AN ALGEBRAIC APPROACH TO COMPILER DESIGN

by

Augusto Sampaio

Technical Monograph PRG-110
ISBN 0 902928 87 2

October 1993

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building, Parks Road

Oxford 0X13QD

England

[ity Computing Laboratory
Oxtord Ui e Bulding

Parks Road
Oxford OX1 3Q0

Copyright €} 1993 Augusto Sampaio

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building, Parks Road

Oxford 0X1 3QD

England

An Algebraic Approach
to
Compiler Design

Augusto Sampaio

Wolfson College

A thests submitted for the degree of Doctor of Philosophy
at the University of Ozford, Trinity Term, 1993.

Abstract

The general purpose of this thesis is to investigate the design of compilers for procedu-
ral languages, based on the algebraic laws which these languages satisfy. The particular
strategy adopted is to reduce an arbitrary source program to a normal form which de-
scribes precisely the behaviour of the target machine. This 1s achieved by a series of
algebraic transformations which are proved from the mare basic laws. The corrertness of
the compiler follows from the correctness of each algebraic transformation.

The entire process is formalised within this single and uniform semantic framework of
a procedural language and its algebraic lawa. But in order to attain abstraction and
more reasoniag power, the language comprises specification features, in addition to the
programming constructs to be implemented. These features are used to define a very
general normal form, capable of representing an arbitrary target machine, The normal
form reduction theorems can therefore be reused in the design of compilers which produce
code for distinct target machines.

A central notion is an ordering relation on programs: p C q means that g is at least
as good as p in the sense that it will meet every purpose and satisfy every specification
satisfied by p. Furthermore, substitution of ¢ for p in any context is an improvernent
{or at least will leave things unchanged when ¢ is semantically equivalent to p). The
compiling task is thereby simplified to finding a normal form that iz not just the same but
is allowed to be better than the original source code. Moreover, at all intermediste stages,
we can postpone details of implementation until the most appropriate time to make the
relevant design decisiona.

Dijkstra’s guarded command language 18 used to illustrate how a complete compiler can
be developed, up to the level of instructions for a simple target machine. Each feature
of the language is dealt with by a separate reduction theorem, which is the basis for
the modularity of the approach. We then show how more elaborate features such as
procedures and recursion can be handled in complete isolation from the simpler features
of the language. Although the emphasis is on the compilation of control struclures, we
develop a scheme for compiling arrays. This is alse an incremental extension in the sense
that it has no effect on the features already implemented.

A large subset of the theory is mechanised as a collection of algebraic structures in Lhe
OBJ3 term rewriting system. The reduction theorems are used as rewrite rukes to carry
out compilation automatically. The overall structure of the original theory is preserved
in the mechanisation. This is largely due to the powerful module system of QBJ3.

To

Claudia & Gabi

Acknowledgements

I wish to thank my supervisor, Prof. C.A_R Hoare, whose constant teaching, advice and
encouragement have helped me greatly. He has originated the approach to compilation
which is investigated Lere, and has suggested the project which gave rise to this thesis.

No lesa help I had from He Jifeng, who made himself always available and acted as my
second supervisor. Most of what is reported in chapters 3 and 4 resulted from joint work
with Prof. Hoare and He Jifeng.

My examiners, Prof. Mathai Joseph and Bernard Sufrin, contributed comments, sugges-
tions and corrections which helped to improve this thesis.

The work of Ralph Back, Carroll Morgan, Joseph Morris and Greg Nelson has been a

great source of inspiration.

Many thanks are due to the Declarative group led by Prof. Joseph Goguen. Apart from
OB, I have learned tmuch about algebra and theorem proving attending their group
meetings. The discussions about OBJ with AdoHo Socorro, Paulo Borba, Grant Malcolm
and Andrew Stevens were extremely helpful for the mechanisation reported in Chapter 6.

1 thank David Naumaan, Adolfo Socorro and Ignacio Trejos for pointing out errors and
obscurities in an early draft of this thesis, and for many useful comments and sugges-
tions. I am also grateful to Ignacic Trejos for constantly drawing my attention o relevant
bibliography, and for the discussions about compilation and the refinement calculus.

My former Msc supervisor, Silvio Meira, introduced me to the field of formal methods. I
thank him for the permanent encouragement, and for influencing me to come to Oxford.

I am grateful to my colleagues in the Attic for making it a pleasant working environment,
especially to Nacho, for his company during the many pights we have spent there, and to
Gavin, for his patience to answer so many questions about English.

1 tbank people at the Wolfson College for their support and friendship, especially to the
senior tutors (John Penney and Roger Hall) for help with the Day Nursery fees,

Some very good friends have been responsible for the best moments I have had in England.
Special thanks go to Adolfo, Tetete, Nacho, George, Hermanv, Max and Robin & Chris.
I also thank Adolfo and Tetete for the baby-sitting.

I thank my parents, my parents-in-law, my brothers, my sisters-in-law and Daia for their
continued support which can never be fully acknowledged. The weekly letters from my
mother made me feel not so far away from home.

The most special thanks go to Claudia, for all the encouragement, dedication and pa-
tience, but above all for providing me with the most essential ingredient of life—bve! My
little daughter Gabi has constantly distracted me from work, demanding the attention of
another full-time job—but one of enjoyment and happiness, which brought lots of meaning
into my life.

Financial support for this work was provided by the Brazilian Research Council, CNPq.

Contents

1 Introduction 1
11 TheApproach L e 3
1.2 Overview of Subsequent Chapters 6

2 Background 8
2.1 Partial Ordersand Lattices 9
22 Thelatticeof Predicates, 10
2.3 The Lattice of Predicate Transformers,,. 10
2.4 Properties of Predicate Traneformers, .. 11
2.5 Some Refinement Calculi 12
26 DataBefinement 13
2.7 Refinement and Compilation 16

3 The Ressoning Language 18
3.1 Conceptsand Notation 19
3.2 Skip,Abort and Miracle L. 21
3.3 Sequential Composition.,00, 21
3.4 Demonic Nondeterminism, 00, 22
3.5 Angelic Nondeterminism 23
3.6 TheOrdering Relation 23
3.7 Unbounded Nondeterminismc.,.... 24
38 Recumsion« i i e e e e 26
39 ApproximateInversea L oL, 26
310 Simulation . . -o e e 28
3.11 Assumption and Asserfion L. 30

Contents i
312 Guarded Command e e e 31
3.13 Guarded Command Set 32
3.14 Conditional e e 33
J.15 Assignment L L L L. e e e e e e e e e 34
3.16 Generalised Assignment 35
30T Heration . . ., . . . o L e e e e e e e e e e 37
3.18 Static Declaration L. e e 40
3.19 Dynamic Declaration, ... 43
3.20 The Correctness of the Basic Laws 17

4 A Simple Compiler 49
41 TheNormal Form i, 50
4.2 Normal Form Reductiony 51
4.3 The Target Machine 56
44 Simplification of Expresgions, 57
4.5 Control Elimination. 0 i e e 60
4.6 DataRefinement i ittt e e 63
4.7 The Compilation Procesa, 68

5 Procedures, Recursion and Parameters 71
5.1 Notalion oot e e e e e e e e e e 71
52 Procedures e e e e e 73
53 Recursion @ . e e e e 75
5.4 Parameterised Programst c i 78
5.5 Parameterised Procedures e 82
5.6 Parameterised Recursion 83
57 Discussion e e e e e e 84

6 Machine Support 86
6.1 OBJ3. e e 87
6.2 Structure of the Specification 89
6.3 The Reasoning Language 91

6.3.1 Ao ExamplecofaProof 95

64 TheNormal Form. 97
6.5 A CompilerPrototype 98
6.5.1 Simplification of Expressions 98

6.5.2 Control Elimination. 99

653 DataRefipement coo... 100

6.5.4 Machine Inatructions 101

6.5.5 Compiling with Theorems 102

6.6 Fipnal Considerations « v s st v ittt i e e e e e 104
6.6.1 The Mechanisation i i 105

662 OBJ3and20Bl e 108

6.63 Othersystems i it it i 108

7 Conclusions 110
71 Related Work, 112
72 Puture Work e e 115
73 ACotical View @ e e e e e e e 121
Bibliography 122
A A Scheme for Campiling Arrays 128
B Proof of Lemma 5.1 131
C Specification and Verification in OBJ3 135
C.1 The Reasoning Language v v o v v i v 135
C.1.1 Proofof Theorem 3.176 139

C.1.2 Proof of Theorem 3.17.7 141

C.2 TheNormal Form 0 o i it it et e e et e e e e e ae s 144
C21 Proofof Lemmad4.2.0 uan. 145

C22 ProofofLemmadd. 146

C23 Proofof Theorem 4.4 iieruin 146

C.3 Simplification of Expressions 148
C31 Proof of Theorem 4.3 i 148

C3.2 Proofof Theorem 4.5 i o n. 149

Contents iv

C.4 Control Elimination 151
C.5 Data Refinement i e e e 152
C51 Proofof Theotem 4.10, 152
C52 Proofof Theorem4.14, ... 154

C.6 MachineInstructions @ . . it it ittt s e e 157

Chapter 1

Introduction

We must not lose sight of the ultimate goal, that of the
construction of programming language implementations
which are known to be cosrect by virtue of the quality of
the logical reasoning which has been devoted to them.
Of course, such an implementation will still need to be
comprehensively tested before delivery; but & will im-
mediately pass all the tests, and then continue to work
correctly for the benefit of progr. s forever after.

— C.AR. Hoare

The development of reliable systems has been one of the main challenges to computing
scientists. This is & consequence of the complexity of the development process, which
usually comprises many stages, from the original capture of requirements to thehardware
in which programs will run.

Many theories, methods, techniques and tools have been developed to deal with adjacent
stages. For example, the derivation of programs from specifications; the translation of pro-
grams into machine code (compilation); and sometimes even a gate-level implementation
of the hardware. Nevertheless, the development of a mathematical model to ensire global
consistency of the process in general has attracted very little attention; most certainly
because of the intricacy of the task.

Perhaps the mos! significant effort in this direction is the work of & group at Compu-
tational Logic, Inc. {7]. They suggest an operational approach to the development and
mechanical verification of systems. The approach has been applied to many syslem com-
ponents, including a compiler, a link-assembler and a gate-level design of a microprocessor.
The approach is independent of any particular component and deals with the furdamental
aspect of integration of components to form a verified stack.

This work inspired a European effort which gave rise to the Esprit project Provably
Correct System (ProCoS) [9, 12]. This project also aims to cover the entire development
process. The emphasis iz on a constructive approach to correctness, using provably correct
transformations between all the phases. 1t differs mostly from the previously cited work in

1

I Introduction 2

that an abstract (rather than operational) universal model is being developed to ensure
consistency across all the interfaces between the development phases. Furthermore, a
more ambitious scope i8 attempted, including explicit parallelism and time constraints
throughout the development. The reusability of designs and proofs iz also an objective of
the project.

Our workis in the context of ProCoS. We are concerned with the compilation phase: the
translation of programs to machine code. But the emphasis is on an algebraic approach
to compilation, rather than in the translation between a particular pair of languages.
Although neither the source language nor the target machine we use as examples coincide
with the ones of the ProCoS project, it is hoped that the overall strategy suggested here
will be useful to design the compiler required in the project, and many others.

A large number of approaches have been suggested to tackle the problem of compiler
correctness. They differ both in the semantic style adopted to define source and target
languages (operational, denotational, algebraic, axiomatic, attribute grammars, ...} and
in the meaning of correctness associated with the translation process. The first attempt
was undertaken by McCarthy and Painter [52]; they used operational semantics to prove
the correctness of a compiler for a simple expression language. The algebraic approach
originates with the work of Burstall and Landin {14). Both works have been of great
impact and many researchers have built upon them. A brief summary of some of the
main approaches to compiler correctness is included in the final chapter.

Here we further develop the approach introduced in [45], whete compilation is identified
with the reduction of programs (written in a procedural language) to a normal form
which describes precisely the behaviour of the target executing mechanism. The reduction
process entails a series of semantic-preserving transformations; theee are proved from more
basic laws (axioms) which give an algebraic semantics to the language.

A central notion is an ordering relation on programs: p T ¢ means that ¢ i3 at least
as good as p in the sense that it will meet every purpose and satisfy every specification
satisfied by p. Furthermore, substitution of ¢ for p in any context is an improvement
(or at Jeast will leave things unchanged when ¢ is semantically equivalent to p). The
compiling task is thereby simplified to finding a normal form that is not just the same but
is allowed to be better than the original source code. Moreover, at all intermediate stages,
we can postpone details of implementation until the most appropriate time to make the
relevant design decisions.

Another essential feature of the approach is the embedding of the programming language
into a more general space of specifications. This includes constructions to model features
such as assumptions and assertions, and even the less familiar concept of a miraele, stand-
ing for an unsatisfiable specification. The specification space forms a complete distributive
lattice! which allowa us to define approximate inverses (Galois connections) for program-
ming operators. The purpose of all of this is to achieve a very abstract normal form
definition (which can model ap arbitrary executing mechanism) and simple and elegant
proofs. We hope to prove this claim.

¢ A brief overview of the lattice theory relevant to us is given in the next chapter.

All the calculations necessary to assert the correctness of the compilation process are car-
ried out within this single framework of a specification language whose semantics is given
by algebraic laws. No additional mathematical theory of source or target language is de-
veloped or used in the process. The relatively simple reasoning framework, ita abstraction
and modularity are the main features of the approach.

We select a small programming language (including iteration) to illustrate how & complete
compiler? can he developed, up to the level of instructions for an abstract machine. Each
feature of the language is dealt with by a separate reduction theorem, which is tbe basis
for the modularity of the approach. We then show how more elaborate features such as
procedures and recursion can be handled, in complete isclation from the simpler features
of the language.

A large subset of the theory is mechanised as a collection of algebraic structures in the
0BJ3 [31] term rewriting system. The reduction theorems are used as rewrite rules
to carry out compilation automatically. The overall structure of the onginal theory is
preserved in the mechanisation. This is largely due to the powerful module system of
OBJ3.

1.1 The Approach

In this section we give an overview of our approach to compilation based on a simple
example, We also identify the scope of the thesis in terms of the source language that we
deal with, the additional specification features and the target machine used to illustrate
an application of the approach.

The source programuning language contains the following constructions:

skip do nothing

r:=¢e assignment

P g sequential composition

pfg nondeterminism (demonic)

pdbpg conditional: if & then p else g

bxp itezation: while & do p

deczep (static) declaration of variable z for use in program p
proc X 2 pe g procedure X with hody p and scope ¢

pXep recursive program X with body p

We avoid defining a syntax for expressions; we use vop and bop to stand for arbitrary
unary and binary operators, respectively. Initially, we deal with a simplified version of the

IWe address only the code generation phase of a compiler. Parsing and semantic analysis are not
dealt with. Optimisation is hriefly considered as s Lopic for future research.

1.1 The Approach 4

language, not including procedures or recursion. These are treated later, together with
the issue of parameterisation.

The programming language is embedded in a specification space including:

T miracle

L abort

pug nondeterminism (angelic)

b assertion: if & then skip else L

o assumption: if § then skip else T

b—p guarded command: if 4 then p else T

r:eh generalised assignment: assign a value to z which makes b true;

if not possible, 2 :€ b behaves like T
varz declaration of variable r with undetermined (dynamic} scope
end z end the previous (dynamic) scope of z introduced by a varz

Furthermore, while the source language allows only single assignments, the specification
language allows multiple assignments of the form

Tiyeeny T = €1y eny By

Although some of the above constructs are not strictly necessary, as they can be defined
in terms of others, each one represents a helpful concept both for specification and for
reasoning.

There may seem to be unnecessary redundancy concerning the notation for variable dec-
larations. dec is the usual construct available in most programming languages for intro-
ducing local variables with a lexical (or static) scope semantics. For reasoning purpeses
which will be explained later, it is useful to have independent constructs to introduce a
variable and to end its scope. Operationally, one can think of var z as pushing the current
value of z into an implicit stack, and assigning to r an arbitrary value; end r pops the
atack and assigns the popped value to z. If the stack was empty, this value is arbitrary.

The semantics of the specification (reasoning) language is given by algebraic laws in the
form of equations and inequations. The latter uses the refinement relation discussed in
the previous section. As an example, a few algebraic laws are given below. They describe
the fact that T is a lattice ordering. For all programs p, ¢ and r we have:

prC T {miracle is the top of the lattice)
1L Cyp (abort is the bottom)
(rCpArCyg =rC(pnyg) (M is the greatest Jower bound)

(PTryA(glr) = (pUg)Cr (U is the least upper bound)

We define a simple target machine to illustrate the design of a compiler. It consists of
four components:

P a sequential register (program counter)
A a general purpose register

M a store for variables (RAM)

m a store for instructions (ROM)

The instructions can be designed in the usual way, as assignments tbat update the machine
state; for example,

load(n) ¥ A,P:=Mn],P+1,
store(n) ¢ M,P:= (M@ {n— A}),P+1

where we use map overriding (@) to update M at position rn with the value of A. The
more conventional notation is M[r] := A,

The normal form describing the behaviour of this machine (executing a stored program)
is an iterated execution of instructions taken from the store m at location P:

decP,AeP =5 (s <P < f)*mP}; (P=f)

where s is the intended start address and f the finish address of the code to be executed.
The obligation to start at the right instruction is expressed by the initial assignment
P := s, and the obligation to terminate at the right place (and not by a wild jump) is
expressed by the final assertion (P = f),.

The design of a compiler is nothing but a constructive proof that every program, however
deeply structured, can be improved by some program in this norma] form. The process
is split into three main phases: concerns of control elimination are separated from those
of expression decomposition and data representation. In order to illustrate these phases,
consider the compilation of an assignment of the form

zi=y

where hoth z and y are variables. The simplification of expressions must produce assign-
ments which will eventually give rise to one of the patterns used to define the machine
instructions. Recalling that A represents the general purpose register of our simple ma-
chine, this assignment is transformed into

decAe A=y, z:=A

where the first assignment will become a load and the second one a store instruction. But
this program still operates on abstract global variables with symbolic names, whereas the
target program operates only on the concrete store M. We therefore define a data refine-
ment ¥ which maps each program variable = onto the corresponding machine location,
so the value of z is held as M[¥z]). Here ¥ is the compiler’s symbol table, an injection
which maps each variable onto the distinct location allocated to hold its value. Therefore

1.2 Overview of Subsequent Chapters 6

we need a data refinement phase to justify the substitution of M[¥z] for z throughout
the program. When this data refinement is performed on our simple example program il
becomes

decAs A= M[¥y]; M:=Mg {¥z — A}

The remaining task of the compiler is that of control refinement, reducing the nested
control structure of the source program to a single flat iteration, like that of the target
program. This is done by introducing a control state variable to schedule the selection and
sequencing of actions. fn the case of our simple target machine, a single program pointer
P indicates the location in memory of the pext instruction. The above then becomes

decP, A e P:= 3
(P=135)— AP:= M[¥y],P +1)
(35"“”)‘(1: (P=s+1)m MP:=(M&{¥zr+ A}),P + 1)
(P=s+2j,

where we use O as syntactic sugar for M when the choice is deterministic. The initial
assignment P := s ensures that the assignment with guard (P = 8) will be executed first;
as this increments P, the assignment with guard (P = s + 1) is executed next. This also
increments P, falsifying the condition of the iteration and satisfying the final assertion.

Note that the guarded assignments correspond precisely to the patterns used to define
the load and store instructions, respectively. The above expresses the fact that these
instructions must be loaded into the memory m at poeitions s and s + 1, completing the
overall process.

The reduction theorems which justify the entire process are all provably correct from
the basic algebraic laws of the language. Furthermore, some of the proofs are verified
using OBJ3 and the reduction theorems are used as rewrite rules to do the compilation
automatically.

1.2 Overview of Subsequent Chapters

Chapter 2 describes in some detail the view of specifications as monotonic predicate
transformers, in the sense advocated by Dijkstra. We review the mathematical concepts of
pariial orders and lattices, and show that the language introduced above forms a cornplete
distributive lattice of monotoric predicate transformers. We give examples of refinement
calculi based on these ideas and address Lthe problem of data refinement. Finally, we
link our approach to compilation to the more general task of deriving programs from
specifications.

In Chapter 3 we give meaning to the reasoning language in terms of equations and in-
equations which we call algebraic laws. The final section of this chapter discusses how the
laws can be proved by linking the algehraic semantics to a given mathematical model; for
the purpose of illustration we use weakest preconditions.

A complete compiler for the simplified source langnage (that is, not including procedures
or recursion) is given in Chapter 4. The first two sections descrihe tbe normal form as
a model of an arhitrary executing mechanism. The reduction thecrems associated with
this form are largely independent of a particular way of representing control state. We
show that the use of a program pointer is one possible instantiation., The design of the
compiler is split into three phases, as illustrated in Section 1.1.

In Chapter 5 we deal with procedures and recursion, and address the issue of parameter-
isation. We sbow how each of these can be eliminated through reduction to normal form;
but we leave open the choice of a target machine to implement them. Each feature is
treated by a separate theorem, in complete independence from the constructions of the
simpler language. This illustrates the modularity of the approach.

Chapter 6 is concerned with the mechanisation of the approach. The purpose is to show
how this can be achieved using the OBJ3 term rewriting system. There are three main
activities involved: The formalisation (specification) of concepts such as the reasoning
language, its algebraic laws, the normal form, the target machine, and so on, as acollection
of theories in OBJ3; the verification of the related theorems; and the use of the reduction
theorems as a compiler prototype. The final section of this chapter includes a critical
view of the mechanisation, and considers how other systems can be used to perform the
same (or a similar) task.

In the final chapter we summarise our work and discuss related and future work. The
very final section contains a brief analysis of the overall work.

Apart from the mam chapters, there are three appendices. Although the emphasis of
our work is on the compilation of control structures, Appendix A describes a scheme for
compiling arrays. Appendix B contains the proof of a lenma used to prove the reduc-
tion theorem for recursion. Appendix C contains more details ahout the mechanisation,
including complete proofs of some of the main theorems.

Chapter 2

Background

The beauty of lattice theory derives in part from the ex-
treme simplicity of its basic concepts: (partial) ordering,
least upper and greatest lower bounds.

— G. Birkhoff

The purpose of this chapter is to briefly describe a theoretical basis for the kind of re-
finement algebra we will be using. Based on the work of Morris [59] and Back and von
Wright [5] we show that a specification language {as introduced in the previous chap-
ter) forms & complete distributive lattice where, following Dijkstra [21], specifications are
viewed as monotonic predicate transformers. We give examples of refinement calculi based
on these ideas and address the problem of data refinement. Finally, we link our approach
to compilation to the more general task of deriving programs from epecifications.

The first section reviews the concepts of partial orders and complete distributive lattices,
and a simple boolean lattice is presented as an example. The next section describes
the predicate lattice as functions from (program) states to bocleans; this is constructed
by poiniwise extension from the boolean lattice. Further pointwise extension is used to
construct the lattice of predicate transformers described in Section 2.3; these are functions
from predicates to predicates. In Section 2.4 we review some properties of predicate
transformers (known as healthiness conditions) and explaia that some of them are dropped
as a consequence of adding non-implementable features to the language. Some refinement
calculi based on the predicate transformer model are considered in Section 2.5, and some
apptoaches to data refinement in Section 2.6. The final section relates all these to our
work.

2.1 Partial Orders and Lattices

A partial order is a pair (S,C) where S is a set and C is a binary relation (the pariial
ordering) on § satisfying the following axioms, for all z,y,z € §:

zLz reflexivity
(xCyn(yEz)= (2L 2) transitivity
(zCuwa(yCaz)=>(z=y) antisyminetry

(8,0) is called a total order if, in addition to the above, each pair of elements in § are
comparable: (z C) V (y C z). Following usual practice we will ahbreviate (§,C) to §;
the context will make it clear if we are regarding S as a set or as a partial order,

Given a subset T of S, we say that z € S is an upper bound for Tif yC zforall y € T';
z is the least upper bound of T if it is both an upper hound for T and whenever y is
another upper bound for T then # C y. Similarly, # is a lower bound for T if z C y for all
y € T; x is the greatest lower bound of T if it is hoth a lower bound for T and whenever
y is another lower bound for T then ¥ C z. An element L is a least element or bottom of
Sif LCzforallz €5, T is a greatest element or topof Sif t C T forall ze §.

Given sets § and T with T partially ordered hy Cr, the set § — T of functions from §
to T is partially ordered by C defined by

fCe ¥ f(z)Crolz) forallze$
Additionally, if § is partially ordered by Cg, then f : § — T is said to be monotonic if
tCsy = f(z)Crfly) forallz,y€§

We denate by [§ — T] the set of monotonic functions from § to T. If § is discreic (that
is, z Cs y holds if and only if z = y) then § — T and [S — T are identical.

A compleie lattice is a partially ordered set containing arhitrary greatest lower bounds
(meets) and least upper bounds (joins). A consequence is that every complete lattice has
a hottomn and a top element. Two additional well-known properties of complete lattices
are given below; more details about lattice theory can be found, for example, in [8].

s Any finite totally ordered set is a complete lattice.

o If 5 is a partially ordered set and T is a complete lattice, then [§ — T 1is a complete
lattice.

A lattice is said to be distmibutive if the least upper bound operator distributes through
the greatest lower bound operator, and vice versa,

A very simple example of a complete distributive lattice is the boolean set {true,false}
when ordered by the implication relation. The least upper bound V and the greatest Jower
bound A have their usual interpretations as disjunction and conjunction, respectively. The
bottom element iz false and the top element is true. This is actually a complete boolean
lattice, since it has a complement (negation); hut we will not use this property. In the
next section we will refer to this lattice as Bool.

2.2 The Lattice of Predicales 10

2.2 The Lattice of Predicates

Programs usually operate on a state space formed from a set of variables. We use State to
stand for the set of all possible states partially ordered by the equality relation; therefore,
it is a disaete partial order. In practice we need a way to describe particular sets of
states; for example, to specify the set of initial states of a program, as well as the set of
its fina] states. This can be described by boolean-valued functions {or predicates) on the
state space.

Ag State isa partial order and Bool is a complete lattice, [State ~ Bool] is also a complete
lattice. Furthermore, as State is discrete, [State — Bool] and State — Bool are identical.
We will refer to it as the Predicate lattice. The least upper bound a V & is the disjnaction
of the predicates a and b, and the greatest lower bound @ A b is their conjunction. The
bottom element false describes the empty set of states and the top element true describes
the set of all possible states. These operations are defined by

(avd) ¥ xrea(z)Vb(z)
(aAd) Z rzea(z)Ad(z)

true] Az e true

false “ aze false

where the bounded variable z ranges over State. The lattice ordering is the implication
on predicates, which is defined by pointwise extension in the usual way:

a=zb ¥ Vzea(z)= b(z)

2.3 The Lattice of Predicate Transformers

The lattice presented next provides a theoretical basis for Dijkstra’s view of programs as
predicate transformers (functions from predicates to predicates) [21]. The usual notation

‘"p(pl 0) =c

means that if program p is executed in an initial state satislying its weakes! precondition
¢, it will eventually terminate in a state satisfying the postcondition a. Furthermore, as
the name suggests, the weakest precondition ¢ describes the largest possible set of initial
states which ensures that execution of p will terminate in a state satisfying a.

The predicate transformer lattice (PredTran) is the set of all menotonic functions from
one predicate lattice to another: {Predicate — Predicate]. The result of applying program
(predicate transformer) p to predicate ¢, denoted p(a), is equivalent to Dijkstra’s wp(p, a).
The ordering on predicate transformers is defined by pointwise extension from the ardering
on predicates

pCq ¥ Vaap(a)= gla)

2.4 Properties of Predicate Transformers 11

where the bounded variable @ ranges over the set of predicates.

Clearly, PredTran is a complete lattice and, therefore, it contains arbitrary least upper
bounds and greatest lower bounds: MM is interpreted as demonic nondeterminism and U
as angelic nondeterminiam. The bottom element is ebort (denoted by L), the predi-
cate transformer that does not estahlish any postcondition. The top element is miracle
(denoted by T); it establishes every postcondition. These are defined in the cbvious way:

(pug) ¥ Xaep(a)Vgla)
(Prg) € raepla)hgla)
T “ Ao etrue
1 ' X afalse
The usual program constructs can be defined as predicate transformers. As an example
we define skip (the identity predicate transformer) and sequential composition:
def

def

daea

Aa e p(g(a))

skip
b q

2.4 Properties of Predicate Transformers

Dijkstra [21] has suggested five healthiness conditions that every construct of a pro-
gramming language must satisfy. They are defined below (we assume implicit universal
quantification over a and b standing for predicates, and over p standing for programs)

1. p(false) = false law of the excluded miracle
2.If a = b then p(a) = p(d) monotonicity

3. pla)Ap(d) = plard) conjunctivity

4. p(a)vp(b) = plaVh) disjunctivity
5.p(3¢:i>20:q) = 3i:i2>20:pla) continuity

for all sequences of predicates ag, a1,...
such that a; = g, foralli >0

The fourtb property is satisfied only by deterministic programs; for nondeterministic pro-
grams, the equality has to be replaced by an implication. The last property ia equivalent
to requiring that nondeterminism be bounded [231.

The complete lattice PredTran includes predicate transformers useful for specification pur-
poses; they are not implementable in general. Of the above properties, only monotonicity
is satisfied by all the predicate transformers in PredTran: T trivially breaks the law of
the excluded miracle; the fact that greatest Jower bounds over arbitrary sets are allowed
implies that the assumption of bounded nondeterminiam (and therefore continuity) is not
satisfied; and angelic nondeterminism violates the property of conjunctivity.

Of course, the healthiness conditions are still of fundamental importance; they are the
criteria for distinguishing the implementable from the non-implementable in s general
space of specifications.

2.5 Some Refinement Caleuli 12

2.5 Some Refinement Calculi

Back [3, 5), Morris [59] and Morgan [55, 56] have developed refinement calcuii based on
weakest preconditions. These calouli have the common purpose of formalising the well
established stepwise refinement methad for the systematic construction of programs from
high-level specifications |76, 20].

As originally proposed, the stepwise refinement method is partly informal. Although spec-
ifications and programs are formal ohjects, the intermediate terms of a given derivation do
not have a formal status. The essence of all the refinement calculi cited above is to extend
a given procedural language (in particular, Dijkstra’s guarded command language) with
additional features for specification. For example, let [a, c] be a specification construct
used to describe a program that when executed in a state satisfying @, terminates in a
state satislying ¢. This can he viewed a9 a predicate transformer in just the same way as
the other operators of the language. Its definition is given by

{a,¢ 4 Abeanr(e=b)

The extended language is thus a specification language and programs appear as a subclass
of specifications. Programming is then viewed as constructing a seqnence of specifications;
the initial specification 15 in a high-level of abstraction (not usually implementable} and
the final specification is an executahle program. The derivation process is to gradually
transform specifications into programs. The intermediate steps of the derivation will
normally contain a mixture of specification and program constructs; but these are for-
mal objects 1o, since specifications and programs are embedded in the same semantic
framework.

Derivation requires tbe notion of a refinement relation between specifications. All the
cited caleuli use the same definition of the refinement relation which is precisely the
ordering on the lattice of predicate transformers described above. Two mathematical
properties of this ordering are of fundamenta) importance to model stepwise refinement.
Monotonicity of the language operators with respect to this ordering is necessary to allow
a given specification to be replaced by a refinement of it in an arbitrary context; this
can obly refine the overall context. The other required property is transitivity: as the
derivation process will normally entail a large number of steps, it is necessary to ensure
that the final product (that is, the program) satisfies the original specification.

Rules for introducing programming constructs from given specifications are the additional
tools required in the process. For example, the following rules illustrate the introduction
of skip and sequential composition:

[a,c] C skip fa=¢

{a,e] C [e,8]; [b,¢]
There are also rules for manipulating specifications; for example, weakening the pre-
condition of a given specification or strengthening its postcondition (or botb) lead to a
specification which refines the original one:

[a,0] C [aae1] il ;A= a

Morris [59) was the first to give a lattice theoretic basis for the refinement calculus.
He extended Dijkstra’s guarded command language with predicate pairs (as illustrated
above) and general recursion. Although he observed that the framework contains arbitrary
least upper bounds and greatest lower bounds, these have not been incorporaled into his
specification language.

Back and von Wright [5] further explored the lattice approach and suggested a more
powerful (infinitary) language which is complete in the sense that it can express every
monotonic predicate transformer. The only constructors in their language are the lattice
opertators M and U, together with functional composition {modelling sequential composi-
tion). From a very simple command language including these constructors, they define
ordinary program comstructs such as assignment, conditional and recursion. Inverses of
programs are defined and used to formalise the notion of data refinement. This is further
discussed in the next section.

Morgan's calculus [56] is perhaps the most appealing to praclising programmers. His
language includes procedures (possibly recursive and parametensed) and even modules.
He defines a large number of refinement laws and illustrates their application in a wide
range of derivations. The specification statement

z:{a, ¢

is another distinctive feature of his work. Although it is similar to the notilion used
above, it includes the notion of a frame: z is a list of variables whose values mey change.
The frame reduces the number of possible refinements from a given specification, and is a
way of making the designer's intention clearer. Furthermore, the above construct is very
general and can be specialised for many useful purposes. For example, our generalised
assignment command can be regarded as a spedial case of it:

r:€a = z: [true a]

where the purpose is to establish a witbout changing any variables other than z. Apother
example is an assumption of a, meaning that & must be established without changing any
variable;

al = :|[true, a]

2.6 Data Refinement

In the previous section we discussed how an abstract specification is transformed into a
program by progressively introducing control structures; this is known as elgonthmic or
control refinement. But this is only part of the process to obtain an implementation. Spec-
ifications are usually stated in terms of mathematical data types like sets and relations,
and these are not normally available in procedural programming languages. Therefore
the complementary step to control refinement is the transformation of the ahstract types
into concrete types such as arrays and records which can be efficiently implernented. This
task is known as data refinement.

2.6 Data Refinement 14

The idea of data refinement was firat introduced by Hoare [41]. The basis of his approach
is the use of an gbstraction function to determine the abstract state that a given concrete
state represents; iv addition, the set of concrete states may be constrained by an invariant
relation. Since then many approaches have been suggested which build on these ideas.
The more recent approaches use a single relation to capture both the abstraction function
and the invariant, thus relaxing the assumption that the abstract state is functionally
dependent on the concrete state.

In connection with the refinement calculi considered in the previous section, two very
similar approaches have been suggested by Morris [61) and Morgan and Gardiner [57]. In
both cases, data refinement is characterised as a special case of algorithmic refinement
between bocks. A block of the form

decz: Trep

is used to represent the abatract program p operating on the variables z with type' Tz.
Similarly,

decs’: Tz' o p

represents the concrete program p’ which operates on the variables ' with type Tz'. The
data refinement is captured by the inequation

(decz: Trep) C (decz’: Tz o p')

The general aim is to construct the concrete block by replacing the abstract local variables
with the concrete ones, in such a way that the overall effect of the abstract block is
preserved. In particular, p’ is constructed with the same structure as p in the sense that
each command in g’ is the translation of a corresponding command in g, according to a
uniform rule.

An essential ingredient to this strategy is an abstract invariant [which links the abstract
variables z to the concrete variahles z’. This is called the coupling invariani. A new
relation between programs js defined to express that program p’ (operating on variables
z'} is adata refinement of program p (operating on variables z) under coupling invariant J.
This is written p <;, .~ p’ and is formally defined by (considering programs as predicate
transformers)

p<iawp ¥ (3z:IAp(a)) = p(3z:IAa) for all a not containing z’

Broadly, the antecedent requires that the initial values of the concrete variables couple
to some set of abstract values for which the abstract program will succeed in establishing
postcondition a; the consequent requires that the concrete program yields new concrete
values that also couple to an acceptahle abstract state.

"Recall that our language is untyped; types are considered here only for the purpose of the present
discussion.

This definition is chosen for two main reasons. The first is that it guarantees the charac-
terisation of data refinement given above, that is

If (p €1:0 p’) then (decz: Tr @ p) T (decz’: T2 a p')

The second reason is that it distributes through the progtam constructors, thus allow-
ing data refinement to be carried out piecewise. For example, the distribution through
sequential composition is given by

If (p €100 p') and (g 0o @) then (3 @) Sre e (P @)

Back and von Wright [5] suggest an approach which avoids the need to define a data
refinement relation. They use the algorithmic refinement relation not only to characterise
data refinement, but also to carry out the calculations. The basic idea is to introduce
an encoding program, say i, which computes abstract states from concrete states and a
decoding progrem program, say ¢, which computes concrete states from abstract states.
Then, for a given abstract program p, the task is to find a concrete program p'such that

g ey
With the aid of specification features, it is possible to give very high-level definitions for ¥

and ¢. Using the same convention adopted above that z stands for the abstract variables,
z' for the concrete variables and I for the coupling invariant, ¥ is defined by

¥ 4 varz; z :Jé I endz’
It firet introduces the abstract variables z and assigns them values such that the invariant
ie satisfied, and then removes the concrete variables from the data space. The use of L
as an annotation in the above generalised assignment command means that it shorts if [
cannot be established. Similarly we have the definition of ¢

¢ o varz'; ¢ :E I;endz
which introduces the concrete variahles z' and assigns them values such that tbe invariant
in satisfied, and then removes the abatract variables from the data space. But in this case
the generalised assignment command results in a miracle if cannot be established. (The
above two kinds of generalised assignment commands were introduced only for the purpose
of the present discussion. Recall from the previous chapter that our language includes
only the latter kind, and henceforth we will use the previous notation z :€ &)

Note that having separate commands to introduce and end the scope of a variable is an
essential feature to define tbe encoding and decoding programs: the first introduces r and
ends the scope of z'; the second introduces z’ and ends the scope of z.

In this approacb, data refinement can aleo he performed piecewise, by proving distribu-
tivity properties such as
¥ (P @) 4T (v; p; 8) (Vs @ ¢)

which illustrates that both algorithmic and data refinement can be carried out within the
framewark of ope common refinement relation.

2.7 Refinement and Compilation 16

2.7 Refinement and Compilation

As explained in the previous chapter, we regard compilation as a task of program re-
finernent. In this sense, we can establish some connections between our view of compiler
design and the more general task of deriving programs from specifications (henceforth we
will refer to the latter simply as “derivation”). In both cases, a programming ianguage
s extended with specification features, so that a uniform framework is built and the in-
terface between programs and specifications (when expressed by distinct formalisms) is
avoided. In particular, our laczguage is roughly the same as the one defined by Back and
von Wright [5], except that we deal with procedures and parameterisation. The first three
sections of this chapter briefly explained how the language can be embedded in a complete
distributive lattice of predicate transformers.

In a derivation, the idea is to start with an arbitrary specification and end with a program
formed solely from constructs which can be executed by computer. In our case, the initial
object is an arbitrary source program and the final product is its normal form. But the
tools used to achieve the goals in both cases are of identical nature: transformations
leading to refinement in the sense already discussed.

Derivaticn entails two main tasks: conirol and data refinement, We also split the design of
the compiler into these two main phases. However, while in a derivation control refinement
is concerned with progressively introducing control structure in the specification, we do
the reverse process; we reduce the nested control structure of a source program to the
single flat iteration of the normal form program.

Regarding data refinement, the general idea is the same both in a derivation procesa and
in designing a compiler: to replace abstract data types with concrete representations.
In particular, we use the idea of encoding and decoding programs. As discussed in the
previous section, this avoids the need to define a separate relation to carry out data
refinement. In our case, ap encoding program retrieves the abatract space of the source
program from the concrete state representing the store of the machine. Conversely, a
decoding program maps the ahstract space to the concrete machine state. In the next
chapter, the pair formed by an encoding and the respective decoding program is formally
defined a8 a simulaiton. It satisfies the distributivity properties illustrated above, allowing
data refinement to be carried out piecewise.

But, as should be expected, there are some differences between designing 2 compiler in
this way and the more general task of deriving programs from specifications. For example,
we are not interested in capturing requirements in general, and therelore our language
includes no construct to serve this purpose. The closest to a specification statement we
have in our language is the generalised assignment command. Qur use of it is to abstract
[rom the way control state is encoded in a particular target machine.

Another difference is that we are mostly concerned with program transformation. We
need a wide range of laws relating the operators of the language. In particular, we follow
the approach suggesied by Hoare and others [47] where the semantics of a language is
characterised hy a set of equations and inequationa (laws) relating the language operators.

The same approach bas been used to define an algebraic semantics for occam [68]. In our
case, the set of laws must be complete in that it should allow us to reduce as arbitrary

program to normal formn. The framework we use is better characterised as a refinement
algebre (rather than as a calculus).

Chapter 3

The Reasoning Language

if you are faced by a difficulty or a controversy in science,
an ounce of algebra is worth a ton of verbal argument,

— J|.B.S. Haldane

Here we give meaning to our specification (reasoning) language in terms of equations
and inequetions (laws) relating the operators of the language. Following Hoare and oth-
ers [47, 68, we present the laws as self-evident axioms, normally preceded by an informal
{operational) justification. Moreover, it is not our aim to describe a complete set of laws
in the logical sense; although they are complete in that they will allow us to reduce an
arbitrary source program to a normal form.

It is possible to select a small subset of our language and define the additional operators
in terms of the more basic ones. This is shown in [45], where the only constructors are
sequential composition, U and M. The additional operators are defined in terms of these
and the primitive comrnands. The laws of derived operators can then be proved from
their definition and the laws of the basic operators.

This is not our concern here; our emphasis is on the algebraic laws which will be used in
the process of designing a compiler. However, we do illustrate how a few operators can
be defined from others, In particular, iteration is defined as a special case of recursion
and all the laws about iteration are proved. They deserve such special attention because
of their central role in the proofs of the normal form reduction theorems.

We will not normally distinguish between programs and specifications. We will refer to
both of them as “programs”. Another remark is that programs have both a syntactic
and a semantic existence, Qn one hand we perform syntactic operations on tbem, such
as substitution. On the other hand, the algebraic laws relating language operators ex-
press semantic properties. Strictly, we should distinguish between these two natures of
programs. But it is not convenient to do so and it wil] be clear from the context wbich
view we are taking.

The first section gives notational conventions and introduces the concepts of substitution
and free and bound identifiers. Each of the subsequent sections describea the laws of

18

one or more language operators. The concepts of a refinement relation, approximate
inverse (Galois connection) and simulation will be introduced when the need arises. The
final section describes alternative ways in which the laws of the basic operators could
be verified. As an example, we take the view of programs as predicate transformers (as
discussed in the previous chapter) and illustrate how the laws can be proved.

3.1 Concepts and Notation

Name conventions

It is helpful to define some conventions as regards the names used to denote program
terms:

X,Y,Z program identifiers
pi¢,r programs

z,y,z lists of variables
ab, e boolean expressions
e,f,g lists of expressions

We also use subscripts in addition to the above conventions. For example, by, by, ...
stand for boolean expressions (also referred to as conditions). We use comma for list
concatenation: z,y stands for the concatenation of lists r and y. Further conventions are
explained when necessary.

Precedence rules

In order to reduce the number of brackets around program terms, we define the following
precedence rules. Operators with the same precedence appear on the same line. As usual,
we will assume that brackets bind tighter than any operator.

uop unary operators binds tightest
bop binary operators
s list concatenation

:€ and := (generalised) assignment

— guarded command

* iteration

; sequential composition

U and N nondeterminism (angelic and demonic)

4P conditional

A recursion

dec block with local declarations binds loosest

Pracedures are dealt with in Chapter 5 and are assumed to have the same precedence as
#. We will normally add some brackets (even if unnecessary) to aid readability.

3.1 Concepts and Notation 20

Free and bound identifiers

An occurrence of a variable z in a program p is free if it is not in the scope of any static
declaration of z in p, and beund otherwise. For example, 1 is bound in decz o 7 := y,
but free in 7 := y. Notice that tbe commands for dynamic declaration ate not binders
for variables. For example, z ia free in varz as well as in end 2. A list of variabies is free
in p if each variable in the list is free in p.

In the case of program identifiers, we say that an occurrence of X is free in a program p
if it is not in the scope of any recursive program {with name X) defined in p, and bound
otherwise.

Substitution
For variables z and y,

plz — y

denotes the result of substituting y for every free occurrence of z in p. It is possible for
z to be in the scope of {static) declarations of variables with the same name as y. In
this case, a systematic renaming of local variables of p occurs in order to avoid variable
capture. This is usually referred to as safe substitution.

If z and y are (equal-length) lists of variables, the substitution ig positional, In this case,
no variable may appear more than once in the list z.

Similarly,
flz— €]

denotes the substitution of the list of expressions e for the (equal-length) list of variables
z 10 the list of expressions f.

We also allow the substitution of programs for program identifiers:

plX — g

This aveids capture of any free identifiers of ¢ by renaming local declarations in p, as
discussed above. For conciseness, we will sometimes avoid writing substitutions of the
last kind by making (free) occurrences of X explicit, as in F(X). Then, the substitution
of ¢ for X in this case i8 written F{q). In any case we assume that no capture of free
identifiers occur.

Laws, definitions, lemmas, theorems and proofs

Each of the laws described in the following sections is given a oumber and a name sugges-
tive of its use. The number is prefixed with the corresponding section number, in order

3.2 Skip, Abort and Miracle 21

to ease further references. The name normally mentions the operators related by the law.
For example,

(; —skip unit)

is the name associated with the law which says that skip is the unit of sequential compo-
sition. Every reference to a law comprises both its name and its number.

Some of the laws could be alternatively described as lemmas or theorems, as they are
proved from more basic ones. However, we prefer to regard all the equations (and in-
equations) relating the language operators as laws. Each of the definitions, lemmas and
theorems is also given a number and a name for further references.

Our proofs are confined to (in)equational reasoning. We use the terms LHS and RHS
to refer to the left- and the right-hand sides of an (iz)equation. The prool strategy is
to start with one of the sides and try to reach the other side by a series of algebraic
transformations. Each step is annotated with one or more references to laws, definitions,
lemmas or theorems.

3.2 Skip, Abort and Miracle

The skip command has no effect and always terminates successfully.

The abort command, denoted by L, is the most unpredictable of all programs. It may
fail to terminate or it may terminate with any result whatsoever. Thus L represents the
behaviour of a broken machine, or a program that has run wild.

The miracle command, denoted by T, is the other extreme; it can be used to serve any
purpose. But it is tnfeasible in that it cannot he implemented; otherwise we would not
need to write programs—T would do anything for us.

The laws governing these primitive commands are included in the remaining sections. This
is because each of these laws normally expresses a unit or zero property of onelanguage
operator.

3.3 Sequential Composition

The program p; ¢ denotes the usual sequential composition of programs p and ¢. If the
execution of p terminates successfully then the execution of ¢ follows that of p.

Since the execution of skip always terminates and leaves everything unchanged, to precede
or follow a program p by skip does not change the effect of p. In other words, skip is both
the left and the right unit of sequential compaosition.

Law 3.3.1 (skip; p) = p = (p; skip) {; —skip unit}

3.4 Demonjc Nondeterminism 22

To specify tbe execution of a program p after the termination of L cannot redeem the
situation, because L cannot be telied on to terminate. More precisely, 1 is a left zero of
sequential composition.

Law 8.3.2 L;p = L {(; ~L left zero)
To precedea program p by T results in a miracle; T is a left zero of sequential composition.
Law 3,33 T;p = T {;~T left zera)

Sequential composition is associative.

Law 3.3.4 (p; ¢); v = p; (¢i 7) {; assoc)

3.4 Demonic Nondeterminism

The program p M ¢ denotes the demonic choice of programs p and ¢: either p or ¢ is
selected, the choice being totally arbitrary.

The ahort command already allows completely arbitrary behaviour, so an offer of further
choice makes no difference to it.

Law 3.41 pnL = L {N—L zero)
On the other hand, the miracle command offers no choice at all.
Law 3.42 pNT = p {M—T unit)

When the two alternatives are the same program, the choice hecornes vacuous— is
idempolent.

Law 34.3 pMNp = p {N idemp)
The order in which a choice is offered is immaterial—r1 is symunetric.

Law 3.4.4 pMg = ¢MNp {1 sym})
Demonic choice is associative.

Law 3.4.5 (pNq)Mr = pfi(gNr) {M assoc)

3.5 Angelic Nondeterminism

The angelic choice of two programs p and g is denoled by pLig. Informally, it is a program
that may act like p or g, whichever is more sunitable in a given context.

As we have mentioned before, L is totally unpredicatable and thereflore the least suitable
program for all purposes.

Law 3.5.1 LUp = p {U- L unit}
On the other extreme, T suits any situation.
Law 3.5.2 TUp = T (U-—T zero}

Like N, angelic choice is idempotent, symmetric and associative.

Law 3.5.3 pUp = p {U idemp)
Law 3.5.4 plig = qUp {Ll sym)
Law 8.5.5 (pUgUr = plU(gUr) {U assoc)

3.6 The Ordering Relation

Here we define the ordering relation C on programs: p T g holds whenever the pragram
q is at least as deterministic as p or, alternatively, whenever g offers only a subset of the
choices offered by p. In this case, g is ai least as predictable as p. This coinddes with
the meaning we adopt for refinement. Thus p C g can be read as “p ia refined by ¢” or
“p 13 worse than ¢”.

We define C in terms of M. Informally, if the demonic choice of p and ¢ always yields p,
one can be sure that p is worse than ¢ in all situations.
Definition 8.1 (The ordering relation)

def
pCq = (pNg = p

In the final section we prove that this ordering coincides with the ordering on the lattice
of predicate transformers described in the previous chapter.

Alternatively, the ordering relation could have been defined in terms of L,

Law 3.6.1 pCq = (pUg) = ¢ {E-)

3.7 Unbounded Nondetermminism 24

From Definition 3.1 and the laws of N, we conclude that T is a partial ordering on
programs;

Law 3.6.2pLCp {C reflexivity)
Law 3.8.3 (pPC g} A (gCp) = (p=19) (C antisymmetry)
Law 3.84 (pCg)A(qCr) = (pCr) {E transitivity)

Moreover C is a lattice ordering. The bottom and top elements are | and T, respectively;
the meel {greatest lower dound) and join (least upper bound) operators are M and U, in
this order. These are also consequences of the definition of C and the laws of M and Li.

Law 3.8.5 LCp {C —L bottom)
Law 3.68 pC T {C—T top}
Law 387 (rCpArEg) = rE(png) (C - glb)
Law 3.68 (pCr) A(gCr) = (pug)Cr (C—U tub)

In order to be able to use the algebraic laws to transform subcomponents of compound
programs, it is crucial that p C ¢ imply F(p) C F(q), for all confezts F (functions from
programs to programs). This is equivalent to saying that F (and consequently, all the
operators of our language) must be monotonic with respect to C. For example:

Law 3.8.9 If p C g then
(1) (pNr)C(gnr) {N menotonic)
(2) () C(r gq)and (p; r)C (g 1) (; monotonic)

We will not state monotonicity laws explicitly for the remaining operators of our language.

3.7 Unbounded Nondeterminism

Here we generalise the operators M and U to take an arbitrary set of programs, say P, as
argument. UP denotes the least upper bound of P; it is defined by

Definition 3.2 (Least upper bouad)

UPCp = (VX:XeP:XCp)

which states that p refines the least upper bound of the set P if and only if, for all X in
P, p refines X. The greatest lower bound of P, denoted by NP, is defined in a similar
way.

Definition 3.3 (Greatest lower bound)
(pPENP) = (VX:XeP:pCX)
]

Let 2 be the set of all programs, and @ be the empty set. Then we have:

ug = L = Nu
ng = T = U

From the above we can easily show that sequential composition does not distribute right-
ward through the least upper bound or the greatest lower bound in general, since we
have:
L;ng
T; U@

L # Mg
T #£ Up

The rightward distribution of sequential composition through these operators is used
below to define Dijkstra’s healthiness conditions. However, the leftward distribution is
valid in general, and cag be verified by considering programs as predicate transformers.
In the following, the notation {X : & : F(X)] should be read as: the set of elements F(X)
for all X in the range specified by b.

Law 3.7.1
(1) UP; p = U{X : X € P:(X; p)} (U left dist)
(2)NP;p = N{X: X eP:(X; p)} {; —N left dist)

It is also possible to venfy that the lattice of programs (considered as predicate trans-
formers) is distributive.

Law 3.7.2
(V{uP)Np = W{X:X eP:(XnNp)} {N-U dist)
(2)(NP)up = N{X: X €P: (X Up)} {U-N dist)

As discussed in the previous chapter, among all the predicate transformers Dijkstra singles
out the implementable ones by certain healthiness conditions. Here we show that these
conditions can be formulated as equations relating operators of our language.

L.ppl =1 p i8 non-miraculous
2p;NP = N{X:XeP:(p; X)} p is conjunctive
for all (non-empty) sets of programs P
IpUP = U{X:XeP:(p; X)} p is disjunctive
for all (oon-empty) sets of programs P
4. pWi:i20:¢) = U{i:i>0:p; ¢} p ig continuous

provided ¢, = giyy forall i > 0

3.8 Recursion 26

We say that a program p is universally conjunctive if the second equation above bolds for
all sets of programs P (possibly empty). Similarly, if the third equation holds for all P,
we say that p is universally disjunctive.

3.8 Recursion

Let X stapd for the name of the recursive program we wish to construct, and let F(X)
define the intended behaviour of tbe program, for a given context F. If F is defined solely
in terms of the notations introduced already, it follows by structural induction that F is
monotonic:

pLe=> F{p) T F(qg)
Actually, this will remain true for the commands which will be introduced later, since

they are all monotonic. The following two properties, due to Kuaster-Tarski [72, say that
#X o F(X)is a solution of the equation X = F(X); furthermore, it is the least solution.

Law 3.8.1 u X e F(X) = F(pX s F(X)) {p fixed point}

Law 3.82 F(Y)C Y = pXeF(X)EY {p least fixed point)

3.9 Approximate Inverses

Let F and @ be functions on programs such that, for all programs X and ¥
F(X): Y = X= G(Y)

Then G is the inverse of F, and vice-versa. Therefore G(F{X)) = X = F(G{X)), for all
X. Tt is well-known, however, that a function has an inverse if and only if it is bijective.
As the set of bijective functions is relatively small tbis makes the notion of inverse rather
limited. The standard approach is to generalise the notion of inverse functions as {ollows.

Definition 3.4 (Approximate inverses)
Let F and F~! be functions on programs such that, for all X and ¥

FIX)C Y = XCFYY)

Then we call F the weakest inverse of F~1, and F~! the sirongest inverse of F. The pair
(F,F-) is called a Galois connection. B

Weakest inverses have been used in [¢7, 46] for top-dewn design of programs. In particular,
the lefi and right weakest inverses of sequential composition are defined together with a

calculus of program development. Broadly, the aim is to decompose a task (specification)
r into two subtasks p and ¢, such that

rCopg

The method described in [46] allows one to calculate the weakest specification that must
be satisfied by one of the components p or ¢ when the other one is known. For example,
one can calculate the weakest specification of p from g and r. It is denoted by ¢\r and
satisfies r C (g\r); ¢. This is called the weakest prespecification. Dually, r/p is the
weakest specification of component g satisfying »+ T p; (r/p). It is named the weakest
postspecification.

Strongest inverses of language constructs are less commonly used. This is perhaps a
consequence of the fact that they exist only for operators which are universally disjunctive
{see theorem below). Gardiner and Pandya [25] have suggested a method to reason about
recursion based on the notion of strongest inverses, which they call weak-op-inverses.
Below we consider sorme of the properties of sirongest inverses that are proved in the
cited paper. A similar treatment is given in [45)].

Before presenting the properties of strongest inverses we review two basic definitions. F
is universally eonjunctive if for all P

FNP) = n{X: X e€P: F(X)}
Similarly, F is universally disjunctive if for all P
FUP) = u{X: X € P: F(X)}

Theorem 3.1 (Strongest inverses)

(1) I F! exists then both F and F~! are monotonic.
(2) F is unique if it exists,

(3) ¥ F! exists then, for all programs X

F(FYX)) € X & FY(F(X))

(4) F! exists if and only if F is universally disjunctive; in this case it is defined by
FUY) ¥ u{x: FX)SY: X}

(5) F~1 is universally conjunctive if it exiats. m

The following lemma shows that sequential composition has a strongest inverse in its firat

arguinent. As noted in [25] this allows a concise proof (given later in this chapler) of an
important property about compaosition of iteration commands.

Lemma 3.1 (Strongest inverse of ;)
Let F(X) o (X; p). Then it has a strongest inverse which we denocte by
FY(X) ¥ xYp. Furthermore, for all X

(Xi'phpC o

3.10 Simulaiion 28

Proof: From Law {; —U left dist)(3.7.1) it follows that F is disjunctive. Consequently,
from Theorem 3.1{4}, it has a strongest inverse. The inequation follows from Theo-
rem 3.1(3). @

3.10 Simulation

In the previous section we discussed the inverse of functions on programs. Here we
consider the inverse of prograrns themselves. An inverse of a program S is a program T
that satisfies

S T =skip=T;8

That means that running § followed by T or T followed by § is the same as not running
any program at all, since skip has no effect whatscever.

Tnversion of programs has been previously discussed by Dijkstra [22] and Gries [35]. A
more formal approach to program inversion is given in [16], which defines proof rules for
inverting programs written in Dijkstra’s language. A common feature of these works is
the use of the notion of ezact inverse given above. As mentioned for functions, this notion
of inverse is rather limited. Following a similar idea to that of the previous section, we
adopt a weaker definition of program inversion.

Definition 3.5 (Simulation)
Let S and §-! be programs such that

(8;57) C skip C (7 5)

Then the pair (5,571) in called a simulation, §~! is the strongest inverse of S, whereas
5§ ia the weakeat inverse of §~1. W

A very simple example of a simulation ia the pair (1, T} since
(LiT) =L CskipCE T = (T; L)

Simulations are useful for calculation in general. When carrying out program transfor-
Matiop, it is not rare to reach situations where a program followed by its inverse (that
13, 8; 57 or §7'; S) appears as a subterm of the program being transformed. Thus,
from the definition of simulation, it ie possible to eliminate subterms of the above form
by replacing them with skip (of course, this is only valid for inequational reasoning). This
will be illustrated in many of the proofs in the next two chapters where we give further
examples of simpulations.

But the moat valuable use that has been made of the concept of simulation is for data
refinement. This was discussed in some detail in the previous chapter where we introduced
the concepte of encoding and decoding programs which form a simulation pair. Tbe
distributivity properties of simulations given below are particularly useful to prove the

correctness of the change of data representation phase of the compilation process, where
the abstract space of the source program is replaced by the concrete state of the target
machine. The appropriate encoding and decoding programs will be defined when the need
arises.

A detailed discussion on simulations can be found in [5] (where it is called tnverse com-
mands) and in [45]. Here we present some of the properties of simulation. As should be
expected, these are similar to the ones given in the previous section.

Theorem 3.2 (Simulation)

Let S be a program. The following properties hold:

{1) S7! is unique if it exista.

(2) S7! exisis if and only if § is universally disjunctive.
(3) S~! is universally conjunctive if it exists. @

We define the following abbreviations.

Definition 3.8 (Simulation functions})
Let (5,57") be a simulation. We use § and $~! themselves as functions defined by

sx) € os; x; 87
SX) ¥ s xS
u

The next theorem shows that the concepts of simulation and approximate inverse are
closely related.

Theorem 3.3 (Lift of simulation)
Let § and $™! be simnulation fusnctions as defined above. Then $7 is the strongest inverse
of S. Furthermore, from Theorem 3.1 (Strongest inverses) we have

S(57Y(X)) C X T S7Y(S(X))

The following tbeorem shows how simulation functions distribute through all thelanguage
operators introduced so far, with a possible improvement in the distributed result.

Theorem 3.4 (Distributivity of simulation functions)
(1) S(L)y =1

(2)S(MCT

(3) S(skip) C skip

(4) $(X; Y) C S(X); S(Y)

(8) S(NP)C N{X : X:& P:5(X)})}

(8) S(UP) = L{X : X : € P:5(X))

(7) S(u X e F(X}) C 4 X & S(F(S7(X)))m

3.11 Assumption and Assertion 30

3.11 Assumption and Assertion

The assumplion of a condition &, designated as b7, can be regarded as a miraculous test:
it leaves the siate unchanged {behaving like skip) if b is Lrue; otherwise it bebaves like T.
The assertion of b, b,, also behaves like skip when b is true; otherwise it fails, behaving
like 1.

The intended purpose of assumptions and assertions is to give preconditions and postcon-
ditions, respectively, the status of programs. For example,

a';p by

is used to express the fact that the assumption of g is an obligation placed on the environ-
ment of the program p. If the environment fails to provide a state satisfying , a7 behaves
like a rniracle; this saves the programmer from dealing with states not satisfying a, since
no program can implement T. On the other hand, an assertion is an obligation placed on
the program itself. If p fails to make b true on its completion, it ends up behaving like
abort.

The first three laws formally state that the assumption and tbe assertion of a true condi-
tion are equivalent to skip, that the assumption of a false condition leads to miracle and
that the assertion of a false condition leads to abortion.

Law 3.11.1 true™ = true; = skip (b7, b, true cond}
Law 3.11.2 false” = T {37 false cond)
Law 3.11.3 false; = 1 (4, false cond)

Twao consecutive assumptions can be combined, giving rise to an assumption of tbe con-
junction of the original conditions; tbis obviously means that if any of the conditions is
not satisfied, the result will be miraculous. An analogous law holds for assertians.

Law 3.11.4 (a™; b7) = (a A H)T (aTUsT) (b7 conjunction}

Law 3.11.5 (a;; 6,) = {aAb), (arMby) (b, conjunction}

The assumption of the disjunction of two conditions will behave like a miracle if and only
if none of the conditions are satisfied. There is a similar law for assertions.

n

Law 3.11.8 (aV $)" = (a"1157) {67 disjunction)
Law 3.11.7 (aV b)), = (a b} (b, disjunction}

1t does not matter if a choice is made before or after an assumption (or an assertion) is
executed.

Law 3.11.8 b™; (pNgq)

(7 PN (57; g) (67— dist)

Law 3.11.8 b;; (pMq) = (by;)N (bsi 9) {bL—1 dist)

The next law states that (4, b7) is a simulation.
Law 3.11.10 (by; 8Ty = b C skip C 57 = (87; b1) {ty — b7 simulation)

An assumption commutes with an arbitrary program p in the following sense. {A similar
law holds for assertions, but we do not need it here.)

Law 3.11.11 If the free variables of b are not assigned by p
(g 57) © (67; p) (47; p commute)

The inequality occurs when b is false and p is L, in which case the left-hand side reduces
to 1 whereas the right-hand side reduces to T.

3.12 Guarded Command

The standard notation & — p stands for a guarded command. If the guard b is true, the
whole command hehaves like p; otherwise it behaves like T. This suggests that a guard
has the same effect as an assumption of the given condition, which allows us to define a
guarded command as follows.
Definition 3.7 (Guatded command)

bp 2 b7 p
u

The laws of guarded commands can therefore be proved from the above definition and
the laws of sequential composition and assumptions.

Law 3.12.1 (true— p) = p {— true guard}
Law 3.12.2 (false =+ p) = T {— false guard)
Guards can be unnested by taking their conjunction.

Law 3.12.3 ¢ —~ (b —p) = (aAb) o p {(— guard conjunction)

Guards distribute over IN.

3.13 Guarded Command Set 32

Law 3.124 b= (pNg) = (b—op)N (b —¢q) {guard — I dist)

The demeonic cboice of guarded commands can be writien as a single guarded command
by taking the disjunction of their guards. This is easily derived from the last two laws.

Law 3.125(a—=p M b—g) = (avd)o(a—=p N bt—g}
{— guard disjunctionl)

Proof:
RHS
= {({guard — M dist}(3.12.4)}
(avd) = (a—p) M (avVd)=(b—og)
= {{— guard conjunction)(3.12.3)}
LHS
B

When p and ¢ above are the same program, we have:
Law 3.128 (a—p)N(b—=p) = (aVb)—p {(— guard disjunction2}
Sequential compoaition distributes leftward through guarded commands.

Law 3.12.7 (b —p); ¢ = b= (p; ¢) {;— — left dist}

3.13 Guarded Command Set

Qur main use of guarded commands is to mode! the possible actions of a deternunistic ex-
ecuting mechanism. The fact that the mechanism can perform one of n actions, according
to its current state, can be modelled by a program fragment of the form

b — action, M...N b, — action,

provided by,..., by are pairwise disjoint. Instead of mentioning this disjointness condition
explicitly, we will write the above as

b — action; O...0 b, — action,

Strictly, O is not a new operator of our language. It is just syntactic sugar to improve
conciseness and readebility. Any theorem that uses IJ can be readily restated in terms of
I with the associated disjointness conditions. As an example we have the following law.

If one of the guards of a guarded command set holds initially, the associated command
will always be selected for execution.

Law 3.13.1 a— (a—p0Ob—gq) = a—p {0 elim})
Proof: The proof relies on the (implicit) assumption that a and b are disjoint (or aA b =
false).

a—(a—pnb—oyg)

= {{guard — N dist}(3.12.4)}
a—(a—p)Na—s(b—oyg)

= {{— guard conjunction)(3.12.3}}
a—p M false = ¢

= {{— false guard)(3.12.2) and (N—T unit}{3.4.2)}
a—p

Other laws and theorems involving O will be described as the need arises.

3.14 Conditional

A conditional command has the general syntax p 9 b > ¢ which is a concise fomn of the
more usual notation

if bthen p else ¢
It can also be defined in terms of more basic operators.
Definition 3.8 (Conditional)

(pabg) & (bopa-b—g)

The most basic property of a conditional is that its left branch is executed if the condition
holds initially; otherwise its right branch is executed.

Law 3.14.1 {(aA8)T: (pabVepg) = (anbd)T;p {4 B true cond)
Law 8.14.2 (aA=B)T; (pabAciq) = (an=bT; ¢ (< b false cond})
The left branch of a conditional can always be preceded by an assumption of the condition.
Similarly, to precede the right branch by an assumption of the negation of the condition

has no effect.

Law 3.14.3 (0T, pa b g) = (padpg) = (pabp-b";q) (a4 p vid b7)

.15 Agssigament 34

If the two branches are the same program, the conditional can be eliminated.

Law 3.144 pabpp = p (4 b idemp)
Guard distributes through the conditional,

Law 3.145 a =+ (pab-g) = {(a =+ p)abbp(a—q) {guard — 4 - dist)
Sequential composition distributes leftward through the conditional.

Law 3.14.6 (pa bt gq); r = (p; rab g r) (; — 4 b left dist}
The following two laws allow the elimination of nested conditionals in certain cases.

Law 3.14T pa b (pdec b g) FPAbVel g {4 P cond disjunction}

Law 3.148 (pa bbb g)dcbqg = padbAck g {4 > cond conjunction)

We have considered assumptions and assertions as primitive commands and have defined
guarded commands and the conditional in terms of them. The following equations show
that an allernative could be to consider the conditional as a constructor and regard
assumptions, assertions and guarded commands as special cases. These are not stated as
laws because they are unnecessary in our proofs.

N = skipqbdp L
bT = skiqupT
bop = pabpT

3.15 Assignment

The command z := e stands for a multiple assignment where = is a list of distinct
variables and ¢ is an equal-length list of expressions. The components of e are evaluated
and simultaneously assigned to the corresponding (same position) components of z. For
example,

nLy=unz

swaps the values of z and y. For simplicity, we assume that the evaluation of an expression
alwaysdelivers a result, so the assignment will always terminate. Furtbermore, the validity
of most of the laws relies on the fact that expression evaluation does not change the value
of any variable; that is, no side-effect is allowed.

Obviously, the assignment of the value of a variable to itself does not change anything.

Law 3.15.1 (z:=z) = skip = skip)

In fact, such a vacuous assignment can be added to any other assignment without cbanging
its effect.

Law 38.15.2 (z,y:=¢,y) = (z:=¢) (:= identity)

The list of variables and expressions may be subjected to the same permutation without
changing the effect of the assignment.

Law 3.15.3 (z,y,z :=¢,f,9) = (y,z,2:=f,e,9) (= sym)

The sequential composition of two assignments to the same variables is easily combined
to a single assignment.

Law 3.15.4 (z:=¢; 2:=f} = (z:=flzr — €]} {:= combination)

Recall that f[z «— e] denotes the substitution of e for every free occurrence of z in f.

If the value of a variable is known, the occurrences of this variable in an expression can
be replaced with that value.

Law 8.15.5 (z=¢)}) = (y:=f) = (z=¢€) = (y:= flz — ¢]) {i= substitution)
Assignment is universally conjunctive.
Law 3.15.6 7:=¢; NP = MN{X: X €P:(z:=¢; X}} {t= —T11 right dist}

Assignment distributes rightward through a conditional, replacing occurrences of the as-
signed variables in the condition by the corresponding expressions.

Law 8.15.T z:=¢; (pd b gq) = (z:=¢; p)d bz — €] b (z:=¢ ¢)
{t= — < > right dist}

Similarly, assignment commutes with an assertion in the following sense.

Law 3.15.8 (z:=¢; b.) = (blz —el); z:=¢ (:= —b, commutation)

3.16 Generalised Assignment

The notation # ;€ b stands for a generalised assignment command. Whenever possible, z
is assigned an arbitrary value that makes the condition ¥ hold; but if no such value exists,
the assignment hehaves like T.

Law 3.16.1 (z:€false) = T (:€ false cond)

3.16 Generalised Assignment 36

On the other hand, a true condition imposes no constraints on the final value of 2. In
this case, the generalised assignment is less deterministic than skip, because it might leave
everything unchanged.

Law 3.18.2 (z :€ true) T skip (:€ true cond}

To follow a generalised assignment by an assumption of the same condition has no effect:
if the assignment establishes the condition, the assumption behaves like skip; otherwige,
the assignment itself {(and consequently, its composition with the assumption) behaves
like T.

Law 3.16.8 z:€b; 8T = z:€b (:€ void §7)
A similar law holds for assertions.
Law 3.164 z:€ by b, = z:€b {:€ void b}

A generalised assignment is refined by an assumption of the same condition. The reason
is that the final values of the variables of the assignment are arbitrary, whereas the
assumption does not change the value of any variable. Actually, an assumption can be
regarded as a generalised assignment to an empty list of variables.

Law 3.16.5 (z:€ b) C §7 (:€ refined by 47)

Generalised assignment distributes rightward through the conditional, provided the fol-
lowing condition is observed.

Law 3.16.8 If £ does not occur in &
z:€a; (padbpyg) = (z:€aq;pabPz:€a; q) {:€ — < 1> right dist)

In general, ap assignment cannot be expressed in terms of a generalised assignment only.
For example, there is no generalised assigument that corresponds to the assignment z :=
z + 1, The reason is that we have not introduced notation to allow the condition of a
generalised assignment of the form z :€ b to refer back to the initial value of z. But
7 := ¢ can always be written as a generalised assignment whenever the expression e does
not mention z.

Law 3.16.7 If ¢ does not mention z
T:€(2=¢) = z:=¢ {:€ — := conversion}

If z and y are to be assigned arbitrary values (in sequence) to make a given condition
hold, we can reduce the nondeterminism by ensuring that the same [arbitrary) value is
agsigned to both z and v.

Law 3.18.8 If 3 does not mention y
(r:€b; y:€dfz —y]) T (x:€b; y:=1) {:€ refined by :=)

We can cormumute the order of execution of an assignment and an arbitrary program p,
provided no interference occurs with the global variables.

Law 3.16.9 If no free variables of b nor z are assigned by p
(p; z:€b) C (z:€5; p) {z :€ b; p commute)

The inequality occurs when p is L and the assignment results in T.

3.17 Iteration

We use b+ p to denote the iteration command. It is a concise form of the more coaventional
syntax

while b do p

Iteration can be defined as a special case of recursion.
Definition 3.9 (Iteration})

bap ¥ paX o ((p; X} b b skip)

As iteration is a derived operator in our language, we are able to prove (rather than just
postulate) some of its properties. This illustrates the modularity provided by the algebraic
laws in developing more elaborate transformation strategies from the basic ones. These
strategiea are largely used in the next two chapters, substantially simplifying the proofs
of normal form reduction.

If the condition b does not bold initially, the iteration & * p behaves like skip; otherwise it
behaves like p followed by the whole iteration,

Law 3.17.1 (aA-0)T; bep = (a A-K)T {» elim)
Proof:

LHS

{Definition 3.9(Jteration) and (u fixed point}(3.8.1)}

(aA-D)T; ({p; b+p)a b b skip)

{{4 b false cond}(3.14.2) and {;—skip unit}(3.3.1)}

RHS

3.17 Iteration i3

Law 8.17.2 a"; (aVb)xp = aT; p; (aVi)sp {+ unfold}
Proof:

LHS

{Definition 3.9(Iteration) and {¢ fixed point}(3.8.1)}

a'; ((p; (aV b} p)d(aVvd) b>skip)

{{d b true cond){3.14.1)}

RHS

It

It

A recurrent step in our proofs is to unfold ap iteration and simplify the unfolded body
when thisis a guarded command set.

Law 8.17.3 Let R=(a —+ p O b — ¢). Then
a’; (avi)«R = a"; p; (avijs R {(* — O unfold)
Proof: From {* unfold)(3.17.2) and (D elim}(3.13.1). @ -

A guarded command set within an iteration can be eliminated if the condition of the
iteration allows only one of the guards to hold.

Law 3.174 Lt R=(a—pDO b — g). Then axR = a»p {* — O elim)
Proof:
LHS
= {Definition 3.9{Iteration) and (q b void b7)(3.14.3)}
pX e((a"; B; X)d o pskip)
= {{O elim}(3.13.1}}
gXe{(a"; p X) 4 a > skip)
= {{d b void §7){3.14.3) and Definiticn 3.9(Iteration)}
RHS

]
The following allows the replacement of a guarded command inside an iteration.

Law3.17.5 Let R={a—=pOb—gqg). I r(aVvE)*+R C p; (avd)xR, then
(avil*(a=rDb-q) C (evi)*+R (» replace guarded command}
Proof:

RHS
= {Definition 3.9(Iteration) and (z fixed point)(3.8.1)}

(R; RHS) < aV b > skip
= {{;~-N left dist}(3.7.1)}

{a— (p; RHS)O b — (q; RHS))d eV b 1> skip
J {Assumption}

{a— (r; RHS) O b — (q; RHS)) 4 aV b b skip
= {{-0 left dist)(3.7.1)}

((a—r0Ob—gq); RHS)d aVv b > skip

The final result follows from {g least fixed point}(3.8.2). @

The following law establishes the connection between tail-recursion and iteration. Its
proof illustrates the use of approximate inverses of programming constructs.

Law 3.17.6 (bxp)l; ¢ = pX e ((p; X)a b 1> gq) (» — p tail recursion})
Proof: (LHS J RHS):
{Definition 3.9(lteration) and (g fixed point)(3.8.1}}
LHS = ((p; b*p)d b b skip); ¢
{{;— 4 > left dist}(3.14.6) and (;—skip unit}{3.3.1)}
LHS = (p; LHS)4 b g
= {{u least fixed point)(3.8.2)}

LHS 3 RHS
(RHS 1 LHS):

{{y fixed point}(3.8.1)}

RHS = (p; RHS)d b g

= {From Lemma 3.1{Strongest inverse of ;) we have (RHS Y ¢) ¢ C RHS}

RHS 3 (pi (RHS}' q)i)4t by
{{; — < 1> left dist)(3.14.6) and {;—skip unit)(3.3.1)}
RHS 3 ((p; (RHS{ q)) 4 b b skip); ¢
{Definition 3.4(Approximate inverses)}
(RHS { q) 2 (pi (RHSY ¢)) < b © skip
= {{u least fixed point)(3.8.1) and Definition 3.9(Iteration)}
(RHS 7 q) 3 b+p
{Definition 3.4(Approximate inverses)}
RHS J LHS

i

The following law is surprisingly important, mainly in proving the correctness of the
normal form reduction of sequential compusition. Its proof without assuming continuity
of the language operators is originally due to Gardiner and Pandya [25].

http:point}(3.8.2).�

3.18 Static Declaration 40

Law 3.17.7 (b*p); (bvc)sxp = (bVc)*p (* sequence}
Proof: (RHS 3 LHS):

({4 b idemp)(3.14.4)}

RHS = RHS ab v RHS

{Definition 3.9(Iteration) and {u fixed point}(3.8.1)}

RHS = ((p; RHS)qbve bskip)ad b ((bVc)*p)

{{4 > void bT}(3.14.3) and (* elim}(3.17.1)}

RHS = ((p; RHS)QbVebp (bVe)xp)ab((bVec)=p)
{{d b cond conjunction}(3.14.8)}

RHS = (p; RHS)4 b > {(bV c) » p)

= {{p least fixed point}(3.8.2)}

RHS J uXe(p; X)abr((bVc)xp)

{{» — p tail recursion}(3.17.6)}

RHS 2 (bxp); ((bVe)sp)

= RHS 7 LHS

(LHS 1 RHS):

{Definition 3.9(Iteration) and (u fixed point}(3.8.1)}

LHS = ((g; (b*p))a b b skip); (bVe)*xp

{{i— 4 D left dist}(3.14.6) and (;—skip unit}(3.3.1}}

LHS = (p; LHS)< b > RHS

{{p fixed point)(3.8.1)}

LHS = (p; LHS}4 b b ((p; RHS) 4 bV ¢ 1> skip)

= {{4 t cond disjunction}(3.14.7) and LHS C RHS}
LHS 1 (p; LHS)4q bv ¢ b skip

= {Definition 3.9(lteration) and {u least fixed point)(3.8.2)}
LHS 2 RHS

3.18 Static Declaration

The notation decz o p declares the list of distinct variables z for use in the program p
(the scope of the declaration). Local hlocks of this form may appear anywhere a program
1s expecied.

It does not matter whether variables are declared in one list or singly.

Law 3.18.1 I 7 and y have no variables in common
decze(decy e p} = decz,yep {dec assoc)

3.18 Static Declaration 41

Nor does it maiter in which order they are declared.
Law 3.18.2 decz o (decy e p) = decy e (decz » p) {dec sy}
If 2 declared variable is never used, its declaration has no effect.

Law 3.18.3 If z is not free in p
deczep = p {dec elim)

One can change the name of a bound variable, provided the new name is not used for a
free variable. This law is normally stated as follows:

decz e p = decy e p[z — y] provided y is not free in p

where the ciashes of g with bound variables of p are dealt with by the renaming implicit
in the substitution operator. However, this law justifies transformations which are not
always valid (in the context of our language). For example, consider tbe recursive program

(1) decze(p X o F(decz 0 X))

Because of static scope rules, any free occurrence of z in F is bound to the outer decla-
ration of z. The inner declaration of z has no effect, since its scope does not include F,
and therefore it can be eliminated:

(2) decz s (u X o F(X))

However, renaming of bound variables as stated above allows (1) to be transformed into
(assuming that y is not free in F)

decz o (yu X o Fdecy « X[z — y)))

which is clearly distinct from (2) if there are free occurrences of z in F. The incousistency
arises from the fact that the application of the law identified the occurrence of z bound
to the inner declaration with the (possible) occurrences bound to the outer declaration;
this violates the concept of static scoping. One way to avoid the problem is to add an
extra condition to the law about renaming of local variables. This requires the following
concept:

Definition 3.10 (Contiguous scope)
We say that a variable z has a conliguous scope in a program p if

¢ p contains no free program identifiers (standing for call commands) or

o if X is free in p, then z is not free in (the program defining) X.

3.18 Static Declaration 42

The concept also applies when X is the name of a procedure, which will be dealt with in
Chapter 5. The law then becomes:

Law 3.18.4 If y is not free in p and r has a contiguous scope in p, then
decz o p = decy e p[z — y} {dec rename}

We can ensure that programs will always have contiguous scope {with respect to any local
variable) by requiring that nested declarations always use distinct names for variables
{which are also distinct from the names used for global variables). When applying the
above law we will assume that the condition of contiguous scope is always satisfied.

The value of a declared variable is totally arbitrary. Therefore initialisation of a variable
may reduce nondeterminism.

Law 3.18.5
(1) deczep C deczozi=¢; p (dec— := initial value}
(2)deczep T deczoz:eb; p (dec— :€ initial value}

An assignment to a variable just before the end of its scope is irrelevant. But a generalised
assignment cannot be completely ignored, since it may resuit in a miracle.

Law 3.18.6
(1) deczop = deczep;, z:=¢ {dec— := final value)
(2) deczep C deczep; z:€h {dec— :€ final value}

The scope of a variable may be increased without effect, provided that it does not interfere
with the other variables with the same name, Thus each of the programming constructs
has a distrihution law with declaration. For example, if one of the arguments of the
sequential composition operator declares the variable z then the scope of the declaration
can be extended with the other component, provided there is no capture of {ree variables.

Law 3.18.7 If z ia not free in ¢
(1) (deczep); ¢ = decrep; g (; —dec left dist)
(2) q; (deczep) = deczeyg; p {; —dec right dist}

When both arguments declare the same variable, the two decdlarations can be replaced
with a single one.

Law 3.18.8 (decz o p); (decz o g) C decz o p; ¢ {dec—; diat}

But note that this may reduce nondeterminism. Consider the case where ¢ is y = z.
Then the final value of y on the ieft-hand side of the above inequation would be totally
arbitrary. On the right-hand side, however, it may be the case that z was assigned a value
in p: thus the final value of y would be that of . In all cases, the right-hand side is at
least a5 deterministic as the left-hand side.

3.19 Dynamic Declaration 43

If each argument program of a guarded command set or conditional declares the variable
z then the declaration may be moved outside the constructor, provided that r does oot
occur in the guards or in the condition.

Law 3.18.9 If z does not occur in g or &
a—(deczep)0b —(deczog) = deczoa—pOb—yg {dec — O dist)

Law 3.18.10 If ¢ does not occur in b
(deczep)qb>(deczeg) = deczopqb>g (dec — q 1> dist}

Note that it is possible to deal with cases where z is only declared in one of the branches
(and is not free in the other one) by using Law 3.18.3.

Declaration can also be moved outside an iteration, possibly reducing nondeterminism.
As shown below, this law can be derived from more basic ones.

Law 3.18.11 If £ does not occur in &
bre{deczeop) C deczebxp (dec — = dist)
Proof:

{Definition 3.9(Iteration) and (u fixed point}(3.8.1}}

RHS = decz o (p; b+p) < b I>skip

{{dec — a4 1> dist}(3.18.10) and {(dec elim}(3.18.2)}

RHS = {(deczwp; bxp)q b I>skp

= {{dec—; dist)(3.18.8)}
RHS 1 ((decz » p); RHS) 4 b 1> skip

= {Definition 3.9(lteration) and {u least fixed point)(3.8.2)}
RHS O LHS

it

3.19 Dynamic Declaration

The command var z introduces a dynamic scope of z which extends up to

o the end of the static scope of z or

¢ the execution of the command end z

whichever comes first.

An operational argument may help to clarify how the two kinds of declaration differ. The
general idea is to associate an unbounded stack with each variable. One can think of a
static declaration of z as introducing a new variahle (which is assigned an arbitrary value)

3.19 Dypamic Declaration 44

with its (implicit) unbounded stack which is initially empty. Rather than creating a new
variable, the commands for dynamic declaration operate on this stack. The effect of varz
is to push the current value of z onto the stack, assigning to z an arbitrary value; end z
pops the stack and assigns the popped value to z. If the stack was empty, this value is
arbitrary.

Recall from Section 2.6 that having separate commands to introduce and end the scope
of a variable i3 an essential feature to define the encoding and decoding programs used
in our approach to data refinement: the encoding program introduces the abstract state
and ends the scope of the concrete state, whereas the decoding program introduces the
concrete state and ends the scope of the abstract state.

var and end obey laws similar to those of dec. Both var and end are associative in the
sense described below.

Law 3.10.1 If £ and y bave no variables in comumon
(1) (varz; vary) = varz,y (var assoc)
(2) (endz;endy) = endz,y {end assoc)

The (dynamic) scope of a variable may be increased without effect, provided that this
does not interfere with other free variables.

Law 3.10.2 If z is not freein p
(1) p; vatrz = varz; p (var change scope)
(2) endz; p = p; endz {end change scope}

Both varand end distribute rightward through the conditional, as long as no interference
occurs with tbe condition.

Law 3.19.3 I b does pot mention z
(1) (varz; p)a b > (varz; ¢) = varz; (pg b > g) {var — ¢ b right diat}
(2) (endz; p)a b >(endz; g) = endz; (pa b 1 g) (end — 4 > right dist}

As explained above varz assigns an arbitrary value to z. The nondeterminism can be
reduced by initialisation of z.

Law 3.19.4
(1) varz T (varz; z i==¢) (var— := initial value)
(2) varz T (varz; z :€ }) (ver— :€ initial value}

An assignment to a variable just before the end of its scope i3 irrelevant. But a geperalised
assignment cannot be completely ignored, as it may result in a miracle.

Law 3.19.5
(1) endz = (z:=e; endz) (end— := final value)
(2) endz C (z:€&; endz) {end— :€ final value)

3.19 Dynamic Declaration 45

The next two laws are essential for reasoning about data refinement. They are precisely
the ones that assign the dynamic declaration semantics to var and end. The first law says
that end z followed by varz leaves all variables but = unchanged; var z followed by end z
has no effect (even on z). Thereflore the pair (end z,varz) is a simulation.

Law 3.190.6 (end x; varz) C skip = (varz; end z) (end — var simulation)

The second law postulates that the sequential composition of end r with var z has no effect
whenever it is followed by an assignment to z that does not rely on the previous value of

z. 1

<

Law 3.19.7 (endz; varz; z:€8) = z:€d {end — var skip}
Observe that the syntax of static declaration (dec) promptly disallows the above two laws,
since there is no separate construct to end the scope of a variable.

The following laws relate the two kinds of declaration. They formalise the intuilive mean-
ing given in the beginning of this section.

If the first command in the scope of a static declaration of z is var z or end z, this command
has no effect.

Law 3.18.8
(1) deczevarz; p = deczop (var elim1}
{2} decreendz; p = decxeap {end elim1}

First we give an operational justification of (1). Recall that a static declaration of z
creates an implicit stack which is originally empty. Then the effect of var z on the left-
hand side of (1) is to push the current value of z {which is arbitrary) onto this stack,
and to assign an arbitrary value to z. But the value of z was already arbitrary; thus
the assignment has no effect. Furthermore, the effect of pushing an arbitrary value onto
the empty stack is also immaterial. The only command that may access this value is
a subsequent end z which would assign an arbitrary value to z if the stack was empty
anyway. The justification of (2) is sirnpler. As the stack associated with z is initially
empty, the effect of end z is to assign an arbitrary value to z; hut the value of r was
already arbitrary.

As we said before, the dynamic scope of a variable z cannot extend further than ils static
scope, Therefore starting or ending a dynamic scope of z just hefore the end of its static
acope is irrelevant.

Law 3.19.8
(1) decz e p; varz = deczep {var elim2}
(2)deczep,endz = deczop {end elim?2)

In some eases, there is no need to distinguish between a static and a dynamic scope
of a given variable. To state this law we need two auxiliary concepts. One is that of a
contiguous scope, as defined in the previous section (Definition 3.10). The other is defined
below.

3.19 Dynamic Declaration 46

Definition 3.11 (Block-structure)

A program p is block-structured with respect to a variable z if each dynamic declaration
of z in p (varz) has a corresponding, statically determined, undeclaration {end z). Mare
precisely,

1. all programs that do not contain the commands varz or end z are block-structured
with respect to z;

2. if p is block-structured with respect to z, 50 is
varz; p; end z.

a
Then we have the following law.

Law 3.19.10 If p is block structured with respect to z, and © has a contiguous scope in
P, then
decz e p = varz; p; endz {dec — (var, end) conversion)

From the above, we derive the following law about introduction of local dexlarations.

Law 3.18.11 I p is block structured with respect to z, and z has a contiguous scope in
P, then
:€bypri€c = (deczwz:€b; p)yzice (dec introduction}

Proof:

LHS
= {{end — var skip)(3.19.7)}
end z; var z; 7:€b; p; end z; var z; 1:€ ¢
= {{dec — (var,end) conversion)(3.19.10)}
end 7; (decz e z:€ b; p); varz; z:€ ¢
= {{end change scope}(3.19.2}}
(decz @z :€ b; p); end z; var z; z :€ ¢
= {(end — var skip}{3.19.7)}
RHS

The above two laws will be used in the next chapters to perform transformations on source
programs. These are always block-structured, since var and end are not part of our source
language. In the previous section we explained how to ensure that programs always have
contiguous scope (with respect to any local variable). Therefore these laws will be applied
assuming that these conditions are always satisfied.

3.20 The Correctness of the Basic Laws

In a purely algebraic view, the laws of a given language are an algebraic semantics for this
language. There is no place for the task of verifying the validity of the more basic laws;
they are axioms which express the relationship between the operators of the language.
However, the method of postulating is questioned by those who follow a model-oriented
approach, especially when the set of axioms is relatively large, as it is here. Pogtulating
an inconsistent set of laws could be a disaster: it would allow one to prove invalid results,
like the correctness of an inaccurate compiler.

The way to avoid this danger is to link the algebraic semantics of the language with a
mathematical model in which the laws can be proved. For example, Hoare and He [46]
provide a relational model for programs where the correctness of the laws could be es-
tablished by appealing to the calculus of relations [71]. Another model that has gained
widespread acceptance is the predicate transformer model of Dijskstra [21], which was
briefly discussed in the previous chapter. In this case, the semantics of each language
construct (that is, its weakest precondiiton) is given, and the laws are verified by appeal-
ing to the predicate calculua.

It is also possible to link the algebraic semantics of the language to a more concrete
(operational} model. This allows to check for feasibility (implementability) of thelanguage
operators. But in our case this ig not possible, as our language includes non-implementable
operators,

Once the laws have been proved, in whatever madel, they should serve as tools for carrying
out program transformation. The mathematical definitions that allow their verification
are normally more complex, and therefare not appealing to practical use. This ssparation
of concerns is well described in [42], which explores the role of algebra and modes to the
construction of theories relevant to computing.

But even after the model has served its intended purpose, additional results of practical
interest can be achieved. For example, from the experience in the application of basic
algebraic laws of programming to solve a given task, one discovers more elaborale trans-
formation strategies that allow more concise and elegant proofs. This was illustrated in
the section on iteration, where all the laws were derived from more basic ones.

In the remainder of this section we use the predicate transformer model to illustrate how
tbe basic laws of our language can be verified.

Predicate Transformers

We deal only with a few language operators. Their definitions as predicate translormers
were given in the previous chapter, but are repeated here for convenience. In the following,
@ ranges over the set of predicates, p and ¢ stand for arhitrary programs, and P for an

3.20 The

Correctness of the Basic Laws 48

arbitrary set of programs.

skip
L
T
up
npe
Pt

o Aaea
def

def

Aa e faise
Ad e true
Y XNae(3X €P e X(a))
4 rae (VX EPo X(a)

Y daep(e(a)

The definition of the remaining operators can be found, for example, in [5]. From the
above definitions we can prove the laws of the corresponding operators. For example, from
the definition of C we can derive its characterisation in terms of weakest preconditions:

It

i

L}

rC g
{Definition 3.1(The ordericg Relation)}
(png)=p

{Definition of N}
(Aaep(a)Arg(a))=p

{The axiom of extensionality}
Va e (p(a) 1 g(a) & p(a))
{Predicate calculus}

Va e (p(a) = ¢(a})

which corresponds precisely to the definition of refinement adopted in all approaches to the
refinement, calculus based on weakest preconditions, as discussed in the previous chapter.

As anotber

example, we verify Law {LJ—0 dist)(3.7.2).

(uP)np

{Definition of N}

Aa e (LUP)a)Ap(a)

{Definition of LI}

Aae{(3X € PeX(a))Apla)
{Assuming that X is not free in p}
Aae (X € Pe(X(a)Ap(a)))
{Definition of M}

Aas(FX € Pe(XMpXa})

{Set theory}

dae(@3X €{X:X €P:(XNp)}eX(a))
{Definition of LU}

WX : X eP:(Xnp)}

Chapter 4

A Simple Compiler

Setting up equations is like translating from one lan-
guage into anather.
— G. Polya

In the first two sections of this chapter we describe the normal form as a model of an
arbitrary executing mechanism. The normal form thecrems of Section 4.2 are concerned
with control elimination: the reduction of the nested control structure of the source
program to a single flat iteration. These theorems are largely independent of a particular
target machine.

In the subsequent sections, we design and prove the correctness of a compiler for a subset
of our source language, not including procedures or recursion (which are dealt with in
the next chapter). The constructions considered here are skip, assignment, sequential
composition, demonic nondeterminism, conditional, iteration and local declarations.

As described earlier, we split the compilation process into three main phases: simplifi-
cation of expressions, control elimination and data refinement {the conversion from the
absiract space of the source program to the concrete state of the target machine). The
control elimination phase in particular is directly achieved by instantiating the generic
theorems of Section 4.2,

Every theorem directly relevant to the compilation process has the status of a rule. Each
rule expresses a transformation which brings the source program closer to a normal form
with the same structure as the target machine. The final section shows that, taken
collectively, these rules can be used to carry out the compilation task.

It is important to emphasise the different roles played by the algebraic laws described
in the previous chapter and these reduction rules: the laws exprese general properties of
the language operators, whereas the rules serve the special purpose of transforming an
arbitrary program to a normal form. The laws are necessary to prove the rules, and these
(not the laws) are used to carry out compilation.

49

4.1 The Normal Form 50

4.1 The Normal Form

A program of the form
decvev:€a; bxp; ¢,

can be ipierpreted as a very general model of a machine executing a stored program
computer in the following way:

¢ The list of variables v represents the machine components (for example, registers).
They are introduced a& local variables since they have no counterpart at the source
level; therefore their final values are irrelevant.

® 4 is an assumption about the initial state; if it is impossible to make @ true by
angigning to v, the machine behaves miraculously.

s p is the stored program; it is executed until the condition b becomes false. Usually,
p will be a guarded command set of the form

bl_’?l D,._Ub.—tp.

Whenever the machine is in state 4 the action (or instruction) p, is executed. In
this case, the condition & is given by

By V...V da

e ¢ is an assertion about the final state of the machine; if execution of the stared
program does not assert ¢, the machine ends up behaving like abort.

Notice that, upon termination of the iteration b + p, b is false and we have
bep; ey = bap; (2b)y;e0 = bxp; (CbAC)L

Thus, there is no loss of generality in assuming that ¢ = (-b A ¢), and consequently that
(b A ¢) = false. The normal form theorems will rely on the assumption that b and ¢ are
disjoint.

A normal form program will be abbreviated as follows.

Definition 4.1 (Normal form})
o:la,b—p, (] Y decoav:c a; bxp; ey, where (b A ¢} = false.
L |
For convenience, we will sometimes use the form
v:la, (b = py O...0 8 — p,), ¢
as an abhreviation of

vile, (V...vb) = (b = p O...0 by — p.}, ¢

4.2 Normal Forrn Reduction 51

4.2 Normal Form Reduction

To reduce an arhitrary program to normal form, it is sufficient to show how each primitive
comrnand can be written in normal form, and how each operator of the language (when
applied to operands in normal form) yields a result expressible in normal form. The
following reductions involve no change of data representation. Therefore we can directly
compare the source constructs with the associated normal form programs.

If the initial state coincides with the final state, the machine does not perform any actjon.
In more concrete terms, the empty code is a possible implementation of skip.

Theorem 4.1 (Skip)
skip C v:[a, 3 = p,a]

Proof:
RHS
= {{* elim}(3.17.1), remember a A b = false}
decve v :€ a; ay
= {{:€ void a;}(3.16.4) and (;—skip unit)(3.3.1)}
decv o v :€ a; skip
2 {{dec— :€ initial value)(3.18.5) and {dec elim}(3.18.3)}
LHS
]

The following lemma shows how a primitive command can be written in normal form.
Actually, the lemma is valid for all programs p, but we will not make use of it for non-
primitive constructs because we follow an innermost (bottom-up) reduction strategy.

Lemma 4.1 (Primitive commanda)
If v is not free in p then

P C vile,a—(p vi€e),dl

Proof:
RHS
= {{* unfold}(3.17.2) and {* elim}(3.17.1}}
decvev:c e p; vi€E e ¢
2 {(dec— :€ initial value)(3.18.5) and (:€ void ¢,)(3.16.4)}
decvep; vi€c
2 {{dec— :c final value}(3.18.6) and (dec elim}(3.18.3)}

LHS

4.2 Normal Form Reduction 52

The following normal form representations of skip and assignment are ipstantiations of
the above lemma. The one of skip is further simplified by the fact that it is an identity of
sequential composition. The operational interpretation is that skip can be implemented
by a jump.

Theorem 4.2 (Skip)
skip C v:le, (a =+ v:€¢), ¢

Theorem 4.3 {Assignment)
z:=¢ C v:[a,a—(z:=¢ v:€c), ¢

The reduction of sequential composition assumes that both arguments are already in
normal form, and that the final state of the left argument coincides with the initial state
of the right argument. The components of the resulting normal form are the initial state
of the lefl argurnent, the final state of the right argument and a guarded command set
that combines the original guarded commands.

First we prove the reductior of sequential composition for the particular case where the
guarded comrnand set of the right argument includes that of the left argument.

Lemma 4.2 (Sequential composition)

”:[“'bl"'P,"Ok”:[CO,(blqp)»ffi:_v:[a,(bl—.p),c]

a b;—g O b, —¢q
Proof:
Let R=(by = p 0 b — q).
LHS -
T {{dec—; dist)(3.18.8)}
decosv:i€a; bi*p; cou; vi€ e (V) B eo
C {{v:€ o refined by ¢ }(3.19.6) and {g, — ¢o' simulation)(3.11.10}}

decvev:Ea dyep; (Vi) R ¢y
= {{x - D elim)(3.17.4)}

decrav:ca; by« R, (b Vby)*sR; ¢y
= {({= sequence){3.17.7}}

RHS

4.2 Normal Form Reduction 53

Now we show that the guarded command set of & normal {form program can be reduced
by eliminating arbitrary guarded commands. We obtain a program which is worse than
the original one.

Lemma 4.3 (Eliminate guarded command)

v:[a,(n 2:':)&] Jv:la, b —ope

Proof:
Lt R={b o pT h—yq)
LHS
3 {Lemma 4.2(Sequential composition}}
v:[a,by = p,cl; v:le, R]
2 {Theorem 4.1(Skip) and {; —skip unit}(3.3.1}}
RHS
a

The reduction of sequential composition is proved directly from the above two lemmas.
These lemmas will be of more general utility.

Theorem 4.4 {Sequential compaosition)

Ui[aabl—’P,f-‘o];v:[On,b:—’q,c]E;v:[a,(h—vp}c]

O tg— g
Proof:
RHS
2 {Lemma 4.2(Sequential composition)}
ilo s pa vl (g B2
3 {Lemma 4.3(Fliminate guarded command}}
LHS
]

The following lemma shows how to eliminate a conditional command when its branches
are normal form programs with identical components, except for the initial state. The
first action to be executed in the resulting normal form program determines which of the
original initial states should be activated.

4.2 Normal Form Reduction 54

Lemma 4.4 (Conditional)
If v is not free in b then

vifa, R,ejdbi>v:[ay H,c} C v:la, R, €]

where R = (
Proof:

a—>(v:€adbbv:€a)
D bh—p

RHS
= {{* — O uafold}(3.17.3)}
decvev:ice (r€Eaqydbbroi€a); (aVh)*R; ¢
= {{;— 4 b left dist}{3.14.6)}
decvev:ica; ({(v:€a; (aVh)eh; 6,)dbb(v:€ay (aVh)sh c))
= {{:€ — < b right dist)(3.16.6) and {dec — 4 I> dist}(3.18.10)}
(decvev:ica; vi€a; (aVh)sR)b
(decvev:€Ca; vi€ag (aVh)«Hcp)
{{dec— :€ initial value)(3.18.5)}
LHS

1

The above Jemma is useful for intermediate calculations, It is used in the proof of the
normal form reduction of conditional and iteration commands.

Theorem 4.5 (Conditional)
If v does not occur in b then

vifa, by 2 p,a]dbbrv:ifag, ba— g ¢ T v:ifa, Rl
a—{r:€ad4bbv:€a)
where B= |0 b —»pQ g —srviEc

m} b, — g
Praoof:

RHS

{Lemma. 4.4(Conditional)}

vilay, B, c]dbbv:fa R,]

{Lemmas 4.2(Sequential composition) and 4.3(Eliminate guarded command)}
(vila, hopalivifag,a—v€cc)abbr:[a by
{Theorem 4.2(Skip) and {; —skip unit}(3.3.1)}

LHS

W

u

[m]

4.2 Normal Form Reduction 55

The next lemma establishes a pimple fact: if the unique effect of the first guarded command
to be executed is to make a certain expression true, we may substitute the expression for
the initial siate of the normal form program.

Lemma 4.5 (Void inijtial state)

B At NN A ST

o b — P o b— P
Proof:
LHS
= {{» — O unfold}(3.17.3)}
decve vi€ ey vi€a (oVb)» (D ?:; € a); <y
3 {(dec~ :€ initial value}{3.18.5)}
RHS
|

In order to reduce an iteration command, we assume that its body is in normal form. Let
ay and ¢ be the initial and final states of this normal form program. The normal form
of the whole iteration behaves as follows. The first action to be executed is a conditional
command which tests if the condition of the iteration holds, in which case a4 is activated;
otherwise, the prograrm reaches its final state. When ¢ is activated, the guard of the firat
action is activated so that the conditiopal command is executed again,

Theorem 4.6 (Iteration)
If v does not occur in b then

bev:lag, by = p,c0) C v:[a, R, ¢}

e (r:€egabbo:ec)

where R= |0 ¢ —=v:i€a
O b—p

Proof:
RHS
{Lemma 4.4(Conditional)}
v:lag, R, e]labtv:c, R, ¢}
{Lemma 4.2(Sequential composition} and Theorem 4.1(Skip)}
v:fas, b= p, i v, R, c] b D skip
{Lemma 4.5(Void initial state}}
(: a0, by = p, cal; RHS) < b B skip

The final result follows from the above and {u least fixed point)(3.8.2). @

|8}

[}

1

http:poinl}(3.8.2).�

4.3 The Target Machine 56

The nondeterministic choice of two programs can be implemented by either of them. We
can actually eliminate the choice at the source level, and avoid compiling oae of the
components.

Theorem 4.7 (Nondeterminism)

(1) pNlq) C p
(2) (pNg) C ¢

Proof: From (C - glb)(3.6.7). m

4.3 The Target Machine

The compiler we design in the nexi three sections produces code for a simple target
machine which consists of four components:

a sequential register (program counter)
a general purpose register

a store for variables (RAM)

a store for instructions (ROM)

3 Z» T

The idea is to regard the machine components as program variables and design the in-
structions as assignments that update the machine state.

P and A will be represented by single variables. Although we do not deal with types
explicitly, P will be assigned integer expressions, standing for locations in ROM. A will be
treated as an ordinary source variable; it will play an iinportant role in the decomposition
of expressions, which is the suhject of the next section. M will be modelled as a map frem
addresses of locations in RAM to expressions denoting the corresponding values, and m
as a map from addresses of locations in ROM to instructions.

In order to model M and m, we need to extend our language tc allow map variables. We
use the following operators on maps:

{z + ¢} Singleton map
™My U my union

m; P my overriding
m(z] application

Furthermore, we use the following abhreviations:

def
{Z, oy zars ey, 6} = (mes U U{z, s e}
de}
mzy,..., 8] = mnl,...,mz]
In the first case we assume that no variable appears more than once in the list zy,.. ., 2,.

One of the greatest advantages of algebra is abstraction. All the laws of our language are
unaffected by this extension, In particular, the laws of assignment and declaration can be

http:glb)(3.6.7).�

4.4 Simplification of Expressions 57

readily used to manipulate map variables and expressions, and no additional laws turn
out to be necessary. For example, we can combine the two assignments

mi=m@{z—o e, m=md{y— [}
by using Law {;= combination}(3.15.4), resulting in
mi=m@{z— e}l B{y— f}
Similarly,
m:=m@{z+se}; endm
is equivalent to (from Law {end— := final value){3.19.5)}
end m
The instructions of our simple machine are defined below. We assume that n stands for
an address in RAM and k for an address in ROM.
foad(n) & A,P:=M[na],P+1,
store(n) = M,P:= (M@ {n—A}),P+1
bop—A(n) ¥ A,P:=(AhopM[n]),P+1
uop—A = A P:=(uopA),P+1
jump(k) ¥ Pu=k
gump(k) ¥ P=(P+14ADE)

where
z:=(a14bpbe) o (g=a<dbbzi=e)
and, as before, bop and uop stand for arbitrary binary and unary operators, respectively.

The normal form describing the behaviour of this machipe is an iterated execution of
instructions takem from the store m at location P:

decP,AwPi=3g (s<P<f)+miP]; (P=f)

where g is the intended start address of code and f the finish address. The aim of the
following sections is to show how an arbitrary source program can be reduced to this form.

4.4 Simplification of Expressions

One of the tasks involved in the translation process is the elimination of nested expressions.
The outcome of this phase is a program where each assignment is simple (see definition
below). Furthermore, all the local variables are expanded to widest scope, so that they
can be implemented as global variables. Of course, this is valid only in the sbsence of
recursion, and it requires that all local variables have distinct names, which must also be
different f[rom the names used for global variables.

4.4 Simplification of Expressions 58

Definition 4.2 (Simple assignment)
An assigument is simple if it has one of the forms

A=z
z:=A
A:=Abopz
A:=uophA

where z is a source variable. &

These patteros are closely related to the ones used to define the instructions. For example,
the first one will eventually turn into a load instruction: the variable P will appear as a
result of the control elirnination phase, and z will be replaced by its memory location as
a result of the change of data representation.

In the remainder of this section we will show how to simplify expressions by using the
register variable A and new local variables. We assume that z is a single variable and e
a single expression, rather than arhjtrary lists.

The first rule transforma an assignment into a block that introduces A as a local variable.

Rule 4.1 (Introduce A}
If A doesnot occur in 2z := ¢

(z:=¢) = decAsA:=¢; z:=A
Proof: From the laws to combine assignment and eliminate local variables. m

Note that the assignment z := A is already simple. By transforming all the assignments
in this way, we need only simplify expressiona assigned to A. The next rule deals with
unary operators.

Rule 4.2 (Unary operator)
(A:=uope) = (A:=¢; A:=uopd)
Proof: From the law to comhine assignments. @

Observe that the second assignment on the right-hand side of the above equation is simple.
To deal with binary operators we need to introduce a fresh local variable £, It plays the
role of a temporary variable that holds the value of a subexpression.

Rule 4.3 (Binary operator)
If neither A nor ¢ occur in e or f

(A:=cbopf) = decteA:i=f, t:=A A:=¢; A:=Abopt

4.4 Simplification of Expressions 59

Proof:

RHS

= {{:= combination)(3.15.4) and (:= identity}(3.15.2)}
dectoA:=f; t:=f; A:=ebopt

= {{i= combination}(3.15.4) and (:= identity}(3.15.2)}
decto A:=f; Ar=cbopf; i :=f

= {(:= combination)(3.15.4), {dec— := finai value)(3.18.6) and
{dec elim}(3.18.3)}
LHS

Again, the only expressions that may still need to be simplified (¢ and f) are both assigned
to the variable A. An exhaustive application of the above rules will simplify arbitrarily
nested expressions, turning every assignment into a simple one.

When the expression f above is a variable, it is unnecessary to create a temporary variable
to hold its value. The following is an optimisation of the previous rule for this particular
case.

Rule 4.4 (Binary operator — optimisation)
If A does not occur in e or =

(A:=ebopz} = (A:=¢; A:=Abopz)
Proof: From the law to combine assignments. 8

The boolean expressions appearing in iteration and conditional commands may alsa be

arbitrarily nested, and therefore need to be simplified.

Rule 4.5 (Condition of iteration)
If neither A nor v occur in b

be(decv,Aep) C decv,AvA:=1b Ax(p; A:=1)
Proof:

RHS

= {{u fixed point){3.8.1)}
deco, AeA:=b; ((p; Ar=b; Ax(p; A:=10)) 4 b > skip)

= {{t= — 4 b right dist}(3.15.7}, {dec — 4 b dist}(3.18.10} and
{dec elim}(3.18.3)}
(deco,AwA:=b; p; A= b; Ax(p; A:=b)) d b I>skip

2 {(dec—; dist){3.18.8) and {dec— := initial value)(3.18.5)}
((deco,A o p); RHS) 4 b b skip

The result follows from {u least fixed point)(3.8.2). &

http:point)(3.8.2).�

4.5 Contrgl Elimination 60

The local variable A on the lefi-band side of the above inequation is a result of the simpli-
fication of assignments in p. Likewise, v may be an arhitrary list of temporary variables
created to simplify boolean operators or originally introduced by the programmer. By
moving these declarations out of the body of the iteration, we avoid nested declarations
of the variable A. The expression b can now he simplified using the previous theorems.

in a similar way, we can simplify the boolean expressions of conditional statements.

Rule 4.8 (Condition of conditional)
Il neither vnor 4 occurin b

(decv,Aep)a bt>{decv,Awg) C decr,AsA:=5 (pdAt>gq)

Proof: Similar to the one above. M
The [ollowing theorem summarises the outcome of this phase of compilation.

Theorem 4.8 (Expression simplification)
For an arbitrary source program p, there is a program ¢ such that

pCdecv,Aeg

where ¢ contains no local declarations, all assignments in ¢ are simple and the only
boolean condition in g is the variable A.
Proof: By stractural induction using rules 4.1-4.6, together with the following laws:

e {;—dec dist)(3.18.7, 3.18.8)
This is used to increase the scope of the local variables as much as possible.

¢ [dec assoc}(3.18.1) and (dec rename)(3.18.4)
The former is used to eliminate nested declarations thal may have been introduced
by the programmer or resulted from the simplification of boolean operators; the
latter is used to rename nested occurrences of variables which were declared with
the same name, so that the nesting can be eliminated.

o {dec elim}{3.18.3)
Rule 4.6 assumes that the Jocal variables of the two hranches of a conditional are
the same. The above law can be used to introduce void declarations to ensure that
this assumption will be satisfied.

4.5 Control Elimination

Recall that the machine considered here is equipped with a register P which is used
lor scheduling the selection and sequencing of instructions, This can be simulated by
regarding P as a variable in the following way:

4.5 Control Elimination 61

¢ Selection is achieved by representing the stored program as a set of guarded com-
mands, each one of the form

(P=k)—gq

meaning that ¢ (standing for some machine instruction) will be executed when P
has value k.

¢ Sequencing is modelled by incrementing P

P:=P+1

¢ A jump to an instruction at memory location k is achieved by the assignment
P:=k

Clearly, the initial value of P must be the address of the lacation of the first instruction
to be executed. These conventions are our basis to transform the nested control structure
of the source program into a single flat iteration which models the execution of a stored
program. The outcome of this section is a simple normal form program.

Definition 4.3 (Simple normal form)
We say that & normal form program is simple if it has the form

P:{(P=3s),8— p,(P=])
where p is a set of guarded commands of the form
O,cics(P= k) — 2, P =g, 4

and b is the union of the guards (P = k), for all ¥ such that s < ¥ < f. Purthermore,
the assignment zi, P := e, d; follows one of the patterns used to define the machipe
instructions, except that the source variables may not yet have been replaced by their
corresponding memory locations (this is addressed in tbe next section). &

Reduction to this simple normal form can be achieved by instantiating the normal form
theorems of Section 4.2, taking into account the particular encoding of coatrol state of
our simple machine. In the following we abbreviate

P:[(P=2s})&— p,(P=)
to
Pils,b— p,f]

The purpose of the first implementation of skip is to generate empty cade: false — skip is
equivalent to T which is the identity of O.

4.5 Contro! Elimination 62

Rule 4.7 (Skip)
skip C P : [s,false — skip, 3]

Rule 4.8 (Skip)
skip C P:[s,(P=s—P:=a+1),s+1)

Rule 4.9 (Assignment)
(z:=¢) C P:[s,(P=s—(z,P:=¢e,P+1)),a+1]

Rule 4.10 (Sequential composition)

(P:ls,by — 2.l (P oy ba = 0.)) C P:[a,(D :::{;),ﬂ

]
Rule 4.11 (Conditional}
(P[8+],b1—’p.fn])dAb{PU:J+1;b2_'q,f]) E P:[sSRhlr]
P=s+P:=(P+1dADf+1)
where R =

a 4h—-pOP=foP:=f
O b;—q

Rule 4.12 (Iteration)

As(P:ls4+ 1,5 —p L) C P:[S‘(UzﬁiﬂP:}u—Tpiskar)),fo+1l

It ja worth observing that the above rules assume the allocation of contiguous addresses
for the stored program. For example, the rule for sequential composition assumes that
the finish address of the normal form program on the left coincides with the start address
of the normal form program on the right.

4.6 Data Refinement 63

Strictly, the above rules cannot be justified only from the reduction theorems of Section
4.2, Some additional (although trivial) transformations are required. As an example, we
present the proof of Rule 4.9.
P:[s,{P=2s5—(z,P:=e,P+1)),54+1)
= {{z= substitution)(3.15.5)}
P:[s,(P=s—(2,Pi=e,5+1)),58+1]
= {{:= combination}(3.15.4) and {:= identity)(3.15.2)}
Pils,(P=s—(z:=e P:i=s+1)),a+]]
= {{:€ — = conversion}(3.16.7)}
P:{s,(P=s—>(z:=e P:6{(P=3s+1))),s+1]
3 {Theorem 4.3(Assignment}}
T:=e
The additional transformations required to prove the other theorems are similar. The
next theorem summarises the outcome of this phase of compilation.

Theorem 4.9 (Control elimination}
Consider a program of the form

decv,Aeyg

where ¢ containe no local declaration, all assignments in g are simple and the only boolean
condition in g is the variable A. Then there is a simple normal form program such that

decv,Aeg € v,AP:[(P=3)b—r(P=f)

Proof: By structural induction using rules 4.74.12, we trapsform g into
P:f(P=s)b—r(P=/)]
The final reault follows from (dec assoc)(3.18.1). w

4.6 Data Refinement

The only task that remains to be addressed is the replacement of the abstract space of
the source program (formed from tbe source variables) hy the concrete state of the target
machine, represented by the store M. As mentioned in Section 3.10, the idea is to define a
gimulation function and use its distnibutivity properties to perform thiz data refinement
in a systematic way.

Suppose that ¥ ia a symbol table which maps each global variable of the source program to
the address of the storage M allocated to hold its value, so M[¥z]" is the location holding
the value of z. Clearly it is necessary to insist that ¥ is a total injection. Assuming that
w is a list formed from the global variables (where each varable in the domain of ¥ occurs
exactly once in w) we define the fallowing encoding program.

'To improve readability we abbreviate the function application ¥{z] to ¥z.

4.6 Datsa Refinement 64

Definition 4.4 (Encoding Program)

Y. ¥ virw; w:=M[Fu); end M

which retrieves the abstract state from the concrete state by assigning to each source
variable the value in the corresponding location. (Recall that we allow list application:
for w = z,...,z the above assignment is equivalent to z,...,2 := M[¥z],... M[¥z])

The following decoding program maps the abstract state to the concrete machine state,

Definition 4.5 (Decoding program)
‘il:‘ ief varM; M:= M@ {¥w — w}; endw
[]

Also recall that for w = z,..., z the above assignment corresponds to
M=Ma{{¥zr—z}U.. . U{¥z+ z})

which updates the memory M at position W with the value currently held by the variable
z, and so on, The first theorem for malises the obvious relationship between ¥, and 'I';l.

Theorem 4.10 ((‘i’.,,‘;’;’)_simula.tion)

The pair of programs (¥,., ¥_!) is a simulation.

Proof:

¥, ¥

{Definitions of ¥., ¥ ! and {end — var simulation}(3.19.6)}

varw; wi=M[¥u); M:= M@ {(Yw— w}; endw

= {{z= combination)(3.15.4) and {:= identity)(3.15.2)}
varw; w,M:=M[¥uw],(M& {¥v — M¥u]}); endw

= {Property of maps (M =M & {¥w » M{¥u]}) and {:= identity}(3.15.2}}
varw; w:= M{¥w]; end w

= {{end — var simulation)(3.19.6) and (end— := final value(3.19.5))}
ship

= {{end — var simulation}{3.19.6) and {end— := final value(3.19.5))}
varM; M:=M @& {¥w — w); end M

= {{:= combination}(3.15.4) and {:= identity}(3.15.2)}
varM; M= M @ {Yv+r w}; w:=MFw); endM

= {{end — var skip}(3.19.7)}
(varM; M:= M@ {¥v — w}; end w); (varw; w:= M[¥w]; end M)

= {Definitions of ¥, , ¥}

2

Il

I

4.6 Data Refinement 65

Recall from Section 3.10 that we use the first component of a simulation as a function.
For example, for a program p we have

Vu(p) = ¥a; p ¥

Here we generalise this particular simulation function to take an expression as argument.
The effect of applying ¥., to ¢ is to replace free occurrences of w in e with the carre
sponding machine locations M[¥ w].

Definition 4.6 (Simulation as substitution)
Bo(e) ¥ e[w — M[Zw]]

In order to carry out the change of data representation in a systematic way, we need to
prove the following distributivity properties.

Rule 4.13 (Piecewise data refinement)

(1) \If o(skip) C skip

(2) W, zi=e) C M:=Ma ¥z ¥, (e)

(3) \I'_,(z =e) L z:= \Il.() if z doea not occur in w
(4) ¥ul(p; 9) C W¥o (p), ¥a(g)

(5) ¥ulp 4b b g) T Wo(p)a ¥u(d) b Fulq)

(6) Wu(bup) T Wu(d)*¥alp)

(1) ¥o(b1) C (Fo(B))s

(8) ¥u(b = p) © ¥o(b) = ¥ulp)

(9) ¥u(p O q) T ¥u(p) O Fo(q)

Proof: (1), (4) and (9) follow directly from the fact that ¥ is a simulation function
(see Theorem 3.4). Below we verify the others.

(2) V. o(z:=¢)

= {Definition of \i',,, and {end change scope)(3.19.2)}

varz,w; z,w:= M[¥z,v]; z :=¢; endM; ‘i‘:l_,
= {{r= combination}(3.15.4), {:= identity)(3.15.2) and

Definition 4.6(Simulation as substitution)}

varz, w; z,w:= ¥, o(e), M[¥w]; end M; 'i"l
C {Definition of ¥;. and {end — var simulation)(3.19.6)}

varg,w; z,w 1= 'I!,_.(e),M[‘l!w]; M:=Ma{¥z,v— z,v), endx, w
= {{:= combination}(3.15.4), {:= identity}{3.15.2} and

{end change scope)(3.19.2)}

Valrz,w; I,w:= ‘i,_.(e),M[\I’w]; endz,w; M:=Ma [¥z =¥, (e))

= {{end- := final value}(3.19.5) and {end — var simulation)(3.19.5)}

4.6 Data Refinement 66

M=M@{¥z— ‘ils.t(e)}
(3) Similar to (2).

) dup<bog)
= {Definition of ¥, and {end — < > right dist)(3.19.3)}
varw; v = M(Ww); ((endM; p) 4 b 1> (endM; ¢)); ¥7!

= {{:= - d b right dist}(3.15.7) and Definition 4.6{Simulation as substituticn)}

varw; ((w:= M[Zw]; endM; p) 4 ¥, (3) b (w := M[u]; end M; g)); B!
= {{var— < t> right dist)(3.10.3) and {;— < 1> left dist)(3.14.6)}
‘iw(P) < ‘i'w(b) b @U(Q)

(8 ¥o(brp)

{Theorem 3.4(Distributivity of simulation through) u}
u X e, ((p; (X)) b b skip)

{(5) and (1)} ‘

B X o (B #51(X) < ¥.(8) 1 skip)

{(4) and Theorem 3.3(Lift of simulation)}

‘i'v(b) * "APW(P)

L}

]

N

(7) Similar to (5).

(8) Recall that (b — p) = (by; p). Therefore the proof follows from {4),(7).
»
The above rule deals with the global variables. But the local variables v (introduced eitber
hy the programmer or during the simplification of expressiona) also require locations to
hold their values duting execution. For simplicity, we assume that all local variables are

distinct, and that they are also different from the global variables. We extend the symbol
table ¥ to cover all the local variables =:

o Y ¥u{vw— n}
where n isa list of addresses distinct from the ones already used by W¥.

The next lemma states that the encoding program ¥, (when followed by a declaration
of the local variables v) can be refined to an encoding program &, , that deals with the
global andthe local variables.

Lemma 48 (Extending the encoding program)

Vo;varv C 6.,.

4.6 Data Refinement 67

Proof:

V,; varv
{{var change scope}(3.19.2), (var assoc)(3.19.1) and
{var— := initial value){3.19.4)}
varp,uw; v :=Mn]; v:= M[¥u]; endM
= {{:= combination)(3.15.4) and {:= identity)(3.15.2)}
varv,w; v,w:= M[n, ¥u]; end M
= {Definition of ¢ and {®v, ¢w) = &(v, w)}
varv,w; ¢, w:= M[®(p, w)]; end M
= {Definition 4.4(Encoding program)}
-

in

]
The decoding program can be extended in an analogous way.

Lemma 4.7 (Extending the decoding program)
endv; ¥7! C L
Proof:

endv; W'
{({end change acope)}(3.19.2), (end assoc)(3.19.1) and
(var— := initial value)(3.19.4)}
vatM; M:=M@g{n o}, Mi=Ma {(¥u— v); endv,w
= {{;= combination}({3.15.4) and Definition of ®}

varM; M= M@ (®(v,v)— v,w}; endv,w
= {Definition 4.5(Decoding program}}

qi,--:

i

Using the above two lemmas we show how to assign locations in the memory N to hold
the values of the local variables v.

Rule 4.14 (Allocating local variables)
Yo (deco,P,Aep) C decP,Aed, . (p)
Proof:
¥ (decv,P,A s p)

4.7 The Compilation Process 68

= {Definition 3.6(Simulation function}}
W, (deco,P A ep); ¥t

= {{dec assoc)(3.18.1) and (dec — (var, end) conversion){3.19.10)}
W,; varv; (decP,A » p); end v; W71

C {Lemmas 4.6 and 4.7}
$..0; (decP,Awp); &7,

= {{;~dec left dist}(3.18.7) and {; —dec right dist}(3.18.7)}
decP,Aed, . (p)

The next theorem summarises the outcome of this phase of compilation.

Theorem 4.11 (Data refinement)
Consider a program of the form

decv,Aeg

where ¢ containe no local declaration, all assignments in g are simple and the only boolean
condition in ¢ is the variable A. Then there is a program r such that

‘i'.,(decv,A eg) C decAer

where r preserves the control structure of g but operates exclusively on the concrete state
represented by M.
Proof: Using Rule 4.14 (Allocating local variables), we transform

$o(decv,A e q)
into
decAw 6,,.,(q)

Then by structural induction using Rule 4.13 (Pjecewise data refinemnent}, we transform
$..(g)intor. m

It i8 worth noting that this theorem does not prevent g from being a normal form pro-
gram. This suggests that we can carry out data refinement either before or after control
refinement. In the latter case, noie that Rule 4.13 (in particular (7),(8) and (9)) covers
the additional operators used to describe a normal formn program.

4.7 The Compilation Process

In principle, there iz no reason for imposing any order on the phases of compilation.
But there are practical considerations which favour some permutations. Ia particular, we

4.7 The Compilation Proceas 69

suggest that the simplification of expressions should be the first phase. Performing data
refinement as a first step would not be appealing, becsuse the simplification of expresaions
normally generates new local variahles. Therefore a second phase of data refinement would
be required to deal specifically with the local declarations.

We have also explored the possibility of carrying out control elimination ag a first step.
It turned out to be necessary to allocate relative addresses to commands of the source
program, and (in the end of the process) to convert them into absoluie addresses. The
standard approach would be to model an address as a pair. For example, the normal form
of an assignment statement ¥ := uop y (where z and y are single variables) would be

P:[(%,0),P = (£,0) = (2 :=wopy; P:=(k +1,0)),(k +1,0)]

As a result of expression simplification, the above guarded command would be transformed
into

P=(k,0) = ((decA e A :=y; A:=uopA; z:=A); P:=(k+1,0))

containing only simple assignments. In a similar way, all the other assignments and
conditions of the source program would be simplified. However, we must eventually end
with a simple normal form program, and there are two remaining tasks. One is to move
the local declarations generated by this process out from the body of the loop; this is
justified by the distribution laws of declaration with the other operators of our language.
The other task is to split the above command into a series of guarded commands (one
for each assignment) and model the sequencing by incrementing the sccond component of
the pair representing a relative address:

P=(k0) A=y P:=(k1)0
P=(k1) — A:=uopA; P:=(k,2) 0
P=(k2 o z:=A; P:=(k+1,0)

This is necessary to ensure that each instruction will be placed in a separate memory
location. Assuming that the relative address (k,0) will eventually turn into the absolute
address j, the above becomes

P=j—AP:=y(P+1)D
P=(+1) = A,P:=(uwpA)(P+1}0O
P=(i+2)—z,P:=A(P+1)

which i8 in the required form. While the conversion from relative to absolute addresses
is in principle a simple process, there is the associated proof obligation to show that
the iteration is not affected by this change of data representation. It seems sensible to
avoided these complications by starting the corupilation process with the simplfication of
expressions.

Once the expreasions are simplified, the order in which data refinement and coptrol elim-
ination are carried out is irrelevant. The following theorem summarises the ompilation
process.

4.7 The Compilation Process 70

Theorem 4.12 (Compilation Process)

Let p be an arbitrary source program. Given a constant s, and a symbol table ¥ which
maps each global variable of p to the address of the memory M allocated to hold its value,
there is a constant / and a sequence of machine mnstructions held ip m between locations
s and J such that

Y,(p) C decP,AeP:=s; (s<P<f)emP]; (P=1)

Proof: From theorems 4.8 (Expression simplification), 4.9 (Control elimination) and 4.11
{Data tefinement), W, (p) is transformed into

decP,AeP:=g; (s <P < f)xp; (P=f)
where pis a guarded command set of the form
D‘S*UPZ k- '

and each g is an assignment which corresponds to one of the patterns used ta define
the machine instructions. This guarded command set is an abstract representation of the
memory m, whose contents are affected by the compilation process as follows:

mkl = @, fors<k<f

and the value of m outside the range s..(f — 1) is arbitrary. This last step corresponds to
the actual loading process. m

A more detailed description of how the reduction theorems can be used as rewrite rules
to carry out compilation is given in Chapter 6, which deals with the mechanisation of
compilation and proofs,

Chapter 5

Procedures, Recursion and
Parameters

The main characteristic of intelligent thinking is that
one is willing and able to study in depth an aspect of
one’s subject matter in isolation {...}
Such separation, even if not perfectly possible, is yet the
only available technique for effective ordering of one’s
thoughts.

—E. W. Dijkstra

In this chapter we extend the source language with more elaborate notions: protedures,
recursion and parameters. We show how each of these can be eliminated through reduction
to normal form; but we leave open the choice of a target machine to implement them.

Most practical programming languages group these notions into a single construction
which allows parameterised recursive procedures. Here we follow Hoare [40], Morgan [54]
and Back [4], and treat them separately—both syntactically and semantically. Existing
practice is in most cases realised by appropriate combinations of these features; but the
separation gives more freedom and elegance, and helps to simplify the overall task.

5.1 Notation

In order to prove the correciness of the elimination rule for recursion, we need to extend
our language with sequence variables together with some usual operations. By convention,
a variable name decorated with _ denotes a sequence variable. The following operators

71

5.1 Notation 72

are used:
0 the empty sequence
{z) the singleton sequence with element z
z ~ Yy the concatenation of ¥ and ¥
head Z the leftmost element of

hst ¥ the rightmost element of #

fiont z the sequence which results from removing the last element of z
tail the sequence which results from removing the head element of z
#z the number of elements of T

The result of head, last, front and tail, when applied to empty sequences, is arbitrary,
Seme familiar laws of sequences are reviewed below.

Law 5.1.1 {laws of sequences)
(1) head{(z) ~ 2) = 7 = last(z ~ {z})
(2) fron(z —~ (z)) = % = tail({z} —~ z)
(3) If is non-empty then
({head 7} —~ tail) = z = (front T ~ (last 7))

Although the notion of sequences is necessary in the intermediate steps of our proof, the
elimination rule for recursion mentions only patterns which can be implemented by stack

operations. To emphasise this point we define the following:

Definition 5.1 (Stack operations)

push(z,) o (z:={z) ~ T)
popiz,Z) o (z,z := head 7,tail Z)
empty 2 2 (z=()

m

For a list of variables z = ,,...,z, we use the abbreviations
push(z, T} £ push(z. %); ...; push{z,,Z.)
pop(z,z) ¥ pop(z,7); ...; pop(2a. 3,)

From the laws of sequence, it follows that the pair (pop(z, Z), push(z, Z)) i3 a simulation.

Law 5.1.2 pop(z,%); push{z,z) C skip = push{z,2); pop(z,)
(pop — push simulation)

The following law suggests that var and €nd operate on an implicit stack that can be made
explicit by wsing push and pop.

5.2 Procedures 7

Law 5.1.3 If 7 is not free in p or ¢, then
decz o p[X +varz; ¢; endz] C decz,z # p[X « push(z, 2); ¢; pop(z,)]
{(var,end) — (push, pop) conversion}

Recall that p[X +« r] is the result of substituting » for every free occurrence of X in p,
where capture of free identifiers of r ia avoided by renaming local declarations in p. The
inequality in the above law is a consequence of the fact that push(z, 7) leaves z unchanged,
while var z assigns an arbitrary value to z.

5.2 Procedures

We use the notation
prc X = pe g

to declare a non-recursive, parameterless procedure named X with hody p. The program ¢
following the symbol e is the scope of the procedure. Qccurrences of X in g areinterpreted
as call commands. The semantics of a call is textual suhstitution, like the copy rule of

Algol 60.
Definition §.3 (Procedures)
(proc X 2 peg) ¥ g[X « p]

Notice that the above definition could be used a3 a rewrite rule to eliminate procedures
even prior to tbe reduction of the procedure body and scope to normal form; this tech-
nique 18 known as macro-ezpansion, But this may suhstantially increase the size of the
target code if the scope of the procedure contains a large number of call statements. An
alternative is to compile the procedure body and calls into separate segments of code so
that, during execution of a procedure call, control passes hack and forth hetween these
segments in & manner that simulates the copy rule.

As usual, the idea is to assume that the components of the procedure construction (the
body and tbe scope) are in normal form, as in

h—(X; v:en)
o ...
proc X = v:[ag, b — p, co]®w:[a,] o ba = (X; ©:€ 1) »]
O b—g

where the scope of the procedure may bave an arbitrary number of call commands still to
be eliminated; each r; stands for the return address of the corresponding call, The guarded

5.2 Procedures T4

command b — ¢ stands for the remaining part of the code which does not contain any
calls of procedure X. By definition, the above is equivalent to

b= (v:fa, oo p, @) v:€n)
o ...

O b —(v:fa, —p e vien))
a b—g

el

v:[a,

Therefore the reduction rule for procedures is a special case of a theorem about removal
of nested normal form. We adopt a standard strategy, keeping a single copy of the code of
the procedure body. Whenever any of the conditions by,..., b, is true, the corresponding
return address is saved in a fresh variable, say w, and the start address of the code of the
procedure body is assigned to the control variables v. On exit from the execution of the
procedure body, the value of w is copied hack into o. For this to be valid, it is necessary
that each r; is not changed by the procedure body (that is, no free variable in any r; is
assigned by the procedure body). But this is not a serious limitaticn, since in practice
the free variables of r; are the control variables v, and these are local to the normal form
program which implements the procedure body. The following theorem formalises the
overall sirategy.

Theorem 5.1 (Nested normal form)
If w is pot free on the left-hand side of the {ollowing inequation, and r; is not changed
by v: |a, b — p, c], then
by — (v:[ag, by — p, s v:€ M)
w]

O ba—(v:[a, b—p, cfi viEr)
] b—bq

v:[a, s €

C
v,w:la, T, ¢]

by — (v :€ v — w); v:€ a)

a ...

where T=| O b, —+ (w:€ .o« w]; v :€ ap)
w]
a

Proof: First we show how each copy ol the procedure body can be recovered by per-
forming symbolic execution on the right-hand side of the above inequation. Let r; stand
for any of the return addresses ry,...,m,and d=(h V...V b Vo V by ¥V 3).

(1) wi€ rijv - w); v:€ ey dx T

{(s sequence}(3.17.7) and {* — O elim}(3.17.4)}
w: € rifv e v; v:€ a; brp;deT

{coL C skip and {*— O unfold}(3.17.3)}

wiE v~ wl; v:€ay byxp; oy 0i=w; dx T

L]

5.3 Recursion 75

{{dec introduction)(3.19.11) and Definition 4.1(Normal form)}
wi€ rifv —u]; vifeo, b pco); vi=w; I+ T

l

3 {w:€ rifr — v] commutes with v : [eq, By — p, o] (3.16.9)}
vilag, oo p,) viETi[re—w]; vi=w; ds T
3 {{:€ refined by :=}(3.16.8)}

(2) vilag, o= p, o wiER[v—w); viEr; ds T
Then we have:

RHS
{{* replace guarded command}(3.17.5) and (1) 2 (2)}

b — (v:[ao, bo — Py o); w:€ n[v +— w); viEn)
o ...
vyo:fa, | O b —(v:ag, b= p,)i wi€En[v e w]; vier) |
O ¢g—vi=w
O b—>pOb—og
{Lemma 4.3(Eliminate guarded command)}

b — (v:fa, by — P, cofs wi€ nfv — w]; viEn)
o o...
O b, — (v:[ag, b = p, co]; w:€ rafv « w]; v:€ i)
\O b—g
{{dec — # dist}(3.18.11) and {dec elim)(3.18.3)}

b — (v:{ap, bo— p, co); (decw e wic nfve— wl); rEn)

]

1L

v,w: [a,) €]

]

o ...
v:ia, 0 b —(vife,b—p, o) (decuosuv:enfe—ul);ver) | °l
O b—ogq
2 {(dec— :& final value}(3.18.6) and {dec elim}(3.18.3)}
LHS

5.3 Recursion

We have already introduced the notation
pXep

which defines a recursive, parameterless program named X with body p. Unlike a pro-
cedure, a recursive program cannot be called from ouiside its body: only recursive calls
are allowed, Occurrences of X in p are interpreted as recursive calla. The senantics of
recursion is given by fixed point laws (see Section 3.8).

5.3 Recursion 6

Before giving the reduction rule for recursive programs, we introduce some abbreviationa
which will help in structuring the proof. The lefi-hand side of the reduction rule is a
recursive program of the form

LHS = px.,,:[am(m :0—;(:; u:er))’q}]

where its body is in normal form, except for the recursive calls. For conciseness, we
assume that there ia only one call to be eliminated (no free occurrence of X in p); the
theorem is easily generalised for an arbitrary number of calls, as in the case of procedures.

The recursive definition can be eliminated by reducing tbhe above to
MID = v,%:[ap Aempty®, S, ¢ A empty 7]

b — (v :€ r; push(v, 3); v:€ ay)
where S = | O (e A —empty8) — pop{v,)
a bn —p

Aa in the previous section, a call is implemented by saving the return address before control
is transferted; this address is then used to resume control. In the case of procedures, a
local variable was used for this purpose, but for recursive calls we need the notion of a
stack. By assuming that the stack is empty initially, we can distinguish between the exit
from a recursive call of the program and the end of its execution. In the former case, the
condition ¢g is true, but the stack is not yet empty; then control is resumed by popping
the stack and assigning the popped value te v. The exit condition of the entire program
is ¢y A empty ©.

Although our emphasis is on the control structure of the program, note that v may be an

arbitrary list of variables, possibly including data variables declared by the programmer.
The overall task is simplified by not distinguishing between these two kinds of variable.

An altermnative implementation of LHS is given by the program:

RHS = o0,0:(a Aemptyd, T, ¢ A empty)

a — (v :€ ¢; push{v,5); v :€ ap)
O b — (v:€r; push(v,B); v:€ ag)
0O e — pop(v, D)
0O b—p
Its first aclion is to push onto the stack a value which satisfies the condition ¢, an exit
condition for the loop associated with the above normal form program. In this way we
enaure that, whenever ¢ is true, the stack is non-empty, since the last value to be popped
satisfies a termination condition of the loop. The advantage of this iinplementation is
that it avoids the use of the condition —empty & as part of a guard. Therefore RHS is
more suitable for a low-level implementation.

A convenient way to prove LHS T RHS is to show that LHS T MID and that MID C
RAS. We use the following lemmas.

5.3 Recursion 77

Lemma 5.1 {Symbolic execution of §) Let d = (b V (g A ~empty B) V bg).
07, d«S I (empty®)y; MID; v:cr; d% 8

Lemma 5.2 (Symbolic execution of T') Let d = (a VbV gV &).
a; deT 3 (empty®)y; MID; v€c; dx T

The proof of Lemma 5.1 is given in Appendix B. The proof of Lemma 5.2 iz similar. The
reduction theorem for recursive programs can now be proved.

Theorem 5.2 (Recursion)
Let LHS, MID and RHS be as defined above. If X is not free in p, and © occurs only
where explicitly shown, then LHS T RHS.

Proof:
(LHS T MID)
MID
3 {{* replaee guarded command}(3.17.5), Lemma 5.1{Symbalic execution of 5)}
b— (empty ¥),; MID; v r
v,7: [(ao Aempty o), | O (cp A ~empty B) — pop(w, %) |, (e A empty %))
O bh—p
J {Lemma 4.3(Eliminate guarded command)}
v, %1 [(ao A empty 7) b (empty B).; MID; vi€ 1) (0 empty)]
8 {0 Aempty @), { o , pty
3 {{b. — b" simulation)(3.11.10)}
b —+ (empty)7; (empty 3).; MID; v:€ r; (empty),
¢ [aa, (D bu Sy » o]
a3 {4 = b7 and (b7; p commute)(3.11.11)}
b—i (MID; v:€ r; (empty ¥)7; (empty 5), 1
O &h—p h %
3 {b"; by = b7 3 skip and {dec elim)(3.18.3)}

v:[am(u zo:(:flp v€r)) l

From the above and {p least fixed point}(3.8.2), it follows that LHS T MID.

5.4 Parameterised Programs 78

(MID C RHS)

RHS

{{* replace guarded command}{3.17.5), Lemma 5.2(Symbolic execution of T'}}
a — {empty),; MID; v:€ ¢

QO b—(v:cr; push(v,¥); v:E ap)

D e — pop(v, F)

O s—op

{Lemma 4.3(Eliminate guarded command)}

v, 7:[(a A empty),{a — (empty®),; MID; v :€ ¢}, (¢ A empty $)]

{{by — b7 gimulation)(3.11.10)}

v, %:Ja,(a — (empty®)7; (empty&).; MID; v :€ ¢; (empty 5).), o]

2 {38, = 57 and (b7} p commute}(3.11.11)}

v,%:[a,{a - (MID; v:€c; (empty®)"; (empty §}.),]

{(67; b, = b7 2 skip and (dec elim)(3.18.3)}

v:(a,(a > (MID; v:€ ¢), €]

{Lemma 4.1(Primitive commands)}

MID

i

v,0: [(a A empty 1), , (¢ A empty 7))

L

L

(]

i

5.4 Parameterised Programs

Here we show that parameterisation can be treated in complete isolation from procedures.
Let p be a program and z a variable. Then

parze p

is a parameterised program, where par stands for some parameter transmission mech-
anism; here we will deal with value-result {valres), value {val}, result (res) and name
parameters. The latter kind is restricted so that the actual parameter must be a variable
and no gliesing must occur; in this case we can prove that parameterisation by name
and by value-result have the same effect. Although we do not address parameterisation
by reference explicitly, it coincides with parameterisation by name when variables (rather
than arbitrary expressions) are used as argumeata.

We adopt the conventional notation of function application for the instantiation of a
parameterised program. The effect of an instantiation varies according to the type of
parameterisation. The definitions are given below. In all cases, z must be a fresh variable,
occurring only where explicitly shown.

Definition 5.3 (Value-result parameters)

(valresz o p)(y) Y decrez:= viple—zliyi==

5.4 Parameterised Programs 70

¥ 5

— — x = +!

- =

- £ \
Definition 5.4 (Value parameters) ;V‘-(, . i,) e_)

(valz o p)(e) ¥ deczozi=e¢; plz + 2] .‘

k .= .

B —_ :iAL =z - L:= €)
Definition 5.5 (Result parameters) Z:x z+l

(resz » p)(y) « deczeplzez); yi==z

] e SK\ P

Definition 5.8 (Name parameters)
If y is not free in p, then

(namez e p)(y) ¥ plz ~ 4]

These definitions are reaconably standard. They appear, for example, in {4, 54, 60}, In
[4] the notion of refinement ie generalised for parameterised statements

Let P=parz e pand @ = parz e q. Then
PCQ Y PU)C Q) for all valid arguments ¢

and it is shown that the crucial property of monotonicity with respect to refinement is
retained by the new constructs:

(1) pE ¢ = parzep L parzeg
(2) Let P and @ be parameterised programs. Then, for any valid argument ¢
PC Q= PC Q)

For name parameters, this result is not true in general. The instantiation may lead to
aliasing, in which case monotonicity is lost. This is why we need the condition attached
to Definition 5.6.

Multiple parameterisation of a particular kind can be achieved by allowing programs to
be parameterised by lists of variables. The corresponding instantiations are similarly ex-
tended to allow lists of arguments. In this case, the two lists must be of equal length
and the association between parameters and arguments is positional. Notice that we
do not need to change the previcus definitions, as our language allows multiple declara-
tion and multiple assignment, and we have already introduced the notation for multiple
substitution. For example,

4
(reszi, 2 0 p)(y, wa) ¥ decn,zmepla, = 2, 3] 1,0 = 20n

5.4 Parameterised Programs 80

However, except for call by value, an extra restriction must be observed: the list of
actuals must be disjoint. For example, in the above case this is necessary to ensyre that
the multiple assignment g, 3 := 71, 5 is defined.

Multiple parameterisation of (possibly) different kinds can be achieved by combining the
effects of the related definitions. In this case we use a semicolon to separate the parameter
declarations. As an example we have

de)
falzy; resz; o p)e,y) & decn,z ez = plo,z e 2, 5) yi= 5

In the remainder of this chapter we will confine our attention to single parameterisatior,
but the results can be easily extended to multiple parameterisation.

Definitions 5.3-5.6 above could be used directly as elimination rules for parameter pass-
ing. However, this would not allow sharing the code of a parameterised program when
instantiasted with distinet argurpents. Thie i3 a consequence of the renaming of variables
on the right-hand sides of these definitions. Below we show how to avoid the renaming.
This will need the following lemma.

Lemma 5.3 (Data refinement as substitution)

let® ¥ varz; z ;= y; endy and ©! &f vary; y:= z; endz. Then we have:
(1) (8,07) is a simulation.

{2) If y i not free in p, then B(p) = plz — y)

(Recall that ©(p) = ©; p; 87'.)

Proof: ..

(1) Similar to the proof that (¥,%') is a simulation (see Theocem 4.10).

(2) By structural induction as in Theorem 4.13 (Piecewise data refinement). In this case
we have an equation, rather than an inequation, because 87! is the ezact inverse of O,
and vice versa. Formally, ©; 8~! = skip = 8-, 6. =

Then we have the following elimination rules for parameter passing.

Theorem 5.3 (Elimination of value-result parameters)
If £ and y are distinct, then

{valrsz o p)(y) = varz; z:=y; p; y:=z; endz
Proof:

LHS
= {Definition 5.3(Value — result parameters)}

deczwzi=y plz—z|; y:=z
= {Lemma 5.3(Data refinement as substitution)}

deczez:=y; varz; z:= 2, endz; p; varz; z:=1z;, endz; y:=z
= {{end change scope)(3.19.2) and {end — var skip}(3.19.7)}

5.4 Parameterised Programs 81

deczez:=y, varz; z:=z; p;, z:=z; endz; y =z
= {(end change scope}(3.19.2), {var change scope}(3.19.2) and
(:= combination)(3.15.4)}
varz;deczez:=y =y piyi=z;endz; z:=y
= {{dec— := final value}(3.18.6) and (; —dec left dist)(3.18.7)}
varz; (deczez:i=y); z:=y; p; yi=1z; endz
= {{dec— := final value}(3.18.6) and (dec elim})(3.18.3)}
RHS
[]
Theorem 5.4 {Elimination of value parameters)
If z and y are distinct and z does not occur in ¢, then
(valz @ p){e) = varz; z:=e; p; endz
Proof: Similar to Theorem 5.3. m
Theorem 5.5 {Elimination of result parameters)
If z and y are distinct, then
(resz e p)(y) = varz; p; y:=1z; endz
Proof: Similar to Theorem 5.3. m
A mechanism to implement name (or reference) parameters by allowing sharing of code
requires an explicit account of variable addresses and is not treated here. But the following

theorem establishes that, in the absence of aliasing, parameterisation by name is identical
to parameterisation by value-result.

Theorem 5.8 (Equivalence of name and value-result parameters}
If r and y are distinct, and y is not free in p, then

(namez o p)(y) = (valresz ¢ p)(y)

Proof:
RHS
= {Theorem 5.3(Elimination of value — result parameters)}
varz; zi=y; p; yi=1=z endz
= {{end — var skip}(3.19.7) and (end change scope){3.19.2)}
varz; z:=y; endy; p; vary; y:=z; endz
= {Lemma 5.3(Data refinement as substitution)}
LHS
]

It should be clear that the conditions on the above theorems impose no practical limita-
tions; they can be automatically satisfied by using locally declared variables as arguments.

5.5 Parameterised Procedures 82

5.5 Parameterised Procedures

As a consequence of the results in the previous section, we can treat a parameterised
procedure in the same way as a parameterless one. The same wotation is used

ptoc X = (parzespleg

except that now the body is a parameterised program (by any of the mechanisms discussed
above) and all oocurrences of X in ¢ are of the form X(i), for some appropriate actual
parameter £,

This allows the meaning of a parameterised procedure to be given by the copy rule, as
before. Therefore the above is equivalent to

g[X + (perz e p)]

This textual substitution could be used to eliminate parameterised procedures by macro-
expansion. Sharing the code of the procedure body can be achieved by transforming e
parameterised procedure into a parameterless one, and then wsing the reduction theorem
for parameterless procedures (Theorem 5.2). Another source of optimisation is the sharing
of local variables used to eliminate parameterisation. This ia established by the following
lemma.

Lemma 5.4 (Sharing of local variables)
If = is not free in p, then

plX — (varz; q; endz)] T varz; plX + g]; endz

Proof: By structural induction, using the distribution laws of var and end with the other
program construcis. M

Then we have the following elimination rule for parameterised procedures, (We use value-
result parameters as illustration; the rules for the other parameterisation mechanisms are
similar.)

Theorem 5.7 (Value-result parameters of procedures)
If z is not free in g, then

proc X & (valresz e p)eg L dec ze(proc X = pegX — (valres'z o X))
where

(vahs'z o p)(y) & 2=y pyyi==2

Proof:
Let ¢’ be such that

(1)? = q'[Yl,_._,Yn '—X(!ﬂ)----ax(y-)l

5.6 Parameterised Recursion 83

and ¢’ containa no calls of procedure X. Clearly, for all ¢ it is always possible to find a
¢’ that satisfies the above equation. Then we have:

LHS
= {Definition of procedures and (1)}

¢[Y,..., Yn e (valresz o p)(11),...,(valres 2 & p)(3)]
= {Theorem 5.3(Elimination of value — result parameters)}
d[Vi,....¥Yn—(varz; 2:=3; p; hi=2; endz),...,

(varz; r:= ya; p; ya :=1; endz)]

{Lemma 5.4(Sharing of local variables) and
{dec — (var, end) conversion}(3.19.10}}
deczo [V, ¥ne{z:=mp; g ni=2),...,(2 =t} P} th:=1)
= {property of substitution and (1)}

I

decz o g[X - (valres'z o p)]
= {Definition of procedures}
RHS

5.6 Parameterised Recursion

The notation for a parameterised recursive program X is the same as before, except
that now its body is a parameterised program and all the recursive calls are of the form
X (1), for some appropriate actual parameter {. The meaning of a parameterised recursive
program is given by

Definition 5.7 (Parameterised recursion)

pXo(parzep) ¥ parze(uXep[X « (parz e X))

The initial value of the formal parameter z is given by a non-recursive call which can be
dealt with in the same way as procedure calls. The local declarations created during the
elimination of the parameterised recursive calls are implemented by a stack. We have the
following elimination rule for value-result parameters of recursive programs.

Theorem 8.8 (Value-result parameters of recursion)
If z # z and 2 is not free in p then

(8 X s(valresz e p)j)(z}) T decz,To
(z:=z; pX o p[X + (valres' 20 X)}; 2:=z)

5.7 Discussion 84

where

(valres'z # p)(y) ¢ push(z,); 2 :=y; p; y:=3; pop(z, %)

Proof: Let p’ be such that
r = §Y — X(y)]

and p' contains no calls of procedure X. (For conciseness we will assume that all the calls
are parameterised by y. Arbitrary calls can be treated as in the previous theorem.) Then
we have:
LHS
= {Theorem 5.3(Elimination of value — result parameters) and (1)}
varz; 2=z, p X o p[Y o (varz; =y X, y:=u; endz)], z:=z; endz
= {{dec — (var,end) conversion}{3.19.10)}
deczo(zi=z; pXop|Y —(varz; =9 X; y:=¢; endz)); 2= 1)
{{{var, end} — (push,pop) conversion}(5.1.3)}
RHS

N

Recall that var and end operate on an implicit stack which can be made explicit by using
push and pop. This fact was used in the last step of the above proof.

5.7 Discussion

The main advantage of handling procedures, recursion and parameters separately is that
the overall task becomes relatively simple and modular. Furthermore this imposes no
practical limitation, since more complex structures can be defined by combining the basic
ones. For example, we have already ijlustrated how parameterised procedures, parame-
terised recumion and multiple parameterisation can be achieved. Recursive procedures
(whether parameterised or not) can also be easily introduced. Consider the procedure
declaration

proc X = pegy

where p and g may respectively contain recursive and non-recursive calls of X, and p may
be a parameterised program. This can be defined as the non-recursive procedure

proc X 2 (uXwp)eg

whose body is a recursive program.

QOne aspect not fully addressed is how the reduction theorems given in this chapter can
be used as compilation rules. Notice that the theorems about parameterisation establish

5.7 Discussion 85

that it can be completely eliminated by transformations at the source level. The imple-
mentation of procedures and recursion requires a more powerful target machine than the
one defined in the previous chapter. Basically, new instructions are necessary to execute
the call and return sequences. These instructions can be defined by the new patierna
which appear in the normal form of procedures and recursion. For procedures, we have
shown that the call and return sequences can be implemented by allocating temporary
variables; for recursion, new instructions to model the basic stack operations are required.

We have allocated a separate stack to implement each recursive program. This not only
simplifies the proof of the elimination of recursion, but will be easential if we decide to
extend our source language with a parallel operator. In the present case of our sequential
language (and for non-nested recursion), the local stacks can be replaced by a global stack.
This ia systematically achieved by the elimination of sequential composition

0,0:[a,b = pycaf; v,5: [e0, b — ¢, €]
C v7:][a, (CI :::2), ¢]

However, in the case of nested recursiop, we still need a separate stack for each level
of nesting (where the declarations at the same level can be shared in the way shown
above). An implementation could use pointers to link the stacks in a chain representing
the nesting; this technique is known as cactus stacks [37]. A single stack implementation
is discussed in the final chapter, where it is suggested as a topic for future work. For a
realistic implement ation, we will need a more concrete representation of these stacks. In
particular, as tbe storage available in any machine is finite, it is necessary to impose a
limit on the size of the stacks.

The compilation of programs now including procedures and recursion (possibly with pa-
rameters) should proceed as follows. As for the simple source language considered in the
previous chapter, the first step is the simplification of expressions. Recall that one result
of this phase of compilation is to extend the scope of local variables a8 much as possible,
so that they can be implemented in the same way as global variables. However, it is not
possible in general to move a local declaration out of a recursive program; rather, as ex-
plained before, it is implemented by a stack. Also recall that for the simplified language,
the order of the remaining two phases (control elimination and data refinement) is not
relevant. However, the reduction theorems for procedures and parameters introduce new
local vaniables for which storage will have to be allocated. Therefore once the expressions
are simplified, it is more sensible to carry out control elimination first and leave data
refinement for the very last step.

Chapter 6

Machine Support

[...] the separation of practical and theoretical work
is artificial and injurious. Much of the practical work
done in computing is unsound and clumsy because peo-
ple who do it do not have a clear understanding of the
fundamental principles underlying their work. Most of
the abstract mathematical and theoretical worl is sterile
because it has no point of contact with real computing.
[- - -] this separation cannot happen.
— C. Strachey

Because of the algebraic nature of this approach to compilation, it is possible to use a term
rewriting system to check the correctness of the reductions. Furthermore, the reduction
theorems can be taken as rewrite rules to carry out the compilation task.

The purpose of this chapter is to show how this can be achieved using the OBJ3 sys-
tem [31]. There are three main activities involved:

¢ The formalisation (specification) of concepts such as the reasoning language, its
algebraic laws, the normal form, the target machine, and so on, as a collection of
theones in OBJI3.

» The verification of the related theorems.

o Compiling with theorems: the reduction theorems are collected together and used
a8 a compiler prototype.

We adopt the well established algebraic approach to specifications. For a formal presen-
tation of the concepts involved we refer the reader to, for example, [24, 27, 75]. Here we
describe some of the main concepts informally.

Broadly, we will consider a specification as consisting of three parts:

® a signature, which comprises a family of sorts (names for carrier sets) and operator
symbols (names for operators) with given functionalities;

86

6.1 0OBJ3 a7

e a set of azioms, given by equations (and inequations) relating the operators of the
signature, and

o a set of theorems, which can be deduced from the axioms.

The idea is to construct specifications incrementally. We start with a specification whose
signature is an abstract syntax for the reasoning langnage, and the axioms are the basic
algebraic laws. The set of theorems is initially empty; it is gradunally built by proving that
new algebraic laws are logical consequences of the basic ones. This iz one way in which
a specification can be eztended. We then proceed extending the specification in a more
general way, adding sorts, operators and axioms (and proving more theorems) to describe
the remaining concepts,

One important aspect not addressed by this strategy is consistency. In particular, how to
ensure that we started with a consistent set of algebraic laws? As discussed in Chapter 3,
we consider this a separate task. A reasonable alternative is to formalise a given model,
such as predicate transformers, and then derive the basic laws, one by one. Tbis is
illustrated in [6], using the HOL syaters {34].

For simplicity, we deal with the material presented in chapters 3 and 4; the normal form
theorems for procedures and recursion are not considered.

Our main concern here is the overall structure of the specification and proof, rather than
a detailed description of all the steps and technicalities of the verification of the theorems
in OBJ3. The specification of most concepts used (together with the complete verification
of some of the main theorems) is given in Appendix C.

6.1 OBJ3

0OBJ3 s the latest in a series of OBJ systems, all based upon first order equational logic. A
detailed description of OBJ3 can be found in [31}. In this section we give a hrief overview
of the system (based on Release 2) and discuss how it supports the strategy presented
above. More specific features are explained when necessary.

OBJ3 is a general-purpose declarative language, especially useful for specification and
prototyping. A specification in OBJ3 is a collection of modules of two kinds: thesries and
objects. A theory has a loose semantics, in the sense that it defines a variety of models.
An object has a light or sfandard semantice; it defines, up to isomorphism, a apecific
model—its initial algebra [30]. For example, we use objects to define abstract data types
such as lists and maps; the reasoning langnage and its algebraic laws are described as a
theory, since we are not concerned with a particular model,

A module (an object or a theory) is the unit of a specification. It comprises a signature
and a set of (possibly conditional) equations—the axioms. The equations are regarded as
rewrite rules and computation is accomplished by term rewriting, in the usual way.

An elaborate notation for defining signatures is provided. As OBJ3 is based upon order
sorted algebra [28], it provides a notion of subsorts which is exiremely convenient in

61 OBJ3 88

practice. For example, by declaring the sort representing variables as a subsort of tbe
one representing expressions, we can use variables hoth on the left and on the right-hand
sides of an assighment statement; no conversion function is needed to turn a variable into
an expression.

A general mizfiz syntax can be used to define operators. In our case, we use names for
operators which coincide with the STEX [51] representation of the desirable mathematical
symbols. This allowed us to use the same notational conventions introduced in easlier
chapters, with the hope that this will make the encoding in OBJ3 more comprehensible.

Moreover, operators may have attributes describing useful properties such as associativity,
commutativity and identity. This makes it possible to document the main properties of a
given operator at the declaration level. As a consequence, the number of equations that
need to be input by the user is considerably reduced in some cases. Most importantly,
OBIJ3 provides rewriting modulo these attributes.

Modules may be parameterised by theories which define the structure and properties
required of an actual parameter for meaningful instantiation. The instantiation of a
generic module requires a view—a mapping from tbe entities in the requirement theory
Lo the corresponding ones in the actual parameter (module). As a simple example, an
object to describe lists of arbitrary elements, say LIST, should be parameterised by a
theory which requires the argument module to have (at least) one sort. In this simple
case, we may inatantiate LIST with a sort, since the view is obvious. Thus, assuming
tbat Var and Exp are sorts representing variables and expressions, we can create the
instances LIST[Var] and LIST(Exp]. A more interesting example is the parameterisation
of the module describing the reasoning language by a theory of expressions; this is further
discussed in the next section.

Apart from mechanisms for defining generic modules and instantiating them, OBJ3 pro-
vides means for modules to import other modules and for combining modules. For ex-
ample, & + B creales a new module which combines the signature and the equations of A
and B. This support is essential for our incremental strategy to specifications.

OBJ3 can also be used as a theorem prover. [n particular, computation is accomplished
by term rewriting which is a widely accepted method of deduction. If the rewrite rules of
the application theory are confluent {or Church-Rosser) and terminating, the exhaustive
application of the rules works as a decision procedure for the theory: the equivalence of
two expressions can always be determined by reducing each one to a norma! form; the
equivalence holds if the two normal forms are the same (syntactically speaking). This
proof mode is normally called aufomatic, and is supported by OBJ3,

In our case, this proof mode is useful to discharge side conditions about noz-freeness and
to perform substitution. Furthermore, once the reduction theorems are proved, this mode
can be used to carry out compilation automatically, since these reduction theorems are
complete in that they allow the reduction of an arbitrary source program to a normal form;
this will be illustrated later in this chapter. Unjortunately, the proof of these tbeorems
cannot be carried out automatically, since there is no dedsion procedure for our algebraic
system i general (that is, including all the algebraic laws listed in Chapter 3). As a

6.2 Struclure of the Specification 89

consequence, automatic term rewriting may fail to decide if two program fragments are
equivalent (the process may even fail to terminate). Therefore there is the need for a
mechanism for applying rules in a controlled way, as we have done in the manual proofs
presented in earlier chapters. OBJ3 supports the slep by step application of rewrite rules
either forwards (from left to right)} or backwards (from right to left).

Proofs in OBJ3 are confined to these two modes. There i no built-in support for proof by
induction or by case analysis of any other kind. But the racst serious limitation concerning
our application is the lack of a mechanism to deal with inequational rewriting. Weencode
inequations as equations whose right-hand sides refine the corresponding left-hand sides,
but as will be discuased later this is far from satisfactory.

Other limitations are related to proof management. OBJ3 does not distinguish between
units of information such as an axiomn, a conjecture and a theorem. Although spesifications
and proofs can be stored in files, the management must be done by the user.

6.2 Structure of the Specification

We use the module facilities of OBJ3J to structyre the specification in such a way that each
concept 8 described by a separate module. Figure 6.1 shows the hierarchy of the main
modules, where an arrow from module A to module B indicates that B imports A. First
we explain part {&) of the figure. The module which describes the reasoning language is
generic with respect to the expression language. This can be elegantly described in OBJ3
by defining a theory of expressions and parameterising the module REASONING-LANGUAGE
with this theory. Then the commands (and their algebraic lawa) can be instantiated with
different expression languages, according to the particular needs.

The module describing the normal form is equally independent of a particular expression
language (and in particular of a way of encoding coutrol state). Clearly, it neads to import
the previous module so that the normal form operator can be defined and the associated
reduction theorems can be proved.

Part (b) of the figure presents the structure of the specification of our simple compiler,
where each phase of compilation is described hy a separate module. It also shows how the
previous modules are instantiated for this application. For example, the modale describing
the simplification of expressions is concerned with the notation of expressiona of the
source language. To reason about this phase of compilation, we instantiate the module
REASONING-LANGUAGE with thie particular kind of expressions. Similarly, the module
concerned with contro] elimination instantiates NORMAL-FORM with the combination (+)
of two kinds of expressions: the expressions of the source language and the ones used to
represent addresses in the memory ROM of our target machine.

The module deacrihing the data refinement phase instantiates REASONING-LANGUAGE with
a complex expression language formed from the two kinds discussed above and (map}
expressions to represent the memory RAM and the symbol table. The compiler ia formed
from the modules describing the three phases of compilation.

6.2 Siructure of the Specification

90

BEASONING-LANGUAGE [X ::

NORMAL-FORN (X :: EIF]

EXP]

(a) Generic Modules

RIFRESSTON-STINPLIFICATION

COMPILER

CONTROL-ELININATION

3

DATA-REFINERENT

BEASONTNG-LANGUAGE [SOURCE] NORMAL-FORN [SGURCE+RON] REASONING-LANGUAGE

[SQURCE+ROM+RAN+SYNTAR]

(b) Structure of the Compiler

Figure 6.1: Structure of the Specification.

6.3 The Reasoning Language 91

Thbe internal structure of these modules is described in the remaining sections, and further
details are given in Appendix C.

6.3 The Reasoning Language

To the previons chapters we dealt with expressions in an informal way; new operators
were introduced as we needed them. For example, to describe the data refinemenl phase
of compilation we used map expressions to model the symbol table and the store of the
target machine; in the control elimination phase we used arithmetic expressions to encode
control state. This was possible because the algebraic laws are independent of a particular
expression language. As mentioned above, this can be captured in OBJJ hy defining a
theory of expressions and parameterising the module describing the reasoning languages
with this theory.

The theory of expressions must include the boolean values with the usual operators. This
is necessary to enable us to describe the algebraic laws of conditional commands. The
boolean expressions (conditions) are described by the following module:

obj COND is

sorts CondVer CondErxp .
subsorts CondVer < CondExp .

op true : -> CondExp .
op false : -> CondExp .
op V. : CondExp CondExp -> CondExp [assoc comm idem id: false} .

op _A_ @ CondExp CondExp -> CondErp [assoc comm idem id: true] .

op —. : CondExp ~> CondExp .
var a : CondExp .

eq true vV a = true .
aq false A a = false .
aq —irue = false .
aq —false = true .

endo

The subsort relation states that boolean expressions may coutain variahles (elements of
sort CondVar). The symbol . which appears in the declaration of the operatars determines
the position of their arguments. The attributes of a given operator are givern inside equare
brackets. For exampile, V is associative, commutative, idempotent and has identity false.
The additional properties of the operators are described by eguations.

The module describing our theory of expressions declares sorts Yar and Exp to represent

6.3 The Reasoning Language 92

arbitrary variables and expressions. The requirement that the expression language must
include boolean expressions is captured by subsort relations, as shown in the following.

th EXP is
protecting COND .

sorts Var Exp .

subsorts Yar < Exp .
subsorta CondVar < Var .
subserts CondExp < Exp .

endth

The module COND is imported using protecting. This mode of importation is used to
state that EXP does not add or identify elements of sorts from COND.

The above theory is then used to parameterise the module which describes the reasoning
language. This means that any actual parameter used for instantiation must be a model
of the above theory. Informally, any particular expression language must be equipped
with (at least) what is stated by the theory EXP. A partial description of the module
describing the operators of the reasoning language is given below.

th REASONING-LANGUAGE[X :: EXP] is

sorts Prog Progld .
subsorts Progld < Prog .

define ListVar is LIST([Var]
define ListExp is LIST[Exp] .

*a+ Source language
op skip : -> Prog .
op-as _:w_ : ListVar LiatExp -> Prog
for x := & if (len x == len o) and (disj x) [prec 52] .
op .;- : Prog Prog -> Prog [asascc prec 56]
op _M_ : Prog Prog -> Prog [assoc comm idem id: T prec 57] .
op _d _ I>_ : Prog CondExp Prog -» Prog (prec 58]
op _#_ : CondExp Prog -» Prog [prec 54]
op dec _ o_ ; ListVar Prog -> Prog [prec 60] .

=33 Additional spacification features
ep L : -> Prog .
op T i -?» Prog .
op .C. : Prog Prog ~» Bool [prec 7¢]
op 4 _ #_ : Progld Prog -»> Prog [prec 53]

e.ndth

6.3 The Reasoning Language 93

The sort Progld declared above stands for program identifiers, used to name recursive
programs. Furthermore, by declaring Progld as a subsort of Prog we can use program
identifiers as call commands. Following the sort declarations, the define clause is nsed
to instantiate of the module LIST (omitted bere) to create lists of variables and lists of
expressions. These are used, for instance, in the declaration of the multiple assignment
command, which is a partial operator! only defined for equal-length lists of variables and
expressions. In addition, the list of variables must be disjoint; no variable may appear
more than once in the list. The declaration of most operator includes an attribute which
determines their precedence. The lower the precedence, the tighter the operator binds.

Some auxiliary operators are needed to implement the concepts of non-freeness, non-
occurrence and substitution. The non-accurrence operator is used to state that a given
identifier does not occur iu a program, not even bound. Their declaration ig given below.

op _\. : LietVar Prog -> Bool [memec] . #¥* non-freaness

op \\. : ListVar Prog -> Bool [mamo] . **¢ pon-occurrence

op-ae _{_<-_]1 : Prog ListVar ListExp ~> Prog w&+ aubstitution
for plx <- €] it (len x *= lem o) and (disj z) [memo]

Notice that the last operator allows multiple substitution, and therefore it has the same
precondition as that of the assignment operator. Overloaded versions of the above oper-
ators (omitted here) deal with expressions.

Especially when using the rewrite rules to carry out compilation, these operators are ap-
plied to the same arguments, over and over again. The number of rewrites is substantially
reduced by giving them the memo atiribute which causes the results of evaluating a term
headed by any of these operators to be saved; thus the evaluation is not repeated if that
term appears again.

These operators are defined in tbe usual way. The complete definition requires a large
number of equations, one to deal with each operator of the language, and therefore is
omitted here. However, the implementation of safe substitution as a set of rewrite rules
deserves some attention, due to tbe need to rename local variables to avoid variable cap-
ture. This is actually an instance of tbe more general problem of creating fresh identifiers
using a formalism with a stateless semantics®. A possible (although cumbersome) solution
18 to pass a (virtually)} infinite list of unique identifiers as parameter. As we never use
substitution in a context which requires renaming, we solve the problem by using the
following conditional equation

cq (dec x o p) [y <- £f1 = (dec z ¢ (ply <~ 11))
if x \\ {y,D

where the condition that x does not occur in the list (y,f) prevents varisble capture.

'In Release 2 of OBJS partiality is only syutactic. Ita semantics iv being impleented [77].
IActuslly, OBJI3 allows builf-in equations which provide direct access to Lisp {and therefore the
possihility of modelling s global state), hut we have avoided the use of this leature.

6.3 The Reasoning Language 94

Another observation regarding these auxiliary operators is that they must be defined
in a context separate from that of the algebraic lawa. Their equations entail syntactic
transformations, whereas the laws express semantic properties. While a formal distinction
between the syntactic and the semantic natures of programs is necessary in principle, it
would require the explicit definition of some kind of semantic function which would make
the mechanisation extremely laborious. We avoid a formal distinction between these
two views of programs by defining the equations of the auxiliary operators in a sepasate
module. As OBJ3 allows one to specify the context for a given reduction, we can ensure
that syntactic and semantic transformations are never intermixed.

The algebraic laws are described as labelled equations, The labels are used in the venfica-
tion phase as references to the equations. We use the same name conventions introduced
earlier. For example, Law (= skip}(3.15.1) is coded as

[:a"skip] aq (z := 1) = skip .

The codification of most of the laws is straightforward. However, there is a drawback
concerning the laws which are inequalities. Although, for example, &, T skip can be
precisely described by the equation
eq (b, C skip) = true .

this encoding is not convenient for use in proofs. This equation allowe us to rewrite the left-
hand side with true, or vice-versa; but we are concerned with reducing nondeterminism
(by rewnting b, to skip) or, conversely, jncreasing nondeterminism, by rewriting in the
opposite direction. The way we overcome this problem is coding inequations as equations
whose left-hand sides are less deterministic than the corresponding right-hand sides. We
document this fact by adding the ordering relation as an additional label to the equations.
The above then becomes

[b,"skip C3 eq by = skip .

But this is clearly unsatisfactory, as OBJ3 treats it as an ordinary equation; we have the
obligation to check (with the aid of the annotations) if an application of a rule makes
sense in a given context. For example, in a refinement process, a left to right application
of the above rule is valid, but an application in the oppasite direction is obviously iavalid.
An appropriate solution is to build support for inequational rewriting into the system. In
the final section of this chapter we briefly discuss a system based on OBJ3J which accepts
as input an OBJ3 specification and treats the rules annotated with the ordering relation
as inequations.

The laws of recursion also deserve some attention. OBJ3 is based on first order logic,
and therefore we cannot quantify over functions, as implicitly done in the fixed point and
least fixed point laws. However, this can be easily overcome using substitution:

[p~1p] eq (s Xep) = plx< (pXep)]
[671fp <1 eoq (X ep) T q = (p[X<-ql) Cq.

6.3 The Reasoning Language 95

Note that the second equation should have been coded as an implication, with its left-hand
gide implied by its right-hand side.

It is convenient to define instances of the above laws to deal with iteration commands, as
in this particular case we can get rid of the substitution operator.

[*~£p] oq bap = (p;brpdb b skp) .
[«1fp =] eq (bep)Cq = (p;qa9bbskp) Cq.

These are easily derived from the definition of iteration and the laws of recursion,

6.3.1 An Example of a Proof

To illustrate how proofs ate carried out in OBJ3, we chose a simple example which high-
lights hoth some positive points and some limitations. Other proofs are presented in
Appendix C.

The example used here is the first part (RHS C LHS) of the proof of Law 3.17.6:
(b*plig = pXo(pp Xabryg)
OBJ3 supports the step by step style of proof that we have used in the manual proofs.

First we define constants LHS and RHS to stand for the respective sides of the above
equation. Then we start the proof process with

start (b « p) ; q C LHS .
which is equivalent to true (by the reflexivity of C). The proof strategy is to gradually
transform the term (b & p) ; q into RHS by requesting OBJ3 to apply equations which
encode the appropriate laws. For example, the following is a request to apply the fixed
point law

DB3> apply .*"fp within term .
where vithin term is used to apply a given equation to all poasible subterms of the termn
in focus. In our case there is only one match for the left-hand side of the fixed point
equation, and the system replies with the expected result:

result Bool: (p ; b* p 4 b b skip) ; q C LHS

In a similar way, we apply equations to move q inside the conditional and to eliminate
skip (and then we rewriteb # p ; q to LHS), resulting in

result Bool: (p ; LHE 4 b b q) C LHS

6.3 The Reasoning Language 96

which suggests the backward (right to left} application of the least fixed point equation (see
the equation with label £~ 1fp in the previcus section). Note, however, that the right-hand
side of that equation mentions the substitution operator explicitly, and therefore cannot
be matched by the above term. The desired form can be achieved by using the equations
of substitution. For the moment, we add an equation which allows us to perform the
desired transformation:

[substi] eq (p ; LES 4 b B q) = (p ; X 4 b I q)[X <~ LHS] .
Then we have

0BJ> apply .substl within term .
Tesult Bool: (p ; X 4 b | q)[X <~ LHS] C LHS

which enables us to apply the least fixed point equation:

0BJ> apply -.px 1fp with within term .
result Bool: pu X e (p ; ¥4 b £ q) E LHS

where the minus sign preceding a label requests backward application of the corresponding
equation. The final result follows directly from the definition of RHS,

But we siill need to discharge the proof obligation introduced by the added equation
substi. As the equations defining substitution are confluent and terminating, we can
prove this equation automatically, rather than step by step. In OBJ3 this is achieved by

OBJ> select SUBST .

DB)> reduce (p ; LHS 4 b {>q) == (p ; X 4 b > q}[X <~ LHS] .
rewrites: 4

result Bool: truse

where the command selact is used to specify the context jn which the reduction is carried
out. The module SUBST contains the relevant equations of substitution. Recall that we
need to collect these equations in a separate module, since a reduction involving substitu-
tion entails syntactic transformations; the algebraic laws express semantic properties and
their use must be disallowed in such a proof. A dimilar technique is employed to reduce
side conditions about non-freeness.

This simple reduction has actually uncovered one hidden assumption in the manual proof:
the law being verified is true only if X is not free in p or q. So, in order to prove the above
equation, we must add thia as ap assumption:

6.4 The Normal Form 97

Although the mechanical proof closely corresponds to its manual version, some limitations
can be observed. One has already heen discussed earlier and relates to reasouning with
inequations. Note that we have no means to tell the system that the term resulting from
the application of least fixed point is implied by (rather than equivalent to) the term
that precedes the application. This is only informally documented in the definition of Lthe
corresponding equation.

First order logic is sufficient to express most of the algebraic system we use; however,
bigher-order matching would enable a more convenient description (and application) of
the laws of (least) fixed point, without mentioning suhstitution explicitly. As illustrated
above, the use of substitution requires the user to provide the matching; this turns out to
be cumbersome if the laws are repeatedly used. However, the prohlem was made easier
by defining instances of these laws to deal with iteration, since they do not mention the
substitution operator.

Coocerning proof management, no support is provided. For example, there is no facility
to deal with assumptions; to be used as rewrite rules, they have to be added by the user
as ordinary equations, as shown above. Also, it would be useful if the theorem we have
just proved were automatically added to the module in question, and made availahle in
later proofs. In OBJ3 this has to be carried out by the user.

6.4 The Normal Form

The module describing the normal form extends that describing the reasoning language
with a new operator and its defining equation:

op~as (_:[_, _->_, _]) : LietVar Comnd Cond Prog Cond -> Prog
for v :[a, b => p, ¢] if pwd(b,c) {prec 50]

[of"det] eq v :[a, b ->p, c] = decvev:€a;b*p;c .

where the precondition states the required disjointness of the conditions b and c.

The reduction theorems can then he proved from the above definition and the equations
describing the algebraic laws, in much the same way as illustrated in the previous section.
Then they can he added to the module as ordinary equations. For example, the reduction
of sequential composition is captured by the equation

[T:sequential~composition]
eq v :[a, b1 -> p, co] ; v :[co, B2 > q, ¢} =
v :[a, (b1 Vv b2) -> (b1 — p O b2 — q), <]
if pwd(b1,b2,c) .

6.5 A Compiler Prototype 98

which is true only under the condition that bl, b2 and ¢ are pairwise disjoint?, Recall
that these disjointness conditions were implicit in the manpual preofs.

6.5 A Compiler Prototype

Here we formalise the design of the compiler presented in Chapter 4. The components
of the target machine are gradually introduced by the modules describing the phases of
compilation: simplification of expressions, control elimination and data refinement; these
are the ooncern of the first three subsections. Apart from these phases, it is necessary an
additional step to replace the assighment statements (used as patterns to define inatruc-
tions) with the cotresponding instruction names. This is discussed in Subsection 6.5.4.
In the last subsection we illustrate how compilation is carried out using equations which
encode the reduction theorems. The complete description of the modules concerned with
the compilation phases (and the verification of some of the related theorems) is given in
Appendix C.

6.5.1 Simplification of Expressions

Rather than defining a particular notation of expressions in our source language, we want
to illustrate how to simplify expressions involving arbitrary binary and unary operators:

sorts SourceVar SourceExp .
subsorts Source¥ar < SourceExp .

op wp. : SourceExp -> Sourcefxp .
op .bop. : SourceExp SourceExp -> Sourcafxp .

The only machine component relevant to this phase is the general purpose register. It is
represented here by the following constant

op A : -> SourceVar .

which musi be of the same sort as an ordinary source variable because, during the process
of simplification, A is assigned expressions of the source language.

The theorems related to this phase can be verified (and then introduced as equations)
in the way already explained. But one aspect to be addressed is the creation of fresh
local variables that may be required during the simplification of expressions. Like the
implementation of safe substitution (mentioned before) this is an instance of the more
general problem of creating fresh identifiers using a formalism with a stateless semantics.

IWhen the senantic effect of partial operators is implemented, this kind of condition will be automat-
ically inserted by the system, as it can be deduced from tbe declaration of the operators.

6.5 A Compiler Prototype 99

One approach is to generate a fresh identifier every time a temporary variabie is needed
(which is confined to the equation concerned with the simplification of binary operators).
While this obviously works, it does not optimise the use of space. An optimisation is to
create distinct identifiers for variahles in nested blocks, but identify variables (with the
same name) which appears in disjoint blocks. This can be accomplished with

let n = depth(a bop £) in
cq (A := @ bop £) = dec tn & A:=f ; t;:=A ; A:=e ; A:=A bop tp
if (A,tp) \\ (e bop £) .

where we use the depth? of a given expression as the basis to generate fresh identifiers, The
term tn comprises an invisible operator which from an identifier t and a natural number
n generates a new identifier tp. The let clause above was used to improve readability;
in OBJ3 it ia available only for defining constants.

Ohszerve that the lacal varjables of the nested blocks generated by the simplification of a
given expression are guaranteed to be distinct, as the depth of the expression decreases
during the simplification process. However, the same identifiers may be generated to
simplify another expression; in particular, we always use the same base identifier t to
ensure the maximum reuse of temporaries.

Recall that an optimization of the above rule iz possible when the expression f is a variable,
in which case the allocation of temporary storage is unnecessary:

eq (A := o bop 1) = A:=a ; A:=A bop z
if A\\ (e bop x) .

As variables are also expressions, any assignment which matches the left-hand side of thia
rule also matches that of the previous rule. Of course, we always want the optimising
rule to be used in such cases. But OBJ3 does not provide means to express rule priorities
{one cannot even rely on the fact that the system will attempt to apply rules in the order
in which they are presented). To ensure application of the optimising rule, we need to
add an extra condition to the previous rule, say is-not~var(f)}, where is-not-var is a
boolean function which yields true if and only if the expression to which it is applied is
not a variable.

6.5.2 Control Elimination

The steps to formalise this phase of compilation are very similar to those of the previous
phase. Expressions are further extended to inc¢lude natural numbers which are used to
represent addresses in the memory ROM. Furthermore, the program counter is declared
a3 a special (program) variable to which expressions representing ROM addresses may be
assigned. These are specified as follows:

“From a tres representation of an expression, we define its depth to be the number of nodes in the
longest path of the tree.

6.5 A Compiler Prolotype 100

sorts RomAddr¥ar RomAddrExp .
subsorts Romiddr¥Yar < RomAddrExp .
subsorts Nat < RomAddrExp .

op P : -> RomAddrVar .

where Nat is built-in to OBJ3; the usual numerical representation i available, thus we do
not need to write large numbers in terms of a successor function.

The theorems for control elimination are easily verified by instantiating the normal form
theorems, Additional transformations are required iz some cases, but they do not illus-
trate any new aspect.

A problem similar to the generation of fresh identifiers is the allocation of distinct ad-
dresses for the machine instructions yielded by the compilation process. The solution
we have adopted is to preprocess the source program to tag each construct with a dis-
tinct natural number representing an address in ROM. Then the reduction theorems are
encoded 23, for example:

cq (a}(x:=e) = P:[s, (P=g) -> (z,P := e,P+1}, (a+1)] if P \\ @ .

where 8 is the address allocated to place the instruction generated by x :» . We carry
out the tagging after simplifying expressions, since each simple assignment will give rise
to & single instruction.

It is worthstressing that tagging is merely a syntactic annotation to ensure the disjointness
of the addresses allocated for the machine instructions. It has no semantical effect; more
precisely, {8} p = p, for all prograrms p.

6.5.3 Data Reflnement

This phase entails more sophisticated components such as the symbol table and the store
for variables; they are represented as maps, rather than as single variables:

define SymTab is MAP[SourceVar,RamiAddr] .
define Ram is MAP[Ramhddr,SourceExp]

op M : -> Ran .
var ¥ : SymTab .

This formalises the fact that a symbol table is a map from identifiers to addresses of
locations io Ram, which is itself a map from addresses to expreseions denoting the cor-
responding values. In practice we use natural numbers to represeni addresses; this is
possible by making Nat a subsort of RamAddr.

As the other machine components, M was introduced as a constant of the appropriate
sort. However, the symbol table may change from program to program, and is therefore
declared as 4 variable.

6.5 A Compiler Prototype 101

The simulation used to carry out data refinement can then be defined. Below we give the
declaration and the definition of its first component:

opvag __ ! 5SymTab ListSourceVar -> Prog
for ¥y if alts(v) == (dom W) and disj(w) .

aq Vg =varw ; w:« M[¥[a]] ; end M .

where the precondition requires that each variable in the domain of ¥ occurs exactly once
in the list of global variables w. Note the similarity between the above equation and the
original definition of ¥y given in Section 4.6, In particular, we have implemented list
application (among other map operations) to allow a straightforward encodiog.

The distributivity properties of the simulation ‘i' can be verified in the usnal way. Per-
haps the mast interesting is the one which allocates space for the local variables:

cq ¥uldec v,P,A o p) = dec P,A o B, y(p)
if disj(v,e) and disj(P[v], ¥[«]) .

where = ¥ U {v —(base + len(#) + 1 .. base + len{w,v)}).

Tt is required that the global variables w are distinct from the loca] variables v, and
that the new addresses ®[v] are different from the ones already used, ¥ [w]. We have
already discussed how to satisfy the first condition. The other one can be easily satisfied
by allacating for the global variables the addresses base + 1 ., base + lan{w), where
base is an arbitrary natural number; the definition of € then guarantees that the addresses
allocated for the local variables are distinct from those.

Tbe complete verification of the above theorem is given in Appendix C.

6.5.4 Machine Instructions

The machine instructions are defined as assignments that update the machine state.
Therefore the instructions should also be regarded as elements of the sort Prog. However,
to make it clear that we are introducing a new concept, we declare a subsort of Prog
whose elements are the machine instructions:

sort Instruction .
subsort Instruction < Prog .

op load : Ramkddr -> Instructiom .
aq (A,P := M[n],P + 1) = load(m) .

The reason to order the equations in this way is that they are used s (left to right)
rewrite rules at the last stage of the compilation process, to translate the senantics to the

6.5 A Compiler Prototype 102

syntax of the assembly language. In other words, when the assignment statements {(used
as patterns to define the inatructions) are generated, they are automatically replaced by
the corresponding instructions names; numeric values could be used instead, if the purpose
was to produce binary code.

6.5.5 Compiling with Theorems

Now we present one of the main achievements of the mechanisation: the provably carrect
reduction theorems can be used effectively as rewrite rules to carry out tbe compilation
task. All that needs to be done is to input the source program with a symbol table that
allocates addresses for its global variables v, and ask OBJ3 to reduce this program using
the reduction theorems®. The output is a normal form program which represents the
target machine executing the corresponding instructions.

The process is carried out automatically, Every subterin matching the left-hand side of
a one of lhe reduction theorems is tranaformed in the way described by the right-hand
side of the theorem. As we have ordered tbe theorems in such a way that their right-hand
sides refine the corresponding left-hand sides, each application can only lead to refinement.
Therefore compilation is itself a proof that the final normal form program is a refinement
of the initial source program. A very simple example is given below.

OB) let w = x,y,x .
OBD> let ¥ = {x v+ 101} U {y — 102} U {z v~ 103} .
OBl reduce "ilu(x := y bop (uop z)) .

revrites: 386
rasult: P,A :[0, (P=0 v P=l ¥V Pa2 vV P=3 vV P=4 v Pag) >
(P=0) — load(103)

O (P=1) — uvop-A
O (P=2) — store(104)
O (P=3) — load(102)
O (P=4) — bop-A{104)
B (P=5}) — store{101),
6]
0BJ> show tine .
10.367 cpu 20.033 real

The application of the simulation function to the source program ensures that the data
refinement phase will be accomplished by using the associated distributivity equations.
Note in particular that the new address 104 was allocated to hold the value of a temporary
variable created during the simplification of the expression. The last line shows the time
(in seconds) consumed to carry out this reduction on a Sun 4/330 with 32 MB RAM.

SRecall thet the algebraic laws play no role here; they were needed only to prove the reduction
theorems, and not Lo carry out compilation.

6.5 A Compiler Prototype 103

The guarded command set of a normal form program is an abstract representation of m
(the store for instructions). We have not mechanised the actual loading process, which
corresponds to extracting (from the guarded command set) the mapping from addresses
to instructions, and use this to initialise m. For the above example this mapping is

{0 — l0ad(103)} U {1 = wop-A} U {2 — store(104)} U
{3 — load(102)} U {4 — bop-A(104)) U {5 — store(101)}

and the value of m outside the range 0. .5 is arbitrary. In this case, the execution of the
guarded commmand set has the same effect as the execution of m[P].

Although not apparent to the user of the compiler, the compilation is carried out phase
by phase. For the above example, the result of each phase is given below.

Vo(z = ¥ bop (uop z))

[simpliﬁcation of expressionsl

'i'g(decA,ti-A::z;A::uopA;tl =A;A:=y;A:=Abopty;x:i=A)

4
dec Ao A:=M[103]; A:=uopA; M:=Ma {104 —A) ; A:= M[102];
A := Abop M[104] ; M := M & {101 —A}

[control elimination |
I
P,A :[0, (P«0 V Pwl V P=2 V P=3 v Pug v P=5) ->»
(P=0) —» AP := M[103],P + 1

0O (P=1) — A,P := uop A,P + 1

O (Pa2) — M,P := (M ® {108 —+ A}),P + 1
0O (Pa3) — A,P := M[102],P + 1

D (P=4) — AP := A bop M[104],P + 1

O (P=6) — M,P := (M @& {101 — AD,P+ 1,

6]

{ machine instructions]
1
P,A :[0, {P*0 V P=1 V P=2 v Pa3 v P=g v Pu5) ->
(P=0) — lead(103)
D (P=1) — wop-A

D (P=2) — store(104)
0O (P=3} — load{102)
O (P=4) — bop-A(104)
O (P=5) — store(101),

6]

6.6 Fipal Considerations 104

The last step above entails a simple syntactic transformation of the patterns used to define
ingtructions with the corresponding instruction names.

As discussed in Chapter 4, the simplification of expressions must be performed first; no
restriction was imposed regarding the order of the other two phases of compilation. In
practice, however, it turned out to be much more efficient to carry out data refinement
before control elimination. One reason is that the transformations associated with this
last phase increase the size of the program significantly, with expressions involving the
program counter which are irrelevant for data refinement. But most importantly, the
normal form uses the operator O which is both asscciative and commutative, and the
matching of associative-commutative operators is an exponential problem. As data re-
finement is carried out by applying distzibutivity equations all the way down to the level of
variables, the matching involved becomes very expensive, and (performing it after control
elimination) makes the process impractical even for prototyping purposes.

It is possible to control the sequence of application of rules in QBJ3 using evaluation
strategies. For example, by declaring the simulation function ¥y as strict, we ensure that
its argument is fully reduced before any of the distributivity equations are applied; this
means that the simplification of expressions is carried out before data refinement. As
explained before, the equations related to control elimination are not applied before the
program is tagged (this is easily controlled by pattern matching). We also use evalua-
tion strategies to ensure that the tagging is performed only when the data refinement is
complete. As a consequence, control elimination is the last phase fo be accomplished.

6.6 Final Considerations

We have shown how to use the QBJJ term rewriting system to mechanise a non-trivial
application. In particular, we believe to have successfully achieved three main results
using 2 single aystem:

¢ A formal specification of all the concepts involved in this approach to compilation.
¢ Verification of some of the related theorems.

¢ Use of the theorems as a compiler prototype.

Although we have not verified all the theorems (as this was not the main purpose) the
verification of a relevant subsel gives some evidence that the task is feasible and relatively
straightforward, especially considering that a complete framework is now in place.

Below we present a more detailed analysis of the mechanisation. First we discuss general
aspects, and then we consider more specific features related to the use of OBJJ; finally we
discuss some related works which report on the use of other systems to automate similar
applications.

6.6 Final Considerations 105

6.6.1 ‘The Mechanisation

Even a simple attempt to automate an application gives (at least) a better insight into
the problem. This is because many aapects are usually left out of (or implicit in) an
informal presentation. For example, the OBJ3 presentation formally records the fact
that the algebraic laws are independent of a particular expression language, provided
this language includes the boolean expressions; explicit instantiations were defined when
Tecessary.

We also had to deal with three related aspects nol addressed initially: the creation of
fresh local variables for the simplification of expressions, allocation of distinct addresses
for local variables (also distinct from the ones used for the global variables), and, similarly,
the allocation of distinct addresses for the machine instructions yielded by the compilation
process.

Arnother major aim of a mechanisation is to check the correctness of hand proofs. With
this respect, no serious error or inconsistency was found; hut the mechanisation belped to
uncover a few hidden assumptions (especially concerning non-freeness conditions) as well
a3 the omission of references to laws necessary to justify some proof steps.

The only proof steps carried out completely automatically were the simplification of terins
involving suhstitution, and the reduction of non-freeness conditions. Application of the
lawa required our full guidance. This is a consequence of the fact that our algebraic
system is non-confluent and, furthermore, it includes non-terminating rules. Even so, the
automated proofs are less laborious {(and safer) than their manual versions in that the
user ia freed from handwriting the results of application of laws, especially regarding long
terms which occur as intermediate steps in the proofs.

On the other hand, in a manual proof we sometimes allow ourselves to justify a given
transformation by citing the necessary laws, leaving implicit the details of bow the laws
are actually used to achieve the transformation. But in a mechanical verification, every
single atep has to be explicitly justified, and the process may become extremely tedious.
Therefore the encoding of new laws which combine the effect of more basic ones deserves
special consideration. They play an increasingly important role as the number of theorems
to be verified grows.

For example, the combination of assignments to distinct variahles can be achieved by first
normalising the left-hand sides (by adding identity assignments and using the symmetry
law of multiple assignments), and then applying the law to combine assignments to the
same variables. However, this process may require many applications of these laws; the
same eflect can be achieved using the law

cq (x :=a; y =mf) = (x,7 :=afx<¢e]) ifx\\y.

which is easily derived from the ones mentioned ahove. Similarly, it is possihle (in some
cases) to swap the order of two assignments using only the hasic laws of assignment. But
the process is more concisely captured hy the law

cq (xme;y:=mf)m(y:»flx ¢ el ;x :=a) if y\\ (x := @)

6.6 Fipal Consideralions 106

Another simple example is the instantiation of the (least) fixed point laws to deal with
iteration. This saved us from rewriting iteration in terms of recursion only to apply these
laws and then rewrite the result back to the iteration form. Further investigation may
reveal more powerful strategies to combine laws.

One of the main benefits of the mechanisation is the possibility of compiling with theorema.
Once the compiling specification {given by a set of reduction theorems) was in place, no
additional effort was required to produce a (prototype} implementation. This was a
consequence of the fact that the reduction theorems have the form of rewrite rules.

The only unexpected result of carrying out all the work was to realise that data refinement
could be performed before control elimination. This was motivated by the fact that an
initial vemsion of the prototype which executed data refinement after control elimination
was extremely inefficient, as discussed in the previous section.

One final aspect we wish to address is the reliability of our mechanisation. As mentioned
before, programs have both a syntactic and a semantic existence, and we have not for-
mally distinguished between them. Rather, we have grouped the equations which define
the syntactic operators in a separate context (module) from that of the algebraic laws.
But this does not prevent an unadvised (or badly intentioned) user from combining the
modules and derive an inconsistency such as (we assume that the variables x, y and z are
distinct)

talse

= {trom equations defining non-freeness}
y\ (x:=y; x:wg)

= {combine assignments}

v\ (x:=z)
= {irom equations defining non-freeness}
true

This is a consequence of applying a semantic transformation (the combination of assign-
menia) to & program which should have been treated as a purely syntactic object. Such
derivations wonld be automatically disallowed if these syntactic operators were huilt-in
to OBJ3, since in this case the user would not have access to their equations.

6.6.2 0BJ3 and 20BJ

The normal form approach to compilaiion was conceived as a carefully structured hi-
erarchy of concepts which is worth preserving in any attermpted mechanisation. The
parameterised modules of OBJ3 were a fundamental tool to achieve this objective,

For example, we have used distinct instantiations of the module describing the reasoning
{anguage to deal with each phase of compilation, since each phase has its own requirements
regarding expressions. But clearly, the reasoning language may serve many other useful
purposes such as to prove properties about programs, to perforin optimisations or to re-
duce programs to & different normal form, The module describing the reasoning language

6.6 Final Considerations 107

could actually be part of a library concerning program development. The module which
groups the normal form reduction theorems is equally generic and can be instantiated to
deal with different target machines.

We have also demonstrated the convenience of subsorting and the operation declaration
facilities of OBJ3. The fact that associativity, commutativity and identity properties can
be declared (rather than atated hy explicit equations} substantially simplifies the proof
process. Apart from rewriting modulo these properties, OBJ3 provides mechanisms for
selecting subterms (for the purpose of localised transformations) which take them into
account. For example, as sequential composition is associative, the term

Piqi T

stands for an equivalence class containing (p ; g? ; randp ; (q ; r). Furthermore,
in this case a direct selection of any contiguous subterm is possible, as (p ; q)or {q ;
r). For terms with a top operator which is botb aseociative and commutative, a subzet
selection mecbanism is available. Consider the term

pfMqnr

We can apply a given transformation to the subterm {p M r) by directly selecting this
subterm using the notation provided.

Our experience [69] with systems which do not include such facilities showed that the
proofs are {at least) twice as long as the ones carried out using OBJ3. The explicit
application of associativity and comrmutativity laws is very laborious and diverts the
user’s attention from more relevant proof steps.

As a language to describe theories, the only significant limitation of OBJ3 for our ap-
plication is the lack of inequational rewriting. Higher-order logic would allow a more
natural encoding and use of the (least) fixed point laws, but this was overcotne by using
substitution. Although not as convenient, it was not a major problem in practice.

The main drawbacks of QBJ3 are related to proof support; this was extensively discussed
earlier. A more pragmatic limitation is efficiency. Although the speed of the rewrites is
reasonable for interactive theorem proving, it is not as satisfactory for automatic reduc-
tions involving a large number of rewrites. In particular, the use of the theorems to carry
out compilation is only acceptable for prototype purposes, as illustrated in the previous
section.

Maost of the problems discussed above are being taken into account in the development of
the 20BJ system [29] which is being built on top of OBJ3. Broadly, this is a meta-logical
framewaork theorem prover in the sense that it is independent of a particular logical system.
The desired logical system can be programmed by tbe user by encoding it in equational
logic. 20BJ has a user-friendly interface and allows user-defined tactics for the particular
application domain.

One of the logical systems available supports order sorted, conditional, (in)equational
rewriting. In particular, the inequational rewriting module of 20BJ accepts as input an

6.6 Final Considerations 108

OBJ3 specification and treats the rules annotated with the ordering relation {as illustrated
earlier) as inequations.

A closer investigation of 20BJ is one of the suggested topics for future work; not only
more confidence will be gained in the proofs (because of a proper account of inequations),
but user-defined tactics can be defined to improve the proof process.

6.6.3 Other systems

Ir a previous study [69], we explored the suitability of some systems to formalise a small
subset of Lhis approach to compilation. Apart from OBJ3, we considered the B-Tool [74],
the Veritas+ Eavironment [19] and the occam Transformation systemn [32]. A summary
of our experience with eack system is given below. Related experience of otlers, using
the Larch Prover {(LP) [26] and Higher-Order Logic (HOL) [34] is also discussed.

A specification in the B-tool is formed of a collection of unita called theories. Unlike OBJ3,
these units do not embady any idea of a module —they are just “rule containers”. The lack
of constructions for type definition and variable as well as operator declarations is another
drawback of the B-tool. A helpful feature is the built-in implementation of non-freeness
and substitution. Not only this saves a substantial specification effort in our case, but the
aseociated reductions are carried out very efficiently. As discussed previously, this alse
avoids the need to distinguish between the syntactic and the semantic views of programs.
Regarding theorem proving, the rewriting facilities are similar to those available in OBJ3,
but there is no support for dealing with associativity, commutativity or identity.

As a specification language, Veritas includes some interesting features. Although signa-
tures (the specification unit) may not be parameterised, similar facilities may be obtained
by using higher-order functions and polymorphic datatypes. Besides polymorphism, the
type system includes subtypes and dependent types. This allows us to express the precise
domain of partial operators such as multiple assignment staterments. The main drawback
for our application is the difficulty of coding the algebraic laws. Defining the reason-
ing language as a datatype, it is impossible to postulate or prove any of the algebraic
laws. The reason is that a datatype is a free algebra, and therefore terms built from the
constructors cannot be equated. The laws have to be established as theorems, from a
semantic function which expresses their effect, through a very laborious process.

The occam Transformation system implements an application similar to ours. Ite purpose
is to allow semantic preserving transformations of gccam processes, where the transforma-
tions are justified by the algebraic laws obeyed by the language [68]. As occam includes
some of the operators of our reasoning language, it is possible to use the system, for
example, to prove some derived laws. In principle, it is even possihle to extend the sys-
tem (which is implemented in SML [36]) with additional features which would allow us
to reason about the whole compilation process. For example, new operators (especially
the specification ones) with their algebraic laws would be necessary. While most of the
desirable features can be easily coded in SML, the implementation of theorem proving
facilities such as mechanisms to deal with associativity and commutativity is a complex

6.6 Final Considerations 109

task.

A work closely related to aurs is reported in {T0]. It investigates the use of LP to verify the
proof of a compiler for a amall subset of occam, not including parallelism or communica-
tion. As in our case, the reasoning framework is an extension of the source language with
its algebraic laws. The emnphasis in [70] is the specification of the reasoning framework;
only a few simple proofs were mechanically checked. Also, the aspects related 1o data

refinement were not formalised.

As LP is also a term rewriting system, the specification described in [70] shares many
features with ours. However, it is relatively less concise and readable since LP provides
no module facilities, and is based on multi-sorted, rather than order sorted, logic; therefore
subgorting is not available. Also, the operation declaration facilities are not as flexible
as in OBJ3. There is a mechanism to deal with associative-commutative operators, but
nothing is provided for operators which are only associative. Identity properties also
have to be stated by explicit equations. On the theorem proving side, LP incorporates
more elaborate mechanisms than OBJ3; apart from term rewriting, it supports proof by
induction, case analysis and contradiction. However, the support for an interactive (step
by step) application of rules is not as flexible as in OBJ3.

The work reported in [6] deals with an important aspect that we have nol addressed:
the correctness of the basic algebraic laws. A specification language (similar to ours)
with weakest precondition semantics is formalised using the HOL system, and 2 number
of refinement laws are (mechanically) proved. Although in principle we could do the
game in OBJ3 (or perhape 20BJ), a system based on higher-order logic like HOL seems
more appropriate for this purpose. The reason is that in the predicate transformer model,
programs are regarded as functions on predicates, and therefore the reasoning is essentially
higher order. However, it is our view that, for the purpose of using the Jaws for program
transformation, a system like OBJ3 is more suitable, as it provides powerful rewriting
capabilities.

Chapter 7

Conclusions

There is 2 great danger associated with people's percep-
tion of new concepts. If improved methods are used to
tackle the same sort of problems previously handled by
ad hoc methods, the systems created could be far safer.
If, on the other hand, the improved methods are used to
justify tackling systems of even greater complexity, no
progress has been made.
— C.B. Jones

We have presented an innovative approach to compilation, and sbowed how it can be
used to design a compiler which is correct hy construction. The compilation process was
characterised as a normal form theorem where the normal form has the same structure as
the target executing mechanism. The whole process was formalised within a single (and
relatively simple) semantic framework: that of a procedural language which extends the
source language with additional specification features.

The specification (reasoning) language was defined as an algebraic struciure whose ax-
joms are equations and inequations (laws) characterising the semantics of the language.
The advantage of this semantic style is abstraction; it does oot require the construction
of explicit mathematical models, as with denotational or operational semantics. As a
consequence, extensions or modifications to the semantics may require the alteration of
only a few laws, unlike, for example, a denotational description which would require al-
terations to the mathematical model and consequent revision of every semantic clause. In
the operational style, proofs are typically by structural induction and/or by induction on
the lepgth of derivations or on the depth of trees. Therefore if the language is extended,
the proofs need to be revised. In the approach we have adopted, we hardly use induction;
this is implicitly encoded in the fixed point laws. A purely algebraic reasoning gives some
hope concerning the modularity of the approach.

By no meane are we claiming a general superiority of the algebraic approach over the other
approaches o semantics. Each style haa its appropriate areas of application. For example,
postulating algebraic laws can give rise to complex and unexpected interactions between
programming constructions; this can be avoided by deriving the laws from a mathematical

110

7 Conclusions 111

model, as briefly illustrated in Chapter 3. Similarly, an operational semantics is neceseary
to addresa practical aspects of the implementation and efficiency of execution. A general
theory of programming dealing with these three semantic approaches is suggested in [44].
In particular, it is shown how an algebraic presentation can be derived from a denotational
description, and how an operational presentation is derived from the former.

The identification of compilation as a task of normal form reduction allowed us to capture
the process in an incremental way, by splitting it into three main phases: simplification
of expressions, control elimination and data refinement. The ideas are not biased to
a particular source language or target machine. Notable are the theorems for control
elimination which can be instantiated to deal with a variety of ways of encoding control
state. The independence from a source language is not so evident, as we had to adopt a
particular notation in order to formulate the mathematical laws and illustrate the task of
designing a compiler. However, our source Ianguage includes features commonly available
in existing procedural languages. It can serve as a target for a front-end compiler for
languages which use more conventicnal netations.

We injtially dealt with a very simple scurce language to illustrate how a complete com-
piler can be designed. The soutce language was then extended with more elaborate
features (procedures, recursion and parameters), and the associated reduction theoremns
were proved. This extepsion gave some evidence about the modularity of the approach;
each new feature was treated in complete isolation from all the other constructions of the
language. The reuse of Jaws, lemmas and theorems is of particular relevance. For exam-
ple, the (derived) laws of jteration and the lemmas used to prove the reduction theorem
for sequential composition have been of more general utility; they were used somehaw to
prove the reduction theorems for all the language features treated subsequently.

The wbole approach has been carefully structured to simplify ite mechanisation. We have
illustrated the process for the simple version of the source language, using the OBJ3 term
rewriting system. The concepts were formealised as a collection of algebraic theories, and
some of the related theorems were verified and used as rewrite rules to carry out compi-
lation automatically. The mechanisation preserves the original structure of the algebraic
theories. As discussed in the previous chapter, it can be useful for many other pur-
poses, such as proving properties about programas, performing optimisations or reducing
programs to a different normal form.

In summary, we believe our work to be a modest contribution to three important fields
of software engineering:

¢ formal methods and techniques — with & relatively large application of refinement

algebra;

¢ compiler design and correctness — with the exploration of a new approach compris-
ing aspects such as simplicity and modularity; and

¢ mechanical theorem proving — particularly, the use of term rewriting systems as a
tool for specification, verification and (prototype) implementation.

7.1 Related Work 112

But there is much more to be done before we can claim that this approach will generalise
to more complex source languages or target machines. In the following section we discuss
related work. Some extensions to our work ate discussed in Section 7.2. We finish with a
critical analysis of the overall approach to compilation.

7.1 Related Work

In Chapter 2 we gave a brief overview of refinement calculi and techniques; in the previous
chapter we compared OBJ3 to some other theorem provers. Here we concentrate on
compiler design and correctness. Nevertheless, there is an extensive (and expanding)
literature and we have no intention of covering the field. Rather, we consider closely
related work and comment on a few approaches based on distinct semantic styles.

Closely Related Approaches

Nelson and Manasse {64] have previously characterised the compilation process as a nor-
mal form theorem. But the authors formalise the reduction process m more concrete
terms, using a program pointer to indicate the location in memory of the next instruction
to be executed. By using assumptions, assertions and generalised assignment, we have
abstracted from a particular way of encoding control state; the use of a program pointer
is one possible instantiation. Another difference ia the reasoning framework used. They
justify the correctness of the transformations by appealing to the weakest precondition
caiculus. We have formalised the normal form reduction process a8 an algebra where the
central notion is a relation of refinement between programs. The use of algebraic laws
seem to allow conciser and more readable proofs, apart from the fact that it maken the
mechanigation easier, We have also dealt with programming features not addressed by
them; these include procedures, recursion and parameters.

The first approach to prove correctness of compiling specifications using algebraic laws (in
the style we have used here) was suggested by Hoare [43]. In this approach, compilation is
captured by a predicate Cp s f m ¥ stating that the code stored in m with start address s
and finish address f is a correct travslation of the source program p; ¥ is a symbal table
mapping the global variables of p to their addresses. C is defined by

Crafm¥ ¥ ¥(p) C Tsfm

where \i’(p] is a simulation function defined in the usual way and T is an interpreter
for the target code which can be considered a specialisation of the mormal form for a
particular machine. Compilation is apecified by a set of theorems, one for each program
construction. For example,

If m[s] = load(¥y) and m[s +1] = store(¥z), then
Clr=y)a(s+2)¥

7.1 Related Work 113

The reasoning is conducted in much the same way as we have illustrated in previous
chapters. As the theorems have the form of Horn Clauses, they can be easily translated
inte a logic program [10]; although a formal proof of correctness of this translation has
not been attempted. Despite the similarities between the two approaches, there is a
significant conceptual difference. As discussed above, the idea of an abstract normal form
allowed us to capture compilation in an incremental way. The separation of the process
into phases allowed the formalisation of control elimination independently of a target
machige. Furthermore, as the theorems have the form of rewrite rules, we could use a
term rewriting system both to verify the proofs and to carry out compilation.

Work bas been undertaken to transform programs written in a subset of occam into a
normal form sujtable for an implementation in hardware [39]. A circuit is described in a
way similar to that we have represented a stored program computer. Broadly, the state
of a synchronous circuit is formed from a variable representing its control path and a
list of variables representing its data path. The normal form comprises an assumption
about the activation of the circuit; a loop (executed while the circuit is activated) which
specifies state changes; and an assertion which determines the final control state of the
circuit, if the loop terminates, An extra feature is the use of timed processes to specify
the execution time (in clock cycles) of assignments which are uwsed to model the state
change of both the control path and the data path of the circuit. The authors show how
an arbitrary source program can be reduced to normal form. However, the translation
from the normal form to a netlist (a list of gates and latches, which is a standard form of
hardware description) is addressed only informally.

Algebraic and Denotational Approaches

In more conventional algebraic approaches, compiler correctness is expressed by the com-
mutativity of diagrams of the form

source target
language language
compiler
decoding target
semantlca semantics

where the nodes are algebras and the arrows are homomorphisms. This form of diagram
was first introduced by Morris [58], huilding on original work of Burstall and Landin [14).
Thatcher, Wagner and Wright [73] aod many others put forward similar ideas.

71 Related Work 114

Similar commutative diagrams are usually adopted for proving compilation based on de-
notational semantics. Noteworthy is the work of Polak [67]. He gives the denotational
semantics of both the source language (a large subeet of Pascal) and the target language,
a high-level assembly language. His work is not confined to code generation; rather, he
treats the complete compilation process. Furthermore, the compiler itself is written in a
version of Pascal extended with features to allow a forral documentation in terms of pre-
and postconditions in Hoare-style semantics. The compiler is systematically developed
from the denotational semantics of the sonrce and the target languages. The proofs were
mechanijcally verified.

Chirica and Martin [17] also deal with compiler implementation. They developed an ap-
proach for proving the correctness of compiler implementations from given specifications.
The approach is similar to that of Polak, but a different boundary bet ween compiler spec-
ification and implementation is suggested. Broadly, semantic correspondence between
source and target programs is dealt with at the specification level; implemnentation cor-
rectness deals only with the syntax of source and target programs.

Operational Approaches

The first atternpt Lo formalise the compilation process is attributed to McCarthy and
Painter {52]. Although their work is limited in scope {they treated a sinple expression
language), it gaverise to a style of verification known as interpreter equivalence. In general
terms, the semantics of the source and the target languages is given by interpreters which
characterise the meaning of programs by describing their effect upon the corresponding
execution environments. The translation is described by a relation bet ween the execution
environments of source and target programs. Correctness can be expressed by a diagram
with a similar form to that presented in the previous section.

More recently, an approach to systems verification based on interpreter equivalence was
suggested by a group at Computational Logic, Inc. [7). The approach has been applied to
the development and mechanical verification of & stack of system components, including:

e a compiler for a subset of the high-level procedural language Gypsy, where the target
is the Piton assembly language [78];

* a lipk-assembler from Piton to binary code for the FM8502 microprocessor [53]; and

e a gatelevel design of a subset of the FM8502 microprocessor [48] .

All the components were formalised by interpreters written as functions in the Boyer-
Moore logic; the verification was carried ont using the Boyer-Moore thecrem prover [13].
This is perhaps the most significant effort in the field of (mechanically) verified systems.
Their approach is independent of any particular component, and it deals with the inte-
gration of components to form a verified stack. However, reuse of design and proofs is not
addressed. Every translation from a source to a target language is designed and proved
from scratch,

7.2 Future Work 115

Compiler Generators and Partial Evaluation

Although our approach is not biased towards a source language or a target machine, we
have not gone as {ar a8 addressing the design of compiler generators. Many systems (based
on distinct semantic approaches) have heen developed. As an example we can cite the
classical work of Mosses [62], using denotational semantica. Only recently, the correctness
of such systems has gained some attention. The Cantar sysiem [B5] generates compilers
for imperative languages defined using a subset of action semantics [63]. Many imperative
features can be expressed, but the considered subsetl of action semantics is not powerful
encugh to express recursion. An algebraic framework was used to design the system and
prove its correctness.

Partial evaluation is a very powerful program transformation techuique for specialising
programs with respect to parts of its input. Applications of partial evaluation include
compilation, compiler generation or even the generation of compiler generators. We quote
an explanation from [49]:

Consider an interpreter for a given language S. The specialisation of this
interpreter to a known source program s (written in S) already is a target
program for &, written in the same language as the interpreter. Thus, partial
evaluation of an interpreter with reapect to a fixed source program amounta
to compiling. [...}

Furthermore, partially evaluating a partial evaluator with respect to a fixed
interpreter yields a compiler for the language implemented by the interpreter.
And even more mind-boggling: partially evaluating the partial evaluator with
respect to itself yields a compiler generator, namely, a program that tranaforms
interpreters into compilers.

Partial evaluation is a vety active research topic, and some powerful systems have been
developed. For example, Jones el af [50] implemented a self-applicable partial evaluator,
called A-mix, for the untyped lambda calculus. It has been used to compile, generate
coropilers and generate a compiler generator. Furthermore, it is perhaps the ouly existing
provably correct partial evaluatar [33].

One aspect not yet addressed by the partial evaluation approach is the generation of
compilers which produce code for conventional machine architectures. Code is usually
emitted in a lambda notation.

7.2 Future Work

Our work can be extended in many ways, from the treatment of more elaborate source
languages andfor target machines to a provably correct compiler combining both software
and hardware compilation.

7.2 Future Work 116

More on Control Structures

In Chapter 5 our strategy to implement recursion was to allocate a separate stack for
each recursive program. This stack was represented by a local variable in the resulting
normal form program. In the case of nested recursion, the normal form reduction process
generates stacks of stacks. This can be implemented using the cactus stack technique, as
previously discussed.

For a single stack implementation, further work is necessary. One possibility is to use the
reduction rule for recursion as it stands now and then perform an additional refinement
step to implement the nested stacks using a single stack. As this is by no means a trivial
data refinement problem, it might be easier to avoid nested stacks from the beginning.
In this case, the theorem for recursion has to be modified to reuse a stack variable which
may have been allocated for compiling an inner recursion.

A further topic of investigation is the extension of our source language with even more
complex structures such as parallelism, communication and external choice (as, for exam-
ple, in occam). An initial attemnpt to handle these features is described in [38], where a a
cominunication-based parallel program is transformed into another (yet parallel) program
whose components communicate via shared variables.

Because of the high-level of abstraction of constructions to implernent concurrency, it
seems more appropriate to carry out their elimination at the source level, rather than
generate & normal form directly. If the target program yielded by the process of eliminat-
ing concurrency is described solely in terms of our source language, then we can reduce
this program to normal form and thus obtain a low level implementation of concurrency.

Types

We have taken the simplified view of not dealing with type information. It is possible
to extend our reasoning language with data types in the usual way. For example, typed
variables can be introduced by

decz:Tep

where z is a list of variables and T an equal-length list of type names, and the association
of types with variables is positional.

Types resirict the values that can be assigned to variables. As a consequence, they
introduce a proof obligation to check if these restrictions are respected. This is known as
type checking. Therefore our algebraic system must ensure a consistent use of types.

Maoat of the algebraic laws do not need to be changed, as their use would not give rise
to type inconsistences, provided the term to be transformed is well-typed to start with.
However, & few laws would require extra conditions. For example, the law

decz:Teop Cdecz:T ez =¢;p

(when used from left to right) allows the introduction of the assignment z := e. Clearly,
e must have type T in this case (or at least a type compatible with T° if the type system

7.2 Future Work 117

supports subtypes or any form of type conversion}. The laws which allow the introduction
of free (meta-}variables, such as r and ¢ in the above case, are the only oues which
can violate type information. One way to deal with the problem is by carrying type
information around; for example, by tagging occurrences of variables and expressions
with their types.

The introduction of types also affects compiler design. More specifically, it increases the
complexity of the data refinement phase—we have to show how the various types of the
source language can be represented in a usually untyped (or single-typed) target machine.

The implementation of dasic types is normally achieved by very simple translation schernes.
For example, there j# a standard technique for translating booleans using a numerical
representation [1]. Type constructors such as arrays and records are more difficult to
implement. In Appendix A, we suggest a scheme for compiling static arrays and discuss
its (partial) implementation in OBJ3, with a small example.

The schetne to implement arrays was designed in complete isolation from the remaining
features of our language. None of the previous results needed to be changed. This gives
some more evidence about the modularity of our approach to compilation. But further
investigation concerning the compilation of basic types and type constructors is required.
For example, non-static types such as dynamic arrays or linked lists will certainly require
2 much more elaborate scheme than the one devised far static arrays.

Code Optimisation

We have briefly addressed store optimisation when dealing with the creation of temporary
variables for the elimination of nested expressions. Regarding code optimisation, only a
very simple rule was included in connection with the compilation of boolean expressions.
An important complement to our work would be the invesiigation of more significant
optimising transformations which could be performed both on the source and on the
target code.

Tbe most difficult optimisations are those which require data flow analysis. The main
problem is the need to generate (usually) complex struetures to store data flow informa-
tion, as well as carrying these structures around so that the optimisation rule: can access
them. In our algebraic framewark, a promising direction seems to be the encoding of
data flow information as assumptions and assertions; they satisfy a wide set of laws which
allow themn to be flexibly manipulated within a source program.

Loeal optimisations are much easier to describe and prove. Some algebraic laws can be
used directly to perforn optimisations on the source code. For example,

(zi=g5z:=f) = (z:=flz —¢])

may be useful for eliminating cousecutive assignments to the same variable. Another
example is the law which allows the transformation of tail recursion into iteration:

pXo((ps X)abrgq) = (bep) ¢

7.2 Future Work 118

Local optimisations on a target program are known as peephole optimisations. The general
aim s to find sequences of instructions which can be replaced by sborter or more efficient
sequences, The (very abstract) normal form representation of the target machine may
provide an adequate framework Lo carry out optimisations and prove them correct. As a
simple example, the following equation allows the elimination of jumps to jumps

(P = §) = jump(k) (P =31)— jump(l)
Pils,) O (P=k)—jump(l) [,f] = P:[s,| O (P =k}~ jump(l) |, f]
oD Qg o g

The aim of this transformation is to eliminate all jumps to &, one at a time. When there
are no jumps to k then it is possible to eliminate the guarded command (P = k) — jump(/)
provided it is preceded by an unconditional jump instruction (something of the form
{P = k= 1) — jump(n), with n diferent from k). @ stands for an arbitrary context
containiag the remaining instructions. Notice that commutative matching as provided in
OBJ3 allows the above rule to be implemented straightforwardly.

It would also be interesting to investigate some machine-dependent optimisations such as
register allocation and the replacement of sequences of machine instructions with other
sequences known to execute more efficiently. But this only makes sense in the context
of a more complex target machine than the one we have considered here. Information
necessary to optimise register allocation can be encoded as assumptions and assertions,
following the style suggested in [11].

More on Mechanisation

As described in the previous chapter, a significant amount of wark concerning the mech-
anisation of our approach to compilation has been carried out; but much more could be
done. For example, we have not considered procedures, recurgion or parameters. Extend-
ing our OBJ3 specification with rewrite rules to eliminate these features would produce
a prolotype for a more interesting language. Clearly, it would be necessary to extend the
target machine with stacks and related operations in order te support recursicn.

The more complex the theorems and their proofs are, the more likely the occurrence of
erroreé i8. The complete verification of the reduction theorem for recursion would be a
worthwhile exercise,

The ideal would be to mechanise any new translation scheme which is designed. Apart
from the benefit of verification, the mechanisation (as we have addressed in this work)
helps to ensure that the scheme is described in sufficient detail to be impiemented.

As this will eventually become a relatively large application of theorem proving, a good
deal of proof management is required. A promising direction seems to be “customising”
a system like 20BJ for this application, as discussed in the previous chapter.

7.2 Future Work 119

Compiler Development

The only limitation that prevents the specification of the compiler (written in OBJ3) to be
used as an actual implementation is efficiency. As discussed in the previous chapter, one
reason for its inefficient execution is the use of commutative and associative maiching,
which is an exponential problem. Therefore the elimination of these features from the
present specification is an essential step towards improving efficiency.

A more serious constraint is imposed by the implementation of OBJ3 itself; currently the
language is interpreted and term rewriting is carried out at a speed which is acceptable
only for prototyping purposes. Therefore there is the need to develop an implementation
of the compiler in some programming language that is implemented efficiently.

As our reference against which to check the implementation is a declarative spexification
of the compiler {given by a set of rewrite rules), it might be easier to develop a functional
irnplementation. A language such as ML [66] could be useful for this purpose.

The main task is therefore to derive a cornpilation function, say C, from the rewrite
rules. It is possible to develop the implementation with a similar structure as the OBJ3
specification; C is defined by the composition of three functions, one for each phase of
compilation (simplification of expressions, control elimination and data refinement):

Cp¥s Y W(ControlElim(Ez Simp(p), s
P P

where p is a source program, ¥ its symbol table and s the start address of code. The
definition of each of the above functions can be systematically generated from the rewrite
rules in the corresponding OBJ3 modules. For example,

EzpSimp(z 1= ¢) = decA e EzpSimp(A:=¢); 2 := A
ExpSimp(A := uope) = ErpSimp(A:=¢); A:=uope

The aim of this transformation is to end up with a functional program still in OBJ3, hut
including only features availahle, say, in ML; s0 a simple syntactic transformation would
produce an ML program which could then be translated to machine code using an efficient
ML compiler [2].

While this is a relatively simple way of producing an efficient compiler from the specifi-
cation in OBJ3, the approach is rigorous rather than completely formal. One source of
insecurity is that even an apparently trivial syntactic transformation from OBJ3 into ML
(more generally, from a language to any other language) may be misleading; the other is
the ML compiler itself (unless its correctneas had heen proved).

An approach which avoids the need for an already verified compiler is suggested in [15)
and further discussed in [18]. It is based on the classical technique of bootsirapping.
The main goal is to obtain an implementation of the compiler written in the source
language itself. [15] discusses work which was carried out to develop an implementation of
a compiler for an occarn-like language extended with parameterless recursive procedures.
The implementation (in the source language itself) is formally derived from a specification
of the compiler given in an inductive function definition style that uses a subset of LISP,

7.2 Future Work 120

In principle, we could adopt a similar technique to derive an implementation of our com-
piler {written in our source language) from the specification in OBJ3. In this case, we
could run the specification to automatically translate the implementation of the compiler
into machine code. But as pointed out in [15}, the formal derivation of the implementation
from the specification is by no means a sitnple task,

Hardware and Software Co-design

Software compilation is cheap but produces code which is usually slow for many of the
present applications; hardware compilation produces components which execute fast, but
are expensive. A growing trend in computing is the design of systems which are partially
implernented in software and partially in hardware. This of course needs the support of
compilers which give the choice of compiling into software or hardware {or both).

We have addressed software compilation and, as discussed in the previous section, some
work has been done for hardware compilation using a similar appreach. A very ambitious
project i3 to develop a common approach to support the design (and correctness proof)
of a hardware/software compiler. The main challenge is to discover an even moare general
pormal form which would be an intermediate representation of code describing hardware
or software, Broadly, the structure of such a compiler would be as in Figure 7.1.

80ULCe program

normal form redyction

normal form
hardware software
compilation compilation
netlist machine code

.

Figure 7.1: Hardware and software co-design.

7.3 A Critical View 121

7.3 A Critical View

In this final section we present a critical analysis of our work and try to answer the
following questions:

* Will this ever be a practical way to write compilers?
If not, is there any independent reason for pursuing research of this kind?

To what extent should we believe in provably correct compilers (and systems in
geoeral}?

It is more than 25 years since the first approach to compiler correctness was suggested,
and thie still remains one of the most active research topice in computing. In the previous
section we briefly described a few approaches, some based on different formalisms, but
these are only a small fraction of the enormous effort that has been dedicated to the field.

We have defended the use of yet another approach. We believe it is very uniform and is
based on a comparatively simple semantic framework. In spite of that, the overall task
of constructing a correct compiler was not at all trivial. Many frustrating alternatives
were atternpted until we could discover reasonable ways of structuring the proofs. On the
positive side, however, there is the hope that these will be of more general utility. The
main purpose was not to show that a particular compiler correctly translates programs
from a particular source language to a particular target language; but rather, to build
a set of transformations that may be useful for tackling the problem in & rmore general
sense.

Uniformity was achieved by reducing the task of compilation to one of program refinement.
Although this is extremely difficult in general, it is much more manageable when dealing
with a particular class of problems, such as compiler design. Our understanding of and
intuition about compilation helped us to achieve a modular design; our knowledge about
programming helped us in the reasoning (using algebraic laws) necessary to discharge the
related proof obligations.

But the approach is not sufficiently mature yet. The search for deeper and more specific
theorems to support the design of compilers for mote powerful languages should continue.
We do not have enough grounds to believe that it will ever play a role in #riting prac-
tical compilers. In any case, we believe our work to be a contribution in this direction.
Hopefully, it will be useful as a reference for further work in the field.

Concerning the problem of provably correct systems i general, there will always be a gap
between any mathematical model and its implementation. Even if compilers, assemblers,
loaders and the actual hardware are provably correct, at some stage we move from the
mathematical world into the real world; and this transition can never be formalised or
reasoned about. The purpose of verification is to reduce the occurrence of errors; their
total absence can never be proved.

Bibliography

[1] A.V. Aho, R. Sethi, and J. . Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

12] A. W. Appel and D. B. MacQueen. A Standard ML Compiler. In Functional Pro-
gramming Languages and Computer Architecture (LNCS 274), pages 301-324, 1987,

3] R.J. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications. Technical report, Tract 131, Mathematisch Centrum, Amsterdamn,
1980.

[4] R. I R. Back. Procedural Ahstraction in the Refinement Calculus. Technical report,
Departments of Computer Science and Mathematics, Swedish University of Abo,
Finland, 1987,

[5) R. J. R. Back and J. von Wright. Refinement Calculus; Part I: Sequential Nonde-
terministic Programs. In Stepwise Refinement of Distributed Systems (LNCS 430),
pages 42-66, 1990,

(6] R.J R. Back and J. von Wright. Refinement Concepts Formalised in Higher Order
logic. Formal Aspects of Computing, 2:247-272, 1990.

[T} W.R Bevier, W. A. Hunt, J. S. Moore, and W. D. Young. An Approach to Systems
Verification, Journal of Aulomated Reasoning, 5:411-428, 1989.

[8] G. Birkhoff. Lalice Theory. American Mathematical Society, 1961.

[9] D. Bjorner et al. Final Deliverable of the ProCoS Project. Technical report, Com-
puter Science Department, Technical Upiversity of Denmark, Lyngby, DK, 1992,

[10] J. Bowen. From Programs to Object Code Using Logic and Logic Programming.
In Proc. CODE’91 International Workshop on Code Generation, Springer-Verlag,
Workshops in Computing, 1992.

{11] J. Bowen and J. He. Specification, Verification and Prototyping of an Optimized
Compiler. Technical report, Oxford University Computing Laboratory, 1992.

{12] J. Bowen et al A ProCoS 11 Project Description: ESPRIT Basic Research project
7071. Bullelin of the European Association for Theoretical Computer Science
(EATCS), 50:128-137, June 1993.

122

Bibliography 123

[13] R. S. Boyer and J. §. Moore. A Computational Logic Hendbook. Academic Presa,
Boston, 1988,

[14] R. Burstall and P. Landin. Programs and their Proofs: an Algebraic Approach.
Machine Intelligence, T:17-43, 1969.

[15] B. Buth et al. Provably Correct Compiler Developwment and Implementation. In
{th International Conference on Compiler Construction (LNCS 641), pages 141-155,
1992.

[16] W. Chen and J. T. Udding. Program Inversion: More Than Fun! Technical report,
Groningen University, April 1989.

[17] L. M. Chirica and D. F. Martin. Toward Compiler Implementation Correctness
Proofs. ACM Transaction on Programming Languages and Systems, 8(2):185-214,
1986.

[18] P. Curzen. Of What Use is a Verified Compiler Specification? Technical report,
University of Cambridge, 1992.

[19] N. Daeche. Guide to IVE, the Interactive Veritas+ Environment. Technical report,
University of Kent, April 1990.

[20] E. W. Dijkstra. Notes on Structured Programming. In O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare, editors, Structured Programming, pages 1-82. Academic Press,
1972,

[21] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffe, 1976.

[22] E. W. Dijkstra. Program Inversion. Technical report, EWD671, University of Tech-
nology, Eindhoven, 1978.

[23] E. W. Dijkstra. The Equivalence of Bounded Nondeterminacy and Continuity. In
Selected Writings on Computing. Springer, New York, 1982.

[24] H. Ehrig and H. Weber, Programming in the Large with Algebraic Module Specifi-
cation. In K. J. Kugler, editor, Proc. IFIP, 10. North-Holland, 1986.

[25] P. Gardiner and P. K. Pandya. Reasoning Algebraically about Recursion. Science of
Computer Programming, 18:271-280, 1992.

[26] S. J. Garland and J. V. Guttag. An Overview of LP, The Larch Prowr. In N. Der-
showitz, editor, Proceedings of the Third International Conference on Rewriting Tech-
nigues and Applications {LNCS 355), pages 137-155. Springer- Verlag, 1989.

{27] J. Goguen. Theorem Proving and Algebra. MIT Press, 1993. To appear.

[28] J. Goguen and J. Meseguer. Order Sorted Algebra I: Equational Deduction for
Multiple Inheritance, Overloading, Exceptions and Partial Operations. Technical
report, SRI International, SRI-CSL-89-10, July 1989.

Bibliography 124

[29] J. Goguen, A. Stevens, K. Hobley, and H. Hilberdink. 20BJ, A Metalogical Frame-
work Based on Equational Logic. In Philosephical Trensactions of the Royal Society,
Series A, 339, pages 69-86. 1992.

[30] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. lnitial Algebra Semantics and
Continuous Algebras. Journal of the ACM, 24(1):68-95, January 1977.

[31] J. Goguen et al. Introducing OBJ. Technical report, SRI International, 1993. To
appear.

[32] M. Goldsmith. The Oxford occam Transformation System. Technical report, Oxford
University Computing Laboratory, January 1988.

[33] C. K. Gomard. A Self-Applicable Partial Evaluator for the Lambda Calculus: Cor-
rectness and Pragmatics. ACM Transections on Programming Languages and Sys-
tems, 14(2):147-172, April 1992.

[34) M.). C. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. A. Sybrahmanyam, editors, VLS Specification, Verification and
Synthesis. Kluwer Academic Publishers, 1988.

[35] D. Gries. The Science of Programming. Springer Verlag, New York, 1981.

[36] R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical report, Edinburgh
University, LFCS Report Series, ECS-LFCS-86-2, March 1986.

[37] E. A. Hauck and B. Dent. Burroughs B6500 stack mmechanism. In Proceedings 1958
Spring Joint Computer Conference, Thomson Book Compauny, Inc., Washington,
D.C., pages 245-251, 1968.

[38] J. He. Imiroduction to Hybrid Parallel Programming. Techmical report, Qxford
University Computizg Laboratory, 1992.

[39] J. He, 1. Page, and J. Bowen. A Provably Correct Hardware Implementation of oc-
cam. Technical report, ProCoS Project Document [QU HJF 9/5], Oxford University
Computing Laboratory, November 1992.

[40] C. A. R. Hoare. Procedures and Parameters: an Axiomatic Approach. In Sympo-
sium on the Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188,
Springer Verlag, pages 102-116, 1971.

[41] C. A R. Hoare. Proof of Correctuess of Data Representations. Acta Informatica,
1(4):271-281, 1972.

{42] C. A.R. Hoare. Algebra and Models. Technical report, Oxford University Computing
Laboratory, 1991.

[43] C. A.R- Hoare. Refinement Algebra Provea Correctness of Compiling Specifications.
In 8nd Refinement Workshop, Springer-Verlag, Workshops in Computing, pages 33—
48, 1991.

E bliography 125

[44} C. A. R. Hoare. A Theory of Programming: Denotational, Algebraic and QOperational
Semantics. Technical report, Oxford University Computing Laboratory, 1993.

[45] C. A. R. Hoare, J. He, and A. Sampaio. Normal Form Approach to Compiler Design.
Acta Informatice, 1993. To appear.

[46] C. A. R. Hoare and J. He. The Weakest Prespecification. fnformation Processing
Letters, 24(2):127-132, January 1987,

[47] C. A. R. Hoare et al. Laws of Programming. Communications of the ACM, 30(8):672—
686, August 1987.

(48] W. A. Hunt. Microprocessor Design and Verification. Journal of Avtomated Reason-
ing, 5:429-460, 1989.

[49] N. D. Jones, P. Sestoft, and H. Sondergaard. An Experiment in Partial Evaluation.
In Rewriting Techniques and Applications (LNCS 202), 1985.

[50] N. D. Jones et al. A Self-Applicable Partial Evaluator for the Lambda Calculus.
In 1990 International Conference on Computer Languages, IEEE Computer Society,
1990.

[51] L. Lamport. IWTgX: A Document Preparation System. Addison-Wesley, 1986.

[52) J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic Expressions. In
Proceedings of Symposium on Applied Mathematics. American Mathematical Society,
1967.

[53) J. S. Moore. A Mechanically Verified Language Implementation. Journal of Auto-
mated Reasoning, 5:461-492, 1989.

[34] C. Morgan. Procedures, Parameters, and Abstraction: Separate Concerns. Science
of Compuler Programming, 11:17-27, 1988.

[55) C. Morgan. The Specification Statement. Transactions on Programming Languages
and Systems, 10:403-419, 1988.

[56) C. Morgan. Programming from Specifications. Prentice-Hall International, 1990.

[57] C. Morgan and P. Gardiner. Data Refinement by Calculation, Technical report,
Oxford University Computing Laboratory, 1988.

[58] F. Morris. Advice on Structuring Compilers and Proving them Correct. In
SIGACT/SIGPLAN Symposium on Principles of Programming Langyeges, 1973.

(56} J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming, 9:287-306, 1987.

[60] J. M. Morris. [nvariance Theorems for Recursive Procedures. Technical report,
University of Glasgow, June 1988.

Bibliography 126

[61] J. M. Morris. Laws of Data Refinement. Acta Informatica, 26:287-308, 1989.

[62] P. D. Mosses. SIS—Semantics Implementation System. Techmnical report, Computer
Science Department, Aarhus University, DAIMI MD-30, 1979.

[63] P. D. Mosses. An Introduction to Action Semantics. Technical report, Computer
Science Department, Aarhus University, DAIMI IR-102, 1981.

[64] G.Nelson and M. Manasse. The Proof of a Second Step of a Factored Compiler. In
Lecture Notes for the International Summer School on Programming and Mathemat-
ical Method, Marktoberdorf, Germany 1990,

[65] J. Paleberg. A Provably Correct Compiler Generator. Technical report, Computer
Science Department, Aarhus University, DAIMI PB-362, 1592.

(66} L.Paulson. ML for the Working Programmer. Cambridge University Preas, 1991,

[67}) W. Polak. Compiler Specification and Verification. Springer-Verlag (LNCS 124),
1981.

[68] A. Roscoe and C. A. R. Hoare. The Laws of occarn Programming. Theoretical
Computer Science, 60:177-229, 1988.

[69] A. Sampaio. A Comparative Study of Theorem Provers: Proving Correctness of
Compiling Specifications. Technical report, Oxford University Computing Labora-
tory, PRG-TR-20-90, 1990.

{70] E. A. Scott and K. J. Norrie. Automating Algebraic Structurea -— A Case Study
Involving the Correctness of a Specification for a PLy Compiler. Technical report,
ProCos Document [RHC ESKN 1/1], 1591.

[71] A. Tarski. On the Calculus of Relations. Symbolic Logic, 6:73-89, 1941,

[72] A. Tarski. A Lattice Theoretical Fixed Point Theorem and its Applications. Pacific
Joumnal of Mathematics, 5, 1955.

{73] J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on Advice on Structuring
Compilers and Proving them Correct. Theoretical Computer Seience, 15:223-249,
1981,

[T4] T. Vickers and P. Gardiner. A Tutorial on B: a Theorem Proving Assistant. Technical
report, Oxford University Computing Laboratory, 1988,

[75] M. Wirsing. Algebraic Specification: Semantics, Parameterization and Refinement.
In E. J. Neuhold and M. Paul, editors, Formal Description of Programming Concepts,
pages 259-318. Springer-Verlag, 1991.

[76] N. Wirth. Program Development by Stepwise Refinement. Communications of the
ACM, 14(4):221-227, 1971,

Bibliography 127

[77) H. Yan, J. Goguen, and T. Kemp. Proving Propesties of Partial Functions with Sort
Constraintsa. Technical report, Programming Research Group, Oxford University,
1993. To appear.

[78] W. D. Young. A Mechanically Verified Code Generator. Journal of Automated
feasoning, 5:493-518, 1989.

Appendix A

A Scheme for Compiling Arrays

In order to llustrate how type constructors can be handled, we suggest a scheme for
compiling arrays. We will confine ourselves to one-dimensional arrays. Furthermore, we
will ilustrate the process using a global array variable ¢ and will assume that it has
leagth I. But the scheme can be easily extended to cover an arbitrary rumber of multi-
dimensional array vanables.

We extend the source language to allow two operations on arrays: update of an element
and indexing. We adopt the map notation, as described in Chapter 4:

a=a®{ir+ e} update the i* element of a with ¢
ali) yield the i* element of a

Arrays are indexed from 0. Thus given that the length of a is I, ite elements are
a[0],... e[l — 1]. We will assume that indexing a with a value out of the range 0..(1 — 1)
will lead to abortion; this avoids the need of runtime tests that indices are in bounds, as
the implementation cannot be worse than abort.

In addition to the above, we will use lambda expressions in assignments to the entire
array «; but this will be used only for reasoning, and will not be considered a source
construction.

Our first task is to extend the symbol table ¥ to include the array variable a.

2% wu{aw— n}
whete Vi:0.({—1)e(n+i)gran¥

In practice, the symbol table must record the length of static arrays. As we are treating
a gingle array, and are assuming that its length is [, we can stick to the same structure
of our simple symbol table which maps identifiers to addresses. The address n assocdated
with a determines the memory location where the element a[0] will be stored; this is
usually called the base address. The locations for an arbitrary element is calculated from
n, using the index as an offsef. Therefore the location associated with element a[d] is
given by n+ 4 for 0 € ¢ < I, The condition on the above definition requires that the
addresses allocated for @ must not have been used previcusly. In the case of more than

128

A A Scheme for Compiling Arrays 129

one array variable, this condition would be extended to each one. Furthermore, an extra
condition would be required to guarantee non-overlapping of the addresses allocated to
distinct arrays.

We can then define the encoding program @.,., which retrieves the abstract state (formed
from the array variable a and the other global variables w) from the concrete store of the
target machine.

é.. “ varg; a:=Xi:0.(0~1) e M[i+n]; ¥,

Recall that ¥, was defined in Chapter 4 to deal with the global variables w. The following
decoding program maps the abstract state down to the concrete machine state.

@:L « V7l M:=M@Xi:n.(n+!{—1)eafi—n]; enda
The following proposition establishes that the pair (@.,w,é:j’) is a simulation,

Proposition A.1 (($,.,971) simulation)

b,.; B7Y = skip T &;1; &,

L0

We already know how to carry out the data refinement of programs involving ordinary
variables; now this is extended o cover the array operations.

Proposition A.2 (data refinement of array operations)
(1) ?.Iw(a =a@® (i — e}) E M:=MD{®,.(i)+nrn—d, ()}
(2) 2ouf(afi]) © MR, () +n]m

The remaining task is the simplification of expressions involving arrays.

Proposition A.3 (Simplification of expressions)

If neither A nor # occurinior e

De=ad{i—e}) = decAteA:=¢; t:=AAi=i;a:=ad{Ar1]
(2) (A=ali]}) = (A:=1i; A:=al[A])m

By structural induction, it is possible to show that the above two rules, together with the
ones given in Chapter 4, are sufficient to simplify an arbitrary expression.

Applying data refinement to a simple assignrnent of the form
a:=a® {Ar 1}
leads to

M: =M@ {A+n— M¥{}

A A Scheme for Compiling Arrays 130

which can be taken as the definition of an update instruction for arrays. If preferred,
we can store the value to update the array in a new register, say 8, rather than in the
auxiliary variable ¢. In this case, the update instruction would be defined by

update—array—at(n) < M:= M@ {A+ne B}
Similarly, the assignment

A= a[A]
will eventually be data refined to

A= M{A + n]
which can be taken as the defimition of a read instruction

read-array—at(n} Y A= M[A + n]

‘We have actually added the rules for expression simplification to our OBJ3 prototype and
performed some reductions. For example,

OB]> reduce a := a & {(ali bop j1)} bop k -> afdep il}

revritea: 178

result Prog: dec A,B w A :=m i ; A :=dop A ; A := afA] ;
B:=A ;A =i ;A :=Abop];
A := afA} ; A := Abop k ;
a:=ma® {A-» B}

The original assignment updates array a at position (a[i bep jI1) bop k with the
value of af[dop il. The resulting program declares variables A and B to play the roles
of two registers. Before the final assignment, A and B hold, respectively, the value of the
index and the element to update array a.

In the case of arrays local 1o a recursive program, a similar scheme could be adopted; but
storage would be allocated in the runtime stack, rather than in the fixed memory M.

Appendix B

Proof of Lemma 5.1

The proof of Lemmna 5.1 uses the following abbreviations, as introduced in Chapter 5.

MID = v,7:[a, Aempty ®, S, co A empty 8]

where § = (EI (co A ~empty T) — pop(r, 7)

b~ (v:€ r; push(v,®); v:E m))
a by— P

a — (v :€ ¢; push(r, ¥); v:€ a5)

O & — (v:€ r; push(e, ¥); v:€ ag)
T = -
O ¢ — pop(r,)
o bD —p
b — (v:€ r; push(v,©); v:€ w)
U= |0 (coA#7>1)- pop(v,T)

a bo-op

We also need the following lemma. It establishes that a normal form program with
guarded command set § (operating initially on an empty sequence) is refined by a normal
form program obtained from this one, by replacing § with I/ and the empty sequence
with a singleton sequence.

Lemma B.1 (Lift of sequence variables) If S and U are as defined above, and k occurs
only where explicitly shown below, then

v,0: [(ay A empty T}, S, (¢ A empty 7))
C
0,55 {(a0 A 5= (k)), U, (co A 7= ()]

Proof: we can regard the above as a data refinement problem: although tbe data space
of the two programs are apparently the same, note that the right-hand side requires the

131

B Proof of Lernma 5.1 132

stack 7 to be non-empty. Therefore, in order to compare ibe above programs we define a
simulation.

let 8 % varm,w; (~empty?).; (@, w) := (front 5, last 7); end 7

def

and O7! vard; 5=~ (uw); end @, w

As befare, we use 6(p) to denote 9; p; 87). The following facts are true of & and 871:

(1) (8,67") is a simulation,
(2) (push(s, ©)) L push(v, v)
(3) ©(pop(v, @)) E pop(v,)
(4) O(~empty &)1) C (#5 > 1)T
(58) Let dy = (B V (co A ~empty ®) V &) and d; = (b V (¢ A #% > 1)V &). Then
O(dl = S[o — @]) C (dz = U)
(1 &6
= {{end — var skip}(3.19.7), {;= combination)(3.15.4) and
{laws of sequences)(5.1.1}}
var b, w; (—empty ¥)1; (@, w):= (front 7, last v); end @, w

C {{end— := final value}(3.19.5), {end — var simulation}(3.19.6) and
by T skip}
skip
= {{end— := final value)(3.19.5), (end — var skip}(3.19.7) and

{void b,}(3.16.4)}
vare; T:= & — (w); {~empty ¥).; end ©

= {{end — var skip}(3.19.7), (:= combination}{3.15.4) and
{laws of sequences)(5.1.1}}
6. 8

(2 ©(push(v, &)
= 8; push(v,@); ©7"
= {{end change scope)(3.19.2) and {end — var skip}{3.19.7}}
var i, w; (—empty b)1; (@, w) := (front ¥, last &); push(w, @);
=%~ (w),end @, w
= {{;= combination}(3.15.4) and {end — var simulaticn}(3.19.6)}
(~empty 5).; push(v,5)
{b. C skip}
push(v, ©)

m

(3) Similar to (2).

B Proof of Lernma 5.1 133

(4)
(8)

Similar to (2).

From (1) — (4) and distributivity of © over iteration.

Then we have:

3

RHS

{{end — var skip}(3.19.7) and (5)}

decu,o ® v:€ ap; 7:= (k); variv,w; {~empty8)y;

(@, w) := (front b, last 3); dy * S[o — ®]; ¥:= @ ~ (w);

end i, w; (e A v= (k)L

{{void b,}(3.16.4) and (:= combination}(3.15.4)}

decv,7 @ v :€ ap; ®:= (k); var @, w; (®,w) = ({},k);

dy# S[o e @f; Di=& —~ (w); end®,w; (oA T=(k))

{{:= combination}{3.15.4), {end— := final value)(3.19.5) and
{end ~ war simulation)({3.19.6)}

decv, D @ v € ag; ©:= (k}; var; w:={);

S0 — wf; Ti= @~ {k}; endit; (oA B = (k)

{(:= ~b, commutation}(3.15.8) and {dec— := final value){3.18.6)}
decu, i 8 v i€ ao; ©:i= (k); variv; = (};

dy* S[0 — #); {co Aempty@); end &

{(dec— :€ initial value)(3.18.5) and {dec elim})(3.18.3)}

deco @ 0 :€ ag; vari; @ := {); dy » §[0 +— B; (co Aempty @)y; end &
{{dec — (var, end) conversion)(3.19.10) and (dec rename)(3.18.4})
LHS

Now we can prove Lemma 5.1. First we repeat the inequation to be proved.
Let dy = (b V (eo A —empty ¥) V bp), then we have:

bT; dy+ 8 3 (empty®)y; MID; vicr; dy* S

Proof:

|0}

b &y xS

{{* — O unfold)(3.17.3) and 7 T skip}

v:€ r; push(e,8); v:€ ap; 1+ S

{{* sequence)(3.17.7) and Let d; = (3 V (e A #78 > 1) V by)}

B Proofl of Lemma 5.1 134

v:€ r; push(p,%); v:€E ag; a* U; dy» §

{b, C skip and (* — O unfold}(3.17.3)}

v:€ r; push(v,); v:€ ag; dan U (co A #5 > 1)y pop(v, T); di+ S

= {(dec introduction)(3.19.11) and Definition 4.1{Normal form)}
v:€ r; push(v,T); v:[ag, U/, (e A #F > 1)]; pop{v,u); dy « S

= {{dec rename)(3.18.4), assuming w is fresh and convention ¢’ = ifv — wj}
v 1€ 1y push{v, o); w: [a, U, (g A #8> 1)]; pop(v,8); dj = §

3 (G A#e>1), 3 (SAKD> 1) (5= (o) = (A5= (o))
v:€ r; push(o,t); w:[a), U') (g A ® = (v))]; pop(v,B); 1 *§

= {Definition of push and pop}

vier vi={v) ~ & w:la), U, (GAT={v})]; 5:=(); di* 5§

{6y T skip]

viE T (emptyt)y; D= {v); w:lal, U, (g AD={v))]); 2:={); d xS

= {{dec introduction}{3.19.11) and (empty 3),; t:= () = (empty?d),}
v:€ v (emptyd); w,v: [(ag AD={v)), U', (AT = () d1#5

2 {Lemma B.1(Lift of sequence variables) and {dec rename)(3.18.4)}
viEr; (empty®),; MID; di xS

2 {{z :€ b; p commute)(3.16.9)}
(emptyv)y; MID; vier; di» §

(W]

1]

Appendix C

Specification and Verification in
OBJ3

Here we give further details about the mechanisation., Following the same structure as that of
Chapter 6, we give the complete description of the main modules together with the sutomated
proofs of some of the theorems.

C.1 The Reasoning Language

The reasoning language and its algebraic laws (including the derived ones) are desctibed by the
following theory. The next two sections illustrate the verification of two laws of while.

th REASONING-LANGUAGE [X :: EXP] is

worts Prog Progld .
subsorts ProgId < Prog .

define ListVaxr is LIST[Var] .
define LiatExp is LIST[Exp] .

sse Progyom constructs
op skip : -> Prog .
op dec _ o_ : ListVar Prog -> Prog [prec] .

op-as _:¥_ i LietVar ListExp -> Prog
for x := & if (lan x == lan) and (dis] x) [prec 621 .
op ;. : Pxog Prog —> Prog [wssecc prec 58] .

op _M_ : Prog Prog -> Prog [assot comm jdem id: T prec 67] .
op _d _ P_ : Prog CondExp Prog ~> Prog [prec 58]
op _*_ : CondAExp Prog -> Prog [prec 54] .

%ev idditional reasoning featurss
op L : ->» Prog .
op T : =-> Prog .
op _U_ : Prog Prog ~> Prog [assoc comm idem id: L prec 57] .
op .. : Prog Prog -> Bool [prec 70] .

135

C.1 The Reasoning Language

136

op p_ *_ : Progld Prog -» Prog [prec E9] .
op _‘;’_ : Prog Prog —> Prog [prec 56] . wo» Inverss of ;

op __ : Progld ListVar -> Progld . BIE . Jo 7 2l s Pt onf

op _T : CondBxp -> Prog .

op ., @ CondExp -> Prog .

op _.—_ ! CondRxp Frog —> Prog [prec 53] .

op _O_ : Prog Prog —> Prog [amscc comm idem id: T prec 57] .
op _:€_ : ListVar CondExp -> Prog [prec 52]

op val_ ; LiatVar -> Prog .

op end_ : ListVar -> Prog .

*es anyiliaTy operators *+¢

op _\ ¢ List¥ar Prog -> Bool [msms] . »#s Bon-freenens
op .\. : Progld Prog —> Bool [mamal .

op _\\. : ListVar Prog -> Bool [memc] . »*s Jon-oCcurrence
op~as _[_<- 1 : Prog ListVar ListExp -> Prog +4» gubstitution

for plx <- 4] 1f {len x == len #) and (dis} x} [mema] .
op _[.¢~J : Prog Progld Prog -> Prog [memo] .

sss variableg declaration (for use in equations)
var X1 Z : Progld .
var p4qr : Prog .
var x ¥ = : ListVar .
var ab ¢ : ComdExp .
var « f g : ListExp .

#%+ Sequeatial composition

[:—skip"Llmit] eq (skip ; P)
[;-skip~Rmit] eq (p ; skip)
[;~L"Lzern] oq (L :p)=L1.
[;-T"Lzexo] wq (T ;pr=T.

=p.
=p -

s+ Demonic nondetarminiam
[N-L-zexc] aq (p N L) = L .
[M-T-unit] aq (pN T) =p .

#+% The ordering rslation
[C-L-bottox C] aq L =p .
[C-T-topC] e p=T .
[C-N-1b C] oq (pfiq)=p.
[C-U~ub C] «q p=(puUgq .

#*% Angelic nondeterminism
[U-L-unit] eq (pU L) =p .
[U-T-merc] aq (pU T} = T .

sss Racursion
L2l oq (pIsp)=pllec (pXep)l.
[b71tp <=1 e¢q (pXep)Cq=(plk<-ql)Cq.

»*s Strongsst inverse of sequential compomition
;=511 w(p;qg:-)*(pl;r?q)-

u u
(72 C) »q (pq):iq=p.

C.1 The Reasoning Language 137

+++ jssuxption and Assertion

(b7 -truecond]l eq trueT = skip .

(b, "true~cend] oq true; = akip .
[bT-falus"cond] eq false? = T .
[bi"falee"cond] eq fale, = L .
[bT-conjunction] e (a7 ; BT) = (a A BT .
[by~conjunction] eq (aL ; b1) = (a A b)L .
sss The lag of simmlation gives rise to many lava

BT "void b,] eq (b7 ; by) =T .
[by"void bT] eq (by ; BT} = b .
b7 -skip C1 eq skip = bT .
[by ~skip C1] eq b; = skip .

[b, b7 "gimi C] e by ; bT) = skip .
[by-bT “gim2 L[] eoq skip = (bT ; by) .

"% Guarded ¢ommand

[-+"def] oq b—p=(bT ;p).

[—~trae”guard) oq (true — p) = p .

[—"false gnard]l eq (false — p)} = T .

[—-b""conversion] eq b — p = (6T ; p) .

[+"conjunction]l] eq & — (b —p)=(aAb) —p.
[—+"disjunction] eq (a —pIN (b —pl=(a Vv bl—=p.
[—-N~dist] o b~ (pNged—-pln(b-gq .
[;-—"ldist] oq (b—p);q=b—(p;q).

*++ Guarded cosmand set
[O-def] eq (pO g =(pnNg.
[O-elin] eq a—~{(a—pOb—~gq)={(a—p).

eee Conditional

[&>"det]) oq (pdbbq=(—=p0d-b—gq .
[db"truecond] o9 (o AW)T ; (pabvebgl=aab)l ;p.
[di"falee cond] oq (A A -B)T ; (pdbAcbq=(A-BT ;q.
[db"void"b7"1] eq T ;pdb B P =(abbg .
[Aab"void"bT™ 2] eq (pdb b b ; Q=(pdbbq.

{4 &"idempl oq (pd b bp)=p.

[;~d b"Ldiat] o (pddD BPQ;;T=(piradbpgqg;r.
[gusrd=-<i b"dist] sq a = (pdb b gl=(a—~p)dabb(a—gq .
[dbcond“disj] e pd b b (pdcbgl= (pabVectbaqg.
[d"cond conj]l oq (PAb b QP acpbqg={(pdbicbq.

sss Assignment

[:="skip] og (x := x) = skip .
[:="identity] oq (x,y := eo,y) = (x = @) .
[:="aym] o {(x,y := e,1) = (y,x :w 1, e} .

[:="combinaticn] eq (x :* e ; x := f) = (x := f[x <~ o)) .

[—+=:="subat] oq (x=8) = (y i2f) s (x=w) — (y :a 2[x <~ @]} .

[:2-N“Mdiet] oq x:2e; (phNg)= (x:=e;ptN(x:=e;q .

[:=-<dpb~Bdist] eq x :xe; (pdbbq)=(x:xe;p) dblx< o] b(x:=4e;4q).
#++ The following 3 laws ere not in Chapter 3

:="combination2] c¢q {x :x @& ; y := f) = {x,y :c o, (f[x <— o]1)) if x \\ 7 .

[:=" commmte] cq (x:=a;y:=f)a(y:=1f[x< el ; x :=a} if 7\\ (x := o) .
[:="split] cq (x,y:=a,f) = (x:=a; y:=2) 42 x\\ (¥ :=1).

C.1 The Reasoning Language 138

*&4 Ganeralised assignmant

[:€ talse"cond] aq (x :€ false) = T .

[:€ true"cond C] aq (x :€ trua) = =kip .

{:e woid BT ¢ x :Ea;a' =x :Ea.

[:€ v0id™ b,] q T :EA; 4 =X EN.

[:e-p7 £ eq (x:€b) =17 .

[t€-db"Bdist] eq X €8 ; (PaAdbpbg)=(x:€ca;pdbb x:€Ea;q .
[:e-:=1 cq x:E{xwe)=(x:ce) ifx\\e.

sos Iteration

[s-det] ¢g bep=puXe(p;2abpskip)it I \p.
[»-2p] oq b p=(p; (bep)) db b skp.

[»~1tp &] oq (bepCq=a(p; qdb b skipC q) .
[*~elimi] ¢q T :EAa;b*p=1x :€aif pud(a,b) . ~
[*-elim?] cq AT;b¢p=uT it prala,t) . oo oL

(e "unfold} q x (E a ; Vb)*rp=x:€a;p;{avb)ep.

[*-0-untold]l cq x:Gl;(nV‘b)o(t—rpr—oq)=

1:€a;p; (avb)*{a—wpOb— q) it pud(a,b} .
[+-0~elix] cque(a —~pOb—q =aspif pud(a,b) .
[s——~elia] sqa* {(a—pl=arp.

[s-p~tail“rec] eq {b e p) ; g=pIs (p:1dbbq).
[s-sequence] oq(B*p) ; (bVve)sp=(bve)esp.

we+ Static Declaration

[dec”asnocl g decz # (dec y o p) = (dec x,y s p) 12 x\\ 5y .
[dec”aynl ey dec x o (dec y o p) =dec y o (dec x o p) .
[dec"elin] tq (decxop)=pitz\p.

[decranane] cq f(dec x ¢ p) = (dec y » plx <~ y1)

it y \ p and coptignous-scopa(x.p) .
[dec—:="init C] oq (dec 3 2 p) = (dec x @ x := 9 ; P) .
(dec-:€ it C] eg (dec x » p) = (dec x 0w x :€ b ; P) .
[dec=:="tipal] oq (dec x s p) = (decxwp; x :=9) .
[dec-:€"tinal C] #q {(dec x o p} = (dec x 8 p ; X :E B) .
[;~dec™Ldist] cq (decxop)iq=(decxep;qitzlq.
[;~decBdiat] cq q ;i (decxep) =(decxeq;plitxzlq.
[dec-;"dimt C] oq (dec x ¢ p) ; (dec x v q) = (dec x 0 p; q}.
[dec—-0-dist] eq a— (dec xwp) O b — (decx e gq) =

(decx e a = pOb — q) iz x\\ (a,b) .
[dec—db"dist] ¢q (decx s p) d b b (dec x 0 gq) wm(decxwpq b bgq)ifx\\b.
[dec-»"dist] <cq b ® (decxwp) = (deczmbep)ifx\\b.

#+% Dynamic Declaration

[var-aamoc] cq war x ; vary = varx, ¥y if x\\ 7.

[end - assoc] cq end x ; ond y= end x,¥y if x \\ y .

[var-change-scope) cq (p ; var 3) = (var x ; p) it x \ p .

[end~change"scope]l ¢q (end x ; p) = (p ; ond x) if 2 \ p .

[var-4 b "Raiat] cq (arx;pldb b (varx; q)=varx; (pd b b q)ifx Woe .
[end-gb-Rdist] cq (end x ;PP d b B (endx ;) mendx; (p g b b gitxi\b.
[var-:="1init] oG verxr = (varx ; x := @) .

[var—:€~init C] oq varx = {varx ; x :€Db) .

{end-:="finall oq end x = (x := e ; end x} .

[end-:€"tinal] eq end x = (x :€ e ; end X} .

[end-var-aini] o {var x ; ond x) = skip .

C.1 The Reasoning Language 139

[end-var-sinm2] oq (end x ; var 1) = skip .

[end-var ~skip] cq (end 2 ; varxz ; z := @) = (x :=) if x \\ o .
[var-elimi] oq (decx o verx ; p) = (dec x » p} .

[end~elim1] o (dec z o end 2 ; p) = (decx o p) .

[var-elin2] oq (decx o p; varz) = (dec x » p) .

[end~elim2] oq {decx o p; end 2) = (dec x w p) .
[dec—var~end] cq (dec x #p) = (var x ; p ; end 2)

it contiguous-scopa(z,p} and block-structured(p,z) .

andth

C.1.1 Proof of Theorem 3.17.6

Here we give the complete mechanisation of the proof of the equation
[o—utail"rec] aq (b o p) i q=p e (p; I db b gq).

which actually relies on the assumption that X is not free in p or q. Most of the features of OBJ3
used in the proof have been introduced before, Others are explained as the need arises.

First we nesd to specify the context in which the reasoning will be conducted. In this case, it
is given by the module describing the ressoning language together with the assumptions and
abbreviations used in the proof. As rewriting in OBJ3 is carried out only for ground terms
(that is, terms involving only constants), we need to explicitly declare a constant to play the
role of each variable appearing in the equation. Of course, we must not assume anything about
these constanta, except the conditions associated with the theorem. The context of cur proof s
defined by (this is omitted for the next proofs):

cpan REASORING-LANGUAGR[RYP] .

op X : -> Progld .

op p: —> Preg .

ep q : => Prog .

ep b : -> CondExp .

[hypil) eq X \ p = trme .

[hyp2]l eq X \ q = true .

[LES~def] let LHS = (b ¢ p) ; q -

[RES def] let BES c u X o (p ; X A4 b b q) .

We also add an equation (for later use) which expresses a simple lemma about substitution. It
can be automatically proved from the definition of the substitution operator:

[subati] eq {(p ;X 4 b b q)[I <-1BS) =(p; LES 4 b b q) .

sse> Proof

0BJ> reduce in SUBST : (p ; X 4 b B Q)[I <~ LES] == (p ; LHS 4 b b q)
reurites: 4

result Bool: trus

where SUBST is the module which contains the relevant equations of substitution.

We aplit the proof of the theorem into two steps: (RHS C LHS) and (LES C RHS). Recall that the
symbol = preceding the label of an eqnation (in an apply command) means that the equation
is to be applied in reverse (from right to left}).

C.1 The Reaspning Language 140

*ee> Proof of (RES [LES)

DBJ> start (b * p) ; q C LBS .

OBJ> apply .*"fp within tegm .
result Bool: (p ; b * p 4 b pakip) ; q C LES

OBJ> apply .;-d b"Laist within tarm .

rasult Bool: p ; (b # p) ; g4 b b skip ; q C LES
OBJ> apply .;-skip Lunit within term .

result Book: p ; (b*p) ; g4 b > q C LAES

OBJ> apply -.LHS"def within tsrm .

result 300l: p ; LES 4 b | q C LHS

0BJ> apply -.substl within term .

result Bol: (p ; X q b > QI <- LES] C LBS

OBJ> apply ~.u"1lfp at term .
repult Bool: p X1 e p ; X 4 b > q C LES
OBJ> apply -.RES"def within term .
result Bool: RES C LES

The other part of the proof illustrates ways of selecting a particular suhterm. A patural number
is used to specify the desired subterm, where the arguments of a given operater are numbered
from 1. For example, in LHS C RHS, (1) selects LHS. Nested selections are specified using the
keyword of, The application of 2 given equation may require the user to provide an explicit
instantiation (biding) of some of its variables. Thie neually happens when applyiug an equation
in reverse and its left-hand side containe variabies which do not appear on the right-hand side.
The biding for these extra variables is defited using the keyword with, followed by a list of
equations of the form ver = term,

*ee> Proof of (LES C RES)

OB)> start uy X« p ; I ¢ b p» qC RES .
OUBJ> apply .u"fp at (1) .

result Bool: (p ; X A b gl < pXep;Xabbq] CRES

OBJ> selact SUBST . e¢¢ Containa equations for sobstitution
OBJ> apply red at (1} . *o¢ Doed the eubstitution automatically
result Bool: p ; {u X ap; X4 b>q)dbLqLC RES

OBJ> select BEASONTNG-LANGUAGE(EXP] . ##+ Back to comtext providing the laws
DBJ> apply -.RHS"def within term .

rasult Bool: p ; RHS 4 b b q C RES

=== == =xsesx=3x

0BI> apply -.;- -2 with p = REE pithin (1) .
rosultlool:p;(!-ﬂsl;"q);qu t> q C RES

C.1 The Reasoning Language 141

0BJ> apply -.;-skip"Lunit at (3) of (1) .
result Bool: p ; (RES 5 q) ; g4 b b skip ; q T RES

0BJ> apply -.;~d P"Ldist within term .
result Bool: (p ; (RES ;' q) 4 b b ekip} ; q G RES

OBJ> apply .;—?"1 at term .
Tesult Bool: p ; (RHS | q) 4 b b skip C RHS | g

0B3> apply —-.*"1fp at term .
r-snltnool:b-pt_:lls';"q

0BJ> apply -.;-?'1 ac tarm .
result Bool: b+ p ; ¢ C RES
0BJ> apply -.LES"def within tarm .
reeult Bool: LES C RES

C.1.2 Proof of Theorem 3.17.7
The equation to be verified is
[*“mequencel eoq (bep) ; (bVc)ep=(bVec)ep,

The proof strategy is very similar to the that of the last section. First we prove a simple lemma
about substitution (for later use)

[subst1] aq (p ; T 4 b b (bve) #p)iXT <-RES] = {p:RESA Db DB (bVc)ep),
*s3s> Proof
OBJ> reduce in SUBST : (p ; T 4 b b

(b v ¢) ¢« p)[X <« BHS] ==
(p; ABS 4 b b (b

Vel wp),
rewTrites: 4
result Bool: trme

and then split the proof in two parts, as above.

+»e> Proof of (LES C RES)

OBJI>» atart (b V ¢) # p C RES .

0BJ> apply ~.d b "idemp at (1) .

result Bool: (b WV ¢) »pd b b (bVc)e*pLC RES

OBJ> apply .+"fp at (1) of (1) .

result Bool: (p ; (bVv e)wpdbVce bskip)db b (bVc)wpLC RHS

OBJ> apply —.RHS“def within (1} of (1) .

result Bool: (p ; RS 4 bV e P skip) 4 b b (b Vv c) » p C RHS

0BT> apply —.d b void"bT 2 at (1) of (1) .

result Bool: (p ; RAS 4 bV ¢ P ~(b VvV c)7 ; ship) d b b (b V ¢} » pC RBS

C.1 The Reasoning Language

142

0BJ> apply —.#"elimd with b = (b V ¢) within term .

Tesult Bool: (p ; RES 4 bV e b =~(bv)T s (bV c) wp;skip) db b

(b v e) » pC RES

OBJ> apply .;—skip"Runit within term .

Tesnlt Bool: (p ; RES 4 bV e (b V)T ; (bVclepldbd b

(bVc)e+pC BES

OBJ> apply .4 b"veid"b” "2 within term .

result Boocl: (p ; RES A bv e b (b Ve)*p)qb b (bve)e pLC RES

DBJ> apply .d b>"condconj within term .

reeult Bool: p ; RES 4 (b V¢) ADb b (b WV c)* pC RES
=== S e e e S
OBI> spply red at (2) of (1) .

result Bool: p ; BES 4 b b (b Vv ¢) » p E RES

DBJ> apply ~.substl within term .

result Bool: (p ; I <« b p (b V ¢} o p)[X <~ RAS] C RBS
=2z== =pog= EXFTCEESiSa=TTE

0BJ> apply -.u"1fp at term .

resnlt Bool: p X e p ; I 4 b > (bV c)epC BES

Y xmma anm

OBJ> apply ~.#-p"tail rec¢ withip term .
result Bool: bep ; (b Vv c) * p C RES
OBJ> apply -.LHS"dsf within term .
result Bool: LHS C RES

The abaove result is added to the system in the form of an “inequation™
[LES-C-B¥s] eq LES = RRS .
which is then used in the gther part of the proof.

=ss> Proof of (RHS C LHS)

OBJ> start (b * p} ; (b V ¢) » p C LES .

0BJ> apply .+ 7fp at (1) of (1} .
result Bool: (p i b*p g b b skip) ; (b V ¢) » pC LES

0BJ> apply .;-d b~Ldist wvithin tam .

result Bool: p ; b#p ; (bvc)opdbDaakip; (bVvec)epC LES

0BJ> apply .;-skip"Lunit within term .
resilt Bool: p; bep : (bvec)epdblb (bVe)epL LES

0B)> apply .»“fp ax {3) of (1) .

Tesult Bool: p; bep ; (bVc)epdbb (p;(bVe)lespddbV c b sip)

C LES

http:c=as.......=-=.=�..,.���

C.1 The Reasoning Language 143

0BJ> apply ~-.LES"def within term .
Tesult Bool: p ; LES 4 b D (p ; (b V) *pd bV c p skip) C LES

OBJ> apply -.RHS5"def within term .

Tesult Bool: p ; LHS 4 b b (p ; BES 4 b V ¢ b skip) C LBS
OBJ> apply -.LES"C"RES within term .
Tesult Bool: p ; LHS 4 b b {p ; LHS q b Vv ¢ b skip) C LAS

0BJ> apply .d b cond~disj within term .
result Bool: p ; LES 4 bV b ¥V ¢ |> skip C LHS

O0BJ> apply red at (2) of (i) .

result Bool: p ; LAS q ¢ V b b skip C LAS
0BJ> apply -.+"1fp at term .

result Bool: (¢ v b) + p C LES

0BJ> apply -.RES"def within term .
result Bool: RES C LES

C.2 The Normal Form 144

C.2 The Normal Form

The nommal form definition and the related lemmas and theoreme are describied by the following
theory. Nole that this module is also independent of an expression language. The next sections
illustrate the verification of some of the proofs.

th NORMIL-FORM [I :: EXP] ia
protecting REASONING-LARGUAGE[I] .

op~as (.:[_, .-»_, _]) : LietVar CondExp CondExp Prog CondExp ~-> Prog
for v :[a, b > p, €] if pwd(b,c) [prec 601 .

ew» Variablee for use in equations
var pq : Prog .
var a a0 al a2 b b1 b2 ¢ co ¢i : CopdExp .
var z v : ListVar .
var o { : ListExp .

[nf"det]l aq v :[a, b=> p, c] = decwvevw :Ea;bwp;cy .

[T:ekip1 C) cq skip = v :[a, b ~> p, al it ped(a,b} .

[L:primitivs"commanda]
cq p* v :la, m->(p;v:i€c)] if ped(n,c) andv \ p .

[T:ekip2 C] cq skip = v :[a, a -> v :€ ¢,] if pud(a,c) .

[T:aasignaent CJ
eq (x:=e) = v :[a, a=> (x =0 ;v E), c] it pud(a,c)

[L:sequnential composition]
cq v :le, ¥1 ->p, co] ; v :[co, (b1 v b2) => (b1 — p D b2 — q},] =
v:[la, (bl V b2) -> (b1 — p O b2 — g}, =] if pwd(bi1,b2) .

[L:eliminate gnarded command CJ
eq v :la, b1 > p, e = v :[a, (b1 V b2) ~> (bl — p O b2 — q), ¢l
it ped(bl,b2,e) .

[T:sequential comporition]
eq v :(e, b1 > p, c0] ; v :fco, b2 -> q, ¢} =
v :le, (b1 Vv b2) => (b1 — p O b2 — q), €] if pwd(bi,b2,c)

[L:conditiamal C]
cqg v :fal, (a Vv b1) => (0 = (v :€ a1 4
<

bbv:€Eaz) OBt +p),cl ab p
v :[a2, (aV b1} ~> (a — (v :€al q b p v :€a2) Obt = p), c]

vi:[a, (avbl) > (a— (v :6Enl abpv:€a2)0bl—p), c)
it pud(a,b1) .

[T:conditioral C]

C.2 The Normal Form 145

:fal, D1 -> p, 1] 9 b b v :[a2, B2 > g, ¢] =
:[a, (a VBl Vel VDR >
(a— (v :Eat4qbpv:ca2) Obl—p
O¢l — v:€cb2 —q),c
if pwd(a,bi, b2,¢i,.c) .

[L:void~initial”state C]
cqv :fa, (coVD) >{co - v:€Eabb —p), ¢] =
v :[co, co=> (v :€ a0 b-—p), c] 1if ped(co,b) .

[T:iteration C]
cgbe*v i[ae, b1 -> p, co]l =
v :[a, (2 V bl V co) ->
(a -+ (v:€Eaoqbpv:€c)Obl -—pTco— v :€al}, cl
if ped(a,bl,co,c) .,

andth

C.2.1 Proof of Lemma 4.2

Here we verify the inequation

[L.:asquential compasition]
cq v :[m, B ~>p, c0] ; ¥ :lco, (31 ¥ b2) > (bl — p O B2 — q), c] =
v :[a, (b1 V b2) -> (b1 — p O B2 — q), €] 1f prda(bl,b2) .

As usnal, we assume the hypothesis by adding it in the form of an equation.

opan NORXAL-FURM [EIP] .
[hyp1] eq pud(bi,b2) = trae .

This is used to discharge the disjointness conditions associated with some of the lawa. It is
possible to tell OBJJ that we want conditions to be discharged automatically, rather than by
applying rules step by step:

set reduce ¢onditionm on .
Then we proceed with the proof.

DBY> start v :[a,bl -> p,co) ; v :[co, (b1 v b2) > (bl — p O B2 — q).c] .
DBJ> apply .nf"def within term .
result Prog: (dec v o v :€ n ; b1 # p; coL)
{(dec ¥ ¢ ¥ :c co ; (b1 ¥V b2) ® (bt — p D b2 — q) ; ¢4}
OBI> apply .dec—;"dist ut term .
rosult Prog: dec v » ¥ :€ & ; DL * p ; Co) ; ¥ i€ €0 ;
(M.V'b2)0(bt—-pl3‘b2—-q) HIE-T Y
0BT apply .:€-b7 with b = ¢o within term .
result Prog: dec v # v :€ a ; bl # p ; co, ; <o’ ;

C.2 The Normal Forin 146

{bi v b2) » (bl — p D B2 ~ q) ; ¢p

0BJ> apply .b,-bT“simi within term .
result Prog: dec v »+ v ;€ m ; bi * p ; skip ; (b1 V b2) » (b1 —+ p O B2 — q) : ¢,

OBJ> apply .;-skip Runit within tarm .
Tosult Prog: dec v e v (€ a4 ; bl * p ; (b1 VB2) * (b1 — p ODB2 — q) ; ¢y

0BJ> apply -.#-0O"elim with b = b2 within tarm .
Tesnit Prog: dec Yy o ¥ (€ a ; bl # (b1 - p O b2 — q) ;
(b1 vV b2) * (bl — pOb2—~q}; ¢y

0BJ> apply .+ sequence within term .

Tesult Prog: dec v o v € & ; (bl Vv b2} # (b1 — pObZ — q) ;)
[=

0BJ> apply -.nf"def At term .

result Frog: v :[a,bl ¥V b2 -> bl — p D b2 — q,¢]

C.2.2 Proof of Lemma 4.3

The proof of the lemma,

[L:eliminategoarded " command C)
cq v:a, bl ->p, c] = v :[a, (b1 ¥V b2) > (bi — p Obd2 —~ gq), ¢]
if ped{bi,b2,c) .

follows directly from the lemma verified in the last section and the one of the reduction theorems
for skip, as shown below,

open NORMIL-FORK [EIP]
Thypi] eq ped(bi,b2,¢) = true .

0BY> start v :[a, (b1 Vv b2) =-> (b1 — p O b2 — q), <] .

QBJ> apply ~.L:sequential~composition with co @« ¢ at term .
result Prog: v :[a,bd -> p,c) ; v :[c,bl ¥ b2 > b1 — p C B2 — q,¢<]

0BJ> apply ~.T:skipl at (2) .
rasult Prog: ¥ :[a,bi -> p,c] ; skip

DBJ> apply .;-skip~Runit at term .
rasult Prog: v :[a,b1 -> p,c]

C.2.3 Proof of Theorem 4.4

Uzipg the above two lemmas, the proof of the reduction thecrem of sequential compaosition

[T:sequantinl”componition C]
¢q v :[(a, 1 > p, c0] ; ¥ :[co, B2 > q, c] =
v :[a, (bi Vv b2) => (b1 — p D b2 — q), ¢] if pwd(bl,b2,¢)

22 The Normal Forma 147

is straightforward.

open WORMAL-FOREM [EXP]
[hyp1l eq pud(bi,b2,¢) = true .

OBY> start v : [a, (b1 Vb2 => (bl — p D BT — q),] .
OBJ> apply ~.L:sequential composition at term .
result Prog: v :{a,bli -> p,co] ; v :[co,b1 V b2 => bl — p O b2 — q,c]

0BI> apply -.L:eliminate”guarded”command with b1 = b2, p = q at (2) .
result Prog: v :[a,bl => p,col ; v :[co,b2 > q,cl

C.3 Simplification of Expressions 148

C.3 Simplification of Expressions

The folowing module groups the theoremas related to the simplification of expressions. In order
to prow them, we need to instantiate the module describing the reasoning language with the
module SOURCE-EXP which describes the expression sub-language of the source language. The
module SOURCE-EXP is omitted here; its relevant sorts and operators were given io Chapter 6.
Each of the next two sections presents the verification of one theorem related to this phase of
compilation.

th EIP-AINPLIFICATION is
protecring REASONIEG-LANGUIGE [SOURCE-ZXP] .

w++ Variibles for use in eguations e+

Var pq s Prog .
var b s £ : SourceExp .
var £t : SourceVar .

var xyu : ListVar .

[Zatroduse™Al ¢q (X := ») = (dec Ao A = & ; 1 :7 A)
if (A Y\ %) and (A \\ &) .

[simple~topl g (A := & bop f) -ﬁec:.A::f;!:-A:A:-i A = Abop t
it (A, \\ (& bop 1) and jg-not-vax(f) .

(simple~bop-optimisation] c¢q {A := @ bop %) = A > & ; A :x Abop &
if A\ (epop 1) .

[eimple wpl cq (A = uop @) = (A :® & ; A :=wop A) if A \\ & .
fsimple-candl C] cq (dec x,A e p) 4 b b (dec 1A % g) =
decx, Ao A :=b; (pdADb g
if (x,A)\\ b .

[simpla~coad2 C] cq b * (dec x,A o p) = (decx,Ae A :=b; A+ (p; A :=1b))
if (x,A) \\ b .

endth

C.3.1 Proof of Theorem 4.3
The proof of the theorem

[li.-plo’bop]cq(A:aébopf)-‘dectoA:-f;t:-A;A:=i;A = Abop €
it (A,8) \\ (o bop 1) .

follows from the basic laws of assignmeut and declaration. Using asimple derived law to commute
two assignments significantly reduces the number of proof steps. Although the equations defining
substitution are used in automatic (rather than step by step) reductions, we still need to tell

C.3 Simplificatioe of Expressions 149

OBJ3 to do so. Having substitution as a built-in operator (as in the B-tool) would reduce the
number of steps of this proof to a half.

A new feature to select subterms is used in this proof. A term involving only asscciative operators
is viewed as a sequence numbered from 1; the form [n .. m] selects the subseguence delimited
by (and including) the positions n and m. The hypothesis is encoded in the nsnal way, and is
omijtted here.

DBJ)lt.u‘tdectoA:-i;t:-A;A:t'o;A:-‘Abopt..

0BJ> apply .:="combinaticn within ters .
result Prog: dec t » A ;= f ; t :x A ; A := A bop t[A < a]
0BJ> apply Ted at (2} of [31 of (2) .

repult Prog: dec t » A :=f ; t :c A ; A

e bop t

0BJ> apply .:="commnte at [1 .. 2] of (2) .

result Prog: dec t o t :# A[A <~ f] ; A= f ; A = abap t
DBJ> apply red at (2) of [1] of (2) .

result Prog: dec t ¢t ;= f ; A :=f ; A:=abopt

0BJ> apply .:="combination within term . .
result Prog: dec t o t := £ ; A := a baop t[A <= 1]
0BJ> apply red at (2) of [2] of (2} .

result Prog: dec ¥ ¢t =1 ; A 2 abapt

DBJ> apply .:= commmte within term . .)
Tesult Prog: dec © » A := & bop tft <- 1] ; ¢t :=1¢
0BJ> apply red at (32) of [1] of (2} .)

resnlt Prog: dec t » A := dbopf ; ¢t =t

0BJ> apply -.dec-:="fipal at term .
result Prog: deéc t & A := 6 bop ¢
ORJ> apply .dec”elim at term .
result Prog: A := e bop f

C.3.2 Proof of Theorem 4.5

Here we verify the proof of the theorem

[simple“cond2 C] cq b * (dec x,A o p} = (dec x,A e A:=b; Ar (p; A :sD))
if (x,A) \\ b .

1t gives one more example of the use of the (least) fixed paint laws. The hypothesis is encoded
in the usual way, and is omitted here.

OB)> start dec x,A e A :=1b ; A (p; A :~b) C RES .

C.3 Simplification of Expressions

150

QBJ> apply .*"tp within term .

regult Bool: dec x A o A :=b ; (p; A:=b; Ae(p: A:=b) 4 A b skip)
C 1ES

ABJ> apply .:®= > Rdist within term .

result Bool: dec z,A ¢ A :=b ; p; A:i=2b ; A% (p; A:=b) 4 A[TA <~ b] b
A := b ; skip C RES

QBJ> apply red at (2) of (2) of (1) .
roepult Bool: dec x,A @ A :=b ; p; Ai=b ;A* (p; A:=B) 4 b p
A ;= b ; skip C RES

0BJ> apply -.dec—d [>"dist within term ,
result Bool: (dec x,A s A :=b ; p; A:=b; A*» (p; A:=b)) 4 bp
(dec x,A » A := b ; skip) C RHS

OBJ> apply ~.dec”assoc within term .

result Bool: (dec x o (dec Aw A:eb ; p; A:zb;A*(p; A:=b)))db b
(dec 2 o (dec A« A := b ; skip)) C RES

0BJ> apply -.dec-:="ilpnit within term .

result Bool: (dec x w (dec Ao p; A:=b; Ae(p;A:i=b})})abd b
(dec x @ (dec A » skip)) [AES

0BJ> apply .dec”assoc within term .
rosult Bool: (dec x,A e p : A :=b; Ae{p;A:=b1)db p
(dec x,A = skip) C RHS

0BJ> apply .dec”elim within term .

result Bool: (dec x,Aep ; A :=b; A*(p; A:=9)) 4 b skip C RES

OBJ> apply -.dec-; dist with p = p within term .

repult Bool: (dec x,A ¢ p} ; (dec x,A# A :=b; A» (p: A:=b)) 4b P
skip C RES

OBJ> apply -.RHS"de? within term .

result Bool: (dec x,A » p) ; RHS 4 b b skip C RES

QBJ> apply -.*"11p at term .

resnlt Bool: b » (doc z,A e p} C RES

QBJ> apply -.LHS"de? within term .
regult Bool: LHS C RES

C.4 Control Elimination 151

C.4 Control Elimination

The following theory illustrates an instantiation of the normal form theorems to deal with
our particular target machine. The module NORMAL-FORN is instantiated with the union of the
mo<dules SOURCE-EXP (describing the expressiona of the source language, as discussed above) and
ROM-ADDR-EXP which includes sorts and operators to mode! addresses in ROM, as discussed in
Chapter 6. The instantiation of same of the theorems requires some additional transformations,
but they are very simple and do not illustrate any interesting point.

th COFTROL-ELTMIRATION is
protecting NORMAL-FORN [SOURCE-EXF + RON-ADDR-EIP] ,

var p q * Prog .

var & 80 sl f fo £1 : Nat .
var ¥ : Var .

war & : Exp .

var b1 b2 : CondExp .

var x : ListVar .

[skip-theo C1 eq skip = P :[P = s, false —> skip, P = a1 .

[:="theo CJ cq (% := @) = P ;[P =49, (P=8) > (k,P := &,P + 1), P=a + 1]
it P\ e

[;"theo C1 cq (P :[P =8, b1 > p, P =101} ; (P :[P=1%0,b2->q, P=1])=
P :[P=9, (b1 Vv1b2) > (it -pDOb2 — q),P = 1]
if pad(v1,b2,(P = 1)) .

[if~thso 1
cq(P:[Pecs+1, b1 >p, Patfol) 4 A (P:[P=s1, b2->q, P=1))=
P :[P=a,((P=3s)VvblV(Patfo)Vhl)->
((Psa) =(P:=P+14qALDP:»a1)
Obl -~ pO(Px1) - (P:=2)0b2—q), P=1]
if pwd((P = 2),b1,b2,(P = fo),(P = 1)) .

[iteraticn”theo C]
c«qA*s (P:[P=s+1,b1 >p, P=12]) =
P :[P=3s,((P=3)Vvblv (P=tf)) >
((P=xg) - (P:=P+14 AP :=1f+1)
Dbl »pD(P=te) = (P:xa)), Puwito+i]
if ped((P = 8),b1,(P = £0).(P = fo + 1)) .

sndth

C.5 Dala Refipement

152

C.5 Data Refinement

The instantiation of the module describing the reasoning language shows the many kinds of
exprestsions used to reason about this phase of compilation. The modules SYNTAB and RAM
defines the symbol table and the memory RAM as instantiations of & generic module describing

maps with the usual cperations.

Here we omit the declaration of the operators related to this phase of compilation. Oaly their

definition and some of the theorems are described.

th DATA-BEFINENENT ias

protecting REASONING-LANGUAGE [SOURCK-EXP + RON-ADDR-EXIP + SYNTAB + RAN] .

aes Defiritions
[¥-simnlation] eq Wg = var v ; w = MIWIwI] ; end M .

(&'~ cotizulation] aq 'i';l svarM : M= MG (¥ >+ v} ; end v .

(¥ simulition"function] eq ¥y(p) = ¥g ; P ; ¥y
[¥-simlation“as”substitution] eq Wg(é) = & [w < MI¥LII] .
hbhs :l'hwnll - 1

[¥-¥~'-vimnlation:] eq ¥y ; ¥, = skip .
[¥-F-simalation2] g 6;1 ; Wy = akip .

#¢+ Piecevise dats refinement
[¥-skip-dist C] eq Wy (skip) = skip .

[¥-:="diat1 C] oq \i(i.')(i iz a) = (M = M @ {¥i] —~ i(i..)(i)]) .

[F-:="dist2 C] cq Fali := &) = (& := $g(a)) A1 2 \\ 9 .
[é-;-dist] aq Welp ;) = ¥ulp) ; ¥elq) .
[¥-dp-dist C] oq F9(p 4 b b q) = Fglp) 4 Fglb) b Fglq) .
[F--digt Cl =q s'(b *p} = i.(b) - GI(P) .
[introducisg machine~stats C) .

cq ¥e(dec v,P,A o p} = dec P,A o (¥ U {¥ — 0 Vg q)(p)

if disj(v,%) and disj(n,¥[z]) .

endth

C.5.1 Proof of Theorem 4.10

Below we verify the proof that (ig,s;l) is a simulation,

C.5 Data Refinement 153

o> 6' H i;l C skip .

0B start i. ; 'i;l .

OBF> wpply .¥ simnlation within term .
reault Prog: varw ; & := M[¥[v]] ; end M ; i;l
OBJ> apply .¥~'"comimulation within term .
result Prog: varw ; w := M{¥[¥]] ; end M ;
var M ; M= M @ {¥[w] — v} ; end »

OB apply .and-var~sim2 within ters .
Tesult Prog: varw ; w := M[W[w]] ; skip ; M := M & {¥[¢] + %} ; ond ¥

OBJ> apply .;-skip"Lumit within term .
result Prog: varw ; w := M[¥[wll ; M := M & {¥[¥] ~ w} ; end w

0BJ> apply .:="combination2 within term .

result Prog: varw ; w,M := M[¥[vl]l,(M & {¥[w] — w}lw <- M[¥[6]]1]) ; end v
0BJ> apply xed at (2) of [2) .

result Prog: var w ; v, M := M[¥[¥]J1,M ; end ¥

0BJ> apply .:="identity within term .

result Prog: var v ; w ;= MI¥[wl] ; end w

O0BJ> apply -.end—:="final within ters .

result Prog: var ¥ ; end ®

OBJ> apply .end-var simi within term .
result Prog: skip

LT i;l ; Wa = skip .

o=l
OB start ¥y ; We .

0EJ> apply .¥~!-conimnlation within term . N
reault Prog: var M ; M := M @ {(¥[vl — v } ; end w ; ¥y

0BJ> apply .¥-simnlation within term .
reault Prog: var M ; M ;= M & (¥l — w } ; end v ;
var w ; w ;= M[¥[w]l] ; end M

TEESE
0BJ> apply .end-ver~skip within ters .
result Prog: var M ; M := M @ {¥[v] »» v } ; w := M[#[u]] ; end M

0BJ> apply .:="combination? within term .
result Prog: var M ; M,w := (M ® {¥[e] — w]),(MI[¥[]]1[M<-M & {¥[e] — w}1);
end M

0BJ> wpply red at (2) of [2] .
result Prog: var M ; M,w := (M @ {¥[w] — w}), 9 ; end M

C.5 Data Refinement 154

OBJ> apply .:="ideptity within term .

Tegult Prog: ver M ; M := M @ (¥[»] — v} ; end M
0BJ> apply -.end-:»"final within term .

result Prog: var M ; end M

0BJ> apply .end-var’simi within term .
result Prog: skip

C.5.2 Proof of Theorem 4.14
Here we verify the inequation
[introducing~machine“state [} R
cq ¥gldec v,P,A » p) = dec PLA o B¢y oy (p)
if disj(v,w) and disj(n,¥[v]) .

where & = ¥ U {v ~ n }. The proof uses two lemmas which are also verified below.

eoe> lommi: Wy ; var v [31,:

OBJ> miart "i. y var v .

OBJ> apply .¥-gimulation within tegm .
vesult Prog: var w ; w := M[WIg]] ; end M ; var v

OBJ> apply .var“change™scope at [2 .. 4] .
remult Prog: ver ® ; var v ; v := M[¥[]] ; end M

OBJ> apply .var-:="init with ¢ = M[z] at [2] .

result Prog: verw ; var v ; v := M[n] ; w := M[¥[®]] ; end M
O0BJ> apply .var"change“scope at [1 .. 2] .

result Prog: ver v ; var ¥ ; v := M[n] ; w := M[¥[2]] ; end M

DBJ> apply .var“assoc within term .

OBJI> apply .:="combinationZ within term .

resnlt Prog: var 7,2 ; v,w ;= M[2],(M{¥[=]][r < M[2]]l) ; end M
DBJ> apply red at {2) of [2] .

result Prog: var v,v ; w,v ;= M[],M[¥([v]] ; end M

OBI> apply ~.list application within term .

result Prog: ver v,v ; v,¥ := M[n,¥[w]) ; end M

DBJY> apply -.mep lemmail vith xi = v vithin terw .

result Prog: var v,y ; v, ¥ :» MI(¥ U {r — 1 })[v,¥]] ; end M

OBJ> apply -.$"de? within term .

http:C=...:"""'....==��

C.5 Data Refinement 155

rasult Prog: var v,¥ ; v.8 ;= M[B[v,u]] ; end M

QBT> apply -.f"-:l.-nlntion within teaxm .
result Prog: @v.u

-1 ——
*ee> lammal: snd v ; Wy C Gg:'

a1

OBJ> start end v ; Wy

0BJ> apply .¥~'“cosimulation within term .
result Prog: end v ; var M ; M := M @ {¥[v] —~ w } ; and ¥
O0BJ> apply .end”“change”scope mt [1 .. 3] .
result Prog: var M ; M :a M P {¥(w] —~ v} ; end v ; end »

OB)> apply .end"assoc within term .
reault Prog: var M ; M :« M @ {¥[v] —» v} ; end v, »

0BJ> apply .var~;>"init with e > M @ 12— v within term .
result Prog: vir M ; M ;= M @ far=v)} : M = M @ {¥[w] —~w]} ; ond v,¥

OBX> apply .:>"combinaticn within tarm .
result Prog: var M ; M ;= M @ {¥[v]l — x J[IM <- M @ {8 — v }] ; end v.¥

0BX> apply rved at (2) of [2] .
result Prog: ver M ; M := M & {n,¥[w] »— v,.u } ; and v,u

OBY> apply -.map”lemmal with xi1 * v within term .
result Prog: vor M ; M :» M & {{(F U {v —n Dlv.w]l —~ v,9 } ; end v,¥

OBJ> apply -~.9%"def vithin tarm .
result Prog: var M ; (M :» M & {#[v,v] — v,» } ; and v,u)

083> apply ~.¥~!"coaimplation within term .
s
result Prog: Gy, g

sss> Thersfore we can add lnequations representing the tvo lammas
[lemmat C] oq Wy ; var v = @y y .

U.—n:E].qendv;i;l-G'...

vo5> Proof of tha theorem

0BY> start Wy(dec v,P.A » p) .

QB> apply .¥"eimnlution“function at tl:'l .
result Prog: Wy : (dec v,P.A e p) ; ¥y

QEJ> apply -.dec assoc with x = v within term .
result Prog: 6' i (dec v sf{dec P,A » p)) ; i;l

C.5 Data Refinement 156

QBJ> apply .dec-var"end within term . .
rapult Prog: Wy ; ovar v ; (dec PLA @ p) ; end ¥ ; i;

0BJ> apply .le=mal within term .
Tasnlt Prog: v, ; (dec PLA o p) ; end v ; &'

OBJ}> apply .lemma2 within term .
result Prog: 5'_. ; (dec PLA o p) ; @;:.

0BJ> apply .:-dec”Rdist within term .
result Prog: (dec P,A o Oy ,g ; p) ; @y.¢

DBJ> apply .;-dec”"Ldist within term .
~ -1
result Frog: dec PLA o @y u 5 P i ®y,p

0BJ> apply -. ¥ similarion function within term .
result Prog: dec PLA o $y g(p)

C.6 Machine Instructions 157

C.6 Machine Instructions

The machine instructions are defined as assignments that update the machine state. Therefore,
the instructions should also be regarded as elements of the sort Prog. However, to makeit clear
that we are introducing a new concept, we declare a subsort of Prog whose elements are the
machine instractions.

th CODE is
protecting EEASONING-LANGUAGE [SOURCE~EIP + CN-ADDE-EIP + RAN] .

sort Instructienm .
eubsort Instructiom < Prog .

op kad : Ramiddr -> Instymcticn .
op store : Ramiddr -> Instructionm .
op bop-A : lamiddr -> Instruction .
op wop-A : -> Instruction .

op jump : homiddr -> Instructicn .
op cump : Romiddr -> Instruction .

oq (A,P := M[n],P + 1) = load(n) .

P2 (M@ {n— AJ,P+ 1) » store(n) .
P := A bop M[n],P + 1) = bop-A(n) .

P := wop AP + 1) = uop-A .

P := j) = jump(j) .
P:xP+1 4 A B jump(j)) = cjump(j) .

The reason to order the equations in this way is that they are nsed as rewrite rvles during the
compilation process. Therefore, when the assignment statements (used as patterss to define the
instructions) are generated, they are automatically replaced by the corresponding inetructions
names,

