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Foreword

This is the current version of a Base Standard for the Z notation and is distrihuted for review and
comment. This version has been specifically prepared for distribution at the Seventh Z User Meeting
in London on 14th-151h December 1592, and will be inade available for general distrihution after that
date,

The Z Base Stapdard is subject to change during its review by the Z Standards Review Commnittee and
the BSI Standards Panel now being formed. New versious will be issued as needed.

Coraments on this version of the Z Base Standard are welcomed and should be sent 10

Editors & Dase Standard

c/o Secretary 7 Standards Project
Oxford University Computing Laboratecy
Programming Research Group

11 Keble Road, Oxford OX1 30D

United Kingdom

The Z Base Standard has been produced as part of the work of the Z standards project, part of the
ZIP project (JEI} project No. 1639).
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0 Introduction

7 was originally developed as a apecification notation for preparing formal descriptions of systems.
without necessarily indicating how they will be impiemented. This section jucludes a description of the
aims and objectives of formal specification notalions, with special reference 10 Z. The design priuciples
used in the developmment of the Z standard are described.

0.1 Notatiens for system description

1t is widely acknowledged that natural languages and similar informal notations have many disad-
vantages when used for wnting technical descriptions. In using such languages it is difficult to write
specifications with the required precision. clarity and economy of expression and to transform them
systematically and reliably into code or hardware Furthermore, it is impaossible to carry ont formal
matliematical reasouing abont informally written descriptions.

In contrast, specifications written in formal notations can be made precise and clear. [iference rules
derived from their mathematical foundations enable designers 1o carry out mathematical reasoning and
construct proofs relating to the properties of system descriptions.

The advantages of formal notations were recognised from an early stage in the history of computing.
although it has taken considerable time for their practical application to becoinc established. Many of
Lhe early large-scale applications of formal notation were for the specification of programming languages;
formial descriptions of syntax are now widespread and for some languages there are forinal descriptions
of semantics.

Formal notations are now being used in a wide and expanding variety of environments, especially in key
areas where the integrity of systems is critical. or where there is high intensity of use. For a discussion
of domains of application [or formal methads, see [16].

Examples of the effective use of formal specification notations are [ound in the following areas:

safety critical systems

security systems

the definition of standards
hardware development
operaling systems

transaction processing systems

Descriptions of case studies [rom these and other application areas for Z are listed in a Z Bibliography
hy Bowen [2).

0.2 Objectives of a specification notation
The objectives of a formal specification notation are to assist in the productiou of descriptions that
are complete, consistent and unambiguous. To achieve these objectives, a formal specificalion notation

needs to be:

usable by these who read and write formal documents;

Z Bare Siandard Version 1.0 prirded 301k Navember 1902 1



0 INTRODUCTION

ezpressive, 50 that it can be used for a wide range of applicalions;
precize, 80 that it is possible to write desctiptions that mean exactly what is intended;

given a mathematically sound meaning, since mathemaltical reasoning may be used in the devel-
opment process;

suitable for defining sufficiently abstract models of systems that specifications do not need to
coitajo unnecessary implementation details.

0.3 Characteristics of Z

A central part of Z is taken from the mathernatics of set theary and first order predicate caleulus, For
the purposes of system description additions have been made to conventional mnathematics, including:

a type system which requires each variable to be associated with a declared type. The ability to
type-check a specification helps in assuring that it is accurate and consistent;

the Z scheme notalion, which provides a Lechnique for grouping together and re-using common
forms:

a deductive system which supporis reasoning about Z specifications.

In addition,the following have been developed to help in the pragmatic use of Z in developinent projects:

the capability for writing explanatory text as an integral part of a Z document.

the inclusion within the standard of an agreed method of representing text in computers and
transmitting it.

0.4 Design principles

The [ellowing design principles have been used in the development of the stancard and are based on
those used, explicitly or implicitly, in the original design of Z.

Basis in mathematics. Z is based on a central core of mathematics and uses accepted mathematical
concepts and notation. In addilion, there are means of definiug and checking the types of Z elemeuts
and, by means of the Z schema, for structuring specifications.

Utility. Al parts of Z included in the standard will have been shown to contribute to the main
objettives of Zand will have beeu used in significant case studics oc development projects.

Simplicity. There is an objective 10 keep the Z notation as simple as possihle, ronsistent witil its
overall objeetives.




0.5 Aims of standardisation

0.5 Aims of standardisation

The Z standard supports the following general aims of standardisation as listed in the British Standards
Institution Standard for Standards [4]:

provision of 2 medium for communication and interchangeability;

support for the economic production of standardised products and services;

the establishment of means for ensuring consistent quality and fitness for purpose of goods and
services;

promnation of international trade.

0.6 Validation of the standard

In order to validale the standard, it js necessary to ensure that it is is appropriate, consistent and
complete, and is in accordance with the general understanding of the Z notation. In order to achieve
this, the following steps have been taken:

existing descriptions of the ratation have been used as a basis for the document;

alternative concepts and notations have been proposed where existing ones were considered defi-
cient;

the standard is being reviewed by the Z Standards Review Commitlee, which includes experts in
formal methods, users and tool makers;

the standard is being reviewed by the ZIP {ools project to confirm that it can be supperted by
tools:

the mathematical part of the standard is being checked {or soundness.

0.7 History of Z

This section (in preparation) will include a list of selecled design papers on Z will identily some of the
key decisions made during its development,

7 Base Standagrd Yerviont 1.0 printed 301h November | 102 3



1 Scope and conformance

1.1 Scope of the Z Standard

The Z standard defines the representation, structure and meaniug of the formal part of specifications
written in the Z notation.

In addition to defining the formal part of the Z notation, the Z standard defines:

a Library or Toolkit of mathematical functions for use in writing Z specifications;

an [merchange Format for Z documents that enables them Lo be prepared, stored and transmitted
within computer networks:

a deductive system for formal reasoning about Z specifications.
A Z document may contain both fermal ard informal text. The lexis of the standard does not define how

the formal and informal parts are delimited; this is defined in the [nterchange Format. The Interchange
TFormat does not define the structure of the informal part of a Z document.

The standard does not define a method of using 2.

1.2 Conformance

A specificatieu conforms to the standard for the Z notation if and only if the formal text is written in
accordance with the syntax rules and is well typed.

A dednctive system for 2 conforins to the standard il and oaly if its rules are sound with respect to the
sermantics.




2 Semantic Metalanguage
In the following sections we describe the metalanguage uscd for defining the semantics of Z. We include:

o the names of all metalanguage symbols:

v the {orms in which they are used;

+ descriptions of their meauing,
Many of the symbols used in the semantic metalanguage are derived from conventional mathematics
and are defined informally, Throughout the standard, the mathematical treatment is based on the

Zermelc-Fraenke] (ZF) axiomatisation of set theory. Au introduction to ZF theory can be found in text
books on set theory—see for example Fuderton [6] or Hamiltou [8].

In addition to conventional mathematical symbols, we introduce and define a number of special symbols
which allow concise semautic definitions to be written. Where these are similar to the symbaols of 7.
Z-like symbols are used aud the following additional information is given:

» definitions of new symbols in terms of basic symbols. (or other new symbols)

Note that. although symbols similar to those of Z are used, the semantic metalanguage is not Z but
standard mathematics, based on classical set theary.

Naming conventions, The following naming conventions are nsed:
npper-case letlers 4, B, C,... are used for sets;

lower-case letters x, y, z,... are used for elements of sets.

Commuting diagrams. In several of the following descriptions cemmuting diagrams are used to
illustrate relationships between the set constructors being defined. Commuting diagrams are graphs
whose nodes are labelled with sets. Nodes are connected by arrows, each arrow beiug labelled with
a relation between the sets at each end. A diagram 1s said to commute when the composition of two
different routes between nodes vields the same result.

‘2 Base Standard Version 1.0 printad 30th November (992 5



2 SEMANTIC METALANGUAGE

2.1 Definitions and declarations

Variables and notations are introduced and named as follows:

Table 1: Declarations and definitions

Name Symbol | Example | Description
declaration A:B A is declared to be an element of the set B
definition = As B A is defined as B

a4

Z Pasr Standan] Yersion 1.0 printed 3th Naveinber 1992




2.2 Sets

2.2 Sets

The lollowing sets are predefined:

Table 2: Predcfined sets

Name Form | Description l
empty set | @ the set having no elements. l
integers | 2 e =2,-1,0,1,2,... I
clzings 13 the set of all sirings of characters. '
[ — )

Relationships between sets and their membirs are written as follows:

Table 3: Relationships between sets and members

Name Form | Deseription

membership | £ € A | r is a member of A.

subset AC B | 4isasubset of B i.e. all elements of A are
elements of £.

aguality A= B |sets Aand I are equal i.e. A and B have tLlie
same maembers.

Z Hase Standard Version 1 0 printed 301k November 1992 T



2 SEMANTIC METALANGUAGE

2.2.1 Set constructors

The following se! conatructors define sels constructed from elements or from other sets:

Table 4: Set constructors

Name Farm Description

sel extension {a,b,c,...} | the set comprising clements a, b, c, ...

union AuB the set comprising all the elements of 4 and
all she elements of B.

generalised union | |jA the set comprising all the elements of each sel
in A.

intersection anp the set comprising the clerments commen to A
and B.

set difference AND the set cemprising the elements of A that are
not elements of B.

power set PA the set of all subsets of A.

finite power set F A the set of all finite subsets of A.




2.3 Tuples and products

2.3 Tuples and products

The following construciors define tuples and products:

Table 5: Tuples and products

Name Form Definition
, tuple & Tlyee0,Tn > | Ordered list of the elements x), ..., z,.
tuple prejection LA the ith member of a tuple.
LA PR AR S

where 1 <7 <n

Cartesian product A x...x A, | the set of tuples < z;,.. ..z, >
such that
;€ A; and ... and =z, € A,
enunerated product | A’ the set of tuples < y,...,z, >

such that 7y...., 5 € A

generalised product | A+ AV U A7 u AU

Z Base Standard Version 1.0 printed 30h Navember 1992 ]



2 SEMANTIC METALANGUAGE

2.4 HRelations

In the [ollowing table, R, 5 dencte binary relations, A and B denote sets.

Tahle 6: Relations

Name Form Definition
binary relations A~ B | PldxB)
dentity relation 14 <r,yr€ly & r=pnarc€Ad
domain domR |z€domBR & Jye <z y>e R
range tan R yeEmank & Jre<r y>e R
converse r-! <ry> RV e <ypr>ElR
backward composition | oS5 <r,y>eRaf

OJze <, »eESCz,y>€E N
forward composilion R 5 Solt
range restriction R A |Ril,
domain restriction AQR | 141K
relational override R$S |((domR-domSYaR)US
relational image 3R)A |ran{Ro 1y)




2.5 Set constructors as relations

2.5 Set constructors as relations

Set constructors can be given relational equivalences. By explicitly defining the domain of each con-
strnctor an equivalent set-theoretic relation can be constructed.

Table T: Se1 constructors defined as relations

Name Symbol | Domain I Range Definition
unjon V] X x X PUX CL,n>y>E(U) & y=Un
intersection Al Y« X PUY << o, > p>EN & y=n N
subset > X PUX <z, y»€(I) & yCr
element 3 X [JRY <ry>€(3) & yerx
singleton {-} X l PX <r,p>€ (-} & y={}
pawer P X PPUX <ry>EP & y=P=x
relational image 3R Pdom R Pran <r,y>NRy & y=3Me
singleton image AR dom R Pran R <z, y>EAR) & y=3{R){r)
projection w; ix...x X, | Xi << Iy, ., 2y >,y PE (R}
Sy=1I
Cartesian product | X X+ PR | << o,z >0 € (X)
L [ | | I;wy::qx...xz,

These relations will be used only when they have well-defined domains.

The follawing diagram shows commuting properties of relational constructors:

S ) B

2 Buse Standard Vertion 1.0 printed 30ch Navemher 1992 11



2 SEMANTIC METALANGUAGE

2.6 Functions

A functicn is a relation with the property that for each element in its domain there is exactly one

corresponding element in its range.

In the remainder of this section, the term furction, when not ctherwise specified, is taken to mean

Table 8: Functions

Name Form Description or defiuition

total functions A — B | the set of functions from 4 inte B whose do-
mains are A. A toial function is a [unction
whose domain is its source.

total injections A — I} the set of total [unctions from 4 into 8 which
are one-Lo-one,

total snrjections | A — I | the set of total funclions from .l into O whose
ranges are H.

bijections A B |A~DON A=

partial functions | 4 +~ B | 3(2)(4 — B)

finite Innctions A+ B | A+ B nFAxB)

constant function | z§ maps all elements in the set A to z

partial Innctien.

Z Base Standard Versinn 1.0 printed 20th Novembey 18092




2.8 Functions

Compatible functions. Two functions are said te be compatible if their union is a function.

The set of pairs of com patible functions from A to B is defined as follows:
Cag =dom(Ur A « B)

The functional forms of Lhe sel operators: union, intersection and sel difference are defined only when
the arguments are compatible functions When defined, they have the same value as their set equivalents.

Tabile 9: Compatible functions

Name Symbol | Defiuition

Functional union Uag Cap (U}

Functional intersection | Mgg Cap a(N)
| Functional difference — 45 Cap <(\)
|

Z Base Standan) Version 1.4 printed 30th Noveinlrer 1592 13



2 SEMANTIC METALANGUAGE

2.7 Tuple and product constructors

The follawing tuple and product construciors are used.

‘T'he relaticnat tuple (R1,..., R} is a relation from the comnion domain of Ry, .... R, to the Cartesian
product o their ranges.

The relational product R; x ... x Ry is a relation from the Cartesian product of the domains of
f1,.... Ry to the cartesian product of their ranges.

Table 10: Tuple and product constructors

r!‘1'ame ] Form Definition
relational tuple {(Ry.... Ry) T, Yt D€ (R M)
S <rypr>e A A<,y >€ N,
relational product Byx o ox Ry | (mpy Ryeoe b 20
general relational product | Rt RU(RxRyV(AxRxR) U ... |
|

The following diagram shows relationships between these constructors:

8,
L
Box...x B, R,
-, g
(Rl il Rn)
\_\

Ain...n 4,



2.8 Promoted application

Theorem 2.1 Relational tupling distribules Hrough intersection as follows:
F{Ry o B N (S,..,8) = {RAinS,... B.NS5,)

The following diagram illustrates the properties of the product constructor:

f‘

By x...x B, n,
*
Rix ... x R R,
\
|
AUX X Ay e A

Thieorem 2.2 Product distributes through intersection as Jolliws:

FRyx xR NS xS = BiNS x ..o xR.NS,

2.8 Promoted application
Promoted application ( R « 5) is the relational analogue of the 5§ combinator in comhinatory logic,

Note: Promcted application is defined so that Lhe following equality halds:
(ReS) = (s,
where R, is the application of the functien & to the argument p.
Definition 2.1 The promoted application aperator constructs o relalion from lwo other relations. s
effect is io apply the result of R to the resall of §:
ReS 2 (R aSi;a7h)5m
Note: If R and 5 are functions and p is in both of their domains. then the tuple (p,(p, g))
belongs to the first part of this composite relation providing that that (p. ¢) is a2 member of
the set B, and p is 5,. The tuple (p, g} belongs ta the composite relation exactly when for
some p the tuple {p.{p.¢)) belongs to the first part.
Promoted application is disjunctive in both arguments.
A derived [orm of promoted application is the apply-lte-n function: (_n).
Definition 2.2 The apply-lo-n Junclion takes as an argument o funclion and has as a result the ap-
plication of that function to the elemcnt no [t s defined ax follows:
{(-n) 2 {lsn°)
Note: If pis a [uaction and n is an elewent of the domain of p then the following equality
lolds:
(-rY}, = ..

Z Haar Standard Version L 0 prisced 30th November 1997 15



3 Semantic Universe

This section defines a semantic universe within which the meanings of Z specificatious lie; it is based
on the Zermelo-Fraenkel axiomatisalion of sets discussed in the last section. IL contains the meaniugs
af names, types, and values used in a specification, as well as the environment used to define the overall
rneaning of a specificatiou.

3.1 Names and Types

Onr first task in building our uuiverse is to explain the use of names and the notion of types. In Z, a
naine js used te denote an element, which may be a set, a tuple, a binding, or an element of a given type.
These names come in three varieties: they may be the names of schemas, variables, or constauts. This
partitioning of names is dependent on the speciication in question. the members of each set not being
distinguishable in the concrete synlax. Absiractly, we have that our set of pames Nome is parlitioned
into schema names, variable names, and constant names:

{SchemaName, Variable, Constant} partition Name.

In common with other specification and programming Janguages, but unlike ZF set theory, the rules of
% require that every name introduced in a Z specification is given a particular type which determines
the possibilities for the values that it may take. This type has several purposes, both practical and
technical. Tt offers the usual advantages with which we are familiar in programming languages: it
helps to make the specificatiou easier to understard, and it permits a certaim mechanical checking of
a sperification 10 be doue. It also guarantees that Russell's paradox is avoided in a specification, and
that sete defined in comprehension exist. Fiually, it provides an insulation against the details of the
cencading of Z constructs in ZF set theory.

The simplest types are given sel names, which are used to introduce abstract objects into a specification,

or as the formal names of generi¢ parameters, Their names are drawn from the set Constant.

GrvenSet¥ome C  Constant

Note: The names for the set of integers 2 and the sel of strings § are mermbers of the set
ol given set names,

For more complicated Lypes, 7 provides three type canstructors so that power set types, Cartesian
product 1ypes, and schema types may be introduced. If ny,..., n, are names, and 7y,..., T represent
tvpes. then the following all represent types:

PT[,
TEX v X T,
{mpimi g i, |

Every type belongs to the semantic set Type, whirh is partitioned iuto the four subsets Gtype, Pigpe. Clype.
and Stype representing the given types, power set fypes, Cartesian product 1vpes, and scheina types:

(Gtype, Plype, Clype, Stype) partition Type.




3.2 Valuesin Z

It is easy to think of something of given Lype as an object. of power set lype as a sel, of Cartesian
product as a tuple, but what about something of schemna type? As we can see from the above example,
il is a function from variable names to types; such a funciion is called a signature:

Signature = Vartuble « Type.

Now we bave everything thal we need in order to explain the structure of the set of types. Consider
power set types. From every type r, we can construct the unique type which is P r; every power set
type P 1 is constructed in this way from a unique type r. Thus, the power set constructor isa bijection
between Type and Ptype. Similar arguments apply to the otber type constructors. We can sum this up
by defining the following four bijections with the partitions of Type:

givenT 1 GivenSelName — Gtype
pouwerT « Type — Plype
sproductT : Typet — Clype
schemaT : Swgrnialure — Slype.

For each specification there is a set of distinct given types. All other types used are constructed from
these given types using a unigue combination of the type coustructers. This uniqueness is guaranteed
because the type constructors are in bijection with the partitions of the set Type, Therefore the set
Type is the smallest set which is closed uuder these type constructors. Type is the initial algebra over
the signature given by givenT, powerT, cproductT, schemaT.

3.2 Valuesin Z

As we said ahove, one of the purposes of ascribing a type 15 a variable is Lo determine which values
the variable may take. To make this possible, each type has a set of values associated with it, called
its carrier set, The values in the carrier set of a given type are regarded as atomic objects. Each vajue
in the carrier set of a non given type is modelled by a ZF set. The relationship between the types and
values in a specification is defined by the function Carrjer, whose definition we approach inductively,

Note: In Z a type is identified by its carrier set. In Lhe previous examples T was the carrier
set for some Lype.

Definition 3.1 For cach specifieation there is a carmier funtction which maps the given types 1o elerments
of Wo.

Carrierp : Gtype — Wy
Now, suppose that T is a given type; what is the carrier set of the power set type P r? It is simply
the set P{Carrier 7). In general, for a power set type a. we must calenfate the carrier sel by stripping

off the power set constructor, calculating the carrier set of this underlying type. and then forming the
power set of the resull; formally, this is given by tbe expression

{powerT~1; Carriery ; P o,
Simnilarly, if @ 15 a Cartesian product of given Lypes. Lhen we should break it up inlo ils constitucut

given types, work out their carrier sets, and then form their Cartesian product, so that weend up with
a set of tuple values:
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3 SEMANTIC UNIVERSE

(cproduct T~ 3 Carrierd ; X) 0.

Finally, if & is a schema type made out of given types, then we should obtain the underlying signatnre;
this yields a function from names to types, which we must turn into a function from names to the carrier
sets of these types; finally, we must form the schema product, so 1hat we end up with a set of functions
from names to values:

(schemaT ™1 ; 3(1 x Carriera) ; X jame) o

[n this discussion, we have heen assuming thai the type constructors are applied to given types, but in
general they are applied to arbitrary types. Since a type is made out of a finite sequence of applications
of the conslructors, we can define the depth of a type to be the length of this sequence. Now we can
give our inductive definition using this notion of depth:

Definition 3.2

Carrier, 4y =
Carrier;
U powerT 14 Carrier; ; P
U eproduct T ; Carrier? § X
U schemaT~"' 5 3{1 x Carrier;); X Name-

T erder vo calculate the carrier set for a type 7, we must apply Carréier;, where 4 is the depth of type
1. Notice thal every carrier function whose domain contains r gives the same resull for v: this justifies
our general definition.

Definition 3.3 The general currier function which maps elements of Type lo tieir earrier sels is defined
as follows:

Carrier £ Carrierg U Carrrery U Carrierg U ..,

The values which may be used in a Z specification are those that are ju the carrier sets that are assigned
to the vypes. This set is constructed from Lhe elements of Wy using 1le type constructors.

Definition 3.4 The sel W of all values is the union of all the carrier sets for the elements of Type:
W = |Jran Carrier.
Definition 3.5 A binding is a finite mapping from variables lo values:

Dinding £ Variable -~ W.

The carrier function is a homomorphism belween types and V. Thus, we have the equations

Carrier(powerTt) = P((arrier r)
Carrier(cproductT(Ty. 72)) = { Carrier 1) x (Carrier T3)
Currier(schemaT o) = Xl-\vm,m(a(l x Carrier o).

This is depicted in the commuling diagrams in ligure t.
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3 SEMANTIC UNIVERSE

3.3 Elements in Z

Each element in T is represented by the pair cousisting of its type and its value. The semantic set Etm
is a set of lype-value pairs; this set may be considered as the relation between types and values in which
a Lype is rclated to a value il and only if the value is a member of the carrier set of the type.

Definition 3.8 4 value is an element of a (ype if and only if il is conlained in the carricr sel of the
type:

Elm 2 Carrier § 3 .
The first and second projeciions on a tuple are used to extract the type and value respectively.

Definitiou 3.7 The type and valuc funclions are prejections from the tuples tn Elm:

L= Wifim,
¥ = T18m -

The type fuaction is a surjection since the carrier set of each type ia non-empty. Since Lhe carrier sel of
each type contains at least one value, Elm contains at least one pair [or each type; thus, t 15 surjeciioc.
Since the values that may be used in a specification are all Lo be found in the carrier sets, Elm contains
at least omne pair for each value; thus, v is surjective.

Definition 3.8 The membership relation for clemerits 3 is the lifted form of a type value puir:

3 = (powerT™' x 3)

Suppose thal we have a Z specification. It consists of a number of definitions which introduce names.
Fach name may derote some value, and each name must have some type: that is, each name may be
associated with an elerent. We call such au assignment of elements 1o names a situation.

Definition 3.8 A situation is a finile mupping from variables to clements:

Situation £ Varighle -+ Elm,

A situation tells us two things about the names in a specification: their types and their values. If
we think about the Lype prajection of each name. then we cbtain a mapping [rom uames to types: a
signature. If, on the other haud. we Lhink about the value projection of each name, then we obtain a
mapping from names to values: a binding. The signatore and binding corresponding ta 4 particular
situation can be extracted by the functions 1" and ¥ respectively.

Definition 310 The T and 1" functions are defined as follows:

T=31x0)
V230xe).




3.4 Generics

The followivg commuting diagram illustrates the relationship between types and values and their lifted
forms as signatures and bindings:

P Variable
‘\\
\
dom dom \iom
~
AN
Signature T Suuatiaon 14 .'?;'ndu:g
ran I ran ran
P Ty P Elm P W
T i)

Since the product constructor and the image constructor preserve surjectivity, T is a surjective function.
Our vext theorem follows from 1his,

Theorem 3.1 The lype of the set of situalions is ezactly the set of signatures:

+ 3( T)Situation = Signature.

3.4 Generics

A 2 expression that involves a generic instautiation acquites a type and a value that depends wpon the
tvpe and value of the expression used in the instantialion. Thus if we sce @[N] we know this has a
different type from @[ N]. The various types that © mav take are represented as a funetion from type
to type. In the case ol &, this lunction takes au arbitrary powersel \ype to itsell. In general, where
a generic definition contains a list of identifiers. the various possible instantiations are a function [rom
lists of elemeuts to a vype and value, The clements which may appear as actual parameters of a generic
definition must be ol powerset type.

3.4.1 Generic Types
For earl generic type the number of formal parameters is fixed, aud every possihle sequence of powerset

types with the right nutuber of formal parameters is given a type. Yo each generic type is a Mmnclion
from fixed-leugth sequences of pawer types o a type.
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3 SEMANTIC UNIVERSE

Definition 3.11 For ony natural number n > 0, the sef of all generic types with n parsmeters is defined
as foliows:

Gen_Type, = Ptype™ — Type

Definition 3.12 The sel of oll generic lypes is the union of all the sets of fized length generie types:

Gen_Type = Type U Gen_Type, U Gen_Typey U. ...

Il X and Y are generic lormal parameters and a geoeric delinition declares z : X; y: Y. Then an
expression such as £ € y or £ = ¥ would impose a mutual constraint ou the types that could be nsed
lo instaaiiste X and ¥. For z € y, we have the constraint that the types that ¥ may take are the
powersel of the types that X may take; for r = y, we have the constraint that the types that ¥ may
take must be the same as the types that X may lake.

The definition of generic types as total functions imposes the constraint that generic definitions do not
create inter-relationships between the type of their formal parameters. Such inter-relationships can
always be eliminated within a specification.

since all the type constructors are bijections. then any inter-relationship hetween the types of generic
parametersis functional. Therefore any dependent parameters are redundant sinee Lthey can be uniquely
determined as (unctions of the other parameters. Far z € y the inter-relationship can be eliminated by
removing ¥ as a formal generic parameter and defining y : P X: for 2 = y we can eliminate ¥ and
defive y: X.

3.4.2 Generic Elements

As with generic types, for each generic element there is only one number of formal parameters that it
can take; Inrthermore every possible sequence of the correct nunmiber of elememis with powerset type is
given a bvpe and value.

Definition 3.13 Generic elements are funclions from tuples of set elements to elements:

Gen_Etm 1 P(Pelm* — Elm).
sets jn Z are those elements which have a power type:

Definition 314 The ¢t Pelm contains all clements which heve power type;
Pelm 2 Prype a Elnu.
I'he functions representing generic elements are (ype consistent: a generic element, when instantiated

with twa sequences of elements of the same type. will give two elements of the saine type. In order to
Anline this property it is necessary 1o characterise the type part of a generic clement.

Definition 3.15 The funiction T takes a funetion from tuple of elesuenls lo elements and returns o
graeric fype:

r = 3xnut




3.5 Environments

Definition 3.168 Al generic elements Aave a lype part which is funictional, i.e. contained in Gen_ Type:

Gen_Elm = dom(r & Gen_Type).

A theorem similar to that for elements holds for generic elements:

F3HriGen_Elm = Gen_Type.

3.5 Environments

In wider to give a meaning ta the comstructs of 7, we need an envirorment to record the clements
deuoted by the names used in a Z specification.

Deflnition 3.17 An envirgnment is defined as 4 finite pariiel function from names lo generie elements:

Env £ Name + Gen_Elm.

Whether a 7 specification is well typed or not is 2 qoestion that is independent of the values of the
declared variables. To be able to answer this qnestion it is necessary to have an environment in which
the types of all names are recorded.

Definition 3.18 A lype-epvironment is defined as a finrlc funetion from names lo generic types:

Teny = Name - Gen_Type.

The simnple relationship between the ricler environment, E¥V, and the onc nsed just for {ype checking,
TENT . is given by the forgetful function T which throws away the valnes,

Definition 3.190 The function T maps the second element of each luple in an environment onlo ils
correapanding genenc iype:

T2 HIpeme x 7).

The following comnuting diagran illustrates the relationship between Lhe environment aud type-
environment:

7. Base Standmrd Version 1.0 printed 30t Naveml.er [997 23



3 SEMANTIC UNIVERSE

P Name
dom dom
Tenu L] Enu
Tan ran
P Gen_Type power Gen_Elm

()

The function ¢ used in the construction of T can be shown to be surjective onto Type, so the following
thecrem holds,

Theorem 3.2 Every type environment has at least one corresponding full envirenment:

F3(T)Env = Tenv.

It T is a set of type environments, then 3(T~')T is the corresponding set of meaning environments.



4 Language Description

‘This section provides an introdnction to the following sections by illustrating how the the syntax and
semantics of Z are defined.

The {following sections each define a ma jor syntactic category: ezpression, predicale, declaration, schemmu
tezt, schema, paragraph. VYithin each there are subsections corrasponding to the syntactic calegories of
the abstract syntax. Each definition follows a consistent pattern and is sub-djvided nnder the following
headings: Abstract Syniazx, Representation and Tronsformation, Type, and Value/Meaning. At the end
of each section tables contain the definitions of the [ree variables of each element, together with their
alphabeL where appropriate. Finally a table of equivalences for substitntion is given.

A derotational style of semantic description is used {21] and, as in the customary style of writing
denotativnal semantics, semantic brackets are used to delimit text for which denotations are given. The
notaijon is extended by providiang different shapes of brackets for different kinds of language elenients as
shown in the following table. Three types of semantic functions are used, for type, value and meaning.
The difficrent types are identified by superscripts on the hrackets.

Talle 11: Semantic hrackets

Bracket | Argument Forms

] | Fxpression | & %[ I I
{1 Predicate =1 -

{-) Declaration | (- J7,{- )"
(3 [Schema | LI
{-} SchemaText | (- }7, {- }™

-} J Pazagraph | {}7.{-}*

1 N
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4 LANGUAGE DESCRIPTION

The following meta-variables will be used.

Variables | Sart

E,r,y Expression
", m Name

a String

i Number

4 Tuple

a,u Set

b Binding

f Function
P,Q Predicate
C,.D Declaration
St Schema Text
5. T Schema
Par Paragraph

4.1 Abstract syntax

For each language element, iis abstracl synlax is defined in a form of BNF. ‘The following example
tllustrates the style used.

POWERSET = PEXP
In some cases symbols such as P are used rather than key-werds or other structures in the syntax to
make reading of the abstract syntax easier. The romplete abstract syntax is presented in an Annex.
4.2 Representation and transformation
For each language element a table is provided shawing the production or productions, expressed ia the

representation syntax. of the language elemnent being defined and tbe relationship between the concrete
and abstracl forins.

Note: There may be more than one represeptation of an absiract syntax category; in such
cases all forms are listed. In some cases the multiplicity of representations is due to the fact
that some forms can be considered as abbreviations of athers,
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1.3 Type

The transformation is presented in a denotational style with different superscripts on the brackets to
denote the type of asgument,

Table 12: Transformation Functions

Brackets | Argnment

[ Expression
[_]p Predicate
[-1° Declaration

F Scheina

[-1°7 SchemaText

[—1"*® | Paragraph

The {ollowing example illustrates the tabular form in which the representation form is presented together
with its transformation to its abstract form:

—] —

Production Concrete | Abstract

‘P> Expressions | P s PLsI®

In this example the production for power set shows how a power set is represented i.e. as an expression
prefixed with the power set symbol. The second column is an example of this concrete form. In this
case s is some expression. The third colnmn gives the abstract form of this concrete expression. In this
case the form is an [abstract) powerset symhol followed by the abstract form of the expression s. Thesc
two columns can be read as an equation in the form:

iPs]® = PLs)s

The representation syntax is presented in a complete form in a later Annex.

4.3 Type

The definition of the Z type system is by structural induction over the abstract representalion of a 2
specification. The well-typedness of a Z specification can be determined independently of the values
of the declared variables. Sc we see that the following definition of the Z type system is entirely
self-conlained: giveu a Z specification, the type definitions determine whether that specification is
well- lyped.

Note: It is iinportant to note that asking whether a certain specification is well-typed is
deridable. Asking what the type of any term in a given environment is likewise decidable.
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4 LANGUAGE DESCRIPTION

This is in marked contrast to evalualion, where asking whether a certain name may have a
certain value is undecidable in general.

The fact that well-typing is decidable is rot quite as obvjous as all that, because TENV

represents generic definitions using infinite objects. lHowever, the infinite unction from
Luples of powerset type to type can always be represented as a finitary expression.

Name Form Sort

Expression Type | [E ] Tenv - Type
Predicate Type {rP7 P Tenu
Declaration Type | (D)7 Tenv + Signalure
Schema Type {s)= Tenv = Signeture
SchemaText Type | {St}’ Tenu + Tenu

Paragraph Type {Par }7 | Tenv - Tenv

The following example illustrates the description of the type of a powerset:

Type The type of the power sel P s is Lhe power set type af the type of thie set s.
[Fs]" = ([s]° & Ptype); powerT
Note: A power set P 35 well typed only if 8 has power sel type.
The type descriplion contains an informal description, the mathematical definition of the type function

for the powerset and an explanation of when it is well-typed. This last explanation is derived directly
from the domain of the type lunction.

4.4 Meaning

The meanings of ezpression, predicate, decluralion, schema and paragraph are given by the following
functions.

Name Form Sort

Expression Meaning | [E [ Env + Elm
Predicate Meaning {r™ P Eav
Declaration Meaning | (D )™ Env — Situation
Schema Meaning {5 ™5 | Env — Situation
SchemaText Meaning | {5t} Env — Env

Paragraph Meaning | {Par }* | £nr — Enc




4.5 Value

The meanings of ezpression, predicate, declaration end schema are combined to provide a mearing for a
paragraph. This meaning is a relation between environments. The meaning of a specification is defined
as the image of the empty environment through the composition of the paragraph relations.

The following example illustrates the description of the meaning of a simple declaration:

Meaning The meaning of the simple declaration n.,...,n, : s is a relation from the
envifonment to those situations which associale each of the names n,, ..., #y with one of
the elements of the set expression s:

myong s = [s]*i{(nT . (vt D)5 {00 )

Note: The simple declaration n,,...,n, : 3 is value-defined exactly when the
expressioh 9 i5 a non-empty set.

The meaning description contains an informal description, the mathematical definition of the meaning
function for the deciaration and an expianantion of when it is value-defined. This last explanation js
derived directly from e domain of the meaning fonction.

4.5 Value

The meaning functions for expressions and predicates are defined in terms of their type and value.
So the value functions are the primitives defined in the following sections. These functions have the
following structure:

Name Form | Sort

Expression Value { [E]" | Env« W

Predicate Value | {P}" | P Env
L

The following example illustrates the description of the value of a powersel:

The value of the power set P s is the set of all the suhsets of the value of s:
[Ps]* = [s]":P

Noate: A powersel P 5 is value-defiued only il tlie expression s is value-defined.

The value description contains an informal description, the mathematical definition of the value functica
for the powersel and an explanantion of when it is value-defined. This last explanation is derived directly
from the domain of the value fanction.
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4 LANGUAGE DESCRIPTION

4.6 Free variables.

Qrdinarily the definition of the free variables of an expression can be considered as a fnnction on the
names of identifiers appearing in the text of the expression and the variable bound by Lhe declarations.
In Z however, tbe case is somewhat more complicated. The use of schema references as declaraticns
rncans that there is an implicit declaration. The names introduced by the declaration § where 515 a
schema reference are noi related to the name S but to its value In the particular environment within
which it is being evaluated. In other words the [ree variables of an expression depend on the text of the
expression and the environment in which the expression is evaluated.

We define Lhe free variables of an expression 10 be a partial function from environmenst to sets of names:
@.(E): Ene +» P Name

The set of names defined as the free variables for an expression for a particular environment is the
smallest set of names which must be in the environrnent in order for the expression to be well-defined.
However since local declarations do not introduce schemia references, the free variables of an expression
are unchanged by a local declaration. So in the definitions we omit the environment parameter as it
has no effect on the value of the free variables.

Table 13: Free Variable Function

Function | Argnment
e Expression
dp Predicate
bd Declaration
&y Schema

Pa SchemaText
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4.8 Free variables,

AL the end of each section thece is a table defiaing the free variable for each construct within that
category, The following example illustrates the definition of the free variables of a power set:

Table 14: Extiract from Table of Free Variables

Expression

Free Variables

i
|
\

This can also be read as an equation in the following form:

P8 = o8
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4.7 Alphabet
The syntactic categories of declaration, schema text and schema are used to introduce new names,

These new names are called their alphabet. The alphabet is the st of the names in the signature as
defined by the type rules {where applicable).

Table 13: Alphabet Function

Function | Argument

a Declaration
Schema

SchemaText

L 1

Table 16: Extract from Table of Alphabets

Declaraticu Alphabet

LT[ & | {ﬂ“---.ﬂm}

This can also be read as an equation iu the following form:

aln,,... n, 1 8) = {ﬂl ----- nm}'
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4.8 Substitution

4.8 Substitution

The tables of semantic equivalences for substituted expressions are given at ihe end of each section.
These tables indicate when one expression can be replaced by another without changing the meaning.

The followirg example illustrates the semantic equivalence ol substjtution into a power set;

"able 17: Extract from Table of Seminantic Equivalences

Substitution | Equivalence

boPs Pbzs)

This can 2lso be read as an equation in the following form:
6:Ps = Prbos),

where the symbol = denotes semantic equivalence.
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5 Expression

5.1 Introduction

As in computer languages, expression is a general form for defining values in 7.

In the abstract syntax given below, tbe different kinds of Z entily are listed. Tle enlities included ir
the syntax, further defined in this chiapter, may be subdivided as follows;

Elements:
IDENT GENINST NUMBERL STRINGL

These denote clementary valaes.

Set constructors:
SETEXTN SETCOMP POWERSET

These are used to conslruct sets from elements or sets

Tuple constructors:
TUPLE PRODUCT TUPLESELECTION

These are used to construct tuples from clements or tuples and selecl clements from tuples,

Binding constructors:
BINDINGEXTN THETAEXP SCHEMAEXFP BINDSELECTION

These are used to construct bindings and select elements from bindings.

Functional forms:
FUNCTAPP DEFNDESCR

These represent function application and definite description.

Other Forms:
IFTHENELSE EXPSUBSTITUTION

These respectively represent a conditional expression and substituted expression.

Arithmetic and other expressions

In 2, facilities for defining arithmetic and string valued expressions such as those of programming
languages ate included in the Z Toolkit, where they are defined in terms of other Z constructions.
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5.1 Introduection

Abstract Syntax

EXP = IDENT
| GENINST
| MUMBERL
| STRINGL
| SETEXTN
 SETCOMP
| POWERSET
| TUPLE
[ PRODUCT
| TUPLESELECTION
| BINDINGEXTN
| THETAEXP
| SCHEMAEXP
| BINDSELECTION
{ FUNCTAPP
| OEFNDESCR
| IFTHENELSE
| EXPSUBSTITUTION

Stages of definition

In this chapter definitions are built up in stages: first a type funetion is defined, then a valve function.
From these, a meaning function can be derived according to rules giveu helow.

Type function For any expression E, its type function [E ]7 is a partial function from type-
environments to types. The expression E is well-typed in exactly those type-environments contained in
dom[E [*. The type of an expression in a type-enviranment is the result of applying its lype function
to that type-environment. The type function for an expression E is constructed from the type functions
for its sub-expressions; thus the type of E iz derived from the types of its sub-expressions.

The type of an expression in an environment is its type evaluated in the corresponding restricted type-
enviranwent, The function T ; [E [* corresponds to the type fuaction for E in the full meaning envi-
ronment, where T is the function that restricts an environment to it corresponding type-environment.
An expression is well-typed in an environment if and only if it is well-typed in Lthe corresponding type
environment.

Value function For any expression E, its value funclion [E ]* is a partial function from environments
to values. The expression E is value-defined in exactly those environments contained in dom JE J¥.
The value of an expression in a environment is the result of the application of its value function to that
environment,

Meaning function From the type and value (unclions for an expression E it is possible to define
a meaning function [E [*'. The meaning of an expression is the pair of its type and its value. The
meaning funclion for an expression is constructed as follows:
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5 EXPRESSION

[E]* =(T:[ET".[E])

The expression E is well-defined in exactly those environments contained in the set:

dom{T;[E]" .[E "

This is equal to the set:

domT;[E] N dom{E }¥

Thus an expression is well-defined in those euviranments in which it is well-typed and is valae-defined.

A resuli of this definition is that the 1ype of the weaning of an 2xpression in an environment is always
Lhe same as the type part of the expression wlien evatuated in the correspending type-onviroument:

FIQEM;t ¢ THIE] .

a8 Z Base Stasdard Version 1.0 printed 30th November 1092



5.2 Identifier

5.2 Identifier

An identifier is a name used Lo refer to a variable. Variables in Z are mathematical variables and are
pot the same as the programmiug variables usad in programmiug languages. Z variables denote values
which depend op their environment.

Abptract Syntax

IDENT = VARNAME

Mute: A variable mame is composed of a base-name suffixed by auy number of decertions,

Representation and transformation

Production | Concrete | Abstract

VarName n n

Type The type of an identifier is the type to which the identifier is mapped in the ty pe-environment:
[n]" = (-n)

Note: An identifier is well-typed only if it is in the domain of the type environment.

Value The value of an ideatifier is the element mapped to the identifier in the environment:
=] = (-n);e

Note:  An identifier is value-defined ouly if it is jn the domain of the type environment.
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5.3 Generic Instantiation

The generic instantiation » [s,,...,8,] is the instantiation of the generically declared variahle n by by
the list of set expressions 8,,...,5, . Each elcment of the instantiation list gives a value to a gencrnic
parameter of the generic definition.

If the list of generic parameters js omjlied in the representation form, they are inferred from the typing
information in the context of use. The implicit parameters are the maximal sets of the appropriate
type, which must be uniquely determined by Lhe typing rules.

Abstract Syntax A genericinstantiation is constiucted [rom a variable name and a list of expressions.

GENINST = VARNAME (EXP,EXP,...,EXP]

Represeutation and transformation There are thiree ways ol instantiating generically declared
variables: by a parameter list, by infix or by prefix means.

Production Concreln Abstract

VarName..p» £ b rassion, (¢, Expression} ]’ | Meann) | P Ta1% {5200 {50
Expressionl, InGen,Expression I (-¥-) [ ]5 Wz jsl
PreGen Expression5 [23 L (¢-) [lflfj

Note: The expression oy iz, where 1¢ is an infix generic symbol is the variable declared as
(%) when instantiated with the parameter list |z;, 73]. When ¥ is a prefix generic symbol
then ¢z is the variable declared as {¢_) when instantiated with the parameter list [z].

Type Thetype of a generic instantiation n [s,,...,8,] is obtained by applying the function corre-
sponding to Lhe generic type of the variable name » in the environment to the types of the actual
parameters s,,...,8n:

[rls:s-- -5 8a] 17 = (—m)e{fs, [".....[s ]}
Note: A generic instantjation is well-typed only if the variable name is in the domain of

the type enviranment and if there is a correct number of set-lyped parameters.

Value The value of a generic instantiation n [8,,...,8,] is obtained by applying the function cor-
responding to the generic meaning of the variable name = in the environment to the meanings of the
actual parameters 8,,...,84:

[rlourr sl I = (o m) o (I, Il 005 v

Note: A generic instantiation is value-defined only if it is well-typed and all its parameters
are value defined.
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5.4 Number Literal

A number literal is an entity whose representation denotes its value in the world of integers.

Abstract Syntax

NUMBERL = NUMBER

Note: A number is a sequence of digits

Representation and transformation

Productian { Concrete | Abstract

Number i i

Type The type of a number literal is the given type of the integers.
] = 2°;givenT

Note: A number literal is always well-typed

Value The value of a number literal is ils representation,
BY o=

Note: A number literal is always valne-defined
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5.5 String Literal

A string literal is an entily whose representation denotes its value in the world § of strings of characters.

Abstract Syntax

STRINGL = STRING

Note: A string is a sequence of characters.

Representation and transformation

Production ] Concrete

Abstract

String i

a

Type The type of a siring literal is the set S of strings.

f[a]” = S°;givenT

Note: A string literal is always well-typed.

Value The value of a string literal is its representation.

[[a]]'r = a°

Nate: A string literal is always value-defined.

40
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5.6 Set Extension

A set extension {Z,,...,T,} i5 a set containing exactly thosc elements dencted by =,,...,2,. Since
a set is characlerised by its members, the order and muliiplicity of elements in =,,....2, 16 of no

consaquence.

Abstract Syntax A set extension is coustructed from a list of expressions.

SETEXTN = {EXP,EXP,...,EXP}

Representation and transformation There are three kinds ol sets which can be constructed by
extension: simple sets, sequences and bags.

Prodnction Concrete Abstract

L

Y ,Expression0,{*,",Expression0) , '} | { 21,243,070 } HEN E T N

" Expression,{',",Expression0} , ')’ | { &.72,...,70 ) [{(L,zh{2, 25), .o imz) )}

‘|’ [Expressiond,{*,",Expression0} , ‘]’ | {zi.22...., 2. | [{(z;, 1)} {(z2. N} .. 0 {(z.,1)}]F
I

Note: The expression { 21, 23,..., 2, ) defines au explicit construction of a sequence, which
can be regarded as an ordered collection of its constitueuts. A sequence is modelled as a
partial fuaction mappiug the Natural numbers 1,...,n to the expressions =;,73,...,2,
respectively,

Nate: The expression | £y, z;,.... 7. | defines an expiicit construction of a bag. A bagisa
collection of possibly mulliply-occurring elements. A bag is inodelled as a partial fuaction
mapping constituent expressious to the vunther of limes they oceur within the bag.

Type Thetypeofasetl extension {z,,...,z,} isthe powerset type of the common typeolz,,...,=,.

[[‘[::ll-wvzn_ll']:r:r = {ﬂz.ﬂTﬂ...ﬁﬂ:nﬂ'I);pOtperT

Note: A sel extension {x,,...,%n} is welltyped only if all of the expressions =,,25.... 25
have the same type.

Note: If { represents the commou type of 1,73,...,2Za , then P i represents the type of
the set { 21, 25,...,2, }. P{Z x 1) represents the type of the sequence { 21, 75,...,% ) and
P(¢ x Z) represents the type of the bag | 1. 2z,....%a |.
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Value The value of a set extension {®,,..., 2.} is the set of the values of x,,...,2,:
Mz -enzad I = (= 1o 5 L)

Note: A set extension { ®,,Z,,...,zn } is value-defined only ifall of =,,2.,...,2, are
value-defined.

Note: Twosets { 2, 20,...,2y } and { 1.14,..+,¥m } are equal if and only if for all &
there exists y, such that z; = ¢, 1 < i < n and for all y, there exists z; such that
yi=mn, 1<j<m
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5.7 Set Comprehension

The set comprehension {5t @ z} is a set which contains exactly Lhose elemeuts denoted by the expres-
sion # when evaluated in each entichment of the current environment by the schema text St.

Abstiract Syntax A set comprehension is constructed from a schema text and an expression.

SETCOMP = {SCHEMATEXT # EXP}

Representation and transformation There are two types of set which can be constructed hy
comprehension: a simple set (for which the expression part is optional} and a lambda expression.

Broduclion j Concrete—l Abstract
‘{" SchemaText, "»” Expressiond, ‘}" | {5t « z} | {151 e[}
{* SchemaText, '} {5t} {15 T o[ (5} 15}
‘4" SchemaText, ‘s’ ,Expression AStex {[.S'I]STO ([(St)x]e',[.r][)}

Note: If the expression part of the set comprehension is omitted then the defaull is the
characteristic tuple of the schema text.

Note: A lambda expression denctes a fuuction, The parameter is the characteristc tnple
of the SchemaText. The domain is defined by the property of the SchemaText. The value of
the function for a given parameter is defined by the value of the Expression with respect to
the value of the parameter.

Type The type of a set comprehension {5t @ 2} is the power set type of the type of z in the type-
environment enriched by the declaration St:

[{Stez}]" = {St}7 ;=] ;powerT

Note: A set comprehension {51 e 2} is well-typed only if St is well-typed and 2 is well-
typed in the current Lype-environment enriched by St.

Value The value of a set comprehension {5t » 2}, is the set of the values denote by the exprassion
z in each of the enrichments of the environment by the schema text S¢:

H{stez} " = A(St}il= ]

Note: A set comprehension is always value-defined.
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5.8 Power Set

The power set P 3 js the sel of all subsets of the set s.

Abstract Syntax A power set is constructed from an expression.

POWERSET = P EXP

Representation and transformation

Production Concrete | Abstract

‘P’ ExpressionS | P s Pfsi”

Type 'The type of the power set P 8 is the power set type of the type of the set s,

[Pal" = ([s [ © Ptype); powerT
Note: A power set P g is well typed only if 8 has power set type.

Note: If P i represents the type of the set s, theu PP ! represents the type ol Ps-itis a
set of sets. So, the type of the elements of P 5 is the type of 5.

Value The value of the power set P s is the set of all the subsets of the value of &:

Ps]’” = [s]":P

Note: A power set P s is value-defined only if the expression s is value-defined.



5.8 Tuple

5.9 Tuple

A wple (&,,...,Tq) is an ordered collection of the clements x,,...,Zn. The elements x,,..., z, are
not required ta have the same type.

MNate:  Note that the tnples {a, b.¢) and ((a. ). ¢} are distinct: the first contains three
elements a, b, c whereas the second contains 1wo elements (a, b}, c. The expression {a) is
not a tople; it is the expression ¢ within parentheses.

Abstract Syntax A tuplc js constructed from a list of 1wo or more ex pressions.

TUPLE = (EXP,EXP,... EXP,EXP)}

Representation and transformalion

Erodurtion Coucrete Abstract

\ ‘(> ,ExpressionQ), *,) Expressiond,{*.".Expression0} , *}' | (T, ada) | ([T jf,...,iznjs)

Type The rype of a tuple (=,,...,&,) 15 the Cartesian product type formed from the types aof
Tyy...3Tnt

izes.-2a) 7 = {{=. 1", ..[=n 1"} cproduct T

Note: A tuple (x,,...,%,) is well-typed anly if all of 2, ..., 2, arc well-typed.
Value The value of a tuple (z,,...,%,) is the tuple formed from the values of =,,...,x,:

liz.s.-a2n) ]]v = {l=. !]v----vﬂ:n ]ju)

Note: A tuple (x,,...,2y} 15 valne-defined only il all of &,,..., 2, are value-defined.

Note:
Two tuples { £, z3,...,z, yand ( yi,t2,--.,¥m ) areequal if aud only il 2, = 3, 1 €7 ¢

n=1m

Note: If z. € s; for 1 < + £ n, then the tuple { z,7...., 2, ) is an element of
51X 82 %, X §p .
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5.10 Cartesian Product

The expression s, X ... X 8, is the Cartesian product of the sets 8,,...,9p.

Nate: Cartesian products with different numbers of terms are distiuct.

Abstract Syntax A Cartesian Product is constructed from two or more expressions.

PRODUCT = EXP x EXP x ... x EXP x EXP

Representation and transformation

Production Concrete Abstract

Expression2, ‘x’ ,Expression2.{x",Expression2} | s X s X ... X $; [= j‘sx %]

Type Thetype of a Cartesian product s, X ... X 8, is the power set type of the Cartesian product
type of the list of the uuderlying types of the elements s,,...,8,.

Is: ... x 8, ]7 = {[s: I7 ; powerT~,....[8. |7 i powerT~'}; cproductT j powerT

Note; A Cartesian products, X ... X 8, is well-typed only if all of the elemnents (8,,...,8n)
have power set types.

Value The value of a Cartesian product s, X ... X s, is the Cartesian product of the values of the
sets (9,4 .. 80 F

[s, ¥ ...x s, J* = (s, ]"s...,[80 1"} X

Note: A Cartesian product 8, X ... X 8, is value-defined exactly only if all of the sets
B,y...y8y are value-defined.
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5.11 Tuple Selection

The tuple selection 2.z is the ith element in the tuple t.

Abstract Syntax A tuple seleclion is constructed fron: an expression and a number literal.

TUPLESELECTION = EXP . NUMBERL

Representation and transformation

Production Concrete | Abstract

Expression5, *." Numberl ‘ [ p)a J

Type The type of a tuple selection 2.4 is the Lype of the fth element of the tuple L.

al” = [t17 5 cproductT='; 5,

Note: The tuple selection t.i is well-typed only if ¢ has a Cartesian product type with at
least i elements.

Value The value of a tuple selection .1 is the value of the 71k element of the tuple £

Ital” = 01" s =

Note: The tuple selection L.4 is value-defined only if £ has the value of a tuple with at least
i elements.
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5.12 DBinding Extension

A binding extension { ®», ~ Z,,...,Rp ~+ &} is the binding which maps the names n,,...,n, 0
1he values of the eXpressions ,,..., T Tespectively.

Abstract Syotax A binding extension is constructed from a list of names and expressions.

BINDINGEXTN = { VARNAME ~» EXP,...,VARNAME ~» EXP}

Representalion and transformation

r
i Production
r

Concrete

Abstract

i °{ ", VarName '~ Expression0,
[ {*, VarName, " Expressiond] ,‘} *

e T |

{n, ~inl,. o n, ~za])

Type The typeof a binding extension { =, ~ x,,..., 7y ~ 2y} is the schema type of the signa-
ture constructed from the mapping of the names ®,,...,Rm t0 the types of the expressions x,,... ,&n.

Mr~zyyim = 2m) 17 = (0202, 17, inn e I35 {00} 5 schemal

Note: A bindingextension { =, ~+ Z,,..., %, ~+ Tm) is well-typed only if the expressions
®1y...y Ty are all well-typed, and if the mapping from names to types is fuuctional.

Value The value of a binding extension { n, ~+ =,,...

T, ~ . b s the binding constructed rom

the mapping of the names n»,,...,ny 1o the valnes of the expressions x,, ..., .

[Mr~ e, onm~zap [V = (nf e ) 0% [, TP L)

Note: A binding extension { », ~ x,,..., %, ~+ T,n} 15 valne defined only il the expres-
sions ®,,...,&m are all value-defined, and if the mapping from names 1o values is fuuctional.

Note: Two bindings z and y with components n;, ..n: are equal if and only if z.n, =

y.n, 1 <i<k

48
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5.13 Theta Expression

5.13 Theta Expression

The theta expression @ S is the binding whose type is constructed from tbe signature of § and whose
value ig the binding constructed from the mapping of the names of the signature to their values in the
environment. The thela expression 8 § © is Lhe binding whose type is constructed from the signature
of S and whose value is the binding constructed from the mapping of the names of the sigrature to the
values in the environment of those names when decorated by 9.

A B-expression is a way of identifying a binding., A binding can be constructed from variables in scope
if for each named element in the binding there is the same name in the environment denoting the same
element.

Abstract Syntax A theta expression is constructed from a schema aud an oplional decoration,

THETAEXP = & SCHEMA DECOR
{8 SCHEMA

Note: The schemma may itself be decorated, Thus the following are permitted: 4 §¢ and
# (59) 7. Only noun-generic schemas may be nsed in theta expressions

Representation and transformalion

Production Cancrete Abstrac?,
‘0" ,BasicSch,Decoration | 8 5 ¢ 9[5]‘5 7
*§* ,BasicSch 85 s

Type The typeof @ 57 is the schema type constrneted [rom the signatnre of § whose components.
when decorated by 7. have the same non-generic type in the environment:

10s]) = ({SD™n 2);schernaT
[@s*1" = (S )= n I;3%{q }" x 1))} schemaT

Note: A theta expression is well-iyped only when each of the decorated versions of the
names of the signature of the schema ate assigned non-generic types in the environment and
tbey have the same type as those of Lthe signature.

Note: The type of a thela expressicn @ § ¢ is not the Lype taken from § decorated by 7.
The decoration ¢ does nol necessarily appear in the resulting type. The nse of the schema
is to identify the type of the resulting binding. Decoration is used only to identily which
names to look up in the eavironment; thus & § ' and 8 5 7 are of the same type even i[ "
and 7 are different decorations.
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Value The value of the theta expression § S 7 is a bindiug of the namecs of the components of § to
the values of the names, when decorated by 7, ir the environinent:

B8} = T;(S)75;schemaT ; Elmn 3} V
[65:]° = T;{S])™;schemaT; Elm 0 3;3{g )" x v

Note: A well-typed theta expression is always value-defined. The value of the theta
expression does not have to satisfy the property of the schema.
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5.14 Schema Expression

A schema expression § is the set of bindings defined by the schena. These bindings have as their type
the schema-type construcled from the signature of S and they satisfy its property.

Abstract Syntax A schema expression is constructed fram a scherna.

SCHEMAEXP = SCHEMA

Representation and transformation

Production | Concrete | Abstract

Schema s isi*

Type The type of a scliema expression S is the power set tvpe of the schema type constructed from
the signature of the schema 5:

(s1° = (5D}7 jschemaT ;powerT

Note: A schema expression S is well-typed only if the schema S is well-typed.

Note: The type of a schema expression is nol in the range of schemaT': it is in the range of
sehemaT § power T, The relationship betweeu { )™ and § 7 is that of schemaT j powerT.

Velue The valne of a schema expression S is the set of bindings defined by the schema §:
ISV = A8 D™ V)

Note: A schema expression S is always value-defined,
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5.15 Binding Selection

The binding selection b.r is the element to which the name n is tnapped in the binding b.

Abstract Syntax A binding selection is construcied from a binding and a name.

BINDSELECTION = EXF . VARNAME

Representation and transformation

Production Concrete | Abstract

Expressions, *.> ,WarName | b.n [6]°n

Type Thetype of a binding selection &.n is the type to which the name n is mapped in the signature
used to construct the schema type of the biuding b:

. n]” = {61 ; schemaT " ; (- n}

Note: A binding selection b.n is well-typed only il the lype of & is a schema type; and Lhe
name 2 is in the domain of the signature from which Lhe schema type is constructed.

Value The value of a binding selection b.n is the value to which the name n is mapped in the binding

b:

[b.n]” = B i(-n)

Note: A binding selection b.n is value-defined only if the binding b is value-defined and the
name ® is in its domain.

52 7 Baae Siandard Venian 1.0 printed 30h Navember 1992



5.18 Function Application

5.16 Function Application

The Iurction application f « is the result of applying the function f to the argument 2.

Absiract Syntax A funclion application is constructed froin two expressions, a [unclion and its
argument.

FUNCTAPP = EXP(EXP)

Representation and transformation There are four ways of represenling a unction application:
a normal form, an infix [orm, a superscript and a postfix [orm. For [unctions declared for yse in postlfix
or infix form, underscores mdicate 1the pasitions of the operands. The complete name of su:h a [unction
inciudes the nndersrores and surrounding parentheses which are omitted when the operands are supplicd
in the lorm defined in the declaration.

T —
Production Concrete | Abstract |
Expressiond,Expressionb fz [”5((115]
Expression2, InFun,Expression3 | zoy (—¢ - =0
Expressions,Expressiond Re (iterf I L RIF)
ExpressionS, PostFun, zo { - ¢)=]"
1

Note: The function application z ¢ y is the infix application of the fuuction ( _ ¢ — )applied
to the pair of arguinents (z, ),

Note:  The function application R* denotes Lhe x-iteration of the relatien R: il is an
ahbreviation ol the expression iter 1 R.

Note: The function application z¢ is the posthix application of the lunctiou { - ¢) applied
to the argument z.

Type In the expression f{z) the type of f must be the power sel type of the Cartesian product type
of a 2-tuple of types, and the type of the argument = must be the first type iu this tuple; the type of
f(z) s the second type in the tuple.

=) 1" = (|I.f 17 s power T~ 5 eproductT-1 [7}) ez

Note: The linction application f{z) is well-typed only if the type of f is a powersel type
of a pait of types with the first Lype in the pair the same as the type of z.
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Note:  Il-we evaluate the type of [, we get essentially a set of pairs, where each pair
comprises the type of an argument and the type of its result. If we next evaluate the 1ype
of the particular argument ¥, then we can simply use 1he type of f as a function to look up
the type of the result cozresponding to z. We say the the tvpe of f is essentjally a set of
pairs, because we must ‘un-o’ the iype consiruciors.

Value The value of a function application f{z)is given by applying the value of f to the value of the
argument z;

Lri=) ] 2 MIFD e[z D)5 (-}

Note: A well-typed function applicatiou f{z}is defined if both f and = are defined and if
thereis a unigue w such that (z,w) € f.

Note: In Z, a function is modelled hy its graph, which is a set of pairs; the first clement
of each pair representing an argument, and the second 1le result for thal argument. For
the [unction application f{z) to be defined. f has only to be functional in the valee of r.
Providing that z evaluates in the environment p to a value v, and the value of f in p contains
(v, 1), and no other pair starting with v, then the expression (f r) evaluates to w. So for
a well-defined function application we would expect an equality of the following form:

F=) 17 = £ 1% (= 1%)

The promoted application of f(z) provides a satisfactory nieaning when the function appli-
cationis well defined. Ii is necessary to decide what to do with (f z) when f is not fanctional
at z. This arises if there are several different pairs in the value of f, each having the same
first element equal to the value of z or if there is none. The definition provided does not
prescribe a value for a function applied outside its domain or wlere it is non-functienal.
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5.17 Definite Description

The definite description g St e z is the element denoted by = in the unique enrichment of the environ-
ment by the schema text 5.

Abstraet Syntax A definite description is construcied from a schema text and an expression.

DEFNCESCR = 4 SCHEMATEXT » EXP

Representation and transformation In the representation form for definite descripuou, Lhe ex-
pression part is optional.

Production Conerete | Abstract T

- |
‘i SchemaText, ‘o’ Expression | u St e £ ,u[St]‘srolrj‘ ‘

‘u" ,SehemaText u St B[Sz]”.[(.;r)x]f

Note: [f the expression part of the definite description is omitted then the defaull is the
characteristic tnple of the schema text.
Type The type of the term p St ® = is the type of = in the environment enriched by St

ustez]" = St} 50=z1

Note: The expression u St ¢ 2 is well-typed only if St is well-typed and 2 is well-typed
in the environment enriched by St.

Value The value of a definite descriptien pz S¢ & z is the value of z in the unique enrichment of the
environment by S

fusto=z]" 2 A((Stp*){-}":l=]"

Note: A well-typed definite deacription p St & z is value-defined if there is exactly one
defined enrichinent of the environment by the schema text St and the expression z is value-
defined in that enriched environment.

Note: This definition is not specific about the value of a badly formed dcfinite description.
If there is not an unigne enrichment of the environment then the value is not prescribed by
this standard.
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5.18 Conditional Expression

The conditional expression if P then E, else E, fi evaluates Lo the expression E, if the predicate P
is 1roe, otherwise it evaluates to the expression E,.

Abstract Synlax A conditional expression is constructed from a predicate and two expressions.

IFTHERELSE = if PRED then EXP else EXP fi

Representation and transformation

T
Production Concrete Albstract

“If".Predicate, Then’ Expression ' Else’ ExpressionFi* | If P Then x Else y Fi if] P]Tthen[zjfelse[ylf

Type The type of the conditional expression if P then E, else E, fi is the common type of the
expressions E, and E, wheu the predicate P is well-typed:

[if P thenzelsey fi ]]T = [P ]}T q([= ]]T n Jy DT)

Note: The expression if P then E, else E; fi is well-typed only when the predicate P is
well-typed and the expressions E, and E, both have the same type.

Value The valueof the conditicnal expression if P then E, elze E, fi Is the valuce of the expressions
E, when the predicate P is true, otherwise it is the valne of the expression E.:

[if P thenzelsey ] = (P} aflz]")u ({-PL1* <[y ]")

Note: The expression if P then E, else E, fi is value-defined only when the predicate
P is true and the expression E, is value-defined or when the predicate 2P is true and the
expression E, is value-defined.
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5.18 Substitution

The substituted expression bsE evaluates 10 the expression E in the envirommernt enriched by the
binding b.

Abstract Syntax A snbstituted expression is constrncted from a substitution expression and an
expression.

EXPSUBSTITUTION = EXP o EXP

Representation and trausformation

Preduction Concrere | Abslract
Expression,'s’ ,Expression | dsz (o) o] |
— 1

Type The type of the substitution bsE is the type of the expression E in the lypeenvironment
entiched by the binding b.

lbo=z 7 = (L, [6] ;schemaT V)5 352 )7

Note: The substitution boF is well-typed only if b has schema-type and the expression E
iz well-typed in the type-envirenment enriched by the binding b.

Value The value of the substitution b E js the value of the expression E in Lhe environment entiched
by the biuding b.

fbez ¥ = (LI Niailz]”

Note: The substitution beE is value-defined only if b is value-defined and the expression E
is value-defiued in Lhe environment enriched by the binding &.
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5 EXPRESSION

5.20 Free variables

Table 18: Expressions and their {ree vanahles

Expression Free Variables

n {n}

n[8;,...,8m] {(RIU(p.0, ). .. U(98m)
i {1

a {1

{z:h...1yEm} {@ez ) V.. U{DeTn)
{Stex} oy St U (e 7\ a5t
Pz GeZ

[Z1y. 1 Zm) (doz,)U.. . VU(PTm)
5 X ... X & (e8,)U .. U (¢, 9,)
{n~x, ..\ Am = Zn) | (P2 ). U (¢Ea])
59 (¢,5)U (a5

bn deb

i @l

f= (9. FIu(dex)
uStez $aSLU (poz \ aSL)
§ .5

il P then x else y fi $PUs.yUd.y
boz ebU(p.2 )\ ab)
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5.21 Substitution

5.21

Table 19: Substitution inte Expressions

Substitution

bols) X ... X 8,)
bo{t.i)

bod ny ~ T1,...,0m ~ Imb
bl § ¢

boS

bo{c.n)

bo(f 1)

Ba{u St e 1)

Substitution Equivalence

bon n

bon[s1,.. ., 8n) nlbos;, ..., bosm]

boi i

baa z

bo{zy,..., .} {boxy, ..., bat, }

bo{ Stau} {{beSt) e (&1 [5t])eu}
bo{P u) P boy

be(®,. .., 20 (bory,.... bex, )

(bas) x ... x (bass)

(bat).i

§ M~ bom, . i, o boZo)
B(beSY\ BYU b | (bS)

005

{boc).n

(baf) (boz}

((boST) » (5 [$1]}ou)
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6 Predicate

6.1 Introduction

A Prediente is the general form [or expressing properties of the environment. Tlese properties are
relationships berween the values of the variahles in the environment. A predicate may be constructed
in a number of ways. They may be suh-divided as follows:

Elements;
EQUALITY MEMBERSHIP

These dencte the equality and memhership relations hetween expressians.

Constants:
TRUTH FALSEHOOD

These dencte the predicates true and false

Propositional Constructs:
NEGATION CONJUNCTION DISIUNCTION [IMPLICATION EQUIVALENCE

These are predicates constructed using the propositional connectives.

Quantifications:
UNIVERSALQUANT  EXISTSQUANT  UNIQUEQUANT

These are predicates constructed using quantifiers.

Schema Predicate:
SCHEMAPRED

‘Tbis is a predicate composed from a schema,

Substituted Predicate;
PREDSUBSTITUTION

This is a predicate evalualed follawing a substitution.

80 2 Base S1andard Version |.0 printed 30th November 1992



Abstract Syntax

PRED

I
|
!
]
I
I
I
i
I
]
|
|
[

EQUALITY
MEMBERSHIP
TRUTH
FALSEHOQD
NEGATION
DISJUNCTION
CONJUNCTION
IMPLICATION
EQUIVALENCE
UNIVERSALQUANT
EXISTSQUANT
UNIQUEQUANT
SCHEMAPRED
PREDSUBSTITUTION

a.1

Intraduction

The description of the meaning of a predicate can be split into two parts. The first gives rules for
determining whether it is well typed or not. The second determines whether the predicate is supported
in the environment. A predicate is supported in an environment if the vajues of the sub-expressions in
the predicate are such that the predicate is true in that environment without necessarily considering
whether it is well typed.

The combination of these two descriptions provides a meaning for predicates.

8.1.1 Type

Since in the abstract syniax of Z we already know that a certain censtruct is a predicate, when consid-
ering the type of a predicate the only matter of concern is whether it is well-typed. For his reason we
represent the type function of a predicate as the set of type-environments in which it is well-typed.

{PRED ]}” : P Tenv

Note: In contrast o predicates, whken considering the 1ype of an expression, there are two
maltlers of concern: whether the expression well typed and if so what is its type. Hence the
use of a partial function whose domain is the set of environments in which it is well-typed.,

Note: The predicate (z = y) is meaningless if the expressions r and y are uot of the same
type. There is no meaningful way of comparing them. A predicate which is badly yped in

all environments has a type function which evaluates o the empty set.

6.1.2 Value

The value function for a predicate is the sei of cnvironments in which it is supporied:

{PRED }* : P Env

7 Hane Standard Yersion 1.0 printed 30h November 1992
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8 PREDICATE

Note: The predicate ~(z € z) is supported in all envircnments. This is so because the
axiom of regularity ensures that r € r is false and hence —{r € z} is true. On the other
hand z € r is not well-typed so therelore -(z € z) is not well-typed.

8.1.3 Meaning

The environments in which a predicate holds {has a true mneaning} are exactly these environments in
which the predicate is supporied and is well-typed.

{PRED }* == 3(Y " {PRED }” n {PRED |}¥

Note: As indicated in the note ahove the predicate —~(x € ) is supported but not well-
typed, hence it is false in all environments. The meaning of the predicate is the empty set:

ze=1"={1}
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6.2 Equality

6.2 Equality

Two expressions arc equal if they have the same valne and type.

Abstract Syntax An cquality is constructed from two predicates,

EQUALITY = EXP = EXFP

Representation and transformation

Production Concrete | Abstract

Expression, *=" Expression | {r = y]* | [z1"=[y]®

Type An equality z = y is well-typed 1n those environments in which the expressions z and y have
the same type:

{z=y]}" = dom([z] N ]I
Value An equality & = v is supported in those environments in which the expressions = and y have
the same values:

fo,=2,)" = dom(fz. ' n [za I).
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8 FPREDICATE

6.3 Membership

The membership relation * € y is true when the expression = is a member of the set denoled by the
expression y.

Abstract Syntax A membership predicate is constructed from two expressions.

MEMEERSHIP = EXP € EXP

Representation and transformation Tlere are three ways in wlich the membership predicate ran
be written: using the membership sign, using an infix relation and by using a prefix relation.

Production Concrete | Abstract

Expression, "¢’ .Expression | [z € v]% | [=i"€ [y)°
PreRel Expression zpy flz.o)fe(_p -1
Expression, InRel Expression | p z [zfe(p )

Note: The infix relation predicate rpy is true f the expression z is relaled to the expression
v by the relation p, i.e. if the tuple (z.y) is 2 member of the relation p.

Note: The prefix relation predjcate pr is Lrne if g holds for 2, i.e. if £ is a member of the
set p.

Type A membership relation = € y is well-typed if and anly if the type of the expression y is the
power set type of that of Lhe expression z:

{x ey} = dom(Jz [ ; powerT n [y 7).

Value A membership relation x € y is supported in all tlinse environments in which the values of the
expressions r js a member of the value of the expression y:

{z. €2, }¥ = dom(fz, J" 0 [z, ["33)-

84 Z Base Standard Vemion 1.0 pruied 30th Novenber 1301



6.4 Truth Literal

The trath literal true represents the predicate that always holds.

Abstract Syntax

TRUTH = true

Representation and transformation

Production | Concrete | Abstract

“rue’ true true

Type The truth literal true is well-Lyped in all eivironments:

{true}” = Tenn.

Value The truth literal true is supported in all environments:

{irue }¥ = Env.
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8 PREDICATE

8.5 False Literal

The false literal false represents the predicate that never holds.

Abstract Syniax

FALSEHQOD = false

Representation and transformation

Production | Concrete | Abstract

‘false’ Salse false

Type The false literal false is well-lyped in all environments:

{false]}™ = Tenv.

Value The false literal false is supported in no environment:

{false}® @.
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6.6 Negation

8.6 Negation

The negation - P holds whenever the predicate P does not.

Abatract Syntax A negation i constructed from a predicate.

NEGATION = =PRED

Representation and transformation

Production Concrete | Abstract

‘=" BasicPred | P

~te®

Type The negation =P is well-typed exactly when the predicate P is well-typed:

{~P} = (P}

Value The negation =P is supported in those enviranments in which Lhe predicate P is not supported:

=P} = Ene\ {P]}"
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68 PREDICATE

6.7 Disjunction

The disjuncion P, v P, holds whenever at least one of the predicates F, and P, holds.

Abstract Syntax A disjunctlion is constructed from two predicates,

DISIUNCTION = PRED v PRED

Representation and transformation

Production Concrete | Abstract

LogPred2, *v' LogPred3 | PLv Py | [P VIRTF

Type Thedisjunction P, v P, is well-typed exactly when both predicates P, and P, are well-typed:

{PIVP?],T = {P1 DT ﬂ{Pall"-

Value The disjunction P, V P, is supported in those eavironmeats in which one or hoth of the
predicates P, , P, are supported:

{P‘VP,}" = {P)]}v U{Pznv-
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8.8 Conjunction

8.8 Cenjunction

The conjunction P, A P, holds if the predicates P, and P, both hold.

Absiract Syntax A conjunction is constructed from two predicates.

CONJUNCTION = PRED A PRED

HRepresentation and transformation

Production Concrete Abstract

LogPred3, ‘A’ .BasicPred PLAP; LA ALP)”

Predicate {Sep,Predicate} P\SepPiSep.. . 5epP, | (BT ALE P AL A[PT

Note: [n predicates Sep is equivalent to A; such a conjunctior has the lowest possible
precedence and is equivalent to parenthesising the separate predicates and conjoining them.

Type The conjnnction of two predicates is well-typed exactly when both predicates are well-typed:
oAbl = R0 {RY.

Vailue The conjunction of two predicates is supported in those environments in which both predicates

are supported:

{P.APRPD = (P} o {F]"
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6 PREDICATE

6.9 Implication

The implication P, = P, holds whenever the predicate P, does not hold or whenever the predicate P,
does hald.

Absatract Syntax An implication is constructed from two predicates.

IMPLICATION = PRED = PRED

Representation and transformation

Production Concrete | Abstract

LogPred2, '’ LagPredl | Py = P, | [P =2[P)7

Type Theimplication P, = P, is well-typed exactly when both predicates P, and F; are well-typed-

{P,2PR)} = {P} n{pr]".

Value Theimplication P, = P, is true in those environments in which 1le negation of the predicate
P, i3 supported or the predicate P, is supported:

(P.2P} = R U{RDY
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6.10 Equivalence

6.10 Equivalence

An equivalepce P, ¢ P, holds whenever both predicates P, and P, hold or neither hold.

Ahstract Syntax An equivalence is constructed {rom two predicates

EQUIVALENCE = PRED < PRED

Representation and transformation

Production Concrete | Abstract ‘l

LegPred, <’ LogPredl | P & P; | [PV @lPY

Type Theequivalence P, < P, is well-iyped exactly when both predicates P, and P, are well-typed:
P P1 = (PR} n{P].

Value The equivalence P, <% P, is true in those environments in which both predicates P, and P,

imply each other:

{P. & P }¥ = {P.=>P]}" n{P=PF]"
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6 PREDICATE

6.11 Universal Quantification

The universally quantified predicate ¥ 5S¢t o P holde i the predicate P holds for all possible combinations
of values of the components of the schema text St.

Abstract Syntax A universal quantification is constructed from a schema text and a predicate.

UNIVERSALQUANT = V¥ SCHEMATEXT ¢ PRED

Representation and transformation

Production Conerete | Abstract

“¢' SchemaTaxt, ‘e’ Predicate | Y5t e P | V[St1°7 o[ PI¥

Type A universal quantification ¥ 5t o P is well-typed in those type-environments enriched by the
schema text §¢ in which the predicate P is well-typed:

{v5te P} = dom({St)" o {P ")

Meaning A universal quantification ¥.5¢ ¢ P is supported in those environments for which the pred-
icate P is supported in every enrichment by the schema text St:

{¥VStaP]}¥ = {—~ 3Ste- P}

Note: This semantic definilion rests on the properties of de Morgan's Laws.
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6.12 Existential Quantification

8.12 Existential Quantification

The existentially quantified predicate 35¢ ¢ P is true if the predicate P is true for al least one possible
combination of values of the components of Lhe schema text St.

Abstract Syntax An existential quantification is composed of a échema text and a predicate.

EXISTSQUANT = 3SCHEMATEXT e PRED

Representation and transformation

T
Preduction Concrete | Abstract

‘3" SchemaText, 's" Predicate | 351 e P | 3[511°T o P}F

Type An existential quantification 3 S5t ¢ P js well-typed in those type-environments enriched by the
schema text St in which the predicate P is well-typed:

{35te P} = dom({St})" & {P}").
Value An existential quantification 3 5t # P is suported in those environments for which there exists
an enrichment by the schema text 5S¢ in which the predicate P is supported;

{3Ste P}¥Y = dom({St}* v {P]")
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86 PREDICATE

6.13 Unique Existential Quantification

The unique existentially quantified predicate 3, 5§ # P is true il the predicate P is true for exactly one
possible combination of values of the components of tbe schema text §.

Abstract Syntax A unigue existential quantification is constructed from a schema text and a pred-
icate.

UNIQUEQUANT = 3, SCHEMATEXT ¢ PRED

Representation and transformation

Production ] Coucrete | Abstract

‘3,” ,SchemaText, ‘o’ Predicate | 3, Ste P ‘ 3,505 of PTF

Type A wique existential quantification 3, St » P is well-typed in those type environmeuts that,
when enriched by St, well-type P:

{3,5te P}” = dom({St} " {P1"})

Value A unique existential quantification 3, St ® P js supported in those environments for which
there is exaclly one enrichment by the schema text St which supports the predicate P.

3,510 PP = dom(A({St}™ o {P }¥); {-}"").
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6.14 Substitution

6.14 Substitution

The substituted predicate baP is true whenever the predicate is true in the environmen! enriched by

the binding b.

Abstract Syntax A substituted predicate is constructed from an expression and a predicate.

PREDSUBSTITUTION = EXPoPRED

Representation and transformation

Production

Concrete

T

Abstract

m
i
|

Expression ‘e’ Predicate

be P

163 <{ PT”

Type The substituted predicate b=/ is well-typed in those type-environments in which the binding
& {5 well-typed and when enriched by it the predicate P is well-typed:

{boP }7 = dom{{L,[6]"; schemaT ) ;&0 {P]7}

Value The substituted predicate dcP is supported in thase environments in which the binding & is

value defined and when enriched by it support the predicate F:

{boP J¥ = dom((LEe]"i (- @ {P ")
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8 PREDICATE

68.15 Free Variables

The [ree variablea of predicates are detailed in the following table:

Table 20: Predicates and their free variables

Predicate | Free Variables

r=y (Bez) U {Dey)
T€y (Bex)U(pw)
true {1}

false {}

-P &, P

Pvg {6 P) U (6,Q)
PAQ (& P)U (0,0
P=q (¢, PV (¢, Q)
Poq | (6P)U(4$Q)
v5te P | 3,8t U (4, P\ aSt)
ISte P | 0,860 (g, P\ aSt)
3, 5te P | ¢,5tU(¢P\aSt)
s $,SUaS

baP $ebU (8, P\ ab)

Note: The free variables for the representation forms of these constructs are the same as for
their abstract counterparts. For example: ¢.(z p y) = ¢.((2,¥) € p= ¢.[2,¥) U ¢p.
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8.16 Subetitution

6.16 Substitution

Table 21: Substitution into Predicates

Substitution | Equivalence

ba(u = v} {beu = bov)

balu € v) (bet € bov)
batrue true

bofalse false
be(-P) b P

bal PV ) baP v ba)

bolP A Q) be P A baQ

bolP= Q) |beP = b

belP & @) baP & boQ
bo(vSte Q) | VouSte(b\ [S)oQ
bo(I5te Q) | 3basSte (b [S)eQ
bo(3, Ste Q) | 3, baSt » (b1 [St))eQ
baS bal
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7 Declaration

7.1 Intreduction

A declaration is the general form for introducing new variables into the environmenl. A declaration
may be a SIMPLEDECL , which explicitly introduces new variables by name, or a SCHEMAINCL which
introduces the components of a schema, or a COMPNDECL which can be any combination of the other
two. A declaration may also be evaluated following a substitution.

Abstracl Syntax

DECL = SIMPLEDECL

| SCHEMAINCL
| COMPNDECL
| DECLSUBSTITUTION

When making declarations, the problem is not so much whether the declaration is well defined (although
a declaration may fail to be defined). The problem is more to record Lhe possible meanings of the newly
declared name. A declaration denotes a signature and a set of situalions.

7.1.1 ‘Type

The type of adeclaration is a signature which records the types of the elements denoted by the variables
introduced:

{DECL)™ : Tenv -+ (Name » Type)

7.1.2 Meaning

A declaration introduces names to the environment which can assume certain values. These values are
not fixed. We can consider the meaning of a declaration as a set of situations, each one recording one
set of values for the new names. However, it is more convenient to consider the meaning of a declaratjon
as a relation between environments and situations.

{DECLY* : Env +— (Name + Elm)

The meaning of a declaration is partial because some declarations may fail — for example n : s where
s is undefined, or if s is an empty set.

We can prove the following:

FOW;TCT:{DY



7.2 Simple Declarations

7.2 Simple Deciarations

A simple declaration n,, ... ny, : 8 introduces variables named n, ,. .. %, whose values are drawn from
the set .

Abstract Syntax A simple declaration is constructed from a list of names and an expression.

SIMPLEDECL = VARNAME,VARNAME, .., VARNAME ' EXP

Representation and transformntion

Production Concrete Abstract

DeciName,{*,”.DecIName} , ‘" [Expression [ nj.ny,....f0m 158 {0, Ny, ., 2x :[s]"

Type The type of the simple declaration n,,... Ay : 8 is the signature constructed ftom the names
n,,...n, and the underlying type of the set expression s.

qﬂ'u voepfim L 8 DT = ﬂ‘. ]]T E ((nl°,pawrer“‘,, “va (":.sPGWEFT_]}) HE A
Note: The simple declaration n,,.. .0, : 8 is well-typed exactly when the expression s

has power set type.

Menning The meaning of the simple declaration n,,...n, : 8 is a relation from the environment
to those sitnations which associate each of the pames n,,...n, with one of the elemens of the set
expression &:

(Rar. ..t 80 = 15 (02D T

Note: The simple declaration n,,...n,, : # is value-defined exactly when the expression
& jg a non-empty set,

Note: Suppose (7 is defined to be a given set. The type system defines the type of G to
be powerT(givenT N}. In this way a declaration such as 7 : & defines the type of z 1o be
given T{ (), as required:
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7 DECLARATION

7.8 Schema Inclusion

The schema inclugion § inttoduces the camponents of the schema and constrains their values as in the
schema.

Abstract Syntax A schema inclusian is constructed from a schema.

SCHEMAINCL = SCHEMA

Representsiion and transformation

Production | Concrete | Abstract

Schema 5 [sY°

Type Thesignature of a schema inclusion is the signature of the included schema:
()7 = (5)™.

Note: The schema inclusion S is well-typed exactly when the schema & is well-typed.

Meaning The meaning of a schema inclusion js the relation from the environmest to situations as
defined in the meaning of the schema.

(s = (sh*.

Note: The schema inclusion § is value-defined exactly when the schema S is value-defined.



7.4 Compound Declarations

7.4 Compound Declarations

A compound declaration D,; D, introduces the names in the declarations D, and D,.
Note: Variables may be introduced in local declarations more than once, provided that
they have the same type, Repeated declarations do not add anything to the signature;

howaver the coastraint of the repeated declaration is conjoined with the constraints of all
the other declarations.

Abstract Syntax A compound declaration is composed from a list of basic declarations.

COMPNDECL = DECL; DECL

Representation and transformation

Production Concrete Ahstract

BasicDecl, *; ' ,BasicDecl {*; " BasicDecl} | Dy; Dy ... D, [DL]D; [Dg]v; . .,'[D,;“]rl

Type Thesignature ofa compound declaration D,; D, is the join of the signatures of the declarations
D. and D,:

ﬂDﬁ D, DT = (GD, DTquI DT);U-

Note: This declaration is well-typed only if both of D, and P, are well-typed and their
signatures are type compatible.

Meaning The value of a compound declaration is the set of bindings that, when restricted to the
alphabet of each component, satisly that component:

(LD} = (D )7(D: Y50

Note: A componnd declaraticn I),; D, is value-defined only if botb the declarations D,
and D, are value-defined and if repeated declarations are value compatible,

Note: Dnplicated declarations are significant in the evaluation of the characteristic tuple,
The representative term can be a list of lerms which form part of the top level tuple.
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7 DECLARATION

7.5 Substituted Declarations

The meaning of the substituted declaration bol) is the same as the meaning of the declaration D in
the environment enriched by the binding b.

Abstract Syntax A substitnted declaration is composed of an expression and a declaration.

DECLSUBSTITUTION = EXP=DECL

Representation and transformation

Production Concrete | Abstract

Expression,'s’ ,Dectaration | boD [b]fc[D]D

Type Thesignature of the substituted declaration boD is the signature of the declaration I3 in the
type-environment enriched by the binding b.

(beD )" = (1,[b]" ; schemaT 'y ;;3{D )"
A substituled declaration is well-typed anly if the hindiug is well-typed and the declaration is well-typed
in the enriched environtnent.
Meaning The situations of the substituted declaration daD are the sitnations of the declaration D

in the environment enriched by the binding b.

(el )™ = (LB (N (DD
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7.6 Free Variables and Alphabet

7.6 Free Variables and Alphabet

The following tables define the free variables, alphabet and representative terms for declarations.

Table 22; Declarations and their free variables

Declaration Free Variables Alphabet
Tyy.--3fm -9 | B9 {n,.....0n}
s 5 aS
D,; D, (¢4 DYV (¢4 Ds) | (@D))U (D)
koD GebU (gD \ab) [aD

|

Table 23: Declarations and their represeniative terms

Declaration Representative Tertn

FiygeecsPm i 8 | Aly...ylim
5 85

Dy; D, o}, 0}

bo D g
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T DECLARATION

7.7 Substitution

The following table gives the semartic equivalence rules for substitution into declarations:

Table 24: Suhstitution into Declarations

Substitution Equivalence
bony, ..., M 18 | Ny,..., Ny ! bos
bo(Dh: Ih) bolh; bolk
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8 SchemaText

8.1 Introduction

A schema text is the general way of enriching the environment by the new names istrodnced by a
declaration and possibly constraining their values by a predicate. A SIMPLESCT consistsof a declaration
and a CMPNDSCT consists of a declaration and a predicale.

Abstract Syntax
SCHEMATEXT = SIMPLESCT

| CMPNDSCT
! SCTSUBSTITUTION

Given a certain environment, a schema tex1 has the eflect of defining a new environment in which the
name is now known.

8.1.1 Type

The type «f a schema tex! is a function from the old typ-environmnent to the new onein which the
names of the constitnent declaration are known:

{SCHEMATEXT }7 : Tenv + Tenv

81.2 Meaning

The s represented as a relation between environments. for the same reason as the meaning of a decla-
ration os represenied by a relation.

(SCHEMATEXT }* : Eny — Enu

We can prave tbe following

F{SLI*;T € Ti(st)7

% Base Standard Version 1.0 printed 20th November 1997 85



8 SCHEMATEXT

8.2 Simple Schema Text

Abstract Syntax A simple schema text is consicucted from a declaration.

SIMPLESCT = DECL

Representalion and transformation

Production | Concrete | Abstract

Declaration | D [D_rID |

Type A simple schema text ID enriches the type-environment by the signature of the declaration D.
oy = L @Me
Note: The simple schema text I? is well-typed exactly when the declaration I} is.

Meaning A simple schema text I enriches the environment by a situation of the declaration D.
DY = L DY) &

Note: The simple schema text I? is well-defined exactly when the declaration D is.



8.3 Compoupd Schema Text

8.3 Compound Schema Text

Abstract Syntax A compound schema text is constructed from a declaration and a predicate.

CMPNDSCT = DECL | PRED

Representation and transformation

‘ Production Concrete | Abstract

‘ Declaration, | ,Predicate | D | P DT PY

Type A compound schema text D | P enriches the tvpe-environment by the signalure of the decla-
rabon D.

{DIP} = (DY {P].

Note: The compound schema text D | P is well-typed exactly when the declaration D is
well-typed and the predicate P is well-typed in Lhe environment enriched by the declaration
D.

Meaning A compound schema text D | P enriches the environment by a situation of the declaration
D which makes the predicate P true.

{D|PY = (D} {P}™

Note: The compound schema text D | P is well-defined only when the declaration D is

well-defined and the predicate P is true in at least one enrichment of the environment by
the declaration I} .
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8 SCHEMATEXT

8.4 Substituted Schema Text

The meaning of the substituted schema text boSt is the same as the meaning of the schema text St
when evaluated in the environment enriched by the binding b.

Abstract Syntax A substituted schema text is constructed [rom an expression and a schema text.

SCTSUBSTITUTION = EXPeSCHEMATEXT

Representation and transformation

Production Concrete | Abstract

SctSubstitution | baSi [ef o]ty

Type A substituted schema text ensiches the type-environment with the signature of the substituted
schema constructed from the schema text.

(boSt)T = {bo(St) )7

Meaning A substituted schema text enriches the environment with the situatioas of the substituted
schema constructed from the schema text.

boSt)™ = {bo{St) I



8.5 Free Variables and Alphabet

8.5 Free Variables and Alphabet

Table 25: Schema Texts and their free variables

[ Schema Text | Free Variables I Alphabet

| D o, D al
D|P ¢4DU{¢,P\aD)|aD
LSt & U {¢gSt\ab) [ aD

The charactsristic tuple of a schema text is the tuple constructed from the representative terms of the
declarajon.

Tazble 26: Schema Texts and their characteristic tuples

Schema Text | Characteristic Tupie

D (D)
D|FP (DY)
boS! (S1*)
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9 Schema

Abstract Syntax

SCHEMA

|
{
|
|
]
I
|
I
f
I
I
I
I
!
I

SDES

GENSDES
SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTION
SIMPLICATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SDECORATION
SCHEMASUBSTITUTION

Z provides a number of schema operators that act on the undeclying funclions from names to type. In
order to describe these operations, it is convenient to identify the type of a schema, not as an element
of TYPE, but as a finite mapping from names to type. We shall call this the signature of a schema
expression, and is written { 7S,

(SCHEMA }7 :

Teny + Signature

(SCHEMA }*'s : Env « Siluation

We can define the relation between the environment and the well-typed (thougb not necessarily well

valued) bindings as

(s D.urs -

follows:

T;(S)y=;11!

We can prove the following:

HES)™s C (S

50
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8.1 Schema Designator

0.1 Schema Designator

A schema designator is a schema name used to refer to schema. It may also contain a list of generic
paramaters which instantiate a genericaliy defined schema.

Note: Since schema names have global scope there cannot be any overlap between Lhe base
names of variables and schema naines in a specification.

Abstract Syntax A schema designator is construcied [rom a schema name.

SDES = WORD

Representation and transformation

-
Production Concrete | Abstract

SchemaName | 5 5

Type The signature of a schema reference is the signatnre of the type of the reference in the type
environment.

{S)™ = (1t 5°;powerT~!; schemaT .

Mote: A schema relerence is well-tvped only if it is in the domain of the type-environment.

Meaning The meaning of a schema reference is the relation constructed from the the meaning of the
reference in the environment.

(5] = (1= S°);33.

Mote: A schema reference is well-defined only if it is in the domain of the environment.
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9 SCHEMA

9.2 Generic Schema Designator

A generic schema designator § [x,,..., .| is reference to a generically defined schema § instantiated
by the set paramaters {2,,...,®q).

Abstract Syntax A generic schema designator is constructed from a schema name and a list of
expressions,

GENSDES = WORD [EXP,...,EXP]

Representation and transformation

Production Concrete | Abstract

SchemaName,.[+ £ o recsion, ', Expression}']’ Stervoval | Sz ¥, L2 )

Type

(S[z0s.--»2a) )™ = ({19 5°) e {x,....2a)}; powerT™" ; schema T,

Meaning

{Slee....za] )™ = ((Le5°) e {x,...,1.))33.

Note:

Generically defined schemas must be instantiated.
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8.3 Schema Construction

9.3 Schema Construction

A schema construction {D | P} is a schema whose signature is that of the declaration I’ and whaose
components satisfy the constraint of the declaration D and the predicate P,

Abstract Syntax A schema construction is composed from a declaration and a predicate.

SCONSTRUCTION = (DECL | PRED)

Representation and transformation

Preduction Coucrete | Abstract

‘[* Declaration, *|’ Predicate, <}’ | [D | P] {[D]ﬂl[P]T}
{[* Declaration, ']’ (D] ((D]Dilrue}

|

Type The signature of {D | P) is the same as that of the declaration D,

(D 1Py)s = (D) NUD|PI 52

Meaning The value of the schema expression constructed fram {D | P} is a set of bindings. Tle
bindings are constructed iu all enrichments of the environment by D which satisfly P:

(D P s = (DIn({D]| P32

This is defined only in thase environments in which the declaration I is defined and when entiched by
it result in the predicate P heing well-typed.
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8 SCHEMA

9.4 Schema Negation

A schema negation =5 is a schema which contains all the bindings of the same signature as those of

the schema § but which are oot contained iu S.

Abstract Syniax A schema negation is composed of a schema

SNEGATION = -~SCHEMA

Representation and transformation

Production

Concrete

Abstract

*= ' LogSchd

-5

-Ls¥

Type Thesignature of a negated schema —§ is the same signature as that of the schema S:

Sy = (s)™

Meaning The bindings of a negated schema =S are those bindings which have the same signature as

S but are not bindings of S:
(=S = (§)¥= \ (5D

Note: This is simpler than in (Spivey, 1988}, where this complement had te be combined
wilh the global part of the environment. This was necessary in the original semantics,
because the meaning of a schema invelved not only the components of Lle schema, bet also
the global variables to which the schema might refer.

94

Z Base Standard ¥enion 1.0 printed 30th Noveinber 1992



9.5 Schema Disjunction

8.5 Schema Disjunction

The schema disjunction &, v S, is a schema whose signature is the join of the signatures of the two
schemas S, and S, and whose property is the disjunction of the two schemas’ properties.

Abstract Syntax A schema disjunction is composed of two schemas.

SDISIUNCTION = SCHEMA v SCHEMA

Representation and transformation

Production Conerete | Abstract

LogSch2, *v’ LogSeh3 | 51 v S | [SIT°VIST

Type The signature of a schema disjuinction S, v S, is the join of the two schenas 5, and §, :

{5: v 8, DTS = (051 D759d52 DTS) y U

Note: The schema disjunction 8, v &, is well-typed ouly il the signature of the two
schemas S, and ', are type compatible.

Meaning The bindings of a disjoined schema are all those with its signature which are cxtensions of
bindings in one or other of the operand schemas:

(S, v 5, DMS = (((SI D”Tsa(sn DMS) u \r{sl DM‘gwﬂS: DMYJH; u.
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9 SCHEMA

9.6 Schema Conjunction

Abstract Syntax A scliema conjunction is composed of two schemas

SCONJUNCTION = SCHEMA A SCHEMA

Representation and transformation

Production Concrete | Abstract

LogSchd, ‘A" ,LagScha | S A S, 15 FEALS)°

Type Thesignature of a schema conjunciion S; A S, is the join of the twe schemas §, and §, ¢

(S, A8, )5 = (5. ). (5. )75

Note: The schema conjunction §, A S, is well-zyped only il the 1wo schemas 8§, and S,
are well-typed and their signatures are type compatible.

Meaning The bindings of a conjoined schema are all those wit!: its signature which are extensions of
bindings in both of the operand schemas:

(5, A8, ])Ms = (18, D‘Hsvﬂsz DMS);U-

Note: Spivey (1988) has already remarked on Lhe similarity with the semantics of the
parallel composition operalor in the traces model of CSP.
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8.7 Schema Implication

9.7 Schema Implication

Abstract Syntax A schema implication is composed of two schemas.

SIMPLICATION = SCHEMA = SCHEMA

Production Concrete | Abstract

LogSch2, ‘=’ logSchl [ 8§ = & | [SiIP=[%T°
—1

Type The signature of a schema implication §, =+ S, is the join of the two schemas S, and S, :

{5, => 5, DTS = {(s. DT“Su{S: DTS> ¥ U

Note: The schema implication &, = §, is well-typed only if the two schemas S, and §,
are well-typed and their signatures are type compatible.

Meaning The meaning of the schema implication §, = §, is the same as the meaning of the schema
disjunction =8, v §5:

(S, = S, M = (=8, v S5, s,

Z Base Standard ¥erwon 1,0 printed 201h Novemher | 992 a7



9 SCHEMA

9.8 Schema Equivalence

Abstract Syntax A schema equivalence is composed of two scheruas,

SEQUIVALENCE = SCHEMA & SCHEMA

Representation and transformation

Production Coucrete | Absiract

LogSch, ‘e’ LogSchl | i & 5 {[S1F (5]

Type The signature of a schema equivalence 5, & 5, is the joia of the two schemas $, and 8, ¢

(S, 850 = {(5 D505 )7L

Note: The schema equivalence S, ¢ 5, is well-lypad ouly if the twa schomas 8, aud S,
are well-typed and their signatures are 1ype compatible.

Meaning The bindings are all those with tiis signature which are extensians of bindings in neitlies
or both of Lhe operand schema expressions:

(5,4 5 )" = (5, = S A5 =25 ).
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8.8  Schema Projection

9.2 Schema Projection

The schema projection operator (|) hides all the components of its first argument except those which
are also components of ite second argument.

Abstract Syntax A schema projection is composed of two schemas.,

SPROJECTION = SCHEMA [ SCHEMA

Representation and transformation

Production Concrete | Ahstract

CmpndSch2, ‘" LogSch | S| T (syP Iy’

Type Thesignature of a projection S, | S, includes those names in both the domains of the signatures
of §, and §,. The type given to each such rame is taken from §,, Note that if names are given types
by both S, and 5. those types must be the same (that is, the signatures must be consistent):

(Sx [ 5, DTS = ({SI DTS"S’ I.Ts) HO
Meaning The value of the projection §, | S, is the set of bindings which satisfly §,, restricted to the
alphabet of 5,:

(8,18 s = ({50755 )50

Note: Spivey (1988) gives two forms of projection operalor used in a schema expression

such a8 8, | S§,. The weak operator hides those compenents of §, which are not in the

signature of 5, The strong form requires the compaonents to satisly the axioms of §, as
well. We give the semantics for the weak operator,
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8 SCHEMA

9.10 Schema Hiding

The hiding operator () takes a schema expression as its first operand and an identifier list as its
second operand. The result is a schema expression whose components are those of the operand schema
excluding those aamed in the list.

Abslract Syntax A hidden schema is composed of a schema and a Jist of nares.

SHIDING = SCHEMA \ [VARNAME,...,VARNAME]

Representation and transformation

Type Thesignature of a schemna hiding expression is the signature of § with the names from (n,,...

Praduction

Concrete

Abstract

CmpndSchl, ‘\", ‘(" ,VarNameList, ')’

S\ (Pt tin )
1 (i H

[S’]‘s\ < My, Ng,.... Ny >

removed, Note that {n,,...,R,) inay contain names not in the signature of se:

(S\N(m,.csmu)} s = (S5 ({n.,....nn)e)

1R

Meaning The value of the schema § in which the components (n,,...,n,) have been hidden 15 the
set of bindings which satisly £, with those components removed:

100

ds\(nn---“M)DMs = QSDMS ;({nlv-""mlq)

Note: II all the variables are hidden the respit is a schemna with an empty signature.
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8.11 Schema Universal Quantification

9.11 Schema Universal Quantification

Abstract Syntax A schema quantification is constructed from a schema text and a schema.

SUNIWWQUANT = Y SCHEMATEXT ¢ SCHEMA

Representation and transformation

Production Concrete | Abstract

¥ SchemaText, ‘s’ Schema | ¥5te 5 | v[5i]*Te[5]° |

Type The signature of a universally quantified schema expression ¥ $¢ & § is the signature of § with
the names from the signature of St removed:
(vSte S} = ({5 ). ({58 =)~

Note: The signature is well-typed only when S1 and § is are well-typed and their signatures
are conipatible.

Meaning The value of a universally quantified schema expression ¥V St @ § is the set of bindings with
the defined signature snch that, for all bindings of St, the union of the two bindings is an extension of
5

(vSteShMs = (~JSte 85V

Note: Note that this definition takes advantage of de Morgan's Law.
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g SCHEMA

9.12 Schema Existential Quantification

Abstract Syutax A schema quantification is composed of a schema text and a schema.

SEXISTSQUANT = JSCHEMATEXT # SCHEMA

Representation and transformation

Production Concrete | Abstract |

3" SchemaText. *o’ Schema [ 35145 {3(5t]°7 oafs)°

‘Type The signature of an existentially quantilied schema expression 3 S{ & § is the signature of ¢
with the names ftom the sighature of 5t removed:

(3518 8)™ = (S )5, (50 )7%) 5

Note: The signature is well-typed only when Si and S is are well-typed and their signalures
are cormpatible,

Meaning The value of an existentially quantilied schema expression 3 §t @ .5 is the set of bindings
with signature of § less S¢, such that there is a binding of 5t so that the union of the two bindings is
an extension of S:

(@Ste Sy = (S (50 )5 i

Note: This definition should be contrasted with the analogous expression for predicates
{3 Ste p) where the well-typing of the predicaie s decidal in the modified environment.



9.13 Schema Unique Existential Quantification

9.13 Schema Unique¢ Existential Quantification

Abstract Syntax A schema gquantification is composed of a schema text and a schema.

SUNIQUEQUANT = 3, SCHEMATEXT o SCHEMA

Representation and transformation

Production

Concrete

‘3,° ,SchemaText, ‘o’ Schems

3, 5tes

Abstract 4‘
SIS

Type
(3,5te 5 )7 = ({S]™,((S8) )™ i—

Note: The signature is well-typed only when St and § is are well-typed and their gignatures

are compatible.

Meaning The valne of an existentially quantified schema expression 3, 5t » $ is the set of bindings
with aignature of § lesa 51, such thal there exists a unique hinding of §¢ so that the union of the two

bindings is an extension of §:

{3,5te 55 = To he defined

7 Base Sundard Vemsion 1.Q printed 30th November 1992

103



9 SCHEMA

9.14 Schema Repaming

The renaming operation S{new/ old] substitutes the new variable name for the old in the schema.

Abstract Syntax A schema renaming consists of a scheina and 2 renaming list.

SRENAMING = SCHEMA RENAMELIST

Represeniation and transformation

Production Concrete Abstract

CmprdSchl,Renamebsst | S{z /y1, 22/ y2, -+ Za/¥n] {5]5-( T /Y sTaf Yare o T fYn > i

Type Schema renaming changes the names ol the elements in the bindings, and lience the signature.

(SINN)™ = (S 33({NIY x1)

Meaning
(SN s = (S)™s33(NE} <1
Note: When more than oue variable is to be substituted, the substitution is simultaneous.

Anysubstitutions for non-existen! names are ignored. Each old name can only be substituted
by one new name. Likewise. each new name can be a substitute for only one old name.



8.15
9.15 Schema Substitution
Abstract Syntax
SCHEMASUBSTITUTION = EXPcSCHEMA
Representation and transformation
Production Concrete | Abstract
Expression,'a’ Schema | oS [b]E@(S]S

Type
(6eS )™ = (1,[6]7 ; schemaT 1} & {5 )7

Meaning

(oS )™ = (LI -Ni@i (s
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9 SCHEMA

9.16 Free Variables

Table 27: Schemas and their free variables and alphabet

Schema Free Variables Alphabet
s {s}

Sfz,,... za) | {S}UG.z, U... U2,

[2]p] Gald | p) ad

T ¢, T aT
(SAT) b, SUp,T aSuaT
(Sv T} $,5u06,T aSUaT
(§=T) &Sue,T aSuaT
(S&T) ¢S U, T aSuaT
(YSte®) | @aStue,T aT\aSt
(35teT) | ogStue,T aT\aSt
(3,5teT) |¢aStue,T aT\alt
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Table 28: Substitution into Schemas

0.18 TFree Variables

Substitution

Fquivalence

boS
buSlz,,... &)
beld | p]
bemT

Bo(S A T)
ba(S v T)
be(S = T
bo{S & T}
bo(V St e T)
bo(3 St e T)
bo(3, StaT)

5
S[bezy, ... boz,)
[bed [ (44 La]cp)
=bzT

(beST A (baTY
(ba8) v (beT)
(bo§) = (beT)
(buS) ¢ (baT)
VoSt e baT
JbeSte bl
3, beSt s b T
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10 Paragraph

PAR = GIVENSETDEF
| GLOBALPRED
| GLOBALDECL
| GENERICDECL
| GLOBALDEF
| GENERICDEF
| CONJECTURE

Each paragraph of Z can do two things: Augment the environment by a declaration and strengthen the
properly by a predicate. Each paragraph is considered as a relation between environments. The domain
of this relallon contains all the environments in which the paragraph is well-typed and any predicates
contained within it are true. These environments are related to those which include the new variables
declared in their signature and which satisly any property dencled by the paragraph.

{PAR}T : Tenv + Tenv

{PAR}* : Env e~ Env

We can prove the following

F{Par)”;T € T;{Par}”
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10.1 Given Sets

10.1 Given Sets

The given set definition [ X1, X5,..., X, | introduces the sets Xy, X3,..., X, without determining
their elements,

Note: Distinctly named given sets have distinct types and hence are incomparable.

Abstract Syntax

GIVENSETDEF = given [WORD,WORD,..., WORD]

Representation and transformation

Production Concrete Abstract

|
(", Word,{*, Word} , 7 | [ X1, Az,..., X ]| given (X,,..., Xp)

Type The declaration of given sets given [2),...,7,] causes the type environment to be suitably
enriched. Each name is given the power set type of the given type of that name. These declarations over-
ride the environment. Note that a given sel definition of N results in N having the type powerT givenT N.

{given{X,,..., X} }7 = (1,({X,,..., Xn} < givenT ; powerT)®) ; &
Meaning To enrich the meaning environment, we construct a binding of the given set names {those
in ran s} to typed values in the world of sets—{for this to be carrect, the bindings must be such that the

given sets do indeed have power set type. The environment is updated with this binding.

{given(X,,..., X} }* = (L, ({X...., X,)} < givenT } (power T, Carrier))®) ; &
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10 PARAGRAPH

10.2 Constraints

A Constraint is a predicale appearing on its own as a paragraph. It denotes a property of the values of
variables dedared elsewhere with global scope. This property is conjoined to the global property.

Abstract Syntax

GLOBALPRED = where PRED

Representation and transformation

Production

Concrete

Abstract

Predicate

P

wheref PI¥

Type A wnstraint adds nothing to the epvironment, so it is that subset ol the identity relation
restricted to the environments in which the predicate is true.

For the type environment;

{P}T = l{Pu‘T

Meaning For meazing environment:

Py = ]{P]}M
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10.3 Globai Declaration

10.3 Global Declaration

An axiomatic definition introduces variables and apecifies further properties of the elements denoted by
them.

Abstract Syntax

GLOBALDECL = defn SCHEMATEXT

Representation and transformation

Prodnclion Concrete Abstract

‘AX' DeclPart, 'ST' AxiomPart, 'END’ | ‘A%’ D ‘ST’ P'END' | detn {DYP | [PV
‘AX' ,DeclPart, ‘END’ ‘4%’ D ‘END’ defn [ DJ? | true

The abstract form of an axiomatic definition is a pair of paragraphs, one containing a dedaration and
the other a predicate. If the AxiomPart is omitted the the abstract form is one declaration paragraph.

Type When new variables are declared the environment is enriched by a function from their names
to one from their empty generic parameter list to their meaning. We give as its value a set of bindings,
one for each name declared. In obtaining the binding, we enrich the environment with the declaration
in such a way that the constraint is satisfied. The names in the declaration are bound to their values
in this enriched environment. Formally:

{defaD|P}" = (D|P}"

Meaning
{deaD | P} = (D|P}

Note The sets from which the elements denoted by the variables can be drawn are defined by the
conjunction of the constraint of the DeclPart and the property in the AxiomPart.

The signature of the DeclPart is joined io the global signature. The canstraint in the DeclPart and the
property of the AxiomPart are conjoined lo the global properly.
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10 PARAGRAPH

10.4 Generic Declarations
A generic definition of variables adds these variables to the dictionary and maps them to a [unction

ftom all possible instantiations of their generic parameters to the values of the variables wirh these
instantiations.

Abstract Syntax

GENERICDECL = gendef [WORD,WORD,...,WORD! conzt SCHEMATEXT

Representation and transformalion

'roduction ‘ Concrete Abstract
; e — [R—
| "GEK’,GenFormals,'BAR’, ‘GEN' | AL, Ay, .. X, PBAR gendef { X., X,;, .., X, )
1 DeclPart,*3T', AxiomPart,’'END* D 3T” PEND' const[DjD where {f']r
‘ ‘GEN’,GenFormals,'BAR’, ‘GEN' { A1, X7,. .., X, |'BAR gendef { X,, X.,..., X5 )
1‘ DeclPart,*END’ D END’ l:onsl[IJ]P where trus
|
Type

Value A genetic definition introduces a family of variables, parameterised by the generic parameters
of the list GenFormals.

Note In ¢ GenericDef, the DeclPart decieres the names of the yeneric vomalies whose typez can te
Artertmined wpon inslantiation of the formal paramcters. The predicate in the AxiomPart delermines the
clements denoled by the variables for each value of the forma! paremeters.

Rrecursive generic definitions are nc! aifowed The generic definilicrn muast nol place any restrechian gn
the generic parameters.

A generic vanable has glebal scope, ezcluding the declarution list in which il is declared and any construct
in which its name s re-used for o local varioble,

The paramelers of @ generic definition are local to the definition. but they can be instantiated by elements
of set type wvhen the generic variable is used.

A generie definition does not give a single type: ralker. a funclion from the generic perametcers te types
in defined.
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1.5 Global Deflnitions

10.5 Glebal Definitions

Abstract Syntax
GLOBALDEF = abbr WORD = EXP

Representation and transformation

Note: A SchemaDefdefines a new schema. There are two forms for a schema definition. The
horizontal! is the primary form. The vertical form, using a schema box, is given a meaning
in terms of an equivalent horizontal definition.

Production Concrete | Abstract

SchemaName, ‘=’ Schema
‘SCYH’ , SchemaName, ‘15" ,DeclPart, ‘ST’ AxiomPart, ‘END’
‘SCH’ , SchemaName, ‘IS’ ,DeclPart, ‘END’

Ident, ‘==" Expression

Type When a schema or variable is declared the name iz added to the type-enviroament and is
mapped 10 the type of the schema or expression.

{abbrN 2 X} = (A (NLIXT )i {-}ie

Meaning When a schema or variable is declared the name of the schema is added to the environrnent
and is mapped to the meaning of the schema or expression,

{abbrN = X M = (N IXT)i{-Dia

Note

o The horizontel farm of the definition defines the schema with name SchemaName as the scherna
denoled by the SchemaExpr.

s The vertical formn of the definition defines the scherna with name SchemaName as the schema
denoted by the schema ezpression eonstructed from the schema lext comprising the horizontal
equivalents of the DeclPart and the AxiomPart (see Veriical Form).

A SchemaName may be used lo define only one schema within a specification.

A Schema has global scope ezcept within the lext of its definition, Recursive schema definitions are nof
alfowed. The acope of variables introduced in the DeclPart is local lo the SchemaDef ond includes the
AxiomPart.
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10 PARAGRAPH

10.6 Generic Definitions
A generic definition of variables adds these variables to the environment and maps them to a fuuction

from all possible instantiations of their generic parameters to the values of the variables with these
instantiations.

Abstract Syntax
GENERICDEF = abbr WORD[WORD,WORD,...,WQR0] = EXP

Representation and transformation

Producion Concrete | Abstract

SchemaName,GenFormals, ‘=’ Schema
‘8cy’ , SchemaName,GenFormals, ‘IS ,DeclPart, ‘ST’ .AxiemPart, 'EXD’
‘SCH’ , SchemaName,GenFormals, ‘I8’ ,DeclPart, ‘END’

Ident,GenFormals, ‘==",Expression ;

Word, InGen, Word, ‘==" Expression

PreGeu, Word, '==",Expression

Type
{abbrN[S,,...,Sm] = X }* =
{
1

) ML (S, Plype® 13), ..o (Sun®s Plype® 330) 1 (. 0D 3008, 17 IS0 70 IX D)
@

Value

Note [r s GenericDef, the DeclPart declares the names of the generic variables whase lypes can be
delermined upon énstantiation of the formal parameters.

An abbreviation definition can be used lo define g possibly generic variable which is named by an iden-
tifier Abbrey,

The voriable defined by the expression can lake three forms:

» Poswibly Generic Varable dent.

* Prefu Generic Symbo! PreGen.
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10.6 Generic Definitions

s Infix Generic Symbol InGen.

In the laiter two cases, the names of the generic parameters. Word indicate the posilions of the
actual parameters which can be supplied when the variables are used.

A schema may be defined with gencric paramelers and when wsed i must be always inslantiated.
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11 Specification

A specification is constructed from a seqnence of paragraphs:

Abstracl Syntax

SPEC = PAR ,..., PAR

Representation and transformation

Productior Cencrete Abstract

{ Paragraph] , Py Narrative. .. Narrative P, [P, j°*% and ...and [P, AR
{Narrative,Paragraph},

{ Narrative]

Type A specification is weli-typed il the emply type environment is in the domain of the typing
relation.

Meaning The meaning of a specification is the set of environments which are related to tlhe empty
environment by the paragraphs of the text. These are al} the environments which are enricbments af the
empty environment by the specification. A sequence of paragraphs can be composed together. They
denote a relation between environments. This relation is the sequential composition of the relalions
denoted by the individual paragraphs.

zanPiand ., .andP, = AP ;. (B )@

Note A Z specification consisis of a sequence of paragraphs separated by puragraph seperators. These
paragraph seperators may include explanatory tert. The global signatur: and property ere eonsirucled
from the ncanings of these paragraphs.

A peragroph is either a definition or a consiraint,

A definition introduces Dasic types, schemos, or variables (named elements, scis tuples or bindings)
together with constraints on them. The effect of a definition 15 to augmen! the global signature and io
canjoin tts constraint with the global property.

A eonstminl denotes o property on varigbles and schemas declared elscuhere. The effect of @ consiraint
is to conjoin its property with the global property.

A apecification is well typed if every ferm and predicate within the paragraphs iz well typed.
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A Abstract Syntax

This annex containa the abstract syntax for Z. The metalanguage used is a form of BNF. The notation
X,....X denotes zera or more occurrences of X separaled by commas.

A.1 Specification

SPEC = PAR ,..., PAR

A.2 Paragraph

PAR GIVENSETDEF
GLOBALPRED
GLOBALDECL
GENERICDECL
GLOBALDEF

GENERICDEF

CONJECTURE

GIVENSETDEF

given [WORD,WORD,.. ,WORD)

GLOBALPRED = where PRED

GLOBALDECL = defn SCHEMATEXT

GENERICDECL = gendef |WORD,WORD,..., WORD| const SCHEMATEXT
GLOBALDEF = abbr WORD = EXP

GENERICDEF = abbr WORD[WORD,WORD,... ,WORD] = EXP
CONJECTURE = conj DECL | PRED,...,PREQ I PRED,...,PRED



A.3 Schema

SCHEMA

SDES
SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTION
SIMPLICATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SDECORATION

SCHEMASUBSTITUTION

SDES

GENSDES
SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTION
SIMPLICATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SDECORATION
SCHEMASUBSTITUTION

WORD

(DECL | PRED)
—~SCHEMA

SCHEMA v SCHEMA
SCHEMA A SCHEMA
SCHEMA = SCHEMA
SCHEMA <« SCHEMA

SCHEMA | SCHEMA

SCHEMA \ [VARNAME,.. . ,VARNAME]
Y SCHEMATEXT o SCHEMA
FS5CHEMATEXT » SCHEMA

3, SCHEMATEXT » SCHEMA

SCHEMA RENAMELIST

= SCHEMA ; SCHEMA

SCHEMA DECOR
EXPoSCHEMA
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A ABSTRACT SYNTAX

A 4 Schema Text

SCHEMATEXT = SIMPLESCT

| CMPNDSCT

| SCTSUBSTITUTICN
SIMPLESCT = DECL
CMPNDSCT = DECL | PRED

SCTSUBSTITUTION = EXPoSCHEMATEXT

!

A.5 Declaration

DECL = SIMPLEDECL
{ SCHEMAINCL
{ COMPNDECL
| DECLSUBSTITUTION
SIMPLEDECL = VARNAME,VARNAME, ..., VARNAME : EXP
SCHEMAINCL = SCHEMA
COMPNDECL = DECL; DECL

DECLSUBSTITUTION = EXPoDECL

A.6 Predicate

PRED EQUALITY
MEMBERSHIP
TRUTH
FALSEHOOQD
NEGATION
DISJUNCTION
CONJUNCTION
IMPLICATICN
EQUIVALENCE
UNIVERSALQUANT
EXISTSQUANT
UNIQUEQUANT
SCHEMAPRED
PREDSUBSTITUTION

EQUALITY = EXP = EXP
MEMBERSHIP = EXP &€ EXP
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A.7 Expression

TRUTH = true

FALSEHOOD = false

NEGATION = =PRED

DiSJUNCTION = PRED v PRED
CONJUNCTION = PRED A PRED
IMPLICATION = PRED = PRED
EQUIVALENCE = PRED <& PRED
UNIVERSALQUANT = YSCHEMATEXT & PRED
EXISTSQUANT = JSCHEMATEXT a PRED
UMIQUEQUANT = 3, SCHEMATEXT s PRED
SCHEMAPRED = SCHEMA

PREDSUBSTITUTION = EXPsPRED

A.7T Expression

EXP IDENT

GENINST
NUMEBERL
STRINGL
SETEXTN
SETCOMP
POWERSET
TUPLE

PRODUCT
TUPLESELECTION
BINDINGEXTN
THETAEXP
SCHEMAEXP
BINDSELECTION
FUNCTAPP
DEFNDESCR
IFTHENELSE
EXPSUBSTITUTION

IDENT = VARNAME

GENINST = VARNAME [EXP,EXP,...,EXP]
NUMBERL = NUMBER

STRINGL = STRING

SETEXTN {EXP,EXP,...,EXP}
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A ABSTRACT SYNTAX

SETCOMP = {SCHEMATEXT » EXP}
POWERSET = PEXP
TUPLE = {EXP,EXP,..., EXP,EXP)
PRODUCT = EXP x EXP x ... x EXP x EXP
BINDINGEXTN = { VARNAME ~» EXP, ..., VARNAME ~+ EXP)
THETAEXP = @ SCHEMA DECOR

| & SCHEMA
BINOSELECTION = EXP.VARNAME
FUNCTAPP = EXP(EXP)
DEFNDESCR = pSCHEMATEXT » EXP
SCHEMAEXP = SCHEMA

EXPSUBSTITUTION = EXP o EXP

A.8 Identifier
VARNAME = WORD DECOR

DECCR

[STK,...,5TK]

RENAMELIST = [VARNAME/VARNAME,. .., VARNAME/VARNAME]



B Representation Syntax

The concrete representation for Z is defined in four parts. The first is a context-free grammar, which
conforms to the BSI standard for grammars. The second, lexical analysis, describes the rules according
to which the character sequences are grouped into tokens, The Character set describes the character set
required to represent a Z specification. The fourth section, graphical canventions, details the conventions
used for Jayout tbat are adopted in this standard.

B.1 Grammar

The grammar is described using a BNF notation which employs the following special symbols:

the concatenate symbol

>
= the defire symbol

| the definition separator symbol

{] enclose optional syntactic jtems

{1 enclose syntactic items which may oceur 2eta ar more times
v single quotes used to enclose terminai symbols
Metaldentifier non-terminal symbols wrilten in sans-serif font.

H terminator symbol denoting the end of a rule
- subtraction from a set of terminala.
r.? *User defined rule.

The corcatenate symbol has a higher precedence than the definition separator symbol.

B.1.1 Specification
Specification = [ Paragraph; ,{Narrative,Paragraph},{ Nasrative/ ;

GivenSetDef
StructuredSetDef
AxiomaticDef

Paragraph =
!
!
| Constraint
|
|
I

GenericDef
AbbreviationDef
SchemaDef

Conjecture;

B.1.2 Given Set
GivenSetDef = ‘[ Word,{*," Word},"];

B.1.3 Structured Set
StructuredSetDef = Word,'::="Branch,{*{",Branch};
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B REPRESENTATION SYNTAX

Branch = Word
| ldent,*{’,Expression.*}’;

B.1.4 Global Definition

AxiomaticDef = ‘AX",DeclPart,'END’
| ‘AL'.DeclPart, ‘ST’ AxiomPart,'END’;

Constraint = Predicate;

B.1.5 Generic Definition

GenericDef = *GEN’.GenFormals, BAR' .DeciPart 'END’
| ‘GEN’,GenFormals,'B4R".DeclPart,'ST  AxiomPart,'END’;

AbbreviationDef = VarAbbrev
| PreGenAbbrev
| InGenAbbrev;
VarAbbrev = Ident,'==",Expression
| lIdent,GenFormals,'==",Expression;;

PreGenAbbrev = PreGen Word,'==",Expression;

InGenAbbrev = Word,InGen,Word,'==",Expression;

B.1.6 Schema Definition

SchemaDef = SchemaName,'Z’ Schema
| SchemaName,GenFormals,'=’ Schema
| *‘SCH"SchemaNarme,'15' DeclPart,'ST" AxiomPart,'END’
| *SCH’.SchemaName,GenFormals, I5’,DeclPart.'ST' AxiomPart,'END’
| *SCR’.SchemaNarne ‘LS’ DeclPart,'END’
| *sH’,SchemaName GenFormals, IS, DeciPart,'END';

B.1.7T Declaration

DeclPart = Declaration,{Nl,Declaration};
Declaration BasicDecl
CompoundDecl

DeclSubstitution;

CompoundDecl = BasicDecl,'; 'BasicDecl,{"; *.BasicDecl };



BasicDecl

SimpleDecl
Schemalncl

DeclSubstitution

— i

B.1.8 Schema Text

Schema Text

CmpndSctext
SimpleSctext

SctSubstitution

B.1.8 Schema

Schema

LogSch

LogSchl

LogSch2

LogSch3

LogSch4

CmpndSch

|
!

SimpleDecl
Schernalnel;

DeclName,{*,",Dec!Name]} '} Expression;

Schema;

Expression,'c’,Declaration;

CrpndSctext
SimpleSctext
SctSubstitution

Declaration,’|’,Predicate;

Declaration;

Expression,'s’ SchemaText;

SUnivQuant
SExistsQuant
SUniqueQuant
LogSch;

SEquivalence
LogSchl;

Simplication

LogSch2;

SDisjunction
LogSch3;

SConjunction
LogSché;

SNegation
Cmpnd Sch;

SComposition
CmpadSchl;
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B REPRESENTATION SYNTAX

CmgpndSehl = SRenaming

| SHiding

| CnpndSch2;
CmpndSch2 = SProjection

| CmpndS¢h3;
CmpndSch3 = PreSchema

| CmpndSché;
CmpndSché = SDecoration

| BasicSch;
BasicSch = §Construction

| SchemaRef

| GenSchemaRef

! SchemaSubstitution

| (", Schema,')’;
SUnivQuant = 9" SchemaText,'s" Schema;
SExistsQuant = ‘3",SchemaText,'s’,S5chema;
SUniqueQuant = ‘3, S5chemaText.'s" Schema;
SEquivalence = Log5ch,*e»",Log5Schl;
Simplication = LogSch2,'=’,Log5chl;
SDisjunction = Log5ch2,'v" LogSch3;
SConjunction = LogSch3,‘A",LogSché;
SNegation = ‘=7 LogSchd;
SComposition = Cmpnd3ch,';" CmpndSchl;
SHiding = CmpndSchI,'\"(",VarNamelisl,')’;
SRenaming = CmpndSchI,Renamelist;
SProjection = CmpndSch2,[',LogSch;
PreSchema = ‘pre "CmpndSch3;

5Decoration = Schema Decoration;



SConstruction

SchemaRef

GenSchernaRef

SchemaSubstitution

B.1.10 Predicate

AxiomPart

Sep

Predicate

LogPred

LogPredl

LogPred2

LogPred3

BasicPred

UnivQuant

= ‘[",Declaration,’|’,Predicate.’]’
| ‘[*,Declaration,’}’;

= SchemaName;
= SCMmauime"[’,Exprmion, {*, Expression} ]’

= Expression,’s’,Schema;

Predicate {Sep Predicate};

0ot

NJ;

UnivQuant
ExistsQuant
UniqueQuant
LogPred;

Equivalence
LogPredl;

Implication
LogPred?;

Disjunction
LogPred3;

Conjunction
BasicPreds

PreRelPred
CmpndRelPred
SchemaPred - ‘(".Schema,')’
Truth

Falsehood
(*,Predicate ')’
Negation
Membership
Equality
InRelPred
PredSubstitution;

Y SchemaText,'s’, Predicate;
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B REPRESENTATION SYNTAX

ExistsQuant = '3’ SchemaText,'s",Predicate;
UniqueQuant = *J,"SchemaText, ‘s’ Predicate;
Equivalence = LogPred,'¢s’ LogPred];
Implication = LogPred2,'=>’" LogPredl;
Disjunction = LogPred2,v’,LogPred3;
Conjunction = LogPred3,'A",BasicPred;
Negation = ‘-’ .BasicPred;
inRelPred = Expression.inRel .Expression;
CrmpndRelPred = InRelPred ,Rel.Expression,{Rel,Expressien};
Rel = g’

| =t

| InRel;
PreRelPred = PreRel,Expression;
SchemaPred = CmpndSch;
Truth = ‘*lrue';
Falsehoed = ‘false’y
Membership = Expression.‘c’,Expression;
Equality = Expression,'=",Expression;
PredSubstitution = Expression,'c’,Predicate;

B.1.11 Expression

Expression0 = DefnDescr

| Expression;
Exprassion = InGenExp

| Expressionl;
Exprssion] = CartProduct

| Expression2;
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Exprestion2

Expressiond

Expressiond

ExpressionS

InGenExp
CartProduct
InFunExp
PowerSet
PreGenExp
FunctApp
PostFunExp
SuperSeript

BindSelection

InFunExp
Expression3;

PowerSet
PreGenfxp
Expressiond;

FunctApp
Expression5;

PostFunExp
SuperSeript
BindSelection
TupleSelection
Ident

Genlnstant
SchemaExp
SetExtn

Tuple

Sequence

Bag

BindingExtn
ThetaExp
SetComp — *{’,SchemaExp.‘}’
LambdaExp
Numberl

Stringl

fThenElse
ExpSubstitution
(", Expressionl,*)";

Expression1Expressionl,lnGen, Expression;
Expression2,' x’,Expression2,{' x°, Expression2};
Expreasion2,InFun,Expressiond;

‘P’ Expression5;

PreGen,ExpressionS;

Expressiond,Expression5;
Expression5,PostFun,;
ExpressionS,E“P'°“i°"°;

Expression5.'." VarName;
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B REPRESENTATION SYNTAX

TupleSelection = Expressian5,'.’,Numberl;

|dent = VarName;

Genlnstant = Va'”ame"[’,Expreuion,{‘.',Expression}‘]';

SchemaExp = Schema;

SetExin = {"Expression0,{*,"Expression0},'}";

Tuple = ‘(",Expressiond,’,’ Expression0,{',",Expression®},’)’;

Sequence = *{"Expressiond, {'," Expression0},}";

Bag = ‘[ Expressiond,{*,' ExpressionQ],’]’s

BindingExtn = ‘4 "VarName '~ Expression0,{',",VarName, '~ Expressian0},} ’;
Thetabxp = ‘#",BasicSch,Decaration

{ ‘@",BasicSch;

SetComp = *{"SchemaText ‘e’ Expression),'}’
1 *{"SchemaText}";

LambdaExp = ‘A" SchemaText,'s’,Expressian;
DefnDescr = ‘p'SchemaText,'s" Expression
| ‘n'SchemaText;
Numbert = Number;
Stringl = String;
1fThenElse = “If’.Predicate,' Then',Expression ,' Else’ Expression,” Fi’;
ExpSubstitution = Expression,‘s’,Expression;

B.2 Lexical Analysis

Token A token is a sequence of characters, as defined in section B.3, conforming to the grammar
given in this section, whose terminal symbols are the sets of characters defined in section B.3, and
whose senlence symbol is Token. The different sorts of token correspond to the sorie of terminal
syrubols of the grammar of Z, together with an extra sort of space tokens.

A sequence of characters is interpreted as a sequence of non-space tokens by a left-to-right scan taking
takens which are as long as possible and then discarding any Space tokens. If it is not possible to do
this then the sequence of characlers is erroneous.
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B.2 Lexical Analysis

Note: The text of a Z document in the concrele representation may be considered at three
levels; as marks on paper, as a sequence of chatacters and as a sequence of tokens. The
transformation from characters to tokens is given by the following rules; these use the same
potation as the syntax definition but differ in meaning in thatl no twoseparators may appear
between adjacent terminals. Where ambiguity is otherwise possible, two consecutive tokens
must be separated by a separator.

Token = Word
| Decoration

| Narrative

| Number

| Stl'l'ng

| Punctuation
| Space;

Dperation Names

Opname ¢ _ JInFun,f Deef ! _°
' _ *InGenf _ "'
* _InRel,/ Decf," _°*
PreGen,” _°

¢ _ " PostFun,{ Decf

L LY LY (7%
- v =
i

1

|
|
|
| PreRel,/ Decjf, _"
!
i
|

Variable Names
VarName = Name
| “(*.Opname.'};
Declaration Names
DecilName = Name
} Opname,;
Schema Names

SchemaName = Word;

Name A name is a decorated word:

Name = Word,[ Dec/;
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B REPRESENTATION SYNTAX

Word There are three sorts of Word:

Word Alphanumeric

| Greek
| Symbolic;

Alphanumeric = (Letter, {Letter | Digit | (* — °, (Letter | Digit)}), {Subscript };

Greek GreekLetter, {Subscript};

Symbalic = {Symboal | Shift), {{Symbol | Shift)}, {Subscript}
| Puactuation, Subscript, {Subscript};

iTo maxiinise the Aexibility of the language. particularly when nsed for the metatheory of 1sell o7 of other languager even

a punctuation character can be used Lo form a symbolic identifier by atiachiug a subscript.]

[Since the mandatory Greek characters are insufficient for actually syping real Greek words [there being no breathings
ste,), the view is taken that Greek letters work as in ordinary malhemalics, afy containing three names. This seems Lo
be a good compromise, and works ficely with A, y, denlifiers etc |

Decoration Decoration comprises just a sequence of stroke characters:

Decoration = Stroke,{5troke};

[We are assuming thal proposal Decor.2 is adopled and that it 13 “umplemented” in the transformauon inlo abstract
syntax, Decor.3 is equally simple, and essentially just says Vbal decoration is allowed ai the end of an identifier as part of
the identifier |

Numbers A numeric literal is a non-empty sequence of decimal digits:

Nurnber = Digit, { Digit};

Strings 4 string literal denotes a sequence of arbitary text:

String = ?/mplementationDependent?;

Narrative The means for delimiling the narrative sections between formal material in a Z docuent
is not defined in this standard:

Narrative = 7/mplementation Dependent?;

Punctuation This kind of token includes the stop and box characters of section B.3 symbols.

Punctuation = Stop
| Box;
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B.3 Character Set

Space A space token is a sequence of one ot more white space characters.

Space = Format, { Format};

B.32 Character Set

At tbe most primitive level, a physical object (e.g, 2 document on paper of stored electronically) is
interpreted as a finite sequence of charaeters. The method of deriving a sequence of characters from a
physical object is not defined in this standard, however this section places minimum requiremeats on
tbe character set.

The character set must include, at least, the characters in the sets Letler, G'reek, Digit, Symbol, Stop,
Stroke, Subscripl, Shift, Ber, Quote, Ascii and Formral described in the following wable. Additional
characters may be used and are to be taken as elerments of the set Symbol.

A 3] C D E F G H I J
K L M N ¢} P Q I 5 T
L v w X Y Z
Letter a b ¢ d e f g ko i j
k 1 m n ] p q r s t
u v w X ¥ z
a 4 g & « ¢ n @ ¢ x
A N v £ T P T v
Greekletter [ X ¥ @
T A a
A =z n b T L]
w L1
Digit 0 1 2 3 4 5 6 7 8 b
— -+ - U \ - o ¥ n f
InFun ; o @ # 4 b a .
InRel # ¢ c C < > < >
lnGen | = =~ = -~ - ]
u n 2 ( ) Y ~
| I N A S B A
Symbol A v o o = < v 3 .
X = & HES
Stop , H : ( ) F N F3
Underscore | _
Stroke ' ? !
Subscript Subsacripted forms ol any of the above characters,
Shift A1
Bor AX SCH GEN END IS 5T BAR
Quote "
Ascii A member of the IS0 character set with code in the range 32 Lo 126.
Format A format character such as space, tab, line-break or page-break.
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B REPRESENTATION SYNTAX

{ /" and [ are characters o shift in and oot of superscription. Transitive closure, reflexive-Lransitive closute and relational
inverse can be written as ~ + [, /= 1 and ], each of which is an identifier.]

[Letter might slso include other fonts, e.g. italic or bold. [f so, there is a question as Lo whether the atandard should insist
that, e.g., “A’ be treated the same as *A'7)

[The Greek letter omicron is not mandatory since it looks like an ‘o' in sume fonts.]

[The list of Symbols ahove should be extended in the actual standard io cover the requirements of the toclkil }

41, ST etc. are intended to represent characters for deawing boxes of various sorts.
P -4

B.4

Graphical Conventions

The following graphical conventions are adopted in this staudard:

134

The usual English orthographic conventions for interpreiing printed text are assumed (division into
pages and lines, direction of reding, ignoring page fueniture such as leadinge and page numbers,
identification of printed or written characiers, and so on.)

Sequences of non-Z text mmay be interspersed with Z text using any convention of presentation
which allows the Z text to be upnambiuonsly identified.

Multiple newlines in succession are considered as one.

A nevline preceding or succeeding characters in the sets InFun, InRet, {nGen and in Symbols
ignored.

Characters in the set Subscript are written in the subseript position.
The characters ,” and | delimil seqnences of characters 1o be written in the superseript position.

If &, D, P and § arbitrary sequences of characters not containing any of the box characters (AX,
BAR, 5T, END, SCH GEN and IS), then:

— M D ST P END is written as:

D
P

— AX D END is written as:
{ o

— GEX G BAR D ST P END is written as:

—=(G]
D

P
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B.4 Graphical Conventions

— GEN (7 BAR [J END is writien as:

" -

— SCH 5 I35 £ ST P EKND is writlen as;

)
o

P

— and SCH § IS D END is writlen as:

(o '
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C Mathematical Toolkit

This section defines a Mathematical Toolkit or Library for nse with the Z notation. The principle is
that those constructions that can be defined in terms of otbers are included in the Toolkit rather than
in the core notation—this simplifies the core notation,

Most users will want to make use of the constructions defined in this section. This can therefore be
regarded as a basic Toolkit, which nsers may augment with their own definitions, or replace il these
definitions are not suitable for their use.

In this version of the Base Standard, the list of defined items lollows the customary list of Toolkit
items. Later versions of the Standard may include further definitions and explanations, and will link
the Toolkit to related work on the semantics and prool system for 7.

Dyefinitions of the Mathematical Toolkit are informally explained and illustrated. In some cases an
illustration for one part of the Toolkit may rely on terms defined earlier in tle toolkit. Many of the
definitions given here are generic with respect to one or more sets.

Note: Instontiation of a generic definition car be performed wilh any appropriate sels, not nceessarily
the mazimaol sets of their types. However the irformal descriptions of these definitions are often here
expressed as if the sels used for inslantialion were in fuci types, since that is the way in which these
definitions are commonly instantiated in Z specifications,

Reviewers of the draft standard are invited to comment on s approach.



C.1 Sets

C.1 Sets

Name

# ~ Inequality

¢ — Non-membership
Definition
={X]
F ik~ X
¢ X—~PX

Vz,y: X ez F ye-{z=y)
Vr:X; S:PAsrd e (el

Description

Ineguality js a reletion between values of the same type. The predicate z 2 y denotes true when z = y
denotes false,

Non-membership is a relation hetween values of a certain type aad sets of values of that type. The
predicate r ¢ 5§ denotes true when z € S denotes [alse.
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C MATHEMATICAL TOOLKIT

Name

&)

Empty Set
C -~ Subsel relation

C - Proper subset relalion
P

1 Yan-empty subsets

Definition

DX)=={z:X| false )

=[]
C C_iPXePX
YS,T:PXe

(SCTe(Vr:XereS5>z€T)A
SCTeSCTASET

P X=={S5:PX|S5%0}
Description

The empty sot of values of a certain type is the set of values of that type that has no members.

If S and T are sets of values of the same type, then § € T is a predicate denoting true if and only if
every member of 5 is a member of T. The empty set of values of a certain type is a subset of every set
of valucs of that type.

II § and T are sets of values of the same type, then § C T is a predicate denoting true if and only if
every member of 5 is a member of T and § and T are not equal. If S is a proper subset of T, then it
is also a subset of T. The empty set of values ol a certain tvpe is a proper subset of every non-empty
set of values of that type.

If X" is a set, then P, X is the set of all non-empty suhsets of X, P,.Y is a proper subset of P X.
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C.1 Sets

Name
U — Set union
N - Set intersection

\ — Set difference

Definition
={X]
Uy Nt PXXPXYX —PY
v, T:PX e

SUT={z:X|zeS5vzeT}A

SnT=4r: \{reSA:eT}v

S\T= {: X|zeSrreT}
Description

The union of two sets of values of the same type is the set of values that are members of either set.

The intersection of two sets of values of the same type is the set of vajues that are members of hath
sets.

The difference of two sets of values of the same types is the set of values that are members of the first
set but not memhers of the second.
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C MATHEMATICAL TOOLKIT

Name
U — Generalized union

N — Generalized intersection

Definition

=[X]
un:P(PX)—PX
VA:P(PX)e
Ud={z:X|(I5:4ezeS)}A
NA={z:X|(¥5:Aeze8))

Description
The generalised union of a set of sets of values of the same type is the set of values of that type that
are members of at least one of the sets.

The generalised intersection of a set of sets of values of the same type is the sot of values of that type
thatl are members of every ane of tle sets.



C.l  Sets

Name

firat, second —~ FProjection funclions for ordered pairs

Definition
—{X. Y]
first .1 X xY — X
second: X x Y =Y
Yr:X;y:Y o

first(z, y) =z A
second(z, y) =y

Description

For any ordered pair (z,y). first{z,y)is r and second(r. y)is y.

Ifpisoftype X x Y, then p= (first p, second p).
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C.2 Relations

Name
— — Binary relations
— — Maplet
Definition

A—V==PXxVY

=[X,Y]

L= AXY - XA xY
Yr:Xiy: Vo

z—y={(zy)

Description

X — Y is the set of all sets of ordered pairs whose first members are members of X and whose second
members are members of 1. To declare R : X « Y is to say that R is such a set of ordered pairs.

The maplet forms an ordered pair from two values, so il = is of type X and y is of type Y, then x —
is of type X x Y. z v+ y is thus just another notation for (z, ).



C.2 Relations

Name

dom,ran — Domain and range of a relation

Definition

[x,Y]
dom:{(X ~ Y)—=PX
ran: (X - ¥)—=PY

VRE: X+ VYe
domR={z:X;y:Y|{(z—yleRozx}nA
ranfi={z:X;y:Y|(xry)ERey)}

Description

The domain of a relation R is the set of first members of the ordered pairs in . If Risof trpe X ~ T,
the domain of £ is of type P X, If R is an empty relation. then its domain is an empty set.

The range of a relation J is the set of second members of the ordered pairsin . If Risof type X — Y,
the domain of K is of type P Y, If i is an empty relation, thea its range is an empty set.
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Name

id — [dentity relation

; - Relational composition

o - Backward relational composition
Definition

dX=={z:Xwsz—1z}

[X.V,X]
X e V) x Y = Z)— (X — Z)

——

—o (Y =2y x (XN - VY= {XY =12

— 1

RX—V;5:Y =2
RiS=SaoR={x:XN;y:V;:2:2]
(r—yle RA(y—z)eSez— =)

I
|
|

Description
The identity relation on a set X is the relation that relates cvery member of .Y to jtsell. Tts Lype is
X ~- X. The identity relation on an empty set is an empty relation.

The relational composition of a relation R : X —« ¥V and 5: Y ~ 2 is a relation of type X — Z
formed by taking all the pairs (z,y) of R whose second members are in the domain of 5, and relating

£ Lo every member of Z that y is related to by 5.

The backward composition of § and R is the same as the composition of # and 5.
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C.2 Relations

Name
< - Domain restriction

> — Range restriction

Definition
[X.Y]
_atPXx (X = ¥Y)= (X~ F)
(X = YV)xPY (X~ YY)

YS5:PX; H:X —Ya
SaR={z2:X,y:Y|zeS5Aa(X—y)efler—~y}

| YR:X —~Y; T:PYa
il RoT={z:X;y:Y|(a—y)eRAyeToz—y])

Description
The domain restriction of a relation R : X — ¥ by aset §: P X is the set of pairs in # whose firs(
members are in 5. 5 <1 R is a subset of R, and its domain is a subset of 5.

The range restriction of a relation #: X — ¥ by aset T : P Y is the set of pairs in R whose second
members are in T'. R > T is a éubset of R, and its range is a subset of T.
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Name
<4 - Domain anti-restriction

p — Range anti-restriclion

Definition

=[X,¥)

—d P XX (A =¥ = (X T)

B (X VIAPY (X = })

- VS PX;R: X~ Yo
SaR={z:X;y:Y|zg5Alz—y)ERaz—y}

VREX =Y, T:PYo»
ReT={:::Xiy:Y|{z—y)eRAygToz—y}

Description
The domain anti-restriction of a relation R : .Y — ¥ by a set 5: P X is the set of pairs in R whose
first members are not jn §. 5 4 R is a subeet of £, and its domain contains no members of 5.

The range anti-restriction of a relation R : X < ¥ by aset T : P} is the set of pairs in & whose
second members are not in 7. R b T is a subset of R. and its range contains no members of 7.



C.2 Relations

Name
_~ — relational inversion
Definijtion
—(X, Y]
SN X =Y~ (Y = X)
YR: X = Yo
Rr={z:Xiy:Y|(z—yleRayrz}
Description

The inverse of a relation is the relation ohtained by reversing every ordered pair in the relwion.
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Name

-{-) - Relational image

Definition
—[X, Y|
(Y =YV} xPYX—PY

PR:X = ¥, 5:PXs
RSh={z:X;y: Y| |zeSAaiz—y)eRey}

Description

The relational image of a sev §: P X uuder a relation 2: X — Y is the set of values of type } that
are related under R to a valve in 5.



Name
.t — Transitive closure

_" — Reflexive-transitive closure

Definition

C.2 Relations

[x]
FJ._- (X = X) = (X = X)

YR:X = X e
Rt=n{Q:X—X|RCQAG;QZQ])A
B=n{Q: X-X|dXCQARCQAQIQEQ]}

Descriplion

The transitive closure of a relalion £ : X — X is the relation obtained by relating each member of
the domain of X 10 its images under R, and to auything related to any of its images under R by any

number of steps of application of R.

The reflexive transitive closure of a relalion R : X' — X is e relation formed by extending the traasitive

closure of R by the identity relation on X
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C.3 Functions

Name
—~ — Partial functions

-— — Total functions

Definition

{f:X-—-Yf(VI:X’; y1,y2:Yo
(zem)efr(z—w)ef=n=1))
X ~Y=={f:X V]|domf=X}

Deseription

The partial unctions from X 1o ¥ are a suhset of the relations X' — Y. They are distingnished by the
property that each z in X is related to at most one y in ¥. X + Y is the set af all partial functions
from X to ¥, and to declare / ; X ++ Y is to say that f is onc such partial function.

The total functions from A to } are a subset of the partial lunctions X - ¥. They arc distinguished
by the property that each z in X is related to exactly one y in ¥. X — Y is the set of all total
functions from X 1o Y, and to declare f : X — ¥ is lo say that f is one such total function. The
domainof f: X — ¥ is X.



C.3 Functions

Name
~ — Partial injeclions

~— — Total injections

Definilion
X Y==
{/:Xw Y| (Yo m:domfef(z)=Jiz) =0 =13) }
Y= Y==(X= ¥IN(X2Y)

Descriplion

The partial injections from X to ¥ are a subset of Lhe partial functions A -~ Y. They are distinguished
by the property that each y in ¥ is related to al most one z in X. Thus the inverse of a partial injection
is also a partial injection. X ~ Y is tlie set of all partial injectians from X to Y, and lo declare
f:X + V¥ istozay that [ is one snch partial injertion,

The total injectians from X ic Y are a subset of the partial injeetions X = ¥ _ They are distinguished
by the property that each r in X is related to exactly one y in ¥. X — ¥ is the set of all total
injrcticos from X to Y, and to declare f : .\ — ¥ is lo say thet [ is one such tatal injection,
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Name
«+ ~ Partial surjections
— — Total surjections

~= — Bijections

Definition
XoY=={f:X =¥ ranf=Y)
XYate==(X = Y)A{X = ¥)
XY abe=(X-V)INn(X~Y)

Description

The parlial surjections from .X to ¥ are a subsel of the partial lunctions X - Y. They are distinguished
hy the properly that each y in Y is related 1o at least one z in X, X + Y is the set of all partial
surjections from X to Y, and to declare f: X ++ Y is to say that [ is one such partial surjection.

The total susjections from X to ¥ are a subset of the partial surjections X + ¥. They are distivguished
by the property that each z in X is related to exactly one yin Y. X -» Y is the set of all total surjections
from X to Y, and to declare f : X — Y is to say that f is one such total surjection,

The bijections from X to ¥ are a subset of the total surjections ¥ — ¥. They are distinguished by
the property that each y in ¥ is related Lo exactly one rin X. X —~ ¥ is the set of all bijections {ram
X to Y, and to declare f ; X »» Y is to say that f is ane such total hijectiou.
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C.3 Functions

C.3.1 Name

& — Fupctional overriding

C.3.2 Definition

—[X,¥)
X e YIX(X V)= (X = Y)

Vig: X~ Y e
feg=((domg)af)ug

Description

Il f and g are hoth functions from X 1o Y, then the functional overriding of / by g is the function g
together with such pairs of / as have first elements different from the first element of any pair in g.
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C.4 Numbers and finiteness

Name
N — Natural numbers
4 — Integers
+,—,+div,mod — Arithmetic operations
<L 2> — Numerical comparisen
Definition
2
N:P?
et — 2 x2—2
_dive,—med_:Z2x{2\{0})—12
ey

. . S S S

N={n:2|n20}

.. other definitions omitted...

Description

The natural numbers are the integers from zero upwards. The type of N is P 2, since N is a set of
integers. The declaration n : N makes 2 the type of n, and entails the property n > 0.
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C.4

Name
Nt — Strictly positive integers
suce — Successor function
Definition
N == N\ {0)

suee *N — N

¥Yn:Nesuee{ny=n+1

Description

The strictly positive numbers N are the narural numbers except zero,

Numberas and finiteness

The sucressor of any natural number is the next natural number in ascending order.

Z Base Standard Yersion 1.0 printed 30th November 1997

155



C MATHEMATICAL TOOLKIT

Name

RE — lteration

Definition

=[x}
iter 12— (X o X) — (X — X)

VR:X = X
dler 0 R=IdX A
(Vk:Neiler (k+1)R=R;(iter k R)} A
(Yk:Neiter (k)R = iter k {R"))

Description

The iteration of a relation # : X — X by zero is the identity relation on the set X. The iteration of
a relation R: X — X by one is the relation ®B. The iteration of a relation R : X' — X by an integer
greater than one is the composition of R with its iteration by the next lower integer. The iteration of a
relation £: X — X by an integer less that zero 18 the iteration of the inverse of & by the corresponding
positive integer, Thus the iteration of R by —1 is the inverse of R.

The form: iter ¥ R is usually written R*.



C.4 Numbers and finiteness

Name

. — Number range

Definition

il x2—P2

‘vTa.b:Zu
a..b={k:2lagk<tb}

Description

([ a and b are integers. and a is less than b Lhe number range a..b contains @, b and any integers
betvzen. If ¢ is equal to b. the number range a..b is a singleton set conlaning a only. i o is greater
than b, the numher range 4.4 is an empty set of integers. The number range a..b is always finite, and
ifb>aitssizeis b—a + 1.
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Name
F — Finite sets

F, — Non-empty finite sets

# — Number of members of a set
Definition
FY =={5:PX|In:Nedf:1..n—-Seranf=5]
F,X ==F X\ {D)
=[]
#:FX =N
YS5:FX e
#S5=(pn:N|(3f:1..n—Seranf =50

Description

A set is finjleif its members can be put into one-to-one correspondence with the natural numbers from
1 up to somelimit. F X is the set of all finjte subscts of X'. F X is a subset of P X. If X is finite, then
it is a member of F X.

The non-empty finite subsets of X are the finite subsets of U except the empty set.

The nuruber of members of a finite set is the upper limit of the number range starting with 1 that can
e put into one-to-one cortespondence with the mebers of the set,
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C.4 Numbers and finiteness

Name
-+ — Finite partial funclions
= — Finite partial injections
Definition
AXw»Y=={/:X~Y|domfcFX}
AwY==(X=YIN{X =T}
Description

The finite partial fonctions from X to ¥ are the partial (unctions from X o Y whose domains are
finite sets.,

The finite partial injections from X to ¥ are the partial injections from X to Y whose domajns are
finite sets.
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Name

win, mar — Minimum and maximum of a set of numbers

Definition
min:P; 2+ 2
maz :P, 2~ 2
min ={5:P,2; m:2|
mESA(VRn:Sem<n)eS—m}

mar = {5:P2;m:2|
mESAVn:Sem>2n)eSm]

Description

Flie minhnuem of a non-empty set of integers that has a least member is the least member. Sets of
mtegers thal have no least member are nol in Lthe domain of min. [f a < b, min a..b = a.

The maximuam of a non-empty set of integers that has a greatest member is the greatest member. Sets
of jntegers that have no greatest member are not in the domain of max. Il @ € &, maxa..b=b.
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C.5 Sequences

C.5 Sequences

Name
seq — Finite sequences
seq, - Non-empty finite sequences

isrq -~ Injeclive sequences

Definition

SBq-l
seqg X ==seq X N (N «~ X)

Description

A sequence is a finite aggregate of values of the same type in which each value can be identified by
its position in the sequence. The formal definition establishes a sequence as a partial function relating
the numbers from the set 1..n for some n (Lhe domain of the scqeence) to the valves (the range of
the senuence). seq X is the set of all finite sequences of values of type X. The declaration § : seq X
says that § is one such finile sequence. Rince a sequence is a function (i.e, a set of ordered pairs), a
sequence might be empty, and the function application notation § i can be used Lo denote the element
at position i, provided that i is in the domain of the sequence.

seq; X is the set of all non-empty finite sequences of values of type X. The declaration s :seq; X says
ihat s is such a non-empty finite sequence.  seq, X is a subset of seq X.

iseq X is the set of all injective finite sequences of values of type X. A sequence is injective if no value
appears more than once in the sequence. The declaration § : iseq X says that § is such an injective
finite sequence. iseq XA is a subset of seq X.
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Name

~ — Concatenation

Definition

= [.X]
— T _iseq X xseq X — seq X

Vs, liseqX e
s"t=sU{n:domien+#s— tfn}}

Description
Concatenation is a function of a pair of sequences of values of the same type that denotes a sequence

that hegins with the first sequence and continues with the second. Either or both of the sequences
might be empty. If either sequence is empty, the result is the other sequence.
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C.5 Sequences

Name

head, last, tail, front — Sequence decomposition

Definition

[X]
head, last :seq, X — X
tail, fronl 1seg; X — seq X

Ye:seq, X e
head ¢ = s(1) A
last 8 = s(#s) A
tatl s=(An:1. . #s—les(n+1))A
L front s=(1..#v-1)as

Description
If § ia a non-empty sequence of values of type X. then head S is the value of type X that isfirst in the
sequence. Empty eequences are not in the domain of head.

If § is a non-empty sequence of values of type X, then last § is the value of type .X that is last jn the
seqrence. Empty seqnences are not in the domain of Jast.

If §is a non-empty sequence of values of type X. then lail § is the sequence of values of type X
obtained from § by discarding the first men:her. Empty sequences are not in the domain of tail.

If § is 2 non-emply sequence of values of type X, then front 5§ is the sequence of values of type X
ohtained from § by discarding the last member. Empty sequences are not in the domain of frant,
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Name

ev — [everse

Definition

=[X]
rev :seq X — seq X

VeiseqX e
revs=(An:domses{#s—n+ 1)

Deacription

I'he reverse of a sequence is the sequence obtained by taking ils members in the oppasite order.
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Name

| — Filtering

C.5  Sequences

Definition
e=|A]
~l-i5eqX x PXA —geq X
TV:PX-
Gry=0a
(Vz:X»
(e V=(z)|V={()})A
{zg V=(z) | V=0(DA

(Vs.t:seq X »

Us™ )1 V=(s[ V)Tt V)

Description

The filter of a sequence of values of type X by a set of values of type X is the sequence oblained from

the criginal by discarding any members Lhat are not iz the set.
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Name

~/ - Distributed concatenation

Definition
(X]
“ [/ imq{seq X) — seq X
“H=0

Ye:seqX e " /(a)=3s
Yg.risegseqX) e
i et =0/ /)

Description
The distribuled concatenation of a sequence of sequences of values of type X is a sequence of values of

txpe X ahtained by concatenating the lesser sequences in the order in which they appear in the greater
sequence.,
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Name
disjoint — Disjointness

partition — Partitions

Definition

=[f, X]
disjoint — : P({ ~ P X))
_partition_: (f + PX) =P X
¥S5:1-PX; T:PXo»
(digjaint § &
{(Vi,j :domS& |1 # e 853N S(j)=B3nA
(S partition T &
disjornt S A U{ 2 :dom S e S{1 }=T)

Description

An indexed famijly of sets is disjoint if no two members having distincl indexes have any members in
common.

An indexed family & of sets partition a set T if S is disjoint and the snion of all the members of § js
T.
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C.86 Bags
Name

bag ~ Bags

count - Multiplicity

in - Bag membeorship
Definition

bag X == X -+ N;

[x]
counf : bag X — (X — N}
—in_: X ~ bag ¥

VYz:X, B:bagX e
count B=(Az: X e}z B A
| sinB & z€domB

Description

A bag represents an aggregate in which order is not important, but in which a given value can occur
several limes. A bag of values of type Y s a function whose domain is a subset of X and whose range
is a set of strictly positive natural numbers.

The count of a bag of values of type X is a function that extends the bag function by relating every
member of 1 that is not is the domnain of the bag to zero.

\ value z : X is said to be in B : bagX if and only if z is in the Jomain of B.
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Name

¥ — Bag union

Definition
<[X]
__:bagX x bagX — bag X

VB, C:bagX;z: X
cound (BW Clr = count Bz + eount C r

Description

The bag union of twe bags is the bag that relates every member of the domain of either bag to the sum
of its occurrences in the two bags.
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Name

ilems - Bag of elenients of a sequence

Definition

[X]
items 1 seq X — bag X

VotsegX; 2: X »
count (items s}z = #{ i:dom s|s8(:)=1z}

Description
The 1tems ofa sequeuce of values of type X is a bag such thac the range of the sequence and the domain

of the bag are the same, and the cach value in the domain of the hag is related to the number of indexes
in the sequence ak which that value occurred.
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D Z Interchange Format

D.1 Introduction -

The Z Interchange Format defines a portable representation of Z, allowing Z documents to be
transmitted belween different machines, The most suitable means of communication between differ-
ent machines is by using text files in which the character set is limited for portability reasons. The
Interchange Format defines a syntax for such text files.

The basis for the Interchange Format is the ISQ Standard Generalized Markup Language (SGML).
SGML permits the structure of texts 1o be represented and encoded in a standard form, corvenient for
storage, editing, retrieval and processing. The SGML Standard is defined in {11]. A general description
of the aims and principles of SGML. together with an annotated version of the standard, isincluded in
The SGML Handbool by C. F. Goldfarb [8]. Case studies and applications in SGML are described in
the work of the Text Encoding Initiative as reported in [24].

The structure of this Appendix is as foliows:

+ the first section describes the scope of the Interchange Format — j.e. the facililies offered by the
Format.

the second section contains an informal description of SGML.
« the next section defines the Interchange Format.

the final section presents explanatary material and exainples of the use of the Interchange Format.

&

D.2 Scope of the Interchange Format

The Interchange Format allows a distinction to be made between formal text and other tesl included in
a Z document. The Interchange Format does not prescribe the structure of all parts of a 2 document,
and does not define the internal structure of informal text.

As one possible application of the Z Interchange Format is to send a Z docnment to another machine
for Z syntax checking, the format is sulficiently liberal Lo permit syntactically incorreet Z to be written,
The format thus prescribes markup only for the higher levels of the Z syntax hierarchy; in tnost cases
this is at the level of 2 Z paragraph, alithongh for axiomatic and ‘boxed’ definilious there is scope for
creating a more detailed markup if desired.

Fora Z document to be syntactically correct when written in the Interchange Formal, it must conform
at the higher levels 1o the markup defined in this Appendix, and at the lower levels (e.g, predicate or
expression level} to the Z Concrete Syntax, with all mathemaltical symbols replaced by the alphanumeric
representations defined in Section D.4.3.

The Interchange Format also provides markup for requirements which are additional to the prime
requirement for encoding the structure of the Z in a document. The following requirements are accom-
modated:

+ identification of informal Z fragnients. i.e. Z fragmieats which do not contribute to the formal part
of a Z document;
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definition of the fixity and binding pricrity {where applicable) of user-defined names:

allocation of unique identifiers to Z paragraphs, ¢.g. so tbat associations between Z operation
schemasand data-flow diagrams can be made, or so that Z defiritions can be indexed;

logical grouping of Z paragraphs independently of the positions they occupy in the document.
e.g. sothal the group can he considered as a nnit for Lypechecking purposes, or that ‘units of
conservative extension’ can be identified for subsequent processing by a proof tool;

labelling of ‘stacked’ predicates in an axiomatic or -boxed’ definition.

D.3 Introduction to SGML

‘T'hig section provides an introduction to SGML, sufficient for the understanding of the definition of the
Interchange Format in Section D 4. More comprehensive descriptions of SGMI. are given in [11] and
Bl
e

Examples of text written in SGML are printed with a fixed-width font (the tt font in IWTpX) as follows:

<tag> text </tag>

D.3.1 SGML Element Definitions

Structures are described in the Interchange Format by n:eans of SGML elements. Elements are delim-
ited by start-tags and end-tags. A start-lag is of the form <name>>, where name is the generic identifier
ol the delimited element. The end-tag is of the form </name>. For example, a particular Z given set
definition may be written in the Interchange Format as:

<givendef> NAME, DATE </givendef>

The internalstructure of a general SGML element is itself defined in SGML hy means of a formal SGML
element declaration. The components of an eleinent declaration are:

L. the namne of the element:
2. two characters (scparated by a space) which specify the ininimisation rules for the element;

3. the content model of Lhe element.

T'he winimisation rules indicate whether the siart-tags or end-tags may be oniitted in justances of the
rlement. The first character in the pair corresponds Lo the stari-tag and tle second to the end-tag. The
rharacter *-'or ‘o’ indicates that the corresponding tag respectively must be present or may be omitted.

The contenl model specifies what occurrences of the element may legitimately contain. Coutents may
be specified in terms of other elements and of special reserved words. Ultimately all elemenis consjst
ol “parsed chatacter data’ (represented in element declarations hy the rescrved word #PCDATA), which
comntains any valid character data but not farther elemems. Further structural information concern-
e elements which are constitoents of the declared clement is provided hy Lhe use of occurrence
indicateraand group connectors.
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QOccurrence indicators define how many times a constituent element may occur in instances of the defined
element and are placed at the end of the constituent element. The following occurrence indicators are
used in this Appendix:

« a question mark (?) indicates that the preceding element occurs at most once;
o an asterisk (*) indicates that the preceding element may be absent or occurs one or more times;

« a plus sign (+) indicates that the preceding element occurs one or more times.

Group connectors specily the ordering of constiluent elements. The following connactors are nsed in
this Appendix:

« a vertical bar (]) indicates that only one of the components it connects may appear;

s a comma (,} indicates that the components mnst appear in that order.
For example the element definition for a Z schema declaration is given as:

<!ELEMENT schemadef - -
(BPCDATA, sub?, formala?,
{sexp | {decpart, axpart?})) >

Occurrences of this element thus consist of parsed character data (representing the name of the schema),
followed by an optional subscript, followed by an optional element which holds the formal parameters of
the definition, followed by either an element represenling a schema expression or a constrnct representing
the declaration part and (optional} axjomatic part of a schema definition. The start-tag and end-tag of
the schema definition must both he present,

D.3.2 SGML attribute declarations

In SGML, attributes are nsed to provide information associated with elements. The Interchange
Format employs attributes to epcode layont information and other information which is not considered
to be part of the structure of a Z specification. For example, the Interchange Format defines a *style’
attribute for schema definitions which permits an indication of whether the definition should be in
vertical or horizontal form. An ocenrrence of a ‘schemade!” elemnent may thus contain an attribute-
value pair inside the element’s start-tag; for example:

<schemadef style=vert> 5 ... </schemadef>
An SGML attribute declaration specifies the name(s) of the element(s) to which the atiributes are
attached, followed by a list of rows, each of which consists of Lthe name of tbe atiribnte being declared,
its type, and an optional default value. A type may be given as a collection of explicit values, or as one

of the follcwing special keywords:

CDATA the attribute valne mav contain any valid character data awd must be delimited by
double quotation marks:
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ID indicates that a unique identifying value will be snpplied for each instance of ihe
element;
NMTOKEN the attribute value is a name token (i.e. any alphanumeric siring).

The default value for an attribute may be denoted as vne of the set of explicit values defined for an
attrihute; alternatively it inay be oue of the following special values:

8 IMPLIED a value need not be supplied;

$REQUIRED a value mnst be supplied.

D.3.3 SGML eniities
An SGML entity is a named part of a marked-up document. An example of an entily declaration 1s:

<IENTITY ZBS ¢‘Z Base Standard, version 1.0'’ >

References to entities are contructed by prefixing the name of the entity with an ampersand character
(&) and delimiting the end of the name with a semicolon, space or end-of-file. Here is an example of
al enlity relerence:

We are now in a position to issue the &ZBS;.
The entity reference in this document fragment would be expanded by an SGM. parser as:
We are now in a position to issue the Z Base Siandard, version 1.0,

[n the Interchange Formnat, SGMI, entities are used to represent aon-alphanumeric Z symbols, When
an SGMI parser is nsed to analyse a Z document, association between the alphanameric representation
of mathematical symhols and their local code are recorded in SGML entity declarations. Since local
word processor codes may differ for different Z users, Section 10.4.3 records the entity names used in
the Interchange Format, together with the normal representations of corresponding 7% symbols.
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D.4 Definition of the Interchange Format

This section presents the definition of the Interchange Formal as a collection of SGML dedarations.
Explanatory material and examples of the use of the Interchange Format are given below.

An SGML Document Type Defiuition (DTD) defines tbe syntax of SGML-conformant decuments in a
style which is readable by SGML parsers. The Interchange Format does not warrant a full DTD for
two reasons:

» the format does not specifly the struciure of the informal text in a Z document;

+ the entity declarations are implementation-dependent.

A DTD ronsists of a header, followed bv a hody contaiuing the element declarations, atiribute dec-
Yaraticns aud eutity declarations. The definition of the Interchange Format presented in this Section
may be considered as the partial body of a DTD (partia{ because the eutity declarations are not given
explicitly); it is also equivalent to a definition in BNF of the structure of the Interchange Format,
Newlines are not significant in the Interchange Format cxcept wheu they serve to separale predicates
or declarations.

Incidentally. it is unlikely that the interchaznge format could ever accommodate every funetion required
by its users. In the SGML scheme, any collection of SGML declarations (such as those which define this
Interchange Format) may be replaced or euhanced by the pre-insertion of additional SGML declarations.
Such a ‘customisation’ of the Interchange Format would he acceptable by SGML parsers.

ID.4.1 Element declarations

These declarations define the higher-level structure of the Z paragraphs in a Z document written in the
Interchange Format. It corresponds closely to the Z Concrete Syntax, apart from the inttoduction of
two high-level structures {i.e. opdec and infundec) which are used by the author of a Z document te
define any special fixity and priority of symbals and names declared in the document.

Note that it is possible to identify the individnal ‘stacked’ predicates (i.e. a collection of predicates
separated hy newliues) in the predicate part of a boxed definition. This facility is optional; the complete
stack of predicates may be identified as a single predicate il that is inore convenient (e.g. if the eriginator
of the decument bas no automatic iranslator te the Interchange Format which recognises significant
newlines).

Element definitions are provided for the representation of superscripts and snbscripts.

<YELEMENT Z - -

{opdec | infundaec | givendef | axdef | constraint
| schemadef | gendef | abbrevdef

| cenjecture | structsetdef)s >

< !ELEMENT (informalZ | conjecture | constraint

| infundec | sup) - -
{SPCDATA | string | svb | sup)+ >
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< VELEMENT (sexp | decpart | body | predicate)
-0 (®PCDATA | string | sub | sup)+ >

< 'ELEMENT {(givendef | infundec | opdec | formals | label)
- - (#PCDATA | sub | sup)+ >

< VELEMENT axdef - - {decpart, axpart?) >

< 'ELENENT schamadef - -
(BPCDITA, sub?, formala?,
(sexp | (decpart, azpart?)}) >

< V'ELEMENT gendef - - (forwals?, decpart, axpart?) >

< VELEKENT (atructsetdaef | abbrevder) -
((SPCDATA | aup | sub)+, body) >

< {ELEMENT azpart -0 (praedicate+) >

< !ELENENT (string, sub) - - (8PCDATA) >

D.4.2 Attribute declarations

The attribute declarations permit the association of additional information with occurrences of clements
in a Z document written in the Interchange Format.

The attributes id and group permit respéctively unique identification and Jogical grouping of Z para-
graphs.

The attributes style and purpose define respectively the layoutl and intended use of a schema definition.

The attribute label permits informal annotation of each member of the ‘stack’ of predicates which
constitntes the axiomatic part of a boxed definition,

The attribule optype for the declaration of an operator syn:bol permits the association of a fixity with
that symbol. This fixity applies to all occurrences of that svmbo! in the Z doguinent,

NOTE TO EDITORS: This may not be the case in Version 0.6 of the Buse Standerd.

‘The attribute priority for the declaration of an infix function symbol permits the association of a
binding priority with that symbol, This priority applies to all occurrences of that symbol in the 2
document.

< FATILIST

(givendef | axdef { constraint | schemadef | gendef
| abbrevder | atructsetdef)

id 1D AIMPLIED

group  MMTOKEN  #IMPLIED >

< !ATTLIST sachemadef
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style (vert | horiz) horiz
purpose (state | operation | datatype) #IMPLIED >

<IATTLIST predicate label CDATA SIMPLIED >

<!ATTLIST opdec
optype (ingen | inrel | pregen | prerel | postfun)
SREQUIRED >

<!'ATTLIST infundec
priority (1]12|3]|]4]|8]68) 6 >

D.4.3 Entity declarations

The entity declarations for the Interchange Format are not presented in the conventional SGML format
because of the dependence of the internal representation of mathematical symbals an Lthe implementation
of each user’s Z document processar. The mode of declatation used here is to present a table which
records the association of each entity name with the corresponding mathematical symbol.

Many of tbe entity names defined bere have already been defined as standard in Appendix D of [11].
Entity names which have been devised specifically for the Interchange Format are identified by an
asterisk.

We first present the symbols of the basic Z language. The set of symbols covered by ihese definitions
consists of those basic language symbols which are not suhsuined by the Element Declarations presented
in Section D.4.1. Entity names are not provided for the underscore (=), prime ('), colon (:), comma (,),
query (?}, shriek {!), period (.), unary minus (-), parenthesis, schema renaming (/) and equality (=)}
symbols, as it is assumed that these symbols, though non-alphanumeric, are reasonably pertable.

INFORMAL NAME ENTITY NAME SYMBOL
left square bracket Isqb {
right square brackel rsgb ]
left chevron bracket Ickev (*) ¢
right chevren bracket rchey (*) bl
har verbar |
fat dot bull .
universal quantifier forall v
existential quantifier exist 3
unique existential quantifier existl () 3
membership isin €
negation uot -
conjunction and A
disjunction or v
implication tArr =
equivalence iff =2
power set psel (*) P
theta thotas 8
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Cartesiau product
mu

left set bracket
right set bracket
left sequeuce bracket
right sequence bracket
left bag bracket
right bag bracket
lambda

lefl relational image bracket
right relational image bracket
Deita

Xi

alpha

beta

gamima

delta

»psilon

eta

ela

jota

kappa

nu

xi

pi

rho

sigma

tau

upsilon

phi

chi

psi

omega

Gamma

Theta

Lambda

Pi

Sigma

Upsilon

Phi

Psi

Omega

schema composition
schema hiding
schema projection
turnstile
ampersand

binding

178

prad (*)
mu
leub
reub
loeq (*}
Teeq (*)
Thag (*)
rhag {*)
lambda
limg {*)
Timg (*)
Delta
Xi
alpha
beta
gamma
delta
epsi
zeta
eta

iota
kappa
nu

xi

pi

rho
sigma
tau
upsi
phis

chi

psi
oniega
Gamma
Theta
Lambda
Pi
Sigma
Upsi
Pbi

Psi
Omega
scomp (*)
hide {*}
proj (*)
turn {*)
amp
TArerw

T D& MO>0 10 &9 " %A AMT X 3 " T2 R I [T e e e

o

¢
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left binding bracket Ibind (*) {
right binding bracket rbind (*) }
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We now present the symbols of the Z mathematical toolkit. The symbols cavered by these definitions
are the nom-alphanumeric imembers of the Z Mathematical Toolkit. Entity names are not provided
for the addition {4) and multiplication {*} symbals, as it is assumed thal these symbols, though non-
alphanumeric, are reasonably portable.

NAME

inequality
non-membership
emply set

proper subsel
non-empty subsets
subsel

set union

set interseclion

sel difference
generalised union
generalised intersection
binary relation

maplet

(backward} com position
forward composition
domain restriction
range restriction
dornain subtraction
range subtraction
relational inverse
Lransitive clesure
reflexive-tracsitive closure
partial functions

total functions

partial injections

total injections

partial surjections
total surjections
bijections

functional override
natoral numbers
integers

less than

less than or eqgnal to
greater than or equal to
greater thao

strictly positive integers
number range

UDAFY MihLS

hitary minus

finite sets

180

ENTITY NAME

ne

notin
emply
sub
psetl (*}
sube
cup

cap
sdiff (*)
Cup (*)
Cap (%)
rel {*)
tnap (%)
comp (*}
compfin
dres (*)
rres (*)
dsub {*)
rsub (*)
tilde

tel (*)
rtcl (*)
pfun (*)
thun (*)
pinj (*)
tinj (*}
psur {*)
tsur (*)
bij (*}
oplus
Nat (*)
Int (*)
I

le

ge

gt

Natl {*]
upto (*)
uminus (*)
bminus {*)
fsel (*)

SYMBOL

—_~—
—

[ DC"2CIN™N &/™%

"+t 1V AT 0T

t 0t

T
"

IS

Z VIVIA A N2
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non-empty finite sets fsetl (*} F,
cardinality aum #
finite partial functions fpfun (*} -
finite partial injections fpinj (*} -
filter filter (*) !
concalenation cat (*) -
distributed concatenation deat (*) ~7
non-empty finite sequences seql (*) seq,

NOTE TO EDITQRS: These library members are taken from the 1si edition of the ZRM. We must add
any new mermbers,
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D.5 Examples

This section presents examples of the use of the Interchange Formal. Thses examples are carefully chosen
to cover the more difficult aspects of the Format. The areas covered are indicited in the snhsection
leadings.

D.5.1 Declaring Infix Identifiers

Consider the following axiomatic definition, which declares a relat:on isTwice which is intendeod to be
used in an infix mauner:

T _isgTwice_: N = N

Vi,j:NeiisTwice j>i=2#)

The encoding of this Z definition in the [nterchunge Formal includes not only the encoding of the
axiomatic definition itself, but alsc an ‘opdec’ statement which declares the fixity of :sTwee:

<Z>
<opdec optype=inrel> isTwice </opdec>

<axdsf>

<decpart>

—iBTwice_: RNac Ekrel kNau

<aTpart>

<predicate>

Rforall i, j: &Nav &bull 1 isTwice j &iff i = Zsj
< /axdef>

</Z>

D.5.2 Subacripts and superscripts

The axiomatic definition
o, my: N
ay wwice af
is encoded in the Interchange Format as:

<Z» <axdaf>

< decpart>

a<ewd> 1 </Bub>, a<sub> 3 </sub>: kNat

<axpart>

<predicate>

a<sub> 1 </sub> isTwice agsub> 3 </sub><sup> 2 </sup>
</ardet> </Z>
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D.6.3 Schema definitioas and predicate labelling

Consider the following definitions:
[PERSON, HOUSE]

Street
inhabits : PERSON w HOUSE
houses : P HOUSE

houses = ran inhabits

Vh: houses o # inhabits™~{{h}) < 4
f» No house may be occupied by more than 4 persons + f

The author of chis specification intends to accomplish the following objectives:

s Lo attach a Jabel to the second predicate in the schema definition:
+ toindicate that the schema defizition sbould be displayed in vertical form;

» to indicate (to a specification checker, for example) that the schema Street defines the state of a
system.

These objectives can be attained in the Interchange Format with the following encoding:

<Z>
<givendef> PERSON, HOUSE «/givendef>

<gchemadef style=vert purpcsemgtate> Street
<dacpart>

inhabite: PERSON &fpfun HOUSE

houpss: &psat HOUSE

<axpart>>

<predicate>

houses = Eran inhabjte

<prodicate

labels’‘Ho house may be occupied by more than 4 perscns’’'>
&forall h: houses &bull

fnue {nhabits&invilimghlcyb hircubirinmg Ale 4
</schemade? >

</Z>

D.5.4 Abbreviation definitions

Note that in the Iuterchange Format there are no enhity representavions of the symbols immediately
associated with top-level definiticas such as structural set definitions and abbreviation definitions. These
symbele are subsumed by the element iags for those definitions. For example, considet the following
abbreviation definition:
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n==5+zx
This definition is encoded in the Interchange Formar as:

<Z> <ibbrevdaef> n <body> b + 1 </abbrevdef> </I>
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NAME

Given set brackets
Schema definition
Abbreviation definition
Chevron Brackets
Bar

Schema bracketa
Colon

Semicolon

Comma

Fat dot

Universal quantifier
Existential quantifier
Unique Existential quantifier
Equality
Membership
Negation
Conjunction
Disjunction
Implication
Equivalence

Power set

Selection

Theta

Cartesian product
Tuple Brackets

Mu

Set brackets
Sequence brackets
Bag brackets
Lambda

Relational image Brackets
Dash

Query

Shriek

Delta

Xi

SYNTAX TERMINALS

i}

e——
—_— =

WL Y<EImg W e -

—_——

N [p '~ T e e R S @
-— [—
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NAME TOQOLKIT SYMBOLS

Inequality
Non-membership
Empiy-get

Proper subsel
Non-empty subsets
Subset

Set union

Set intersection

Set difference
Generalised union
Generalised intersection
Binary relation

Maplet

Compositien

Dotmnain restriclion
Range restriction
Domain sublraction
Range sublraction
Relational inverse
Transjtive closure
Reflexive-transitive closure
Partial funclions

Total functions
Partial injettions
Total injections
Partial surjections
Tolal surjections
Bijections

Functional override
Natural numbers
Integers

Addition

Subtraction
Mulitplicauon
Division

Less than

Less than or equnal to
Greater than or equal 1o
Greater than

Strictly positive integers
Relational iteration
Number range

Finite sets

Non-empty finite seta
Cardinality

Finite partial functions

~—
——

TI1DC—2CinN=-ne®+w

=]

YAV AT

PN ZOL L by

MM mEZVIVIAAER
= -

—

b 3
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Finite partial injections -
Filter
Concatenation

y—
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F A deductive system for Z

F.1 Introduction

This section presents a deductive aystem for Z. It is one of several possible deductive systems for 2,
and has boen developed as part of the ZIP project. There are two aspects 1o the choice of a deductive
system: formand content. The form concerns the syniax and manner of conducting proofs. The content
concerns the set of theorems that are deducible within the system.

The deductive system is 2 Gentzen-style sequent calculus in which sequents are composed of declarations
and predicates, The rules of Lhe logic are presented in a simplified form. The mela-theorems cof the
logic {theorems about the rules) permit the extension of the rules into a more practical form.

The loose definition of funcrion application and definite description in the semanltics permits a numnber
of interpretations of their meanings. This deductive system is sounl wilh respect to a model in which
all well-typed expressions have a value.

F.2 Sequents

Tha basic building block for a sequent calculus is a sequent. A sequent! is composed of an antecedent
and a consgquent,
Sequent = Antecedent - Consequent

The antecedent is a list of declarations separated by the symbol t and a list of predicates separated by
commas,
Antecedent = Declarationt ...t Declaration | Predicate, . .., Predicate

The consequent is also a list of predicates. The syntax for a consequent is the following:
Consequent = Predicate, . . ., Predicate

Thus a sequent appears as:

Dyt 1Dy |RF D

wlere the meta variables ¥ and @ represent ljsts of predicates. The lists of predicates in 1lie antecedent
and consequenl are sets so the ordering is of no consequence.

A sequent is well-typed il the predicates are all well-1yped ju tlie environment enriched by the declara-
tions where the declarations introduce new scope.
{DJ...fD.,.,IP,,...,P.,l-q,,...,Tq,},\T = ] . ]
dom ((D, } 3-.-34Dw ¥ b (4P, 1 0.0 (P D7) & (4@ 37 1. {@i D)

A sequent is vaiid if any one of the predicates in the consequent js true in all the environments enriched
by the declarations and satisfying all the predicales iu the antecedent.
{Dit...t Do, | Py .., Par Q... @} =
YUD, Y . DY PR Y L 0P NUQ. BT Y. v BT

A sequent is a theorem if it is valid in all environments.




F.3 Rules

F.3 Raules

The deductive system consists of a number of rules for manipulating sequents. A rule is of the form:

Rule = —c";m‘:i:: [ 11] {Name]{ (Proviso)] .

The premisses are a (possibly empiy) list of sequents:
Premisses = Sequent...Sequent .

The conclusion is always a single sequent:
Conclusion = Sequent.

The Proviso is a decidable condition on the [roe variables and alphabets of the expressions in the rule.
The Hame nsually has the form “3 K", or “F 37, the structure of which reflects the fact that there
are rales for manipulating the operators of the logic, both on the left and on the right of the turnstile,
respectively, The annotation 7| iudicates that the rule cap be applied in hoth directions.

A rule is sound if whenever it is applied 1o valid premisses, a valid conclusion results. This is defined
in the semantics by saying that the set of environments supporling the premisses is a subset of those
supportiog the conclusion. The rule

S )

is sound if and only if
P = {S,}"n...afS, 1" C {Seq}™

The following meta-theorem holds for rules in the deductive system:

Theorem F.1 (Sequent-lifting)
The rule p| @ - & 18 sound if and only if the sequent D} ¥ F & is a theorem.

This theorem states that a theorem can be dednced from na premisses.

In order to simplify the presentation of the deductive system the following lifting mela-theorem is
used. It states that unchanging declarations and predicates can be added to a rule while maintaining
soundness. An unchanging predicate or declaration is one Llat is in both the premiss and the conclusion.

Theorem F.2 (Rule-lifting)

If the inference rule EtD|¥ho

EtD|¥r ¢
FiEtD|P.¥F Q¥
FtEtD|P.¥'F Q¥

8 sound,

then the rule ig also sound,
providing thal (aD UaeD'VoEjN{(oPU Q) = O.

The rule-lifting theorem allows us 1o present the rules of the deductive system in a condse manner, by
omitting any declarations and predicates which don't change.
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The semantic-equivalences for substitution are given in vables in earlier sections. These tables state the
semnantic equality of various expressions. A theorem wbich permits the use of semantic-equivalences in
proofs is the lollowing.

Theorem F.3 (Semantic-equivalence-lifting) Given the scmantic-equivalences for predicates and
declarations:

P=g D=E,

the following inference rulcs are sound:

EiQt
DiPF

by
T
I}

=)
T
]

F.4 Proofs

Proofs in the deductive system proceed in the way that is usual for sequent calculi: proofs are developed
hackwards, starting from the sequent which is to be proved. A rile is applied, resulting in [resh sequents
which mustbe proved. This process continues until there are nc more sequents requiring prool, in which
case the original sequent is uow proved.

A completed proof may thus be represented as a tree, with the proved sequent as the root node, and
every leaf code containing an empty list of sequents, However, if some of these lists in the leaves are
non-empty, then the derivation tree is still useful, although it does not represeat a proof, it represcits
a partial proof,

Theorem F.4 (Tree-squashing) Suppose that we have the derivation [ree:

Sy ... Sim
#S.-— [R)(P)

5 S,

o = [R)P)

where eachof the rules R and R, are saund rules, then the derved rule

S .- S ... San -
Seq

£ (A, Py
i~ also sound,

F.5 (General Rules
F.5.1 Thin

The thin rule is used to discard unnecessary declarations and predicates:

[ .
m (thin}).



F.8 Expressions

F.5.2 Assumption

The assumption aziom in is one way of completing a prool, since it leaves no premisses to be discharged;
it states that for every formula p, the sequent 4 | p b p is valid:

m [a.ssump.rivn]‘

Notice that if we apply the Tree-squashing theorem to the assumption axiom preceded by the thin rele.
we obtain Lhe following:

DYD P, Q. QnF PRy, Ra
Thus, the assumption axiom allows us to prove a sequent if any one of the consequent formulz is present

in the antecedent. This illustrates an important point about seqnent calculi: every formulaon the lefi
may be assumed in crder to prove af leas? ane formula ou the right.

¥F.5.3 Cut

The eut rule is used to structure proofs into lemmas; it permits the addition of hypotheses to the
antecedent: these hypatheses may be discharged separately.

P FPH

F [eut].

It is the responsibility of the user of the cut rule to ensure that the well-tvpedness of the sequent is
preserved by the addition of new predicates. New deciarations can be cut in using ap existentially
quantified predicate.

F.6 Expressions

Two sets ¢ and v are equal if and only if arbitrary members of ¢ and u belong to u and f respectively:

g prubzEunyel
r:tiy:ubt=u

Tl [extension]

F.8.1 Set Extensian

An element is a member of a set extension if and only if it is equal to one of the members of the
exlension.

Flou v... V1=t
Fee (... tin}

11 [ertrmem]
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F.8.2 Set Comprehension

The element ¢ is a member of the set comprehension {5t o u} if and only if there is some situation in
5t which makes ¢ equal b,

FIS5let=u .
Fte{Steu} T leomprei

providing ¢t Nast = ©

F.8.3 Power Set
An clement is 4 member of a power set if and only if an arbitrary member of it is a menher of the set.

y:lFy€eu

yilFiePu Tl {powerset]

F.6.4 Tuple

An element is equal to a tuple if and only if each of ite projections is equal to the appropriate member
of the tuple.

Fll=wm AL AbA=u,
Fo=(w,... )

T1 [eapie]

F.8.5 Cartesian Product

A tuple is 2 member of a Cartesian product if and only il each of its projections s a member of the
respective member get of the product.

FtleuyA...AlRE,
Foe(ux...xu)

T1 teartmem]

F.8.6 Tuple Selection

The i** projection of an explicit tuple is the i** member of the tuple.

F o wn . wi= g el



F.7 Predicates

F.8.7 Binding Extension
An element is equal to a binding extension if each of it selections is equal Lo the respective element of

the binding,

Fbr = A Abny = uy .
Foc 0 ML~ U1y oonFom um' ] [binding)

F.6.8 Theta Expression

An expiicit binding is equal to a theta expression if the decorated versions of ihe names in the binding
equa! the respective expressions.

Faf=wA...AnY =u,

Fdrp~tg, e i~ =8 5¢ T teheta]

F.6.9 Schema Expression

A binding is a member of a schema expression if and only if the schema is true following the substitation
of the binding.

F baS
Fles 71 (schemaerp]

F.8.10 Binding Selection

The projection of the name n; {from an explicit binding is the element to which the name is mapped.

[tuplesed]
Fdmy e Uy B~ By T~ i) B, = TG

F.7 Predicates
F.7.1 Equality

All expressions are equal to themselves.

|refiection]
z

Fzr=
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F.7.2 Truh

ruth
F true feruit]

F.7.3 Faliehoad

[eontradirtical

false -

F.T.4 Negtion

1f the predicate —p is in the antecedent then one way to proceed is by proving a contradiction l.e. that
p is true.

Fp
ap

T

I the prediate —p is in the consequent then il p does not hold then there is a prool, so il can Le
assumed that it does hold:

-
£ e

F.7.5 Caojunction
The conjunttion of two predicates in the antecedent is Lthe same as having them both in the predicate

list:

pgt

YT

The conjunclion of two predicates can be proved onlv il both of Lthe predicates can be proved.

Fp kg

Fphg {FA]

F.7.6 Dijunction

Given a disjunction of two predicates in the antecedent it is uecessary to be able to comnplete the proof
with eitherpredicate in the assumption.



F.T Predicates

pr gt

vaP[W]

A disjunction of two predicates in the consequent is the same as having them both in the mnsequent.

Fpa
Fpve

T

F.7.T Implication

p=gkp gt

F
p=qk =
pkg
Fpog e

F.T.8 Equivalence

P> 0,9=ph

T e

Fp=>q¢ Fg=p
Fpoq [ ]
F.7.9 Universal Quantification

be[5t,¥Step, bepl
be(St,VStepk

H(VE)

If we have to prove the predicate¥ d | p s g then it can be assumed that the variables in 4 are arbitrary,
and that they satisfy the property of d | p, leaving the predicate g 1o be proved.

diptg

m?l("‘ﬂ

F.7.10 Existential Quantification

Suppose that we have the single antecedent 3d | p » ¢; that is, we know Lhat there is some way of
constructing the variables in 4 snch that the property of d and the predicates p and g are satisfied.
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Althoughwe may not know such a construction, we can give arbitrary names to the variables of 4 to
stand foran arbitrary construction satisfying d, p and ¢. If we take as our new assumption d | p A ¢,
the variables of d are indeed arbitrary, since they cannot be global ones, and no other local uames are
in the anlecedent.

dipaght
dipnat 4
Jd|pegt

Suppose that we have tbe consequent 35t ¢ p, and suppose Lhal we know a binding that satisfies the
property of 5. One way forward is to prove that this binding also satisfies ihe predicate p. It is
convenientto retain the consequent, in case we wish to try to prove that other bindings satisfy p.

be[St]F 5t ep, bop ]
bE(SF3Sep U

F.T.11 Substitution

o=tiztopt
a=t{r—sfopt ( Leibmiz)

F.8 Schemas

The schemarules are based of the definitions of schema predicates and hence follow very closely the
rules for predicates:

F.8.1 Schema Construction

[dlapk
@i

Fld

F{d|p]

F.8.2 Schema Negation

k5]

e

[S1F
F(=5]

=
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F.8.3 Schema Disjunction

Sl (T
ILEEY L
[Sv T+
FISLT]
Fisvr "™
F.8.4 Schema Conjuntlion
[$1{TI+
SATIF [[AIF
FIS] (7]
F[S AT i

F.8.5 Schema Implication

[S= TIH[S) [T]F

B=1)r (=31
HCILAErE
FI5 o 7] [FI=]1
F.8.8 Schema Equivalence
S= T),[T=> 5]+
= ThT= Sk

[§& T]F

FI§=2T] F[5=T]
F[S e T)

=l
Note: There are more rules to be added here,

F.9 Declarations

o|[pF

D {41
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F.9.1 Simple Declaration

MmESA... AN, EstE

aualr
[Py onm 8} b [(»s¥
FESA.. AR, EDB .
ML B AR e LT
Lol E:TTRR S )| Flnsal
F.9.2 Compound Declaration
(2~ D] F
lle; DIF)
ED]': Dz] -
E ] A (D] .
F D D) [F2: D
F.10 Definitions
F.10.1 Axiomatic Definition
Providing the specification contains the declaration
D
P
we have theinference rule
D| P+
%]— { AziomDef )
F.10.2 Generic Definition
F.10.3 Schema Deflnition
Providing the apecification contains the declaration
S5[Xy... Xa]2 T
we have the inference rule
St -] =K~y Voo ~ tm) aT F

F

{SchemaGenDel



F.10 Definitions

F.10.4 Constraint

Providing the specification contains the constraint
P

we have the infetence rule

Py

g {Constraint)
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