
AN ALGEBRAIC APPROACH TO COMPILER DESIGN

by

Augusto Sa.mpaio

Technical Monogra.ph PRG-110
ISBN 0 902928 872

October 1993

~ Oxford University Computing Laboratory

Programming Research Group

Wolfson Building, Parks Road
Oxford OXl 3QD
England

, Oxford lJnIV8rSitY ()lmpUtil1ll Laboratory
WoIrsan BuiIlIl1lI

PllbRoacl
""bd OX1!IQD

--

Copyright © 1993 Augusto Sampaio

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parke Road
Oxfmd OXl 3QD
Engla.nd

. .;

...~

An Algebraic Approach

to

Compiler Design

Augusto Sarnpaio

Wolfson College

\!J

A thesis submitted for the degree of Doctor of Philosophy
at the University 0/ Oz/ord, Trinity Term, 1999.

Abstract

The general purpose of this thesis is to inve8tigate the design of compilers for procedu
ralla.nguagea, based on the algebraic la.ws which these langua.ges sa.tisfy. The particular
stra.tegy adopted is to reduce an arbitrary source progrQlIl to a nonna! form which de
scribes precisely the beha.viour of the ta.rget machine. This is achieved by a. series of
algebraic transformations which are proved from the more basic laws. The correctness of
the oompiler follows from the correctness of each algebraic transforma.tion.

The entire process is formalised within this single a.nd uniform semantic framework of
a. procedural language a.nd its algebraic la.ws. But in order to atta.in abstraction and
more reasoning power, the language comprises specification features, in addition to the
programming constructs to be implemented. These features are used to define a very
general normal fonn, capable of representing an arbitrary target machine. The normal
form reduction theorems can therefore be reused. in the design of compilers which produce
code for distinct target machines.

A central notion is an ordering relation on programs: p r: q means that q is at least
as good as p in the sense that it will meet every purpose and satisfy every specification
satisfied by p. Furthermore, substitution of q for p in any context is an improvement
(or at least will leave things unchanged when q is semantically equivalent to p). The
compiling task is thereby simplified to finding a normal form that is not just the same but
is allowed to be better than the original source code. Moreover, at all intermediate stages,
we can postpone details of implementation until the most appropriate time to make the
relevant design decisions.

Dijkstra's guarded conuDand language is used to illustrate how a complete compiler can
be developed, up to the level of instructions for a simple target ma.c.hine. Each feature
of the language is dealt with by a separate reduction theorem, which is the basis for
the modularity of the approach. We then show how more elaborate features such as
procedures and recur5ion can be handled in complete isolation from the simpler features
of the language. Although the emphasis is on the compilation of control strudures, we
develop a scheme for compiling arrays. This is also an incremental extension in the sense
that it has no effect on the features already implemented.

A large subset of the theory is mechanised. as a collection of algebraic structures in the
OBJ3 term rewriting system. The reduction theoreIllB are used as rewrite rolell to carry
out compilation automatically. The overall structure of the original theory is preserved
in the mechanisation. This is largely due to the powerful module system of OBJ3.

Acknowledgements

I wish to thank my supervisor, Prof. C.A.R Hoare, whose constant teaching, a.dvice and
encouragement have helped me greatly. He has originated the approach to compilation
which is investigated here, and has suggested the project which gave rise to this thesis.

No lesa help I had from He Jifeng, who made himself always availa.ble and acted as my
second supervisor. Most of what is reported in chapters 3 and 4 resulted from joint work
with Prof. Hoa.re and He Jifeng.

My examiners, Prof. Mathai Joseph and Bernard SuIrio, contributed comments, sugges
tiODS and corrections which helped to lmprove this thesis,

The work of Ralph Back, Carroll Morgan, Joseph Morris and Greg Nelson has been a
great source of inspiration.

Many thanks are due to the Declarative group led by Prof. Joseph Goguen. Apart from
OBJ, I have learned much about algebra and theorem proving attending their group
meetings. The diSCU88iow about OBJ with Adolfo Socorro, Paulo Borba, Gra.nt Malcolm
and Andrew Stevens were extremely helpful for the mechanisation reported in Chapter 6.

I thank David Naumann, Adolfo Socorro and Ignacio Trejos for pointing out errors and
obscuritie8 in an early draft of this thesis, and for many useful corrunents aDd sugges
tions. I am also grateful to Ignacio mjos for constantly drawing my attention wrelevant
bibliography, and for the discussions about compilation and the refinement calculus.

My former Msc supervisor, Silvio Meira, introduced me to the field of formal methods. I
thank him for the permanent encouragement, and for influencing me to come to Oxford.

I am grateful to my coUeague8 in the Attic for making it a pleasant working environment,
especially to Na.cho, for his company during the many nights we have spent there, and to
Gavin, for his patience to answer so many questions about English.

I tbank people at the Wolfson College for their support and friendship, especially to the
IleIDOr tutors (John Penney and Roger Hall) for help with the Day Nurllery fees.

Some very good friends have been responsible for the best moments I have had in England.
Special thanks go to Adolfo, Tetete, Na.cho, George, Henna.no, Max a.nd Robin & Chris.
I also thank Adolfo and Tetete (or the baby-sitting.

I thank my parents, my parents-in~law,my brothers, my sisters-in·law and Daia for their
continued support which can never be fully acknowledged. The weekly letters from my
mother ma.de me feel not 80 far away from home.

The roost special thanks go to Claudia, (or aU the encouragement, dedication and pa
tience, but above aU for providing me with the most essential ingredient of life-bye! My
little daughter Gabi has constantly distracted me from work, demanding the attention of
another full-time job--but one of enjoyment and happiness, which brought lots of meaning
into my life.

Financia18upport for this work was provided by the Brazilian Research Council, CNPq.

Contents

1 Introduction 1

1.1 The Approa<h 3

1.2 Overview of Subsequent Chapters 6

2 Background 8

2.1 PILCtial Orders and Lattices 9

2.2 The La.Ltice of Predicates . . 10

2.3 The Lattice of Predicate Transformers 10

2.4 Properties of Predicate Transformers II

2.5 Some Refinement Calculi . 12

2.6 Data. Refinement 13

2.7 Refinement and Compila.tion 16

3 The Reasoning Language 18

3.1 Concepts and Nota.tioo . 19

3.2 Skip, Abort. and Mira.cle 21

3.3 Sequential Composition. 21

3.4 Demonic Nondeterminism 22

3.5 Angelic Nondeterminisffi 23

3.6 The Ordering Rela.tion 23

3.7 Unbounded Nondetermlni5ID . 24

3.8 Re<:ursion 26

3.9 Approximate In~rses . 26

3.10 Simulation 28

3.11 ABBUIDption and Assertion 30

Contents ii

3.12 Guarded Command . .. 31

3.13 Guarded Command Set . 32

3.14 Conditional 33

3.15 Assignment - . 34

3.16 Generalised Assignment 35

3.17 Iteration 37

3.18 Static Declaration. 40

3.19 Dynamic Declaration 43

3.20 The Correctness of the Basic Laws 47

4 A Simple Compiler 40

4.l The Normal Form 50

4.2 Normal Form Reduction 51

4.3 The Target Machine .. 56

4.4 Simplification of Expressions 57

4.5 Control Elimination . 60

4.6 Data Re1inement .. 63

4.7 The Compilation Process . 68

5 Procedures, Recursion and Parameters 71

5.1 Notat.ion .. 71

.\.2 Procedures . 73

5.3 Recursion 15

5.4 Parameterised Programs 78

5.5 Parameterised. Procedures 82

5.6 Parameterised. Recursion 83

5.7 Discussion 84

6 Machine Support 86

6.1 OBJ3 87

6.2 Structure of the Specification 89

6.3 The Reasoning Language . . . 91

6.3.1 An Example of a Proof. 95

6.4 The NoTJD.A1 Fonn 97

6.5 A Compiler Prototype . 98

6.5.1 Simplification of Expressions. 98

6.5.2 Control Elimination. 99

6.5.3 Data Refinement .. 10{)

6.5.4 Machine Instructions · .. 101

6.5.5 Compiling with Theorems · 102

6.6 Final Considerations ... · .. 104

6.6.1 The Mechanisation · .. 105

6.6.2 OBJ3 and 20BJ 106

6.6.3 Other systems . · 108

7 Conclusions 110

7.1 Related Work · 112

7.2 Future Work. · 115

7.3 A Critical View · 121

Bibliography U2

A A Scheme for Compiling Arrays 128

B Proof of Lemm.a 5.1 131

C Specification and Verification in OBJ3 135

C.I The Reasoning Language 135

C.l.1 Proof of Theorem 3.17.6 ... 139

C.1.2 Proof of Theorem 3.17.7 141

C.2 The Normal Form 144

C.2.1 Proof of Lemma. 4.2 145

C.2.2 Proof of Lemma 4.3 . 146

C.2.3 Proof of Theorem 4.4 . 146

C.3 Simplification of Expressions . 148

C.3.1 Proof of Theorem 4.3 . 148

C.3.2 Proof of Theorem 4.5 . 149

Contents ;v

C.4 Control Elimination.

C.S Data Refinement ..

C.S.1 Proof of Theorem 4.10

C.5.2 Proof of Theorem 4.14

C.6 Ma.chine Instructions

· 151

· 152

· 152

· 154

· 157

Chapter 1

Introduction

We must not lose sight of the ultimate g~l, Iflat of the
construction of programming language implementations
which are known to be correct by virtue of t~ quality of
the logical reasoning which ~5 been devoted to them.
Of course, such an imp~mentation will still rJeed to be
comprehensively tested before delivery; but it will im
mediately pass all the tests, and then continlll' to WCM'k
correctly for the bene6t of programmers f«ever after.

- CAR. Hoare

The development of reliable systems bas been one of the main challenges to computing
scientists. This is a consequence of the complexity of the development procas, which
UBUally comprises many sta.ge!l, from the original capture of requirements to the hardwa.re
in which programs will TUn.

Many theorie!l, methods, techniques and toola have been developed to deal with adjacent
stages. For example, the derivatioD oC progt8Jll8 from specifications; the translation of pro
grams into machine code (compilation); and 90metimes even a gate-level implementation
of the ha.rdware. Nevertheless, the development of a. mathematical model to ensure global
consistency of the process in general has attracted very little attention; most certainly
because of the intricacy of the task.

Perhaps the most significant effort in this direction is the work of a group at Compu·
tational Logic, Inc. [7]. They suggest an operational approach to the developm.ent and
mechanical verification of systems. The approach has been applied to many Sj"51em com
ponents, including a oompiler, alink·a.ssembler and a gate-level design of a microprocessor.
The approach is independent of any particular component and deAls with the fundamental
aspect of integration of components to form a verified stack.

This work inspired & Europea.n effort which gave rise to the Esprit project Provably
Correct System (PraCaS) [9, 12]. This project also aims to cover the entire development
process. The emphasis is on a constructive approach to correctness, using provably correct
transformations between all the phases. It differs IDQ9tly from the previously cited work in

2 IntrodUdion

that an abstract (rather than operational) 'Universal model is being developed to ensure
consistency &cr088 all the interfaces between the development phases. Furthermore, a
more a.mbitioWl scope is attempted, including explicit pa.rallelism and time constraints
throughout the development. The reusability of designs and proofs is also an objective of
the project.

Our work is in the context of PraCoS. We are concerned with the compilation phase: the
translation of programs to machine code. But the emphasis is on an algebraic approach
to compilation, rather than in the translation between a particular pair of languages.
Although neither the source language nor the target machine we use as examples coincide
with the ones of tbe ProCoS project, it is hoped that the overall strategy suggested here
will be useful to design the compiler required in the project, and many others.

A large number of approaches have been suggested to ta.ckJe the problem of compiler
correctness. They differ both in the semantic style adopted to define source and target
languages (operational, denotational, algebraic, axiomatic, attribute grammars, .,.) and
in the meaning of correctness associated with the translation process. The first attempt
was undertaken by McCarthy and Painter [52J; they used operational semantics to prove
the correctness of a compiler for a simple expression language. The algebraic approach
originate! with the work of Burstall and Landin !14]. Both works have been of great
impact and many researchers have built upon them. A brief suIIlIIlUY of some of the
main approa.ches to compiler correctness is included in the final chapter.

Hete we further develop the approach introduced in [45], where compilation is identified
with the reduction of progra.ma (written in a procedural language) to a normal form
which de!cribes precisely the behaviour of the target executing mechanism. The reduction
process entails a series of semantic-preserving transformationsj these are proved from more
basic laws (&XiOIllB) which give an algebraic semantiC8 to the language.

A central notion is an ordering relation on progr&lIlB: p ~ q means that q is at least
as good as p in the sense that it will meet every purpose and satisfy every specification
satisfied by p. Furthermore, substitution of q for p in any context is an improvement
(or at least will leave things unchanged when q is semantically equivalent to pl. The
compiling task is thereby simplified to finding a nonnal form that is Dot just the same but
is alJowed to be better than the original source code. Moroover, at all intermediate stages,
we can postpone details of implementation until the most appropria.te time to make the
relevant design decisions.

Another essentia.l feature of the approach is the embedding of the programming language
into a more general space of specifications. This includes constructions to model features
such as assumptions and aBsertions, and even the less familia.r concept of a mirocle, stand
ing for an unsatisfiable spe<::mcation. The specification space forms a complete distributive
lattice! which allows us to define approximate inverses (Galois connections) for program·
ming operators. The purpose of all of this is to achieve a very abstract normal form
definition (which can model an arbitrary executing mechanism) and 8imple and elegant
proofs. We hope to prove this claim.

• A blief overview of the lattice theory relevant Lo us is ~ven in tbe De1t chapter.

All the calculations necessary to aBeerl the correctnet:ls of the compilation process a.re car
ried out within this single fra.mework of a specification la.ngua.ge whose eemantics is given
by algebraic laws. No addjtional mathernatiLA1 theory of BOurce or target language is de
veloped or ~ in the process. The relatively simple reasoning framework, its a.bstraction
ana moaula.rity are the main features of the a.pproach.

We select a small programming language (including iteration) to illustrate how a. complete
compiler:l can he developed, up to the level of instructions for an abstract machine. Each
feature of the language is dealt with by a separate reduction theorem, which is tbe basis
for the modularity of the approach. We then show how more elaborate features such all

procedures and recursion can be handled, in complete isolation from the simpler features
of the language.

A large subset of the theory is mechanisea as a collection of algebraic structures in the
OBJ3 [31] term rewriting system. The reduction theoreTrul are used aB rewrite rules
to carr)' out compilation automatically. The overall structure of the origina.11hoory is
preserved in the mechanisa.tion. This is largely due to the powerful module system of
08J3.

1.1 The Approach

In this section we give an overview of our approach to compila.tion based on a simple
example. We also identify the scope of the thesis in terms of the sowce language that we
deal with, the additional specification featurea and the target machine used to illustrate
an application of the approach.

The BOWce progranuning language contains the following constructions:

skip do nothing

%:= e assignment

pj q sequential composition

pnq nondeterminism (demonic)

p4 bt>q conditional: if b then p else q

b. p iteration: while b ao p

dec z • P (static) declaration of variable z for use in program p

PfOCX=p.q procedure X with hody p and scope q

jJ X • p recUI'6ive program X with body p

We avoid defining a syntax for expressionsj we use uop and bop to stand for arbitrary
unary and binary operators, reapectively. Initially, we deal with a. simplified version of the

2We addre8ll 001)' tbe code generation phase of a compiler. Paning and &emantic analyBis are not
d'!!alt 'lfitb. Optimisaiion ill hrieB)' cODSid'!!red al!I a topic for future resetIIcb.

1.1 The Approach	 4

language, not including procedures or recursion. These are treated later, together with
the issue of parameterisation.

The programming language is embedded in a specifica.tion space including:

T	 miracle

1-	 abort

pUq	 nondetenninism (angelic)

I,	 assertion: if b then skip else .l..

IT	 assumption: if b then slOp else T

I;p	 guarded conunand: if b then p ehle T

~:E b	 generalised assignment: aasign a. value to x which makll'S b true;
if not possible, x :E b behaves like T

var x	 dedac8otion of vari80ble x with undetermined (dynamic) scope

end x	 end the previous (dynamic) scope of x introduced by a var x

Furthermore, while the source la.ngu8oge allows only single assignments, the specification
language allows multiple assignments of the form

Xl, •• • ,x. := el, ... , e..

Although some of the above constructs a..re not strictly necessarYI as they can be defined
in terms of others, each One represents a. helpful concept both for specification and for
reasoning.

There may seem to he unnecessary redundancy concerning the not8otion for vari80ble dec
larations. dec is the usual construct available in most progr8omming languages for intro
ducing local va.riables with a lexic.aJ. (or static) scope semantiCfl. For reasoning purposes
which will be explained la.ter, it is useful to have independent constructs to introduce a
variable and to end its scope. Operationally, one ca..n think of val x as pushing the current
value of x into an implicit stack, and assigning to x an arbitrary vallle; end ~ pops the
stack and assigns the popped value to x. If the stack was empty, this value is arbitrary.

The semantics of the specification (reasoning) la.nguage is given by algebraic laws in the
form of equations and inequations. The latter uses the refinement relation discussed in
the previous section. As an example, a. few algebraic l8ow8 are given below. They describe
the fact that!; is a lattice ordering. For all programs p, q and r we ha¥c:

p !; T (miracle is the top of the lattice)

1 [:; P (8ooort is the bottom)

('[:;pA '[:;q) " '[:;(pnq) (n is the greatest lower bound)

(p[:;,)A(q[:;,) " (pUq)[:;' (U is the lea.st upper bound)

We define a simple target machine to illustrate the design of a compiler. It consists of
four components:

P a sequential register (program counter)

A a general purpose register

M a store for variables (RAM)

m a store for instructions (ROM)

The instructions can be designed in the usual way, as assignments tbat update the machine
state; for example,

Ie'd(n) ';l A,P:=M[n],P+l,

store(n) d;;j M, P:= (M Ell (n ~ AJ),P + 1

where we use map overriding (EEl) to update M at position n with the value of A. The
more conventional notation is M[n] := A.

The normal form describing the behaviour of this machine (executing a stored program)
is an iterated execution of instructions taken from the store m at location P:

deeP, A • P:= s; (s S P <f). m[PJ; (P =fh

where s is the intended start address and f the finish address of the code to be executed.
The obligation to start at the right instruetion is expressed by the initial assignment
P := 5, and the obligation to terminate at the right pla.ce (and not by a wild jump) is
expressed by the final assertion (P = fh.
The design of a compiler is nothing but a construetive proof that every program, however
deeply structured, can be improved by some program in this normal form. The process
is split into three main phases: concerns of control elimination are separated from those
of expression decomposition and data representation. In order to illustrate th€Se phases,
consider the compilation of an assignment of the form

x:= y

where hoth x and y are variables. The simplification of expressions must produce assign
ments which will eventually give rise to one of the patterns used to define the machine
instruetions. Recalling that A represents the general purpose register of our simple ma
chine, this assignment is transformed into

decA • A:= y; x := A

where the first assignment will become a load and the second one a store instrudion. But
this program still operates on abstract global variables with symbolic names, whereas the
target program operates only on the concrete store M. We therefore define a data refine
ment W which maps each program variable r onto the corresponding ma.ch.ine location,
so the value of x is held as M[Wx]. Here 11' is the compiler's symbol table, an injection
which maps each variable onto the distinct location allocated to hold its value. Therefore

1.2 Overview of Subsequent Chapters 6

we need a data refinement pbase to justify the substitution of M['#x] for x tbroughout
the program. Wben this data refinement is perfonned on our simple example program it
becomes

d""A. A ,= M[.pyJ; M ,= M III {.p, ~ A}

The remaining task of the compiler is that of control refinement, reducing the nested
control structure of tbe source program to a single flat iteration, like tbat of the target
program. This is done by introducing a control state variable to schedule tbe selection and
sequencing of actions. fn the case of our simple target macbine, a single program pointer
P indicates the location in memory of tbe next instruction. Tbe above then becomes

decP,A.P:=s;)
(P = ,) ~ A,P ,= M[.py],P + 1 .

('SP<H2)·(o (P=,+l)~M,P,=(MEI>{~,~A}),P+l'
(P~,+2h

where we use 0 as syntactic sugar for n when tbe choice is deterministic. The initial
assignrneDt P:= s ensures that the assignment with guard (P = 8) will be executed first;
as this increments P, the assignment with guard (P = s + 1) is executed next. This also
increments P, falsifying the condition of the iteration and satisfying the final assertion.

Note that the guarded assignments correspond preci~ly to the patterns used to define
the load and store instructions, respectively. The above expresses the fact that these
instructions must be loaded into the memory m at positions 8 and s + I, completing the
overall process.

The reduction theoreIrul which justify the entire process are a.l1 provably correct from
the basic algebraic laws of the language. Furthermore, some of the proof:!! are verified
using OBJ3 and the reduction theorems are used M rewrite rules to do the compilation
automatically.

1.2 Overview of Subsequent Chapters

Chapter 2 describes in some detail the view of specifications as monotonic predicate
transformers, in the sense advocated by Dijkstra. We review the mathematical concepts of
partial orders and lattices, and show that the language introduced above forms a complete
distributive lattice of monotonic predicate transformers. We give examples of refinement
calculi based on these ideas and address the problem of data. refinement. Finally, we
link our approach to compilation to the more general task of deriving programs from
specifications.

In Cha.pter 3 we give meaning to the reasoning language in terms of equations and in
equations which we call algebraic laws. The final section of this chapter discusses how the
laws can be proved by linking the algehraic semantics to a given mathema.tica.l model; for
the purpose of illustration we use weakest preconditions.

A complete compiler for the simplified source language (that is, not including procedures
or recursion) is given in Chapter 4. The first two sections deBcrihe tbe normal form as
a model of an arhi trary executing mechanism. The reduction theorems associated with
this form are largely independent of a particular way of representing control state. We
show that the use of a program pointer is one possible instantiation. The design of the
compiler is split into three phases, as illustrated in Section 1.l.

In Chapter 5 we deal with procedures and recursion, and address the issue of parameter
isation. We sbow how each of these can be eliminated through reduction to normal form;
but we leave open the choice of a target machine to implement them. Each feature is
treated by a separate theorem, in complete independence from the constructions of the
simpler language. This illustrates the modularity of the approach.

Chapter 6 is concerned with the mechanisation of the approach. The purpose is to show
how this can be achieved using the OBJ3 term rewriting system. There are three main
activities involved.: The formalisation (specification) of concepts such as the reasoning
language, its algebraic laws, the normal form, the target machine, and so on, as acollection
of theories in OBJ3; the verification of the related theorems; and the use of the reduction
theorems as a compiler prototype. The final section of this chapter includes a. critical
view of the mechanisation, and considers how other systems can be used to perform the
same (or a similar) task.

In the final chapter we sununarise our work and discuss related and future work. The
very final section contains a brief analysis of the overall work.

Apart from the main chapters, there are three appendices. Although the emphasis of
our work is on the compilation of control structures, Appendix A describes a scheme for
compiling arrays. Appendix B contains the proof of a lemma. used to prove the reduc
tion theorem for recursion. Appendix C contains more details ahout the mechanisation,
including complete proofs of some of the main theorems.

Chapter 2

Background

The beauty of lattice theory derives in part from the ell~

treme simplicity of its basic concepti: (partial) ordering.
least UPP"- and greatest lower bounds.

- G. Birkhoff

The pwpose of this chapter is to briefly describe a theoretical basis for the kind of re
finement &1gebra we will be u8ing. Based on the work of Morris [591 and Back and von
Wright [5J we show tha.t a. specification language (as introduced in the previous chap
ter) forms a. complete distributive la.ttice where, foUowing Dijkstra [21]. specifications are
viewed as monotonic predicate transformers. We give examples of refinement calculi based
00 these ideM and address the problem of data refinement. Finally, we Link ow a.pproach
to compilation to the more general task of deriving prograJD.9 from 8pecifications.

The first section review8 the concepts of partial orders and complete distributive lattices,
and a simple boolean lattice is presented as an example. The next section describes
the predicate lattice a.s functions from (program) states to booleans; this is constructed
by pointwise extension from the boolean lattice. Further pointwise extension is used to
construct the lattice of predicate transformen described in Section 2.3; theBe are functions
from predica.tes to predicates. In Section 2.4 we review some properties of predicate
transformers (known as healthine1J8 conditions) and explain that some of them are dropped
a.s a coMequence of adding non-implementable features to the language. Some refinement
calculi baaed on the predicate tr&DBformer model are considered in Section 2.5, and some
approaches to da.ta refinement in Section 2.6. The final section relates all these to our
work.

8

2.1 Partial Orders and Lattices

A partial order is a pair (S,!:.) where S is a set and ~ is a binary relation (the partial
ordering) on S satisfying the following axioms, (or a.U X, y, z E S:

% [;;;; % reflexivity

(z ~ y) 1\ (y ~ z) => (z ~ z) tran,itivity

(z ~ y) 1\ (y ~ z) => (z = y) anti,ymmetry

(S,I;) is called a total order if, in addition to the above, each pa.ir of elements in S a.re
comparable: (x [;;;; y) V (y!:. x). Following usual pra.clice we will abbreviate (S,!:.) to S;
the context will make it clear jf we are regarding S as a set or as a. partial order.

Given a subset T of S, we say that rES is AD upper oound for T if y r; z for all YET;
z is the least upper bound of T if it is both an upper hound for T and whenever y is
another upper bound for T then z r;;;; y. Similarly, z is a lower bound for T if z ~ y for all
YET; z is the greate8t lower bound of T if it is hath a lower bound for T and whenever
y is another lower bound for T then y!; z. An element 1. is a least element or bottom of
5 if 1.!; z for all x E 8; T is a greate8t element or top of 5 if z!; T for all z E5.

Given sets 8 &nd T with T partially ordered hy !;T, the set 8 - T of functions from S
to T is partially ordered by !; defined by

f~g ~ f(z)~Tg(z) forallzES

Additionally, if 8 is partially ordered by !;s, tben f : 8 - T is said to be monotonic jf

z~sy => f(z)~Tf(y) forallz,yES

We denote by [8 _ TJ the set of monotonic functions from 5 to T. H 8 is discrete (that
is, z ~s y holds if and only if z = y) then 8 - T and [5 - T] are identical.

A complete lattice is a partially ordered set containing arhitrary greatest lower bounds
(meets) and lea.st upper bounds (joins). A consequence is that every complete lattice has
a hottom and a top element. Two additional well-known properties of complete latticea
are given below; more details about lattice theory caD be found, for example, in [8].

• Any finite totally ordered set is a complete lattice.

•	 If S is a partially ordered set and T is a complete lattice, then [8 _ T] is a complete
lattice.

A lattice is said to be distributive if the least upper bound operator distribute! through
tbe greatest lower bound operator I and vice versa.

A very simple example of a complete distributive lattice is the boolean set {trueJalse}
when ordered by the implication relation. Tbe least upper bound V and the greatest lower
bound /\ bave their usual interpretations as disjunction and oonjunetion, respectively. The
bottom element is fal8e and tbe top element is true. This is actually a complete boolean
lattice, since it has a complement (negation); but we will not use tbis property. In the
next section we will refer to this lattice as Bool.

2.2 Th.e LaWre of Predicates 10

2.2 The Lattice of Predicates

Programs usually operate on a state spa.ce formed from a set of variables. We use State to
stand for the set of all p088ible states partially ordered by the equality relation; therefore,
it is a discrete partial order. In practice we need a way to describe particular sets of
states; for example, to specify the set of initial states of a program, as well as the set of
its final states. This can be described by boolean-valued functions (or predicates) on the
state space.

As State is a partial order and Baal is a complete lattice, [State -+ Bool] is also a complete
lattice. Furthermore! as State is discrete, [State -. Boo~ and State _ Bool are identical.
We will refer to it as the Predicate lattice. The lea.st upper bound a V b is the disjunction
of the predicates a and b, and the greatest lower bound a 1\ b is their conjunction. The
bottom element false describes the empty set of states and the top element true describes
the set of all possible states. These operations are defined by

(. V6) ';1 >.z ••(.) V 6(.)
"~I(.,6) = >. •••(.),6(.)

lrue ~ >. % • true

false J,gJ >. % • false

where the bounded variable % ranges over State. The lattice ordering 1S the implication
on predicates, which is defined by pointwise extension in the usual way:

• => 6 ';1 II•• a(.) => 6(.)

2.3 The Lattice of Predicate Transformers

The lattice presented next provides a theoretical basis for Dijkstra's view of programs aB

predicate transformers (functions from predicates to predicates) [21]. The usual notation

wp(p, a) = c

means that if program p is executed in an initial state satisfying its weakeat precondition
C1 it will eventually terminate in a state satisfying the postcondition a. Furthermore, aB

the name suggests, the weakest precondition c describes the largest possible set of initial
states which enBures that execution of p will terminate in a state SAtillfying a.

The predicate transformer lattice (Predlhm) is the set of all monotonic functionll from
one predicate lattice to another: IPredicate -. Predicate]. The result of applying program
(prediute transfonner) p to predicate a, denoted p(a), ill equivalent to Dijkstra's wp(p, a).
The ordering on predicate lra.nsfonnerll ill defined by pointwise extension from the ordering
on predicates

p!;q ';1 lIa.p(a)=>q(a)

2.4 Properties of Predicate Transformers 11

where the bounded variable a ranges over the set of predicatea.

Clearly, PredTron is a complete lattice and, therefore, it contains arbitrary least upper
bounds and greatest lower bounds: n is interpreted a.s demonic nondeterminism and U

as angelic nondeterminism. The bottom element is abort (denoted by .i), the predi
cate transformer that does not estahlish any postcondition. The tQp element is miracle
(denoted by T); it establishes every postcondition. These are defined in the obvious way:

(pU q) '1 Aaop(a)Vq(a)

(pnq) '1 A a 0 p(a) 1\ q(a)

T i;J Aa. true

1- i;J A a • false

The usual program constructs can be defined as predicate transformers. As an example
we define skip (the identity predicate transformer) and sequential composition:

skip ':;! Aa • a

p;q '1 Aaop(q(a))

2.4 Properties of Predicate Transformers

Dijkstra {2l] ha.s suggested five healthiness conditions that every construct of a pro
gramming language mmt satisfy. They are defined below (we assume implicit universal
quantification over a and b standing for predicates, and over p standing for programs)

I. p(l.I..) = f.l.. law of the excluded miracle
2. If a ". 0 then pIa) ". pro) monotoILicity

3.p(a)"p(o) = p(a"o) conjunctivity

4.p(a)Vp(o) = p(aVo) disjunctivity

5.p(3i;i~O;a;) = 3i;i~O;p(a;) continuity

for all sequences of predicates Go, (11, •••

such that O-i ~ a'+1 for all i ~ 0

The fourtb property is sa.ti5fied only by deterministic programs; for nondeterministic pro-
graIIl8, the equality bas to be replaced by an implication. The last property is ~uivalent

to requiring that nondeterminism be bounded 1231·

The complete lattice PredTran includes predicate transformers useful for specification pur
poses; they are not implementable in general. Of the above properties, only monotonicity
is satisfied by all the predicate transformers in PredTran: T trivially breaks the law of
the excluded miracle; the fact that greatest lower bounds over arbitrary sets are allowed
implies that the assumption of bounded nondeterminism (and therefore continuity) is not
satisfied; and angelic nondetenrunism violates the property of conjunctivity.

Of course, the healthinC3s conditions are still of fundamental importance; they are the
criteria for distinguishing the implementable from the non-impleme.ntable in II. general
space of specifications.

2.5 SOIne Refinement Calculi 12

2.5 Some Refinement Calculi

Back 13, 5), Morris [59] and Morga.n [55, 56J have developed refinement calculi based on
weakest preconditions. These calculi have the common purpose of formalising the well
established stepwise refinement method £Or the systematic construction of programs from
high-level specifications 176, 20}.

As originally propo.sed, the stepwise refinement method is partly informal. Although spec
ifications and progriLnl8 ale formal ohjects, the intermed.iate terms of a. given derivation do
not havea formal status. The essence of all the refinement calculi cited above is to extend
a given pro<:eduralla.nguage (in particular, Dijkstra's guarded command la.nguage) with
additiona.l features for specification. For example, let [a, c] be a specification construct
used to describe a program that when executed in a state satisfying a, terminates in a
state satisfying c. This can he viewed as a predicate transformer in just the same way as
the other operatoC!l of the language. Its definition is given by

[a,c] '1 Hoall(c=>b)

The extended la.nguage is thus a specification language and programs appear a.s a subcla.ss
of specificatioDS. Progranuning is then viewed as constructing a seqnence of specifications;
the initial specification is in a high-level of abstraction (not usually irnplementable) and
the fina.l specification is an executahle program. The derivation procesa is to gradually
tra.nsforro specifications into programs. The intermediate steps of the derivation will
normally contain a mixture of specification and program constructs; but these are for
mal objects too, since specifications a.nd programs are embedded in the same semantic
framework.

Derivation requires tbe notion of a refinement relation between specifications. All the
cited calculi use the same definition of the refinement relation which is precisely the
ordering on the lattice of predicate transformers described above. Two mathematical
properties of thi8 ordering are of fundamental importa.nce to model stepwise refinement.
Monotonicity of the language operators with respect to this ordering is necessary to allow
a given specification to be replaced by a refinement of it in an arbitrary context; this
ca.n only refine the overall context. The other required property is tra.nsitivity: a.s the
derivalion process will normally entail a large number of steps, it is necessary to enBure
tha.t the final product (that is, the program) satisfies the original specification.

Rules for introducing programming constructs from given specifications are the additional
tools required in the process. For example, the following rules illustrate the introduction
of skip a.nd sequential composition:

[a, cJ !;; skip if a ~ c
[a, cl ~ la, b]; [b, cJ

There are also rules for manipulating specificatioDS; for example, weakening the pre
condition of a given specification or strengthening its postcondition (or botb) lead to a
specification which refines the original one:

[at, Ct] !;; [lI2t cll if at => 112 1\ C] => Ct

Morris [59J Wall the first to give a lattice theoretic basis for the refmement ca.lculus.
He extended Dijkstra's guarded command language with predicate pairs (as illustrated
above) and generaJ recursion. Although he observed that the frCLIlleW'ork contains arbitrary
least upper bounds and greatest lower bounds, these have not been incorporaLed into his
specification language.

Back and von Wright [5J further explored the lattice approach and suggested a more
powerful (infinitary) language which is complete in the sen8e that it can express every
monotonic predicate transformer. The only constructortl in their .language cue the lattice
operators n and U, together with functional comp08ition (modelling sequential composi
tion). From a very simple command language including the>e constructorll, they define
ordinary program constructs such as assignment, conditionaJ and recursion. Inverses of
programs are defined and used to fonnaJise the Dotion of data refinement. This is further
discus8ed in the next section.

Morgan's calculus [56] is perhaps the most appealing to practising programmers. His
language includes procedures (possibly recursive and parameteri3ed) and even modules.
He definetl a large number of refinement laws and illustrates their application in a wide
range of derivations. The specification statement

,,[a, c]

is another distinctive feature of his work. Although it is similar to the notation uged

above, it includes the notion of a frame: x is a list of variables who8e values IlUy change.
The frame reduces the number of p08sible refinements from a given specificatiotl, and is a
way of making the designer's intention clearer. Furthermore, the above construct is very
general and can be specialised for many useful purpose>. For example, our generaliBed
assignment command can be regarded as a special case of it:

x:E a = x: [true,a]

where the purpose is to establish a without changing any variable> other than x. Another
example is an lI.88umption of a, meaning that a must be e>tablished without changing any
variable:

aT = : [true,a]

2.6 Data Refinement

In the previous section we discussed how an abstract specification is transforrred into a
program by progressively introducing control structure>j this is known &8 a/gordhmic or
control refinement. But this is only part of the process to obtain an implementation. Spec
ifications are wually stated in terms of mathematica.l da.ta types like sets and relations,
and these are not normally available in proceduraJ programming languages. Therefore
the complementary step to control refinement is the transformation of the ahstract types
into concrete types such as arrays and recorda which can be efficiently implemented. Thia
task is known as data refinement.

2.6 Data Refinement 14

The idea of data refinement was :first introduced by Hoa.re [41]. The basis of his approach
is the UBe of an abstr'Qction junction to determine the ab6tra.ct state that a given concrete
state represents; in addition, the set of concrete states may be constra.ined. by an invanant
relation. Since then many approaches have been suggested which build on these ideas.
The more recent approaches use a single relation to capture both the abstraction function
and the invariant, thus relcuang the assumption that the abstract state is functionally
dependent on the concrete state.

In connection with the refinement calculi considered. in the previous section, two very
similar approaches have been suggesled by Morris [61] and Morgan and Gardiner [57]. In
both cases, data refinement is characterised as a special case of algorithmic refinement
between blocks. A block of the form

decx: Tx • p

is used to represent the abstract program p operating on the variables x with type! Tx.
SimilarlYl

decl: Tx'. p'

represents the concrete program p' which operates on the variables x' with type Tx' . The
data refinement is captured by the inequation

(decx: Tx. p) i; (dec x' : Tx' • p')

The general a..im is to construct the concrete block by replacing the abstract local variables
with the concrete ones, in such a way that the overall effect of the abstract block is
preserved. In particular, pi is constructed with the same structure as p in the sense that
ea.ch command in pi is the tra.nslation of a corresponding coIIlIIlAnd in p, according to a
uniform rule.

An essential ingredient to this strategy is an abstract inv&riant I which links the abstract
variables x to the concrete variables Z'. This is called the coupling invanant. A new
relation between programs is defined to express that program p' (operating on variables
x') is a data refinement of program p (operating on variables z) under coupling invariant I.
This is written p '5.1,6,r pi and is formally defined by (considering programs as predicate
transformers)

p$/,s,s'p' l.;! (3x:Il\p(a))=>p'(3x:Il\o) for all 0 not containing x'

Broadly, the antecedent requires that the initial values of the concrete variables couple
to some set of abstract values for which the abstract program will succeed. in establishing
postcondition ai the con8Cquent requires that the concrete program yields new concrete
values that alBo couple to an acceptahle abstract state.

~ l(.e(:ll.ll that. our language is untyped; t)'Pe8 I.le eoosidered bere only (or the purpose of ~be praeot
di8CU88i(ID.

This definition is chosen for two main rea8OWl. The first is that it guarantees the charac
terisation of data refinement given above, that is

If (p 5:.I,z,~' p') then (decz: Tz. p) !; (decz/ : Tz' e p')

The second reason is that it distributes through the program constructors, thus allow
ing data refinement to be carried out piecewise. For example, the distribution through
sequential composition is given by

If (p 5:.I.,s,~' p') and (q 5:.I.,s,~' q') then (Pi q) SI.,s.,s' (p'; q')

Back and von Wright [5J suggest an approach which avoids the need to define a data
refinement relation. They use the algorithmic refinement relation not only to characteri~

data refinement, but also to carry out the caiculatioWl. The basic idea is to introduce
an encoding program, say W, which computes abstract states from concrete sta.tes and a
decoding program program, say tP, which computes concrete states from abstrad states.
Then, for a given abstract program p, the task is to find a concrete program p' such that

w; p; tP ~ p'

With the aid of specification features, it is possible to give very high-level definitions for ,p
and tP. Using the same convention a.dopted above that z stands for the abstract variables,
z' for the concrete variables and I for the coupling invariant, ,p i:l defined by

del .LW= varz; z:E I; endz'

It first introduces the abstract variables z and B8:1igns them values such that the invariant
is satisfied, and then removes the concrete variables from the data space. The use of .l
as an annotation in the above generalised assignment comm.and meaIl8 that it a.borts if I
cannot be establisbed. Similarly we have the definition of tP

leI TtP = varz'; z':E I; endz

which introduces the concrete variahles z' and assigns them values such that the invariant
is satisfied, and then removes the abstract variahles from the data space. But in thi8 c.ase
the generalised assignment command re5ults in a miracle if I cannot he established. (The
above two kinds of generalised assignment commands were introduced only for the purpose
of the present discu88ion. Reca1I from the previous chapter that our language includes
only the latter kind, and henceforth we will use the previous notation z :E b.)

Note that having separate commands to introduce and end the scope of a va.ria.ble i8 an
essential feature to define tbe encoding and decoding programs: the first introducetl z and
ends the scope of z' i the second introduces Zl and ends the scope of z.

In this approacb, data refinement can also he perfonned piecewise, by proving distribu
tivity properties such as

,p; (p; q); ~ C; (.p; p; ~); (,p; q; ~)

which illuatrates that both algorithmic and data refinement can be carried out within the
framework of one common refinement relation.

2.7 Refinement and Compilation 16

2.7 Refinement and Compilation

As explained in the previous chapter, we regard compilation as a task of program re
finement. 1D this sense, we can eatablish some connections between our view of compiler
design and the more general task of deriving programs from specifications (henceforth we
will refer to the latter simply as "derivationn). l.n both ca.aes, a programming language
is extended with specification features, so that a unifonn framework is built and the in
terface between programs and specifications (when expressed by distinct formalisms) is
avoided. In particular, our language is roughly the same as the one defined by Back and
von Wright [5], except that we deal with procedures and parameterisation. The first three
sections of this chapter briefly explained how the language ca.n be embedded in a complete
distributive lattice of predicate transformers.

In a derivation, the idea is to start with an arbitrary specification and end with a program
formed solely from constructs which ca.n be executed by computer. In our case, the initial
object is an arbitrary source program and the final product is its normal fonn. But the
tools used to achieve the goals in both ca.aes are of identical nature: transformations
leading to refinement in the sense already di6Cussed.

Derivation entails two main tasks: control and data refinement. We also split the design of
the compiler into these two main phases. However, while in a derivation control refinement
is concerned with progressively introdUcing control structure in the specification, we do
the reverse process; we reduce the neated control structure of a source program to the
single flat iteration of the normal fonn program.

Regarding data refinement, the general idea is the same both in a derivation proc.e!lS and
in designing a compiler: to replM:e abstract data types with concrete representations.
In particular, we use the idea of encoding and decoding programs. As discussed in the
previous section, this avoids the need. to define a separate relation to carry out data
refinement. In our case, an encoding program retrieves the abstract SpM:e of the source
program from the concrete state representing the store of the ma.chine. Con~rsely, a
decoding program maps the ahstract space to the concrete machine state. In the next
chapter, the pair fanned by an encoding and the respective decoding program is formally
defined as a Simulation. It satisfies the distributivity properties illustrated above, allowing
data refinement to be carried out piecewise.

But, as should be expected, there are SOme differences between designing a compiler in
this way and the more general task of deriving progrMllil from specifications. For example,
we are not interested in capturing requirements in general, and therefore our language
includO! no construct to serve this purpose. The closest to a specification statement we
have in our language is the generaJiaed aB8ignment command. Our use of it is to abstract
from the way control state is encoded in a particular target machine.

Another diJference is that we are mostly concerned with program traIUlformation. We
need a wide range of laws relating the operators of the language. In particular, we follow
the approach suggested by Hoare and others [41} where the semantics of a language is
characterised hy a set of equations and inequations (laws) relating the language operaton.

The same approach has been used to define an algebraic semantics for occa.m [68]. In our
case, the set of laws must be complete in that it should Mlow us to reduce an arbitrary
program to normal fonn. The framework we use is better characterised as a refinement
algebra (rather than as a calculus).

Chapter 3

The Reasoning Language

If)'ClU are raced by a difficulty or a controversy in science,
an ounce of algebra is worth OJ ton of verbal argument.

- J.B.S. Haldane

Here we give meaning to our specifica.tion (reaaoning) language in terms of equations
and inequa.tioDII (laws) relating the operators of the language. Following Hoare and oth
ers [47, 68], we present the laws as self-evident &Xioms, normally preceded by an informal
(operatiooal) jwlification. Moreover, it is not our aim to describe a complete set of laws
in the logical sense; although they &re complete in that they will allow us to reduce an
arbitrary source program to a. normal (orm.

It is possible to select a small subset of our language and define the additional operator8
in terIll.'l of the more basic ones. This is shown in [45], where the only constructors are
sequential composition, U and n. The additiooaJ operators are defined in terms of these
and the primitive commands. The laws of derived operators can then be proved from
their defi.n.ition and the laws of the basic opera.tors.

This is not our concern here; our emphasis is on the algebraic laws which will be used in
the process of designing a compiler. However, we do illustrate how a few operators can
he defined. from others. In pacticulac, iteration is defined as a special case of recursion
and all the lawll about iteration a.re proved. They deserve such llpecial attention becawe
of their central. role in the proofs of the normal form reduction theorems.

We will not normally distinguish between programs and llpecifi.cationll. We will refer to
both of them as "programs". Another remark is that programs have both a syntactic
and a sema.ntic existence. On one hand we perform llyntactic operations on tbem, lluch
as suootitution. On the other hand, the algebraic laws relating language operators ex
press semantic properties. Strictly, we should distinguish between these two natures of
programs. But it is not convenient to do 90 and it will be clear from the context wbich
view we a.re taking.

The first section gives notational conventions and introduCE!! the concepts of substitution
and free and bound identifiers. Each of the subsequent sections describes tbe laws of

18

one or more language operators. The concepts of a refinement relation, approximate
inverse (Galois connection) and simulation will be introduced when the need arises. The
final section describes alternative ways in which the laws of the basic operators could
be verified. As an example, we take the view of programs as predicate transformers (as
discUBSed in the previous chapter) and illustrate how the laws can be proved.

3.1 Concepts and Notation

Nam.e conventions

It is helpful to define some conventions as regards the namell used to denote program
terms:

x, Y,Z program identifiers

p,q,r programs

z, Y,Z lists of variables

a,b,c boolean expressions

e,/,g lists of expressions

We also use subscripts in addition to the above conventions. For example, flo, bt, ...
stand for boolean expressions (a.lso referred to as conditions). We use comma for list
concatenation: z, y stands for the concatenation of lists z and y. Further conv€ntions are
explained when necessary.

Precedence rules

In order to reduce the number of brackets around program terms, we define the following
precedence rules. Operators with the same precedence appear on the same line. As usual,
we will assume that brackets bind tighter than any operator.

uop unary operators binds tightest
bop binary operators

list concatenation
:E and .- (generalised) assignment
~ guarded command

iteration•
sequential composition

u and n nondeterminism (angelic and demonic)

<II> conditional
p recursion
dec block with local declarations binds loosest

Procedures are dealt with in Chapter 5 and are assumed to have the same precedence as
p. We will normally add some brackets (even if unnecessary) to aid readability.

3.1 Concepts and Notatjon 20

Free and bound identifiers

An occurrence of a variable z in a program p is free if it is Dot in the scope of any static
declaration of z in p, and bound otherwise. For example, ::t is bound in dec x • :l := 51,
but free in ::t := y. Notice that tbe commands for dynamic dedaration are not binder8
for variables. For example, z is free in war z as well as in end z. A list of variables is free
in p if each variable in the list is free in p.

In the case of program identifiers, we say that an occurrence of X is free in a program p
if it is Dot in the scope of any recursive program (with name X) defined in p, and bound
otherwise.

Substitution

For variables z and y,

pl· ~ y)

denotes the result of substituting 51 for every free occurrence of z in p. It is possible for
x to be in the scope of (static) declMa.tions of variables with the same name as y. In
this case, a. systematic renaming of local variables of p occurs in order to avoid variable
capture. This is usually referred to as 8afe substitution.

If z and yare (equal-length) lists of variables, the substitution is positional. In this case,
no variable may appear more than once in the list z.

Similarly,

f{, ~ ,]

denotes the substitution of the list of expressions e for the (equal-length) list of variables
x in the list of expressions f.
We also &llow the substitution of programs for program identifiers:

piX ~ qJ

This avoids capture of any free identifiers of q by renaming local declarations in p, as
discussed above. For conciseness, we will sometimes avoid writing substitutions of the
last kind. by making (free) occurrences of X explicit, as in F(X). Then, the substitution
of q for X in this case is written F(q). In any case we assume that nc capture of free
identifiers occur.

Laws, definitions, lemmas, theorems and proofs

Each of the laws described in the following secticQS is given a number and a name sugges
tive of its use. The number is prefixed with the corresponding section number, in crder

3.2 Skip, Abort and Miracle 21

to ease further references. The name normally mentions the operators related by the law.
For example,

(; -skip unit)

is the name associated with the law which says that skip is the unit of sequenlial compo
sition. Every reference to a law comprises both its name and itlS number.

Some of the laws could be alternatively described as lemmas or theorems, as they are
proved from more basic ones. However, we prefer to regard all the equations (and in
equations) relating the language operators as laws. Each of the definitions, lemmas and
theorems is also given a number and a name for further references.

Our proofs are confined to (in)equational reasoning. We use the terms LHS and RHS
to refer to the left- and the right-hand sides of an (in)equation. The proof strategy is
to start with one of the sides and try to reach the other side by a series of algebraic
transformations. Each step is annotated with one or more references to laws, definitions,
lemmas or theorems.

3.2 Skip, Abort and Miracle

The skip command has no effect and always terminates successfully.

The abort conunand, denoted by .1, is the most unpredictable of all progra.ms. It may
fail to terminate or it may terminate with any result whatsoever. Thus.1 represents the
behaviour of a broken machine, or a program that has run wild.

The miracle command, denoted by T, is the other extreme: it can be used to serve any
purpose. But it is infeasible in that it cannot he implemented.; otherwise we would not
need to write progra.ms-T would do anything for us.

The laws governing these primitive commands are included in the rema.ining sections. This
is because each of these laws nonnally expresses a unit or zero property of one \a.nguage
operator.

3.3 Sequential Composition

The program Pi q denotes the usual sequential composition of programs P and q. H the
execution of P terminates successfully then the execution of q follows that of p.

Since the execution of skip always terrni.n.a.tes and leaves everything unchanged, t<J precede
or follow a program p by skip does Dot change the effect of p. In other words, skip is both
the left and the right unit of sequential composition.

Law 3.3.1 (skip; p) ~ p = (p; skip) (; -skip unit)

3.4 Demonic Nondetenn.i.nism 22

To specify the execution of a program p after the termination of .1. C&IlDot redeem the
situation, because .1. cannot be relied on to terminate. More precisely, .1. is a left zero of
sequential composition.

Law 3.3.2 .1.; P = .1. (; -.L left zero)

To precede a program p by T results in a mjra.cle; T is a left zero ofeequentia.l composition.

Law 3.3.3 T; P = T (;-T left zero)

Sequential composition is associative.

Law 3.3.4 (p; q); r = p; (q; r) (; assoc)

3.4 Demonic Nondeterminism

The program p n q denotes the demonic choice of programs p and q: either p or q is
selected, the choice being totally arbitrary.

Tbe abort command a.lrea.dy allows completely arbitrary behaviour, so an offer of further

choice makes no difference to it.

Law 3.4.1 p n 1. = .1. (n-.L urn)

On the other hand, t he miracle command offers no choice at a.ll.

Law 3.4.2 p n T = p (n-T unit)

When the two a.lternatives are the same program, the choice hecomes va.cuous-n is

idempotent.

Law 3,4.3 p n p = p (n idemp)

The order in which a choice is offered is immaterial-n is synunetric.

Law 3.4.4 p n q = q n p (n ,ym)

Demonic choice is associative.

Law 3.4.5 (pn q) n r = pn(q n r) (n assoc)

3.5 Angelic Nondeterminism

The angelic choice of two programs p and q is denoted by pUq. Informally, it isa. program
that may act like p or q, whichever is more suita.ble in a. given context.

As we have mentioned before, .1. is totally unpredicatable and therefore the least suitable
program for all purposes.

Law 3.5.1 .1. U P = P (u- 1- un;t)

On the other extreme, T suits &Oy situation.

Law 3.5.2 T U P = T (U- T zero)

Like n, angelic choice is idempotent, symmetric and associative.

Law 3.5.3 pUp p (u ;demp)

Law 3.5.4 P U q = q U P (u ,ym)

Law 3.5.5 (p U q) U r = p U (q U r) (U ..soc)

3.6 The Ordering Relation

Here we define the ordering relation ~ on programs: p ~ q holds whenever the program
q is at least as deterministic lUI p or, alternatively, whenever q offers only a. subset of the
choices offered by p. In this case, q is at least as predictable as p. This coincides with
the meaning we adopt for refinement. Thus p !; q can be read as "'p is refined by q" or
"'p is worse than q".

We define r;; in terms of n. Infonna.lJy, if the demonic choice of p and q always yields p,

one can be sure that p is worse than q in all situations.

Definition S.l (The ordering relation)

p [; q 'g (p n q) = p

•

In the final section we prove that this ordering coincides with the ordering on the lattice
of predicate transformers described in the previous chapter.

Alternatively, the ordering relation could have been defined in terms of U.

Law 3.6.1 p [; q ., (p U q) = q ([; -U)

3.7 Unbounded Nondetenn1nism 24

From Definition 3.1 and the laws of n, we conclude that ~ is a partial ordering on
programs:

Law 3.6.2 P !; P (~ reflexivity)

Law 3.6.3 (p ~ q) 1\ (q ~ p) => (p = q) (~ antisynunetry)

Law 3.6.4 (p ~ q) 1\ (q ~ r) => (p ~ r) (~ transitivity)

Moreover t; is a lattice ordering. The bottom and top elements are .1 and T, respectively;
the meet (greatest lower hound) and join (least upper hound) operators are n and U, in
this order. These are also consequences of the definition of !: and the laws of n and U.

Law 3.6.5 .l!;; P (~-.L bottom)

Law 3.6.6 P !: T (~-T top)

Law 3.6.7 (r~p 1\ r~q) '" r~(pnq) (~-n glb)

Law 3.6.8 (p~r) I\(q~r) '" (pUq)~r (~-U lub)

In order to be able to use the algebraic laws to transform subcomponents of compound
programs, it is crucial that p!;; q imply F(p) ~ F(q), for a.II contexts F (functions from
progra.m8 to programs). This is equivalent to saying that F (and consequently, all the
operateI'll of our la.nguage) mU8t be monotonic with respect to ~. For example:

Law 3.6.9 IT p !;; q then
(1) (pnr)~(qnr) (n monotonic)
(2) (r; p) ~ (r; q) and (p; r) ~ (q; r) (; monotonic)

We will not state monotonicity laws explicitly for the remaining operators of our language.

3.7 Unbounded Nondeterminism

Here we generalise the operators n and U to take an arbitrary set of programs, say 'P, as
argument. U'P denotes the le&'!lt upper bound of 'Pi it is defined by

Definition 3.2 (Least upper bound)

(uP ~ p) '" (\lX:XEP:X~p)

•

which states that p refines the lea.st upper bound of the set 'P if and only if, for aJ.1 X in
'P, p refines X. The greatest lower bound of 'P, denoted by n 'P, ie defined in a similar
way.

Definition 3.3 (Greatest Jower bound)

(p ~ n1') == (V'X,XE1',p~X)

•
Let U be the set of aJ.1 programs, and 0 be the empty set. Then we have:

U0 = .1. ~ nu

n0 = T = UU

From the above we can easily show that sequential composition does not dill tribute right
ward through the least upper bound or the greatest lower bound in general, since we
have:

.1.; n0 = .1. # n0
T; U0 = T # U0

The rightward distribution of sequential comp06ition through these operators is ul:led
below to define Dijkstra's healthiness conditions. However, the leftward distribution is
valid in general, and can be verified by considering programs as predicate transfonners.
In the following, the notation {X : b : F(X)} should be read 8.3: the set of elements F(X)
for all X in the ra.nge specified by b.

Law 3.7.1
(1) U1'; P U{X ,X E 1', (X; p))	 (; -U left d,'1)
(2) n1'; p n{X, X E 1', (X; p))	 (; -n left di,t)

It ill also possible to verify that the lattice of programs (considered as predicate trans
formers) is distributive.

Law 3.7.2
(1) (U1')np U{X,XE1',(Xnp))	 (n-u di,t)
(2) (n1') Up n{X, X E 1', (X Up))	 (u-n d;,t)

As diecussed in the previous chapter, &IIlOng all the predicate transfonners Dijluitra singles
out the implementable ones by certain healthiness conditions. Here we show that these
conditions can be formulated as equations relating operators of our language.

l.p;l.=l.	 p is non-miraculous
2. p; n l' = n {X , X E l' , (p; X)) p is conjunctive

for all (non·empty) sets of programs 'P
3.p; U1' = U{X,XE1',(p; X)) p is disjunctive

for all (non.empty) sets of programs 'P
4.PiU{i,i2:0,q<!	 = U{i'i2:0,p; q;} p is continuous

provided. qi ~ qi+I for all i ~ 0

3.8 Recursjon 26

We say that a program p is uni"eraally conjunctive if the second equation above balds for
all sets of programs l' (possibly empty). Similarly, if the third equation holds for all 'P,
we say that p is universally disjunctive.

3.8 Recursion

Let X stand for the name of the recursive program we wish to construct, and let F(X)
define the intended behaviour of tbe program, for a given context F. If F is defined solely
in terms of the notations introduced already, it follows by structural induction that F is
monotonic:

p~q => F(p)~F(q)

Actually, this will remain true for the commands which will be introduced later, since
they are all monotonic. The following two properties, due to Knaster~Tarski [721, say that
p X • F(X) is a solution of the equation X == F(X); furthermore, it is the least solution.

Law 3.8.1 pX. F(X) = F(pX. F(X)) (p fixed point)

Law 3.8,2 F(Y) ~ Y => pX. F(X) ~ Y (p least fixed point)

3.9 Approximate Inverses

Let F and G be functions on prograrn.s such that, for all programs X and Y

F(X) = Y '" X = G(y)

Then G is the inverse of F, and vice-versa. Therefore G(F(X)) = X "::: F(G(X)), for all
X. It is well-known, however, that a function haJj an inverse if and only if it is bijective.
As the set of bijective functions is relatively small tbis makes the notion of inverse rather
limited. The standard approach is to generalise the notion of inverse functions as follows.

Definition 3.4 (Approximate inverses)

Let F and F-l be functions on programs such that, for all X and Y

F(X) ~ Y x ~ F-'(y)

Then we call F the WWe3t inverse of F-t, and F- 1 the strongest inverse of F. The pair
(F ,F-') is called a Galois connection.•

Weakest inverses have been used in [47, 46] for top-down design ofprograms. In particular,
the left and right we.akest inverses of sequential composition are defined together with a

calculus of progra.m. development. Broadly, the aim is to decompose a task (specification)
r into two subtaska p and q, such that

r ~ p; q

The method described in [46] allows one to calculate the weakest specific&tioD that must
be satisfied by one of the components p or q when the other one is known. For example,
one can calculate the weakest specification of p from q and r. It is denoted by q\ r and
satisfies r l; (q\ r); q. This is called the weakest prupuijication. Dually, rIp is the
weakest specification of component q satisfying r ~ p; (rIp). It is named the weakest
post.9pecijication.

Strongest inverses of language constructs are less conunonly used. This is perhaps a
consequence of the fact that they exist only for operators which a.re universally disjunctive
(see theorem below). Gardiner and Pandya [25] have suggested a method to reason about
recursion based on the notion of strongest inverses, which they call weak-o"..inverses.
Below we consider some of the properties of strongest inverses that are proved in the
cited paper. A similar treatment is given in [45].

Before presenting the properties of strongest inverses we review two basjc definitions. F
is universally conjundive if for all 'P

F(n1') = n{X, X E 1', F(X))

Similarly, F is universally disjundive if for all 'P

F(u1') = u{X, X E 1', F(X))

Theorem 3.1 (Strongest inverses)
(1) IT F-l exists then both F and F-l are monotonic.
(2) F-l is unique if it exists.
(3) IT F-1 exists then, for aJl progralllB X

F(F-l(X)) b X b F-l(F(X))

(4) F-I exists if and only if F is universally disjunctive; in this case it is defined by

r'(Y) ',2 u{X, F(X)!; Y , Xl

(5) F-l is universally conjunctive if it exists.•

The following lemma. shows that sequential composition has a strongest inverse in its first
a.rgument. As noted in [25J this allows a concise proof (given later in this chapter) of an
important property about composition of iteration comma-tHIs.

Lemma 3.1 (Strongest inverse of ;)

Let F(X) ~ (X; p). Then it baa a strongest inverse which we denote by

F-1(X) ~ X; p. Furthermore, for all X

(X~p); P b P

3.10 8imulation 28

Proof: From Law (; -u left dist)(3.7.1) it follows that F is disjunctive. Consequently,
from Theorem 3.1(4), it has a strongest inverse. The inequation follows from Theo
rem 3.1(3).•

3.10 Simulation

In the previous section we discussed the inverse of functions on programs. Here we
consider the inverse of progra.ms themselves. An inverse of a program S is a program T
that satisfies

s; T = skip = T; 8

That means that running 8 followed by T or T followed by 8 is tbe same as not running
any program at all, since skip hM no effect what.soever.

Inversion of progralTlS hM been previously discussed by Dijkstra [22] and Gries [35]. A
more formal approa.<:h to program inversion is given in [16], which defines proof rules for
inverting programs written in Dijkstra's language. A common feature of these works is
the use of the Dation of e:taet inverse given above. As mentioned for functions, this notion
of inverse is rather limited. Following a similar idea to tha.t of the previous section, we
adopt a weaker definition of program inversion.

Definition 3.5 (Simulation)

Let 8 and 8-1 be programs such that

(s; S-') <; sk;p <; (S-'; S)

Then the pair (8,8-1) 1S called a simulation, 8-1 is the strongest inverse of 8, whereas
8 is the wealcest inverse of 8-1••

A very simple example of a simulation is the pair (1., T) since

(.1-; T) = 1. <; sk;p <; T = (T; 1.)

Simulations are useful for calculation in general When carrying out program transfor
mation, it is not rare to reach situa.tions where a program followed by its invertte (that
is, 8; S-1 or 8-1 ; 8) appears as a subterm of the program being transformed. Thus,
from the definition of simulation, it is possible to eliminate subterms of the above form
by replacing them with skip (of course, this is only valid for inequational re&60ning). This
will be itlustrated in many of the proofs in the next two chapters where we give further
examples of simulations.

But the ID08t valuable use that has been made of the concept of simulation is for data
refinement. This was discussed in some detail in the previoW! chapter where we introduced
the concepts of encoding and decoding programs which form a simulation pair. Tbe
distributivity properties of simulations given below are particularly useful to prove the

correctness of the change of data representation phase of the compilation pr<lCl'SS, where

the abstract space of the BOurce program is replaced by the concrete state of the target

machine. The appropriate encoding and decoding programs will be defined when the need

arises.

A detailed discussion on simulations can be found in [5] (where it is called illverse com·

mands) and in [45]. Here we prcBent some of the properties of simulation. As should be

expected, these a.re similar to the oneEI given in tbe previous Bection.

Theorem 3.2 (Simulation)

Let S be a program. The following properties hold:

(1) S-1 is unique if it exists.
(2) S-l exists if a.nd only if S is universally disjunctive.
(3) S-I is universally conjunctive if it exists.•

We define the following abbreviations.

Definition 3.6 (Simulation functions)

Let (S,S-1) be a simulation. We use Sand S-l themselves as functions defined by

S(X) ';! S; X; S-'

S-'(X) ';! S-'; X; S

•
The next theorem shows that the concepts of simulation and approxima.te inverse are
closely related.

Theorem 3.3 (Lift of simulation)
Let S and S-1 be simulation functions as defined above. Then S-1 is the strongl'5t inverse
of S. Furthermore, {rom Theorem 3.1 (StrongeElt inverses) we have

S(S-l(X)) i; X i; S-l(S(X))

•
The following tbeorem shows how simulation functions distribute through all the language
operators introduced so far, with a possihle improvement in the distributed result.

Theorem 3.4 (Distrihutivity of simulation functions)
(1) S(.1) = .1
(2) S(T) i; T
(3) S(skip) i; skip
(4) S(X; Y) i; S(X); S(Y)
(5) S(n'P) i; n {X : X :E 1': S(X)}
(6) S(U'P) = U{X: X :E 1': S(X))
(7) S(p X • F(X)) i; p X • S(F(S-l(X))).

3.11 AsSumptjOD &lid AsserUOD :ro

3.11 Assumption and Assertion

The assumption of a condition b, designated as bT, can be regarded a.e a miraculous test:
it leaves the sta.te unchanged (behaving like slOp) if b is true; otherwise it bebaves like T.
The assertion of b, h, also behaves like skip when b is true; otherwise it fails, behaving
like l..

The intended pUIpose of asswnptio~ and assertions is to give pret:.(Jnditions and postcon
ditions, respectively, the status of programs. For example,

aT; pj b.L.

is used to express the fact that the assumption of a is an obligation placed on the environ
ment of the program p. If the environment fajJ.s to provide a state Batisfying a, aT behaves
like a miracle; tws saves the programmer from dealing with states not satisfying a, since
no program can implement T. On the other hand, an assertion is an obligation placed on
the program itself. If p fails to make b true on its completion, it ends up behaving like
abort.

The first three laws formally state that the as5umption and tbe Msertion of a true condi
tion are equivalent to skip, that the assumption of a false condition leads to miracle and
that the assertion of a false condition leads to abortion.

Law 3.11.1 trueT = true.L. = skip (bT , b.L. true cond)

Law 3.11.2 false T = T (b T f.l", rood)

Law 3.11.3 fa1se.L. .L (b.L fal", rood)

Two consecutive 8a8umptions can be combined, giving rise to an assumption of tbe con
junction of the original conditions; tbis obviously means tbAt if any of tbe conditions is
not satisfied, the result will be miraculous. An analogous law holds for assertions.

Law3.llA (aT; bTl (all b)T (aTUbT) (b T conjunction)

Law 3.11.5 (a.L; b.L) (a II b).c (a.L n b,) (b.L. conjunction)

The iUlsumption of the disjunction of two conditioDB will behave like a miracle if and only

if none of the conditions are SAtisfied. There is a similar law for Msertions.

Law 3.11.6 (a V b)T (aTnbT) (bT disjunction)

Law 3.11.7 (a V b).c (a.L U b.L) (b.L. disjunction)

It doe! not matter if Achoice is made before or after an assumption (or an assertion) is

executed.

Law 3.11.8 bT; (p n q) (bT ; p) n (bT ; q) W-n dist)

Law 3.11.9 b"; (p n q) = (b,; p) n (b,; q) (h -n disl)

The next law states that (bolt bT) is a simulation.

Law 3.11.10 (b"; bT) = b, ~ skip ~ bT = (b T; b,) (b.L - bT simulation)

An assumption commutes with an arbitrary program p in the following sense. (A similar
law holds for assertions, but we do not need it here.)

Law 3.11.11 If the free variables or b are not assigned by p

(p; bT) ~ (b T; p) (b T; Pcommute)

The inequality occurs when b is false and p is .1., in which case the left-hand side reduces
to 1.. whereas the right-hand side reduces to T.

3.12 Guarded Command

The standard notation b --10 P stands Cor a guarded command. If the guard b is true, the
whole co:mrna.nd hehaves like p; otherwise it behaves like T. This suggests that a guard
has the same effect as an assumption of the given condition, which allows us to define a
guarded command as follows.

Definition 3.7 (Guarded command)

b-tp ~~ bT ; P

•
The laws or guarded. conunands ca.n therefore be proved from the above definition and

the laws of sequential composition and assumptions.

Law 3.12.1 (true--+ p) = p (~ true guard)

Law 3.12.2 (f.lse ---> p) = T (_ fal., guard)

Guards can be unnested by taking their conjunction.

Law 3.12.3 a _ (b ---> p) = (a f\ b) _ p (~ guard conjunction)

Guards distribute over n.

3.13 Guarded Command Set 32

Law 3.12.4 b~(p n q) = (b~p) n (b~ q) (g","'d - n di't)

The demonic cboice of guarded commands can be written as a single guarded comrnand
by taking the disjunction of their guards. This is easily derived from the last two laws.

Law3.12.5(a~p n b~q) = (aVb)~(a~p n b~q)

(- guard disjunetionl)
Proof:

RHS

«guard - n di,t)(3.12.4)}

(aVb)~(a~p) n (aVb)~(b~q)

{(~ guard conjunction)(3.12.3))

LHS

•
When p and q above are the same program, we have:

Law 3.12.6 (a~p)n(b~p) = (aVb)~p (_ guard disjunetion2)

Sequential comp~ition distributes leftward through guarded conunands.

Law 3.12.7 (b ~ pi; q = b ~ (p; q) (; - ~ left di,t)

3.13 Guarded Command Set

Our main use of guarded commands is to model the possible actions of a dett'J"ministic ex
ecuting mechanism. The fact that the mechanism can perform one of 11 actions, according
to its current state, can be modelled hy a program fragment of the form

b1-10 actionl n ... n b. -t action.

provided bt, ... , b. are pairwise disjoint. Inatead. of mentioning this disjointness condition
explicitly, we will write the above as

b1_ actionl D ... 0 b. -t action.

Strictly, 0 is not a new operator of our language. It is just syntactic sugar to improve
conciseness and readability. Any theorem that uses 0 can be readily restated in tenns of
n with the associated disjointness conditions. As an example we have the following law.

]£ one of the guards of a guarded coIIUlULDd set holds initially, the associated command
will always be selected for execution.

Law 3.13.1 a --t (a --t pO b --t q) = a --t p (0 elim)
Proof: The proof relies on the (implicit) Msumption that a and b a.re disjoint (or a 1\ b =
false).

a-+(a --+p n b--tq)

{(gu.,.d - n di,t)(3.12.4)}

a -+ (a --+ p) n a --t (b -+ q)

{(~ guard conjunction)(3.12.3)}

a --t p n false -+ q

{(~ false guard)(3.12.2) and (n- T unit)(3.4.2)}

a~p

•
Other laws and theorems involving 0 will be described as the need arises.

3.14 Conditional

A conditional coffillland has the generalllyntax p <l b t> q which is a concise fonn of the
more usual notation

if b then p else q

It can also be defined in terms of more basic operators.

Definition 3.8 (Conditional)

(p<1bl>q) ',2 (b~pO~b~q)

•
The most basic property of a conditional is that its left branch is executed if the condition
holds initially; otherwise its right brancb is executed.

Law 3.14.1 (a" b)T; (p <1 b V c I> q) = (a" b)T; p (<1 I> true cond)

Law 3.14.2 (a" ~b)T; (p <1 b" c I> q) = (a" ~b)T; q (<1 I> false cond)

The left branch of a conditional can always be preceded by an assumption of the condition.
Similarly, to precede the right branch by an assumption of the negation of the condition
has no effect.

Law 3.14.3 (b T
; p <l b I> q) (p<1bl>q) (p <1 b I> ~bT; q) (<1 I> void bT)

3.15 A3signment 34

If the two branches are the same program, the conditional can be eliminated.

Law 3.14.4 p <I b t> P = P (<I I> id'mp)

Gua.rd distributes through the conditional.

Law 3.14.5 a _ (p <I b I> q) = (a _ p) <I b I> (a _ q) (guard - <I I> di,t)

Sequential composition distributes leftward through the conditional.

Law 3.14.6 (p <I b I> q); , = (p; ,<I b I> q; ,j (; - <I I> I,ft di,t)

The following two la.ws allow the elimination of nested conditionals in certa.in cases.

Law 3.14.7 P <I b I> (p <I c I> q) p<:lbVct>q (<:I po cond disjunction}

Law 3.14.8 (p <I b I> q) <I c I> q = P <I b 1\ c I> q (<:I t> cond conjunction}

We have considered assumptions and assertions aB primitive comma.nds and have defined
guarded commands a.nd the conditional in terms of them. The following equations show
that an alternative could be to consider the conditional as a constructor and regard
assumptions, assertions and guarded commands as special cases. These are not stated all

laws because they are unnecessary in our proofs.

bi skip <:I b t>.l

bT skip <1 b po T

b_p =p<lbt>T

3.15 Assignment

The command z := e stands for a multiple assignment where x is a list of distinct
variables and e Ul an equal·length list of expressions. The components of e are evaluated
a.nd simulta.neously assigned to the corresponding (same position) components of x. For
example,

X,II:= y,z

swaps the values of z and II. For simplicity, we alIsume that the evaluation of an expression
always delivers a result, so the alIsignment will always terminate. Furtbermore, the validity
of most of the laws relies on the fa«::t that expression evaluation does not cha.nge the value
of any variable; that is, no side·eJ/ect is allowed.

Obviously, the assignment of the value of a variable to itself does not change a.nything.

Law3.15.1 (.,= 0) = skip (,= .lcip)

In fad, such a vacuous assignment can be added to any other assignment without cbanging
its effect.

Law 3.15.2 (z, y:= " y) = (z:= ,) (:= identity)

The list of variables and expressions may be subjected to the same permutation without

changing the effect of the assignment.

Law 3.15.3 (z,y,z :=e,!,9) = (y,z,z:=f,e,g) 1:= ,ym)

The sequential composition of two assignments to the same variables is easily combined

to a single assignment.

Law 3.15.4 (z:= e; z := f) = (z:= flz ~ ,j) (:= combination)

Recall that f[z _ e] denotes the substitution of e for every free occurrence of: in f.

If the value of a variable is known, the occurrences of this variable in an expression can

be replaced with that value.

Law 3.15.5 (z = ,) ~ (y :=f) = (z = ,j ~ (y:= flz ~ ,j) (:= substitution)

Assignment is universally conjunctive.

Law 3.15.6 z:= e; n'P = nIx: X E 'P: (z := ,; X)) (:= - n right d;,t)

Assignment distributes rightward through a conditional, replacing occurrences of the as

signed variables in the condition by the corresponding expressions.

Law 3.15.7 z:= ,; (p <l b I> q) = (z:= 'i p) <l biz ~ ']1> (z := '; q)
(:= - <l I> right di'l)

Similarly, assignment commutes with a.n assertion in the following sense.

Law 3.15.8 (z:= 'i bL) = (b[z ~ ')h; z := , (:= -h commutation)

3.16 Generalised Assignment

The notation % :E b stands for a generalised assignment comma.nd. Whenever p08Sible, Z

is assigned an arbitrary value that makes the condjtion b hold; but if no such value exists,
the assignment hehaves like T.

Law 3.16.1 (z:E false) = T (:E faLoe cond)

3.16 Generalised Assignmetlt 36

On the other hand, a true condition imposes no constraint& on the final value of %. In
this case, the generalised assignment is less deterministic than skip, because it might leave
everything unchanged.

Law 3.16.2 (x:E true) r; skip ('E true cond)

To follow a. generalised assignment by an assumption of the sAme condition has no effect:
if the assignment establishes the condition, the assumption behaves like skip; otherwise,
the assignment itself (and consequently, its composition with the assumption) behaves
like T.

Law 3.16.3 z:E h; hT = z:E h (:E void bT)

A similar law holds for assertions.

Law 3.16.4 z:E h; hJ. :::: x:E h (:E void bLl

A generalised assignment is refined by a.n assumption of the same condition. The reason
is that the final values of the variables of the assignment are arbitrary, whereas the
assumption does not change the value of any variable. Actually, an assumption can be
regarded as a generalised assignment to an empty list of variables.

Law 3.16.5 (I 'E b) ~ bT (: E refined by bT)

Generalised assignment distributes rightward through the conditional, provided the fol
lowing condition is observed.

Law 3.16.6 If z does not occur in h

I 'E a; (p <l b I> q) = I":E a; p <l b I> I 'E a; q) (,E - <l I> rigbt dist)

Tn general, a.n assignment cannot be expressed in terms of a generalised Msignment only.
For example, there is no generalised assignment that corresponds to the assignment % :::::

x + 1. The reason is that we have not introduced notation to allow the condition of a
generalised assignment of the form % :E h to refer back to the initial value of z. But
:r ::::: e can always be written a.s a generalised M&ignment whenever the expression e doeB
not mention z.

Law 3.16.7 IT e does not mention %

z:E(%=e) = %;=e (:E -:= conversion)

If z and 11 are to be assigned arbitrary values (in sequence) to make a given condition
hold, we CAD reduce the nondeterminism by ensuring that the same (arbitrary) value is
assigned to both r and y.

Law 3.16.8 If h does not mention 11

(z :E b; V'E ~(. - vI) ~ (Z:E b; v:= I) (:E ,efined by :=)

We can commute the order of execution of an assignment and an a.rbitrary program p,

provided no interference occurs with the global variables.

Law 3.16.9 H no free variables of b nor % are assigned by p

(p; x :E b) (; (.:E b; p) (x :E b; p commute)

The inequality occurs when p is .1 and the assignment results in T.

3.17 Iteration

We use b.p to denote the iteration comma.od. It is a concise form of the more conventiona.l
syntax

while b do p

Iteration can be defined as a special case of recursion.

Definition 3.9 (Iteration)

b. p ',t pX. «p; X) 4 b t> .kip)

•
As iteration is a derived operator in our language, we are able to prove (rather than just
postulate) some of its properties. This illustrates the modularity provided by the algebraic
laws in developing more elaborate transformation stra.tegies from the basic ones. These
strategies are largely used in the next two chapters, substa.ntially simplifying the proofs
of normal form reduction.

If the condition b does not bold initially, the iteration b • p beha.veslike skip; otherwise it
beha.ves like p followed by the whole iteration.

LawS.17.1 (aA~b)T; b.p = (aA~b)T (. elim)
Proof:

LHS

{Definition 3.9(lt.,.tioo) and (p fixed poiot)(3.8.1)}

(a A ~b)T; ((p; b. p) 4 b t> skip)

{(4 t> false rood)(3.14.2) and (;-skip uoit)(3.3.1)}

RHS

•

3.17 Iteration	 38

Law 3.17.2 aT j (a Y b). p aT; p; (aYb).p (. unfold)
Proof:

LHS

~ {Definitioo 3.9(lteration) and (p fixed point)(3.8.1))

aT; (p; (aVb).p}<l (aVb) ~slcip)

~ (<I ~ true cond)(3.14.1)}

RHS

•
A recurrent step in our proofs is to unfold &D iteration a.nd simplify the unfolded body
when this is a guarded command set.

Law 3.17.3 Let R = (a -+ p 0 b -+ q). Then
aT; (aV!).R ~ aT; p; (aVb).R (. - 0 unfold)
Proof, From (. unfold)(3.l7.2) and (0 elim)(3.13.l).•

A guarded command set within an iteration can be eliminated if the condition of the
iteration allows only one of the guards to hold.

Law 3.11.4 Let R,,= (a -+ p 0 b -+ q). Then a. R a.p (. - 0 elim)
Proof:

LHS

~	 {Definition 3.9(lteration) and (<I .. void bT)(3.14.3)}

pX • (a T; R; X) <I a .. slcip)

{(o elim)(3.13.1)}

pX. «aT; p; X) <I a ~skip)

{(<I ~ void bT)(3.14.3) and Definition 3.9(Ileration)}

RHS

•
The following allows the replacement of a guarded command inside a.n iteration.

Law3.17.5 LetR~(a _p 0 b_q). If r; (aVb).R !;; p; (aVb).R, then
(aVb).(a_rob_q)!;; (aVb).R (. replace guarded command)
Proof:

RHS

{Definition 3.9(Ileration) and (p fixed point)(3.8.1))

(R; RHS) <l a Vb t> skip

{(;-n left dist)(3.7.1)}

(a --> (p; RHS) 0 b --> (q; RHS)) <l a V b t> skip

~	 {Assumption}

(a --> (r; RHS) 0 b --> (q; RHS)) <l a V b t> skip

{(; -n left dist)(3.7.1)}

((a --> rOb --> q); RHS) <l a vb t> skip

The final result follows from (p least fixed point}(3.8.2).•

The following law establishes the connection between tail-recursion and itealion. ILs
proof illustrates the use of approximate inverses of programming constructs.

Law 3.17.6 (hp); q = pXo((p; X)<l b t>q) (.-p t';lrecu"ion)
Proof: (LHS ;J RHS):

{Definition 3.9(Iteration) and (p fixed point)(3.8.1)}

LHS = ((p; h p) <l b t> skip); q
~ {(;- <l t> left dj,t)(3.14.6) and (;-skip unit)(3.3.1)}

LHS = (p; LHS) <l b t> q
=> {(p least fixed point)(3.8.2)}

LHS ;J RHS

(RHS ;J LHS):

{(p fixed point)(3.8.1)}

RHS = (p; RHS) <l b t> q

=> {From Lemma. 3.1(Strongest inverse of;) we have (RHS; q); q ~ RHS}

RHS ;J (p; (RHS ;' q); q) <l b t> q

~ {(;- <l t> left di,t)(3.14.6) and (;-skip unit)(3.3.1)}

RHS ;J ((p; (RHS;' q)) <l b t> skip); q
=-	 {Definition 3.4(Approximate inver8ell)}

(RHS ;' q) ;J (p; (RHS;' q)) <l b to> skip

=> {(p least fixed point)(3.8.1) and Definition 3.9(Iteration)}

(RHS ;'q);J b.p

=	 {Definition 3.4(Approximate inverses)}

RHS ;J LHS

•
The following law is surprisingly important, mainly in proving the corrednCSA of the
normal form reduction of sequentiaJ. composition. Ita proof without assuming continuity
of the language operators is originally due to Gardiner and Pandya 125}.

http:point}(3.8.2).�

3.18 Statjc Declaration 40

Law 3.17.7 (b. p); (b V e). P = (b V e). P (. sequenre)
Proof: (RHS ;) LHS) ..

{(4 l> idemp)(3.14.4)}

RHS = RHS 4 b l> RHS
_ (Definition 3.9(Iteration) and (p fixed point}(3.8.1)}

RHS = ((p; RHS) 4 b Vel> skip) 4 b l> ((b V e). p)

~ {(4 l> void bT }(3.14.3) and (. elim)(3.17.1)}

RHS = ((Pi RHS) 4 bVe l>(bVe).p)<l b l>((bVe).p)

= {(4 l> cond conjunction)(3.14.8)}

RHS = (Pi RHS)<l b l>((bVe).p)
=> {(p least fixed point}(3.8.2)}

RHS;) pXo(p; X)<l b l>((bVe).p)
_ {(. - p tail recurnion)(3.17.6)}

RHS ;) (b.p); ((bVe).p)

~ RHS ;) LHS

(LHS ;) RHS) :

(Definition 3.9(lteration) and (p fixed point}(3.8.1)}

LHS = ((qi (b.p))4 b l>skip); (bVe).p

= {(i- 4 l> left di,t}(3.J4.6) and (;-skip unit}(3.3.1)}

LHS = (p; LHS) 4 b l> RHS

~ {(p fixed point)(3.8.1)}

LHS = (Pi LHS) 4 b l> ((p; RHS) 4 bVel> skip)

'* {(4 l> cond di,junction}(3.J4.7) and LHS [; RHS)

LHS ;) (Pi LHS) 4 bVel> skip

" (Definition 3.9(lteration) and (p least fixed point}(3.8.2))

LHS ;) RBS

•

3.18 Static Declaration

The notation dec x • p declares the list of distinct variables ~ for use in the program p
(tbe scope of tbe declaration). Local blocks of this form may appear anywhere a program
is expected.

It does not matter wbether variables are declared in one list or singly.

Law 3.18.1 If x and V bave no variables in common

decx.(decyep} = dec~,yep (dec assoc)

41 3.18 Static Declaration

Nor doee it matter in which order they are declared.

Law 3.18.2 decz.(decyep) = decye(decz.p) (dec aym)

If a declared variable is never used, its declaration has no effect.

Law 3.18.3 If z is not free in p

deczep = p (dec elim)

One can change the name of a bound variable, provided the new name is not used for a
free variable. This law is normally stated as follows:

dec:r e p = dec y e p[z +- yJ provided y is not free in p

where the clashes of y with bound variables of p are dealt with by the renaming implicit
in the substitution operator. However, this law justifies transformations which are not
always valid (in the context of our language). For example, consider tbe recursive program

(1) dec. 0 (I' XoF(dec.oX))

Because of static scope rules, any free occurrence of z in F is bound to the outer decla
ration of:r. The inner declaration of z has no effect, since its scope does not include F,
and therefore it can be eliminated:

(2) dec. 0 (I' X 0 F(X))

However, renaming of bound variablee as stated above allows (1) to be transformed into
(assuming that y is not free in F)

dec. 0 (I' X 0 F(decy 0 XI. ~ yJ))

which is clearly distinct from (2) if there are free occurrences of x in F. The incoDBistency
arises from the fad that the application of the law identified the occurrence of t bound
to the inner declaration with the (possible) occurrences bo~d to the outer declaration;
this violatee the concept of static scoping. One way to avoid the problem is to a.dd an
extra condition to the law about renaming of locaJ. va.riables. This requires the following
concept:

Definition 3.10 (Contiguous scope)

We say that a variable x has a contiguous scope in a program p if

e p contains no free program identifiers (standing for call commands) or

e if X is free in p, then x is not free in (the program defining) X .

•

~

42 3.18 Static Declaration

The concept also applies when X is the name of a procedure, which will be dealt with in
Chapter 5. The law then becomes:

Law 3.18...11 If V is not free in P and z has a contiguous scape in p, then

dec z _ p = dec yo. p[z _ y} (dec rename)

We can ensure that programs will always have contiguous scope (With respect to any local
variable) by requiring that nested declarations always use distinct names for variables
(which are also distinct from the names used for global variables). When applying the
above law we will assume that the condition of contiguous scope is aI ways satisfied.

The value of a declared variable is totally arbitrary. Therefore initialisation of a variable
may reduce nondeterminism.

Law 3.18.5
(1) decl"p!; decz.z:=e; p (dec-:= initial value)
(2) decz,p !; decz.z:E b; p (dec-:E initial value)

An assignment to a variable just before the end of its scope is irrelevant. But a generalised
assignment cannot be completely ignored, since it roay result in a miracle.

Law 3.18.6
(1) dec" p dec z • p; z := e (dec-:= final value)
(2) dec"p l,; dec z _ p; z :E b (de<:- :E final value)

The scope of a variable may be increased without effect, provided that it does not interfere
with the other variables with the same name. Thus each of the programming constructs
has a distrihution law with declaration. For example, if one of the a.rguments of the
sequential composition operator declares the variable z then the 8cope of the declaration
can be extended with the other component, provided there is no capture of free variables.

Law 3.18.7 If z i8 not free in q

(1) (de" 0 p); q = decz 0 p; q (;-dec left di,t)
(2) q; (deczop) = deczoq; p (; -dec right di't)

When both arguments declare the 8ame variable, the two declarations can be replaced
with a 'ingle one.

Law 3.18.8 (decz _ p); (decz _ q) ~ decz _ Pi q (dec-; di,t)

But note that this may reduce nondeterminism. Consider the case where q is y := %.

Then the final value of y on the left-hand side of the above inequation would be totally
arbitrary. On the right-hand side, however, it may be the cue that z was asaigned a value
in p; thus the final value of y would be that of z. In aU cases, the right-hand side is at
least 8B deterministic as the left-hand side.

~

3.19 Dynamic Dec1a.ratjon 43

If each Mgument program of a guarded command set or conditional declares the variable

x then the declaration may be moved outside the comltructor, provided that % does not

occur in the guards or in the condition.

Law 3.18.9 IT z does not occur in a or b

a _ (dec x e p) 0 b _ (decx e q) = dec x e a _ pO b _ q (de<: - 0 diat)

Law 3.18.10 IT x does not occur in b

(decxep)<tbl>(decxeq) = decxep<tbl>q (dec - 0 l> dist)

Note that it is possible to deal with cases where x is only declared in one of the branches

(and is not free in the other one) by using Law 3.18.3.

Declaration can also be moved outside an iteration, possibly reducing nondeterminism.

As shown below, this law can be derived from more basic ones.

Law 3.18.11 IT x does not occur in b

b*(decxep) b: deczeb*p (dec - * dist)

Proof:

(Definition 3.9(Iteration) and (p fixed point)(3.8.1)}

RHS = dec. 0 (p; b. p) <l b l> skip

{(dec - <t l> di,t)(3.18.10) and (dec elim)(3.18.3)}

RHS = (dec. 0 p; b> p) <l b l> skip

=> {(dec-; dist)(3.18.8)}

RHS~((dec.op); RHS)<l b l>skip

=> {Definition 3.9(Iteration) and (p least fixed point)(3.8.2)}

RHS ~ LHS

•

3.19 DynaInic Declaration

The command war x introduces a dynamic scope of x which extends up to

e the end of the static scope of x or

e the execution of the command end x

whichever comes first.

An operational argument may help to clarify how the two kinds of declaration differ. The
general idea is to associate an unbounded stack with each variable. One can think of a
static declaration of x as introducing a new variable (which is assigned an arbitrary value)

3.19 Dynamic Declaration 44

witb its (implicit) unbounded stack which is initially empty. Rather than creating a new
va.riable, the commands for dynamic decla.ration operate OD this stack. The effect of var %
is to push the CWTent value of %onto the stack, assigning to % an arbitrary value; end %
pops the stack and a.ssigns the popped value to %. If the stack was empty, this value is
arbitrary.

Recall from Section 2.6 that having separate conunands to introduce and end the scope
of a variable is an essential feature to define the encoding and decoding progt'&m8 used
in our approacb to data refinement; the encoding program introduces the abstract state
and ends tbe scope of the concrete state, whereas the decoding program introduces the
concrete state and ends the scope of the abstract state.

var and end obey laws similar to those of dec. Both val and end are associative in the
sense described below.

Law 3.19,1 If x and y have no variables in common
(1) (val x; vary) = varz,y (var assoc)
(2) (end:!:; endy) = endz,y (end assoc)

The (dynamic) scope of a variable may be increased without effect, provided that this
does not interfere with other free variables.

Law 3.19.2 If x is not free in p

(1) Pi varz = var%j P (var change scope)
(2) end:!:i P = Pj end% (end change scope)

Both var and end dUitribute rightward through the conditional, as long as no interlerence
occurs with the condition.

Law 3.19.3 H b does not mention x

(1) (vorr; p)<1 b t>(varr; q) ; varr; (p<1 b t>q) (var - ~ t> right dist)
(2) (endr; p)<1 b t>(endr; q) ; endr; (p<1 b t>q) (end - <1 t> right di.t)

As expla.ined above val x assigns an arbitra.ry value to z. The nondetenninism can be
reduced by initialisation of z.

Law 3.19.4
(1) varx 'b (valxi %:= e) (var-:= initial value)
(2) varz 'b (varx; %:E b) (var-:E initial value)

An assignment to a. variable just before the end of its scope is irrelevant. But a generalised
assignment cannot be completely ignored, as it may result in a miracle.

Law 3.19.5
(1) "'d r ; (r:; e; end r) (.nd-:; final value)
(2) ..d r I; (r:E h; end r) (end-:E final value)

3.19 Dynamic Declaration 45

The next two laws &re essential for reasoning about data refinement. They are precisely
the ones that assign the dynamic declaration semantics to var and end. The first law says
that end Z followed by var z leaves all variables but z unchanged; var z followed by end z
has no effect (even on z). Therefore the pair (end z, var z) is a simulation.

Law3.19.6 (endx;varz) l;: skip = (varz;endz) (end - var simulation)

The second law postulates that the sequential composition of end z with var z has no effect
whenever it is followed by an assignment to z that does not rely on the previous value of
x. .,

Law 3.19.7 (endzj varz; z:E b) = z:E b (end - var skip)

Observe that the syntax of static decia.ration (dec) promptly disallows the above two laws,
since there is no separate construct to end the scope of a valiable.

The following laws relate the two kinds of deciacation. They formalise the intuitive mean
ing given in the beginning of this section.

If the first command in the scope of a static declaration of z is var z or end z, this command
has no effect.

Law 3.19.8
(1) decz. varz; p = decz. p (var eliml)
(2) decz. endzj p = decz. p (end eliml)

First we give a.n operational justification of (1). Recall that a static declaration of z
create'! an implicit stack which is originally empty. Then the effect of var z on the left
ha.nd side of (1) is to push the current value of z (which is arbitrary) onto this stack,
and to assjgn an arbitrary value to z. But the value of z was already arbitrary; thus
the assignment has no effect. Furthermore, the effect of pWlhing an arbitra.ry value onto
the empty stack is also immaterial. The only command that may access this value is
a subsequent end z which would assign an arbitracy value to z if the stack Wall empty
anyway. The justification of (2) is simpler. As the stack associated with z is initially
empty, the effect of end z is to assign an acbitrary value to z; hut the value of z was
already arbitrary.

As we said before, the dynamic scope of a variable z cannot extend further than its static
scope. Therefore starting or ending a dynamic scope of z just heCore the end of its static
scope is irrelevant.

Law 3.19.9
(1) decz.Pi varz decz. p (var elim2)
(2) dec x • p; end x = decz. p (end'lirn2)

In some ase8, there is no need to distinguish between a static and a dynamic scope
of a given variable. To state this law we need two auxiliary concepts. One is that of a
contiguous scope, as defined in the previous aection (Definition 3.10). The other is defined
below.

3.19 Dynmc Declaration	 46

Definition 3.11 (Block-structure)

A program p is block-structured with respect to a variable z if each dynamic declaration

of z in p (vat:r) has a corresponding, staticaJly determined, undeclaration (end :r). More

precisely,

1.	 all programs that do not contain the commands var x or end z axe block-structured
with respect to :ri

2.	 if P is block-structured with retlpect to z, 80 is

va,:r; Pi end:r .

•
Then we have the following law.

Law 3.19.10 IT P is block structured with respect to x, a.nd x has a contiguous scope in
p, then
dec:r • P = var Xi Pi end:r (dec - (var, end) conversion)

From the above, we derive the following law about introduction of local declarations.

Law 3.19.11 IT P is block structured with respect to x, and x hAS a contiguous scope in
p, then
:r :E bj P; :r:E c = (dec%.:r:E b; P)i x :E c (dec introduction)

Proof:

LHS

({end - V" ,kip)(3.J9.7))

end Xj var :r; :r :E bi Pi end x; va, :rj %:E c

({dec - (v.., end) coQver,ioQ)(3.19.10))

end Zj (dec x • x:E bi p); var %i %:E c

=	 ({end change ,cope)(3.19.2))

(decx • x :E b; p); end %j var x; Z :E c

({end - va< ,kip)(3.19.7))

RHS

•
The above two laws will be used in the next chapters to perform transfonn.a.tions on source
progr&lll8. These are always block-structured, since var and end are not part of our 80urce
la.nguage. In the previous section we explained how to ensure that programs always have
contiguous scope (with respect to any locaJ variable). Therefore these laws will be applied
assuming that these conditions are always satisfied.

3.20 The Correctness of the Basic Laws

In a purely algebraic view, the laws of a given language are an algebraic semantics for this
language. There is no place (or the task of verifying the va.lidity of the more ba.sic Laws;
they are axioms w hieb express the relationship between the operators of th~ language.
However, the method of postulating is questioned by those who {aUow a model-oriented
approach, eopecially when the set of axioms is relatively large, as it is here. Poatulating
an inconsistent set of laws could be a disaster: it would allow one to prove invalid results,
like the correctness of an inaccurate compiler.

The way to avoid this danger is to link the algebraic semantics of the language with a
mathematical model in which the laws can be proved. For example, Hoare and He [46J
provide a relational model (or programs where the correctness of the laws could be es
tablished by appealing to the calculus of relations [71]. Another model that hiLS gained
widespread acceptance is the predicate transformer model of Dijskstra [21], which was
briefly discussed in the previous chapter. In this case, the semantics of each language
construct (that is, its weakest precondition) is given, and the laws are verified by appeal
ing to the predicate calculus.

It is also possible to link the algebraic semantics of the language to a more concrete
(operational) model. This allows to check for feasibility (implementability) of the language
operators. But in our ca.se this is not possible, as our language includes non-implementable
operators.

Once the laws have been proved, in whatever model, they should serve as t.ools for carrying
out program transformation. The ma.thematical definitions that allow their verification
are normally more complex, and therefore not appealing to practical use. This separation
of concerns is well described in [42], which explores the role of algebra and models to the
construction of theories releva.nt to computing.

But even aIter the model has served its intended purpose, additional remIts of practical
interest can be a.c.hieved. For example, from the experience in the application of basic
algebraic laws of programming to 90lve a given task, one discovers more elaborate trans
formation strategies that allow more concise and elegant proofs. This wa.s illwtrated in
the section on iteration, where a.ll the laws were derived from more basic oneo.

In the remainder of this section we use the predicate transformer model to illustrate how
tbe ba.sic laws of our language can be verified.

Predicate Transformers

We deal only with a few language operators. Their definitions as predicate traneformers
were given in the previous chapter, but are repeated here for convenience. In the fQUowing,
a ranges over the set of predicates, p and q stand for arhitrary progra.ms, and 'P for an

3.20 The Correctness of the Ba,sjc Laws 48

arbitrary set of programs.

skip ~).0.0

..L ~). a • false

T ~).aetrue

U"P ';! ~ao(3X E"PoX(a))

n"p ';! ~ao(VXE"PoX(a))

p; q ';! ~aop(q(a))

The definition of the remaining operators can be found, for example, in [5J. From the
a.bove definitions we can prove the laws of the corresponding operators. For example, from
the defi..ni.tion of ~ we Ca.D derive its chara.cterisatloD in terms of weakest preconditions:

p~q

_ {Definition 3.1(The ordering Relation)}

(p n q) = p

-= {Definition of n}
(~a 0 p(a)" q(a)) = p

= {The axiom of extensionality}

Va 0 (p(a) " q(a) '" pta))
= {Predicate calculus}

Va 0 (p(a) => q(a))

which corresponds precisely to the definition of refinement a.dopted in all a.pproaches to the
refinement calculus based on weakell preconditions, as discusaed in the previous chapter.
As another example, we verify Law (u-n dist)(3.7.2).

(u"p)np

{Definition of n}

~ a 0 (U"P)(a) "p(a)

{Definition of U}

~ a 0 (3X E"P 0 X(a» "p(a)

{Assuming that X is not free in p}
~ a 0 (3 X E "P 0 (X(a) 1\ p(a)))

{Definition of n)

~ao(3XE"Po(Xnp)(a»)

{Set theory}

~ a 0 (3 X E {X, X E "P , (X n p)) 0 X(a»

= {Definition of U}

U{X, X E"P, (X np))

Chapter 4

A Simple Compiler

Setting up equations is like translating from one lan
guage into another.

- G. Polya

In the first two sections of this chapter we describe the nonnal form as a model of an
arbitrary executing mechanism. The normal form theorenJ.B of Section 4.2 are concerned
with control elimination: the reduction of the nested control structure of the source
program to a single flat iteration. These theorems are largely independent of a particular
target machine.

In the subsequent sections, we design and prove the correctness of a. compiler for a subset
of our source la.nguage, not including procedures or recursion (which are dealt with in
the next chapter). The constructions considered here are skip, assignment, sequential
composition, demonic nondeterminism, conditional, iteration and local declarations.

As described earlier, we split the compilation process into three main phases: simplifi
cation of expressions, control elimination and data refinement (the conversion from the
abstract space of the source program to the concrete state of the target machine). The
control elimination phase in particular is directly a.chieved by instantiating the generic
theoreIllil of Section 4.2.

Every theorem directly relevant to the compilation process has the status of a MLle. Each
rule expresses a transformation which brings the source program closer to a normal form
with the same structure as the target ma.chine. The final section shows that, taken
collectively, these rules can be used to carry out the compilation task.

It is important to emphasise the different roles played by the algebraic laws described
in the previous chapter and these reduction rules: the laws express general properties of
the language operators, whereaB the rules serve the special purpose of transforming an
arbitrary program to a normal fonn. The laws are necessary to prove the rules, and these
(not the laws) are used to carry out compilation.

49

4.1 The Normal Form	 50

4.1 The Normal Form

A program of the form

dectletl:Ea; b*p; C.L

can be interpreted a8 a very genera.! model of a machine executing a stored program
computer in the following way:

•	 The list of variables 17 represents the machine components (for example, registers).
They are introduced a.6 local variables since they have no counterpart at the BOurCe
level; thexefore their final values are irrelevant.

•	 a is an aasumption about the initia.l state; if it is impossible to make a true by
aasigning to v, the machine behaves miraculously.

e	 p is the stored program; it is executed until the condition b becomes false. Usually,
p will be a guarded command set of the form

bt-Plo ... ob.-p.

Wbenever the machine is in state bi the action (or instruction) p; is executed. In
this case, the condition b Is given by

... V ... V D.

•	 c is an assertion about the final state of the machine; if execution of the stored
program does not assert c, the machine ends up behaving like abort.

Notice that, upon termination of the iteration b .. p, b is false and we have

b.p; C.L = b.p; (...,bhi C.L = b*p; (...,bt\ch

Thus, ~bere is no loss of generality in assuming that c = (...,b t\ c), and consequently that
(b t\ c) = false. The normal form thoorems will rely on the assumption tha.t b and care
disjoint.

A normal form program will be abbreviated a.6 follows.

Definition 4.1 (Normal form)

!1: [a, b _ p, c) ~.g dcco. tI:E a; b .. p; C.L, where (b t\ c) = false.

•
For convenience, we will sometimes use the form

17; [a, (b l _ 1'1° ... 0 b. - P.), eJ
as a.D abhreviation of

" , [a, (D, V ... V D.) ~ (... ~ PI 0 ... 0 D. ~ P.), c)

4.2 Normal Fonn Reduction 5l

4.2 Normal Form Reduction

To reduce an a.rhitrary progra.m to normal fonn, it is sufficient to show how each primitive
command can be written in normal form, and how each operator of the language (when
applied to operands in normal form) yields a result expressible in normal fonn. The
following reductions involve no change of data representation. Therefore we can directly
compare the source constructs with the associated normal fonn progranl8.

If the initial state coincides with the final state, the machine does not perform any action.
In more concrete terIrul, the empty code is a possible implementation of skip.

Theorem 4.1 (Skip)

skip ~ v: [a, b - p, a]

Proof:

RHS

{(. elim)(3.17.1), remember a A b = false)

decv. v:E 6; 61.

H:E void a")(3.16.4) and (;-skip unit)(3.3.1)}
dec v • v :E a; skip

:;r {(dec-:E initial value)(3.18.5) and (dec e1im)(3.18.3)}

LHS

•
The following lemma shows how a primitive command can be written in normal form.
Actually, the lemma is valid for all programs p, but we will not make use of it for non
primitive constructs because we follow an innermost (bottom-up) reduction strategy.

Lemma 4.1 (Primitive commands)
If v is not free in p then

p ~ v: [a, 6 _ (p; v:E C), c]

Proof:

RHS

{(. unfold)(3.17.2) and (. elim)(3.17.1))

dec v • v :E 6; p; v :E c; C1.

:;r {(dec-:E initial value)(3.18.5) and (:E void c")(3.16.4)}

dec v • Pi v :E C

:;r {(dec-:E final value)(3.18.6) and (dec e1im)(3.18.3))

LHS

•

4.2 Normal Form Reduction 52

The following normal form representations of skip and assignment are instantiatioIlH of
the above lemma. The one of skip is further simplified by the fact that it ill an identity of
sequential composition. The operational interpretation is that skip can be implemented
byajwnp.

Theorem 4.2 (Skip)

skip ~ u:[a,(a_v:Ec)'c]

•

Theorem 4.3 (Assignment)

z := e ~ v: [a, a -+ (z := e; v:E c), cJ

•

The reduction of sequential composition assumes that both arguments are already in
normal form, and tha.t the final state of the left argument coincides with the initial state
of the right argument. The components of the resulting normal form are the initial state
of the left argument, the final state of the right argument a.nd a guarded cornm.a.nd set
that combines the original guarded commands.

First we prove the reduction of sequential composition for the particular case where tbe
guarded command set of the right argument includes that of the left argument.

Lemma 4.2 (Sequential composition)

v[a,b,~p,e.,]; v [e.,'(o :;::).,1 c; v:[a,(o ~::).cJ

Proof:
Let R = (b, ~ p 0 b, ~ q).

LHS /

c; {(dec-; di,t)(3.18.8)}

dec tI e v :E a; h-t * P; Co..!.; v :E co; (bt V b:z) * Rj c..!.

c; {(v:E e., refined by e., ')(3.19.6) and (e.," - e.,' simulation)(3.11.10)}

decvev:Ea; b1 *p; (b1Vb:z)*R; CJ.

{(. - 0 elim)(3.17.4)}

dectTetT:Eaj bt*R; (blVb'l)*R; CJ.

{(. sequenre)(3.17.7))

RHS

•

4.2 Normal Fonn Reduction 53

Now we show that the guarded command set of a normal form program can be reduced
by eliminating arbitrary guarded commands. We obtain & program which is worse than.
the original one.

Lemma 4.3 (Eliminate guarded command)

I>, ~
.:[a, (0 b,~

p)
q'

c] ;) .: [a, I>, ~ p, c]

Proof:
LetR=(I>,~pO bo~q)

LHS

;J {Lemma. 4.2(Sequential composition)}

11 : [a, b1 --t p, c); t1: [e, R, e]

;) {Theorem4.1(Skip) and (;-skip unit)(3.3.1)}

RHS

•
The reduction of sequential composition is proved directly from the above two lemmas.
These lem..maa will be of more general utility.

Theorem 4.4 (Sequential composition)

.: [a, b, ~ p, ".]; • : ["., b, ~ q, c] <; .: [a, (0 ~::). c]

Proof:

RHS

;) (Lemma 4.2(Sequential composition)}

.:[a,b,~p,,,,]; .:[Co'(O ~::).CI

;) {Lemma 4.3(E1iminate guarded commaud))

LHS

•
The following lemma shows how to eliminate a conditional command when its branches
are norm&l form programs with identical components, except for the initial state. The
first action to be executed in the resulting normal form program determines whith of the
original initial states should be activated.

4.2 Normal Form Reduction 54

Lemma 4.4 (Conditional)
If v ie not free in b then

v , [a" R, ,I <l b I> v , la" R, ,j ~ v, [a, R, ,j

a --+ (v :E aJ 4 b t> v:E a-.I))
where R= (0 bl --+ P
Proof:

RHS
{(. - 0 unfold)(3.17.3)}

decv_":Ea; (v:Ea I 46 t>v:E~); (aVb1).Rj c)..
{(;- <l I> left di,t)(3.14.6)}

decv 0 v 'E a; ((v 'E a,; (aV b,) 'R; ';) <l b I> (v 'E a,; (a V 1>,). R; ';))

{(,E - <l I> right di,t)(3.16.6) and (dec - <l I> di,t)(3.18.10)}

(deev _ v :E a; v:E al; (a V bt). R; c)..) 4 b t>

(decv_v:Ea; tl:E~; (aVbt).R; c)..)

;J {(dec- 'E initial v.lue)(3.18.5)}

LHS

•
The above lemma. is useful for intermediate calcula.tions. It 1S used in the proof of the
normal form redudion of conditional and iteration commands.

Theorem 4.5 (Conditional)
If " dOoeS not occur in b then

v: [all bt --+ P, cIl 4 b t> v: [~, ~ --+ q, c] ~ v: [a, R, c]

a --+ (v:E al 4 b t> 11:E ~))

61 --+ P 0 cl --+ v :E c
whe"R= (~
b, ~ q

Proof:

RHS
;) {Lemm.4.4(Conditional)}

v, [a" R, ,j <l b I> v, la" R, ,j
;) {Lemmas 4.2(Sequential comp",ition) and 4.3(Eliminate guarded command)}

(,,: [aJ, ~ --+ P, CI]; v: [CII CI --+ 11:E C, cJ) 4 b t> v : [~, l? --+ q, cJ

;) {Themem 4.2(Skip) and (;-skip unit)(3.3.1)}
LHS

•

4.2 Normal Form Reduction 55

The next leouna. establishe9 a simple fact: if the unique effect of the first guarded command
to be executed is to make a certain expression trLle, we may substitute the expression fOT
the illitial sta.te of the normal fonn program.

Lemma 4.5 (Void initial state)

Co ---. » :E a), c} ;;;! eo ~ • 'E a)
.'[eo'(o 6~p v : [a, (0 b -+ p , cJ

Proof:

LHS
{(. - 0 unfold)(3.17.3))

(
eo ~ • 'E a)

dec v • v :E Co; v :E a; (Co vb). 0 b -+ P ; cJ.

~ {(dec- 'E initial valuo)(3.18.5))

RHS

•
In order to reduce an iteration oomrnand, we asSUIJ)e that its body is in normal form. Let
ao and Co be the initial and final states of this nonnal fonn program. The nonnal fonn
of the whole itera.tion behaves a.e follows. The first action to be executed is a conditional
command which tests if the oondition of the iteration holds, in which case ao is activated;
otherwise, the program reacbe9 its final state. When Co is activated, the guard of the first
action is activa.ted 80 that the conditional command is executed again.

Theorem 4.8 (Iteration)
If v does not occur in b then

6 •• , [110, 6, ~ p, eoJ C; ., [a, R, eJ

a~(",EIIo"6l>",Ee))
where R ='" 0 Co -+ v :E a

(o bl-+p
Proof:

RHS
~ {Lenuna 4.4(CoDditional))

v, [110, R, cJ" 6 l> v, [e, R, e)
~ {Lemma 4.2(Sequential compo.ition) and Theorem 4.1(Skip))

v, ["", 1>, ~ p, eo]; v, [eo, R, cJ " b t> ,kip
~ {Lemma 4.5(Yoid initial .tate))

(v, [110, 1>, ~ p, eoJ; RHS) " 6 t> ,kip

The final result follows from the above and (IJ least fixed poinl}(3.8.2).•

http:poinl}(3.8.2).�

4.3 The Target M&c.Illne 56

The nondetenninistic choice of two programs can be implemented by either of them:. We
can actually eliminate the choice At the source level, and avoid compiling one of the
components.

Theorem 4.7 (Nondeterminism)

(1) (pnq) I; p
(2) (p n q) I; q

Proof: From (I; -n glb)(3.6.7).•

4.3 The Target Machine

The compiler we design in the next three sections produces code foc a simple target
machine which consists of four components:

P a sequential register (program counter)

A a general purpose register

M a. store for variables (RAM)

m a stOre for instructions (ROM)

The idea is to regard the machine components as program variables a.nd design the in
structions as assignments that update the machine state.

P and A will be represented by single variables. Altbough we do Dot deal with types
explicitly, P will be assigned integer expressions, standing for locations in ROM. A will be
treated as an ordinary source variable; it will play 8.Il important role in the decomposition
of expressions, which is the f1uhject of the next section. M will be modelled. as a map from
addrcsse!l of locations in RAM to expresioD1l denoting the correspond.ing values, and. m
as a map from addreses of locations in ROM to instructions.

In order to model M and m, we need to extend our language to allow map variables. We
use tbe foUowing operators on maps:

{z ~ e} Singleton map
ml U In'J union
m. ffi In'J overriding

m[zJ application

Furtbennore, we use the fonowing abhreviations:

{Zl •... 'Z.~ el' ...• e.} 4.;! {Zt~ et}U ... U{z.~ e.}

m[zt,.··.z.] ~ mfzd, ... ,m[z.)

In tbe first case we assume that no variable appears more than once in the list ZI •••• ' z•.

One of the greatest advantages of algebra is abstraction. An the laws of our language are
unaffected by this exteD1lion. In particular, the laws of assignment and declaration CAn be

http:glb)(3.6.7).�

4.4 SffiJplificatjon of Expressions 57

readily used to manipulate ma.p variables and expre5sions, and no additional laws tlU:n
out to be necessary. For example, we can combine the two assignments

m:=mlll['~ e}; m:=mlll{y~1l

by using Law {:= combination}{3.15.4}, re5u1ting in

m:=mlll{'~ e}1lI{y~1l

Similarly,

m:=mEf;l{zl---+e};endm

is equivalent to (from Law (end-:= final value)(3.19.5))

end m

The instructions of our simple machine are defined below. We assume that n sta.nds for
an address in RAM and ,t for an address in ROM.

lo.d(n) '" = A,P:=Mn],P+!,[,./
store(n) = M,P:=(MIlI[n~A}),P+!

,~ [bop-A(n) = A,P:~(AhopM n]),P+!

uop-A '2 A,P:=(uopA),P+!

jump(k) ~ P:=,t,./
cjump(k) = P:~ (P + 1 <l A 1> k)

where

z:= (et <I b I> e-:l) '" = (z:= el <I b I> % := e1}

and, as before, bop and uop stand for arbitrary binary and unary operators, respectively.

The normal form describing the behaviour of this machine is an iterated execution of
instructions taken from the store m at location P:

d",P,A,P:=8; (8~P<Il.mIP]; (P=/h

where s is the intended start address of code and f the finish address. The aim of the
following sections is to show how an arbitrary source program can be reduced to this form.

4.4 Simplification of Expressions

One of the tasks involved. in the translation process is the elimination of nested expresaions.
The outcome of this phase is a program where each assignment is simple (!lee definition
below). Furthermore, all the local variables are expanded to widest scope, '0 that they
can be implemented 88 global variables. Of course, this is valid only in the absence of
recursion, and it requires that all local variables have distinct names, which must a.1so be
different from the names used for global variables.

4.4 Simplification of Expressions 58

Definition 4.2 (Simple assignment)

An aasignment is simple if it haa one of the forms

A:=3;

z :=A

A:=Abopz

A:=uopA

where z is a. source variable.•

These patterus are closely related to the ones used to define the instructions. For example,
the first one will eventually turn into a load instruction: the vilUiable P will appear a.s a
result of the control elimination phase, and z will be replaced by its memory location a.s
a result of the change of data representation.

Iu the remainder of this section we will show how to simplify expressions by using the
register variable A and new local variables. We assume that z is a. single varia.ble and e
a single expression, rather than arbitrary lists.

The first rule transfonl'lB &Il assignment into a block that introduces A as aloca.1 variable.

Rule 4.1 (Introduce A)

If A doell not occur in z := e

(z:=e) = decAeA:=e; z:=A

Proof: From the laws to combine assignment and eliminate local variables.•

Note tha.t the assignment z ;= A is alrea.dy simple. By transfonning all the a.ssignments
in this way, we need only simplify expressions assigned to A. The bext rule deals with
unary operators.

Rule 4.2 (Unary operator)

(A,=uope) = (A,=e;A,=uopA)

Proof: From the law to comhine assignments.•

Observe that the second assignment on the right~hand side of the above equation is simple.

To deal with binary operators we need to introduce a fresh local variable t, It plays the

role of a temporary variable that holds the value of a subexpression.

RUle 4.3 (Binary operator)

If neither A nor t occur in e or J

(A'=ebopf) = dect.A,=!; ',=A; A,=e; A,=Abop'

4.4 Simp1iJication of Expressions 59

Proof:

RHS
{(,= combination)(3.15.4) and (:= identity)(3.15.2))

decteA:=/j t:=/; A:=ebopt
{(:= combillation)(3.15.4) and (:= identity)(3.15.2))

dec! 0 A := [: A:= 'bop[; t := [
{(,= combination)(3.15.4), (dec-:= final value)(3.18.6) and

(dec elim)(3.18.3))

LHS

•
Again, the only expressions that may still need to be simplified (e and f) are botb assigned
to the variable A. An exhaustive application of the above rules will simplify arbitrarily
nested expressions, turning every assignment into a simple one.

When the expression / above is a variilble, it is unnecessary to creat.e a temporary variilble
to hold its value. The following is an optimisation of the previous rule for this particular
case.

Rule 4.4 (Binary operator - optimisation)
If A does not occur in e or x

(A:= ,bopz) = (A:= '; A:= Abopz)

Proof: From the law to combine assignments.•

Tbe boolean expressions appearing in iteration and conditional commands may a.lso be
arbitrarily nested. a.nd therefore need to be simplified.

Rule 4.5 (Condition of itera.tion)
If neither A nor v occur in b

b .(decv,A e p) ;; decv,A e A:= bi A. (Pi A:= b)

Proof:

RUS
{(p fixed point)(3.8.1))

dec.,A 0 A:= b; ((p; A:= b; A_ (p; A:= b)) <l b t> skip)

{(:= - <l t> rigbt dist)(3.15.7l, (dec - <l t> dist)(3.18.10) aDd

(dec elim)(3.18.3))
(dec.,AoA:=b; p; A:=b; A_(p; A:=b))<l b t>skip

;J {(dec-; dist)(3.18.8) and (dec-:= initial value)(3.18.5))

((dec.,A 0 p): RUS) <l b t> skip

The result foUow8 from (p leoot fixed point)(3.8.2).•

http:point)(3.8.2).�

4.5 Control Elimination	 60

The local variable A on the left-band side of the above lDequation is a result of tbe simpli
fication of assignments in p. LikewiBe, t1 may be an arhitrary list of temporary variables
created to simplify boolean operators or originally introduced by the programmer. By
moving these declarations out of the body of the iteration, we avoid nested declarations
of the variable A. The expression b can now he simplified using the previous theorems.

In a similar way, we can simplify the boolean expressions of conditional statements.

Rule 4.6 (Condition of conditional)
If neither v nor A occur in b

(dec.,A.p) .. b c>(deev,A.q) (;; de<v,A.A,~b; (p .. A C>q)

Proof: Similar to the one above.•

The following theorem summarises the outcome of this phase of compilation.

Theorem 4.8 (Expression simplification)

For an arbitra.ry source program p, there is a program q such that

pi;;decv,A. q

where q contains no local declarations, all assignments in q are simple and the only

boolean condition in q is the variable A.

Proof: By structural induction using rules 4.1-4.6, together with the following laws:

•	 (;-de< di.'}(3.18.7, 3.18.8)
This is used to increase tbe scope of the local varia.bles as much as possible.

•	 (d,e ...oe}(3.18.1) aDd (de< rename}(3.18.4)
Tne former is used to eliminate nested declarations that ma.y have been introduced
by the programmer or resulted from the simplification of boolean operators; the
latter ie u::Jed to rename nested occurrences of variable:! which were declared with
the same name, so that the nesting can be eliminated.

•	 (de< elim)(3.18.3)
Rule 4.6 assumes that the local variables of the two hranches of a conditional are
the same. The above law CAn be used. to introduce void declarations to ensure t.hat
this assumption will be satisfied.

•
4.5 Control Elimination

Recall that the machine considered here is equipped with a register P which is used
for scheduling the eelection and eequencing of instructioD8. Thie can be simulated by
regarding P as a variable in the foDowing way:

4.5 Control El.imi.natjon 61

• Selection is achieved by representing the stored program as a set of guarded com~

manda, each one of the form

(P=«)~q

meaning that q (standing for some machine instruction) will be executed when P
has value k.

• Sequencing is modelled by incrementing P

P:= P + 1

• A jump to an instruction at memory location k is achieved by the assignment

P:= «

Clearly, the initial value of P must be the address of the location of the first instruction
to be executed. These conventions are our basis to transform the nested control structure
of the source program into a single flat iteration which models the execution of a stored
program. The outcome of this section is a simple normal form program.

Definition 4.3 (Simple normal form)

We say that a normal fonn program is simple if it has the form

P:[(P=,),b~p,(P=f)J

where p is a set of guarded cornrn.ands of the form

O.9<J(P = k) -+ :ej;,P:= el, dl

and b is the union of the guards (P = k), for all k such that s ~ k < /. Furthennore,
the assignment :ej;, P := e", d" follows one of the patterns used to define the machine
instructions, except that the source variables may not yet have been replaced by their
corresponding memory locations (this is addressed in tbe next !Mrlion).•

Reduction to this simple normal form can be a.c.h.ieved by instantiating the normal form
theorems of Section 4.2, taking into account the particular encoding of control state of
our simple ma.cbine. In the following we abbreviate

P: [(P = ,),b ~ p,(P =f)J

to

P: ["b ~ p,f]

The purpose of the first implementation of skip is to generate empty code: false -lo skip is
equivalent to T which is the identity of o.

4.5 Control Elimination 62

Rule 4.7 (Skip)

skip (; P: [s, false - skip, s]

•
Rule 4.8 (Skip)

'kip <; P:I,,(P=s~P:='+I),,+lJ

•
Rule 4.9 (Assignment)

(x:=e) <; P:[,,(P=,~(x,P:=e,P+l)),,+l]

•
Rule 4.10 (Sequential composition)

(P: Is, b, ~ P'/o]); (P : I/o, I>, ~ q,f)) <; P: Is, (0 ~: ~)'f]

•
Rule 4..11 (Conditional)

(P: Is + I, b, ~ P'/o]) 4 A l> (P : Ifo +I, b, ~ q,f]) <; P: [s, R,/]

P =, ~ P:= (P + 14 A l> 10 + I))
whereR= (~ bl -t pDP = /0 -t P := /

ba -t q

•
Rule 4..12 (Iteration)

P:I' (P='~P:=(P+14Al>f,+I)),lo+lJA'(P:I,+I,b~p,k]) <; , Ob_pOP=::/o-tP:=s

•
It is worth observing that the above rules assume the allocation of contiguou.s a.ddresses
{or the stored program. For example, the rule for sequential composition asstffiles that
the finish address of the normal form program on the left coincides with the start address
of the norma! form program on the right.

4.6 Data Refinement 63

Strictly, the above rules cannot be justified only from the reduction theorem8 of Section
4.2. Some additional (although trivial) transformations are required. As an example, we
present the proof of Rule 4.9.

P,[a,(P=a~(x,P,=e,P+I)),a+l]

{(,= .ub.titution)(3.15.5)}

P, [a, (P = s ~ (x, P ,= e, a + I)),a + IJ
{(,= combination)(3.15.4) and (,= identity)(3.15.2)}

P, [a, (P = a ~ (x ,= e; P ,= a + l)),a + I]
{(,E - ,= conversion)(3.16.7)}

P , [s, (P = a ~ (x ,= e; P 'E (p = a + I))), a + 1]
] {Theorem 4.3(Assignment)}

x:= e

The additional tra.nsfonnatiolls required to prove the other theorems are similar. The
next theorem summarises the outcome of this phase of compilation.

Theorem 4.9 (Control elimination)
Consider a program of the fonn

decv,A·9

where q contains DO local declaration, all assignments in 9 are simple and the only boolean
condition in q is the variable A. Then there is a simple normal form program such that

decv,A 0 q !;;; v,A,P, [(P = a),b ~ r,(P =J)]

Proof: By structural induction using rules 4.7-4.12, we transform q into

P, [(P = a), b ~ r, (P = fJ]

The final result follows from (dec a.8soc}(3.18.1).•

4.6 Data Refinement

The only task that remains to be addressed is the replacement of the abstract space of
the source program (formed from tbe source variables) hy the concrete state of the target
machine, represented by the store M. AB mentioned in Section 3.10, the idea is to define a
simulation function and use its distributivity properties to perform this data refinement
in a systematic way.

Suppose that i' is a symbol table which maps each global variable of the source program to
the address of the storage Mallocated to hold its value, so M[IP%1 1 is the location holding
the value of %. Clearly it is necessary to insist that W is a total injection. Assuming that
w is a list formed from the global variables (where each variable in the domain of 'P' occurs
exactly once in w) we define the following encoding program.

'-10 UDprove reaaatlilit)' we abhreviue 'he fuDetioo applie&l.ion .[r] to .r.

4.6 Data. Refinement 64

Definition 4.4 (Encoding Program)

4r .. ~ v.rUl; Ul:= M[ww); end M

•
which rdritves the abstract state from the concrete state by assigning to each source
variable the value in the corresponding location. (Recall that we allow list application:
for w = Zl""': the above assignment is equivalent to z, ... ,z:= Mf1Jtz}, ... ,M[wzl.)

The following dtcoding program maps the abstract state to the concrete machine state.

Definition 4.5 (Decoding program)

4r~1 ~ v.rM; M:= M ffi {lIrw 1-+ w}; end tu

•
Also recall that for w = :e, ... , z the above assignment corresponds to

M ,= MEIl({"'z ~ z}U ... U{"'z ~ z})

which updates the memory M at position 1Jtz with the value currently held by the varia.ble
z, and 80 on. The first theorem formaliBes the obvious relationship between i .. and 1)'.;1.

Theorem 4.10 ((4r ... , 4r~I) simulation)

The pair of programs (~.... ~:,I) is a simulation.

Proof:

• • -I
W... i ~ ..

~ {Definitions of 4r ..,~~1 and (end - vOIr simulation}{3.19.6)}

varw; w :=MI1Jtw]; M :=MEEl{1JtlOI-+W}; endw

n= combinalion)(3.15.4) and (:= idenlily)(3.l5.2)}

var w; w, M :~ MI"'wj, (M Ell {"'w ~ M["'w)}); end w
{Properly of map' (M ~ M Ell {"'w ~ M["'w)}) and (:= identily)(3.15.2)}

var w; w := MllII'wl; end to

{(end - Vir .imulalion)(3.19.6) and (end-:= final value(3.19.5))}

skip

{(end - va< .imulation)(3.19.6) and (end-:= final va)ue(3.19.5))}

varM; M := M Ell {"'w ~ w}; end M

{(:= combinalion)(3.15.4) and (:= idenlilY)(3.15.2)}

varM; M := M Ell {"'w ~ w}; w := MI"'w]; endM
{(end - var ,kip)(3.19.7)}

(varM; M:= M Ell {"'w ~ w}, end w); (varw; w:= M["'w]; endM)

{Definitions of i ... ,4r:1}
i:1

j 4r ...

•

4.6 Da.ta Refinement 65

Recall from Section 3.10 that we use the first component of a simuJatiolJ as a (uneti4:>n.
For example, for a program p we have

~ ..(p) = ~.j Pi i;1

Here we generalise thia particular simulation function to take an expression as argument.
The effect of applying Ii; .. to e is to replace free OCCUrrelJce9 of w in e with the corre
sponding machine locations M[li'toJ.

Definition 4.6 (Simulation as substitution)

~.(e) ';1 e[w ~ M[hll

•
In order to carry out the change of data representatiolJ in a systematic way, we need to
prove the following distributivity properties.

Rule 4.13 (Piecewise data refinement)
(1) ~.(skip) c; skip
(2) ~ •.• (% := e) ~ M:= M Eli {>h ~ ~•.•(e))
(3) ~ ...(z := e) i; z;= ~.(e) i(% does not Occur in to

(4) ~.(p; q) c; q,.(p), ~.(q) • .
(5) '!'.(p <l b I> q). c; ~.(p) <l ~.(b) I> ~.(q)
(6) ~.(bo p) c; ~.(b). ~.(p)

(7) ~.(b") c; (4-.(bl)' .
(8) ~.(b ~ p) ~ >t.(b) ~ ~.(p)

(9) ~.(p 0 q) ~ ~.(p) 0 i.(q)

Proof: (1), (4) and (9) follow directly from the fact that ljr", is a simulation (unction

(~Theorem 3.4). Below we verify the others.

(2) ~.,.(. := e)

= {Definition of ~.,. and (end cha.nge scope)(3.19.2))

var z, w; %, W := M[1I'z, w]j % := e; end M; ~;,~

{(:= combinalion)(3.15.4), (:= identily)(3.15.2) and

Definition 4.6(Simulation as substitution)}

varz,w; %,10:= W.,.(e),M[1I'w]; endM; ~;.~

~ {Definition of ~;,~ and (end - vu simulation}(3.19.6)}

var z, W; %, to := ~••• (e), M[1I'w]; M:= Mffi {lj'%, W H %, to}; en~ % I W

{(:= combinalion)(3.15.4), (:= identily)(3.15.2) and

(end change scope)(3.19.2)}

'Iar %, Wj Z, W := i.,.(e), M[li'w]; end %, w; M ;= M EB {1I"z H 4rr.... (e)}
= {(end-:= final value)(3.19.5) and (end - VIr simulation)(3.l9.5)}

66 4.6 Data Refiaement

M ,= M Ell {>/Iz ~ -P.,.(e)}

(3) Shnilar to (2),

(l) -P.(p q b l> q)
=	 {Defini60D of -P. ODd (end - q l> right <Us')(3,19.3)}

var W; w ,= MI>/IwJ; «(end M; p) q b l> (end M; q)); -p~'

{(:= - <:l t> right dist)(3.15.7) and Definition 4.6(Simulation as substitution)}

var W; ((w ,= M[>/Iw]; end M; pH -P.(b) l> (w ,= M[>/Iw); end M; q)); -P~'

((var- q l> right di.t)(3.19.3) ODd (;- q l> left dist)(3.14.6)}

-P.(p) q -P.(b) l> -P.(q)

(6) -P.(bo p)
I;;;;	 {Theorem 3.4(Distributivity of simulation through) p}

p X • -P.((p; -P~'(X)) q b l> skip)

C; {(5) ODd (I)}

p X • (-P.(p; -P~'(X)) q -P.(b) l> skip)

C; ((4) ODd Theorem 3.3(Lift of .imolatioD)}

-P.(b). -P.(p)

(7) Similar to (5).

(8) Recall that (b ~ p) (b,,; pl. Therefore the proof follows from (4), (7) .

•
The a.bove rule deals with the global va.riables. But the local variables v (introduced eitber
hy the progra.mrner or during the simplification of expressions) also require locations to
hold their values during execution. For simplicity, we assume that all local variables are
distinct, and that they are also different from the global variables. We extend the symbol
table lI' t<;I cover all the local va.riabIe:s 17:

>/I';l>/lU{.~n}

where n i~ a li..st of addresses distinct from the ones already used by -q,.

The next lemma. states that the encoding program 4r .. (wben followed by a declaration
of the local variables v) can be refined to an encoding program ,.. that dea.1B with the
global a.nd the local variables.

Lemma 4.6 (Extending the encoding program)

~ .. ; var v !;; .. 'O, ..

4.6 Data R.eJi.nement 67

Proof:

~ .. j varv

(;; {(Vir change scope)(3.19.2), (YO' aB8OC)(3.19.1) and

(var- ,= initial value)(3.19.4)}

van, Wi v := M[n]j to:= M['iw]; end M

{(,= comoination)(3.15.4) and (,= idenlity)(3.15.2)}

var v, 10; v, w := M[n, 'iW]i end M

{Definition of. and (••,.",j = .(v,w))
varV,wi V,W:= M[t(!',W)]i endM

{Definition 4.4(Encoding pro!l'am)}

4...,..

•
The decoding program can be extended in an analogous way.

Lemma 4.1 (Extending the decoding program)

endv·~-lC4.-1
I .. _ ","

Proof:

end Vj ~;l

(;; {(end change 8cope)(3.19.2), (end 88800)(3.19.1) and

(var- ,= initial value)(3.19.4)}

varM; M:=Md){nl-tv}; M:=M${'iWHW}j endtt,to

= n= combin.tion)(3.15.4) and Definition of .}

varM; M:= M d) {t(u,w) I-t tt,w}j end v,W

{Definition 4.5(Decoding program)}
.-1' ..
•
Using the a.bove two lemmas we show how to assign 10ca.tioDB in the memory N to hold
the values of the local varia.bles v.

Rule 4.14 (Allocating local variaol..)

oi-.(decv,P,A.p) (;; decP,A •••.•(p)

Proof:

~.(decv,P,A. p)

4.7 The Compilation ProcesB 68

{Definition 3.6(Simulation function)}
~",; (dee tl, P,A. p); ~;1

(dec llB8Oc)(3.18.1) and (dec - (var,ond) converoion)(3.19.10)}

~.; Vllrtr; (deeP,A.p); endtr; ~:1

[; (Lemm.. 4.6 and 4.7)

~.... ; (dee P,A. P)i i;,~
= (;-dec left di.t)(3.18.7) and (;-dec right di.t)(3.18.7)}

decP,A'~"'(p)

•
The next theorem summarises the outcome of this phase of compila.tion.

Theorem 4.11 (Data refinement)
Consider a. progra.m of the form

decv,A. q

where q contAins no local decla.ration, all assignments in q a.re simple and the only boolean
condition in q is the varia.ble A. Then there is a. program r 6uch that

~ .. (dectl,A. q) ~ dec A • r

where r preserves the control structure of q but operates exclusively on the concrete state
represented by M.
Proof: Using Rule 4.14 (Allocating local variables), we transform

..p",(dectr,A. q)

into

decA 0 ~••• (q)

Then by structural induction using Rule 4.13 (Piecewise data refinement), we transform
i~,,,,(q) into r .•

It is worth noting that tms theorem does not prevent q from being a normal form pro
gram. This suggests that we ca.n ca.rry out data refinement either before or after control
refinement. In the Ia.tter ease, note that Rule 4-.13 (in particular (7),(8) and (9) COVel'S

the additional operators used to describe a normal fOTITl program.

4.7 The Compilation Process

In principle, there is DO reason for imposing &Dy order on the phases of oompilation.
But there are practical considerations which favour some permutations. In particular, we

4.7 Tbe Compilation Proc:eas 69

suggest that the simplifiCAtion of expressions should be the first phase. Performing data
refinement as a first step would not be appea.ling, beea.use the simplifiCAtion of expl'C9!tions
normally generates new local variahles. Therefore a 8eCOnd pb..ase of data refinement would
be required lo deal ,pecifically wilh lhe local declaralions.

We have also explored the possibility of carrying out control elimination 8Jl a first step.
It turned. out to be neasaary to allocate relative addresses to command! of the source
program, and (in the end of the process) to convert them into absolute Addresses. The
standard approach. would be to model an address a.s a pair. For example, the nonnal form
of an assignment sta.tement ~ := uop y (where 1 and y are single variables) wowd be

P, [(1,0), P = (1, 0) ~ (z:= uop y; P ,= (1+ 1,0)), (1 + 1,0)1

As a result of expression lIimplification, the above guarded command would be transformed
into

p = (1,0) ~ «dec A 0 A ,= y; A ,= uopA; • ,= A); P ,= (1 + 1,0))

conta.in.ing only simple assignments. In a similar way, all the other assigD.IDeDts and
conditions of the source program would be simplified.. However, we must eventua.lly end
with a Wnple normal form program, and there &te two remaining tasks. One is to move
the local declarations generated by this process out from the body of the loop; this is
justified by the distribution Ia.ws of declaration with the other operators of our language.
The other task is to split the above command into a series of guarded commands (one
for each assignment) Blld model the sequencing by incrementing the second component of
the pair representing a relative Addre3s:

P=(1,0)~A,=y; P,=(1,1) 0
p = (1, 1) ~ A ,= uopA; P ,= (1,2) 0
P = (1,2) ~. ,= A; P ,= (1 + 1,0)

This is neeesauy to ensure that each instruction will be pla.c.ed in a separ&1e memory
location. Assuming that the relative Address (ot,O) will eventually turn into the absolute
addres8 i, the above becomes

P = i ~ A, P ,= y, (P + 1) 0
P = (j + 1) ~ A,P ,= (uopA),(P+ 1) 0
P = (j + 2) ~', P ,= A, (P + 1)

which is in the required form. While the conversion from relative to absolute addresses
is in principle a simple process, there is the associated proof obliga.tion to show that
the iteration is not affected by this change of data representation. It seems 8eDsible to
avoided these coDlplications by starling the compilation proce9B with the simplfication of
expressions.

Once the expressioll8 are simplified, the order in which data refinement and CXlntrol elim
ination are cacried. out is irrelevant. The following theorem summarises the compilation
proce88.

4.7 The Compilatjon Process 70

Theorem 4.12 (Compilation Process)
Let p be an arbitrary source program. Given a constant 8, and a symbol tabl~ " which
maps each global variable of p to the a.ddress of the memory M allocated to hold its value,
there is II. constant J and II. sequence of machine instructions held in m between locations
s and J such that

W.(p) C; dec P,A. P,~ 8; (8:<0 P < j). mIP]; (P ~ j)"

Proof: From theoreII1fl 4.8 (Expression simplification), 4.9 (Control elimination) and 4.11
(Data refinement)) .p.. (p) is transformed into

decP,A,P'~8; (8:<0 P<j)*p; (P~!h

where p is a guarded command set of the form

O'9<J P = .t - q.

and ea.ch q. is an assignment which corresponds to ODe of the patterns used to define
the ma.chine instructions. This guarded command set is an abstract representation of the
memory m, whose contents are a.ffected by the compilation process as follows:

mil] ~ ql, lors:<o" <!

and the value of m outside the range 8 •• U -1) is arbitrary. This last step corresponds to
the actual loading process. _

A more detailed description of how the reduction theorems can be U900. a8 rewrite rules
to carry out compilation is given in Chapter 6, which deals with the mechanisation of
compilation and proofs.

Chapter 5

Procedures, Recursion and
Parameters

The main characteristic of intellilent thinkina: is that

one is: willinl iJnd abie to Rudy in depth an aspect of

one's subject matter in isolatWn I... }

Such separation, wet' if not perfectly possible, " yet the

only available technique for effec.tive orderina: of one',

thought•.

- E. W. Dijbtra

In this chapter we extend the source language with more elaborate notions: procOOures,
recur8ion and parameters. We show how each of these can be eliminated through redudion
to normal formi but we leave open the choice of a target machine to impleme:ot them.

Most pra.cticaJ. programming languages group these notions into 8 single construction
which allows parameterised recursive procedures. Here we follow Hoare [40], Morgan [54]
and Back [4], and treat them separately-both syntactically and eemantically. Existing
practice is in mOBt c.aaeI realised by appropriate combinatiollB of these features; but the
separation gives more freedom and elegance, and helps to simplify the overall task.

5.1 Notation

In order to prove the correctness of the elimination rule for recursion, we need to extend
our language with sequence variables together with some usual operations. By convention,
& variable name decorated with _ denotes a. &equence varia.ble. The following operators

71

5.1 Notatjon	 72

are used:

() the empty sequence
(.) the singleton sequence with element 7:
%.--.. it the concatenation of i and y
head z the leftmost element of z
Jut z the rightmost element of z
front z the gequence wh.ich results from removing the last element of z
hil z the sequence which results from removing the head element of z
#% the number of elements of z

The mult of head, last, front and tail, when applied to empty sequences, is arbitrary.
Some familiar laws of sequences are reviewed below.

Law 5.1.1	 (laws of sequences)
(1) he.d((.) ~ %) =. = I.st(. ~ (.))
(2) front(. ~ (.)) = %= tail((.) ~ %)
(3)	 If i is non-empty then

((he.d') ~ t.il %) = %= (front %~ (l.st i))

Although the notion of gequences is necessary in the intermediate steps of our proof, the
elimination rule for recursion mentions only patterns wh.ich can be implemented by stack
operations. To emphatlise this point we define the following:

Definition ~.1 (Stack operations)

push(., %) ',1 (.:= (.) ~ %)

pop(.,') ~ (:1:, Z := head i, tail z)

empty i ',1 (%=0)

•
For a list of variables :I: == :1:1, .•. ,:1:. we use the abbreviations

push(:I:,z) ';!,/ push(7:\, it); ... j push(z.,z..)

pop(z,z) ~ POP(ZloZI); ..• ; pop(z.,i,,)

From the laws of sequence, it follows that the pair (pop(z, z), push(z, In is a simulation.

Law ~.I.2 pop(z,z); push(z,z) ~ skip = push(z,z); pop(z,i)
(pop - push simulation)

The following la.w suggests tha.t var and end operate on aD implicit stack that can be made
explicit by UBing push a.nd pop.

5.2 Procedures 73

Law 5.1.3 If i' is not free in p or q, tben
decz • p[X +- van; qj endz] ~ dec.z,i' _ p[X +-'push(z, i'); qj pop(z, i)l

((va., end) - (push, pop) conversion)

Recall that p[X r} is the result of substituting r for every free occurrence of X in p,
where capture of free identifiers of r is avoided by renaming locaJ declarations in p. The
inequality in the above law is a consequence of the fact that pu,h(z, %) leaves z unchanged,
while var z assigns a.n arbitrary vaJ.ue to z.

5.2 Procedures

We use the notation

proc X == p. q

to decla.re a non-recursive, parameterless procedure named X with hody p. The program q
following the symbol_ is the scope of the procedure. Occurrences of X in q are interpreted
as call commands_ The semantiC8 of a call is textual suhstitution, like tbe copy rule of
Algol 60.

Definition 5.2 (Procedures)

(proc X" p. q) ';l q(X _ p]

•
Notice that the above definition could be used as a rewrite rule to eliminate proredures
even prior to tbe reduction of the procedure body and scope to normal form; this tech
nique is known as macro-ezpansion. But tbis may suhstantially increase the ai2e of the
target rode if tbe scope of the procedure contains ala.rge number of callstatemeo.ts. An
alternative is to compile the procedure hody and calls into sepa.rate segments of code so
that, during execution of a procedure caJl, control passes hack and forth hetween these
segments in a ma.nner that simulates the copy rule.

As UBUaJ., the idea is to 88Ilume that the components of the procedure construction (the
body and the scope) are in normal form, as in

6, - (X; .:E "))
a .. , cJ

proc X .= v: lao, lao - p, eo]- tl : [a, 0 6. _ (Xi tl:E r.) ,
(

o 6_ q

where the scope of the procedure may have an arhitra.ry number of call oommards still to
be eliminated; each ri sta.nds for the return address of the corresponding call. The gua.rded

5.2 Procedures	 74

command b -+ q stands for the remaining part of the code which does not contain any
calls of procedure X. By definition, the above it! equivalent to

b, ~ (.: la" Ii" ~ .:E r,))p, ",J;

II: [a, (~ b~' -+ (v: lao, bo -+ p, col; t1:E r.) ,cl
o b -+ q

Therefore the reduction rule for procedures is a special caae of a theorem about removal
of nested Donna} form. We adopt a standard strategy, keeping & single copy of the code of
the procedure body. Whenever any of the conditioIlll D:t, ... , b. is true, the corresponding
return address is saved in a. fresh variable, say w, and the start a.ddress of the code of the
procedure body is assigned. to the control va.ria.bl~ v. On exit from the execution ofthe
procedure body, the value of w is copied hack into v. For this to be valid, it is nec;e,sary
that each T; is not changed by the procedure body (that is, no &00 variable in any To is
assigned by the procedure body). But this is not a serious limitation, since in practice
the free variables of rj are the control variables V, and these are local to the normal form
program which implements the procedure body. The following theorem formaliBell the
overall slrategy.

Theorem 5.1 (Nested normal form)
If w is Dot free on the left·hand aide of the following inequation, and Tj is Dot changed

by • : la" Ii" ~ p, ",], then

b, ~ (.: la" Ii" ~ .:E r,))p, ",J;

v: la,
(
~ b~'_ (v: (00, bo _ p, co]; v:E r.) ,cJ

a b _ q

~
v,w: [a, T, cJ

b,~(W:Er'I._Wl;.:Ea,)l

where T = g b~' --+ (w:E r.[o _ wl; 1:I:E Go)

(a co --+ V :== w
o bo--+pOb--+q

Proof: First we show how each copy oC the procedure body can be recovered by per
forming symbolic execution on the right·band side of the above inequation. Let ri stand
for any of the return addres5e'!l 1), .•. , r., and d = (i>J V ... V b. V CO V 60 V b).

(1)	 w:E r,[. - wi; .:E a,; d. T

{(. ""luence)(3.17.7) and (. - 0 elim)(3.17.4))

w:E r;[v - w]j 1:1 :E 00; bo * p; d ... T

;J {"'L ~ skip and (.- 0 unfold)(3.17.3))

W :E rdv _ wI; v :E Go; bo * p; COLi 1:1 := w; d. T

5.3 Recursion	 75

{(dec introduction)(3.l9.11) and Definition 4.I(Normal fonn)}

w:E rdv +- wJ; tI : lao, bo - p, eo]; tI:= Wi d .. T

;J {w:E Ti[V <- wi commute. with v: [ao, bo ~ P. Col (3.l6.9)}

tI: lao, bo - p, eo}; w:E r;[v +- 10]; tI := 10; d .. T

;J {(:E refined by :=)(3.l6.8)}

(2) v: [ao, bo ~ P. Co]; w:E rdv <- wi; v :E ri; d. T

Then we have:

RHS

;J {(. replace guarded command)(3.l7.5) and (1);J (2))

b, ~ (v: [ao. bo ~ P, Col; w:E ,,[v <- wi; v :E r,))
o ...

v,w: [a, 0 b. _ (v: lao, bo - p, eol; w:E r.[tI +- 10]; tI :E r.) ,c]
o Co _ v:= w(
o bo-p 0 b_q

;J	 {Lemma 4.3(Eliminate guarded command)}

b, ~ (v :lao, bo ~ P. Co); w:E ,,[v <- w]; v:E r,»)
v,w : [a,

(
~ b~' _ (tl : [ao, bo _ p, eo]; w :E r.!v +- wI; v :E r.) ,cJ
o b _ q

;J {(dec - • di.t)(3.l8.11) .nd (dec elim)(3.l8.3)}

b,~(v:[ao.bo~p.CoJ;(decw,w:Er,[v<-w]); "Er,»)

v: [a, (~ b~'_ (v: [ao, bo _ p, eo]; (declO. w:E r.[tI +- 10]); t1:E r.) ,c]
o b _ q

;J {(dec-:E final value)(3.l8.6) and (dec elim)(3.l8.3)}
LHS

•
5.3 Recursion

We have already introduced the nota.tion

pX. p

which defines a recursive, parameterless program named X with body p. Unlike a pro
cedure, a recursive program ca.n..not be called from outside its body: only rec\lfsive calls
are allowed. Occurrences of X in p are interpreted. as recursive calls. The semantics of
recursion is given by fixed point laws (see Section 3.8).

5.3 RecUl8ion 76

Before giving the reduction rule for recursive progr&mll. we introduce some abbreviationa
which will help in structuring the proof. The left-hand aide of the reduction rule is a
recursive program of the form

_ X . [(b ~ (X; • 'E r») ILllS - IA .1:1. lIo, 0 6o p ,ro

where its body is in normal form, except for the recUl'8ive c.a.lls. For conciseness, we
assume tha.t there is only one call to be eliminated (no free occurrence of X in p); the
theoremis easily generalised for an arbitrary number of calls, as in the case of procedures.

The recursive definition can be eliminated by reducing tbe above to

MID = tI,o: [Go A empty ii, S, CO A empty til

b ~ (. 'E r; push(.,o); • 'E Clo))

where S = 0 (roAemptyil) pop(tl,iI)

(o bo ~ P

As in the previous section, a call ia: implemented by saving the return address before control
is transferred; thia addresa is then used to Ie8ume control. In the c&se of procedures, a
local variable was used for this purpose, but (or recursive calls we need the notion of a
stack. By asswning that the sta.ck is empty initiaJ.ly, we can diatinguisb between the exit
from a recursive call of the program and the end of its execution. In the (ormer ca.&e, the
condition Co ia true, but the atack is not yet empty; then control is resumed by popping
the stack and assigning the popped value to v. The exit condition of the entire program
is Co A empty 0.

Although our emphasis is on the control structure o(the program, note that v may be an
arbjtrary list o(variables, p088ibly including data variables decla.red by the programmer.
The overaJ.l task is simplified by not diatinguishing between these two kinds of variable.

An alternative implementation of LHS is given by the program:

RHS = 0, iI : (0 A empty ii, T, (: A empty v]

a ~ (. 'E c; push(.,o); • 'E Clo))
T = 0 b (v:Er;_push(tl,O)i tl:Eao)

where o e,,~pop(.,.)(
o bo~ P

Its fi.rBt adion is to puah onto the sta.ck a value which satisfies the condition c, an exit
condition for the loop a880ciated with the abo\l"e normal form program. In this way we
ensure that, whenever Co is true, the stack ia: non-em.pty, since the last value to be popped
satisfies a termination condition of the loop. The advantage of this implementation is
that it avoida the uae of the condition ""empty'O as part of a guard. Therd'ore RHS is
more suitable for a low-level implementation.

A convenient way to pro\'e LHS ~ RHS is to show that LHS !; MID and that MID !;
RHS. We use the following lemIDlUl.

S.3 Recursion	 7'7

Lemma 5.1 (Symbolic execution of S) Let d = (6 V (eo II ~empty 0) V bo).

bT
; d.S ;J (emptytih; MID; v:E r; d.S

•
Lemma 5.2 (Symbolic execution of T) Let d = (a V 6 V eo V bo).

aT; d.T;J (emptyv)..L; MID; v:Ec; d.T

•
The proof of Lemma 5.1 is given in Appendix B. The proof of Lemma 5.2 is similar. The
reduction theorem for recursive programs can now be proved.

Theorem 5.2 (Recursion)
Let LHS, MID and RHS be as defined above. IT X is not free in p, and v occurs only

where explicitly shown, then LHS !: RHS.

Proof:
(LHS ~ MID)

MID

;) {(. repla"" guarded command)(3.11.5), Lemma 5.1(Symbolic execulion of S)}

6 ~ (emptyih; MID; v :E r)
v, i : [(no II empty OJ, 0 (Co II ~empty .) --> pop(v, .) ,(eo II empty .)]

(o bo->p

;)	 {Lemma 4.3(Eliminate guarded command)}

6 --> (empty 0) . MID· v 'E r)
v,, : [(no II empty 0), 0 bo --> P .L, ,. ,(eo II empty iJ](

;) {(h - 6T simulation)(3.11.10)}

_. [(6 ~ (emptyv)T; (emptY'h; MID; v:E r; (emptYOh) I
V,17. ao, 0 bo --+ P	 • Co

;) {6T; 6.L = 6T and (6T; p commute)(3.11.11)}

_ . [(6 --> (MID; v:E r; (empty O)T; (empty Oh) I
tI, v. 00, 0 bo --+ p	 , Co

;) {6T; h = 6T ;) sldp and (dec elim)(3.18.3)}

.[(6~(MID; v:Er))]
tl. ao, 0 bo --+ p , Co

From the above and (p l...t fixed point)(3.8.2), it follows that LHS ~ MID.

5.4 Parameterised Programs 78

(MID '; RHS)

RHS

;;) {(. repl""" guarded command)(3.17.5), Lemma 5.2(Symbolic execution of T))

a ~ (empty iiJ<; MID; • 'E C)

o b -+ II'E r' ush II ii . II:E ao.,iio[(a"emptyii) (. ,_P (,),) ,«"emptyii)]
, 0 eo-+pop(v,v)(

o bo-+p

;! {Lemma 4.3(Elimi.nat<: guarded command))

., ii' I(a " empty ii), (a ~ (emptyii).L; MID; • 'E c), (c "empty.)]

;! {(b.L - bT simulation)(3.11.l0))

v,,;:[a,(a-+(emptyv)T; (emptyvh; MID; v:E c; (emptyv)J.), c]
;! {b T

; b.L = bT and (b T
; p cornmut<:)(3.11.l1))

n, Ii' la, (a ~ (MID; • 'E <; (empty ii)T; (empty ii).L), cl

;! {b T ; b.L = bT ;;) skip and (dec e1im)(3.18.3))

., (a,(a ~ (MID; .:E c), <J

d {Lemma 4.1(Primitive commands)}

MID

•
5.4 Parameterised Programs

Here we show that para.meterisation can be treated in complete isolation from procedures.
Let p be a progr8Jll and :z a variable. Then

par:: _ p

is a parameterised program, where par stands for some par8Jlleter transmis5ion mech
anismj here we will deal with value-result (valres), value (val), result (res) and name
parameters. The latter kind is restricted so that the actual parameter must be a variable
and no alifUling must occurj in this case we can prove that parameteriBation by name
and by value-result have the same effect. Although we do not address par&meterisation
by reference explicitly, it coincide! with parametensation by name when variables (rather
than arbitra.ry expressions) are used as arguments.

We adopt 'he conventional notation of function application for the instantiation of a
para.meteri&ed program. The effect of an instantiation varies according to the type of
parameLerisation. The definitioDB are given below. In all caBel, z must be a fresh variable,
occurring only where explicitly shown.

Definition 5.3 (Value-result parameters)

(valreu .1')(y) i::! dec z. z := Y; 1'1% - zJ; y := z

5.4 Parameterised Programs	 '0

f'f
•	 p~ X: z ;)(.4--1

Definition 5.4 (Value parameters)

(vol •• p)(e) ';! dec .. 0:= e; pl. <-- z)

r~.l '" .d(~)
• r,-x.... ~. z.,,, t .

)

Definition 5.5 (Result parameten) Z,,,,z.1
(resz e p)(y) ~.:l decz e p[:r _ z]; y:= z

• SK\f
Definition 5.6 (Name parameters)
If !I is not free in p, then

(nom.. 0 p)(y) ';! pl' <-- yJ

•

These definitions are rea.aonably sta.ndard. They appear, for example, in [4,54, GO}. In
[4} the notion of refinement is generali8ed. (or parameterised statements

Let P = par: e p and Q = po.r: e q. Then

P [; Q ';! P(t) [; Q(I) (0' all valld ..gum.nt. I

a.nd it is showo that the crucial property o(monotonicity with respect to refinement is
retained by the new constructs:

(1)	 p!;; q => par:ep!;; ptlrzeq
(2)	 Let P and Q be parameterised programs. Then, for any valid argument t

P [; Q '* P(I) [; Q(I)

For name parameters, thie result is not true in general. The instantiation may lead to
aliasing, in which case monotonicity is lost. This is why we need the condition attached
to Definition 5.6.

Multiple pa.rameterisation of a particular kind can be ad.ieved by allowing programs to
be pa.rameterised by lists of variables. The corresponding instantiations are similarly ex
tended to allow lists of arguments. In this case, the two lists must be o(equal length
a.nd the association between parameters a.nd arguments is positional. Notice that we
do not need to change the previous definitions, as our la.nguage allows multiple declara
tion and multiple assignment, a.nd we have already introduced the notation for multiple
substitution. For exa.mple,

(res:l,Z>J:ep)(V1,!b:) 4J! deczl,Z1zep[zt,z:a-Zl,ZlJ]i V1,!b::=Zt,'J

5.4 Parameterised Programs so

However, except for call by value, an extra restriction must be observed: the list of
actua.ls must be disjoint. For example, in the above case this is necesMrY to ensure that
the multiple assignment Yl, Vol := Z1, ZoJ is defined.

Multiple pa.rameterisation of (possibly) different kinds can be achieved by combining the
effects of the tela.ted definitions. In this ca.ee we use a semicolon to separate the parameter
declarations. As an example we have

(valzl; resz-a.p)(~,y) ~ decZllZoJ.Zl:=~; p[zl,z-a4-zt,ZoJJi y:=ZoJ

In the remainder of this chapter we will confine our attention to single parameterisation,
but the results can be f"ASily extended to multiple pa.ra.meterisation.

Definitions 5.3-5.6 a.bove could be used directly as elimination rules for parameter pass
ing. However, this would not allow sharing the code of a pa.rameterised program when
instantia.ted with distinct arguments. This is a consequence of the renaming of variables
on the right-hand sides of these definitions. Below we show how to avoid the renaming.
This will need the following lemma.

Lemma 5.3 (Data refinement as substitution)

Let e ~ var z; %:= y; end y and a-I ~ var!li y;= %; end %. Then we have:

(1) (a,e-1) is a simulation.
(2) IT y. not free in p, then 6(p) = pl' ~ yJ
(Recall that 6(p) = 6; p; 6- 1.)

Proof:
(1) Similar to the proof that ("",'io-1) is a simulation (see Theorem 4.10).
(2) By structural induction as in Theorem 4.13 (Piecewise data refinement). In this case
we have an equation, rather than an inequation, beca.use a-1 is the ezact inverse of a,
and vice versa. Formally, e; a-I = skip = a-I; a.•

Then we ha.ve the following elimination rulC!l for parameter passing.

Theorem 5.3 (Elimination of value-result parameters)
If z and y are distinct, then

(valreu • p)(y) = var %i :r := !Ii Pi !I:= %; end z

Proof:

LHS
~ {Definition 5.3(Va.lue -lUlt pa<ameten))

decz _ Z := Yj p[% 4- z]; 11;= z

{Lemma 5.3(Dat. refinement ...ubstitution))

dec% _ z:::: y; varz; z:= z; end%; p; varz; z:;::: %; endz; y:= Z

~ {(end change ecope)(3.19.2) and (end - var .kip)(3.19.1))

5.4 Parameterised Programs 81

decz. z:= Yi var%; %:= Zi P; z:= %i end%; Y:= Z

{(.nd chang. ,eop.)(3.19.2), (var cha.ng. ecop.)(3.19.2) a.nd

(:= eombination)(3.15.4)}

var%i decz. z:= Y; %:= Y; Pi Y:= %; end%i z:= Y

{(dec-:= fin&1 v&1u.)(3.18.6) a.nd (; -dec left di,t)(3.18.7))

var%; (decz. z:= y); %:= Yi P; Y:= %; end%

{(dec-:= fin&1 v&1u.)(3.18.6) a.nd (dec .lim)(3.18.3)}

RHS

•
Theorem 5.4 (Elimination of value parameters)

If % and y are distinct and % d0e9 not occur in cI then

(val%. p)(c) = van; %:= c; P; end%

Proof: Similar to Theorem 5.3.•

Theorem 5.5 (Elimination of result parameters)
If % and Y are distinct, then

(res %• p)(y) = vani Pi Y:= %i end%

Proof: Similar to Theorem 5.3.•

A mechanism to implement name (or reference) parameters by allowing sharing of code
requires an explicit account of variable a.ddre5ses and is not treated here. But the following
theorem establishes tbat, in the absence of aliasing, parameterisation by name is identical
to parameterisation by value-result.

Theorem 5.6 (Equivalence of name and value-result parameters)
If % and y are distinct, and Y is not free in P, then

(nam.. 0 p)(y) = (valres% 0 p)(y)

Proof:

RHS

= {Theorem 5.3(Elimination of value - result parameters)}

var %i %:= Y; Pi Y:= %; end %

{(.nd - var ,kip)(3.19.7) a.nd (end chang. ,cop.)(3.19.2)}

var %i %:= y; end Yi Pi var Yi Y:= %j end %

{Lemma. 5.3(Data refinement as substitution)}

LHS

•

It should be clear that the conditions on the above theorems impose no pra.cticallimita
tions; they can be automatically satisfied. by using locally declared variables as arguments.

5.5 Parameterised Procedures 82

5.5 ParaIIleterised Procedures

As a consequence of the result! in the previous section, we can treat a parameterised
procedure in the same way as a parameterless one. The same notation is UBed

ptoc. X == (par% • p). q

except that now the body is a parameterised program (by any of the mechanismB discwsed
above) md all occurrences of X in g are of the form X (t), for some appropriate actual
parameter 1.

This allows the mea.ning of a parameterised procedure to be given by the copy rule, as
before. Therefore the a.bove is equivalent to

q[X _ (parr 0 p11

This textual substitution could be used to eliminate parameterised procedures by macro
expansion. Sharing the code of the procedure body can be achieved by transforming a
parameterised procedure into a parameterless one, and then using the reduction theorem
for parameterles8 procedures (Theorem 5.2). Another source of optimisation is the sharing
of local variables used to eliminate parameterisation. This is established by tlJe following
lemma.

Lemma 5.4 (Sharing of 10ca.1 variables)
If x is Dot free in p, then

p[X +- (varzj g; endx)j ~ varx; pIX +- qJ; end%

Proof: By structural induction, using the distribution laws of var and end with the other
program constructs.•

Then we nave the following elimination rule for parameterised procedures. (We UBe value
result parameters as illustration; the rules for the other para.meterisation mechanisl1l8 are
similar.)

Theorem 5.7 (Value-result parameters of procedures)
If Z is not free in g, then

pro<: X == (valres x • p) _ g ~ dec:r _ (proc X ~ p _ g[X +- (val res' x - X)])

where

(v.. lres'x _ p)(y) ~ %:= y; p; y:= %

Proof:

Let g' be such that

(1) q = q'[Y" ... , Yo -X(Y\), ... ,X(y.1!

5.6 Parameteriaed Recursion 83

a.ud t{ contaw no calls of procedure X. Clearly, for all q it is alwa.ys p088ible to find a.
q' that satisfies the a.bove equa.tion. Then we have:

LHS
{Definition of procedures and (I)}

q'[Y" ... , Yn ~ (v. Ires • 0 p)(y,), ... , (v.lres. 0 p)(Y.)]
{Theorem 5.3(Elimination of value - result parameters)}

q'[YII · •• , Yn f- (var Zj Z := VI; P; VI := z; end z), ... ,

(van; Z := Y.i Pi Y. := z; end z)J
c; {Lemma 5.4(Sharing of local variahles) and

(dec - (vor, end) conversion)(3.19.1O)}

decz. q'(Yt , ... , Yn f-(z:=Y1; P; YI :=z), ... ,(Z:=lI.i Pi lis :=z)]
{property of substitution and (I)}

decz. q[X f- (valres'z. p)J
{Definition of proceduree}

RHS

•
5.6 Paraxneterised Recursion

The notation for a parameterised. recUI'8ive program X is the same as before, except
that now its body is a. parameterised. program and all the recursive calls are of the form
X (t), for some appropriate adual parameter t. The meaning of a parameterised recursive
program is given by

Definition 5.7 (Para.meterised. recursion)

pX 0 (par. 0 p) ~ pa.. 0 (pX op[X ~ (po.. 0 X)])

•
The initial value of the formal parameter z is given by a non~recursive call which c&n be
dealt with in the same way as procedure ca.lls. The local declarations created during the
elimination of the parameterised. recursive ca.I.ls are implemented by a stack. Wf, have the
following elimination rule for value-result parameters of recursive prograIllll.

Theorem 5.8 (Value-result parameters of recursion)
If z # z and % is not free in P tben

(Jl X • (valresz. p))(z) ~ decz , %.

(z := Zj iJ X. p[X f- (valres' z. X)]; 1:= z)

5.7 Di9cu8sion 84

where

(yalres/x. p)(y) ~ push(z,z); x:= y; p; y:= x; pop(x,i)

Proof: Let p' be such that

(1) P = p'lY ~ X(y)]

and p' contains no ca.Us of procedure X. (For conciseness we will assume that a.lJ the calls
are par<lllleterised by y. Arbitrary calls can be treated as in the previous theorem.) Then
we ha1ie:

LHS

{Theorem 5.3(Elimination of value - result parameters) and (I)}
varz; z:= z; JJX .p/[Y _ (varz; x::::: y; X; y:= z; endx)J; z:= Xi endx

{(dec - (var,end) conversion)(3-l9.1O))

decx. (x:= Z; JJX .p'[Y _ (Yarz; z:= y; X; y:= x; endz»); z:== x)

[; {((var,end) - (push, pop) conversion)(5.1.3))

RHS

•
Recall that var and end operate on an implicit stack which can be ma.de explicit by using
push and pop. This fad was used in the la.st step of the above proof.

5.7 Discussion

The main advantage of handling procedures, recursion and parameters separately is that
the over<Lil task becomes relatively simple and modula.r. Furthermore this impose! no
practicallirnitation, since more complex structures can be definecl by combining the basic
ones. For example, we have already illustrated how parameterised procedures, parame
terised recuraion and multiple parameter16ation caD be achieved. Recursive proced1U1':!l
(whether parameter1secl or not) ca.n also be easily introduced. Consider the procedure
declaration

procX == p.q

where p a.nd q may respectively contaJn recunive a.nd non~recursive calla of X, and p may
be a parameterised program. This can be defined as the non-recursive procedure

procX=(pXop)oq

whose body is a. recunive program.

One aspect not fully addressed is how the reduction theoreII1l!l given in this chapter can
be used. a.s compilation rules. Notice that the theorems about parameterisation esta.blish

5.7 D.isCU88ion 85

that it can be completely eliminated by tranBformations a.t the source level. The imple
mentation of procedure8 and recursion requires a more powerful target machine than the
one defined. in the previous chapter. Basically, new instructions are necessary to cxOl::Ute
the call and return sequences. These instructions can be defined by the new patterns
which appear in the normal form of procedutE!8 and recursion. For proced.utE!8, we have
shown tha.t the call and return sequences c.a..n be implemented by allocating temporary
variables; for recursion, new instrudioIlB to model the basic stack operations are required.

We have allocated. a separate stack to implement each rec;;ursive program. This not only
simplifies the proof of the elimination of recursion, but will be essential if we decide to
extend our SOurce language with a parallel operator. In the present case of our sequent.ial
language (and for non-nested recursion), the local stacks c.a..n be replaced by a globalsta.ck.
This is systema.tically aclUeved by the elimination of sequential composition

tI,V: [a,b I -+ P,Gl]j v,v: [Co,~ -+ q,c]

_ (b, ~ p)
~ tI,v:[a, 0 ~-+ q , cJ

However, in the case of nested. recursion, we still need a separate stack for each level
of nesting (where the declarations at the same level can be shared in the way shown
above). An implementation could use pointers to link the stacks in a chain representing
the nestingj this technique is known as cactUB stacks [371. A single stack implementa.t.ion
is discussed in the final chapter, where it is suggested as a topic £Or future work. For a
realistic implementation, we will need a more concrete reprelentation of these stacks. In
particular, as tbe storage available in any madtine is finite, it is necessary to impose a
limit on the size of the stacks.

The compilation of programs now including procedure! and recursion (poeaibly with pa
rameters) should proceed. as follows. As for the simple source language considered in the
previous chapter, the first step is the simplification of expressions. Recall that one result
of this phase of compilation is to extend the scope of local variables as much as possible,
80 that they can be implemented. in the same wa.y as global variables. However, it is not
possible in general to move a local declara.tion out of a recursive programj rather, as ex
plained before, it is implemented by a stack. Also recall that for the simplified language,
the order of the remaining two phases (control elimination and data refinement) is not
relevant. However, the reduction theorems for procedurel and parameters introdllce new
local variables for which storage will have to be allocated.. Therefore once the erpressions
are simplified, it is more sensible to carry out control elimination first and leave data
refinement for the very last step.

Chapter 6

Machine Support

(..• J the separation of practical and theoretiQI work
is artificial arKI injur~us. Much of the prillctical work
done in computing is unsound and clumsy because peo
ple who do it do not have ill clear understillnding 0# the
fundamental principles underlying their work. Most of
the abstract mathematical iIlnd theoretical work is sterile
because it has no point of cont3J;:t with real computing.
[...] this separation cannot happen.

-	 C. Strachey

Because of the a.lgebraic nature of this approach to compilation, it is possible to U~ a term
rewriting mystem to check the correctne99 of the reductions. Furthermore, the reduction
theorems can be taken as rewrite rule! to carry out the compilation task.

The purpose of this chapter is to show how this can be a.chieved using the OBJJ sys
tem [31]. There are three main activities involved:

•	 The forma.lisatioD (specifica.tion) of concepts such 8.6 the reasoning language, its
algebraic laws, the nonnal form, the target machine, and so OD, as a collection of
theories in OBJ3.

•	 The verification of the related theorems.

•	 Compiling with theorems: the reduction theorems are collected together and used
as a compiler prototype.

We adopt the well establi8hed aJ.gebraic approach to spe.::ifications. For a formaJ. presen
tation of the concepts involved we refer the reader to, for example, [24, 27, 75]. Here we
describe 90IUe of the main concepts informally.

Broadly, we will consider a specification as consisting of three parts:

•	 a sigrultvre, which comprises a bmily of sorts (names for carrier sets) and operator
symbols (narnee for operators) with given functionalitieej

86

87 6.1 OBJ3

•	 a set of tUioms, given by equations (and ioequatioDs) rela.tiog the operators of the
signature, and

•	 a set oftheorema, which can be deduced from the axioms.

The idea. is to construct specifications incrementally. We start with a specification whose
signature is an abstract syntax for the reasoning language, and the axioms are the basic
algebraic laws. The set of theoremtl is initially empty; it is gradually built by proving that
new algebraic laws are logical consequences of the basic ones. This is one way in which
a specification can be extended. We then proceed. extending the specification in a more
general way, adding sorts, operators and axioms (and proving more theorems) to describe
the remaining concepts.

One important aspect not addressed by this strategy is cOR.'Jistency. lu pa.rticular, how to
ensure that we started with <II. consistent set of algebraic laws? As discussed in Chapter 3,
we consider this a separate task, A reaoonable alternative is to formalise a given model,
such as predicate tra.nsformers, and then derive the basic laws, one by one. Tb~ is
illustra.ted in [6], using the HOL system [34j,

For simplicity, we deal with the material presented in chapters 3 and 4; the normal form
theorems for procedures and recursion are not coIlBidered,

Our main concern here is the overall structure of the specification a.nd proora, rather than
a detailed description of all the steps and technicalitie8 of the verification of the theorems
in OBJ3. The specification of most concepts used (together with the complete verification
of some of the main theorems) is given in Appendix C.

6.1 OBJ3

OBJ3 is the latest in a series of OBJ systems, all based upon first order equational logic. A
detailed description of OBJ3 can be found in [31}, In this section we give a hrief overview
of the system (based on Release 2) and discus8 how it supports the strategy presented
above, More specific Ceatures are explained when necessary,

OBJ3 is a general-purpose declarative language, e8pecially useful for specification and
prototyping, A specification in OBJ3 is a collection of modules of two kinds: ilI,eQries and
objects, A theory hM a loose serna.ntiC8, in the 8enBe that it define8 a variety or models,
An object has a tight or standard sem&DtiClj it defines, up to isomorphism, a specific
model-its initial algebra [30J. For example, we use objects to define abstract data types
such as lists and maps; the reasoning language and its algebraic laws are deicribed as a
theory, since we are not concerned with a. particular model.

A module (an object or a theory) is the unit of a specification. It comprisal a signature
and a set of (possibly conditional) equatione-the axioms. The equatione are regarded 8.8

rewrite rules and computation is accomplished by term rewriting, in the UlIUaJ way.

An elaborate notation for defining signatures i8 provided. As OBJ3 is based upon order
sorted algebra [28), it provides a notion of Ilubsorts which is extremely OOl1venient in

6.1 OBJ3 88

practice. For example, by declaring the sort representing variables as a 8ubsort of the
one representing expressioIl8, we can use variables hath on the left and on the right-hand
sides of an assignment statement; no conversion function is needed to turn a variable into
a.n expression.

A general mu}iz syntax can be used to define operators. In our case, we U8e names (or
operaLora which coincide with the aT&< [51J representation of the desirable mathematical
symbols. This allowed us to use the same notationaJ conventions introduced in earlier
chapters, with the hope that this will make the encoding in OBJ3 CIl()rt! compreheIl8ible.

Moreover, operators may have attributes describing useful properties such as associativity,
comrnuta.tivity a.nd identity. This makes it possible to document the main properties of a
given operator at the declaration level. As a consequence, the number of equations that
need to be input by the user is considerably reduced in some cases. Most importantly,
OBJ3 provides rewriting modulo these attributes.

Modules may be par&meterised by theories which define the structure and properties
required of lW actual parameter for meaningful instantiation. The instantiation of a
generic module requires a mew-a mapping from tbe entities jn the requirement theory
to the corresponding ones in the a.ctua.l parameter (module). AB a simple eX&mple, an
object to describe lists of arbitrary elements, say LIST, should be parameterised by a
theory which requires the argument module to have (at least) one sort. In this simple
case, we may instantiate LIst with a sort, since the view is obvious. Thus, assuming
tbat Vaz and EJ:p are sorts representing variables and expressions, we can create the
lnstlWees LIst [Vax] and LIST[E:J:p]. A more interesting example is the parameterisation
of the module describing the reasoning language by a theory of expressions; this is further
discussed in the next section.

Apart from mecha.nisll1B for defining generic modules and jll.fltantiating them, OBJ3 pro
vides means for modules to import other modules and for combining modules. For ex
ample, A .. B creates a new module which combines the signature and the equations of A

and B. This support is essential for Our incrementa.l strategy to specifications.

08J3 can also be used &8 a theorem prover. In particular, computation is accomplished
by term rewriting which is a widely accepted method of deduction. H the rewrite rules of
the application theory are conflue.nt (or Church-RosBer) and te.rminating, the exhaustive
application of the rules works a.s a decision procedure for the theory: the equivalence of
two expressions can always be determined by reducing each one to a normal form; the
equivalence holds if the two normal forms are the same (syntactically speaking). This
proof mode is normaJ.1y called automolic, and is supported by OBJ3.

In our case, this proof mode is useful to discharge side conditions about non-freeness and
to perform substitution. Furthermore, once the reduction theorems are proved, this mode
can be used to carry out compi1a.tion automatically, since these reduction theorems are
complete in that they allow the reduction of an arbitrary source program to a norma.l fonn;
this will be illustrated 1a.ter in this chapter. Unfortunately, the proof of these theorems
cannot be carried out automatically, since there is no decision procedure for our a.lgebraic
system in genera.l (that is, including all the algebraic laws Usted in Chapter 3). As a

6.2 Struet UTe of the Speci.ficatjon 890

consequence, automa.tic term rewriting may fail to decide if two ptogram fragments are
equivalent (the process may even fail to terminate). Therefore there i! the need for a
mechanism for applying rules in a controlled way, as we have done in the manual proofs
presented in earlier chapters. OBJ3 supports the step by step application of rewrite rules
either forwards (from left to right) or backwards (from right to left).

Proofs in OBJ3 are confined to these two modes. There is no built-in support for proof by
induction or by case ana.lysis of any other kind. But the most serious limitation concerning
our application is the lack of a mechanism to deal with inequational rewriting. Weencode
inequations as equa.tions whose right-hand sides refine the corresponding left-hand side'l,
but as will be discussed later this is far from satisfactory.

Other limitations a.re related to proof management. OBJJ does not distinguish between
units of information such as an axiom, a conjecture and a theorem. Although spedfications
and proofs caD be stored in files, the management must be done by the user.

6.2 Structure of the Specification

We use the module facilities of OBJJ to structure the specification in such a way that each
concept is described by a separate module. Figure 6.1 shows the hierarchy of the main
modul~, where an anow from module A to module B indicates that B imports A. First
we explain part (a) of the figure. The module which describes the rea.soning language is
generic with respect to the expr~sion language. This ca.n be elegantly described in OBJ3
by defining a theory of expressions and parameterising the module REASONING-LANGUAGE
with this theory. Then the commands (and their algebraic laws) can be instantiated with
different expression languages, according to the particular needs.

The module describing the normal form is equally independent of a particular expression
language (and in particular of a way of encoding control state). Clearly, it needs to import
the previous module so that the normal form operator can be defined and the associated
reduction theoremB can be proved.

Part (b) of the figure presents the structure of the specification of our simple compiler,
where each phase of compilation is described hy a separate module. It also lihows h.ow the
previous modules are instantiated for this application. For exa.mple, the module describing
the simplification of expressions is concerned with the notation of expJ"f$iODB of the
source language. To reason about this phase of compilation, we instantiate the module
REASONING-LANGUAGE with this particulAr kind of expressions. Similarly, the module
concerned with control elimination instantiatea NORMAL-FORM with the combina.tion (+)
of two kinds of expressions: the expressions of the source la.n.guage and the ones used to
represent addresses in the memory ROM of our target machine.

The module descrihing the data refinement phase instantia.tes REASONIHG~UllGVAGE with
a complex expression language formed from the two kinds di!CU8Sed above aad (map)
expressions to represent the meJDOry .RAM and the symbol ta.ble. The compiler is formed
from the modules describing the three phases of compilation.

6.2 Slrudure of tbe Specification 90

IOBlllL-FOU [J :: EIP]

r
B.E1S01I1<l-UlGU.lGB [1 :: ElP]

(a) Generic Modules

/T~om-llE1lE1T
IUPBESSIOI-rKPLITIC&nOI ClIITBDLiELIIIUTIOI

iE.1SOlIlcr-UlGU.lGI (SOtJllCEJ IOBlllL-P'CBJ([sOuB,CI+ROJO B.E1S0IUG-UlCiU.l<l1
[SOURCI+aDR+l4I+SYKTlB]

(b) Structure of the Compiler

Figure 6.1: Structure of the Specification.

6.3 Tbe Reasoning Language 91

Tbe internalstrueture of these modules is described in the rem,ajning sections, and further
details are given in Appendix C.

6.3 The Reasoning Language

In the previous chapters we dealt with expressions in an informal way; new operators
were introduced as we needed. them. For example, to describe the data refinemenL phase
of compilation we used map expressions to model the symbol table and the store of the
target machine; in the control elimination phase we used. arithmetic expressions t.o encode
control state. This was possible because the algebraic laws are independent of a particular
expression language. As mentioned above, this can be captured in OBJ3 hy defining a
theory of expressions and parameterising the module describing the rea.BOning languages
with this thoory.

The theory of expressions must include the boolean values with the usual operators. This
is necessary to enable us to describe the algebraic laws of conditional couun.ands. The
boolean exprC8sions (conditions) are described by the following module:

obj COHO is

sorts CondVar Con.dExp .
subsorts CondVar < Condtxp

op true : -> CondE:r:p .

op false : -> CondExp .

op _V_ : CondExp Cond.E%p -> CondExp [usoe COlli&. idea id: false)

op _,,_ CondExp Cond.E%p -> CondExp [assoc COld idea id: true] .

op : Cond.E%p -> CondExp
_

var a Cond.E%p.

eq true Va· true
eq false " a • false
Qq true • false
Qq -.false • true .

endo

The 8ubsort relation states that boolean expressions may contain variables (elements of
sort CondVar). The symbol_ which appears in the declaration of the operators determinC8
the position of their arguments. The attributes of a given operator are given inside square
brackets. For example, V is associative, commutative, idempotent and has identity false.
The additional properties of the operators are described by equations.

The module describing our theory of expressions declares sorts Var and E:r:p to repreeent

6.3 The Reasoning Language 92

arbitrllly variables and expressions. The requirement that the expression la.nguage mUBt
include boolean expressions ill captured by sUOOort relations, as shown in the following.

th UP ia

protecting COHO

aorts Var Exp .

subsorts Var < Exp

subaorts CondVar < Vax

subaorta CondE1p < E.:J:p

endth

The module COND is imported using protecting. This mode of importation is used to
state tha.t EXP does not add or identify elements of sorts from CONDo

The above theory is then used to parameterise the module which describes the reasoning
language. This means that any actual parameter used for instantiation must be a model
of the above theory. Informally, any particular expression language must be equipped
with (at least) what i8 stated by the theory EXP. A partial description of the module
deacribjng the operators of the reasoning language i8 given below.

th REASOHING-LAlfGUAGE [x :: EXP] is

aorts Prog Progld

subsorts Progld < Prog .

define ListVar is LIST[Var]

define ListE.:J:p is LIST[EJ:p]

••• Source language

op skip : -) Prog .

of-as _:-_ : ListVar ListExp -) Prog

for :I. :- e if (len :I. - len e) and (disj :I.) [pree 52] .
op _:_ : Prog Prog -) Prog [usoe pree 56] .
op _n_ : Prog Prog -) Prog [usoe eomm idem id: T pree 57] .
op _-4 _ po _ : Prog CondE:r.p Prog -) Prog [pree 58]
op _*_ : CondE:r.p Prog -) Prog [pree 54] .
op dec _ e_ : ListVar Prog -) Prog [prec 60] .

••• Additional specification features

op.l : -) Prog .

op T : -) Prog .

op _~_ : Prog Prog -) 8001 [pree 70] .

op ~ _ *_ : Progld Prog -) Prog [prec 69]

endth

6.3 The Reasoning Language 93

The 80rt Progld declared a.bove stands Cor program identifiers, used to name recursive
programs. Furthermore, by declaring Progld as a 8ubsort of Prog we can use program
identifiers as all commands. Following the sort declarations, the define clause is used
to instantiate of t.he module LIST (omitted bere) to create lists of va.riables and lists of
expressions. These are used, for instance, in tbe declara.tion of the multiple assignment
command, which is a. partial operator l only defined for equal·length lists of variables and
expJ'C88ions. In addition, the list of variables must be disjoint; DO variable may appear
more than once in the list. The declaration of most opera.tors includes an attribute which
detennines their precedence. The lower the preced.ence, the tighter the operator binds.

Some a.uxiliary opera.tors are needed to implement the concepts of non-freeness, non
occurrence and substitution. The non-occurrence operator is used to state that a given
identifier does not occur in a program, not even bound. Their declaration is given below.

op __ : ListVar Prog -) Bool [a8llO] . ••• non-freeness
op _\ _ : LietVar Prog -) Bool [aQIDo] . ••• non-occurrence
op-~e _C_<-_l : Prog LietVar ListExp -) Prog ••• substitution

for p[x (- e] if (len x - len e) aDd (disj .) [aemo] .

Notice that the 18.8t opera.tor allows multiple substitution, and therefore it has the same
precondition as that of the assignment operator. Overloaded versions of the above oper
ators (omitted here) deal with expressions.

Especially wben using the rewrite rules to carry out compilation, these operators are ap
plied to the same arguments, over aDd over agAin. The number of rewritee is substaDtially
reduced by giving them the lIlellO attribute which causes the results of evaluating a term
headed by any of these operatoTS to be saved; thus the evaluation is not repeated if that
term appears again.

These operators are defined in tbe usual way. Tbe complete definition requiree a large
number of equations, one to deal with each operator of the language, and therefore is
omitted here, However, the implementation of safe substitution as a set of rewrite rules
deserves some attention, due to tbe need to rename local varia.bles to avoid variable cap
ture, This is actually an instance of tbe more general problem of creating fresh identifiers
using a. formalism with a. stateless semantics2 • A possible (although cumbersome) solution
is to pass a (virtually) infinite list of unique identifiet'S as parameter. As we never uee
substitution in a. context which requires renaming, we solve the problem by using the
following conditional equation

cq (dec •• p) [y (- f] (dec •• (p[y (- f]))

if • \\ (y,f) .

where the condition that x does not occur in the list (1,f) prevents variable capture.

lIn Rdea.. 2 of OBJ3 p&l'tiality i8 only syntactic, Its lIem.antics" being imp~IDl!nt.ed [77],
~ AduaJ1y, OBJ3 aJlOW8 bib-i. equ.diooa which provide direct aae18 \0 Lisp (and tberefore tbe

possibility of modelliIli a global state), but we bave avoided the use of this reature,

6.3 The Reasoning Language 94

Another observation regarding these auxiliary operators is that they must be defined
in a context separate from that of the algebraic law8. Their equations entail syntactic
tr&nsforma.tion8, whereas the laws express semantic properties. While a form.al distinction
between the syntactic and the semantic natures of prograIWl is necessary in principle, it
would require the explicit definition of some kind of semantic function which would make
the mechanisation extremely laborious. We avoid a formaJ diBtinction between these
two views of progra.lll8 by defining the equations of the auxilia.ry operators in a sepa.rate
module. As OBJ3 a.lloW8 one lo specify the context for a given reduction, we can ensure
that synta.ctic aDd sema.ntic transformations are never intermixed.

The algebraic laws are described aB labelled equations. The labels are used in the verifica
tion phase aB references to the equations. We use the same name conventions introduced
earlier. For example, Law (:= skip}(3.15.1) is coded a.a

[: .. ·skip] eq (%:= %) • skip.

The codification of most of the laws is straightforward. However, there is a drawback
concerning the laws which are inequalities. Although, for exa.mple, b.L [; skip can be
precisely described by the equation

eq (b.L ~ skip) • true .

this encoding is not convenient for use in proofs. This equation allows us to rewrite the left
hand side with true, or vice-versa; but we a.re concerned with reducing nondeterminism
(by rewriting bJ, to skip) or, conversely, increasing nondetenninism, by rewriting in the
opposite direction. The way we overcome this problem is coding inequatioD8 aB equations
whose left-h&nd sides are less deterministic than the corresponding right-hand sides. We
document this fact by adding the ordering rela.tion as an additional la.bel to the equations.
The above then becomes

[b.L-dtip!:] eq b.L & dtip .

But this iB clearly unsatisfactory, as 08J3 treats it as an ordinary equation; we have the
obligation to check (with the aid of the annotations) if aD application of a rule makes
sense in a given context. For example, in a refinement process, a left to right application
of the above rule is valid, but &n application in the opposite direction is obviously invalid.
An appropriate solution is to build support for inequational rewriting inlo the system. In
the final section of this chapter we briefly diSCU88 a system based on OBJ3 which a.ceepts
as input an OBJ3 specification and treats the rules annotated with the ordering relation
as inequations.

The Jaws of recuI'5ion also deserve some attention. OBJ3 is based on first order logic,
and therefore we ca.n..not quantify over functions, a.a in:tplicitly done in the fixed point and
least fixed point laws. However, this can be easily overcome using substitution:

[p-fpJ oq (p X • p) • p[X <- (p X • p)) .

[p-lfp <=J oq (p X • p) i;; q • (p[X <- qJ) i;; q

6.3 The Reason.iIlg LaIlguage 95

Note that the second equation should have been coded a8 an implication, with its left-hand
side implied by its right· hand side.

It is convenient to defioe instances of the above laws to deal with iteration commands, as
in this particular case we can get rid of the substitution operator.

[.-fp] eq b. P • (p; b • P <I b ~ .kip) .
[.-Up <=] eq (b. p) [; q • (p; q <I b ~ .kip) [; q .

These are easily derived from the definition of iteration and the laws of recursion.

6.3.1 An Example of a Proof

To illustrate how proofs are carried out in OBJ3, we chose a simple example which high~

lights hoth some positive points and some limitations. Other proofs a.re presented in
Appendix C.

The example used here is the first part (RHS ~ LHS) of the proof of Law 3.11.6:

(b.p); q = pX.(p; X<l b ~q)

OBJ3 supports the step by step style of proof that we have used. in the manua.l proofs.
First we define constants UIS and RHS to stand for the relpective sides of the a.bove
equation. Then we start the proof process with

start (b * p) ; q !; LHS .

which is equivalent to true (by the reflexivity of ~). The proof strategy is to gradually
transfonn the term (b * p) ; q into RHS by requelting 08J3 to apply equations which
encode the appropriate laws. For example, the following is a request to apply the fixed
point law

OBJ> apply .•·fp vithin term .

where within ten is used to apply a given equation to all possible sublernlB of the tenn
in focus. In our case there is only one match for the left-hand side of the fixed point
equation, and the system replies with the expected result:

result Bool: (p ; b * P <I b t> skip) ; q ~ LHS

In a similar wa.y, we apply equations to move q iD.llide the conditional and t.o eliminate
skip (and then we rewrite b * P ; q to UlS), resulting in

result Bool: (p ; UlS <I b t> q) ~ LHS

6.3 The ReasonicJg Language 96

which suggests the backward (right to left) application of the least fi::x:ed point equation (see
the equa.tion with label p~lfp in the previous section). Note, however, that the right-hand
side of that equation mentions the substitution operator explicitly, and therefore cannot
be matched by the above tenn. The desired form can he achieved by using the equations
of substitution. For the moment, we add an equation which allows us to perform the
desired transformation:

[Bub.tll eq (p ; UIS <l b l> q) - (p ; X <l b l> q) [X <- LHS) .

Then we have

OBJ> apply _substl within term .

result Baal: (p ; X 4 b I:> q)[X <- LHS] ~ UlS

which ena.bles us to apply the least fixed. point equation:

OBJ> apply -.p-lfp vith vithin tera
result Bool: p X • (p ; X 4 b I'> q) ~ LRS

where the minus sign preceding a label requests backward applica.tion of the corresponding
equation. The final result follows directly from the definition of RHS.

But we still need to discharge the proof obligation introduced by the added equation
Bubst!. As the equations defining substitution are confluent and terminating, we can
prove this equation automatica.lly, rather than step by step. In OBJ3 this is achieved by

OBJ> select SUBST .

OBJ> reduce (p ; UiS 4 b po q) - (p ; X 4 b I:> q) [X <- LHSJ .

rewrites: 4

reault Baal: true

where the command select is used to specify the context in which the reduction is carried
out. The module SUBST contains the relevant equations of substitution. Reca.ll that we
need to collect these equatioD8 in a separate module, since a reduction involving substitu
tion entails syntactic trll.llSformations; the algebraic laws express semantic properties and
their use must be disallowed in such a proof. A similar technique is employed to reduce
side conditions about non-freeness.

This simple reduction has actually uncovered one hidden assumption in the manual proof:
the law being verified is true only if Xis not free in p or q. So, in order to prove the above
equation, we must add this as an assumption:

eqX\p-true
eqX\q-true

6.4 Tbe Normal Form	 97

Although the me:hanical proof closely corresponds to ita manual version, some limit&tions
can be observed. One has alrea.dy heen discussed earlier and relates to reasoning with
inequations. Note that we have no means to tell the system that the term resulting from
the application of least fixed point is implied by (rather th&n equivalent to) the tenn
that precedes the application. Thia is only informally documented in the definition of the
corresponding equation.

First order logic is sufficient to express most of the algebraic system we use; however,
higher~order matching would enable a more convenient description (and applic&tion) of
the laws of (least) fixed point, without mentioning substitution explicitly. As illustrated
above, the use of substitution requires the user to provide tbe matching; this turns out to
be cumbersome if the laws are repeatedly used. However, the problem W&B ma.de easier
by defining instances of these laws to deal with iteration, since they do not mention the
substitution operator.

Concerning proof management, no support is provided. For example, there is no facility
to deal with assumptions; to be used as rewrite rules, they have to be added by the user
as ordina.ry equatioIUl, as shown above. Also, it would be useful if the theorem we have
just proved were automatically added to the module in question, and made &va.i1ahle in
later proofs. in OBJ3 this has to be carried out by the user.

6.4 The Normal Form

Tbe module describing the normal form extends that describing the reasoning language
with a new operator and its defining equation:

op-u	 L: L. _->_. _]) : ListVar Cond Cond Prog Cond -> Prog
tor v :[a. b -> p. c] it pVd(b.c) [prec 50]

[nrdet] eq v :[a. b -> P. c] • dec v. v:€ a ; b * p; c.l

where the precondition dates the required disjointncss of the conditions band c,

The reduction theorems can then he proved from the above definition and the equations
describing the algebraic laws, in much the same way as illustrated in the previous section.
Then they can he added to the module as oroina.ry equations. For example, the reduction
of sequential composition is captured by the equation

[T:8equential-coaposition !;;]

cq v :[a. bl -> p, co] ; v :[co, b2 -> q. c)

v : Ca, (bl V b2) -> (bl ~ P 0 b2 ~ q), cJ

if pVd(bl.b2.c) .

6.5 A Compiler Prototype 98

which is true only under the condition that bi, b2 and c are pairwise disjoint3. Recall
that these disjointne88 conditions were implicit in the D10Ulual proofs,

6.5 A Compiler Prototype

Here we formalise the design of the compiler presented in Chapter 4. The components
of the target machine are gradually introduced by the modules describing the phases of
compilation: simplification of expre813ions, control elimination and data. refinement; these
are the concern of the first three subsections. Aparl from these phases, it is necessary an
additional step to replace the assignment statements (used as patterns to define instruc
tions) with the corresponding instruction names. This is discussed in Subsection 6.5.4.
In the last subsection we illustrate how compilation is carried out using equations which
encode the reduction theorel1l.9. The complete description of the modules concerned with
the compilation phases (and the verification of some of the related theorems) is given in
Appendix C.

6.5.1 Simplification of Expressions

Rather tha.o defining a particular notation of expressions in our source language, we want
to illustrate how to simplify expressions involving arbitrary binary and unary operators:

sorts SourceVar SourceE%.p .

8ubeorts SourceVu < SourceE%p

op uop_ SourceExp -) Source.Exp
op _bop_ SourceE%.p SourceE%.p -) Source.Exp

The only ma.chine component relevant to this phase is the general purpose register. It is
represented here by the following constant

op A -) SourceVar .

which must be of the saIne sort as an ordinary source variable because. during the process
of simplification, A is assigned expressions of the source language.

The theorems related to this phase can be verified (and then introduced as equations)
in the way already explained. But one aspect to be addressed is the creation of fresh
local variables that may be required during the simplification of expressions. Like the
implementation of safe substitution (mentioned before) this is an instance of the more
general problem of creating fresh identifiers using a formalism with a stateless sernantial.

3When 'be semantic effect ofp&ri.iaJ. operators ill implemen~, 'his k.iud of coDdi'ion will he I.utomai
ically ilUlerted by the 8y&tem, 88 it ea.n be deduced from 'he declaration of the oper&torB.

99 6.5 A Compiler Prototype

One approach is to generate a fresh identifier every time a temporary variable is needed
(which is confined to the equation concerned with the simplification of binary operators).
While this obviously works, it does not optimise the use of space. An optimisation i8 to
create distinct identifiers for variahles in nested blocks, but identify variables (with the
same name) which appears in disjoint blocks. This can be accomplished with

let n • depth(e bop f) in
cq (A :- e bop f) • dec tn • A:-f to :-A ; A:-e ; A:-A bop to
if (A,t.) \\ (0 bop f) .

where we use the depth" of a given expression as the basis to generate fresh identifiers. The
term tn comprises an invisible operator which from an identifier t and a natural number
n generates a new identifier tn. The let clause above was used to improve readability;
in OBJ3 it is ava.i1able only for defining constants.

Ohserve that the loCAl. variables of the nested blocks generated by the simplification of a
given expres8ion are guaranteed to be distinct, as the depth of the expression decreases
during the simplification process. However. the same identifiers may be generated to
simplify another expression; in particular, we always use the same b~~ identifier t to
ensure the maximum reuse of temporaries.

Recall that an optimisation of the above rule is po6sible when the expression f is a variable•.
in which case the allocation of temporary storage is unnecessary:

cq (A :- e bop z) • A:-e ; A:-A bop z
if A \\ (0 bop x)

As variables are also expressioDs, any assignment which matches the left-haJld side of this
rule also matches that of the previous rule. Of COUI'8e, we always wa.nt the optimising
rule to be used in such cases. But OBJ3 does not provide means to express rule priorities
(one cannot even rely on the fact that the system wiD attempt to apply rules in the order
in which they are presented). To ensure application of the optimising rule, we need to
add an extra condition to the previous rule. say is-not-va.r(f), where il-oot-var is a
boolean function which yields true if a.nd only if the expression to which it is applied is
not a variable.

6.5.2 Control Elhnination

The steps to formalise this phase of compilation are very similar to those of the previous
phase. Expressions are further extended to include natural numbers which are used to
represeot addresses in the memory ROM. Fluthermore. the program counter is declared
&8 a special (program) variable to which expressions representing ROM addresses may be
assigned. These are specified &8 follows:

"from & hee repreeeDtatioo d aD ap~ion, we define iLl depth to be tbe number of nodes iP the
loogest pa1b. of 1b.e tree.

6.5 A Compiler Prototype 100

sorts RoaAddrVu RoaAddrE.J:p .

subsort. RoaAddrVu < RoaAddrE:r:p

subsorts Bat < RollAddrE.z:p

op p : -> RoaAddrVu .

where Nat is built-in to OBJ3; the usual numerical reprelentation is available, thus we do
not need to write large numbers in terms of a successor function.

The theoreIll.!l for control elimination are easily verified by instantiating the norma.l form
theorems. Additional tra.nsformatioll8 are required in some cases, but they do not illus
trate any new aspect.

A problem similar to the generation of fresh identifiers is the allocation of distinct ad
dresses for the machine instructions yielded by the compilation process. The solution
we have adopted hi to preprocess the source program to tag each construct with a dis
tinct natural number representing an address in ROM. Then the reduction theorems are
encoded as, for example:

cq (al(,,-a) - P,[a, CP'a) -) Co,P ,- a,P+1), Ca+1)J if P \\ a .

where s is the address allocated to place the instruction generated by z :- e. We carry
out the ta.gging after simplifying expre88ions, since each simple assignment will give rise
to a single instruction.

It is worth stressing that tagging hi merely a syntactic annotation to ensure the d.isjointness
of the addrelses allocated for the machine ill8tructions. It has no semantical effect; more
precisely, {a} p • P, for all programs p.

6.5.3 Data Refinement

This phase entails more sophisticated components such as the symbol table and the store
for variables; they are represented as maps, ratber than as single varia.bles:

define SymTab is KAP[SourceVar.RamAddr]

define Ra. is KAP [Ra.ra.Addr. SourceE:r:p]

op M : -> Ru. .
vu 'i : SymTab .

This fonnalises the fact that a symbol table is a map from identifiers to addresses of
Joc.a.tions in Ra., which is itself a map from addresses to expressions denoting the cor
responding values. In practice we use natural numbers to represent addresge8; this is
possible by making Nat a subsort of RamAddr.

As the other machine components, M was introduced as a constant of the appropriate
sort. How~. the symbol table may change from program to program, and is tberefore
declared as & variable.

101 6.5 A Compiler Prototype

The simulation used to carry out data refinement can then be defined. Below we gi\'e the
declaration and the definition of its firet component:

op¥as: : Sy.Tab ListSourceVar -) Prog

f~r i v if elts(v) - (do. t) and disj (v)

eq ~v • 'Jar v ; v :. M[1)' [v)) ; end M .

where the precondition requires that each variable in the domain of 1)' occurs exactly once
in the list of global variables v. Note the similarity between the a.bove equation and the
original definition of -t-v given in Section 4.6. In particular, we have implemented list
application (among other map operations) to allow a straightforward encoding.

The distributivity properties of the simulation i v can be verified in the usua.l way. Per
haps tbe most interesting is the one which allocates space for the local vadable.!l:

cq ~.(dec •• P,A • p) • dec P,A • i(•. v)(p)
if disj(v,.) and disj(4'[v),>II[.)) .

where l) == 1)' U {v H(bue + len (v) + 1 .. base + len(w.v»}.

It is required that the global varia.bles v are distinct from the local variables v, and
that the new addresses to[v] are different from the ones already used, 1)'[v]. We have
alread.y discussed how to satisfy the firet condition. The other one can be easily sa.tisfied
by allocating for the global variables the addresses bue + 1 .. base + len(w), where
base is an arbitrary natural nwnber; the definition of cO then guarantees that the addresses
allocated for the local variables are distinct from those.

Tbe complete verification of the above theorem is given in Appendix C.

6.5.4 Machine Instructions

The machine instructions are defined &8 a.ssignments that update the macbjne state.
Therefore the instructions should also be regarded as elements of the sort Prog. However,
to make it clear that we are introducing a new concept, we declare a subsort of Prog
whoee elements are the machine instructions:

sort Instruction .

subsort Instruction < Prog .

op load : RaaAddr -) Instruction
.q (A.P :. M[nJ,P + 1) • I",d(n)

The reason to order the equations in this way is that they are used as (left t.o right)
rewrite rules a.t the last stage of the compila.tion process, t.o translate the semantiQl to the

6.5 A Compiler Prototype 102

syntax of the assembly liUlguage. In other words, when the assignment statements (used
as patterns to define the instructions) are generated, they are automatically replaced by
the conesponding instructions names; numeric values could be UBe:d instead, if the purpose
Wa5 to produce binary code.

6.5.5 Compiling with Theorems

Now we present one of the main achievements of the mechanisation: the provably cort'ect
reduction theorems can be used effectively aa rewrite rules to cany out the compjlation
task. All tha.t needs to be done is to input the source program with a symbol table that
allocates addressC8 for its global va.riables w, and aak OBJ3 to reduce this program using
the reduction theorems~. The output is a normal form program which represents the
target m3Chine executing the corresponding instructioD:l.

The process is carried out automatically. Every subterm matching the left-hand side of
a one of the reduction theorems is transformed in the way described by the right-hand
side of the theorem. As we have ordered tbe theorems in such a way that their right-hand
sides refine the conesponding left-hand sides, each application can only lead to refinement.
Therefore compilation is itself a proof that the final nonnal form program is a refinement
of the initial source program. A very simple example is given below.

OBJ> let w a z.y,z

OB3> let 'Ii • {I H iOi} U {y H i02} U {z H iOS}

OBJ> reduce ~v (z : - y bop (uop z» .

rewrites: 386
result: P,A: [0, (P-O V P-l V P-2 V P-3 V P-4 V P-S) ->

(P-O) _ l""d(iOS)

o (P-l) -+ uop-A
o (P-2) -+ slore(l04)
o (p.S) _ lo,d(102)
o (P'O) _ bop-A(iOO)

o (P-S) -+ 5tore(lol),
6]

OBJ> show t illIe

10.367 cpu 20.033 real

The application of the simulation function to the source program ensures that the data
refinement phue will be accomplished by using the aa80ciated distributivity equa.tions.
Note in particular that the new address 104 waa allocated to hold the value of a temporary
variable creat.ed. during the simplification of the expression. The laat line ~bows the time
(in seconds) consumed to carry out this reduction on a Sun 4/330 with 32 MB RAM.

103 6.5 A Compiler Prototype

The gua.rded oommand set of a normal form progra.m is an abstract representation of m
(the store for instructions). We have not mecha.nised the actual loading process, which
corresponds to extracting (from the guarded. com.m&D.d set) the mapping from addresses
to instructions, and use this to initialise m. For the above example this ma.pping i.ll

{O H load(103») U {I H uop-A) U {2 H 510'0(104») U
{3 H load(102») U {4 H bop-A(I04») U {5 H sto,o(IOI»)

and the value of m outside the range O.. 5 is arbitrary. In this case, the execution of the
gua.rded command set has the same effect as the execution of m[P].
Although not appa.rent to the user of the compiler, the compilation ill carried. out pha.ae
by phase. For the above example, the result of each phase ill given below.

~.(. :. y bop (uop z»

iv(dec A,tl • A := z ; A := uop A j tl := A i A := y ; A := A bop tl ; z ;= A)

11

Idata refinement I

11

dec A • A := M[!03) ; A := uop A; M := M IF {!04 HA) ; A:= M[102];
A := A bop M(104] ; M := M IF {IO! HA)

11
Icontrol eliminatiOU]

11
P ,A : [0, (P.O V P'I V P'2 V P.3 V P04 V P.5) -)

(p·O) ~ A,P :. M[103],P + I
o (p.l) --+ A,P :- uop A,P + 1
o (P'2) ~ M,P :. (M IF {104 H Al),P +
o (P'3) ~ A,P :. M[102).P + 1
o (P04) ~ A,P :. A bop M[104],P + I
o (P.5) ~ M,P :. (M IF {101 H A),P + I,

6)

Imachine instructions I*

11

P ,A : [0, (p·O V P-I V P'2 V P'3 V P04 V P'5) -)
(p·O) ~ load(103)

o (P.I) ~ uop-A
o (P'2) ~ storo(I04)
o (p.3) ~ Ioad(102)
o (P04) ~ bop-A(I04)
o (P'5) ~ storo(IOI) ,

6)

6.6 Final Cousjderatjons 104

The last step above entails a simple syntactic transformation of the patterns used to define
instructions with the corresponding instruction names.

As discussed in Chapter 4, the simplification of expressions must be performed first; no
restriction was imposed reg&l'ding the order of the other two phases of compilation. In
practice, however, it turned out to be much more efficient to carry out data refinement
before control elimination. One reason is that the transformations aB80ciated with this
last phase increase the size of the program significantly, with expressions involving the
program counter which are irrelevant for data refinement. But moat importantly, the
normal form uses the operator 0 which is both associative and commutative, and the
matching of associative-corwIlutative operators is an exponential problem. As data re
finement is carried out by applying distributivity equations all the way down to the level of
variables, the matching involved become:! very expensive, and (perfonning it after control
elimination) makes the process impractical even for prototyping purposes.

It is possible to control the sequence of application of rules in OBJ3 using evaluation
strategies. For example, by declaring the simulation function ~v B.8 strict, we ensure that
its argument is fully reduced before any of the distributivity equations are applied; this
means tha.t the simplification of expressions is carried out before data refinement. As
explained before, the equations related to controJ elimination are not applied before the
program is tagged (this is easily controlled by pattern matching). We also use evalua
tion strategies to ensure that the tagging is performed only when the data refinement is
complete. As a COnseq,uence, control elimination is the last phase to be accomplished.

6.6 Final Considerations

We have shown how to use the OBJ3 term rewriting system to mechan1se a non-trivial
application. In particular, we believe to have successfully achieved three main results
using a single system:

• A formal specification of all the concepts involved in this approach to compilation.

• Verification of some of the related theorems.

• Use of the theorems as a compiler prototype.

Although we have not verified all the theorems (as this was not the main purpose) the
verification of a releva.nt subset gives sorne evidence that the task is feasible and rela.tively
straightforward, especially considering that a complete framework is now in place.

Below we present a more detailed analysis of the mechanisation. First we di9CU88 general
aspects, and then we consider more specific features related to the use of DBJ3; finally we
discuss some related works which report. on the use of other systems to automate similar
applications.

6.6 Final Considerations lOS

6.6.1 The Mechanisation

Even a simple attempt to automate an application gives (at least) a better insight into
the problem. This is because ma.ny .a.spects are UBuaJIy left out of (or implicit in) an
informal preaentation. For example, the OBJ3 presentation fonnally records the fact
that the &lgebraic laws are independent of a particular expression language, provided
this language includes the boolean expressions; explicit instantiations were defined when
necessary.

We also had to deal with three related aspects not addressed initia.Uy: the creation of
fresh local variables for tbe simplification of expressions, aJIocation of distinct addressel!l
for local variables (also distinct from the ones used for the global variables), and, similarly,
the allocation of distinct addresses for the ma.chine instructioDs yielded by the compilation
process.

Another major aim of a mechanisation is to check the correctness of hand proofs. With
this respect, no serious error or inconsistency was found; hut the mechanisation helped to
uncover a few hidden assumptions (especia.Uy concerning non-freeness conditional as well
as the omission of references to laws necessary to justify some proof steps.

The only proof steps carried out completely automatically were the simplificatiQo of termB

involving suhstitution, and the reduction of non-!reeness conditions. Application of the
laws required our full guidance. This is a consequence of the fact that our &lgebr&ic
system is non-confluent and, furthermore, it includes non-tenninating rules. Even so, the
automated proofs are Less laborious (and safer) than their manual versions in that the
user is freed from handwriting the results of application of laws, especially regarding long
terms which occur as intermediate steps in the proofs.

On the other hand, in a manual proof we sometimes allow oursdves to juetify a given
transformation by citing the necessary laws, leaving implicit the details of how the laws
are actua.Uy used to achieve the transformation. But in a mechanical verification, every
single step h.a.s to be explicitly justified, and the process may become extremely tedious.
Therefore the encoding of new laws which combine the effect of more basic ones deserves
special consideration. They play an increasingly important role as the number of theorems
to be verified grows.

For example, the combination of &88ignments to distinct variahles can be achieved by first
normalising the left-hand sides (by adding identity &88ignments and using the symmetry
law of multiple &88ignments), and then applying the law to combine &88ignments to the
same variables. However, this procees may require many applications of 'hese laws; the
same effect can be achieved using the la.w

cq (z ;. e ; y ;. t) • (z.Y ;. e.Hz (- el) it z \\ y .

which is easily derived from the ones mentioned above. Similarly, it is possihle (in some
cases) to swap the order of two &88ignmenta using only the hasic laws of &88ignment. But
the process is more concisely captured hy the law

cq (x:- e ; y ;- f) - (y ;- f[z (- e] z ;. e) it y \ \ (z ;. e) .

6.6 Final CollBideratiollB 106

Another simple example is the instantiation of the (least) fixed point laws to deal with
iteration. This saved. us from rewriting iteration in terms of recursion only to apply these
laws and then rewrite the result back to the iteration form. Further investigation may
reveal m()re powerful strategies to combine laws.

One of the main benefits of the mechanisation is the possibility of compiling with theorems.
Once the compiling specifics.tion (given by a set of reduction theorems) was in place, no
additional eHort was required to produce a (prototype) implementation. This was a
consequence of the fact that the reduction theorems have the form of rewrite rules.

The only unexpected result of carrying out all the work was to realise that data refinement
could be performed before control elimination. This was motivated by the fact that an
lnitial version of the prototype which executed data refinement after control elimination
was extremely inefficient, as discussed in the previous section.

One final aspect we wish to address is the reliability of ow mechanisation. As mentioned
before, progra.ma have both a syntactic and a semantic existence, and we have not for
mally distinguished between them. Rather, we have grouped the equations which define
the syntactic operators in a separate context (module) from that of the algebraic laws.
But this does not prevent an unadvised (or badly intentioned) user from combining the
modules and derive an incollBistency such as (we assume that the variables x, y and z are
distinct)

false
- {from equations defining non-freeness}

y \ (x:-y; x:.z)
• {combine assignments}

y \ (x,-z)
- {from equa.tions defining non-freeness}

true

This is a con.<;equence of applying a semantic transformation (the combination of assign
ments) to l'I. program which should have been treated as a purely syntactic object. Such
derivations would be automatically disallowed. if these syntactic operators were hujlt-in
to OBJ3, since in this case the user would not have access to their equations.

6.6.2 OBJ3 and 20BJ

The normal form approach to compilation was conceived. as a ca.refully struetwed hi
erarchy of concepts which is worth preserving in any attempted mechanisation. The
parameterised modules of OBJ3 were a fundamental tool to achieve this objective.

For example, we have used distinct instantiations of the module describing the reasoning
language to deal with each phase of ("..ompilation l since each phase has its own requirements
regarding expresaions. But clearly, the reasoning language may serve many other useful
purposes such &8 to prove properties about progra.ma, to perform optimisations or to re
duce programs to a diHerent normal form, The module delj:cribing the reasoning language

107 6.6 Final Consjderationtl

could actually be part of a library concerning program development. The module whicb
groups the nonna! form redudion tbeorems is equally generic and can be instantiated to
deal with different target machines.

We have alao demonBtrated the convenience of subsorting and the operation declaration
facilities of OBJ3. The fact that associativity, commutativity and identity properties ea.n
be declared (rather than stated hy explicit equations) substantially simplifies the proof
process. Apart from rewriting modulo these properties, OBJ3 provides mechanisffiB for
selecting subterms (for the purpose of localised tr&DBfonnations) which take them into
account. For example, &8 sequential composjtjon is associative, the term

p ; q ; r

stands for an equivalence cl&8s containing (p ; q) ; rand p ; (q ; r). Furthermore,
in this case a direct selection of any contiguous sub term iB p05Bible, &8 (p ; q) or (q j

r). For terms witb a top operator which is botb aBBOciative and commutative, a subset
selection mecbanism is available. Consider the term

p n q n r

We can apply a given transforma.tion to the subterm (p n r) by directly selecting this
subterm using the notation provided.

Our experience [69] witb systems which do not include sucb facilities showoo that the
proofs are (at least) twice as long as the ones C&l1'ied out using OBJ3. The explicit
application of &8sociativity and commutativity laws ie very laborious and diverts the
user's attention from more relevant proof steps.

As a language to describe theories, the only significant limitation of OBJ3 for our ap
plication is the lack of inequational rewriting. Higher-order logic would allow a more
natural encoding and use of the (least) fixed point laws, but this W&8 overcome by using
substitution. Although not &8 convenient, it was not a major problem in pra.etice.

The main drawbacb of OBJ3 are related to proof supportj this W&8 extensively discusaed
earlier. A more pragmatic limitation is efficiency. Although tbe speed of the rewrites is
rea.sonable for interactive theorem proving, it is not &8 satisfactory for automatic reduc
tions involving a large number of rewrites. In particular, the use of the theoretIl9 to carry
out compilation ill only acceptable for prototype purposes, &8 illustrated in the previous
geCtion.

Most of the problems discussed above are being taken into account in tbe development of
tbe 20BJ system [29] which is being built on top of OBJ3. Broadly, thiB is a meta-logical
framework theorem prover in the sense that it iB independent of a particular logical system.
The desired logical system can be programmed by tbe user by encoding it in equational
logic. 20BJ h&8 a user-friendly interface and allows user-defined tactiCfl for the particu.1a.r
application dom.a.i.n.

One of the logical systems available supports order BOrled, conditional, (in)equational
rewriting. In particular, the inequational rewriting module of 20BJ accepts &8 input an

6.6 Final Consjderatjon.s ID8

08J3 specification and treats the rules annotated. with the ordering relation (as illustrated
earlier) as inequatiotls.

A closer investigation of 20BJ is one of the suggested topics for future work; not only
more confidence will be gained in the proof9 (because of a proper account of inequations),
but user-defined tactics can be defined to improve the proof process.

6.6.3 Other systelllil

In a previous study [69], we explored the suitability of some systems to formalilie a small
subset ofthis approach to compilation. Apart from OBJ3, we considered the B-Tool [74J,
the Veritas+ Environment [19J and the occa.m Transformation system [32]. A sununary
of our experience with each system is given below. Related experience of others, using
the La<cb Prover (LP) [26] and H;gher-Order Logic (HOL) [341 i. also discussed.

A specification in the B-tool is fonned of a collection of units called theQrielJ. Unlike OBJ3,
these units do not embody any idea. of a module-they are just "rule containers". The lack
of constructions for type definition and variable as well as operator declarations is another
drawba.c.k of the &-tool. A helpful feature is the built-in implementa.tion of non· freeness
and substitution. Not only this saves a substa.ntial specification effort in oUI case, but the
a.860ciated reductions are carried out very efficiently. As discussed previously, thia also
avoids the need to distinguish between the syntactic and the semantic views of programs.
Regarding theorem proving, the rewriting facilitiC5 are similar to those available in 08J3,
but there is no support for dealing with associativity, commutativity or identity.

As a specification language, Veritas includes some interesting features. Although signa
tures (the specification unit) may not be parameterised, similar facilities may be obtained
by using bigher-order functions and polymorphic datatypes. Besides polymorphism, the
type system includes subtypes and dependent types. This allows us to express the precise
domain of partial operators such as multiple a.ssignment statements. The main drawback
for oUI application is the difficulty of coding the algebraic Laws. Defining the reason
ing language as a datatype, it is impossible to postulate or prove any of the algebraic
laws. The reason is that a datatype is a free algebra, a.nd therefore terms built from the
constructors cannot be equated. The laws have to be established as theorems l from a
semantic function which expresses their effect, through a very laborious process.

The occam TranBformation system implements an application similar to ours. Its purpolie
is to allow semantic preserving transformations of occam processes, where the transforma.
tions are jwtified by the algebraic laws obeyed by the language [68]_ As occam includes
some of the operators of OUI reasoning language, it is possible to use the system, for
example, to prove some derived laws. In principle, it is even possihle to extend the sys
tem (which is implemented in SML [36}) with additional features which would a.l1ow us
to reason about the whole compilation process. For example, new operators (especially
the specification ones) with their algebraic laws would be necessary. While most of the
desirable features can be easily coded in SML, the implementation of theorem proving
facilities such as mechanisms to deal with associativity and commutativity is a complex

6.6 Final Considerations 109

task.

A work closely related to Ounl is reported in [70j. It investigat.e8 the use of LP to verify the
proof of a compiler for a llIIl.81l subset of OCCAnl, not including parallelism or communica
tion. As in our case, the reasoning na.mework is an extension of the source la.nguage with
its algebraic laws. The emphasis in [70} is the specification of the reasoning na.mework;
only a few simple proofs were mechanically checked. Also, the aspects related k> da.ta
refinement were not formalised.

As LP is also a term rewriting system, the specification described in [70] shar~ many
features with Ounl. However, it is rela.tively less concise a.nd readable since LP provides
no module facilities, and is based on multi-sorted, rather than order BOned, logic; therefore
subsorting is not available. Also, the operation declaration facilities are not as flexible
as in OBJ3. There is a mechanism to deal with &S5Ociative-commutative operators, but
nothing is provided for operators which are only associative. Identity properties also
have to be stated by explicit equations. On the theorem proving side, LP incorporates
more elaborate mecha.nisIllB tha.n OBJ3; apart from term rewriting, it supports proof by
induction, case a.nalysis and contradiction. However, the support for a.n interactive (step
by step) application of rules is not as flexible &8 in OBJ3.

The work reported in [6] deals with a.n important &8pect that we have not addressed:
the correctness of the b&8ic algebraic laws. A specification language (similar to ours)
with weakest precondition semantics i8 formalised using the HOL system, a.nd a number
of refinement laws are (mechanically) proved. Although in principle we could do the
same in OBJ3 (or perhaps 20BJ), a system ba.sed on higher~order logic like HOL seems
more appropriate for this purpose. The rea.son is that in the predica.te tra.nsformer model,
progra.ms are regarded &8 functions on predicates, and therefore the :reasoning ill essentially
higher order. However, it is our view that, for the purpose of using the Jaws for program
tra.nsformation, a s)'8tem like OBJ3 is more suitable, &8 it provides powerful rewriting
capabilities.

Chapter 7

Conclusions

There i.. a gre..t danger auoeiated with people's percep
tion of new concepts. If improved methods are used to
tadde the same sort of problems previously handled by
ad hoc methods, the systems created could be far safer.
If, on the other hand, the improved methods are used to
justify tackling systems of even greater complexity, no
progress has been m..de.

- C.B. Jones

We ha.ve presented. an innovative approach to compilation, and showed how it can be
used to design a compiler which is correct by construction. The compilation process was
characterised as a normal fonn theorem where the DOnna! form has the same structure as
the target executing mecha.oisID. The whole process was Cormali8ed within a single {and
relatively simple) semantic framework: that of a procedural language which extends the
source language with additional specification features.

The specification (reasoning) language was defined. as an algebraic structure whose a.x:~

ioms are equations and inequations (laws) characterising the semantics of tbe language.
The advantage of this semantic style is abstraction; it does not require the construction
of explicit mathematical. models, as with denotational or operational semantics. As a
consequence, extensions or modificatioD8 to the semantics may require the alteratioll of
only a few laws, unlike, for example, a denotational. description which would require al.4

terations to the mathematicaJ model and consequent revision of every semantic clause. In
the operational style, proofs are typically by structural. induction and/or by induction Oil

the length of derivations or On the depth of trees. Therefore if the language is extended,
the proofs need to be revised. In the approach we have adopted, we hardly use induction;
this is implicitly encoded in the fixed point laws. A purely algebraic reasoning gives some
hope concerning the modularity of the approach.

By no meaDB Me we claiming a general superiority of the algebraic approach over the other
a.pproaches lo serIl&I1tics. Each style haa ib appropriate a.rea.s of application. For example,
postulating algebraic laws can give rise to oomplex and unexpected interactions between
programming constructions; this can be avoided by deriving the laws from a mathematicaJ

110

III 7 ConcJusio.QB

model, u briefly illustrated in Chapter 3. Si.m.ilarly, AD operational sema.ntics is neassa.ry
to address practical aspeds of the implementation and efficiency of execution. A general
thoory of programming dealing with these three BeIDaDtic approa.ches is suggested in [44].
]n particular l it is shown how an algebraic presentation can be derived from a denotational
description, tond how an operational presentation is derived from the fonner.

The identification of compilation as a task of normal fonn reduction allowed us to capture
the process in an incremental way, by splitting it into three main phases: simplification
of expressions, control elimination and data refinement. The ideas are not biased to
a particular source language or target machine. Notable are the theorems for control
elimination which CAD be insta.ntiated to deal with a variety of ways of encoding control
state. The independence from a source language is not so evident, as we had to adopt a
particular notation in order to formulate the m.a.thematicallaw8 and illustrate the task of
designing a compiler. However, our source l&nguage includes features conunonlyavailable
in existing procedural languages. It can serve as a target for a front-end compiler for
languages which uae more conventional notations.

We initia.lly dealt with a very simple source language to illustrate how a complete com
piler can be designed. The source la.nguage was then extended with more elaborate
features (procedures, recursion and parameters), and the aBllOciated reductio1J thoorems
were proved. This extension gave some evidence about the modularity of the approach;
each new feature was treated in complete isolation from all the other constructions of the
language. The rewte of laws, lemmas and theorems is of particular releva.nce. For exam
ple, the (derived) laws of iteration and the IeIIUDaB used to prove the reduction thoorem
for sequential composition have been of more general utility; they were used IM)mehow to
prove the reduction thoorems for all the language features treated subsequently.

The wbole approach has been carefully structured to simplify its mechanisation. We have
illustrated the proce88 for the simple version of the source language, using the OBJ3 term
rewriting system. The concepts were formalised as a collection of algebraic theories, and
some of the rela.ted theorems were verified and used as rewrite rules to carry out compi
lation autOmAtically. The mechanisation preserves the original structure of the algebraic
theories. As discussed in the previow chapter, it can be useful for many other pur
poses, such as proving properties about programs, perfonning optimisations or reducing
prograDlB to a diHerent normal foem.

In summary, we believe our work to be a modest contribution to three important fields
of software engineering:

•	 formal methods tond techniques - with a relatively large application of refinement
algebra;

•	 compiler design ADd correctness - with the exploration of a new approach oompris
ing aspects such as simplicity and modularity; and

•	 mecha.nic.aJ. thoorem proving - pa.rticu1a.rly, the use of term rewriting 8ysteID8 &8 a
tool for specification, verification and (prototype) implementation.

7.1 Rels.ted Work 112

But there is much more to be done beCore we can claim that this approach will generalise
to more complex llOurce languages or target machines. In the following section we discuss
related work. Some erlensions to our work are discussed in Section 7.2. We finish with a
critica.l analysis of the overall approach to compilation.

T.l Related Work

In Chapter 2 we gave a brief overview of refinement calculi and techniques; in the previous
chapter we compared OBJ3 to llOme other theorem provers. Here we concentrate on
compiler design and correctness. NevertheIe8s, there is an extensive (a.nd expanding)
literature and we have no intention of covering the field. Rather, we consider closely
related work and comment on a few approaches baaed on distinct semantic styles.

Closely Related Approaches

Nelson aDd Mana.sse (64) have previously characterised the compilation process as a nor
mal fonn theorem. But the authon fonnalise the reduction proCe8B in more concrete
terms, using a program pointer to indicate the location in memory of the next instruction
to be executed. By using assumptions, assertions and genera.llioed assignment, we have
abstracted from a particular way of encoding control state; the use of a program pointer
is one pOH~ible instantiation. Another difference is the reasoning fra.mework used. They
justify the correctne58 of the transfortna.tions by appealing to the weakest precondition
calculus. We have formalised the nonnal form reduction process as an algebra where the
central notion is a relation of refinement between programs. The use of algebraic laws
seem to allow conciser and more readable proofs, apart from the fact that it makes the
mechanisation easier. We have also dealt with programming features not addressed by
themj these include procedures, recursion and parameters.

The first approach to prove correctness of compiling specifications using algebraic laws (in
the style we have used here) was suggested. by Hoare (43}. In this approach, compilation is
ca.pt ured. by a predicate Cp 8 f m Wstating tha.t the code stored in m with start address 8

and finish addre58 f is a correct translation of the source program p; 'If is a symbol table
mapping the global variables of p to their a.d.dre&Be8. C is defined by

Cp'fmVl ~ 4I(p) [; I.fm

where i(p) is a simulation function defined. in the usual way and I is an interpreter
for the target code which can be considered a. specialisa.tion of the normal form for a
particular ma.chine. Compilation is specified by a set of theorems, one for each program
coDBtruetiOIl. For example,

If ml.J = lood(Vly) and mI' + IJ = rlore(V!.), then
C(.:= y).(.+2)VI

7.1 Rel.ted Work 113

The reasoning is conducted in much the same way as we have illlUltrated in previous
chapters. As the theorems have the (orm of Horn ClaWleS, they can be eaaily translated
into a logic program [10]; although a. formal proof of correctness of this translation bas
not been attempted. Despite the similarities between lhe two approaches, there is a
significant conceptual difference. As discussed above, the idea of a.n abstract nonnal. fonn
allowed us to capture compilation in an incremental way. The separation of the process
into phases allowed the form.a.lisa.tion of control elimination independently of a ta.rget
machine, Furthermore, as the theorems have the fonn of rewrite rules, we could use a
term rewriting system both to verify the proofs and to carry out compilation.

Work bas been undertaken to transform programs written in a subset of occam into a
normal form suitable for an implementation in hardware 139]. A circuit is described in a
way similar to that we have represented a stored progriL1ll computer. Broadly, the state
of a synchronous circuit is formed from a variable representing its control path and a
list of variables representing its data path. The normal fonn compri~ an assumption
about the activation of the circuit; a loop (executed. while the circuit is activatoo) which
specifies state changes; and an assertion which determines the finlLl control state of the
circuit, if the loop tenninates. An extra feature is the use of timed processes to specify
the execution time (in clock cycles) of assignments which are used to model the state
change of both the control path and the data. path of the circuit. The authors show how
an arbitrary source program can be reduced to normlLl form. However, the translation
from the normal form to a net/ist (a. list of gates and latches, which is a standard fonn of
hardware description) is addressed only informally.

Algebraic and Denotational Approaches

In more conventional algebraic approaches, compiler correctness is expressed by the com
mutativity of diagrllJD1l of the form

source target
language la.n.guage

compiler

.p .p

deoodingsource target
semantics seman.tics

where the nodes are algebras and the a.rrows are homomorphisms. This fonn of diasram.
was first introduced by MOrr1a [58], huilding: on original work of BurstalJ and Landin [14].
Thatcher, Wagner and Wright [73] and many others put forward similar ideas.

7.1 Re1&ted Work	 114

Similar rommutative diagramg ue usually adopted for proving compilation based on de
notational semantiCli. Noteworthy is the work of Polak [67]. He gives the denotational
semantica of both the source language (a large subset of Pascal) a.nd the target language,
a high-level assembly la.nguage. His work is not confined to code generation; rather, he
treats the complete compilation process. Furthermore, the compiler itself is written in a
version or Pascal extended. with features to allow a formal documentation in terms of pre
and postconditions in Hoare-style semantiCli. The compiler is systematically developed
from th~ denotational semantics of the source and the target language!. The proofs were
mechanically verified.

Chirica and Martin [17] also deal with compiler implementation. They developed an ap
proach for proving the correctness of compiler implementations from given specifications.
The approach is similar to that of Polak, but a di:tIerent boundary bet ween compiler spec~

ification and implementation is suggested. Broadly, semantic correspondence between
sourt".e and target programs is dealt with at the specification level; implementation cor
rectness deals only with tbe syntax of source and target programs.

Operational Approaches

The first attempt to formalise the compilation process is attributed to McCarthy and
Painter [52]. Although their work is limited in scope (they treated a simple expression
language),it gave rise to a style of verification known as interpreter equi1:lo1ence. In general
terms, the semantics of the source and the target languages is given by interpreters which
characteriee the meaning of progra.ms by describing their effect upon the corresponding
execution environments. The translation is described by a relation between the execution
environments of source and target programs. Correctness can be expressed. by a diagram
with a similar form to that presented. in the previous section.

More recently, an approacb to systelllB verification based on interpreter equivalence was
suggested by a group at Computational Logic, Inc. [7). The approach has been applied to
the development and mechanical verification of a. .,tack of system components, including:

•	 a compiler for a subset of the high~level procedural language Gypsy, where the target
is the Piton assembly language [78J;

•	 a link-assembler from Piton to binary code for the FM8502 microprocessor [53]; and

•	 a gate-level desi811 of a subset of the FM8502 microprocessor 148] .

All the components were formalised by interpreters written as funct.ions in t.he Boyer
Moore logic; the verification was carried out using the Boyer-Moore thoorem prover jl3}.
This is perhaps the most significant effort in the field of (mecha.nical.ly) verified systems.
Their approa.ch is independent of any particular component, and it deals with the inte
gration of components to fonn a verified stack. However, reuse of design and proofs is not
addressed. Every translation from a source to a target language is designed and proved
from scratch.

7.2 Future Work 115

Compiler Generators and Partial Evaluation

Although ow approach is not biued towards a source language or a tuget machine, we
have not gone as fat as addressing the design of compiler generators. Many systems (based
on distinct semantic approaches) have heen developed. M a.o example we can cite the
classical work of Moesee [62J, using denotational semantic.s. Only recently, the corre<:tness
of such systems has gained. some attention. The Cantor system [65] generates compilers
for imperative language8 defined using a subset of action semantiC5 [63]. Many imperative
features can be expressed, but the considered Bubset of action semantics iB not powerful
enough to express recursion. An algebraic framework was used to design the system and
prove its correctness.

Partial eV&1uati.on is a very powerful program transformation techn.ique for specialising
programs with respect to parts of its input. Applications of partial evaluation include
compilation, compiler generation or even the generation of compiler generators. We quote
an explanation from \49]:

Consider an interpreter for a given la.ogua.ge S. The specialisation of this
interpreter to a known source program s (written in S) already is a target
program for 8, written in the same language as the interpreter. Thus, partial
evaluation of an interpreter with respect to a fixed source program amounts
to compiling. [... J

Furthermore, partially evaluating a partia.l evaluator with respect to a fixed
interpreter yields a compiler for the language implemented by the interpreter.
And even more mind-boggling: partially evaluating the paxtia.l evaluator with
respect to itself yields a compiler generator, namely, a program that transforms
interpreters into compilers.

Partial eV&1uation is a very a.ctive research topic, and some powerful systems have been
developed. For example, Jones et al [50} implemented a self-applicable partial evaluator,
called A-mix, for the untyped lambda calculus. It has been used to compile, generate
compilers and generate a compiler generator. Furthermore, it is perhaps the only existing
provahly correct partial evaluator [33].

One aspect not yet addressed by the partial evaluation approach is the generation of
compilers which produce code for conventional machine axchitectures. Code is wually
emitted in a lamhda. notation.

7.2 Future Work

Our work cao be extended in ma.oy ways, from the treatment of more elaborate source
language5 and/or target ma.chines to a provably correcl compiler combining both software
and hardware compilation.

7.2 Future Work 116

More on Control Structures

In Chapter 5 our strategy to implement recursion was to allocate a separate stack for
each rtJCl1I'3ive program. This stack was represented by a local variable in tbe resulting
nonna.! form program. In the case of nested recursion, tbe nonnal fOrIn reduction process
generates stacks of stacks. Tbis can be implemented using the cuctU3 stack technique, as
previously discussed.

For a single stack implementation, further work is necessary. One possibility is to use the
reduction rule for recunion as it standll now and then perform an additional refinement
step to implement the nested stacks using a single stack. As this is by no means a trivial
data refinement problem, it might be easier to avoid nested stacks from the beginning.
In this CASe, the theorem for ~cursion has to be modified to reuse a stack variable which
may have been allocated for compiling an inner recursion.

A further topic of investigation is tbe extension of our source language with even more
complex structures such as parallelism, communication and external choice (as, for exam
ple, in occam). An initial attempt to handle these features is described in [38], where a. a
conununication·ba.sed parallel program is transformed. into another (yet para.llel) program
whose components communicate via. shaxed variableJ.

Because of the high-level of abstraction of constructions to implement concurrency, it
seeDlB more appropriate to carry out their elimination at the source level, rather than
generate a normal fonn directly. IT the target program yielded by the process of eliminat
ing concurrency is described solely in terms of our source language? then we can reduce
this program to normaL form and thUJI obtain a low level implementation of concurrency.

Types

We have taken the simplified view of not dealing with type information. It is possible
to extend our reasoning language with data ty~ in the usual way. For example, typed
variables can be introdueed by

dec% : T e p

where z is aliBt of variables and T an equal-Length list of type names. and the association
of types with variables is positional.

Types restrict the values that ca.n be assigned to variables. As a. consequence, they
introduce a proof obligation to check if these restrictions are respected. This is known as
tJIPe checking. Therefore our algebraic system must eDBure a consistent use of types.

Most of the algebraic lawll do not need. to be changed, as tbeir use would not give rise
to type inconsistences, provided the term to be transformed is well. typed to start with.
However, a few laws would require extra conditwDB. For eX&Dlple, the law

decz:Tep!; decz:Tez:=e; p

(when uaed from left to right) allows the introduction of the a.ssignment z := e. Clearly,
e must have type T in this caBe (or at least a type compatible with T if the type system

7.2 Future Work 117

supports subtypes or any form of type conversion). The laws which Iillow the introduction
of free (meta-)variables, such as r and l!: in the above case, are the only onell which
can violate type infonnation. One way to deal with the problem is by carrying type
information around; for example, by tagging occurrence8 of variables and expreasions
with their types.

The introduction of types also affects compiler design. More specifically, it increaaes the
complexity of the da&.a refinement phase-we have to show how the va.rious types of the
source language can be reprtSeDted in a usually untyped (or single-typed) target machine.

The implementation of basic types is nonnally achieved by very simple tra.n.slation schemes.
For example, there is a standard technique for translating booleana using & numerical
representation [lJ. Type constructors such as arrays and records are more difficult to
implement. In Appendix A, we suggellt a scheme for compiling static arrays and discuss
its (partial) implementation in OBJ3J with a small example.

The scheme to implement arrays was designed in complete isolation from the remaining
features of our language. None of the previous results needed to be changed. This gives
some more evidence about the modularity of our approach to compilation. But further
inve8tiga.tion concerning the compilation of basic types and type constructors is required.
For example, non-s&.atic types such as dynamic arrays or linked lists will certainly require
a much more elaborate scheme than the one devised for static arrays.

Code Optimisation

We have briefly addrESBed store optimisation when dealing with the creation of temporary
variables for the elimination of nellted exprESBions. Regarding code optimisation, only a
very simple rule was included in connection with the compilation of boolean expressions.
An important complement to our work would be the investigation of more significant
optimi5ing tra.nsformations which could be perfonned both on the source and on the
target code.

Tbe most difficult optimisations are those which require data flow analysis. The main
problem is the need to generate (usually) complex structures to store data flow informa~

tion, &8 well as carrying these structu.res around so that the optimisation rules can access
them. In our algebraic framework, a promising direction seems to be the encoding of
data flow information as assumptions and assertioos; they satisfy a wide set o(I&ws which
allow them to be flexibly manipulated within a source program.

Local optimisations are much easier to describe and prove. Some algebraic laws can be
used directly to perform optimisations on the soUlee code. For example,

(. ,= '; • ,=f) = (. ,=/[. ~ ,J)

may be useful for eliminating oonsecutive &S8ignments to the s&me variable. Another
example is the law which allows the transformation of tail recursion into iteration:

~X • «p; X) <l 6 l> q) = (6. p); q

7.2 Future Work 118

Local optimisations on a target program are known as paphole optimisations. The general
aim is t.o find sequences of instructions which can be repla.ced by sborter or more efficient
sequellces. The (very abstract) normal form representation of the target machine may
provide an adequate framework La carry out optimisations and prove them oorrect. As a
simple exAmple, the following equation allows the elimination of jumps to jumps

(P =j) ~ jump(~)) ((P =j) ~ jUmP(I))
P,[" ~ ~d)~jumP(l) ,/J = P,[" ~ ~d)~jumP(l) ,fl

(

The aim of this triWBformation is to eliminate all jumps La k, one at a time. When there
are nojumps to k then it is possible to eliminate the guarded oommand (P = k) - jump(l)
provided it is preceded by an unconditional jump instruction (something of the form
(P = k - 1) _ jump(n), with n different from k). Q stands for an arbitrary context
containing the remaining instructions. Notice that commutative matching as provided in
OBJ3 allows the above rule to be implemented straightforwardly.

It would also be interesting to investigate some machine-dependent optimisations such as
register allocation and the repla.cement of sequences of machine instructioDs with other
6equences known to execute more efficiently. But this only makes sense in the context
of a more complex target machine than the one we have considered here. Information
necessary to optimi6e register allocation ('AD be enooded as assumptions and assertions,
following the style suggested in [11].

More on Mechanisation

As described in the previous chapter, a significant amount of work concerning the mech
anisation of oUr approach to compilation has been carried out; but much more could be
done. For example, we have not considered procedures, recursion or parameters. Extend
ing our OBJ3 specification with rewrite rules to eliminate these features would produce
a prototype for a more interesting language. Clearly, it would be necessary to extend the
target machine with stacks and related operations in order to support recursion.

The more complex the theorems and their proofs are, the more likely the occurrence of
errors is. The oomplete verification of the reduction theorem for recursion would be a
worthwhile exercise.

The ideal would be to mechanise any new translation scheme which is designed. Apart
from the benefit of verification, the mechanisation (as we have addressed. in this work)
helps to ensure that the scheme is described in sufficient detail to be implemented.

As this will eventually become a relatively large application of theorem proving, a good
deal of proof ma.nagement is required. A promising direction geeme to be "customising"
a system like 20BJ for this application, as discussed in the previous chapter.

7.2 Future Work 119

Compiler Development

The only limitation that prevents the specification of the compiler (written in OBJ3) to be
used as an actual implementation is efficiency. As discussed in the previous chapter, one
reason for its inefficient execution is the use of commutative and associative matching,
which is an exponential problem. Therefore the elimination of these features from the
present specification is an essential step towards improving efficiency.

A more serious constraint is imposed by the implementation of OBJ3 itself; curretltly the
language is interpreted and term rewriting is carried out at a speed which is acceptable
only for prototyping purposes. Therefore there is the need to develop an implementation
of the compiler in some programming language that is implemented efficiently.

As our reference against which to check the implementation is a declarative specification
of the compiler (given by a set of rewrite rules), it might be easier to develop a functional
implementation. A language such as ML [66} could be uaeful for this purpose.

The main task is therefore to derive a compilation function, say C, from the rewrite
rules. It is p0B8ible to develop the implementation with a similar structure as the OBJ3
specification; C is defined by the composition of three functions I one for each phase of
compilation (simplification of expressions, control elimination and data refinement):

Cp q, s '1 ~(ControIElim(EzpSimp(p), s))

where p is a source program, 'i' its symbol table and s the start address of code. The
definition of each of the above functions can be systematically generated from the rewrite
rules in the corresponding OBJ3 modules. For example,

&pSimp(z := e) = dec A • EzpSimp(A:= e); z := A

EzpSimp(A:= uope) = EzpSimp(A:= e); A:= uope

The aim of this transformation is to end up with a functional program still in OBJ3, hut
including only features availahle, say, in ML; so a simple syntactic transformation would
produce an ML program which could then be translated to machine code using an efficient
ML compile,- [2J.

While this is a rela.tively simple way of producing an efficient compiler from the specifi
cation in OBJ3, the approach is rigorous rather than completely formal. One source of
insecurity is that even an apparently trivia.lsynta.ctic tra.n.sform.a.tion from OBJ3 into ML
(more generally, from a language to a.ny other la.nguage) may be misleading; the other is
the ML compiler itself (unless its correctness had heen proved).

An approach which avoids the need for an already verified compiler is suggested in [15J
and further discussed in [18]. It is based on the classical technique of bootstrapping.
The main goal is to ohtain an implementation of the compiler written in the source
language itself. [15] discusses work which was carried out to develop an implementation of
a compiler for an occam-like language extended with parameterless :recursive procedures.
The implementation (in the source language itself) is fonnaJly derived from a specification
of the compiler given in an inductive function definition style that uses a 8ubset of LISP.

7.2 Future Work 120

In principle, we could adopt a similar technique to derive an implementation of our com
piler (written in our source la.nguage) from the specification in OBJ3. In this case, we
could run the specification to automatically translate the implementation of the compiler
into machine code. But as pointed out in [15), the fonnal derivation of the implementation
from the specification is by no me&ns a simple task.

Hardware and Software Co-design

Software compilation is cheap but produces code which is UBually Blow for many of the
present applications; hardware compilation produces components which execute fast, but
are expensive. A growing trend in computing is the design of systeJIl8 which are partially
implemented in software and partially in hardware. This of course needs the support of
compilers which give the choice of compiling into software or hardware (Dr both).

We have addressed software compilation and, as discll.'lsed in the previous section, some
work has been done for hardware compilation using a similar approach. A very ambitious
project is to develop a common approach to support the design (a.nd correctness proof)
of a hardware/software compiler. The main challenge is to discover an even more general
normal form which would be an intermediate representation of code describing hardware
or software. Broadly, the structure of such a compiler would be as in Figure 7.1.

source program

nONnal It

normal form

•
~ion

hardwa
compua,

ware
:puation

80ft
co"'

netlist machine code

Figure 7.1: Hardware and software co-design.

7.3 A CrWcaJ. View	 121

7.3 A Critical View

In this final section we present a critical analysis of our work and try to answer the
following questions:

•	 Will this eva be a practical way to write compilers?

•	 If not, is there any independent reason for pursuing research of this kind?

•	 To what extent should we believe in provably correct compilers (and systems in
general)?

It is more than 25 years since the first approach to compiler correctness was suggested,
ADd this still remains one of the most active research topics in computing. In the previoull
section we briefly desoibed a few approachefii, some based. on different formalitiffiS, but
these are only a small fraction of the enormous effort that has been dedicated to the field.

We have defended the use of yet another approach. We believe it is very uniform and is
based on a comparatively simple semantic framework. mspite of that, the overall task
of constructing a correct compiler was not at a.ll trivial. Many frustrating alternatives
were attempted until we could discover rea.8onahle ways of structuring the proofs. On the
positive side, however, there is the hope that these will be of more genera.l utility. The
main purpose was not to show that a particular compiler correctly transla.tes programs
from a particular source l&nguage to a particular target la.nguagej but rather, to build
a set of transformations that may be useful for tackling the problem in a more general
sense.

Unifonnity was achieved. by reducing the task of compilation to one of program refinement.
Although this is extremely difficult in generall it is much more manageable when dealing
with a particular class of problema, such as compiler design. Our underetanding of and
intuition about compilation helped us to achieve a modular designj our knowledge about
programming helped us in the rea.8oning (UI:ling algebraic laws) nCl:e3sary to discharge the
related proof obligations.

But the approach is not sufficiently mature yet. The 1W'.UCh for deeper a.nd more specific
theorems to support the design of compilers for more powerful languages should continue.
We do not have enough grounds to believe that it will ever pla.y a role in writing prac~

tical compilers. In any easel we believe our work to be a contribution in thiB direction.
Hopefully, it will be useful as a. reference for further work in the field.

Concerning the problem of provably oorrect systems in general, there will always be a gap
between any ma.thema.tical model and its implementation. Even if compilers, assemblers,
loaders and the actual hardware are provably correct, at some stage we move from the
mathematical world into the real world; and this tra.nsition can never be formalised or
reasoned about. The purpose of verification i8 to reduce the occurrence of errore; their
total absence ca.n never be pro~.

Bibliography

[IJ	 A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2]	 A. W. Appel and D. B. MacQueen. A Standard ML Compiler. In FUndional Pro
gramming Languages and Computer Architecture (LNCS 274), pag~ 301-324,1987.

[3]	 R. J. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications. Technical report, Tract 131, Matbematisch Centrum, Amsterdam,
1980.

[4]	 R. J. R. Back. Procedura.l. Abstraction in the Refinement Calculus. Technical report,
Departmenh of Computer Science and Mathematics, Swedish University of Abo,
Finland, 1987.

[5J	 R. J, R. Back and J. von Wright. Refinement Calculus: Part J: Sequential Nonde
terministic Programs. In Stepwiae &finement of Distributed S1}Iltems (LNCS 430),
pag.. 42-66, 1990.

[6J	 R. J. R. Back and J. von Wright. Refinement Concepts Fonnalised in Higher Order
Logic. Formal Aspt:ets oj Computing, 2:247-272, 1990.

[7]	 W. R Bevier, W. A. Hunt, J. S. Moore, and W. D. Young. An Approach to Systems
Verification. Journal oj Automated Reasoning, 5:411-428,1989.

[81	 G. Birkhoff. Lattice Theory. American Mathematical Society, 1961.

[9]	 D. Bjomer et al. Final Deliverable of the ProCoS Project. Technical report, Com
puter Science Department, Technical UniveCllity of DeIlmAl'k, Lyngby, DK, 1992.

[10J	 J. Bowen. From Programs to Object Code Using Logic a.nd Logic Progra.nuning.
In Proc. CODE'91 International Workshop on Code Generation, Springer-Verlag,
Workshops in Computing, 1992.

{Ill	 J. Bowen and J. He. Specificat~n, Verification and Prototyping of an Optimized
Compiler. Technical report, Oxford University Computing Labora.tory, 1992.

[12]	 J. Bowen ,t at. A ProCos 11 Projed Deocriptio", ESPRIT Basic Resea.ch project
7071. Bulletin oj the European Association Jor Tht:otdical Computer Science
(EATCS), 50:128-137, June 1993.

122

Bjbliography 123

[13J R. S. Boyer a.nd J. S. Moore. A ComputtJiional Logic HandbooJ:. Academic Press,
Bost.on, 1988.

[141	 R. Burst.all a.od P. Landin. ProgramB.and t.heir Proofs: .an Algebraic Approach.
Machine Intelligence, 7:17-43, 1969.

[15]	 B. Buth d al. Provably Correct Compiler Development and Implement.at.ion. In
4th International Conference on Compiler Conatruction (LNCS 641), page'l141-155,
1992.

I16]	 W. Cben.and J. T. Udding. Program Invereion: More Than Fun! Technical report,
Groningen University, April 1989.

[17J	 1. M. Chirica and D. F. Martin. Toward Compiler Implementation Correctness
Proofs. ACM Tranaadion on Progrnmming lAJnguages and Systems, 8(2):185-214,
1986.

[18]	 P. Cuncn. Of What Use is a Verified Compiler Specificat.ion? Technical report,
Univereity of Cambridge, 1992.

[19]	 N. Da.eche. Guide to £VE, the Interactive Veritas+ Environment. Technical report,
Universit.y of Kent, April 1990.

[20]	 E. W. Dijkstra. Notes on Structured Progra.IIUD.ing. In O. J. Dahl, E. W. Dijkstra,
a.od C. A. R. Hoare, edit.ore, Structured Programming, pages 1-82. Academic Press,
1972.

[21]	 E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, 1976.

[22]	 E. W. Dijkst.ra. Program Inversion. Technical report, EWD671, University of Tech~

nology, Eindhoven, 1978.

[231	 E. W. Dijkstra.. The Equivalence of Bounded Nondetennina.cy .and Continuity. In
Selected Writings on Computing. Springer, New York, 1982.

[24J	 H. Ehrig and H. Weber. Programming in the Large with Algebraic Module Spedfi~

cation. In H. J. Kugler, editor, Proc. IFIP, 10. North~Holland, 1986.

[25]	 P. Gardiner and P. K. Pandya.. Reasoning Algebraically about Recursion. Science of
Computer Programming, 18:271-280, 1992.

[26J	 S. J. Garland.and J. V. Guttag. An Overview of LP, Tbe Larch Prover. In N. Der~

showitz, editor, Proceedings of the Third International Conference on Rewriting Tuh
niques and Applications (LNCS 355), pages 137-155. Springer·Verlag, 1989.

[27]	 J. Goguen. Theorem Proving and Algebra. MIT Press, 1993. To appear.

[28]	 J. Goguen and J. Meseguer. Order Sorted Algebra I: Equational Deduction for
Multiple Inheritance, Overloading, Exceptionll and Pa.:tial Operations. Technical
report, SRI International, SRI-CSL-89-10, July 1989.

Bibliogra.phy	 124

[29}	 J. Goguen, A. Stevens, K. Hobley, and H. Hilberdink. 20BJ, A Meta.!ogical Frame
work Based on Equationa.! Logic. In Philosophical Transactions of the Royal Soddy,
Series A, SS9, pages 69-86.1992.

[301	 J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initia.! Algebra Semantics and
COlltinuoUB Algebras. Journal of the ACM, 24(1):68-95, January 1977.

[31]	 J. Goguen et al. Introducing OBJ. Technical report, SRI International, 1993. To
appear.

[32]	 M. Goldsmith. The Oxford occam Transformation Syet.em. Technical report, Oxford
University Computing Laboratory, January 1988.

[33]	 C. K. Gomard. A Self-Applicable Partial Evaluator for the Lambda Calculus: Cor~

redness and Pragmatics. ACM Tran8~ctions on Programming L~nguages and Sys
t,ms, 14(2P47-172, Ap,;11992.

[34]	 M. J. C. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. BirtwistIe and P. A. Subrahmanya.Dl, ed.itors, VLSI Specification, Verification and
Synthesis. Kluwer Academic Publishers, 1988.

[35]	 D. Gries. The Science of Programming. Springer Verlag, New York, 1981.

[36]	 R. HlS.lper, D. MacQueen, and R. Milner. Standard ML. Technical report, Edinburgh
University, LFCS Report Series, ECS·LFCS-8&-2, March 1986.

[37J	 E. A. Ha.uck and B. Dent. Burroughs B6500 stack mechanism. In Proceedings 1968
Spring Joint Computer Conference, Thomaon Book Company, Inc., Washington,
D.C., pages 245-251, 1968.

[38J	 J. He. Introduction to Hybrid Parallel Programming. Technical report, Oxford
University Compl1ting Laboratory, 1992.

[39]	 J. He, I. Page, and J. Bowen. A Provably Correct Hardware Implementation of oc~

cam. Technical report, ProCoS Project Document IOU HJF 9/5), Oxford University
Computing Laboratory, November 1992.

[40)	 C. A. R. Hoare. Procedures and Parameters: an Axiomatic Approach. In Sympo
8ium on the Sem~ntic8 of Algorithmic Languages, Lecture Notes in Ma.thematics 188,
Springer Verlag, pa.ges 102-116,]971.

[41]	 C. A. R. Hoare. Proof of Correctness of Data. Representations. Acta lnforTn.atiaJ,
1(4Pll-281,1972

[42]	 C. A. R. Hoare. Algebra. and Models. Technical report, Oxford University Computing
Labora.tory, 1991.

[43]	 C. A. R. Hoare. Refinement Algebra Proves Correctness of Compiling Specifications.
In Srd Refinement Worishop, Springer- Ven'ag, Worishops in Computing, pages 33
48, 1991.

Bjbljography	 125

[44J	 C. A. R. Hoare. A Theory of Programming: Denotational, Algebraic and Operational
Semantics. Technical report, Oxford University Computing Laboratory, 1993.

[45]	 C. A. R. Hoare, J. He, and A. Sampaio. Norr.o.a.! Form Approach to Compiler Design.
Acta Informatic4, 1993. To appea.r.

146]	 C. A. R. Hoare a.nd J. He. The Weakest Prespecification. Information Processing
Lette,.., 24(2),127-132, January 1987.

[47J	 C. A. R. Hoare et at. Laws ofProgrilIDlD.ing. Communications of the ACM, 30(8):672
686, August 1987.

[48J	 W. A. Hunt. Microprocessor Design and Verification. Journal of Automated Rooson
i.g, 5,429-460, 1989.

[49J	 N. D. Jones, P. Sestoft, and H. Sonderga.ard. An Experiment in Partial Evaluation.
In Rewriting Techniques and Applications (LNCS 202), 1985.

[50]	 N. D. Jones et al. A Self·Applicable Partial E"aluator for the Lambda Calculus.
In 1990 International Conference on Computer wnguage8, IEEE Computer Society,
1990.

[51}	 L. Lamport. U,TEX: A Document Preparotion System. Addison-Wesley, 1986.

[52]	 J. McCarlhy a.nd J. Painter. Correctness of a Compiler for Arithmetic Expressions. In
Proceeding8 of Symposium on Applied Mathematics. American Mathematical Society,
1967.

[53\	 J. S. Moore. A Mechanically Verified Language Implementation. Journal of Auto
mated ReL18oning, 5:461-492, 1989.

[54J	 C. Morgan. Procedures, Parameters, and Ablltraction: Separate Concerm. Science
of Computer Programming, 11:17-27, 1988.

[55J	 C. Morgan. The Specification Statement. Transactions on Programming LanguagetJ
and Systems, 10,403-419, 1988.

[56)	 C. Morgan. Programming from Specifications. Prentice-Hall International, 1990.

[57\	 C. Morgan and P. Gardiner. Data Refinement by Calculation. TechnicaJ report,
Oxford University Computing Laboratory, 1988.

[58]	 F. MOmll. Advice on Structuring Compilers and Proving them Correct. In
SIGACT/SIGPLAN Symposium on Principles of Progrumming LanguagC3, 1973.

[59}	 J. M. Morris. A Theoretical Ba"is for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming, 9:287-306,1987.

[60J	 J. M. Moms. Invariance Theorems Cor Recursive Procedures. TechnicaJ report,
University of Glasgow, June 1988.

Bibliograpby	 126

[61] J. M. Morris. Laws of Data Refinement. Acta Informatica, 26:287-308,1989.

[62]	 P. D. Mosses. SIS-Semantics Implementation System. Technical report, Computer
Science Department, Aarhus University, DAIMI MD-30, 1979.

[63J	 P. D. Mosses. An Introduction to Action Semantics. Technical report, Computer
Science Department, Aarhus University, DA[~f.l ffi-l02, 1991.

(64]	 G. Nelson and M. Ma.na.sse. The Proof of a Second Step of a Factored Compiler. In
Ledure Notes for the International Summer School on Programming and Mathemat
ical Method, Marktoberdorf, Germany 1990.

[65)	 J. Palsberg. A Provably Correct Compiler Generator. Technical report, Computer
Science Department, Aarhus University, DAIM! PB-362, 1992.

[66]	 L. Paulson. ML for the Working Progrommer. Cambridge University Press, 1991.

[67]	 W. Polak. Compiler Spedfication and Verification. Springer-Verlag (LNCS 124),
1981.

[68J	 A. RDscoe and C. A. R. Hoare. The Laws of occam Programming. Theoretical
Computer Science, 60:177-229, 1988.

[69J	 A. S&Illpaio. A Comparative StudY of Theorem Provers: Proving Correctness of
Compiling Specifications. Technical report, Oxford University Computing Labora
tory, PRG-TR-2o-90, 1990.

[70]	 E. A. Scott and K. J. Norrie. Automa.ting Algebraic Structures - A Ca.se Study
Involving the Correctness of a Specification for a PLo Compiler. Technical report,
ProCos Document fRHC ESKN 1/1]' 1991.

[71]	 A. T&r8ki. On the Calculus of Rela.tions. Symbolic Logic, 6:73-89, 1941.

[72J	 A. Tarski. A Lattice Theoretical Fixed Point Theorem and its Applications. Pacific
Journal of Mathematics, 5, 1955.

[73J	 J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on Advice on Structuring
Compilers and Proving them Correct. Theoretical Computer Science, 15:223-249,
1981.

[74J	 T. Vickers and P. Gardiner. A Tutorial on B: a Theorem Proving Assistant. Technical
report, Oxford University Computing Laboratory, 1988.

[751	 M. Wirsing. Algebraic Specification: Semantics, Parameterization and Refinement.
In E. 1. Neuhold a.nd M. Pa.ul, editors, Formal Description of Programming Concep~,

pages 259-318. Springer.Verlag, 199L

[76J	 N. Wirth. Program Development by Stepwise Refinement. Communications Qf the
ACM, 14(4),221-227, 197L

Bibliography	 121

[77J	 H. Y&Il, J. Goguen, &Ild T. Kemp. Proving Propertiet!l o(Partia.l Functions with Sort
Constraints. Technical report, Programming Research Group, Oxford University,
1993. To a,1>Pea.r.

[78J	 W. D. Young. A Mechanically Verified Code Generator. Journal 0/ Automated
Roo.soning, 5:493--518, 1989.

Appendix A

A Scheme for Compiling Arrays

In order to illustrate how type constructors can be handled, we suggest a scheme for
compiling arrays. We will confine ourselves to one-dimensional arrays. Furthermore, we
will illustrate the process using a global arra.y variable a and will assume that it has
length 1. But the scheme can be eMily extended to cover an arbitrary number of multi
dimensional array variables.

We extend the source language to allow two operations aD arrays: update of an element
a.nd indexing. We adopt the map notation, as described in Cha.pter 4:

a:;:aEB{it--+e} update the i'i element of a with e

alii yield the i tJo element of a

Arrays are indexed from O. Thus given that the length of a is 1, its elements are
a [0], ... ,a[l-I]. We will assume that indexing a with a value Qut of the range 0..(1-1)
will lead to abortion; this a.voids the need of runtime tests tha.t indices are in bounds, as
the implementation cannot be worse than abort.

In additioll. to the above, we will use lambda expressions in assignments to the entire
array a; but this will be used only for reaBOning, and will not be considered a 90urce
construction.

Our first task is to extend the symbol table II' to include the array variable a.

ij> '!! ij>U{a n}
wh"e Vi: 0..(1-1). (n +i) It ran ij>

In practice. the symbol table must record the length of static arrays. As we are treating
a single iUray, and are assuming that its length is I, we can stick to the same structure
of our simple symbol table which maps identifiers to addresses. The a.ddress n &8BOoated
with 0 determines the memory location where the element 0[0} will be stored; this is
usually called the base address. The loca.tions for an arbitrary element is caJculated from
n, using the index 88 an offset. Therefore the location associated with element a[i] is
given by n + i, for 0 :$ i < l. The condition on the above definition requires that the
addresses a.1located for a must not have been used previously. In the case of more tha.n

128

129 A A Scheme for Compiling Arr"ys

one array variable, this condition would be extended to each one. Furthecmore, an extra
condition would be required to guarantee non-overlapping of the addresses allocated to
distinct arrayS.

We can then define the encoding program i.,.. which retrieves the abstract state (fonned
from the array va.riable a and the other global variables w) from the concrete store of the
target machine.

A let . .•
~.,,,, = varaj a:=).,:O..(l-l).M[I+n]; 111 ..

Recall that 4' .. was defined in Chapter 4 to deal with the global va.riables 10. The following
deeMing program maps the abstra.ct state down to the concrete machine state.

• lot·
41;,~ = 111;1; M:= M $). i: n ..(n +1-1). ali - nJ; end a

The following proposition establishes that the pair (iOl,... ,i;,~) is a simulation.

Proposition A.I «i.... ,i;,~) simulation)

i.,.. ; i;,~ = skip l; i;,~j i.,..

•
We already know how to ca.rry out the data refinement of programs involving ordinary
variables; now this is extended to cover the array operations.

Proposition A.2 (data refinement of a.rray operations)
(1) ~.,.(a:= a Ell (i ~ e}) ~ M:= M Ell (~.,.(i) +. ~ ~.,.(e)}
(2) ~.,.(a[i]) ~ M[~.,.(i) +nJ.

The remaining task is the simplification of expressions involving arrays.

Proposition A.S (Simplification of expressions)
If neither A nor t occur in i or e
(1) (a := a Ell (i ~ e}) = dec A, t • A := e; t := A; A:= i; a := a Ell {A H IJ
(2) (A:= ali]) = (A:= i; A := a[A]) •

By structural induction, it is possible to show that the above two rules, together with the
ones given in Chapter 4, are sufficient to simplify an arbitrary expression.

Applying data refinement to a simple aasignment of the fonn

a:=aEll{A~t}

lea.ds to

M := M Ell {A + • H M[" tlJ

130 A A Scheme (or Compiling Arr&J5

which can be taken as the definition of an update instruction for &ITays. IT preferred,
we can store the value to update the array in a new register l !lay a, rather tha.n in the
auxiliary variable t. In this easel the update instruction would be defined by

upd.l......rr.y-al(n) ~ M ,= M Ell {A + n _ B)

SiJllilarlYI the assignment

A,= a[AI

will e~tually be data refined to

A ,= M[A + nl

which can be taken as the definition of a read instruction

' ..d....rray-al(n) ~ A ,= M[A + nJ

We have actually added the rules for expression simplification to our OBJ3 prototype and
performed some reductions. For example,

OBJ) reduce a := a EEl {(a.[i bop jJ) bop k -) a[dop iJ}
revrite8: 178
result Prog: dec A,a • A :- i ; A :- dop A ; A ;- a[AJ

B ,- A ; A ,- i ; A ,- A bop j ;
A ,- a[AJ ; A ,- A bop k
a ,- a Ell {A -> B)

The original assignment updates array a at position (a[i bop j J) bop k with the
value of a[dop i]. The resulting program declares variables A and a to play the roles
of two registers. Belore the final assignment, A and a hold, retlpectively, the value of the
index and the element to update array 4.

In the ca.se of arrays local to a recursive program, a similar scheme could be adopted; but
storage would be allocated in the runtime stack, rather than in the fixed memory M.

Appendix B

Proof of Lemma 5.1

The proof of Lenuna 5.1 uses the following a.bbreviations, 88 introduced in Cha.pter 5.

MID = v, U : [ao 1\ empty V, S, Co 1\ empty til

b ~ (v:E r; push(v, v); v:E "0))

where S = 0 (eo 1\ "'empty 17) _ pop(v, ti)

(
o bo - p

(~
• ~ (v:E c; push(v, ~J; v:E "OJ)
b _ (v:E r; push(u, v); t7:E ao)

T
Co - pope ti, 17)
bo ~ p

b ~ (v :E r; push(v, v); v:E "OJ)

U = 0 (eo" #v > I) ~ pop(v, v)

(o bo _ p

We also need the following lemma. It establishes that a normal {ann program with
guarded corruna.nd set S (operating initially on an empty sequence) is refined by a. Donnal
form program obtained from this one, by replacing S with U a.nd the empty sequence
with a singleton sequence.

Lemma B.l (Lift of sequence variables) IT S and U are 88 defined above, and It occurs
only where explicitly shown below, then

v, v: [("0 "empty v), S, (eo "empty vJ)

c;

v,v:[("O"v=(k}), U,(eo"v=(k})]

Proof: we can regard the above as a data refinement problem: although the da.ta space
of the two programs are apparently the same, Dote that the right·hand side requires the

131

132 B Proof Qf Lemma 5.1

sta.ck ii to be non-empty. Therefore, in order to compa.re the a.bove progra.me we define a.
simulation.

Let 6 ~ var W, 10; (......empty v)J.; (w, to):= (front ii,last il); end il

and a-I ~ var iii ii:= to,..... (to); end iV, 10

As before, we use 8(p) to denote 8; p; a-I. The following facts are true of e and a-I;

(1) (6,e- l) is a. simulation,
(2) 6(push(v,;o)) ~ push(v, v)
(3) 6(pop(v, ;0)) ~ pop(v, v)
(4) 6«"empty ;o)T) ~ (Iv> I)T
(5) Let d, = (b V (Co 1\ ~empty;o) V bv) and d, = (b V (Co 1\ Iv > I) V bv). Then

6(dl. SI. - ill]) ~ (d,. U)

(I) 6; 6-1

= {(end - var skip}(3.19.7), (:= combination}(3.15.4) and

(laws of sequenees}(5.1.1))

varw,w; ("'emptyv)J.j (w,w):::::(frontv,lastv); endw,w
~ Hend-:= final value}(3.19.5), (.nd - var simulatioc)(3.19.6) and

b" ~ skip}
skip

= Hend-:= final value)(3.19.5), (end - var ,kip}(3.19.7) aDd

(void b,,}(3.16.4))

varvj ii:= iD,..... (w)i (.emptyiihi endv
Hend - var skip)(3.19.7), (:= combination)(3.15.4) and

(law, of sequenees}(5.1.1))
a-I; e

(2) 6(push(v, ill))
8; push(v,W)i a-1

{(end change ,cope}(3.19.2) and (end - var ,kip}(3.19. 7))

var iir, w; (...,empty iih; (w, to) := (front ii, last ti); push(V, to);
ii := to (10); end w, 10

H:= combination}(3.15.4) and (end - va' simulation)(3.19.6))

(~empty.h; push(v,.)

[:; {b" ~ skip}

push(v, .)

(3) Similar to (2).

133 B Proof of Lemma 5.1

(4) Similar to (2).

(5) From (1) - (4) and distributivity of e over iteration.

Then we have:

RHS

;) {(end - vor .kip)(3.19.7) and (5)}

dectl,v. I7:E 00; ii:= (ol); varw\w; (-'empt)'v)..L;

(w, 10) := (front ii, last ti); d1 • S[ii +- wI; ii := W, (10);
end w, to; (41 1\ v = {k)h
{(void b~)(3.16.4) and (,~ combination)(3.15.4)}

decv,v _ v:E 00; !i:= (ol); varw,w; (iD,to) :=(O,k);
d,. S[;; ~ ;0]; • ,= ;0 ~ (w); end;o, w; (<0 II • = (k»).c
{(,= oombinotion)(3.15.4), (end- ,= final value)(3.19.5) and

(end - vor ,imuiation)(3.19.6)}
decV,iiev:EQo; v:=(k); varw; w:=();
d,. S[. ~ ;0]; • ,= ;0 ~ (k); end;o; (eo II • = (k»).c

{(,= -b~ oommutotion)(3.15.8) and (dec- ,= final volue)(3.18.6))

decv,ii. tl:E 110; Ii:= (k); varw; w:= 0;

d1 • S[ii +- w]; (eo 1\ empty wh; end W

;) {(dec- 'E initial volue)(3.18.5) and (dec elim)(3.18.3)}

dec r:r • r:r:E 00; var w; iiI:== 0; d1 • S[ii +- fuJi (eo 1\ empty w)..L; end iD

{(dec - (vor,end) oonv=ion)(3.19.10) and (dec rena.me)(3.18.4)}

LHS

•
Now we can prove Lemma 5.1. First we repeat the inequation to be proved.
Let d, = (b V (co II ~empty.) V bo), then we hove'

bT
; d1 * S ~ (empt)'ii)..L; MID; tl:E r; d1 • S

Proof:

bTjdt*S

;) {I' - 0 unfold)(3.17.3) and bT
;) skip}

tl:E r; push(v, ti); tl:E Ooi d}. S

{I' sequence)(3.17.7) and Let d, = (b V (<0 II IF;; > I) V boll

134 B	 Proof of Lemma 5.1

v :E r; push(v, v); v :E Goj ~. U; d1 .. S
~	 {h (; skip and (. - 0 unfold)(3.17.3»)

v:Erj push(v, v); v:E Go;~ .. Uj (coA#v>lhj pop(v,v); dl.S
{(dec introduction)(3.19.1l) ""d Definitiou 4.l(No<mal fo<m)}

v 'E r; push(v, v); v, lao, U, (", A #v > 1)1; pop(v, v), d, • S

({dec rename)(3.18.4)' assuming ID ill fresh and convention t' = t[v _ w]}
v:Er; push(v,v)j w:r~, U1,(c:,A#v>1)]j pop(v,;;)j d1*S

~ {(e,; A #v > Ih ~ (e,; A #v > Ih, (v = (v)h = (,;, A v = (v)h!
v 'E r, push(v, v); w, [~, U', (e,; A v = (v»)]; pop(v, vJ; d,. S

{Definition of push a.nd pop}

v 'E r; v ,= (v) ~ v, w' I~, U', (e,; A v = (v)ll; v ,= (); d, • S

~ {bL (; skip)

v 'E r, (empty V)L; v ,= (v); w ,[~, U', (e,; A v = (v)]; V ,= (); d,. S

~ {(dec int<oduction)(3.19.1l) ""d (empty vh; v ,= 0 = (emptyvh!

v 'E r; (empty vh, ..,v , I(~ A v = (v)), U', (.,; A v = (v) lJ; d, • S
~ {Lemma B.I(Lift of sequence v",i.bl",) and (dec <ename)(3.18.4)}

v :E r; (empty ilh; MID; dl • S

~	 {(r 'E b; p commute)(3.16.9)}
(empty ilhi MID; u:E r; d1 .. S

•

Appendix C

•Specification and Verification In

OBJ3

Here we give further detailB a.bout the mecha.n.isation. Following "he same structure as that of
Chapter 6, we give the complete description of the main modules together with the lutomated
proofs of some of the theorems.

C.I The Reasoning Language

The reasoning language and its algebraic law8 (including the derived ones) axe described by the
following theory. The next two sections illustrate the verification of two la.W8 of while.

th JE1S(J.I1G-UlGU.lGB [X :: UP] is

eorn hag Pr08Icl

n"ort. Pro8Id < Prog

lldiD.. LutVar h LIST[Var]

d.tine LilltEzp 1. LISTCExp]

.... Prop;raa c~tnct.

op sIlip : -> Prog .
op dec _ ._ : LiatVar Prog -> ProS [pr.~ 00] .
op-u _:=_ : LletVar LlatBzp -> ProS

for z :"' • i.f (Ia:l zz lu .) u4 (di.j Ii) [prllC 62]

op _: _ : Pros Prog -> Prog [o~ pree 68] .

op _n_ : Prog Prog -> Prog [oe co- 14_ 14: T pnc 67]

op _4 _ t:>-_ : Prog Ccmdbp Prog -> Pros ~nc 68]

op _._ : COIII1bp Prog -> Prog [prK MJ

••• ldd..it;1cm.al r",oDing feature.
op 1. : -> Prog •
opT:->Prog.
op _U_ : Prog Prog -> Prog [u.oc: c:o- id.. ill: .1 pree 57] .
op _l;"_ : Prog Prog -> 8001 [prec: 70] .

135

0.1 The Reasoning Language 136

op p _ ._ : Progld Pros: -) Pros: [prec 69]

op _L : Prog Pros: -) Prog (pree 68]. ... Inyu.. of ; ,

op _ : ProgId. Us'tiar -) ProgId. er6' J., Yr.~ ... +-;-.-/': C!'.f
f.-('-'

op T: CODdbp -) Pros: .

op _.I.. : Coudbp -) Pros: .

op _....._ : CondEJ:::p ProS -) Pros: [pnc 63] .

op _0_ : Pros Pros: -) Pros: [uur; r;_ id._ id.: T pnr; 67J .

op _'L : ListVar COlIdExp -) Pros: (pnc 62J

op \/JI_ : LbtVar -) Prog .

op end_ : UstVu -) Pros:

••• aUlili~ operators •••
op __ : Ltltlar Pros: -) Baol c..-o] . • .. lon-fre«n.88
op __ : ProgId Pros: -) Bool c..oJ .
op _\\. : Usnar Pros: -) Bool C._o] . • •• IQD-oc~.nc.

op-u .[_<-..J : Pros: Listvar Li8t&xp -) Prog ••• substitution
for p(s. <- e] if (len I ;;;; len e) and. (dilj I) ra..o] .

op _L<-J : Pros: Pros:ld Prog -) Pros: C._o] .

••• Yariables d..claratiOll. (for use in .quations)
yar 11 Z Pros:Id .
yarpqr Pros: .
yar I J Z LiBtler
yar abc Co.......
yarefg Ust&xp

••• S.qll8Dtial cOitposition
[; k.ip-Luit] .q (skip i p) ;; P
[: Jdp-1uaitJ .q (p i Ikip) ;; p
[: -.L -Lzero] .q (1.: p) ;; .L
[;-T-Lz.ro] eq (T: p) ;; T

••• D_onir; nolld.stuaini..
[n-.L-zero] eq (p n 1.) • .L
(n-T-unit] eq (p n T) " P

••• Th. orderiDs relatioD
(I;-.L-botto. 1;] sq .L" P
(c-T-top C] .q P" T
[C-n-lb cl eq (p n q) = p
[!;;-U~ub ~l .q p. (p U q)

••• lDg.Ut nolld..terw.inis.
[U-.L ·QII,it] sq (p U 1.) .. P
[U-T-.uoJ eq (p U T) • T

••• a.cu:n1ClD
[P-fpJ eq (p I • p) • pU <- (p 1 • p)) .
[P-Up ¢;J sq (p 1 e p) b: q '" (pU <- qJ) G q

••• Stronge.t 1Jlyerse of sequential coaposition

[;-;-1] tq (p ; q [; r) • (p b: r r q) •

[:-;-2!;l .q (p r q) ; q '" p .

C.1 Tbe Reasoning Language 137

••• baUlp'tioD. aad b • .niOIl
(bT-U"U.·cODdJ eq true?", skip
(bJ. ~tru.-cOA4J eq trutl. c skip
[bT-fal.ae·condJ eq faiNT", T
[bJ. -fal...·condJ eq false.!. = .1
[bT· COIl.j1lDctionJ eq CaT; bTl '" (a 1\ b)T •

[bJ. ·cOIljWl.ctionJ eq Cal.; b.d '" (a 1\ bh .
... The 1_ of ebru1atlon g1,.•• ri•• to &an,. lava
(bT -vold-b.LJ eq (bT ; bl.) :a b T

(bl. -void-bTl eq (bl.; bTl z bl.
(bT-akip !;;J sq skip = b T .
[b.L -skip 1;] eq bl. "' skip •
[bl. -bT-aimi l;] eq (bl. ; bTl = skip
[bJ. -bT-.ia2 ~] eq skip = (bT ; bl.)

••• Guarded c~

[-dd] eq b ---> P = (bT ; p)

[-tn.-guard) eq (true ---> p) c p .

[-:hl...-guardJ eq (false p) '" T •

[_-bT·cOIlnraionJ eq b P .. (bT ; p)

[_-cOIljWl.ctlouJ eq .. __ (b p) = Ca 1\ b) P .

[_-diajWl.ctionJ eq (a p) n (b p) = (a V b)_ p

[.....-n-diat] *l b __ (p n q) .. (b __ p) n (b -- q)

[j-_-Wiat] eq (b -+ p) ; q z b -- (p i q) .

••• Gua.r4ed c~ ••t

[O-dd] eq (p 0 q) '" (p n q)

[O-eliJaJ eq a""'" (a __ p 0 b q) (a p) .

... CoDditlonal.

[<I p-def] eq (p <I b P q) '"" (b _ P 0 ...,b q) .

[4 p-'ne-co.ru1J eq (a 1\ b)T ; (p 4 b V C P q) '" (a 1\ b)T ; p

[4 p-fal.ee-co!ldJ eq (a 1\ ...,b)T ; (p 4 b 1\ C P q) '" (a 1\ -,b)T ; q

(4 P-void-bT -ll eq (bT ; p 4 b P q) '"' (p 4 b P q) .

[4 p-void-bT -2J eq (p 4 b P ...,bT : q) "" (p 4 b P q)

[4 p-idemp] eq (p 4 b P p) '"' P .

[;-4 p-Ldin] eq (p 4 b P q) ; r = (p ; r 4 b P q ; r) .

[guerd-4 p-die'] eq a _ (p 4 b P q) = (a p) 4 b P (a q)

[4 p-cODd-diej] eq p 4 b P (p 4 c t> q)" (p 4 b V c P q) .

[4 P-coDd-cOIlj] eq (p 4 b P q) 4 C t> q z. (p 4 b 1\ C P q) .

... Ae.igna8ll'

[:=-akip] eq (][:_ %) '" skip

[:"'-identitl] eq (][,,.:'" e,,.) _ (:r. : .. e) .

[:=-.,..J eq (][,,. :'" e,f) - (,.,][:- f,.)

[:"'-coabinatiOll) eq (][:_.;][:_ f) .. (:r. :'" f[J: <- en

[.....-:·-eu.bn] eq (z c e) (,. :'" f) '" (:r. = e) (,. :'" f[J: <- .J)

[:=o-n-Id.ht] eq %:'"'.; (p n q) .. (x:c.; p) n (:r. :'"' e ; q) .

[:--4 p-ldiAt] eq][:- e ; (p 4 b P q) '" (][:- e ; p) 4 bUr: <- e] t> (x := e ; q) .

••• Th. follo_iq 3 la_. ere Dot iD Chapter 3

[:=-coabiDation2] cq (%:- e ; ,. :_ f) - (%,,. :0: e,(fUr: <- e]» if][\\,. .

[:.-Ca.mlteJ cq (][:"'.;,.:- f) '" (,. :- fez <- e] ;][:= e) if,. \\ (][:= .) .

[:--.pl1t] cq (%,,.:c a,f) .. (][:a • ; ,. :_ f) if][\\ (,. := f)

•
•

o!
i',

;' .. '" ~~

v
V

e
e

::::
::

-:
::

;-
::

:;

~
~

,..
,,.

.,,
..,

,..
,

,.
.,

,.
.,

,.
.,

,.
.,

,.
.,

,.
.,

rl
*

..
..

 .
..

..
..

.

,
I

I
I

I
,

,
•

,
,
'
.

~
:-

c,
iq

O

[
,

,..
.

"tl
I
.
.
.
.

"
g

..

.
•
'
. ,.

..
[
o
K
!
~

 ~
g

I'l

'"

B:
:.-

..:
""

It
oe

.... or

r,
~

~

.,'
E.

e:.

~
~

~
.

e:.

g
~

v
1

..
•

• ~
'" •

• -
~

~

.

~
'
"

~

 ..
 ~

C.l The Reasoning Language 139

[end-va'-.ia2 G:J e.q (end Z i var z) • skip.
[end-va,·skip] cq (end Z j var z ; z := .) = (z := .) if :I \\ ...

[var-.Ual) eq (dec::r. ve.r z ; p) '" (dec z • p) .
[end-.lial] ~ (dec z • end z ; p) ~ (dec z .. p)
[var-dia2) eq (dec z .. p ; va, z) • (dec :r .. p)
[end-d!a2J ~ (dec l(• P ; end z) • (dec z .. p)

(dec-va'-end] cq (dec:r. p) '" (var l(; p ; end .)
11 COD:tiguolUl-ICOpll(Z,p) u.d bloclr.-a'tructnrecl(p,z)

endth

C.l.l Proof of Theorem 3.17.6

Here we give the complete mech<ULi6ation of the pr~f of the equation

['-I'-t&il~nc] eq (b .. p) j q ., I' I .. (p ; I 4 b l> q) .

which lKtUally relies on the 38l1nmption thAt I is not free in p or q. Most of the features of OBJ3
used jn the proof heloVe been introduced beCore. Others are explained as the need arises.

Fust we need to specify the context in which the reasoning will be conducted. In this case, it
ill given by the module describing the le&60ning language together with the assumptions and
abbreviations used in the proof. As rewriting in OBJ3 is carried out only for ground terms
(that is, terms involving only constants), we need to explicitly declare a constant to play the
role of each variable a.ppearing in the equa.tion. Of course, we must not assume anything about
these constants, except the conditions aaaociated with the theorem. The context ofour pr~f is
defined by (this ls omitted for the next proofs):

op_ U.lSOnlG-LllGD.lGI[UP]
op 1 -> ProgId
op P -> Prog .
op q -> Prog .
op b -> Condbp
[h.Jpl] .q 1 \ p • tru.
[h.Jp2] eq I \ q = tn.
[LHS-d.f] 1.t lJlS • (b • p) ; q .

[lUlS-d.f] 1.t IlHS "' '" I • (p j I 4 b t> q) •

We also add an equa.tion (for la.ter use) which expresses a simple lemma about 5l1bstitution. It
ea.n be automa.tically proved from the definition of the substitution operator:

[.Qb.t1] eq (p ; 1 4 b l> q) [I <- LBS) • (p i LBS 4 b t> q) .
•••> Proot'
OBJ> r.clqc. 1D SUBST : (p ; 1 4 b l> q) [I <- LBS] (p ; US 4 b t> q)

r.nit•• : "

r ••Qlt Boo1: tn.

where SUBST is the module which contains the relevant equations of subsUtution.

We split the proof of the theorem into two steps: (RRS l;; LBS) and (IJIS l; RBS). Recall that the
symbol - preceding the label of aD eqna.tion (in an apply command) means lhu the equation
is to be a.pplied in reverse (from right to left).

C.l The Rea.son.iIJg Language 140

..0 Proof of (1lHS i; LiS)

OBJ> Itart (b • p) ; q !; LBS

OBJ> apply .'-fp v1thiJl tent .

rnuJ.t 8.001: (p ; b • P <1 b I>ikip) ; q !; LBS

OBJ> e.pply • ;-4 1>-Lc1l.t withiJl ten. .

n'ult Bool: p ; (b • p) ; q <1 b I> ikip q!; US

:::"':::;.,===="',.=-=a=...."'''''''''''=..''''''.'''...''' ..=..'''....'''''' ..
OBJ> apply .; -ikip·LWl.1t within hra
rnult Bool: p ; (b • p) ; q 4 b I> q !; US
==..=="'=<:"'£::~="'''',.== ..;:''';.,=='''..=sz..=..=..=..=..
OBJ> applJ -.LBS-def within tsrm

result Ilool: p ; LIS <1 b I> q !;" LBS

DBJ> applJ -.IUblt1 vithin term .

rnuJ.t .B901: (p ; I 4 b I> q) [I. <- LHSJ !; LIS

OBJ> apply -.p·Up at tera

resuJ.t Bool: pl. P j I. 4 b I> q !; LIS

OBJ> applJ - . .us-d.f within ten.

rnuJ.t B001: IHS !; LBS

The other part of the proof illustrates ways of selecting a particular suhterm. A natural number
is used to specify the desired snbterm, where the aJ:-guments of a given operator are numbered
from 1. For example, in LHS !; MS, (1) selects LHS. Nested selections are specified using the
keyword or. The application of a given equation may require the user to provide an explicit
instantia.tk>n (biding) of some of its variables. This UlluaJly happens when applying an equation
in reverse and its left·hand side contains varia.b~ which do not appear on the right-ha.nd side.
The biding for these extra varia.bles is defined using the keyword with, followed by a. list of
equations of the form var = term.

"0 hQOf of (LHS !; US)

OBJ> ,tart pl. P ; I. <1 b I> q !; lUIS .

OU> apply .p-fp at (1) .

reauJ.t Bool: (p ; I <1 b I> II) ex <- pl. P j I <1 b I> q] l;;; BJlS

::=........z"""s:=:a....-=..=..===...;a"'....=."'=..~..=..=

OBJ> ..l,et SUBST . • •• Conta.in.l equatiou for lubetitntion

OBJ> applJ red at (1) ••• Does th, eubltitutioa auto.atic.-llT

result Bool: p ; (p I. .. P ; I <1 b I> q) <1 b I> II !; US

::=::===="'=:::================="'=======~===

OBJ> ,.lect &&ASOIIJG-L&!GV&axCEIPl . • •• Back to coat,xt provi~ ~he 1.'11'_

"';========="'==.=="''''===='''='''~.= ..'''s'''~======z

OB.1> applJ -.IUlS-de1 vithia tera
resuJ. t B001: P ; US <1 b I> q b IlHS
==:D=~=a;",=",c=s=a:.z.~=.",c===.=s=.",c=.=z.

OBJ> applJ -.;-;-2 _1th p = US .ithia (1)

re'uJ. t B001: p ; (US ~ q) ; q <1 b I> q i; US
==============...==~=======Z=="'=~====E====

C.l The Reasoning Language 141

DBJ> applJ -. ;-Mip-La.D.1t .t (3) 01' (1) .

rellult 8001: p ; (US ~ q) ; q <4 b t> .kip j q !; ass

OBl> applJ -.;-4 t>-tiLiat .i~ t~ .

ren.lt 8001: (p ; (lUIS r q) 4 b t> Ikip) ; q !; US
~=====~=c~~=a==aam==.a==-==~=~a=c.a=c

OB1> applJ • j-~-l at; 'ten •

rellul:t 8001: p ; (BBS ~ q) 4 b t> .kip!; BaS ~ q
.a~.a=c.a=c.ac.-=c__-=c••~••=~=c.~c••c

OBl> applJ - .•-lfp at ten •

nnl't 8001: b • P ~ US r q

OBl> applJ -. :-~·1 at tU'll .
r ..ul't 8001: b • P ; q J; 1BS

OBl> applJ -.UIS-def ,i'thin'terll
neul't 8001: LHS G. us

C.1.2 Proof of Theorem 3.17.7

The equation to be verified b

[.-nqUlUl.ceJ ~ (b • p) : (b v c) • p s: (b V c) • p .

The proof strategy is very similar to the that of the last section. First we prove a simple lemma
about substitution (for later 1lSe)

[lIu!lllU] eq (p ; I <1 b t> (b V c) • p) [I <- US] ... (p : US 4 b t> (b V c) • p) •
•••> Proof
OBl> reduce in SUBS! : (p 1 4 b t> (b V c) • p) [l <- US] ..=

(p US <1 b t> (b V c) • p)

revri'te.: ...
re.ult 8001: true

and then split the proof in two parts, as above.

"0 Proof of (LBS G lBS)

08l> .1:art (b V c) • p ~ US

08l> applJ -. 4 t>~id~ a1: (1) •
r ..ult Boo1: (b V c) • P 4 b t> (b V c) • p i; US

OBl> applJ .•~fp at (1) of (1) .

nn.l't B001: (p ; (b V c) • P 4 b V c t> .kip) 4 b t> (b V c) • p !; US

=czscz~~.cz:a==Eaz=.a:cza:s.zc=-=c.a:=.z=

OBl> applJ -.IBS~d.t _i'thin (1) of (1)

nn.l't B001: (p ; US 4 b Vet> .kip) 4 b t> (b V c) • p i; US

SZE:C•••Zc..saZ=EC~Z~Ze-s=.z"'=Cgz=••z

OBl> applJ -.4 t>~Yoid~bT~2 a't (1) of (1) .

ren.lt B001: (p ; US 4 b Vet> (b V c)T .kip) 4 b t> (b V c) • p !;;; US

G.l The ReB30nmg Language 142

"'."'~."1~.=.~"'''_=.''_.=.''''''C=.=.=.=''''''''••=
OSJ> apply - .•-.1ia2 w1th b • (b V c) within t-ra .
ruult Sool: (p ; US <I bYe P -'(b V C)T ; (b Y c) • P ; ,kip) <I b t>

(b V c) • p !; US
=======s:====-=cac=Cs:=C=.za=_=::=,..=,...,=.==
OSJ> atlp1T • ;-aip-Ilunit lIithin te~ .
re8ult Bool: (p ; US <I b V c P -.(b V c)T (b Y c) • p) <I b t>

(b V c) • p !; B.BS
===============.===============~===;:====

OBJ> apply .<1 p-,.oid-b T-2 lIith1.D t-ra
result Bool: (p ; US <I b V c P (b Y c) • p) <I b P (b V c) • p !; US
======:...:==============::===:============
OSJ> apply .<1 p-coDd-conj with..i.n teB .

renlt Bool: p ; IIJIS <I (b Y c) 1\ b p (b V c) • p !;" IIJIS

======:,,=======,..============:=::=.===:=:==
OSJ> apply red at (2) 01 (1) .
result 8001: p ; IlBS <I b p (b V c) • p !;" IJLS
=:====:,""=:==;=======Z====================
OBJ> apply -.nb8t1 lIithin t.~ •
ruult B001: (p ; 1 <I b P (b V c) • p) [1 <- US] !: US

OSJ> apply -.#-Up at ten
ruult B001: # I • P ; 1 <I b P (b Y c) • P !; BJlS
••asc.".= ~c•••c••= =.as••••
OBJ> apply - .•-#-tel.l-rec w1th1n t~ .
resut Bool: b • P ; (b V c) • p !: US
.=""""'==a:...."-=...laIc..C_..."'........."""'.,,..=...,."'..

OSJ> apply -.UIS-cl.8f .!t.b.1.D t.~

ruu1t B001: lJlS !: US

The a.bove result ill added to the system in the form of an "inequa.tion"

[LBS-!:-W ~J ell L..IIS = IlBS .

which is then used in the other part of the proof.

...> Proct 01 (US [;;; LBS)

OBJ> start (b • p) (b Y c) • p ~ US .

•=""'.=.lUOOU=.="""."'."'."'.=-=."'.z.oo...",""'·:"·
OBJ> apply .•-tp at (1) ot (1) .

reault 8001: (p : b • P <I b t> akip) ; (b V c) • p ~ US

,..=-=.=.=-.s.-= ~."'.=- ~·=·:

08J> apply. :-<1 p-Ldhe dth1.D ten. .

ruult 8001: p ; b • P ; (b V c) • P <I b p skip (b Y c) • P ~ UlS

=c_ ..,.,..=as =-=.=.=.= .",·"'••
OBJ> apply. ;-t6cip-L1m1t w1tb..1.D ten. •
resue Bool: p ; b • P ; (b V c) • P <I b P (b V c) • p !; LHS
=c...:,. ..c=as.......=-=.=•..,.•••-=.....

OSJ> apply .•~tp at (3) ot (0 •
result Bool: p ; b • P ; (b V c) • P <I b P (p (b V c) • P <I b V c p skip)

<;;L!S
======..====:=.=c==••=.=~~c~~,.z=.=~~.=.=~=

http:c=as.......=-=.=�..,.���

C.l The Reasoning Language 143

OBJ> apply -.IJlS-4et' within ten. .

reault 8001: p ; IJlS 4 b tl> (p ; (b V c) • P 4 b Vet> ,kip) ~ LIS

::~:=cs=c.ssccs~*==~·=c-==c.:s.zcaacs~.

OBD apply -.US-4af within ten. •
renlt Bool: p ; US 4 b t> (p ; IllS 4 b Vet> ,kip) ~ IJlS
s:=c:=cc===cS=c.=C.=S~CCs=~==.-c••=c.zc.c

OBl> apply -.LHS-~-BJIS vithin tera .
result Bool: p ; US 4 b t> (p ; LIS 4 b Vet> dlip) ~ LaS
==C:Z=S=CE.C:C=Z"=ZZ~=.==C.==-==••=C••=.
OBl> apply .4 t>-cQDd-4iaj .ithin tara .
result Bool: p ; US <I b V b Vet> dlip ~ LlIS

OBl> apply red a~ (2) ot (1) .
r ..ul~ Bool: p ; LaS 4 c V b t> dlip ~ LBS

OBl> apply - .•-lfp a~ ten. .
result Bool: (c V b) • P ~ US

OBl> apply -.IUlS-de::t 1I'1thin tara
raeult Bool: IUlS S US

C.2 The Normal Fonn	 l44

C.2 The Normal Form

The normal form definilion and the relatoo.lemma.s and theorellUi are described hy the following
theory. Note that this module is alao independent of an expression language. The nexl sections
illustrate tbe verification of some of the proofs.

'th IOBXll.-f'DU [I :: UP] 18

protl'ting &E1S0IIIG-~GU'CK[IJ

op-u	 C:L, _->_. -J) : LiatVu CoD.dE:I:p CondE:l:p Prog CoDd&ql -> Prog

:for : [Il, b -> p. c) if p'll'cl(b,e) [prle 60J

.... Variahlllll :for 0.' ill llqoationtl
varpq,:Prog .
....ar & &0 ai a.2 h ht b2 e co e1 : COll.dEIp .
....ar .I' LilltVar
....ar , f LiBtExp.

Uit-cle:f] 1'1 : [a, h -> p, cJ dec : E a h. P C.l.

[T:Blr.ipl ~J cq skip '" : [a, b -> p. aJ if pllcl(a.b) .

[L : priaitiu-COlllll&Dds ~]

cq P ~ ;[a... -> (p :E c). c] it pwcl(a,c) uti \ p

[1': 8lr.ip2 ~) cq skip : [a, a -> , :E c, c) it pw(a,c) .

[T:a.uigDoleDt ~J

cq (.1:-= ,) -= :[a, a -> (z :::, ; :E c). cJ 11 p'llcl(a.c) .

[L:8eq08ll.tial-e~Bi'tion ~J

cq	 :[a, ht -> p, co] ; :[co. (bi V b2) -> (bl P 0 b2 _ 'I), cJ

.... :[a, (bl V b2) -> (bl --0 P [] b2 --0 'I), c] if p'll'cl(bl,b2) .

[L: llliainat,-gurtl.c1-c~ C;l
cq ; 11., bl -> p, c] , : [a, (bl V b2) -> (bl -. P 0 b2 -"" 'I), c]

it pIlcl(bl,b2.e) .

[T:.llqOeDtial-c~Bltion~]

eq	 :[1, bi -> p. co] ; :[co, b2 -> q. c]

... :CI, (bl V b2) -> (bl P 0 b2 q), c] if p.cl(bl, b2, c)
--0

[L:conditlaul ~]

cq v :[&1, (a V bl) -> (a (.... :E al <1 b t> , :E &2) [] bl p), cJ <1 b t>--0

.... :[11.2, (a V bt) -> (a (" :E al <1 b t>" :€ &2) [] bl p), c)--0

.... :[a, (a V bl) -> (a -+ (.... :E al <1 b t> :E &2) 0 bi -+ p), c]

11 pIlcl(a,ht)

[T: eou.dltiol.a1 ~]

C.2 The Normal Form 145

cq .. : ral. bl -> P. cl] <I b I> .. : [a2, b2 -> q. c]

.. : ra. (a V bl V c1 V b2) ->

(a -+ (.. :E at ~ b ~ 't' :E a2) 0 bl -- P

o c1 __ .. :E c 0 b2 -- q). c]

if p-d(a.bl.b2.cl.c)

[L:'t'oid-iDiUal·.tat;:e ~]

cq 't' : [a, (co V b) -> (cc __ 't' :E a 0 b p). c]
.. :[co. co -> ('t':E .. Ob p), c] If pvd(co, b)

[T:iteration g
cq b. 't' : [eo, bl -> p, co]

.. : [a, (a V bl V co) ->
(a -+ ('t' :E eo <I b ~ 't' :E e) 0 bl pOco 't' :E a). e]

i1 pvd(a.bl.co.c)

eDdtb

C.2.1 Proof of Lemma 4.2

Here we verify the inequa.tjoD

Q.:vequential-coapovltion !;]
eq 't' :[a, bl -> p. eo] ; 't' :[eo. (bl V la) -> (M P 0 b2 q). e]

't' :[a, (bl V b2) -> (bi P 0 '02 __ q), c] if pvd(bl. b2) .

All UIIUal, we 888UUle the hypothesis by adding it in the Corm. oC an equation.

open I01UW.-FtJIII [ElP]
[hypl] eq pvd(bl,b2) = true

This is used to discharge the dilljointness conditions associated with some of the laws. It is
possible to tell OBJ3 tha.t we want conditions to be discharged automatic.alJy, ratber than by
applying rulea step by step:

vet reduce cond1tl~ on .

Then we proceed with the proof.

OBJ> atart .. : [a.bl -> P.co] ; .. :[co.(bi V b2) -> (bl __ P 0 b2 - q).c] .

OBJ> apply .nj-def .ltbiD te~ .
re.ult Prog: (dec ... 't' :E .. j bi • P j coJ.)

(dee 't' • 't' : E co ; (bi V b2) • ('01 P 0 b2 -+ q) ; '.1)

OBD apply .dec-;-di.t at tUil ,
re.ult ProS: d-e 't' • 't' :E .. ; bl • P j CO! ; 't' :E co

(bi V b2) • (bt __ p 0 b2 q) j c!
==;3==~2=S.2~.2::e-.:K••~~=S~S.2~.=S.

OBD apply .: E-bT .ith b • co vithiD te~ .
re.ult Pros: dee 't' • 't' :E a ; bi • P ; eoJ. ; COT

C.2 Tbe Normal Form 146

(bl II b2) • (bl -0 P 0 b2 q) ; Cl.

=~===~~==~.==r=~:~==-==".==-=••:2.=.=S
DIU> &IIplJ .bl. -bT-.ial vit.h.i.n 'tu. •

renl.t ProS: dec T • T :E a ; bl • P ; "'ip ; (bl II b2) • (bl P 0 b2 q) c1.
-0

OBJ> &pplJ . ; ip·llIII.i't d'tbia 't.~ .

r ..ul.'t ProS: dec ... e .. :E .. ; b1 • P ; (bl II b2) • (bl -0 P 0 b2 q) ; c1.
-0

====..======;=="'="''''...===..=..==::~.=,,_:.= ..

OBJ> ~ly - .•-0-eli. wi'th b == b2 vi"tbia 't.~ .

re8ul.t ProS: d«, ... T :E a ; bl • (bl P 0 b2 -0 q)

(bl 1/ b2) • (bi _ P 0 b2 q) : C1.

OBJ> apply .• -.eql1lt11ce wi'tbill 'tu.

result ProS: dec" ... :E a : (bi II b2) • (bl __ P 0 b2 q) e1.
-0

r;==....."'=;;..=-=.._=... =..; ..=..a::;r"'.=....._"'....'"

OBJ> apply -.n:f-def &'t t.~ .

result ProS: .. :[a.bl II b2 -> bl P 0 b2 q.c]
-0

C.2.2 Proof of Lemma 4.3

The proof of the lemma.

[I.:eli.lliJla.tl-parded-<:oDoaDd ~]

cq ... :[a, bl -> p. 1:] : [a. (bl II b2) -> (bi P 0 b2 -0 q). c)-0

if pIId(b1.b2.c) .

follows directly from the lemma. verified in the last B«tion a.nd the one of the reduction theorems
for s"ip, all shawn below.

Opltll 101llU.L-FOU [ElP]
[hypl] Iq pgd(bl,b2.C) tJ:UI .

DBJ> surt .. : [a, (bl II b2) -> (bl -0 P 0 b2 q). c]
;:==========="'=="'=...==..==..===..;:..="'===....
DBJ> applr -.L:lllqultll'tial-l:e-poaition witb CO" e a't tl~

resul't Prog: .. : [a.bl -> p,e] ; .. :[e,bl II b2 -> bl P 0 b2 -0 q.e]
-0

===..=:========"'======"'=..=====;====....===:==:
DBJ> applJ -.T:akipl at (2) .

re.ult Prog: .. : [a.bl -> p,e] ; ."ip

===:=:=============:===;==============

DBJ> apply. ;ip-B.lIII.it at tl~

re.ul't Pro,: .. : [a,bl -> p,e]

C.2.3 Proof of Theorem 4.4

Using the above two lemmas, the proof of the reduction theorem of sequential composition

[T:.equltl1tial.-cc.poaitioJl !;]
eq ... :[1, b1 -> p, co] ; .. :[co, b2 -> q, e]

.. : ra. (bl II b2) -> (b1 P 0 b2 -0 q), c] if pvd(bl,b2,e)

C.2 Tbe Normal Fonn 141

is stra.ightforwa.rd.

OpeD IOJUU.L-FDU [EIP]

[hlP1] .q pwd(bl,b2.c) .. true

OBJ> wtart... [a. (b1 V bJ) -> (bl _ P a b2 -+ q). c] .

OBJ> apply -.L:uquu.tial-clmpOwition at ten .

ruult Prog: ... :[a.bi -> p,co] ; ... : (co,b1 V b2 -> b1 -+ P Cl b2 _ q,c]

OBJ> apply -.L:.l~at.~gnarded~c~with b1 2 b2. P : q at (2) .

r.sult Prog: ... :[a.bl -> P.co] ; ... : (co,b2 -> q.c]

C.3 SimpliJicatjoD of Expressjons	 148

C.3 Shnplification of Expressions

The following module groups the theoreIWi rel.a.ted to the simplifiea.tion of expressions.]n order
to praY\! them, we need to instantiate the module describing the reasoning Language with the
module SOURCE-EXP which describes the expression "ub-language of the BOurce language. The
module SOURCE-EXP is omitted here; its relevant sorts and operators were given in Chapter 6.
Each or the next; two lleCtions presents the verification of one theorem related to this phaM! of
compilalion.

tb EU-3DlPUnC.lTIOI b

p~Qt;e,~iD.g auson.lG-UIGUI.<:iB [SOlJaCS-£1P]

••• VUi&b~ea for u.e iD equatiOlUl ...
war P \ : PrQ6 •

varbii Saur<:ebp

war it Sour<:eVar

vu I: J U : Li.tVar

[htrocS.u.c.-A] <:'1 (i := il) '" (dec A • A :"' il ; i :'" A)

if (A \\ x) aDd (A \\ .) .

[siaple-bop]	 eq (A :'" • bop i) .. dec t • A := i ; t :_ A ; A :- _ ;A := A bop t;
it (A,t;) \\ (_ bop i) lAd iB-not-,.-ar(:f) .

Caia.pl.-blJp-opt;iaiut;ion)	 e'1 (A :'" • bop ii) .. A :'" • ; A :", A bop i
if A \\ (4o bop z.)

[siJaple~u.op]	 eq (A :'" uop .) - (A :- • ; A :'" uop A) if A \\ •

[.iJaple-ealldl ~] c'1 (dec I:.,A • p) 4 b t> (die ll.A • '1)
dec x,A • A := b (p<lAt>q)

if (ll,A) \\ b .

[aiJllple-<:orad2 ~J <:q b • (dec :I,A • p) '" (dt<: x,A • A := b ; A. (p ; A :'" b»
if (x,A) \\ b .

end,th

C.3.1 Proof of Theorem 4.3

The proof of the theorem

[aiapl.~bopl	 eq (A :- • bop i) - dec: 1: • A :- i ; t; :- A ; A :'" • ;A :'" A bop t

if (A,t;) \\ (il bop i) .

follows from the basic la.ws of alIsignment and declaration. Using a simple derived la.w to commute
two a8Signments lJignHica.ntly reduces the number of proofsteps. Althotl.gh the equations defining
substitution are used in automa.tic (rather than step by step) reductions, we still need to tell

C.3 Simplification of Expressions 149

OBJ3 to do 60. Having substitution as a. built-in operator (as in the B-tool) would reduce the
number of stepll of this proof to & ha.lt.

A new feature to select 8ubtefIWI is used in this proof. A term involving only associative operators
is viewed as a sequence numbered from 1; the form [n .• aJ &elects the 8ubaequence delimited
by (and including) the positions n a.nd .. The hypothesis is encoded in the usual way, a.nd ill
omitted here.

OBJ> .tart dec teA :- i i t :- A i A ;- _ ; A ;- A bop t .
:::::=====5=~~==:~:=Z=SZ:=Z::=2====_Z=_

OBl> appl;r . :"~c~b1.nat1oa _ithiP. tc-a

nnit Prog: dec t • A :- i i t :- A ; A :- A bop trA <- _]

==:Z====:===Z:=~========E:=~=.Z========

OBJ> appl;r red. at (:n of [3] of (2) .

result Prog: dec t • A := i ; t :0: A ; A :; " bop 1;

OBJ> appl;r . :.-co-.1;. at [1 .. 2l of (2) .

resUlt Prog: dec 1; • 1; := ArA <- il ; A ;c f A:=. bop t

OBJ> appl;r red. at (:1) of [1) of <:n .

result Prog: dec t • t :: i i A :"' i ; A :z • bop t

=:==;==:==:a==============:========:======
OBJ> apply. :"-cc..biAatioa w1th1J:l. tc-a .
result Prog: dec t • t :"' i ; A := .. bop t(A. <- fl
:z::=z=====_===..:=c===-==ca:===:a==="=====
OBJ> apply red. at (2) of [2) of (2) .
renlt Prog: dec t e t := f ; A :'" .. bop t
=_-=••==_==.a=••,,==_=:cz=ca:s.==-"=C_==.==
OBJ> apply. : ..-to-.t8 _itbiD. tea .

re.Ult Prog; dec t • A := .. bop 1;(t <- tJ ; t := t

..=C&=c.-=...~••~...:ca:~",.""••=••:",."=

OBJ> apply red. at (3) of [1] of (2)

resUlt Prog: d.c t • A :: .. bop i ; t :s t

:=:z=====~==============================

OBJ> apply -.dec-:·-fiP.al at t~

re.ult Prog: dec teA := ;. bop i
=.==:.====.==-D=Z.==...="'..=:....:"'z:"'..; ..::~

OBJ> apply .det-.li.. at tea
rasult Prog: A := " bop i

C.3.2 Proof of Theorem 4.5

He~ we verify the proof of the theorem

[d.ple~coa42 1;] cq b • (dec z.A • p) (dec z.A • A := b ; A • (p ; A ;" b»

if (z,A) \\ b .

It giVeB one more example of the use of the (least) fixed paint laws. The hypothPJiis is encoded
in the usual way, and is omitted here.

OBJ> .tart dec z,A • A :0: b ; A • (p ; A :_ b) !;; BJIS •

C.3 Simpli.ficaHoD of EXPre5SioDS 150

DBJ> apply ._-:.rp vithia. terJI •
renlt Bool: dec K.A • A := b : (p ; A := b ; A - (p : A :'" b) ~ A t> u;ip)

[;lIlS
"'~=="'5~C"'.=-=~.=.=-=C==-=.=-=_==-=~=~=

DB!> apply. :--4 t>-MUt with1Jl. ten .
resuJ.t 1001: dec K,A • A :- b ; P ; A :'" b j A_ (p ; A :- b) 4 A[A <- b] t>

A :.. b j u;ip G US

OBJ> apply r.d at (2) of (2) of (1)
ren.lt Bool: dec K,A e A :c b ; p ; A :'" b ; A. (p j A := b) ~ b t>

A := b j skip!; IllS
"',"••C,"a~ ...=.=a.=.=-=••as...~••~.=.=-=as=

OBJ> apply -.dec-4 t>-dbt withiD t.en. •
r ..uJ.t 8001: (dec :I.,A • A := b ; p ; A ;= b ; A. (p j A := b» '4 b t>

(dec :I.,A • A :a b ; ,kip) r; us

OBJ> apply -.dec-...oc wit.hin t.an .
resuJ.t Bool: (dec :I.. (dec A. A : ... b j P j A :'" b ; A - (p j A ;= b») '4 b t>

(dec:r. _ (dec A _ A := b : ,kip» !;;; W

=::.:",=:.=====:.z==========",===:.====..====~

OBJ> apply -.dec-:=-iDit. _1t.hin t.en. .
result &01: (dec :I. • (dec A • P ; A := b ; A. (p j A := b») ~ b t>

(dec J:. (dec A. skip» r; us

OBJ> apply .dec·...oc within tw- .
result. 1001: (dec :I.,A _ P ; A := b ; A. (p i A := b» 4 b t>

(dec Ii,A _ u;ip) i,; lUIS

==c=..=.=..=....."''''..=.......=zcz...=..=..=.=czc==...==:
QBJ> apply .dec-eli.. aitlLiD t.erJi
result Bool: (dec :I.,A • P j A :- b ; A • (p i A : .. 1;») ~ b t> t1ip !; us
===......:.=-=-=.=a:".=-=.=.=-=.a:a=a=2:=.=.
OBJ> apply -.dac-:-diat _1t.h p .. P wit.hiD. ten. .
result. Bool: (dec :I.,A a p) j (dec J:,A a A :. b : A. (p j A :- b» ~ b po

skip GUS
======"======="=E::=====_==================
au> apply - . .us-def w1tb.1a ten. .

result. Bool: (dec J:.A • p) j IUlS 4 b t> skip!; W

=.=.==."..=.= ==~==.=-=.= ..~

au> apply -.a-Up at. ten. .
result Bool: b • (dec z,A • p) !; US
=.===.=~:a=a=.=az......=.=.=.=....~=.=.= ...==
OBJ> apply -.lJIS-4ef d'thiD terJI
result Boal: lJIS G US

151 CA Con&rol Elimination

C.4 Control Elimination

The following theory i111Ultratea an instantia.tion of the normal form theorems to deal 'kith
our particular target machine. The module IORXiL-FORM is instantiated with the union of the
modules SOURCE-ElP (describing the expreaaiODI of the lIOurce l&lI.guage, all discussed a.bove) and
ROM-ADDR-ElP which includes IIOrts and opera.ton to model addresses in ROM, as di8CUS8ed in
Chapter 6. The instantia.tion of IllOme of the theorems requires some additioual tra.nsformatious,
bllt they an very simple a.nd do not illuBtra.te a.ny interesting point.

'tb. CDI'BDL-ILDIIJj,TIDI' 1a

pr()'tectiq IDIJW,.-POU [SOtJaCB-EIP ... aaJ.-lDD1-ElPJ

ur p q , Prol .
war ••0 .1 f to 11 : I'at .
wari'::Yar.
war • : Ezp •
war bl b2 : COlI.dExp
war ll: :	 Lb'tYar .

[akip-'tb.eo 1;;] eq akip '" P : [P ... •• rslM -> skip. P ••] .

[:"-'theo!;;] cq (i :c.) '" P :[P = •• (P ...) -> (t,P :" .,P ... 0, P" 1]
if P \\ •.

[;-'tb.eo I;J cq (P :[P" •• bl -> P. p" fO]) : (P :[P" fo, b2 -> q, p ... 1'J)
P : [P = ., (bl V b2) -> (bl __ P 0 b2 __ q), P ... t]

if p8d(bl,b2.(P " f)l •

[if-'tb..o 1;;]
cq (P :[P ., 1, bl -> p, P '"' fo]) <I A E> (P :[P ••1, b2 -> q, P = 1'])

P :[p •• ,«P = .) v bl V (P _ to) v b2) ->
((p ••) __ (P :'" P ... 1 <I A E> P :- .1)
o bl __ P 0 (P fO) __ (P := f) 0 b2 __ q), P ., f]

if pwd«(p ...),bl.b2,(P .. f().(P;; t»

(ituuicm-'theo ~]

cq A • (P : [P I, bl -> p, P = to» =

P	 : [P «P ••) v bl V (P t()) ->

((p) __ (P := P 1 <I A E> P :- 1'0 ... 1)

o bl __ P 0 (P ... to) -- (P :- .». P • 1'0 ... 1)

if pvd«P).bl.(P - fo).(P ... f() ... 1»

u.d'th

152 c.s Data Refinement

C.5 Data Refinement

The iOBtan:Liation of the module del!lcribing the reaaoning lLl)guage shows the ma.ny IUnds of
expressions used to reason about this phase of compilation. The mod ules SYMTIJl a.nd RAM
defines the symbol table a.nd the memory RAM as insta.ntiations of & generic module describing
maps with the usual operations.

Here we omit the declaration of the operators related to this phase of compilation. Only their
definition. a.nd &O(I1e of the theorems are described.

'tb D.l.TJ.-BBFIIEIIEIT 1.

pratectin.8 .l&1S0.UG-UlGU.l.QE CSOtJi.CI-BlP + llDII-lDD1HtIP + SYIrI'.l.B + u.xJ

••• DetiU't1ona
["i~eillwll..tionJ eq i •. y.r 'I' i.:" M[t'C.JJ ; end M

Cl)-I~cQfi.mllaUonJ eq i;l '" y.r M : M :'" '" E9 {.Cv] >-+ 'I' } : Itnd 'I'

C"i-.iJlD.llUon-tuCUou,) .q i.(p) "' i. ; p ; i;l

clj--.iIImlation-u-.uo.'ti'tuUoD) .q i'l'(e) = .i (11' <- MC.('I']JJ

••• Theon..

["i'--i- I -.iaula't101l1 !;] eq i. ; .;1 '" skip

C"_"-I-.t.ulat1oD2J .q .;1 ; i v = ,kip

••• Pi.cniB.-da'ta-r.tueaent

C"'-.kip-di.'t !;J .q iv(akip) • akip

C-t--:=-di.t1 J;J eq i(i ••)(;i: := .) = (M := M E9 {.w i(i .•)(.»))

["'-:=-41.t2 !;] cq iv(i: :=- .) .. (i: :"' i.(.» 1.% .i \\ 11' •

r-i-;-dbt~] .q i.(p : q) '" i'l'(p} ; i'l'(q) .

["-<1 t>-dilt j;] eq i ... (p -4 b t> q) =. i'l'(p) -4 i'l'(b) t> .v(q)

C-t--.-di8't g .q .v(b • p) =- •• (b) • i.(p) .

[u'trodllci.la("u.cb.1.J:l.-.U't. ~] ___

ell i.(dee ... P.A. p) .. dec P,A 'I' (. U {........ n })(....)(p)
it di.j(1,'I') ud. diaj(n •• ('I']) .

.....h

C.S.1 Proof of Theorem 4.10

Below we verify the proof that (i.,.;I) is a llimulation.

C.5 Data .Retinement	 153

•••> i y ; i;l !;;;; akip •

- --1
OBl> 11:art "v ;"v •

~_=c••=~•• ..~~~.~S2E--=Z"'_'"

DBl> ..pplJ . t-IUm1a1:ion dthiJI. 1:u. --,
re8U.l1: PrOS:	 wlr v ; _ : ... Mr'lrvn ; end M 9.
:~-=C.=:&:I'S=~ ...~.a=c.a--s."'==="'=.~ ••=
OBJ> ..pplJ .'i- I ·CO.. i.aul&1:iOD vi1:hiII. tu. •
r ..ul1: ProS: var _ ; • :- Mr'lrv]] ; Ind M

vir M ; M :... M m {'Irv] _ v} end v

OBl> applJ .end-vlr·.ia2 vithiJI. 1:u.

r ..ul1: PrOS: vir .. ; • : .. Mr.. rv]] : skip; M :& M m {.. rv] _ v} end v

OBJ> ..pplJ . :-tlcip·LUIli1: vi1:hin 1:u.

r ..u.lt PrOS: vir v : v := Mr'lrv]] ; M :.. M m {'Irv] _ v} : end ..

OBJ> applJ . :c-c~b1luL1:i0D2 vith.1D tu. .

ren.lt PrOS: Vir .. ; v.M := Mr.. rv]].(M m (.. rv] _ vnv <- Mr'lrv]]]) end v

OBJ> applJ red ..1: (:Z) of (2) .

r ..ult PrOS: Wlf. ; _.M := Mr'lrv]].M i end v

OBJ> ..pplJ . :--identi1:J vithiJI 1:u.

r ..ul1: ProS: vir _ ; v :. Mr.. rv]] : end v

OBJ> applJ -.end-:"'-final vi1:hin 1:u.

rln.l1: ProS: vir _ ; end •

OBJ> applJ .end-wlr-alai vi1:hiII. 1:u.

ren.l1: ProS: liIip

--.•••> 'Iv i v ... akip

OBl> a1:art i;l : i v

OBJ> ..pplJ .i-1-co..1KulatiOD 8ithin tu. .

reaul1: ProS: Vir M ; M := M ED {"[v] _ v } end .. : i v

DBJ> ..pplJ .•• ..:imLl..UOD .UhiD. 1:u.
relul1: ProS:	 var M : M :. M m {"[v] _ v ..d.

Wlr v ; v :. Mr'lrv]] ; end M
=C&S.KZ=-e-a=-*=Ea =-~ C••

DBJ> applJ .end-vlr-skip .i1:hlJl 1:u. .
relul1: ProS:	 va, M ; M :"' M ED {'Irv] __ v } v : .. Mr'lrv]] ..d lot
==cs.~c~=.~~-=•••~••=~••~8a8..._ ••

DBJ> ..pplJ . :"-coabiluL1:!on2 .i1:hi.D tu. .

ren.l1: ProS: war M ; M.v : .. 'M ED {'Irv] _ v}),(Mr'lrv]][M<-M m ('Irv] - ..}]):

..d lot
..~a:Ca2c••~=.-=c.....==...==*...: ..~=..c::~==

OBJ> applJ red a1: (2) of [2]

ren.l1: ProS: var M ; M.v :c 'M m {'Irv] _ ..}) •• ; end M

__

C.5 Data .Refioeme.nt 154

OBl> applJ • :--i4u.titJ .ithin tu. .

reBut hog: ver M ; M :- M $ i.C.J} Md M

:Z===_-=;a~=;sC:==••~.==za===a-a:5~

OBJ> llpplJ -.end-:.-1iDalithiu tara .
r ..ult Prog: var M i end M

08J> llpplJ .end-vsr-a.iai v1t.b.ilL tu.
re.u1t Prog: Ikip

C.5.2 Proof of Theorem 4.14

Here we 'ierify the inequation

Cintr~ducing-.ae:bine-ata.h!;] _
e:q "v(dtc ".P.A. p) = dec P.A • lI(......)(p)

it' diaj(......) and 4i8j(D.•• r....]) .

where ~ - ~ u {v n }, The proof uses two lemma.ll which are also verified below.

"0 1_1: i. i Vir I;; i

OBJ> stan i. ; vilr
:==z:=="",==a:=:==""":="'===-:==:::===="''''
08J> llpplJ ,"i-aimLlllUOD. within tar. '
resuJ.t Prog: ver • ; v := MC.Cv]J ; end M i 'ier
::=:s:=:s==_===_:z:;_:=".===:a=-==:..:=1I11
OBJ> applJ .ver~~e-se:opeat C2 .. 4] .

re.ut Prog: var • ; vilr ; := MC.CvJ] ; end M

OU> apply .var-::-init .i'tb e - MUll llt C2J .

re.uJ.t Prog: var. ; var ; :- M[nJ i • := M(9C.]] end M

:===:===:=======::==:=:==========:="'.=====
OBJ> appl}' .vsr-cbange-.cope ..t C 1 .. 2]

reBut Prog: ver i ver. ; :: MW i • ::0: MC9C'IIJJ tnd M

=:=========-====:=:===="'=====z:=:==:=z
OBJ> applJ ,var-uaoe: .ithin tuw .

reeult Prog: vsr i :: MW ; • :: MC9[.J] end M

=::==::==:=:=::0:=====-====::=:=::=====::=:=
083> appl)' • :=·ccm.biDation.2 itbin tu. .

reauJ.t Prog: va' ; :- MW .(MCt"CvJJ C.... <- MUll]) end M

====:=:==~::===:=:o:========:==:.:==:o:=.:==-",

08J> applJ red at (2) 01 [2] ,
re.alt Prog: va' t. ;...... :- MW.MC.C....]] end M

08J> llpp1J ~.1iBt-app1ic..tloD. .it.b.ilL te~

re.uJ.t Pr0l: ver ; :. MCD."C.J) ; end M
.C=...:"""'....==••==..:....===-====-."',._==:II
D8J> applJ - •...,-1_1 dth xl - dth.ill. tu-. ,

runIt Pr0l: ve' " •• ; :- M[(t" U { 1-+ D. }H......Jl Md M

:"'~:.===-II~••Z3.C==-.=--==.,.==-=:...===.
08J> appl, - .•-4e1 wi'tJa1D. tu. .

http:C=...:"""'....==��

•
• "'5

~

i

•

•
.

1

'::IE

I
..

.•
.. 1
::IE.!!.
, .. • ... ::IE
i

~.
~
:
:
I
E

3 ..
"

::IE
j"

...
:.

~

": ..
~
E

~
~

~1

•,: "'5
•,: ~

i

• .. ::IE

•,: 1

•,:
.. ,:

"'5
, v •

i~
d.. .
c

"

n
_

.,.>

--

0.6 Macb.iae InstructioDB 157

C.6 Machine Instructions

The machine instructioDB al'e defined 88 asaigDments that update the machine atate. TbereCore,
the instructione should also be regal'ded as elements of the eort Prog. However, to ma.ke it cleAt
that we are introducing a new concept, ft declare a subsort of Prog whoee elementfl &re the
machine instructions.

th CODE 1.

protecU.D8 uasa.UG-UlGD1Gl. [SD11ICI.-DP + lDII-lDD&-&lP + U)(J •

• on m.tr1lcU.tm .

eubaon m.'l;ruc'l;itm (Prog .

op load : balddr -> m.U1lC'l;iO!l

op store : baldd:r -> m.'l;ruc'l;iOJl. .

op bop-A balddr -> m.'l;ruCtiOD

op uop-A : -> lnatruc'l;loD .

01' jump ltlaAddr -> Iaa'l;ruc'l;iOll

op cjump I.oald4r -> Iaa'trDct1on

.ar •",

yar j

~ (A.P :'" M(nJ ,P + 1) .. Ie.d(n) •
eq (M.P :'" (M EEl {n _ A }).p + 1) • stote(n)

eq (A.P ;- A bop M(a].P + 1) • bop-A(n)

eq (A.P ;- uop A,P + 1) .. uop-A •

eq (P :E j) .. jump{j) .

eq (P :. P + 1 <I A t> jump(j» .. cjump(j) .

..<It.

The reason to order the equations jn this way is that they al'e nsed as rewrite rules during the
compilation process. Therefore, when the assignment fltatements (used as pattern to define the
instru.ctions) al'e generated, they al'e automatically replaced by the conesponding instru.ctions
names.

