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Abstract

One of the most successfu] and most widely studied applications of computer-aided diagnosis
is that of acute abdominal pain. However, widespread introduction of computem into
clinical practice seems to be hindered by their limited diagnostic accuracy. This monograph
docomegts some experiments we have carried out (o investigale the effect on diagnostic
accuracy of using various statistical and knowledge-based methods to take dependencies
between clinical cbservations into account. We present detailed specifications of a variety
of statistical and knowledge-based programs withis a common formal framework nsing the
Z specification language. We describe how we callected a retrospective database of 1270
cases of abdominal pain of suspected gynaecological origin, This we used to evalnate all
methods.

Our results show that no significant improvement in accuracy can be made by taking jn-
teractions into aceount; independence Bayes ie optimal in this application. However, the
pearest neighbours method using a new metric appears to be at least as accurate. The
metric is the Euclidean distance between the poeterior probability distributions over the
possible diseases, computed using the independeuce Bayes formula. We argue that the
cearest neighbours method g more suitable for clipical use than the direct application of
independence Bayes because of improved accountability. The computer analysis is encoded
and displayed to tbe user as a emall set of aciual cases that presented similarly 1o the pew
tase. The user can retrieve these cases and inspect hotb their presesntations and outcomes
if he wishes. The ability to justify and support decisions in this way should be invaluzble
in safety-critical fields such as medical diagnosis.
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Chapter 1
Introduction

In this ehapter we give an overview of the ezperiments we have carried out
to investigate the effect an diagnostic accuracy of using various stalistical and
knowledge-based methods to take dependencies belween clinical observations into
account, We start by briefly surveying the field of computer-aided medicol diag-
nogis, with the emphasia on the use of independence Bayes in the diagnosis of
acute abdominal pain since this is the most widely studied and most successful
opplication. Widespread intraduction of computers ino elinical praclice seems
lo be hindered by their kimited diagnostic accuracy. Con accuracy be improved
by taking interactions into account? We address this question by designing and
implementing a variety of siatistical and knowledge-based programs, and lesting
them on the some data sel of paiients. Our resulls suggest that independence
Bayes is oplimal, but that the nearest neighbours method using a new metric is
at least as accurate. We argue that the new nearest neighbours technigue is more
suilable than independence Bayes for elinical use. However, it seerms unlikely
that aecurocy can be improved by new computational methoda.

1.1 Computers and Medical Diagnosis

Ever since the electronic computer became commercially available, clinicians have been
interested in its potential o assist medical diagnosis {Led59, Lip61]. The motivation for
machine aesistance is that doctors are not fully aware of the significance of the observations
they make; numerous studies [Dom78, Kni&5, Lavd0] have since confirmed this. Perhaps the
best known and most successful application of a diagnostic program is due to de Dombal
and colleagues in Leeds, England [Dom72). Bayes theorem was used to classify cases of
acute abdominal pain into one of seven mutually exclusive disease categories. Since the
method involves an assumption that observations (symptoma and signs) are conditionally
independent within each disease category, the method is often referred to as ‘independence
Bayes'. The computer analysis is regarded as a supplemental test much like any other
investigation [DomB84].

Over the last twenty years, independence Bayes has been used to assist the diagnosis of
acute abdominal pain in an enormous number of patients worldwide [Dom91]; a multicentre
trial in the UK alone involved 16737 patients [Ada86]. The accuracy of the computer pro-
gram, however, was now less than the initial studies had suggested. Furthermore, although
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clinicians made fewer errors when the computer system was introdnced, it became clear
that much of the improvement was due to the discipline of using structured data-collection
forms to record patient histories [Wel89, Gun91]. A re-analysis of 5193 of the cases showed
that most of the observed improvement was actually due to ‘non-specific abdominal pain’
(NSAP) being diagnosed rather than no diagnosis being made [Wel92]. Disturbingly, it was
noted that if the computer made any diagnoeis other than NSAP, there was less than a 50%
chance of it being right!

A Scandinavian study [Fen87] reported a similar effect of introducing etructured data-
collection forms alone: the uegative laparotomy rate decreased from 26% to 16%, and the
positive laparotomy rate for appendicitis increased from 69% to 77%. However, computer
accuracy was less in this study than in the UK multicentre trial. Other groups have also
experienced difficulty iv achieving a computer accuracy equal to that of the clinician (e.g.
[Kir87, Sut89b, Fla92]. Indeed, in one retrogpective study of 200 cases of acute abdominal
pain seen in an accident and emergency department, initial clinical accuracy was recorded
as high as 65% [Mai88]. This is similar to other workers’ results with computers and struc-
tured forms. In another study of 158 cases of acute abdominal pain admitted under one
surgical firm, use of structured formp aud selective use of diagnostic laparoscopy led toonly
3 management errors (two unnecessary appendicectomies and a laparotomy for diverticular
abscess); when independence Bayes was applied retrospectively to the same cases, adoption
of the computer diagnoaie would have produced a total of 26 similar errors [Pat89]. The
value of the computer agalysis is therefore unclear, especially as thete are many other diag.
nostic techniques available and perhaps uvnderused (e.g. ultrasonography and fine catheter
aspiration} [Pat91}. In the West Lothian study of computer-aided diagnosis of acate ab-
dominal pain, computer accuracy gradually fell from 78.5% to 55.0% over a 15 year period,
while clinical accuracy in the accident and emergency department remained fairly coastant
at 60.4% to 70.0%. A decision was therefore made to withdraw computer-aided diagnosis
and continne with oaly structured data-collection forms [Sto92]. Similar experiences have
been reported in other areas of medicine: Engle et ol concluded that after 30 years of re-
search juto computer-aided diagnosis of haematological diagnosis they have finally accepted
that the ‘intelligent’ computer does not even seem useful as an aid (Eng%2]. Low computer
accuracy seems to limit widespread use of computers as decision aids in medicine [Sutfga).
Therefore, can accuracy be improved by using computational methods other thax jndepen-
dence Bayes?

1.2 Statistical Interactions

Any possibility of improvement depends crucially on the presence of statistical interactions
between observations within each disease category [Nar75a); if no such intenctions occur
then tleasly the independence model is optimal. Experience, however, suggests that some
symptoms and aigns do tend to eclipse athers (e.g. [Dix91)]). Indeed, numerouws studies have
shown the presence of interactions in a variety of applications [Nor75b, Fry78, Tod93a).
However, it does not necessarily follow that taking these interactions into account will im-
prove accuracy, Hilden [Hil84] has pointed out that for a particwlar class of probability
distributions, a ¢lassifier based oo independence Bayes is optimally accurie despite sta-
tistical interactions, Furthermore, for scme of these distributions, the independence Bayes
formula even computes the correct postarior probabilities! However, in praclice indepea-
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dence Bayes is ueually found to poorly calibrated, producing over-cptimistic estimates of
the posterior probabilities (e.g. [Rus83, Gup89, Wel92]). Poor calibration is easily recti-
fied [Dom92]. The central question which this monograph addresses is whether statistical
models other than independence Bayes are more accurate classifiers.

Some early studies [Nor75a, Fry78| suggested that accuracy can be improved by taking
interactions into acconnt. However, in hoth cases the test set had been nsed for train-
ing purposes; a classifier with more degrees of freedom would naturally be better able to
separate examples from different classes. Qther comparative stndies in the diagnosis of
thyroid disease [Nor7l), diagnosis of liver disease [Cro74], prediction of outcome of head
injuries [Tit81], and prognosis of heart disease [Rus83} have geuerally concluded that inde-
pendence Bayes ia the most sujtable classifier. In a study of patients with abdominal pain
presenting to gemeral practitioners, a six-page diagnostic flowchart, a linear discriminant
and independence Bayes were found all to be of similar aceuracy, and much worse than the
clinicians [Ori86). In a more recent study concerning 6,000 patients with acute ahdominal
pain, independence Bayes waa found to be siguificantly more accurate than another method
(induced decision tree) which avoids the independence assumption jGam®91]. Consequently,
maay regard independence Bayes as optimal [Edw84], and some regard discussion about
the type of computer program to use as outmoded [Dom91].

However, a French study invalving 6916 patients with acute abdominal pain reported in in-
creage in computer accuracy from 63.7% to 67.7% as a result of taking into accouut pairwise
interations by means of a Lancaster mode! [Ser86). Some other studies have also reported
improverents. Neural networks were found to be more accurate than independence Bayes
for discriminating appendicitis from NSAP [Ehe91]. The test set was small though (3 cases
of appendicitis and 6] of NSAP), and the difference in acceracy does not appear to be
statigtically significant. Similarly, Emparanza et al [Emp88] found logistic discrimination
to be more accurate (91%) than independence Bayes (84%) for the same discrimination task
in children (training set 569, test set 100). However, ROC curves were not shown, so it is
conceivable that the observed improvement was due to the better caljbration of the logis-
tic diseiminant. In ancther application, the prediction of recurrent ypper gastrointestinal
bleeding, (again a binary discrimination task) an increase in accuracy from 57% to 67%
was athieved by taking interactions into account by means of a dependence tree [Ohm#8).
However, interpretation is difficult because tbe training and test samples were small (322
and 207, respectively) and were collected over different study periods between which man-
agement policy changed. In summary, therefore, while it ie clearly evident that statistical
interaclions are usnally present amongst observations, it is less evident that accuracy can
be improved by taking these interactions into account,

Perhaps the reason is that statistical methods more sophisticated than independence Bayes
tend ta require estimation of many more numerical parameters. The consequent tendency
to overfit to the training sample offsets any gainm in accnracy that can be achieved by
taking interactions into account. Perhaps current databases are simply too small for purely
statistical methods to exploit interactions fully. One possible solution is bo exploit available
knowledge of causal mechanisms in the particular domain of application in order to construct
a classifier that is less highly parameterized. The knowledge can be expressed as inference
rules (e.g. [Dav71]}, or as an explicit causal model (e.g. [HaiB8, Hec92b]).

Rule-based systems have wow been compared with independence Bayes in several applica-
tions, One of the earliest was the diagnosis of dyspepsaia: no significant difference in accu-
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racy was found [Fox80], although the inference rules do not appear to have been equipped
with numerical certainty factors. The rule-based approach was found to be less accurate
than independence Bayes in the diagnoeis of lymph node pathology [Hec92a], and about
as accurate as independence Bayes in the diagmosis of acute abdominal pain [Dom89).
However, if aubjective certainty factors are used theu any gain in accuracy achieved by
taking interactions (nto account is offset by errors in estimation of the parameters; nu-
merical estimates elicited subjectively from clinicians are well-known to be frequently in-
accurate [LeaT2, KniB5, Cha87]. Few rule-based expert systems appear to estimate no-
merical parameters objectively from an actual training sample. A recent exceptiow is
EMERGE [Hud91] currently being developed for the diagnosis of chest pain.

Aup alternative to the rule-based approach is the construction aof an explicit statistical model
of the causal mechanism by which diseases produce their manifestations. The most gea-
eral and best-known representation is that of the Bayesian oetwork (e.g. [And91, Hec32b]).
Cooper asserts that if causal and probabilistic knowledge ia available then the causal graph
{Bayesian network)} method will generally yield more accurate diagnostic results than in-
dependence Bayes [Coo86). Ludwig and Heilbronn, however, reported that a probabilistic
causal graph was less accurate than simple logistic regression for the diagnosis of chest
pain [Lnd83]. Nevertheless, iutuition supports Cooper’s view that a carefully constracted
knowledge-based program should be more acturate than independence Bayes, provided that

1. all numerical parameters are estimated objectively from a random training sample,
and

2. proper attention is paid to constraining the number of degrees of freedom so that
overfitting does not occur.

The rest of this monograph documents a series of experiments we have carried out to test
this hypothesia,

1.3 Methods

We designed and implemented a set of diagnostic programs embodying various paradigms,
ranging from the purely statistical to the knowledge-based. The latter included categorical
flowcharts, rule-based systems and Bayesian networks. Some of the methods are standard,
while others are innovative. However, we describe a/l methads withjn the same formal
mathematical framework using the notational couventions of the Z specification [Spigs].
We do this principally for two reasons: to document precisely the methods that we have
implemented and to reveal relationshipa between the various methods. Howewr, the process
of formal specification can also be a source of unexpected insight, For example, the concept
of an iterative fiowchart (Chapter 7) arose naturally as a way of producing idempotent
inference procedures from igdividual inference steps.

Recently software engineering techniques have been increasingly applied to knowledge-based
systems. Formal specification has been used to present the thecretical basis for models of
reasoning, such as rule-based deduction [Bez91]) and Bayesian classification [Pen88). It
has alsc been used to provide precise descriptions of particular inference systems [Hai88),
However, the style of specification varieas widely. This is because the specifications are of
existing systems, whoee asgumptions partially determine the style of specification. Yet one
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of the strengths of mathematical specification is its ability to abstract away from details of
particular implementations. This is achieved by starting with an abstract view of inference
that is 8o general that it should apply to almost all systems, This model is thep refined by
making explicit design decisions until a particular implementation is reached. This is the
slyle we have adopted in this monngraph. We use simple mathematical definitions (sets,
sequences, functions etc.), interleaved with prose which motivates and justifies the design
decisions.

In order to evaluate the programs we compared tbem on the same data set so that pairwise
tests of statistical significance of any observed difference could be applied. The application
we those was the diagnosis of abdominal pain because it has heen so widely studied, and
it appears to be the most successful yet. In particular, we confined our attention to a
specific subgroup of patients, those for whom the pain is suspected to be of gynaecological
origin. The scope for exploiting knowledge of causal mechanisms appears to be greatest in
this selected group of patients. We collected our own data because we needed as detailed
information as possible about the pathophysiological state of each patient in order to esti-
mate the various numerical parameters for the knowledge-based programs. Since we were
interested in comparing the different programs themselves rather than in comparing com-
puter with clinician, retrospectively collected cases were adequate for our purpose since any
impairment of the quality of clinical data tends to disadvantage all programs similagrly. We
coilected a total of 1270 cases, the first 202 of which could not be used for testing any of the
knowledge based programs because those cases had been used to assist knowledge-base con-
struction. We tested the programs on all the remaining 1068 cases, using a cross-validation
strategy to avoid bias when estimating all numerical parameters.

The evaluation measure we used universally is the overall crude error rate, taking the disease
with highest calculated posterior probability as the computer's diagnosis, This enabled us
to compare all programs, including a Aowchart whase output is categorical, on a common
gcale. We did not explore other measures such as the qnadratic or logarithmic score [Tit51]
becauss we felt this was too sensitive to the calibration of the program, and would be likely
to unfiirly disadvantage independence Bayes in particular. Poor calibration can always be
improved by quite simple means (e.g. a look-up table), so measures such as the quadratic
score are potentially misleading. Nor did we attempt to weight errors with associated
costs: since we included 19 diseases in our application, this would have involved subjective
estimation of 342 utilities! However, we do present full discrimination matrices for all our
programs so that sensitivity, specificity and reliability can be calcnlated with respect to
eack candition.

Our results show that no significant improvement iu accuracy can be made by taking in-
teractions into account; independence Bayes is optimal in this application. However, the
nearest neighbours method using a new metric appears to be at least as accurate. The
metric js the Euclidean distance between the posterior probability distributions over the
possible diseases, computed using the independence Bayes formula. We argue that the
nearest weighbours method is more suitable for clinical use than the direct application of
independence Bayes because of improved aceountability. The computer analysis is encoded
and displayed to the user as a small set of actual cases that presented similarly to the new
case. The nser can retrieve these cases and inspect both their presentations and outcomes
if he wishes. The ability to justify and support decisions in this way should be invaluable
in safety-critical fields such as medical diagnosin.



Chapter 2

A Formal Model of Diagnostic
Programs

This chapter introduces g simple abstract model of inference which will serve
as a common starting point for the design of all diagnostic programs described
in this document. As on illustration, the maodel s refined to a simple non-
poramelric statistical program.

2.1 A Diagnostic Program

A diagnostic program asajsta the intezpretation of clinical findings. It takes as input any
information that has been gathered regarding a patient, and ontpnts all conclusions that
can be drawn and all inferences that can be made. We therefore regard a diagnastic program
(DP) as a function that manipnlates information of clinical relevance.

DP = Info -+ Info {2.1)

The program’s input generally consists of symptoms and other historical items, physical
and radiological signs, the results of certain other investigations, and perbaps details too of
any established medical condition the patient is known to have. The program’s ontput ja
a more complete description of the patient: one which inclndes a diagnostic asesament of
the clinical findingp,

Notice that a diagnostic program is not necessarily a total function. If a patient description
is illogical, or impossible for any reasom, then the result of applying a diagnestic program
to such a description is undefined. (For simplicity, we regard the purpose of a diagnostic
program to be the diagnosis of disease in patients rather than the related task of detecting
errors in patient descriptions.) Therefore, the domain of a diagnestic program consists of
precisely the patient descriptions that are feasible; those that are impaosaible are excluded.

2.2 Information

The diagnestic task amonnts to reconstructing a complete description of a patient’s medical
state from only partia! information. The complete medical state of a patient includes all

9
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diseases that are present, all symptoms and signs that sre exhibited, all other measurable
physiological parameters, and all historical items of clinical relevance incdnding personal
details snch as sex and age. We refer to a complete description of a patient’s medical state
a5 & case, and we denote the set of all euch descriptions {whether feasible or infeasible) by
the symbol CAsE.

Medical observation and medical reasoning, however, are pervaded by uncertainty. Rarely is
it poasible to eay without any shadow of doubt what the correct diagnosis is, and sometimes
it is not even clear what symptoms and aigus the patient has [Gil73]. Therefore, let us
represent information about a patient as a probability distribution over cases.

Info 2 D Case (2.2}
A probability distribution over any countable set T is defined by
DT = {d 1T~ Pr| 3 d(t) = 1} (2.3)
T

where ‘Pr’ denotes the closed interval hetween 0 and 1.
Pr= {r:R|0<rg1} (z4)

In practice, there will be only a finite number of possible patient descriptions, since it is
not usefu] to record arbitrarily small variations between cases. We therefore assume that
CASE it both finite and non-empty.

The complete absence of any information is represented by the uniform distribution. This
is because if there is no reason to prefer one case as more typical than another then the
Principle of Indifference dictates that every case is assigned equal probability [Nea89]. We
denote vacuous information by the symbol @.

= . a _.1_
@ = Ac:Case FCase (2.5)

Thus @ is the information we have about a particular patient if we have no knowledge of the
patient’s medical state, no knowledge of the population from which the patient was drawn,
and po Inowledge even of the medical properties of differept populations: if in short we
know nothing either about the patient or abont medicine.

2.3  An Abstraction Function

If I depotes the informatioa that a given patient has been drawn randomly from a particular
popuwlation (i.e. J is the prior distribution) then let us use 7 to construct a diagnostic
program D(I). Let J be the information obtained abont the patient by the clinician. The
combjned information, taking into account both I and J, is given by the Bayes product of
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the two distributions.
D : lnfo - DP (2.6)

Vi :Info «
DI)=M:Info|IT@J #£De

Ac:CAse.%ﬁﬂ
sehere

It 2 Y I xJ()

eCass
Information J is feasible {and the Bayea product s defined) precisely when it is consistent
with the complete description of at least one case that can be found in the given population.
That is to say, there exista a case ¢ such that f{e) # 0 and J(c) #£ 0.

2.3.1 Some Properties of Vacuous Information

Several simple and intuitive results follow immediately from the definitions above; they are
stated without proof. Firstly, no matter what diagnostic program we build, we can always
apply it to the vacuons body of information ().

Lemma 1

I:Tnfo F # € domD(J)

Furthermore, if we take advantage of this facility, since we snpply no infarmation at all
about the patieut we wish to diagnose, all we obtain is a description of the random case.

Lemma 2

Iilnfo v D@ =1

Lastly, the diagnostic program constructed from vacuous information is aimply the identity
function: if we provide our diagnostic program with no information about the general
population, it can never infer anything.

Lemma 3

F DB =id

2.4 A Simple Diagnostic Program

In order to estimate the prior distribution of cases, we sample the relevant population by
collecting a sequence of training cases C.

C :seqCask 2.7)
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Provided that the sample C is sufficieatly large, the prior distzibution js approximated by
the relative frequency with which any given case occurs in the sample. Better estimates
ate obtained by smoothing; for this we use the formula suggested by Cestnik [Ces90] where
emoothing coefficient m is strictly positive, The formula introduces small constants inte
the numerator and denominator based on the default assumption that in the absence of
evidence to tbe contrary (e.g. C is empty), probability is distributed uniformly amongst
all cases. Let Is be our estimate of the prior distribution. (The subscript § denotes the
gimplicity of the metbod, and distinguishes it from the more camplicated approaches in
subsequent chapters.)

m
#C e+ o7
Is = Ae:CasEe Ticﬂ (2.8)
Thesmoaothing embodied in Equation 2.8 ensures that the corresponding diagnostic program
D{(Is) is a total funciion: no input is rejected as infeasible.

Lemma 4

+ dom D{I5) = Info

Notice also an empty training sample conveys ne information at all.
Lemma 5

C={F Is=0

Therefore the resulting program is simply the identity function (Lemma 3); nothing new
can be inferred il there are no training examples.

2.5 Specifications

Although in principle a clinician may be prepared to quantify uncertainty in his observa-
tions in terma of probabilities, in practice observations tend to be categorical statements.
Categorical information about a patient can be regarded as a specification that the patient
meets. & specification (Spec) is conveniently identified with the set of all cases that meet
the spedification.

Spec = PCase (2.9)

A specification 5 is stronger than another ¢ precisely when s is a subset of t. The strougest
specification of all is the empty set: no patient meets this, The weakest specification is the
set of all cases ‘Case”: all patients meet this. Accordingly, we will refer to the empty set ({})
as the impossible (nnsatisfiable) apecification, and to CaSE as the vniversal specification.

The nasertion that a given patient meet a satisfiable (uon-empty) specification 4, associates
zero probability with every case that does not meet s, and disttibutes probability uniformly
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amongst cases which do meet s (Principle of Indifference). Let K(s) denote the information
couveyed hy the assertion that s is met.

K = Ms:Speclaz {}eo (2.10)
1
Je:Casce{ #s c€s
0 eds

Natice that the assertion simply that a patient meets the universal specification, as one
would expect, conveys no information whatsoever because everyone meets that specificatiorn.

Lemma 8

F K{Casg) =8

2.5.1 A Difficulty

Unfortunately, program D([s) ia rather oo naive. It can assist in the diagnosis of & new
patient only if there is some previous case in € which meets the new patient’s specification.
Otherwise, nothing new can be inferred.

Lemma 7

a:8pec|a# {}A(snranC)={} F PIs)(K(s)) = K(s)

This severely limits the applicability of the program. H patient descriptions invalve more
than a few symploms and signs, the training sample would need to be astronomjcally large
before such a program were of any practical use.

Clearly, suitability of this method depends on the type of application. One system that jm-
plements a similar principle to the one above is TOD (“Time-Oriented Database’) [Wey75,
Frig6]. This assists the management of rheumatology patients by making proguostic fore-
casts. At the time of the original report, it contained details of 5500 consaltations. Quly
very weak specifications, however, can be entered. For exampie, asserting that the pa-
tient is female and has systemic lupus erythematosus with proteinuria and increasing ESR
{erythrocyte sedimentation rate) led to the retrieval of just 36 training cases from which
proguostic inferences could be made.



Chapter 3

Statistical Models

This chapter iniroduces the idea of using knowledge about the siructure of
the prior distribulion in order to estimaie prior probobililies more reliably. The
knowledge represeniations congidered are convenlional Bayesian nelworks and
exemplar models.

3.1 Background Knowledge

The method for constructing diagnostic progtam D(Is) that was described in the previous
chapter makes inefficient use of training data, and consequently it tends to require infeasibly
large training samples. Mare efficient use of training data can be made if we have some
knowledge about the structure of the prior distribution (or if we are prepared to make
gome assumptions). This avoids estimating as many statistical parameters as in the full
multinomial case. Furthermore, we can relax the constraint that all details about the
medical state of each case ip the training sample must be recorded: this is an unrealistic
requirement because in practice only partial information js generally available about any
given patient.

3.1.1 Variables and Values

In order to discuss the properties of the prior distribution we need to know more about
the nature of case historien. In the context of medijcal reasoning, we are concerned with
variablez such as ‘age’, ‘site of pain’ and ‘diagnosis’, and the poesible values they may
take (for example, ‘24 years old’, ‘central abdomen’, and ‘appendicitis’). Not all values are
meaningiul for any given variable: for example, it would make no sense to talk of the ‘site
of pain’ & being “24 years old". Let © be a reation between variables and their permissible
values.

9 :Yar + Val 3.1

By definition, a variable must have some meaningful values. Therefore every variable is in
the domain of 8.

dom ® = Var (3.2)

14
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The medical state of a patient is described by specifying the valnes taken by the variablea.
The case is feasible only if all values assigned are legal,

Cast = {c:Var— Val | cC 0} (3.3)

A possihly incomplete account of a patient’s medical state is defined similarly as a partial
function. It is denoted by lower case letters.

Case = {¢:Ver+ Val|c ¢ 6} (3.4}

Example 1 For example, suppose the enlire vocabulary of variables and values were limiled
to just the following.

Var = {ses, cough, discase}
Val = {male, female, productive, appendicitis, ureteric_colic, none}

A suitable range of permissible velues would be

0 = {sez— male, sex— female,
cough — productive, eotigh — nane
disease — appendicitis, disease — ureleric_colic, disease — none}

The case (C1) which is male and has both a productive cough and eppendicitis is
C1 = {sex+s male, cough— productive, diseases appendicitis}
Similarly, the case (C2) which iz female and has no cough is
C2 = [sex— female, cough s none}
Lasily, the vacuous case (CS) about whom nothing has been recorded is

Ccs = {}

3.I.2 A Bayesian Network

A Bayesian Network [Nea80] represents a joint distribntion by decomposing it into a chain
(sequence) of conditional probability tables, one for each variable. A variableis said to be
onierior to another precisely when it appears earlier than the other one in the sequence.
Each table specifies the conditional distribntion of the carresponding variable given all
possible states of the anterior variables. With respect to any variable v, the parents of
v are a minimal subset of anterior variables which exhauat all evidence provided by the
apterior variables about the state of v. Only the parents of a variable need to be included
in the variable’s conditional probability table. Typically this leads to a very Jarge reduction
in the gize of the resulting table. Greatest savings are made if the chain decomposition
corresponds to the direction of pbysical causation. A variable’s parents then consist only of
those representing its direct physical canses. Choice of chain decomposition, and selection
of parents thus provides a means of representing background domain knowledge, and at the
same time allowing more efficient use of training data.
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Let P relate each variable to its parents. For any variable v, P(lv] is the zet of parents of
v. Since every parent of v les strictly anterior to v in some fixed total ardering, P is an
ireflexive acyclic relation,

P:Var+— Var (3.5)

Ptnid ={}

The jaint distribution (information) specified by & Bayesian network is defined by the prod.
uct of the conditional probability tables [Nea89).

Ip = Ac: CASE » H plv=c¢(v)| Plv)<ac) (3.6)
viVar

For any variable », value u, and partial case ¢ specifying a state of v’s parents, the term
P(v=u| ¢)is the conditional probability of v having value u given c¢. We estimate this from
our training sample. However, aince Equation 3.6 entails oaly probabilities conditioned on
the state of variables’ parents, we can relax the requirement thal every training case is
complete. In a practical application it is unlikely that all variables will be recorded in every
training example. Therefore, formally we override the earlier declaration of training sample
C (Equation 2.7) with a new one which allows cases to be incompletely recorded.

C : seq Case (3.7

We take az our estimate of p(v = u | ¢} the relative frequency with which ¢ takes value u
amongst the training cases whose observations match those of c. However, we require the
sum of the probability estimates to equal unity for all u. Therefore we confine our attention
to training cases in which o actually has some recorded value. If no such training cases
are to be found, then it is necessary to make a suitable default assumption about the
value of p(v = u | £). We follow Cestnik’s suggestion [Ces90] and take the priar probability
p(r =1u] {}) as the default. If ¢ is already empty, then the Principle of Indifference dictates
that the uniform distribution over the possible values of v is the default. A smooth transition
to the default as sample size diminishes is achieved by including small quantities in both
the numerator and the denominator of the estimate. We apply Cestnik's formula [Ces90)
with smoothing coefficient (*m’) set to unity. Formally,

#(C}{c:Case|(vu) €’ AcC N+ E

Plv=ule) = o T{7 Case o domd AcC N T 1 38
S L

It ie easily ghown by induction on the size of the set Var that Ig is necessarily a a valid prob-
ability distribution. Notice also that if the training sample is empty, then no information
is obtained about the prior distribution.

Lemma §
C=(F Ip=8

The resuling program D({{p) is then the identity function (Lemma 3).



3.2. CONCRETE PROGRAMS 17

3.2 Concrete Programs

Let us now refine abstract diagnostic programs to a form which is more feasibly imple-
mentable. For the purpose of our comparative study of diagnostic accuracy, we set one task:
determination of the final diagnosis. The final diagnosis represents the definitive cause of
the pain, and in cur study, possible causes are mutually exclusive. The final diagnosis is
therefore recorded in a single variable which we denote a.

4 Var (3.9)

The possible values for a form the set of all possible final diagnoses. For convenience we refer
to members of this set as disecses, although not all are strictly diseases (e.g. non-specific
paiu}.

Disease = 8(a] (3.10)
Qur abstract model (DP)} of diagnostic programs regards input patient descriptions aa joint
distributions over total cases. This allows input patient descriptions to be arbitrasily com-
plicated specifications; recall X'(s) represents the information conveyed by the assertioa Lhat
specification s is met (Equation 2.10). Furthermore doubt about the presence or absence of
fiudings can even be quantified probabilistically. However, in our present study, whenever a
variable is recorded it is assigned just a single possible value. Qur patient descriptions are
therefore partial cases. The form of diagnostic program therefore we wish to implemeat is
one that takes as input a partial case and returns a probability distribution over diseases.
We refer to such a program as a ¢oncrete program (CP).

CP & Case + D Disease {3.11)

A description of a patient as a partial case ¢ is equivalent to an assertion that the patient
meets specification S{c) (all possible total reconstructions) where

& : Case — Spec (3.12)

Ye:Casee
S(e)={c:Case|e C ¢}
A patient description as a partial case ¢ therefore conveys information X(S(c)). This is the

input to an abstract diagnostic program. If the program then outputs information I, this
iroplies marginal disease distribution M(J} where

M :Info — D Disease (3.13)
VI:Infoe
M(I) = Ad : Disease » 3 I
=Cang|c{a)=d

Therefore any abatract diagnostic program D can be implemented as concrete program
C(D) where
C:DP - CP (3.14)

YD:DFPe
C(D)y=8zXi D3 M
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We reserve the symbol ¢ for concrete programs. The concrete program hased on a Bayesian
network is

vs = C(DUp) (3.15)
Thit concrete program is easily implemented usiog tbe algorithm described by Lauritzen
and Spiegelhalter for computing conditional probabilities acroes Bayesian networks [Lau8g).
Notice that if the input partial case description happens to include the final diagnosis too,
then the cutput is the corresponding delta distribution.

Lemma #

0 d
c:CaseiAEdomcl—v,[;B(c):Ad:Diaezueo{l d-i:Ef:;
(This result holds for any concrete program constructed from an abstract one, not just those
based on Bayesian networks.)

3.2.1 Independence Bayes

A special class of Bayesian network is one in which A has no parents, and all other variables
bave only & as their parent. This is often referred to as the independence model. It has
parexts relation

P = {v:Var|v#aev 4} (3.16)

The corresponding concrete program has a familiar definition, nsually called the indepen-
dence Bayes formula.
Lemma 10

c:Case|agdomeAF=F
pla=d|{}) J] plo=clv)]{ad})

o) = : Dise . vidorne
va(e) = Ad: Disease S wa=d () J] rle=clv)[{a—d})

d*:Disease widom ¢

This program is particularly simple to implement as the ahove formula js easily computed.

3.3 Exemplar Models

Consider the factora which determine our expectation of the relative frequency of cases in
the actual population. Four essentially different factors can be distinguished,

1. The structure and (unction of the body, and its response to disease, (Anatomy,
physiology and pathology.)
2. Incompleteness of our knowledge of the above. (Patient idioayncrasy.)

3. The tendency for clinicians to differ in their history-taking and examination. (Ob-
Eerver error.)
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4. The tendency for a patient's recollection of paat events to alter and fade with time.
{Long-term persistence of data.}

The Bayesian network representation encourages us to model all four factors collectively.
(They can be separated only by introducing further variables.) However, the first factor
represents deeper knowledge of a kind elicited only by specific experiments. This of course
may still be probabilistie in nature: for example, the prevalence of a particular kind of
anatomical variation. Nevertheless, representation of medical knowledge (the firat factor)
is simpler if it can be separated from other extranecns factiors. Therefare an alternative
approach to that of the Bayeslan network is to provide an idealized description (Jg) of lhe
population based on background knowledge, and combine this with a smoothing function Z
(representing the other three factors collectively) which randomly transforms any theoreiical
case into an actual case. The information conveyed by the pair (Jg, Z) is given by the
convolution

Ig 2 A :Cases Y JE(€)Z(e,¢) (317)

c:Case

Perhapa the most rudimentary way of apecifying Jg is to provide a prototypical example
E(d) of each disease d.
E : Disease ~ CASE (3.18)

Vd : Disease ¢ E{(d)(a) =
The theoretical distribution Jg is then very sparsely populated. Each exemplar in therange

of F is associated with the prior probability of the corresponding disease, and all other cases
bave zerv probability.

JE(e) 2 { 0 e Ele(a) (3.19)

pla=c(a)|{h €= E(c(a))

3.3.1 A Smoothing Function

The smoothing funetion Z randomly modifies all observations., A simple model for this is to
asaume that all observations modify their values independently, while the disease remaina
fixed. This implies the following definition.

e d(a) # e{a)
Z(c,c) = I »(v:e(v)~ (o)) d(a) = e{a) {3.20)

w:¥ar|uwts

Here the term p(v : u ~+ ') stands for the conditional probability that variable v is actnally
observed to have value ' given that the theoretically predicted value is u, for any v, u and
u’. This is estimated from the training sample C by a modified form of Eqnation J.8.

plviu~au) & (3.21)

#(C Hf C“e [{vyu}€chAaedomen E(c(a))(v) = u}) +p(e =u']| {})
[{c:Case[o€domeracdomeA E(c{a))(r)=u})+1
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The concrete progtam based oa the exemplar method is

e = C(D{IE)) (3.22)
This has a formula similar to tbat for independence Bayes.
Lemma 11

c:Case| A ¢ dome F

pla=d|{}) IT p(v: E@)r) ~ (+])

= Ad : Di . vidome
¥sld) TS s =21 1) ] p(v: E@)(0) ~ )
d":Dincase vdomc

Notice that in general this requires fewer parameters 1o be estimated from the training data
than are required by independence Bayes. This is because the predicted values of a variahle
v may be the same given two different diseases, dy and d;.

E(dy)(v) = E(d3)(v)
8o for any case ¢,
p(v: E(d1)(v) ~ o(v)) = p(v: E(d;)(v) ~ c{v))

Thus a single parameter is estimated from pooled training cases that were previously
partitioned in order to estimate the two parameters that independence Bayea requires:
p(v=E(d)(v) ] e(2)) and p{v = E(d))(v) | ¢(v)). The exemplar model therefore exploits
background knowledge to make more efficient use of training data.



Chapter 4
Filtering methods

Some methods are best described directly as concrele programs, rather than as
full distribution iransformers. This chapter describes a class of these methods,
which all work by filtering the sequence of training cases to a subseguence relevant
to the case lo be diagnosed.

4.1 Filters

The diagnostic methods described in previous chapters all define joint probability disiribu-
tions over cases, from which one can extract the information necessary to make a diagnosis
for any particular case. Some methods, however, are best understood not as calculsting
a joint distribution but as directly calculating marginal disease probabilities. Thus, these
methods should be specified as concrete programs (CP) rather than as diagnoetic programs
(DP).

One kind of method is to filter the sequence of training cases to a subsequence relevant to
the case to be diagnosed, then estimate the probabilities of diseases from their frequencies
in this subsequence. We shall represent a subsequeuce of the training cases by the indices
of its members in the full sequence.

Indices = PdomC (4.1)
A filler is a function which maps any case to a subsequence of the training cases.
Filter & Case — Indices (4.2)

Auy subsequence (represented as a et of indices, ¢) defines a disease distribution, using the
Cestnik formula to estimate probabilities from frequencies.

#{i: 5| {a,d) € Cli]} + 1/#Disease

dis{s) = Ad: Disease » Fli:s]a€domClij}+ 1

(4.3)

Clearly, this function is closely related to the function p (Equation 3.8) defined in Chapter 3.
A cancrete program is obtained by composing a filter with dist,

3



22 CHAPTER 4. FILTERING METHODS

4.1.1 Some Examples

The null filter always returns the empty sequence.
null & Ae:Cases {} (4.4)

The null filter defines the concrete program which always returns the uniform distribution
aver diseases.
Lemma 12

b nullg dist = Ac: Case « Ad: Disease » #m;-

Another simple filter is that which pever restricts the training cases; the corresponding
concrete program always returns the prior marginal distribution over diseases,

prior £ Xc: Case ¢ domC (4.5)
Lemma 13

b priors dist = de: Case ¢ Ad : Disease ¢ p(a = d | {})

A more usefu] filter is that which selects only those training cases that match the case to
be diagnosed on all observations.

exact = Ac:Cases {i:domC | ¢ C C[i]} (4.6)

This exact match filter defines o concrete program in a similar way to the simple method
described in Section 2.4. Just as for that earlier example, this concrete program is also
too paive; it can assist the diagnosis of a patient only if there is some previous case in
which meets the new patient’s specification. This difficulty can be overcome by relaxing the
requirement that the relevant cases must match the aew case exactly; instead, the relevant
cases are {aken to be those which are *sufliciently similar’ to the new case. Diflerent measures
of similarity lead to diflerent filters.

4.2 Nearest Neighbours

QOne approach is 1o define similarity in terms of ‘closeness’ under some distance function §
betwesn cases.

6 : Case x Case — R (4.7)
Such a function gives a measure of the dissimilarity of any two cases; the greater their
dissimilarity, the greater the returned value. Given such a distagce function and some
k € N, the nearest neighbours method zelects the k training cases closest to the case to be
diagnosed. Formally, the nearest neighbours filter nn is defined by

an; Filter (4.8)

Ve: Case o #nn(e) =k
¥i, 7 : demC | 8(e,Cli]) < 8(e,C[1]) « 7 € nn(c) = i € nnle)
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The filter has been deliberately underspecified, to the extent that vo policy is given for
breaking a tie for the k'™ nearest neighbour. All that is required is that no other training
case is closer to the new patient than the k cases selected. The corresponding concrete
program is defined

¥x 2 nngD (19)
Provided that the distance between any two cases can be feasihly compated, the nearest
neighbours method is readily implemented. Although diagnosis of each new case requires
comparison with every previous case, the number of computational stepe grows only linearly
with respect to the size of the training aet.

4.2.1 Hamming Distance

There are many candidates for the dietance function 8. Since our cases are described
by categorical variables, the Hamming distance is one appropriate metric. This defines the
distance between two cases to be the number of variables on which they differ. This informal
definition must be refined for our purposes, since variables can be unrecorded in our cases.
This refinement can be made in several ways.

The first ie an ‘optimistic” approach, where an unrecorded variable is assumed to match any
value. Thus, only those variables that are recorded in both cases and on which the tases
differ count towards the distance. Assuming that N C R, this (psevdo)metric is defined
formally as

b0 = Ac,d: Case o #(rancnrand) — #{cnd) (#.10)

This function i8 Dot a true metric since distinct casea can be zero distance apar. In
particular the empty case, in which no variables are recorded, is zero distance from any
other case so will always be one of the nearest neighbours. Hence in practice this metric is
nnlikely to perform well since it favours cases for which many variables are unrecorded.

A second approach takes the pessimistic view that an unrecorded variable never matches
any value. Thus a variable counts towards the distance between two cases ezcept when the
two cases agree op the known value of that variable. This metric is defiued as

8p = Ac,d: Case s $Var — #(c N d) (4.11)
Notice that this function is also not a true metric, since identical cases are only zero distance
apart if they have no unrecorded variables,
Alternatively regard a case as a bit-vector, with one bit for each possible fact; if a fact is
present its bit is on, otherwise it is off. The Hamming distance between two cases i this
representation js a compromise between 6, and &,. A variable unrecorded in one of the cases
counts one towards the distance since one bit mismatches; a variable recorded in both cases

but with different values counts two towards the distance, since two bits mismatch. This
metric is described formally by

8p = Ae,d:Cases #(cUd) - #(cnd) (4.12)

4.2.2 Bayesian Metric

Hamming distance suffers from a defect as a metric; the symptoms and signs recorded in &
patient’s case history are not erfficiently abstract for genuine similarities between cases to
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be revealed. Typically only some of the observations concerning a particular patient will be
significant indicants for or against diseases. With the Hamming metric, these observations
can be masked by variation among the variablea that are irrelevant for that patient. This
problem can be circumvented by firet mapping cases to a more abstract representation, and
then applying the nearest neighbours method in this new space.

Clearly, the crucial step is finding a suitable abstract representation of cases. The ideal
is that the representation should capture precisely those details that are diagnostically
relevant. The moat abstract possible representation, for the purposes of diagnoais, is the
actual disease that the patient has. Since the aim is to discover the diagnosis, the actual
disesse will not be known. However, an estimate of the disease probabilities can be made
using one of the concrete programs derived so far. Thus, we can represent a case by the
disease probabilities calculated for it by some concrete program. The distance between
two cases is then taken Lo be the Euclidean distance between their abstract representations;
Euclidean distance is generally regarded as an optimal metric for nearest neighbours [Tod89,
Salgl]. For example, usiug the program i derived from the Bayesian Network dassifier,
we get the following (pseudo)metric:

& 2 Acd:Cases T (¥a(clu)— va(d)(w)? (413)
w:Disesse
This is not a true metric either, unless 5 is injective, since 1wo distinct cases will be zero
distance apart if they have identical estimated disease distributions.

4.3 Iterative Partitioning

There are other ways of defining similarity between cases besides the nearest neighbours
approach. A case, formally defined as a function from Var to Val, can also be regarded as
a collection of facts, each specifying the value of one of the variables. Formally, a fact is a
pairing of a variable and a value.

Fact & Var x Val (4.14)

The naive filter of definition 4.6 asserts that a training case is sufficiently similar ta the case
to be diagnosed only if it matches on all known facts. If this is too stringent a requirement,
it can be relaxed by needing only that training cases must match some subset of the facts
in the case to be diagnosed.

Any fact defines a subsequence of the training cases, namely, precisely those cases in which
the given fact is true. The function match returns this subsequence.

maleh : Fact — Indices {4.15)

match = Af :Facte {i:domC | f € Cli]}

This function nses a fact to partitiou the training cases; those which match the fact are
kept and those which do not are discarded. Given a tase to diagnose, the ‘best’ fact on
which topartition can be selected {according to some criterion), and the sequence of training
cases restricted using maich. This partitioning process can be applied iteratively, repeatedly
selecting the best fact for partitioning the current subsequence, until some stopping eriterion
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ie met. We call this method of restricting the training cases to a relevant subseqnente,
iterative partitioning.

Selecting a succession of facts yields a sequence of ever-smaller subsequences of the training
cases. We shall refer to such a decreasing sequence as a chain of subsequences. The training
sequence is unrestricted if no facts are selected; thus the first element of the chain is the
full training sequence. The last element in the chain is the subsequence of relevant cases
we desire. This is captured formally by the function iter.

dter : Filter (4.16)

Ve : Case o 15 : seqJudices o (dom C) = § ™ (iter{c)) chain c

The relation chain specifiee how to choose the facts on which to restrict the training
sequence; there are several criteria which thie relation should meet.

Clearly, we mnst ensure that the chain of subseguences is formed by successive restriction
to those cases that match some fact. This property of sequences of indices is captured by
the relation deer.

. decr _ 2 seqIndices — Case (417)

S deer ¢
-
Vitl..#5~1e3f:coe S[i+1}= SEIN match(f)

To decide which fact to choose, we need some measure of the worth of restricting on any
given fact. Let us suppose therefore that we have a significance function, o, which when
given a subsequence of the training cases and some proposed restriction of that subsequence,
indicates whether the restriction i worthwhile. The definition is parametrised by a threshald
a; a score above thig threshold indicates that the proposed restriction is not worthwhile,
The only axiom is that the vacnous restriction, which doesn’t actually restrict the training
cases, is never considered worthwhile.

o : Indices % Indices — R (4.18)

Vs : Indices; ¢ o(a,5) > a

We can now gpecify a second requirement of the chain of subsequences; each restriction
is the best poasible under the circumstances; no fact can be found which yields s better
restriction. This property is captured by the relation marimal.

- mazimal _: seqIndices — Case (4.19)
S mazimal ¢

-«
Yiil..#5— 1 f:ceo(8[i, 50 N match( £)) 2 o(8)i), S[E+ 1)

Finally, at each stage the subseqnence should be further restricted if and only if there ia
some fact (in the case to diagnose) which yields a worthwhile restriction, This property
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diciates when partitioning should stop 2nd is captured by the relation signif.

- signif _ : seqIndices — Case (4.20)

5 signif ¢
L]
Viil.. #S5ei=#S5 V[ icea(S[H],S[E]Nmaleh{f))> o

The relation chain is defined to meet ali three requirements; it is the intersection of the
three relations defined above,

- chgin _: seqIndices ~ Case {4.21)

chain = decr N signif N mezimgl

A reasonably simple choice of significance functior ¢ is the likelihood ratio of obtaining
the disease frequencies observed in the restricted sample, under the assumption that the
origisal sample provides the disease probabilities. Formally,

a(s,1) = ¥ ] di“:ﬁfﬁ (4.22)
wiDisense “

where ny = #(t N match{a — u))
The concrete program implementing iterative partitioning is thus defined by
¥r = itergD (4.23)

This is computationally more expensive than nearest neighbours because disease frequencies
have 1o he recomputed at each iteration. Counting disease frequencies is linear in the size
of the fiitered sample, hut in the worst case the filtered sample decreases in size by only one
case al each iteration. The computational complexity is therefore quadratic in the size of
the original training sample (although in practice very few iterations tend to be required).




Chapter 5

Neural Networks

This chapter presents a specification of a neural network approach to the
design of a concrete program. Unlike the filtering melhods, the whole of the
training sel is used to delermine the disiribution over diseases, not jusi a spe-
cially selected subset,

5.1 Feed-forward Networks

Over recent years, interest has revived in the use of networks of processing units for
many purposes including signal processing, pattern recognitian and classification [Rum86a,
Rum86b, Lip87, 5im90]. Medical diagnosis has been one of the fields of application for these
‘artificial neural networks’ [Bou%, Low%0, Gro90, Mul%), Bax91, Mac91, Aka92).

Although numerous different forms of network have been proposed, they do have commeon
features. In general a network consists of a collection of processing nodes, linked by one-
way weighted connections. Each node has some internal state, usually represecied by a
real number, and ¢an transmit that value along the connections that lead from it. A node
changes its value by forming the sum of the inputs it receives from other nodes, each scaled
by the appropriate connection weight, then passing this through some ‘activation function’.
Networks are used by initialising the states of some or all of the nodes, then propagaiing
these values around the network until it has reached a stable state. The final states of some
or all of the nodes provide the result.

The most widely-used form of network is the feed-forward perceptron, in which there are no
cycles of connections between nodes. There are three sets of nodes: the input nodes are the
only nodes which are initjalised, and they have no connections from any other node, and do
not change state. The output nodes provide the result, snd there are no connections from
these nodes to any others. Between the input and output nodes are some hilden nodes.
In the most general form of the feed-forward network, each output node has a connection
from every inpnt and hidden node, and the hidden nodes form a chain in which each has a
connection from every input node and from those hidden nodes earlier in the chain. This is
illustrated in Figure 5.1, which shows a network with two inpnt, two hidden ard two output
nodes.

27
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Figure 5.1: A feed-forward network. The lines represent connections from left to right.

O Input node ® Hidden node . Output node

5.1.1 Architecture

We with to use a network of thia form to define a concrete program. Since we require
an estimate of probability for each disease we shall take a network with as many output
neurons as there are diseases. With n hidden nodes, and the input nodes as yet unspecified,
the set of all nodes is
Node = inp((Ioput) (5.1)
[ hid{1..n)
| out{{Disease))

The state of all the nodes can he represented by a vector mapping each node to some real
number,
Vector £ Node — R (5.2)

Since the input nodes do not change state, they are not really behaving as “artificial neurons’.
We therefore identify the subset of nodes which do behave in & reuron-like manper, namely
the hidden and output nodes.

Nenron = ranhid Uranout (5.3)

Each nevron can have a (one-way) connection from any node, and there is a connection
weight atanciated with each of these links. A connection weight scales any value passing
along theconnection, thus the absence of a connection between two nodes can be regarded as
a connection with zero weight. The connections to any node can therefore be represented by
a Vector giving connection weights from all nodea. The network architecture is determined
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by the connection weights for all the neurons, and these are given by function A.

A ; Neuroa -+ Vector (5.4)

¥n : Neuron;d : Disease » A(n){ont(d)) = Q
Vi, j:1..n]i<jeAbid(i))(hid(;)) =0

5.1.2 Applying the Network

On receiving a collection of scaled inputs, 2 neuron takes their sum and passes it through
an activation funetion to return a new value for that neuron. Many activation functions
have been used for artificial neurons, but that applied most often is a sigmoid that maps
real numbers to the range [0,1].

1
¢=A2:R.Te': (5.5)
Given a vector V representing the current state of the network, and a second vectar W
representing the connection weights on the links to some node, N{V, W) computes the vew
value for that node.

N : Vector x Vector = R (5.8)

VYV, W : Vectore N(V,W) = ¢ ( b V(n)W(n))
n:Node

For a petwork to define a concrete program, some method must be found for presnting
2 case to a network for diagnosis. In a feed-forward network only the input nodes can be
initialised, 50 let the function enc define an encoding of a case as an initial pattern of values
for the input nodes.

enc: Case — Input - R (5.7)

A case is diagnosed by first eucoding it then propagating the resulting values through the
network. This bebaviour is captured formally by the function E.

E : Case — Vector (5.8)

Ve : Case; i : Input;n : Neuron e
E((inp(i)) = enc{e)(i)
E{e)(n} N(E(c), A(n))

The function is well-defined, despite the apparent circularity in the second clawse of ite
definition. That thia circularity is harmless follows from the network architecture specified
by function A. The value of the first hidden neuron is determined solely by the values of
the input nodes, since there are no other connections to that neuron. The value of each
successive hidden neuron is then determined by the jnpnt values and the vales of the
preceding hidden neurons. Finally, the values of the output neurons are determined by the
input nodes and hidden neurons, since no cutput peuron has a connection to any other.

[
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A concrete program must return a probability distribution over the disease values. The
output neurons, however, retura values independently in the range [0, 1], and it is unlikely
that they will sum to one. Therefare in general the output values need to be normalised to
oblain a concrete program.

E{c)(out(d))
S E(e)(out(d)) (5:9)

d':Dimesnc

v = Ac:Case o d: Disecase s

513 Encoding and Training

There are many possible encodings of a case to a format suitable for izput to a feed-forward
network. One of the simplest ia to have an input for every possible fact. Those inpute that
correspond to facts present in the case are set to one, and the remaining inputs are set to
zero. There is usnally a ‘bias node’ in feed-forward networks which has a constant value.
This bias node is best regarded as a distinguished input node, since it has connections to
every neuron. The set of inputs is therefore defined as

Input = bias | fact{{Fact)) (3.10)

With this fact-orientated representation of cases, the encoding function is defined by

Ve :Case; f:Fact o (5.11)
encle)(bizs) = 1
_ 1 fec
enc(c)(fact(f)) = { 0 fee

The definition of the network architecture, given earlier by the function A, places no restric-
tion on connection weights other than those which are set to zero. To define an accurate
concrete program, the network must be ‘trained’ by optimizing the other connection weights,
This requires iterative adaptation. The objective is to minimise an error measure on the
values praduced at the output nodes for the training cases. The best-known method of do-
ing thia is back-propagation [RumB6a] which minimises the mean squared difference between
the desired and actual values produced by the output neurons.




Chapter 6

A Probabilistic Rule-Based
System

In this chapler a probabilistic model for inference rules is presented. A rule-
based system is regarded as a Bayesian network in which each conditional probe-
bility lable i» specified implicitly by o collection of weighted rules. The weight of
each rule 18 given a logistic interpretation and obtained from g (raining sample
by standard optimization methods. It is also pointed out thai the representation
14 atso suitable for causal knowledge, offering a considerable parameter reduciion
compared to ezplicii Bayesian nefworks.

6.1 An Inferential Chain Decomposition

In many applications, rule-based inferential knowledge has proved a successful founda-
tion for building expert systems [Sho76, Dud?9, Fox80, Goo85, JacB6, Won90]. However,
rule-based representations have been repeatedly criticized for the way uncertainly is han-
dled [SpiB4, HecB6, SpiB6, Hec88, NeaB9, Dan92]. In this chapter we show how weighted
inference rules can be given a sound probabilistic interpretation based on the Bayesian
network method previously described. This is poesible because any chain decomposition
is valid when constructing a Bayesian network. It is usnal to adopt a causal ordering for
the chain decompasition only because this tends to lead to the sparsest ‘parents’ relation,
and hence the smallest conditional probability tables. However, if we choose the reverse
ordering, we then represent inferential knowledge rather than causal knowledge. Therefore
let us assume that our chain decomposition corresponds to the order in which the values of
variables are usually inferred. Observable variables (symptoms and signs etc.) are anterior.
Pathophysiclogical states and diseases follow postetiorly.

Of course a consequence of adopting an inferential chain decomposition rather than a causal
ane is that numbers of parents tend to be much larger. This means that conditional proba-
bility tables become infeasibly large either to estimate directly from a training sample (too
many empty cells) or to store in a computer. A solution is to adopt a parametric model
for each table. If the chain decomposition were causal then a natural assumption to make
would be that multiple causes produce their common effects independently; this is usually
referred to as the ‘Noly OR-Gate' model [Coo89, Shwdl]. However, gince our chain de-
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conposition i8 inferential, we require a parametric model for the conditional probability of
a cause given everything that is known about its effects.

8.1,1 A Logistic Model

A witable mode) appears to be the logistic one [And82]. Suppose we have a set of binary
random variables a, 1,5, ... fa. According to the logistic model, if a (the child) depends
logistically on By,/3, ... i, (the parents) then the conditional log-odds have a linear form.

lnp(cx:l {818, - - fn)
P(a=0|ﬁliﬂ?5"'au)

where the ko, 1,... ks are real-valued constants (the logistic weighte). Notice how only
n 4 1 parameters are thus required 40 specify a table of 2" conditional probabilities. Equa-
tion 6.1 is consistent with several families of distribution. These include conditional indepen-
dence of By, A, - - - Bn gived both states of o, and more generally, log-linear conditional distri-
buticne with equal interaction terms. The logistic model is also consistent with mutual ex-
clusivity of the By, Ba, .. . On. Because of its generality, the logistic form has been widely used
for combining evidence and taking interactions into account [And82, Lud83, Spis4, Sey90D].
Furthermore, the Jogistic form can be made even more general if we allow the terms on the
right-hand side of Equation 6.1 to contain arbitrary Boolear expressions £1,£3,...6,, OVer
the variables §;, 31, . .. A,. For example,

£ 2 BiA(Bsv-br)

where A, v, and — denote minimum, maximum and complement of their arguments, respec-
tively. Let true be the constant expression that always has value 1. We can then multiply
the bias weight kg in Equation 6.1 by true so that every term on the right-hand side bas
tbe same form: a weighted expresgion. Thus more generally,

pla=Lt|p,B,... )
pla=0{p1.5,...0.)

Any table of finite conditional odds can be represented by an eguation of this form because
if necessary we can have a set of mutually exclusive expressions on the right-hand side of
the equation, one for each possible state of the variahles 8;, 5, ... 5,. This though would
mean that m = 2", so no saving would be achieved. Nevertheless, for practical purposes
it should be possible to achieve a satisfactory appraximation with a reasonable number of
expressions selected in the light of expert knowledge of the field of application.

However, one of the several requirements of a probahilistic knowledge representation listed
by Lausitzen and Spiegelhalter [Lau88] is that there should be no difficulty in handling
total logical dependence between variables. Logical dependence would entail infinitely large
conditional odds, and thus infinitely large logistic weights. Fortunately, this is easily cir-
cumvenled by transforming the weighte to the open interval (D,1) [Haj85]. A suitable
transformation is ¢ where

Skot kify Fhafa b ..+ knfl (6.1)

=kyer Hhaea 4 oo ¥ kpnEm (6.2)

GE)\‘.-:R.T::ZE%—I (6.3)

Transforned weights combine not by simple addition but by a different operator &. Thus,
for any p and ¢ such that 0 < p,g < 1,

POI=GC (P} + 67 (g)) (6.4)
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Since ¢ is bijective, the operator @ inherits the properties of commutativity and assocativity
from simple addition in terms of which it is defined. The operator also has § as jts identity
element. Furthermore, substituting for ¢ in Equation 6.4 we ohtain the following more
convenient rule of combination. We take this as the actual definition of @.

- i
B¢ & —m—————— 6.5)
R =y () (
The extreme weights 0 and 1 are hoth zero elements of the operator @. In the presesce
of complete certainty, further evidence makes no difference. These weights denote lagical
entailment.

Lemma 14
p:Pr|lp#F1l F 0Bp=0=pho0
Lemma 15

piPrlp# 0 1dp=1=ppl

Notice that the two zero elements cannot be combined together by @ since this denotes
logical contradiction; 0@ 1 and 1 0 are hoth undefined.

If we apply function § to both sides of Equation 6.2 we abtain

pla=1|8M...0)= € K (6.6)

Jil.me,=1

where the k] represent the transformed weights (k = G(k;)). If all expressions £; evaluate
to zero, then the right-band side of Equation 6.6 is simply the identity element of the @
combinator (4). Any conditional probability table can be represented by an equation of the
above form, even a table containing the extreme probabilities of 1 and 0.

6.1.2 Multi-Valued Varnables

A difficulty still preventing the direct application of the logistic model is the requirement
that all variables are binary. In moet real domains such as medical diagnosis, varigbles
have more than two possihle values. For example, four values are required to describe the
progress of a patient's pain: ‘stopped’, ‘better’, ‘same’ and ‘worse’. A solution is tomake the
nodes of our Bayesian network specifications rather than variables. The Bayesian network
thus defines a joint prohability distribution of truth assignments to these specifications.
Apsignment of ‘true’ to a specification s means that 5 is met, and assigninent of ‘false’ means
that the complement 3 is met instead. Formally, let ¢ be a sequence of specifications.

@ : seqSpec (6.7)

We assume that @ has an inferential ordering. Anterior specifications (those appearing
early in @) thus concern the presence of symptoms and signs etc. Satisfaction of these
specifications is directly observable. Posterior specifications (those appearing later in )
concern pathophysiological states and diseases, Satisfaction of these specifications is usually
not oheerved directly, but instead inferred from the truth valuea of the anteriar ones.
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Any assignment of truth values to a set of specifications itself constitutes a specification,
pamely the conjunction (intersection) of all specifications assigned ‘true’ and the comple-
ments of all specifications assigned Talse’. Therefore in our formalism we will regard a trutb
assignment simply as a apecification. For any set of specifications &, A(S) denotes the set
of all truth assignments to the members of §.

A :PSpec — P Spec {(6.8)
Y5 : PSpec
A(S) = {$:PS e N8 - (S - 5}
Notice that A(S} ie a partition of the universal specification.
Lemma 18

5:PSpec F |JA(S) = CasE A Va,8 1 A(S)|a# s eand ={}

Furthermore, if § is empty, only one truth assignment is possible, and this corresponds to
the universal epecification.

Lemma 17

F A({}) = {Case}

Qur task is to specify for each i the conditional probability that the random case meeta
specification @Q[i] given all possible combinations of truth-value assignments to the anterior
epecificatione @{1.. i — 1). Let T be a sequence of conditional probability tables, one for
each member of .

T : seqTable (6.9}

#T = #Q

We represent each such table by a logistic farm similar to that of Equation 6.6. Fach
expreasjon (¢;) is now a Boolean combination of anterior specifications rather than of binary
variables. Fach such expression itself constitutes a gpecification. It is a disjunction of truth
assignments to those anterior epecifications. For any set of specifications §, let £(5) denote
the set of all ‘expressions’ that can be constructed.

£ : P Spec — P Spec {6.10)
¥Y§:PSpece
£(5) = {5': P A(5) + US")

A table is thus a set of weighted expressions (specificationa). Fach expression can be
regarded as the antecedent of an inference rule whose conclusion is the corresponding spec-
ification in sequence §) and whose certainty factor ia the weight of the expression.

Table = Spec + Pr (6.11)
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However, the expressions appeariag in a table must be constructed only from anteror
specifications. We call such a table well-formed. This guarantees that it i8 necessary to
know only the truth assignment to anterior probabilities in order to evaluate the conditional
probability of meeting §{i], for each i.

Vi:l..#Q e domT[i] C £@QQ1.. i — 1)) (612)

Any such table though must be internally consisten!. Under no circumstances must it be
possible ta derive a logical contradiction, otherwise the corresponding conditional probabil-
ity would be undefined.

Vi:l..#Q;s,5 :Spece {sr+ 0,8+ 1} CT[i]=asns = {} (6.13)

Finally, for each i, if a truth assignment to anterior specifications logically determines
whether or not Q[i] ie met, then table Ti} should evaluate to the corresponding exireme
probability of 1 or 0. This is ensured by including an appropriate expression in the tahie
with extreme weight of 1 or 0, accordingly. If the sequence of tables T has this property,
then we say it is exfernally consistent with respect to sequence Q.

Vi:l..#QeVa:A(QOL.. i-10)|5# {}e {6.19)
sCQfil= 35" :domTlijes Ca' AT]iJs' =1
2C Q= 34 : domT{i] e s € &' A T]i}s' = 0

For any truth assignment s to the sequence of specifications @, if 5 i¢ non-empty (s # {})
then let p;(s) denote the conditional probability that Q[i] is met given the truth assipiments
to the anterior specifications. This is determined by combining logistically the weghts of
all expressions in Table T'[i] which evaluate to ‘true’ (i.e. all rules which fire’).

r8) 2 € T (6.15)

2':dom Ti]jsCa’

By taking the product of these conditional probabilities for all ¢, we obtain the joint prob-
ability p(s).

= pi(s) s € Qi
ple) = i:l:.l.lq { 1- pi{a) s C QM (6.16)

Thus @ and T together define a joint probability distribution over truth assignments to
Q. If every non-empty truth assignment 2 ie a singleton specification thea @ issaid to be
complete. I Q is complete then the probability associated with any case ¢ is given by the
probability p({c}) associated with the corresponding singleton specification, If not, then
all members of s are taken to be equiprobable (Prindple of Indifference).

The pair (Q,T) constitutes a knowledge base representing information fg where

Iy = }\c:CASEo%(;T (6.17)

where 3:A(ranQ)|c€s

Notice that if the knowledge base ia empty, then it conveya no information at all.
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Lemma 18
Q=0 F ln=0
The concrete program provided hy the rule-hased system is defined by

va = C(D(Ir)) {6.18)

6.1.3 Implementation

For eimplicity, we restrict the conclusions of rules to atomic propositions. An atomic propo-
silion ‘v in U’ is an assertion that the value of variable v lies in the set /. For any v
and € there is a direct correspondence between the atomic proposition and an abstract
specification.

vinU 2 {c:Case]ev)g U} (6.19)

We place no restriction on the antecedents of rules. Any specification can be represented
a5 a Boolean expression over atomic propositions in which conjunction is intersection

(3 and ¢ = snt), disjunction is union (s or ¢ £ sU{), and negation is complemen-
tation {(not 8 = J), This provides a convenient shorthand for writing knowledge bases.

The choice of sequence @, and the choice of inference rules (expressions appearing in tables
T) are made in the light of expert knowledge of the domain of application. The weights
associsted with the expressions in T' can be derived from the training sample C. Since for
each i, table T'[z) comptises a logistic discriminant function for the truth value of specification
Q[i], standard iterative methods for fitting logistic discriminant functions can he applied.
Each table can be treated independently of the others. The method we have implemented
is iterative maximum likelihood estimation using mixture sampling with initial certainty
factors equal to the identity (4) as suggested by Anderson [And82). For expediency we
implemented ounly simple gradient descent (gain = 1) rather than the more complicated
quasi-Newton method. We adapt the certainty factors only after each pass through the
entire training sequence, Unlike the neural network, this is feasible for the rule-based
system because convergence is much faster. This is hecause there are only a few weights in
each family of rules, whereas the neural network has many more pararneters to optimize.

If the sequence @ has an inferential ordering, then observations made of any case ¢ will tend
to correspond to truth assignments to an initial segment of the chain. This allows statistical
inference (calculation of Yx(e)(d) for each disease d) to he made by Monte Carlo simulation
along the sequence @ [Cor86). Starting with the first proposition Q[i] whose truth value
is unknown, we compute the prohability of Q[i] heing true given the anterior evidence
(Equation 6.15), and the assign Q[i] value true randomly with this probahility, otherwise
false. This procedure is then repeated for the next proposition @[i + 1] in the sequence, and
so on until all propositions in @ have heen assigned a truth value. This samples the joint
distribution of the unknown propositions conditional on the observed values; we call this a
simulation run. We perform repeated simulation runs (e.g. 10,000) and count the relative
freqnency with which the disease variable (a) takes each possible value. This is an estimate
of the distribution of A given the observations c.

Although we have developed this rule-hased representation specifically for inferential knowl-
edge, there is no formal requirement that ¢ has an inferential ordering. Q can just as easily
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be given a cansal ordering. Hules now relate causes to their effects rather than the other
way around, but the rule-based representation still offers considerable parameter reduction
over explicit represeatation of conditional probability tables, Although the ‘Noisy OR-Gate’
is usnally employed for thia purpose, the logistic mode! has the advantage of being able o
handle inhibitory influences as well as causal ones, and in any case can nsually approximate
the ‘Noisy OR-Gate’ when required in practice [Tod93b]. Families of logistic rules thua form
a flexible, readable and efficient representation botk for inferential and causal knowledge.

If a causal ordering is chosen then the Monte Carlo simulation method is no longer suitable
for drawing statistical inferences. Provided tbat the underlying Bayesian network on bipary
propositions is sufficiently sparse, the Lauritzen-Spiegelhalter algorithm [Lau88] offen a
solution. M not, then a simple alternative is to generate a large sample of random cases from
the model, and use this as training sequence C for some suitably flexible statistical classifier.
If the model is correct, then the generated sample will be statistically indistinguishable from
a sample of real cases. However, because it is generated from a computer model rather than
laboriously collected by band, it can be very much larger (e.g, 10° cases) and consequently
convey more information.



Chapter 7

A Categorical Knowledge-Based
System

In this chapter we present a formal model of a disgnostic program which
employs categorical knowledge. Diagnostic inference is modelled by idempotent,
decreasing funcitons on specifications. This leads lo an implemnentatian as a
flowchart with the unusual feature that inferences are made by repealedily travers-
ing the flowchart until the same path is eveniually followed,

7.1 Categorical Reasoning

The knowledge-based methods described in previous chapters have been concerned with
prohabilistic reasoning under uncertainty. But to what extent is it necessary to repre-
sent uncertainty, with all its associated complexity? Can simifarly accurate (or better)
results be achieved with purely categorical knowledge? Although ‘algorithmic diagnosis’
has been much eriticized (e.g. [Sho79, MacT8]), there is recent evidence that carefully de-
signed flowcharta can be acceptably accurate [Fra91]. In this chapter we develop a model
of categorical reasoning.

Let us begin by dropping quantification of non-determinism. A case history contains many
facts of diagnostic value: symptoms and signe, personal details such as age and sex, results of
blood and urine tests, and the results of any other investigations performed such as X-rays.
Furthermore, the patient may he known to suffer from one or more diseases snch as diabetes
or peplic ulceration, and these facts too will he recorded in the case history. A case history
thus comstitutes a ‘sperification’ that the patient is asserted to meet. Given such a case
hiatory, the diagnostic task is to find a causal explanation for the patient’s symptoms, signs
and test results. Explanations may involve identification of a single disease, or of several
coexiatent diseases. A more refined explanation may also incdude pathophysiological states
the patient has, such as shock or septicaemia. Thus an explanation can also be considered
to be aspecification, one which the patieat is inferred to meet. The diagnostic task is then
to find, by application of some suitable inference procedure, the strongest specification that
the patient meets, Once we drop quantification of uncertainty, the most abstract view of a
diagnostic program thus becomes a function on specifications rather than on information.
‘We refer to such a program as an inference procedure.

a8



7.1. CATEGORICAL REASONING 19

We ascribe two properties to inference procedures. Firstly, we have available no element in
the set ‘Info’ to represent an illogical case history. That is why we excluded illogical case
historiea from the domain of abstract diagnostic programs (DP) which were thus defined
a5 partial functions. However, the set *Spec’ does contain a distingnished element which
represents any illogical case history: the imposasible specification {}. Therefare, we are now
able ta define inference procedures as tolal functions.

Secondly, since an inference procedure engages in categorical reasoning, it should be com-
plete in the sense that it draws the fullest possible conclusion from the initial data. There-
fore applying the same inference procednre to its own conclusjon should derive nothing new
(idempotency). Formally, let IP denote the set of all inference procedures.

IP = {p:Spec— Spec|psp=p} {r.1)

Every inference procedure p can also be regarded as an abstract diagnostic program D{p).
The abstraction function 7 is distinguished from the other function with the same symbol
(Equation 2.6) by its type. Recall that for any specification a, K(a)} represents the informa-
tion conveyed by the assertion that s is met {Equation 2.10). Also notice that K is injective,
Therefore, we define D formally:

D :1P — DP (7.2)

Vp:IP e
D(p)=K""zp3K

‘7.1.1 Ordering Specifications

Given that specifications are sets of case descriptions, the suhset relation provides s natural
partial ordering for specifications. We interpret this as & ‘stronger than’ relation.
Example 2 Suppose that we have oniy four posgible total cases

Casg = {Cl,CQ,C;;, C‘}
ond consider two specificalions s and 1 defined to be

{C1,C5,Ca}
{C1,Ca}
Specification » asserts that the complete patient description moy be one of Cy, C1 or C3,

wherens 1 asserts thot enly Cy and C3 are possible, Therefore 1 is sironger than s because
it is more delerminiatic,

@
LU

H

The impossible specification ({}) is the strongest of all: o patient can meet it, sinee it has
been strengthened to absurdity. The universal specification (CASE) ia the weakest: since it
is met by all patients it can never tell us anything new.

Since there ia an ordering on specifications, should inference procedures be monotonic?
Should stronger premises necesaarily lead to stronger conclusions? One of the motivationa
{for the development of non-monctonic logic was the need to reason from inomplete evi-
dence. Since our specifications allow ns to describe patients incompletely, we should not
insist that juference procedures are monotonic.
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7.1.2 Inference Steps

Inference tasks are usnally too complex to be carried out at a single step. For example,
we might consider defining an inference procedure by means of a single look-up table, but
in practice the table would be far too large. Instead, reasoning tends to follow a sequence
of steps, each increasing our knowledge of the case, until we finally reach a conclusion.
Therefore we regard an inference step (15) as a decreasing function on specifications; as a
speciication decreases in size, the stronger it becomes.

IS = {p:Spec — Spec | ¥ : Spec & p{s) C 3} (1.3)

Notice that inference steps are closed under composition.
Lemma 10
pq:1S F pigels

From this it follows that an inference step can be freely repeated. Since IS is finite, this
repetition eventually leads to a fixed point, and furthermore this fixed point is idempotent.
Therdfore this iterative method yields an inference procedure from any inference step. (In-
ference ateps are analogous to UNITY [Cha88) programs, with specifications corresponding
to program states.)

This is easily shown. Firstly, we promote the subset order on specifications to give a partial
order on inference atepa.

_C_:1S IS (1.4)

¥p,q:15
pL g & Va:Specep(s) C g(s)
Informally, p C q means that p is stronger than ¢; for any specification &, p(s) is at Jeast as
deterministic aa ¢(5). Notice that composition strengthens an inference step.
Lemma 20
P.e:1SF psqlp

Clearly the sequence of iterations p" is a deacending chain in the partial order, Since IS is
finite it is well-founded with respect to the partial order, so the chain of p™ must reach a
fixed point, which ia the greatest lower bound of the chain. The function # finds this lower
bound, (p" denotes the composition of n copies of p.)

F:I§—18 (7.5)

Yp:IS e
Fp)=M{n:Nep"}

It follows from the antisymmetry of the partial order that F(p) is idempotent and thus a
member of IP.

Lemma 21
p:15 v F(pelP
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7.2 A Representation for Inference Steps

In practice, individnal inference steps are still too camplex to specify by explicit enwmer-
ation; 2 more concise representation is needed. Some steps are easy to describe because
they are so gimple. An example is a ‘constant’ step in which the new information provided
is independent of the premise. Given any specification s, C(s) is the constant atep which
when given any specification ¢ as premise concludes that both » and ¢ are met.

C:Spec — 1S (7.6)

Vs :Spece
C(s} = M : Spec s ant

The constant inference step C{{}) sirnply rejects all case descriptions as impossible.
Lemma 22

b C({)) = hs : Specs {)

Conversely, the constant inference step ('(Cask) always returgs its input unaltered, baving
deduced nothing new.

Lemma 23
F C(CaSE) = Xs:Speces

Just as gimple assignments are insufficient for useful compater programming, constaat infer-
ence steps are inadequate for useful reasoning. We need some other method of reprsenting
more powerful inference steps; one technique is to coustruct them from simpler stepe, juat as
complex programs are composed from simple commands. We already have one combiator,
sequential composition {Lemma 19}). Unfortunately, this does not give us more power, since
composition of two conatant inference steps only yields another such step.

Lemma 24
5,t:8pec F C(8)3Ct) =C(ant)

Another combinator used in programming languages is alternation. We can censtruct a
conditional combinator for inferences steps too. Thus far, a specification has been used
ooly as an assertion, but we can also regard it as a question asking whether thal assertion
is true. This means that specifications can be used as the guards for alternations, Given
inference steps p, g and specification s, we define the construction p 4 56 g to be a1 inference
step that behaves like p if specification s is met, and like ¢ otherwise.

-4 _b _:(ISxSpecx 15} — IS (7.7)
Yp,g:15;5,t: Spec e

tCa= (paavg)(t) =pt)
tga=> (paseq)r) = q(t)
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The conditional combinator and function C are sufficient to represent any inference step as a
tree where each node and leaf is labelled with a specification; a leafl specification represents
3 cowstant inference step, and a node specification represents the combination of the two
inference steps that branch from it. Before defining these inference trees formally we need
to lock more closely at how they will handle missing data.

7.21 Missing Data

‘When carrying out medical diagnosis data are jpvariably missing; testa and X-rays may not
have been carried out, and various signs may not Lave been recorded. It is important that
a diagnostic method can always bandle missing data, as Example 3 shows.

Exanple 3 Suppose, having ezhausted all other evidence, we have to decide which of twe
diagnoses, A and B, is the more probable on the basis of a Boolean indicant vanable, v.
Consider the situations described by the following two diagrams, which give the probabilities
of (dicgnosis,indicant) pairs.

In both cases, if v =1 then we should diagnose A as the more probable, and if v=10 we
should diagnose B. However, if the value of v is urknoum, then the most probable diagnosis
differs in the two gituations. In the firsl cose, B has the higher prior probability (0.6),
wherens in the second case it is A that has the higher probability {0.6).

Clearly, given that a patient is known to meet specification #, the question ‘Does the patient
meet specification a7’ has three pozsible answers: ‘truye’, ‘false’ and ‘anknown’ (Figure 7.1).

Figure 7.1: Venn diagrams showing whether ¢ meets s.

UAS ZAS

True (T)  False (F} Unknown (?)
tCas tCcs IgsAtELTX

The last two cases are not distinguished by the alternation p< 4 b g; it behaves a3 ¢ in both
aituations, and this is clearly inadequate as Example 3 shows. By unsing the combinator
twice a three-way distinctisn can be made,

pass(geTor)

Thus if the patient meets s the construction behaves as p, if instead the patient meets 7 it
behavesas ¢, and otherwise it behaves as r.
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7.2.2 Inference Treces

We therefore represent an inference step ag a tree of specifications. The tree is ternary
because each non-terminal node represents a question with three poesible answers: true
(T), false (F) and naknowa (7).

IT ::= leal{{Spec)} | node{{Spec x IT x IT x IT)) (1.8)

A semantic function J for inference trees can now be defined simply by applying the constant
and alternation functions to the relevant paris of each tree.

J:IT —18 (1.9)

YTIr,Te, Ty : 1T; 8 : Spec e
T(leaf(s)) = C(s)
J{node(s, Tr,Te, T2)) = F(Tr) as e (J(T¥) a5 J(T3))

1t follows by structural induction over IT that the result of applying 7 to any tree is a valid
inference step. Furthermore, it can be shown by construction of a normal form tree that
every inference step has a corresponding representation a3 an inference tree.

Lemma 2%

F ran 7 =1§

Ol course in any implementation, we can avaid the rednndancy of having multiple copies of
identical sub-trees by using pointere. In other words, in practice we represent a fiowchart
a8 a directed acyclic graph, but mathematically we view the fiowchart as a tree. let F be
our flowchart.

F:IT (7.10)

The corresponding, concrete program is given hy
¥r = (T3 F3D30)F) (7.11)

7.3 Implementation

As a notational convenience, we represent specifications as Boolean expressione over atomic
propositions as we did for the rule-based system. Consider the compntational complexity
of determining the fixed-point given a set of observations. Notice that an inference tree is
finite (Equation 7.8). Let n be the number of distinct nodes in the tree. Since inference
steps are decreasing, at each iteration the number of nodes whase truth valne is established
must increase until a fixed-point is reached. This means that a fixed-point must be reached
in no more than n steps. In the worst case, each iteration requires evaluation of all nodes
in the tree. Therefore, the complexity of computing the fixed-point is O(n7k), where k is
the worst-case timne to evaluate an expression.

Unfortunately, evaluation of arbitrary expressions is computationally hard. In order to be
able to use the flowchart efficiently in order to carry out diagnosis, we need to restrict
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the clasa of expression that ie allowed to appear in any decision node s, A convenient
classis that of y-expression: expressious in which each variable appears at most once. A u-
expression s can be easily evaluated if the current informaticn # about the ease is monomial.
(A momomial expression is a g-expreasion involving only ¢onjunction.) Each proposition
conceming a variable in s is evaluated independently given t, and then the truth values
are combined using standard 3-valued logic operators. Since any input to ¢r is a partial
case, 1 is initially a monomial expression as required. In order that ¢ remains monomial at
each iteration, we insist thal expressions appearing at leal nodes are also monomial: the
conjunction of any 1wo monomial expressions is also monomial.



Chapter 8
Compilation of Database

This chapter describes the process of collecting cases and compiling a database
Jor troining and test purposes. A total of 1270 cases of abdominal or low back
pain of suspected gymaccological origin were eollected retrospectively from hospital
case-notes.

8.1 A Medical Application

We have seen in previons chapters how different design decisions lead to a variety of di-
agnostic programs, ranging from pureiy statistical {(e.g. the nearest neighbours method) to
knowledge-based (e.g. a categorical flowchart). An important central queation whick shouid
be asked by anyone contemplating the design and implementation of a diagnostic program
ip ‘can the extra complexity and effort involved in building knowledge-based systems be
justified in terms of a measurable improvement in diagnostic accuracy?” We address this
by comparing all oor programs on a snitable set of test cases. The application we have
chosen is the diagnosis of abdominal pain. This has been one of the most widely stndied
applications [Feu90, Dom90], and it is regarded as the natural test field for further research
into diagnostic methods [Sut89a]. In particular, we have confined our attention to aspecific
sabgroup of patients, those for whom the pain is suspected to be of gynaecological origin.
This was chosen hecause it is an especially challenging diagnostic task for hoth computer
and clinician [Gun91). Also the scope for exploiting knowledge of causal mechanisms ap-
pears to he greater amongst this selected gronp of patients: multiple pathophysiclogical
states are common (e.g. pregnancy and a complication of pregnancy, chronic pelvic inflam-
matory disease and ectopic preghancy, coincidental ovarian cyst and endometricsis etc.), If
incorporation of backgronnd knowledge does iraprove the diagnostic accaracy of a program,
then thia sbould be more apparent in this selected group of patients. Clearly, however,
any results in thiz highly epecific application will need to be confirmed in other spplication
areas. We have therefore designed our experimental metheds and our computer programs
with the ohjective of reuse.

8.1.1 Admission Criteria

Since we are interested in comparing different programs rather than in comparing compater
with clinician, retrospectively collected cases are adequate for our purpose since any im-
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pairment of the guality of clinical data disadvantages all programe equally. We therefore
collected our cases retrospectively from hospital case-notes. Qur admission criteria were

1. The patient wa# seen as an emergency by the admitting gynaecological team at the
Churchill Hospital, Oxford, during the 12-month period 1/1/1990 to 31/12/1990 in-
dusive.

2. The age of the patient when seen was 13 years to 49 years inclusive.

3. One of the patient’s presenting complaints was abdominal or low back pain (not simply
‘discomfort’}.

4. There was no history of trauma which could have explained the pain.

We chase to atndy a 12-month period in order to average out any conceivable seasonal
variation in disease incidence, presentation or referral pattern. This also averages out the
learning curves of Senior House Officers (who rotate every aix months) in their ability to
record symptoms and elicit signs. A total of 1949 emergency referrals were made in the 12-
month period. The case-notes for 105 of these were unavailable, and it was uneconomical to
continue to pursue them. In a further 41 cases, no relevant entry could be found in the case-
notes, presumably because the case-notes had been unavailable at the time the patient was
seen, and any temporary notes made had subsequently gone astray. This leaves 1803 cases
in whon we found the clinical record. We included only patients of reproductive age because
this reduces the range of diseases we needed to model. We note that the Leeds system did
not peform well on children {Dic88] or in patients aver the age of 50 years [Tel88), partly
because conditions present differently in these gronps. None of our 1803 cases were less
than the lower age limit (13 years), but 51 were over the upper limit (49 years). A further
477 cases were eliminated because there was no recent history of abdominal or back pain
(55 of these had perineal pain only, mostly due to Bartholin’s cyst/abacess, another patient
had chest pain only, and the rest had either no pain or just ‘discomfort’), We inciuded low
back piin as an ajternative to abdominal pain because pelvic pathoogy sometimes causes
pain ouly in the back, and a decision to omit these patients would have seemed arbitrary.
(About 3% of our palients had back pain but no abdominal pain.} In our selected group of
patients the incidence of back pain due to serious non-gynaecclogical cause (e.g. vertebral
disc protrusion) is negligible. Inclusion of back pain as a possible presentation therefore does
not significantly complicate the model. We chose, however, to omit cases with a history
of trauna because this small subset (5 cases) introduces many additional disordera. This
leaves a total of 1270 cases which comprise our database. Figure 8.1 sumimarizes the above
rejectim frequencies.

Natice that the admission criteria do not exclude repeated presentations of the same patient
during the study period. On average each patient occurs 1.3 times in the database. The
case-notes of potentially admissible patients were retrieved in random order. However,
in order to avoid requesting the same notes twice, data concerning any other admissible
presentations of the same patient during the study period were recorded at the same time.
This means that repeat presentations of the same patient tend to be near to one another
in the datahase.
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Figure 8.1: Rejection {requencies during data collection.

1270 cases admitted
to database

1949 emergency referrals
1/1/1990-31/12/1990

146 notes {or entry}

TN
(19

not found

51 cases aged over 49 years
(none under 13 years)

477 cases with no abdominal
or back pain

5 cases with history
of trauma
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8.2 Final Diagnoses

The diagnostic task is to determine the fundamental cause of the patient’s pain, which we
refer lo a8 the ‘final diagnosis’. This is recorded for ali cases as a single variable {correspond-
ing toa in Equation 3.9). We drew up a list of 19 possible final diagnoses, chosea in order
to separate patients into a relatively small number of major treatment and/or prognostic
categories, while at the same time including all the common coaditions. The decision as
to which diagnoses to include was based both on those of the firat 202 cases we collected,
and or our expectations of future conditions we would encounter during data-collection.
However, once we started to collect more cases we made no further modifications to the list.
In order to determine the final diagnoses as reliably as possible we used the criteria which
we enumerate below. In some cases, doubt remained about the true diagnosis. Rather than
exclude such cases from the database, we qualified the diagnosis of every case with a label
‘definite’ or ‘presumed’. 1f the case matched one of the following definitions, then the patient
was asigned the corresponding diagnosis as a definite diagnosis. 1f the case matched none
of the definitions precisely, then the patient was assigned the diagnosis whose definition
was the closest match, as a presumed diagnosis. Thus no patient was excluded from the
database because of uncertainty about the true diagnosis.

e Non-Specific Pain - Either the pain settles within 24 hours of admission with-
out antibiotic therapy, or laparcscapy {or laparotomy) is performed. The patient is
discharged without a definite cause for the pain being found, or with a vague and
unreliable diagnostic label such as ‘irritable bowel syndrome’, ‘Mittelschmerz’ or ‘dys-
menorrhoea’. (The final diagnosis is presumed to be ‘non-specific pain’ if the patient
takes her own discharge without a definite cause for the pain having been found, or if
lhe patient is given antibiotics, but the clinicians' final diagnostic conclusion appears
o be ‘non-specific pain’.)

Threatened Abortion - The patient is in the first 28/40 of pregnancy, and PY
bleeding occurs at ahout the time of presentation, an ultrasound scan performed
during the subsequent 14 days shows a viable intrauterine foetus, and the patient is
discharged from hospital without the abortion becoming inevitable. (If an ultrasound
scan shows a viable foetus and an intrauterine haemorrhage in the absence of PV
tleeding, then the diagnosis of threatened abortion is presumed rather than definite.)

Abortion - The patient is in the first 28/40 of pregnancy, and one of the following
applies:

— (Missed} - Evidence of foetal death in utero is found on nltrasound scanning. No
other cause for the pain can be found.

—~ (Inevilable/Incomplete} - There is no evidence that the abortion was missed.
Evacnation of the uterus is undertaken during the current admission (even if the
abortion appeared only to be threatened at presentation), and either products of
conception are clearly identified at operation, or histopathological examination
of curettage specimens confirms the presence of chorionic tissue.

— {Complete Abortion}- The patieut is found to have » spontanecusly empty uterus
following a confirmed pregnancy.
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¢ Retained Products - Following a previous ERPC or termination of pregnancy or
delivery, evacuation of the uterns is yndertaken, and either prodncts of conception
are clearly identified at operation, or histopathological examination of curettage spec-
imena confirms the presence of chorionic tissue.

¢ Hydatidiform Mole - A molar pregnancy is evacuated and confirmed histologically.

¢ Ectopic Pregnancy - An extrauterine pregnancy is removed surgically, and con-
firmed histologically.

¢ Pelvic Inflammatory Disease - At least one of the following criteria are satisfied
in the presence of appropriate pelvic signs:

1. The diagnosis is made on laparoscopy {or at laparotomy).

2. The patient has either a pyrexia of at least 38°C or a white cell count of at
least 15 per nanolitre, and responds rapidly (within 48 hours) to an appropriate
antibiotic.

3. Gomnococcus is isolated from a high vaginal swab.

4. Chlamydia antigen is found.

In the case that pelvic inflammatory disease is secondary to retained products, the
latter takes precedence as the final diagnosis.

¢ Ovarian Cyst - At least one of the following criteria is satisfied in the absence of
any other explanation for the pain (and the clinicians appear to attribute the pain 1o
the cyst):

1. An ovarian cyst {on the same side as the pain if the pain is lateral) is found on
ultrasound examination.

2. Ao uncomplicated (i.e. neither torted, nor haemorrhagic nor ruptnred) ovarian
cyst {on the same side as the pain if the pain i» lateral) is found at laparoscopy
(or laparotomy).

« Cysatic Accident - At least one of the following complications of an ovarian cyst is
evident:

— (Adnezal Torsion) - The diagnosis is confirmed at laparotomy.

— (Ruptured Cyst) - The diagnosis is confirmed on laparoscopy or at laparotomy,
or the patient has appropriate symptoms and eigns, and free fluid is the Pouch
of Douglas is found on ultrasound seanning, in the absence of other explanation
for the pain.

— (Hoemorrhage) - The diagnosis is confirmed on Japaroscopy or at laparotomy.
¢ Pelvic Haematoma - A pelvic haematoma is evacuated surgically.

¢ Fibroids - Fibroids are detected on ultrasound examination. Pain is asociated with
bieeding, or else a specific complication (e.g. red degeneration or torsien) is found on
histological examination.

+ Hyperstimulation - Bilateral ovarian enlargement is evident following therapeutic
ovarian stimulation within the Jast month, No other cause can be found for the pain.
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¢ Urinary Tract Infection - Al [east one of the following criteria is satisfied:

1. The patient has dysuria or {requency, lower abdominal or loin tenderness, and
at least moderate (‘++’) pyuria with no more than a minimal number (*+°) of
8qQuajnes oL Urihé microscopy.

2. A pathogen is isolated from a mid-stream specimen of urine, no other cause
for the pain can be found, and the patient responds rapidly to an appropriate
antibiotic.

Endometriosis - The diagnosis is confirmed at laparoscopy (or laparotomy).

Ureteric Colic - A ureteric stone is passed spontaneously or confirmed radiologically.

Acute Appendicitis - Histopathological examination of the appendix confirms ap-
pendicitis.

e Hyperemesia Gravidarum - Repeated vomiting during pregnancy is one of the
presenting complainta, and the abdominal pain is aggravated by movement. No other
canse for the vomiting or for the pain can be found.

Abdominal Wall Heematoma - A haematoma ig identified in the abdominal wall
on ultrasound scanning, ot is evacuated surgically.

e Dther - Some definitive diagnosis other than those above is appropriate.

Table §.1 shows the frequency distribution of the final diagnosis variable. The ¢commonest
diagneis is ‘abortion’ (miscarriage): there are 468 cases, of which 372 are definite diagnoses.
By contrast, ureteric colic and abdominal wall haemaloma seem rare amongst this selected
popalation; there is but a single example of each. The majority of patients have definite di-
agnoses, bnt the diagnosis that ia maost frequently presumed is that of *pelvic inflammatory
disease’ (PID). The diagnostic criteria we have adopted for this are strong, and in prac-
tice the diagnosis tends to be made on clinical grounds alogpe. The patient then responds
rapidly to ansibiotic therapy, thus rendering laparoscopy unnecessary. Few patients have
the netessary degree of pyrexia on presentation, and gonococcus and chlamydia are rarely
confirmed as the causative organisms. Hyperemesis gravidarum is another condition which
seldom satisfied our adopted diagnostic criteria since aggravation of pain by movement ie
usually not reported. In practice, thongh, there is usually ro doubt about the diagnosis,
and perhaps our diagnostic criteria could be relaxed.

8.3 Recorded Information

The data iz the case-notes were transcribed onto a data-collection form using a formal
protow) for interpreting the handwritten entries, and then transferred to computer. This
allowed automatic range checking and scazning for other inconeistencies. Each case descrip-
tion was printed out and checked by hand against the information oun the data eollection
form, so that any remaining errors could be corrected. The sources of data Included clerking
notes (even those made by medical atudents), referral leiters, nuraing records and discharge
summaries. The objective was to record all information that was available (or could have
been available had say an investigation been carried out in time) to the admitting team at
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Table 8.1: Frequeucy distribution of final diagnosis.

Code Letter Diagnosis Definite | Presumed | Total
A Nop-specific pain 209 44 253
B Threatened abortion 66 29 95
C Abortion 2 96 468
D Retained products 32 16 48
E Hydatidiform mole 4 0 4
F Ectopic pregnancy 69 3 72
G Pelvic inflammatory disease 52 97 149
H Qvarian cyst 19 20 39
I Cyatic accident 27 27 54
J Pelvic haematoma 1 4 5
K Fibroids 5 3 8
L Hyperstimulation 0 3 3
M Uriuary tract infection 4 8 12
N Endometriosis 12 8 20
0 Ureteric colic 0 1 1
P Appendicitis 2 0 2
Q Hyperemesis gravidarum 4 10 Y
R’ Abdominal wall haematoma 1 0 1
s Other 16 [ »

(total) 895 375 1270
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the time of the patient’s presentation. We recorded values for up to 169 variables describ-
ing relevan? symptoms and other histarical details (age, previous operations etc.), physical
signs and the results of investigations (blood and urine tests, and ultrasound scan). We
refer to all of these a8 symptom veriables. On average, values were recorded for 62% of
the symptom variables in any given case. The protocol we used for recording each variabie
is8 summarized in the appendix (Appendix A), and the possible values for each symptom
variable are shown in Tables A.1, A.2, and A.3.

A note was also kept of other information snch as the source of referral, and the clinicians’
initial diagnoses. However, tbese were not included as symptom variables to assist computer
diagnmis hecause they reflect decisione by others as to the cauese of the symptoms. For
example, a patient tends to be referred from the ultrasound clinic because a scan bas shown
a missed abortion or an ectopic. The initial diagnosis was recorded as the provisional
diagnmis made at presentation. If a list of possible diagnoses was drawn up, then oaly the
first in the list was recorded. Question marks qualifying diagnoses were ignored. Where
necessyry, the diagnosis was translated to one relevant to the pain rather than to other
symptoms or SIgNs.

We alw recorded valnes for a furtber 53 variables which represent various pathophysiological
states and refinements of the final diagnosis. We refer to these as additional variobles. Any
operalve findings were particularly useful in determining the underlying cansal mechanism
of the patient’s symptoms and signs, but in many cases a subjective decision had to be
made In all but a few exceptional cases, the values of all the additional variables could be
decided and recorded, so missing values are rare except for variables which are conditional
on others. Additional variables are not used for test purposes (their values like that of
the final diagnosis are concealed in any test case). However, the values of the additional
variables in training cases are made available to any programs which can exploit them. The
protom! we used for recording each additional variable is also summarized is the appendix
(Appendix A), and the possible values for each additional variable are shown in Table A.4-

8.4 Criticism of Qur Choice of Variables

During the process of data-collection, we kept a note of any perceived inadegquacies of our
choiceof variables to record. The following is an itemized list of these comments. Although
the list is long, most of the points are minor. Perhaps the most significant improvement
would be to record the severity of vomiting as suggested.

1. It should be possible to describe chronic pain separately from acute pain. For exam-
ple, the patient may have had low-back pain for a month, but, in the last few days
experienced central abdominal pain moving to the RIF. At present a subjective deci-
iion has to be made as to whether the low-back pain is part of the present complaint,
in which case ‘back’ rather tban ‘RLQ’ is recorded as the initial site.

2, Pain sometimes radiates to the right hypochondrium, or chest. No variables are
available specifically for this: the closest is “epigastrium’.

3. The sensitivity of the pain Lo movement should be more clearly defined: at present
a0 dietinction is made between pain that i made worse by any attempt at movement,
and pain that is simply aggravated by walking.



§.4.

10.

11

12.
13,
14,

15.

16,

17.

18.

19.

20.
21.

22,

23.

CRITICISM OF OUR CHOICE OF VARIABLES 53

. It is sometimes hazd to distinguish mild pain from ‘diecomfort’.

. A way should be found of describing ‘cramping, intermittent pain’: at present these

two adjectives are alternatives.

. Both the type of the pain at onset, and the type of the pain at presentation should

be recorded in case it has changed.

. Any changing menstrual pattern should he recorded.
. A distinction should be made between ‘long’ LMP and ‘heavy' LMP, and ‘sbort’ LMP

and Tight’ LMP,

. A variable should record whether abnormal PV bleeding preceded, started st the

same time as, or followed the pain. Thie can help distinguish ectopic pregnancy from
abortion.

A distinction should he made between fresh blood logs and brownieh loss; this isuseful
in the diagnosis of missed abortion.

Any ‘sensatjon of pregnancy’ ehould be recorded: this is usually present evenin the
case of ectopic pregnancy, and it often disappears in the case of a missed abodion.

A distinction should be made between primary and secondary dysmenorrhoea
A distinction should be made between actual fainting and the sensation of faintness.

The aevenity of vomiting should be recorded; this is an essential and obvious due in
the diagnoais of hypetemesis gravidaram,

A distinetion should be made between an episode of some symptom (e.g. vomiting) a
week or 80 ago, and the presence of the aymptom for the last week or s0. Al present
only the time since onset is recorded.

Previous cervical smear results should be recorded.

If the patient is pregnant, and the normal method of contraception is TUCD, then it
should be recorded whether the IUCD has been removed.

Any past history of hyperemesie in the present or previous pregnancies should be
recorded.

It ehould be made clear whether the patient hae delivered {or had TOP,ERPC o
complete abortion) since the LMP.

Previous myomectomy should be recorded.

There should just be a single variable ‘uterine instrumentation’, and this should record
all instrumentation, whether doring laparoscopy or not.

A history of previous termination of pregnancy should be recorded in a single variable,
and not duplicated in the variables ‘terminations’ and ‘previous termination’ as it is
at present.

Beta blockers should be included in the drug history; they may mask tachycardia.
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The respiratory rate is usually available, and should be recorded.

A distinction should be made hetween facial pallor and clinical apaemia; facial pallor
i# a sign both of a gympathetic response and of anaemia.

An extra value ‘in paic’ sbould be included for the ‘mood’ variable; at present this is
recorded simply as ‘other’.

A distinction shonld be made between a auspected abdominal mass and ope that is
definite, in the same way as for PV examination.

Central PV tenderness should be divided into ‘tender uterus’ and ‘tender POD’.
PV masses are sometimes felt centrally; at present there is no way of recording these.
The severity of cervical excitation should be recorded.

The results of both high and low sensitivity pregnancy tests should be recorded if
Inown: a negative low sensitivity test in the presence of an established pregnancy
wnveys useful information.

The pH of the urine should be recorded.

The resulta of electrolytes, liver function tests and amylase blood tesie should be
recorded.

The results of ultrasound examination of the gallbladder and kidneys should be
recorded.

The results of IVP investigation should be recorded.

An additional variable should reccsd the presumed nature of the uterine contents.



Chapter 9

Construction and Validation of
Knowledge Bases

This chapter describes the construction and validation of the exemplar model,
Bayesian nelweorks, flowchart, and rule-based systema,

9.1 Causal Models

In constructing the knowledge bases we utilized information from various sources: standard
textbooks (e.g. [Paus2, Chal4, Whi86]), journal articles, personal experience and dis¢ussion
with medical colleagues. We also made a careful study of the first 202 casen we wllected,
seeking a full causal explanation for each ome in order to identify the mest important
causal mechanisms. (Consequently these 202 cases could not be used snbsequently for
test purposes.) In some instances, as we describe, machine assistance could be provided
in the task of learning from these cases. We alzo used all 1270 cases to criticize various
kuowledge bases by means of a x? test of goodness of fit. (This criticism is retrospective:
no changes to the knowledge bases were made in the light of the x? tests.) We describe
first the development of the causal knowledge bases, and afterwards the development of the
inferential knowledge bases.

9.1.1 Exemplar Model

The simplest knowledge base of all is that for the exemplar method. Construction of this
entailed drawing up 19 typical symptom profiles, one for each disease. To amist in this
process, we implemented a program to display the frequency distribution for each symptom
variable given each disease amougst the 202 cases. For example, there were 16 cases of
ectopic pregnancy, and the frequency distribution for the variable ‘type of pain’is shown in
Table 9.1, Note that the variable was recorded iu only 10 of the 16 cases. In thisinstance the
data confirmed our expectation that the typical patient with an ectopit pregnaucy describes
‘cramping’ abdominal pain. Often though, the data conflicted with our expectations. If
numbers were small, we tended to adhere to our expected value. For example, although in
only one case of ectopic pregnancy did the urine contain no pus cells wheress they were
found in three other cases (Table 9.2), we considered it more typical for the urine to he free
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of pusells, and we took ‘none’ as the typical value, When numbers were larger, we tended
to chose the mode of the frequency distribution even if this was counter to intuition. For
example, during the first 12 weeks of an ectopic pregnancy, the uterus grows to nearly the
same tize a8 it would in an intrauterine pregnancy [Cunff]. One would expect, therefore,
that the uterus would be noted to be enlarged in casea of ectopic pregnancy. In practice
this appears not to bappen (Table 9.3)., We therefore took the typical value fot the variable
‘uterus enlarged’ to be ‘false’ in cases of ectopic pregnancy.

Table 8.1: Frequency distribution of the variable ‘type of pain' amongst the 10 cases of
ectopic pregnancy in which this variable was recorded.

Value t Frequency
intermittent 2
steady 1
colicky 2
cramping 4
fluctuating 1
other a
{total) 10

Table .2: Frequency distribution of the variable ‘urine microscopy pus cells’ amonggt the
4 casa of ectopic pregnancy in which this variable was recorded.

Value f Frequency
none 1
minimal 2
moderate 1
(total) 4

Table9.3: Frequency distribution of the variable ‘uterus enlarged’ amongst the 13 cases of
ectopic pregnancy in which this variable was recorded.

| Value I Freqnency]

falge 9
true 4
(total) 12

One of the difficulties we encountered in trying to construct templates is that many of
the disease categories are heterogencus. Several conditions can present with a right or left
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mirror image (ectopic pregnancy, pelvi¢ inflammatory disease, ovarian cyst, cystic sccident,
urinary tract infection, endometriosis, ureteric colic). A somewhat arbitrary chaice has
therefore 1o be made as to whether the more typical presentation is with left or right-
sided symptoms and signs. Other conditions (e.g. abortion) are a heterogenous mixtur of
more specific types (i.e. inevitable abortion, incomplete abortion, complete abortion, snd
missed abortion). The chaice as to which ig the more typical is also rather arbitrary. This
puggests that the exemplar model should be refined to the paint at which subcategoriea
¢an no longer be usefully distinguished, and a separate template constructed for each such
subcategory. Since the present 19 templates have already required careful consideration of
3211 disease-symptom pairs, we have not yet refined the exemplar model further.

Model Criticism

Retrospectively we are able to criticize the exemplar model in the light of our experience
of 1270 cases. A simple means to do this is to nse all 1270 cases for training purposes to
calculate the necessary parameters (the various p{a = d | {}) and p({v: u ~ u')) and then
perform a x* goodness of fit test of the observed distribution of each symptom varnable to
that predicted. This measures the degree to which the exemplar model is able to adapt to
the given training sample. (We measure the model's predictive ability on nnseen cases in
the next chapter.)

Of the total of 3211 disease-symptom pairs, 256 failed the x* test at the 1% theshold.
{We would expect only about 32 to fail by chance.) The worst pair was the varjable ‘clin-
ically dehydrated’ given the diagnosis of hyperemesis gravidarnm: see Table 9.4. The x?
statistic is 198.00 while the 1% threshold is only 6.63 (one degree of freedom). Clearly the
origiual decision was correct that patients with hyperemesis gravidarnm are not typically
dehydrated: only § of the 14 cases amongst the 1270 were found to be dehydrated. However,
dehydration is nevertheless characteristic of this condition, and rare in the other diagnostic
classes. Had the template for hyperemesis gravidarum recorded the typical value of ‘clini-
cally dehydrated’ as ‘true’ rather than as ‘false’ then an almost perfect fit would have been
obtaived (x* = 0.03). This suggeats that in constructing the templates it would have been
better to have chosen the most ‘characteristic’ values (j.e. those which are most suggestive
of the given disease) rather than the most typical values. This is an area worthy of future
investigation.

Table 9.4: Comparison of the actual frequency distribution of the variable ‘clnically de-
hydrated® with that expected according to the exemplar model, amongst the l4 cases of
hyperemesis gravidarum in which thie variable was recorded. The x? statistic for this vari-
able is 198.00, while the 1% significance threshald is 6.63.

Value | Predicted Probability l Expected Frequency | Actual Frequency
false 0.9913 13.88 9

true 0.0087 0.12 5
{total) 1.0000 14.00 14
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9.1.2 Bayesian Networks

We setout o construct a range of Bayesian networks of varying complexity in order to gauge
the contribution of background knowledge. We already had a trivial net work, 'independence
Bayes' (parents relation P;). We therefore implemented a large network (parents relation
Pr), and then by aimplification we derived a amaller network (parents relation Pg) from
it. This gave us a set of three networks, ranging fram the trivial to the complicated. We
describe first the construction of the large network.

The exsential difficulty we encountered was that the final diagnoais variable A has 19 possi-
ble values, yet all symptoms and signa depend on the final diagnosis. The symptom variable
‘final ste of pain’, for example, hag 14 values and so there are 247 (= 19 x (14 — 1)} pa-
rametee in its conditional probability table. If we introduce into the network additional
variables such as ‘uterine contractions’ (5 values) and ‘acute left pyelonephritis® (5 val-
ues) then since many symptoms and signs depend on these toa, the associated conditional
probalilities become far too numerous either to estimate or store.

We sought to offset these difficulties by two coding tricks. Firstly, we often made causes the
children of effects rather than the parents. For example, in our network ‘past history of FID*
ie a chid of ‘final diagnosis’ rather than a parent. Had all ten binary ‘past history’ variables
been parents of ‘final diagnosja’ then the conditional probability table for the latter would
have had 18432 (= 21° x (19 — 1)) parameters! Instead we have 10 tables, each with just 19
(= 19x (2 - 1)) parameters. Secondly, we created new additional variables ‘pathological
proces’ (22 values) and ‘anatomical process’ (32 values) which represent refinements of
‘final diagnosis’ (19 values), thereby avoiding the multiplication of table size that occurs if
additional variables share the role of parent with ‘final diagnosis’. The values of these new
variahles were easily determined fom the other additional variables that we had collected.

The variable ‘pathological process’ conveys more information than ‘final diagnosis’ about
the stage of abortion and type of urinary tract infection: ‘abortion” is replaced by three
new values, ‘inevitable abortion’, ‘incomplete abortion’ and ‘complete abortiou’; ‘urinary
tract infection' is replaced by ‘acute pyelonephritis’ and ‘acute cystitis’. We felt thai it
was inportant to refine the heterogenous conditions ‘abortion’ and ‘urinary tract infection’
becane the former i& so common and the latter presents in essentially two very different
ways. The variable *pathological process’ is thus an alternative to ‘final diagnosis’ as a parent
for variahles in which the stage of abortion or type of urinary tract infection is significant
(e.g. 'progress of pain'). Similarly, the variable ‘anatomical process’ refines conditions which
have left /right-sided varieties. See Table 9.5 for details.

At the root of the Bayesian retwork we placed the variable ‘age’. This ia clearly a cause
rather than an effect of any otber variable. Many of the poesible diseases that we are
madeling are complications of pregnancy. We therefore introduced a uew binary variable
‘pregiant since LMP* to indicate whether the patient became pregnant since her last men-
atrual period. We then placed the ‘pathological process’ as a child of these two variables,
and ‘inal diagnosis’ and ‘anatomical process’ as children of ‘pathological process’ (Fig-
ure £1). We could have put ‘anatomical process’ in the place of ‘pathalogical procese’,
but the former has 32 values compared with the latter’s 22, and so the size of the asso-
ciated conditional probability table would have been 248 (= 4 x 2 x (32 — 1)) rather than
168 (= 4 x 2 x {22 — 1)}. This would have made less efficient use of the available training
data
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Table 9.5: Refinement of ‘final diagnosis’ into ‘pathological process’ and ‘anatomical procesa’
for use in the Bayesian networks.

tinal diagnosis

pathological process

anatomical process

nou-spedific pain

non-specific pain

non-specific pain

threatened abortion

threatened abortion

threatened abortion

abortion

inevitable abortion
incomplete abortion
complete abortion

inevitable abortion
incomplete abortion
complete abortion

retained products

relained producta

retained products

hydatidiform mole

hydatidiform mole

hydatidiform mole

left ectopic pregnancy

eclopic pregnancy ectopic pregnancy right ectopic pregonancy
[eft PID

pelvic inflammatory disease pelvic inflammatory disease right PID
bilateral PID

ovarian cyst

ovaran cysi

left sympiomatic ovarian cyst
right symptomalic ovarian cyst
bilateral symptomatic ovarian cysis

cyelic accident

cystic accident

left cystic accident
right cyatic accident

pelvic haematoma

pelvic haematoma

pelvic hasmatoma

fibroids

fibroids

fibraids

hypetstimulation

hyperstimuolation

hyperstimulation

urinary tract infection

acute pyelonephrilia

acnte left pyelonephritia
acute right pyelonephritis

te il .
acute cyatilia acute cystitia
Ieft symptomatic endometrios
endometnosis endometnions right symplomalic endometriods
bilateral symptomatic endometriosis
ureteric colic nreteric colic left nreteric

right nreteric colic

acule appendicitia

acute appendicitia

acuie appendicitis

hyperemesis gravidarum

hyperemesis gravidarum

hypereinesis gravidarum

abdominal wall haematoma

sbdominal wall haematoma

abdominal wall haematora

ather

oiher

other
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Figure 9.1: Nodes at the root of the large Bayesian network.
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One of the commonest and most important symptoms of patients presenting to the gynaetol-
ogist with abdominal (or back) pain is associated PV bleeding and menstrual disturbaace.
Naturally patients tend to confuse abnormal bleeding with a normal menstrual period, and a
significant part of the diagnostic task is to interpret when the actual LMP really occurred.
We were able to model this quite simply. We introduced two kinds of node: additional
variables to record the time of the actual LMP and any abnormal bleeding, and symptam
varfables to record the description given by the patient. A third new additional varisble,
‘reported LMP’, records the temporal relationship (‘earlier’, ‘same’ or ‘later’) hetween the
actual and reported time of the LMP. The LMP may be falsely identified and reported
later than the actual LMP if ebnormal uterine bleeding has occnrred since the actual LMP,
or if an implantation haemorrhage has occnrred. The latter of course occurs only if the
patient became pregnant since the LMP, and the site of the pregnancy was nterine. The
description of the LMP apd of any bleeding since depends on the relative timing of the
actual and reported LMP. For example, if an implantation haemorrhage has occurred, and
if the reported LMP was later than the actual, then it is likely that the implantation haem-
orrhage was mistaken for the LMP. This means that the LMP will tend to be described as
occurring earlier than expected and of lighter flow tban normal. The part of the network
that models these interdependencies is shown in Figure 9.2. Making similar reference to
‘reported LMP’, other variables not shown model the relationship between the actval and
reported severity and progress of any bleeding and the passage of product of conception.
A similar problem arises in interpreting the presence of red cells in the urine. Usually they
are due to contamination from PV bleeding, but occasionally they may actually signify
haematuria. Figure 9.3 shows how this was modelled. A aimilar approach was taken in
handling the presence of pus cells in the urine due to contamination.

For the most part, the other aymptom variablea have a single parent: either ‘final diag-
noais’, or ‘pathological process’, or ‘anatomical process’, depending on whetber the extra
information conveyed is relevant. Some variables which also represent physiological effects of
preguancy (e.g. ‘constipation’, ‘frequency’ and ‘discharge’) also have ‘pregnant since LMP*
as a parent.

The Small Bayesian Network

‘We derived tbe small Bayesian network from the large. We dispensed with all additional
variables except ‘pathological process’ and ‘anatomical process’. All symptom variables
with a few exceptiona thus had a single parent. The exceptions are shown in Figure 9.4.
These represent obvious interactions between symptom vanables. Two variables, ‘urine
microscopy squames’ and ‘ultrasound type’, have no parents. This is becanse there is no
obvious causal dependence of either on the underlying disease process. Sqnames in the urine
merely indicate that the specimen was contaminated, thia makes it more likely that pus cells
will be found too. The decision as to whether to perform an abdominal or vaginal utrasound
is a clinical one; we therefore preferred not to take this into account as direct evidence for
any particular diagnosis. However, the pelvic structures are more easily examined by vaginal
ultrasound, so the type of ultrasound affects the Likelihood of detection of absormalities.
The type of nltrasound is therefore a parent of several other ultrasound variables as shown
in Figure 9.4. The number of uterine pregnancies detected (if any) is dependent on any
recent fertility therapy and, as far as we know, nothing else. Recent fertility drugs are
much more likely to have been administered if the patient gives & history of infertility, We



62 C(HAPTER 9. CONSTRUCTION AND VALIDATION OF KNOWLEDGE BASES

Figured.2; Part of the large Bayesian network which models the influence of an implantation
haemeorrhage and/or abnormal uterine bleeding on the reported dates of the LMP. (The

symbels ﬁr and \l\jﬁ indicate the presence of one or more other arcs entering and leaviag
the node, respectively.)
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Figure 9.3: Part of the large Bayesian network which models the influence of haemsturia
and PV hleeding on the finding of red cells in the urine either on microscopy or on stick
testing.
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therefore included ‘infertility’ as a parent of ‘recent fertility drugs’. Lastly, the reported
time sirce onset of abnormal bleeding is clearly dependent on the reparted time since the
last menstrual period: by definition it most be less. We therefore induded ‘weeks since
reported LMP' as a parent of ‘onset of bleeding’.

The swall Bayesian network has significantly fewer arcs than the large network, but is
still more complex than the independence network. Tahle 9.6 shows a comparison of the
numbers of nodes, arcs and parameters in each of the three Bayesian networks. The number
of parameters was calculated according to

Parameters = 3 ((1 -#80vD) JI #9(]"'[))

viVar w:Varl{u,w)EP

where P is the corresponding parents relation. Clearly the numbers of parameters of all
three Bayesian networks are of a similar order of magnitude, and not excessive for the size
of dalabase available for training purposes.

Tabled.6: A comparison of the numbers of nodes, arcs and parameters of the three Bayesian
nelworks: the independence network (Fr), the small network (Ps} and the large network
(Fr)-

l Network I Nodes I Area I Parameters |

Py 170 169 733
Pg 172 176 10086
Py, 185 225 11471

0.1.3 Causal Rule-Based System

The greater flexibility of the rule-based representation made it unnecessary to introduce
specid varjables such as ‘anatomical proceas’, ‘pregnant gince LMP* and ‘reported LMP’
in order to restrain growth in the number of parameters. For example, instead of the new
binary variable ‘pregnant since LMP’ we were able to write an equivalent atomic proposition
in terns of the existing additional variable ‘pregnancy since LMP’,

preguant_since LMP = true

pregnancy since LMP in { uterine,
left_tubal,
right_tubal,
left_ovarian,
right ovarian,
hydetidiform mole }

We ceated only ane new variable ‘receat TOP or ERPC' which records whether or not the
patient has had a recent termination of pregnancy, or evacuation of retalned products of
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Figure 9.4: Part of the small Bayesjan network omitting caly symptom variables with single

parents.
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conception. It was pecessary to introduce this variahle to avoid repetition: it records an
important fact abont the case, which is ueed repeatedly in subsequent families of rules, yet
no equivalent variable was available amongst the existing set of additional variables. The
total number of variables (symptom variables, additional variables and the disesse variable)
is thus 224,

We constructed the knowledge base by first drawing np a causal sequence Q¢ of 478 atomic
propositions over these variables. The sequence begine with propositions concerning age
and historical details such as previous surgery. It then cavers pathophysiological states
and finally symptoms, signs and results of iuvestigations. We have therefore arranged
causative entities early in the sequence, and their observable effects later in the sequence.
The sequence is thus a trme cansal ordering; since the rule-based representation avoids
combinatorial explosion in the number of parameters, the sort of coding trick employed in
the Bayesian network was not needed. The sequence is, howevet, not complete: for example,
we preferred in many cases not to refine the times of events beyond distinguishing whether
they are recent (less than a month) or distant (more than a month). Thus the variable
‘time since appendicectomy’ has five possible values: *hours’, ‘days’, ‘weeks’, ‘months’ and
‘years'. However, sequence (¢ iucludes only the following proposition about this variable.

time_since_appendicectomy in { hours, days, weeks }

Therefore no preference is expressed amongst these values, or between “months’ and ‘years’.
By default, probability is distributed uniformly over each such set (Eqnation 6.17).

Our next task was to write a family of rules for each of the atomic propositions in Qc.
In formulating the rules we limited the number in each family in accordance with the
anticipated amouut of training data available to derive the certainty factors. First we
included any euch categorical rules as were necessary o express logical dependence of the
propuition on those anterior to it in Qc, then afterwards we included uncertain (non-
categarical) rules. We arranged the latter as far as possible to represent separate pieces
of evilence. The average number of rules associated with each proposition is between fonr
and five: there are a total of 2143 rules in the knowledge base, of which 571 are categorical
(506 bgical preclusions and 65 logical implications).

For example, shown below is the family of five rules we formulated to determine the probabil-
ity offacial pallor. The certainty factors shown are those derived by iterative optimization
(except for Rule 9.1.1 which is categorical) using the entire database of 1270 cases 23 a
trainiag set.

Rulef.1.1
colour in { flushed } =2 colour in { pale }

This first rule is categorical It dictates that if the palient Aas a flushed face then pallor can-
not dmullancously be present. This rule is required in order to ensure ezlernal consistency
(Equation 6.14).

Rule 9.1,2

0043

true = colour in { pale }

This reflects the relatively low prevalence of facial pallor amongst our group of palienis.
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Rule 0.1.3

mean bp in {less than 70mmHg } =™ colour in { pale }
This identifies hypotension as a couse of facial pallor.
Rule 8.1.4

peritaneal cavity in { moderate kaemoperitoneum, massive_haemoperitoneum }
or
{ uterine_bleeding in { hours, days, weeks, months }

and

severity.of uterine bleeding in { heavy }

=071 colour in { pale }

This identifies significant blood loss aa o cause of pallor, whether the bleading is inlemal or
external.

Rule 8.1.5

mood in { anxious }

or

severity.of_pain in { severe }
=988 colour in { pale }

Thig identifies increased sympathetic tone due to anpiely or pain s a contribulory factor.

The rules represent different kinds of evidence, although the antecedents share a wmmon
causal pathway: increased sympathetic tose. Moareover, massive haemorrhage (Rule 9.1.4)
causes hypovolaemia and bypotension (Rule 9.1.3). Fortunately, the logistic model does not
require conditional independence. The antecedents may even share varjables as lhe next
example shows. This s permissible because the logistic formula is consietent with logical
dependence (exclugion or implication) between its terms. Shown below is the family of six
rules which determine whether the left adnexa appears abnormally enlarged on ulirasound
examination, Three kinds of abnormality are represented in the simulation moedel; the
adnexa may simply appear enlarged, or a solid mass may be detected, or a cyst may be
seen. No distinction is made hetween these three possibilities in this family of rules, other
families carry out that function.

Rule 8.1.8
previoue left_salpingectomy in { true }
and
previous lefc_nophorectomy in { true }
=0 ultrasound left_adnexa in { enlarged, wass, cyst }

This firat rule i categorical. If both the left Fallopian tube and the left ovary have been
previously removed then obviously no lefi adnezal enlargement (of any kind) i possible.
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Rule 0.1.7
true =98 yltrasound left_adnexa in { enlarged, mass, cyst }
This rule reflects the fact that the left adneza usually appears normal on ulirasound ezami-
nation.
Rule 0.1.8
left_ectopic_pregnancy in {unruptured,
ruptured intoomesosalpinx,
ruptured_into_peritoneal_cavity }
=02% yltrasound Jeft_adnexa in { enlarged, mass, cyst }

The presence of a left eclopic pregnancy (irrespective of whether or not it ir ruptured) makes
it much more likely that some form of enlargement of the left adneza will be delected.

Rulep.1.9
left pvarian cyst in { asymptomatic, symptomatic, baemorrhagic, ruptured, torted }
=091 yltracound left_adnexa in { enlarged, mass, cyst }
The presence of a left ovarian cyst makes i very much more likely that some form of en-

largement of the left adneza will be delected. It is irrelevant whether the cyst is symptomatic
or nol, and whether it ts complicaled in some way.

Rule9.1.10
left_hydrosalpinx in { true }
or
lefi_pyosalpinx in { true }
=085 yitrascund left_adnexa in { enlarged, mass, cyst }

Fluid (whether purulent or not) in the left Fallopian tube makes detectable adnezal enlarge-
men! of gome kind very much more likely.

Rule 8.1.11
{ left_ectopic_pregnancy in {unruptared,
raptured_into_mesosalpinx,
ruptured into_periteneal_cavity }
of
lefi_ovarian cyst in { asymptomatic, symptomatic, haemorrhagic, ruptured, torted }
or
let hydrosalpinx in { troe }
or
lelt_pyosalpinx in { true }
)
and
ultrsound_type in { vaginal }
=078 glirsaonnd leftadnexs in { enlarged, mass, cyst}
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Adrnezal enlargement due lo any pathology is more likely lo be detected if the ulirasound is
performed vaginally rather than abdominally since fewer structures shield the pelvic organs
from the transducer,

The certainty factors of the 1372 non-categorical rules were derived from the given training
sample by iterative maximum likelihood estimation, using simple gradient descent with a
gain of gnity. With respect to each family of rules, only cases in which the truth vale of
the conclugion was known were used for training purposes. There were 1268 and 762 such
training cases, respectively, for the two families of rales shown above. When evaluating the
antecedent of a rule during training, each component proposition ‘v in U’ was assumed to
be false (i.¢. have value “0') if the value of variable v was anrecorded: the raticnale for thia
was that significant diagnostic features would have been recorded had they been present.
Figure 9.5 plots mean surprise as a function of training iteration for both the families of
rules shown above. Clearly there is no significant reduction in surprise after about 500
iterations, and 1000 iterations would therefore appear to be adequate,

Figure 3.5: Graph of average surprise per training case as & function of training iteration
for the two families of rule in the causal rule-based system with conclusions as shown.
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Table 9.7 shows the frequency distribution of ali 1572 non-categorical certainty factors.
The distribution is roughly uniform over the interval [, 1], showing that the full range of
certainty factors is used. Tables 9.8 and 9.9 enumerate the conditiomal probabilities defined
by the two families of roles shown above. In both cases, although there are roughly twice
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as many data as there are degrees of freedom (rules with non-categorical certainty factors}),
a reasonable fit js obtained.

Table 9.7: Frequency distribution of the 1572 non-categorical certainty factors in the causal
rule-based system derived from the entire database of 1270 cases.

| Interval | Frequency
(0.0,0.1} 207
{0.1,0.2) 97
{0.2,0.3) 91
(0-3,0.4] 123
(0.4,0.5) 152
[0.5,0.8) 201
[0.6,0.7) 191
(0.7,0.8) 180
[0.8,0.9) 162
[0.9,1.0) 168
(total) 1572

9.1.4 Chi-Square

A more general test of the rule-based system’s ability 1o fit the training data is to compare
the specified and observed marginal distributions of each variable by means of the x* test,
just as we did for the exemplar model. (There was little point in carrying out this test for
Bayesian networks, because tbe specified marginal distribution of any variable necessarily
conforms to that observed.) We estimated the marginal distributions specified by the model
for each of the 224 variables by generating 10° cases, and counting relative frequencies. Then
we used the x? test to falsify the hypotheais that the same datahase of 1270 real cases used
to trin the model is a random sample generated from the model, At the 1% significance
level, 28 variables failed the x? test. They are shown in Table 9.10.

Many variables fail the x? test because of incompleteness of the mquence Q¢. These include
variables relating to the time since operations, type of contraception, type of pregnancy
since the LMP, raised progesterone level, and ovarian cysts. The defanlt assumption of
unifonu distribution of probability within each equivalent set of values is inconsistent with
the observations. For example, it was felt that a history of previous cervical surgery made
little contribution t¢ the diagnosis of abdominal pain, and s0 no proposition concerning
this rariable was included in c. Ae a result, probability is distributed uniformly over its
two values, yet fewer than 5% of patients have actually had previous cervical gurgery: see
Table 9.12. Similarly, po distiaction was made in the mode] between an ovarian and a tubal
ectopic pregnancy, because it was felt that the difference was not significant diagnostically,
and therefore not worth modelling: see Table 9.14. 1t is therefore not snrprising ihat these
variables fail the x* test. (In an earlier paper, we compared only the distributions over
equivalence classes of values, so this effect was not observed [Tod93b}).
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Table 9.8: Conditional probabilities of ‘colour in { pale }' computed by the corresponding
family of rules: Rules 9.1.1 to 9.1.5. (Note that Rule 9.1.2 always fires because its antecedent
is ‘true’.) Also shown are the relative frequencies with which the conclusion holds given
each pattern over the training set of 1268 cases.

Pattern of Rule Firing Computed Relative
9..1]9.1.2]913]91.4]9.1.5] Prabability Frequency
0 1 o [ o | o 0043 [33/ 748 = 0.044
0 1 oo |1 0090 |21/ 250 = 0.084
0 1 0 1|0 0.100 |19/ 179 = 0.106
0 1 0 1 1 0.196 9/ 48 =0.188
0 1 1| oo 0.150 1/ 13 =007
0 1 1] o |1 0278 3 4 =075
0 1 1 1 | 0 0.302 2/ 9 =022
0 1 1 1 1 0.486 1/ 2 =050
1 1 o | o] o 0.000 0/ 10 =0.00
1 1 0 0|1 0.000 0/ 4 =0000
1 1 o | 1| o 0.000 o/ o
1 1 0 1 1 0.000 0/ 1 =0.000
1 1 1 0o | o0 0.000 o/ o
1 1 1 0|1 0.000 o/ o
1 1 1 1 | o 0.000 o/ 0
1 1 1 1 1 0.000 o/ 0
(total) 89/1268 = 0.070
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Table 89: Conditional prohabilities computed by Rules 9.1.6 to 9.1.11, for the proposition
‘ultrassand left_adnexa in { enlarged, mass, cyst }'. (Note that Rule 9.1.7 always fires be-
cause ita antecedent is ‘true’.) Also shown are the relative frequencies with which the

concluzion holds given each pattern over the training set of 762 cases.

Pattern of Rule Firing Computed Belative

916 [0.1.7]9.1.5]9.1.9 | 9.1.10 { 6.1.11 | Probability Frequency

0 1 0 0 0 0 0025 | 15/666 = 0.023
0 1 0 0 0 1 0.057 o/ 0

0 1 0 0 1 0 0.624 7/ 10 =0.700
0 1 0 0 1 1 0.799 o/ 0

0 1 0 1 0 0 0.742 |35/ 45 = 0778
0 1 0 1 0 1 0.873 9/ 12 =0.750
0 1 0 1 1 0 0.995 1/ 1t =1000
0 1 0 1 1 1 0.998 o/ 0

0 1 1 0 0 0 0.183 2/ 16 =0.125
0 1 1 0 0 1 0.349 3/ 5 =0.600
0 1 1 0 1 0 0.936 o/ 0

0 1 1 0 1 1 0.972 o/ 0

0 1 1 1 0 0 0.962 2/ 2 =1.000
0 1 1 1 0 1 0.984 1/ 1 =1.000
0 1 1 1 1 0 0.999 o/ o

0 1 1 1 1 1 1.000 0o/ 0

1 1 0 0 0 0 0.000 0/ 4 =0.000
1 1 0 0 0 1 0.000 o/ 0

1 1 0 0 1 0 0.000 o/ 0

1 1 0 ] i 1 0.000 o/ 0

1 1 0 1 0 0 0.000 0/ 0

1 1 0 1 0 1 0.000 a/ 0

1 1 0 1 1 0 0.000 o/ 0

1 1 0 1 1 1 0.000 9/ 0

1 1 1 0 0 0 0.000 o/ 0

1 1 1 0 0 1 0.000 o/ o0

1 1 1 0 1 0 0.000 0/ 0

1 1 1 0 1 1 0.000 0/ 0

1 1 1 1 0 0 0.000 0/ 0

1 1 1 1 0 1 0.000 o/ 0

1 1 1 1 1 0 0.000 o/ 0

1 1 1 1 1 1 0.000 o/ 0

(total) 357762 = 0.

5
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Table 9.10; Variables in the cauaal rule-based system which fail the x? test at the 1%
significance level. Croes-references are given to tables showing the expected and actual
frequency distributions.

Variable x* | 1% Threshold | Cross Reference |
final diagnoeis 75.26 34.80 Table 9.11
pain is aggravated by movement 742 6.63
pain is relieved by lying still 7.67 6.63
progress of pain 11.97 11.30
type of bleeding 16.34 9.21
progress of bleeding 19.84 11.30
contraception 368.60 20.10
time since appendicectomy 138.71 13.30
time since laparoscopy 71.86 13.30
time since laparotomy 32,77 13.30
previous cervical surgery 1044.92 6.63 Table 9.12
time since cervical surgery 108.30 13.30
time since tubal ligation 27.26 13.30
time since right cophorectomy 55.67 13.30
time aince left vophorectomy 34.75 13.30
time since left salpingectomy 39.66 13.30
time aince Caesarian section 217.14 13.30
time since hysterectomy 15.39 13.30
time since termination 14.39 13.30
time since D+ C 30.29 13.30
specnlum blood 18.24 9.21 Table 9.13
pregnancy test 18.51 13.30
urine microscopy red cells 10.75 921
ultrasound nleripe cavity 27.81 20.10
pregnancy since LMP 02.85 16.80 Table 9.14
raised progesterone 544.16 11.30
left ovarian cyst 43.50 15.10
right ovarian cyst 40.01 15.10
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Table 9.11: A comparison of the actual frequency distribation of the variable ‘final diagnosis’
with that expected according to the causal rule-based aystem, amongst all 1270 cases.

Value [ Predicted Probability | Expected Frequency | Actual Frequency |
non specific pain 0.2457 312.0 253
threatened abartion 0.0619 78.8 85
abortion 0.3333 423.3 488
rtained products 0.0345 43.8 48
bydatidiform mole 0.0040 5.1 4
ettopic pregnancy 0.0527 66.9 72
pelvic inflamnmatory disense 0.1409 176.0 140
ovarian eyst 0.018p 24.0 g
cystic accident 0.0375 47.8 w4
pelvic hasmatoma 0.0009 1.1 5
fibroids 0.0033 4.2 8
hyperstimulation 0.0008 0.8 3
urinary tract infection 0.0157 18.9 12
endometriosis 0.0085 10.8 20
ureteric colic 0.0031 e 1
sppendicitis 0.0022 28 2
hyperemesin gravidarum 0.013% 17.2 14
abdaminal wall haematoma 0.0013 1.7 1
ather 0.021% 273 22
(total) 1.0000 1270.0 1210

Table 9.12: A comparison of the actual frequency diatribution of the variable 'previous
cervical surgery’ with that expected according to the cauaal rule-based system, amongst all
1270 cases.

Value | Predicted Probability | Expected Frequency l Actual Frequency
falze 0.5000 635.0 1211

true 0.5000 635.0 59
(total) 1.0000 1270.0 1270
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Table 9.13: A comparison of the actual {requency distribution of the variable ‘specalum
biood’ with that expected according to the causal rule-based eystem, amongst the 1015
cases in which this variable was recorded.

Yalue ' Predicted Probability I Expected Frequency I Actual Frequency [

{false 0.4730 480.1 443
blood 0.4735 480.6 489
products 0.0535 54.3 83
(total) 1.0000 1015.0 1015

Table 9.14: A comparison of the actnal frequency dietribution of the variable ‘pregnancy
since LMP’ with that expected according to the causal rule-hased system, amongst all 1270
cases.

Value | Predicted Probability @ected Frequency I Actual Frequency !
false 0.3938 500.1 452
uterine 0.5454 692.7 738
left tubal 0.0124 15.7 35
right tubal 0.0122 15.5 36
left avarian 0.0162 20.6 1
right ovarian 0.0156 19.8 2
hydatidiform male 0.0044 5.8 ]
(total) 1.0000 1270.0 1270
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Qnly sirother variables exceed the 1% threshald by any significant mazgin: “final diagnosis’,
‘type of bleeding’, ‘progress of bleeding’, ‘speculum blood’, ‘pregnancy test’, and ‘ultrasound
uterine cavity’. Of these, the worst two are ffinal diagnosis’ and ‘speculum blood’. The ex-
pected and actyal distribotions for ‘final diagnosie’ are shown in Table 9.11. The moat
significant discrepancy occurs with the rarer conditions (pelvic haematoma, fibroids, hy-
perstimulation, endometriosis, ureteric calic), in which (except for endometriosis) there are
only afew positive examples in the database. The most significant discrepancy in the case
of ‘speculum blood’ is underestimation of the frequency with which products of conception
are observed: see Table 9,13, However, the marginal distribntions of these variables are not
wholly unrealistic, as the tables show. Furthermore, we have also shown that the model
generaies cases which an expert observer cannot distinguish from real cases [Tod93b]. This
experiment was performed part way through the programme of data collection, so only the
first 500 of the 1270 cases were available at that time for training purposes. The experi-
ment has not been repeated since because it required a considerable effort on the part of
the expert subject; he had to consider carefully 200 cases.

9.2 Inferential Models

9.2.1 Flowchart

Qur experience with writing the flowchart was thas the ternary decision structure (‘T7,
‘F’ and ‘?’) encourages a top-down approach. Near the rool of the chart, almost any
expression can be used, no matter how abstract the concept that it represents. This is
becanse it is not necessary to be told the truth value of such expreasions when using the
charl io diagnose cases: the ‘?° branch ie simply followed, and thea application of the chart
iterates. The freedom to use highly discriminative abstract expressione high in the chart
makes it much easier to structure the chart in a clean, logical way. The only coustraint
is that it should be feasible to write reliable subcharts which can later be attached to the
‘upknown' ouicomes to determine the truth values of the decision expressions. For example,
in practice it will seldom be known a priori whether fluid is in fact present in the peritoneal
cavity. Nevertheless, we can use this usgefnl discriminant becanse we are able to attach a
subchart to the ‘unknown’ branch which serves to determine whether fluid js present. We
applied these principles recursively as we wrote the subeharts, introducing new additional
variables (e.g. ‘uterine contents’} whenever it was convenient to do eo. So that the tree
would remain reasonahly balanced, as we moved deeper into the chart we selected decision
expressions whose truth values were more readily determinable (i.e. only small sulcharts
need be attached to the ‘unknown’ outcome.). Thus we start at the root with a decision
as to whether the patient became pregnant since the LMP. If so, we then decide whether
the pregnancy is (or was) uterine or ectopic. If the pregnancy was uterine we then decide
whether it is still viable. (See Figure 9.6.) Notice how the decisions become progressively
more concrete, nntil we are at last able to make a diagnosis.

Ap & result of this top-down approach, the chart tende to be stable during development.
For example, in our case, the chart reflects a hierarchical clasgification of disorders based on
their causal mechanisme, and this is unlikely to require wholesale revision. Alterations tend
to be local; only twice did we delete sections, and these both involved only & faw nodes.
After writing the chart, we tried it on 13 published cases [Gil91], and on 49 cases that had
been supplied to us from another centre. As a result we identified six errors in the chart:
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Figure 9.6: Nodes at the root of the flowchart. See Table 9.15 for brief descriptions of
subcharts Cy...Cy. (Note that subchart Cs is shown in Figure 9.7, and subchart Cr is
shown in Figure 9.8.)
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Figure 9.7: Subchart Cs. (See Figure 9.6.)
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Figure 9.8: Subchart Cy. (See Figure 9.6.)
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Table 9.15: Summaries of suhcharta C)...Cp shown in Figure 9.6.

Subchart Summary

Determines whether the patient became pregnaat since the last menstrual

G period.

Determines the final diagnosis in the case that the patient is known not to

G have become pregnant since the last menstrual period.

Determines whether the pregnancy is (or was) uterine ot ectopic in the case
G that the patient is known to have become pregnant since the last menstrual
period.

Determines whether the pregnancy is currently viable in the case that the
Gy patient is known to have become pregnant in utere since the last menstrual
period.

Determines whether the final diagnosis is ‘cystic accident’ or ‘threatened
Cs abortion’ in the case that abnormal bleeding is reported by a patient who is
known to have a viable uterine pregnancy, (See Figure 9.7.)

Determines the final diagnosis in the case that the patient iz known to have

C . . .
¢ a viable uterine pregnancy, and reporis no abnormal bleeding.

Determines whether the final diagnosis is ‘hydatidiform mole’ or ‘abortion’
Cy in the case that the patient i# known to have an unviable uterine pregnancy,
and all products of conception are in uiero. (See Figure 9.8.)

Determines the final diagnosie in the case that the patient is known to have
Ca become pregnant since the LMP, but not all prodncts of conception are still
in utero.

Determines whether all products of conception are still in utero in the case
Cy that the patient is known to have become pregnant since the LMP, but the
pregnancy is no longer viable.
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three were typing errors and three were oversights. They all required only trivial changes.
Finally we tried the chart on the first 202 cases in the database, The flowchart made the
correct diagnosis in 119 (58.9%) of these. We traced the decigions for all cases that the
flowchart misdiagnosed, and if this highlighted a epecific weakness we modified the clart.
As a result, the flowchart then correctly diagnosed 142 (70.3%) of the same 202 cases.

The nse of abstract discriminants encourages their reuse in other parts of the chart. Charts
therefore have compact representations as acyclic graphs. Our flowchart has 101 non-
terminal nodes when represented a8 an acyclic graph, and it references 101 variables in
all. Leaf expressions are invariably simple propoeitions in the form of assertions that a
particular variable has a single value.

9.2.2 Inferential Rule-Based System

One of the difficuities we encountered in constructing an inferential rule-based system was
in identifying pathophysiological states whose presence can be determined reliably from
observations without necessarily knowing the final diagnosis. We finally selected nine addi-
tional variables that seemed suitable, and supplemented them with four new variables that
we had used as subgoals when constructing the flowchart program. See Table 9.16.

Table 9.16: The 13 additional variables used in the inferential rule-based system. (The
variables derived from the Aowchart are marked with a ‘+'.)

| recent TOP or ERPC (x)
recent previous abortion ()
uterine cortents ()

viable pregnancy (%)
pregnancy since LMP
threatened abortion

left ovarian cyst

right ovarian cyst
microscopic haematuria
fibroids

acute red degeneration
peritoneal cavity
hyperstimulation ]

Sinte symptom variables are ofien unrecorded, it is extremely unlikely in any given case
that the atomic propoeitions whose truth values are observed will form an initial segment of
the seqnence @, whichever @ we choose. We therefore elected to treat unrecorded symptom
variables as having the explicit value ‘unknown’. This means that the truth value of any
atomic proposition involving a eymptom value is always known. Therefore, provided that
no eymptom variable is preceded by an additional variable {or the final diagnosia!} in
the sequence g, the set of propositions whose truth value is given will necessuily form
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(the same} initial segment of Q. Since the families of rules concerning thase propositions
are thereiore redundant, we naturally decided to omit all propositions involving symptom
variables from cur sequence. We refer 1o this sequence as @ becanse it has an jnferential
ordering. Thus ¢}, is incomplete containing only 35 propositions (c.f. Q¢ which has 478
propositions) relating to the 13 additiopal variables and the final diagnosis. The rules
assocjated with these propositions of course include symptom variables in their antecedents,
although we included only 106 of the 169 symptom variables which we regarded as the most
useful diagnostically.

Sequence §}; begins with propasitions concerning pathophysiological states that are most
immediately diagnosable, such as pregnancy and peritonitis. Propositions concerning the
anatomical site of the pregnancy, the viability of the pregnancy, and the nature of the uterine
contents, follow in that order. Ectopic pregnancy has various specific risk factors which are
readily erumerated, and of course requires that the patient is pregnant. Therefore, since an
ovariaa cyst is sometimes difficult to distinguish from an ectopic pregnancy, a decision as to
the presence of an ovarian cyst is left unti] after that of ectopic pregnancy. Determination
of the precise cause of the pain (the “final diagnoeis’) is the last task, and this involves
the last 18 propositions. The average number of rules associated with each proposition is
between six and seven (slightly more than in the causal tule-based system}): there are a
total of 221 rules in the knowledge base, of which 120 are categorical (84 logical preclusions
and 36 logical implicationa).

For example, shown below is the family of rules we formulated to determine whether the
final diagnosis is ‘urinary tract infection’. There are seven rules altogether. The certainty
factors showu are those derived by iterative optimization (except for Rule 9.2.1 which is
categorical) using the entire database of 1270 cases as a training set,

Rule 8.2.1

not final diagnosis in {pon_specific pain,
ovarian_cyst,
urinary_tract_infection,
endometriosis,
acute_appendicitis,
abdominal wall haematoma,
other }
=" final diagnosis in { urinary_tract_infection }
This first rule is categorical. Jt dictates that if the finol diagnosis has already been established
as mmething else by anterior rules, then the final diognosis connot be urinary tract infection.
This rule is required in order to ensure externol consislency (Equation §.14). It is slightly
simpler to ezpress this rule in the Jorm ‘unless the final diagnosis is one of the remaining
possiinlitiea’.
Rule 8.2.2
true =0010 final_diagnosie in { urinary_tract.infection }

This rule reflects the relotively low prevalence of urinary troct infections amongsl our group
of patients,
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Rule 9.2.3

viable pregnancy in { true }
or
past_history of UTT in { true }
=257 final diagnosia in { urinary.traci infection }

This rule identifies two risk faclors for urinary iract infection. A previous urinary infec-

tion makes a subsequent one slightly more likely, and urinary infections are cormmoner in
pregnancy owing o urinary stasis.

Rule 9.2.4

frequency in { true }

and
( pregnancy.since LMP in { false }
ar

dysuria in { true }

=%™7 final diagnosie in { urinary_tract_infection }

The fourth rule refers to Lhe specific symploms of a urinary tract infeciion: urinary frequency
ond pain on passing urine (‘dysuria’). Pregnancy is also a cause of urinary frequency, and
80 we guard frequency by the proviso that the patient i2 not pregnand.

Rule 9.2.5

site_of_tenderness in { leftloin, right loin }
=™ final diagnosis in { urinary_tract_infection }

The fifth rule refers to the signs of kdney infection; loin tenderness.

Rule 9.2.8

recent_fever.orchill in { true }
or
temperature in { 37.5_to_18.0, 38_or_more }
or
white_cell count in { 11.0_0r_more }
=0%¢ figal diagnosie in { urinary tract infectian }

The sizth rule refers to general sympltoms and signs of infection: recent fevers or chills,
on elevated lemperaiure, and o raised white cell count, We do notl discriminale in this
rule between mildly elevated temperatures (37.5°C o 38.0° C) and higher temperatures {over
38.0°C), althaugh we would do so if sufficient treining daie were avadable.



84 CHAPTER 9. CONSTRUCTION AND VALIDATION OF KNOWLEDGE BASES

Rule 6.2.7

mictoscopic haematuria in { true }
or
( urinemicroscopy.puscells in { moderate }
and
urine_microscopy squames in { none, minimal }

=987 final diagnosis in { urinary_tractinfection }

The seventh ond last rule refers lo evidence of red blood cells or pus cells in the urine.
The lotter are not significant if there are more than a few squamous cells present because
squames indicate ezternal contamination ot the time of collecting the specimen,

The certainty factors of the 101 non-categorical rules were derived from the given training
sample by iterative maximum likelihood estimation, just as for the causal rule-based system.
Figure 9.9 plots mean surprise as a function of training iteration for the family of rules
shown above: since the final diagnosis is alwaya recarded, the truth value of the proposition
‘“final Jiagnosis in { urinary_tract_nfection }’ was known in all 1270 cases. Clearly there
is no dgnificant reduction in surprise after about 500 iterations, and 1000 iterations would
therefore appear to be adeguate, as it was for the cansal rule-based pystem (Figure 9.5).

Table 9.17 shows the frequency distribution of all 101 noa-categorical certainty factors.
The distribution is roughly uniform, as it is for the causal rule-based system (Table 9.7).
Table 9.18 enumerates the conditional probahilities defined by the family of rules shown
above. As in the case of the causal rule-based system, although there are roughly three
times as many data as there are degrees of freedom (rules with non-categorical certainty
factors), a reasonable fit is obtained.
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Figure 9.9: Graph of average surprise per training case as a function of training iteration
for the family of rules in the inferential rule-based aystem.
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Table 9.17: Frequency distribution of the 101 non-categorical certainty factors in the infer-
ential rule-based system derived from the entire database af 1270 cases.

Interval | Frequency
{0.0,0.1] 16
(0.1,0.7 7
(0.2,0.3] 10
(0.3,04] 12
(0.4,0.5) 1
[0.5,0.6)

(0.6,0.7) 10
[6.7,0.8) 14
[0.8,0.9) 9
[0.9,1.0) 14
(total) 101
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Table 9.18: Coanditional probabilities of ‘final diagnosie in { urinary tractinfection }' com-
puted by the corresponding family of rules: Rules 9.2.1109.2.7. Note that Rule 9.2.2 always
fires because ite antecedent is ‘true’, For brevity, all patterns in which Rule 9.2.1 fires are
pooled, becanse when it fires, the computed probability is always zero, and no actual ex-
amples are found. Also shown are the relative frequencies with which the conclusion holds
given each patiern over the training set of 1270 cases.

Pattern of Rule Firing Computed Relative
921]922]923]|924]9.25]9.2.6} 9.2.7 | Probability Frequency
0 1 0 0 U] 0 0 0.016 1/ 152 = 0.007
1] 1 (1] (1] 0 0 1 0.106 1/ 7 =0143
1] 1 0 0 0 1 0 0.020 0/ 36 =0.000
o 1o oo | 1|1 0.125 0/ 4 =000
0 1 0 0 1 0 0 0.046 1/ 2 =050
¢ 1 0 0 1 0 1 0.257 of 0
0 1 0 [1] 1 1 0 0.055 0/ 1 =000
0 1 0 0 1 1 1 0.294 o/ 0
0 1 0 1 0 i] )] 0.039 2/ 39 =10051
1 1 0 1 0 1} 1 0223 1/ 5 =020
0 1 0 1 0 1 g 0.046 1/ 13 =0.077
0 1 0 1 0 1 1 0.256 0/ 2 =0.000
0 1 0 1 1 a 0 0.105 of 1 =0.00
i] 1 0 1 1 0 1 0.455 of 0O
0 1 0 1 1 1 0 0.124 0o/ 0
D 1 0 1 1 1 1 0.502 0o/ o0
0 1 1 L] 0 0 0 0.024 1/ 54 =0.019
o | 1 1 | ol o | o1 0.149 0/ 3 =0.000
0 1 1 0 0 1 0 0.029 0/ 14 =0.000
D 1 1 0 0 1 1 0.174 1/ 1 =100
[i] 1 1 0 1 0 0 0.067 o/ 0
Q 1 1 0 1 0 1 0.339 1/ 2 =050
0 1 1 0 1 1 0 0.080 a/ 0
0 1 1 0 1 1 1 0.331 a/ 0
0 1 1 1 0 1] 0 0.056 o/ 9 =000
0 1 1 1 1} 1] 1 0.298 af 1 =0.000
0 1 1 1 D 1 g 0.067 of 1 =0.000
0 1 1 1 D 1 1 0.338 2/ 2 =100
0 1 1 1 1 0 0 0.148 o/ 0
0 1 1 1 1 Q 1 0.553 of 0
0o | 1 1 | 1 1 1| oo 0.173 o/ ©
0 1 1 1 1 1 1 0.598 of 0O
1 1 - - - - 0.000 0/ 921 = 0.000

(total) 12/1270 = 0.009




Chapter 10
Evaluation

In this chapter we describe how we hove {rained and (esied the diagnostic
programs, end e present our resuits. First we ezplain hott we chose the demain-
apecific pararneters (a, k, eic.) for the various methods. We then present the
diagnostic accuracies of all melhods oblained using cross-validation on batches
of 101 test cases. Knowledge-hased methods were found to be no more accurute
than the best statistical methods. The latter include both the nearest neighbours
meithod uoing the Boyes metric and independence Bayes itself. The experiments
were repeated using only the cases in the dofabase with definile final diagnoses,
and similar results were oblained. Finally, nearest neighbours was compared with
independence Bayes on all cases using a leave-out-one cross-validation strategy.
No significant difference in accuracy could be demonstrated. R is argued thal
nearest neighbours using the Bayes melric ts one of the most accurate methods
and the most suitable technique for providing machine assistance for medical
diagnosis.

10.1 Training and Testing

In lotal we have available 1270 cases in the database. However, the first 202 cases (set ‘A’)
cannot be used as test cases for the knowledge-based methods because these cases were
used to assist construction of the knowledge-bases. Therefore, since we wished to compare
all programs on an identical test set initially, only the remaining 1068 casea (set ‘B’) were
available for testing. The first 202 cases (set A) were available for training. Furthermore,
in order to increase the number of training cases available, we adopted a cross-validation
strategy; for training purposes we including cases from set B as well. However, some
methods (neural networks and the rule-based system with a caugal ordering) are so expensive
to train that it was not feasible to leave out only the test case becanse thie would have meant
retraining the classifier 10638 times. Instead, as a compromise, we chose to leave out 101
cases. Also, since same patients appear more than once in the database, and sivce repeat
presentations of the same patient tend to resemble the previons one, we also omitted from
the training set any cases which represented the same patient ad any of the 101 cases in the
test hatch. We therefore partitioned set B into 11 snbeets (B = By U ByuU...UBy) and
before testing on each subset B;, we trained the clasaifier on set A and every other subset
set B; (j # i) with the exception of any other presentations of patients jn B;. Table 10.1

87
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shows the actual size of each training and test set. Notice that although on average each
patient appears 1.3 times in the database, repeat presentations tend to be within the same
test et and so do not require removal from the training set: on each row of Table 10.1,
the test set and traiping set together contain nearly 1270 cases. This is because maultiple
presentations of the same patient during the study period tended to be entered into the
database sequentially since all such presentations were usually recorded in the same case-
notes.

Tahle 10.1: Sizes of each training and test set.

| Test set [ Size of test set { Size of training set l

B, 101 1164
By 101 1164
By 101 1168
By 101 1169
Bs 101 1169
Bes 101 1168
By 101 1167
By 101 1168
By 10 1189
Bo 11 1165
By 58 1210
Total { B) 1068 -

For each test case, we took the disease with highest posterior probability as the computer’s
diagnosis. This was counted as an error if it disagreed with the recorded diaguosis for
the case. Tahle 10.4 (Page 98} shows the overall error rates for each program. Some
diaguostic programs require selection of appropriate training algorithms and/or choice of
domain-specific parameters, We describe these for each method in turn.

10.1.1 Independence Bayes

QOnepossible tnnahle parameter for independence Bayes is the number of symptom variablea
that are actually used. Crichton et al [Cri87, Cri89] report a small increase in accuracy
using 5 or 6 selected variables rather than all 41 on a database of acute abdominal pain,
thoogh the improvement does not appear to be statistically significant. In the diagnosis
of acnte coronary heart disease by meana of independence Bayes, Aase et of [Aas93] found
an improvement if only 31 instead of all 38 variahles were used. However, the quadratic
score rather than diagnostic accuracy was nsed as the performance measnre: elimination of
dependent variables would be expected to improve calibration, and hence could conceivably
improve the quadratic score at the expense of the diagnostic accuracy., Furthermore, a
recassification estimate of the qnadratic score appears to have been used: it does not follow
necessarily that the quadratic score on unseen cases would be higher with 31 variables thap
with all 38. Ohmann et af [Ohm86] warned of the danger of biaa in selecting variahles,
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and in their study of patients with gastrointestinal bleeding, they found tbat the estimated
true diagnostic accuracy generally improved as variables were inclnded. Similarly, in a
simulation study of cases of vaginal discharge, Chard and Rnbepstein [Cha80] found that
optimal diagnostic accuracy was achieved using all variables. Furthermore, although equal
overall accuracy could apparently be achieved using fewer variables, the ability to correctly
detect less prevalent conditions was impaired. For these reasons, and because on average
only 62% of variables were recorded in each case and 8o it is not clear & priori which variables
to select, we opted to include all symptom variables in our implementation of independence

Bayes.

10.1.2 Nearest Neighbours

The relevant parameter here is k, the number of aeighbours from which to draw statistical
inference. If k is too large, then the neighbours are not representative of the test case. f k is
too small then rapdom noise degrades the accuracy of classification. Clearly optimal choice
of k depends on the domain of application and the size of the training set. Figure 10.1
shows graphs of error rate obtained with the two metrics az a function of k. The errar rate
for the Hamming metric is significantly higher than for the Bayes metric for a wide range
of k values. The error rates shown in Table 10.4, 0.485 (Hamming metric) and 0.362 (Bayes
metric), are for optimal & chosen retrospectively (k = 21 and k = 19, respectively) The
horizontal nature of the graphs suggests that similar error rates would be obtained using
the same k values if a further random sample of cases were used.

10.1.3 Iterative partitioning

The relevant parameter for iterative partitioning is the stopping threshold a. If a is small
then partitioning stops scou and so0 the filtered subset of iraining cases is large and unrep-
resentative of the test case. If o is large then the filtered subset is small and random noise
degrades the accuracy of classification. Figure 10.2 shows a graph of error rate for iterative
partitioning as a function of a. Notice that a = 28.9 and & = 34.8 correspond toa 95%
and 99% significance threshald, respectively. This i because the likelihood ratio statistic
{Equation 4.22), when reduced by a factor of 2, approximates a Chi-Sqnare distribution,
and the 95% and 99% significance thresholds for the Chi-Square distribution with 18 degrees
of freedom (#Disease — 1) are 14.45 and 17.4, respectively.

The error rate shown in Table 10.4 (0.417) is for optimal retrospective choice of o (26.0).
Again the horizontal nature of the graph suggests that a similar error rate would be cbtained
with the same a value if a furtber random sample of test cases were used. With a = 26.0,
surprisingly few facts about the test case are actually used in diagnosis: on average the
database is partitioned ounly 1.88 times (i.e. 1.88 facts are unsed). The actual number of
iterationt varies from 1 to 4 {Table 10.2). This means that the filtered subset of the iraining
get is large: on average it containg 129.5 cases (standard deviation 78.6 cases). Figure 10.3
shows a graph of the cumulative frequency of sizes of filtered subsets,

10.1.4 Neural network

The training methad we adopted for neural netwarks was back-propagation [Rumésa] min-
imising the mean squared error. Aithough new optimization algorithms are freqnently
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Figure 10.1: Graphs of error rate far the nearest neighboure method as a function of & for
the Hamming metric and Bayes Metric,
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Table 10.2: Frequency distribution of the number of iterations performed by the iterative
partitioning program with respect to the 1068 test cases.

Iterations l_Frequency I

1 184
2 829
3 5
4 1
Total 1068
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Figure 10.2: Graph of errar rate for iterative partitioning as a function of a. Also shown
are the corresponding 95% (a = 28.9) and 99% (e = 34.8) significance thresholds.
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Figure 10.3: Graph for iterative partitioning plotting the cumulative frequency distribution
of sizes of filtered subsets of the training set with respect to the 1068 test cases.
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proposed, back-propagation remains a simple and effective method; in a recent compara-
tive study of three training slgorithms, back-propagation was found to be the best [Ebedl].
In order to hreak symmetry we set all weights initially to small random values (drawn
uniformly from the interval [—0.2,0.2]). Owing to the large number of weights, and the
relatively large number of training cases, it was too expensive to calculate the total error
over the entire training set at each iteration. Therefore we applied the variation of back-
propagation in which weights are modified after each presentation of a single training case.
The training cases wer¢ presented in fixed crder, and 100 passes were made through the
training set. In order to achieve convergence, the gain (‘learning rate’) was reduced lizearly
to zera. No momentum term was employed. Two parameters remained to be determined for
optimum performance: the initial gain, agd the number of hidden units. We tried various
combinations of tbese; Table 10.3 shows the corresponding error rates. The lowest error
rate obtained was 0.378 (404 errom) with one hidden unjt and an initial gain of 0.03. This
ig the error rate shown in Table 10.4. Figure 10.4 plote error rate as a function of the
total number of passes through the training set (imitial gain 0,03, 1 hidden nnit). Clearly
no further improvement in error rate could be expected had we employed more than 100
passes, It is perhaps not surprising that increasing the number of hidden nnits has little
effect on error rate: the network already has a large number of degrees of freedom with so
many direct inputs {554) to each of the 19 output units.

Table 10.3: Etror rates of the neural network with respect to the 1068 test cases when nsing
different numbers of hidden units » and various initial gains.

Numbers of Hidden Units
n=0 n=1 n=12 n=35 n=10
Initial | Totel | Error { Total | Error | Total | Error | Total | Ercor | Total | Error
Gain || Errors | Rate | Errors | Rate | Erroms | Rate | Erroms | Rate | Errors | Rate

6.083 443 | 0415 | 431 | 0404 | 450 | 04N | 442 | 0414 | 439 |04l

0.01 413 | 0.387 | 410 | 0384 | 411 [ 0335 | 407 | 0381 | 410 | 0334
0.03 410 0384 | 404 | 0378 | 415 | 0389 | 408 | 0382 | 405 ] 0379

01 430 0.403 423 | 0396 | 419 | 0392 | 414 | 0380 | 418 {039
0.3 427 0.400 | 422 [ 0395 | 433 | 0405 | 430 | 0403 | 442 | 0404
1.0 441 | 0414 | 450 | 0421 | 447 | 0418 | 443 | 0415 | 442 | 0414

10.1.5 Causal Rule-Based System

hegarding the causal rule-based system, it was not feasible to apply the exact ialerence
algorithm described by Lauritzen and Spiegelhalter {Lau88] because, viewed as a Bayesian
network over binary propositions, 27 of the nodes (atomic propositions) have more thag
20 parents, the worst having 42 parents. Therefore, we employed the simple Monte Catlo
method described in Chapter 6; we generated a large sample (10°) of random simulated
cases, and using these as a training sample for a statistical method. The statistical classifier
we employed was nearest neighboura with the Bayes metric aince this was found to be the
most accurate of all the statistical methods we had tried (Table 10.4). Since we were using
a ‘leave-out-101" etrategy, the rule-based system had to be trained on the appropriate set
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Figure 10.4: Graph plotting error rate for the neural network on the 1068 test cases as a
function of the tolal nuinber of passes through the corresponding training sets (‘leave-out-
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of real cases, and then used to generate the simulated cases afresh for each batch of test
cagpes. The simulated cases were then used first to derive the parameters for the Bayes
metric, and then as a reference database from which to extract the nearest neighbours
to each real test case. The accuracy of the method clearly depends on k, the number of
neighbours extracted. Figure 10.5 shows a graph of error rate using this metkod on all
1068 cases as a function of the number of neighbours. Retroapectively, a & value of 100 is
ahout optimal, producing an error rate of 0.352, and this is the value entered in Table 10.4.
For comparison, as a baseline, we repeated this experiment using the independence Bayes
classifier itself in place of the nearest neighboums classifier. We obtained exactly the same
error rate (0.364) as we did when training on real cases. The two methods did not make
identical decisions, however; precisely one of them was correct in 178 of the 1068 cases.
The discriminant matrices {Tables B.1 and B.12) are shown in the appendix (Appendix B}
for comparison. Although using neareat neighhours rather than independence Bayes as
the classifier when training on simulated cases leads to a reduction in error rate (1] fewer
errors), this difference is not statistically significant (p = 0.0854). The statistical lest we
use for this and all other comparisons of error rates is the variation on the McNemar test
suggested hy Mosteller [Mos52]. This treats all cases correctly diagnosed by one method
but not the other as a seqnence of binomial trials with probability of success 4.

Figure 10.5: Graph of error rate for nearest eighbours with the Bayes metric on all 1068
cases when trained on datahases of 10° simulated eases generated from the causal rule-baged
system (‘leave-out-1017).
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10.1.6 Discussion

Table 104 shows the error rates for all programs. Full discriminant matrices correspond-
ing to each entry are included in the appendix. The modt accurate program is uearest
neighbours with the Bayes metric trained on simulated cases generated from the causal
rule-based system (376 errors: see Table B.1 for the discriminant matrix). However, this
is not significantly better (p = 0.4671) than the best purely statistical alternative: nearest
neighbours with the Bayes metric trained on real cases (387 errors: see Table B.2 for the
discriminant matrix). The most striking difference between the two discriminant matrices
is that the sensitivity to non-specific pain (Disease ‘A’) falls from 65.1% to 54.1% while the
apecificily rises from 82.2% to B8.8% when simulated cases rather than real cases are used
for training. This is despite the fact that the causal rule-based system tends to generate a
higher proportion of cases of non-specific pain (0.2457) than are actnally abserved, 0.1992
{2 253/1270): see Table 8.11. A similar effect is observed when independence Bayes is used
instead of nearest neighbours as the classifier (Tables B.3 and B.12). This suggests that
gimulated cases of non-specific pain lack the varijation of clinical presentation that is actually
observed. Thie is not surprising given the obvions difficulty in modelling a condition that
has po clearly nnderstood causal mechanism.

The cansal rule-based system is, however, significantly more accurate (p = 0.0423) than
the inferential rule-based system which makes 408 errors, althoogh this conclusion must be
tempered by the fact that the choice of & = 100 for the cangal system was retrospective.
A comparison of the discriminant matrices (Tables B.1 and B.6) showe that the inferential
system has a lower thresheld for non-gpecific pain, but is less accurate at dingnoaing most
other tonditions. In particular the inferential rule-based system’s diagnoses of the rarer
conditions {Diseases ‘J' to ‘S’, inclusive) are overall much less reliable (34.1% compared
to 53.6%), yet slightly less sensitive too (18.7% compared to 20.0%). The poorer perfor-
mance regarding rarer conditions perhape reflects the small size of the inferential knowledge
base compared to the causal ose. Certainly when writing the rule-base it was difficnlt to
formulate a small number of rules which would reliably detect the rarer conditions. The
flowchart (discriminant matrix Table B.8) is even less accurate (431 errors) than the in-
fereniial rule-based system, but again the difference does not reach statistical significance
{p =0.0788). The flowchart appears to have an even lower threshold for non-specific pain,
and performance regarding the less prevalent conditions (Diseases *J* to ‘S’, inclusive) i
even worge: reliability 26.9% and seusitivity 9.3%, overall. This can be explained by the
greater flexibility of the rule-based system with its numerical certainty factors and ita capac-
ity to learn from training examples. Independence Bayes (389 errors) is aignificantly more
accorate than the flowchart (p = 0.0170). This reverses an earlier conclusion based on the
much smaller sample of 202 training cases [Sta92], Enlargement of the Bayesian network
seems to rednee accuracy. The large Bayesian network makes 20 more errors than inde-
perdence Bayes, although the difference is not statistically significant (p = 0.0721). The
general form of the discriminant matrices (Tables B.3, B.4, and B.7) resembles that of the
causal rule-based system {Table B.1).

The nearest neighbours program using independence Bayes as a metric makes twa fewer
errors than independence Bayes itself. A comparison of the two diecriminant matrices {Ta-
bles B.2 and B.3) shows that pearest neighbours tends to do better with the most common
corditions (abortion and non-specific-pain} at the expense of the rarer ones. This is perhaps
to be expected with & = 19 since tbere are fewer examples of each rare candition than the
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nomber of neighbours retrieved. The neural network {Table B.5) haa a greater sensitivity
to common conditions, but is generally poorer than independence Bayes at diagnosing rarer
conditions. In particular, the neural network has a greater tendency to misdiagnose cases
of pelvic inflammatory disease as having either abortion or non-specific pain. The higher
error rate of the neural network (404 errors) compared to independence Bayes {389 errars)
is similar to the resulte of Hart and Wyalt in their study of chest pain [Har89], allhough
Baxt’s experience with neural networks for the same problem waa very much more reward-
ing {Bax91). Phillips et of [Phi91] report that a neural network was more accurate than
independence Bayes for acnte abdominal pain. The number of test cases (30) was amall,
and the difference does not appear to be statistically significant.

Iterative partitjioning (Table B.9) shows an even poorer sensitivity to the less prevalent
conditions, no doabt because the average size of the filtered database is even larger (129.5
cases), making 56 more errors than independence Bayes: thie difference is highly significant
(p=0.0017). The present application does not appear to be particularly well-suited to
ilerative partitioning, because seldom can a reliable diagnosis be made purely on the basie
of just two facts (Table 10.2). Cases of fibroids seem to be an exception. All five cases
of fibroids that were cotrectiy identified by iteralive partitioning were diagnosed on the
strength of the same two facts: no abnormal bleeding since the LMP, and fibroids seen on
ultrasound examination. The exemplar model (Table B.10) has particular difficully with
beterogeneous conditions (non-specific pain, ectopic pregrancy, pelvic inflammatory disease
and ovarian cyst). This reflects the handicap imposed by having only a single {emplate for
each disease. It would be interesting to see how much improvement could be obtained with
a more refined modet. The worst program is nearest neighbours with the Hamming metric
(518 errors). This is strongly biased towards the cammoner conditions, diagnosing all but
85 of the 1068 cases as having either non-specific pain or miscarriage.

The error rates we obtained compare favourably witk those in other studies using iadepen-
dence Bayes {0.414 [Sut89b],0.457 [Ser86]) when attention i confined to the same range of
disorders that we have studied here. Furthermore, the best programe we implemented made
fewer errors than the initial clinical diagnosis (error rate 0.399 over the same 1068 cases),
althongh the latter should properly be regarded as a lower bound for several reasoss:

1. In 43 cases the clinician had not recorded an initial diagnosis, and we counted these
as errors,

2. The results of the ultrasound scan may not always have been available when the initial
diagnosis was made.

3. Where a list of possible diagnoses was given the first was taken as the initial diagnoais.
However, it is quite possible that the clinician enumerated his possible diagnoses in
order of decreasing gravity rather than decreasing probability.

10.1.7 CART

As a baseline against which to compare our statistical programs, we also tried Lhe tree-
based modelling module provided by the S~Plus statistical package, described more fully
in [Cla92). This implements & vemion of the well-known CART algorithm first described by
Breiman et af [BreB4). A classification tree is built by recursively partitioning the training
sample. The featnres available for partitioning in the $-Plus implementation are atomic



98 CHAPTER 10. EVALUATION

Table 10.4: Error rates for all programs on the test set of 1068 cases uaing a ‘leave-ount-101'
training strategy, sorted into rank arder. The right-hand column lists the corresponding
tables in the appendix showing the full discriminant matrices. There is no mgnificant
difference between the firat five programs at the 5% significance level using the McNemar
test.

Program Errors | Error rate | Matrix
Causal rale-based system (¥r, @ = Q¢, T = T¢) 376 0.352 Table B.1
Nearest Bayes neighbours (¥, § = &, & = 19) 387 0.362 Table B.2
Independence Bayes (Y5, P = Pr) 389 0.364 Table B.3
Small Bayesian network (v, P = Pg) 402 0.376 Table B.4
Neural network (¢, n = 1) 44 0.378 Tahle B.5
Inferential rule-baged system (yg, @ = Q, T =Tf) | 408 0.382 Table B.6
Large Bayesian network (g, F = Fr) 409 0.383 Table B.7
Flowchart (¥F) 431 0.404 Table B.8
Iterative partitioning (¥r, a = 26.0) 445 0417 Table B.9
Exenplar model {(¢g) 457 0.428 Table B.10
Nearest Hamming neighbours (yx, § = &y, k = 21) 518 0.485 Table B.11

propositions. The next propogition on which to partition is chosen 8o as to maximise the
decrease in the node deviance (defined as minus twice the log-likelihood of the ohserva-
tions remaining at the node). The stopping criterion nsed was the default for the S-Plus
implementation of CART, namely that a node will not be partitioned il

& the node deviance is less than 1% of the root node deviance, and

¢ the node has fewer than 10 cases remaipiag to be partitioned.

This criterion is considered to be quite liberal in [Cla92], resvlting in overly large trees
which can then be pruned to improve classification accuracy. This strategy is generally
considered better than trying to stop tree growth at some optimal point. The method of
cost-complexity pruning sdvocated in [Bre84), and adapted in the S~Plus implementation
allocates a cost Do(T) ta a tree T defined by

Do(T) 2 D(T) + asize(T)

D(T) is the deviance of the tree, defined as the sum over all leaves af the deviance of that
leaf, and the aize of a tree is the nnmber of leaves. The value of a determines how heavily
larger trees are penalised and thus how much a tree should be pruned. The choice of o
can be made by evaluating pruned trees on pew data, or if this is not available, hy cross-
validation. This second approach is supported by the S-Plus implementation and involves
splitting the training database into n batches; for each batch in turn a tree is then grown
using the remaining n — 1 batches, and the sequence of optimal subtrees found as « vanies.
The withheld batch is then used to calculate the deviance of each of the subtrees, and the
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deviances averaged over all hatches. This gives an unhiased estimate of the best size of tree
to nse.

The $-Plus implementation allows missing valnes in the predictors, in our application the
symptom variables. During tree-building it treats ‘unknows’ as a value like any other, thus
allowing those cases for which the partitioning variable is unknown to be passed down to
one of the child nodes. This is the only viable approach with our data, since the values of
a high proportion of variables are missing for any given case. In classification, evaliation
slops if a node is reached for which the variable is unknown. The case is then classified as
having the disease most common among the cases at that node.

As with all other methods, CART was teated using the same leave-out-101 strategy. The
intention was, for each batch of test cases to grow a decision tree and then prune it using the
a-value determined by 10-fold cross-validation. Initially we made available all 169 symptom
variables when building the tree. However, the large memory requirement of the 3-Plus
package meant that it proved impossible to prune these trees using the croes-validation
approach, since the machine used (a Sun Sparc-2 workstation with 32Mb of memory) had
insufficient random-access memory. This prohlem was circumvented by restricting the vari-
ables available for partitioning to those exhibiting a significant correlation with the disease
variable. Correlation was assessed using the x* test on the contingency table defined for
each variable, taking 5% as the gignificance threshold. On average, this reduced the number
of symptom vanables from 169 to 92.

The error rate obtained with CART was 0.442 (472 errors). This is worse than with iterative
partitioning (445 errors), although not significantly so (p = 0.0814). We therefore did not
pursue recursive partitioning any further for our application. We note tbat in another study,
involving 6387 patients with abdominal pain, recursive partitioning was found to be much
less accurate than independence Bayes [Gam91].

10.1.8 Cases with Definitive Diagnoses

Qur preliminary conclosion ia that knowledge-based programs are not significantly more
accurate than purely statistical alternativeas. However, the final diagnoses of 375 of the
1270 cases in the database were presumed rather than definite. The possibility remains
that the full potential of the knowledge-based programs was not realized because they were
trained and tested on cases whose diagnoses were often unreliable. Would the kncsledge-
hased programs cutperform the statistical if the diagnostic task were clearer? Ta answer
this question, we repeated the above experiments on the database resiricted to the 85 cases
whose diagnoses were definite. We adopted the same cross-validation strategy as before,
bnt restricting training and test sets to cases with definite diagnoses. The actual sizes of
the training and test sets are shown in Table 10.3: there are a total of 751 amougst the
1068 test cases that have definite diagroses. The error rates for all programs are shown in
Table 10.6. Az before, we chose optimal parameters retrospectively. In the case of nearest
neighbours, the optimal number of neighbours was 14 for the Hammizg metric and 48 for
the Bayes metric. l1terative partitioning was optimal with a = 28.0. In tbe case of the neural
network, ten hidden units were now found to produce the beat results, with the same initial
gain of 0.03. When the nearest neighbours classifier with the Bayes metric was trained on
10° simulated cases, alightly better results (220 ertors) were obtained with k = 300 than
with & = 100 (225 errors).
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Table 10.5: Sizes of each training and test set when cases are restricted to those with definite
diagnoses.

Test set I Size of test set ’ Size of training set

By 75 815
B 62 829
Ba 65 830
B, 77 818
Bs 60 835
Bg 77 817
By 57 826
By 70 825
By 78 817
By 75 817
B 45 849
Total (B) 751 -

Table 10.6: Error rates {or all programs on the test set of 751 cases with definite diagnoses,
sorted into rank order. See Table 10.5 and the text for details of tbe cross-validation
strategy. The right-hand column lists the corresponding tables in the appendix showing
the full discrimivant matrices for the five most accnrate programs. There is no aignificant
difference in accuracy between those five programs at the 5% significance level using the
MecNemar test.

Program ' Errars | Error rate Matrix
Neural network (4, n = 10) 202 0.269 Table B.13
Nearest Bayes neighboura (¥, § = &, k = 48) 205 0.273 Table B.14
Inferential rule-based aystem (Y, @ = Qr, T =Tp) | 207 0.276 | Table B.15
Independence Bayes (¢p, P = Py) 217 0.289 | Table B.16
Cansal rule-based system (¥g, @ = Q¢, T = T¢) 220 0.293 Table B.17
Small Bayesian network (¥g, P = Ps) 228 0.304
Iterative partitioning (¥, @ = 28.0) 234 0.312
Large Bayesian network (vp, P = Pr) 236 0.314
Flowckart (¢r) 247 0.329
Exemplar model (¥g) 268 0.357
Nearest Hamming neighbours (Y, § = 67, k = 14) 295 0.393
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There is no statistically significant difference in error rate between the first five programa
in Table 10.6. However, it is notable that the inferential rule-based system made fewer
errors than the causal rule-based system, whereas previously it made significantly more.
This reversal is largely explained by an improvement in the inferential rule-based system’s
accuracy with respect to abortion (Disease C): see Tables B.15 and B.17. A weakness of
the inferential rule-based system would appear to be in confusing more difficult examples of
abortion with threatened abortion and with non-specific pain. When the diserimination task
is made easier by eliminating the cases in which there is some doubt about the diagnosis,
this weakness is less obvious.

10.2 Discussion

In conclusion, therefore, it appears that knowledge-based programe are not significantly
more accurate for this application than the best of the purely statistical classifiers. We note
that other studies have shown similar results in other applications. An early study by Fox
et al compared a rule-based system with independence Bayes in the diagnosie of dyspepsia,
and found no significant difference [Fox80]. The test set was small, however, cousisting
only of 50 cases. More recently Ludwig and Heilbronn evaluated a causal network equipped
with subjective probability estimates for the diagnosis of chest pain [Lud83]. They found it
substantially less accurate than simple logjstic regression.

One of the few knowledge-based diagnostic programs to find routine application in medicine
is the Pathfinder system due to Heckerman and Nathwani [Hec92c]. The program assists
the diagnosis of lymph node disorders by interpreting the features present on histological
examination of bjopsy specimens. The knowledge representation is a Bayesian network., A
more highly connected network was fonnd to be significantly more accurate than a simple
conditional independence model, whereas in our application we have found that background
knowledge leads to negligible improvement if any. However, firstly, unlike our programs,
alt probabilities incorporated in Pathfinder are subjective estimates provided by one of the
authors. De Dombal and colleagues concluded many years ago that independence Bayes
classifiers do not work well, especially for rarer conditions, when provided with subjective
rather than objective probability estimates [Lea72, Dom78). Indeed experts have even
been shown to be unreliable simply in identifying which symptoms and signs are useful
discriminants [Kni85]. Secondly, the accuracy of the two versions of Pathfinder was also
assesged subjectively by the same author who provided the original probability estimates. It
is perhaps not surprising that the more flexible, highly parameterized model was better able
to accommodate the jntentions of the expert. Furthermore, an independence Bayes model
tends to lead to over-optimistic predictions of posterior probability; the author assessing
the ‘quality’ of the posterior distrihutions may simply have preferred the more conservative
predictions of the more complicated model to those of the independence Bayes model. It
i interesting to note that when the two models were compared in their ability to predict
the true diagnosis from the observations of a non-expert (this is the stated purpose of
Pathfinder), no significant difference in accuracy was detected.

In a complementary study to the one described here, we used the causal rule-based system
as a simulation model to investigate the limits to diagnostic accuracy achievable by sta-
tistical methods [Tod93a]. We concluded that with sufficient training examples {10%), the
independence Bayes classifier is near-optimal: taking interactions into acconnt by various
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methods {Lancaster model for pairwise interactions, nearest neighboura using the Bayes
metric, neiral networks) leads to no significant improvement in diagnostic accuracy. It
is therefore not surprising that in the experiments described abeve, no program has been
shown to be aignificantly more accurate than independence Bayes.

However, one program that has performed as well as independence Bayes is nearest neigh-
bours with the Bayes metric. The nearest neighbours method is particularly suited to
medical diagnosis because it is so acconntahle, The diagnostic prediction of the system
regarding a new case is encoded as a small set of previous actual cases. The user is thus
able to examine and vet those cases, and decide for himself if they really are representative
of the new case. The nearest neighbours method has not been widely adopted because
of poor accuracy (e.g. [Serf3]), however our new metric appears to correct this deficiency.
Furthermore, in another study [Sta93] we showed that the Bayes metric corresponds as well
as Hamming distance to the notion of ‘clinical similarity’ between case histories. In that
study we found it necessary to use the ‘anatomicel process’ variable rather than tbe ‘final
diagnesis' variable as a target for computing the posterior distribution so as not to lose
information about the side of symptoms and signe. Retrieval of cases with aimilar Bayesian
analyses has also been advocated by de Dombal et af [Dom92]. They employ a rather
different technique to curs: all cases are retrieved which have the same leading diagnosis
as the target case, and whose posterior probabilities lie in the same broad pre-determined
interval as that of the target case. This appears wasteful of information about tbe patient’s
presentation, and it casts some doubt as to whether the presentatione of the retrieved cases
are truly ‘similar’ to the target case as claimed.

Although perhaps not applicable to abdominal pain, the nearest neighbours method does
have the additional advantage of taking interactions into account (even if ap independence
Bayes model is nsed as the metric), and so it is potentially more accurate thao indepen-
dence Bayes itself. As a final comparison of nearest neighbours and independence Bayes,
we measured their accuracies on all 1270 cases in the database (this is permisaible since
neither program js knowledge-based) using a ‘leave-one-out’ training etrategy (any repeat
Presentations of the game patient as the test case were also left out from the trainiog set).
Figure 10.6 plots error rate against choice of k for pearest neighbours, With the most opti-
mistic value (k = 29), the nearest neighbours dassifier still only makes five fewer errors than
independence Bayes (Table 10.7). This difference is not statistically significant, indeed in
a8 many as 121 of the 1270 cases one of the two programs makes the correct diagnosis while
the other does not, 8o disagreement is congiderable. It seems clear from our study that for
the diagnosis of acute abdominal pain, there is nothing to be gained by attempting to take
interactions into account. Nevertheless, our nearest neighbour program is no less accurate
thap all the others that we have tried, it is simple and has the additional advantage of
accountability. The latter is particularly important in safety-critical fields such as medical
diagnosis. Researchers currently using independence Bayes classifiers might like to try this
new technique.
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Figure 10.6: Graph of error rate as a function of & for the nearest neighbours method
uging the Bayes Metric when tested on all 1270 cases in the database using a ‘lesve-out-
one’ training strategy. The error rate for independence Bayes (0.374) is also shown for
comparison.
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Table 10.7: Ertor rates for independence Bayes and nearest neighbours using the Bayes
metric on all 127D cases in the database nsing a ‘leave-out-one’ training strategy. The right-
hand column lists the corresponding tables in the appendix showing the full diagiminant
matrices.

Program Errors | Errer ratel Matrix |

Nearest Bayes neighbours (i, 6 = &, k=29) | 470 0370 Tahle B.18
Independence Bayes (¢a, P = Pr) 475 0374 | TableB.19
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Appendix A

Variable Definitions

Definitions ure given for all symptom variables and additional variables, Also
shoum are the possible values of each variable,

A.1 Symptom Variables

A total of 169 symptom variables were recorded.

Personal Details

Age — Age of patient (in decades) at time of presentation.

Characteristics of the Pain

Initial site of pain — Site at which the pain was maximal (or the distribution of the pain
if generalized) at onset of the current episode. If the site of pain 16 not mentioned then it is
unknown. However, il the pain is described as being contraction-like, or like a period pain
then tbe aite is recorded as ‘lower’,

Final site of pain — Site or distribntion of the pain at the time the patient presented,
or the final site of the pain if the pain had disappeared by the time the patient presented.
If no mention ia made of tbe pain changing its distribution then the final site is taken by
default to be the same as the initial site.

Duration of pain — Duration (in terms of the order of magnitude} of the presen: episode
of pain. Thus, if the patient has had intermittent pain for five days, then ‘days’ is recorded.
However, if the patient has had constant pain for six hours having been free of pain for
three months since a similar previous episode, then *houra' is entered.

Radiation — Nine Boolean variables independently record any reported radiation of the
pain to each of nine sites. If no mention is made of the presence or absence of any rdiation,
then all nine variables are unrecorded. However, if any mention is made of radiation, then
all variables assume a default value of ‘false’ since it is generally understood that radiation
to sites other than those mentioned is absent. Thus for example if the pain i5 described
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simply as radiating to the groin, ‘pain radiates to perineum’ is recorded as ‘true’ and the
eight other variahles are recorded as ‘false’.

Aggravating and relieving factors — Ten Boolean variables independently record var-
ious factors which are reported as aggravating or relieving the pain. Since these factors are
not routinely sought, no default values can be assumed. Thns for example if the patient is
described as experiencing period pains on exertion, then the variable ‘pain is aggravated by
movement' is recorded as ‘true’. H the pain is said to be relieved by bed-rest then ‘pain is
relieved hy lying still’ is recorded as ‘true’,

Severity of pain — By default the severity of the pain is taken to be moderate, since if
the pain were mild or severe then the clinician would normally record this in the notes. In
particular, the severity is interpreted as if the pain is described as aching or dull, moderate
if described a8 ‘not severe’ or ‘like bad period paina’ or ‘sharp’ or ‘pain ++°, and severe if
described as & ‘atrong pain’.

Type of pain — Since there is no normal type of pain, no default value can be assumed
for this variahle. In particular the type is taken to be steady if the pain is deseribed
a8 ‘constant’ or a8 a ‘dull ache’, cramping if described as period-like or a ‘severe ache’,
fluctuating if described as ‘constant with exacerbations’ or ‘stabbing’.

Progress of pain — Course of progression of the pain. By default this is taken to be
‘same’ because bad the pain improved or worsened hefore presentation, the clinician would
normally have recorded this.

Mensirual History

Periods — Usual pattern of periods. For example, if periods were regular until six months
ago when they ceased completely then ‘regular’ is recorded, but if six months ago the perioda
became irregular then ‘irregular’ ia entered. I no mention is made of the periods being
regular or irregular, then if the minimum and maximum cycle lengths have been recorded,
the regularity of the periods is calculated from those: the periods are regular precisely
when the difference between the minimum and maximum cycle lengths is no greater than
five days.
‘Weeks since reported LMP — If a date for the LMP is available, then the number of
days n at presentation since the LMP is calculated. This is converted to a discrete value as
follows.
0<n< 4 weekssincereported LMP =0
4<n <32 weekssincereported LMP = 1 tod
32 < n< 46 weeksaince_reported LMP = 5.to 6
46<n weeks gince reported LMP = 7_or.more

If no precise date is given then if possible an estimate is entered instead. This may be
the average of a range of possible dates suggested by the patient, or a date calculated
retrospectively from the gestalional age (if pregnant). A statement such as ‘the beginning
of March® is interpreted as 1/3/1990. If the date is not mentioned, and a reasonable estimate
cannot be made from other information in the notes, then it is unknown.

Time of LMP — Relative timing of the palient’s last reported period. For example, if
the last period was on time, eveu if it was six months ago, then ‘on time'is recorded. Note
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that the timing is not recorded as ‘late’ simply becanse say ‘two months overdue’ is written
in the notes: this is because the comment refers to some future menstrual period and not
to the last known period. No default valne can be assumed, but a statement snch s ‘LMP
entirely normal’ is taken to mean that the LMP was on time.

Type of LMP — Type of the last reported period. A statement such as ‘LMP entirely
normal’ or an entry such as ‘bleeding ++' is taken to mean that the LMP was a moderate
Aow.

Abnormal Bleeding

Bleeding since LMP — Records whether or pot the patient has experienced any abnormal
PV bleeding since the last menstrual period, and if so the pature of the bleedizg. The
reported passage of products takes precedence over the passage of clots. By defalt if no
mention of bleeding is made in the notes then it ja assumed by defanlt that none was
experien ced.

Ounset of bleeding — Time elapsed (hours, days, weeks or months) since the oneet of any
abnormal bleeding following the LMP. If this time is not mentioned explicitly iz the notes,
and it cannot be deduced from other information, (or if no bleeding has been reported) then
it is assumed to be unknown.

Type of bleeding —- Severity of any abnormal bleeding since the LMP. If no mention
is made of the severity of the bleeding, then (provided tbat bleeding has been reported)
it s assumed by default to be moderate. Specific comments ench as ‘'like a period” or
‘bleedingT* (indicating that the bleeding ie worsening) are taken to mean that the bleeding
was moderate. However, * bleeding+++’ is taken to mean the bleeding was severe.

Progress of bleeding — Course of progression of any bleeding since the LMP. If no
mention is made of the progress of the bleeding, then (provided that bleeding bas been
reported) it is assumed by default to be ‘same’.

Other Symptoma

A total of 20 other variables record the presence of various other symptoms and their time
since onset, A symptom is considered to be present if it still constitates an active clinical
problery. Thusif a patient has been troubled by intermenstrual bleeding on and off for years,
then it is atill considered to be present, even if no bleeding has accurred in the last cycle,
provided that this is consistent with the general pattern. Symptoms are assumed by defanlt
to be absent, with two exceptions; ‘breast symptoms’ are not routinely enquired abont if
the patient is known to be pregnant at presentation, and so are absent by defaut only if
the patient is not known to be pregnant; ‘dyspareunia’ is not routinely enquired about, and
so is unknown unless explicitly mentioned in the notes. Note that pain ‘after coitus’ is also
considered to be internal dyspareunia If bath internal and external dyspareunia aze present,
then the internal dysparennia is likely to be much more significant clinically; therefore only
a gingle variable is used to record dyspareunia, the internal variety taking precedence over
the external whenever bath are present. Note also that reference to the passage of small
clots does not in iself constitute menorrhagia, although ‘heavy loss' as a desaiption of
the nsual menstrual fiow does. Anorexia, nausea and vomiting are consjdered to be a
progreasion of the same phenomenon, and are recorded in a single variable, Dizziness and
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light-headedness is not distinguished from faintnezs or actual fainting. Any recent shivering
ot sweating constitntes a ‘recent fever or chill’: it is thua implied by the entry ‘hot +cold this
week’ or ‘night sweats’. Conversely the single entry ‘“rigors’ implies that there has been
no recent fever or chill. The time since cnset of any symptom is unknown unless explicitly
mentioned.

Obatetric History

Parity — Number of births. If there is evidence in the notes that the clinician has enquired
about any miscarriages and/or terminationa then by default the parity is assumed to be
Zera.

Miscarriages — Number of spontaneous abortions. If there is evidence in the notes that
the clinician has enquired about the parity and /or terminations then by default it o assumed
that thete have been no miscarriages.

Terminations — Number of terminations of pregnancy. If there is evidence in the notes
that the clinician has enquired about the parity and/or any miscarriages then by default it
is assumed that there have been no terminations.

Contraception — Current method of contraception. If the patient is pregnant, then the
variable refers to the method of contraception used at the time the patient became preg-
naat. The entry ‘planned pregnancy’ jndicates that no contraception was used. Similarly,
if the patient has been sterilized (previous tubal ligation without subsequent reversal, pre-
vious hysterectomy or previous bilateral oophorectomy or salpingectomy) then the current
contraception is recorded as ‘none’. Also, if the patient has recently been taking fertility
drugs, then it is assumed that they are not using contraception,

Infertility — The patient's apparent fertility in the absence of any sterilization procedure.
The patient is recorded as being ‘infertile’ (i.e. infertile or subfertile) if she has been trying
to conceive for more than one year, even if she is now pregnant; the infertility is primary
if she has never been pregnant, otherwise it is secondary. Heference to ‘subfertility’ in the
potes is interpreted to mean ‘infertility’. If no mention of infertility or subfertility is made
in thenotes, then it is assumed that the patient doe¢ not have infertility, unless the patient
has had some surgical procedure which renders her sterile.

Pregnancy — Recorda the apparent possibility of pregnancy on presentation. If the patient
has had a surgical procednre which has rendered her sterile, then pregnancy is recorded as
impmsible, Otherwise, however, if no mention is made of the impossibility or certainty of
pregrancy, then it is unknown

Pasi Medical History

Past History — A total of 12 variables record previous significant medical conditions. By
default it is assumed that none have occurred, except for ‘complete abortion’: it cannot
be assumed by defanlt that there have been uo complete abortions if miscarriages have
been reported, unless the patient has also had an ERPC iu the past. The time since the
last complete abortion is also recorded in one of the 12 variables. (Note that the entry
‘Oillpesses’ conveys uo information about any of these conditions, and is ignored.)
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Previous surgery — A total of 34 variables record previous sugical procedures. By de-
fault it is assumed that none have been performed, except for 'ERPC”: it cannot be asumed
by default that the patient has never had an ERPC if miscarriages have been reported. One
of the 34 variables (“previous other uterine instrumentation”) is intended to record all pro-
cedures invalving uterine instrumentation other than D+C, ERPC and TOP: for example,
insertion of JUCD, cervical catheterization, and hysterosalpingogram investigation. An-
other variable (‘previous laparotomy’) records all intraperitoneal surgery other than the
procedures explicitly recorded by the other 11 variables: for example, cholecystectomy.

Drug History

Recent medication — Three Boolean variables independently record whether antibiotics,
analgesia and/or fertility drugs have been administered recently. ‘Recent antihiotica’ are
those which were started at least 24 hours before presentation, and have not been stopped
earlier than 24 hours before presentation. ‘Recent analgesia' refers to strong analgesia
(e.g. pethidine, morphine, or temgesic) only, and administered in the 24 hours preceding
presentation. ‘Recent fertility drugs’ are those administered within one year of presentation.
By default it is assumed that none were administered.

Cigarettes per day — Average numher of cigareties normally smoked per day. Ifa range
is given {e.g. 15—20) then the average is taken and rounded to a whole number (18). If the
patient stopped smoking one month or more ago then the patient is recorded as abeing a
non-smoker, if less than one month, then the usual number of cigarettes is recorded. The
average number per day n is assigned to one of three categories as follows.

n= 0 cigarettes_perday = none
1< n<10 cigarettes_per.day = legs_than 10
10<n cigarettes_per_day = 10_or_more

Alechol eonsumption — Average amount of alcohal normally consumed. If not men-
tioned in the notes then it is unknown. Notjce that no distinction is made hetwesn occa.
sional consumption and moderate consumption.

Genersl Examipation

Overweight — Records whether the patient appears obese. If no mention is made of the
presence or absence of obesity, then it is unknown unless the patient has beer weighed. In
the latter case, the patient is overweight precisely when they weigh 70kg or more.

Pulse — Records whether or not the patient has a tachycardia (pulse rate of 100 per minute
or more) on presentation to the admitting team. If more thap one figure is availible, the
preferred figure is that in the clerking notes, in the nursing notes, on the bed chart or in
the GP's referral letter (decreasing order of preference). If no mention is made of the pulse
rate then it is unknown.

Mean BP — Records whether or not the patient is hypotensive (mean BP strictly less
than 70mmHg) on presentation to the admitting team. If more than one figure is available,
the preferred figure is that in the clerking notes, in the vursing rotes, on the bed chart or
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in the GP’% referral letter (decreasing order of preference). If no mention is made of the
pulse rate then it is unknown.

Temperature — Records the patient’s temperature at presentation to the admitting team.
If more than ope figure is available, the preferred figure is that in the clerking notes, in the
nursing notes, on the bed chart or in the GP's referral letter (decreaaing order of preference).
If no mention is made of the pulse rate then it is unknown.

Colour — Patient’s facial calour. An entry such as “®pallor’ indicates that the calour is
normal. An entry such as ‘pale conjunctivae and tongue’ indicates that the patient ie pale,
Colour is msumed by default to be normal uniess there is a comment in the potes to the
effect that the patient ia toxic or shocked.

Mood — Patieot’s mood. An entry such as ‘not distressed’ or ‘well’ indicates a pormal
mood, ‘tearful’ indicates that the patient is distressed, and ‘shaken’ indicates that the
patient is prychologically shocked.

Sweatiug — Records whether the patient is sweating. Sweating is absent by default unless
there is a comment in the notes to the effect that the patient is toxic or shocked.

Dehydeated — Records whether the patient is clinically dehydrated. A comment such as
“fit and well’ implies that the patient is not clinjeally dehydrated. In any case, by default
the patient is assumed not to be dinically dehydrated, because the clinician would record
this.

Abdoninal Examination

Site of tenderness — Site at which abdominal tenderness is maximal (or the distribution
of the tenderness if it is generalized). This is usually deduced from diagrams drawn in
the notes. Sometimes the comment ‘tender fundus’ is found; this indicates that the site of
tendermess was the lower abdomen. If tenderness is not mentioned then it is assumed by
default that none was found provided that it appears from the notes that the abdomen was
examined.

Otherabdominal signs — Six Boolean variables independently describe the other findings
on abdominal examination. All of these are assumed 1o be false (absent) by default provided
that jt appears from the notes that the abdomen was examined. Note that a mass which has
been dearly identified as an enlarged organ {for example, liver or uterue) is not included as
a ‘mass’. Also, no distinction is made between a suspected mass and an unequivocal mass.

Bowel sounds — Nature of the bowel sonnds. An entry ‘BS present” or ‘BS./ indicates
that the bowel sounds are normal, and 'BS active’ indicates that they are increased. If no
maention is made of the bowe! sounds then they are unknown because anscultation for bowel
sounds is not a routine part of the examination.

Vaginal Examination

PV tenderness — Three variables record any tenderness in the right adnexa, in the
left adoexa, and centrally, respectively. If general tenderness is noted, then this indicates
tenderness in all three areas. (Pain on speculum examination is interpreted ws ganeral
tenderness in the absence of more specific information.) Central tenderness incindes both
nterine tenderness and tenderness in the Pouch of Douglas. By default it is assumed that
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no tenderuess is present, provided that it appears from the notes that a PV examination,
however limited, was performed.

PV mass — T'wo variables record whether a mass waa detected, or even suspected, in each
adnexa. By default it is assumed that no mass was detected provided that it appears from
the notes that the adnexae were examined.

Cervical excitation — Records whether cervical excitation is present or not. It is snmed
by default that none is present provided that it appears from the notes that the adnexae
were examined (in which case an attempt to elicit cervical excitation would have been made
routinely), and the patient had not had a hysterectomy. Note that ‘suspected excitation’
or ‘mild excitation’ is regarded as actual excitation.

Cervix — State of the cervical 0s. Note that no distinction is made between ‘half open’
and ‘open’. The cervix is assumed by default to be closed provided that the adnexae have
been examined, unless the patient has had a hysterectomy.

Uterus enlarged — Records whether or not the nterus is enlarged. However, it is oot
always possible to assess the gize of the uterus when significant tenderneas is present. Nev-
erthelegs, if the size were assessed, then it would nearly always be recorded, even f it were
normal. Therefore it is not safe io aspume by default that the yterus is of normal dize,

Size for dates — Records the relative size for dates of the uterus. A nterus is small for
dates precisely when it is three or more weeks smaller than expected for dates (calculated
to the nearest whole week). Similarly a uterus is large for dates precisely when it is three or
more weeks larger than expected for dates. No default assumption about the size [or dates
can be made.

Uterua — Records whether or not the uterus ie anteverted. However, it is nol always
posaible to assess the position of the uterus when significant tenderness is presenl. Nev-
ertheless, if the position were assessed, then it would nearly always be recorded, even if it
were anteverted. Therefore it is not safe to assume by default that the nterne is anteverted.

Speculum — Four variables record findings on speculnm examination. I findings are
not mentioned in the notes, then the findings on EUA are recorded instead if EUA was
performed within 24 hours from presentation. A discharge is classed as purulent unless it
is described as ‘slight’, ‘clear' or ‘normal’, in which cases it is classed as clear. The variahle
‘speculim blood’ records whether blood and/or products of conception were seen, the latter
subsuming the former in importance. Speculum examination is not always performed,
however if it appears from the notes that it was performed then all findings are assumed by
defanlt to be negative.

Blood and Urine Tests

Pregnancy test — Sensitivity and result of the pregnancy test. For examnple, the entry
‘Prognosticon ?4ve' indicates that the pregnancy test ie equivocal; ‘Ramp +ve'indicates
that the pregnancy test is ‘positive high'. If both a low and a high sensitivity test have
been performed, then the more significant test is the relevant one. In each case this means
the high sensitivity test, unless the results of both tests are the same, in which case the low
sensitivity test is the more significant. No default assumption can be made about the resulc
of the pregnancy test.
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Haemoglobin — Records whether the haemoglobin level (g/dl) is low (Hb < 10.0), normal
(10.0 < Hb < 14.0), or high (14.0 < Hb). No defaalt assnmption can be made.
white_cellcount — Records whether the white cell count (cells per nandlitre) is low
(WCC < 4.0}, normal (4.0 < WCC < 11.0), or high (11.0 < WCC). No default assumption
can be made.

Platelets — Records whether the platelet count (platelets per nanolitre) is low (PC < 140),
pormal (14§ € PC < 440), or high (440 < PC). No default assumption can be made.
erythrocyte_sedimentation rate —- Records whether or not the ESR is elevated (12 or
more mm/hr). No default value can be assumed.

Urinalysis — Four variables independently record the findings on urinalysis. The distinc-
tion between ‘+’ and ‘++7 is dropped. Thus the levels are translated as follows.

pil = none
+ = minimal
++ = moderate
+++ = moderate

No defadlt values can be assumed.

Urine microscopy — Three variables record the results of urine microscopy. The number
n of cells per field is translated as follows,

n= 0 = npone
1<n<19 = minimal
W<Ln = moderate

A reference to ‘occasional cells’ is interpreted as ‘minimal’. No default values can be as-
sumed.

Ultreasound Examination

The results of ultrasound examination are relevant if the investigation was carried out
promptly after the patient was clerked. If the investigation was performed before the patient
was ckrked, or more than 24 hours later, then the results are admissible only if, in the light
of thefinal diagnosie, one would not normally have expected them to be any different.

Ultrasound Type — Type of ultrasound examination performed. It is assumed to be
abdominal unless otherwise stated.

Ultrasound adnexae — Two variables independently record the ultrasound findings in
the left and right adnexae, respectively. Note that small echosonic areas surrounded by
thiclened areas are interpreted as cysts. The adnexae are assumed to be normal by default,

Ultrascund Pouch of Douglas — Records whether or not fluid was detected iu the
Pouth of Douglas. It is assumed by default that none was present.

Ultrasound uterine wall — Records whether fibroids were detected in the aterine wall.
It is assumed by default that none were found.

Ulirasound uterine cavity — Contents of the uterus. i reference is made to » gestational
sac being seen that is too emall for dates then this is entered as a missed abortion rather
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than as a gestational sac. An entry such as ‘intrauterine pregnancy = 8/40' is interpreted
as ‘foetal pole’. By default it is assumed that an empty uterine cavity was found.

Ultrasound uterine pregnancies — Recards whether or not more than one uterine
pregnancy was detected in the case that the uterus ie non-empty. If the uterus irempty
than this variable is left uarecorded. Otherwise ji is assumed by default that only a single
pregnancy was detected, provided that a gestational zac, foetal pole, foetal heart (with or
without an associated haematoma), missed abortion, or hydatidiform mole was seea in the
uterine cavity.

A.2 Additional Variables

A total of 53 additional variables were recorded.

Menstrual Periods

Weeks since actual LMP — Weeks since the start of the patient'’s actual LMP. This
may well be different from the reported one. Unless there is good reason to doubt the
accuracy of the reported LMP, the lime ie calculated from the patient's dates. However,
when other evidence aa to the patient’s stage of gestation js {aken into account, it may
appear more likely that the reported LMF was in fact an episode of abnormal bleeding.
Similarly, if the patient presents with bleeding of a day or two's duration and nox-specific
pain, it may appear more probable that the curreat episode of bleeding is menstrual and,
in fact, represents the actual LMP. However, if the most recent episode of bleeding has
occurred at a time, or for a duration, that is not typical of the patient’s menstrual pattern,
then it should not be designated the actual LMP. If the number of weeks since the reported
LMP is unknown, then so too is the number of weeks since the actual LMP,

Menstruating — Records whether the patient je menstruating at the time of presentation.

Pregnancy

Pregnancy gince LMP — Records whether the patient has become pregnant jince the
actual LMP, and if so, the site of the pregnancy. If a patient has both an ectopic and an
intrauterine pregnancy, then the ectopic eite is recorded preferentially.

Raised HCG — Records tbe time for which the HCG level has been aignificantly elevated.
If the HCG level was previously elevated, but has since fallen to normal, then the value ‘false’
ie entered. Since HCG levele are not generally repeatedly measured in the way that would
be required here, the decizjon as to the value of this variable must be based on pregnancy
tests that have been performed, the duration of the patient's symptoms of pregnancy, and
the gestational age of the pregnancy.

Raised progesterone — Records the time far which the progestercne level bas been

significantly elevated. If the progesterone level was previously elevated, but has since fallen
to normal, then the value ‘false’ is entered.
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Table A.1: Poasible values for variables 1 to 60
[No: Name Values ]
1 | age in_teena, n_20s, m 308, In 408
2 | imjtial site_of pain RUQ, LUQ, RLG, LLQ, central, upper, lower, right, lef2,
gm«llhed. right Join, beft loin, baclk, ciler
3 | Goalsite ol pain uqQ, LUQ, RLQ, LLQ, cetral, upper, lower, right, lef2,
: right lain, keft Join, back, caher

4 dursticnol_pain haure, days, weeks, montha, years
& | painradistes to right shoulder false, true
6 | painradistes to left_shoulder Inlse, true
T | pan radistes_ta_righl Join Inlee, true
8 | painredistes to laft loin Lales, true
0 | pain radistes to back Calan, troe

10 | pitradistessup bricall Lalas, troe

1 i i Lalas, trae

12 | pain radiates to right Jeg Lalas, true

13 | pinsediaies 10 keft leg Lalas, true

14 | pinisaggravaied by. Inlee, true

15 | pin s aggravated by .movement [alne, true

16 | pein e Aggravaied by retching Calue, e

1T | prin e aggrawaied by .coughing Lalae, true

18 | pain_s.aggmwaled by respirsiion Inlee. true

19 | pain m.aggmwaied by food falae, true

20 | pain_im relieved by lyingaull Lalse, true

21 | painw relicved by.yomiting Ialse, true

72 | pain_m relioved_ by. fadee, Urue

23 | pain_in_relieved_ by foad [adee, Srue

24 | severityol pain mild, moderuie, scvcre

25 | lype.ol_pain termittent, steady, colicky, cramping, fluctualing, other
26 | progress. of pain slopped, betler, same, worse

2T | periods regular, irregular, oone y=i

28 | woeln xinow_reporied LMP 0, 1104, 5.20.6, T_or_mare

20 | cme ol LMP warly, on lime, laie

30 | typeol LMP light, moderale, hanvy

31 | bleeding since LMP (ales, blood, dots, producls

32 | cosetod hloeding hours, days, woeks, montha, years

a3 | iype.al hleoding Light, modernie, scvcre

k2] v i stappad, better, same, worse

35 | recent_fever.or chill Inlee, true

36 | ADOrEXiA nALARA Or.YOmiling false, ancrexis, nanses, vomiling

37 | duration of anorexia nansen_vomiting | hours, days, weeks, months, yeam

38 | constipation ialge, true

39 | duration of constipation hours, days, wesks, months, years

40 | diarrhoes Inlse, true

41 | duration of disrrhoea hours, days, weeks, months, yeam

43 | frequency Lalse, trae

43 | durationof frequency hours, days, weeks, months, years

4 | dysuria falae, Grue

48 | duration.of_dysuria hours, days, weeks, months, years

4 | hasrnad uris falae, Grue

41 | duration of hamoaturia hours, dayw, wveks, months, years

4 | dimchargs falae, Grue

4 | duration.of discharge hours, days, waths, mopths, years

8 | breast tendemess or_eniargement Lalas, true

L : ion_of_breast symp bhours, days, weels, manths, years

51 | faintress Inlae, true

5 | durstionof faintocss hours, days, woeks, months, years

H Inlee, true

5 | duration of dysmenorrhoca bours, days, woaks, months, year

8 | mmarrhagia Lales, trise

§7 | durstion of menarrhagis bours, days, weeks, months, years

i8 | pastcoital hleeding Lalas, true

9 | duration_of_postooital bieeding hours. days, weaks, months, years

W | i H d false, troe
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Table A.2: Possible values for variables 61 to 120

115

No. — Name Valuca
61 | duration of interrotnstrual hleeding hours, days, weeks, months, yeam
62 | dywpmrenmia false, external,

63 | duradion ol dyspareigis hours, days, weeks, manths, years

64 | parity 0,1, >1

65 | miscarriages 0,1, >1

6868 | teminations 0,1, >1

67 | contraceplion . w, [UCD, d caAp, YasOC-
\cany, none, oiber

68 | infertility prnary, peoondary, none

68 | p impomible, eptablished, indeterminste

70 | pasihistory ol PID falss, true

71 | past history_od.ovanan cyst [alee, true

T2 | pasibistary ol sctopic_pregnancy falao, wrue

73 | pasibistary_of smdometriosia falso, true

74 | pasi history_of fihrolde [alse, true

75 | pasi history alsn, trur

76 | past history ol completa abortion falae, rue

77 | time sines laa ion bhoure, days. weeks, mnonihs, years

78 | past history of LTI alee, true

79 | pasthistory of renal calenlus Ealae, true

80 | pasi history_of irrnable_colan falar, Lrue

81 | aimilar previous spiscde Lalam, true

82 | previous_appendicectomy false, Lrue

83 | rime aince appendicectamy hotirs, days. weeks, manths, years

84 | previaus laparosonpy false, true

85 | Lime since laparcecopy hours, days, weeks, mouths, years

B | previcus laparotomy falwe, Lrue

47 | time amee laparotamy hours, days, weeks, maonths, years

68 | previouscervical surgery falen, true

89 | time aince cervical surgery hours, days, woeks, months, years

80 | previcua other uterine instrumentation falee, true

91 | time smce other uierine metrumentation | howrs, days, weeks, moaths, years

92 | previous_tnbal ligation falss, true

93 | time sinpe tubal ligation bours, days, weekn, raonths, years

8 | previooa conservalive tubal surgery false, true

95 | time since cotwervativefubal surgery houre, days, weeks, months, years

94 | previousreveraal of sterilizalion Lalse, true

97 | Limesince reversal of sierilization hours, days, weeks, monihs, years

94 | previomright_oophoreciomy Lalse, troe

20 | Lime since right_nophoreciamy houre, days, weekn, monihs, years

100 | previouslefl_oophoreciamy [alse, true

101 | tivoe since left_nophoreciomy bowre, days, weeks, months, years

102 | previous.right analpingectomy [alse, trus

10 | time since right salpingectamy hours, dayw, weeks, months, years

104 | previcusleft_salpmg [alee, true

105 | time simce left_salpingeciomy howre, dayw, weeks, months, years

108 | previcis Cacanrian section false, true

107 | time since Cassanian section hours, days, weeks, txshtha, years

108 | previoua hysteresciomy false, true

108 | time since_hystercctomy hours, days, wecks, months, years

110 | previouslermination [alse, true

111 | time sinos bermination bours, days, weekn, rrntha, years

112 | previoua D+C [alse, true

113 | time cinde D4C bours, days, weeks, montha, years

114 | previow ERPC (alss, true

115 | Limeaince ERFC hours, days, weckn, mwmitha, years

116 | receni_antibiotics [alse, true

nr [alse, true

118 | recent fertility_drugs [alse, true

none, lnas than 10, 1000 oore
none, moderate, hoavy




116 APPENDIX A. VARIABLE DEFINITIONS
Table A.3: Possible values for variables 121 to 169
&, Nama Values ]
131 | evrwight falae, s
172 | puise \ma_than 100, marethan 100
183 | meanBP beun than TOmmHyg, mare than_ TommHyg
124 | temperature Jesa_than 37 6, 37 8.10.38.0, 38.0.or_more
125 | colow pormal, pake fushed, other
129 | mood normal, distressed, abocked, misershle, anxious, Lired, othar
127 | sweali {alse, true
128 | clinially dehydeated Ialse, trua
129 | & RUQ, LUQ, RLQ, LLQ, cmowal, apper, kiwer, fight, left, genaralined,
rightJain, leR Join, back, nooe
130 | abdminal guarding false, brue
131 | abdeminal rebennd false, true
133 | abdaminal rigidity Ialue, trus
13 i H false, true
134 | abduminal monss Ialse, trye
135 | ascies Lales, trus
138 | bowel amumda abaenl, dogensed, nanmal, ncreasad,
137 | PV.ienderneas to_right Lalee, troa
138 | PV_tenderness to loft Talse, wrus
139 | PV.iendernsns centrally Lalae, true
140 | PY¥_mass ioright lalse, swipected, brue
141 | PY.mass toJeft Lakee, pmpected, rue
142 | cervical cxcitation false, Lroe
143 | cervix chowed, gpen
144 | wierum.enlarged false, brue
145 | sise Jordates small, narmal, large
148 | werve anteveried, reroverted
147 | geculum discharge nane, purubmi, brown, white, ciear
148 | spoculum blood Ialse, hlood, products
149 | geculum owvical erosicn Inlse, troe
150 | specutum._vaginal wall.cyst [alse, trus, ruplured
151 | pagnancy.test negalive high, negacive Jow, equivocal, posilive_high, posilive Jow
152 | barmoglobin bess than 10.0, 10.040.14.0, 14.0 0. more
153 | shitecell count besm then 4 0, 4.02a11.0, 11.0 00 more
154 | plabelets leme than 140, 140_to_440, 440_or_rmore
155 | aythrocyte sedimentadon raie | lesathan 12, 1205 rore
158 | urinalysis protein none, minitnal, modersie
157 | urinalysis glucose Bone, minitmal, moderste
158 | urinalysia ketones nane, minimal, moderale
159 | urinalysis heod BoD¢, minimal, moderate
160 | urine micecopy.pusocla BoDe, minimal, moderaie
161 | urine_microscopy sred cells none, minimal, moderate
162 | urine_microscopy squames nane, minimal, moderale
163 | ulirsscund_type i ;
184 | ubtrascund right_sdnexa oormal, enlarged, madn, cyst
165 | ulirasound left_adnexa normal, enla-ged, mase, cyst
166 | witrasound Pouch of Douglas Buid, po_Auid
167 | ultrasound uterine.wall normal | Glaroade
168 | wltrssound nterine cavity empty, thickmed endometrium, gestational aac, foetal pole, [oetal hesrt,
foutal huemrt b tainad_product ipped_abortion, mobe
169 | ult d nterine.pregn single, multipk
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Abortion

The stage of the abortion process ie described by five variables. In each case, the process
of abortion refers only to the last pregnancy, and only if the process began withir the last
12 months.

Threatened abortion — This has value ‘false’ unless currently present, in which case the
time since opset ia recorded.

Inevitable abortion — This has value ‘false’ nnless currently present (i.e. at presentation
has not proceeded to incomplete or complete abortion), in whicb case tbe time sizce onset
is recorded. If a patient has abdominal pain due to a missed abortion, then abortion is
Leld to be inevitable rather than threatened. The time since onset of pain or bleeding is
recorded.

Incomplete abartion — This bas value ‘false’ unless currently present {i.e. ERPC has
not yet been performed), in which case the time since onset is recorded.

Complete abortion — The time that it happened is recorded.

Missed abortion — This has value ‘true’ if there is evidence that the foetus died in ulero,
otherwise ‘false’.

Uterine State

Uterine contractions — Records whether uterine contractions sufficient to cause the
presenting episode of abdominal pain have occurred and, if so, the time since theironset. If
the time since onset of the abdominal pain has not been recorded, then the time siice onset
of the uterine contractiones must be inferred from time since onset of bleeding if known
(the bleeding usually precedes the pain during abortion), and the gestational age of the
pregnancy. Typically the contractions will have atarted days prior to presentation, and thie
is taken as a default value in the absence of any other clue.

Progress of uterine contractions — Records tbe progress of uterine contractions if they
have accurred. A good guide is the progress of the pajn. If tbat variable has oot been
recorded, thea a default value of ‘same’ is assumed.

Strength of uterine contractions — Records the strength of nterine contractions if
they have occurred. A good guide is the severity of the pain. If that variahle has not been
recorded, then a default value of ‘moderate’ is assumed,

Uterine bleeding — Records whether abnormal uterine PV hleeding has occurredaince the
actua! LMP and, if vo, the time since onset. If the patient is menstruating then this variable
uecesearily has value “false’. Unless copfusion has occurred over the jdentification of the
LMP, the value of this variable is determined by the time since onset of abnormal bleeding
reported by the patient. The exception being that the bleeding is minimal and hasnot been
noticed by the patient: such bleediag may explain tbhe presence of blood contamigating the
urine, or evidence of nterine bleeding may be seen on speculum examination. Note that
an episode of bleeding that is attributed to implantation haemorrhage is not regarded as
abnormal bleeding.

Progress of uterine bleeding — Records the appareat progress of the actual uterine
bleeding. Unless there is evidence to the contrary, it is assumed to have value ‘same’.
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Severity of uterine bleeding — Records the apparent severity of the actunal uterine
bleeding. Unless there is evidence to the coutrary, it is assumed to have value ‘moderate’.
If the patient reports moderate or heavy bleeding with clots, then this indicates that the
severity is ‘heavy’. If clots were reported, but the bleeding was said to be only light, then
the value is taken to be ‘moderate’. In the absence of clots, the value is taken to be that
indicated by the patient. The value ‘minimal’ i# reserved for bleeding that is so slight that
it has gone unnoticed by the patient.

Implantation haemorrhage since LMP — Records whether or not an implantation
haemorrhage has occurred since the actual LMP.

Specific Conditions

Retained products — Records the time for which products have been retained following
an ERPC, TQP, or delivery. The variable hasg value ‘false’ if the retained products have
been previously removed (by anocther ERPC).

Ectopic pregnancy — Two variables record whether an ectopic pregnancy ig present on
the left or right side, respectively, and whether it has raptured at the time of presentation. If
80, the value indicates whether the rupture was into the peritoneal cavity or the mesosalpinx.

Hyperemesis gravidarum — Records whether the patient has hyperemesis gravidarum
at the time of presentation, and if so, the time since its onset.

Abdominal wall strain — Records whether the patient has au abdominal wall steained
sufficiently (typically by vomiting) to cause abdominal pain. If so, the time since onset is
recorded.

Ovarian cyst — Two variables record whether a cyst of at least 2cm diameter is presept
on the left and right ovaries, respectively. If 5o, the cyst js classified as follows:

« ‘agymptomatic’ - the cyst is not causing pain, and is uncomplicated.

‘symptomatic’ - the cyst is causing pain in the absence of an identifiable complication.

‘haemorchagic’ - the complication is principally haemorrhage into the cyst (with pos-
dibly some leakage into the peritoneal cavity),

e ruptured’ - the complication is principally rapture of the cyst into the peritoneal
cavity (with possibly a significant haemarrhage).

¢ ‘torted” - the eyst has torted (and possibly suffered one of the above complicationa
secondarily).

Salpingitia — Two variables record the presence of left and/or right symplomatic selpin-
gitis respectively, and if 8o, the estimated time since onset of the infection. A hydrosalpinx
must be inflamed if it is causing pajn, and similarly, the preseuce of a pyasalpinx obviously
imples salpingitis. Although salpingitis is usually bilateral, if the symptoms and signs are
clearly localized to one or other side, then salpingitis if recorded as present only on that
side.

Chronie PID — Records whether the patient has ary of the chronic sequelae of PID
(adhesions, hydrosalpinges, infertility). It does not denote active infection.
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Hydrosalpinx — T'wo variables record whether the patient has left and/or right hydros-
alpinges at the time of presentation. I, for example, the patient has a left hydrmalpinx
that has become infected and formed a pyosalpinx, then the patient is regarded as having
a left hydrosalpinx (as well as a pyosalpinx}.

Pyosalpinx — Two variables record whether left and for right pyosalpinges are present at
the time of presentation (irrespective of whether they have ruptured). Two other variables
record whether either pyosalpinx is ruptured at the time of presentation.

Pyelonephritis -— Two variables record whether the patient has an acute left and jor right
pyelonephritis at the time of presentation, and if so, the time since onset of the infection.
Acute cystitis — Records whether the patient has cystitis at the time of presentation, and
if 50, the time since onset of the infection. Notice that acute cystitie and acute pyelonephritie
are not mutually exclusive, and often coexist.

Ureteric colic — Two variables record whether the patient has a left or right ureteric
colic at the lime of presentation. If so, the time since onset is recorded. Although the two
conditions rarely coexist, they are not mutually exclusive.

Microscopic haematuria — Recorde whether the patient has microscopic haematuria
(not attributable to contamination tbrough PV bleeding) at the time of presentation.
Microscopic pyuria — Recorde whether the patient has microscopic pyuria (oot at-
tributable to contamination through PV discharge) at the time of presentation.

Fibroide — Records whether the patient has fibroids at the time of presentation.

Acute red degeneration — Records whether fibroids are undergoing acute degeneration.
Endometriosis — Records whether the patient has endometriosis. If 8o, the endometriosis
is classified as ‘asymptomatic’ if it ie not causing pain or tenderness, otherwise ‘RLQ’
or ‘LLQ’ or *bilateral’ according to its site if eymptomatic. Note that bilateral pelvic
endometriosis is recorded as ‘RLQ’ if the symptome and signe are clearly localized to the
RIF (for example).

Peritoneal cavity — Records the contents of the peritoneal cavity at the time of presen.
tation. The following rules help determine the appropriate value.

¢ ‘empty’ - the peritoneal cavily is empty, or contains only normal peritoneal fluid.
o ‘ascitic fluid’ - ascites is present.

‘free pus’ - Pus is free in the peritoneal cavity ([rom a ruptured pyosalpinx or appendix,
for example}.

‘cystic Buid’ - The contents of an ovarian cyst have ruptured into the peritoneal cavity
(without any bleeding).

‘minimal haemoperitoneam’ - a amall quantity (e.g. 50mls or leas) of bloodstained
fuid is present in the peritoneal cavity.

‘moderate haemoperitoneum’ - frank blood is preseut iu the peritoneal cavity,but not
in a quantity sufficient to cause hypovolaemia

‘massive haemoperitoneum’ - profuse active bleeding is taking place sufficien: to risk
hypovolaemia.
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Peritoneal irritation — recorde whether the contents of the peritoneal cavity are causing
any evidence of irritation (pain, tenderness, rebound, cervical excitation, ileus, diarrhoea,
freqnency) at the time of presentation.

Ileus — Records whether the patient had a state of ileus at presentation.

Pelvie ¢eollection — Records whether any collection that might be palpable is present in
the pelvie at the time of presentation, and if 8o its nature. For example, the entry ‘Blood
clot ++in POD’ in the operation notes indicates that ‘haematoma’ should be recorded as
the value of the variable ‘pelvic callection’.

Cervical erosion — Records whether a cervical ercsion is present,

Irritable colon — Records whether the patient has symptams of irritable bowel syndrome
at presentation.

Adhesgions — Records whether the patient haa pelvic or abdominal adhesions of any kind.
Hyperstimulation — Records whether the patient ia being hyperstimulated. No distinc-
tion is made between therapeutic stimulation, and that caused by a hydatidiform mole.
Acute sppendicitis — Records whether the patient has acute appendicitis at preseatation.
Abdominal wall haematoma — Records whether the patient has a haematoma in the
abdominal wall at presentation (e.g. due to spontaneous rupture of an inferior epigastric
artery, or secondaly to laparoacopy).
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Table A.4: Posaible valnes for additional variables 170 to 222.

No. —_Naroe Values
TI0 [ weda ancesciual LMF— | m“rum
17
1 menatriating :bg o !
yd-nd.nlorm.mnh
173 | radsed HCG false, days, wesks, monithe
174 ranmm false, daye, 'aah monibs
175 | threat jon {alse, hours, days, weeks, moaths
178 | inevilahle abartion false, hours, d.-y- wecks, montbs
177 | incomplele abortion {ulse, hours, days, 'ezb. mnﬂ-
178 | complete_abortion false, bours, d.\n.
179 | missedsbortion falae, true
180 | uterine conkractions false, houn. days, weeks, months
181 | progrem of, tractions n.nppad, better, same, worse
183 | strengthof uterine contractions . sEVeTE
183 | uteri S anm‘dqm weeks, thonths
184 | progres ol utenisse bleeding slop] LAT, aArne, WOPSE
185 ibyof. ine_blesding minimal, light, moderate, heavy
188 | implantation haemorrhage since LMP | false, true
187 | retained producis false, days, weeks, months
168 | leftectopic pregnancy false, d, rup d_into. lpinx
189 | nightaciopic, N u d d.into. Ip
mod_mla.pﬂu:nn-Lﬂwty
190 | kb -avidarum , boors, days, wecks, monthe
181 m:;-in {alee, hours, d-wl, _woeks, moatb
102 | lefi svarian cyast falae, ssympt bic, wy [ hagic, ruptured,
right false h hagic
193 tovarian zyst . By tie, aympi d , raplured,
torted
164 ingit false, hours, days, weeks, months
195 | right.s angitis false, hours, days, weeks, months
108 :’xl wroe
19T , brue
198 m false, true
19 false, brue
200 false, brue
1 lm;;;mMnx falsc, e
202 | ruptured_right pycsalpinx , trae
200 mule_kft.pydonephﬂ'llzm false, hours, days, weeks, months
204 | acuteright itin false, hours, days, weeks, months
205 | acutecystitis false, houry, days, weeks, months
208 |l ic.colic false, hours, days, weeks, months
2207 n@hl.nrebu'lc.nnllc false, bours, days, weeks, montha
208 : {nlse, true
209 | micromcopic pyuria {alse, troe
310 | fibroids {alwe, true
211 nmtr_md.d.em-l-lul {alse, true
217 | endompetrioss , asymptaaatic, RLQ, LLQ, bilateral
213 | perilmmesl cavity ampty, ﬂulu:.ﬂmd, 3 .
assive haemoperitonenm
214 itoneal irritation {alse, true
216 leus . falne, Lroe
216 | pelviccollection false, b toma, infe d_h ') b
217 | cervical svosion false, true
718 | iritable colon false, true
219 | adhemcaim {alse, troe
720 | hyperstimnlation falan, true
221 mute_nppmdm itis false, trus
222 | abdominal wall haemaioma {alse true




Appendix B
Discrimination Matrices

All the discrimingnt matrices are shovm. See Table 8.1 on Poge 51 for the
key to the diagnoses.

Table Bl: Discriminant matrix for nearest neighboure with the Bayes metric (¥x,
§ = 8, k= 100} when tested on all 1068 test cases and trained on 108 cases generated
from the cavsal rule-based system (Qc, T¢), using a ‘leave-out-101" training strategy.
Error rate = 0.352,

Computer [Hagnowis

A B CDEVF GH I J] KLMNOUPOGQR 3
A1I3 1 26 4 - 4 40 4 10 - 1 - 1 1 - - 2 - 2[z08
Bl T4 18 - - 6 3 - 5 . - - - - < - - - |7
Gl 9 6318 ! 3 8 3 - .+ - - - - - « - 1 - 140
Dl 8 - waAw - - 2 . - L L L . . . . - - =
El - - 1 - 0 - - - &« 4 & - 4 a4 4 - = - - 2
F| 6 - 9 1 -2811 - 1 - =~ - ~ - - - = - - =
G|l - T T - 175 4 8 - - + « - - - - - 1] 1
Bl - 1 -1 3 5 8 5 . « - - - - - - - - n

Acoad Il 13 - - - - 212 - 13 . - .+« « - < - 1 - . 4
Diagnosis J| 1 - - -« - - - 1 - 1 - =~ -~ - - - <« < « 3
Kl 2 1 - - - - 1% . - - 8 - « « « - - - 7

L - - - - - B T TR N
M3 - 1 - - - 4 -1 - - <0 - - - - -9

N 6 - 1 - - - 611 - 1 - - 23 - - - - -] 18

o 1 - -+ - + - - 4 4 . . . . a - - - - 1

Pl - - - - -1 - -« - - . < - - 0 - - - 2

e » - - - - -1 - - - - - - L - -9 - ¢ Yn

R[ - - « - - - - < - - < . .« - - - - | 0

sl 6 - - % - 2 8 2 1 - 1 - - - - - -0

{209 527450 38 4 B4171 15 47 I 6 0 1 3 0 0 13 0 4]|i068

12
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Table B.2: Discriminant matrix for nearest neighbours using the Bayes metric (v,
& = &y, k= 19) when tested on all 1068 test cases using a ‘leave-out-101’ training strat.
egy. Error rate = 0.362.

Actual
Disgnosis

Tahle B.3: Discriminant matrix for independence Bayes (vg,
1068 test cases using a ‘leave-ont-101' training strategy. Error

Actual
Diagnosis

Computer Diagnosis

Compater Diagnosia

A B CDEVFGH I J X LMNOPGQHR 8§

138 9 17 4 - 4 22 6 8 - - - 1 - - - - - 1200
Bli1z 47 13 1 - 3 2 1 - . - . - - - - < - 7
Cl a2 10347 2 - T 1 - - - 1 - - « .« - . - - 4lb
Pl 2 1 627 - 1 1 .+ - « - -+ - - - - - .« . 3
Ef - « 2 - 0 -~ - - « & o & - - - . - . 2
Fl14 1 6 1 -32 4 2 8 e
Gl 46 - 4 83 - 68 1L & - . - - - - - - . 118
H(12 1 1 - - 1 6 3 4 - - « - - -« « - - 1 1
If1s 1§ - - 110 4 &% - . . - - - .1 - 44
i1 - - e T T |
Kl - 1 - - - - - 2 « <2 - - - - - - -3 7
Ll 1 - - - - - « - 1 - -0 - - - - - - . 2
M 5 1 - - - -1 -1 - - - @1 - - - - [
N 8 - 1 - - 303 2 -1 - . @ - « - - 4 18
of 1 - - - - < - - < - 4 4 . - @ - - - 1
Pl - - - - - - 2 - < < - - - - - @ - - 2
Q 1 - 1 - - 1 - -1 - - - - . . -7 - 1
Rl - - - -« - - « « - < - 4 - . . . -0 o
g1 - - 1 . 1 2 2 1 - - - - - )

289 T2 419 41 O 47115 24 38 0 4 ¢ 1 1 o0 @ 8 0 31068

P = Pr) when tested on all
rate = 0.364.

A B CDEU?¥GHI1IJKULMUPNOGTPQ®R S
Alile & 16 4 1 5 38 5 & 1 - - 1 - 1 - - - 5709
Blwar w - - ¢ - -2 - - . . . . . - ]
¢clz1 o34 3 2 & 1 1 - - 1 - - - 1 - - - 1418
Dl 3 1 532 - - 1 - - - - - .+ & « - & - 4
El - - 2 - 0 - - « « « 4 o 4 e - o - 2
F|l 8 2 4 1 -37T 6 - 6 - - - -« « - 1 - - - %
Gl - 4 6 1 48087 2 7 - . - 1 - - . - .- 1129
Hli1z 1 1 - - 1 2 @8 8§ - - -« -« .. - « - - 1 29
IJuww 1 - - - 110 410 . . . - - .« - 1 - . 4
I - - = = - 1 « « 1 - - - - - - « -1 3
K -1 - - - - -2 - - 3 - - - - - - - Y T
Ly + - -« - - -« «+ - 1 - - 0 = = « - = - - 2
Ml 4 1 - - - -1 - 2 - - - @81 - - - - - 9
N 6 - 1 . - - 31 3 -1 . - 8 - « - « - 18
ol - - - - - - - . . 1 -8 - - - 41
= [ L L T
Q 11 - - . - - -1 . - L. - -8 . 4 m
Rl - - L L T T T S T S S S L R T |
sl 8 - -1 .1 4 3 1 2 - . - o . . . j 1

2407 727411 41 4 51137 24 4T 4 4 0 3 4 2 1 9§ 4 41068
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Table B.4; Discriminant matrix for the gmall Bayesian petwork (¢p, P = Ps) when tested
on all 1068 test cases using a ‘leave-out-101" training strategy. Error rate = 0.376.

Computer Diagnasis

|J]A B CDETFGH 1J]JKILMNOTPGQR S
4 8 21 & - 8 46 6 11 2 - - 2 - - - - - 6
Bl 748 15 - 1 7 1 - 3 - - .+ .+ - - .+ - - 7T
Cl1s 738 3 1 T 2 2 . - 1 - - - 1 - - - 1410
Dl 2 1 52 - - 4 - .+ - . - - - < - - - -
B - - 2 - 0 - - < - - - . - - - « + - - 12
Fl 9 - 5 1 -8 5 . 6 - - « - - - « =« - - =
Gl - 5 7 1 474 2 9 - . . T B ¥
Hw ¥» 1 - - 1 3 6 4 - - - - - - 1 - 2| 2
Acimd I 9 23 - - - 113 5 & - - - - - - <« 1 - - 4
Diagooas J} 1 - - - - - 1 - - @0 - - - - - - - -1 3
Kl -1 - - - - 12 « -1 - « - - - - - 27
Lf - - - - -« - - 11 - a - - - - - 4 2
M| 4 1 - - -2 -1 - - - 01 - = - - - 9
N[ 4« - 1 - - - ¢ 23 -1 - - 8 - - - - - 18
o - - - - - -« . . . - - % -0 - - - 41
Pl - - +« « =« - 2 - - - - - « - -0 - - - 2
Q 11 1 - - - 1 - P T B N § |
Rl - - - - - - - . . - . . e I I ]
5 6 - - 1 - 1 4 4 2 ) Y - - s« . - - 3| 2
188 68 425 43 3 50163 30 49 3 4 0 3 4 1 o0 0 O 16[106B

Table B.5: Discriminant matrix for the neural network (5, n = 1) when tested on all 1068
test cases using a ‘leave-out-101’ trainiug strategy. Error rate = 0.378.

Computer Diagnosia

A B CDEVFGH I J K LMMNOPQHR S
A2y 10 22 3 - 335 1 7 1t - - T - - 1 - 2| 2%
Bl 54 25 1 - 6 - - 2 - . - - . . - . « <7
Cl2 7372 4 - 4 3 B 414
D+ - 922 - 1 5 - . . . - - e - -] e
El - - 2 - 0 « .« < - - - .« - - < - - - s 2
Fl 2 31 13 1 - & 5 1 3 - - =« - - - .« - « | 58
Gl 42 - 11 5 - 564 210 - - . - - - . - - 12
H| 16 1 1 - - 2 5 2 2 - - - - - - PP 1]

Actonal I| 14 2 1 - - 2 8 310 - - .- + 4 -1 - L] 4
Disgnosis 3] 1 - 1 - - - 1 - - @ - - - - - - - - - 3
Kl 121 - - - 2 - . - S ! I

gr - - - - - - -1 - - @ - - - - - - - 3

M 4 - - - - - 4 -1 - - - @ - - - - - - 9

N ¢ - 1 - - - 3 1 2 - - . 2 - - - - 48

9 - - - - - -1 - - - - -+ - - w0 - - -+ < 1

el 2 - - - - - - - - - - . - - 0 - - 4 2

Q 2 - 1 - - 1 - - - - - - - - - -7 - 4 1

Rl - - -« - - - O . o . . 4 . . - . 0o | o

g & - 3 1 - - 4 - 2 - - - -1 - - - - 32 22

250 62 463 37 0 54130 10 40 1 3 0 0 5 O 0 9 0 4|1068
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Table B6: Discriminant matrix for the inferential rule-based system (¢gr, Q= Qy,
T =T;) when tested on all 1068 test cases nsing a ‘leave-ont-101° training sirategy.
Error rate = 0.382.

Actual
Diagnosis

Computer Diagnosis

Table B.7: Discriminant matrix for the large Bayesian network (¢5,

Actual
Diagnosis

A B cDEFGH I J] K LMWNUOZPQGH RS
Al128 4 3% - - - 24 €& 3 - - - - - - - 3 3 209
Bl s a7 3 - - 1 1 - 3 - - - - . - - - . 79
ol 20 21888 1 - 9 1 2 - - - - - - - - - - Juae
pl 8 - 818 - - 6 - - . - - - - 38
E| - - 2 - 0 - o+ - - e o o ... 2
Fl 2 421 - .24 2 1 2 . . e e - o . 56
Gl 1 76 - 18 5 4 - - 2 - 1 - 2 - - |2
B 7 1 ¢ - -1 47T 1 -1 - - « <111 {m
i ¢ - & - - &« 747 - < - -2 .« - 112 |a
i 3 o
K|l 2 - - - =« - 1 =+« =« - 4 - « « « - .+ =« T
| [ O O S 2
M &+ - - - 11 o« - - - e 11 - -3 49
N & - 1 - . 12 . -1 - -8 - - - . 18
o - - - - - - - - . . . -1 8 - - - 1
Pl 1 - - - -« .1 - « . - - < . 0 - - | 2
o + 2 2 - - - - . - . - - . - . 8 1
Rl - - - - =« - -« =« &« = - - = « - - = 1 o
slw - -1 - - 6 11 - - - . R E

253 BO 463 24 O 42117 28 20 0 & 2 1 9 ! 3 11 8 ﬂ|1068
P = P;) when tested

on all 1068 test cases using a ‘leave-out-101’ training strategy. Error rate = 0.383.
Camputer Diagnosis
A B CDEFGH T JKLMUNUOPOQHR §

Ajltpd 7T 24 2 - 4 4 6 13 - - - 3 - - - - - 5209
Bl 1041 17 - - T 1 - 3 - - - - - « - . < ™
Cl1o 5% 6 1 1 3 4 1 - 1 - - - 1 - - - i410
D 2 - T2 - - 4 - - - - -« 4 - - 4 . - . 38
El - - 2 - 0 - « « « - - - <« < - < < - 2
Fl ¢ 1 5 1 -28 7T - T - - - =~ - = = - - . &8
clsz - 6 6 - 471 2 8 - - - - < o - - < J1
A1 1 2 - -1 2686 6 - - . - - - < - -1 120
il 1 - - - 110 811 - - - - - - .+ 1 - 44
] [ T S | I
K12 - - - - 11 - -2 - - - - - - -9 7
i - - - - - 1 =1 - - 8 -« - - « « - - 3
Ml 3 1 - - - - 3 " T
N 5 - 1 - - - 4 3 -1 - -2 - - - - 4
ol - - - « - - - L . L1 -0 - - - 41
Pl - - - - - -2 - - - - - < - -0 - - 4 2
Q1 - 1 - -1 - -1 - - - - . - -1 - Jdu
Rl - - - - - . - - - L . . . o . -0 4 0
sl 5 - 11 - 15 4 11 1 - - - - 7 22
201 58 432 41 1 57157 30 57 2 5 0 4 2 1 0 8 0 I12|logd
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Table B.8: Discriminant matrix for the flowchart program (vr) when teated on all 1068
test cases. Error rate = 0.404.

A B CDEVFGH I 1 LM NOJP QR §
Al135 6 15 1 - 5 2 T €6 - 2 - 4 - - . - 2 -] 209
Bl 648 24 - - 3 - - 4 - - - - - - - - .- ™
C| 22 24%0 10 1 8 1 3 1 - - - - =« - = - - «| 410
pli12 - 816 - 1 2 - - - - - - e . - - .| 88
B - - 2 -0 - - - - - . . - - - - - - ] 2
Fl 4 7 & 1 124 1 1 &8 - - .- 1 . - - -| 58
Gl 1 6 3 - €82 6 9 - . - - 1 - 1 - - |1
H 3 1 - - - 3 414 4 - - - - . . - R B

Actod I| 215 1 - = - 3 7T 6 8 - - - - - - - =1 -] 4
Disgnogs J| 2 - - e L 3
K[l 2 - - - - -1 - « <0 -1 - « .« - 3 47

L - T T s

M4 - - - -1 2 - - - < -1 -1 - - - 9

¥l 6 - 1 - - -1 3 2 - - -1 4 - -« - - |

of - - - - « «+ + - - - 4 1 .0 - - - -1

Pl - - - - - -1 -1 - - - - « @ - - - 2

Q » 2 - - - - - -1 . - - - - < .1 - qnu

R[ - - - - « -« « - - - « o+ - < -8 4o

slis - . . - L4 2 oo . o0 oo - o m

|277 84 404 30 2 55103 41 46 1 2 0 § 5 1 1 1 6 J{j1068

Table B.9: Discriminant matrix for iterative partitioning (¥;, @ = 26.0) when tested on all
1068 test cazes using a ‘leave-out-101" training strategy. Error rate = 0.417.

Computier Diagnasia
H ] ] X LMNOUP

A B CDETFG Q R §
Alla7 4 12 1 - 2 34 4 2 - - - - - - - 3 - - e
Bl 3as 17 - - 4 « - . - - - - - . .1 - 44 mn
Cl 2 11361 4 - T 4 - 1 - - - - - -« . 4 - |an
Pl 6 -1 8 - - 6 - - - - - - - . - - - Jd»
El - - 1 -0 - - - - - - - - - - -4 - - 2
Fl18 ¥ 11 - -1 4 - 1 - - « « « « - 2 . - 3
G| 61 - 6 2 - 350 4 2 - - . - - - - 1 - -9
B 15 - 1 - -1 9 1 - - 3 - -« « « - - « |

At I 28 1 - - - 1 6 5 0 - - - - - - - - - Ja
Dignosis J| 1 - 1 - - - 1 =« « 0B « « - - - = = - - 1
Kf 2 - - - - - - - -« B - - - o« - - - 0T

Il 2 - - - - .+ - - - - 4@ + - - - « - < 3

Ml 2 - - - - 3 3 - - - - @ - - - - -] 9

N 7 -1 - - .61 - -3 - .0 - - - - s

ol 1+ - - - - - - - - < . - . - S

pl 1 e T T

Q 9 1 - - - - . - - - . - - - -1 - < n

Rl - - - - - - - - - O . o . . . .. 4 e

sl 9 . 2 2 - - 8 . - 1 . - . - - . . 0o 22

357 62 424 14 0 39131 15 6 0 11 0 0 0 0 0 14 0 1|i06s
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Table B.10: Discriminant matrix {or the exemplar model () when tested on all 1068 test

cases using a ‘leave-out-101" training strategy. Error rate = 0.428.

Actual
Diagnoain

Compuier Diagnosia
K

A B CDETFGH I L M N P QR §
A|TT 7 18 4 1 7 31 3 3% T 3 7 T 9 - 7 2%
Bl 340 16 1 - 4 2 . 1 - -1 P T B,
Cl17 11389 4 3 4 3 - 3 - - - - - - 1flan
Dl - - s . - 4« . - - - . B T
E| - - 2 - 0 - - - - - - - T
Fl 3 1 & 4 117 & - & 1 - 2 2 1 - 1] 56
G|19 1 6§ 9 - 4684 3 18 1 4 4 1 - - 8129
H 8 - 1 - - 3 7 3 17 - -2 - - -
Il s 1 - - - 2 7 213 - -7 S |
il - - - -« < o - - - - - - - 3
Kl1 21 - - - - 11 - - - - - - 7 1
Ll - - - - - - . -1 o - 1 - - e 2
M1 - 1 - - 1 2 2 -0 1 e
N & - 2 - - - 1 3 -1 2 B I 1]
o - - - - - - - - . N T e
Pl - - - - - - 2z - - - - - o - - - 2
Q 2z 1+ v - - . . . - . . -7 - 4 n
Rl - - - - - « - - - .- .- - -0 4 o
88 - 3 2 - - 5 - 1 - -1 - - - 12
|138 72 437 49 5 43130 13 90 3 & 28 1 22 1 191068

Table B.11: Diacriminant matrix for nearest neighbours using the Hamming metric (y¥x,
§ = 6y, k = 21) when tested on all 1068 test cases using a ‘leave-out-101" training strategy.
Error rate = (0.485.

Actual
Diagnosis

Computer Diagnosis

A B CDETVFGH I L MN P Q R §
Al1izz 3 0 - - 111 - 2 - - - - . - 209
Bl 8 8 8 - - . . . - - e - - - - [
Cliz -398 - .- - - - . . - . -« o+ 410
ol 1 -3m a8 - -1 - - - - .
El - - 2 - 0 - - - - - - - A |
Fliz 1 32 - -0 3 - 3 - - . - ss
G| 75 - 2 1 -~ 11 - 7 - - . - - - -1
Bl 1 1 - - - 2 a0 2 .. - .. 29
34 1 3 - -1 12 - 0 - - . .- - e
1 - - 2 - - -1 . . - - S I |
Kf « 1 1 - - - 1 - - - - e
2z - - - - - - - - o - - - - - 4 2
M - 1 - - -1 - - - 6 - e
Nw - 4 - - -1 - - - -0 P I 1
ol 1 - - « .« - - - - . e . EEREEET B |
Plt - - - - -1 - - - - - o - - | 2
o + 3 7 - - - . . - - - - -0 - | mn
R - - L T T T - - - = - D - 0
5] 11 - 8 1 - - 2 - - - . - - - - A 1

326 18 657 5 0 3 4% 0 14 a 0 0 0 o a4 0[lo6s
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Table B.12: Discriminant matrix for independence Bayes (y5, P = Pr) when tested on all
1068 test cases and trained on 10° cases generated from the causal rule-based system (Qc,
Te¢), nsinga ‘leave-out-101' training strategy. Error rate = 0.364.

Computer Diagnosis

] A B CDEVFGH 1! JKILMNOPQHRS
Aj9T 6 22 4 - 4 48 7 T 1 2 - 2 2 - - 3 - 4|20
Bl T4 13 - - 6 2 - § - .+ - ~ - - - - - 47
Clit 11368 1 4 8 3 - 1 - - =« =+ - - - 1 - 2|0
bl 3 - 3 - -1 - - - - - - - - - - - - 3
El - - 2 - 0 - -« -« + « - + - - o . <+ - 4 2
Fl 6 2 6 & -37 11 1 2 - - -« - - - - - - | s
G| 21 5 9 - 2779 % €& - - 2 - - - - - - 1112
H1 - 1 - 1 2 66 38 3 -~ - - - =« « « « - -2

Actwd 10 - - - - 1 13 118 - - - - - -1 - - 4a
Diagyods J[ 2 - - - - - - - - 1 - =« + « - - - . - 3
Kl 1 &+ - - - - 1 -« - « 4 - - - =« =« - - = T

Ll- - - - - B B T | e 2

M 3 - 1 - - - 4« - 1 - - . .- 9

N3 - 1 - - - r -1 - 2 - 2 - - - - 1 1

Ol 1 - = & = = « = o 4 e e e el - - - a1

Pl - - - - - - 2 - +« « - - - - 4 0 - - = 2

Qq - - - - - -1 « -« =« - - - - « 2w - 4 n

Rl - - - - - - . B T T S | 0

S| 5 - - 3 - 2 % 21 -1 - - - - - - -1 12

i8] 66 426 45 5 52184 19 46 2 10 2 2 4 0 O 15 O 9|i0es

Table B.13: Diseriminant matrix for the neural network (¥, » = 1) when tested cu all
T51 test cases with definite diagnoses. See text for description of cross- validation strategy.
Error nte = 0.269.

Computer Diagnoeis

A°B CDETFcHa 1 JKILMUENOPAG QTR S
Allas 7 12 - - % B 1 B - 1 - - - - - - - 1M
Bl 338 13 - - - - . . . - - - - O 4 - - s
Cl 5 3309 3 - 2 - - - . . = - - - - sl322
Dl 2 - B18 - - .« - . . 4 . L s . - e . oaHM
E - . 2 - 0 - - - - - - - - < . - - - - 2
F[ 5 - % 1 -3 12 . 3% . - . - - .+ - - - .8
Gl s - 3 - - 613 - 1 - - - - - < - - .+ 13
H ¢ 12 1 - - 2 2 1 1 - - =« « « - - - - -7

Actued T} 12 - - - - 1 1 1 3% - - - - 1 . - - - - 20
Digonosis J[ - - - - =« -« - - - 0 -« - - - - - - - -0
K| * - - - « - 2 « « - 1 - - - - - - - -4
) | 2

M 3 - - - .« . 1 - < S Y |

N 6 - 1 - - « 2 - 1 - - « - 1 « - - - <4m

0o - - - - - - & - - & - - - - fp - - « 0

PPl - - - - -1 - - - -« - - - 8 - - -2

Q L+ - - - - - - <1 - -+ - - - - . @8 - - 2

Rl - - - B T - B I

1w - 1 1 - - 1 I - 0| 16

211 49 358 21 O 49 33 3 20 0 2 O 0 2 60 0 2|18




129

Tahle B.14: Discriminant matrix for nearest neighbours uaing the Bayes metric (¢rx. 6 = &,
k = 48) when tested an all 751 test cases with definite diagnosees. See text for destription
of croas-validation strategy. Error rate = .273.

Actual
Diagnosis

Q

Compater Diagnosia

P B A =T

w©|

-
PR e kg e el DR e

.

-|322

T

-
O A D A

—
[- I =]

A B C
A0 3 1
B 4 30 10
cl s saaze1
p[ 1 - 2
El - - 2
Fl 13 - 3
Glaa - 2
H 13 - 1
11 - 1
J - - -
XKl 1 - 3
Ll - - -
M 1 - 1
N 8 - 1
o - - -
Pl . -
qQ - -

R - . -
5l 14 - .
1250 S0 336

E F
- 3
-1
- B
-1

0 -
- 28
- &
-1
- 2

0 47

)

=3
o«
[

Table B.15: Discriminant matrix for the inferential rule-based system (¢x, @ = @r.T = T7)
when tested on all 751 test cases with definite diagnoses. See text for description of cross-

validation strategy

Actual
Diagaosis

. Error rate = 0.276.

Compaier Diagnosis

WELOYOREERr R HOmmOd O W

'
S L]

'
[ TR Y

1
2

P I

177

=

A B CD
128 1 28 -
3 42 5 -
6§ 2308 2
4 - 11e
- - 2 -
A - 19 2
18 - 2 1
4 - 3 -
§ - 2 -
1 - - .
k} - - -
4 - 1 -
2 - - -
1w - -1
193 45 371 22

o wwo - aeoe

o
7
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Table B.if: Discriminant matrix for independence Bayes (¥g, P = Pr) when tested on all
751 test cases with definite diagnoses, See text for description of cross-validation strategy.
Error rate= 0.289.

Computer Diagnodis
A B CDEVFGH I J]TKLMNOUPQR S

Alld0 4 g 1 - 517 21 1 - 1 1 - - - - - &)1
Bl 340 8 - 1 2 - -« - + « + « « o o o . =
Cl & B203 3 1 6 1 - - 1 1 - - - - - - 322
Dl 2 - 219 - - 1 - - =« - « - < < - - < <|a
El - - 2 - 0 - « - -« - 4« - « o « o o . o2
Fl 13 - 3 1 -24 4 - 6 - - - - - - - - | 33
Gl 16 - 2 - - 318 - 3 - - - - - - - - - -4
B 7 - 1 - 2 2 02 2 - - - e - - .. 1) 17
Actwd Il 9 - . - . 2 8 - 1 - - - - - - - 1 - 1|
Disgoesis J| - - - - - - - - B - - - - - - - - 4 @
Kf - - - - - - « - - - 4 - =« - « -« - .+ . 4
L - - - « - -« - - - - -0 - - - - - - a
. [ T L S S
N ¢ - 1 - - - 2 < 3 - -1 -6 - - - - 41
of - « . - - - -« . . - - . e - - - - a
Pl - - - - « -1 -1 -« - « - - - @ - |2
Q - - - + + - - -1 - - - - - < - 1 .« - 2
Rl - - -« - -« - - « « « - - - - - < -0 -a
sl 8 - 11 - - 1 - - - - - 1| s
201 52 323 25 2 44 59 5 8 1 5 3 1 o0 o0 2 2 0O GEB|™5

Table B17: Discriminant matrix for nearest neighbours with the Bayes metric (yx, § = &,
k = 300) when tested on all 751 test cases with definite diagnoses, and trained on 10°
cases generated from the causal rule-based system (Qc, Tr). See text for description of
cross-vilidation strategy. Error rate = (.293.

Computer Diagnosis

A B CDETF H 1 J K LMZEXOoOPAQQRS
Allie 1 21 1 - 521 3 § - 1 - - - - - 2 - 3m
Bl 540 5 . - 1 - L
cl 2 6308 - 2 5 - - . - - - - . - - - - 2
ol 1+ - 517 - -1 R
Bl - - 2 -0 - -« - - . . - - - - . . . |2
F| 10 6 1 -2T 8§ - - -+ - « - « + - -« - =%
gl 9 - 21 - 22 4 2 - - - - - - 1 - - 18
B & - 1 - 130 3 - - - - - - - N

Actaal I 6 - - - - 2 8 . 3 - B T
Dignosis §J| - - - - - - . - -0 - - - - - - - - 02
K + - - - - - - - B oo - - - - - - et
1 [ T T | R I
. | I S T T P R
N s - 31 - - - 41 - - - - 0 - - - - 4dn
of - - - - « .« - - . - . . . 8 - - - 40
Pl - - - -« -2 - - - - - - - -0 - - 2
qQ - - - - - -1 - - - - - . o . -1 - <2
Rl - - -« - - - - . . T
8l 7T - 12 -1 4 1 - < - - - - o]1s
[T70 47 351 22 3 44 75 9 17 0 3 0 0 0 @ 1 4 0 &[5
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Table B.18: Discriminant matrix for nearest neighbours using the Bayes metric {¥x, 8 = §,
k = 29) when tested on all 1270 cases in the database using a ‘leave-out-one’ training strat-
egy. Ertor rate = 0.370.

Compuler Diagnosis

A B ¢cDEVFGH I JKLMNDUZPQR §
A[ise s I3 § - 4 32 & 11 - - - - - - 1T - 4253
Bl 1588 14 1 - 3 3 1 - - - - .« « - - . - 495
¢| 1 10424 2 - 9 1 - . [Py
Dl 3 1 5385 - 1 2 e e e e e L 8
El - - 3 - 0 1 - - -« « « - - < - - . - 1
Fl 19 1 8 - -2 7 32 6 - - - - - - - - - }mMn
G| 44 - 4 B - 3T 3 6 - - - - - - - . - Ul
H| 16 3 - - - 2 9 2 6 - - - - - <« - - - 13

Actual I 19 1 1 - - 3 4 7T 8 - - - - - - - 1 - 5
Diagnosis J| 3 - - - - - 1 - - 0 - - - « - . - -1 s
¥l 30+ -« - . 2 - <0 - - - < . . - o 8
|l - - e T T T 3
M 8 1 - - - -1 - 3 - « -8 - - - - . 12
Nw - 1 - - - 4 1 - - - 0 - - - . 2
ol » - - -« - - - - - -« - - - 0o - - 1
P[ - - - - - - 3 - - « - - - -« - 0 - - 2
o 1 1 1 - - - . -1 - - o - o - o8 -] 14
Rl ¥ - - - - - - - - =« - - - « - - -0 1
sl 9 - 11 - 1 4 31 - . - . - . - - .m
Tf330 86 487 55 O 54160 25 44 0 O O 4 0 0 0 11 0 13i270

Table B.19: Discriminant matrix for independence Bayes (¥g, P = Pr) when tested on all
1270 cases in the database using a ‘leave-out-one’ trajning strategy. Error rate = (.374.

Compuater Diagnosis

A B CDEFGH I J] K LMNOZPOQR S
Al138 9 21 & - 5 4 7 18 1 - - 1 2 1 - 1 - 4|23
Bliaoe 16 - - 6 - - 2 - - - . - - - . - . 58
cl 21 104m1 3 3 7 2 - < - - -1 1 - - - | 4es
pl 4 1 484 - . 5 - - .« - - L . - . . - . 4
El - - 3 - 0 1 - - - - - « - - - - - « . 4
Flis 2 5 1 -2 7 . 7 - - - - -1 - - m
Glas - 310 1 58 3 8 - - 1 2 - . - - - 1l
g4 2 1 - - 3 4 7T 7T - - e - 1| a9

Actedd I} 17 1 - - - 410 933 - - - - - - -1 - - 54
Dingnosis 3| - - - - .« - 1 - - 8 - . - . . - -1 s
Kl - 1 - e - -3 - -2 - -1 - - . -3 s

L - - - - - - 2 - - - 108 - - . - - - 3

M s 1 - - - . 2 2 - - - 01 1 « - - - 1

N & - 1 - . . 4 3 -1 - -3 - - - .1 2

ol - - - - - - - < - - L -1 -0 - - - 41

Pl - - - - - -1 -1 - - < < - -0 - - 4 2

Q 1 1 - - - - - -1 - - - - - - -1 - 1M

Rl 1+ - - « -« - - - - - - . - - - - 0 |

sl e - -1 - 185 ¢« 1 2 . . - . . - . . JJ 2

772 81 415 51 3 61166 M 62 6 4 t 4 7 3 1 1z U 370
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