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Abstract 

This papergives an untimed denotational smulhticsfor the concurrent programming langUllge occam 2. 
It draws heDvilg on the semanlics for a large subset of proto-<>ccam {26j, but addresses the cmplele ex­
tended langwge (to the extenllhat the model allows). The senumtic do""'i" used is a 'failures/divergences' 
model, modified to allow machine stQtes to be properly dell1l with. This means that issues offtimess and 
priority are not addressed. 

-Formal Systems (Europe) Ud. 3 Alfred Street, Oxford, OXl 4EH 
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1 Introduction 

The occam progranuning language [19] was designed with the philosophy of elimin~ting un­
necessary complexities, thus keeping the language simple and eleganL This paper is a SUa:es'iOC 

to the denotational semantics for an early version of the language, given in [26]. The aim of that 
paper was to show how traditional denotational semantic techniques could be readilyadapted 
to this new type of language, and to provide a basis for subsequent formal work about and using 
occam. The semantics of that paper have been used, directly or indirectly, in almost all of the 
large amount of formal work which has been done since in the area, for example the development 
of a congruent algebraic semantics [I6}, the development of the occam Transformatloll System 
[11] and its applications, and Barrett's work on a hierarchy of congruent operational ~antics 

[4]. The current extension is intended both to bring the earlier work in line with developments 
in the language and to form part of an international standardisation effort for 'occam a,d its use 
in verified systems'. 

The main difficulties in developing a useful theory of occam, arising from the fact !hat it is a 
concurrent language, were overcome in the earlier paper. Further developments of the language 
have resulted ina new version, occam 2 [20], augmented by the addition of data-types (nduding 
floating·JXlint numbers and multi-dimensional arrays), type-eoerdon, channel prot()(()Js, side­
effect-free functions and a CASE construct. In addition, the separation rules govemir.g the use 
of variables and channels, particularly array elements, have been made more restrictiv/ with the 
aim of allowing them to be mechanically checked. Another contribution towards this end is a 
rule outlawing aliasing: at no JXlint in a program can the same item be legitimately ruerred to 
by two different names. 

The correctly typed use of types and channels is well understood, and checkable by static 
analysis; since only type-correct programs will be considered, the new declaration 'arms will 
have minimal impact on the semantics. The behaviour of floating-JXlint arithmetic operations 
according to the specified standard [17] has been formalised and investigated [3]; that appropriate 
operations exist over a suitable space and behave in the desired manner will be taken as given in 
what follows. Value-preserving type-<:oercions cause no problem, requiring only the transfer of 
the item between parts of the value domain, and representation-preserving changes (RETYPES) 
are defined to be, in general, implementation dependent. 

The new expression and process constructors have to be included in the semantics, but have 
been defined in a way which means that a minimal amount of extra machinery is required. The 
anti-aliasing and separation rules make the management of the environment somewhat more 
complex, as will be seen below. 

VVithin this paper, considerations of brevity have led to the decision to leave some definitions 
of standard or straightforward auxiliary functions to the reader. The functions trealed in this 
way, along with a brief indication of their purpose, are 

• 0 - used to give meaning to (syntactic) operators on expressions; 

• N - used to give meaning to literals; 

• convert - used to shift values between parts of the value domain; 

• round - used to round-off values then shift them between parts of the value danain; 

• trunc - used to truncate values then shift them between parts of the value doDlain; 

• minVdl- used to return the smallest element of a given type; 
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• mtuw./- used fo return the largest elementaf a given type; 

• disjoint- used to check whether the left hand sides of a multiple assignment are disjoint; 

• indums- used to isolate the input channels from a parallel declaration;
 

• outcha/lS - used to isoJale the output channels from a parallel dedaratjon;
 

• ownchans - used to isolate the intemaJ channels from a parallel declaration;
 

• addrs - used to isolate the mutable variables from a parallel declaration; 

• Wv - used to allocate channels to processes defined in parallel; 

• newdtan - used to provide the information necessary for newly-declared channels; 

• newtim - used to provide the infonnation necessary for newly-declared timers; 

• newport - used to provide the infonnation necessary for newly-declared ports. 

Care has been taken to ensure that this paper is not only applicable to particular implemen­
tations of occam 2, but remains valid for all probable implementations. ?v1aintenance of such 
generality restricts the assumptions which can be made regarding the structure of the store, and 
for this reason it has not been possible to give definitions of those auxiliary semantic functions 
whose definitions depend on the store. Given an implementation of the store, the definition of 
each of the functions is straightforward, The functions whose definitions are necessarily omitted 
are 

• lookup - used to read the contents of a variable from the store; 

• updale - used to update the contents of a variable in the store; 

• $ - used to combine the infonnation contained in two stores; 

• i-used to ignore part of the information conveyed by a store; 

• contents - used to calculate the addresses accessed while evaluating an expression; 

• abode - used to calculate where the rontents of a variable reside within the store; 

• startoddr - used to calculate the position of an array component within the store; 

• WL - used to allocate store to processes defined in parallel; 

• new - used to provide an area of store to hold the contents of a variable; 

• mo.rbddr - used to keep note of the utilisation of areas of the store; 

• restrict - used to prevent variables altering within the scope of a value abbreviation. 

The first part of the paper is concerned with the construction of a suitable model; the resultant 
model shares many charaderistics with that used in [26), but requires richer value domains to 
reflect the greater expressive power of occam 2. An explidt alphabet for processes has been 
incorporated into the model, and the structure of the refusal sets in the model has been altered 
(recording channel names and not rommunkationsl to obtain a more natural rongruence with 
the language. The second part of the paper uses the model to give a denotational semantics to 
occam 2, in the style of [22, 26, 29, 3OJ. 
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2	 Construction of the model 

Throughout this paper, P( X) wilJ denote the full powerset of X (the set of all suhx!:ts of Xl, 
while p(X) will denote the finite powerset of X (the set of all finite subsets of XI. X .. will 
denote the set of all finite sequence; of elements of X, with () denoting the empty sequence and 
(a, b, ... , z) denoting the sequence containing a, b, ... , z in that order. If s, t EX·, st denotes the 
concatenation of s and t (e.g., (a, h, c)(d, e) = (a, h, c, d, e)), and s ~ t (8 is a prefix oft) if there 
is some tl E X" with BU = t. 

As in [26). the semantic domain for occam is based on the failures/divergences model for 
communicating processes. This has now effectively become the standard semantic model for 
studying and applying Untimed CSP. lnduded below is a summary of the laws wh.ich must 
be satisfied by a process; the interested reader is referred to [6, 7, 8, 25] for descriptions and 
motivations concerning the construction of the model. The version used here is thatof[8]; recent 
additions to deal with the possibilities of unbounded nondeterrninism are not directly relevant 
to this paper. It is, however, proposed to describe in a future paper how the infinite traces model 
for CSP can be modified in order to deal with certain fairness concepts for occam. 

The sets of failures and divergences of a CSP process satisfy the laws below (see [8lJ. If a 
process P (complete with the set oP of events in which it can partidpateJ has representation 
(F, D), where F ~ (aP)" x P(aP) and D ~ (aP)", then 

Nl)	 traces(P)!= {s E (apr I (5,0) E F) I is nonemply and prefix dosed
 
(Le., traces(P):f 0, and if s E traces(P) and t ~ s then t E traces(P)J
 

N2)	 if(5, X) E F and Y ~ X, then (., Y) E F 

N3) if (.,X)E Fand Y n {a E aP I 5(0) E traces(P)) ~ 0, then("Xu Y) E F 

N4)	 if (5, Y) E F for each Y E p(X), then (., X) E F 

N5) if sED and t E (uP)'", then st E D 

N6) if sED and X ~ oP, then (s, X) E F 

The failures/divergences model N is defined to be the set of all pairs (F, D) satisf)ing these 
laws. 

If PEN, f(P) will denote the first component of P, and d(P) the second. There is a 
natural partial order on N given by P i; pi if and only if f(P) 2 f(P ') and d(P12 d( P'). 
If P i; P', then P' can naturally be thought of as being more deterministic than P,for it has 
fewer possible actions. N is a complete semilattice with respect to 1;;; its minImal (1ement is 
{( liP)'" x P( liP), (liP)'") (which represents the completely unpredictable process) and it:lmaxirnaJ 
elements are the deterministic processes. These can neither diverge nor have any ch()ice about 
whether or not to aa::ept any communication. 

The above model is adequate to represent the behaviour of programs written in CSP, with 
all the CSP operators translating naturally to continuous functions over N. It is well suited. to 
reasoning about the nondetenninism which arises from distributed. systems, and to reasoning 
about deadlock. Axioms N5 and N6 correspond to the asswnption that following the JOSSibility 
of divergence, subsequent behaviour is irrelevant. Hence divergence is something to ~ avoided. 
at all costs. The inclusion of these laws makes for considerable technical simplificatiOl at what 
does not appear to be a very great cost. Since the model has well-defined close Jinks with 
behaviour, it is a good medium for expressing many correctness properties of processes. 
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Purely parallel languages can be given an adequatedenotational semantics by models whose 
only primitives are oommunications, since one part of a program can only inAuence a disjoint 
part by communication. However, in occam, one part of a program can influence another in two 
ways. Firstly, it can communicate along channels with its parallel partners. Secondly, it can, by 
assignment to common variables. inAuence the behaviour of its successocs. Any mathematical 
model for occam will have to incorporate both these methods. 

The first step in the construction of a model for occam is 10 provide the alphabet for an 
occam pI'ClO.:$S P. Communication over occam channels is directional, and 50 it is no longer 
enough merely to provide the set oP (which will now be the set {x.j3 I X E CHAN /\ tJ E x} 
where X, given a more specific description on page 11, is the set of values communicableover the 
channel x and hence determined by the protocol associated with xl of atomic communications. 
In addition to aP, the direction of all the channels which the pn:.x:.ess could theoretically use 
is useful, as are the areas of store which can be written to and those which can be read from. 
The most convenient means of storing this information is to add two components to a process 
description. The first romponent, representing the channels and denoted C, will be a partial 
function from CHAN (the set of channels] to DIRECTION x PROT (the cartesian product of 
the set {in, out} representing channel direction, and the set of denotations of possible protocols 
of an occam channel). The second component, representing the accessibility of portions of the 
store and denoted L, will be a partial function from A DDR (the set of addresses in the store) to 
ACCESS Ithe set {ro, rU!}). A process can read from but cannot write to areas of the store with 
addresses mapped to ro, while it can read from or write to areas whose addresses are mapped 
to rtJ.:. 

The treatment of communication will be similar to that of 126], except that it is necessary 
to take acrount of the way in which occam processes communicate over channels. Since the 
handshaking that occurs in occam is tied to the channel, not to the value which passes along 
that channel, it does not make sense to say that a process can refuse to communicate some 
communications over a channel but not others l . Therefore the alphabet used for communication 
is separated from the one used for refusal sets, consisting of the channel names alone plus v, 
which is used to denote refusal of termination (see below), Since the set of channels used in 
any particular program is finite, in order to avoid the complexities of axiom N4 above, it will 
be assumed that for any process dom( C), the set of channels which can be used, is finite. To 
avoid any errors being caused by a process not being able to daim the space in the store which 
it requires, it will be assumed that the set ADDR of store addresses is infinite. Despite this, any 
given process will use only a finite number of store addresses. 

A process which can accept at least one value on an input channel must be able to accept them 
all. In general, a process would be expected 10 specify precisely the value it is outputting; it is 
possible for nondeterministic choice and ALTs to make more than one value possible, but never 
an infinite number. This is important since it means that, when two processes are put in parallel 
and the communications which pass between them are hidden, no infinite branching (which 
leads to unbounded nondetenninism) arises. It will be assumed that no non-divergent process 
ever has an infinite number of possible outputs over X after a given trace, since the presence of 
finite branching means that an infinite number of different outputs are only possible on traces 
where it is also possible for the process to engage in an infinite sequence of internal actions - in 
other words to diverge. 

lThis statm\ent applies even to inputs OYef" variant prot:ocols. Indeed this staten'\a1t is particularly true. in sane 
sense. of remmunkations CNer channels with these proo:x:ols. See the dlscu5.Sion (I\ page Xl when the semantics 01 
input oY/ychannel.s with variant proo:x:ol is discussed in detail. 



In occam, parallel processes can re.ad from a shared area of store provided that none of the 
processes can write to that area. Otherwise, at most one process can have access to an area at 
any point in time. This reslriction can be checked by examining the second alphabet component 
(the partial function L) of a process description. 

One process can communicate with another at any time before it terminates, but can only 
pass on its final slate when it terminates successfully. (Since the sharing of variables by parallel 
processes is not pennitted, its intermediate slates cannot directly affect another process., In 
purely parallel models (for example in [7, 12lJ successful termination has been modelled by the 
communication of some spedal symbol: usually ./. Thus all successful terminations looked the 
same. 

Perhaps the most obvious way of letting a process passon its final state is to have not one but 
many ./s - one for each possible final slate. If this solution were adopted then a large proportion 
of the alphabet of 'conununications' would consist of these ./s. A number of problems would 
arise if all of these different ./s were simply induded in the traces and refusal sets. 

Two of these problems are thesarne as previously addressed when considering communica­
tion over channels. Firstly, it would not be appropriate to have a process which offered a choice 
of which state it tenninated in -when a process terminates, it terminates and gives the final state 
it happens to be in. The solution to this is a single termination symbol ./ for use in refusal sels. 
(This symbol is necessary since it provides the only means of distinguishing between a p.f"()(i'SS 
that always terminates and one which may nondeterministica1ly choose to do nothing at al1.) 
The second problem would arise if the set of slates were infinite and it were possible to have a 
process that could choose from an infinite set of states to terminate in. Since sequential com­
position hides the value of the state, infinite branching and hence unbounded nondeterminism 
would result. In fact this situation cannot arise in occam without the immediate possibility of 
divergence, because of the finite branching properties discussed above. Thus it will be assumed 
that a process which cannot diverge on a given trace has only a finite number of slates in which 
it can then terminate. This condition is trivially satisfied in any language where the set of all 
slates for a given progr~ is finite. 

Finally, in a model where temtination plays a more important role than before, the technical 
complexities introduced by allowing non-tenninal./s in traces areunacceplable (as well as being 
unnatural). 

The first two problems could be solved by treating./ as though it were a channel; however the 
difference between termination and rommunication and the final problem make the foUowing 
more attractive. First, remove ./ from the traces of processes (hence leaving only 'real' commu­
nications). A single symbol ./ remains in the alphabet used for refusal sets, indicating that a 
process can refuse to terminate successfully. The second component is expanded. Instead of 
merely recording the possible divergences, the possible final slates (contents of locations which 
can be altered by the process) from successful termination after any trace are recorded. It be­
comes a function from (oP)"' to peS) U{lo}, where S is the space of final states and 1. represents 
posSlble divergence. Further infonnation about S will be given as the details of the model are 
filled in; aU that is necessary is that S contains enough infonnation to enable processes to pass 
on the values of variables still within scope to their sua::essocs. 

Thus each process P is now represented by a quadruple (F, T, C, L), with components 
F £; (aP)" x P(dom(C) U U}), T: (aP)" ~ pIS) U {.L}, C: CHAN ~ {in, out} x PROT, 
and L : ADDR _ {ro, rw}. The interp~tationof the behaviour of a process P, represented by 
(F, T, C, L), is as follows. 

(i) F (the failures of P) lists all possible traces of the process, together with all sets ofchannels 
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on which, after the trace, the process Glfl refuse to conununicate once it has slabilised. 
(Hence if, after some trace, the environment offers to conununicate over a set of channels 
which is not a refusal set the process must, once internal activity has ceased, aa::ept some 
element.) A process is said to have stabilised. if internal activity has ceased and no further 
activity will commence until communication with an external source occurs. The notion 
of stability is necessary since without it there is no guarantee that the failures following a 
given trace will remain invariant. 

Iii)	 One of the possible elements of the refusal sets is ./ - this indicates that the process may fail 
to terminate sua:essfully (even though there may be some final slates possible for the given 
trace). Thus it is JX>SSible to discriminate between a process which will always terminate 
successfully and one which may nondeterministically deadlock or terminate suocessfully. 
Termination must take place only when the set {.,I} cannot be refused. 

(iii)	 Termination am take place on any trace :!! for which T( s) is a nonempty set of states. 
Although T( 8) may consist of more than one element, previous limitations mean it may 
only consist of a finite number. When T( 8) contains more than one element, the choice 
of which final stale occurs is nondeterministic. (T will be referred to as the tennination 
component of P.) 

(iv)	 If T( s) =: 1., then the process is considered to be broken. The process might diverge or do 
anything else at all. 

Iv)	 C lists the abstract channels which may be used by the process, and the direction of each 
such channel. Within the component the structure of conununications which may occur 
along each abstract channel the process can use are also recorded. 

(vi)	 The access which a process has to areas of the store is recorded by L. A process can read 
from but cannot write to areas of the store with addresses mapped to roo This pe:nnils 
more than one parallel process to safely use the same piece of store. A process can read 
from or write to areas of the store with addresses mapped to rw. In such a situation, it is 
not safe for another process in parallel to read from or write to the area of store with this 
address. As rime progresses, and parallel constructs terminale or are created, the store is 
repartiHoned. 

With oP, CHAN and ADDR as described above, and a set S of final states, the space Q of 
all processes P is thus represented by the set of all quadruples (F, T, C, L) which satisfy the 
(allowing ten laws. 

HI traces( P)[= {, E (nP)" I Is, 0) E F}]is nonempty and prefix dosed
 
F2) ("X) E F' Y ~ X '" (s, Y) E F
 
F3) ("X) E F' Y n {, I 3P E x ,,(,.m E traceslP)) = 0 '" ("xu Y) E F
 

TI) ("X)EF'T(s)~0",("XU{.I})EF 

1'2) Tis) =.L' t E (nP)" '" TIst) =.L 
T3) T(s) =.L' X ~ dom(C)U {.I} '" (s,X) E F 
T4) T(s) " 0' X ~ dom(C) '" (s,X) E F 

Cl) {x I 3P EX; , E (aP)" , s(,.P) E <races( P)) ~ dome C)
 
C2) '(x.P) E traces(P) , (3p E PROT, C(x) = Un,p)) '" {s(,.,) I -, E Xl ~ traces(P)
 
0) T(s) ".L '(3p E PROT, C(,) = (out,p») '" {s(x.,) I ,E ,l n <races(P) is finite
 



In the above s ranges over (aP)", t ranges over CHAN, X and Y range over P(dom( C) U {.I)). 
These laws are just the natural extension of the laws governing /If to the revised ~trueture; if 

P is represented by (F, T, c, LI, then defineI(P) = F, .(P) = T, c(P) = C, and liP) = L. In 
What follows, B ~ 1., B U 1.=1. for all B <; S and a E1. for all a E S. Moreover, 1. ill a =1. and 
u EV 1.=1. for all a E S and 1.! A =1. for all A E P{ADDR). 

The new model dearly has a great deal in oommon with the old one. Because of !he different 
set of communications fN)ssible for processes with different alphabets, it is not generally useful 
to compare processes with different C or L oomponents. However, if P and P' are processes 
with c(P) = c(P') and l(P) = l(P I 

), then a oomparison can be meaningful. On the asswnption 
that S has no imfN)rtant partial order of its own, if Q(C,L) is the sel of processes P with c(P) = C 
and l(P) = L, Q(C,L) has a natural partial order; 

P <;; P' ¢> I(P) 2 I(P') AV, E lrares(P'). '(P), 2 '(P'), 

P t;;;; P' can be interpreted as meaning that pi is more deterministic than P. Willi respect to 
S, Q{C,.q is a complete semilattice whose minimal element is (F.t. Tl., C. L) (denoted 1.(C,L)), 

where Fl. = (aP)" x P(dome C) U{.I}), and Tl.( s) =1. for all S E (oP)'". 1.(C,L) is the completely 
unpredictable process with the appropriate alphabet; it may diverge immediately. The maximal 
elements of Q(C.L) are the deterministic processes, which are divergence free and never have 
any internal decisions to make. A process P is deterministic if and only if it satisfies 

("X) E I(P)" X n (X E dom(c(P)) 13~ EX' '(X.~) E lraces(P)) = 0 

and 

(', (xli ~ I( P) A (3p E PROT. c(P)X = (ou',p))" 
{}3 E X I s{X·(3) E traces(P)} is a singleton sel 

and 

'(P), " 0,. (., (-')H I(P) A .( P), is a singleton set. 

The assumptions that all sets of final stales are finite, and that following any traceof a non· 
divergent process only a finite number of communications on any output channel are possible, 
corresfN)nd dosely to an assumption of bounded determinism. Of course, if the set S of states 
associated with any given area is finite, or if the set of communicable values for every channel is 
finite, this assumption is vacuous. 

Limitations of the model There is no concept of time in the model. Thus the occarn2 timing 
oonstruds (TIMER and AFTER) cannot be modelled directly, either for use in a process or as an 
l\LT guard. The mechanisms for dealing with time are now well understood for CSP, and their 
application to occam will fonn thesubjectofaseparate paper; here input over a timer is identified 
with the nondetenninistic assignment ofan unSpecified 'random' INT to the designated variable, 
delayed input within a process is identified with SKIP and a branch of an ALT guaJ'ded by a 
delayed input is not followed (such branches are induded as a 'timeout' to allow recovery from 
erroneous behaviour and following them would result in the possibly unacceptable omission of 
parts of the process). 

Another main feature lacking is an analogue of priority; there is no way of telJingfrom the 
model that a process would rather oomrnunicate 'a' than 'b' (say). An operational semantics for 
the purely parallel aspects of occam exists [41, and it is possible that a denotational semantics 
along the same line oould be developed; however, for the sake of simplidty, any treabnent of 
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priority will be omitted, either between processes or among ALT guards, and PRI PAR will be 
identified with PAR, and PRI ALT with ALT. 

The net effect of these omissions is to give a semantics to a program which is less deter­
ministic than one which took into account the timing and priority infonnation: some execution 
sequences which are apparently allowed by the semantics will in fact be excluded by a correct 
implementation. This means that the correctness of a large part of an implementation can be 
judged against this semantics, since any implementation which gives a value to a process which 
is not a refinement of that given here is certainly incorrect; what then remains is to check that it 
is a refinement allowed when the effects of priority and real-time behaviour (which are, in any 
case, to some extent implementation dependent) are taken into account. 

Similarly, any effect of placement of processes on processors has not been talcen into acrount. 
PLACED PARis identified. with PAR, and the command PROCESSOR and its associated expression 
are ignored. This has no effect on the semantia;: of well-behaved programs, but may provide a 
different interpretation of error and divergence in a network than expected. 

The placement of channels, timers or variables at an absolute location in store is entirely 
dependent on the particular implementation of the store and is thus not considered. Hence the 
command PLACE... AT and its associated expression are ignored. 

Finally, while giving a denotational semantics to the language, output over ports is identified 
with SKIP and input over ports with the assignment of an unspecified 'random' value to the 
designated variable. The motivation behind this decision centres around the fact that only com· 
munications with external devices may take place over ports, and the modifications (complete 
with their inherent complexities) necessary to give a more accurate interpretation do not appear 
justified. 

Additions to the language VVithin this paper, an extension of occam 2 will be included. On 
defining processes in parallel, the option of prefixing etJ.ch of the processes with a Parallel Decla­
ration (U E PDj will be given. When processes are defined in parallel, it is necessary to set up 
local alphabets for each individual process. Nonnally within occam 2 the necessary information 
COmes from syntactic analysis of the parallel processes. Here the infonnation can come in two 
forms. Firstly, if parallel declarations do not accompany the processes, it is possible by syntactic 
analysis of the parallel processes to determine consistently which channels are for input, which 
for output and which are internal. It can also be determined to which global variables each 
process intends to assign. Secondly, if each parallel process carries with it a parallel declara­
tion, these declarations provide a concrete indication of the intended channel use of each of the 
processes, splitting the global channels each process intends to use into three categories. 

OWNCHAN means that the channel{s) are for internal use by the process. 
INCHAN means thai the channel(s) are to be used by the pI'OCE'SS for inputting. 

OUTCHAN means that the channel{s) are to be used by the process for outputting. 
For simplidtyl it is insisted that if a process carries with it a parallel declaration, the declaration 
must also mention to which global variables the process intends to be able to assign. 

U ::= USING (OWNCHAN {chan},INCHAN {chan},OlJTCHAN {chan},VAR {var}) 

At first glance it may appear that the inclusion of parallel declarations is superfluous. This is not 
the case since if a channel which is currently in scope is not mentioned by any of a collection of 

2Although the issue of mentioning variables explicitly is orthogonal to that ci mentioning dtannels explicitly, 
the resultant elCJ'CIl8ltial increase in lhe nwnbeT of clauses nea'!SSary to deal with para.llel o::mposition. makes the 
indusion 01 both optiau indepmdently undesirable. 



processes defined in parallel, syntactic analysis of the processes cannol be guaranteed to allocate 
the channel to a particular component. 

The need for parallel declarations comes about from the decision to use as the semantic 
domain a derivative of the failures/divergences model for CSP, with parallel comJX)Sition and 
hiding. rather than a derivative of a model for CCS, with parallel composition and restriction. 

The inclusion of parallel declatations means undeclared channels are given a more natural 
meaning. and promotes conventions which are, in any case, goo<! programming practice. 
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3 Denotational semantics 

In this section, the model previously constructed will be used to give a na.tural denotational 
semantics to the whole of the language occam 2, up to the restrictions discussed at the end of 
the previous section. Having oonstructed what is essentially a hybrid model, one might expect 
to be able to adapt work on purely parallel and sequential languages. This doesjndeed tum out 
to be the case, as there ate few parts of the language which make deman ds on both aspects of 
the model. 

For ease of presentation, occam syntax has been linearised in this paper. For example, 
SEQ (P" p!, ... , p.) is written instead of 

SEQ 

P,
 
P,
 

p. 

In the previous section an abstract space S of final states was inlroduced. In devising the 
space of machine states it is necessary to bear in mind the role which states play in the model: 
passing on infonnation from one occam process to its successor. The only way one occam 
process can influence its successors is by modifying (through assignment or input) the values of 
variables: it cannot change the binding of identifiers outside its own text in any other way. In 
order to protect against a process altering lhe contentsof locations from which it is only permitted 
to read, and to avoid unwanted distinctions between processes, final states will only realrd the 
contents of locations which may be written to. Thus the states will resemble the restriction of 
the 'store' - a function from locations to storable values (see below) - to the writable locations of 
the process. 

Throughout this paper the store will be thought of as a map from addresses {the identifiers 
of atomic pieces of store) to atomic pieces of information. Because any process is capable 
of accessing only a limited set of variables, the store associated with any process will be a 
partial function. Reference to variables involves the use of multiple addresses, the number being 
dependenton the particular implementation of the store under consideration, and for this reason 
the decision has been laken to abstract away from addresses where possible and use 'locations' 
- pairs containing the starting address of the variable's contents in the store and the type of the 
variable (from which, given the implementation, it is JX>SSible to calculate how many addresses 
are used to refer to the contents of the variable). This abstraction limits the retyping which can 
be modelled but is necessary if maximal generality is to be maintained. 

Because of the implementation dependent nature of the store, all access to it will be via the 
auxiliary functions lookup and updJJte and the operators EEl and 1. 

lookup: S --+ LOCr --+ Vr 

lookup takes in a store and an area of store which houses a variable and returns the contents of 
the variable in the store. Use of the domain Vr (the domain formed by lifting each element of V 
above the new element .Lv while maintaining the intE'1Tlal order of VI allows .L v to be returned 
if the variable has not been initialised. lookup is strict in each of its arguments. 

update: S --+ LOCT--- Vt -.. S 



updale takes in a store, an area of store which houses a variable and a storable value. The result 
is the supplied store, modified to map the given area of store to the storable value. VYithin the 
language it is JX>SSible to pass an array prefixed by an integer (indicating how many elements 
of the array should be considered) along a channel. The presence of this option means that the 
function update must allow assignment to part of an array, not corrupting the information held 
in the remainder of the array while doing so. update is strict in each of its ary;uments. 

As the semantics are developed, and the set of mutable areas (set of addresses whose lDntents 
can be altered) changes, the need to deal with stores with different areas will become apparent. 
If (11 and (1! are two stores, they can be combined using $. 

ffi:SxS-S 

(11 ffi (1! joins two stores together, allowing (f~ to influence the result on addresses they have in 
common. 

The importance of restricting stores has already been emphasised; 1 will be used for this 
purpose. 

): 5 x p(ADDR) ~ 5 

(1 1 A returns the store which is fonned by picking the oontents of (f indexed by addresses 
contained in A. 

Each of the above rely heavily on the particular implementation of the store under Olnsider­
ation, and consequently their definitions are not included. 

A separate environment will be used to map identifiers to locations, constant values, channels, 
procedures, protocols and so on. 

This distinction between environment and store is a familiar idea in denotational semantics; 
the way the present model is constructed means it is again appropriate here. The management 
of environments and stores relative to sequential languages is well understood, and as in 126] 
the only potential problem is with handling the store within a PAR construct. As pnviously 
described, parallel occam processes do not use shared variables for communication. Global 
variables may only be used in a very restricted way: either one process can use a given variable 
normallyor all processes can read from the variable but none can write to it. This idea oomsponds 
to giving each parallel process a distinct portion of the store and reserving the remainder as read 
only for the duration of the parallel oommand. The state will be constructed at the end of a 
parallel construct by the 'distributed termination' property of occam processes -a PAR cmstruct 
can only terminate when each of its oomponents can terminate (and thus yield its own oomponent 
of the final state). 

In order to give a denotational semantics to occam processes, it is necessary to know the 
structure of the alphabet of communications between processes. As noted earlier, each lDmmu­
nication will have two components -a vessel along which the value passes (an abstract channel 
of some protocol), and the value to be oommunicated (in the case of a non-variant protocol, 
a collection of storable values; in the case of a variant protocol, a collection of storable values 
prefixed by a tag). 

Given that a process Puses the channels {Xo, Xl,· . " X.}, the set of possible oommunications 
along channels which the process can undertake is, as was previously mentioned on page 4, 
o.P = {xi.11 liE {I, ... , Jl} 1\ 11 E Xi}. (Throughout this paper, X will be used as srorthand 
for p - the set of values communicable over an occam channel with protocol p - where p is the 
protocol associated with X in the current scope. The definition of p for an arbitrary protocol p 
will be given later, on page 16, when the fonn in which protocols appear in the environment has 
been described.) Note that no distinction is made between 'input' and 'output' communications, 
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since the relevant infonnation already appears in the alphabet oomponenfs of the process and 
would be confusing to duplicate. 

Processes IP E Proc) The definition of the syntactic domain of processes, based on [20), is 
included in the appendix. All the constructs of the occam 2 language are present. but the 
restrictions previously discussed mean that certain constructs may be given a less deterministic 
meaning in the semantic domain than expected. 

3.1 Semantic domains 

The existence of the following semantic domains is supposed: 

v E V -domain of storable values. This contains elements of all data types and arrays thereof. 

u E TIMER - domain of timers. An abstract set of tokens allowing identification of timers. 

~ E POIrr - domain of ports. An abstract set of tokens allowing identification of ports. 

\: E CHAN - domain of abstract channels, as referred to in the previous section. 

Ct E ADDR - domain of addresses in store, as referred to in the previous section. 

, E TAG - domain of tags. An abstract set of tokens. 

x E IDE -(syntactic) domain of identifiers. 

[For lhelanguageunderconsideration, V has the [ann (Bl)OE)~+(BYTE)~+(INT)~ +(INT16)~ + 
(I~"T32J~ + (INT64)~ + (REAL32)~ + (REAL64)~ where I is the set of elements of type t (e.g., 
BOOL = (true,~}) and X~, as defined below, is the domain of arrays with comiX'nents drawn 
from X.] 

There is no need in this work to SUPiX'se that any of the above domains is partially ordered 
or contains a 'bottom' element. It will, however, be necessary to deal with errors. Given any 
semantic domain X, the domain X u {error} will be denoted X+. If X is partially ordered, then 
envr will be incomparable with the other non-bottom elements of X+ . 

For any semantic domain X, the domain of arrays each of whose comiX'nents is drawn 
from X, X~, is of the fonn l:!J.EN0 X T s where X T () = X and X T (n)s = (X T s)n. Use of 
this seemingJy complicated definition ensures that for every dimension of the array, each of the 
components is of the same type. When the domain X~ is used, it will often be useful to be able 
to extract the set of elements contained within a particular instance of the domain. This will be 
done with the aid of the auxiliary function elements which for x E X is defined 

elements 0 o 
elements (x: z.s) {x} U (elements xs) 

elements (xs : xs.s) (elements xs) U (elements xss) 

Given a domain X, X· will denote the domain consisting of sequences of zero or more 
elements of X, and X&: will denote the domain consisting of sequences of one or more elements 
of X. Notationally, elements of X· and X&: wilJ be regarded as partial functions from N to X. If 
X has a partial order, in X· and X&: sequences of the same length are ordered comiX'nent-wise, 
with sequences of different lengths being incomparable. 
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In the domain (X*h. formed by lifting each element of X* above the new element 1 while 
maintaining the internal order of X*, concalenation of sequences is strict in both arguments (i.e., 
1.. 8 =1.. and s1. =1.. for any sequence 5). 

If 8 E X*, s[n] (0'::; n < #5) denotes the nthelementof s,and s[n ... m] (0'::; n,n'::; m,m'::; 
#5 I denotes the sequence containing the n th to (m - J) th elements of 8 indusively. 

In order to give a denotational semantics to the language, several specific semantic domains 
need to be constructed. This is done using the above notation. 

LOC = ADDR x TYP 

LOC is the domain of locations, used. to provide a<X:eSS to blocks of store representing variables. 
A location is a pair - the first component contains the starting address of the block and the 
second component contains the type of variable stored in the block. From this information (and 
the particular implementation of the store under consideration) it is possible to detenninewhidl 
addresses make up the required block. VVithin the definition of LOC the domain TYP of types 
of variables has been used. The definition of this domain (which consists of a set of tokens), 
along with those of the other domains concerned with type information, are induded next. 

TYP = N'x({BDOL}uINTEGERuREAL) 
INTEGER = {BYTE,INT,INT16,INT32,INT64} 

REAL = {REAL32,REAL64} 

T)/P is intended to provide the type of variables. Within the definition primitive and array types 
must be catered for, and to facilitate later work it is beneficial to haveseparate subcomponents for 
each family of types. For simplicity the syntactic names of occam types (e.g., BOOL, BYTE, INT) 
have been used. as the abstract tokens. Arrays are represented by a natural number sequence 
recording the dimensions (e.g., [J][2][3] INT is represented by «( J,2,3), INT)). For any type t, 
the set of elements of type t will be denoted 1. Care must be taken to make this distinction, since 
IN'T (a set of values) differs considerably from INT (simply a token). 

CTYPI = TAG DATA' 
CTYP2 = DATA&. 

DATA = TYP + (INTEGER:: TYP) 

CTYPJ and CTYP2 are the domains of communicable types. They contain the types which 
a communication along a channel may have, and hence must deal with variable length arrays 
and communications on channels with variant or sequential protocols. In order to facilitate the 
construction of the domain of channel protocols, one domain (CTYPJ) has been used lo deal 
with tagged types and another (CTl'P2) has been used. to deal with untagged types. 

PTYP = (N u ill)" x ({BDOL) u INTEGER UREAL) 

PTYP is the domain of parameter types which will be used. in procedures and functions. The 
difference between this domain and the one used. to record variable types is that if a parameter 
is an array, it need not explicitly give the size of any of its dimensions. To deal with this, an eXl:ra 
token 1. has been induded in the set of possible array dimensions. 

PROT ~ {ANY} u CTYP1· u CTYP2 

PRO T is the domain of channel protocols. As expected the definition draws heavily 01"1 that of 
communicable types, but it is also necessary to take account of the anarchic protocol Am. Com­
munication on a channel with non-variant protocol must always consist or the same sequence 
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of types, but rommunication on a channel with variant protocol may consist of anyone of a 
number of tags followed by its corresponding (possibly empty) sequence of types. The decision 
to provide two domains of rornmunicable types allows this restriction to be dearly conveyed. 

ENV = (IDE - D+) x VSTATUS x LSTATUS 

ENV is the domain of environments. The constituent domains are defined below, along with 
a brief explanation as to their purpose. The use of D+ allows identifiers which have not been 
declared in the scope to map to error. 

If p E ENV then PI, P \I and PL will denote the first, second and third comp:mentsrespectively 
(so thatp = (PI, PV, PL»). If x E IDE then P[x] wiU mean Pl [xI;similaxly pIx] will mean pvlx] 
(X E CRAN) and pro] will mean pdo] (0 E ADDR). If x E IDE and 6 E D+ then p[l(x] will 
denote the environment which is the same as p except for mapping x to 6. Corresp::mding 
interpretations will be pUl on p[r Ixl and p[rloJ. 

VSTATUS ~ CIlAN ~ (PROT x (L,!!,i,£}) 

VSTATUS is the domain of functions intimating the status of those abstract channels which can 
be used within the current scope. Abstract channels not in the domain of VSTATUS cannot 
be used within the current scope; this protects against parallel processes attempting to claim 
the same abstract channel for different and unconnected purposes. In any particular function, 
each such abstract channel is mapped to a pair, the first romponent indicating the protocol of 
the occam channel currently associated with the abstract channel and the second romponent a 
token depending on the use of the abstract channel. 

L means that the channel has not been assigned to a particular identifier within the current 
scope, but is free to be associated with One if required. 

.!!	 means that the channel has been assigned to a particular identifier within the current scope, 
but has not had its direction detennined. 

i	 means lhat the channel has been assigned to a particular identifier within the current scope, 
and is restricted to participating in only input communications. 

.Q	 means lhat the channel has been assigned to a particular identifier within the current scope, 
and is restricted to participating in only output communications. 

LSTATUS= ADDR ~ {L!,~} 

LSTATUS is the domain of functions intimating storage use. Addresses not in the domain 
of LSTATUS cannot be used within the current scope; this affords protection against parallel 
processes using the store in an unacceptable way. A typical member maps each addressac<.:essible 
within the current scope to a token, the choice depending on the status of the address. 

L means that within the current scope the address is not associated with a variable, but can 
if necessary be associated with a 'read-only' or 'read/write' variable. 

!.	 means that within the current scope the address is aSS<Xiated with a global 'read-only' 
variable or a variable which is the subject of a value abbreviation. The variable associated 
with the address can be read from but not written to. 
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..!l.	 means that within the current scope the address is associaled with a variable having 
wuestricted use. That is, the variable associated with the address can be written toas well 
as read from 

The domains VSTATUS and LSTATUS contain the infonnation necessary to form the alphabet 
components of a process description. 

D ~	 LOC +(~x P(ADDR) x LOC) +V + TIMER' + 
(TYP x PORT') +PROT + CHAN' + NP + TAG 

D is the domain of denotable values, storing the infonnation associated with an identifier which 
wiU not change. Each component deals with a particular genre of object which an identifier 
could denote. 

LaC	 deals with variables. As previously mentioned, given the starling address and type of a 
variable, one can uniquely determine the area of store in which its current valU( can be 
found. The variable may be of primitive or array type. 

.l! x p(ADDR) x LaC deals with variables abbreviated within the current scope. The only 
access to such a variable which is allowed is a further abbreviation of a disjoint part of 
the variable. Verifying that further abbreviations refer to disjoint parts is made possible 
by keeping a record, in p(ADDR), of the addresses associated with the variabl( whose 
contents ace currently abbreviated. 

V deals with constants. In occam the type of a constant, again of primitive or array type, can 
be uniquely detennined from its value and hence type information need not be induded 
here. 

TIMER'" deals with timers, mapping each such item to an abstract timer. Although with the 
current interpretation of timing it would be suffident to map every timer to the same token, 
this is unnatural and would lead to problems if timing were to be modelled. 

7YP x PORT" deals with poets. As with timers the fact that it would be suffident to map each 
port to the same token is ignored. TYP records the intended type of each of the p:>rts. 

PROT deals with named protocols, the form of the protocol being stored for future examination. 

CHAN"" deals with channels. The protocol associated with an occam channel can be emacted 
by examination of the function VSTATUS and hence protocol information need not be 
induded here. 

NP deals with named procedures and functions. Its precise form will be defined later (on 
page 48) when it is required. 

TAG	 deals with the tags necessary for channels of variant protocol. 

Within the above definition of D, domains of the foern X'" (arrays whose components an drawn 
from the set X, as described on page 12) appear. The use of such domains is necessary since 
when arrays of channels, timers or poets ace declared, one abstract channel, timer or p:>rt must 
be associated with each individual component of the array. 

In the course of defining semantic functions a few further semantic domains will be used. 
Definitions will be given as the semantic domains appear. 
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Communicable values Having described the semantic domains above, it is now possible to 
give a condse definition of 19 for each instance of fl. 

For d E PROT, 11 is to be the set of oonununicable values over a channel of protocol fJ; for 
d E TYP, tj is to be the set of elements of type f) J. Hence: 

(vo ... V,,_1 in) (va· .. 11,,_1) U {in} 

(vo ... V,,_1 (til Wn») (Vo · .. l1n_l)U({ln}XW,,) 

(p, ... p") JJOX"'XP;; 

maxooJs 
s::t U (k) X (Il' 

i=O 

((n)ns. T) ((n" 'l)" 
BOOL {true,fglg} 

, {n ImintJtlI .~ ~ 11 ...:; maXlKlI.~ } 

7 the set of values expressible in the real type f 

maxvalINT
ANY U (BYTE)' 

i""l 

(Here T stands for an arbitrary primitive type, t stands for an arbitrary primitive or array type, 
s stands for an integer type (including BYTE), and minrlQl and rtUlxval respectively denote the 
smallest and largest values expressible in a given type. An arbitrary element of the domain 
DATA is denoted by PJ , an arbitrary sequence of elements of DATA by wi, and an arbitrary 
sequence of elements of DATA prefixed by a tag by Vi' The symbols tj denote elements of the 
domain of abstract tags (TAG).] 

3.2 The semantics 

Detailed descriptions of several of the necessary semantic functions will be given, with most 
attention being paid to the 'higher level' semantic functions. The remainder are fairly standard, 
and should not prove too taxing for the reader to define. The main semantic functions are listed 
below. 

C : Prrx: ----0. ENV _ S - Q 

This is the function used to give a semantic meaning to an occam process. Given a program 
segment, an environment and a store it yields an element of Q. In the definitions below, all 
execution errors map a process to the minimal element with appropriate alphabet (e.g., an 
erroneous process P - with environment p (yielding the alphabet components C and L) and 
store l1-is mapped to l.{c,L)l from the point in itsconununication history where the error arises. 
There is no reason why more sophisticated semantic; could not be devised which allowed for 
a certain amount of error recovery, perhaps by introcludng extra elements into the semantic 

~Sirw:e PRO T incorporates T YP asa spedficcase, by defitlingtheoperator over PRO T the (expErtedl meaning 
OVeT TYP i~autornaticallyinheTited. 
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domain. The present approach, however, has the advantage of simplidty. The identification of 
errol1> with the bottom element uses the strictness of the model and semantic operator! to give 
a severe if elegant view of errors. Just as Wlderstanding the implications of an execution error 
in one component of a parallel network on the behaviour of the whole is more complex than 
in a sequential one, so the introduction of detailed error-handling into the naturally-oo::urring 
domain and the semantics is more trouble than is warranted in most circumstances, lbough it 
could be done by introdudng extra error elements throughout the domain. 

C, Proc - ENV - S - P«oP), x P(dom( C) U (-'}»)
C, Proc _ ENV _ S _ «oP)" ~ pIS) U {.L}) 

¢ ENV - (CHAN _ Un, out) x PROT) 
, ENV - (ADDR _ fro, ,w}) 

These functions calculate the individual components of C [P] po, so that 

c[P]pa = IC, [P]pa,C,(Plpa,¢p,~p), 

The third and fourth components of CIPJpu do not depend on the state 0; passing around 
additional arguments on which functions do not depend is unnatural and for this reason (as well 
as considerations of clarity) the decision was taken not to supply 0 as an argument to eilher ¢ or 
'P, 

D: Decl _ ENV -----+ EN\-'T 

This function carries out the modifications to the environment caused by declarations. When 
an error occurs, the value produced is the bottom environment l... In what follows an arbitrary 
member of Decl will be denoted .d. 

A: Spec - ENV _ S - EN\-'r 

In occam it is possible to use specifications (abbreviations and retyping) as well as declarations 
within a process. This function carries out the modifications to the environment C3.:!Sed by 
specifications. Erroneous specifications lead to .1 being returned. An arbitrary member of Spec 
will be denoted e. 

ct' (CHAN'*' + TIMER'*' + (TYP x PORT'*'))_ 
ern!' + (INT x INT» - (CHAN' + TIMER' +(n'? x POR1"W 

tv LOC _ (INT + (INT x INT)) - LOC+ 

These are important auxiliary functions which simplify the definitions of the main semantic 
functions by extracting components of arrays. Cl' returns the portion of its supplied array 
of channels, timers or ports referred to by its second argument; III returns the portion of its 
supplied location referred to by its second argument. The definitions should help to clarify 
the store model being used and the distinction between locations (pairs of types and starting 
addresses] and addresses. 
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The definition of the function cv is: 

cu zs n	 ... [nl
 
if xs E CHAN'*' /\ 0 $. n < J/z.g
 

cu zs n	 xsfnJ
 
if :z.s E TIMER'*' 1\ 0 $. n < bs
 

CV(LZ\Q)n	 (T,xs[nJ)
 
if(T,xs)E TYPxPORT"'AOSn<J!xs
 

cv zs (n, m)	 xs{n ... n+mJ 
if xs E CHAN'*' 1\ 0 S n 1\ 0 :5 m 1\ n + m 5. bs 

cuxs(n,m)	 x,q!n ... n+ m] 

if xs E TIMER'*' /\ 0 S nil 0 S m 1\ n + m S #xs 

el' (T,x.~) (n.m)	 (T,x8[n ... n + m]) 

if(T,:I;s)E TYPxPORT%I\OSnI\OS rnlln+m$.bs 

cv y z """ otherwise 

While that of Iv is: 

lv (a,«z)zs,T»n :::	 (o',(ZS,I)) 
where startaddr (0, (.; )';;5, T)) n ::: n ' 
ifO$.n<z 

Iv (a,«(z)zs,T»(n,m) :::	 (o',«(m)zs,T)) 
where slartaddr (a, «(z)zs, T» n ::: at 
if 0 S n /1 0 S TTl 1\ n + m 5. :: 

Iv ). y =: error 

otherwise 

]n the definition of Lv the auxiliary function startaddr has been used. This function takes in a 
store localion (which is currently associated with an array) and an index and returns the starting 
addressof the array component with the given index. Hs definition is implementation dependent 
and hence is not included. 

[ : Exp _ E.N\·· - S ---+ E 1 

Within the definition of this functiDn the domain E hasbeen used. E is tile domain of expressible 
values and has the form 

E = LOC + C~_ x p(ADDR) x LOC) + CHAN"'" + TIMEU"'" + (TYP x PORT%) + y-& 

It is necessary to include V& as a component of E in preference tD V since value processes in 
occam are not restricted to returning a single expressiDn. 

The purpose of this function is to evaluate the natural value of expressions (e.g., if the 

expression refers to a location, the location and not its contents is returned) with the aim of 
minimising the amount of worle which must be repeated to deal with expressions as I-valu.es 
and r-oolu.e5. The result of the functiDn is an element of Er, the domain derived from E by the 
addition of an extra element 1.£ which will represent all 'errors', both tilose detectable at ron-time 
and those which result in non-termination. The domain is Drdered with 1.£ belDw each of the 



elemenls of E. Use of this domain allows all expression evaluation enors to be mapped to the 
same element, while allowing refinemenls to accommodate a certain amount of error recovery. 
One possible refinement would be the use of the domain (E+ h, with immediately detectable 
errors (e.g., division by zero) being mapped to urnr, and all other errors (e.g., a looping function 
call) being mapped to -1~. 

t:v Exp --> ENV - 5 ~ VI
 
t:vt. Exp ---> ENV - 5 ----. (V&>r
 
t:L Exp ---+ ENV - 5 - LOCr
 
[c Exp ~ ENV ~ S - (CHAN + TIMER + (TYP x PORTl),
 

These functions evaluate an expression and return an element of a particular form. The target 
domain of each of the functions is Xl for some X; in order to avoid a proliferation of 'bottom 
values', which would in tl1m lead to unwanted distinctions between processes, the bottom 
elements of each of the domains will be naturally identified with -1£. 

t:~. takes in an expression, environment and store and returns a storable value (the r-wlue of 
the expressionj4. If the expression evaluates to a storable value, it is returned; if it evaluates to a 
location, the contents of the location are retum€d; otherwise -1[ is returned. 

[v. takes in an expression, environment and store and returns a sequence of storabl€values 
(the sequence of r-wlue5 of the expression). For all non-erroneous expressions except. value 
processes (VALOF) this sequence will have as its only dement the result of [v; value processes, 
however, may have more than one storable value as their result and in this case the sequence of 
results of the value process is returned. 

t:L takes in an expression, environment and store and returns a location /the l-wrw of the 
expression}5. If the expression refers to a slice or component of an array of variables, the starting 
address returned is that of the particular portion of the array referred to, and not necessarily the 
starting address of the array itself. Jf the expression does not €valuate to a mutable variable, 1-[ 

is returned. 
t:c takes in an expression, environment and stOC€ and returnS a channel, timer or port (the 

channel value or c-wlue of the expression). If the expression evaluates to a single channel, the 
abstract channel returned; if it evaluates to a single timer, the timer is returned; if it evaluates to 
a single port. the port along with its assodated type is returned; otherwise 1-[ is returned. 

The functions are all obtained by suitable coercions of C, 

([[,lpa)[Oj if[!,!paEV&At([['jP")= 1 
[v Hpa = lockup a ([[,]pa) ift: e paELOCI\C[e pa=(a,t)/lp[et] Ef!:.,!!.}

{ 1-, otherwise 

q'lpa ifq'jpaEV& 
[v.[e]P" = (lockup a (q'lpa)) ilq, paELOCAq,jpa=(a,t)AP[a] E(!,~}

{ -1£ otherwise 

[[,I a={ [['Ipa ifq,]paELOCAq'lpa=(a,t)Ap[al~!' 
L p 1-£ otherwIse 

-This functirn is ohm referred loas R in the literature. Within this paper the existmceof channelsmeansth.1t the 
use of 'R. is n~ particularly suitable. 

sThis functicrl is often refen"ed to as £ in the literature. Again the existence of channels witJ1m this paper limits 
the suitability of the useo! £. 
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if £ 1'1 pu E CHAN A £[,1 pu = X A pI,1 E {(p,!!), (p,iJ, (p,.v) 
[. e pCT if t e pu E TIMER~I'IPU

£c[,jpu = ~,pu{ if t e pu E CTYP x PORT)
 
.L, otherwise
 

The next step will be to concentrate on the four main semantic functions in tum. Each of the 
clauses will be given a brief explanation. 

(1) THE FUNCTION t Several of the dauses contain one or more conditions 'provided .. 
which exdude error conditions. When these conditions are not met, the value of the dause is 
always .1.[. Throughout the definition of £, (.. '}J.. has been used in place of the more usual (...). 
The operator (.. ').L is a strict sequence constructor (returning 1-£ if any of its arguments are l.c 
but otherwise agreeing with (...)] and is used in order to maintain strictness when considering 
erroneous expressions. Within the definition of £, when operators are applied, the auxiliary 
function 0 appears. This function, which is assumed to produce results strict in each of their 
arguments, translates a syntactic operator to the relevant function; its definition is standard and 
hence omitted. The definition of),/, an auxiliary function evaluating literals, is also standard 
and omitted for brevity. 

qop ,jpu = (O[op](v)), 

where l'v [e]pu = v 

Applying a monadic operator to an expression first involves evaluation of the expression. Once 
this has been done, the operator is applied. The assumption of type-correct programs means 
that the result of the evaluation of the expression is guaranteed to be within the domain of the 
operator. 

~) if£vhlpu =~ 
elel AND e2]pu { (l',' [et] pu) 1- otherwise 

provided l'1/ [el )pu E Bm5L 

The boolean operator AND is not strict in its right argument. For this reason it is necessary to 
include explicitly the dause dealing with its evaluation. 

(froe) ifl'\-·[el]pu= true 
e[el 0 R. ef]PU = { (l'v [e2] pu) 1- otherwise 

provided l'v [e J ) pO" E Bm5L 

The boolean operator OR is not strict in its right argument. Again it is necessary to indude 
explicitly the dause dealing with its evaluation. 

ih op,,jpu = (O[opl(v"v,)), 

where [v [el ]pu = Vj "l'v [ef]pa = V£ 

When applying a dyadic operator to two values, the first step is the evaluation of both of the 
arguments. Next the operator is applied. As before the type-correctness assumption guarantees 
a pair of values within the domain of the operator. 

£[H]pU = (converl T (£v['lpU»), 
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Since only type correct programs are considered, it is not necessary to indude a collection of 
rules sununarising aa::eptable conversions between types. The only step which must be carried 
out is transferring the evaluated. expression to the correct part of V. This task is achieved by the 
auxiliary function amverl, the definition of which is not difficult and hence left for the reader. 
For any type I, the function convert I is strict. 

£IT ROUND ']P" = (",und T{Ev [']P"))L 

Type conversion can be coupled. with rounding. The behaviour is similar to that of the type 
conversion described above, except that the auxiliary function must now act on the result in a 
different way. The function round (again left for the reader to define) is assumed to carry out this 
task. For any type I, round I is strict. 

£[, TRUNC e]p17 = (trune I (£v [e]pu)).1.. 

A third form of type conversion exists in occam. Instead of rounding an answer, it is possible to 
insist instead on truncation. The only semantic difference is the form of the auxiliary function; 
theauxiIiary function lrune (again left for the reader to define) is assumed to carry out truncation. 
For any type I, Jrune I is strict. 

p[.] if PI.] E LOG + (~x p(ADDR) x LOG) + 
CHAN'*' + TIMER'*' + (TYP x PORT'*')

qzJP" = (p[zllL ifp[.]EV{ 
L< othenvise 

Evaluation of an identifier depends on its current use. If the identifier represents a location 
(of an abbreviated or unabbreviated variable), a channel (or array thereof), a timer (IX array 
thereof), a port (or array the.reof), the information contained in the environment is returned; if 
the identifier represents a constant, the sequence containing the constant as its only element is 
returned; othenvise J.5 is returned. 

(vs[OJln])L if E!edpO E v& f\ £ [eJ]p17 = vs f\ 0 s: n < f{l'S:O)) 
tv >. Tl iff e1jp17E LOCl\f[edpo=>'f\/v >. nf:.error 
(~,A, Iv>. 11) iff 10/ p17E (a x p(ADDR) X LOC)f\ 

EI"lp17=(~,A'>')f\IV>. Tlf:.errorq'd',llp" ev x n if £ eJ p(J E CHAN'*' + TIMER'*' + 
(TYP x PORT'*'J f\ 

£[e.l]P(J= r f\ ev r n f:. error 
Le otherwise 

where£v [e..dP17 = Tl 

provided £v [e.£]P(J E INT 

In the case of an indexed expression, the index is first evaluated. Once this has been done, the 
remainder of the expression is evaluated and the relevant action (dependent on the form of the 
evaluated expression) is taken. The cases of indexed. locations and indexed arrays of channels, 
timers or ports are dealt with by the auxiliary functions Iv and Cl' defined previously. 
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(",[oJln ... n+m])~ 
if q,]pa E V" MI,]p" ~ u, /\ 

o ..,; n /\ 0 .$ m /I. n + m $. 4f( liS [ 0]) 
lv.>.(n.m) 

Hq,)paE LOC/\£(,]p<7~ ,/\ 
Iv.>.(n,mJi-error 

(a, A, tv.>. (n, m»£[[1' FROM 1'/ FOR ffJ]pO" 
- if£[clp/jEC~X~(ADDR)XLOC)1\ 

£[1' p/j=(E.,A,'>')/liv .>.{n,m)i:error 
cvx(n,m) 

if [[e]pa E CHAN"*' + TIM£R% + 
(TYP x PORT'*') 1\ 

r[eJp<7 == x /I. Cl! x (n, rn) 1: error 
1.-£ otherwise 

wheret'l'[eJ)p<1 = n/l,[I,[ef]pa = m 

provided [v [1'/ ]P/j E INT 1\ tv I ff](l/j E INT 

Array slices are treated in the expected way, again relying of the functionality of the previously 
defined auxiliary functions tv and cv. 

[[.>Jpa ~ (Nluj)~ 

Within an expression it is JX)ssible to indude literals. Such expressions are treated in the obvious 
way. The syntax of occam is such that the type of any literal is unambiguous. 

£[[e/.ef" .. ,CnJ]pd =	 ((t'I,L'f, ... ,V"J.lJ.L 

where [v [1'1] pa == v/ 1\ {I' [ft ]pa = tlf II ... 1\ [v [en] pO" = u.. 

Evalualing tables involves evaluating each element of the table. If any of the constituent expres­
sions evaluate to .i£, it is necessary to return .i£; otherwise the table of evaluated expressions is 
returned. 

£[MOS'I'POS r]pa (maxval '1").J. 

£IMOSTNEG r] pa (minval'1")1. 

The two clauses aoove give respectively the largest and smallest elements of any integer type. 
The functions necessary to calculate such elements already exist and have thus been used directly. 

f[VALOF PRESULT l'J, ... ,e.. ]p/j =- VSjVSr .•• VS .. 

whereCr [p]P/jO:::: {/j'} /I. CT EIl 17' = aft /I. 

£ ~'. lei ]pa" = tlSI 1\ .• ' II £~.• [en]pa" = VSn 

providedC.[p]paO E piS) A j(C,(p]paOl ~ 1/\ 

(0 =- 1 V 

"tiE {1, .. "n} e#(£v.[e,]palt )= 1) 

A VALOF conunand is evaluated by first calculating the termination states cesulting from lhebody 
of the conunand with empty trace. It is suffidenllo consider only such states since the restrictions 



3.2 The semantics	 23 

on occam processes force the body of a VALOF command to be a detenninistic, sequenlial and 
non-communicating process. If precisely one termination slate results, the required expressions 
ace evaluated in the store updated with the information contained in the termination state. A 
VALOF command is restricted in what it can relUm: either it can retum a sequence of oneor more 
values each consisting of a single expression Dr it can return pfl.'dsely one value consisting of 
a sequence of one or more expressions. Chedci.ng that this condition is satisfied is a necessary 
feature of the clause. Notice that a VALOF command attempting to return an erroneousexpression 
is dealt with by the strictness of concatenation of sequences previously described. 

t"[d")p" ~	 t"[,](V(.1]p)" 
provided V[d]p #1­

If a declaration occurs before a (valof] expression, the necessary updating of the environment 
must take place before the exprpssion is evaluated. 

qe: ')P" ~ q,]IA/elp")" 
provided Ale]p" #1­

When a specification (an abbreviation or retyping) precedes a (valof] expression, the environment 
is updated as appropriate before the expression is evaluated. 

The only dause left to define is that concerning functions. This is dependent on the way 
in which named functions are stored in the environment by declarations, and is consequently 
delayed until the function !J has been defined. 

(2) THE FUNCTION C This is the semantic function which gives meaning to an occamprocess. 
Many of Iheoperators used ace similar to those of [26], or those used in giving a semanti(S to CSP 
over the failures/ divergences model. The construction of several of the operators is explained in 
detail in [7, 8J. Several of the dauses contain one or more conditions 'provided . .. 'whicll exdude 
error conditions. VJhen these conditions are not met, the value of the dause is always the bottom 
element with appropriate alphabet. Foe brevity, when no confusion as to the intended alphabet 
could arise, the bottom process with appropriate alphabet will be referred to as l.Q. The third 
and fourth c.omponents of the semantic function (oP and iP] are global, and suitable dE'finitions 
for them are thus given first. 

{li.,P) ifPI'1 = (p,i) 
.PX (oul,p) if p X = (p,£J 

undefined otherwise 

{ro ifPIQI=~ 
iP po	 rw Ifpo=u 

undefined otherwise 

Below ace given the semantic clauses of the language. Several dauses ace split intoseparate 
definitions of C1 and Ct to aid clarity. 

c, [STOP)P" HI), X) I X c; (dom(.p) U Ulll 
CdSTOP]pas o 



24 .3 DENOTATIONAL SEMANTICS 

stoppo will be used as an abbreviation for C[STOP] pa. STOP never communicates or tenninales. 
It merely refuses everything offered to it. 

c, [SKIP)pa llO, X) IX C; dam(¢p)) 

if,~(){ Jal{aI9Po~rw}}CI! [SKIP]PO"S otherwise 

skipp" will be used as an abbreviation for C[SKIP]pa. SKIP never communicates, but must 
terminate leaving the contents of all mutable addresses unchanged. 

C[el := et]pl1 := skippo' 

where [v [et] pO" = v 1\ [del JpO"::: >./\ (7' = update a >. v 

provided [v [c£]pa ;fJ..£ 1\ [de/lpa rf.lE 

This process also terminates without conununkating, but modifies the termination stale to take 
account of the assignment. In order to maintain strictness it is necessary to ensure that the right 
hand side is not erroneous and that the left hand side refers to a mutable variable. 

C1 lei, ... ,en := 11,.' .,fm]Pu {lO,X) IX C; dam(¢p)) 

(a.j{oI9pa~,wll if.~()
Ct [ej, ... , en := /J •... ,fm] pas { o otherwise 

where [,L [e I] pO" == >./ /\ ... /\ [;L [en] pO" = >'n /\ 
Ev.(IJ]pO" = l.!Sl /\ ••• 1\ [;v,.[Im]PO" == t'8",/\ 

vs == t181 VS!! ••• vSm /\ 
O"! = update 0" >'1 VS[O] 1\ ... /\ 

0"" == updalcO"n_l >'n v."l[n - 1] 

provided EL(edPO" :f1.£ /\ ... 1\ EL[e,,]pO" #1.[/\ 

EdId pO" :f 1.£ /\ ..• 1\ El' [1m.] pO" # 1.£ /\ 

(m = 1 V m == Il)/\disjoinl(el, ... ,e,,) 

Multiple assignments are possible in the language. The right hand sides are all calculated before 
any updating of the left hand sides occurs. The process terminates without conununicating, 
modifying the final state to take account of each of the assignments. It is necessary to ensure 
that the left hand sides of a multiple assignment are disjoint, a task achieved by the auxiliary 
function disjoinl; the definition of this function is straightforward but verbose and hence not 
induded. The dlsjointness rules of occam (together with the severe anti-aliasing laws) mean 
that, once all the right hand sides have been calculated, the order in which the assignments are 
done is unimportant. An arbitrary decision has been taken to carry out the assignments from 
left to right 

.7CO[c!oejpa ifeel'jpaE CHAN 
C[c!oe]Pl1 == :rPO[c!oePl1 ifEccPtJETYPxPORT

{ 
1. Q otherwise 

The way in which a process outputting an output expression 10l"!} behaves depends on the 
deslination of the expression. Hence the above dause uses two au){iliary semantic functions, 
one lo deal with output over a channel and the other to deal with output to a port. 
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.JCO/[doe]pO' {((), Xl I X £; (dom(¢p) U {/J - {x))) U 

(((x.~).X) I X £; dom(¢p)) 

.JCOde!oe] pO'S { 
{o j{a I \ppa ~ ncJ) 
o 

if, ~ (x-P) 
otherwise 

where [c[c) po =X A U [""] pax = ~ 

providedU["")pa([c[c)paJ,, '-c A 
3p E PROT. ¢p([c[c)pa) = (oo',p) 

Output over a channel proceeds by passing the communicable value along the chaJUlel then 
terminating in an unchanged state. In such a situation it is necessary to verify that the channel 
is suitable for output within the current scope and that the output expression is not erroneous. 
The semantic function U evaluates rommunicable values. 

UrI",,]pa if 3p E CTYPJ&. pIx] = (p,.1 
UI",,)pax= Us[""jpa if3pE{ANYJUCTYP2,p[x)~(p,Q) 

{ 
.i£ otherwise 

Auxiliary semantic functions (UT and Us] have been used to split the evaluation of comrmmicable 
values into two parts; UT deals with the case ofch~lswith tagged protocols and Us deals with 
the case of channels with simple or sequential protocols. Propagation of erroneous expressions 
in the desired manner is aided by use of the strict tupling constructor (.. .).1' 

Urlr)pa Plr/
ifpz]ETAG 

urlr; ""jpa (Ur!r)pa,Us [""j PO)L 

Ur!""jpa '-c 
otherwise 

Once the tag has been removed from a communicable value over a channel with variantprotocol, 
the remainder of the communicable value may be dealt with as if it were a communicable value 
over a channel with simple or sequential protocol. 

Us[c]pa [v[clpa 

Us[e/:: et]pa (~,,~,h 
wherefv(e~]pO'::::v/\f\.,[edpO'=fJJ/\lJ[O ··1111=,jJ~ 
if 0:::; fv[edpO':::; #(fv[e£]pqj 

Us[el ;e£ ;''';(',,]1'0' ({JJ ,11", ... ,{3"h 
where Us I'Jl 1'0'::: P, /\ Us [e£] PO' :::: PI! /1 ••. /\ 

Us ell 1'0':::: P" 
Us[",,]pa = '-c 

otherwise 

Communicable values over a channel with simple or sequential protocol can be variable length 
arrays. When this is the case tha-e is no reason to pass on any part of the array oulwith that 
specified by the length prefixing the array. 
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J PO 
, [doe]p" : {((), XliX ~ dom(¢p)) 

J Po [, ) {{"l{OII'PO:""}) ir,~ () 
~ C.oe prrs = 0	 otherwise 

provided [v loeJpCT ::f 1-£ 

Output to a port is identified with SKIP within the current model; strictness, however, must be 
ensured. 

J"!C?;'IP" if[C!C!P" E TIMER
c[ ?"] _ :TN c?ie pa iffc c prr E TYP x PORT 

c.le pf7 - :JGl c?ie p17 if [c cpa E CHAN{ 
1- Q otherwise 

The abovedause relies on the fact that all occam types are finite. since without such an assump­
tion it would not be possible to provide afinite set of tennination states in the second component 
of the process description. As with output, the behaviour of a process which inputs an input 
expression (if] depends on the source of the input; auxiliary semantic functions deal with each 
of the cases. 

The first case to be dealt with is that of input from a timer. Within the current model, this is 
to be identified with the assignment of a random member of nIT to the variable. 

JTI, ['?;')P" =	 «((),X) I X ~ dom(¢p)) 

JTI [,.) { {(updQ'," ([di,]p") ,) j{a I 'Ppa = cw} I Z E INT} if, = 0 
J! r. Ie pus = 0	 otherwise 

Next to be considered is input from a port. The decision was taken to model such actions by 
the assignment of a random value of appropriate type to the variable. 

J",l,?i,jp" :	 {((),X)IX~dom(¢p)) 

In 1' J - {{(UPdn,," (hli,)p")") I {a 1~po = cw} I v E I} if, = 0 
r c. If' pUll - 0	 otherwise 

where [c!c]P" = (t,~) 

Finally, input can be over a channeL Such an action proceeds by first accepting a value on 
the channel (it cannot refuse any communicable value] then terminating in the final state which 
results when the value inputted has been substituted into the current store. Errors result on an 
input over a channel if any variable mentioned cannot be written to, if the channel cannot be 
used for input, or if arrays are accessed out of bounds. 

JCI,I'?;']p" =	 {((),X)IX~(dom(¢plUU}-{X}llu 
{((X·I1)· X) I X ~ dom(¢p) A 11 E x} U 
{( (x·I1)', XliX ~ (dom(¢ p) U UJ I A 11 E X A new"''''li,] P"11 =.ls} 

{(news,o,,[i,]p"p) I {o Il'pa = rw}) 
if s = (X .f3} 1\ f3 EX1\ nf'WStore ie] PO'I1 ::f los:JC11[c?ie]pO's 

1.	 if s ?: (x .f3) 1\ f3 E X 1\ nf'WStore [ie ] pu f3 ::= los{ o	 otherwise 

whereEc[c)pu= X 

provided 3p E PROT. ¢p(Ec[c)pu) = (in,p) 
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Because a communicable value may not consist of an atomic item, it is not possible toalter the 
store directly with the function update already defined. This problem is overcome by !:he use of 
the auxiliary function l1ew5tore. 

newstore[~ ]pa-IJ uplin', 0 (tL[,)po)P 

newstore[e/ :: e~]pO'(lJl,lJt)	 update 0" (tL[~~] pO'I) IJ, 
whereupdale 0' (td~dpO')lJl :::: a' 

newsto", [" ; ... ; ,.] po(P" ... , P.)	 l1ewslOn:[~t; . .. ; ~ .. ]pal(}3t, .. ,.a.. ) 
where a' = l1ewslore [1:/] puP, 

newston: [j~ ]pO'IJ .Ls 
otherwise 

C1 [c?CASE lag] po	 {(O,X) I X ~ (darn(¢p)u {.'j - {X))) u 
((x·,),x) I X ~ darn(¢p) A' E j' A p[tog) ~ ,j u 
((x.'iJ)', X) I X ~ (darn(¢p) U {.')) A '!! E j' A p[log] ;I ,) 

{ol{ol",po=,",)) if, = (X.')A<E'j'Ap[,og] =, 
Ct [C?CASE tag] pO's .1 ifs~(X.L.o)I\LIJExflp[lag]:fL

{ o	 otherwise- ­

where tc [c]PO' = X 

provided tel'IPo E CHAN Apltog) E TAG A 
3p E PROT. ¢p(tel']po) = (in,p) 

In occam it is possible to construct a process which expects to receive input over a channel 
with variant protocol prefixed by a particular tag. Above is given the dause which deals with 
the case where the expected tag does not carry any dala with it If the lag received does 
not match the expected lag, the inputting process behaves like the bottom process from the 
communicatiOll onwards. In order to improve darity, within the above dause x.~f!.. has been 
used as an abbreviation for an arbitrary tuple of length greater than or equal to one whose first 
element is the tag L. 

C1 [C?CASEklg;ie]po =	 {( 0, X) I X <;; (darn(¢p) U (.') - {X))) u
 
((lx.'P), X) IX <;; darn(¢p) A ,p E X A p[tog] = ,j U
 
{(lx.'P)" X) IX ~ (dam(¢p)u [.'j)A ,p E X A
 

p[tag] == , fll1ewstore [ie] PO'IJ =1$} U 
((Ix.'!!)', X) IX <;; (dam(¢p) u (.'j) A '!! E X A p[log) I ,j 

{Inewsto", [i,]poP) I (o I ",po = <'W)) 
jf $ == (X.L}3) fI t.o E X fI 

p[wg) =, An....to"' [i')poP I.Ls 
c~ [e?CASE klg; ie ]pu s .1 if s 2. (X.t}3) fI tlJ E X /I 

p[klg] == L fI newstore[ ie]pO'.o =.1s 
.L if, ~ Ix.'!!) A '!! E XA p [,og) I' 
o otherwise 

wheretc[c]pu:::: t 

provided td')po E CHAN A p[lag] E TAG A 
3p E PROT. ¢Pltd,]po) = Un,p) 
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Above is given the clause which deals with the case where the expected tag carries data with 
it. If the tag received does not match the expected tag, the subsequent behaviour is again 
equivalent to the bottom process. X.t(3 has again been used as an abbreviation for an arbitrary 
tuple containing L as its first element and withirl the clause a second abbreviation appears; x.L(j 
is used as an abbreviation for an arbitrary tuple of length greater than one whose first element 
is the tag •. 

{ 
skip"" if n == 0 

CISEQ(P"P, •...• P.1Ipe~ g<J(Clp,)pe)(C(SEQ(P, •...• P.l]p)e othenvise 

Here .!E1. i5 the function which takes arguments of type Q. S _ Qand S and retumsan element 
of Q. Notice that the third argument (of type S) is necessary since it is used in order to provide 
the corcectcontents of 'read-only' variables with which to calculate the process description. The 
function ¥!1 is defined 

f(§El ABO") =	 {(,.X) I ('. X u (-'I) E I(A)) U
 
{(,.. X) I Je'. e' E t(A), A (v. XI E I(B(e if! e'))} U
 
{(,..X) I t(A),~.L A (,.X) E/(A).,)
 

I 
U{t(B(eif!e'))v IJv.,: vv Ae'E t(A)v) 

if(,.0) E/(g<J A BelA t(A),,'.L A 

$u, v, CJ' • 3 = \IV 1\ (1' E t( A) u 1\ t( B(CJ EIl O"'))v =.1
t(~A B a)s 

.1 if t(A)9 =.1 Y 

3u,tJ,a'. S = UIJII a' E t(A)u II t(B(I76'a'»)v =.1 

o otherwise 

If n = 0 then SEQ (PI. Pr. •.. . , Pn ) behaves exactly like SKIP (terminating. without conunu­
nicating, in an unaltered state]. Othenvise process P J is run until it terminates suo::::essfully, 
the initiaJ store of SEQ (Pr., ... , P,,) being formed by updating the initial store of PI with the 
infonnation contained in the final state of PI. Note that PI cannot refuse a set X of channels 
unless it GUl refuse X u {,;}; othenvise it would be able to terminate (invisibly) and pass control 
to SEQ (Pe, ... ,Pn ). 

C[SEQ:r: = eJ FOR ef p]pu = (P, .P,. x) (c Ip]) pe 

where tv [eJ]pa = (JI II fv [e.t) pa = iJt. 

provided tv [eJ]pa E !'NT 1\ £ v [e2]pa E INT 

Here ~is the function which takes arguments of type INT x INT x IDE, ENV -+ S --- Q, 
EN V and S and returns an element of g, and is defined 

skip"" ifp, = a 
~ (!JI>(Jr., x) D per = §g (D(p[(JJ/x])a) (~«(Jt + l,(Jr. - 1,:r:) D p) a 

if 0:::;: (Jl :::;: MOSTPOS INT II 0 < {it.{ 
.1 Q	 othenvise 

This process carries out a replicated sequential oommand. The number of the iteration currently 
being executed is recorded with the help of an auxiliary variable, slored in the environment as a 
constant in order to avoid it being used in an unacceptable way during an iteration. 
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s~ Un=O 
C[IF (C" ... , C.Jlp" ClrrCl]pO' ift!> OAI[C1]p<r=lrue{ C[IF(C,,. .. ,C.J]P" otherwise 

provided I [IF (C" .... C.l)p" f J.( 

Care must be taken to ensure that if, on traversing the branches of the process in order, an 
erroneous guard is encountered before a guard which evaluates to true the process is mapped to 
the bottom element (..LQ). 

Clrlb pIp" C[p]P"
 
C,,[IF (C" .... C"J)P" c[IF (C" ... , C.))P"
 

Clr[IFx == e/ FORe2 C]PO' C [IF x = et FOR e, C]PO'
 

ClrlLl' C)P"	 ClrI C) (V [Ll)pJ" 
provided V [Ll)p fJ. 

Clrle ,C)P" ~	 CIF [C] (A [e)p" J" 
provided A[e]p" fJ. 

Giving a meaning to a branch of a conditional dosely resembles giving a meaning to a process; 
the only difference is the boolean guard at the innermost level which must be dropped. 

The auxiliary function I is necessary in order to allow for the possibility of nested 'IF's. The 
function returns a value indicating whether a given branch should be followed, taking account 
of the status of any nested guards. 

When nested replicated conditionals appear, a much dearer description results from the 
decision to explidtly substitute the index value into the body of the conditional. Distinct en­
vironments for each index value could, if desired, be used to avoid this substitution, but their 
indusion was not thought necessary. 

IlbP)p" <v[b)p" 

fE!g ifn~O 

true ifn:> OAI Cj pu=lrue
I[IF(C" .. .,C.))P" I[IF(C~, .. ,c,.)]PO' ifn> OAI(CJpU=k!g{ 

1.£ otherwise 

I[IF Z' = e, FOR e.e C]PO'	 I[IF(C[~'(xl.·.. ,c[~, +~, - I(,I))p"
 
where [[eJ],oo =131 A[fe.! ]pa = 13~ A
 

il </"jPO' E INT A l'(e.t pO' E TI1T A 
[ e, pO' > 0 A 

t ej pO'+l'(e.t]pO'~l ~MOSTPOSINT 

I[L!' C)P"	 I[C)(V[Ll]p)" 
ilV[~)p fJ. 

I[e,C)p"	 I[C)(A[e)p")"
 
if A [e)p" fJ.
 

I[C)p"	 J.(
 
otherwise
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A conditional with zero branches behaves like STOP. If one or more branches are present, the 
branches are traversed in order, the body of the first branch whose guard evaluates to true being 
executed. 

C[IF Z = e/ FOR ef C]PO' = rcond (13,,13I.,z) [C]PO' 
where l'v lei ] pO" :::: PI /\ [v [ee.]pO" = Pt. 
provided [v [eJ]pO" E INT /\ £ v [€t.]PO" E INT 

Here rcond is the function defined 

stop if fJe. = 0 
CTF fC] (p[~;fx]). if I[ C] (p[~;f xJ). ~ true A 

o :S 13/ :$ MOSTPOS TNT 1\ 0 < f3t 
l'('Qnd (IJ/ "J2• xl [C]PO" = ~ rcond (PI + 1 ,fJt - 1, z) [C]po 

ifI!C](pi3,jxJ). ~~A 
o :5 (31 :S MOSTPOS INT 1\ 0 < Pt 

1. Q otherwise 

This proces carries out a replicated conditional command. Again an auxiliary constant stored 
in the environment records the number of the current iteration. A repliGlted conditional re­
evaluates the guard(s) on each iteration; the body is carried out with the value of the index equal 
to the smallest integer which makes the guard evaluate to true. 

C[C?AFTER e]p(1 = skipp" 

provided l'y [e]pa E!NT /\ l'c [c]p(1 E TIMER 

Input delay is equated. with SKIP in the model. It is, however, necessary to check that the 
expression is suitable and that the timer is not erroneous by dint of the value of subscripts. The 
acceptability of equating input delay with SKIP is due to the fact that the presence of AFTER 
within a process does not ddermine the behaviour of the process (e.g., influence which branch 
of execution is followed I; it merely alters the timing characteristics (which ace not dealt with by 
the model). 

C[WHILE bF]p. ~ (U F"(~{s_Q(C",)). 
,,=0 

where F: (5 --. Q(C.L) --+ (5 --+ Q(C,L) is the hmction defined 

"'"' (C[F]p.') B.' if [Y [b!P.' = true 
F(B)a' = skipp~' if l'y [b pa' = false

{ 
.1 Q( c .L) otherwise 

This is theoruy form of recursion allowed in occam, and the functionality of the above definition 
depends only on the continuity of ~. In fact all the operators used are continuous. 

stopp<r if n = 0
 
C(CASE ,(C"" " C")]p. ~ eM, (fy [')P.) 0 (C(STOP]p) P [C"" " C"]p.


{ otherwise 
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Here case is the function defined 

BO' if n = 01\.81:- 1-(= ~ (A U {ELSE}) (e[ P']p) e IC., ... , C.le" 
if n > 0 1\ CJ :=" ELSE pi A 
ELSE1AA~¢A 

case ~ (A U {ELSE}) B e [C., . .. , C.]ea 
if n > 01\ C1 = ELSE pi A 

ELSE ~ AI\(J E A 
case ~ (A U {[v [" ]pa, ... ,[y [,.]pa)) 

(G[P']p) d C., . ., C.]"" 
if fI > 0 1\ C1 = (eh' .. , em) P'I\ 

[vI,,)pa 1 A A··· Afvl,.],a ¢ A A 
case(j A B ~ [CJ'C~, ... , Cn]PO' = 

fit p ICdpa ='ru, 
,"se ~ (A U {[vi" pa, ... ,[y (,.]pa) 

Be Ic., ... ,C.)p" 
if n > 01\ C1 = (el, ... ,e",) P'I\ 

[vI'dpa 1 A A .. · A [vI,.],a ¢ A A 
fit ~ ICd pa =false 

case ~ ABe IC, C" ... , C.] (VILl]p)a 
if n > 01\ C1 =.1; C 1\ V[.1]Pf.L 

case ~ A B" [C, C" .. , C.] (Ale]pa)a 
if n > 0 A C, ~ e, C AAle]pa,'.L 

.LQ otherwise 

It is necessary to supply the initial environment (~J as an argument to ease since declarations or 
specifications prefixing one branch of the CASE command must not be allowed to influence later 
branches. When it has been decided that a particular branch should not be followed, not only is 
the process contained within the branch dropped, but the initial environment is also reinstated. 
Care must be taken to ensure that case is strict - even if the expression of a CASE command is 
erroneous, a branch with an erroneous guard must not be followed (although both are mapped 
to .L£ by [v). While traversing the branches of the O.SE command, a note of the values which 
have already appeared as guards must be kept since it is not permitted for the same value to 
prefix more than one branch. A branch prefixed by an ELSE guard requires special consideration, 
since its body may not influence the behaviour of the process. 

Within the definition of case an auxiliary functionjit appears. The purpose of this function 
is to determine whether a given branch of the CASE construct should be followed. 

lru, if C = e P 1\ [v [e) pO' 1:- .L£ 1\ [VI'jfXl = fJ 
ifC=ePI\[v[e]PO'1:-.L£I\[v e fXl1:-fJ~ fil ~ IC]pa { Vf=,fi ~ I" p)pa if C = (e/> ... ,e,,) P 

.L, ' otherwise 

(where V is strict) 

This process carries out a CASE command. The (necessarily unique) choice whoseguard matches 
the given expression is followed, subject to the restriction that a choice guarded by ELSE is 
{allowed only if each of the other guards evaluate to /f!lg. The guard ELSE matches any proper 
expression; in any given CASE command of an occam process, only one guard maybe equal to 
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ELSE. A CASE conunand with no branches (or one where the given expression does not match 
any of the guards) is equivalent to STOP. 

C[PRI ALT (A" A" ... , A.l]pa ~ C[ALT (A" A" ... , A.l]pa 

As previously described, priority is not ronsidered, and so a rather less deterministic meaning 
than expected may result. 

C [PRI ALT z ::: (;'/ FOR f!, Alper = C[ALT;r ;: (;', FOR e! A]pd 

Priority is also ignored in replicated alternations. 
It is necessary, however, to model alternations accurately. In occam, apart from CASE con­

structs or nested alternations, there are two types of guard (input guards and SKIP guards) 
which can appear within an alternation. The existence of SKIP guards provides a slight com­
plication SirH:e they work differently from input guards. The neatest solution is to extend the 
domain of C to indude all guarded processes and to invent an auxiliary semantic function, 'R., 
which will serve a similar purpose to the one used for conditionals and tell whether any SKIP 
guard is ready. In what follows, G will represent a guard not containing a bcK>lean (either SKIP 
or c?e or c7AFTER d. 

C [P)pa if G ~ SKIP 
C[SEQ (G, P)]pa if G = c?e

e(G P)pa 
SIOPI}<T if G = c?AFTER e A{ 

eel,]pa E TIMER A £v [,]pa E = 
stop" if[v[b)pa~Mg 

C P]pa if [ylbjpa = true A G = SKIP 
e!sEQ(G,Pl]Pa if [y b pa = true A G = c?eC[bkG p]p" 

1 
stoppD iffy bpa=trueAG=e?AFTEReA 

[c['lpaE TIMERA£v['lpaEINT 
~Q otherwise 

stopI}O if£vlb)pa~.&!g 
C[1&CASE (T" ... , T.l)pa C[CASE(T,,. .. ,T.))pa if £v Ib)pa = true

{ .LQ otherwise 

Above is the extension which must be added toC to simplify alternations. Although not in itself 
complex, it provides a great simplification in what follows. 

Notia that the behaviour of a branch guarded by a delayed input (with or without an 
accompa!iying bcK>lean) is equivalent to STOP, providing the guard is not erroneous. This ties 
in with the decision that such branches should not under any circumstances be followed. 

C,(J,LT(A" ... ,A.)]pa = {((),X) I 3 i. R~A,~pa = '''''' (0, X) E C, \Ai)pa} u 
{((),X) IVi. R Ai po ~MgA (O,x) E C/ Ai)pa} U 
{((),XlI3i.C, Ai paO~.L}U 
{("Xl I,,, 0 A3 i. ("X) E C, [Ai)pa) 

C, [ACT (A" .. ., A.l)pa, U{C,(Ai)pa, liE {l, ,n)) 

provided R[ALT (A" ,A.l)pa".L, 
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1[any SKIP guard is ready then the process may choose (invisibly) to behave like thecorrespond­
ing guarded process. If no SKIP guard is ready then the process must wait for something to be 
communicated to it along one of the channels of the input guards. Note that if every alternative 
contains a boolean expression evaluating to.fulg then ALT (.4 I, ... , An) is equivalent to STOP. 

R[b&GPJpd 

n Ie?' PjPd 

n[c?AFTER e) pa 

n[ALT (A" , Ao)]pa 

RlpRI ALT (A" Ao)]pa 

n[ALT x = EI FOR Ef A]pu 

n[PRI ALT % = EJ FOR Ef A]pa 

n [c?CASE (Tj , • . , T,,)]pa 

r.*&c?CASE (T" . ... To I)pa 

R[d: A]pa 

R[e: A)pa 

RIA)pa 

~ 
[v[/l]po 
~ 

1
[v Ib!PrY 
[y b prY 
lot 

;[ G ~ c?, Mc[cjpa E CHAN 
itG=c?ell[c[c poE TIMER 
itG = c?AFTERell[c[c)paE TIMER 
if G =- c?e II Ec[c]pa E TYPx PORT 
ifG=SKIP 

otherwise 
if [v[b]po E BOOL 

!Else if[clc!paE ClfAN 
lrue if [c c pa E Tl}/ER 
true if [c c pa E TYP x PORT{ 
lot otherwise 

~ 
if [c[c]pO'E Tl.UER 

Vi", R[A,]pa 

V:", R[A,jpa 

RIALT (A[~,jrl,···,A[~, +[3, - !lrD)pa 
where Ev Ie! )pa ={3/ II [vfee]pa ={3f 
if[y[el]paEINTII[y[ef paEINT/\ 

[vl,,!pa> 0/\
[~, C1 pa+[v[e2]pa~1 ~MOSTPOSI!lT 

R[ALT (A[~,jrl, .... A[~, +~, - llrD]po 
where [y [edPO' = /31 II Evfee]pa = {31 

j{Evl"!PUEINTIIEyle;<> paEINT/\ 
[v ef pa> 0/\ 
Ey ej pa+[v[e:l]po-l:S;MOSTPOSINT 

~ 
if [c[c]pa E CHAN 

~~ 

if [c[cjpa E CHAN Mv[b)pa E BOOr; 

1lIA)(V[d]p)a 
ifVld]p#l 

RIAj(A[e)pa)a
 
if Ale)pa #l
 

l,
 
otherwise
 

(where V is strict) 

Any guard dependent on a future input cannot possibly be ready and so cannot take value 
tru~.. However, when considering such guards prefixed by a boolean, it is necessary to maintain 
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strictness. This is achieved by explidtly checking foe erroneous boolean expressions. Branches 
guarded by delayed input must not be followed; this is despite the fact that input from a timer 
is not visible and is necessary in order to prevent the premature exit from an alternative and 
the resultant Cllrtailed behaviour. As a result of the above, the availability of recovery from a 
deadlocked process is removed, but its reinstatement in order torneet timing constraints remains 
a valid refinement. 

Nested replicated alternations can occur. The readiness of a particular branch in such a 
situation GU1 be calculated independently of the other branches, since the property of being 
ready cannol be influenced by the other brances. The substitution of the index value within the 
body of a nested replicated alternation is carried out directly in order to aid clarity; it would be 
possible to adapt the environment separately for each branch, but such action was not thought 
warranted in this instance. 

C[ALT x = €I FOR e! A]po = roll (f3l,JE,:r) (.4]po 

where £ J' Ifl ] po == tJ/ II £v [f! ]po = fJ2 

provided £'( I" !PO E INT II [l' [l"dpa E INT II 
£'( (t po 2:: U II 
£'( tJ]po + £\, ie!]po - J s: MOSTPOS 1NT /I 

R IALT (A[~dxJ, ... , A[~, + ~, - J /'D]p," 1., 

Here mit is the function defined 

J(rnlt(;J,,~,,')IAJp,) ~ {(0.XI13iE{~" ... ,~,+O,-1). 
RIA](P[i/'D. ~ /rue to (I),X) E e, IAI(p[i/'D.) u 

{( 0, X l IViE {B" .. .,0, + 6, - 1) • 
R [AJ (p[i/xD. ~ fE!g to (I), X) E e, IAHp! i/,D.) U 

{(0.XI13'E{B" .. ·,0,+0,-J). 
e, [AJ(p[i/xD'O =1.) u 

{("Xll'~Oto3iE{~" ... ,0,+~,-1)· 
("X) E e, [Alip!i/xD.)) 

'(mit (B"O,,'I [.4Ip'l' ~ U{Ce!A](p[i/'D<>I iE {~" ... ,~, +/3, - J)) 
The definilion of a replicated alternative differs substantially from the other clauses concerned 
with replicated processes since it is necessary to consider all branches at once. (Unlike a condi­
tional or St'quence, the behaviour of a constituent part is not independent of those following it.) 
An auxiliary constant stored. in the environment records the value of the index at any point, and 
care must be taken to ensure that the environment is correct throughout. Note that a replicated 
alternation in which any of the branches are indexed by a value greater than MOSTPOS 1NT is 
identified with the bottom process (1. Q). 

e,[c'CASE(T" ... ,T.l!p, ~ {(O,Xl'X~(dom(¢p)u{J)-{X))}U 
{((x.,Ole,Xl I ,.J E" to 

- (~..\)EJ(a,lion,f3.p [T" ... , T.)p.)) 

t(adiofl ~Qp [T, ....• T,,]po-)s'
 
C2 [C?CASE(T1 , .•. , T,,)]pos if s = (X.Lf3)6' /I L,iJ E \'
 

{ o othen.vise- ­

where £c [C) po = \ 

provided £c[c]po E CHAN II 
3p E PROT. ¢p(fc[c)p.l = (in,p) 



In the above clause an auxiliary function aetion has been used. This function calculates the 
behaviour of the process after the tagged input. The function oetion requires the initial envi­
ronment as an argument since declarations and specifications must not be allowed to have any 
influence outwith their scope. As with the clauses concerning input over channels with variant 
protocol, tfJ has been used as an abbreviation (or an arbitrary value communicahle over the 
channel. ­

(Iction Lf!..!! [T, • T£ • ... TnJpa =:: 

.1Q ifn=O 
adio...!! ~fJ (! [T~ •. . " Tn] ea 

- if n > 01\ T, :::: tag P 1\ p[lDg) 1- L 

oetion If!.. e [Te, ... , Tn]ea 
if n > 0 A T, :::: lag; ePA p[tag) #­ L 

c!p!pa jf n > 0 AT/ =:: tag P 1\ p[tag] == L 

C P p{newstore[e]paf!) 
if 11 > 0 A T/ :::: tag; f PAp [tag] "" I 1\ 

newstore[e]pal3 rf.ls 
0";0" 'f!. e IT, T" ... , T.!(V[Ll]p)" 

if n > 0 A T1 :::: Ll : T 1\ D[.d]p #.1 
"/;on 'f!. e [T, T" ... , T.!(A[Bjpo)" 

it 1. > DATI =Q:TAA[61]po#-.1 
.lQ otherwise 

Giving a semantic interprelation is made more complicated by the fact that the action depends 
on the input in a detenninistic way. AI first glance, it may appear that the easiest solution would 
be to store the input and then aCI as for a CASE command. This is unacceptable sinQ! it requires 
lags to be storable - an assumption better not to make if it can be avoided. When the input 
carries data with it the auxiliary function newstore is used in order to correctly deal with the case 
where the data is not an atomic value. 

C [eRr PAR (Q" "', Q.)Jp" ClPAR (QJ,"" Q.)JP" 

C[PR1 PAR x:::: £1 FOR e~ Q]pa C(PAR x -= e I FOR e~ Q] pO" 

C[PLACED PAR (Q" ... , Q.)jp" C(PAR(QJ .... , Q.)jpo 

C[PLACEDPAR x = £/ FOR ee Q]pa CIPAR x = e, FOR ft Q]pO" 

C[PROCESSOR' QIp" ~ C[Q]P" 

provided [y [ e] pO" E TNT" 

Above is included a selection of clauses which result from the decision not to model priority and 
placement within the mathematical model. Care must be taken to maintain the desired SIDcb1ess 
properties. 

C [PLACE xAT" plpa ~ C [pIp" 
provided [y[e]pa E 1NT 

The decision was taken not to model the allocation of channels, timers or variables to absolute 
locations in store. Provided the expression is not erroneous, the placement is ignored. 

Next the semantic definition for the parallel construct will be given. As was found in [261, 
this proves to be the m.ost complicated to define. The first part of the definition shows how the 
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local environments required for each individual process are set up. The second part shows how 
the processes interact once they are running. Overall this gives 

skiPpo ifn=O 
C(PAR(Q" ... ,Q"))pa = { (all:=,(C[Pi]p,a))/Y otherwise 

h P {Q, if Q, E Proc 
were, = p if Q. = U, : P with Vi E PD and P E Proc 

The processes are run in parallel (Ill with their respectiveenvironmen15 (P.). The conununications 
local to the network are then hidden II Y). 

It was mentioned previously that the inclusion of parallel declarations was to be optional. 
When such declarations are not included, it is necessary to calculate the local environments by 
syntactic analysis. Because of this, calculation of local environments will be split into two cases. 

Parallel declarations present Given that parallel declarations accompany each process, the 
first step is to use them to calculate the necessary information concerning store and channel use. 
This is done by the following semantic functions, the definitions of which are not difficult but 
are omitted (or brevity. 

inchans PD - ENV ~ s ~ P(CHAN)+ 
outchans PD _ ENV ~ S ~ P(CHAN)+ 

ownchans PD -, ENV ~ S ~ P(CHAN)+ 
addrs PD ~ ENV ~ S ~ P(ADDR)+ 

To be dOOared as an input channel by inchans[ V.]pa, X must have status..!! or i in 1'; output 
channels mllst havestatus.!! or .£ in P; internal channels must have status.!!. in p. If an undirected 
l~) channel of I' is declared as an input {outputl channel by one of the parallel declarations, then 
it must be declared as an output [input) channel by another. To be declared as an address of a 
variable which can be assigned to, a must have status.!!. in p. 

In addition, the parallel declarations accompanying a parallel construct must satisfy the 
following collection of equations: 

inchans[U;]pa () oumchans[VJ]pa ::: 0 
outchans[Vi)pU () ownchans[VJ]pu ::: 0 
inchans[V;)pa n outchans [ V,] pa ::: 0 
inchans[Vi]pa n itlchans [VJpa ::: 0 whenever i :f- j 

OUlchans/Ui)pa n OUlchans [VJ]pa :::: 0 whenever i :f- j 

addrs / Ui)pa n addrs [VI) pu ::: 0 whenever i :f- j 

The first component of each Pi is the same as that of 1', and 

if X E ownchans / U,) po 
if X E inchans [lIi] pa 
if X E outchans [Ud pu 

p, Ix) ~ 1;m undefined if pix] ~ L subject '0 
Pi (x] == L~ Pj [xl = undefined whenever i:f- j 

undefined otherwise 
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Since it hasbeen assumed that thereare an infinitenumber of abstcactchannels, it willbeassumed 
that an infinite number are allocated to each Pi. Thus problems will not manifest Ihemselves 
when it becomes necessary; due to the presence of declarations. to allocate abstractchanne1s to 
each process. 

i/o Eadd,,[U,)pq-"­

1 

r il pIal E {~,!!} A a ¢ Ul'~' add" [U,]pq 
-;;ndejined if 3j f:- i. a Eaddrs[UJ pa

p;[aJ ~ [orund,jined if pIal ~ Lsubject to 
Pi [a] = L => Pi [a] == undefined whenever i 1- j 

undefined otherwise 

An assumption of an infinite number of addresses within the store has already been made, and 
so it will be assumed that an infinite number of free addresses (chosen in such a way to enSUTe 
that each process can allocate suitable slore space fcreach of its local variables) will be allocated 
to each Pt. 

Parallel declarations absent Wil.hout parallel declarations, it is not possible to derive a suitable 
local environment for each process by consideration of the process alone. This is because it is 
impossible to tell from examination of a process whether its inpuland output channels are shared 
by exactly one other proc:ess defined in parallel. The solution is a pair of semantic functions (WL 
and Wv) which input all the parallel processes and rerum suitable store and channel allocations 
respectively. 

Wv : Proc& -----;. ENV -- 5 VSTATUS&--0 

WL: Proc& ---+ ENV -----;. S -- LSTATUS"'" 

Using these functions (the definitions of which, as intimated earlier, are not included) it is trivial 
to provide suitable local environments. The first component of each Pi is again the same as p. 
For the other components. 

p;[,]	 W; 

whereWv[Ph .. ,P..]po == (w/, ... ,w.. ) 

p;[o] ~	 W; 

where WL[PJ, ... , p,.]pa == (Wl, ... ,w.. ) 

This completes the definition of the local environments. The set of channels on which com· 
munications are to be hidden ( Y) is found by examination of the local environments and is 
defined 

Y = it I 3;.J • p, [,I =i A p, h] = Q} 

The parallel operator (I)) and hiding operator (f Y) defined below are derived from the 
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correspondingCSP operatoes of [81. 

!(" 11,=, A,I = {(s, X) I 3s1 , ••• , .'I., Xl,.'" X . 
SI :::: S t dom(c(Ad) t\ t\.'l" ::: S rdom(c(A,,») 1\ 

('" X, ) E !(A,) A ... A ('" X.) E !(A.) A X <; X, u ... U x. I U 

{( '", X) 1X <; (U,=, dorn( etA,)) U VI) A 

S rdom(c(A 1 )) E traces(A J ) 1\ ••• /\ 

s r dorn( c(A.)) E tra",>( A.) A 3 ; • !(A;)(, I dorn( etA,))) =.L} 

iis E traces{a!li=1 A,)fI 
3 it :$ s. ('9' i. u t dom(c(Ai») E traces(Ai)l 1\ 

(3;. !IA;)(u rdom(e(A,))) =.L)
""11', ,,', " '@".) l (a 13 i. a E dom(I(A,))) Ij;,.." 

Vi.", E .(A.)(, rdorn(e(Ail))) 
otherwise 

Here s r X is the restriction of trace s to the set of channels X, so that 

orX = () 
s t X if a = X.{J 1\ X ~ X 

'(a) r X = { (, rXli a) if a =X.O A X EX. 

Note that within the definition of the final stales of the process, the contents of all readable 
addresses (not solely those which are mutable addresses of one of the constituent processes) 
are retained. This is necessary in order to preserve the information pertaining to addresses not 
mentioned by any of the constituent processes. 

The parallel operator works by allowing each process to communicate only in its own al­
phabet, and only allowing a given communication to oca..tr when each process whose alphabet 
it belongs to agrees. Termination can only take place when all the processes agree. The final 
slates of a parallel process arecalculated by collecting the final states from. each of the constituent 
processes and combining them. Because it is not necessary to allow each mutable address to be 
altered by one of the constituent processes, it is necessary to indude the initial slate lui in the 
combination of states. If u and a, differ on the value of thecontentsof an address, the contents of 
O'j must betaken; if two O'i differ on the value of the contents of an address, then either value can 
be taken, since by the disjointness rules this can never occur in occam. As soon as one process 
diverges, lhe whole system does. 

f(AIYJ =	 {(, l(dom(c(A)I- Y),X) 1('.xu l') E!(A)}U
 
{(', X) 1(u E trare>(Al 1u r Idom( cIA») - y) .,,} is infini,e}
 

1. if{uEtraces(A)luj(dom(c(A»)- Y)5s}isinfinite 
i(AIY)' = U{(!(A)u) 1 {a II(AIl')a = nc) 1 u I (dom(e(A)) - Y) = ,}

{ otherwise 

The hidiIlg operator is used to conceal conununications over channels which are internal to the 
parallel system. The above definition is continuous provided that only finitely many outputs can 
occur on any channel and that Y is finite. (The assumption of finite outputs over any channel 
has already been made; the finiteness of Y is a consequence of the assumption of any process 
using only a finite number of channels.) 

The operator / Y transforms communications over channels in Y into internal actions which 
occur automatically. Thus A/Y cannot refuse any set X unless A can refuse Xu Y, as an 



(internal) action over a channel in Y may bring the process into a state where it can accept an 
element of X. 

This completes the definition of the parallel operator PAR. 

sk.iPI'" if/h=O
C[PAR z = €l FOR e~ Q]pa = { (ullf~,(C[Ph;a))/Y otherwise 

where tv [edpo = IlL A tv [etlpO" = 13£ A 
{!, = p,fPl + j - 1 /z] 1\ 

p_ {Q ifQE Pro< 
- P jf Q = U: P with U E PD and P E Pmc 

provided £y 1"jPO E INT A tv [eJ!]pu E TNT A 
tv €t pa2:0/\ 
tv €/ po+t'v[et]pa-l .$MOSTPOSINT 

Once the framework to carry out a parallel command exists, replicated parallel commands offer 
no extra difficulty. Notice that each of the constituent processes is supplied with a different 
environment, taking account of the index value as well as the information provided by the 
parallel declarations or syntactic analysis. 

c(,J: p]pu = C[p](VPJp)u 

provided V [,J)p E ENV 

If a declaration precedes a process, the necessary changes to the environment are made before 
the process begins. 

cle: P)pu = C[p)(A[e)pu)u 

providedA(e]pu E ENV 

The clause dealing with processes prefixed by a specification is exactly as expected, with the 
relevant changes to theenvjronment being carried out before the process conunences. 

The only clause left to define is that concerning procedures. This is dependent on the way 
in which named prcx:edures are stored in the environment by declarations, and is ronsequently 
delayed until the function D has been defined. 

(3) THE FUNCTION D WIthin this section, the existence of the following semantic functions 
will be assumed. The definition of new is extremely implementation dependent; those ofnewchan, 
newtim and newport are verbose but not difficult. Hence none of the definitions are included. 

new TYP _ ENV _ LOC 

nnochan N· - PROT -----... El-{V -~ CHAN'*' 
newtim N° - p( TIMER) ~ ENV ~ TIMER" 

newport N" ~ p(PORT) ­ TYP ­ ENV _ (TYP x PORT') 

The function new takes in a type and environment. It returns a location which mly be used to 
store the cucren t value of a variable of the supplied type. The location returned will be such that 
it refers to a contiguous area of store, all of the addresses of which had been mapped to 1 under 
the third component of the environment. Any such contiguous area of the store is suitable; 
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the particular allocation strategy used will depend on the implementation of the store under 
consideration. 

The function newchan takes in a natural numbersequence (indicating the array structure of the 
required set of channe]s), protocol [that intended for each channel of the alTay) and environment 
and returns asequence. This sequence contains the information concerning the array of channels 
[the sequenceof abstract channels used to represent the array) which must be stoced in the first 
component of the environment Each of the abstract channels returned will have been mapped to 
Lunder the second component of the environment, and any such abstract channels are suitable. 

The function newtim takes in a natural number sequence (indicating the array structure of the 
required selof timers), collection of abstract timers and environment and returnS a sequence of 
abstract timers; the structure of the sequence returned will match that suggested by the natural 
number sequence. None of the abstract timers returned will previously have been allocated, 
and none will be contained within the collection of abstract timers, but no further restrictions on 
those which can result need be imposed. 

The function newport takes in a natural number sequence, collection of abstract JX>rts, primi­
tive or array type and environment and returns a pair consisting of a sequence of abstract JX>rls 
(mirroring the desired. array structure) and the type intended for each of the ports being declared. 
None of the tokens returned by the function will have been previously allocated, and none will 
be contained within the collection of abstract JX>rts, but any such tokens will do. 

In the dauses which follow it will often be necessary to evaluate expressions consisting solely 
ofconstantsoroperations thereon. The expression evaluation semantidunction has already been 
defined and adequately carries out this task. However, before applying this function, a state is 
required ~dlessof whether it is ever examined. VVhen a state is required, but cannot sensibly 
be accessed, °orr will be used. This state maps every location to error, and hence any expression 
dependent on it evaluates to -1£. 

Below are given the semantic dauses, using the functions above as necessary. Several of the 
clauses contain one or more conditions 'provided ... ' which exdude error conditions. When 
these conditions are not met, the value of the dause is L 

ifm =:. 0vIi,')·· ,[,,] 
if m > 0 /\ {Jm f:.-1{ ~m[A' lx, I··· [,1m Ixm]rrJ, ... ,L~lJp otherwise 

where [v [eJ ] po, =:. [3J /\ .. /\ [y [en]po~rr =:. [3" /\ 
new ((fi" ,fi.). r) p = ,I, A ... A 

new((!3I, ,[3,,},l')(Jm_l =>.,,,/\ 
martaddr >./ p = {JJ /\ ••• /\ martoddr >.'" (Jm-l = (Jm 

provided [y [eJ ] po.,..,. E INT /\ ... /\ [v (enJpo ..... E INT /\ 
r E ([BOOqUINTEGERuREAL) 

In the dause above the function martaddr has been used. Th is function takes in a location and an 
environment and returns the environment wh ich results when all the addresses referred 10 by the 
location have been mapped to.!!. The definition is dependent on the particular implementation 
of the store under consideration and is hence not included. 

Declaration of variables involves allocation of suitable locations and relevant marking of the 
addresses which are to be used to slore pact of the values of the variables. Errors result if l' is not 
a primitive data type. The type of each of the variables being declared is calculated before any 
updating of the first comJX>nent of the environment is done since otherwise array dimensions 
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containing the names of any of the variables being declared would not be given the correct 
ueatment. 

p ;fm~O
V(le,) (e.1 CHAN OF 

e".[YBI /rtl·· . [ys"./x",J if m > 0 A {J". il­[f,) [f., I T>, ,... ,Em] P { l- otherwise 

where [v ledpu..... :::: 111 /I. ... Atv [e ..]pa..... = (3 .. /\ 
tv fl]pa. IT ::::"'II/\···At v [/.. ,]pa.,.,.=I.'/\ 
p = (~" ... ,~.) A 1 ~ (1" ... ,1.,) A 
newchan (3("'I,T)p:::: ys,/\, ··A 

newdum(3("'{,T){Jn._1 =ysm/\ 
mnrlcchllMS ("'f, T) YSI p:::: {!l /I. .•• A 

rtUJrlcchllMS(i,1")YS m (2 ... _/ =(]m 

provided tv ledpa <Tl' E INT /\ ... /\ tv [e"j pam E INT /\ 
tv IdpamEINT/\··./l.tv[/", pa,... EHITA 
T E ({BOOL) U INTEGER UREAL) 

p Hm=OV({eJl l~nl CHAN OF 1"[ :: 
{]".[ysdz/J ... [ysm/zmJ ifm > O/\f1m il-IJlfd [f.,IT, r" ... ,rm)p { l- otherwise 

where tv ledpa.,r ~ (31 /\ .. -/\ tv [ellj pu.rr = 11.. /\ 
tv II ]pa' lT - "'II /\ ... /\ tv [In' pa'TT ="'I,,' /\ 
p=(~" ... ,B.)A1= (1', ... ,1.,)A 
newdum tJ (1"1 :: ("'I. Tf)) P :::: ySI A ••. 1\ 

newdum(3(1"l ::("'I,T-t))f!m-J ::::YSm/\ 
mllrtdlan5 (Tl:: ("r,Tf)) yS1 p:::: f!J A· ·fI 

marlcchlln5 (T[:: ("'I,Tf)) ys", {]m-J :::: {]m 

provided t v leI ]pu' lT E INT /\ A tv [e"jpCl. 1T E INT A 
tv II Jpa .... E INT /\ /\t v [In' prJ.,.,. E INT A 
1"1 E INTEGER A 

Tf E ({BOOL} U INl'EGERu REALI 

P ;[m=O
V (Ie, ) ... [e. 1CHMiCF 

l?m[ysdzd ... [ys"./rml if m > 0/\ f!m il-
MN Zl • • __ , Zm]P { 

l. otherwise 

where [v [edpu' lT = (3/ /\.,./\ tv [en]pu..... = 11.. A 
~ = (~" .. .,P.) A 
Tlewehlln 11 ANY P :::: ys [ /\ ... /\ 
newchlln {} ANY {]m-/ :::: YSm A 

marlccho.n5 ANY y'~J P = l? 1 /\ ... A 

mllrlcchaMSANY YSm l?m-I = em 

provided tv [el ]pa m E INT 1\ ••• /\ tv [e,,)PD'm E nrr 



42 3 DENOTATIONALSEMANTICS 

P if m = 0
1) [I,,] ... [,.1 CHAN OF 

Prn[YSI/XJ) •.. [ys",/x",J if m > 01\ em-Flo 
XX1""'Xm]p { 1. otherwise 

where tv [eJ ]puelT :: Ih f\ ... /\ ['r [enl pO'.rr = 13.. 1\ 

~ = (~" ... ,~.), 

newdwn ~ (P('I) P~ Y', , ... , 
newchan /3 (p x ) Pm-/ == YSm 1\ 

markchans (p x ) Y"J P = eJ 1\ ..• 1\ 

marlcchans (p x ) ys", f!m-l = Pm 

provided [v [edPO" m E "IN'f 1\. .1\ [v [en] po orr E TNT 1\ 

p['1 E PROT 

In the fOUf clauses above the function markchans has been used. 

markchans pOP == p 
markchans p (X: xs) p = mtlrkchans p xs (p[(p,EJ/xl) 

markchans p (ys : yss) p = markchuns p yss (markchans p yS p) 

Declaration of channels involves two stages. First, suitable sequences of abstract channels 
are found for each identifier and marked in the environment with the protocol of the channels 
being declared and the token~. Second, the environment which results is altered to associate 
each of the identifiers with its corresponding sequence of abstract channels. 

p ifm~O 
1)Il'd ... I'.] .== p[ys//Xt] ... (ys",jx",] ,fm>Ol\p¥.L

TIMER Xl,· • " X". 1P { 1- otherwise 

where [v (e/ l po .rr =13/ /\ ••• /\ [v [e,.]PCT. rr =13n /\ 
~=(p" ... ,P.),
 
newtim /3 0 p = ys/ /\ ... /\ newtim f3 A m _ 1 p = ys", /\
 
elements ySI = A/ /\ ••• /\ elements ySm_1 = A",_I
 

provided [v [el ]pam E !"NT /\ ... /\ [v [ en]pam E "Ill'l' 

Declaration of timers involves updating the environment in order to associate suitable ab­
stract timers with each of the identifiers. Care must be taken avoid allocating the same abstract 
timer to more than one identifier being declared at the same time; newtim achieves this. 

p ifm~O
V II,,j ...r,.] PORT OF . 

~ p[«"Y',)/"] .. ·[('.,Y'.)/'.] Ifm>O'p~~ 
I IJ] PIII .. II' rx/, ... ,x",1 { 1- otherwise 

where [v [e1lpa,rr = 131 /\ /\ [vlem]P17 = 13n /\ 
[v[J, po = 71/\ /\ [v f .. ,]p17 = 7 .. ' /\
 

~ = (~" ,~.)'" = (1" .. ·,1.,1'
 
newport /3 0 (7,r)p = (11 ,YsIl /\ ... i\
 
newport /3 A m_ 1 (7,r) P = (tm, ys",) i\
 
elements YSJ = A I i\ ... i\ elemenls yS"'_l = A ",-1
 

provided [v I"lpa E INT i\ i\ E v [en/po,.... E INT i\ 
[v II po E INT i\ i\ Ev [1.. , po.,..,. E INT i\ 
T E ({BOOL) u INTEGER UREAL) 



Declaration of ports involves updating the environment in order to associate suitable abstract 
poets with each identifier. As with declaration of tirnecs, allocating the same abstract ports to 
distinct identifiers must be avoided; newport deals with this situation. 

V [PROTOCOL ,IS [',] ... ['.)T]p ~ p[(((P" .. A),T))/'] 

where t:v eel ]pUm = PI /\ ... /\ Ev [e,,]PU err =: 13... 
provided Ev !"jpamE INT /\ ... /\ 

t: v ell PU err E n:fl' /\
 
T E ({BOOL) U INTEGERu REAL)
 

Identifiers may be declared to represent named protocols in occam. Above the case of simple 
protocols not consisting of variable length arrays is dealt with. 

V[PROTOCOL ,IS 7", "IJ [,,] .. ·[',1 T,]p ~ p{(T,:: ((P" ...P.),T,))/'1 

WhereEvl"jpaerr=13//\"'/\ 
t:v e .. paerr =: 13" 

provided Ey I"jpam . E INT f\ ... f, 

t:y e.. pa.rr E INT /\
 
71 E INTEGER /\
 
T, E ({BOOL) u INTEGER UREAL)
 

The extension to simple protocols consisting of variable length arrays poses no problems. 

V[PROTOCOL:r IS PI; Pl ; ... ;P.. ]p = p[YSj ... ys .. /:rJ 
/\ ... /\where ySj = (VIPROTOCOL :r IS PI/Pil'j 

ys.. = (V PROTOCOL :r IS P" pJ ;r; 

provided V!PROTOCOL:Z IS Pl/P ,#-.1. f, ... /\ 

V PROTOCOL :r IS p" P #: 1. 

The most convenient method of storing a sequential protocol in the environment is to treat 
each part of the protocol separately and then COncatenate the relevant contents of !he resulting 
environments. 

V [PROTOCOL :z IS CASE
 

(wE, ;p,),···,(t'E.;P.))p p[Ldrog11..• [t .. /lag,,][(t[ YSJ, ... ,t" yS.. )/J:j
 

where (V!PROTOCOL x IS PljP)!'j =YSI/\"'/\ 
(V PROTOCOL x IS p" p):z = ys. 

provided VIPROTOCOL:Z IS PljP ,#-.1./\ ... /\ 
V PROTOCOL :r IS P.. P #: 1. 

Care must be taken when storing a variant protocol in the environment. The first step is the 
allocation of a disjoint set of tags to the identifiers which appear at the start of each option of the 
protocol. The particular choice of tags is unimportant, and for this reason a sequence (without 
repetitionsl of tlle elements of TAG ({t[, tl, ...• t .. , ...)) has been assumed. Once tags have been 
allocated, the next step is to caJeulate the protocols corresponding to each dause of the variant 
protocol. Finally, the necessary changes to the environmentarecombined. The tagswhich prefix 
each dause of ill variant protocol declaration must be distinct; this is a consequence of the rules 
of occam. 
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The only clauses left to define concern procedure or function dedacations. While considering 
such clauses it will beassumed, for darity, that theidentitiers which appear as formal parameters 
of procedures or functions do not appeal" outwith their assoaaled procedure or function. Such 
a restriction alIl be verified during type-checking and failure to satisfy it can, if necessary, be 
rectified by simple textual renaming of the identifiers. In giving a semantic definition to such 
objects, the aim is to model the effect of copying the procedure or function body into the process 
at the JXlint of call, sequentially replacing each of the formal parameters by its corresponding 
actual parameter. The substitution required [both for value and (or reference parameters) closely 
resembles that necessary to deal with the abbreviation present in occam, and for this reason the 
decision has been taken to mention explicitly the dependence on the semantic function which 
deals with abbreviation. Although slightly unconventional, it is felt that within the context of 
this paper the increased clarity warranted such action. 

VIPROC,(f)~Plp ~	 p[r/,) 
where • ~ >.(py, PLi • >. T 0>. u' • C[PI (L:[T] I~I (PI, py, eLlu')u' 

Above is the clause governing procedure declarations. Free variables appearing within the 
procedure body are statically round to the name used in the procedure declaration. The binding 
of identifiers used for any procedure call is that of the environment at the point of declaration; 
the second and third environment comJXlnents used, however, are those from the JXlint of call, 
since this affords protection against illegal channel or variable use by parallel processes. \\'i.thin 
the above clause the auxiliary function £. appears. This function updates the environment in 
order to correctly associate the formal and actual parameters. 

p ifn=:O

ely!'" "Ym,V"" " VOl] 
VAL;; x£, ... ,xm,,,p,, ... ,Wn](A[VAL Xl IS yJ]pu)u 

ifn > 0 AWL =VAL;; XJ"",X'n 1\ 
Vj=yl, ...• yml\m>J/\ 

A\VAL XI IS vdpa jl.l
elv" ... ,v.)[W"".,W. (AIVAL x IS y]pu)u 

ifn > OI\VJJ =VAL;;X!\VI == y/\ 

AIVAL x IS y]pu J'.le h,. .. ,v.l Iw",.., w.IPu ~ C[y" ,Ym, Vt,·· " VOl] 
h-X!, ,xm,rP" ... ,1/J.. j(A[ZI IS ydpu)u 

ifn > OI\VJl = (XJ, ... ,xm /\ 

Vl=Yl,.·.,y",/\m>J/\ 
A\Xl IS ydpa jl..L

elv" .. ,v.)[~" .. ,W. (Alx IS y]pu)u 
if n > 0/\ VJl = ~ x /\ Vl = Y/\ 

A Ix IS y]pff J'.l 
..L otherwise 

Within the function £, errors are captured by the use of the semantic function A. 

Vlr" .. .,rmFUNCTION g(~) ~ 'Ip =	 p[r/,I
 
where 11'" =: ).,(flv,flL).).,T. ).,a'.
 

£y.[<](c[T] [ lII l(PI,ey,eL)U')U' 



Declaring fundions whose body consists of a VALOF command is very similar to procedure 
declaration; the only noticeable difference is that the semantic function £ vI< is applied instead of 
the semantic function C. 

V[T/, ... ,Tm FUNcrION 

g(lI')Is ' .. e,.. ""o)p ~ pI,/g) 
where 'If = ~(ev,eL). ~T • ..\q'. 

(£ v' I', j(C(T) \II'\(PI, ev, ")0')0') ... 
(£v.[,.)(I T [1I']IPi,ev,'L)O')O') 

The declaration of functions whose body does not consist of a VALOF command proceeds in the 
expected way. The items to be returned need not be atomic expressions. 

(4) TIlE FUNCfION A Several clauses contain one or more conditions 'provided ... ' which 
exclude error conditions. As before failure to meet these conditions causes the result 1- to be 
returned. 

A [VAL ~ IS e) po (r1'5trict e p)[O/ z1 
where £v [,)(o.gm",' p). ~ p 
provided £ v [e] (augment p)a 1:- -.Lt" /I contents e n wrabbr p = 0 

Here augment fJ is the environment whose second and third components are ideI1tical to those 
of p and whose first component is formed by replacing each occurrence of (!!, A, ..\) by..\. Use of 
this enviromnent allows value abbreviations to ma1;e reference to unabbreviated components of 
arrays even if the array is the subject of a current variable abbreviation. Collating the addresses 
which are the subject of a current variable abbreviation is the task of wrabbr, defined 

",...bbr P~ U{A 13), E LOC'(!',A,),) E p,) 

The above cJause deals with the abbreviation of an expression. On first glance it may appear 
that this situation should be covered by the semantic function V, but the dependence on the state 
q makes this impossible. Within the definition, the auxiliary functions restn'ct and contents have 
been used. The pur(X)Se of restrict, whose definition is not difficult but depends on the partirular 
implementation of the store under consideration, is to mark all addresses of any variable upon 
whose value the expression depends with!.. This prevents the values of any such variables 
being altered within the scope of the abbreviation, The function restrict is strict. The function 
contents, again implementation dependent and hence not defined, returns all addresses which 
must be accessed in order to evaluate the expression. This fadlitates verifying that no variable­
abbreviated addresses are referred to within a value abbreviation. In a value abbreviation the 
new identifier is assodated with a constant, the value of the constant being that oE the expression 
at the point of the abbreviation (and maintained throughout the scope of the abbreviation by the 
restriction imposed on the environment by the function reslrict). 

A [VAL (Z IS e)pa =A[VAL Z IS eJpa 

When considering only type correct programs, the inclusion of a spedfier within avalue abbre­
viation is superfluous. In order to give a semantic definition to the clause, the specifier is first 
omitted. 
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p[(o, l)/xIlC,,-,A,(o, '))/Y) if plyj E LOC A ply] = (0,') A 
A[zrSY]po == po Ei.!::,..!!}flabodey=A

{ 1. otherwise 

This clause carries out the abbreviation of a variable. The new identifier is associated with the 
location holding the value of the variable to be abbreviated, and the environment is further 
updated to prevent the abbreviated variable being used within the scope of the abbreviation. 
Calculation of the addresses holding the contents of the variable is left to the auxiliary function 
abode; the definition of this function is implementation depe:ndentand hence not induded. Since 
the value rffiIains at the same position in the store (although the name by which it is referred to 
is altered, its contents are left untouched), no difference in treatment is necessary regardless of 
whether it was permitted to write to the variable. 

("s'ric' " ')[(0, l)/xJ[(~, A, (0, I))/y) 
if fled e~J]p(T E LOC J\ [[td f.,t Jlpu = (Ct, t) J\ 

po] E f!.!!} AAlx IS ,,jp" ~. 
(""',,et " •)I(0, t)/xll(~, A U n, (0', ,'))/ y) 

A[Z' IS tl [~e]]P(1 if [lf1{€J!ljPU E (a X p(ADDR) x LOC)/\ 
[ ,,[,,) p~ = (!!, n, (0, ')} A pro] E {~,!!} A 

P y] =Cf!.,B',(o',t'»)/\B= B'A 
An B = 0 A A[x IS', I (p[(a', t')/yJ)~ ~ • 

1. otherwise 

where abode (fj ref]) :::: A /\ no.me e I =:: Y 

provided t:'(e/ [efJ]pO" E LOC + (~ x plA DDR) x LOC) 

When abbreviating a component of an array, there are several complications which need to be 
dealt with. 

Firstly, it is necessary to ensure that any variables which appear in subscript expressions 
are prevented from altering within the scope of the abbreviation; for this purpose the function 
res'nct is used. 

Secondly, it is the name of the identifier (and not merely a component of it) which must be 
marked as abbreviated within the environment; extracting the name of an identifier from an 
expression can be achieved by use of the function nQme, which (assuming that ;I: represents an 
identifier) is defined 

name x x 

name (e/[ef]) ruune £J 

TUlme [e FROM £J FOR fJd name e 

Thirdly, a list of the addresses whose contents have been abbreviated must be kept in order 
to ensure that further abbreviations refer to disjoint parts of the array. The function abode which 
appears within the clause dealing with variable abbreviation can be used to adequately carry 
out the technical aspect of this task.; the required list of addresses is precisely the union of those 
previously the subject of an abbreviation (and hence already stored in the environment) plus 
those picked out by abode. 



(restrict 'I (resln'eI " p) )((0, t) (x1{(", A, (0, ,))( yJ 
if £1[t: FROM f/ FOR t:!JlpO E LOC 1\ 

[[tFROMe/FORe,] pO==(D:,t)A 
p 0] E {!:,.!!} fI A[z IS e]pu = {l 

AI. IS [, FROM (restriel'l (res'rict " p»)[(o, ')(xll(",A U 8,(0', .'))(yl 
£1 FOR tl)] pO' if £lft FROM (:/ FOR etJlpD E (~X P(ADDR) X LOC) /\ 

[[eFROMe/FORe,] po.:::: (!!,B,(a,t)J\ 
po) E{c,!!)Ap[.) =(Q,B',(0',"))A8=B'A 
An B =0 A AI. IS ,)(p{(o'. ")(Yll" =. 

1- otherwise 

where llbode ([e FROM t:1 FeR e,1) == A II name t = y 

provided fHe FROM fJ FOR t!']]PO' E LOC + 
(Q x p(ADDR) x LOC) 

Slices of an array may also be abbreviated. Again the dause makes use of the functions resln"ct, 
name and abode to prevent ...ariables appearing in subscripts aJtering. to find the identifier asso­
dated with the component of an array and to calculate the addresses holding the contents of the 
slice being abbreviated. 

A[,. IS yIp" = A[. IS yIp" 

AI,. IS 'I [',I]P" = AI. IS 'd"l]p. 

A[, x IS [e nOM fj FOR e,J]pu= A[% IS [e FROM £/ FOH f,j)pa 

As with value abbreviations, the inclusion of a specifier within a variable abbreviations is redun~ 

dant. 

<reslriet' P)[(IookUP ". '(0,((1, . .. ,1.),T)))(.] , 
if £v [')P" = iJ AilE (il, .. ,iJ~),T)A 

A [VAL lh) .. ,[f.] T r' = l' A f3J X ... x 13... = II X .•• X '7'R A 

% RETYPES e] po new ((;'1j, ... ,f3m),'r') p = (0', t) 1\j (7' = update (1 (0', t) f3 
1- otherwise 

where £v[fdp" = 1/ A .. , A £v[f.)p" = 7. 

provided £v [f,)P" E INT A .. , A £v /I.) P" E TIlT A 
fv e]p(1 i:- 1-£ 

The only expression retyping which is to be modelled is the reshaping of arrays. Produdng a 
suitable clause for the semantic function is made more difficult by the detailed checking which 
must be carried out to verify that a given retype makes sense. The extra detail and possible 
ambiguity which allowing unquantified dimensions (0) would introduce was not <Dnsidered 
warranted for the very restricted fann of retyping modelled. and so it is insisted that every array 
dimension contains an integer expression. 
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pI(a, (b,,· . ·,1.), Tj)/,lI(!'., A, (a, (P" . .. , Pm}T')!!'] 
A Ilf,j ... ~.] T .f PlY) E LOC A p[.) ~ (a, (P" ..• , Pm), T)) A 

z RETYPES y] pu p[a] E L~,.!01\ T' = T 1\ 131 X .-. x!3rn = 1'1 x··· X '"(II{ 
1. otherwise 

wheretvlf,]pa = ", A···A [V [f.)pa = 1. A<lbode. = A 

provided tvlf,]pa E TIlT A···A [v [f.)pa E ruT 

.[(a,(b,,·· .,1,), T))/'] 
A[[t,] . .. [t.] T ife[,) = (a,({P,,. .. ,Pm),T'))A 

z RETYPES t'/ [e.!])pa T' == T 1\ /31 X ••. X 13m = "'f 1 X •• X 1'n{ 
1. otherwise 

where [vlfdpa = 1, A"'A [V [f.)pa = 1. A 
A[r IS ed"J]pa =. 

provided [v [11 ]pa E INT 1\ ••• /\ £v [fn]PO' E INT /\ 
A[, IS ede,J]pa;t.L 

.[(a,(b, "'1m),T))/']
 
A [[t,j ... [t.] Tr RETYPES ;f .[,) = (a,(p, . .. /lm), T'j) A
 

[e FROM t'j FOR t',tJlpa T'=T/\(31 x···xl3m =1'1 x",x1',.
{ 
1. otherwise 

where [v/I.)ea = ", A··· A tv [f.)pa = 1. A 
A [z IS [e FROM t'I, FOR e.!]]pO' = e 

provided [v (11 ] PU E INT 1\ ••• 1\ [vii,,] pl1 E 'I"NT 1\ 

A[z IS [e FROM t'j FOR ell prJ #1. 

As previously explained, the implementation dependent nature of RETYPES means that a 
generic semantic definition cannot be given. However, for one particular use of the constructor 
(reshaping of arrays), a semantic definition can be useful. Because of the similarity between 
retyping and abbreviation, the semantic definition given for retyping draws heavily on that of 
abbreviation. As with expression retyping, it is insisted that every array dimension contains an 
integer expression. 

(5) FUNCTION AND PROCEDURE CALLS Having given the clauses for procedure and 
functiondedarations, the form of the domain NP is known. NP consists of two distinct parts, 
one to deal with procedures and the other to deal with functions: 

NP = NPROC + NFUNCT 

NPROC = (VSTATUSx LSTATUS) ~ Ezp' _ S _ Q 
NFUNCT ~ (VSTATUSx LSTATUS)~ Erp' _ S -(v"), 

It is benefidal to make a dear distinction between the two components of the domain since it 
allows one to determine in which way to act immedialely given a particular identifier. 
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With the semantic function V having been defined, it is now possible to complete the defini­
tions of Cand Cby giving the clauses for procedure and function caJJs respectively. 

C[g(T)]p. =	 p[gl(pv,PL)[T!. 
provided Plgl E NPROC 

Having carefully designed the information to be stored in the environment when dealing with 
procedure declarations, the semantic clause to deal with procedure calls does not provide any dif­
ficulties. All that is necessary is to supply the relevant argwnents (second and third environment 
components from the point of call, actual parameters of the call and cu.rrent store). 

<[g(T)lp. =	 p[g](pv,PL)[T]. 
provided p(g] E NFUNCT 

As expected, the treatment of function calls is very similar to that of procedure calls; the only 
difference is the part of the domain NP in which the inform.ation associated with the idt!ntifier 
lie>. 11lere is no difference in the treatment of function calls where the function body consists 
of a VALO? corrunand and those where the function returns an expression list; the difference in 
behaviour is dealt with by thedauses of V. 

This completes the definition of the main semantic functions. A denotational semantics has 
now been given for occam (as far as the model allows). The semantics gives an interesting 
illustration of how the domain Q defined in the first part of the paper can be useJ to model 
concurrent languages, by means of reference to a specific example. 

Throughout the construction of the model, simplifications which could be made due either to 
the structure of occam or to decisions not to attempt to model particular aspects of the language 
were not made. This. along with the JXlwer of the failures/divergences model on which it 
was based, means that the model (sometimes with minor modifications) can cope with many 
possible extensions to the language. Theseindude more sophisticated value domains, recursive 
procedure definitions, and additional operators on processes. 

It is also possible to refine the model used in order to provide finer distinctions between 
processes. Within the semantic function C, for instance. no auempt has been made to differentiate 
between detectable and non-detectable errors. If such distinctions are desirable, the form of the 
domain of expressible values, E,can be changed (along with relevant changes to a srnall number 
of dauses of the semantic functions Cand 1» without necessitating major alterations to the other 
dauses. 
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4 Conclusions 

4.1 The structure of the semantics 

In the course of constructing a mathematical model and calculating the denotational semantiC:<l, 
many decisions were made. It is useful to examine some of these, incorporating a brief study of 
how certain of the restrictions imposed might have been relaxed. 

Most of the major decisions arose during the construction of the mathematical model; once 
the model is fixed, the semantics ofmost constructs are determined by their roles in the language. 
SevecaJ (adors influence the choice of model - it should be at the right level of abstraction; it 
should have suffident p:lwer to specify desired correctness properties; it should be able to cope 
with all the constructs of the language; it should be as simple, elegant and understandable as 
possible. 

It is possible to do without 'states' in the model. Variables can be replaced by suitable 
processes which run in parallel with the 'main' process for the duration of their scope; reading 
from and writing to variables is then equivalent to conununicating with the relevant process. 
Because one can use a 'purely parallel' semantic model, the task of constructing a suitable model 
is greatly simplified. The definitions of the semantic functions, however, become more complex 
and the balance does not seem right. Many of the advantages gained from similar experience 
with other languages are lost; in particular, the semantics of a 'purely sequential' occam fragment 
no longer bears much resemblance to a relation on states. Nevertheless, on programs without 
free variables, this approach would lead to a semantics congruent to that given in this paper. 

The model Q was devised with occam processes in mind. One of the restrictions of occam is 
that it is not possible for a process to include 'selective inputs' (for example a process cannot be 
prepared to input any even integer on channel X but refuse all other inputs ovec that channel). If 
such behaviour were permitted then it would not be sufficient to include solely channel names in 
the refusal sets of a process. A semantics for occam which were capable ofmode1ling processes 
induding 'selective inputs' (and which was congruent to that givenl muld be constructed using 
(O!Pt x P(O!P U {"r}) rather than (o:P)'" X P( CHAN U {"r}) to represent the failures of P. 

The techniques employed in this paper to incorporate the model N into Q would work 
for other alternatives to the failures model. A number of examples of this are currently under 
examination, including models for Tuned esp. 

Once the main model was decided, the majority of the semantic definitions were fixed. Some 
dedsions, however, were stiU made. An example of such a decision was the way in which 
communications over ports and timers were modelled. 

4.2 Applications 

There has already been much successful work based around the clean mathematical theory 
underlying occam. The language was designed with the need foc a dean semantics in mind, 
and all of this work has taken advantage, directly or indirectly, of the semantics. The threads of 
existing fonnal work include the following: 

• The denotational semantics of proto-occam [26] were used to derive a congruent algebraic 
semantics [161. which subsequently became the basis of the occam Transfonnation System 
[11]. This in tum was used in a variety of ways, most notably in the design of the Taro 
Roating-Point Unit [18). 
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• The relationships of the semantics of occam and CSP have been ell;ploited several times, 
including investigations of deadlock f28J and fault-tolerance [5). The existence of a model­
checking prograzn for CSP (10) is thus exploitable rather directly on occam sySle:ms. 

•	 occam has been used by several researchers, for exampJe (24, 9j, as the input to systems 
which compile programs to silicon. 

• Major use has	 been made within II\MOS of occam as a language for descrIbing and 
designing VLSI. A variety of formal techniques have been used in connection with this 
work by INMOS aJ1d by Formal Systems (Europe), as described, for example, in [27) and 
[21J. 

• One major componmt of the previous item, and entirely attributable to thedean semantics 
of occam, was the developmf'11t of ~ghosting" tools which penni! the automatic trans­
fonnation of an occam program to one which computes symoolic representations of the 
values in chosen types. 

Work is currently taking place on a number of topiCS, including: 

• Translation	 between CSP and occam. It will be possible to discover subselS Df the two 
notations where there is a close corrP<>pondence. allowing translation either way, and ooth 
at the Timed and Untimed levels. TransfonTlational techniques should help in getting the 
source language into the correct fOnTl for this automated translation. 

•	 It is hoped to exploit the above in a methodology for developing real-time occam proce8SeS 
via Tuned CSP. 

•	 Wood [31 ) is developing a refinement calculus similar to that of Morgan's [23] forlanguages 
akin to occam, using the semantic models presented in this paper. 
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A Syntactic summary 

This appendix contains a syntactic summary of the language considered in this paper. It is dosely 
related to the occam 2 language swnmary of 120], but as previously mentioned is augmented to 
allow parallel declarations in the language. The syntactic objects are listed in alphabetical order. 

Withi.(l the syntactic summary, op appears. This is the set of operators on expressions which 
are available within the language; differences between implementations mean that its form 
cannot be described more concretely. 

Following each syntactic object, lhe means by which the object is referred to during the 
course of the paper is induded within parenthesis. Throughout the paper the same symbol is 
used to refer to several different dasses of object; more precise distinctions than those present 
were not deemed necessary and their omission led to more consise descriptions without causing 
the introduction of any ambiguity. 

actual (Tl	 element
 
expression
 

alternation (P)	 ALT (aiternative[,. ., altematit,c,,) 
ALT identifier = 
expl'f's.~ionJ FOR expr€ssion~ alternative 
PRI ALT (alternative!, ... , a/lernative,,) 
PRI ALT identifier = 
expr€ssionj FOR exprusion1!. alternative 

altemtltiue (A)	 input process 
boolean & input process 
boolean & SKIP process 
alternation 
channel? CASE (variant1 , ••• , variant.) 
boolean & 
channel? CASE (variantl,"" variant ... ) 
declaration: alternative 
specification: alternative 

boolean (b)	 expression 

byte (,orf) 'character ' 

channel (e) element 

choice (e)	 boolean process
 
conditional
 
declaration: chiou
 
sJKcification : choice
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conditional ( P) 

declaration (d) 

digit (Oor ...or9) 

element ('0'1) ~ 

aponent (, 0< f) 

IF (choice!, . .. , choice,,)
 
IF identifier =
 
expression! FOR expressionR choice
 

[apressiond ... [expression.. ] primiave.tyPE 
identifier!, > •• , identifier". 

[expressionr] (ezpression,..J CHAN OF 

[expression, J [expression.,] primitive. type 
identifier" ... , identifierTn 

[ezpression/ J... [expression,,] CHAN OF 

primihve.tyPE/ :: f J{expressionr] 
.. [expTTssion .. ,) 

primitive. type: identifierl,.'" identifierTn 

[expre!Jsion1] ... [expression..]CHAN OF 

ANYidentifierl," ., idenllfiet'm 
[t:xpressionl] ... [cxpression"J CHAN OF 

identifier identifier1, ... , identifierTn 

{ezpre.~sionll . .. [expression,,] TIMER 

identifierl, .... identifierTn 

[expressionl J [expression,,! PORT OF 
[expressionl] [expression.,] primitive.lyPE 

identifier1,.'" identifierrn 
PROTOCOL identifier IS 

protocolr ; ... ; protocol" 
PROTOCOL identifier IS 

CASE (tagl ; protocol! ), .. , (tag.. ; protocol.. ) 
PROC proudure.name(formal/, 

... ,Jomlal.. ) = pnxess 
primitive.typet, ... primitive.type.. FUNCTION 

function.name(fomllll, , ... ,jormal.. ) = t'illoj 
primitive.type1" .. primitive.type.. FUNCTION 

!unc.tion.name(jomla1I, ... ,jomlal.. ) IS 
expression/ , ... , exprt:8sionTn 

01 1 12131415[6171819 

identifier 
element! expression]
 
[element FROM expressionr FOR expression!]
 

+digitJ digit ... 
-digitl digit.. 
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expression 

jontllJl 

junction.1Wme 

hex.digit 

input 

input.expression 

integer 

loop 

I' or f) 

I~) 

(g) 

(0 or· .. or F) 

IP) 

U')
 

I' or f)
 ~ 

IP) 

A SYNTACTIC SUMMARY 

op erpressiOfl 
expression! AND expression.!
 
expression! OR ezpressiollj!
 
expressionJ op eXpreSSlOriz 

MOSTPOS primitive. type
 
MOSTNEG primitive.type
 
p,..ifllitive.lype argument 

primitive.type ROUND argument
 
primitive. type TRUlK argument
 
argument
 

specifier jelentifier1 , •• " idenlifier..
 
VAL specifier identifierJ, ... , identifier"
 

il/entifier 

digit I A I B I C I DIE I F 

channel? input. expression1; 
... ; input.ezpressjon"
 

channel? CASE tag
 
channel? CASE lag; input.erpressio1lj;
 

... ; input.expression"
 
limer? variable
 
timer? AFTER ezpression
 
port? variable
 

variable
 
vm'iable :: variable
 

digitI" . digit." 
IIher.digit , ... hex .digit" 

WHILE boolean process 
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oparmd (,or !I 

oplion (0) 

output.expresdon ('" ) 

parolleI (P) 

parallel.ded/Jrotion (V) 

TRUE
 

FALSE
 
integer
 
byte
 
integer(pn"milive . type)
 
byfe{primilive.type ) 
ff:al(primitive.type )
 
string
 
dement
 
table
 
(expression)
 
(vaTof)
 
function.name( ExpT'f:ssioJ11,' .. , expre,gsion.. )
 

(ezpression j •••• , ezpre.'Jsionn) process
 
ELSE process
 
dedarotion : option
 
.~pecificalion : option
 

expression
 
expressionj :: e;rprnsiont
 

PAR (proceBs/,. ., process.. )
 
PAR identifier ::::
 
ezpre.'JsionJ FOR expression£ process
 
PAR (ptJrallel.declarationJ : proceS!JI,
 

., .,parallel.declamtiona : process,) 
PAR identifier :::: 
ezpressionl FOR ezpre.'Jsion, 

parallel. declaration : proce.ls 
PRI PAR (proce!l.'l/, . .. , process,,) 
PRI PAR identifier :::: 
fzpres!Jiorll FOR ezpreBslont process 
PRI PAR (parallel.rledamtionj : process[, 

.. , ]XJNlllel.decJaration.. : process,)
 
PRI PAR identijifr =
 
e%prnSiOnl FOR e;rpressiont
 

pamlleI.declamlion: procf~S
 

placed,parallel
 

USING (OWNCHAN' chonnell , ... , channel.. 
INCHAN channell,·", channel., 
aUTCHAN' channel], , channel" 
VAR variableI , , variablf,) 
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ploced.paralle1 (P) 

P"'" (0) 

pn"mitive. type (T) 

procedure,rwme (qJ 

process (P) 

A SYNTACTIC SUMMARY 

PLACED pAR (placed ,parolle.lJ ,
 

.. '. placed .pan:Jl/el~)
 
PLACED PAR identifier :::
 
ezpressionJ FOR expression~ placuJ.parollel
 
PROCESSOR expression process
 
PROCESSOR expression
 

parallel. declaration : process
 

element 

BDQL
 
BYTE
 
INT
 
INT16
 
INT32
 

INT64
 

REAL32 

REAL64 

identifier 

SKIP 
STOP 
PLACE idm/.ifier AT expression: process 
variable := expression 

variable!,. ., variable" := 
expression], . .. , expression", 

channel! output,expressionJ; 
... ; output. expression" 

channel! Lag 
channel! tag; aulput.expressionj; 

.; output.expression.. 
pori ! expression 
channel? CASE (t'oriant./ , .. " uariant,,) 
input 
sequence 
conditional 
selection 
loop 
parallel 
altemation 
procedure.name( actualJ • ... , actual.} 
declarution : process 
specification: process 
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protocol (p) ~ [upressionj J, .. [expression .. ] primitive,type 
primitive.typeJ :: [][erpressiond 

... [erpres.liion,,] primitive .typet 

""' (,o'f) ~ digit, ... digit..... digit J ••• digit" 
digitJ ... digitm .digit l ••• digi!. E expomnt 

selection (P) ~ CASE erpression (optionJ , ... , option... ) 

sequeru:e (P) ~ SEQ (process1, ... ,process... ) 
SEQ identifier = 
erpressiQnJ FOR erpressiont process 

specifieDJion (e) ~ specifier identifier IS element 
identifier IS element 
VAL specifier identifier IS expression 
VAL identifier IS expression 
type identifier RETYPES element 
VAL type identifier RETYPES erpressior. 

specifier « ) ~ primitive. type 
[ ]I!lpecijier 
[e1specifier 

string (,mf) ~ [byte" ... , byte.. ] 

whIe (,orf) ~ [expression! , ... , ezpression..l 
table/expression] 
[table FROM e:rpression/ FOR erpression,J 

IDg (lag) ~ identifier 

timer (<) ~ element 

'yp< (et ... en i ) ~ primitiue.type 
[erpression] type 

0010/ (,orf) ~ VALQF prrx:.ess 
RESULT erpressionl, . . , ) erpression. 
declara'ion : valof 
specification: valof 

turiflble ('orf) ~ element 
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