
Z BASE STANDARD
VERSION 1.0

by

S. M. Brien
J. E. Nicholls

T&hnical Monograph PRG-107
ISBN 0-902928-84-8

November 1992

Oxford University Computing Laboratory
Programming Research Group
11 Keble Roa.d
Oxlord OXl 3QD
England

Acknowledgement

Preparation of this paper has been undertaken as part of the ZIP project.

ZIP - A unification initiative for Z Standards, Me/hods and Tools has been partially funded by the De
partment of Tra.de and Industry and the Science and Engineering Council under their joint Information
Engineering Advanced Technology Programme.

Contributors

Tile Z notation and its mathematical foundations have been developed by many people. A 5dected list
of papers tracing a history of Z development is included in the Refert'.Tlces at the ('nd of this document
(see page201).

In addition to the listed. contributors to the mathematical foundations of Z, many programmen, ~ystems

designers ilnd architects have provided 6upport by using Z and giving feedback to the designers of the
J,otation.

Z Base Standard. This version of the Z Dase Standard h~ been written and edited as follows:

Editors:	 Stephen Drien
John Nicholls

Chapter autllors:	 Sleplten Drien

Trevor King

John Nicholls

Jim Woodcock

Johu Wordsworth

Additional contributions by:	 Paul Gardiner

Steve King

Peler Lupton

Ib S0rensen

Rob Althan
Roger Jones
Chris Sennl.'tt

A more complete admowll.'dgement of contributions to t}le development of Z will be included in a Hj.~lory

of Z to be published. separately.

Z Standards Review Committee

Development of the Z Base Standard as part of the ZIP project has benefited from contributions and
reviews hy the Z Standards Review Commit/ee. The following list includes members of lhe sac and
their alternates or deputies.

Derek Andrews
Mark Ardi~

Stephen Brien
ELspeth Cusack
Ray Crispin
John Dawes
Jim Fan
Susan Gerhart
Wilillarwood
Ian Hayes
Pier Luigi Iachilli
Randolph Johnson
Roger Jones
Steve King
Trevor King
Peter Lupton
John McDermid
Silvio Meira
Jotm NiehoUs
Colin Parker
Jan Peleska
Ben Potter
Brian Ritchie
Gordon Rose
Mayer Schwartz
Chris SenneU
lb ~ren5en

Susan Stepney
Bernard Sufrin
Kees van Bee
Jeremy Wilson
Jim Woodcock
John Wordsworth

University of Leieeater UK
AT« T Dell Laboraloriel; Naperville USA
Orlord University PRG UK
British Telecom UK
Hewlett Packard Laboratories Brislol UK
lCL Winnersb Wokingham UK
CESG Cheltenham UK
AFM Inc Texas USA
Imperial Software Te(;hnology Cambridge UK
Univen;it.y of Queensland Australia
INTECS Plaa I~aly

CESG Cheltenham UK
ICL Winnersh Wokingham UK
Oxford University PRG UK
Pruis pic Bath UK (SRC sfcrdary)
IRM United Kingdom Labora1.oriel; Hursley UK
York Univen;ity &- York Softwarl' Engineering UK
Univel1iiiy of Pernambuco Brazil
Oxford University PRG UK (ChaIr)
British Ael'Q5pace Warton UK
DST Kiel Germany
BNR Europe Harlow UK
Rutherford Appleton Laboratories Chilton UK
University of Queensland Australia
Tehronix Oregon USA
DRA Malvern UK
BP Research Sunbury UK
Login Cambridge UK
Oxford Univel1iity PRG UK
Waterloo University Ontario Canada
British Telecom UK
Oxford University PRG UK
IBM United Kingdom Laboratories Hursley UK

lo.Iembers of the Standards Review Commi~tee have been invited to join tlle StaIldards PaIlel:
1ST/5/-/5t!: Z Natation currenLly being rormed.

Contents

Foreword	 ix

0	 IotroductioD 1

o , No~alions for 6YlJtem deso:ription

Objectives of 11. specification notation 0'

0.3 Charac~ri9tica of Z .

0'< De8ign principles

0.5 AirM of standardisation

0.6 Validation of the standard

0.7 History cJ Z

1	 SGope IlInd confol'rnanGe 4

II Scope of the Z St1l.1)dard

1.2 Conformance

2	 Semantic Metalanguage •
Definition& and declarations
'.1	 6

" S.to

'.3 Tuples and prodUCll:l

,.< Relations 10

'.5 Se1 constructors as relations. 11

'.6 Functions 12

'.7 Tuple and product con81rudofll 14

'.8 Promoted applkalion 15
 ,.3	 Semantic UDivene

31 Names and Types. 1.

3.' Values in Z 17

'.3 ElemenL8 in Z
 '"
3'< GGnerica	 2J

3.5 Environmeuta	 23

• Language Description ,.
41 Abstrad syntax. ,.
4.' Representation and tral1srormation ,.

Z Duo! SIAIKlanl V...won 1.0 prifllM30Ih N.,v...m..o- l!l!l] vii

CONTENTS

4.3 lype. 27

4.4 ~eaning "
45 Value 29

4.' Free variable:l. 30

4.7 Alphabet 32

48 S~bstilution . 33

5 Expreuiou 34

5.1 Introdue.lion . " 52 Tde~tifier . "
))3 Gtneri,. Instanlia~ion . 38

54 ;"'umber Lilera.! 39

5.5 Stri~g Litera.! 40

5.6 Set EJ:ten6ion 41

5.7 Set Comp~hension 43

5.' Power Set 44

5.9 Top. 45

5.10 Carhsian Produd 46

5.11 Tupl~ Selee.tion 47

.5.12 Binding Extension 48

5.13 Theta Expre:8fion " 5.)4 Schema Expr<'S5ion 51

5.l5 Binding Selection
 "
5.16 Fttnction Application 53

5.17 Definile DelKription " 5.18 Conditional Expression. " 5.19 Substi1.lllion " 5.20 Free variables 58

5.21 Sub&Lltation 59

6 Prcdic81e '0

6.1 Inl,rodu(Lion . 6C

6.2 Equality. 63

6.3 Membenhil' . 64

6.4 Truth Li~erlll 65

CONTENTS

6.5 Falee Literal . 66

" Neglldon. 67

8.7 Disjunctiou 68

'.8 Coujunction 69

6, Implicatiou 70

6 10 Equivalence 71

':..lJ Universal Quantification 77

612 EXII;tential Quantification 73

6.13 Unique Existential Quantificstion .	 74

6.14 Substitution '.J

I) 15 Free VSTlIlb(es 76

6 16 SuLfititution 77

7	 DedarlltioD 7.

71 Introduction. 7.
7.2 Simple Decillralions	 79

7.3 Schl'"mll Inclusion	 80

7.4 Compound Declarations	 81

7.5 Substituted Declarations. 82

7.' Free Variables and Alphabe-t . .3

7.7 Substitutiotl	 84

.58	 SeltemaText

8_1 lnhoduction .5

8.'2 Simple Schema Text 86

8.3 Compound Sche-mll Tn:t	 87

8.4 Substituted Schema Text	 88

8.5 Free Variables and Alphabet.	 89

9 Schema 90

'.1 Schema Designator 91

Generic Scherna Designator "" ,., Schema Construction. "
9.4 Schema Negalion "
"
95 Schema DisjllnalOn 95

Schema Conjunction 95

za- S~""d""" Veroion 1.0 prin•.-d :lO'h r.l..v............. IfI!I2	 i.

CONTENTS

9.7 Sthema Implinlion .

9.8 &hema Equivsknce

9.9 Schema Projection

9.JO Schema Hiding

9.11 Schema Universal Qllanlin~lItion

9.12 Scnema £llislential QuanLification

9.13 Schema Unique Exist.ential Quan~ificatlon

9.1'1 5diema Renaming

!.J.l;j Schema Substitutioll

9.lfi Fr~ Variables .

10 Paragrllpb

10.1 Gi~1n Set.!;

10.2 Corntraintll

10.3 Global Declaralion

10.4 Genenc Deelarations

10.5 Global Defiuitiona

10.6 Genelic Definitions

11 Specification

Annexes

A	 Abstrad Syntax

A.I Spe(ifkation .

A.2 Parll.gn,ph

A.3 Schema

A A Schema Text

A.5 Dec1arat.ion

A6 Predicate

1\.7 Expres51on.

A.S Identifier.

D	 ltel>rcscntalioll Syntax

0' GrarruTIEll

H2 Lexical Analy"i~

97

98

99

100

101

102

IOJ

104

105

106

lOB

. 109

110

III

112

IL'I

114

no

117

118

118

J18

119

J20

. 120

J20

121

121

123

I:!3

1.:10

CONT£NTS

8.3 Ch,uac~er Set 133

BA GraphieaJ ConventiolLs . 134

C Matbematical Toolk.it 13.

C.I Set.; 137

C.2 Rela~ions 142

C.3 Functions 150

C.1 Nnmbel1land finiten~&8 154

C.S Sequences 161

C.6 Bags "8
D Z Interchange Forluot 171

D.l Int.roduction 171

D.2 S(ope of the Inten;la.nge Format 171

0.3 Introdnction ~o SGJrIL]72

0.1 Definition of the Interchange Formal 175

0.5 Examples 182

E Z Cbaracter Set 185

F A deductive system for Z 188

F.l Introduclion 188

F.2 Seqllent5. 188

F.3 Rule:. . 189

FA Proofs 190

'.5 General Rules 190

F.' Expressions 101

F7 Predicate!! "3

F.B S(.hem"" 196

F.' Decl8.ralion5 107

F.lO Definition'. 198

neferences 201

"l B.... S~""d....-d V~",ion 1.0 prinled JOt" No'·'l,~r l\l'\l:l xi

Foreword

This is the current version of a Base Standard for lhe Z notation and is distrihuted for review and
commenl. This version has been specifically prepared for di.,triblltion ill the Seventh Z User Meeting
in London on 14th-lMh D{'ccmber 1992, and will be illillie a~'ailable for general distrihution after that
date.

Th(' Z Base Stalldard is subj('cl to change durillg its r('~'iew by ,he Z Standanls Review Committl.'e a.nd
th(' BSI Sta.ndards Panel now being forlll('d. New versiolls will be issued a,; nee<1ed.

Comments on th.is version of the Z Ba~(' Standard a.re \wekollled and should be sent 10

Editon Z Da..5[' Standard
c/o Secrclary Z Standilrds Project
Oxford Univer5ity Computing Laboratory
Programming Research CW\IP

J 1 Keble Road, Oxford OXl :lOD
Fnited King:doill

The Z Base Standard has been produced as part of trw work of the Z standards projecl, pilrt of th.e
ZIP project (lED project No. 16:l9).

Z B_ 5u.,,<1...... Ven;"n 1.0 prillleJ :10'" N"~e",h..r 199'l xiii

o Introduction

Z was originaUy de~'e1oped a.s a ~pecificution notation for preparing formal description~ of systems.
without necessarily indica~ing how they will be implemented. This section iududeo a de~cription of the
aims and objectives of formal specification notaLions, with special reference 10 Z. The design priuciples
U6ed in the development of the Z sta.ndarrl are described.

0.1 Not.ations for system description

It i~ widely admowledg.,1l that natural langul:lges and similar inrormal notat.ions have many disad
vantage~ when used for I'.tJting technical descriptions. In using such langu<\ges it is difficliit to-ritll
specific?tions with the required precisiol\. daril.... and economy of expres~ion and to transform them
systematically and reliably into code or bardwarl:' Furthermore. it is impossible to C.-irry 0111 formal
mathematical rea.soldng abont informally written descript.joll~.

In contrast. specifications written in jorrno.{ notations can hI.! made prccise lI.Jld cleat. Inference rules
diOrhed from their mathematical foundations enable designers to carry out malhematical reasoning and
coll,;trUct proofs relating ~o th.e properties or l>ystem descriptiol\s.

The advantages of fornlal notations W('fC recognisl.!d from an early ~tag(' in the history of computing.
although it has taken considerahle time for their pract.ical application 10 bec.ollJe establi:ihed. Many of
the ~arly luge-lOcale applications of formal notation were for the ~pecification of progranlmillg languages;
formal descripl.ion& of syntax are now widespread and for ~ome languages there are format descriptioll~

of semantics.

Formal notations are now being used in a wide and expa/lding variety of environments. especially in kef
areas where the integrity of systems is criljcaJ. or where there is high int.ensily of use. For a discullsion
of domains of application ror formal methods, S<"e [16].

Example3 of tne effective use of formal sjlecification notations are round in the following <U'eas:

safet.y critical systems
security systems
the definition of standards
hardware development
operating systcms
t.ransaction processing systems

Descriptions of case stlldic5 rrom lhesl:' and other application areas for Z are listed in a Z Bibliogrnphll
hy Bowen [2]

0.2 Objectives of a specification notation

The objectives of a formal specification notation art, lo assist in the productiou of dl'SCTiptions that
ate complete, consistent and unambiguou~. To achieve th.ese objectives, a rormal specili~atjon not<\tioll
needs to be:

u..~ablc by th05C who read and wrill:' formaJ doclllJJeuts;

z g...., S~andanl V"....."n 1.0 I"it""", 30,1, Nav"",I,.,.,. I99J 1

o INTRODUCTION

e1'pre88ivt',50 that it can be used for a wide range of applications;

pred,se, 80 that it is possible to write descriptions that mean exa,ctly what is intended;

given a mathematically 80UIld meaning, since mathemalical rea.~oning may be used in the dlC'vel·
opment process;

liuihbh, for defining sufficiently abstract models of s)"stems that specifications do not need to
couta.jn unnecessary implementation details.

0.3 Characteristics o(Z

A central part of Z is taken from the matllernatics of Sl't t.hNry and first order predicate calculus. For
th(" purposes o[syswm description additions ha\'e bren made to convelltional mathematics, including:

a tyfH. sy81em which re(luires each variable to he a.%odated with a declared type. The ability to
type-rhec.k a spl'cificalion helps in assuring that it is accu:ate and consistent;

the Z schtma notallon. which provides a Lechnique for grouping together a,nd re-using common
forms:

a dedoctive 8y8tem which supports reasoning about Z .~pecificatjolls.

In addition, the following have beoen dl'veloped to help in the pragmatic use of Z in de\'elopment projects:

the capability for writing explanatory text as an integral part of a Z document.

the inclusion within the standard of an agreed method of rl'presentlng text in compulers and
transmitting it.

0.4 Design principles

The following design principles have been used in tIle development of the standard and are based Oil

those used, explicitly or implicitly, in the original design of Z.

Basis in mathematics. Z is based on a central core of mathematics and uses accepled mathematical
concepts and notation. In addilion, there are means of definiug and checking the type8 of Z elemeuts
and. by means of lhe Z 8chema, for ~tructuring specifications.

Utility. All part5 of Z included in the standard will have beoen .shown to COlltribull' to tIle main
objedivl"S of Zand will have beoeu used in ~igniflcanl case studi('s oc development projects.

Simplidty. There is an objecti\·e to keep lhe Z notation as simple a..~ possihle. consislent with its
on'rall objecti\u.

0.5 Aims of standardisation

0.5 Aims of standardisation

The Z standard supports the following g£.>neraJ aims of standardisation as listed in the British Standards
Institution Slandard for Standards [4]:

provision of a medium for communication and interchangeability;

support for tlw economic production of standardised products and services;

the establishrnt>nt of meanB for ensuring consistent quality and fitness for purpose of goods and
st>rvic£.>s;

promotion of international trade.

0.6 Validation of' the standard

In order to L'alidale the standard, it is necessary 10 ensure that it is is appwpriate, consistent and
complete. and is in accordance with t.he gem:ral understanding of the Z notation. In order to achieve
this, the folloWing steps have been taken:

t>xisting descriptions of the notation have been Ilsi'll as a ba5is for the document;

alternative concepts and notations ha\'e bl'1:'n proposed where existing ones were considered defi
cient.;

the standard is being reviewed by the Z Standards Ret'lew Committee, which includes experts in
formal methods, users a.nd tool makers;

the standard is bt':illg reviewed by the ZIP tools project to confirm lIlat it call be supported by
tools;

the mathematical part of the standard is being checked for soundness.

0.7 History of Z

This section (in preparation) will include a list of selected design papers on Z will identify some of the
key decisions made during its development.

Z 0- Sl.&ndwd v.....ool1 1.0 prilltrd 30Ih Nny~n,b"r 1~2 •

1 Scope and conformance

1.1 Scope or the Z Standard

The Z standard defines the representation. structure am] meaniug of the forma! part of specifications
written in t.he Z notation.

Tn addition to defining the fonnal part of tile Z notation, the Z ~tanda.rd defines:

a Library or Toolkit of mathematical functions for use in writing Z specifications;

an Interchange Format for Z documents that enable~ them to ue prepared, stored and tran~rnitted

within computer networks;

a deductive system for formal reasoning about Z specifi('aUon~.

A Z document may contain both formal and informal text. The !exis of the standard does not define how
the Cormaland informal parts are delimited: this is defined in the (nterchange Formal. Tbe Interchange
Format dOe! not define the structure of the informal part of a Z document.

The standard does not define a method of using Z.

1.2 Conformance

!I. "pecifica\iou conforms to the standard for the Z notation if and only if the form;,.! t('xl is written in
accordance wjth the syntax rules aud is well typed.

A dednclive~ystem for Z conforms to the standard if and only ifits rules are sound wilh respect to ~lle

semantics.

2 Semantic Metalanguage

In the following sections we describe the ml>talanguag€ us{·d for defining the semantics of Z. We include:

the names of all met.alanguage symbols:

the forms in which they are used;

descriptions of their nwauing.

Many of the s)'mbols used in the semantic metalanguage are derived from conventional mathematic.,
and are defilled informal!)'. Throughout the standard, the mathematical treatment ig based 011 the'
Zermek-Fraenh·l (Zf) a,xioruatibation of set theory. Au inTroduction to ZF theory can be found in text
books on set theory-see for exalnplr. F.uderton [6J or Hamiltoll [9].

In ",ddition to conventional mathematical symbols, w€ introduce and defllle a number of sp~cial symbols
whicb allow cOllCise sernautic definitions to be written. \Vhere these arp similal to t.he ,ymbols of Z.
Z-Jike symbols i!.re used and the following additional information is given:

• definitions of ne symbols in terms of basic s~·mbols. (or other new symbols)

Note that.. although symbols similar to those of Z are used, the semantic metOl.langua);£ is not Z but
standard mathematics, based on classical set theory.

Naming conventions. The following naming conventions are nsed:

npper-case letters A, B, C, . . are used for sets;

lower-case letters %, y, ;:, ... are us€d for elements of sets.

Commuting diagrams. In several of the following descriptions commuting diagrofIl8 are used to
illllstrate relationships between the set constructors being defined. Commuting diagrams are graphs
whose nodes are labelled witb sets. Nodes are connecte<! b~' arrOW5, each arrow beiug labelled with
a relation between the sets at eMh end. A diagram IS said to commute when the composition of two
different routes between nodes Yields the same result.

Z B...... S'andacd V~nion 1.0 printn.! JOth Nonml>.T 1991 •

2 SEMANTIC METALANGUAGE

2.1 Definitions and declarations

Variable~ and notations are introduced and named as follows:

Table t: Declarations and ddinitions

~aml' Symbol Example Description I
declaration

definition -

A:B

A=B

A is declared to be an I'lemcnt of the set B

.4 is defined as B

" Z R...... S,tu><lard V~... i"" J.O .,ri"W3Oth NiI,..,,,,u..r IfI9~

2.2 Sets

2.2 Sets

The following sets .are predefined:

Table 2: Preddin('d sets

~ame Forml Description

empty set

intep;ers

~lrinll;s

l

" ,
S

tl:'! 5et having no clements.

,-2,-1,0,1,2, ..

lhe set of all strings of dara<::ters. I ,
--"

Relationships betwC€n sets and th('ir rnembf'rs are written as rollows:

Tahle 3: RclalJOn~hips between sets and members

:'lame I Form ! Description

membership I z E A I x is a member of A.

fiUbset AS;; B I A is a sllbset or B i.e. .all elements of A are
elements of e.

equality A = B ; ,," A "d D "e e"o>' ;'e. A "d B hm tl" I
same members.

L

21:1...... S~_d.ro. V""';on 1 0 pr;n'M JO'h N<J'·~mb.,,-1992 T

;: '"C
Il ..
 Z ..
 n ;: ~ ... > Z
 c:: "

>
 "

'"

2.3 Tuples and products

2.3 Tuples and products

The following C"on.!iIMldor"3 define tuples and products:

Table 5: Tuples and products

DefinitionFormName

ordered list of Ihe elements .1'll ... , .1'n.!tuple < .1'1,' .• ,I", >

the i!h member of a tuple.<,tuple projection

7(", < ;rIo' .,X" .•• I", > = x,
where 1 S; i ~ n

the set of tllples < z", ... x'" >Cartesian product Al X ..• x An
, such that

XJ E At ,nd "d In E An I
the set of tuples < Xl,' .. ,Z, >I~'-,." -,,, I, such that Xl ••.• ,Ii E A

generalised producl A+ A' U A' u A' U

Z B..... SI_dan! V..niob 1.(1 prinl<'d 30th N""~nol,...,- 19'il2 9

2 SEMANTIC METALANGUAGE

2.4 Relations

In	 the following table, R,S denote binary relations, A and B denote sets.

Tahle 6: Relations

Name Form Definition

binary relations A_B P(A x B)

Identity relation 1, < x, Y >E 1A {:} x::o If" I E A

domain dom R I Edam R ¢:} 3 y. < I. Y >E R

range ran n yEranR ¢:} 3z.<x,y>ER

converse n-' < x, y >E R-l ¢:} <y,x>ER

backward composition RoS <x,y>ERoS
,

¢:)3z. <z,z>ES<z,y>E R
I

forward composition R;S SoR

rUlge restriction R~A R; 1.4

domain restriction A~R 1A; R

relational override R<llS ((dom R dam S) <J R) u S

relational image 3(R)A ran(RolA)

2.5 Set ~onstructors a!l relations

2.5 Set constructors as relations

Set constructors can be given relational equivalences. By explicitly defining the domain of fach con
stmetor an equivalent get-theoretic felation can be constructed.

Table 7: Sel constructors defined as relations

r N.. me Symbol IDomain Range Definition i

1"'iO' U ~ PUX «Zt,J'1 >, Y >E (U) (:} Y '" J'I U 2:2

I jllter~ection n I X x X PUK «Zt,X1>.y>E{(l) ¢} y=Zll-,x2

subset
;; I X

pu,y <Z,y>E(Jl ¢} y<;;;;:

clemellt 3 X UK <.r,Y>E(3) (:} yEx

singleton {-} I X
"

PX < x,y >E {-} ¢} Y 0= {x}

power P x PPUX < J'. Y >E P ¢} Y 0= P X

relational imal!;l' 3(R) P dom H Pran R <z,Y>E:l(R) ¢> y0=3(Rl2:

singleton image A(HI domR Pran R < Z, 1/ >E "(R) ¢} y = 3(RJ{.x}

projection 'i XIX ... xX" IX; I «zt, ... ,x,,>,y>E{lr;)

.1'+Cartl'~jan product x IIU.XJ+I <:,:,~.~"">'Y>EIX) I'

¢}YO=:t"lX ... Xx"
L' --C l _ J:
These relations will be used only when t.hey ha~'e well· defined domains.

The folloWing diagram SllOW5 commuting properties of relational constructors:

P4 _'(H) - PB

/
{-J A(H) /

/" 13

/
.1--~-1/ B

"l a..... Sl ... ,da,..d Ve""'i"n 1.0 p.;n ...d :JO.h Nov..",h...- 1~)2 1l

• •

•
•

0

N
 , • I '. ~ [~
 ,~. e l , ~ z ~ ~ §

, ~
• "'=

" ,5' ·

5"
~.

=
 ~

~
 £.
 f ~

~

0

'
? ·
 a ~

 ? =

0 g-. ? g-• =
 =

~
 , ~

~

 ~. • ~
 , 0,
 , '" ? 0

0
 , ~ =

0 a =

0

a ~

..	
'"

a0	

~.

~

c
:

5'

E

0
'

,
..

a
.. ~

~
,

=

	
0

~
~

0

'
0.

0
'

~

0 '0 "

•a 1l

~

 , " ~ ~ 0'
 g ,. ~ 0 "

,. ! to
 ,. ! '"~ ::! ,. x !3

,. t to

IU
 ,. I !3

,. I '" ,. I '" ,. ~
 I '"

0 E

~ ",, ~

0
' a ,. I '" "= "
'•

~

~
;; ~

£.

'" E

0 ..
 ,
 §".
 o. 0 '" a ' ~.
 •'" , ~

0 i:E

0
' "

,. I '"
;;

:g;
g
.

?
£.

9" 0
0

~
E ..
 Q

~.

0 '" a '" •=

0 '" ~

~

0 E ..
 ~ 0
' a ,. .' '" J

• a
 g

~

~
a

~

.,a ~

,.
0

;;
£. ..

=
,

;;
'
,. §'

~
.

-,

~

1>

.. ,.a0
Ie

 '"
~

~ 0
'

0'

0
0

"
'" .. £~

;; g.
• ~

=
 9

'" • a • 3' 3 t:
l ~ 0
, " 0
' =

Q

~ , '"g. 0
' =

~
 •g:
 " :J' =

0 g. a

0
,.

~
..

" ~

9-.
0 b

 g

~
 .. =
· •

" '"
 :J' :? o' • •

N

U>

 ::: '"
 > Z
 ::l ('
) ::: .., '"
 > > "' Z

Gl
 c:: > Gl
 '"

9 • ~ 0'
 ·
 ·
 • ~

~

..
 ~
 o' =
 • "' ~ " 0 " ,"~

 ;;

~

~
 • "• ,~

~

 a • - ·
~ ., 0 3 =

~

;; '" • x ~

Q

'
0 ,

2.6 Functions

Compatible functions_ Two functions are said to be compatible if their union i5 a function.

The set ofpilirs of compatible functions from A to B i~ defined as follows:

CAB = dom(U t> A B)

The funclional forms of the sel ow~rators: llniO'fl, inl.ersecJian and set difference are defined only when
lhe arguments are compatible{unc\ions \Vhen defined, they have the same value <>..Ii their set equivaJellts.

Table 9: Compatible funerions

Name

Functional union

Functional interseclion

FUIlclionai difference
i

s) mbol_l DefiuitlOn

u" ~8 o(u)

n~B CA8 <l (n)

-AB ICAB <l (\)

Z B..... SI ,j.onJ V.,....,,, I.U pnnlP<! :.JoO.h N"..~",I..,- 1!)!J2 13

2 SEMANTIC METALANGUAGE

2.7 Tuple and product constructors

The follo'llilng tuple and product constructors are used.

The relational tuple (R I , ••. , Rai is a relation from the comOlon domain of R I , ... , R. Lo the Carlrsi"'l!

product oft.heir ranges.

The relational product R I ;II, ••• ;II, R" is a relation from t.he Carteoian prOdlict of the domaius of
R I , R. to the ca.rtesian product or their ral1ges.

Table 10: Tuple and product construclor~

•

~
~am Form Definition

iOllal tuplerelat , (R,,, . ., R,,) < ;C,< !ll"'.,!I" »E (RI ., •.. No)

¢} < Z.!l1 > E R, /\ ... /\ < ;C,!lTO > E 11"

iona.] produdrela' R, , ..)(R~ (11"1; Rl .. · ·,1L"n ; Rn) I
'al relational productgeD~1 R+ R U (RxR) U (RxRxR) U ... I

I
I

The follQwing diagram shows relationships between the.~e constructors:

8,

./

;/

B l x ... x Bn I R,

, c

IR""~

"

Aln .. nAn

2.8 Promoted application

Theorem 2.1 Relalionaltupling distribule~ through intersedion fl.j Jollows:

t-(Rl. ..• R..) n (511 ••• ,5..) = (R1nSj, ... ,R.. nS..)

The following diagram illustrates the properties of tile product constructor:

BJx .. xB,. "", il,
+

R, , , R. R.

Al X .• , x A.. 1r, Ai

Tlieorem 2.2 Prodv.ct (hstribv.tes through mll:'rBedion as JolI()w_~;

t- R} x J(H.. n SI J(J(S. = R1 n Sl J(J(R.. ns..

2.8 Promoted application

Promotcd application (R. S) is the relationaL analoguc of the S combinator in comhiJLatcry logic.

Noh:: Promoted application is defined so that thc folJowiug equality hll(d~:

(R. S)p = (Rp)(sp)

wbere R~ is the application of the fll!l(tion R to the argument f'

D~finition 2.1 The promoted application operator COns/MlelS 0 relation Jrom Iwo other rdation.~. 1/.,
eJJat is to apply the resv.1t oj R to the relJalt oj S:

R.S =:: (Rj:;l nS;"",1):1f"2'

Nole; If Rand 5 are fundion! and f' is in both of tlleir domains. then the tuple (p,(p, q»)
be1oll,gs to the first p;ut of this composite relation providing that that (p, q) is a member of
tIle set R

I
, and p is Sf>. The tuple (p, q) belonp to the composite relation exactly wlwn for

some p the tuple (p. (p, q)) belongs to the first part

Promotcd application is disjunct;ve in bolh arguments.

A derived form of promoted apptic<\tioIJ is the apply·lo-n function: (_n).

Definition 2.2 The apply-lo-n JU1le/joll lake,; (J!J all argl1me'/lt a Jllllciioll and has as a 1Y'91llt Ihe ap
plica/ion oj that J1Jnc.tion 10 the element n II IS deJillfri CIS Jollou'$:

(_n) == 0.11°)

Note,; If pi!> a fUllclion and II i" an elclllE'nl of tI-'ll domain of p lh{,ll the followiilg I'ljllaJit~·

holds:

(_n)p = f'n.

Z R-.. S(_d.."d Vrro;on I II 1'",,'1 :JO,h N,,,,rml,,,,. 1"91 "

3 Semantic Universe

This section defines a semantic universe within which lh.e meanings of Z specificatiou$ lie; it is hased
OIL th.c Zermelo-Fnenkel axiomatisation of sets discussed in the last sectiolT. h contains the meaniugs
of names, types, a.nd values used in a specification, as well as the e1lvironmerrt IIseJ 10 define the overall
meanillg of a specificaliou.

3.1 Names and Types

D'lr first task in building our uuiverse is to explain the use of naml?$ and the notion of types. III Z, a
!IalJ]e i.~ u~ed to denote an element, whicb may be a set, a tuple, a binding, or an element of a Riven type.
These narn€~ come in three varieties: they may be the names of schemas, varia,hles, or const<luts. 'This
partitioningof names is drpendent on the specification in questio11, the members of eadl set 110t heinF;
Ji.~lingui6hahle in the concrHe s)'ntax. Abstractly, we have that onr set of names Nome. is partitioned
into schema names. variable names, and constant names:

(SchcmaName, Variable., COfl8lafll) partition Name..

In common with other specification and programming languages, hut unLike ZF set theory, the rules of
Z reguire tbat every name introduced in a Z specification is given a particular type which determines
the possibilities for the values that it may take. This type has several purposes, both practical and
technical. It offers the usual advantages with which we are familiar in programming languilge5: it
helps to make the specificatiou easier to understand, and it permits a certailT mechanical checking of
a specification to be doue. It also guarantees l}lat Russell's paradox is avoided in a specificatioll, and
that sets defined in comprehension exist. Fiually, it provides an insulation againsl tile details of the
encoding of Z constructs in ZF set theory.

The simplest types are given 8et name.B. which are useJ to introduce a.bstract objects into a. specification.
or as tbe formal names of generic parameters. Their names are drawn from the set Constaflt.

GweflSftName l:; Constant

Note: The names for tlie set of integers 2 and the set of strings S are meln bers of tht> set
of given set names.

For more complicated type~, Z prO'o'ides three type constructors so that power set tYpes, Cartesian
product types, and sch.ema type'S rna}' be introduced. If fl}, •.. , flm are names, alld T], .•. , T", represent
tyP(·s. then the following all rt>present types:

PTl,
TjX ••. xrm,
[flJ : TJ; ... n", ; T", I.

[very lype beioIll;s to the semantic set Typr.. whirh is partitioned into lhr foUr subspts (,'typf, Plypr. Ctypt:.
alld StyTJt' represC'nting lhr given types, po""·er set tYPt>s, Cartesiall product I~·pl'.~. anrl- sc!lema type.~:

«(,'type, Plype, Oy/}(,Stypc) partition TyVt,.

3.2 Values in Z

It is easy to think of something of given type at; an object. of power set type as a set. of Cartesian
produCl as a tuple, but what about sOinething of schema type? As we can see from the above example,
il is a function from variable names w types; such a funrtion is called a signature:

Signature == Variable _ Type.

Now we bave everything that we need in order to expiain the struclure of the set of typel. Consider
power set types. From every type r, we can construct the unique type which is P Ti eVNy power set
type P T is constructed in this way Crom a unique type r. Thus, the power set constructor is a b.jection
between Type and Ptype. Similar arguments apply to the otber type constructors. We can sum this up
by defining the following fOUl bijections with the partitions of Type

givenT: GivenSetName ;-0 Gtypt
pou'e,.T : Type -- Plyp"
':I','oouctT: Type+ -+ Clype
sdl£maT; SignaturE Slype.

For each specification th('re is a set of distinct given types. All other types u.~ed are cOllstruct..d from
these given types using a unique combination of the type coustructors. This uniqueness is guaranteed
because the type constructors arE' in bijection with the partitions of the set TylX. Tlwreiore the set
TylX is the smallest set which is closed uuder these t:\'pe constructors. Type is the initial algebra OVN
the signature given by r;ivenT. powerT, cproouc/T, scltemaT.

3.2 Value:!! in Z

As we said above, one of the purposes of ascribing a type 10 a variab]l:' is Lo dl:'terrnine which valucs
the variable may take. To make this possible, ea.ch type has a sel of values associated with il, called
ih carrier set. The values in the carrier set of a given type are regardl"d as atomic: objects. Each value
in the carrier set of a non given type is modelled by a ZF set. The relationship between the types and
values in a 9pecification is defined by the funclioll Carrier, whose definition we approach jndu(ti~·ely.

Note: In Z a type is identified by its carrier set. l!l the previous examples T \V~ thl:' carrier
set for some type.

Definition 3.1 Foreach sp£cijieation there is a carner Junction u'hich maps ihe r;iven Iyp~s 10 demen/II
oj Wo.

CarTil'ro ; Gtyp"- TV0

Now. suppose tbat 'I" is a given type; what is the carrier set of the power set type P r? It is simpl)'
the set P(Carn"er r). In general, for a]lower set type (1. w(' must calculate t}\e carrier spl by stripping
off the pOWl'r Sl't constructor. calculatiu,I! the carrier set of this underlying typc. and t.hpn forming tllE'
power set or lhe resull; formally. this is ~i'''Cll b:-' tbe expression

(powerT- 1 i Carn'ero i P) (1.

Similarly, if (T is a ('arlesian product of giw'Jl typ('s. tl}(,ll w(' should hreak it UJI inLo its constitucnt
given types, work out their carrier spts, and th('n form tl}('ir Carf('lIian product, so that w('end up with
a set of h\ple values:

Z B,.,... Standard V~....,,'" I.IJ f>rin'~<t .Wth Non",L~r J ~11 17

3 SEMANTIC UNIVERSE

(cproductT- 1 i Carriert i X) u.

Finally, if f1 is a schema type made out of given types, then we should obtain the underlying signature;
this yil'lds a. function from names (.0 types, wllich we must turn into a fundiou from names to the carrier
sets of these types; finally,e must form the schema product, so I,hal we end up with a .!let of functions

from names to values:

(schemaT- 1 ; 3{l x Carriero); XName) u.

In tllis discussion, we havl;" heen assuming thaI, the type constructors are applied to given typc~, but hI
I';l;"neral they are applied to arbitrary types. Since a type is made ont of a finite sequence of applications
of the constructors, we can define the depth of a type to be the length of this sequence. :Kow we can
l;ive our inductive definition using this notion of depth:

Definition 3.2

Carrier'+1 =
Carrier;
U pOUJerT- 1 ; Carrier;; P
U cproductT- 1 ; Carriert ; X
u schemaT-1 ; 3(1)(Carrier;); XName .

Tn order to calculate the carrier set for a type 1'", we must apply Carrieri, where i is the depth of type
1'". Notice that every carrier function whose domain contains r gives the same result for 1'": this justifies
OUT gl;"neral definition.

Definition 3.3 The genem/ carrier function which maps elements oj Typ<: to their earnersels i,~ defined
as follows.'

Carrier =. Carriero U Carnerl U Carrjer~ U

The valUE'Shich may be used in a Z specification are those that arl' iu the carrier sets I,hat are a.~signed

to the types. This sel is constructed from the elements of 11'0 using the type constructors,

Definition 3.4 The set W oj all t'a/lles is the union oj all the carrier sels Jor th(' elements of Type:

H' == Uran Carrier,

Definition S.S A binding i.!l a finile mapping Jrom t'uriables to l'a/lles.'

Binding == Variable IV.

Thl' carrier function is a Ilomomorphism between types and n'. Thus. we have thE' equations

Cm'n'er(powerTT) = P(Carrier r)
C(lrner(cprodllctT(Tj. T2)) = (Carrier 1'"1) X (Carrier T2)
('rlrncr(BchcmaT u) = X,\'mlle(3(l x ('arrifT)a).

Thi" is depict('n ill thl;" colTlJlluting diagrams in ngurl' l.

1M Z It,..,~ ~1 .."oIard lip"",,,,, 1.U l'.-i"t,.,j .101h :-;""~I"I"'r 1\1\'1".1

N

..;

, ;

3 SEMANTIC UNIVERSE

3.3 Elements in Z

Each element in Z is represented by the pair cousisting of its tYpe and its value. The .semantic set Elm
is a. set ortype-value pairs; this sel rna.y be considered as the relation betwee1l types and values in which
a lype is rdated to a value if and only if the \'alue is a membcr of the ca.rrit>r .set of the type"

Definition 3.6 A value is (In eltment of II type if and only if it is contained in the carn"er sel of tnf
type:

Elm;: Carrier; 3 .

fhe -first and second projenions on a tuple are used to extract the type and value respectively.

Definition 3.7 The type (Iud mlu" fum/ions an; projeclio1l1' from tne tuples In Elm:

I 0: JrU:lm'

11=- JrlE:lm'

The type function is a surjection since the carrier set of each type i~ non·empty. Since the canier set of
each type contains aC least one value, Elm contains at least one pair for each t.ype; thus, t is svr-julwc.
Since the values that may be used in a specification are all to be found in the carrier set~, Elm contains
at least one pair for each value; thus, v is sutjeelive.

Definition 3.8 The membership reill/ion for elements 3 is Ihe lifltd form uf a type mlue pair:

'3 == (powerT- 1 x 3)

Suppose thaL we ha.ve a Z specification. It consists of a number or definitions which intronuc(" names.
Each 1Iame may denote some value, and each name must have some type: Lhat is, each 1Iame may be
associated with an element. We call such au assignment of elements to names a situatio1l.

Definition 3.9 A situation is a finite mopping from vanables to clement"<:

S'itualion =- Variable _ Elm .

.\ sit.uation tells us two things about the names in a Specirlcation: their types and their values. If
w~ think about the lypl' projection of each name. then we obtain a mapping from uames to types: a
signature. If, on the other ha.nd e think al>olll thl' \"a]lIe projection of each llame. then we obt.ain a
mappillg ftorn names to values: a uinding. The signatnre and binding corresponding to a particular
situation fan be extracted by the function:; l' and V respectin·ly.

Definition 3.10 The T and \. fUlldirm,. an" defined (IS follou's:

T=-3(IX/)

~. ~ 3(1 x I')"

3.4 Generics

The following commnt.ing diagram illustrates the relationship between types and ,'aJu~s and thl'ir lifted
forms as 6ignatUre5 Gnd bindings:

P Variable

""',

" Jom dom ~om

", " SignCJturt T .,;;,tu~tiarj \' Hi'Hfmg

I I I

r,1I1ranran I

I
P Type ~,------PElm PI"

'(I) 3(")

Sinl:e the prod ucl cons tfuctar and the i mage constructor pres~rve surjectivity, T is a. surjcni\·~ functiolL
Our ue).t theorem follows from this.

Theorem 3.1 The. type of the ~e! of situatiolls i" exactly the set 0/ JIgnature.s::

I- 3(TjSituation = SigrlCJlu~.

3.4 Generics

A Z expression that involves a generic insrantial.ion acquire;; a typ~ and a valuc that depends upoa thc
type arLd value of tlle expression Ilsed in the instantlalioll. Thus if we S(!li' 0!N] we know tbis bas a

clifTerent type from 0[P NJ. The various types that 0 ma~· take are represent.l.'d as a funclion from type
to type. In rhe c,ase of 0. :hi" function takes au arbitrary pow('rset type to itself. III geMral, where
a ii/:cneric definition conl(ljns a list of identifiers. the'lrious possible instantiations are afunctian from
)ish of elemeuts to a ~ypc and value. TJ~e dl.'ment.!; which llIay appear as adual parameler5 of a gl.'neric
defimlLon must be of powersel type

3.4.1 Gel1eric Types

For earh generic Iypf' th(' number of [ormal param('ll'fs is fix('d, and ('very possible> se(\lICIICl.' or powerset
types with the right llulUbn of formal paramell'fS is ~i\·ell a type. So eadl gent.'ri(" t.¥lll' is a fnnction
from fixed-leugth Gf'Iluences (lr power '').JJ('.~ to a t~·pe.

Z B""" 5tlUld"n! V.....;m' '.0 prinL..<l."lOth Now",L..r l\1'!12 21

3 SEMANTIC UNIVERSE

Definition 3.11 For onll natuml number n > 0, tht Sit 0/ all generic typts with n paromt"ltrs is llefined
{1.!J /01/0111$;

Gt''LType. := PtIlIX" -+ TIIP'!.

Definition 3.12 The.!Jet 0/ all gHliriC lypt.!J i.!J the union 0/ all tht stls 0/ fiXEd length gencrll' typu:

Gell_Type :: TllpE U Gen_TyP'!] U Gtn_Type1 U.

If X and Y Me generic formal parameters and a generic defmition declares r : X; 11 . }', Then an
expression such as r E II or r = y would impose a mutual constraint ou the types that could be used
10 instantiate X and Y, For:l E II, we haH the constraint that the types that Y may take all' the
powef/:;et orthe types that X may take; for:l = y, we have tbe constraint that the types that Y may
!ak~ must be the same as the l)'pes that X may take,

The ddinition of generic types Ol.s total functions imposes the constmint that gell~ric defbdtions do not
lr~at~ intet.relationships beteen t]le type of tbeir formll.! p"rflH\etNs. Such inter-rehllionships can
'llways be eliminated within a specification.

~ince all the type constructOl"S are bijections. th~n any iuter-relationship hetween Ihe type,;. of g~llerlc

parameters i~ functional. Th~refore any dependent parameters are redundant since they can be uniquely
d~terminedas functions of the olher parameters. For x E y the inter-relationship can b~ eliminated by
removing }' as a formal gen~ric parameter ,lnd ddining y P X: for :l == 11 we call eliminate Y and
definc y: X.

3.4.2 Generic Element,

As with generic types, for each g~neric element there i~ only one number of formal parilmeter6 that it
can take; fnrthli'rmole every possible sequence of the corren number of elemem.s with powerset type is
given a type and ,·alue.

Definition 3,13 Generic element.!J urt' /lInclio"s from tlJple.!J 0/ ,oft riemenls 10 elements:

Gen_Elm : P(Pelrn+ - Elm).

~('t~ ill Z arc those- elements which have a power type:

Definition 3.14 The si/ Pdm contai"$ (Iii clements which haFt power type;

Prim =- Ptype <I Elm.

I'hl.' rUllctions representing generic elemem~ are type consist~lll: a generic element, when iustalltiated
wjlh IWO sequences of elements of thp same t~·pe. will give IWO elements of the sallle type. In order to
'1<:'fine this property it is neces~ar\" to charact('ri.!Jf' the type part of fl generic I·lem('n\..

Dcfinition 3.1~ The /Wl('tlOrl T lokes a /lIll('lion from Iliph 0/ elfrwnt:< 10 dement.!J and rllJH'/I1' 'I
1/f'l!(Tic typt:

T -=- 3(It X I) U f

3.5 Environments

Definition 3.16 All genenc elements nfll'e a type parllrnlcn is fUf/ctional, i.e. contained in Gen_Type

Gen_Elm == dom{r c> Gen_Type) .

.A theorem similar to that for elements hold§ for generic elements:

r 3(r)Gen_Elm = Grn_Type.

3.5 Environments

In l"der to give a JnC'anin/il t() the COTlstruet~ of Z. we need an environmcnt to rccord Ihe elemenls
delloted by thc Tlames used in a Z specification.

Definition 3.17 An f'Tll'ironmfnl is dejir,etl (J:< a finite pm'liet! function from name."'o gnUrlC elemenls:

Ef/V == Nllme __ Gef/_Elm.

Whether a Z specification is well t)'ped or not is a (Jues1.ion that is independeut of thc valuea or the
declared variables. To be able to answcr tllis question it is TleCeSSar)' to have an environment in which
the types of all names are recorded.

Definition 3.18 A type-envirollmenl ib defined as a jif/llc Junell01] from n(lfflCS to generie typea:

Tent' == Name __ Gen_Typ",

Th~! simple relationship between the rid,er environment. ENV. and the one nsed just for 1)·JlP. checking,
TENV, is given b.... the forgetful functioJJ T which throws away the \·alnes.

Deftnition 3.19 Tne function T maJl.~ the $fcond e1CllIfTlt of e(Jcn tuple in an enVil'Onmeflt onto its
corrtspanding genenc tyfX:

T'= 30"4m< X r).

TII(· following COIIJilllltiull; dia!!:nlln iJl\lst.rat.t'~ 1-he rel"lioJl~hlp hl'twl'en Lit!:' ('II~'iroJJllIent aud typc
Cll \'i ronment:

Z Ii""" .~l ...ndd V......ion 1,0 l'r'nl ..,1 :JO'h No,·.,,,,l.cr I!'!J'J 23

3 SEMANTIC UNIVERSE

PNa.me

d,/ ~m

Tenv T Env

"" rail

PGen_Type _-- powaGen_Elm
3(T)

The functioD I used in the collstruction of T ran be shoWIl to be surjer-tive outo Type, so the followillg
theorem holds.

Theorem :J.2 ElJf!ry type environment ha.s at least one corrcspondmg 11I1l t'lwinmment:

r 3(T)Env == Tenv.

If T is a set or type environments, lhen 3(T-1)T is tbe corresponding ~el or meaning environments.

4 Language Description

This ~ec~ion provides all introdnction to the following section~ by illustrating how the the syntax and
,~emantics of Z are defined.

The following sections each define a major syntactic category: ezpr<:ssion, predicate, dec/am/lim, schemlJ
lUi, .•chemlJ, pllragroph. \Vithin each there are subsections corre~ponding to the syntactic categories of
the abstract syntax. Each definition follows a consistent pattern and is suh·dj.,.ided nnder tIle following
headings: Abslract Syntax, Reprt:llenlation and Tronsjomlation, Type, at~d Vaille/M£tminy. At the end
of each ~ection tables contain the definitions or the free variables of each element, together with their
alphabeL wr.ere appropriate. Finally a t;;.bleof equivalenres for substitntion is given.

A de'lotationa/ style of semamic description is used [21] and, as in the cu~(omary styl~ of writiIlf!,
dl'notativnal semantics, semantic brackets are Ilsed to delimit text fOr which denotations au givell. The
notatbll is extencied by providing different shapes of brackets for diffr-renl kinds oflanguageelcnlents a~

show]] in tlle following t.abk. Three t.ypes of sl'mantic functions are used, for Iype, value ilild meaniny.
The different types are identified by s\lperscripts on the hrackets.

Table 11: Semantic hrackets

Bracket Argument Forms

IT-I
{-I

Expre~sjon

Predicate

IT- r,IT- r,IT- I"
{_IT,I_I"{_I M

!

I-I
I-I

I-t

I-I

Declaration 1_ IT, (_ 1M

Schema 1_ IT" 1_ 1M
'

Schl'maText 1_ V, I_1 M

Paragraph 1_ V,I_I M

I

I

~

'I. ~ !:>l..."b.rd V.....;nn J.U 1><,,,, ..<1 :lOlh N",'''''~'''' 1\)!I'l 25

4 LANGUAGE DESCRIPTION

The following meta-variables will be u~d.

Variable3

E,x,y

n,m

a

;

,
" "
b

f

P,Q

C,D

51

5,T

Pa,

Sort

Expression

Name

String

Number

Tuple

Set

Binding

Function

PrediCaf.e

Declaration

Schema Text

Schema

Paragraph
J

4.1 Abstract syntax

For each language element, ilS abstract syntax is defined ill a form of Bl\'F. The following example
illustrates the style used.

PQWERSET = P EXP

In some cases symbols such as P are u~ed rather than key-words or other strurtmes in the syntax to
make reading of the abstract syntiU easier. The romplete ahstract syntax is pr('sel1ted in an Anne;(.

4.2 Representation and transformation

For each la.nguage element a table is provided sh<1wing the production or productions, expressed j:;). the
repr~l'ntationsyntax. of tlte language element being defined and t.be relationship between tbe concrete
and abstract forms.

Note: There may be more than one representation of an abstract syntax category; in such
cases all forms are listed. In some cases the multiplicity of reprcsenlations is due to the fact
that rome forms can be considered as abbn>\·iations of olhers.

26 Z B ..._ ~l .."rl....rl Vp",JOn 1.0 Vrill'..d JOth t"owmL..,c J~2

4.3 Type

The transformation is presented in a denotational style with different superscripts on the brackets to
denote the type of argument.

Table 12: Tra.nsformation Functions

Bra.drets Argnment

[-1' Expression

[-1" Predicate

[_1" Declaration

1-1' Schema

l_fT SchemaText

(_f'A'R Paragraph

The following example illustrates the tabular form in which the representation form i,s presented together
with its transformatiolL to its abstract form:

Production Concrete
~

Abstra.ct

'p' ,Expreuion5 P. P[.)'

In this example the production for power set shows how a power set is represented i.e. as an expcession
prefixed with the power set symbol. The second column is an example of this concrete form. In this
CASe.5 is some elo:pression. The third celnron gives tlll' abstrMt form 01 this concrete expression. In this
ca.se the form is an (abstract) powerset symhol followed by the abstract form of the expression 3. These
two columns can be read a.s an equatioll in the form:

I P .,j' P[·.. t·

The r{'presentation s}'ntax is presented ill a complete form in a later Annex.

4.3 Type

The definition of the Z type system is by structural induction over lbe abstract representation of a Z
specification. The well-typedness of a Z specification can be determined illdependenllJ of the value!!
of the declared variables. So we see that tIle following d{'finitioll of l/Il' Z type system is entirely
self-contained: giveu a Z sp<'cilication, the type definitions detE'fmine whether that !pecification is
well·typ{'d.

Note: It is important to note tltat a..~king whether a cl:'rtain sp('cificatioll is well-typed is
d{'ridable. Askin!!; what lht' type of lI,ny lrtm in a given {'n~'ironmt'nl is likewise definable.

'l B-.- Suu,dal'<l V~ ...i"" 1.0 pr;1I1M :lmh Nove",ha 1~1\l~ '7

4 LANGUAGE DESCRIPTION

Thi. is in marked contrast to evaluaLioll, where asking whethN a certain Ilame nl"y have a
certain value is undecidable in general.

The fact that ""ell-typing is decidable is not quite as obvious as all that, bpcallse TENV

represents generic definitions using infinite objects. However, the infinite function from

tuples of powerset type to type can always be represented as a finitary expressioll.

Name Form Sort

Expression Type [E DT Tenv -... Type

I Predicate Type

IDeclaration Type

jP DT

lD DT

P Tenv

Tenv __ Signalure

Schema Type

SchemaT"xt Type

Paragraph Type

IS V'
(St l'
{PaT V

Tenv Signature

Teflv -+> Ten\'

Tenv Tenv

I

J
The following example lllu!>trales the d"scriptlon of the tipe of" P0\louset'

Type The type of the power set Psis the power set type (I(the type of the set s.

ffP s TIT == (ITs ll' [> Plype); pOll'eTT

Note: A power s"t Psis w"ll lyp"d only if $ hilS power set type.

The type description contains an informal description, th" m... lh"rnatical definition of the type futl-:tion
for the powerset and an explanation of when it is w"]]-lyp"d. This last explanation is duived Jirel::tly
from the domain of the type function,

4.4 Meaning

The meanings of expression, predicate, dec/am/ion, schema an(l paT(lgmph are gi ..'en by the followirlg
functions.

Name Form Sort

Ellpression Meaning [E DM Em' Elm

Predicate Meaning jP DM P EnlJ

D«laration Meaning ID DM Env <-0 Situation

Schema Meaning dS)MS Env SitualioTI

ScbemaText Meaning 1St jM Env <-0 Env

Paragraph Meaning 4Par}M Ent' ~ Em'

4.5 Value

The mewinga of erpression, predicate, dedarQtion lUld schema are combined to provide a meanillg for a
parllgraph. This meaning is a relation between environments. The meaning of a specification is defined
as the image of the empty environment through the cOffip05ition of the paragraph relations.

The folJoo.ving exa.mple iUusuates the description of the meaning of a simple declaration:

Meani.ng The meaning of the simple declaration n ,. n", : .5 is a relation from the
environment to those situations which associate each of tbe names n" ...• n", with one of
the elements of the set expression .'I:

(nIl ... n",: s DM = ITs DM ; ((n,",3), ...• (n",o,3»); {...}.

Note: The simple declaration n, •. ..• n : .'I is value-defined exactly when the
expressions is a non-empty set.

The meaning description contains an informal description. the mathematical definilion of the meaning
function for the declaration and an e.1lplanantion of when it is value-defined. This last explanation is
derived directly from the domain of the meaning fnnction.

4.5 Value

The meaning functions for e.1lpreuions and predicates are defined in terms of their type and value.
So the value functions are the primitives defined in the following sectiOns. These (unctiolls have tbe
following structure:

Name Form Sort I
Expre5sion Value IE I" Erw _ lV

Predicate Value {Fa" P Env

I

The following exampJe iIIunrales the description of the vfl.lue of a powersel:

The value of the power set P II is the set of all the subsets of the \olue of .I:

ITPIIUV = IT.s]"';P

Note: A powerset P II is value-dt'fiued only if tlle e.1lpression s is value-defined.

The value description contain!> an informal description, the mathematical definition of the value function
for the powersel and an e.1lplanantion ofwht'll it is vahlp-denn('(\. This last explMfl.tiOIl is derived dir(lctly
from ll\c domain of the va.lup function.

1. B...., S.....danl Vr ,.;"" 1.0 I''-;",..,j :IlJ1h :.Io.. rn~· I\I'J1 2.

4 LANGUAGE DESCRIPTION

4.6 F'tee variables.

Ordinarily the definition of the free variables of an expression can be considered as a fnnctioll 011 the
names of identifiers appearing ill the text of the expression and the variahle bound by Lhe declarations.
In Z howe."er, tbe case is somewhat more complicated. The \lse of schema ref('rences as decl<lratlCns
means that there is an implicit declaration. The names introdun'd by the declaration S wh('re 5" is a
schema reference are not related to the name S but to its value in the particular environment within
which it is heing evaluated. In other words the free variables of an expression depend OIL the text of th.
expression and the environment in which tlle expression is evaluated.

We define the free variables of an expression 10 be a partial function from environment to sets of names:

¢.(E): Env -++ P Name

The set of names defined as the free variables for an expression for <I particular environment is the
sI.naliest set of names which must be in the environment ill order for the expres6ion to be well-defined.
However since local declarations do not introduce schema rderenc('s, the free variables of all exprellsion
are unchanged by a local declaration. So in the definitions we omit the environment paramet.er as it
has no effecl on the value of the free variables.

Table 13: Free Variable Function

Function Argnment

¢, Expression

¢. Predicate

¢, Declaration

¢. Schema

¢, SchemaText

Z 1I""" Slll.lld4lYl V.n,,,-,,, 1.0 pri"l.oed 30th Nov..rnber 19'J2 30

4.6 Free variabJes.

AI. thlJ end of each section there is a table ddining the free variable for each comtruct within that
category.	 The following example illustrates the definilion of the free variables of a power SlJt:

Table 14: Ex:tra.cl from Table of Free Variahles

--,
Expression I Free Variables

p:z I¢.z

This CaIl also be read as an equation in the following form:

'P,P" 'P,".0::::

't, BM<' S'''''d...... ~....... jQ" 1.0 pril\.roi :\l}<lo No.....",I"'r 1'191
 31

4 LANGUAGE DESCRIPTION

4.7 Alphabet

The syntactic categories of declaration, schema lext iUld schema are used to inlroducl' new !lames.
These new names are called their alphabet. The alphabel is the set of the names in Ihl' sign:.ture as
defined by the type rules (where applicable).

Table 15: Alphabet Funcl.ion

Function I Argument

u I Declaration

SchemaTeXl
i

Schema

I
~

Table 16: Extract from Table of Alphabets

I
Declaraliou Alpha~t

f--- I
n" ...• nm:a I {n .. ,nm }

"

This (an also be read as an equation iu \he following form:

u(n" .. ,nm : 8) {n t , •• ,nm}

Z B..... Slan.IArd Veno.i"" 1.(1 r>rjnl~ 30th Nove",!",," 19'.:12 32

4.8 Substitution

4.8 Substitution

The tables of semlUltic equivalences for substituted expressions are givl'n at the end of each section.

These tables indicate when one expr~6sion can hI' replaced by anotherithout changing the meaning.

The follo..... ing example illustrates the semantic equivalence of substitution into a power set:

Ta.ble 17: Extra.cl from Table of Semnantic Equivalences

Substitution

b,OJ P s I:::~." I

This can aho be read a.s a.n equation in the following form:

bsP s P(bGs),

where the symbol -= denotes semantic equivalence.

Z 8Me s.....t1.-..l V.,...i.... 1.0 prm'rd JGl.h Nov""'ber 19!)2 33

5 Expression

5.1 Introduction

As in computer languages, e.r:prc.5siun is a general form for defining values in Z.

In the abslract syntax gi\'en below, tbe different kinds of Z ent.ity are listed. The enlities included jf:

tite syntax, further defined in this chapter, may be subdivided as follow~:

Elements:

IDENT GENINST NUMBERL STRINGL

These denote c!("mentary values.

Set constructors:

SETEXTN SETCOMP POWERSET

These are used to conslruct sets from elements or SPI.'i

Tuple eonstructors:

TUPLE PRODUCT TUPLES ELECTION

These are used to conslrucl tuples from clements or luples and sdecl clements from tnples.

Binding constructors:

BINDINGEXTN THETAEXP sCHEMAEXP BINDSELECTION

These are used to construct bindings and select elements from bindings.

Functional forms:

FUNCTAPP DEFNDESCR

These represent function application and definite description.

Other Forms:

IFTHENELSE EXPSUBsTITUTION

These respectively represent a cOllditional expressiou and substituted expression.

Arithmetic and other expressions

In Z, facilities for defining arithmetic and Hring valued expressions such as those of programming
languages are included in lhe Z Toolkit, where they are defilled in terms of other Z COllstrUcl.ions.

34 Z B_ SII.nd....d v~;o" 1.0 pr;nL.... JOLh November 1992

5.1 Introduction

Abstract Syntax

EXP ==	 IDENT

GENINST

NUMBERL

STRINGL

SETEXTN
SETCOMP

POWERSET

TUPLE

PRODUCT

TUPLESELECTION

BINDINGEXTN

THETAEXP

SCHEMAEXP

BINDSElECTION

FUNCTAPP

OEFNDESCR

IFTHENELSE

EXPSU BSTITUTION

Stages of definition

In this chapter definitions are built up in stages: first a. type june/ion is defined, then a v~lue junction.
From thl"se. a meaning ju.nelion can be derived according to rules giveu below.

Type function For any expression E, its type junctio11 [E]7 is a partial function {rom type
environments to types. The expression E is well-typed in l'-xactly those type-environment, contained in
dom [E]T. The tJlpe of an expression in a type-environment is the result of applying its type fundi on
to that lype-environment. The type function for an expression E is constructed from the type functions
for its Bub-expressions; thus the type of E is derived from the types of its sub-expressioIls.

The t)'pl.' of an expression in an environment is its type evaluated in the corresponding restrkted type
TenvironlUent. The function T; [E H corresponds to the type function for E in the full meaning envi

ronml"nt, where T is the function that restricts an l'nvironment to its corresponding typNnvironment.
An expression is well-typed in an em'ironment if and only if it is well-tYPl'd in the corresponding type
environment.

Value function For any l"xpression E. its value june/ion [E]1' is a partial {unction from environments
to values. The expression E is value-defined in exactly thOse environments contained in dom ITE]1'.
Thl' value of an expression in a environment is the result of the application of its valU!? function to that
environment.

Meaning function From lile type and value funclions for an expre~5ion E it is poosible to define
a meaning funclion [E]M. The meaning of an expressioll is the pail of its lype and its valU!? The
meaning funclion for an expression is COllstructed a.s follows:

,.z e.- Standard Venli<>n 1.0 prin,~ 30th N<>v~",o.". 1992

5 EXPRESSION

IE I" = (T; IE Dr , IE TI")

The expression E is IDell-defined in exactly those environments contained in [he set:

dom{T; [E]T . [E]V)

This is equal to the set:

domT; [E]T n dom[E]V

Thus an e.xpression is well-defined in those eu'..ironm<:'nts ill wiEch it is well-typed and i~ \·alu<:,·ddined.

A result of this definition is that t.he 'ype of the meaning of an ~xpression in an environment i~ aJway~

the same a.s the type part or th'" expresGion wilen e\".]uat<:'J in the coTr0sponding lYP<:'·0l\vjHJlIm<:'IIt.:

r- [E]M ; I ;; T; [E] r •

3. Z R..... Sla"d...ol V<:n;Q" 1.0 prinl~d 30th Nov~n,bt.r 1092

5.2 Identifier

5.2 Identifier

An identifier is a na.me used to refer to a. va,riable. Variables in Z ase mathematical variables and are
nol the same as the programmiug variables used in programmiug languages. Z variables dEnote values
which depend OD their environment.

Abstract Synt&.Jt

IDENT = VARNAME

Note: A variable nam(' i~ composed or a b(l.~f_namt' suffixed by au)' number of decorolions.

Representation Ilnd transformation

Production
,

Conert>:e Abstract

VarName " n
I

Type The type of an identifier is the type 1.0 which the identifier is mapped in the type-environment:

Un TIT = (_ n).

Note: An identifier is well· typed only if it is in the domain of the type environment.

Value The value of an identifier is the eleml'nt mapped to the identifier in the environment:

[n]V == (_n);v.

Note: An identifier is value-defined ouly if it is in the domain of the type e!lvironmEnt.

'Z B..... SU'l'ld.,.d V~";"1'1 1.0 prinlN JOlh J'II..~~mb 195t~ 37

5 EXPRESSION'

5.3 Generic Inst.ant.iat.ion

The generic insta.ntiation n [3" ... ,3,,) is the instantiation of the genericallY declared variahle n by by
t11e lisl of~t expressions s" ...• s" Each ekment of the instantiation list gives a value to a gem'ric
parameter of the generic definition.

If the list of generic paramNets is omitted in lhe representalion form, they are inferred from the typing
information in the context of use. The implicit parameters are the maximal sets of the appropriate
type, which must be uniquely determined by the typing rules.

Abstract Syntax A generic instantiation is const.ucted from a variable name and a list of ~xprf'~~ion.<..

GENINST = VARNAME [EXP.EXP •...• EXPj

Representation and transformation ThC'fe are three ways ur instantiating g{'nerically declared
\'ariabl<>s: hy a parameter list, by infix or b:. prefix mear,s.

Production Cor,crel~ Abstract

VOIr NiI me" l',Expression,{' ,,,E)(pression}'I'
EKpressionl, InGen,Expression

PreGen,Expression5

nl.] .•,n] n ![6dt,[s.J.'~·, ... ,[3nt]

Xl tPZ2 I I-'i>-) [Izd' .1,,1'1., i 14>-1 [[,I'I

Note: The expression XItPZ2, where,p is an infix generic symbol is the variable dt-dared as
(_I,b-) when in~tantiatecl with I,he parameter list [Xl, X)]. When ,p is a prefix generic symbol
then ¢: is the variable declared a... (¢o-) when instantiated with the parameter list [x].

Type The type of a genl?ric instantiation n [s" . .. , sn] is obtained by applyi ng the functirm COIre·
sponding to the generic type of the variable name n in the environment to the t;,'pes of the actual
parameters 3\ •... ,3,,:

r[n[s" ... ,sn]f == (_nj.([3, U, ... ,[8U7
)

Note: A generic instantiation is well-typed only if the' variable Jlame is in the domalll of
the type environment and if there is a correct number of set.lyped paramcte'rs.

Value The value of a generic insta.ntiation n [3" ...• sn] is obtained by applying the functio~ cor·
l<'Sponding to the generic meaning of the va.riable name n in the environment to the meanings of the
actnal parameters 3" ...• 3,,:

[n!...... , ••IJ" ~ (l_n).([.,JM"'''['oJM));"

Note: A generic instantiation is ,,·alue·defined only if it is Wl'JI.typ('<:! and all its parameters
are value defined.

3. Z 8""" S..........M'<! V~",,"'n 1.0 prinu,d 30Ih Nov~mbe< J002

5.4 Number Literal

5.4 Number Literal

A number Iitera.l is an entity whose representation denotes its value in the world of integer;.

Ab5tract Syntax

NUMBERL = NUMBER

Note: A number is a sequence of digits

Representation and transformation

Production COncrete Abslract
1---

NlJmber i ,

Type The type of a number literal is the giwn type of the integers.

ITi ll7 = 2°; givcnT

Note: A number li~era.l is always well-typed

Value The value of a number literal is its representation.

ITiD7 = iO

Note: A number litera.l is always valne-defined

Z B__ Sland...-d V~,."io" 1.0 pri,,~..d JOlh Nonml>r, 1992 3.

5 EXPRESSION

5.5 String Literal

A string literal is an entity whose representation denotes its value in the world S of strings of charact(,Ts.

Abstract Syntax

STRINGL = STRING

Note: A string is a sequence of characters.

Representation and transformation

Produnion Abstract

String : a

Type The typl' of a sl,ring Jit"ra] is the set 5 of strings.

[af = SOjgivenT

Note: A string literal is always well-typed.

Value The value of a string literal is its representation.

ITa DT = 0°

Note: A string literal is always value-defined.

Z R...... Sl""d.,rcl V"...ion 1.0 prinl"d JOlh r>!,w"",ber IO'J2 40

5.6 Set Extension

5.6 Set. Extension

J. set extension {x" ... • x n} is a Sl't containing exactly thow elemenls denoted by X,," .,X". Since
a 51't is charactl!rised by its member/;, tbe order and multiplicity of elements in x" . . ,:r-n is of no
consequence.

A bstrad Syn'tllJ(A set extension is cou~tructeJ from a Jist of expressiolls.

SETEXTN = {EXP, EXP, ... , EXP}

Representation and 'transformation There arc three kinds of 6e\.s which tan be cOj\~tructed by
eJHl'nsion; sJmple sets. sequences and bags.

Prodnction Concrete Ahstract
,

'{' ,ExprusionO,{' ,',ExpressionO} . T { XI, X~, . .. ,:r") {[ZIt,lxlIE, ... ,(x"r} I

'(' ,ExpressionO,{',',ExprenionO} ,')' (l'l,X2," .,X") [(II,x,),12,x,), ... ,I".x.)})' J
'I' ,ExpressionO.{',',ExpressionO} ,'I' l XI·E:i,·· .,x.. I r(Ix" I)} _ {(X" I)} ~ .. _{(X., I)) 1£
~- I

Note: The expression (ZI,~, .. , Xn) defines au explicit construction of a sequence, which
can be regarded <\5 an ordered collection of its constitueuts. A sequence is modelled a.s a
partial fuaction mappiug the Natural numbers 1, ... ,11 to the expressions II, X2, ", x"
respectively.

Note: The expression I :r-l, x2,' .• Tn I defines an e..xpficit cOtlstruction of a bag. A b/lg is a
colledion of possibly multipl;"-occurring elements. A bag is modelled as a partial function
mapping constituent expressious to tlle uumoer of times they occur within the bag.

Type The type of CI. set extension {Xli' .. ,:t,,} is the power set type of the common type of x" ... ,2'".

[{X" ... ,Zn}nT = ([2',ll'n . . nUx"ll');p01nerT

Note: A set extension {x" . .. , z .. } is well t:yped only if all of the expressions x,. Z., ... , z"
have the 9ame type.

Note: If t represents the commou type of XI, Xl, . .• , x,. ,then P t represents the t)'pe of
the Set { ZI,Z2•.. . ,X" }. P(l x I) repre!>ents the type of the sequence (XI,T~ •. . ,1.) and
P(t x l) represents the type of the b<l.g 1"-""-1""'x,,),

Z B...., Slandanl V~..j ...n 1,0 printed 30lh No .."",b~ IWl 41

5 EXPRESSION

Value The value of a ~('t eXlension {z,t ... ,z,,} is the s('! of lhe value~ of z, •..• Z,,:

[{,,,···,,"H" = (['.ll", .. ·,['" ll");{· ..)

Note: Asetextensic,n {~I.Z~t., .• ;(:" }isvalue-definedonlyifallof z":z~•... ,:z,, are
..... alUic-delined.

Note: Two sets {.lL,.l:!•... ,x,,} and {Y"lt!h, ... ,y",} are equal if and anI.\' if for all;;,
there exists Y, such that Xi = JI), 1 S. i ::; 11 and for all YJ there exist~ Xl such t],,,t
Yj=r~, l::;j::;m

Z RaN" !'td ... ,] V".....on I.U p ... "I30II' Nov"mber 1992 42

6.7 Set Comprehension

5.7 Set Comprehension

The set comprehension {St. z} is a set which contains exactly those elemeuts denoted b)' the expres
sion z when evaluated in each enrichment of the currenl environment hy the schema text St.

Abstract Synt.ax A set comprehension is constructed from a schema text and an expreosion.

SETCOMP =' {SCHEMATEXT. EXP}

Representation and trl'l.D5(orml'l.tion There ar" two types of set which can be constructed by
comprehension: a simple set (for which the expression part is optional) and a lambda expression.

Production Concrete Abstract

'{' ,SchemaTe:d..• ' .ExpressionO, '}' {Si. x} {[S,tT.[,l'l
'{' ,5chemaText, I}' {St) Hs'tT,[(Sl),l')

'A,' ,SchemaText, '.' ,Expression >..St. :s; HSIjST. ([(Sw l' .[>!'ll

Note: If the expression part of t.he set comprehension is omitted then the defaull is the
characteristic tuple of the schema texl.

Note: A la.mbda. expression denotes a fuuction. The parameti>r is the characteristic tuple
of the SchemaText. The domain is defined by tILe property of the SchemaText. The value of
the function for a given parameter is defined by the \"alue of tbe Expression with respect to
the value of the parameter.

Type The type of a sel comprehension {St. z} is the power set type of tbe type of:r in the type
environment enriched by the declara.tion 5t:

[{St. z} TIT = {St V; rrz TIT; powerT

Note: A set comprehension {St. z} is well-typed only if 5t is well-typed and :r is well
typed in the current type-environment enriched by St.

Value The value of a set comprehension {St. z}, is the set of the values denote by the expression
z in each of the enrichments of the environment by the schema text 5t:

V[{St. z} D = "(St}M i ffz tl

"Note: A set comprehension is alays value-defined.

z a- Sl.andan!"~1.0 prinl.-d 30Ih No¥emI- 19'31 ..

5 EXPRESSION

5.8 Power Set

The power set P 8 is the sel of all subsets of the set s.

Abstral:t Syntax A power set is constructed from an expn·sslon.

POWERSET = P EXP

Representation and transformatiQn

COflcret(' I Ahstr~ct

,p' ,Expression5

Production

p, P[st
I

Type The type of the power set P 8 is the power set t)'pe of the type of lhe set s.

[P 8 r = ([S]7 [> Ptype); powerT

Note: A power set P 8 is well typed only if 8 has power set trpe.

Note: If P t represeMs the type of the set s, theu P P t r('presents the type of P s - it is a
set of sets. So, the type of lhe elements of Psis the type of 8.

Value The value of the power set P 8 is the set of all till' subsets of the value of 8:

[P s]V = [8 r; P

Note: A power set Psis value-defined on I}" if the expression 8 is value-defined.

5.9 Tuple

5.9 Tuple

A tuple (;I:" ... ,z,,) is an ordered Colleclion of the clellLcnl.~ z" ...• z". TIle eleml'lIts z" ... ,z" are
nol required Lo nave lhe samR t.ype.

Note: Note tha.t the tnple5 (a,b.e) and ((o.b).e) are distinct: the first conI ail" three
elements 0, b. t: wherRa.s the S&ond contains twO i'lpments (0, b), e. The expressim (a) is
not a tllple; !l is the e)(pression 11 within p...r...nthe5e~.

Abstract Syntax A tuple is con6truct('d from a list of lwo or more expf(·!;~jons.

TUPLE = (EXP,EXP, ... ,EXP,EXP)

Repr... ,.entation and transformation

Produclion Coucrete Abstract

'(' ,ExpressionO, .,' .E)(pres.sionO,{'.'.E)(pres.sionO} ,'}' (Xt, ... , x,,) Ilxd',··.,[,,1')

Type The rypc of a tuple (z" ... ,;1:,,) i.o; the Cartesian product. type formed from the" types of
;1:" ... , ;1:,,:

[(z" ... ,z,,)ET ~ ([;1:,]7, . . ,ITz,,]"T);cprodudT

Note: A tuple (;1:'" ... ,;1:,,) is well-typed only if all of z, •... , z" arc well-typed.

Value The value of a. tuple (z" ... ,z,,) is the tuple formed from the values of %" •• • ,X,,:

[(z", .. ,z,,)]\.1 = ([;1:, TI", ... ,[z"]\.')

Note: A tuple (;1:'" ... ,;1:,,) is valne-defined only jf all of z" ... ,z" are value-defined

Note:

Two tuples (Xl,X2,""X") alia (YI,Y2, ... ,Y",) areeql1al if aud only if x, = y" 1:::; i:::;
T1=rn

Note: If x, E 8i for I $ r :::; n. then I.h.. tuple (X\,:f2 ,X") is an el~ment of
81 x &2)(.. , x s" .

5 EXPRESSION

5.10 Cartesian Product

The expression s, X .•• X s.. is the Cartesian product of the sets s" .. . ,s".

Note: Cartesian products with different !lumbers of terms are distiuct.

Abstract Syntax A Cartesian Product is constructed from two or morl' expressions.

PRODUCT = EXP X EXP X ... X EXP X EXP

Representation and transformation

IConcretc AbstractProduction I

Expreuion2, 'x' ,Expression2.{' x· ,Expression2} SIX-'2 X ... XS" !"Yx ... xl'.l' I

Type The type of a Cartesian product s, X .. X s" is thc power set t)'pe of the Cartesian product
t.ype of tIle list of the uuderlying types of the elements s" . ..• s".

[s, X ... X S..]T = ([S,]7 i powerT-t, ... ,[s"]T; powerT- 1); cproduclT; pou'erT

Note: A Cartesian product s, X ••. X s" is wl'll-typed only ifall of the elements (s". .• sn)
Ilave power set types.

Value The value of a Cartesian product s, X ••• X s" is the Cilrtesian product of the values of the

sets (S" ... ,8,,):

[s, x ... X Sn]\1 ([s, r, ... ,[s"]\1); X

Note: A Cartesian product s, X ••. X s" is value-defined exactly only if all of thl' sets

8""',Sn are value-defined.

;. B...... SI....."dAl"d V"n1,on 1.0 prinl.ed 30th Noyeml..,.,.l9En 46

5.11 Tupl~ Selection

5.11 Tuple Selection

Th~ tuple selection t.i is the ith element in the tuple t.

Abstract Syntax A tuple selection is constructf'd from all expression and a number litera.!.

TUPlESElECTION == EXP, NUMBERl

Representation and transformation

Production Concrpte Abstract]

I E)(plession5, '.' .Numbed,1 I.• II J'.i

Type The type of ~ Luple selection t.i is the Lype of t.he ith element of the tuple t.

ITt,i nor == [t]T; rproou('IT-1 ;);,

Note.: The ~uple selection t.i is well·typed onl)' if t has ~ Cartesian prod11ct type with at
least i elements.

Value Thealue of a. tuple selection t.i is the v~lue of the ith dement of the tuple ~

[t.i]\I == [t n.... ; 11";

Note: The- tuple 5el~tion t.i is ,,~lue-define-d only if t has the value of a tuple with at [ea...~t

i elements.

Z t:l...e Standard Venion 1.0 1"'''(.-.1 :10110 No~~..,I>~r 1992 47

5 EXPRESSION

5.12 Binding Extension

A binding extension 4n, z" ... ,n", z",) is the binding which mi\ps the names """ ... ,nTn to
the values of thl? expref;siolls Z, , ••• ,z", respectively.

A bstract Syntax A binding extension is constructed from a list of names and expressions.

BINDINGEXTN = qVARNAME EXP, .. ,VARNAME !:XP~

Repre.!ientation and transCormation

Abstract '~IProduction Concrete

E
'Q "V"N''''':~''ExP''''i~ Q n, ~ x" .. ,nm ~ xml ! 1n. ~l xd , ... ,nm ~[xml'l I

I {',',VarNamt!,'''-'"',Exprt!ssionOj:t ' ~ I

Type The type of a binding extension q n, z" ...• n", Z", ~ is the schema typ{' of t.he sign?·
lure constructed from the mapping of the names n" .. .• n", to the types of dIe expressions z, •... , Z"',

[4n, Z" ... ,n"' z..,,~ f';: ((n,O,[z,]T), ... ,(n",O,[zTn]T));{...};schemaT

Note: A binding extension q n, Z" ..• , n", z,.,.,. is Wl'JI.typed only if the expres5ions

z" ... ,Z", are all well-typed, and if the mapping from names to t:'l'pes is fuuctional.

Value The value of a binding extension G n, z, •...• 1l", Z"r. ~ is the binding constructed from
the mapping of the names n" . .. , n", to the \'alne!> of the expressions z, •..• z",.

[4n, z" ...• n"' z,.,,)]\.';: ((nt.[z,]\.') (n~"~z,,,r·)};{... J

Note: A binding extension an, z, •...• n,,, z." ~ IS valne-defined only if lite ('xpr('s·

sions Z, •... ,z", are all value-defined, and if the mapping from narne~ to values ;5 fuuctional.

Note: Two bindings 1: and y with components nl • .• r1t are e(lual if and only if r.n, ;:

y.n" 1::; i::; k .

• 8 Z B......., St ..."I.vd V"....ion 1 0 prinl.ed 3lXh Nov"mber 199'J

5.13 The1.a Expression

~.13 Theta Expression

The theta expr~saion 8 5 is the binding whose type is constfucted from tbe signatuff' of 5 and whose
value is the binding constructed from the m~pping of t.he names of the signature to their values in th('
environrneut. Tbe tbeta expression 8 S ~ is the binding hose type is constructed from the signaturl'
of S and whose value is the binding Wllstructed from the mapping of the names (,If the sigllature to Ihe
values in the environment of thoBe na.mes when decoraled by~.

A 09-expression is aay of identifying a binding. A billJing can be wnstrnct.ed from variables in scope
if f,); each named elem(,nt in the binding. there is the same name in the environment denotl!lg the sanlf'
e-lement.

Abstract Syntax A theta expre~sion is wllstructeu from a schema aud an optional detcration.

THETAEXP =	 8 SCHEMA DECOR

8 SCHEMA

Note: The schema may it.self be decorated. Thus the following are permitted: 09 S q and
09 (sq) ~. Only non-generic schemas may be nsed in thera expressiolls

Representation and transformation

Production Concrete Abstract

'09' ,BasicSch,DecoTllion 09 S 'I 0(5)" ,

'09' ,BlSicSc:h '5 0[5)"

Type The type of 8 5 q is the schema type wllstrncted from the signatnre of S whose components.
when decorated by 'I, have the same non-generic type in the environment:

[OS IT ((5]TS n 2); BchemaT
[8S~]T ((5 pT$ n ;d; 3«(q)",' xl»); .'JchemaT

Note: A thl'ta expression is well·typed only when each of the Jecoral,f'd versions of the
na.mes of the signature of lhe schema are assigned non-generic types in lhe environment. and
tbl'y have the same type as those of the signature.

Note; The type of a theta f'xprl?S~ion 8 S q is not the lype taken from S decorawd by q.

The decoration ~ does nol necessarily appear in I he re"'lIlting type. The llse of the hchema
is to identify the type of the resulting binding. D('coratioll is used only to identify which
names to look up in the environment; thus 8 S' and 8 S q are of tile same type ~\'('n jf'
and q are different decoralions.

Z B""", Sl.and....d V..nion 1.0 .,tinl"" JOlh N"vm,,,",, 19'J~ .9

S EXPRESSION

Value The value of the theta expression 0 S q is a bindiug of the nam<;s of the components of S to
the values of the name!>. when decorated by q, in the environment:

[8S i' T; (S DTs ; schemaT; Elm n ;;;;J; V

[8SQ]V T; dS DTs ; schemaT; Elm n ;;J; 3({q V' x t')

Note: A well-typed theta expression is always value-defined. The value of the theta
expression does not have to satisfy the property of the schema.

"l H...... -"1.u"I".,1 Ver.ion 1.0 I'rinlW .1O.h Nnve,,,t,.,r 1[/".12 50

5.14 Schema Expression

5.140 Schema Expression

A schema expression S is ~he set of bindings defined by the 6chema. The.~e bindings have 15 their type
the scllema-type coIl.!;trucled from th(' signature of Sand th('y satisfy its property.

Abstract Syntax A schema expression is l:onstructed from a schema.

SCHEMAEXP = SCHEMA

Representation and transformation

Producliou Conuete Ahstract

Schema 5 [51'

Type The t,)'pe of a schema expression S is the power Se't lype' of the schema type comtrncted from
th(' signature of the schema S:

[S TI' :: dS D'7;:"i ; !JchemaT; powerT

Note: A 6chema expression S is well-typed only if the schema S is well· typed.

Note: The type of a schema expression is nol in the range of schcmaT: it is in the range of

sehemaT; powerT. The relationship b('tweeu ~ r-s and UITT is that of .•chemaT; powerT.

Value The valne of a 5chema expression S is the s('(of bindings defined by the schema S:

ITs I" ~ A(IS D~' ; V)

Note: A schema expression 5 is aJways value-<lefined.

Z B....., Slandanl V"RiB.. 1.0 I,rinlt'<! :lOIh Nov~ml,~. 19!1~ 51

5 EXPRESSION

S.lS Binding Selection

The bindiD~ selection b.n is the element to which the uame n is mapped in th€ binding b.

Abstract Syntax A bi;lding ~elel:tion is construned from a binning and a name.

BINDSElECTIQN = EXP. VARNAME

Reprefienlation and tramitormat.ion

Production Concrete Abstract

Expreuion5. '.' .VarName '.n lbt".n

Type The type of a binding selection b.n is the t)pe to which tht' name n is mapped in the signalure
used to construct the schema type of the biuding b:

[b.nf = [bTIT;Bcht:maT- 1 ;(_n)

Note: A binding selection b.n is well-typed only jf thl? lype of b is a schema type; and the
name 11. is in the domain of the signature from which the s<.:hema type is constructed.

Value ThevaJue of a binding selection b.n is the vaJue to which lhe name n is mapped in the binding

b'

v[b. n n = [b]Y; (_ n)

Note: A binding selection b.n is value·defined only jf tllt' binding b is \'alue-defined and the
name n is in its domain.

7. B"n 51"",1..,.<1 ...~...."" l.C1 pri"l~d JOlh N"v~",ber J99'l 52

5.16 Function Application

5.16 Function Application

Thl? function application 1 z is the result of applying the function 1 to tho:' argument z.

Abstract Syntax A function applica.tion is consltucwd froill two expr('s~ion;;, a fllndion and it,.~

argument.

FUNCTAPP EXPIEXP)

Representation and transformation There afl~ four ways of represenlin,e; a funoioll application:
a normal form, an infix form, a superscript and a postfix form. For functions (]edarcd fot Ij~e in postfix
or infix form, underscores mdkate the posilions of the operands. The complete name of ~It~h a function
illcludes the nndersrores aud surrounding parentheSf'5 hich are omitted when the operand5 af\? suppliN]
ill th .. form defillcd in tLJ(' declaration.

Production Concrete Abstract I
Expression4,b:presslon5 Iz [!l'([z]')

Expression2,lnFun,Expression3 zo, (_¢ I[(z,,)]'

Expression5,ExpreuionO (iter[zj(j([Rj()

Expression5. Post Fun, I ~: (_ ¢)[zl'

Note: The function application x ¢ y is the inflx application of the fuuction (_ ¢ _) applied
to the pair of arguments (x, y).

Note: The function application R" denotes the x·iteration of the relation R: il is an
abbre\-'iation of the' ex.pression itcr x R.

Note: The function application xc> is the postfix application of the functiou (_ ¢) applied
to the argument x.

Type In the exprE"5sion I(z) the type of 1 mll.~t b(' tho:' pow~r sel t.\'pe of the Cartesian product type
of a 2-tuple of types, and the type of the argument :t' must be lhe firsl lype iu tbis tuple: the type of
I(z) is the second type in the tuple.

H/(:r:)]7 = ([f]7; pou,crT- 1 ; cprodudT- l ; {-1) • Uz f

Notel The function appLication f(x) is well-typed only if the typ(' of f is a power set type
of a. pa.ir o(types with the first typl' in lhe pair the same as the type of z.

2 B_ S\and.vrl V~",ion 1.0 pr;"Ir<! :w..h NO"~mh.... lr19~ 53

5 EXPRESSION

Note: If·we evaluate the type of f. we get essentially a Sl't of pairs. where each pair
comprises tbe type of an argument and the type of its result. Ife next evaluate the t~'JH~

of tbe particular argument :r, then we can simply use the lype of f as a function to look np
the type of the result corresponding to x. We say tnc the type of f is essentially a set of
pairs, because we must 'lIfdo' the type constructors.

Value The value of a function application /(z) is given by apVl~:ng the vdue of f to the value of the
argument :t'

[flz) U' 2 A([f I'. [z I'); (-)-'

Note: A well-typed function applk<ltiou f(~) h defined if both f and x are defined and jf
there is a unique tv such t.hat (z, w) E /.

Note: In Z, a function is modelled hy its graph, whirh is a ~et of pajrs; the first el('m~1l1

of each pair representing an argument, and the second llJe result for that argulllent. For
the f~nction application /(x) to be dl'fined. f has only to be r\lnctional in tl\l' ,,'alue of r,
Providing that 1: evaluates in the environment p to a value 1', and the value of fin p contains
(v, UI), a.nd no 01 her pai r starting with 1I, 1hen the e.x jlressioll (f x) eval uates to lL'. So for
a well·definl'd function application we would e.xpecl. an equality of the following form:

If(z) I', = [f I', ([z I',)

The promoted application of I(x) provides a satisfaclory mea.'1ing when the function appli.
cation is well defined. It is necessary to decide wha.t lo do with (/ x) when / i~ not fnnctionaL
at 1:. This a.rises if there are several different pairs in lhe value of f, each l)a~'ing the sa.me
first element equal to the value of x Or if there is none, The definition provided does not
prescribe a value for a function applied OUhlde its domain or where it is non-functional.

~ R",,~ Sl""d.....r1 ~'e,."iol1 J.O pnlll.eol :'}(J1.h f\I"...."'h.·r 1!l'12 54

5.17 Definite Description

5.17 Definite Description

The definitl;' description ~ St • z is the eleml;'nt denoled by z in the unique enrichment ofthe environ
ment by the schema text St.

Abstral;'t Syntax A definite dl;'!><:ription is conslructed from a schema. text and an expre~_\ioll.

DEFNDESCR == JJ SCHEMATEXT • EXP

Representation and transformation In t/ie representation form for definite descripll(Ju, lite ex
pre.lsion part is optiona.l.

i Production 1- Concret.e Abstract l
'Ii' ,SchemaText, '.' ,ExpreHion /-ISI. E p[St]ST .[xf .<, I'

~cnemaText jJSt ~[SlfT .[(81_~I

Not(l: If the expression part of 1.l\O' definite description is omiu('d then thl' defaull. is the
characteristic tnple of the schema text.

Type The type of the term pSt. z is t.he type of x in the environment enriched by Bt:

Hp St • z TIT := fSt V i [z]T

Note: The expression pSt. z is well-typed only if St is well· typed and z is weil-typed
in thl;' environment enriched by St.

Value The value of <I,. definite description pSt. z is the vahle of z in the unique enrichrnent of the
environment by St:

[p.St. z]V 2 1I((St ~M) j {_}-l i [x]V

Notl;': A well· typed definite description pSt. z is value-defined if there is eXa.l:tly one
defined enrichment of the environment by the scJwma text St and t}\e expression z is v-dlue
defined in that enriched euvironment.

Note: This dl;'finition is not specific about thl;' value of a badly {ormed defllJjte description.
If there is not an uniqne enrichment of the environment then the vaJue is not presClibed by
this standa..rd.

z e.,.,.., S'andanl V~nLion I.U pri"'<od lO'h N"ven,ber 1091 55

5 EXPRESSION

5.18 Conditional Expression

The conditional expression if P then E, else E~ fl evaluates to the expression E, if the predicate P
i~ true, otherwise it evaluates to the expression E~.

Abstract Synlax A conditional expression is constructed from a predicate and two expressions.

lFTHENELSE = if PRED then EXP else EXP fl

Representation and transformation

I'r~ducti.on . ." Concrete . ~bstr;j.ct __~I'

1'11.Pred,cate,'Then',ExpresslOn ,'Elsc',ExpresslOn,'F1 II P ThcrJ:r ~fse y F1 If)prrthen[xj-else[y_J_J

Type The type of the conditional expression if P then E, else E~ fi is tlw common t.ype of the
expressions E, and E~ wheu the predicate P is well-typed:

[if P then:r else y fl]T = (P DT <J ([X]T n [y DT)

Note: The expression if P then E, else E~ fi is ""'ell-typed only when the predicate P is

well-typed and the expressions E, and E~ both have the same type,

Value The value of the conditional expression if P then E, else E~ fi is the '..alue of the expressions
E, when the predicate P is true, otherwise it is the value of the expression E~:

[ifPthen:relseyfi]1i = ({pl.... <J[X]Ii) u (~..,p~ <J[yr)

Note: The expression if P then E, else E~ fi is mille-defined only when the predicate

P is true and the expression E, is va.lue-defined or ""'hen the predicate ..,p is true and the

expression E, is ...·alue-defined.

Z Fl..... Std.rtl Ve...ion 1.0 l>rinl<'<! 30th No...,ItII,rr IIl"Jl 56

5,19 Substitution

5.]9 Substitution

The substituted exprE'ssion b0E evaluates to the expression E in the environment enriched by the
binding b.

Abstract Syntax A snustituted E'xpression is constmeted from a substitution exprel.ion and an
expression.

EXPSUBSTITUTION EXP 0 EXP

Representation and trausformation

Conere!eProduction Abstract -1
Expression,'!;' ,Expression bGX [b)''4]' I'

Type The type of the substitution b0E is tIle type of the expression E in the tyPe-envjrollmE'nt
enriched by tbe bindillg b,

ITb'::;Z]T = (t, ITb r; sehemaT-l);;p; [z TIT

Note: The substitution b0E is well·typed only if b has schema-type and the expression E
is well-typed in the type-environment enriched by the binding b.

Value The value orthe suustitution b\~E is the value of the expn.'ssion E in the environment E'nriehed
by the biuding b.

MITboz I' ~ (1, ITb n ; (_,_)); e; IT. I'

Note: The substitution br~E is value-defined only if b is value-defined and the expre."joll E
is value-defiued ill the environment enriched by the binding b.

Z B...., Standard Venion I ,0 J>rjn~ed 30lh Noven,h.,. 1U'i>1 57

~

~

"
;"

~

Q

'" ..><

~

~
~

~

,"
~

::' • •
'"

<

'"
H

- ."

'"
~

- •

;
~

J

x
!'

•

~

!'

•
y;-•

•
'"

'"
• •

'" 15
;.

•
•

1.o 0
•

•
;.

•
~

Z

•
-

0
•

!'

x
,

;. ,
;.

• •

-
•

, •
!...

.
.

>-
l •

•
-. ,

'" ..
~

I

~

,•
0 '" ~

~

;>

~

;>

<>

~

~

;>

~

~
~

;,.

t>

~

,;
i

"c
c."

'"

~
~

."!

!'

].

..
•
" ~]

i
Z

c
- "

.'i:
c

c
c

c
l'

<>

c
c

c
c

:0
0 ~

•
;;,

~
~

0

l'

].
0

c
..

..
~

C

~

 •
~.'~

C
C

C

N

[
;>

C

! 0
.;>

:
C

<>

;>

•

'"
~

,..

, •
", •

~

"l•

C

f •<
~

:0
e

•
.. ,

!.
~

~

~

~. c

I
~.

 [~
LJ

i ~
 ~

•.2
E

~

~

~

... '" ~ N

..;

" .£ ~ •'" B .=•:3 ;]•'"

~
 •• ~."~

'"

[
.2 ~

.2
• "

~

J (
]
~

ii

!

-;2

~

~

~

i;;
.2

""
• ~ "

J 0
~

~

0

~

~

.g • X

" c
~

-'
g

, " .2 1,• ~

.2 ii

0;
.2 :J
:;;'
~

0;0
~

"" '" 0
~

 , 0.2 " 0

~

."
~

-;-"§:
~

~

i;;
.2
.';

~

•c 'Z
 =

~

'Z•"' = '" ~ N

..;

~
 •:;; ~

•.g

1J
,• .

• .. 0
0

~

~

"0
~

•0 ~ " .E 0
~

• i;; 0
~

"'0

~

, " ~

'0

~

~

X

X

,;;
'0

~

0
~

J 1,• ;; ii
0
~

 '" ~

.2 '" .2
•c '0

~

..
"

0; ~
::;,

'0
0
~

~

j ~ ~ ~ , 0• .1, ~

] J "

6 Predicate

6.1 }ntroduc:tion

r\ Predirn!e is the general form for expressing properties of the environment. These properties are
relationships berween the \"alUe.5 of the variahles in the environment. A predicate may be constructed
in a 1Iumb", of ways. They may be 5uh-dividf'd as follows:

Elements:

EQUALITY MEMBERSHIP

These denote the equality and rnemhersllip reJation~ twlWeo"ll exp«,.~5ions.

Constants:

TRUTH FALSEHOOD

These denote the predicates true and false

Propositional Constructs:

NEGATION CONJUNCTION DISJUNCTION IMPLICATION EQUIVALENCE

These are predicates constructed using the propositionill connectjv{'s.

Quantifications:

UNIVERSALQUANT EXISTSQUANT UNIQUEQUANT

These are predicates constructed using quantifiers.

Schema Predicate:

SCHEMAPRED

This is a predicate composed from a schema.

Substituted Predicate:

PREDSUBSTITUTION

Thi. is a predicate evalualed following a substitution,

60 Z H...... :-;,,,,,danl Ve".ion I.U pJ'i"",<l3Ol.h No~....b", 19!12

6.1 Introduction

Abstract Syntax

PRED	 EQUALITY

MEMBERSHIP

TRUTH

FALSEHOOD

NEGATION

DISJU N CTION

CONJUNCTiON

IMPLICATION

EQUIVALENCE

UNIVERSALQUANT

EXISTSQUANT

UNIQUEQUANT

SCHEMAPRED

PREOSUBSTITUTION

The de.suiption of the meaning of a predicate can be Bplit into two parts. The first gives rules for
determining whether it is well typed or not. The second determines whether the predicatt is supportcll
ill the environment. A predicate is 6Tlpported in an environment if the ~'alues of the ~ub-~xpressions in
the predicate are such that the predicate is true in that envirOllment without necessarily con~jdering

whether it is well typed.

The comhination of these two descriptions provides a meaning for predicates.

6.1.1 Type

Since in the abstriI.Ct syntax of Z we already know that 11. certain construct is a predicate, when consid_
ering the t)"pe of a predicate lhe onl)" matter of concern is whether it is well-typed, For Ihis reason we
represent the t)'pe function of a predicate as the sel of type-environments in whidl it is ...ell-t.yped.

T{PRED D P Tenv

Note: In contrast to predicates. wllen considering the lyre of an expression. there are to
mallers of concern: whether the expression well typed and if so what is its type. Hrnce the
use of a partial function whose doma.in is the set of environments in which it is well·typed.

Note: The predicate (x = 1.') is meaningless if the expressions x and yare uot of tne same
type. There is no meaningful way of comparing them. A predicate which is badly I)'ped in
all environments has a type function which evaluates to the empty set.

6.1.2 Value

The value function for a. predicate is the set of envirOllmenls in whidl it)s stlJlported;

IIfPRED H P EnlJ

7. fl""" Sl/ll\d.vd Venion 1.0 p,-;,,'~d 3Ol.h Nov~mher]£l'J:l	 OJ

B PREDICATE

Note: The predicate(x E x) is supported in aJl envIronments. This is so because the
axiom of regularity ensure!> that x E x is false and hence -(x E x) is true. 011 the other
hand x E x is not well-typed 50 therefore(x E x) is not well-typed.

B.I.! Meaning

The environments in which a predicate holds (ha.s a true Jlleallill,R;) a.re I.'xactly those envirOllfilents in
which the predicate is supported and is well-typed.

~PRED llM == 3(Y-I){PRED ll"T n ~PRED llv

Note: As indicated in the nore ahove rhe predicate ...,(~. E xl is supported bur llot well·
typed. hence it is false in all ellvironmeJ,ts. The Hl('anillg of the predicate i.~ till' "mpt)" srl;
«zEzDM~{}.

7. fl-.. SI.:""la.rrJ V~",i"" 1.0 ..,~nle<l 30lh N,,'·e'nlx. J!l91 62

6.2 Equality

6.2 Equality

Two expressions arc equal if they have the same valne and type.

Abstract Syntax An equality i~ constructed from two predica~e;;.

EQUALITY = EXP = EXP

Repr~sentation and transformation

Production Concrete Abstracl

Exprusion, '=' ,Expression tr = y]'" 1'\'=[,]'

Type An equality z = y is well· typed In those environments in which the expressions z and y ha\'e
the same type:

~;t = y n7 = dOlU([;t]T n [y]T).

Valu~ An equality z = y is supported in t.hose environments in which th.e expressiOIls z and y have
the same values:

(;t, = z, nil dom([z,]11 n [z" IT"').

Z B... S.andard VenUon 1.0 priRt"';! 30Ih Nov~n,l>.,.. 1992 63

6 PREDICATE

6.3 Membership

Tile membership relation :l: E y is true when the expression :l: is a member of the set denoted by the
expres:;;ioll ~,

Abstract Syntax A membership predicate is constructed from two expressions,

MEMBERSHIP = EXP E EXP

Representation and transformation TherE" are three w;tys in which the membf'f~hip prrodi(ale niJ'.

be wri!t('n: ~sing the membership sign, using an infix relation and b,Y using d prefix reJalioJI.

Production Concrete Abstract

Expre.s.sion, 'E' ,Expression

PreRel,Expression

Expression,lnRel,Expression

[x E yJP

xpy

px

lIfE [yt

[(x~Y)]£E (_ p _ i I
I,,!"E (p-) I

'----

Note: The infix relation predicate ~py is true j! the expression :E is relal('d to the expression
y by the relation p, i.e. if the tuple (x, y) h a mpmher of the relation p.

Note: The prefix relation predicate px is trne if p holds for J:, i.e. if x is a member of the
set p.

Type A membership relation z E y is well-typ('d if and (Illly if the type of the expression y is the
power set tHe of that of the expression z:

~:l: E yn T = domlaz]T; PQIJ.'uT n [y]T).

Value A membenhip relation:l: E y is supported in all tll05e en\'ironments ill whIch the values of the
expressions :r is a member of the value of the expression y:

a:l:, E:r~ f" = dom([zl]V n [z~]1I;3),

Z H..- SI.."tl",d V,,,oi"n 1,0 prllliod 3O,h Nun",b", I~Jl 64

6.4 Truth Literal

6.4 Truth Literal

The truth literal true represents thl? pr~dicate that always holds.

Ab8tract Syntax

TRUTH = true

Representation and trans(ormation

Production COTl(rel.e AbstrMl

'Iroe' true true

Type The truth literal true is wen-~}'ped in all ~llvironment5:

[true ll" = Tenv.

Value The truth literal true is supported ill all environm~nts:

{l1"ue IIv = Em...

Z B....., Sl....dard Ve...."n 1.0 rorin.e<J 3O<h Nove",bn I:~)' .5

6 PREOICATE

6.5 False Literal

The false literal false represenls the predica.te tha.t never holds.

Abstract Syntax

FALSEHOOD false

Represelltation aDd transformation

Production Concrete Abstract

'false' false false

Type The false literal false IS well· typed in all environments;

f/aEst »T" = Tenv.

Value The false literal. false is supported in no environment:

{/al.tt» v = 0.

66 Z BaM S(And....d V~n;on 1.0 prino.ed 30lh Nov~m"'" 1992

6.13 Negation

6.6 Negation

The negation ,P holds whenever the predicate P does nOLo

Abstract Syntax A nega.tion is constructed from a predicate.

NEGATION = -.PRED

Repreiientation and traDstormation

Production Concrete IAbstract

...... '.BasicPred P II -.{ P JP

Type The negation -,p is well-typed exactly when tlie jJredicate Pis well-lY\lcd:

{~PDT = IP V.

Value The negalion -.P is supported in those em'ironment5 in which the predicate P is not supported:

I~PD" = Env\{PD"·

Z Due Sl....tant V~noiob 1.0 printed 30Ih N,,~.....b~. 1992 67

••

6 PREDICATE

6.7 Disjunction

The disjuntlion P, V P3 holds whenever at least one of the predicates P, and P~ holds.

Abstract Syntax A disjunction is constructed from two predicatf!s.

DISJU~CTION = PRED V PRED

Representation and transformation

Production Concrete Abstract

LogPred2, 'v' ,LogPred3 PI Ii P~ [PdPV [P2f!'

Type The disjunction P, V P~ is well-typed exactly when both prerli<:ates p~ and P2 are well· typed:

{P, V P2 V = {P, r- n {P2 r-.

Value The disjunction P, V P, is supported in those Cl\vironmtnts in which one or hoth of thc
prcdicates P, , P 2 are supported:

{P, V P~}Y = {P, BY U {P~ BY.

Z B""" Standard Ve... ion 1.0 printed 30th No.....mber 199~

6.8 Conjunction

8.8 Conjunction

The conjunction p. 1\ P~ holds if the predica.tes P, and P2 both hold.

Abstract Syqtax A conjunction is constructed from two predicMes.

CONJUNCTION =- PREO 1\ PRED

Representation and transformation

Production Conaete Abstract

LQgPred3, 'fI' .Basic:;Pred PI fI P';/ [pdP I\[P2 t
11'1 Rei Pred .Rel,O:preuiol'1,{Rel,Exprl!'uion}

Predicate,{Sep,Predicate}

XI PI X'J P2 ,P~_l X"

P j SepP2Sl!'p .. SepP"

[Xl PI x~JP I\[Z" P2 .. ,P"-l z,,JP !

rPdP 1\[P:z]" 1\. "I\[P,,]"
,

I
~

Note: In predicates Sep is equivalent 10 A; SUdl a conjunction has the lowest possible
precedence and is equivalent to parenthesising the ~cparate predicates and conjoining them.

Type The conjnnction of two predicates is well· typed exactlyhen both predicate:;; are well-typed:

T~P, 1\ P~ D ::::: (P, Dr n fP~ D.T,

Value The conjunction of to predicates is supported in tllOse environments in which both predicates
are supported:

V
~P, 1\ P2 D lP, D" nIP, D"·

Z B"""SlandanjVrni"", 1,0 pr;nled 3O.h NO Hm'-1'J92 6.

6 PREDICATE

6.9 Implication

The implit.ation P, => P" holds whenever the predicate P, does not hold or whenever the predicate P"

does hold.

Abstrad Syntax An implication is conslructed from two predicate-so

IMPLICATION = PRED => PRED

Representation and transformation

Product.iOII Concrete Abstract

logPr~d2. '::)' .LogPr~dl PI ;=> P2 [PdF"=>(P2l"

Type Thl'implication P, => P" is well· typed exactly when Dot.h predicates P, and P" are well-typed"

{P, :} P... »7 = {P, D7 n {P" D7
,

Value The implication P, => P" is true in those environmc-nLs in which tlJe nega.tioll of the predicate
P, jj supported or the predicate P" is 5upported:

V V{P, :} P" f' = {. P, D u (P" D .

Z 8..ar St....dard V~n;(ln 1.0 pnnl.ed 30th No..~rn~r 1992 70

6.10 Equivalence

6.10 Equivalence

An equivalence P, ~ P~ hold9 whenever both predicates P, a.nd P~ hold or neither hold.

Abstract Syntax All equivalence is constructed from two predicates

EQUIVALENCE ::=. PRED ~ PRED

Representation and transformetion

Production Concrete Abstract

LOiPred, ''¢:}' ,LoiPredl PI ¢:> PJ [PdP ~lP2lP

Type The equivalence P, ¢> P~ is well·typed exactly when both predicates P, a.nd P~ are well-typed:

{P,~P~D7 {P, Dr n {P~ V.

Value The equivalence P, ~ P~ is true in those environments in which hoth predicates P, and P~

imply each other;

(P, ¢> P~ »11 fP, => p~DII n fP~=> P, »11.

Z 8_ S~andanl V....i,," 1.0 prinlet!30lh No....onbel'" 1002 71

6 PREDICATE

6.11 Universal Quantification

The uni versally quantified predicate V St • P holds if the predicate P holds for all possi ble com binations
of values of the components of the schema. text St.

Abstract Syntax A universal quantification is constructed from a schema text and a predicate.

UNIVERSALQUANT = VSCHEMATEXT. PRED

Representation and transformation

Production Conc.rete Abstract

''rI' ,SchemaText, '.' ,Predic.ate 'rISI_ P VrSt)"<;"T .[Pf"

Type A universal quantification V St. Pis well· typed in those type-environments enriched by !.he
schema text St in which the predicate P is well-typed:

IV Stt P V = dom({St ~ 7 t> {P D7).

Meaning Auniversal quantification V St • P is supported in those environments for which the pred
icate P is supported in every enrichment by the schema text St:

{VSt'PD II = {-.3St·..,pn v .

Note: This semantic definilion rests on the properties of de Morgan's Laws.

Z B....., Sland...... V~....ion 1.0 printed. 3Ol.h Noy"",ber 1992 72

6.12 Existential Quantification

6.12 Existential Quantification

The existentially quantified predicate 3 St • P is true if the predicate P is true for at least one possible
combination of ~'alues of the components of lhe 5cnema text St.

A bstrad Syntax An existentia.l quantification is composed of a ~chema text and a predicate.

eXISTSQUANT == 3SCHEMATEXT. PREO

Representation and transformation

Production Concrete Abstract

'3' ,Schema Text, '.' ,PredicClte 38'. P 3lStlST e(P]p

Type An existential quantification 3 St • P is well-typed in those type-environments eariched by the
schema text 5t in whjch the predicate P is well-typed:

(3St.PV = dom(St)Tl> {PDT).

Value An existential quantification 3 St. P is suporled in those environments for which there exists
an enrichment by the schema text St in which the predicate P is supported:

~3StePDV = dom(5tV'''l> (PVI.

z e- Sl...,dard Ve..ion l.O pri"ud 30Lh i"lonmbcT 1!l!l2 73

6 PREDICATE

6.13 Unique Existential Quantification

The unique existentially quantified predicate 3, S • P is true if the predicate P is true for exactly one
possible combination of values of the components of tbe schema text S.

Abstract Syntax A unique existential quantification is constructed from a schema text and a pred.
icate.

UNIQUEQUANT 3, S(HEMATEXT. PRED

Representation and transformation

Production COlicrete Abstract

'3 1 ' ,SchemaText, '.' ,Predicate 3[St. P 3.(St]ST .[PJP

Type A unique existential quantification 3, St. P is well-typed in those type environmeuts tbat,
when enriched by St, well-type P;

{3, St. P]}'T = dom(SL V (> (P V).

Value A unique existential quantification 3, St • P is supported in those environments forhich
there is exactly one enrichment by the schema text Sthich supports the predicate P,

{3, St. P]}\i = dom(A({St}M (> {P]}\i) i {_)-1),

Z B...... SL""d...-.l V~...ion 1.0 priAled 30th Novoembn 1992 74

6.14 Substitution

6.14 Substitution

Th@ substituted pr€dicate b7iP is true whenever the predicate is true in the environment enrich€d by
the binding b,

Abstract Syntax A ~ubstituted predicate is constructed from an expression and a predicate.

PREDSUBST1TUT10N == EXP0PRED

Representation and transformation

Production Concrete Abstract

Exprl!uion,'0' ,Predicate IJ",P ['l',[pJ"

Type The substituted predicate b,~P is well-typed in those type-enviwllnJents in which lhe binding
b 1;; well-typed and when enriched by it the predicate P is well-typed:

ib0P n7 = dom({l, [b n7
; schemaT- 1

) i (!l (> ~P D7)

Value The substituted predicate b",P is supported in t.hose environOlents in which the binding b is
\'alue defined and when enriched by it support the predicate P:

[b0pn" .:: dom({l,[b]M; {_._));(!It> {PD V
)

zs.- ~1andol:nl VrT5ioon 1.0 vrinL~ XIlh No...~rnb ... I99J 75

8 PREDICATE

6.15 Free Variables

The	 free varia.blea of predicateli are detailed in the following table;

Table 20: Predicates and their free variables

Predicate Free Variables

~=y (••_)U(••y)

Ey (••) U (.,y)

true {) I
fal!e { }

~P ¢,P

PvQ (.,P)U(.,Q)

PAQ (.,P)U (.,Q)

P=>Q (.,P)U (.,Q)

P""Q (.,P)U (.,Q)

'<1St. P rPt/.St u (rPpP \ oSt)

3St. P rPt/.St u (¢pP \ oSt)

3, St. P ¢t/.St u (¢pP \ oSt)

S ¢.S U oS

b0P ••bU(.,P\ob)

Note: The free variables for the representation forms of these constructs are the same as for
their abstract counterparts. For example: ¢.(~ p y) = ¢.((:z:,y) E p =0 ¢.(:z:,y) U ¢p.

Z B.ue Sl.and...-d Venion 1.0 prinl.cd 3Ol.h Novoemb..r 1992 78

i

... ...

c
.S

~ •..c•'" ~

'" .,;

~
 ;j i;

e
.. ==

 >

'3

'" =

e
d
,£

.~ II

'" =

>'
.g II =

J: ? =

0

'
~

>
'

.g w

=

.;; w

=

0
'
~

.

• oS

:;;

•
~

2

:;;
"'0

e
~

~

.g '"
"~

 ," .g >

a:
0:

>
, ..
"

0~
~

'" ~ <

j;
" (;
<

" 0' ~

i;
'" n

" ~ (;

n

" 0' ~

.g
'" ~

",g

(;
~

" 0' ~

~

'" §
.
~

~

C;;
;;
» (;

i;;
» 0

'
~

.£,
'" ~ ~ ~ 0;
i:
m

(;

0;
m

0 ~ '":!'§:

0;
.g '"
m

-
J:

(;

0;
m

'"
~

~

"
0

~ , 1 l ~], " =

=
 i'/

1 ~

l I•"

7 Declaration

7.1 Introduction

A declaration is the general form for introducing new variables into the environmenl. A declaration
may be a SIMPLEDECL, which explicitly introduces new variables by name, or a SCHEMAINCL which
introduces the components of a schema, or a COMPNDECL which can be any combination of the other
two. A declaration may also be evaluated following a substitution.

Abstract Syntax

DECL	 SIMPLEDECL

SCHEMAINCL

COMPNDECL

DECLSUBSTITUTION

When makin~ declarations, the problem is not so much wllether the declaration is well defined (although
a declaration may fail to be defined). The problem is more to record the possible meanings of the newly
declared name. A declaration denotes a signalure and a set of situations.

7.1.1 Type

The type ola declaration is a signature which records the types ofthe elements denoted by the variables
introduced:

(DECqT Tenv __ (Name -... T~)

7.1.2 Meaning

A declaration introduce5 names to the environment which can assume certain values. These values are
not fixed. We can consider the meaning of a declaration as a set of situations, each one recording one
set of values [or the new names. However, it is more convenient to consider the meaning of a declaration
as a relation between environments and situations.

(DECLD : Env +-+ (Name -... Elm)

The meanin~ of a declaration is partial because some declarations may fail - faT example n : s where
$ is undefined, or if 8 is an empty set.

We CiUl prove the following:

I- (D]..... ; T ~ T; (D D7

1.2 Simple Declarations

7.2 Simple Declarations

A simple dedaration n" ... n m : & introduces variables uamed n, •.. . non whose values a.re drawn from
the set &.

Abstract Syntax A simple declaration is constructed from a list of names and an expression.

SIMPLEDECL := VARNAME, VARNAME, .. , VARNAME . EXP

Repr€sentatron and trahsformntion

~!ion IConcrete IAbstract I
~edName'{"',DedName}, ';' ,EXpr~n:l•...• nk :[Bl~ I

T)'pe The type of the simple declarationll" ... n on : s is the signature constructed frQffi the names
n ... non and the underlying type of the set expression s.

"
7Un", . . ,n", : ~ ~7 '= U" D ; ((n,o,powl.'rT- 11,.", (n:',powerT-l»); {...}.

Note: The simple declaration n .. nm:.s is well-t.yped ex<U;tly when the expression 8
"

has power set type.

Menning The meaning of the simple declaration n ... n m : " is a relation from the environment
"

to those situations wWch associate each of the names n" ... n m with one of the elemem6 of the set
expre!sion s:

dn" ... n",: &DM
:= [& TIM: ((n ,O,3), (nmO,3)); {...}.

Note: The simple dedara,tion n" .. . n,,, : & is \'alue-defined exactly when the exp'e~sion

., is a non-empty set.

Note: Suppose G is defined to be a given set. The type 6ystem defines the type of G to
be pou'frT(givenT N). In this way a declaration sucll as :r : G defines the type of:r lo be
gil.>t:lIT(G), as required:

'Z e- Slandard v,"",,- 1.0 prinud 30th No..rmt- 1992 TO

7 DECLARATION

7.3 Schema Inclusion

The schemaindu&ion S introduce! ~he components of the schema and coutra..ins their values as in the
schema.

Abstract Syntax A llchema inclusion ill constructed from a schema.

SCHEMAINCL ~ SCHEMA

Represen~e.tion and transformation

Production COllcre~e Abstrad

Schema 5 [51"

Type The signature of a schema inclusion is the signature of the included schema;

(5V~ (51"'·

Note: The schema inclusion S is well-typed exactly when the schema. S is well-~yped.

Meaning The meaning or a schema inclusion is the relation from the environment to situa.tions as
defined in the meaning or the schema.

(51M = (51 M
,.

Note: The schema inclusion S is value-defined exa.ctly when the schema S js value-defined.

1.4 Compound Declarations

7.4 Compound DedaratioD9

A compound decla.ration D,; D~ introduceli the names in the declarations D, and D,.

Note: Variables may be introduced in local declarations morc than Oilce, prmidcJ that
they have the same type. R.epea.ted dedaralioD5 do not add anything to the ~jgnature;

however the constraint of the repeated declaration is conjoined with the constraints of aU
the other dedarations.

Abstract Syntax A compound dedaration is composed from a list of ba.sic declarations.

COMPNDECl = DECl; DECl

Representation and transformation

,
Production Concrete Ahstract

Basic.Ded, ';' ,Basic.Dec.l,{'; ',BasicDed} D];D-:; .. ;Dn [D,jv; [D,jv; .. ;ID.J"

Type The signature of a compound dedaulion D,; D~ is the join of the signatures of th~ declarations
D, and D~:

aD,; D'JD7 (~D, IT,~D, IT); u.

Note: This declaratioll is well-typed only if both of D, and D", are well-typed and their
signatures are type compatible.

Meaning The value of a compound declaration is the sel of bindings that, when restricted to the
alphabet of each component, satisJy that component:

ID, ; D, 1M
~ (~D, IM,~D, JM); u.

Note: A componnd declaraticn D,; D", is value-defined only ifbotb the declarations D,
and D'J are value-defined and if repeated declarations are value compatible.

Note: Dnplicated declarations arC! significant in the evaluation of the characteristic luple.
The representative term cC\J1 be a list of lerms which form part of the top level tuple.

Z B.... St.....t.vd Venion 1.0 print~ JOth Now"mbet- 1!Jll2 8'

7 DECLARATION

7.5 Substituted Declarations

The meaning oC tbe substituted declaration b0D is the same as the meaning oC the declaration D in
t.he environment enriched by the binding b.

Abstract Syntax A substitnted declaration is composed of an expression and a declaration.

DECLSUBSTITUTION = EXP0DECL

Representation and t.ransformation

Production Contrete Abstract

Expression,'0' ,Declaration b0D [bj'oIDj"

Type The signature of the substituted declaration b",D II> the signature of the declaration D in tht
type-environment enriched by the binding b.

(b0D f = (I, [b]T i schemaT- 1) j ffi; (D DT

A substituted declMation is well-typed only if lhe bindiug is well-typed and the declaration is well-typed
in the enriched environment..

Meaning The situations of t.he substituted declaration bGD are the sitnatiolls or the declaration D
in the environment enriched by the binding b.

(boDDM = (1,[bIM;(_,_));<Jl;(DIM

Z B""", St""d....d V"nion 1.0 prinLed 30th Nov"mber 1991 82

7.6 Free Variables and Alphabet

7.6 Free Variables and Alphabet

The following tables define the free variables, alphabet and representative terms for declarations.

Table 22; Dedarationi and their free variables

Declaration Free VariableB Alphabel

n" ... ,nm : {n, ,,, .. n",}

S <I.S as

D,; D. (<I,D,jU(<I,D,J (aD,)U(oD,,)

I boD ¢,J.b U (¢JD \ ab) aD
I

I

Table 23: Declarations and their n~presentative terms

Declaration Representative Term

'1] •••• ,'1"':8 Tll, ••• , TI",

S 9S

D]; lh D:,D:
b0D D'

Z Bue Sl"""ud Vrn.ion 1.0 p,.j"t...13Olh N"n",ber 1900 83

N
 ,•> I , ~ :' , j e • , l • ~ z J ~

~

.2
. SO

~

~

0 SO

~

O
 S'

0 ~

J!
 , • J!
 , • ~

~

~ • ;: ~ o' • ~
 '"' E. , ~ ~

;;'

~

;; ~

;;

~ • ;. g o· , S'

0" • '" " ~ S·
 "

 >;

 •~ l 0 .ll
 ;; ~

;; 'l9
.

<

~
 ;;. • ~
 •3 ~.

~

E

. e ,• .. ~

~
 ~

~
 ;: 0"
 5· , a 0 0

~
 ~
 • g. ~

... c,

c '" [~

~ o' 0

-<

0 '"Cl "> .,
 .,> ~

0 Z

8 SchemaText

8.1 Introduction

A schema L",xt is thot; general way of enriching the enl/ironment by the new names introdnced, by a
declaration and po~si bly constraini ng th(>ir values b)" a predicate. A $IM P LESCT Wilsistsof a decla.r ation
and a CMPNDSCT consists of a declaration and a predicate.

Ab8tract Syntax

SCHEMATEXT SlMPLE5CT
CMPNDSCT
SCTSU BSTITUTION

Given a certain en\'ironment, a schema text has the effect of defining a new en\ironment in which the

ilil.IIle is now known.

8.1.1 Type

The type (,f a schema texl is a function from thl.' old typ-environrnent to the new one in which the
names of the constitueJlt declaration arE' known:

{SCHEMATEXT V Tem! -- TerlV

8.1.2 Meaning

The is l('preSl:!ntE'd as a relation belwei;'/l environments, for the samE' reason as the meaning of '" decla
ration os represented by a relation.

(SCHEMATEXT}..... Env _ Em!

We can prove the following

I- (St }-.... j T f: 1'; (St }T

Z BaM SI....dazd V"",ion 1.0 prinUd JOlh N"vrn,l..... I9'J~ 85

8 SCHEMATEXT

8.2 Simple Schema Text

Abstract SyDtax A simple schema. text is constructed from a declara.tion.

SIMPLESCT = DECL

Representation and transformatioD

ConcreteProduction Abstra.ct I
Declaration D IDJ' I

Type A simple schema text D enriches lite type-environment by the signa.llue of the declMation D.

{D r ~ (1, {D n ;lB,

Note: The simple schema. text D is weU-typed exa.ctly when the decla.ra.tion Dis.

Meaning A simple schema text D enriches the environment by a situa.tion of the decla.ration D.

{D JM ~ (1, ID 1M); lB,

Note: The simple schema text D is well-defined exa.ctly when the declaration Dis.

8.3 Compollnd Schema Text.

8.3 Compound S.::bema Text

Abstract Syntax A compound schema text is constructed from a declaration and a predicate.

CMPNDSCT = DECL PRED

Rl!!presentation and transformation

Concrete AbstractI Production

I Declaration, 'I' ,Predicate IDj"IlPJPDIP

Type A compollnd schema text DIP enriche~ the typl'-ell\'ironment by the sigllature of the decla
TaLlOn D.

{D I PjT {DjTpIPr·

Note: The compound schema text DIP is well-typed exactly when the declaration D is
well-typed and the predicate P is well· typed in the environment emiched by the declaration
D

Meaning A compound schema text D J P enriches the en\'ironment by a situation of the declaration
D which makes the predicate P true,

M{D I p)M ~ {D)M P IP D •

NotO!: The compound schema text DIP is well-defined only when the declaration D is
well-defined and the predicate P is true in at least one enrichment of thl" environment by
the declaration D .

za- Sl....d..-d V~..ion 1.0 prinl.e<l30th Nonrnl.er lW1 87

8 SCHEMATEXT

8.4 Sub5tituted Schema Text

The meaning of the substituted schema text bGSt is the same as the meaning of the schema text St
when evaluated in the environrnem enriched by the binding b.

Ab5trad Syntax A substituted schema text is constructed [rom an expression and a schema text.

SCTSUBSTITUTION = EXPGSCHEMATEXT

Representation and tran5!ormation

Production Concrete Abstract

SctSubstitution bG51 [btorS'jST

Type A ~uhstituted schema text enriches the t)'pe.environment ith the signature of the substituted
schema cOIl~tructed from the schema text.

(b0S~ f .= (bQ(S~) V

Meaning A substituted scllema text enriches tbe environment With the situatioas of the substituted
schema conslructed from the 15chema text.

I.o5t}M = 1.0(5') 1M

8.5 Free Variables and Alphabet

8.5 Free Variables and Alphabet

Table 25: Schema Texts and their fr~ variableb

Scherr.a Text Free Va.riabl~ Alphabet

ID o,D oD

DIP ¢"D u (¢pP \ DD) oD

i",St

L
¢.b U (¢"St \ ab) oD

The charact~ri~t;(tuple of a Bchema text i$ the tuple constructed from the represefitatiw terms of the
declara;jon.

Table 2(L Schema Texts ~ncl their ch.. racteristic tuples

,------ i -,

Schema Text I Characteristic Tuple

D I(D')

DIP
 (D') Jb8St~ (S,')

Z B_ 51dud Venion I.G primed JOlh NOH........ I!l'J2
 '9

9 Schema

Abs~rac:t Syntax

SCHEMA	 SDES

GENSDES

SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTIDN
SIMPLICATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCDMPDSITION
SDE(ORATION
SCHEMASU BSTITUTION

Z provides a number of schema. operators that act OIl lhc underlying functions from names to type. In
order to describe these opcratioIl!l, it is convenient to identify the type of a schema, not as an element
of TYPE, but as a finite mapping from na.rnes to type. We shall call this the signa!ure of a schema
expression, and is written (r-s .

qSCHEMA r-s Tuw _ Slgnaturt?

qSCHEMA D....s Env Situation

We can define the relation between the em'ironment and the well-typed (thougb not necessarily well
vaJued) bindings a.'l follows:

TdS DJ.lTS =:::; T; dS D$; r- 1

We can prove the rollowing:

f- (8 D....s ~	 (8 loUTs

Z B..... SIAl,dwd "'~",ion 1_0 printed Xllh No..,mbft" 199~ 90

9.1 Schema Designator

9.1 Schema Designator

A schema. designator is a schema name u~ed to refer to schema. h may also contain a list of generic
paramaters which instantiate a generically defined schema.

Note: Since schema. names have global scope \here cannot be any overlap between lhe batie
!l'i.ffiet; of "ariables anu schema names in a spl.!ciflcation.

Abstract Syntax A schema designator is constructed from a schema name.

SDES = WORD

Representation and transformation

Production Concrete Ab~tract

Schema Name S S

Type The signature of a schema reference is the signatnre of the type of t.he referenc~ in the type
environment.

dS DTs = (1. SO) i powerT- 1 ; schonaT- I .

Note: A schema reference is well-typed only if it ;5 in the domain of the type-environment.

Meanin8 The meaning of a schema reference is the relation construcled from the the meaning of the
reference in the environment.

dS n....s = (1. S·) ;;.

Note: A schema reference is well-defined only if it is in the domain of the environment.

Z BM<: S~"hd""" v,,"';on l.O pri,,' ..<.J 30<1, Nm,,.ml,..,- ltlOl2 91

9 SCHEMA

9.2 Generic Schema Designator

A generic 6chem& dee;igna.tor 5 [z" ... ,z..] is reference to a generically defined schema. 5 insta.nti&ted
by the set p1l'&m&ten !2:" ... , z"l.

Abstract Syntax A generic schema designator is construct.ed from a schema llame a.nd a list of
expressions.

GENSDES WORD [EXP, ... , EXPI

Representation and transformation

Production Concrete Abstra.ct

SchemaName,,[,,Expression,{',' ,Expression}']' Sr"",~1 SI[x,]', [x.]'1

Type

[5[z" ... ,2:,,] }T$ ((1 • S°) • (:rlo ... , :r,,)) ; powcrT- 1 ; SChU1lUT- 1 .

Meaning

(5[2:" ... ,2:,,] }..... s ((1. S°). (:rI,""Z,,)) ;3.

Note:

GeMrically defined schemas must be instantiated.

Z B~ ~'and""u "'~"jon LO prml"d Wth Nov<:",ber 1992 92

9.3 Schema CClRstl'uction

9.3 Schema Construction

A schema construction (D I P) is a schema whose signature is that of the declaration D and whose
componentti 5atisfy the constraint of the dedaratio!l. D and the predicate P.

Ablltract Syntax A tichema conllf.luc1ion is compo.sed from a decliU'ation and a predicate.

SCONSTRUCTION = (OECll PRED)

Rep-rellentation and transformation

Production COllcrete Abstrart

'[' .Declaration, 'I' ,Predicate, 'l'
'[' ,Declaration, Ll'

[DIPJ

[D)

([Dj"IlPJ"1

([Df'ltrue}

Type The signat.ure of {D I P) is the same a.s that of the declaration D.

Q(D I p}JT, = QD DT n ((D I p)T ;2).

Meanin8 The value of the schema expression constructed from (D I P) is a ~t of bindings. Tlle
binelings are constructed iu all enrichments of the environment by D which satisfy P:

Q(DIP}jM, ~ QDjMn(D[PjM;2}.

This is defined only in those environments in which the declaration D is defined and when enriched by
it re~ult in the predicate P heing well-typed.

z e- S._dard V~..ion 1.0 prin(..,J:lOt" Noy""bft. 1!l9'l .3

9 SCHEMA

9.4 Schema Negation

A ~thema ne.gatioD ...S i5 a schema which contains all the bindings of the same signature as those of
the schema S but which a.re nol contained iu S.

Abstract Syntax A schema !legation is composed of a schema

SNEGATION =SCHEMA

Reprellentation and transformation

Production Concrete Ahstract

'.., , ,LogSch4 "S "[SjS

Type The signature of a negated schema S is the same signature as that of the schema, S:

Q. S DTs = QS DTs.

Meaning The bindings of a, negated schema.S are those bindings which have the same signature as
S but are not bindings of S:

Q.SDMs = (SDMTS\dSDMs.

Note: This is simpler than in (Spivey,]988), where thi.~ complement had to be combined
with the global part of the ellvironment. This was necessary in tIle original semantics,
because tl.e meaning of a schema involved not only the components of the schema, but also
the global variables to which the ~chema might refer.

Z B...e Sta"dard V' i"" I.D j,t;,,'ed 30th N,,"'emkt 1992 94

9_5 Schema Disjunction

Q.5 Schema Disjunction

The schema. disjunction 5, V 5~ is a schema whose signature is the join of the signatures of tn.€, two
schema.s 5, a.nd 5~ and whose property is the disjunclion of thl? two schemas' properlies.

Abstrad Syntax A sdema disjunction is compOlied of two schemas.

SDISJUNCTION = SCHEMA V SCHEMA

Represerltation and transformation

Production Concrete Abslract

logSd12, 'v' ,logSdl3 SI v 52 [SdSV [52t

Type The signature of a schema disjuinction 5, V S~ is the join of the 1'0110 schemas 5, and S~ :

~5, V S, VS = (as, DTs,dS, V"',; u.

Note: The schema disjunction S, V 5~ is well-typed ouly ir the signature of tile two
schemas S, and S~ are type compatibll?

Meaning The bindings of a disjoined schema are all those witn. its signature which are l'xiensions of
bindings in one or other of tn.e operand schemas:

(5, V S~ DMs = (((5, D...nS,(S" DMS) U {(5, DMS,dS~ D.... 7s/); u.

Z B""" Slandanl Veroion 1.0 p n.ed 3O,h Novemher J~2 95

9 SCHEMA

9.6 Schema Conjunction

Abstrad Syntax A schema conjunction is composed of two schema.'i

SCONJUNCTION == SCHEMA A SCHEMA

Representation and trandormation

Production Concrele Abstract

LogSch3, 'A' .LogSch4 SI AS] tS,IS AIS1]S
.

Type The signature of a schema conjumtion 5, A 5, IS the joiJl of the (we sch~m.as 5, and S, :

s~5, A 5, V = (d5, Vs. d5~ VS); u.

Note: The schema conjunction 5, A 5, is well-lypcd only if the:- two sch('mas 5, and So
are well· typed and their signatures ar(~ type compntibJe.

Meaning The bindings of a conjoined schema are all thost" wit~1 its si.e;naturc which are extensjon~ or
bindings in both of the operand schem.as:

a5, A 5, DMs = (d5, DMs. ~5, DMS) i U.

Note: Spivey (1988) has already remarked on the pimilarity with the semantics of the
parallel composition operator in the traces model of CSP.

9. Z B_ SI,u,<Lu-d V~nu"n 1.0 prinLe<lJOth N.,...."'I...r 1992

9.7 Schema Implication

9.7 Schema Implication

Abstract Syntax A schema implication is composed of two schemas.

SIMPUCATION :::: SCHEMA ::} SCHEMA

Production Concrete Abstrut

LogSch2, '=:-' ,logSchl 51 =:- !n [5dS~[5,f;

Type The signature of a schema implication 8, ~ 5, is the join or the two schemas 5, and 5,

d5, ~ 5, DTs = (d5, DTS,{5, DTS); u.

Note: The schema implication 8, ~ 5, is well· typed only if the two f'chemas 8, and 5,
are well-typed and their signatures a.re type compatible.

Meaning The meaning of the schema implication 8, ::} 5, is the same as the meaning of the schema
disjunction5, V 5,:

d5, ::} 5, DMs :::: «..., 5, V 5, DMs.

Z B...., S.""dard VO'ftion 1,0 printed :lOth N<>v~rnhb" 19'92 '7

9 SCHEMA

9.8 Schema Equivalence

Abstract Syntax A schema equivalence is composed of two 6cheHla.5.

SEQUIVAlENCE :::: SCHEMA ¢:> SCHEMA

Represel1tation and transformation

Production Concrete Abstract I
logSo;;h, '~' ,logSo;;hl 5\ ~ 5 l IS,Js<>!.I,f I

Type Tne signature of a schem<l ellulvalence S, ¢:> S~ i~ thl! jOi.l or thl! (\VO ;;(hl!ma.~ S, and S~ :

~S, {} S~ Vs :::: (US, DTS.~S~ VI"); U.

Not€: The schema equivalence S, <:> S~ is well.lypl!C only if the two schema.;; S, :>.ud S,
areeU.typed and their 6jgnature~ are type comp<:.tibl<,

Meaning The bindings are aj\ those with this signature which arl! extl!ll~ions or bindings in neither
or bOlh oj Lhe operand sc1lema expressions;

~S, {:} S7 DM
$:::: ~S, => S7 1\ S7 => S,)'''''$.

Z R..... S,,,,,dArd V",r.;on 1.0 "rinted 30th November]992 98

9.9 Schema Projection

9.9 Schema Projection

The tichema projection operator (n hides all the components of i~s fi.n;t argument except IhQl;@ which
are al60 componeDts of its second argument.

Abstract Syntax A schema projection iti composed of two tichemal5.

SPROJECTION = SCHEMA r SCHEMA

Representation and transformation

Production Concrete Abstract

CmpndSch2, 'f' ,LogSch SrT [Stl[Tt

Type The signature of a projec(ion 5, r 5~ includes those names in both the domains of thetiignatures
of 5, and 5~. Tbe type given to eacb such na.me is taken from 5,. Note that if na.mes are given types
by both 5, and 5, th06e types must be the same (that is, the signatures must be consistmt):

«5, r 52 r-s = «(5, VS,(5,)TS); n

Meaning The value of the projection 5, r 5~ is the set of bindings which satisfy 5" retilricted. to the
alphabet of 5~:

(5, f 5, l··~s ((5,)s.(5, D.MTS); n.

Note: Spivey (1988) gives two forms of projection operator used in a. schema expression
such as S. r 5,.. The weak operator hides those components of 5, which are not in the
signature of 52' The strong form requires the components to satisfy the axioms of 5~ as
weU. We give the semantics for the weak operator.

'l B_SI~VnUo,n 1.U prinled30lh Nov.......u 199~
 00

9 SCHEMA

9.10 Schema Hiding

The hiding operator (\) takes a scbema expression as its first operand and an identifier list as its
&ecODd operand. The result is a schema expression wbose componen~s are those of the operand schema
p.xcJuding those aamed ill the list.

Abstrac1. Synt&X A hiddell schema is composed of a schema and a list of naHlE:3.

SHIOING = SCHEMA \ [VARNAME, ...• VARNAMEI

Representation and transformation

Production Concrete -'~r~ '1

CmpndSch1, '\' • 'f' ,VarNamelisl, 'J'. S \ (rll, 112,· .• lim) i [st\ < Ill, »2.· .. > rl", > 1

Type The signature of a schema lliding expression is the signature of S with IIle names from (n, , ...• n ..)

removed. Note tbat (n" ... , n,,) may contain names not in the signature of 8e:

as\(n" ... ,nm)DTS = aSVs;({n" ... ,n",}-a)

Meaning The value of the scherr.a S in which the components (n" ... , ''In) Ilave been hiddell 15 the
set of bindings which satisfy S, itb lhose components remo\"l~d;

~S\(n" ... n",)DMS = aSDM
$;({n" . n",}0C3)

Note: If all the variables are hidden the result is a ~chema wi~h an ernptJ signature.

Z B..... Slan<iu'<l Vrn.ion 1.0 printed 3Ot" N".....>b.r 199'"l 100

B.Il Schema Universal Quantification

9.11 Schema Universal Quantification

Abstract Syntax A schema quantification is constructed from a schema text and a schema.

SUNIVQUANT = '\fSCHEMATEXT. SCHEMA

Representation and transformation

Concrete AbstractProduction

'V' ,Schemo1Text, '.' ,Sch'!!ma "1St. S ~[SlJST .[st I

'l'ype The signature of a universally quantified schema expression "1St. 5 is the signature of 5 with
the narnell from the signature of 5t remoyed;

("1St. S DTs ((S 1"', ((S') Dr,);~

Note: The signature is well-typed only when St and 5 is are well-typed and their signatures
are compatible.

Meaning The value of a univeflia.lly quantified schema expression "1St. 5 is tbe set of bindings witb
the defined t1ignature such that, for all bindings of St, the union of the two bindings is aJ\ extension of
S,

(V St. 5 DMs = (-.3 5t • -.S DMs

Note: Note that this definition takes advantage of de Morgan's Law.

z e..... SI...,dvd V,,";"n 1.0 prinled 30th Nonmber 19'.)~ 101

9 SCHEMA

9.12 Schema Existential Quantification

Abtitrad Syntax A schema quantification is composed of a schema text and a schema.

SEXISTSQUANT = 3 SCHEM..<\TEXT. SCHEMA

Representation and transformation

i 'T I
Production I Concrete I Abstract I

'3' ,SchemaTeltt. '.' ,Schema 3 S' • s i 3[SIJST .[5jSJ
Type The signMure of an existentially quantified schema t'xpression 3 Sl • S is the signature of 5'
with the names from the signatuf!;' of 51 removed;

TS«3SL. S VS = (~S b , «(St) VS) ;'-.

Note: The signature is well-typed only when St and S is are well-typed aud their signalure~

a.re compatible.

Meaning The value of an existentially qualltified schema expresslOlI 3 St • S is the set of bindings
with signature of SIess St, such that there is a binding of St so that the ul,:on of the t.wo billdings is
an extension of S;

M13St. S D • = (IS jM',I(St}D'v, ;-,

Note: This definition should be cOlllrastpd with the an~logous expr('sslon for predicates
(3 5/. p) where the well-typing of the predica\e is deci-i ..,j in the moclin"d environmellt.

9.13 Schema Unique Existential QUllllti:8clltion

9.13 Schema Unique Existential Quantification

Abstract Syntax A schema quantification is composed of a schema text and a schema.

SUNIQUEQUANT 3, SCHEMATEXT. SCHEMA:0;

Representation and transformation

Production Concrete Abstract
I

'3 1 ' ,Sch.emaText, '.' ,Sch.emil 31 SI. S 3,[5,]'7.[5]' j

Type

(3, Sf. S fS (IS V,, l(St) I T
.);

Note: The signature is well-typed only when St and S is are well_t}lped and their signatlHes
are compatible.

Meaning The vaJue of an existentia.Jly quantified schema expression 3, St • S is the Set of bindings
with signature of SIess St, such thai there exists a unique hinding of St so that the uni()n of the two
bindings is an extension of S:

(3, St • S n-....s = To he defined

Z 8Me Slulderd V"""ioa 1.0 printed 3O!.h Nonmba' 1991 103

9 SCHEMA

9.14 Schema Renaming

The renaming operation SInew/old] substituLes the new variable name for the old in the schema.

Abstract Syntax A scnema renaming consists Df a schema and 'l. renaming tist.

SRENAMING = SCHEMA RENAMELIST

Representation and transformation

Production Concrete Abstract 1

Cmpnd Senl.Rena me List 5 [2:1/111> ZJ/1IJ," . X,./y,,] [5]"'< ~1/Y"~"/Y~l'''~''/YTl > i

Type Sfhema renaming changes the names of ,he elements in the bindings, and hence the signature.

(SIN/lIT, = (S IT,; 3({NljN, 1)

Meaning

QS(Nl] ls = QS ~s i 3({Nl}}l x 1)

Note: When more than one variable is to be substituted. the substitution is simultaneous.
Anysubstitutions for non-existenl names are ignored. Each old Harne can only be substituted
by one new name. Likewise. each ne name can be a substitute for only one old name.

« w

" u " ~ 0

X

~

w

c
•S

z
;;

0 ;::
~

'';:
:>,..

..,•
;::

•
~

til =

., =>
S

~
«

...
~

..,•
til

w

"
til

u
~

0
~

:: •
"

..
u

~
~

cO

<:

~] «

'j...,
~

0

:;;.-
3 ~•0 U

'" 0
~

• ~ .. • 0
p';

•E

1! u

'" :G " .~ ~•W

.S • ;; e•.s••• .. ~
 •• .S • ;; ;; .. ~ 0: •

•..
 t:

~

- ~

'"..
 , " •E

u
<u-
>.. =~

0

~
.
~

., 0

~

'" ., ~ • :!

~

'"-
..
 ,
 -.l
,
 =

~

:::: ,., ~

-
0
..

i ~ i.• ~ ., ~,
 •• !

>

1]•I• N

9 SCHEMA

9.16	 Free Variables

laou' .1./: .)l:oemi1.15 a.IlU ~neJT Iree vanaOles ana aJVllaDet

Scftema. Free Va.riables Alphabet

S {S}

S[z" ...• z ..l {S} U o,z, u ... U 9,Z..

[d I p} ¢;(d I pI ad

I~T ••T aT

(SAT) t/>.SUt/>.T oSUoT

(SVT) 9.S U ¢l.T oSUo.T

(S=>T) tf>.SUo.T aSUoT

(S<:>T) t/>.S U ¢,T 0.5 U oT

CVSt. T) tf>dSt U tP.T o.T\o.Si

(351. T) tPdSt U tP.T oT\o.St

(3,5'. T) tf>JSt U ¢.T aT\oSt

J08	 Z 8_ Sl....dard V,,"";un 1.0 pri"i~:lCH.h N.....,mboer 19'91

~

• E"B
~

S E

.E ~

]=
,..

,..
h

,..
B

g

h
,..

,..
~

g

g
0

.g
".0;;;

~

"
~

~

.;:
.

. .1: .
"•

<
>

~

t

.g

~
~

,..

iO
~

;
~

<;"

;;:;
;;:;

;;:;
iO

iO
~

.2
~

.g

.g
g

0
.2

g
-"

'"
-'\

~

"
'"r

~

»
m

m

• N

'"'"
1

,
~

~
z

h
"

h
h

. "
h

h
•

~
~

0

h
h

•
•

0
:

;;;
<

>
h

~

;;;
;;;

.~
!i:

f<
m

m
-

I
oO

r

~
'" 0

'" ~-,
'7;)
"

<0 '" 0
'0'" '" '0

'0'"
0

'0
'0

0

~

~
~

~

~
~

~
~

~

~
~

~

"
.~ ~

]•1 • I "

10 Paragraph

PAR = GIVENSETOEF
GlQBAlPREO

GlOBAlDECl

GENERICDECl

GlOBAlDEF

GENERICDEF

CONJECTURE

Each paragraph of Z can do two things: Augment the environrn('nt by a declaration and 5trengthen the
properly by a predicate. Each paragraph is considered iI.5 a r~lation between environmenl!>. The domain
of thi8 relation containG aillhe ~nvironment8 in Wllich the paragraph is well-typed (\nd any predicates
contained within it are true. These environments are related to those which include the new \"ariables
declared in t.heir signature and which satisfy any properlY denoted by the paragraph.

(PAR)7 Tenv _ TenlJ

(PAR V" Env Env

WOe can prove the following

I-(Por) ;T 0;;;; T;{Par)T

108 7. a- ~,And.VtJ v"'""'- 1.0 .,nnlC<'l.lOIh N..~ IWl

10.1 Given Seh

10.1 Given Sets

The given S4?'t definition [XI' X~, . .. , Xn 1introduce6 the sets Xl' X~, ... , X" without determining
their elements.

Noh,: Distinctly named given seh have distinct types and hence are incomparable.

Abstract	 Syntax

GIVENSETDEF given [WORD, WORD, ...• WORD]

Representation and tran!lformation

Proiluction Concrete Abstract

'l' ,Word,{',',Word}, 'J' [Xll X'l, ... ,X" J given (X...... X n)

Type The declaration of given sets given [Z], ...• ~,,1 causes the type environment to be suitably
enriched. Each name is given the power set type of the given type of that name. These declarations over
ride the environment. Note that a given set definition orN results in N haVing ~he type poUleTT givenT N.

(given(X I1 ... , X ..)}T = {t, ({X" ... , X n } <I givenT i powerT)"} ; iII

Meaning To enrich the meaning environment, we construct a binding of the given 5et names (those
in ran:J) to typed values in the world of set.'l-for this to be correct, the bindings must be such that the
given sets do indeed have power set type. The environment is updated with thill binding.

(given(X" ...• X n) V" = (1, ({Xu' ... X n } <I givenT i (powerT, Camer))O} ; ~

,.9Z B_ SIUMIard Venion 1.0 pl'in&e<! Dh November 199~

10 PARAGRAPH

10.2 Constraint.s

A Constrainl is a predicaLe appe1l'ing on its own as a paragraph. It denotes a property of the \'alues o(
variables dedarl"d elsewhere with global scope. This property is conjoined to the global property.

Abstract Syntax

GLOBA.lPRED where PRED

Represenh.tion and transformation

Production Concrete Ab~tra.ct

Predicate P where! prJ"

Type A constraint adds nothing to the envirotlmellt, so it is that subset of the identity relation
restricted to the environments in which the predicate is true.

For the type environment:

IP l' = ltp D'

Meaning For meaning environment:

IPI" = 'tP)M

z e-S~ 'V~rwion 1.0 prink'<! JOtb No-mboor 199~ 110

10.3 Global Declaration

10.3 Global Dec1aration

An axioma.tic definition introduces variablefl and 8pedfies further properties of the elements denoted by
them.

Abstract	 Syntax

GlOBAlOECl deCn SCHEMATEXT

Representation and transCormation

Prodnclion Concrete Abstract

'AI' ,OeciPart, .~' ,AxiomP;lrt, .~'

'AX' ,OeclPart, '00'

'il' D .~' p'm'

'A!' D 'ID'

deCn [D]'D

deCn [D]'D

I [P]'

I true

The abstra.c:t fonn of lUl axiomatic definition is a pair of paragraphs, one containing a declaration and
the other a predicate. H the AxiomPart is omitted the t.he abst.ract form is one declaration paragraph.

Type When new variables are declared the environment is enriched by a function Cronl ~heir names
to one from their empty generic parameter list to their meaning. We give as its value a set of bindings,
one for ea.c:h name declared. In obtaining the binding, we enrich the environment with the declaration
in 6uch a way that the constraint is satisfied. The names in the declaration are hound to their values
in this enriched environment. Formally:

(deCnDIP)' ~ (DIP)'

Meaning

{deCnD I P}.M {D I P)M

Note The seLs from which the elemerl!s dennted by the van'able8 can be dmwn are defined by the
conjunction of the constroint of the OeclPart and the property in the AxiomPart.

The signature of the DedParl is jntned 10 the gloOOl signature. The canstmint III the DeciPart and the
proprrty nf the AxiomPart are ClJnjoined to the gloOOl properly.

ZB.- SI.And.&rd v.......... 1.0 prinkd nh N,m","'- 1992
 111

10 PARAGRAPH

10.4 Generic Declarations

<\. J!;enerjc ddinition of variables adds these variables to tht> dictimlary and maps them to a function
rtDm all possible instantiations of their gt>nt>fic paramelers to tho;- \"aIu('s of the variables WITh these
i l\~tantiations,

Abstract Syntax

GENERJCDECL gender /WORD, WORD, .. , WORD1 COil:;,t SCHEMATEXT

Representation and transformation

i'roduction I Concrete Abstract
I
1

'GEN",GenFormals,'M.R' , I 'CEN' [.r!> X'I,' .. X n J"~~'

DeciPart,':;U', AxiomPart,'END' I D 'SI' P'END'

'ill' ,GenFormals,'ill', J'<;;:11' I X" X". ", X. I'Jill;'
DeciPart,'END' D 'END'

~-------

Type

._------------ ,_.---\
gendef (X" X~, '" X,.)
const[DjD where U·(

gender (X"XH".,X,,)
cOrJ~tlDf' where tru,"

Value A genetic definition introdur.es a family of \'ariables, parameterJsed by tht> gelwric paramrlers
of the list GenFormab.

Note IrJ a GerJericDef, the DeciPart declare.. the n"rr,es of the lj[netlc l'DM(Ji/e8 who,<e tYPf._ can !-~

,jrknnirJed UpOrJ instantiation of the formal p(lra'fJicters, The preJwnlf ill Ihe A)(lomPart dehnlline~ th,
(h ments denoted by the l)ariablf.~ for each vallie of the forma! pr/TI:mtltrs.

flrcursive generic definitions (II"(TIC: allowed The geTl('MC deji'fJil,,;r; mu•• ~ nvt place any rest1'lC/'/)Il f),j

th(' generic parameters

\ fJfneric I'anable has g(obalscope. tlcluding the dec/a.m/jOTlli,./ ;'n lrhic.\ It is d~d(]nd arid any constnet
on which i(.~ /lame is re-used for a IIXY)(vllrioble.

The parametmJ of a generic definition arc local to the definition. but they can be instantiated by elements
of set type 1I'nen the genen'c 1:ariable is uSfd.

.\ generie definition does not give a single tYIJ£' rother. a fUTlr/ioil fl-om the generic pammeter.~ to tyP(S
i" defined.

Z B~~ Sl.",h,,',f V~..iOll 1.0 pri"tr<l'~.)lh N"""",I..... 19\l'l 112

10.5 Global Deftnitions

10.5 Global Definitions

Abstract Syntax

GLOBALDEF abbr WORD ;: EXP

Representation and transformatlon

Note: A Schema Defdefine& a new schema. There are two forms for a schema definitioll. The
horizontal ill lhe primary form. The vertical form. using a Rcaema box, is given a meaning
in terms of an equivalent horizontal definhion.

Production Concrete AbstracL

Schema Name, '::' ,Schema

'sg(' ,Schema Name, 'U' ,DeciPart, 'SI',AxiomPart, '~.rr

'SQi' ,S,.hemaName, 'U' ,OecIPart. 'El!.tl'

ldent, '==' ,Expression

Type When a schema Or variable is declared the name is added to the type-environment and is
mapped to the type of the nherna or expression.

labb,N;;XjT = (I,(N°,IXIT);{-});$

Meaning When a lO<::hema or variable is dedal'E!d the name of the schema is added to th~ environment
and is mapped to the meaning of the schema or expression.

labb,N;; X 1M = (l,(N°,IX 1M
); {-}); ffi

Note

The hori::onh;Jl form of the definition defines the schema wilh name SchemaName as the schema
denoted by the SchemaExpr.

The ver1ical fOrT» of the definition defines the .~chema with name Schema Name as the schema
denoted by the schema ezprtssion eonsl'f'\lcted from the schema le::t comprising the hori::ontal
equioolent, of the DeclPart and the AkiomPart (see Vertical Form).

A ScMmilName may be r.ued 10 definf' only one schema. within a specification.

A Schema !uJ8 global scope uctpL urithin the te::1 of its definition. Recursive schema deftnilions are not
allowed. The scope 0/ voriables introduced in the DeciPart is local 10 Ihe SchemaDef ond includes the
AkiomPart.

za- Sl.uo<MnI Veni<m 1.0 poi,,1.ed Dh Noyember 199] 113

ID PARAGRAPH

10.6 Generic Definitions

A generic definition of variables adds these variables to the environment and maps them to a fuuctioll
from all possible instiUltiations of their generic parameters to the values of the variables with these
instantiatiou•.

Abstract Syntax

GENERICDEF abbr WORD[WORD, WORD,. , .• WORD] EXP

Representation and transformation

-- -_ ..~

Production Concrete _Absuact I
SchemaName,GenFOImals, '=:' ,Schema I
's..c.H' ,SchemaName,GenFormals, 'll' ,DeciPart, ':U'.AxiomPart. '~'

'ill', SchemaName,GenFormals, 'U' ,DeciPart, 'm'
Ident,GenFormals, '==' ,Expression;

Word, InGen, Word, '==' ,Expression

PreGeu, Word, '==' ,Expression

Type

{abbrN[SlI' ..• Sm] =: X }M

I

I,

A((1, liS, 0, Ply",O ;,), ... , ISm 0. Pt,,,,O ;.)) ; (. .j)); '((([S, TIT, ... , [S" n, IX JT))

);(fl

Value

Note In a GenericDef, the DeclPart declo,.,;,s the name,s of the generic variables whase types can be
determined upon irutantiation of the fomlal pfJrumeter.~,

An abb"';t>iation definition efJn be u,sed 10 define a pos.'Jibly generic variable which j.'J named by an i,ien
lifier Abbrev.

The variable defined by the ezp,.,;,ssion CfJn IfJ/a: three forms:

•	 POII~ibly Genen/:" Variable ldent.

p,.,;fu Generic Symbol PreGen,

Z B""", S(."d....d V"....ion 1.0 prinl.ed:1Oth Nowember 19'n

II

114

10.6 Generic Definitions

/n~ Generic: Symbol InGen.

/ro the latter two case8, tht: nomes of the gene"c parameters. Word indicate the positions of the

actual parameters which can be supplied when 'he ooriables are u..~ed.

A :!chemn may be defined with generic p6ramelt:r!l and when 1Ued it must be alway:! irlS/antialcd.

za- Sl.Uldao'd VenOon 1.0 pr'nl.... 30lh Novembft- 1991 11.

11 Specification

A specificatio!l is constructed from a seqnence of pa.ragraphs:

Abstract Syntax

SPEC ~ PAR .. , PAR

Representation and tran9formation

--J
J

1 Production Concrete Abstract

I Paragraph} , PI Narrative., Narraltve P" [PI jPA:R and ... and [p"t'AR
{Narratin,Parilgraph} ,
! Narrative}

Type A specification is well-typl!d if the empty type environment is in the domain of tlle typing
relation.

Meaning The meaning of a specification is the S€t of environments which are relatl!d to the empty
environment by the paragraphs of the text. These are all the environments which are enricbmenl~or the
empty environment by the specification. A sequence of paragraphs can be composed together, 'l'h('y
denote a Nlation between environments. This relation is the sequential composition of the relations
denoted by the individual paragraphs.

zmnPland ... andP" = A((P, Y" ; ... ; (P")""')0

Note A l l;pecifimtion consists of a slqlJenCe of paragrophl; separated by pUrQgrn]Jh separntm·s. Thel;e
pamgmph "eparntors may include erplrwalory lut. The global signalufi lind p"operty are eOTlstrllcled
from the mcaningl; of these paragraphs.

.4 paragraph is eilher a definition or a cOllstmint.

A definition introduces IJal;ic types, l;chemOl;, or t'anable." (named ell'11Unf,~. sets luples or blTlding~j

together wilh constrnints on them. The effect of a definition IS to augment f-he global signalu.re ond to
conjoin ita constrnint, with jhe global property.

A constroilJl dcnotes a property 011 1'(Jriablcl; and schemas ,{u:lm'cd elscu'hen:. The effecl of a cons/minI
is to conjoin its property u'ith the global property.

•,1 "1J(;cifr~lion i.~ well typed if et'ery ferm and predi<-'al€ withill lhe]Jamgmphs it! u'f'1I typed.

Z B..- ,<;\,.,,<lMd V~.. jon I.a prillLe<l3(Uh Nov"lIlbrr 19!:I2 118

A Abstract Syntax

This annex contains the abstract synLax for Z. The metalanguage used is a form of BNF. The notation
X, ... , X delloteli zero or more occurrences of X separated by commas.

A.I Specification

SPEC:: PAR ,.... PAR

A.2 Paragraph

PAR GIVEN$ETDEF
GLOBALPRED
GlOBAlDECL
GEN ERICOECL
GlOBALDEF
GENERICDEF
CONJECTURE

GIVE~SETDEF

Gl08AlPRED

given [WORD, WORD,.

where PRED

•WORD]

GlOBAlDECL defn SCHEMATEXT

GENERICDECl

GlOaAlDEF

gender IWORD, WORD, ... , WORD) canst SCHEMATEXT

abbr WORD :: EXP

GENERICDEF

CONJECTURE

abbr

conj

WORD[WDRD, WORD, ... , WORD] ::; EXP

DECL I PRED, ... ,PREO I- PRED •...• PRED

A.3 Schema

A.S Schema

SCHEMA

SDES

SCONSTRUCTION

SNEGATION

SDISJUNCTION

SCONJUNCTION

SIMPlICAT10N

SEQUIVAlENCE

SPROJECTION

SHIDING

SUNIVQUANT

SEXISTSQUANT

SUNIQUEQUANT

SRENAMING

SCOMPOSITION

SDECORATION

SCHEMASUBSTITUTION

SDES
GENSOES
SCONSTRUCT!ON
SNEGATlON
SDISJUNCTION
SCONJUNCTION
SIMPLICATION
SEQUIVAlENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SOECORATlON
SCHEMASUBSTITUTION

WORD

(DECl I PRED)

-.SCHEMA

SCHEMA v SCHEMA

SCHEMA 1\ SCHEMA

SCHEMA =? SCHEMA

SCHEMA <:> SCHEMA

SCH EMA I SCH EMA

SCHEMA \ [VARNAME•...• VARNAMEj

VSCHEMATEXT. SCHEMA

3SCHEMATEXT. SCHEMA

3, SCHEMATEXT. SCHEMA

SCHEMA RENAMELIST

SCHEMA i SCHEMA

SCH EMA DECOR

EXPGiSCHEMA

2 e-S~ V~ 1.0 prillled 30th No""1Ilber 11l9~ 119

A	 ABSTRACT SYNTAX

A.4	 Schema Text

SCHEMATEXT

SIMPlESCT

CMPNDSCT

5CT5UBSTITUTION

A.S	 Declaration

DECL

51MPlEDECl

SCHEtJlA1NCl

COMPNDECL

DECLSUBSTlTUTJON

A.6 Predicate

PRED

EQUALITY

MEMBERSHIP

12.

=	 SIMPLESCT
CMPNDSCT
SCTSUBSTITUTION

=	 DECL

=	 DECL I PRED

::	 EXP05CHEMATEXT

=	 SIMPLEOECl

SCHEMA1NCl

COMPNDECL
DECLSUBSTITUTION

= VARNAME, VARNAME, ... , VARNAME : EXP

= SCHEMA

=	 DECL; DECL

::	 EXP00ECl

=	 EQUALITY

MEMBERSHIP

TRUTH

FALSEHOOD

NEGATION

DISJUNCTION
CONJUNCTION
IMPLICATION
EQUIVALENCE

UNIVERSALQUANT

EXISTSQUANT

UNIQUEQUANT

S(HEMAPRED
PRED5UB5TITUTION

=	 EXP = EXP

=	 EXP E EXP

Z B St""rlJu-d V~l1Iion 1.0 prinl.«l30~h N""~",ber 1991

A.7 Expresaion

TRUTH == true

FALSEHOOD == false

NEGATION == ..,PRED

DISJUNCTION ~ PRED V PRED

CONJUNCTION = PREO PRED"
IMPLICATION == PRED => PRED

EQUIVALENCE == PREO <> PRED

UNIVERSALQUANT == VSCHEMATEXT. PRED

EXISTSQUANT == 3 SCHEMATEXT • PREQ

UNIQUEQUANT == 3, SCHEMATEXT • PRED

SCHEMAPREO == SCHEMA

PREDSUBSTITUTION == EXP~PREO

A.1 Expression

EXP ==	 IOENT

GENINST

NUMBERL
STRINGL
SETEXTN
SETCO..P
POWERSET
TUPLE
PRODUCT
TUPLESELECTION
BIND1NGEXTN
THETAEXP
SCHEMAEXP
BINDSElECTION
FUNCTAPP
DEFNDESCR
IFTHENELSE
EXPSUBSTITUTION

IDENT ==	 VARNAME

GENINST ==	 VARNAME [EXP,EXP, .. ,EXP]

NUWiBERl ==	 NUMBER

STRINGL ~	 STRING

SETEXTN ==	 {EXP,EXP, ... ,EXP}

z BaM 5,and.v'd Vnwlo" 1.0 pnnled 30lh November 1992	 121

A ABSTRACT SYNTAX

SETCOMP {SCHEMATEXT • EXP}

POWERSET P EXP

TUPLE (EXP, EXP, ... , EXP, EXP)

PRODUCT EXP x EXP x x EXP x EXP

BINDINGEXTN ~ VARNAME EXP, ... , VARNAME EXP~

THETAEXP (J SCHEMA DECOR
(J SCHEMA

BINDSElECTION EXP • VARNAME

FUNCTAPP EXP(EXP)

DEFNDESCR Ii-SCHEMATEXT. EXP

SCHEMAEXP SCHEMA

EXPSUBSTITUTION EXP '" EXP

A.8 Identifier

VARNAME WORD DECOR

DECOR [STK, ... ,STK]

RENAMEUST IVARNAME/VARNAME, ... , VARNAME/VARNAMEj

B Representation Syntax

The concrete representation (or Z is defined in four parts. The first is a context-free gramma.r, which
conforms to the BSI sta.ndard (or grammars. The second, lexie-al aIlalysis, describes the rule; according
to which the character sequences are grouped into tokens, The Chara.cter set describes the character ~et

required to represent a Z specification. The fourth s.e<:tion, grAphical conventions, details lhe conventions
used (or layout tbat are adopted in this standard.

B.l Grammar

The grammaJ is described using a BNF notation which emplo:ys the following special s)"mbols:

the concatenate symbol
the define symbol

the definition sepaJalor symbol

{ } enclose optional syntactic items

{ } enclose syntactic Hems which may occur 2eta or more times
single quotes used to enclose termina.l symbols

Metaldenfiti.r non-terminal symbols wrilten in uns-serif (ont.
terminator symbol denoting tbe end of a rule
subtraction from a set of terminals.

. ? "User defined rule.

I

The concatenate symbol has a higher precedence than the definition separator symbol.

B.1.1 Specification

Specification	 [Paragraph) ,{Narrative,Paragraph).[Narrative};

Paragraph	 GivenSetOef

StructuredSetDef

AxiomaticOef

Constraint

GenericDef

AbbrevialionDef

SchemaDef

Conjecture;

B.1.2 Given Set

GivenSdOef = '(',Word,{',',Word},'l'j

B.1.3 Structured Set

StructuredSetOef = Word.';:='.Branch,{'\',Branch};

2 B_ SI.."Janl VaWon 1.0 printed.1Ol.h P>lo.......... 1992	 123

8 REPRESENTATION SYNTAX

Branch	 W~d

ldent, '((',Expre~ion.')) ';

8.1.4 Global Definition

A.xiomalicDef 'AX' ,OeciPart,'UD.'
·AX',OeclPart,'SI',A.xiomPart,'~';

Constraint Predicate;

B.1.5 Generic Definition

GenericDef	 .~' ,GenFormals,'ill' .DedPart, 'END'
'~',GenFormals,'ill'.DedPan,'~',AxiomPart,'~';

AbbreviationDef	 VarAbbrev

PreGenAbbrev

InGenAbbrev;

VarAbbrev	 Ident, '==',Expression

Ident,GenFormals,' = =' ,ExpreS$lon;;

PreGenAbbrev	 PreGen,Word, '==',Exprenion;

InGenAbbrev	 Word,lnGen,Word, '= =', Expre"ion;

8.1.6 Schema Definition

SchemaDef	 SchemaNarne,'=' ,Schema
Schema Name ,GenForma Is,' == ',schema
's..cH',SchemaNarne,'u' ,DeclPart,'SI',AxiomPart, 'E1lD.'
'~',SchemaName,GenFormals,'!.s',DeciPart.'S.I'.AxiomPart,'m'

'~' ,Schema Name, 'lS.',Decl Part,'~'

'~' ,Schema Name,GenFormals,'lS.',DeciP art,'ill';

8.1.7 DeclaraUon

DedPart	 Declaration,{Nt ,Declaration};

Declaration	 BasicDed

CompoundDed

DeciSubstitution;

CompoundDeci	 BasicDecl.'; ',BasicDed,{'; ',BasicDecl};

~

1
1

z " •"
1

1
-
-

1
1

1

1

1
1

1

1

1
1

-0

t E

u

8 REPRESENTATION SYNTAX

CmpndSch1

CmpndSch2

Cmpnd5ch3

CmpndSch4

BasicSch

SUnivQuant

SExistsQuant

SUniqueQuant

SEquivalence

Slmplication

SDisjunction

SConjunction

SNegation

SComposition

SHidinl

SRenaminl

SProjection

PreSchema

SDecoration

SRenaming
SHiding
CmpndSch2;

SProjeciion
CmpndSch3;

PreSchema
CmpndSch4;

SDecoralion
BasicSchj

SConstruction
Schema Ref
GenSchemaRef
SchemaSubstitution
'("Schema;)';

'v',SchemaText,'. ''schema;

'3',SchemaText,'.' ,Schem;;J;

'3) ',Schema Text.'. ',Schema;

LogSch,'<=>',logSch1;

logSch2,'=:-' ,LogSchl;

logSch2,'V',logSch3;

logSch3.' 1\',LogSch4;

' ',LogSch4;

CmpndSch,';',Cmpnd Sch1;

Cmpnd 5chI,'\ ','(',VarNameLisl,')';

Cmpnd SchI, Rename List i

CmpndSch2,' [',LogSch;

'pre ',Cmpnd5ch3;

Schema ,Decoration;

B.I Grammar

SConstrlKtion

SchemaRef

GenSchemii Ref

SchemaSubstitutiQn

B.l.IO Predicate

AxiomPart

S.p

Predicate

LogPred

LogPredl

LogPred2

LogPred3

B~5;cPred

'[' ,Dedilralion, 'I',Predicatl!.']'

'[' ,Dedlfation, 'J ';

SchemaNilme;

SchemaNilme"{',Expression, {', ',Expreuion} 'l';

Expression,'0',Schemil;

Predicilte,{Sep,Prediute} ;

" '

NI;

UnivQuilnt
ExistsQuant
UniqueQuant
logPred;

Equivalence
logPredlj

Implication
logPred2;

Disjunt:tion
logPred3j

Conjunction
BasicPred;

PreRelPred
CmpndRelPred
St:hemaPred - '(',Schema,')'
Truth
Falsehood
'(',Predicate,') ,
Negation
Membership
Equality
InRelPred
PredSubstilution;

'V',SchemiiText,'. ',PrediciltejUnivQuant

Z B....., Slalldard VeRwn 1.0 prinled 3OI.h Noyemkr 1992 127

-
-

ti
l

ti
l

,..
'" ~

m
m

m

::
m

;:

~

~

n
3"

z

n
0

m
c

m

~

~

0
0

~

,
"• •

"•
"•

•"
• 3

.- ,•
[

if

•"
'" "-

3
i1'

'i:l•

2
,

~
.

....-

c ~
.

<;

'
• ~'

'"
~,

~
~

~
~

1

]
=g.

0

l'>

'"
0

0
'

~.
0

~
0

i
c

,
;.

~

"
•

~
0

5"
'" '"'

a
•

" "'
[

"
•"

i"'
• '"

0
'

,
,

~

•
'" 2

0
~

'0

~

,
~

c •
a

~
• • o'

• ,0'
'"

~ •
'" >oj

-
"

-
-

•
~

m

"

"
3"

C'

"
m

m
m

n

"
,-

r
r

r
r

0
•m

 n •
•

C>

•
•

•
'i

3"

m

C'
j'

_w

0:;
0

0
0

0
"!l

'<;

]

, •
"

;-
•

'<
;;-

~
3

~

~
~

v.

2

"
"

~
.

"

~
;'"

"
• '"

"
g>

'"
v.

g.
;;

~.
 C

'
~.
"

~
~.

~
.

• ~

~

'0

•
~

"

"
"

,
~

0

~.
m

,.,

•~
~

 •~
•

:r
:r

'" -<
c

~
0

'
0

I(
'

~.
~.

.
~

~

"
:.

?
?

,
•

•~
.
~

.
~

3

!"

~

:.

?
,,

~
;,;

3"

~

~

oS
1i

i.
~

• --<

2 ~
-

~
~

r

"
m

;;'

r

~

m

•
0

'
m

'"

" 0
r- " 0

" 0 •
.~

$
><

" •
"•

"•
.~

'<•

P'
"

r
~

'"

.-
..

• •
~,

~

0 ~

~
 •~

•
1=

t ~

E

:. 0
'

:. 0
•0

• 0
-'"

1=

t

0
'

~.
~

"

-~

"-
E

'"
~i!

m

,
•

•
'<

I i'"
?•0

i f c 1 1 ~ ,2 ~ f ~

B.1 Grammar

ExproMf.ion2

Expression3

Expression(

ExpressionS

InGenExp

CartProduct

InFunExp

POMrSet

PreGenExp

FunctApp

PostFunExp

Sup~rScript

BindSelection

InFunExp
Expr~ssjon3i

Pow~rSet

PreGenExp
Expression4j

FunctApp
Expression5;

PostFunExp
SuperScript
BindSelection
Tupl~Selection

ldtnt
G~nlnstant

Sch~maExp

S~tExtn

Tupl~

S~qu~nce

B.g
BindingExtn
ThetaExp
SdComp - ·{',Sch~maExp.'}'

lambdaExp
Number!
Stringl
tfThenElse
ExpSubstitution
'(',ExpressionG,') ';

Expr~uionlExpr~ssion1,lnG~n,Expr~ssion;

Exprnsion2,' x' ,Expr~ssion2,{' x',Expr~ssion2};

Expression2,1 nF un, Expression3;

'P',Expreuion5;

PreGen,Expression5j

Expreulon4,Expression5;

Expression5,PostFun,;

Expression5,ExpreuionG j

Expreuion5,'. ',VarNamej

za- Sl-andud "'",..jon 1_0 prinl...t 30lh No~.....b"r 1092 129

B REPRESENTATION SYNTAX

TupleSelection ExpressionS,'.' ,N LImbed;

Ident VarNamej

Genlnshnt
 VarName"["Expression,{', ',Expression} 'j';

SchemaExp Schemaj

SetExtn '{' ,ExpressionO,{', '.ExpressionO},'}';

Tuple '(', ExpressionO,', '.ExpressionO,{'.',ExpressionO),')'j

Sequen,e .(.,ExpressionO, {',',ExpressionO},'}';

B.g '(' ,ExpressionO,{',',ExpressionO},') ';

Bindin&Extn .~ ',VarNamc,·...... ',ExpressionO,{' ,',VarName,·......... '.ExpressionO},·t ';

ThelaExp '6' ,BasicSch,Decoration

'6',BasicSch;

Set(omp '{',SchemaText,'.' ,ExpressionO,'}'

'{ ',SchemaText,'} 'i

LambdaExp ').'SchemaText,'.', Expresf.ion;

DefnDescr 'Jl' .SchemaText,'. ',Expression

'JI',Schema Text;

Numbed Number;

Stringl String;

IfThenElse 'If' ,Predicale,' Then', Expression .' £I.oe ',Expression,' Fi';

ExpSubstitution Expression,'0' ,Expression;

B.2 Le:xical Analysis

Token A token is a sequence of characters, as defincd in seelion 8.3. conforming 10 the grammar
given in this section, whose terminal symbols are the sets of characters defined in section B.3, and
whose senlence symbol is Token. The differcnt sorts of tokcn correspond to thr sorts of ternlillaJ
s.vrnbols of the grammar of Z, together with an extra sort of space tokcns .

.-\ sequence of characters is inlcrpreted as a sequence of non-spacc tokens by a left-to--right scan taking
token,; which are as long a... possible and lhen discarding any Spn.u tokcns. H it is lIot possible to do
lllis th<'n the sequcnce of charac~crs is erroneous.

130 Z f1""" SIIUl.-l."r.-l. V"'.. '..n 1.(1 pnnt.ed :lOll. Nov..nlh<-r 19O"l

B.2 LexitaJ Analysis

Note: The 'e)l.~ of a Z document in the COllcrel", representation may be considered al lhree
level6: a.& marks on paper, as a sequence of cbaracll"rs and as a :;equenc.e of tokens. The
tn.nsformation from characters to tokens is given hy the following rules; these use the same
notation as ~he syntax definition but differ in meaning in that no two separators may appear
between a.djacent terminals. Where ambiguity is otllerwise pos~ible. two conseculive tokens
must be separated by a separator.

Tokfn W~d

Decoration

Narrative

Number

String
Punctuation
Space;

Operation Names

Opname	 '_ ',In Fun,! Dec],' _ '

. _ ',lnGen,' _'

, _ ',lnRel,! Dec] " _'

PreGen,' _ '

Pre Rei,] Dec],' _ '

, _ ',Post Fun,! Dec]

'- ','G',' - ','r

'-';

Variable Names

VarName	 N.~

'(',Opname,')'j

Dedaration Names

DeciName	 Name

Opname,;

Schema Names

SchemaName Word;

Name A nam", is a. decoraled word:

Name '" WOfd,! Dec!;

"l B..... Slan.i&rd Ven"''' l.lJ pr;nt.,.J 30th NDvember 1992 131

B REPRESENTATION SYNTAX

Word There are three sorts of Word:

W~d	 Alphanumeric

Greek

Symbolic;

Alphilon.umeric	 (letter, {letter I Digit I (' _ ',(letter I Digit)}), {Subscript}j

Greek	 Greekletter, (Subscript};

Symbolic	 (Symbol I Shift), {(Symbol I Shift)}, {Subscript}

Punctuation, SubKripl, {Subscript} i

lTo rnaxHni.to! the 8uibl~ly of til<: language. parlicularly when nsN for the metatheor)' of Ilself or of Olhel IIll'guaS"" even

a. plln<:h'Al.;on ChA.acl.,. can be uw:d to form a. symbolic Identifier by Attach,ug a. subscript.]

[3mce Ihe m.~ddol)' Greek ch;uacters Are insuffiCient fOI aclu&lly typing le&l Greek WOlds (the.e king DO hreil.lhing~

~tc.), lhe view is laken IhAI Greek letterB work as in ordinAry malllen'a.lics. of3.., containing lhree namn. Tbis 5e",,,,,, 10

be II. good compron,iAe, and works n.1<:ely with ~, J.l, Idenlifiers etc I

Decoration. Decoration comprises just a sequence of stroke characters:

Decoralion :; Stroke,{Stroke};

[We are assuming lhat proposal Decor.2 is ldoplPd and that i' IS ",mplemented" in rhe tril.nsformauon into ahst.&Ct

syntax. Deeor.3 is equally simple, and eJl8enlially jun ~a.ys Ihl decoration is allowed At lhe end of;m Identifier as part of

lhe identifier J

N umbers A numeric literal is a non-empt}" sequence of decimal digits:

Number:= Digil,{Digit};

Strings A string literal denotes a sequence of arbi~ary text;

String _ ? /mplemwtationDependent?;

Narrative The means for delimiting the narrative sections between formal material in a Z document
is not defined in this standard:

Narrative := ? /mplementalionDependent?;

Punctuation	 This kind of token includes the stop and box cltaractl;:CS of section B,,'J ~ymbols.

Punctuation	 Slop

BOlli

Z Sa..- ~l.and""" Vpniun 1.0 p"nled JOlh ND""n,bo,r 1001 132

B.3 Character Set

Space A space token is a. sequence of one or more white space characters.

Space = Forma1, {Format};

B.3 Cbaracter Set

At tbe most primitive level, a physical object (e.g, <:. document on paper or stored electronically) i~

interpreted as a finite sequence of charade"!, The method of deriving a sequence of characters from a.
physical object is Qat define<! in this standard, however this section places minimum requirements on
the character set.

TIle character set must include, at least, the characters in the sets Letlu, Gr'eek, Digii, S!jmbol, Stop,
Stroke. Subscripl, Shift, Bor, QllOle, Ascii and Fof'tlmf described in tlle following ubLe. Additional
characters may he used and arc to he taken as elements of lhe set Symbol.

letter

A B C D E F G H I J
K L M N 0 p Q n s T

U V W X Y Z
a b , d , f g h i j

k I m n 0 p q , , t

" v w x , ,
0 13 1

, , (n 0 , a

> p " (, p a T v " X ,p w
r " El

A - n E T •., fl
0 1 2 3 4 5 6 7 8 9 - + V \ - • • n I

ffi #; 0 ~ • ~ ~

~ ~ C C < > < > - - - - - -
u n '" ~ ~ c -/ ~ -, I [) {) () / ,

A V ~ '" = E • 3 •
x - & f ::=

; () F N P Z

, , !
Subscrip\ed forma of &Dy of Ih~ abov", chara.cl~rs.

)' I
AX :;g{ m! -1> :IT ll.IJ!

"
A Illemb",r of the ISO Cb&IllCt.eI sel with <;ooe in lh~ riUlg~ 32 to 126.

Greekletter

Digit

InFun

InRei
InGen

Symbol

Stop

Underscore
Stroke
Subscript

Shift

Bo'
QUOit.

Ascii
Format A format charader such as space, l;ob, 1in~br",a.k or page-b''''l.k.

z S- ~I....dard V.,...ioon 1,0 pnnled 301}" Now"......... 199~
 133

B REPRESENTATION SYNTAX

[/ and t ue chu&d"l'II l.o shifl in &rid out of superscription. Transll>ve d(>5ure, reRexive- ~ra.l1"i tive dosur, a..nd rrl&~ion&!

inv"r"", can ht: wriuen lIJI / + 1. / * t &rid /1, ea.ch of which is &n Identifier.]

[Ltller might al.Io include oLher fonls, e.g. it&!ic or bold. If so, there u a. question lIJI Lo whether the sla..nd&"J snould jn~,st

llt&t, e.g., 'A' be I~&led tbe 5&lne &6 'A'?]

[The Cr..... k l.u",r omicron is not mandatory tUnee itloolullike &n '0' 'II 80m, fallb.]

[The list 01 S~,"bol. lLbove should be eXl.endd in the &Ctu&! standud 10 COver the requirements of the to"lkilj

lll. ~ etL IUt inlelldd to ~pr"""nl chu&Ct..l'II for duwlllg boXeti of various sorts.]

B.4 Graphical Conventions

The following graphical con.ventions are adopted in this stalldard:

The usual English orthographic conventions for interpreting print~d t~xt are a.:>sumed (division into
pages and lines, dirertion of reding, ignoring page furniture such as headi ngs and page numbers,
identification of printed or writlen characters, and so on.)

Sequences of non-Z text may be intt'rspersed witli Z text usinll; any cOllvention of presentation
which a.llows t.he Z text to be uuambiuonsly identified.

Multiple newlines in succession are considered as oue.

•	 A newline preceding or succeeding characters in the sets InFun, lnRel. InGen and in Symbolis
ignored.

Char~ters in the set Subscript are wriUen in the subscript position.

The characters /' and! delimit seqnences of characters to be writteu in the superscript position.

If G. D, P and 5 arbitrary sequence~ of characters not containing an)' of the box charactef6 CAl,
MR, ~, UI!, s..c.H. ~ and ~), then:

-	 AX D ~ P END is written as:

~
-	 AI D E!!Q is wriuen as:

I	 D

-	 W G liAR D SI P trill is written as:

[?l
"4	 Z B_ Stand",,1 V.....ion 1.0 printed 30Ih N"v"mlM'r 1!l9"l

"
~

.2 c
" ~

C•>•c .."..., ~0
.

" ~

":

'"

~
~

~
j

· •
.~
•

.~,
.~

.- •
i

.
el

.-
. ~

~
~

"-

"
! i

t;J
'4

~I

~
§

:"
I

"
S

L
-.J

'1
'"

'"L
J " ,

.~

"
'" JI " ~ "

~
W

~

] l " • I "

C Mathematical Toolkit

This section defines a Mathematical Toolkit or Library for nse with the Z notation. The principle is
that those cOllslructions that can be defined in terms of otbers are included in the Toolkit rather tha.n
in the core notation-this simplifies the core nota.tion.

)'105t users Ifill wa.nt to mak~ use of the constructions defined in this section. This can therefore be
regarded as a basic Toolkit, which nsers ma.y augment. with their own definitions, or replact' if these
definitions are not suita.ble for their use.

In this version of the Base Standa.rd, the list of defined items follows the customary list of Toolkit
items. Later versions of the Standard may include further definitions and explanations, and will link
the Toolkit to related work on the semantics and proof system for Z.

Definitions of the Mathematical Toolkit art' informallY expla.ined and illustrated. In some ca.ses ,in
illustration for one part of the Toolkit may rely 011 rerms defllied earlier in lile toolkit. :\[any of the
definitions given here are generic with respect. to one or more ~ets.

Note: lnslantiation of a generic defini/ion can be performed willi any apprvp7'iate sets, not nccessarily
the maximal set8 of their types. However the informal descriptions of these definitions are often here
erpressoi 08 if the sets used for instantiation were in fact types, since that is the UJay in whIch Ihese
definitions are commonty instantiated in Z specifiro.tions.

Rel>iewers oj the draft standard are invited to comment on thiS approach.

C.1 Sets

C.I Sets

Name

t- Inequality

If/. Non-membership

Definition

F~XJ-,x -X
¢,X_PX

'Ix, y: X. z t= y ¢:io (;c:::::. yJf
i Vz:X;8:PX • .r~S¢:io (.rES)

DescriptiQn

Inequality is a relation between vaJues of the same type. The predicate ;c t- y denotes true when z = y
denotes fa.lse.

Non-membl'rship is a. rela.tion hetween \alues of a certain type and sets of values of that type. The
predica,te ,1 If/. 5 denotes tru(> when z E 5 denotes false.

Z B""" !ll...,d....d,..;on l.O prinlM 3lHh NovcnlUn 19')'j 137

c

C MATHEMATICAL TOOLKIT

Name

o - Empty S~l

~ - Subs~l relatiou

?rop~r subs~t r~lalion

PI - ~on-~mpty subsets

Definition

I2l[X] == { :L : X I f(JJ~f.; J

FIX]~~~~~~~~~~~~~~~~~~~~~

~,_C_:PX PX

\:IS,T:PX.

(S ~ T ¢> (\:Ix: X •• E S =-- • E T)) /\

Sc T~S~ T/\Sf; T)

P, X o~ { S, P X IS" ")

Description

Th~ ~mpty ~et of values of a certain tyi>i' i6 the s~l or valu~s or that typ~ that has no members.

If S and Tare set6 of values of the same type, tb~n S 0; T is a pr~dicat~ d~noting true j[and only if
every member of 5 is a m~m ber or T. The empty set or values of a c~rtain t.ype if; a subset of ~very set
of values of that type.

If Sand T are sets of valu~s or th~ same lype, then SeT is a rredicat~ denoting true if and only if
ev~ry m~mher of S is a member of T and 5 a.nd T are not ~qual. If S is a proper subs~t. of T, then it
is also a subset of T. Th~ ~mpty set of values or a certain type is a prop~r subs~t of every non-empty
s~t of values of tha.t type.

If X is a Sft, then P X is the set of all non-empty suhs~ts of X. P X is a proper subset of P X.t t

Z Ii...... s, ...,,<lard V~f1'"'' I.U r>rif1,~<l;JlJlh Nu~~r"ber 1992 138

C.l Set9

Name

U - Set union

n - Set inter~ction

\ - Set difference

Definition

~iXI~~~~~~~~~~~~~~~~~~~~

U,_rl_._\ _: PXx PX - PX

VS,T:PX.
SUT={z:Xlr€SVxET}A

SnT={ r:X/reSl\xE T}v

S\ T={ x:xlreS/'1rrt T}

Description

TIle union of two sets of values of the same typl" is ~he set of values that are members of eith.er set.

The intersection of two sets of ..·alUe5 of the same type is th(' set of values that are ffi('mbers of both.
sets.

The difi"er(>no::e of two sets of values of the same types is the set or values that are members or the first
set hut not memhers of the second.

Z B_ Slan<Wd v 1.0 I'ri"l~ 30th Novch",,"r 1~11 13.

C MATHEMATICAL TOOLKIT

Name

U - Generalized union

n - Generalized interseclion

Definition

[X]~~~~~~~~~~~~~~~~~~~~

u,n,p(PX)_PX

VA.:P(PX).
uA :: { z : X I (3 S: A • x E .'I) } 1\

nA :: { z : X I (V .'I: A • x E .'I) }

Description

The generalised union of a. set of sets of values of the same type is the s{'t of values of tbat type th.at
are members of a.t least one of th.e sets.

The generalised intersection of a sel of sets of values of the same type is th.e set of values of that ~ype

that are members of ever)' one of the sets,

.

..
 "'

" ,
.~

~
,

~

"
~

'0

0

• ~
8 ~

"

~
 "

..e
:;

§
~

•E•'"

" .~ 0

" 0

·3 .~
8

'" ~

0 ~ ;; ""
• .~'.'" •A

'
<

~

'";
1

•
II

I
•

II -;;;
>.

>.
x

>. -;;; .;
x '"

I

..
.;
~

~
_

0

~
"

"

;;
8

~
 '"

'
"

0

"" ••
;;

0
"

'"
"

•
-
"
<

~

l>

" ,-;;; .;

t '" ~ .;

'. ~

~

•
~

•

,2
~

%

~

>

,

"
"

•
"

•
~

A

~ 0:
;; '5 II "" • '" 'x
'";

•~

'" '0 ,"

"

•1 I z ~ ~•1• I >

1 i, J N

C MATHEMATICAL TOOLKIT

C.2 Relations

Name

Binary relatiom

- Ma.plet

Definition

x - r =:::- P(X X }'

r~~~l: X x Y -. X x l'

I V'X:XiY: Y •

x y=(x,y)

Description

x _ Y is the set of all sets of ordered pairs whose first members a.re members of X and whose second
members are members of 1'. To declare R : X Y is to say that R is such a set of ordered pairs.

The maplet forms an ordered pair from two values, so if z is of type X and y is of type Y, then z y
is of type X x Y. x >-- Y is thus just another notation for (x, y).

C.2 Relations

Name

dom,ran - DOlllain and range of a ,,,,Iation

Definition

IX, Y]~~~~~~~~~~~~~~~~~~~~

dom:tX y) PX
ran;(X Y)-py

VR:X Y.

domR= {z;X; y: YI(X>-Y)ERor}A

L ran R == { z : X; y ; Y I (r y) E Roy}

Desniption

The domain of a rdation R is the Si't of first mi'mbers of the ordered pairs in R. If R is of type X Y
the domain of R is of type P X. If R is an empty r",lation.th"'n its domain is an empty Si't

The range of a relation R is the set of second members of the ordered pairs in R. If R is o(type X _ Y,
th", dorna1n of R is of type P Y. If R is an empty r",lation, th~n its range is an empty set.

Z Bue S,,,,,dard \I~_ 1.0 prinlnl30lh Nov.,mt- 1991 143

C MATHEMATICAL TOOLKIT

Name

id - Identity relation

Relational composition

- Ba.dward relational wmposition

Definition

id X == { x: X • x x }

F[X.Y,X]~~"","""'C"",===~~~~~~~~~~~
;:(X Y)X{}'~Z)-(X-Z)

I _o_;(}'~Z)x(X~ r)~(X-Z)

r--:: , X ~ Y; 5, y - Z.
R;S=SoR=~ x:X: y: }'; .;:ZIcR

(.c....- y) ERA (y l- .:;) E S. x >-':;

--------'--

Description

The identi~y relatioll on a sel X is the relation that relates every menloer of X to ilself. Its l.ype if;
X X. The identity relation on an empty set is an empty relation.

The reLational composition of a relation R : X Y and 5; r Z is a relation of type X Z
formed by taking all the pairs (x, y) of R whose second memoers dre in t.he domain of 5, and relating
x lo every member of Z that y is related to by S.

The backwud composition of 5 and R is the same as the romposilion of R aud S.

I Z Il...... ~' ... ,,"ar,(V~ni,,,, 1.0 pri"",,,1 JO,h Noy~"''''''r 1991

C.2 Relations

Name

<J - Domain restriction

t> - Range re6triction

Definition

[X'YJ
_<,-,PXx(X-Y)-(X~}'J

~,(X- Y)xPY-(X- Y)'
~'r;j 8: P X; R: X - y.

I S <J R = { :r: : X; y; Y I z E S A (X y) E fl. r >-- y}

I Vfl:X- Y; T:PY.
l RvT={x:X;y;yl(r y)ERAYET.xl-y}

Description

The domain restriction of a relation R : X }' by a set S : P X is t11e set of pairs in R whose firsl
meml;ers are in S. S <i R i~ a subset of R, and its domilin is a. subset of S.

The r;,.nge restriction of a relation R ; X Y by a set T : P Y i~ the set of pairs in R whose sl!cond
members aTe in T. R Do T is a 6ubset of R, and its range is a subset of T.

Z B..... ~land...... Veni<.n I.U p"'IlI..n JOIh No...."". 1\J91 145

C MATHEMATICAL TOOLKIT

Name

.(I - Domain anti-restriction

~ - Range anti-restriction

Definition

[X,l'J~~~~~~~~~~~~~~~~~~~~

<il:PXx(X Y)-(X Y)
I:'l-:(X y)-<py-(X n
V S: P X; R : X y •

S <il R = { r: X; y: Y I z f. S 1\ (z.-. y) E R. r y }

VR:X~ Y; T:PY.
R ~ T = { z: X: y: Y I (z y) E R 1\ Y ~ T 1I:r..-. y }

Description

The domain anti·restriction of a relation R : X ~ Y by a sel S : P X is the set of pairs in R whose
first memhprs are not in S. S <il R is a subset of R, and its domain wnla.ins no members of S.

The range onti-restriction of a relation R : X Y b)' a set T P Y i9 the set of pairs in R whose
sE'Cond members are not in T. R ~ T is a subset of R. and its range contains no mewbers of T.

., u

• .~ •:: >..•o .
~

i! , "
~ z •

,.. J

>:"~

•0 .
~

i!•
0

'0
.2

·
~
1
1

.~
~

L
.
~
~

~

=

Q •

•e; .5

~ , " 8 .-.. ~

0 •
~ o
'

".. ~

~

~

§
~
~

[;

•

•
£,

< .. >

~

0 5'•
'"

'"
."

 '"'0 0 ~
 .. ~

~
 g' '" '"' O
' "' 0 "

£,

< ..
 0 ~
 £,
 " ~

 ., e ~

<:i • • 0 " i'

o' 0

<
! '"

~
~

~
l

~
~
~

"

'"
:'-

:"
tl '<

~

. "' " '" >

-;;'" ~

 '" '" ~

, ~

l
:
~

~
~

'<

1 .::'

x ."
 '"' ."
 "'

•<:i
 '" =. ,5'

, 1:

1:'

o'

0 ~
 .. § • ~ .•

• SZ
 •

"

s: .,> :I: ., ;;: ~ n >,
 0 0 ... '" ;:;

c.i N

o U
I

o
<

••

~
O

0

<

\)1
 0

C
t U

·

.. '"
0

<

<
0

o u,
u'",:

"':
"
'
~

,
+,

EZ •

1

:: I

"

C MATHEMATICAL TOOLKIT

C.3 Functions

Name

Pa.rlial functions

Total functions

Definition

x _ y==

{f:X Y!('v'r:X; Yl,l/2: Y.
(% yd E! /I. (r lh) E!::} Yl = Y~))

X~ Y=={!:X Yldom!=X)

Desaiption

The partialfullctions from X to Yare a suhset of the' relations X - Y. They are distin~nished by the
property that each r in X is related to at most one Y in Y. X Y is the set of all partial [unctions
from X to Y. and to declare! ; X _ Y is to say that! is one ~uch partial function.

The total fUfictiom from X to Yare a subset of the parlial functions X _ Y. They arc distinguished
by the property that eac:h r in X is related to exactly one y in Y. X ~ Y is the set of all total
functions from X to Y, and to tll'clare ! ; X ~ }' is to say that! is one such total function. The
domain of I: X Y is X.

C.3 Functions

Name

Pa.rtial injeclions

Tolal injections

Definition

X,.... Y ==
{J: X }' 1 ('i.r\..r. :domJ eJ(.rd= J!;:~) => 41 =: .r2)}

X _ l' ~~ (X ~ l')n(X _ l')

Description

Thl~ partial injections from X to Yare <I, subset of lhe partial funnions X Y. They are distinguished
by the prcperty that each yin}' is related to a!. most one ;c ill X. Thus the inverse of a parliill injectio/l
is also a partial injcctioa. X _ Y is t.he set of all part.ial inje<:tjo/lS frolll X to Y, ana to declare
J: X ... Y is to say that f is one snch parti,,1 injertion.

The total injections from X to Yare a subset of t]le partial injections X Y _ They aTe distinguished
b)- the property that each r in X is related to exactly one" in Y. X - 1" is the set of aJl total
injpr.tions from X to Y, and to declare J : X }' is 10 s<l,y that J is one such total injection.

Z B_ Sl.an<!.ard v.,,...;.,., 1.0 priMed 3Oll, "'I>~"mb..- 19!12 ,.,

C MATHEMATICAL TOOLKIT

Name

Partial surjections

Total 6urjediolls

Bijections

Definition

x _ l'~= {f, X ~ Y I 'ani = Y)
X_ Y~=(X_ Y)n(X- Y)
X-l'==(X- YJn(X- y)

Description

The parlial surjections from X to Yare a subset of the partial Cunctions X Y. They are distinguished
hy the property that each y in Y is related to at least one x in X. X _ Y is the set of all partial
~urjections from X to Y, and to declare! : X _ Y is to say lhat ! is aile such partial surjection.

The total surjections from X to Yare a subset of the partial snrjections X _ Y. They are distiuguished
by the property that each x in X is related to exactly one y in }'. X Y is the set of all total surjections
from X to Y, and to declare! : X Y is to say that! is one such lOlal surjection.

The bijections from X to Yare a subset of the total surjections X Y. They are distinguished by
1.Iw property that each y in Y is related to exactly Oll€ x in X. X :-+ Y is the set oC alL bijections from
X to Y, and to declare! : X >--0 Y is to say that! is aILe such tolal hijectiou.

7. B..... !'o,and... rl V~B;"n].0 prinud 30th No....mb"r 1992 152

c." functions

c.".] Name

~ - Functional overriding

C.3.2 Definition

,IX, Y)~~~~::=="~~......~~~~~~~~~~~~~
1_<;; -, (X - Y) x IX - Y) - (X - Y)

Vj,g;X y.

j(fjg=«domg)-af)ug

Description

If j and g are both functious from X to Y, t]len lhe functional overriding of f by g is the function g
together with such p~irs of f as have firsl elements different from the fir~t element of any pair in g.

Z B""" S~....danl. VeRi".. 1.0 priM""" J01.h Nl>y~ml>er 1!l9~ 153

C MATHEMATICAL TOOLKIT

C.4 Numbers and finiteness

Name

N Natur~ numbl"rs

l Integl"rs

+,-,~.div,mod Arithml"tic opl"rations

<,:5,?, > r\uml"rjc~ comparison

Definition

III

N: PZ

+,_-_,_._:ZxZ~l

_dil'-,_mod_: Z x (Z \ {OJ) ~ Z
_ :Z_l

-<-,-:5-,-?:-,- > _:l l

N=(n,lln?O)

... olher definitions omitted...

Description

The natural nUmbl"TS are the integers from zero upwards. The t.ype of N is P Z, since N is a set of
integers. The dl"c1aration n : N makes l thl" typl" of n, and entails the property n ?: O.

Z 8 S'lUld"",d Vrro;"" 1.0 pnn1.<"d 30lh Novrmber 199'".1 154

·
~

~
~

0
~

~

'2

'" ."

0• c•.0

e
t .
"

~

0
Z

" ;§

~

"
B

~

~
.= "

0. · .0
~

E

~

0 "
E

~

.0

0

E
 "

~
0

~
 0

x•0

, E•Z
 " ::, ~

.5

.~
.~
0
0
b .~
on z

.~ ",£: ~ ~

0
~

~

i:

0
.2
""2
'"•"

§:
~

>; II II

2

+
 " 0

"
~

~

1
i:

z
• z

0 0
0

• '"
0

.2

.% 0

~

"

c-
o

"
-5

· .
-e ~

 " .0

•
E

,.
0
0

·
~

.0

 "" 0
•

"
" > .

.~
" ..

.
~

'0

~

~
' !·• ·

.0

.0

Eo<
Eo<

~ i ~ 1., "q I >
 1 j•I•N

C MATHEMATICAL TOOLKIT

Name

RJ: _ ILeration

Definition

[XJ~~~~~~~~~~~~~~~~~~~~

iter :1 (X X) ---. (X - Xl

VR:X X.
iter 0 R = id X (I.

('tk: N. iter (I: + l)R == R i (iter I: R») (I.

(Vk: N. iter (-k)R = iter I: (R~»

Description

The iteration of a relation II : X X by zero is tIle identity relation on the set X. The iteration of
a relation R: X X by one is the relation R. TIle iterMion of a relalioll R : X ~ X by an integer
greater tIlan one is the composition of R with its itera.tion by the next lower integer. The iteration of a
relation R : X X by an integer less that zero is the iteration of the inverse of R by the corresponding
positi\'e integer. Thus the iteration of R by -1 is tIle inverse of R.

The form: iter I: R is usually written RJ:.

C.4 Numbers and finitenes-5

Name

- Number range

Definition

_ .. _:zxz-- P2

"i/ a. b : 2 •

I ~ a .. b:::{k:21 a .kb}

Description

([n a.nd b a,re integers. and a is less lh,ln b. lhe number ral,g", (l..b conla:IlS IJ., b anJ oily integers
betr:~en. If a is ('quill to IJ. the number rauge IJ. •• b is a single/on set conlamillg a only. If u i~ {!;rea.ter
than b, the numher ra.nge a .. b is an empty set of inlegl'rs. 'flle uUlober range a .. b is :\11li:J.Y; finite, and
jf b 2: a its size j~ b - {j + 1.

Z B_ Slandlll'd V"...ion 1.0 prilll"" JOlh Nov"n,L<:T I~J'l 157

C MATHEMATICAL TOOLKIT

Name

F - FiniLe sets

F I Non~empty finite sets

:'lllmber of members of a set

Definition

F X :;:; { 5: P X I 311 : N • 3 I: 1 .. n - S • ran I == 5 }
F, X == F X \ lOll

F[XII~~~~~~~~~~~~~~~~~~~~~

l#'FX~N

VS:FX.

#8 == (J.I 11 : N I (3/; 1 .. 11 - s. ranI:; Sl)

I

Description

_-\ 6('t is finile jf its members (".all be put into one·to-one correspondence with the natural numbers from
! up to some limit. F X is dle set of all finite slIbsl.'ts of X. F X is a subset of P X. If X is finit(', tllen
it is a member of F X.

The lIon-empty finite subsets of X are tile finite subsets of X ex(".ept lhe empty set.

The number of members of a finite set is the llppl.'r limit of th(' numbl.'r range starting with 1 that ca.n
bl' put into one-to-one correspondence with th<- ml.'lllbl.'fS of the seL

Z H.....· "',.uI.I~"i \,......"" •.0 v~i"' ...·d;I().1o N"v.-not>O'c I~J2 158

C.4 Numbers and B.niteneslI

Name

Finite partial funclioDs

Finite parlial injec1ioDs

Definition

x _ y == {] : X Y I dom] E F X
x_ y==(X- y)n(x- Y)

Description

The finite part.ial fnnctions from X 10 Y ilTf' the partial fllO(tioll~ from X to Y whose domains are
finit.e sets.

The finite partial injectioD~ from X to \-' Me the parlial injectiolls from X to Y whose domajns an:
finite sets.

z e- Slabd...... V~nOon 1.0 prilllftl:1Olh Nov~rnbet' I9'J2 15.

"
o

..

•
•

~

..

:j

(>

(>

Z

11

"
="

;
~

 •
•

B•
i

3
~

• •
'" 2.

•
:::

~
~.

;.

 ~
.

i
•

~ .

• •

 6"
ffi"

~

3
o·

0
S

0

[
~

 . •-
=

0

0

-~

•0

~
=:

-"

...~
-
~

~
g
,

• <

g,

l:: '"
~

••

•
•

• ..

j
~

o
•

j
•

• 0
'"

.. '"
'"

N
N

~
0

N
N

o
~

"g

"
,
...

'"",...

e.
:-n

E
..0

>
>

 ~

~
~

...
~~

3

<
.

<
3

3

3
"

>l
i-<

3

o
..

o
..

0

..
•
"

N

~

~

~
~

~
~

0

.
0

3
-

"'-
...

•3
g,

•

3
g,

>:

3
~

:fa
 •

•
•

3 ~.

;;
;
l

~.

·~
S
l
~

'"

0
•

•
_..

.::.
.::.

;;
;;:

3
0

•
..

•
IV

0
;
;
.
~

g,

s
.
~

'" I

'" I
•

S·
 ~

· 0.-. 0

~

~

,
.. • o.

~
 • ~

3 ". 0
•

•
g,

~

0

o
•

•
o ~

~

3
•

.
0 3

!!
.1

ii
i .,

o
~

;1

~
:l

!
g

,3

?"
!3

l.
~

~
~

~
o

3

f
~
~

0
~

1'"
'-

!!:
~
"
•

-.
 ;

;"
~
~

;;;"

I
0 IA

 ~

g.
~

w
Q
o
~

0

•0 ,.
,

•
i

~

~

3
••

~
-

0
!

3

, ~
?" • 3

i:.
.a

, z

" 3•
~

~
~
~

~

r
;

~

§
~

g,

C.6 Sequences

C.6 Sequences

Name

seq - Finite sequences

seGl - Non-empty finite !equence,

j8~q - Inje("tive sequences

Definition

"qX =={f,N_Xldom!=l.#/l

seq\ == { I: seq X I #1 > O}

iseqX == seq X n (N Xl

Description

A sequence is a finite aggreg•• te of values of the same type in which each value can be identified by
its p06ition in the sequence. The formal definition es!.abJislles a sequence as a partial funClion relating
the numbers from the set 1..0 for saine n (the domaill or the scquenn~) to the values (lhl:' range or
th(' sequence). seq X is the set of all finite ~eliuence~ or falues of type X. The declaration S ; seq X
says tllat S is one such finile sequence. Sinn' a sequence is a lunr-tioll (i.(>, a set of ordered pairs), a
sequence might be empty, and the runctioll application notation S i can be u!'ed to deflote the element
at position (provided that i is in the domain of the sequence.

seqj X ~s th~ set of all non-empty finite sequences of \'alues of type X. Tl'e declaration 8 ; seql X sa)'s
that s is such a nOkempt)' finite sequence. seq. X is a subset of seq X.

ise(j X is the set of all injective finite sequences of values of t)'pe X. A seql\ence is injectiH! if no value
appears more than once in the sequence. The declaration S : iseq X says that S is such an injective
fimte sequence. iseq X is a subset of seq X.

Z BaM Sl.aIldanJ Ven;on 1.0 prinlcd 30th Nowmbct 1992 161

C MATHEMATICAL TOOLKIT

Name

~ - Concatenation

Definition

[XI~~~~~~~~~~~~~~~~~~~~

_ ~_:seqXxseqX-seqX

'rts,t:seqX.
~'"'t=lJU{ n :doml. n+#s l(n)}

Description

Comatellation is a run(~ion of a pair of 6('quences of values of the same type that denotes a sequence
Inat negins with the first sequence and cOl\tinues with tile second. Either or hoth of the sequences
:night be empty. If either sequence is empty, the result is the other sec!uence.

'62 'f, H~ S'Il"d<Vd V...."'n I () I";n,I30.. , NO'TII,)"" j99'l

c.s Sequences

Name

hwd, IMt, loil,jront - Sequence decompositiof.

Definition

[XJ==================~
head, ltul: seq] X X-0

toil,/ront: seq] X seqX

Vs: seq, X e

ht-ad s 0:: 8(1) tI

100t s = 8(#8) /I

L
tails=(),n:l .. #$-le ...(n+l))tI

front $ = (l .. #~-l)<Js

Description

If S is a non-empty sequence of values of type X. then head S is the value of type X that is tint in the
sequmce. Empty sequences are not in the domain of head.

If S is a non-empty sequence of values of type X, then last S is the value of type X that is last in the
sequence. Empty seqnences are not in the domain of last.

If S is a non-empty sequence of values of type X_ th{'n tall S is the sequence of values of type X
obtained from S by discarding the first. men~h(!r. Empty sequences are not in the domain of tail.

If S is a non-empty sequ(!nce of values of type X, then front S is the r.equence of values of type X
ohtained from S by discarding the last member. Empty sequences are not in the domain of front.

Z BaM Sl.andanl V.,..,i... 1.0 prin,~d 30th Nov",,,b..- l00~ '83

;;; ..
 N
 r i [f C
 l a. ~ z ~ r ~

~

0
~

•0
0

,.0

~

?
1!.

~

•o·

• "

~

~
 •c " ~ ·
 ~
 "

~

c , ~ 0 ~
 .• ~.

~

~ '1"
': "

;;
 "

3

0

 " [3·

;; • 0 ."

."

0 ~
.

:; ~
 "" ~

"' • •! 0 ·>:

" .

>:
 " "" ~ · · ·

II •50 ! >:

1 ~
 >:

0 0 .. • ~ •

z • 3

"
•

0 I •< , ~

{"}
 i:: > ., :0
 '"' i:: > ., ~ {"

} >, 0 0 ... ~
!'

~ .,

I " + ~

• • •

c.i ••" , •• ~

~

~

~

! d

~

•e Z •

'"
<

 <

~-:::::
;,

\I

'"
;;..;:;..."

.
~

~
 1

E.:~
fr

fr
-:'

0-
<

;,.;,.;::

""
~

~
,

x
\I •

<V '
"

~

"
'
~

"
-
~
.
,
-

"'I"
"" .. "::

-.
.

..
~:::::::~

2::
'

,
• U

;
.~
'2

'"•Q

•,2 0.
';; ~ " Q

c 5

~

'. '"•• ~
 • ~

c=

· ~

,"

":

0

'0'" ~

~
 ·>
 c 0 • ~ ~ ·

~

·

.::: Q

c ~

~
~

• '" ~

~ ~

=
u

O
'
"
.
~

~
~

~
£

0 ..
 d

~
:~
c

1:
•

E-<'5

~

<0
~

~ ..I ! z ~ j 1 0 j 1 J

, • I

'0 =.. ~

>

'0 ~ • EE

• c ~

~

c
'6

I

C MATHEMATICAL TOOLKIT

Name

- / - Distributed concaLenatiun

Definition

[X]~~~~~~~~~~~~~~~~~~
~ / : seq(seq X) ---+ seqX

~/()=()

~!j:seqX.-/(s)=s

~q.r:6eq(6eqX).

'/(q~ ,j = C /q) ~ ('/,)

Oescription

Tile distributed concaLenation of a, s('quence of sequenc('s of values of type X is i\ sequence of values of
~~pe X obtained by colLcatcna,ting the I('sser SC(lu('nees in the order in which they app('ar in tile greater
~f'qucnce.

Z H_ S...Il,I....d V~n;.i,," 1_0 primrd 30th N,w~lIlborT1991 166

• ,• • •v '" ~

d ~

•e Z •

~

0
~

." =
 .g •

'0
.=

i:i
0

.

I
I

"" ·3 0

.~
''i!
'0

"

•·3 " '0• ~

" <"
h "

0
;

'c
'"

'" ~

.
'"E

0

.
""

-
0

'I\.
~

v,
~

-'"
"
"
0

.
0

.
~

""

E

<
0

.
I

h
'd

~

I
~

~
 .. 0

h '" .§
0:- -

~':: :? :~
-;;:'

0
. , 0

>
~ '0

f
~

"
,

''i!
~

~
.
e

 :~
~

~

v,
j:? •"-

>
,

-
~

.=
.

~
'"

-s
~

0

•E

~•
•"

S
-;;·

~

" • x ~ v

'0
"

~

0
=

.2 ; v
~

~ '0

~

.~,
• 0

•~

'13
".n'

~
'0

"E
.

•E

'"
0

£;

h

0

• ~

=

~

0

" "
:~

'0

" ·

~ · "'
.~

"
~

0
'0
.':'

'"
'E

'§ ~

O!
O!

•.£
?

~

••
x •

x
'c 0-

~

•
0

~ •
v

.0
E

5

•• ~
-< 0

8 E

-< 0
h

~

~

~

0 ~

i,

z g
~

 ~ =

.~ ~

~ , " , , , I

C MATHEMATICAL TOOLKIT

C.6 Bags

Name

bag Bags

count - Multiplicity

ill Bag memb{'fship

Definition

bagX-== X Nt

[XI~~~~~~~~~~~~~~~~~~~
collnt: bagX _ (X - N)

in:X bagX

\;/x:X;B:bagX.

Wllfil B = (A J' : X • 0) ~ B /I

i in B ¢> x E dom B

Description

A bag reprer.ents an aggregate in which order is not importanl. but in which a gi\"en value can occur
several times. A bag of values of type X is a function whOBe dOlllain is a subset of X and whose range
is a set of strictly positive natural numberB.

The count of a bag of values of type X is a fUl\ction that extends the bag function by rdating every
Illember of X tbat is not is the domain of the bag to zero.

_\ value x : X is said to be in B; bagX if and ouly if:r. is in the domain or B.

z ~_ :-1.u"l"rd \·r... i,," /.U priUlrd 30th N"v~ln""'r 1991 166

• =' '"
 ;:)

• " ;;•8
+•

'" ll'
";;•

~

1
• Q

>0: '<.. - • "
:f ."
X

A

.. "
>

0:"
Q•• 0

ll'
'

'<I~-

, E

'"
•

~

,:; B
 :f

~

~

~

.
~

'0 0., E

Q

~

•,:; '0

"E• ~

E

~ ~ ~

1i
!<

~
1i•

i
,:; ~

A
i

to
•,:;
~ •

~
-

Q•
~

~
-

,
.
o
~

Q

Q

~
 .8

j
'0

!
ll'

~
~

C

Q

'"
c

:--
1>

Q
:l

•g
•• 0

~
1

•

W
i]

I
~

 q.
I

>-
0-

~

• §
..

• • e
E

'a..•

."••
~
;
;

•· Q

Q ;: I
u

~

Z

0
0

Eo<
Q

,

-, o
"

o ~

9

D Z Interchange Format

D.1 Introduction

The Z Interchange Format defines a portahle representation of Z, allowing Z documents to be
transmitted 'between different machines. The most suitable meaM of communication het",een di!fe-r
ent mMhines iB by using text files in which the character sel is limited for portability reasons. The
Interchange Format defines a syntax for such te.xt files.

The basis for the Int.erchange Format is the ISO Slandard Generalized Markup Language (SGML).
SGML permits the structure of texts to bl' represented and encoded in a standard [orm, convenient for
storage, editing, retrie..-a.I 3nd processing. The SGML Standard is defined in [11]. A general description
of the ...ims and principles of SGML. together with an annotated version of the standard, is included in
The SGML Handbook by C. F. Goldfarb [8]. Case studies and applicalions ill SGMi are described in
the work of the Text Encouing Initiative as reported in [2~J.

The structure of this Appendix ill as follows:

•	 the first section describes the scope of the Interchange Format - Le. the facilities offered by the
Format.

•	 tIle second section contains an informal de5criplion of SGML.

•	 the ne~d 5eCtion defines the IntNchangt! Formal.

•	 the final 5eCtion presents explanatory material and examples of the use of the Interchange Format.

0.2 Scope of the Interchange Format

The Interchange Format allows a distinct.ion to be made between rormal text and other text included in
a Z document. The Interchange Formal does not prescribe the :;tructure of all parts of a Z document,
and does not define the internal structure of informal text.

As one possible application of the Z Interchange Format is to send a Z docnment to another machine
ror Z sYntax checking, th(' format is suffiejenHy liberal to pennit syntacticaJly incorrect Z to be written.
The rormat lhus prescribes markup only ror the higher le\'els of the Z synta..x hierarcllY; in lOost cases
this is at the level of a Z paragraph. althongh for axiomatic allu 'boxed' definitious there is scope lor
creating a more detailed m...rkup if desired.

For a Z document to be syntactically correct when written in the Interchange Formal" it must conform
at tne higher levels to the markup defined ill this Appendix, and a1 the lower [('vels (e.g. predicate or
expression level) to tIle Z Concrete Synta..", with all mathematical symbols replaced by thcalphanumerie
representil.lions defined in Section D.4.3.

Thl! Interchange Format also provides markup ror requirements which are additional to the prime
requirement for encoding the stnldllre of the Z in a docuDI('ul. The following requir('ments are accom·
modated:

•	 idenlificalion of informal Z fraglHent~. i.e. Z fral;lII('nt~ whirh do nol eOlllriuut(' to llie formal part.
of a Z dorum<'nt;

Z H-., Sund....J V..",j"" I 0 "rinl"d JOI.h Nm'~I"""" 1!I\I·l 171

D Z INTERCHANGE FORMAT

•	 definition of the fixily and bindillg priority (....here applicable) of user-defined names:

•	 allocation of unique identifierli to Z paragraphs, t'.g. so tbat associations between Z operation
schemas and data-flo.... diagrams can be made. or 80 that Z definitions can be indexed;

•	 logical grouping of Z paragraphs independently of the positions they occupy in the document.
e.g. so (hat the group can he considert'd as a nnit for type-checking purposes, or that 'units of
conservative exLensioll' can be identified for subsequent procp-ssinp; by a proof tool;

•	 labelling of 'stacked' predicates in an axiomati<: or -boxed' definition.

0.3 Introduction to SGML

Thi~ sertion provides an introduC1.ion to SGr..i L. sufficiellt for the understanding of f,he definition of the
luterchange Format in Section 0.'1. More compreheJl3ive de~rriptions of SGA,fL are given in [11] and
[8].

Examples of text written in SGML are printed with a lixed·width font (the 'tt font in r.....TEXj as rollows:

<tag> tnt <!tag>

D.3.1 SGML Element DefinitiorHI

Structures are described in the Interchange Format by means of SGML elements. Elements are delim
ited by stlUHags lLfId end-tags. A start-tag is o{the form <oatne>, where name is the generic identifier
of the delimited element. The elld-tag is of the form <!name>. For example, a particular Z given set
definition m..y be ritten in the Interchange Format as:

<given4ef> !lAKE. DATE <!given4ef>

The internal structure of a general SGML element is it~elf defined ill SG~'[L hy means of a formal SGML
element declaration. The components of an elelllt'lol di'c1aratiOIl are:

l. the Mme of the element;

2. two dil.racters (separated by a space) hich ~pecify the millimisation rules for the defILent;

3. the content model of the element.

1'hl' Il1inimi~ation rull's indicate whether the srart· tags or ("Jld-tags ma.~· be on,i tted ill iustances of the
dement. TlIl' first character in the pair corres.ponds to the starl·lag and tile second to the elld-tag. The
rhanH:Il'! '-' or '0' indicates tha.l, the corre~porldil\g tag r("speclivd.y must be presen~ or may be omitted.

T1H' contenl modl'J specifies hal occurrt'nce~ of lhe element may legitim~tely contain. Contents may
1,.. spl'cifieti in term8 of other eJemerlts and of special re.~("rwd words. Ultimately all ('lements consist
pf 'parSol'd character data' (reprelOented in element declaraliorl~ hy the rese[v('dord 'PCDAT1),hich
n>lllain.~ anr valid character data but nol frnther elerneilis. Further strurLur",J information concern
Inc; l'!Plllenls which a.re comtituents of lhe rlf'dared detnel,t is pro\·idf'd hy the use of occurrence
iudiclltors and group connectors.

I T'Z	 Z H""" ~la.",I,.,.<i Ve....."n 1.0 vrinW :}Oth Nm·em1w'r 1002

D.3 Introduction to SGML

Occurrenre indicators define how many times a cODstiluent element may occur in instances of the defined
elemenl and are pIMed at the end of the coDstituent element. The following occurrence indicators are
used in tbis Appendix:

a que6tion mark (?) indicates that the preceding element occurs at most once;

an asterisk (.) indicates that the preceding element may be ab6enl or occun olle or more times;

a pluB sign (+) indicates that the preceding elemellt occurs one or more times.

Group collnectors .sped fy the ordering of constituent elemenb.. The following connectors are nsed in
this Appendix:

a vertical bar (I) indic...tes that only one of the components it connects may appear;

a comma (,) indicate5that the components mnst appear in that order.

For example the element definition for a Z .,c!lerna declaration is given as:

<! ELEJIEJlT schElllladd

('PCDlTl. Bub?, formals?

(BeXp I (decpan. upart7») >

Occurrences of this element thus consist of parsed character data (representing the name of the 6chema),
followed by an optional subscript, followed by an optional element which holds the formal parameter.s of
the definition, followed by either lU\ element representing a scbema expression or a constrnct repre~nting

the declaration part and (optional) 1lI;iomatic part of a schema definition. The start· tag a~d end· tag of
the schema definition must both he present.

D.3.2 SGML attribute dec.larations

In SGML. attributes are nsed to pro"ide information associated with elements. The Interchange
Form ...t employs attributes to encode layont information and other information which is not considered
to be part of the s!ructUrf of a Z .specification. For example, the Interchange Format defines a'slyle'
attribute for 6chema definitions which permits an indication of whether the definition should be in
vertical or horizontal form. An occurrence of a 'schemadef' element rna)' thus contain aD. attribute_
value pair inside the e(ement'5 stalL-tag: for example:

<schemadet style-vert> S </schemadet>

An SG;\1L attribute declaration specifies the name(s) of the element(s) to which the attributes a.re
atta.ched, followed by a list of rows, each of which consists of the name of tbe attribnte b:!ing declared.
it5type, and an optional default value. A type may be given as a collection of explicit value:s, or ~ one
of the follOWing special keyword,;:

COl!!	 the attribute valne mal" contain any valid character data ami must b~ delimited by
double quotation mark~:

2 a.... 51Uldanl V......1Oll 1.0 prj","" JOth Nov..",!>c,. l~J~	 173

D Z INTER.CHANGE FORMAT

ID indicates that a unique identifying value will he snpplied for each inSlance of the
element;

JrlMTOKEJrI the attribute value is a name token (Le. any alphauumeric string).

The default \a1ue for an attribute may he denoteJ as one of llle St>t of explicit values dcfmed for an
attrihute; alternatively it may he one of the followillg special values:

IIMPLIED a value need not he supplied;

• REQUIRED a value mnst he supplied .

D.3.3 SGML entities

An SGML flltity is a named part of a marked-up document. An example of all entity declaration IS;

<!EHTITY zas O'z Base Standard, version 1.0" >

References II> entities are contrucl.ed by prefixiug the name of tjle !;'ntity with an ampersand character
(&) and delimiting the end of the name with a semicolon, spac!;' or end-of-file. Here is an example of
an entity reference:

We are nov in a position to issue the lZBS;.

The entity reference in this document fragment would he expanded by an SGML parser as:

'We are now in a position to issue t.he Z Base Standard, version 1.0.

In the Interchange Format, SG~H, entil.ies are used to represent non· alphanumeric Z symbols. When
an SGML pa.rser is nsed to analyse a Z document, associdtion b,>twet'n the aJphil.llumeric representation
oi mathematical symhols and their local code ale recorJ",d in ~GML entity dedarations. Since local
word pron~sor codes ma:r differ for differeut Z UM'rs, Section DA.J records the entity names used in
!he Interchallge Format, together wit.h the normal representations of corresponding Z symbols.

j\ 1:1""" ~.",,,I,.,..l Ye",;on 1.0 "rin""" 30th N.."",mber 1002 174

0.4 Definition of the Interchange Format

D.4 Definition or the Interchange Format

This section pregents the definition of the Interchange Formal 38 a collection of SGML decla,ra.tions.
Explanatory material and examples of the use of the lnterchange Format are given below.

An SGML Document Type Defiuition (DTD) defines the syntax of SGML-conformant documents in a
st)'Je whid, is readable by SGML parsers. The Interchange Format does not arrant a full DTD for
to reasons:

the format does not specify the structure of the informal text in a Z document:

• the entity deciMations are implementation-dependent.

A D'YD corlsists of a header. follo.....ed by a body contaiuing the rleruent declarations, auribute dec
larations aud eutity declarations. The definition of the Interchange Format presented in this Section
may be considered as tlle partial hody of a DTD (parliul because the eutity declarations are not gi"eu
explicitly); it is aho equi"'alent to a definition jn BNF of the structure of the Interchange Format.
Ne..... lines are not significant in the Interchange Format except......heu they ljerve to separalp predicatel;
or declarations.

Incidentall)'. it is unlikely that the interchOinge format could ever a.:commodate every function required
by its users. In the SGML scheme, any collection ofSGML declarations (such as those which define this
Interchange Format) may be replaced or euhanced by the pre·insertion of additional SGML declarations.
Such a 'customisation' of the Inlerchange Forma~ould be acceptable by SGML parsers.

D.4.1 Element rleclarations

These declaration8 define the higher-level structure of the Z paragraphs in a Z docllment 'II'ritten in lhe
Interchange Format. It corre5ponds dosely to the Z Concrete Syntax, apart from the introduction of
two high-Ie't'el structures (Le. opdec and infundec)hich are used by the author of a Z document to
define an}' speciaJ fixity and priority of s.vmbols and name~ declared in the document.

Note that it is possible to identify the individ\lal 'stacked' predicates (i.e. a collection of predicates
separated hy ne liues) in the predicate part of a bOxed definition. This facility is optional; t~e complete
stad::of predicates may be identified as a single predicate H that is more convenient (e.g. if the originator
of the document bas no automatic trar.$lator to the Inlerchange format which recognises significa.nt
newlint~s).

Element definitions a.re provided for the representation of superscripts and snbscrjpts.

< ! ELEMEIIT Z
(opd&c I 1nfundec I givend&:t 1 axd&f i COnstraint
I schemadd I gend&f I abbrevdet
I conjectur& I structsetdef). >

< !EL~H7 (informalZ I conjecture 1 constraint
I infundec I 8Up) -
(lPCOATA I string I sub I 9Up)+ >

Z R~ ~;'and...-d V~..ion I.U prinl",I30lh Novrn,brr 19'J1 IT5

D Z INTERCHANGE FORMAT

< !E'J..FJtEJrT (sup I decpan I body I predicate)

- 0 (.PCOATA I string I lIIub I aup)+ >

<!ELEJlEBT (givendef I infundec; I opdec I formals I label)

('PCOATl I sub I .up)+ >

<!ELDIEIT ud"f (decpart. upart?) >

<!E1.EJlEIl"T ac.heaadef

('PCDATA. aub?, formals?,

(aexpi (dlocpart, axpart?))) >

<! ELE~ENT gendef (fomah?, decpart. axpart?) >

< !ELEKEIfT (atructsetdef I ",bbrevdetJ

«,peDATA I aup I Bub)+. body) >

< ! ELEMENT axpart - 0 (predicate+) >

<! ELEIIEIfT (string. sub) ('PCDATl) >

D.4.2 Attribute declaration"

The attribute declarations permil the associatioll of addil.iollal information ith occurrences of dements
in a Z document written in the Interchange FormaL.

The attributes id and group permit respectively unique identification and logical grouping of Z para
graphs.

The attributes &~yle and purpose define respectively the layout and intendcd use of a schemadcf;n.ition

The attribute label permits informaJ annotation of each mcmbcr of the 'sta.ck' of predicates which
con5titllt~ lhe a.x.iomalic part of a boxed definitiOlL

Tlll' attribute optype for lhe declaration of an operator symbol permits the associaliOll of a fixity with
rhat symbol. This fixity applies 10 all occurrences of tllat symbol in the Z uocumellL

.vOTE 1'0 EDITORS: Thi.~ may not be the case in Ver.~ion 0.6' of the Brm: Standard.

The attribute priority for tbE.' declaration of all infix fUllClion symbol permits the association of a
binding priorily with that symbol. This priority applies to all occurrences of that symbol in the Z
document.

<!AmIST

(givUldef I azdef I constraint I schemadet I gendef

I abbrevdef I atructsetdef)

id ID IIMPLlEO

group IfMTOKEIf IlMPLIEO >

< ! ATTLIS! achemadef

176 Z R_ Sow~..~ln 1.0 prino...! 3O~h No,""mber 1992

D.4 Definition of the Interchange Format

style (vert I hQriz) horiz
purpQ.e (state I operation I datatype) IIKPLIED >

< !.iTILIST predicate label CO.iT! IlMPLIED >

<! .iTTLIS! opdec
optype (ingen I inrel f pngen I prerel I postfun)
IREQUIRED >

<!.iTnIST in.1'undec

priority (1 I 2 I 3 I 4 I 5 I 6) • >

D.4.3 Entity declaratioll!!

The entity declaration:s for the Interchange Format are not presented in the conventional sm,1L Cormat
because of the dependence of the internal repr~sentalionofmathematicalsymbo16 on the implementation
of each uS('r's Z document proces60r. The mode of declaration used here is to present a table which
records the as90cialion of each entity name with the corresponding mathematical symbol.

Many of tbe entity names defined bere llave already been defined as standard in Appenlij.~ D oC [ll].
Entity names which have been devised r;pecifically for the Interchange Format a.re identified by an
asterisk.

We firH present the symbols of the basic Z language. The set of symbols covered by these definitions
consists of those basic language symbols which a.re not suhsumed by the Element Declarations presented
in Section DA.1. Entity names are not provided for the und~rscore (_), prime ('j, colon (:), comma (,).
query (?), shriek (!). period (.), unary minus (-), parenthesis, schema renaming (/) and equality (=)
symbols, as it is assumed that these symbols, though non-alphanumeric, a.re r~asonably portable.

INFORMAL NAME ENTITY NAME SYMBOL

left squaT(' bracket Isqb [
right squa.re bracket rsqb J
left chevron bracket lchev (.) «
right che'{Yoli bracket rchev (.) »
ba, verbar I
fat dot bull •
universal quantifier forall V
existential quantifier exist 3
unique eXlstential qua.ntifier exis11 C) 3,
membership isin E
negation uol
c:onjunction and A
disjunction 0> V
implic1\tion
equivalence

rArr
iff

~ ..
power ...el
theta

P5~t (.)
theta.o;

p

•
Z 8 ~l""<'l.ud V..... i,," I.U jmnkd JUlh N"v~",b,.r Ifl<Yl 177

D Z INTER.CHANGE FORMAT

Cartesiau product prod (.) x
mu mu "left set bracket Icub {
right set bracket reub }
len sequeuce bracket I"" (0)
right sequence bracket rseq (*)
left bag bra.ckel. lbag (*)
right bag brMket rbag (*)

(
)

I
I

lambda lambda -'
len relational image brAcket limg(*) ~
right relationiU image bracket rimg (*) I
DO'!lla Delta	 -"
Xi Xi

b('la .3beta

,
alpha. alpha	 o

1gamma gamma
ddt<l delta
"p5ilon epsi
WIll. zeta

,'a	 ,ta
iota	 iota

(

"

kappa kappa K

"a "u V

xi ,i
pi pi
rho tho

(,
p

•
\

sigma sigma a
lau tau

I'upsilon	 upsi
phi phis
chi chi
psi psi 1/'
omega	 omega w
Ga.mma	 Gamma r
fhela	 Th"ta o
Lambda Lambda
Pi Pi

A
n

Sigma	 Sigma ~

Upsiloll	 Upsi
Phi	 Pbi
psi	 Psi
Omega	 Omega
schema composition scomp (*)
5chO'!ma hiding hide ("')
schema projection proj ("')

\
I

••n

T

turnslile	 turn (*) c
Ampersa.nd =p
hinding rarn'; "

Z R..... S',,"'I....d V~,.,.'on 1.0 Imn.~d :IO,h fI;"...~mlJ",r III')-l 178

D Z INTERCHANGE FORMAT

We now present the symbols of the Z mathematical toolkit. The symbols covered by these definitions
are the non-alphanumeric members of the Z Mathematical Toolkit. Entit)' names are not provided
for the addition (+) and muhiplication (*) ~)'mbol.!l, 3>l it is absumed that these symbols, though nOIL
alphanumeric, are re&llOnably portable.

NAME

inequality
I1on-membersh.ip
empty set
proper subsel
non-empty subsets
~Ilbset

.<;d union
~... t intersection
set difference
~eneralised union
generalised inter.!lection
binary relation
mapJet
(backward) composition
forward wmposition
domain restriction
range restriction
domain subtraction
range subtraction
relational illl'erse
transitive closure
reflexive-transitive closure
partial function8
total functions
partial injections
total inj~tions

partial surjections
Iota.! surjeclions
bijections
functional override
natnra.! numbers
integers
less than
less than or eqnal to
g.reater th1!Jl or equal to
~reater than
stricti_v pOlIitive integers
DlHIl her r1\llgc
unar.v Illinu~

hinar.v minus
finit .. Sf'ts

ENTITY NAME

"' uotin
empty
,ub
psetl (*)
sube
cup
cap
sdilf (*)
Cup (tl
Cap I-I
reI (t)
map (t)

camp (*)
compfn
dres (*)
cres (*)
dsub (*)
rsub (*)
tilde
tel (*)
rtel (*)
pfun (*)
tfun (*)
pinj (*)
tinj (*)
psur (*)
lsur (*)
bij (*)
oplus
Nat (*)
Int (*)
II
Ie
ge

g'
Natl (t)

upto (*1
uminus (*)
bmillus (*)
fsct (*)

SYMBOL

'i " fl, {)

C

P,

~
u
n
\
U
n

o

o

•
~

•
+

of
N
1
<
S
~

>
N,

f

'8. Z fl...., $" .."J..m "~nj"n 1.0 prill""'1 JOlh N..,..~nl~r 1001

non-empty finite sets
cardinality
finile partial [unctions
finite partial injections
filter
concatenation
dislribuled concatenation
non-empl}' finite sequences

(sell (.)
Dum

fpfun (.)
(pinj (.)
filter (.)
cat (.)
deat (.)
seq! (.)

D.4 Definition of the Interchange Format

F,

#

-
-j

seq\

NOTE TO EDITORS: The.~e library member.! are taken from the 1st edition of the ZRM. We must add
arlY new members.

Z B_ Standen! Veni.on 1.0 y>ri."e<J 30th N"ven,be, I~Yl 181

D Z INTERCHANGE FORMAT

D.5 Examples

This section presents examples of the use oCthe Inl,erchange Formal. Thses example,; are carefully chosen
to COV{'f the more difficult aspects of the Format. Thl' arl'a-~ rowred are l:ldictteJ in tltl;' snbsectj[,Jl
headings.

D.S.l Declaring Infix Identifiers

Consider lhe roUowing axiomatic definilion, which declares a rel •• llon is Twice which is interll:.l"d tv Ul'
used in an innx ma.nner:

I _isTu;ice_; N N

I Vi.j; N. i is Twice) ¢:> i = 1$)

The encoding or this Z definition in the Intcrch..lHgl' form,ll incll1cl~s nul only the encoding of til('
axiomatic dennition itself. but ,jlISL~,jlll 'optlec' ;;tall'l\Ient which ikcl"f{"s the fixit~· of IsTwlec

<z>
<opdec optype"'inrel> isTllice <!opdec>

<a..zdef>
<decpart>
isT'iice: lRat trel tt/at
<a..zpU"t>
<predicate>
ttortil i. j: tHat tbull i isTwicQ j tift i ; :.j
<!ll.Idet>
<!Z>

D.S.2 SU\)SCr1p1.S and superscripts

Thl' axiOlll~tic definition

a\. 113; N

a3 ~~ Twice a1

is encoded in the Interchange Fortnat itE':

<Z> <udet>

<decpart>

a<sub> 1 <!sub>. a<sub> 3 <!aub>: tHat

<axpart>

<predicate>

a<sub> 1 <!sub> isTwice a<sub> 3 <!sub><sup> 2 <!sup>

<!llJdet> <!Z>

182 1, 1'1 51''''dar<\ V.....;on 1.0 pri,,,..,JJOth No",""nL..r 1991

0.5 Examples

D.5.3 Schema definitions and predicate labelling

Considl:r the following definitions:
[Pe'RSON, HOUSEl

S!~e' __-:-c::-,-,-:---:-::-:c::---------------
inhabits: PERSON _ HOUSE
hOtJ.!JI:B: P /lOUSE

hOl1Ses = ra.n inhabits

'V h: houses. # inhabit.!J-U hH s 4
/. No house may be occupied by more thllfl 4 pH.!Jon.!J • /

The author of this specification intends to acmmpJish the followiJlg ohjecljve~:

Lo att ...ch a label to the second predicate in t],e schem .. definition:

.. t.o indicate that the schema. definition should be displayed in ~·ertica.l form;

to indicatp (to a specification checker, for exampll') that the schema Siree! defines tb.. .~tate of a
system.

These objectives can be attained in the InLercl!ange Formal with the following encoding:

<z>
<givandef> PERSOI. HOUSE </givendef>

<sChemadef s~ylesvert purpose-state> Street
<decpart>
1nhabitll: PERSON Upfun HOUSE

hOUlles: tpset: HOUSE

<upart>
<pred1cate>
bouses =' tran inhabits
<p:redlcate
label-"Bo house may be occupied by more than 4 persons">
Uorall h: houses tbull
tuum. 1nhabitsotinv.tlimgUcub hlrcublrimg Ue 4
</schemadet>
</Z>

D.5.4 Abbreviation definit.ions

Note that in the luterchange Format lhere are no enldy represt"nla\ions of the symbols immediately
associated with top-lpvel definilions such as Slructu,al set definitions and abbrevia~iondefinitions. These
aymbole are subsumed by the element tags for thoSol? definitions. For exa.mple, consider the following
abbreviation dl"finition:

Z 8,.. Siandard VenUoII I.Q pr;nlrd 30Ih Nov,,,.,b<-, 1\I9~ 18.

V
 , N

~

+
 "

...;

[.

~ • ~
 g" , •" • 0 ~ i!. =

o

" " " +
 "

E Z Character Set

NAME

Given set brackets
Schema definition
Abbrevialion definition
Chevron Brackets
Ba<
Schema. bra.cketB
Colon
Semicolon
Comma

Fat dot
Universal quantifier
Existential quantifier
Unique Existential quantifier
Equality
Membership
Negation
Conjunction
Disjunction
Implication
Equivalence
PO....<!T ~t

Seledion
Theta
Cartl'8ian product
Tuple BfIl.ckets

M"
Set bracket!>
Sequent," brackets
Bag brackets
Lambda
Relational imagl' Bra.ckets

D"h
Query
Shriek
Delta
Xi

SYNTAX TERMINALS

«))
I
[J

,V
"=
E

"

",..
A

V

P

9
X

(

"()
()
I I
A
~ ,
,
,

"

,..Z Rue St.an<Lard Ve....... 1.0 prineord 3Ol.h No...-.nber 19'n

E Z CHARACTER SET

NAME TOOLKIT SYMBOLS

Inequa.li~y

rion-membel'5h.ip
Emply-set
Proper subsel
Non-empty 5ubse~s

Subset
Set union
Set intersection
Set difference
Generalised union
Generalised intersection
Biliary relation
Map let
Composition
Domain re~triction

Range restriction
Domain 511blraction
Range subtraction
Relational inverse
Transitive dosllre
Refl.exive-tra.nsitive closure
Pa..rtial fund ions
Tota.l functions
Partia.l injettions
Tota.l injections
Partia.l surjections
Tota.lsurjectiolls
Bijections
Functional override
Na~ural numbers
Imegers
Addition
Subtraction
Mulitplicatlon
Division
Less than
Less than or equa.l to
Greater tha.n or equal to
Greater than
Strictly posilive int~lll

Relational iteration
Number range
Finite sets
Non-empty finite lW't.ll
Cardinality
Finite partial functions

"6

I
~", { }
C
P,
I;
U
n
\
U
n

j, "
<J

~

•
&

R
R+
R"

III
N
l
+

•
div

<
$
~

>
N,
R'

F
F,

Z 13_ ~lllndard V..".ion 1.0 l'nnkd:lOllo November 1002

1
_

<

F A deductive system for Z

F.l Introduction

This section presents a deductin' system for Z. It is ODe of several possible deductive systems for Z,
and has been developed as pan (If the ZIP project. There Me t..".o aspert~ 10 the l:hoice of a deuuctive
system: form and content. The fOfm concerns the syntax and roaI\!IN of conducting proofs. The content
concems the set of theorems that are deducible ithin the system.

The deducti\'\'! system is a Gentzen-slylesequelll calculus in wliich s<''1uents are composed of declarations
and predicate!!. Tbe ruleE; of the logic are presented in a simplified form. The meta-theorems of the
logic (theorems about the rules) permit the extension of the rules into a more practical form

The loose definition of fUIlClioll application dnd definite dl'scriplioJl in lhe semaIlt1cs permits a number
of illterpretations of their meanings. This deductive .~rs[cm is souIlll with resped to a model in which
all well· typed expressions Ilav~ a value.

F.2 Sequents

The basic building block for a sequent calculus i.~ a sequellt. A sequent is mmposed of an antecedent
and a consequent.

Sequent = Antecedent I- Consequent

The antecedent is a list of declarations separated by the symbol t and a list of predicates separated b~'

commas.
Anteudent =: Declaration t ... t Declaration I Predicate, ... , Predicate

The consequent is al90 a list of predicates. The syntax for a conse(juent is the following:
(olUequent = Predicate, ... , Predicate

Thus a sequent appea.rs as:

D.t ... tD.I~f-~

where tnemeta variables tr and 4> represenl. lists of predicates. The lists of predica.te!> in the antecedent
and consequent are sets 90 the ordering is of no consequence.

A sequent is well-typed if tne predicates are all well·t)'peu ill tlie euvironment emichl.'d by the declara
tions where tbe declarations introduce new scope.

{D,t ... tD... ,IP., ... ,Pnl-q" ... ,q/»T =
dom (D, l'; ... ; (Dm l'l> ((P, ~'n.n IP. D') l> ({Q, ~T n ... n jQ, D'))

A sequent is valid if anyone of the predicates in the consequent is true in all the environments enriched
by the deda.rations and satisfying all the predicates iu the antecedeIlt.

{D,t ... tD.... IP..... ,p"l-q" ... ,q/»T =
T'«(D, 1'; ... ; (Dm I'l> ((P, ~T n ... n IP. ~T)) ({Q, n u ... u IQ, D')

A sequent is a theorem if it is \'alid in all environments.

F.3 Rulel!l

F.3 Rules

The deductive system consists of a number of rules for manipulating sequents. A rule is of the Corm:

lre~~ [T 1] {N;lmeJ[(Proviso)! . R I u e =: om:. USlon

The premisses are a (possibly empty) list of sequents:
Premisses = Sequent ... Sequent.

The conclusion is a.Iways a single sequent:
Conclusion = Sequent.

The Proviso is a decidable condition on the fr~ variables and a.Iphabets of the expressions in the rule.
Tbe N;lmt nBuaJly has the form "3 ~~, or ~~ 3", tlte structure of which reflects the fact that there
are rules for manipulating the operators of t.he logic, both on the left and on the right of the turnstile,
respectively. The annotation Ti iudicates that the rule can be applied in hoth directions.

A rule is sound if whenever it ;8 applied 1.0 valid premisses, a valid conclusion results. This is defined
in the semantics by saying that the Bet or l!nvironments supporting the premisses is a suhs.et of those
supporting the conclusion. The rule

~Sm [N}(P)S,.
is sound if and only if

P => ~S,»~ n ... 11 {S," ».... ~ {Seq »....

The following ml!ta·theoreln holds for rules in the deductive system:.

Theorem F.l (Sequent-lifting)
The role D I 'II' I- l) is sound if and on/y if the sequent D Iii' ~ fl ia a theorem.

This theorem states that a theorem ,an be dednced from 110 premisses.

In order to simplify the presentation of the deductive system the following lifting mEta·theorem is
used. It states that unchanging declaration!! and predicates can be added to a rule while maintaining
5Oundne55. An unchanging predicate or doclaration is one that is in both (he premiss and the conclusion.

Theorem F.2 (Rule-liftmg)

If the inference rule
EtDlwc~

EtD'lw'~l)1
is sound,

then the ""Ie
Fj EtDI P,wc Q,~

is also sound,
FfEfD'IP,i'I-Q,.'

providing thai (oD U oD' U of') 11 (OP u .pQ) = 0.

The rule-lifting theorem a.Ilows us to preSf'nt the rulE'S of th(' dC'du,ti\'e system in a concise manner. by
omiUing an}' declarations and predicates which non'! (hange.

Z B- St.vodud v...."'" 1.0 prin~ed:xH.h N",·~,"ba" 1991 '8.

F A DEDUCTIVE SYSTEM FOR Z

The semantic-equivalences for substitution ,He given in lables ill ..arlier sections. These tables state tbe
semantic equality of various expressions, A thl"Orem which permits the use of seillantic-equiv-dlences in
proofs is tIte following.

Theorem F.3 (Semantic-equi ..ulence-Jifting) Gilu, Iht "rma~!jc-eql.lillale1l(,tS for predit:ales arid
dlclamtions:

P=Q D=E,
the following inferena rules are sound:

EI Q>E>-Q

DIP>- D>-P

F.4 ProoCs

Proofs in the deductive sy~tem proceed ill the way that is uSllal for sequent calculi: proofs are dcvelopeo
backwards, starting from the sequent which is to bE' proH'd, A n.le is applied, resulting in fresh sequents
which must be proved. This process continues unt.il therE' are no more seq\lenl,s req1!iring proof, in which
Ca.5e the original sequent ill uow pro\'ed.

A compleled proof may thus be rE'presented as a tree. with the proved sequE'nt as lIte root node. and
E'very leaf node containing an empty list of sequents. HuwevE'r, if sume of these lists in the leaves are
nOR-empty, then the derivation tree is slill useful, alt.hough it doE'S Hot represent a proof, it represents
a part.ial prool.

Theorem F.4 (Tree-squashing) Suppol'le that we hal'e thE rJerimtion [reI";

5" s; 5;. [R;](P,) S. [RJ(P)
SI Seq

where each of the rules R arId R, are sound rules, then the den!'ed rule

51 5;\ S"" 5" jR1(l'. P,)
S<q

j.>; also sound.

F.s General Rules

F.5.1 Thin

The thin rule is used to discard unnecessary declaratioJls and prediclltes:

>
D I pf- Q (thin).

F.6 ExpJ'e2l8ions

F.5.2 A,llIumption

Thl:! GlJsumption ariom in is one way of completing a proof, since it ll:!aves no prl:!mlsses to be discharged;
it states that for every formula p, thl:! sequent dip r p is valid:

DIP r P [a.!I8umption],

Notice that if we apply the Tree-squashing theorem 10 the assumption axiom prl:!ceded by the thin rull:!,
Wl:! obtain the following:

DID'IP,Q" ... ,Q",I-P.R" .. ,R"

ThUG, the assumpt.ion axiom a.Ilows us to prove a sequent if any Olll:! oCthe col\5l:!quent formuJ~ is present
in the antecedent. This illustrates an impottaM point about seqnent calculi: fvery formub on tnl:! left
may be assumed in order to prove at leaJlonl" formula ou the right.

F.5.3 Cut

The eut I"Ule is used to structure proofs iuLo lemmas: it pl:!rmils the addition of h,ypothcses to the
antecedent; thl:!se hypothl:!sl:!s may be discharged separatl:!ly.

r P P r feufj.

"
It is the responsibility of thl:! user of ll\e cut rull:! to l:!nsure that the well-tYPl:!dness of the sequent is
preserved by the addition of new predicates. New declarations can bl:! cut in using aD eltistenLially
quantified predicate.

F,e Expressions

Two sets t and u arl:! equal if and only if arbitrary members of I and u bl:!long to It a.nd I respectively:

x : Ii y : It l- x E It f\ Y E I
T1 r·rl.u'""J

% : t; 11 : It l- t - u

F .6.1 Set Extension

An element is a member of a Sl:!t extl:!nsion if and onl.\' if it is equal to one or tne members of the
extension.

f-..	 t :: Itl V ... V t == IJ" r1r"""""'1
l- / E {III> .. ,u,,}

z a Sl_d....d V.....ioll 1.0 pn"l...d JOlh N"",II'bcr 1001 191

F A DEDUCTIVE SYSTEM FOR Z

F.6.2 Set Comprehension

The element t is a member of the set comprehension {51. u} if and ouly if there is some situouion in
51 which makes t equaJ ll.

1-35t.t=u
1! [co",p ..)

I-tE{SI.u}

providing ¢t n oSr = 0

F .8.3 Power Set

All l'Jemenl is a member of a power set if and only if au arbitrilry lI!emher of it is a member of the set.

y: t I- y Eli r1[poo'Hoel]
11: t I- t E P u

F.6.4 Tuple

An l'll'ment is equaJ to a tuple if and only if each of its projections is equal to the appropriate member
of the tuple.

I- t.l = Ut A ••. A l.n = un 11 [11.plel

I- t _ (u],. " Ii,,)

F.6.!) Cartesian Product

A tuple i~ ~ member of a Cartesian producl if and only if each of ito projections j~ a member of the
respective merllber set of the product.

I- 1.1 E UI II A I.n E u" 11 [Woof""",)
I-lE(uIX xu..)

F.8.6 Tuple Selection

Thl' ill> projection of all. explicit tuple is the i'l> member of the tuple.

;-;-------;-7.-- [I.pl"e~
I-(UI •.. ·.Ui, ... U.).I-U,

F.7 Predicates

F.6.7 Bindios Extension

An element is equal to a binding extension if eac.h of it selections is equal lo the re6p€!ctive element of
t he hindi ng.

I- b.n) = tll II .•• 1\ b.n", = tl", r! [6ill4'".g)
1-6_~nl"-"tl..... ,,.... "-'tl,,,~

F .6.8 Theta Expression

An explicil binding is equal to a tlleta expression if the drcori\led \'ersiol\s of the names in the binding
equ.:J Ihe respective expressions.

I- n[= tll 1\ . . 1\ n,'!. = tlm
T1 [lhl«l

I- ~ "1"- II}, .•• , 11 m- Um ~ = 9 S 'I

F.6.9 Schema Expres6ion

A binding is a mt>mber of a schema expres5ion if and only if the schema is true fotlowing th~ 5u.bstitution
of the binding.

I- b8S T11.<A"na.r;>]
I-bES

F.6.10 Binding Selection

The projection of the name 11i from an explicit binding is the element to which the name is mapped.

[IIlI'I<I'~
I- ~ nl"- Uto ..• ,ni"-" tli •..•• n m II",~ .n, = IIi

F.7 Predicates

F.7.1 Equality

All expressions are equal to themselves.

I- x = x [r</I,crion]

Z B... Sl.....tard V.,"""n 1.0 pnnl.m 30lh Nov.,."L.,,- 1!l"J2 193

F A DEDUCTlVE SYSTEM FOR Z

F.7.2 Trulh

--[I....I!]
I- true

F.7.3 Faliehood

false I- [<o"j'5d,rj""j

F.7.4 Negation

If the pr£'dic~te p is in the antecedent then one way to proceed is by proving a contradiction i.e. that
p is true.

I- P q [~J.l
-opl- .

If the predj(ate -op is in the comequen~ ~hen jf p doe~ nol hold tben there is a proof, so it can be
assumed that it does hold:

-"-"- II ~-I
" -p

F.7.5 Conjunction

The conjum~ion of two predicates in the antecedl'nt is the same ~ having them both in the predicate
list:

p,q I
P 1\ q I- T1["I-]

~
Th£' conjumLion of two predicates can be proved only if both of the predicates can be proved.

~(I-"l
I-pl\q

F.7.6 Disjunction

Given a diljunction of two predicates in the antecl'dent it is lIeCl'ssary to b(' able to completl' the proof
wilh eitherpredica~e in ~he assumption.

F.T Predicates

pI- ql
~(Vl-l

A disjunction of two prediciltes in the con~eqtlent is tbe same a.s having them both in the mnsequent.

2.i.. T! Il-vJ
I-p q

F.7.T Implication

p~ql-p ql
l"l'l-I

p::::) (11

~l!Il-=lo1
I-p~ q

F.T.8 EquivaJence

p~q,q~pl-

p~ql- TUCloI-J

I- p ~ q I- q ~ P [l-CloJ
I- p~q

F.T.9 Universal Quantification

bE fSt],IrISt ep,b,o;p I
11 (n)

bE {St],IrISI. p I-

Jfwe hilve to prove the predicate V dip e q then it can be assumed lhilt the variables in dare arbitrar)·,
and that they satisfy the propert}' of dip, leilving the predical(> q to be proved.

dIp f- q
1J (e V)

I-Vdlpeq

F.7.10 Existential Quantification

Suppose that we have the single ilnt(>cedent 3 It I p • q; that i~, we know that there is some way of
constructing the va.riables in d snch that the property of d and the predicates p and q are lI.atisfied.

Z B_ S~...danl v~ 1.0 pri"l.rd 30lh Non........ 199"1 195

F A DEDUCTIVE SYSTEM FOR Z

Although we may not know such a construction, we can give arbitrary names to the variables or d to
stand rOUD arbitrary construction satisrying d, p and q. Ir we lakt' as our new assumption dip A q,
tbe variables or d are indeed arbitrary, since they cannot be global ones, illld no other local uames are
in the antecedent.

dlPAql- (31-)
3 d lp·ql-

Suppose that we have tbe consequent 3 St • p, and suppose thaL we know a binding that satisfies the
property of St. One way rorward is to prove that this binding all>o satisfies the predicate p. It is
convenient to retain the consequent, in case we wish to try to prove that other bindings salisry p.

bE [S/11- 3St .p,b0p (i- 3)
bE[StJI-3S.p

F.r.ll Sllbstitution

s = !, ~ z "-+ t~ 0p l
(Leibniz)

s _ t, ~ r "- s~ op I

F.B Schemas

The schema rules are based or the definitions or schema pre<iicates and hence rollow very closely the
rules ror predicates:

F.8.l Schema Construction

Idl A P" nil"]
[d I pJ"

I- [d]" PIt-lin
"[d I p]

F.8.2 Schema Negation

" [S]
['SI" II,]"]

[SI"
" [,S]]"]'J]

19. Z H.......~I ..n...vd V"n;on t.o ,",rintr<I30~h No\"rm\"'c 1992

F.9 Declarations

F.8.3 Sc:hema Disjunction

(S]f- [TI>
[Sv T] f- {lv]f-)

f-[S) 'T!
--'-'- [f-lvll
f-ISV T]

F.8.4 Schema Conjundion

[SJ,IT!f
[Sf\. Tl~ 1l,",)I-]

>- [5] >- [T)
f- [5' TI ~k·n

F .8.5 Schema Implication

IS=> T]f-IS) [T!f
[S~ TJf- [(~)I-)

[S]f-IT] [>[~1J
f-IS => T)

F .8.6 Sc:herna Equivalence

IS=> Tj,[T=> 5]>

•

[S ¢} TJ f- (['I"»f-I

f-IS => T) f- [5 => T}
f- [S ¢> TJ [1-1-=-11

Note: There are more rules to be added here.

F.9 Declarations

() I [0] f- ['II
o If

z a- SlanWd Venion 1.0 prin•.,.13Olh NlI~"'''t..". 199~ 197

F A DEDUCTIVE SYSTEM FOR Z

F.9.l Simple Declaration

1)1 E B 1\ ..• 1\ 1)m E $!- ([~"1f-1
[nt. ... , n",: B)!

!- nl E J 1\ .•. 1\ n", E B [f-I .. ,.]j
!- [nl>' ., n... : "J

F .9.2 Compound Declaration

[D,j '1",]>
[D.; D 11-- [[D;D11-]

2

I- [D1] 1\ l~l [I-[D;LJJ)
!-[DI ; D'l]

F.IO Definitions

F.I0.l Axiomatic Definition

P<O'i~fi"'iO',",t"'" th, d,d","o,

we have the inference rule

til I PI I- (A;::iomDef)
C

F.I0.2 Generic Definition

F.I0.3 Schema Definition

Providing the specification contains the declaration
5[X1 , .•• ,X... } =T

we ha\'e the inference rule

5['..... ,1"'J - ~ XI /1> •.• X.. -v' /",1 (!JT I-- (SchemaGenDeD

c

•• .
• .~

~

..
] " ~

..
 .;

.: ~

'~ • •8 •-:: ••;; ~8 •.2 ~•" '" .~ •-:: :ac..
." w

.1!

•..
 " ~ • ~ '" .=•-:: • ,.. • ,•

;;

~ §

"~'.L
~ ~ j i J 1• ! i >

•J "

0

REFERENCES

References

[1]	 AbriaJ, J-R., "'A Course on System Specification," Lecture Notes, Progl<Lmming R.ese6Cch Group,
University of Oxford. 1981.

[2]	 Bowen, J., "'Select Z Bibliography," in J. E. NichoUs (ed), Z User Worhhop, York 1991, Proceetl
ings of the Sixth AnnuaJ Z User Meeting, Springer-Verlag, 1992.

[J]	 Brien, S.M., Gardiner, P.lLB., Lupton. P.J., Woodcock, J.C.P., "A Semantics for Z," in prepara
tion, 1992.

[4]	 liSI Standard BS 0 : Part 1 : 1981, A .'!tandard for standard.'!. Part 1. Guide w general principle.'!
of slandardizahon, British Standards InstHution, 1991

[5J	 BSI Standard BS 6154, Method of defining sylll(jdic mela!lmgllage, British Standard, Institution,
1981.

[6J Enderton, H.D., Elements of set theory, Academic Press, 1977.

['f]	 Gardiner, P.II.D., Lupton, P.J., Wootlcock, J.C.P., "A simpler semantics for Z, '" in 1. E. Nicholls
(cd), Z Uscr Workshop, O~ford 1990, Proceedings of the Fifth Annual Z User Meeting, Springer
Verlag, 1991.

[8] Goldfarb, C. F., The SGML Handbook, Clarentlon PreM, Oxford, 1990.

[91 HaJ1liHon, A.G., Num~rs, se~ and al'ioms, Camhridge University Press, 1982.

(10] Hayes. I. J., (ed.), Specification Case Studies, Prentice-HaJl International. J987.

[l1J ISO (International Organization for Standardization), ISO 8879-1986 (E) lnform~lion Process
ing - Te~t and Office systems - Standard Generalized Markup Language (SGML), Geneva; ISO,
1986.

[12J Jones, C. B., SoltwlJrf Development-A RigorouJ Approach. Prentice-Hall InternationaJ, 1980.

[13J Jones, C. B., Systematic SojtwaT'f' Developmenl usin9 VDM, Prentice-Hall Internalional, 1986.

{14]	 King, S., Sorensen, 1. H., Woodcock, J.C.P., "Z: Grammar and Concrete and Abstract Syntaxes
(Venion 2.0)", Technical Monograph PRG-68, Programming Researcb Group, Unll'eTsity of Ox
ford. 1988.

[15]	 Morgan, C. C., "Schemas in Z: a Preliminar.r Reference Manual," Programming.Research Group,
University of Oxford, 1984.

[16J	 Nicholls, J. E., "Domains of application for formaJ methods," in J. E. Nicholls (ed), Z User
Work.shop, York 199/, Proceedings of the Sixth Annual Z User Meeting, Springer·Verlag, 1992.

[liJ	 Sennett, C. T., "Syntax and Lexis of the Specification Language Z," RSRE Memorandum No.
4367, lQ90.

[18l S0rensen, I. R.• "'A Specification Language," III Progmm Specification (J. StaulHup. ed.), Lecture
Notes in Computer Science, vol. 134, Springer-Verlag, 1982.

fI9J	 Spivey, J. M.• Understanding Z: a .'!pecification language and its fonnal .semantirs, Ca.mbridge
University Press, 1988_

Z BaM StalKlanl Ven.ion 1.0 prinlftl3Ol.h N"Yemb<T 19D~ .01

REFERENCES

['20]	 Spivlc'y, J. M., The 2 not.alion - a rt:fe.rt:nce manual, Prentice-Hall lnternational, 1989. (2nd 'di'ion,
1992).

[21] Slay, J.L, Denotallonalsemanlic.'l: 'he Scott-Strochell npproach to progromminglanguIJgf thcor-y,
MIT PM>5, 1977.

[22) SuTrin, B. A., "Formal Specification: Notation and Exa.mples," in Tools find l'iotati<!ns for Prvgroffi
Constr'lll:lion (D. Neel, ed.). Cambridge University Press, 1981.

[23J	 Suffin, I), A" led.), "2 Handbook, Draft 1.1," Programming Resea.rch Group, Uni'l'fsity of
Oxford,1986.

[2.t]	 Sperb~-McQueen, C.M., Burnard, 1., Tat Encoding /nilialilJ(': Gu.idelinesfor 'he encoding and
inlerchllnge of machine-readable tezls, DraIt Version 1.0. Chicago dnd Oxford, 1990.

[25]	 Woodcock, J. C. P., "Structuring Specj!ica.tiolls in Z," Sof'worl' Engineering Jou.rnal. Vol -1, No 1
(JaJIUal)' 19B9).

[:2G]	 Woodwck, J.e.p., Drien, S.M., "W: a logic (or Z." in J. F:. Nicholls (ed), 2 User Worksh<!p, York
1991, Proceedings of the Sixth Annual Z User Meeting. Springer-V<,rlag, Hl92.

Z B- SI"",<ial-d V.....io., 1.0 prinl.ed JOlh No....mbo'r 191n 202

