or blTlding~j 

together wilh constrnints on them. The effect of a definition IS to augment f-he global signalu.re ond to 
conjoin ita constrnint, with jhe global property. 

A constroilJl dcnotes a property 011 1'(Jriablcl; and schemas ,{u:lm'cd elscu'hen:. The effecl of a cons/minI 
is to conjoin its property u'ith the global property. 

•,1 "1J(;cifr~lion i.~ well typed if et'ery ferm and predi<-'al€ withill lhe ]Jamgmphs it! u'f'1I typed. 
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A Abstract Syntax 

This annex contains the abstract synLax for Z. The metalanguage used is a form of BNF. The notation 
X, ... , X delloteli zero or more occurrences of X separated by commas. 

A.I Specification 

SPEC:: PAR ,.... PAR 

A.2 Paragraph 

PAR GIVEN$ETDEF 
GLOBALPRED 
GlOBAlDECL 
GEN ERICOECL 
GlOBALDEF 
GENERICDEF 
CONJECTURE 

GIVE~SETDEF 

Gl08AlPRED 

given [WORD, WORD,. 

where PRED 

•WORD] 

GlOBAlDECL defn SCHEMATEXT 

GENERICDECl 

GlOaAlDEF 

gender IWORD, WORD, ... , WORD) canst SCHEMATEXT 

abbr WORD :: EXP 

GENERICDEF 

CONJECTURE 

abbr 

conj 

WORD[WDRD, WORD, ... , WORD] ::; EXP 

DECL I PRED, ... ,PREO I- PRED •...• PRED 



A.3 Schema 

A.S Schema 

SCHEMA 

SDES 

SCONSTRUCTION 

SNEGATION 

SDISJUNCTION 

SCONJUNCTION 

SIMPlICAT10N 

SEQUIVAlENCE 

SPROJECTION 

SHIDING 

SUNIVQUANT 

SEXISTSQUANT 

SUNIQUEQUANT 

SRENAMING 

SCOMPOSITION 

SDECORATION 

SCHEMASUBSTITUTION 

SDES 
GENSOES 
SCONSTRUCT!ON 
SNEGATlON 
SDISJUNCTION 
SCONJUNCTION 
SIMPLICATION 
SEQUIVAlENCE 
SPROJECTION 
SHIDING 
SUNIVQUANT 
SEXISTSQUANT 
SUNIQUEQUANT 
SRENAMING 
SCOMPOSITION 
SOECORATlON 
SCHEMASUBSTITUTION 

WORD
 

(DECl I PRED)
 

-.SCHEMA 

SCHEMA v SCHEMA 

SCHEMA 1\ SCHEMA 

SCHEMA =? SCHEMA 

SCHEMA <:> SCHEMA 

SCH EMA I SCH EMA 

SCHEMA \ [VARNAME•...• VARNAMEj 

VSCHEMATEXT. SCHEMA 

3SCHEMATEXT. SCHEMA 

3, SCHEMATEXT. SCHEMA 

SCHEMA RENAMELIST 

SCHEMA i SCHEMA 

SCH EMA DECOR 

EXPGiSCHEMA 
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A	 ABSTRACT SYNTAX 

A.4	 Schema Text 

SCHEMATEXT 

SIMPlESCT 

CMPNDSCT 

5CT5UBSTITUTION 

A.S	 Declaration 

DECL 

51MPlEDECl 

SCHEtJlA1NCl 

COMPNDECL 

DECLSUBSTlTUTJON 

A.6 Predicate 

PRED 

EQUALITY 

MEMBERSHIP 

12. 

=	 SIMPLESCT 
CMPNDSCT 
SCTSUBSTITUTION 

=	 DECL 

=	 DECL I PRED 

::	 EXP05CHEMATEXT 

=	 SIMPLEOECl
 
SCHEMA1NCl
 
COMPNDECL 
DECLSUBSTITUTION 

= VARNAME, VARNAME, ... , VARNAME : EXP
 

= SCHEMA
 

=	 DECL; DECL 

::	 EXP00ECl 

=	 EQUALITY
 
MEMBERSHIP
 
TRUTH
 
FALSEHOOD
 
NEGATION
 
DISJUNCTION 
CONJUNCTION 
IMPLICATION 
EQUIVALENCE
 
UNIVERSALQUANT
 
EXISTSQUANT
 
UNIQUEQUANT
 
S(HEMAPRED 
PRED5UB5TITUTION 

=	 EXP = EXP 

=	 EXP E EXP 
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A.7 Expresaion 

TRUTH == true 

FALSEHOOD == false 

NEGATION == ..,PRED 

DISJUNCTION ~ PRED V PRED 

CONJUNCTION = PREO PRED" 
IMPLICATION == PRED => PRED 

EQUIVALENCE == PREO <> PRED 

UNIVERSALQUANT == VSCHEMATEXT. PRED 

EXISTSQUANT == 3 SCHEMATEXT • PREQ 

UNIQUEQUANT == 3, SCHEMATEXT • PRED 

SCHEMAPREO == SCHEMA 

PREDSUBSTITUTION == EXP~PREO 

A.1 Expression 

EXP ==	 IOENT
 
GENINST
 
NUMBERL 
STRINGL 
SETEXTN 
SETCO..P 
POWERSET 
TUPLE 
PRODUCT 
TUPLESELECTION 
BIND1NGEXTN 
THETAEXP 
SCHEMAEXP 
BINDSElECTION 
FUNCTAPP 
DEFNDESCR 
IFTHENELSE 
EXPSUBSTITUTION 

IDENT ==	 VARNAME 

GENINST ==	 VARNAME [EXP,EXP, .. ,EXP] 

NUWiBERl ==	 NUMBER 

STRINGL ~	 STRING 

SETEXTN ==	 {EXP,EXP, ... ,EXP} 
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A ABSTRACT SYNTAX 

SETCOMP {SCHEMATEXT • EXP} 

POWERSET P EXP 

TUPLE (EXP, EXP, ... , EXP, EXP) 

PRODUCT EXP x EXP x x EXP x EXP 

BINDINGEXTN ~ VARNAME EXP, ... , VARNAME ...... EXP~ 

THETAEXP (J SCHEMA DECOR 
(J SCHEMA 

BINDSElECTION EXP • VARNAME 

FUNCTAPP EXP(EXP) 

DEFNDESCR Ii-SCHEMATEXT. EXP 

SCHEMAEXP SCHEMA 

EXPSUBSTITUTION EXP '" EXP 

A.8 Identifier 

VARNAME WORD DECOR 

DECOR [STK, ... ,STK] 

RENAMEUST IVARNAME/VARNAME, ... , VARNAME/VARNAMEj 



B Representation Syntax 

The concrete representation (or Z is defined in four parts. The first is a context-free gramma.r, which 
conforms to the BSI sta.ndard (or grammars. The second, lexie-al aIlalysis, describes the rule; according 
to which the character sequences are grouped into tokens, The Chara.cter set describes the character ~et 

required to represent a Z specification. The fourth s.e<:tion, grAphical conventions, details lhe conventions 
used (or layout tbat are adopted in this standard. 

B.l Grammar 

The grammaJ is described using a BNF notation which emplo:ys the following special s)"mbols: 

the concatenate symbol 
the define symbol
 
the definition sepaJalor symbol
 

{ } enclose optional syntactic items 

{ } enclose syntactic Hems which may occur 2eta or more times 
single quotes used to enclose termina.l symbols 

Metaldenfiti.r non-terminal symbols wrilten in uns-serif (ont. 
terminator symbol denoting tbe end of a rule 
subtraction from a set of terminals. 

. ? "User defined rule. 

I 

The concatenate symbol has a higher precedence than the definition separator symbol. 

B.1.1 Specification 

Specification	 [ Paragraph) ,{Narrative,Paragraph).[ Narrative}; 

Paragraph	 GivenSetOef
 
StructuredSetDef
 
AxiomaticOef
 
Constraint
 
GenericDef
 
AbbrevialionDef
 
SchemaDef
 
Conjecture;
 

B.1.2 Given Set 

GivenSdOef = '(',Word,{',',Word},'l'j 

B.1.3 Structured Set 

StructuredSetOef = Word.';:='.Branch,{'\',Branch}; 
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8 REPRESENTATION SYNTAX 

Branch	 W~d
 

ldent, '((',Expre~ion.')) ';
 

8.1.4 Global Definition 

A.xiomalicDef 'AX' ,OeciPart,'UD.' 
·AX',OeclPart,'SI',A.xiomPart,'~'; 

Constraint Predicate; 

B.1.5 Generic Definition 

GenericDef	 .~' ,GenFormals,'ill' .DedPart, 'END' 
'~',GenFormals,'ill'.DedPan,'~',AxiomPart,'~'; 

AbbreviationDef	 VarAbbrev
 
PreGenAbbrev
 
InGenAbbrev;
 

VarAbbrev	 Ident, '==',Expression
 
Ident,GenFormals,' = =' ,ExpreS$lon;;
 

PreGenAbbrev	 PreGen,Word, '==',Exprenion; 

InGenAbbrev	 Word,lnGen,Word, '= =', Expre"ion; 

8.1.6 Schema Definition 

SchemaDef	 SchemaNarne,'=' ,Schema 
Schema Name ,GenForma Is,' == ',schema 
's..cH',SchemaNarne,'u' ,DeclPart,'SI',AxiomPart, 'E1lD.' 
'~',SchemaName,GenFormals,'!.s',DeciPart.'S.I'.AxiomPart,'m'
 

'~' ,Schema Name, 'lS.',Decl Part,'~'
 

'~' ,Schema Name,GenFormals,'lS.',DeciP art,'ill';
 

8.1.7 DeclaraUon 

DedPart	 Declaration,{Nt ,Declaration}; 

Declaration	 BasicDed
 
CompoundDed
 
DeciSubstitution;
 

CompoundDeci	 BasicDecl.'; ',BasicDed,{'; ',BasicDecl}; 
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8 REPRESENTATION SYNTAX 

CmpndSch1 

CmpndSch2 

Cmpnd5ch3 

CmpndSch4 

BasicSch 

SUnivQuant 

SExistsQuant 

SUniqueQuant 

SEquivalence 

Slmplication 

SDisjunction 

SConjunction 

SNegation 

SComposition 

SHidinl 

SRenaminl 

SProjection 

PreSchema 

SDecoration 

SRenaming 
SHiding 
CmpndSch2; 

SProjeciion 
CmpndSch3; 

PreSchema 
CmpndSch4; 

SDecoralion 
BasicSchj 

SConstruction 
Schema Ref 
GenSchemaRef 
SchemaSubstitution 
'("Schema;)'; 

'v',SchemaText,'. ''schema;
 

'3',SchemaText,'.' ,Schem;;J;
 

'3) ',Schema Text.'. ',Schema;
 

LogSch,'<=>',logSch1;
 

logSch2,'=:-' ,LogSchl;
 

logSch2,'V',logSch3;
 

logSch3.' 1\',LogSch4;
 

' ..... ',LogSch4;
 

CmpndSch,';',Cmpnd Sch1;
 

Cmpnd 5chI,'\ ','(',VarNameLisl,')';
 

Cmpnd SchI, Rename List i
 

CmpndSch2,' [',LogSch;
 

'pre ',Cmpnd5ch3;
 

Schema ,Decoration;
 



B.I Grammar 

SConstrlKtion 

SchemaRef 

GenSchemii Ref 

SchemaSubstitutiQn 

B.l.IO Predicate 

AxiomPart 

S.p 

Predicate 

LogPred 

LogPredl 

LogPred2 

LogPred3 

B~5;cPred 

'[' ,Dedilralion, 'I',Predicatl!.']'
 
'[' ,Dedlfation, 'J ';
 

SchemaNilme; 

SchemaNilme"{',Expression, {', ',Expreuion} 'l'; 

Expression,'0',Schemil; 

Predicilte,{Sep,Prediute} ; 

" ' 

NI; 

UnivQuilnt 
ExistsQuant 
UniqueQuant 
logPred; 

Equivalence 
logPredlj 

Implication 
logPred2; 

Disjunt:tion 
logPred3j 

Conjunction 
BasicPred; 

PreRelPred 
CmpndRelPred 
St:hemaPred - '(',Schema,')' 
Truth 
Falsehood 
'(',Predicate,') , 
Negation 
Membership 
Equality 
InRelPred 
PredSubstilution; 

'V',SchemiiText,'. ',PrediciltejUnivQuant 
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B.1 Grammar 

ExproMf.ion2 

Expression3 

Expression( 

ExpressionS 

InGenExp 

CartProduct 

InFunExp 

POMrSet 

PreGenExp 

FunctApp 

PostFunExp 

Sup~rScript 

BindSelection 

InFunExp 
Expr~ssjon3i 

Pow~rSet 

PreGenExp 
Expression4j 

FunctApp 
Expression5; 

PostFunExp 
SuperScript 
BindSelection 
Tupl~Selection 

ldtnt 
G~nlnstant 

Sch~maExp 

S~tExtn 

Tupl~ 

S~qu~nce 

B.g 
BindingExtn 
ThetaExp 
SdComp - ·{',Sch~maExp.'}' 

lambdaExp 
Number! 
Stringl 
tfThenElse 
ExpSubstitution 
'(',ExpressionG,') '; 

Expr~uionlExpr~ssion1,lnG~n,Expr~ssion; 

Exprnsion2,' x' ,Expr~ssion2,{' x',Expr~ssion2}; 

Expression2,1 nF un, Expression3; 

'P',Expreuion5; 

PreGen,Expression5j 

Expreulon4,Expression5; 

Expression5,PostFun,; 

Expression5,ExpreuionG j 

Expreuion5,'. ',VarNamej 
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B REPRESENTATION SYNTAX 

TupleSelection ExpressionS,'.' ,N LImbed;
 

Ident VarNamej
 

Genlnshnt
 VarName"["Expression,{', ',Expression} 'j';
 

SchemaExp Schemaj
 

SetExtn '{' ,ExpressionO,{', '.ExpressionO},'}';
 

Tuple '(', ExpressionO,', '.ExpressionO,{'.',ExpressionO),' )'j
 

Sequen,e .(.,ExpressionO, {',',ExpressionO},'}';
 

B.g '(' ,ExpressionO,{',',ExpressionO},') ';
 

Bindin&Extn .~ ',VarNamc,·...... ',ExpressionO,{' ,',VarName,·......... '.ExpressionO},·t ';
 

ThelaExp '6' ,BasicSch,Decoration
 
'6',BasicSch;
 

Set(omp '{',SchemaText,'.' ,ExpressionO,'}'
 
'{ ',SchemaText,'} 'i
 

LambdaExp ').'SchemaText,'.', Expresf.ion;
 

DefnDescr 'Jl' .SchemaText,'. ',Expression
 
'JI',Schema Text;
 

Numbed Number;
 

Stringl String;
 

IfThenElse 'If' ,Predicale,' Then', Expression .' £I.oe ',Expression,' Fi';
 

ExpSubstitution Expression,'0' ,Expression;
 

B.2 Le:xical Analysis 

Token A token is a sequence of characters, as defincd in seelion 8.3. conforming 10 the grammar 
given in this section, whose terminal symbols are the sets of characters defined in section B.3, and 
whose senlence symbol is Token. The differcnt sorts of tokcn correspond to thr sorts of ternlillaJ 
s.vrnbols of the grammar of Z, together with an extra sort of space tokcns . 

.-\ sequence of characters is inlcrpreted as a sequence of non-spacc tokens by a left-to--right scan taking 
token,; which are as long a... possible and lhen discarding any Spn.u tokcns. H it is lIot possible to do 
lllis th<'n the sequcnce of charac~crs is erroneous. 
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B.2 LexitaJ Analysis 

Note: The 'e)l.~ of a Z document in the COllcrel", representation may be considered al lhree 
level6: a.& marks on paper, as a sequence of cbaracll"rs and as a :;equenc.e of tokens. The 
tn.nsformation from characters to tokens is given hy the following rules; these use the same 
notation as ~he syntax definition but differ in meaning in that no two separators may appear 
between a.djacent terminals. Where ambiguity is otllerwise pos~ible. two conseculive tokens 
must be separated by a separator. 

Tokfn W~d 

Decoration
 
Narrative
 
Number
 
String 
Punctuation 
Space; 

Operation Names 

Opname	 '_ ',In Fun,! Dec],' _ '
 
. _ ',lnGen,' _'
 
, _ ',lnRel,! Dec] " _'
 
PreGen,' _ '
 
Pre Rei,] Dec],' _ '
 
, _ ',Post Fun,! Dec]
 
'- ','G',' - ','r
 
'-';
 

Variable Names 

VarName	 N.~
 

'(',Opname,')'j
 

Dedaration Names 

DeciName	 Name
 
Opname,;
 

Schema Names 

SchemaName Word; 

Name A nam", is a. decoraled word: 

Name '" WOfd,! Dec!; 
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B REPRESENTATION SYNTAX 

Word There are three sorts of Word: 

W~d	 Alphanumeric
 
Greek
 
Symbolic;
 

Alphilon.umeric	 (letter, {letter I Digit I (' _ ',(letter I Digit)}), {Subscript}j 

Greek	 Greekletter, (Subscript}; 

Symbolic	 (Symbol I Shift), {(Symbol I Shift)}, {Subscript}
 
Punctuation, SubKripl, {Subscript} i
 

lTo rnaxHni.to! the 8uibl~ly of til<: language. parlicularly when nsN for the metatheor)' of Ilself or of Olhel IIll'guaS"" even 

a. plln<:h'Al.;on ChA.acl.,. can be uw:d to form a. symbolic Identifier by Attach,ug a. subscript.] 

[3mce Ihe m.~ddol)' Greek ch;uacters Are insuffiCient fOI aclu&lly typing le&l Greek WOlds (the.e king DO hreil.lhing~ 

~tc.), lhe view is laken IhAI Greek letterB work as in ordinAry malllen'a.lics. of3.., containing lhree namn. Tbis 5e",,,,,, 10 

be II. good compron,iAe, and works n.1<:ely with ~, J.l, Idenlifiers etc I 

Decoration. Decoration comprises just a sequence of stroke characters: 

Decoralion :; Stroke,{Stroke}; 

[We are assuming lhat proposal Decor.2 is ldoplPd and that i' IS ",mplemented" in rhe tril.nsformauon into ahst.&Ct 

syntax. Deeor.3 is equally simple, and eJl8enlially jun ~a.ys Ihl decoration is allowed At lhe end of;m Identifier as part of 

lhe identifier J 

N umbers A numeric literal is a non-empt}" sequence of decimal digits: 

Number:= Digil,{Digit}; 

Strings A string literal denotes a sequence of arbi~ary text; 

String _ ? /mplemwtationDependent?; 

Narrative The means for delimiting the narrative sections between formal material in a Z document 
is not defined in this standard: 

Narrative := ? /mplementalionDependent?; 

Punctuation	 This kind of token includes the stop and box cltaractl;:CS of section B,,'J ~ymbols. 

Punctuation	 Slop
 
BOlli
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B.3 Character Set 

Space A space token is a. sequence of one or more white space characters. 

Space = Forma1, {Format}; 

B.3 Cbaracter Set 

At tbe most primitive level, a physical object (e.g, <:. document on paper or stored electronically) i~ 

interpreted as a finite sequence of charade"!, The method of deriving a sequence of characters from a. 
physical object is Qat define<! in this standard, however this section places minimum requirements on 
the character set. 

TIle character set must include, at least, the characters in the sets Letlu, Gr'eek, Digii, S!jmbol, Stop, 
Stroke. Subscripl, Shift, Bor, QllOle, Ascii and Fof'tlmf described in tlle following ubLe. Additional 
characters may he used and arc to he taken as elements of lhe set Symbol. 

letter 

A B C D E F G H I J 
K L M N 0 p Q n s T 

U V W X Y Z 
a b , d , f g h i j 

k I m n 0 p q , , t 

" v w x , , 
0 13 1 

, , ( n 0 , a 

> p " ( , p a T v " X ,p w 
r " El 

A - n E T •., fl 
0 1 2 3 4 5 6 7 8 9 - + V \ - • • n I 

ffi #; 0 ~ • ~ ~ 

~ ~ C C < > < > - - - -  - -
u n '" ~ ~ c -/ ~ -, I [ ) { ) ( ) / , 

A V ~ '" = E • 3 • 
x - & f ::= 

; ( ) F N P Z 

, , ! 
Subscrip\ed forma of &Dy of Ih~ abov", chara.cl~rs. 

)' I 
AX :;g{ m! -1> :IT ll.IJ! 

" 
A Illemb",r of the ISO Cb&IllCt.eI sel with <;ooe in lh~ riUlg~ 32 to 126. 

Greekletter 

Digit 

InFun 

InRei 
InGen 

Symbol 

Stop 

Underscore 
Stroke 
Subscript 

Shift 

Bo' 
QUOit. 

Ascii 
Format A format charader such as space, l;ob, 1in~br",a.k or page-b''''l.k. 
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B REPRESENTATION SYNTAX 

[ / and t ue chu&d"l'II l.o shifl in &rid out of superscription. Transll>ve d(>5ure, reRexive- ~ra.l1"i tive dosur, a..nd rrl&~ion&! 

inv"r"", can ht: wriuen lIJI / + 1. / * t &rid /1, ea.ch of which is &n Identifier.] 

[Ltller might al.Io include oLher fonls, e.g. it&!ic or bold. If so, there u a. question lIJI Lo whether the sla..nd&"J snould jn~,st 

llt&t, e.g., 'A' be I~&led tbe 5&lne &6 'A'?]
 

[The Cr..... k l.u",r omicron is not mandatory tUnee itloolullike &n '0' 'II 80m, fallb.]
 

[The list 01 S~,"bol. lLbove should be eXl.endd in the &Ctu&! standud 10 COver the requirements of the to"lkilj
 

lll. ~ etL IUt inlelldd to ~pr"""nl chu&Ct..l'II for duwlllg boXeti of various sorts.] 

B.4 Graphical Conventions 

The following graphical con.ventions are adopted in this stalldard: 

The usual English orthographic conventions for interpreting print~d t~xt are a.:>sumed (division into 
pages and lines, dirertion of reding, ignoring page furniture such as headi ngs and page numbers, 
identification of printed or writlen characters, and so on.) 

Sequences of non-Z text may be intt'rspersed witli Z text usinll; any cOllvention of presentation 
which a.llows t.he Z text to be uuambiuonsly identified. 

Multiple newlines in succession are considered as oue. 

•	 A newline preceding or succeeding characters in the sets InFun, lnRel. InGen and in Symbolis 
ignored. 

Char~ters in the set Subscript are wriUen in the subscript position. 

The characters /' and! delimit seqnences of characters to be writteu in the superscript position. 

If G. D, P and 5 arbitrary sequence~ of characters not containing an)' of the box charactef6 CAl, 
MR, ~, UI!, s..c.H. ~ and ~), then: 

-	 AX D ~ P END is written as: 

~ 
-	 AI D E!!Q is wriuen as: 

I	 D 

-	 W G liAR D SI P trill is written as: 

[?l 
"4	 Z B_ Stand",,1 V.....ion 1.0 printed 30Ih N"v"mlM'r 1!l9"l 
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C Mathematical Toolkit 

This section defines a Mathematical Toolkit or Library for nse with the Z notation. The principle is 
that those cOllslructions that can be defined in terms of otbers are included in the Toolkit rather tha.n 
in the core notation-this simplifies the core nota.tion. 

)'105t users Ifill wa.nt to mak~ use of the constructions defined in this section. This can therefore be 
regarded as a basic Toolkit, which nsers ma.y augment. with their own definitions, or replact' if these 
definitions are not suita.ble for their use. 

In this version of the Base Standa.rd, the list of defined items follows the customary list of Toolkit 
items. Later versions of the Standard may include further definitions and explanations, and will link 
the Toolkit to related work on the semantics and proof system for Z. 

Definitions of the Mathematical Toolkit art' informallY expla.ined and illustrated. In some ca.ses ,in 
illustration for one part of the Toolkit may rely 011 rerms defllied earlier in lile toolkit. :\[any of the 
definitions given here are generic with respect. to one or more ~ets. 

Note: lnslantiation of a generic defini/ion can be performed willi any apprvp7'iate sets, not nccessarily 
the maximal set8 of their types. However the informal descriptions of these definitions are often here 
erpressoi 08 if the sets used for instantiation were in fact types, since that is the UJay in whIch Ihese 
definitions are commonty instantiated in Z specifiro.tions. 

Rel>iewers oj the draft standard are invited to comment on thiS approach. 



C.1 Sets 

C.I Sets 

Name 

t- Inequality 

If/. Non-membership 

Definition 

F~XJ-,x -X 
_¢_,X_PX 

'Ix, y: X. z t= y ¢:io .... (;c:::::. yJf
i Vz:X;8:PX • .r~S¢:io .... (.rES) 

DescriptiQn 

Inequality is a relation between vaJues of the same type. The predicate ;c t- y denotes true when z = y 
denotes fa.lse. 

Non-membl'rship is a. rela.tion hetween \alues of a certain type and sets of values of that type. The 
predica,te ,1 If/. 5 denotes tru(> when z E 5 denotes false. 
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C MATHEMATICAL TOOLKIT 

Name 

o - Empty S~l 

~ - Subs~l relatiou 

?rop~r subs~t r~lalion
 

PI - ~on-~mpty subsets
 

Definition 

I2l[X] == { :L : X I f(JJ~f.; J 

FIX]~~~~~~~~~~~~~~~~~~~~~ 

_~_,_C_:PX .... PX 

\:IS,T:PX. 

(S ~ T ¢> (\:Ix: X •• E S =-- • E T)) /\ 

Sc T~S~ T/\Sf; T) 

P, X o~ { S, P X IS" " ) 

Description 

Th~ ~mpty ~et of values of a certain tyi>i' i6 the s~l or valu~s or that typ~ that has no members. 

If S and Tare set6 of values of the same type, tb~n S 0; T is a pr~dicat~ d~noting true j[ and only if 
every member of 5 is a m~m ber or T. The empty set or values of a c~rtain t.ype if; a subset of ~very set 
of values of that type. 

If Sand T are sets of valu~s or th~ same lype, then SeT is a rredicat~ denoting true if and only if 
ev~ry m~mher of S is a member of T and 5 a.nd T are not ~qual. If S is a proper subs~t. of T, then it 
is also a subset of T. Th~ ~mpty set of values or a certain type is a prop~r subs~t of every non-empty 
s~t of values of tha.t type. 

If X is a Sft, then P X is the set of all non-empty suhs~ts of X. P X is a proper subset of P X.t t 
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C.l Set9 

Name 

U - Set union 

n - Set inter~ction 

\ - Set difference 

Definition 

~iXI~~~~~~~~~~~~~~~~~~~~ 

_U_,_rl_._\ _: PXx PX - PX 

VS,T:PX. 
SUT={z:Xlr€SVxET}A
 
SnT={ r:X/reSl\xE T}v
 
S\ T={ x:xlreS/'1rrt T}
 

Description 

TIle union of two sets of values of the same typl" is ~he set of values that are members of eith.er set. 

The intersection of two sets of ..·alUe5 of the same type is th(' set of values that are ffi('mbers of both. 
sets. 

The difi"er(>no::e of two sets of values of the same types is the set or values that are members or the first 
set hut not memhers of the second. 
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C MATHEMATICAL TOOLKIT 

Name 

U - Generalized union 

n - Generalized interseclion 

Definition 

[X]~~~~~~~~~~~~~~~~~~~~ 

u,n,p(PX)_PX 

VA.:P(PX). 
uA :: { z : X I (3 S: A • x E .'I) } 1\ 

nA :: { z : X I (V .'I: A • x E .'I) } 

Description 

The generalised union of a. set of sets of values of the same type is the s{'t of values of tbat type th.at 
are members of a.t least one of th.e sets. 

The generalised intersection of a sel of sets of values of the same type is th.e set of values of that ~ype 

that are members of ever)' one of the sets, 
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C MATHEMATICAL TOOLKIT 

C.2 Relations 

Name 

Binary relatiom 

- Ma.plet 

Definition 

x - r =:::- P( X X }' 

r~~~l: X x Y -. X x l' 

I V'X:XiY: Y •
 
x ....... y=(x,y)
 

Description 

x _ Y is the set of all sets of ordered pairs whose first members a.re members of X and whose second 
members are members of 1'. To declare R : X .... Y is to say that R is such a set of ordered pairs. 

The maplet forms an ordered pair from two values, so if z is of type X and y is of type Y, then z ....... y 
is of type X x Y. x >-- Y is thus just another notation for (x, y). 



C.2 Relations 

Name 

dom,ran - DOlllain and range of a ,,,,Iation 

Definition 

IX, Y]~~~~~~~~~~~~~~~~~~~~ 

dom:tX y) ..... PX 
ran;(X Y)-py 

VR:X Y.
 
domR= {z;X; y: YI(X>-Y)ERor}A


L ran R == { z : X; y ; Y I (r ....... y) E Roy}
 

Desniption 

The domain of a rdation R is the Si't of first mi'mbers of the ordered pairs in R. If R is of type X ....... Y 
the domain of R is of type P X. If R is an empty r",lation.th"'n its domain is an empty Si't 

The range of a relation R is the set of second members of the ordered pairs in R. If R is o( type X _ Y, 
th", dorna1n of R is of type P Y. If R is an empty r",lation, th~n its range is an empty set. 
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C MATHEMATICAL TOOLKIT 

Name 

id - Identity relation 

Relational composition 

- Ba.dward relational wmposition 

Definition 

id X == { x: X • x ....... x } 

F[X.Y,X]~~"","""'C"",===~~~~~~~~~~~ 
_;_:(X ..... Y)X{}'~Z)-(X-Z)

I _o_;(}'~Z)x(X~ r)~(X-Z) 

r--:: , X ~ Y; 5, y - Z. 
R;S=SoR=~ x:X: y: }'; .;:ZIcR
 

(.c....- y) ERA (y l- .:;) E S. x >-':;


--------'--

Description 

The identi~y relatioll on a sel X is the relation that relates every menloer of X to ilself. Its l.ype if; 
X ...... X. The identity relation on an empty set is an empty relation. 

The reLational composition of a relation R : X .... Y and 5; r ..... Z is a relation of type X .... Z 
formed by taking all the pairs (x, y) of R whose second memoers dre in t.he domain of 5, and relating 
x lo every member of Z that y is related to by S. 

The backwud composition of 5 and R is the same as the romposilion of R aud S. 
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C.2 Relations 

Name 

<J - Domain restriction 

t> - Range re6triction 

Definition 

[X'YJ 
_<,-,PXx(X-Y)-(X~}'J
 
_~_,(X- Y)xPY-(X- Y)'
~'r;j 8: P X; R: X - y.


I S <J R = { :r: : X; y; Y I z E S A (X ..... y) E fl. r >-- y}
 

I Vfl:X- Y; T:PY.
l RvT={x:X;y;yl(r ...... y)ERAYET.xl-y}
 

Description 

The domain restriction of a relation R : X ..... }' by a set S : P X is t11e set of pairs in R whose firsl 
meml;ers are in S. S <i R i~ a subset of R, and its domilin is a. subset of S. 

The r;,.nge restriction of a relation R ; X ..... Y by a set T : P Y i~ the set of pairs in R whose sl!cond 
members aTe in T. R Do T is a 6ubset of R, and its range is a subset of T. 
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C MATHEMATICAL TOOLKIT 

Name 

.(I - Domain anti-restriction 

~ - Range anti-restriction 

Definition 

[X,l'J~~~~~~~~~~~~~~~~~~~~ 

_<il_:PXx(X ..... Y)-(X Y) 
_I:'l-_:(X ...... y)-<py-(X n 
V S: P X; R : X ...... y • 

S <il R = { r: X; y: Y I z f. S 1\ (z.-. y) E R. r ...... y } 

VR:X~ Y; T:PY. 
R ~ T = { z: X: y: Y I (z ...... y) E R 1\ Y ~ T 1I:r..-. y } 

Description 

The domain anti·restriction of a relation R : X ~ Y by a sel S : P X is the set of pairs in R whose 
first memhprs are not in S. S <il R is a subset of R, and its domain wnla.ins no members of S. 

The range onti-restriction of a relation R : X ..... Y b)' a set T P Y i9 the set of pairs in R whose 
sE'Cond members are not in T. R ~ T is a subset of R. and its range contains no mewbers of T. 
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C MATHEMATICAL TOOLKIT 

C.3 Functions 

Name 

Pa.rlial functions 

Total functions 

Definition 

x _ y== 

{f:X ..... Y!('v'r:X; Yl,l/2: Y. 
(% ...... yd E! /I. (r ...... lh) E!::} Yl = Y~) )
 

X~ Y=={!:X ....... Yldom!=X)
 

Desaiption 

The partialfullctions from X to Yare a suhset of the' relations X - Y. They are distin~nished by the 
property that each r in X is related to at most one Y in Y. X .... Y is the set of all partial [unctions 
from X to Y. and to declare! ; X _ Y is to say that! is one ~uch partial function. 

The total fUfictiom from X to Yare a subset of the parlial functions X _ Y. They arc distinguished 
by the property that eac:h r in X is related to exactly one y in Y. X ~ Y is the set of all total 
functions from X to Y, and to tll'clare ! ; X ~ }' is to say that! is one such total function. The 
domain of I: X ...... Y is X. 



C.3 Functions 

Name 

Pa.rtial injeclions 

Tolal injections 

Definition 

X,.... Y == 
{J: X ..... }' 1 ('i.r\..r. :domJ eJ(.rd= J!;:~) => 41 =: .r2)}
 

X _ l' ~~ (X ~ l')n(X _ l')
 

Description 

Thl~ partial injections from X to Yare <I, subset of lhe partial funnions X ....... Y. They are distinguished 
by the prcperty that each yin}' is related to a!. most one ;c ill X. Thus the inverse of a parliill injectio/l 
is also a partial injcctioa. X _ Y is t.he set of all part.ial inje<:tjo/lS frolll X to Y, ana to declare 
J: X ... Y is to say that f is one snch parti,,1 injertion. 

The total injections from X to Yare a subset of t]le partial injections X ..... Y _ They aTe distinguished 
b)- the property that each r in X is related to exactly one" in Y. X - 1" is the set of aJl total 
injpr.tions from X to Y, and to declare J : X ...... }' is 10 s<l,y that J is one such total injection. 
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C MATHEMATICAL TOOLKIT 

Name 

Partial surjections 

Total 6urjediolls 

Bijections 

Definition 

x _ l'~= {f, X ~ Y I 'ani = Y) 
X_ Y~=(X_ Y)n(X- Y) 
X-l'==(X- YJn(X- y) 

Description 

The parlial surjections from X to Yare a subset of the partial Cunctions X ..... Y. They are distinguished 
hy the property that each y in Y is related to at least one x in X. X _ Y is the set of all partial 
~urjections from X to Y, and to declare! : X _ Y is to say lhat ! is aile such partial surjection. 

The total surjections from X to Yare a subset of the partial snrjections X _ Y. They are distiuguished 
by the property that each x in X is related to exactly one y in }'. X ..... Y is the set of all total surjections 
from X to Y, and to declare! : X .... Y is to say that! is one such lOlal surjection. 

The bijections from X to Yare a subset of the total surjections X .... Y. They are distinguished by 
1.Iw property that each y in Y is related to exactly Oll€ x in X. X :-+ Y is the set oC alL bijections from 
X to Y, and to declare! : X >--0 Y is to say that! is aILe such tolal hijectiou. 
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c." functions 

c.".] Name 

~ - Functional overriding 

C.3.2 Definition 

,IX, Y)~~~~::=="~~......~~~~~~~~~~~~~ 
1_<;; -, (X - Y) x IX - Y) - (X - Y) 

Vj,g;X ...... y.
 
j(fjg=«domg)-af)ug
 

Description 

If j and g are both functious from X to Y, t]len lhe functional overriding of f by g is the function g 
together with such p~irs of f as have firsl elements different from the fir~t element of any pair in g. 
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C MATHEMATICAL TOOLKIT 

C.4 Numbers and finiteness 

Name 

N Natur~ numbl"rs 

l Integl"rs 

+,-,~.div,mod Arithml"tic opl"rations 

<,:5,?, > r\uml"rjc~ comparison 

Definition 

III 

N: PZ 

_+_,_-_,_._:ZxZ~l 

_dil'-,_mod_: Z x (Z \ {OJ) ~ Z 
_ :Z_l 

-<-,-:5-,-?:-,- > _:l .... l 

N=(n,lln?O) 

... olher definitions omitted... 

Description 

The natural nUmbl"TS are the integers from zero upwards. The t.ype of N is P Z, since N is a set of 
integers. The dl"c1aration n : N makes l thl" typl" of n, and entails the property n ?: O. 
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C MATHEMATICAL TOOLKIT 

Name 

RJ: _ ILeration 

Definition 

[XJ~~~~~~~~~~~~~~~~~~~~ 

iter :1 (X ..... X) ---. (X - Xl 

VR:X X. 
iter 0 R = id X (I.
 

('tk: N. iter (I: + l)R == R i (iter I: R») (I.
 

(Vk: N. iter (-k)R = iter I: (R~»
 

Description 

The iteration of a relation II : X ..... X by zero is tIle identity relation on the set X. The iteration of 
a relation R: X ..... X by one is the relation R. TIle iterMion of a relalioll R : X ~ X by an integer 
greater tIlan one is the composition of R with its itera.tion by the next lower integer. The iteration of a 
relation R : X ..... X by an integer less that zero is the iteration of the inverse of R by the corresponding 
positi\'e integer. Thus the iteration of R by -1 is tIle inverse of R. 

The form: iter I: R is usually written RJ:. 



----

C.4 Numbers and finitenes-5 

Name 

- Number range 

Definition 

_ .. _:zxz-- P2 

"i/ a. b : 2 •
 
I ~ a .. b:::{k:21 a .$k$b}
 

Description 

([ n a.nd b a,re integers. and a is less lh,ln b. lhe number ral,g", (l..b conla:IlS IJ., b anJ oily integers 
betr:~en. If a is ('quill to IJ. the number rauge IJ. •• b is a single/on set conlamillg a only. If u i~ {!;rea.ter 
than b, the numher ra.nge a .. b is an empty set of inlegl'rs. 'flle uUlober range a .. b is :\11li:J.Y; finite, and 
jf b 2: a its size j~ b - {j + 1. 
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C MATHEMATICAL TOOLKIT 

Name 

F - FiniLe sets 

F I Non~empty finite sets 

# :'lllmber of members of a set 

Definition 

F X :;:; { 5: P X I 311 : N • 3 I: 1 .. n - S • ran I == 5 } 
F, X == F X \ lOll 

F[XII~~~~~~~~~~~~~~~~~~~~~ 

l#'FX~N 

VS:FX.
 
#8 == (J.I 11 : N I (3/; 1 .. 11 - s. ranI:; Sl)


I 

Description 

_-\ 6('t is finile jf its members (".all be put into one·to-one correspondence with the natural numbers from 
! up to some limit. F X is dle set of all finite slIbsl.'ts of X. F X is a subset of P X. If X is finit(', tllen 
it is a member of F X. 

The lIon-empty finite subsets of X are tile finite subsets of X ex(".ept lhe empty set. 

The number of members of a finite set is the llppl.'r limit of th(' numbl.'r range starting with 1 that ca.n 
bl' put into one-to-one correspondence with th<- ml.'lllbl.'fS of the seL 
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C.4 Numbers and B.niteneslI 

Name 

Finite partial funclioDs 

Finite parlial injec1ioDs 

Definition 

x _ y == {] : X ..... Y I dom] E F X 
x_ y==(X- y)n(x- Y) 

Description 

The finite part.ial fnnctions from X 10 Y ilTf' the partial fllO(tioll~ from X to Y whose domains are 
finit.e sets. 

The finite partial injectioD~ from X to \-' Me the parlial injectiolls from X to Y whose domajns an:
finite sets. 
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C.6 Sequences 

C.6 Sequences 

Name 

seq - Finite sequences 

seGl - Non-empty finite !equence, 

j8~q - Inje("tive sequences 

Definition 

"qX =={f,N_Xldom!=l.#/l
 
seq\ == { I: seq X I #1 > O}
 
iseqX == seq X n (N ....... Xl
 

Description 

A sequence is a finite aggreg•• te of values of the same type in which each value can be identified by 
its p06ition in the sequence. The formal definition es!.abJislles a sequence as a partial funClion relating 
the numbers from the set 1..0 for saine n (the domaill or the scquenn~) to the values (lhl:' range or 
th(' sequence). seq X is the set of all finite ~eliuence~ or falues of type X. The declaration S ; seq X 
says tllat S is one such finile sequence. Sinn' a sequence is a lunr-tioll (i.(>, a set of ordered pairs), a 
sequence might be empty, and the runctioll application notation S i can be u!'ed to deflote the element 
at position (provided that i is in the domain of the sequence. 

seqj X ~s th~ set of all non-empty finite sequences of \'alues of type X. Tl'e declaration 8 ; seql X sa)'s 
that s is such a nOkempt)' finite sequence. seq. X is a subset of seq X. 

ise(j X is the set of all injective finite sequences of values of t)'pe X. A seql\ence is injectiH! if no value 
appears more than once in the sequence. The declaration S : iseq X says that S is such an injective 
fimte sequence. iseq X is a subset of seq X. 
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C MATHEMATICAL TOOLKIT 

Name 

~ - Concatenation 

Definition 

[XI~~~~~~~~~~~~~~~~~~~~ 

_ ~_:seqXxseqX-seqX 

'rts,t:seqX. 
~'"'t=lJU{ n :doml. n+#s .... l(n)} 

Description 

Comatellation is a run(~ion of a pair of 6('quences of values of the same type that denotes a sequence 
Inat negins with the first sequence and cOl\tinues with tile second. Either or hoth of the sequences 
:night be empty. If either sequence is empty, the result is the other sec!uence. 
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c.s Sequences 

Name 

hwd, IMt, loil,jront - Sequence decompositiof. 

Definition 

[XJ==================~ 
head, ltul: seq] X X-0 

toil,/ront: seq] X ..... seqX 

Vs: seq, X e
 
ht-ad s 0:: 8(1) tI
 
100t s = 8(#8) /I
 

L 
tails=(),n:l .. #$-le ...(n+l))tI
 
front $ = (l .. #~-l)<Js
 

Description 

If S is a non-empty sequence of values of type X. then head S is the value of type X that is tint in the 
sequmce. Empty sequences are not in the domain of head. 

If S is a non-empty sequence of values of type X, then last S is the value of type X that is last in the 
sequence. Empty seqnences are not in the domain of last. 

If S is a non-empty sequence of values of type X_ th{'n tall S is the sequence of values of type X 
obtained from S by discarding the first. men~h(!r. Empty sequences are not in the domain of tail. 

If S is a non-empty sequ(!nce of values of type X, then front S is the r.equence of values of type X 
ohtained from S by discarding the last member. Empty sequences are not in the domain of front. 
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C MATHEMATICAL TOOLKIT 

Name 

- / - Distributed concaLenatiun 

Definition 

[X]~~~~~~~~~~~~~~~~~~ 
~ / : seq(seq X) ---+ seqX 

~/()=() 

~!j:seqX.-/(s)=s 

~q.r:6eq(6eqX). 

'/(q~ ,j = C /q) ~ ('/,) 

Oescription 

Tile distributed concaLenation of a, s('quence of sequenc('s of values of type X is i\ sequence of values of 
~~pe X obtained by colLcatcna,ting the I('sser SC(lu('nees in the order in which they app('ar in tile greater 
~f'qucnce. 
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C MATHEMATICAL TOOLKIT 

C.6 Bags 

Name 

bag Bags 

count - Multiplicity 

ill Bag memb{'fship 

Definition 

bagX-== X ...... Nt 

[XI~~~~~~~~~~~~~~~~~~~ 
collnt: bagX _ (X - N)
 

_in_:X ..... bagX
 

\;/x:X;B:bagX.
 
Wllfil B = (A J' : X • 0) ~ B /I
 
i in B ¢> x E dom B
 

Description 

A bag reprer.ents an aggregate in which order is not importanl. but in which a gi\"en value can occur 
several times. A bag of values of type X is a function whOBe dOlllain is a subset of X and whose range 
is a set of strictly positive natural numberB. 

The count of a bag of values of type X is a fUl\ction that extends the bag function by rdating every 
Illember of X tbat is not is the domain of the bag to zero. 

_\ value x : X is said to be in B; bagX if and ouly if:r. is in the domain or B. 
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D Z Interchange Format 

D.1 Introduction 

The Z Interchange Format defines a portahle representation of Z, allowing Z documents to be 
transmitted 'between different machines. The most suitable meaM of communication het",een di!fe-r
ent mMhines iB by using text files in which the character sel is limited for portability reasons. The 
Interchange Format defines a syntax for such te.xt files. 

The basis for the Int.erchange Format is the ISO Slandard Generalized Markup Language (SGML). 
SGML permits the structure of texts to bl' represented and encoded in a standard [orm, convenient for 
storage, editing, retrie..-a.I 3nd processing. The SGML Standard is defined in [11]. A general description 
of the ...ims and principles of SGML. together with an annotated version of the standard, is included in 
The SGML Handbook by C. F. Goldfarb [8]. Case studies and applicalions ill SGMi are described in 
the work of the Text Encouing Initiative as reported in [2~J. 

The structure of this Appendix ill as follows: 

•	 the first section describes the scope of the Interchange Format - Le. the facilities offered by the 
Format. 

•	 tIle second section contains an informal de5criplion of SGML. 

•	 the ne~d 5eCtion defines the IntNchangt! Formal. 

•	 the final 5eCtion presents explanatory material and examples of the use of the Interchange Format. 

0.2 Scope of the Interchange Format 

The Interchange Format allows a distinct.ion to be made between rormal text and other text included in 
a Z document. The Interchange Formal does not prescribe the :;tructure of all parts of a Z document, 
and does not define the internal structure of informal text. 

As one possible application of the Z Interchange Format is to send a Z docnment to another machine 
ror Z sYntax checking, th(' format is suffiejenHy liberal to pennit syntacticaJly incorrect Z to be written. 
The rormat lhus prescribes markup only ror the higher le\'els of the Z synta..x hierarcllY; in lOost cases 
this is at the level of a Z paragraph. althongh for axiomatic allu 'boxed' definitious there is scope lor 
creating a more detailed m...rkup if desired. 

For a Z document to be syntactically correct when written in the Interchange Formal" it must conform 
at tne higher levels to the markup defined ill this Appendix, and a1 the lower [('vels (e.g. predicate or 
expression level) to tIle Z Concrete Synta..", with all mathematical symbols replaced by thcalphanumerie 
representil.lions defined in Section D.4.3. 

Thl! Interchange Format also provides markup ror requirements which are additional to the prime 
requirement for encoding the stnldllre of the Z in a docuDI('ul. The following requir('ments are accom· 
modated: 

•	 idenlificalion of informal Z fraglHent~. i.e. Z fral;lII('nt~ whirh do nol eOlllriuut(' to llie formal part. 
of a Z dorum<'nt; 
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D Z INTERCHANGE FORMAT 

•	 definition of the fixily and bindillg priority ( ....here applicable) of user-defined names: 

•	 allocation of unique identifierli to Z paragraphs, t'.g. so tbat associations between Z operation 
schemas and data-flo.... diagrams can be made. or 80 that Z definitions can be indexed; 

•	 logical grouping of Z paragraphs independently of the positions they occupy in the document. 
e.g. so (hat the group can he considert'd as a nnit for type-checking purposes, or that 'units of 
conservative exLensioll' can be identified for subsequent procp-ssinp; by a proof tool; 

•	 labelling of 'stacked' predicates in an axiomati<: or -boxed' definition. 

0.3 Introduction to SGML 

Thi~ sertion provides an introduC1.ion to SGr..i L. sufficiellt for the understanding of f,he definition of the 
luterchange Format in Section 0.'1. More compreheJl3ive de~rriptions of SGA,fL are given in [11] and 
[8]. 

Examples of text written in SGML are printed with a lixed·width font (the 'tt font in r.....TEXj as rollows: 

<tag> tnt <!tag> 

D.3.1 SGML Element DefinitiorHI 

Structures are described in the Interchange Format by means of SGML elements. Elements are delim
ited by stlUHags lLfId end-tags. A start-tag is o{the form <oatne>, where name is the generic identifier 
of the delimited element. The elld-tag is of the form <!name>. For example, a particular Z given set 
definition m..y be .... ritten in the Interchange Format as: 

<given4ef> !lAKE. DATE <!given4ef> 

The internal structure of a general SGML element is it~elf defined ill SG~'[L hy means of a formal SGML 
element declaration. The components of an elelllt'lol di'c1aratiOIl are: 

l. the Mme of the element; 

2. two dil.racters (separated by a space) ..... hich ~pecify the millimisation rules for the defILent; 

3. the content model of the element. 

1'hl' Il1inimi~ation rull's indicate whether the srart· tags or ("Jld-tags ma.~· be on,i tted ill iustances of the 
dement. TlIl' first character in the pair corres.ponds to the starl·lag and tile second to the elld-tag. The 
rhanH:Il'! '-' or '0' indicates tha.l, the corre~porldil\g tag r("speclivd.y must be presen~ or may be omitted. 

T1H' contenl modl'J specifies .... hal occurrt'nce~ of lhe element may legitim~tely contain. Contents may 
1,.. spl'cifieti in term8 of other eJemerlts and of special re.~("rwd words. Ultimately all ('lements consist 
pf 'parSol'd character data' (reprelOented in element declaraliorl~ hy the rese[v('d ....ord 'PCDAT1), ....hich 
n>lllain.~ anr valid character data but nol frnther elerneilis. Further strurLur",J information concern
Inc; l'!Plllenls which a.re comtituents of lhe rlf'dared detnel,t is pro\·idf'd hy the use of occurrence 
iudiclltors and group connectors. 
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Occurrenre indicators define how many times a cODstiluent element may occur in instances of the defined 
elemenl and are pIMed at the end of the coDstituent element. The following occurrence indicators are 
used in tbis Appendix: 

a que6tion mark (?) indicates that the preceding element occurs at most once; 

an asterisk (.) indicates that the preceding element may be ab6enl or occun olle or more times; 

a pluB sign (+) indicates that the preceding elemellt occurs one or more times. 

Group collnectors .sped fy the ordering of constituent elemenb.. The following connectors are nsed in 
this Appendix: 

a vertical bar (I) indic...tes that only one of the components it connects may appear; 

a comma (,) indicate5that the components mnst appear in that order. 

For example the element definition for a Z .,c!lerna declaration is given as: 

<! ELEJIEJlT schElllladd
 
('PCDlTl. Bub?, formals?
 
(BeXp I (decpan. upart7») >
 

Occurrences of this element thus consist of parsed character data (representing the name of the 6chema), 
followed by an optional subscript, followed by an optional element which holds the formal parameter.s of 
the definition, followed by either lU\ element representing a scbema expression or a constrnct repre~nting 

the declaration part and (optional) 1lI;iomatic part of a schema definition. The start· tag a~d end· tag of 
the schema definition must both he present. 

D.3.2 SGML attribute dec.larations 

In SGML. attributes are nsed to pro"ide information associated with elements. The Interchange 
Form ...t employs attributes to encode layont information and other information which is not considered 
to be part of the s!ructUrf of a Z .specification. For example, the Interchange Format defines a'slyle' 
attribute for 6chema definitions which permits an indication of whether the definition should be in 
vertical or horizontal form. An occurrence of a 'schemadef' element rna)' thus contain aD. attribute_ 
value pair inside the e(ement'5 stalL-tag: for example: 

<schemadet style-vert> S </schemadet> 

An SG;\1L attribute declaration specifies the name(s) of the element(s) to which the attributes a.re 
atta.ched, followed by a list of rows, each of which consists of the name of tbe attribnte b:!ing declared. 
it5type, and an optional default value. A type may be given as a collection of explicit value:s, or ~ one 
of the follOWing special keyword,;: 

COl!!	 the attribute valne mal" contain any valid character data ami must b~ delimited by 
double quotation mark~: 
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ID indicates that a unique identifying value will he snpplied for each inSlance of the 
element; 

JrlMTOKEJrI the attribute value is a name token (Le. any alphauumeric string). 

The default \a1ue for an attribute may he denoteJ as one of llle St>t of explicit values dcfmed for an 
attrihute; alternatively it may he one of the followillg special values: 

IIMPLIED a value need not he supplied; 

• REQUIRED a value mnst he supplied . 

D.3.3 SGML entities 

An SGML flltity is a named part of a marked-up document. An example of all entity declaration IS; 

<!EHTITY zas O'z Base Standard, version 1.0" > 

References II> entities are contrucl.ed by prefixiug the name of tjle !;'ntity with an ampersand character 
(&) and delimiting the end of the name with a semicolon, spac!;' or end-of-file. Here is an example of 
an entity reference: 

We are nov in a position to issue the lZBS;. 

The entity reference in this document fragment would he expanded by an SGML parser as: 

'We are now in a position to issue t.he Z Base Standard, version 1.0. 

In the Interchange Format, SG~H, entil.ies are used to represent non· alphanumeric Z symbols. When 
an SGML pa.rser is nsed to analyse a Z document, associdtion b,>twet'n the aJphil.llumeric representation 
oi mathematical symhols and their local code ale recorJ",d in ~GML entity dedarations. Since local 
word pron~sor codes ma:r differ for differeut Z UM'rs, Section DA.J records the entity names used in 
!he Interchallge Format, together wit.h the normal representations of corresponding Z symbols. 
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D.4 Definition or the Interchange Format 

This section pregents the definition of the Interchange Formal 38 a collection of SGML decla,ra.tions. 
Explanatory material and examples of the use of the lnterchange Format are given below. 

An SGML Document Type Defiuition (DTD) defines the syntax of SGML-conformant documents in a 
st)'Je whid, is readable by SGML parsers. The Interchange Format does not ..... arrant a full DTD for 
t .....o reasons: 

the format does not specify the structure of the informal text in a Z document: 

• the entity deciMations are implementation-dependent. 

A D'YD corlsists of a header. follo.....ed by a body contaiuing the rleruent declarations, auribute dec
larations aud eutity declarations. The definition of the Interchange Format presented in this Section 
may be considered as tlle partial hody of a DTD (parliul because the eutity declarations are not gi"eu 
explicitly); it is aho equi"'alent to a definition jn BNF of the structure of the Interchange Format. 
Ne..... lines are not significant in the Interchange Format except......heu they ljerve to separalp predicatel; 
or declarations. 

Incidentall)'. it is unlikely that the interchOinge format could ever a.:commodate every function required 
by its users. In the SGML scheme, any collection ofSGML declarations (such as those which define this 
Interchange Format) may be replaced or euhanced by the pre·insertion of additional SGML declarations. 
Such a 'customisation' of the Inlerchange Forma~ .....ould be acceptable by SGML parsers. 

D.4.1 Element rleclarations 

These declaration8 define the higher-level structure of the Z paragraphs in a Z docllment 'II'ritten in lhe 
Interchange Format. It corre5ponds dosely to the Z Concrete Syntax, apart from the introduction of 
two high-Ie't'el structures (Le. opdec and infundec) .....hich are used by the author of a Z document to 
define an}' speciaJ fixity and priority of s.vmbols and name~ declared in the document. 

Note that it is possible to identify the individ\lal 'stacked' predicates (i.e. a collection of predicates 
separated hy ne ..... liues) in the predicate part of a bOxed definition. This facility is optional; t~e complete 
stad::of predicates may be identified as a single predicate H that is more convenient (e.g. if the originator 
of the document bas no automatic trar.$lator to the Inlerchange format which recognises significa.nt 
newlint~s). 

Element definitions a.re provided for the representation of superscripts and snbscrjpts. 

< ! ELEMEIIT Z 
(opd&c I 1nfundec I givend&:t 1 axd&f i COnstraint 
I schemadd I gend&f I abbrevdet 
I conjectur& I structsetdef). > 

< !EL~H7 (informalZ I conjecture 1 constraint 
I infundec I 8Up) - 
(lPCOATA I string I sub I 9Up)+ > 
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D Z INTERCHANGE FORMAT 

< !E'J..FJtEJrT (sup I decpan I body I predicate)
 
- 0 (.PCOATA I string I lIIub I aup)+ >
 

<!ELEJlEBT (givendef I infundec; I opdec I formals I label)
 
('PCOATl I sub I .up)+ >
 

<!ELDIEIT ud"f (decpart. upart?) > 

<!E1.EJlEIl"T ac.heaadef
 
('PCDATA. aub?, formals?,
 
(aexpi (dlocpart, axpart?))) >
 

<! ELE~ENT gendef (fomah?, decpart. axpart?) > 

< !ELEKEIfT (atructsetdef I ",bbrevdetJ
 
«,peDATA I aup I Bub)+. body) >
 

< ! ELEMENT axpart - 0 (predicate+) > 

<! ELEIIEIfT (string. sub) ('PCDATl) > 

D.4.2 Attribute declaration" 

The attribute declarations permil the associatioll of addil.iollal information ..... ith occurrences of dements 
in a Z document written in the Interchange FormaL. 

The attributes id and group permit respectively unique identification and logical grouping of Z para
graphs. 

The attributes &~yle and purpose define respectively the layout and intendcd use of a schemadcf;n.ition 

The attribute label permits informaJ annotation of each mcmbcr of the 'sta.ck' of predicates which 
con5titllt~ lhe a.x.iomalic part of a boxed definitiOlL 

Tlll' attribute optype for lhe declaration of an operator symbol permits the associaliOll of a fixity with 
rhat symbol. This fixity applies 10 all occurrences of tllat symbol in the Z uocumellL 

.vOTE 1'0 EDITORS: Thi.~ may not be the case in Ver.~ion 0.6' of the Brm: Standard. 

The attribute priority for tbE.' declaration of all infix fUllClion symbol permits the association of a 
binding priorily with that symbol. This priority applies to all occurrences of that symbol in the Z 
document. 

<!AmIST
 
(givUldef I azdef I constraint I schemadet I gendef
 
I abbrevdef I atructsetdef)
 
id ID IIMPLlEO
 
group IfMTOKEIf IlMPLIEO >
 

< ! ATTLIS! achemadef 
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style (vert I hQriz) horiz 
purpQ.e (state I operation I datatype) IIKPLIED > 

< !.iTILIST predicate label CO.iT! IlMPLIED > 

<! .iTTLIS! opdec 
optype (ingen I inrel f pngen I prerel I postfun) 
IREQUIRED > 

<!.iTnIST in.1'undec
 
priority (1 I 2 I 3 I 4 I 5 I 6) • >
 

D.4.3 Entity declaratioll!! 

The entity declaration:s for the Interchange Format are not presented in the conventional sm,1L Cormat 
because of the dependence of the internal repr~sentalionofmathematicalsymbo16 on the implementation 
of each uS('r's Z document proces60r. The mode of declaration used here is to present a table which 
records the as90cialion of each entity name with the corresponding mathematical symbol. 

Many of tbe entity names defined bere llave already been defined as standard in Appenlij.~ D oC [ll]. 
Entity names which have been devised r;pecifically for the Interchange Format a.re identified by an 
asterisk. 

We firH present the symbols of the basic Z language. The set of symbols covered by these definitions 
consists of those basic language symbols which a.re not suhsumed by the Element Declarations presented 
in Section DA.1. Entity names are not provided for the und~rscore (_), prime ('j, colon (:), comma (,). 
query (?), shriek (!). period (.), unary minus (-), parenthesis, schema renaming (/) and equality (=) 
symbols, as it is assumed that these symbols, though non-alphanumeric, a.re r~asonably portable. 

INFORMAL NAME ENTITY NAME SYMBOL 

left squaT(' bracket Isqb [ 
right squa.re bracket rsqb J 
left chevron bracket lchev (.) « 
right che'{Yoli bracket rchev (.) » 
ba, verbar I 
fat dot bull • 
universal quantifier forall V 
existential quantifier exist 3 
unique eXlstential qua.ntifier exis11 C) 3, 
membership isin E 
negation uol 
c:onjunction and A 
disjunction 0> V 
implic1\tion 
equivalence 

rArr 
iff 

~ .. 
power ...el 
theta 

P5~t (.) 
theta.o; 

p

• 
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Cartesiau product prod (.) x 
mu mu "left set bracket Icub { 
right set bracket reub } 
len sequeuce bracket I"" (0) 
right sequence bracket rseq (*) 
left bag bra.ckel. lbag (*) 
right bag brMket rbag (*) 

( 
)

I
I 

lambda lambda -' 
len relational image brAcket limg(*) ~ 
right relationiU image bracket rimg (*) I 
DO'!lla Delta	 -" 
Xi Xi 

b('la .3beta 

, 
alpha. alpha	 o 

1gamma gamma 
ddt<l delta 
"p5ilon epsi 
WIll. zeta 

,'a	 ,ta 
iota	 iota 

( 

"
 
kappa kappa K 

"a "u V 

xi ,i 
pi pi 
rho tho 

(, 
p 

•
\ 

sigma sigma a 
lau tau 

I'upsilon	 upsi 
phi phis 
chi chi 
psi psi 1/' 
omega	 omega w 
Ga.mma	 Gamma r 
fhela	 Th"ta o 
Lambda Lambda 
Pi Pi 

A
n 

Sigma	 Sigma ~ 

Upsiloll	 Upsi 
Phi	 Pbi 
psi	 Psi 
Omega	 Omega 
schema composition scomp (*) 
5chO'!ma hiding hide ("') 
schema projection proj ("') 

\
I

••n 

T

turnslile	 turn (*) c 
Ampersa.nd =p 
hinding rarn'; "
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We now present the symbols of the Z mathematical toolkit. The symbols covered by these definitions 
are the non-alphanumeric members of the Z Mathematical Toolkit. Entit)' names are not provided 
for the addition (+) and muhiplication (*) ~)'mbol.!l, 3>l it is absumed that these symbols, though nOIL
alphanumeric, are re&llOnably portable. 

NAME 

inequality 
I1on-membersh.ip 
empty set 
proper subsel 
non-empty subsets 
~Ilbset 

.<;d union 
~... t intersection 
set difference 
~eneralised union 
generalised inter.!lection 
binary relation 
mapJet 
(backward) composition 
forward wmposition 
domain restriction 
range restriction 
domain subtraction 
range subtraction 
relational illl'erse 
transitive closure 
reflexive-transitive closure 
partial function8 
total functions 
partial injections 
total inj~tions 

partial surjections 
Iota.! surjeclions 
bijections 
functional override 
natnra.! numbers 
integers 
less than 
less than or eqnal to 
g.reater th1!Jl or equal to 
~reater than 
stricti_v pOlIitive integers 
DlHIl her r1\llgc 
unar.v Illinu~ 

hinar.v minus 
finit .. Sf'ts 

ENTITY NAME 

"' uotin 
empty 
,ub 
psetl (*) 
sube 
cup 
cap 
sdilf (*) 
Cup (tl 
Cap I-I 
reI (t) 
map (t) 

camp (*) 
compfn 
dres (*) 
cres (*) 
dsub (*) 
rsub (*) 
tilde 
tel (*) 
rtel (*) 
pfun (*) 
tfun (*) 
pinj (*) 
tinj (*) 
psur (*) 
lsur (*) 
bij (*) 
oplus 
Nat (*) 
Int (*) 
II 
Ie 
ge 

g' 
Natl (t) 

upto (*1 
uminus (*) 
bmillus (*) 
fsct (*) 

SYMBOL 

'i " fl, { )
 

C
 
P,
 
~ 
u 
n 
\ 
U 
n 

o 

o 

•
~ 

• 
+ 

of 
N 
1 
< 
S 
~ 

> 
N, 

f 
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non-empty finite sets 
cardinality 
finile partial [unctions 
finite partial injections 
filter 
concatenation 
dislribuled concatenation 
non-empl}' finite sequences 

(sell (.) 
Dum 

fpfun (.) 
(pinj (.) 
filter (.) 
cat (.) 
deat (.) 
seq! (.) 

D.4 Definition of the Interchange Format 

F,
 
#
 

-
-j 

seq\ 

NOTE TO EDITORS: The.~e library member.! are taken from the 1st edition of the ZRM. We must add 
arlY new members. 
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D.5 Examples 

This section presents examples of the use oCthe Inl,erchange Formal. Thses example,; are carefully chosen 
to COV{'f the more difficult aspects of the Format. Thl' arl'a-~ rowred are l:ldictteJ in tltl;' snbsectj[,Jl 
headings. 

D.S.l Declaring Infix Identifiers 

Consider lhe roUowing axiomatic definilion, which declares a rel •• llon is Twice which is interll:.l"d tv Ul' 
used in an innx ma.nner: 

I _isTu;ice_; N ..... N 

I Vi.j; N. i is Twice ) ¢:> i = 1$) 

The encoding or this Z definition in the Intcrch..lHgl' form,ll incll1cl~s nul only the encoding of til(' 
axiomatic dennition itself. but ,jlISL~,jlll 'optlec' ;;tall'l\Ient which ikcl"f{"s the fixit~· of IsTwlec 

<z> 
<opdec optype"'inrel> isTllice <!opdec> 

<a..zdef> 
<decpart> 
_isT'iice_: lRat trel tt/at 
<a..zpU"t> 
<predicate> 
ttortil i. j: tHat tbull i isTwicQ j tift i ; :.j 
<!ll.Idet> 
<!Z> 

D.S.2 SU\)SCr1p1.S and superscripts 

Thl' axiOlll~tic definition 

a\. 113; N 

a3 ~~ Twice a1 

is encoded in the Interchange Fortnat itE': 

<Z> <udet>
 
<decpart>
 
a<sub> 1 <!sub>. a<sub> 3 <!aub>: tHat
 
<axpart>
 
<predicate>
 
a<sub> 1 <!sub> isTwice a<sub> 3 <!sub><sup> 2 <!sup>
 
<!llJdet> <!Z>
 

182 1, 1'1 ...... 51''''dar<\ V.....;on 1.0 pri,,,..,JJOth No",""nL..r 1991 



0.5 Examples 

D.5.3 Schema definitions and predicate labelling 

Considl:r the following definitions: 
[Pe'RSON, HOUSEl 

S!~e' __-:-c::-,-,-:---:-::-:c::---------------
inhabits: PERSON _ HOUSE 
hOtJ.!JI:B: P /lOUSE 

hOl1Ses = ra.n inhabits 

'V h: houses. # inhabit.!J-U hH s 4 
/. No house may be occupied by more thllfl 4 pH.!Jon.!J • / 

The author of this specification intends to acmmpJish the followiJlg ohjecljve~: 

Lo att ...ch a label to the second predicate in t],e schem .. definition: 

.. t.o indicate that the schema. definition should be displayed in ~·ertica.l form; 

to indicatp (to a specification checker, for exampll') that the schema Siree! defines tb.. .~tate of a 
system. 

These objectives can be attained in the InLercl!ange Formal with the following encoding: 

<z> 
<givandef> PERSOI. HOUSE </givendef> 

<sChemadef s~ylesvert purpose-state> Street 
<decpart> 
1nhabitll: PERSON Upfun HOUSE 

hOUlles: tpset: HOUSE 

<upart> 
<pred1cate> 
bouses =' tran inhabits 
<p:redlcate 
label-"Bo house may be occupied by more than 4 persons"> 
Uorall h: houses tbull 
tuum. 1nhabitsotinv.tlimgUcub hlrcublrimg Ue 4 
</schemadet> 
</Z> 

D.5.4 Abbreviation definit.ions 

Note that in the luterchange Format lhere are no enldy represt"nla\ions of the symbols immediately 
associated with top-lpvel definilions such as Slructu,al set definitions and abbrevia~iondefinitions. These 
aymbole are subsumed by the element tags for thoSol? definitions. For exa.mple, consider the following 
abbreviation dl"finition: 

Z 8,.. Siandard VenUoII I.Q pr;nlrd 30Ih Nov,,,.,b<-, 1\I9~ 18. 



V
 , N
 

~
 

+
 " 

...;
 

[.
 

~ • ~
 g" , •" • 0 ~ i!. =
 

o 

" " " +
 " 



E Z Character Set 

NAME 

Given set brackets 
Schema definition 
Abbrevialion definition 
Chevron Brackets 
Ba< 
Schema. bra.cketB 
Colon 
Semicolon 
Comma 

Fat dot 
Universal quantifier 
Existential quantifier 
Unique Existential quantifier 
Equality 
Membership 
Negation 
Conjunction 
Disjunction 
Implication 
Equivalence 
PO....<!T ~t 

Seledion 
Theta 
Cartl'8ian product 
Tuple BfIl.ckets 

M" 
Set bracket!> 
Sequent," brackets 
Bag brackets 
Lambda 
Relational imagl' Bra.ckets 

D"h 
Query 
Shriek 
Delta 
Xi 

SYNTAX TERMINALS 

« )) 
I 
[ J 

,V
"= 
E 

" 

",.. 
A

V 

P 

9 
X 

( 

"( ) 
( ) 
I I 
A 
~ , 
, 
, 

" 
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E Z CHARACTER SET 

NAME TOOLKIT SYMBOLS 

Inequa.li~y 

rion-membel'5h.ip 
Emply-set 
Proper subsel 
Non-empty 5ubse~s 

Subset 
Set union 
Set intersection 
Set difference 
Generalised union 
Generalised intersection 
Biliary relation 
Map let 
Composition 
Domain re~triction 

Range restriction 
Domain 511blraction 
Range subtraction 
Relational inverse 
Transitive dosllre 
Refl.exive-tra.nsitive closure 
Pa..rtial fund ions 
Tota.l functions 
Partia.l injettions 
Tota.l injections 
Partia.l surjections 
Tota.lsurjectiolls 
Bijections 
Functional override 
Na~ural numbers 
Imegers 
Addition 
Subtraction 
Mulitplicatlon 
Division 
Less than 
Less than or equa.l to 
Greater tha.n or equal to 
Greater than 
Strictly posilive int~lll 

Relational iteration 
Number range 
Finite sets 
Non-empty finite lW't.ll 
Cardinality 
Finite partial functions 

"6 

I 
~", { } 
C 
P, 
I; 
U 
n 
\ 
U 
n 

j, " 
<J 

~ 

• 
& 

R
R+ 
R" 

III 
N 
l 
+ 

• 
div 

< 
$ 
~ 

> 
N, 
R' 

F 
F, 
# 
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F A deductive system for Z 

F.l Introduction 

This section presents a deductin' system for Z. It is ODe of several possible deductive systems for Z, 
and has been developed as pan (If the ZIP project. There Me t..".o aspert~ 10 the l:hoice of a deuuctive 
system: form and content. The fOfm concerns the syntax and roaI\!IN of conducting proofs. The content 
concems the set of theorems that are deducible ..... ithin the system. 

The deducti\'\'! system is a Gentzen-slylesequelll calculus in wliich s<''1uents are composed of declarations 
and predicate!!. Tbe ruleE; of the logic are presented in a simplified form. The meta-theorems of the 
logic (theorems about the rules) permit the extension of the rules into a more practical form 

The loose definition of fUIlClioll application dnd definite dl'scriplioJl in lhe semaIlt1cs permits a number 
of illterpretations of their meanings. This deductive .~rs[cm is souIlll with resped to a model in which 
all well· typed expressions Ilav~ a value. 

F.2 Sequents 

The basic building block for a sequent calculus i.~ a sequellt. A sequent is mmposed of an antecedent 
and a consequent. 

Sequent = Antecedent I- Consequent 

The antecedent is a list of declarations separated by the symbol t and a list of predicates separated b~' 

commas. 
Anteudent =: Declaration t ... t Declaration I Predicate, ... , Predicate 

The consequent is al90 a list of predicates. The syntax for a conse(juent is the following: 
(olUequent = Predicate, ... , Predicate 

Thus a sequent appea.rs as: 

D.t ... tD.I~f-~ 

where tnemeta variables tr and 4> represenl. lists of predicates. The lists of predica.te!> in the antecedent 
and consequent are sets 90 the ordering is of no consequence. 

A sequent is well-typed if tne predicates are all well·t)'peu ill tlie euvironment emichl.'d by the declara
tions where tbe declarations introduce new scope. 

{D,t ... tD... ,IP., ... ,Pnl-q" ... ,q/»T = 
dom (D, l'; ... ; (Dm l'l> ((P, ~'n.n IP. D') l> ({Q, ~T n ... n jQ, D')) 

A sequent is valid if anyone of the predicates in the consequent is true in all the environments enriched 
by the deda.rations and satisfying all the predicates iu the antecedeIlt. 

{D,t ... tD.... IP..... ,p"l-q" ... ,q/»T = 
T'«(D, 1'; ... ; (Dm I'l> ((P, ~T n ... n IP. ~T)) ({Q, n u ... u IQ, D') 

A sequent is a theorem if it is \'alid in all environments. 



F.3 Rulel!l 

F.3 Rules 

The deductive system consists of a number of rules for manipulating sequents. A rule is of the Corm: 

lre~~ [T 1] {N;lmeJ[ (Proviso)! . R I u e =: om:. USlon 

The premisses are a (possibly empty) list of sequents: 
Premisses = Sequent ... Sequent. 

The conclusion is a.Iways a single sequent: 
Conclusion = Sequent. 

The Proviso is a decidable condition on the fr~ variables and a.Iphabets of the expressions in the rule. 
Tbe N;lmt nBuaJly has the form "3 ~~, or ~~ 3", tlte structure of which reflects the fact that there 
are rules for manipulating the operators of t.he logic, both on the left and on the right of the turnstile, 
respectively. The annotation Ti iudicates that the rule can be applied in hoth directions. 

A rule is sound if whenever it ;8 applied 1.0 valid premisses, a valid conclusion results. This is defined 
in the semantics by saying that the Bet or l!nvironments supporting the premisses is a suhs.et of those 
supporting the conclusion. The rule 

~Sm [N}(P)S,. 
is sound if and only if 

P => ~S,»~ n ... 11 {S," ».... ~ {Seq ».... 

The following ml!ta·theoreln holds for rules in the deductive system:. 

Theorem F.l (Sequent-lifting) 
The role D I 'II' I- l) is sound if and on/y if the sequent D Iii' ~ fl ia a theorem. 

This theorem states that a theorem ,an be dednced from 110 premisses. 

In order to simplify the presentation of the deductive system the following lifting mEta·theorem is 
used. It states that unchanging declaration!! and predicates can be added to a rule while maintaining 
5Oundne55. An unchanging predicate or doclaration is one that is in both (he premiss and the conclusion. 

Theorem F.2 (Rule-liftmg) 

If the inference rule 
EtDlwc~ 

EtD'lw'~l)1 
is sound, 

then the ""Ie 
Fj EtDI P,wc Q,~ 

is also sound, 
FfEfD'IP,i'I-Q,.' 

providing thai (oD U oD' U of') 11 (OP u .pQ) = 0. 

The rule-lifting theorem a.Ilows us to preSf'nt the rulE'S of th(' dC'du,ti\'e system in a concise manner. by 
omiUing an}' declarations and predicates which non'! (hange. 
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The semantic-equivalences for substitution ,He given in lables ill ..arlier sections. These tables state tbe 
semantic equality of various expressions, A thl"Orem which permits the use of seillantic-equiv-dlences in 
proofs is tIte following. 

Theorem F.3 (Semantic-equi ..ulence-Jifting) Gilu, Iht "rma~!jc-eql.lillale1l(,tS for predit:ales arid 
dlclamtions: 

P=Q D=E, 
the following inferena rules are sound: 

EI Q>E>-Q
 
DIP>- D>-P
 

F.4 ProoCs 

Proofs in the deductive sy~tem proceed ill the way that is uSllal for sequent calculi: proofs are dcvelopeo 
backwards, starting from the sequent which is to bE' proH'd, A n.le is applied, resulting in fresh sequents 
which must be proved. This process continues unt.il therE' are no more seq\lenl,s req1!iring proof, in which 
Ca.5e the original sequent ill uow pro\'ed. 

A compleled proof may thus be rE'presented as a tree. with the proved sequE'nt as lIte root node. and 
E'very leaf node containing an empty list of sequents. HuwevE'r, if sume of these lists in the leaves are 
nOR-empty, then the derivation tree is slill useful, alt.hough it doE'S Hot represent a proof, it represents 
a part.ial prool. 

Theorem F.4 (Tree-squashing) Suppol'le that we hal'e thE rJerimtion [reI"; 

5" s; 5;. [R;](P,) S. [RJ(P) 
SI Seq 

where each of the rules R arId R, are sound rules, then the den!'ed rule 

51 5;\ S"" 5" jR1(l'. P,)
S<q 

j.>; also sound. 

F.s General Rules 

F.5.1 Thin 

The thin rule is used to discard unnecessary declaratioJls and prediclltes: 

>
D I pf- Q (thin). 



F.6 ExpJ'e2l8ions 

F.5.2 A,llIumption 

Thl:! GlJsumption ariom in is one way of completing a proof, since it ll:!aves no prl:!mlsses to be discharged; 
it states that for every formula p, thl:! sequent dip r p is valid: 

DIP r P [a.!I8umption], 

Notice that if we apply the Tree-squashing theorem 10 the assumption axiom prl:!ceded by the thin rull:!, 
Wl:! obtain the following: 

DID'IP,Q" ... ,Q",I-P.R" .. ,R" 

ThUG, the assumpt.ion axiom a.Ilows us to prove a sequent if any Olll:! oCthe col\5l:!quent formuJ~ is present 
in the antecedent. This illustrates an impottaM point about seqnent calculi: fvery formub on tnl:! left 
may be assumed in order to prove at leaJlonl" formula ou the right. 

F.5.3 Cut 

The eut I"Ule is used to structure proofs iuLo lemmas: it pl:!rmils the addition of h,ypothcses to the 
antecedent; thl:!se hypothl:!sl:!s may be discharged separatl:!ly. 

r P P r feufj.

" 
It is the responsibility of thl:! user of ll\e cut rull:! to l:!nsure that the well-tYPl:!dness of the sequent is 
preserved by the addition of new predicates. New declarations can bl:! cut in using aD eltistenLially 
quantified predicate. 

F,e Expressions 

Two sets t and u arl:! equal if and only if arbitrary members of I and u bl:!long to It a.nd I respectively: 

x : Ii y : It l- x E It f\ Y E I 
T1 r·rl.u'""J 

% : t; 11 : It l- t - u 

F .6.1 Set Extension 

An element is a member of a Sl:!t extl:!nsion if and onl.\' if it is equal to one or tne members of the 
extension. 

f-..	 t :: Itl V ... V t == IJ" r1r"""""'1 
l- / E {III> .. ,u,,} 
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F.6.2 Set Comprehension 

The element t is a member of the set comprehension {51. u} if and ouly if there is some situouion in 
51 which makes t equaJ ll. 

1-35t.t=u 
1! [co",p .. )

I-tE{SI.u} 

providing ¢t n oSr = 0 

F .8.3 Power Set
 

All l'Jemenl is a member of a power set if and only if au arbitrilry lI!emher of it is a member of the set.
 

y: t I- y Eli r1[poo'Hoel]
11: t I- t E P u 

F.6.4 Tuple 

An l'll'ment is equaJ to a tuple if and only if each of its projections is equal to the appropriate member 
of the tuple. 

I- t.l = Ut A ••. A l.n = un 11 [11.plel 

I- t _ (u],. " Ii,,) 

F.6.!) Cartesian Product 

A tuple i~ ~ member of a Cartesian producl if and only if each of ito projections j~ a member of the 
respective merllber set of the product. 

I- 1.1 E UI II A I.n E u" 11 [Woof""",)
I-lE(uIX xu.. ) 

F.8.6 Tuple Selection
 

Thl' ill> projection of all. explicit tuple is the i'l> member of the tuple.
 

;-;-------;-7.-- [I.pl"e~ 
I-(UI •.. ·.Ui, ... U.).I-U, 



F.7 Predicates 

F.6.7 Bindios Extension 

An element is equal to a binding extension if eac.h of it selections is equal lo the re6p€!ctive element of 
t he hindi ng. 

I- b.n) = tll II .•• 1\ b.n", = tl", r! [6ill4'".g)
1-6_~nl"-"tl..... ,,.... "-'tl,,,~ 

F .6.8 Theta Expression 

An explicil binding is equal to a tlleta expression if the drcori\led \'ersiol\s of the names in the binding 
equ.:J Ihe respective expressions. 

I- n[ = tll 1\ . . 1\ n,'!. = tlm 
T1 [lhl«l

I- ~ "1"- II}, .•• , 11 m .....- Um ~ = 9 S 'I 

F.6.9 Schema Expres6ion 

A binding is a mt>mber of a schema expres5ion if and only if the schema is true fotlowing th~ 5u.bstitution 
of the binding. 

I- b8S T11.<A"na.r;>]
I-bES 

F.6.10 Binding Selection
 

The projection of the name 11i from an explicit binding is the element to which the name is mapped.
 

[IIlI'I<I'~ 
I- ~ nl"- Uto ..• ,ni"-" tli •..•• n m ....... II",~ .n, = IIi
 

F.7 Predicates 

F.7.1 Equality
 

All expressions are equal to themselves.
 

I- x = x [r</I,crion] 
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F.7.2 Trulh 

--[I....I!]
I- true 

F.7.3 Faliehood 

false I- [<o"j'5d,rj""j 

F.7.4 Negation 

If the pr£'dic~te ..... p is in the antecedent then one way to proceed is by proving a contradiction i.e. that 
p is true. 

I- P q [~J.l
-opl- . 

If the predj(ate -op is in the comequen~ ~hen jf p doe~ nol hold tben there is a proof, so it can be 
assumed that it does hold: 

-"-"- II ~-I 
" -p 

F.7.5 Conjunction 

The conjum~ion of two predicates in the antecedl'nt is the same ~ having them both in the predicate 
list: 

p,q I
P 1\ q I- T1["I-] 

~ 
Th£' conjumLion of two predicates can be proved only if both of the predicates can be proved. 

~(I-"l 
I-pl\q 

F.7.6 Disjunction 

Given a diljunction of two predicates in the antecl'dent it is lIeCl'ssary to b(' able to completl' the proof 
wilh eitherpredica~e in ~he assumption. 



F.T Predicates 

pI- ql
~(Vl-l 

A disjunction of two prediciltes in the con~eqtlent is tbe same a.s having them both in the mnsequent. 

2.i.. T! Il-vJ
I-p ..... q 

F.7.T Implication 

p~ql-p ql
l"l'l-I

p::::) (11

~l!Il-=lo1 
I-p~ q 

F.T.8 EquivaJence 

p~q,q~pl-

p~ql- TUCloI-J 

I- p ~ q I- q ~ P [l-CloJ 
I- p~q 

F.T.9 Universal Quantification 

bE fSt],IrISt ep,b,o;p I
11 (n)

bE {St],IrISI. p I-

Jfwe hilve to prove the predicate V dip e q then it can be assumed lhilt the variables in dare arbitrar)·, 
and that they satisfy the propert}' of dip, leilving the predical(> q to be proved. 

dIp f- q 
1J (e V)

I-Vdlpeq 

F.7.10 Existential Quantification 

Suppose that we have the single ilnt(>cedent 3 It I p • q; that i~, we know that there is some way of 
constructing the va.riables in d snch that the property of d and the predicates p and q are lI.atisfied. 
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Although we may not know such a construction, we can give arbitrary names to the variables or d to 
stand rOUD arbitrary construction satisrying d, p and q. Ir we lakt' as our new assumption dip A q, 
tbe variables or d are indeed arbitrary, since they cannot be global ones, illld no other local uames are 
in the antecedent. 

dlPAql- (31-) 
3 d lp·ql-

Suppose that we have tbe consequent 3 St • p, and suppose thaL we know a binding that satisfies the 
property of St. One way rorward is to prove that this binding all>o satisfies the predicate p. It is 
convenient to retain the consequent, in case we wish to try to prove that other bindings salisry p. 

bE [S/11- 3St .p,b0p (i- 3) 
bE[StJI-3S.p 

F.r.ll Sllbstitution 

s = !, ~ z "-+ t~ 0p l
(Leibniz)

s _ t, ~ r "- s~ op I

F.B Schemas 

The schema rules are based or the definitions or schema pre<iicates and hence rollow very closely the 
rules ror predicates: 

F.8.l Schema Construction 

Idl A P" nil"] 
[d I pJ" 

I- [d]" PIt-lin 
"[d I p] 

F.8.2 Schema Negation 

" [S]
['SI" II,]"] 

[SI"
" [,S] ]"]'J] 
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F.9 Declarations 

F.8.3 Sc:hema Disjunction 

(S]f- [TI>
[Sv T] f- {lv]f-) 

f-[S) 'T!
--'-'- [f-lvll
f-ISV T] 

F.8.4 Schema Conjundion 

[SJ,IT!f
[Sf\. Tl~ 1l,",)I-] 

>- [5] >- [T) 
f- [5' TI ~k·n 

F .8.5 Schema Implication 

IS=> T]f-IS) [T!f
[S~ TJf- [(~)I-) 

[S]f-IT] [>[~1J 
f-IS => T) 

F .8.6 Sc:herna Equivalence 

IS=> Tj,[T=> 5]>

•
 
[S ¢} TJ f- (['I"»f-I
 

f-IS => T) f- [5 => T} 
f- [S ¢> TJ [1-1-=-11 

Note: There are more rules to be added here. 

F.9 Declarations 

() I [0] f- ['II 
o If
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F.9.l Simple Declaration 

1)1 E B 1\ ..• 1\ 1)m E $!- ([~"1f-1 
[nt. ... , n",: B)!

!- nl E J 1\ .•. 1\ n", E B [f-I .. ,.]j 
!- [nl>' ., n... : "J 

F .9.2 Compound Declaration 

[D,j '1",]>
[D.; D 11-- [[D;D11-]

2

I- [D1] 1\ l~l [I-[D;LJJ) 
!-[DI ; D'l] 

F.IO Definitions 

F.I0.l Axiomatic Definition 

P<O'i~fi"'iO',",t"'" th, d,d","o, 

we have the inference rule 

til I PI I- (A;::iomDef) 
C 

F.I0.2 Generic Definition 

F.I0.3 Schema Definition 

Providing the specification contains the declaration 
5[X1 , .•• ,X... } =T 

we ha\'e the inference rule 

5['..... ,1"'J - ~ XI ....... /1> •.• X.. -v' /",1 (!JT I-- (SchemaGenDeD
 
c 
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